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Preface

This book builds on the author’s previous book Computational Finance: Nu-
merical Methods for Pricing Financial Instruments, which contained informa-
tion on pricing equity options using C code. The current book covers the fol-
lowing instrument types:

• Equity derivatives
• Interest rate derivatives
• Foreign exchange derivatives
• Credit derivatives

There is also an extensive final chapter which demonstrates how a C-based
analytics pricing library can be used by C# portfolio valuation software. In ad-
dition this application:

• illustrates the use of C# dictionaries, abstract classes and .NET InteropSer-
vices

• permits the reader to value bespoke portfolios
• allows market data to be specified via a configuration file
• contains a generic basket pricer for which the reader can specify the payoff

function
• can be freely downloaded for use by the reader.

The current book also contains increased coverage of stochastic processes, Ito
calculus and Monte Carlo simulation. These topics are supported by practical
applications and solved example problems.

In addition the Numerical Algorithms Group (NAG) have allowed readers
to enjoy an extended trial licence for the NAG C library and associated finan-
cial routines from the following url: www.nag.co.uk/market/elsevier_glevy. The
NAG C library may be called into C# and provides a large suite of mathematical
routines addressing many areas covered in this book (random numbers, statisti-
cal distributions, option pricing, correlation and covariance matrices etc.).

Computational Finance Using C and C# also includes supporting software
that may be downloaded for free. The software consists of executable files, con-
figuration files and results files. With these files the user can run the example
portfolio application in Chapter 8 and change the portfolio composition and
the attributes of the deals.

Additional upgrade software is available for purchase with Computational
Finance Using C and C#. The software includes:

• Code to run all the C, C# and Excel examples in the book
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• Complete C source code for the Analytics_Mathlib math library that is used
in the book

• C# source code, market data and portfolio files for the portfolio application
described in Chapter 8

All the C/C# software in the book can be compiled using either Visual Studio
.NET 2005, or the freely available Microsoft Visual C#/C++ Express Editions.

I would like to take this opportunity of thanking my wife Kathy for her sup-
port.

In addition I am grateful to Karen Maloney of Elsevier for her patience with
regard to the book’s delivery date, and Dr. Stephen Satchell of Trinity College
Cambridge for allowing me the opportunity to write a sequel.

George Levy
Benson, Oxfordshire, UK

2008



1 Overview of financial derivatives

A financial derivative is a contract between two counterparties (here referred
to as A and B) which derives its value from the state of underlying financial
quantities. We can further divide derivatives into those that carry a future oblig-
ation and those that don’t. In the financial world a derivative which gives the
owner the right but not the obligation to participate in a given financial contract
is called an option. We will now illustrate this using both a Foreign Exchange
Forward contract and a Foreign Exchange option.

Foreign Exchange Forward—a contract with an obligation

In a Foreign Exchange Forward contract a certain amount of foreign currency
will be bought (or sold) at a future date using a prearranged foreign exchange
rate.

For instance, counterparty A may own a Foreign Exchange Forward which,
in one year’s time, contractually obliges A to purchase from B the sum of $200
for £100. At the end of one year several things may have happened.

(i) The value of the pound may have decreased with respect to the dollar
(ii) The value of the pound may have increased with respect to the dollar
(iii) Counterparty B may refuse to honor the contract—B may have gone bust,

etc.
(iv) Counterparty A may refuse to honor the contract—A may have gone bust,

etc.

We will now consider events (i)–(iv) from A’s perspective.
Firstly, if (i) occurs then A will be able to obtain $200 for less than the current

market rate, say £120. In this case the $200 can be bought for £100 and then
immediately sold for £120, giving a profit of £20. However, this profit can only
be realized if B honors the contract—that is, event (iii) does not happen.

Secondly, when (ii) occurs then A is obliged to purchase $200 for more than
the current market rate, say £90. In this case the $200 are bought for £100 but
could have been bought for only £90, giving a loss of £10.

The probability of events (iii) and (iv) occurring are related to the Credit Risk
associated with counterparty B. The value of the contract to A is not affected
by (iv), although A may be sued if both (ii) and (iv) occur. Counterparty A

should only be concerned with the possibility of events (i) and (iii) occurring—
that is, the probability that the contract is worth a positive amount in one year
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and the probability that B will honor the contract (which is one minus the
probability that event (iii) will happen).

From B’s point of view the important Credit Risk is when both (ii) and (iv)
occur—that is, when the contract has positive value but counterparty A defaults.

Foreign Exchange option—a contract without an obligation

A Foreign Exchange option is similar to the Foreign Exchange Forward, the
difference being that if event (ii) occurs then A is not obliged to buy dollars
at an unfavorable exchange rate. To have this flexibility A needs to buy a For-
eign Exchange option from B, which here can be regarded as insurance against
unexpected exchange rate fluctuations.

For instance, counterparty A may own a Foreign Exchange option which, in
one year, contractually allows A to purchase from B the sum of $200 for £100.
As before, at the end of one year the following may have happened:

(i) The value of the pound may have decreased with respect to the dollar
(ii) The value of the pound may have increased with respect to the dollar
(iii) Counterparty B may refuse to honor the contract—B may have gone bust,

etc.
(iv) Counterparty A may have gone bust, etc.

We will now consider events (i)–(iv) from A’s perspective.
Firstly, if (i) occurs then A will be able to obtain $200 for less than the current

market rate, say £120. In this case the $200 can be bought for £100 and then
immediately sold for £120, giving a profit of £20. However, this profit can only
be realized if B honors the contract—that is, event (iii) does not happen.

Secondly, when (ii) occurs then A will decide not to purchase $200 for more
than the current market rate; in this case the option is worthless.

We can thus see that A is still concerned with the Credit Risk when events
(i) and (iii) occur simultaneously.

The Credit Risk from counterparty B’s point of view is different. B has sold
to A a Foreign Exchange option, which matures in one year, and has already
received the money—the current fair price for the option. Counterparty B has
no Credit Risk associated with A. This is because if event (iv) occurs, and A

goes bust, it doesn’t matter to B since the money for the option has already
been received. On the other hand, if event (iii) occurs B may be sued by A but
B still has no Credit Risk associated with A.

This book considers the valuation of financial derivatives that carry obliga-
tions and also financial options.

Chapters 1–7 deal with both the theory of stochastic processes and the pric-
ing of financial instruments. In Chapter 8 this information is then applied to a
C# portfolio valuer. The application is easy to use (the portfolios and current
market rates are defined in text files) and can also be extended to include new
trade types.
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The book has been written so that (as far as possible) financial mathematics
results are derived from first principles.

Finally, the appendices contain various information, which we hope the
reader will find useful.



blankleftintentionallypageThis



2 Introduction to stochastic
processes

2.1 Brownian motion

Brownian motion is named after the botanist Robert Brown who used a micro-
scope to study the fertilization mechanism of flowering plants. He first observed
the random motion of pollen particles (obtained from the American species
Clarkia pulchella) suspended in water, and wrote:

The fovilla or granules fill the whole orbicular disk but do not extend to the
projecting angles. They are not sphaerical but oblong or nearly cylindrical,
and the particles have manifest motion. This motion is only visible to my
lens which magnifies 370 times. The motion is obscure yet certain . . .

Robert Brown, 12th June 1827; see Ramsbottom (1932)

It appears that Brown considered this motion no more than a curiosity (he be-
lieved that the particles were alive) and continued undistracted with his botan-
ical research. The full significance of his observations only became apparent
about eighty years later when it was shown (Einstein, 1905) that the motion
is caused by the collisions that occur between the pollen grains and the water
molecules. In 1908 Perrin (1909) was finally able to confirm Einstein’s predic-
tions experimentally. His work was made possible by the development of the
ultramicroscope by Richard Zsigmondy and Henry Siedentopf in 1903. He was
able to work out from his experimental results and Einstein’s formula the size
of the water molecule and a precise value for Avogadro’s number. His work
established the physical theory of Brownian motion and ended the skepticism
about the existence of atoms and molecules as actual physical entities. Many of
the fundamental properties of Brownian motion were discovered by Paul Levy
(Levy, 1939, 1948), and the first mathematically rigorous treatment was pro-
vided by Norbert Wiener (Wiener, 1923, 1924). Karatzas and Shreve (1991) is
an excellent textbook on the theoretical properties of Brownian motion, while
Shreve, Chalasani, and Jha (1997) provides much useful information concerning
the use of Brownian processes within finance.

Brownian motion is also called a random walk, a Wiener process, or some-
times (more poetically) the drunkard’s walk. We will now present the three fun-
damental properties of Brownian motion.
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2.1.1 The properties of Brownian motion

In formal terms a process W = (Wt : t � 0) is (one-dimensional) Brownian
motion if:

(i) Wt is continuous, and W0 = 0,
(ii) Wt ∼ N(0, t),
(iii) The increment dWt = Wt+dt −Wt is normally distributed as dWt ∼ N(0, dt),

so E[dWt ] = 0 and Var[dWt ] = dt . The increment dWt is also independent
of the history of the process up to time t .

From (iii) we can further state that, since the increments dWt are independent
of past values Wt , a Brownian process is also a Markov process. In addition we
shall now show that a Brownian process is also a martingale process.

In a martingale process Pt , t � 0, the conditional expectation E[Pt+dt |Ft ] =
Pt , where Ft is called the filtration generated by the process and contains the
information learned by observing the process up to time t . Since for Brownian
motion we have

E[Wt+dt |Ft ] = E
[
(Wt+dt − Wt) + Wt |Ft

] = E[Wt+dt − Wt ] + Wt

= E[dWt ] + Wt = Wt

where we have used the fact that E[dWt ] = 0. Since E[Wt+dt |Ft ] = Wt the
Brownian motion W is a martingale process.

Using property (iii) we can also derive an expression for the covariance of
Brownian motion. The independent increment requirement means that for the
n times 0 � t0 < t1 < t2 < · · · < tn < ∞ the random variables Wt1 − Wt0,Wt2 −
Wt1, . . . ,Wtn − Wtn−1 are independent. So

Cov[Wti − Wti−1 ,Wtj − Wtj−1] = 0, i �= j (2.1.1)

We will show that Cov[Ws,Wt ] = s ∧ t .

Proof. Using Wt0 = 0, and assuming t � s we have

Cov[Ws − Wt0,Wt − Wt0] = Cov[Ws,Wt ] = Cov
[
Ws,Ws + (Wt − Ws)

]
From Appendix C.3.2 we have

Cov
[
Ws,Ws + (Wt − Ws)

] = Cov[Ws,Ws] + Cov[Ws,Wt − Ws]
= Var[Ws] + Cov[Ws,Wt − Ws]

Therefore

Cov[Ws,Wt ] = s + Cov[Ws,Wt − Ws]
Now

Cov[Ws,Wt − Ws] = Cov[Ws − Wt0,Wt − Ws] = 0

where we have used Eq. (2.1.1) with n = 2, t1 = s and t2 = t .
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We thus obtain

Cov[Ws,Wt ] = s

So

Cov[Ws,Wt ] = s ∧ t (2.1.2)
�

We will now consider the Brownian increments over the time interval dt in
more detail. Let us first define the process X such that:

dXt = dWt (2.1.3)

where dWt is a random variable drawn from a normal distribution with mean
zero and variance dt , which we denote as dWt ∼ N(0, dt). Equation (2.1.3) can
also be written in the equivalent form:

dXt = √
dt dZ (2.1.4)

where dZ is a random variable drawn from a standard normal distribution (that
is a normal distribution with zero mean and unit variance).

Equations (2.1.3) and (2.1.4) give the incremental change in the value of X

over the time interval dt for standard Brownian motion.
We shall now generalize these equations slightly by introducing the extra

(volatility) parameter σ which controls the variance of the process. We now
have:

dXt = σdWt (2.1.5)

where dWt ∼ N(0, dt) and dXt ∼ N(0, σ 2 dt). Equation (2.1.5) can also be
written in the equivalent form:

dXt = σ
√

dt dZ, dZ ∼ N(0, 1) (2.1.6)

or equivalently

dXt = √
dt dẐ, dẐ ∼ N

(
0, σ 2) (2.1.7)

We are now in a position to provide a mathematical description of the move-
ment of the pollen grains observed by Robert Brown in 1827. We will start
by assuming that the container of water is perfectly level. This will ensure that
there is no drift of the pollen grains in any particular direction. Let us denote
the position of a particular pollen grain at time t by Xt , and set the position
at t = 0, Xt0 , to zero. The statistical distribution of the grain’s position, XT , at
some later time t = T , can be found as follows:

Let us divide the time T into n equal intervals dt = T/n. Since the position of
the particle changes by the amount dXi = σ

√
dt dZi over the ith time interval

dt , the final position XT is given by:

XT =
n∑

i=1

(
σ
√

dt dZi

) = σ
√

dt

n∑
i=1

dZi
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Since dZi ∼ N(0, 1), by the Law of Large Numbers (see Appendix C.1), we have
that the expected value of position XT is:

E[XT ] = σ
√

dtE

[
n∑

i=1

dZi

]
= 0

The variance of the position XT is:

Var[XT ] = Var

[
σ
√

dt

n∑
i=1

dZi

]
= σ 2 dt Var

[
n∑

i=1

dZi

]
(2.1.8)

Since all the dZi variates are IID N(0, 1) we have Var[dZi] = 1 and
Var[∑n

i=1 Xi] = ∑n
i=1 Var[Xi] (see Appendix C.3.1).

Thus

Var[XT ] = σ 2 dt

n∑
i=1

Var[dZi] = σ 2 dt

n∑
i=1

1 (2.1.9)

which gives:

Var[XT ] = σ 2n dt = T σ 2 (2.1.10)

So, at time T , the position of the pollen grain XT is distributed as XT ∼
N(0, T σ 2).

If the water container is not perfectly level then the pollen grains will ex-
hibit drift in a particular direction. We can modify Eq. (2.1.5) to take this into
account as follows:

dXt = μ dt + σ
√

dt dZi, dZi ∼ N(0, 1), (2.1.11)

or equivalently

dXt = μ dt + σ dWt, dWt ∼ N(0, dt), (2.1.12)

where we have included the constant drift μ. Proceeding in a similar manner to
that for the case of zero drift Brownian motion we have:

XT =
n∑

i=1

(
μ dt + σ

√
dt dZi

) = μ

n∑
i=1

dt + σ
√

dt

n∑
i=1

dZi

= μT + σ
√

dt

n∑
i=1

dZi

which gives

E[XT ] = E

[
μT + σ

√
dt

n∑
i=1

dZi

]

E[XT ] = μT + σ
√

dtE

[
n∑

i=1

dZi

]
= μT
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The variance of the position XT is:

Var[XT ] = Var

[
μT + σ

√
dt

n∑
i=1

dZi

]
= Var

[
σ
√

dt

n∑
i=1

dZi

]
Here we have used the fact (see Appendix C.3.1) that Var[a + bX] = b2 Var[X],
where a = μT , and b = 1. From Eqs. (2.1.9) and (2.1.10) we have:

Var[XT ] = Var

[
σ
√

dt

n∑
i=1

dZi

]
= T σ 2

So, at time T , the position of the pollen grain XT is distributed as XT ∼
N(μT , T σ 2).

We have just shown that when we vary the drift of a Brownian motion, its
volatility remains unchanged. This is a very important property and (as we will
see later) is used extensively in the theory of derivative pricing.

2.2 A Brownian model of asset price movements

In the previous section we showed how Brownian motion can be used to de-
scribe the random motion of small particles suspended in a liquid. The first
attempt at using Brownian motion to describe financial asset price movements
was provided by Bachelier (1900). This, however, only had limited success be-
cause the significance of a given absolute change in asset price depends on the
original asset price. For example, a £1 increase in the value of a share originally
worth £1.10 is much more significant than a £1 increase in the value of a share
originally worth £100. It is for this reason that asset price movements are gen-
erally described in terms of relative or percentage changes. For example, if the
£1.10 share increases in value by 11 pence and the £100 share increases in value
by £10, then both of these price changes have the same significance, and corre-
spond to a 10 percent increase in value. The idea of relative price changes in the
value of a share can be formalized by defining a quantity called the return, Rt ,
of a share at time t . The return Rt is defined as follows:

Rt = St+dt − St

St

= dSt

St

(2.2.1)

where St+dt is the value of the share at time t + dt , St is the value of the share at
time t , and dSt is the change in value of the share over the time interval dt . The
percentage return R∗ over the time interval dt is simply defined as R∗ = 100×Rt .

We are now in a position to construct a simple Brownian model of asset
price movements; further information on Brownian motion within finance can
be found in Shreve, Chalasani, and Jha (1997).

The asset return at time t is now given by:

Rt = dSt

St

= μ dt + σ dWt, dWt ∼ N(0, dt), (2.2.2)



10 Computational Finance Using C and C#

or equivalently:

dSt = Stμ dt + Stσ dWt (2.2.3)

The process in Eqs. (2.2.2) and (2.2.3) is termed geometric Brownian motion;
which we will abbreviate as GBM. This is because the relative (rather than ab-
solute) price changes follow Brownian motion.

2.3 Ito’s formula (or lemma)

In this section we will derive Ito’s formula; a more rigorous treatment can be
found in Karatzas and Shreve (1991).

Let us consider the stochastic process X:

dX = a dt + b dW = a dt + b
√

dt dZ, dZ ∼ N(0, 1), dW ∼ N(0, dt)

(2.3.1)

where a and b are constants. We want to find the process followed by a function
of the stochastic variable X, that is φ(X, t). This can be done by applying a
Taylor expansion, up to second order, in the two variables X and t as follows:

φ∗ = φ + ∂φ

∂t
dt + ∂φ

∂X
dX + 1

2

∂2φ

∂X2
dX2 + 1

2

∂2φ

∂t2
dt2 + ∂φ

∂X ∂t
dX dt

(2.3.2)

where φ∗ is used to denote the value φ(X + dX, t + dt), and φ denotes the value
φ(X, t). We will now consider the magnitude of the terms dX2, dX dt, and dt2

as dt → 0. First

dX2 = (
a dt + b

√
dt dZ

)(
a dt + b

√
dt dZ

)
= a2 dt2 + 2ab dt

3/2 dZ + b2 dt dZ2

then

dX dt = a dt2 + b dt
3/2 dZ

So as dt → 0, and ignoring all terms in dt of order greater than 1, we have:

dX2 ∼ b2 dt dZ2, dt2 ∼ 0, and dX dt ∼ 0

Therefore Eq. (2.3.2) can be rewritten as:

dφ = ∂φ

∂t
dt + ∂φ

∂X
dX + 1

2

∂2φ

∂X2
E

[
dX2] (2.3.3)

where dφ = φ∗ − φ, and we have replaced dX2 by its expected value E[dX2].
Now

E
[
dX2] = E

[
b2 dt dZ2] = b2 dtE

[
dZ2] = b2 dt



Introduction to stochastic processes 11

where we have used the fact that, since dZ ∼ N(0, 1), the variance of dZ,
E[dZ2], is by definition equal to 1. Using these values in Eq. (2.3.3) and substi-
tuting for dX from Eq. (2.3.1), we obtain:

dφ = ∂φ

∂t
dt + ∂φ

∂X
(a dt + b dw) + b2

2

∂2φ

∂X2
dt (2.3.4)

This gives Ito’s formula

dφ =
(

∂φ

∂t
+ a

∂φ

∂X
+ b2

2

∂2φ

∂X2

)
dt + ∂φ

∂X
b dW (2.3.5)

In particular if we consider the geometric Brownian process:

dS = μS dt + σS dW

where μ and σ are constants, then substituting X = S, a = μS, and b = σS into
Eq. (2.3.5) yields:

dφ =
(

∂φ

∂t
+ μS

∂φ

∂S
+ σ 2S2

2

∂2φ

∂S2

)
dt + ∂φ

∂S
σS dW (2.3.6)

Equation (2.3.6) describes the change in value of a function φ(S, t) over the time
interval dt , when the stochastic variable S follows GBM. This result has very
important applications in the pricing of financial derivatives. Here the function
φ(S, t) is taken as the price of a financial derivative, f (S, t), that depends on the
value of an underlying asset S, which is assumed to follow GBM. In Chapter 4
we will use Eq. (2.3.6) to derive the (Black–Scholes) partial differential equation
that is satisfied by the price of a financial derivative.

We can also use Eq. (2.3.3) to derive the process followed by φ = log(St ). We
have:

∂φ

∂St

= ∂ log(St )

∂S
= 1

S
,

∂2φ

∂S2
t

= ∂

∂St

(
∂ log(St )

∂St

)
= ∂

∂St

(
1

St

)
= − 1

S2
t

∂φ

∂t
= ∂ log(St )

∂t
= 0

So

d
(
log(St )

) = ν dt + σ dWt where ν = μ − σ 2

2
(2.3.7)

Integrating Eq. (2.3.7) yields∫ T

t=t0

d
(
log(St )

) =
∫ T

t=t0

ν dt +
∫ T

t=t0

σ dWt

so

log(ST ) − log(St0) = νT + σWT (2.3.8)

where we have used t0 = 0 and Wt0 = 0.
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We obtain

log

(
ST

St0

)
∼ N

(
νT , σ 2T

)
(2.3.9)

and so

log

(
ST

St0

)
= νT + σWT (2.3.10)

The solution to the geometric Brownian motion (GBM) in Eq. (2.2.3) is

ST = St0 exp(νT + σWT ), ν = μ − σ 2

2
(2.3.11)

The asset value at time t + dt can therefore be generated from its value at
time t by using

St+dt = St exp{ν dt + σ dWt }
We have shown that if the asset price follows geometric Brownian motion,

then the logarithm of the asset price follows standard Brownian motion. An-
other way of stating this is that, over the time interval dt , the change in the
logarithm of the asset price is a Gaussian distribution with mean (μ − σ 2/2) dt ,
and variance σ 2 dt .

These results can easily be generalized to include time varying drift and
volatility. Now instead of Eq. (2.2.3) we have

dSt = Stμt dt + Stσt dWt (2.3.12)

which results in

d
(
log(St )

) = νt dt + σt dWt (2.3.13)

so ∫ T

t=t0

d
(
log(St )

) =
∫ T

t=t0

νt dt +
∫ T

t=t0

σt dWt

which results in the following solution for ST

ST = St0 exp

(∫ T

t=t0

νt dt +
∫ T

t=t0

σt dWt

)
where νt = μt − σ 2

t

2
(2.3.14)

The results presented in Eqs. (2.3.11) and (2.3.14) are very important and
will be referred to in later sections of the book.

2.4 Girsanov’s theorem

This theorem states that for any stochastic process k(t) such that
∫ t

0 k(s)2 ds <

∞ then the Radon–Nikodym derivative dQ
dP

= ρ(t) is given by:

ρ(t) = exp

{∫ t

0
k(s) dWP

s − 1

2

∫ t

0
k(s)2 ds

}
(2.4.1)
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where WP
t is Brownian motion (possibly with drift) under probability measure

P, see Baxter and Rennie (1996). Under probability measure Q we have:

W
Q
t = WP

t −
∫ t

0
k(s) ds (2.4.2)

where W
Q
t is also Brownian motion (possibly with drift).

We can also write

dWP = dWQ + k(t) dt (2.4.3)

Girsanov’s theorem thus provides a mechanism for changing the drift of a
Brownian motion.

2.5 Ito’s lemma for multiasset geometric Brownian motion

We will now consider the n-dimensional stochastic process:

dXi = ai dt + bi

√
dt dZi = ai dt + bi dWi, i = 1, . . . , n, (2.5.1)

or in vector form:

dX = A dt + √
dtB dZ = A dt + B dW (2.5.2)

where A and B are n-element vectors respectively containing the constants,
ai, i = 1, . . . , n, and bi, i = 1, . . . , n. The stochastic vector dX contains the
n stochastic variables Xi, i = 1, . . . , n.

We will assume that the n element random vector dZ is drawn from a mul-
tivariate normal distribution with zero mean and covariance matrix Ĉ. That is,
we can write:

dZ ∼ N(0, Ĉ)

Since Ĉii = Var[dZi] = 1, i = 1, . . . , n, the diagonal elements of Ĉ are all unity
and the matrix Ĉ is in fact a correlation matrix with off-diagonal elements given
by:

Ĉij = E[dZi dZj ] = ρi,j , i = 1, . . . , n, j = 1, . . . , n, i �= j,

where ρij is the correlation coefficient between the ith and j th elements of the
vector dZ.

Similarly the n-element random vector dW is drawn from a multivariate nor-
mal distribution with zero mean and covariance matrix C. We can thus write:

dW ∼ N(0, C)

The diagonal elements of C are Cii = Var[dWi] = dt, i = 1, . . . , n, and off-
diagonal elements are

Cij = E[dWi dWj ] = ρi,j dt, i = 1, . . . , n, j = 1, . . . , n, i �= j
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As in Section 2.3 we want to find the process followed by a function of the
stochastic vector X, that is the process followed by φ(X, t). This can be done by
applying an n-dimensional Taylor expansion, up to second order, in the variables
X and t as follows:

φ∗ = φ + ∂φ

∂t
dt +

n∑
i=1

∂φ

∂Xi

dXi + 1

2
E

[
n∑

i=1

n∑
j=1

∂2φ

∂Xi ∂Xj

dXi dXj

]

+ 1

2

∂2φ

∂t2
dt2 +

n∑
i=1

∂φ

∂Xi ∂t
dXi dt (2.5.3)

where φ∗ is used to denote the value φ(X + dX, t + dt), and φ denotes the value
φ(X, t). We will now consider the magnitude of the terms dXi dXj , dXi dt, and
dt2 as dt → 0. Expanding the terms dXi dXj and dXi dt we have:

dXi dXj = (
ai dt + bi

√
dt dZi

)(
aj dt + bj

√
dt dZj

)
∴ dXi dXj = aiaj dt2 + aibj dt

3/2 dZj + ajbi dt
3/2 dZi

(2.5.4)+ bibj dt dZi dZj

dXi dt = ai dt2 + bi dt3/2 dZi

So as dt → 0, and ignoring all terms in dt of order greater than 1, we have:

dXi dt ∼ 0

and

dXi dXj ∼ bibj dt dZi dZj

Therefore Eq. (2.5.3) can be rewritten as

dφ = ∂φ

∂t
dt +

n∑
i=1

∂φ

∂Xi

dXi + 1

2
E

[
n∑

i=1

n∑
j=1

∂2φ

∂Xi ∂Xj

dXi dXj

]
(2.5.5)

where dφ = φ∗ − φ.
Now

E[dXi dXj ] = E[bibj dt dZi dZj ] = bibj dtE[dZi dZj ] = bibjρij dt

where ρij is the correlation coefficient between the ith and j th assets.
Using these values in Eq. (2.5.5), and substituting for dXi from Eq. (2.5.1),

we obtain:

dφ =
n∑

i=1

∂φ

∂Xi

(ai dt + bi dWi) + ∂φ

∂t
dt + 1

2

n∑
i=1

n∑
j=1

bibjρij dt
∂2φ

∂Xi ∂Xj

(2.5.6)

This gives Ito’s n-dimensional formula:
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dφ =
{

∂φ

∂t
+

n∑
i=1

ai

∂φ

∂Xi

+ 1

2

n∑
i=1

n∑
j=1

bibjρij

∂2φ

∂Xi ∂Xj

}
dt

+
n∑

i=1

∂φ

∂Xi

bi dWi (2.5.7)

In particular if we consider the geometric Brownian motion:

dSi = μiSi dt + σiSi dWi, i = 1, . . . , n,

where μi is the constant drift of the ith asset and σi is the constant volatility of
the ith asset, then substituting Xi = Si , ai = μiSi , and bi = σiSi into Eq. (2.5.7)
yields:

dφ =
{

∂φ

∂t
+

n∑
i=1

μiSi

∂φ

∂Si

+ 1

2

n∑
i=1

n∑
j=1

σiσjSiSjρij

∂2φ

∂Si ∂Sj

}
dt

+
n∑

i=1

∂φ

∂Si

σiSi dWi (2.5.8)

2.6 Ito product and quotient rules in two dimensions

We will now derive expressions for the product and quotient of two stochastic
processes. In this case φ → φ(X1, X2), with

dX1 = a1 dt + b1 dW1 and dX2 = a2 dt + b2 dW2

The following two-dimensional version of Ito’s lemma will be used:

dφ = ∂φ

∂X1
dX1 + ∂φ

∂X2
dX2 + 1

2
E

[
2∑

i=1

2∑
j=1

∂2φ

∂Xi ∂Xj

dXi dXj

]
(2.6.1)

where we have used the fact that ∂φ
∂t

= 0.

2.6.1 Ito product rule

Here φ = φ(X1X2), and the partial derivatives are as follows:

∂φ

∂X1
= X2,

∂φ

∂X2
= X1

∂2φ

∂X2
1

= ∂2φ

∂X2
2

= 0,

∂2φ

∂X1 ∂X2
= ∂2φ

∂X2 ∂X1
= 1

Therefore using Eq. (2.6.1)

dφ = X2 dX1 + X1 dX2 + 2E[dX1 dX2]
2
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and the product rule is

d(X1X2) = X2 dX1 + X1 dX2 + E[dX1 dX2] (2.6.2)

Brownian motion with one source of randomness

For the special case where X1 is Brownian motion and X2 has no random term
we have:

dX1 = X1μ1 dt + X1σ1 dW1 and dX2 = X2μ2 dt

Now

E[dX1 dX2] = E
[
(X1μ1 dt + X1σ1 dW1)X2μ2 dt

]
= X1X2μ1μ2 dt2 + X1X2σ1μ2 dtX2μ2 dt E[dW1]
= 0

where we have ignored terms in dt with order higher than 1, and used
E[dW1] = 0.

Therefore Eq. (2.6.2) becomes:

d(X1X2) = X2 dX1 + X1 dX2

d(X1X2) = X2(X1μ1 dt + X1σ1 dW1) + X1X2μ2 dt

So we finally obtain:

d(X1X2) = (X1X2){μ1 + μ2} dt + (X1X2)σ1 dW1 (2.6.3)

2.6.2 Ito quotient rule

Here φ = φ(X1/X2) and the partial derivatives are as follows:

∂φ

∂X1
= 1

X2
,

∂φ

∂X2
= −X1

X2
2

,
∂2φ

∂X2
1

= 0,

∂2φ

∂X2
2

= 2
X1

X3
2

,
∂2φ

∂X1 ∂X2
= ∂2φ

∂X2 ∂X1
= − 1

X2
2

Therefore using Eq. (2.6.1)

dφ = dX1

X2
− X1

dX2

X2
2

+ 1

2
E

[{
2X1

X3
2

dX2
2 − 2

dX1 dX2

X2
2

}]
We obtain the following expression for the quotient rule:

d
(

X1

X2

)
=

(
X1

X2

){
dX1

X1
− dX2

X2
+ E

[(
dX2

X2

)(
dX2

X2

)]
− E

[(
dX1

X1

)(
dX2

X2

)]}
(2.6.4)
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Brownian motion

Here we have:

dX1 = X1μ1 dt + X1σ1 dW1 and dX2 = X2μ2 dt + X2σ2 dW2

or equivalently

dX1

X1
= μ1 dt + σ1 dW1 and

dX2

X2
= μ2 dt + σ2 dW2

Therefore

E

[(
dX2

X2

)(
dX2

X2

)]
= E

[
(μ2 dt + σ2 dW2)(μ2 dt + σ2 dW2)

]
= E

[
μ2

2 dt2] + E
[
σ 2

2 (dW2)
2] + 2E[σ2 dt dW2]

= μ2
2 dt2 + σ 2

2 dt + 2σ2 dt E[dW2]
which results in

E

[(
dX2

X2

)(
dX2

X2

)]
= σ 2

2 dt (2.6.5)

where we have ignored all terms in dt with order higher than 1, and used the
fact that E[dW2] = 0.

In a similar manner

E

[(
dX1

X1

)(
dX2

X2

)]
= E

[
(μ1 dt + σ1 dW1)(μ2 dt + σ2 dW2)

]
= E

[
μ1μ2 dt2] + E[σ1μ2 dt dW1]

+ E[σ2μ1 dt dW2] + E[σ1σ2 dW1 dW2]
= μ1μ2 dt2 + σ1μ2 dtE[dW1] + σ2μ1 dtE[dW2]

+ σ1σ2E[dW1 dW2]
which gives

E

[(
dX1

X1

)(
dX2

X2

)]
= σ1σ2 dt ρ12 (2.6.6)

where we have proceeded as before but also used the fact that E[dW1 dW2] =
ρ12 dt .

Substituting these into Eq. (2.6.4) we have:

d
(

X1

X2

)
=

(
X1

X2

){
dX1

X1
− dX2

X2
+ σ 2

2 dt − σ1σ2ρ12 dt

}
=

(
X1

X2

){
μ1 dt + σ1 dt − μ2 dt − σ2 dt + σ 2

2 dt − σ1σ2ρ12 dt
}

=
(

X1

X2

){
μ1 dt + σ1 dW1 − μ2 dt − σ2 dW2 + σ 2

2 dt − σ1σ2ρ12 dt
}
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This yields:

d
(

X1

X2

)
=

(
X1

X2

){
μ1 − μ2 + σ 2

2 − σ1σ2ρ12
}

dt

+
(

X1

X2

)
{σ1 dW1 − σ2 dW2} (2.6.7)

Brownian motion with one source of randomness

We have

dX1 = X1μ1 dt + X1σ1 dW1 and dX2 = X2μ2 dt

As before

E

[(
dX2

X2

)(
dX2

X2

)]
= E

[
μ2

2 dt2] = μ2
2 dt2 → 0

E

[(
dX1

X1

)(
dX2

X2

)]
= E

[
(μ1 dt + σ1 dW1)μ2 dt

]
= E

[
μ1μ2 dt2 + σ1μ2 dt dW1

]
= μ1μ2 dt2 + σ1μ2 dt E[dW1] → 0

Therefore

d
(

X1

X2

)
=

(
X1

X2

){
dX1

X1
− dX2

X2

}
=

(
X1

X2

)
{μ1 dt + σ1 dW1 − μ2 dt}

So the final expression is

d
(

X1

X2

)
=

(
X1

X2

)
{μ1 − μ2} dt +

(
X1

X2

)
σ1 dW1 (2.6.8)

2.7 Ito product in n dimensions

Using Eq. (2.5.7) we will now derive an expression for the product of n sto-
chastic processes. In this case φ → ∏n

i=1 Xi , and the partial derivatives are as
follows:

∂φ

∂Xi

= φ
dXi

Xi

for i = 1, . . . , n

∂2φ

∂X2
i

= 0 for i = 1, . . . , n
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∂2φ

∂Xi ∂Xj

= ∂2φ

∂Xj ∂Xi

=
(

dXi

Xi

)(
dXj

Xj

)
φ for i �= j, i = 1, . . . , n, j = 1, . . . , n

∂φ

∂t
= 0

So substituting into Eq. (2.5.7) we have

dφ = φ

n∑
i=1

(
dXi

Xi

)
+ φE

[
n∑

i=1

n∑
j=1(i �=j)

(
dXi

Xi

)(
dXj

Xj

)]
(2.7.1)

which in full is

d

(
n∏

i=1

Xi

)
=

(
n∏

i=1

Xi

)
n∑

i=1

(
dXi

Xi

)

+
(

n∏
i=1

Xi

)
E

[
n∑

i=1

n∑
j=1(i �=j)

(
dXi

Xi

)(
dXj

Xj

)]
(2.7.2)

2.8 The Brownian bridge

Let a Brownian process have values Wt0 at time t0 and Wt1 at time t1. We want
to find the conditional distribution of Wt , where t0 < t < t1. This distribution
will be denoted by P(Wt |{Wt0,Wt1}), to indicate that Wt is conditional on the
end values Wt0 and Wt1 . We now write Wt0 and Wt1 as

Wt = Wt0 + √
t − t0Xt, Xt ∼ N(0, 1), (2.8.1)

Wt1 = Wt + √
t1 − tYt , Yt ∼ N(0, 1), (2.8.2)

where Xt and Yt are independent normal variates.
Combining Eqs. (2.8.1) and (2.8.2) we have

Wt1 = Wt0 + √
t − t0Xt + √

t1 − tYt

which can be re-expressed as

Wt1 − Wt0 = √
t − t0Xt + √

t1 − tYt

Using the Brownian motion property (iii) in Section 2.1

Wt1 − Wt0 = √
t1 − t0Zt , Zt ∼ N(0, 1)

So
√

t1 − t0Zt = √
t − t0Xt + √

t1 − tYt
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and

Y(Xt , Zt ) =
√

t1 − t0Zt − √
t − t0Xt√

t1 − t
(2.8.3)

Now P(Wt |{Wt0,Wt1}) = P(Xt |Zt), the probability distribution of Xt condi-
tional on Zt . From Bayes law

P(Xt |Zt) = P(Xt )P (Y (Xt , Zt ))

P (Zt )
= 1√

2π
exp

{
−X2

t + Y 2
t − Z2

t

2

}
(2.8.4)

Since Xt , Yt and Zt are Gaussians we can write

P(Xt |Zt) = 1√
2π

exp

{
−X2

t + Y 2
t − Z2

t

2

}
(2.8.5)

First let us compute Y 2
t .

Y 2
t =

(√
t1 − t0Zt − √

t − t0Xt√
t1 − t

)2

so

Y 2
t = (t1 − t0)Z

2
t + (t − t0)X

2
t − 2

√
t1 − t0

√
t − t0XtZt

t1 − t
(2.8.6)

Next we compute X2
t + Y 2

t − Z2
t as follows

X2
t + Y 2

t − Z2
t

= (t1 − t0)X
2
t + (t − t0)Z

2
t − 2

√
t1 − t0

√
t − t0XtZt

t1 − t
(2.8.7)

Dividing top and bottom of Eq. (2.8.7) by t1 − t0 we obtain:

X2
t + Y 2

t − Z2
t

= X2
t + ((t − t0)/(t1 − t0))Z

2
t − 2

√
t1 − t0

√
t − t0/(t1 − t0)XtZt

(t1 − t)/(t1 − t0)

= X2
t + ((t − t0)/(t1 − t0))Z

2
t − 2

√
(t − t0)/(t1 − t0)XtZt

(t1 − t)/(t1 − t0)

which gives

X2
t + Y 2

t − Z2
t = (Xt − √

(t − t0)/(t1 − t0)Zt )
2

(t1 − t)/(t1 − t0)
(2.8.8)

where we have used(
Xt −

√
t − t0

t1 − t0
Zt

)2

= X2
t + t − t0

t1 − t0
Z2

t − 2

√
t − t0

t1 − t0
XtZt

Substituting Eq. (2.8.8) into Eq. (2.8.5) yields

P(Xt |Zt) = 1√
2π

exp

{
− (Xt − √

(t − t0)/(t1 − t0)Zt )
2

2(t1 − t)/(t1 − t0)

}
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Therefore P(Xt |Zt) is a Gaussian distribution with:

E[Xt ] =
√

t − t0

t1 − t0
Zt and Var[Xt ] = t1 − t

t1 − t0

Substituting for Zt we have

E[Xt ] =
√

t − t0

t1 − t0
Zt =

√
t − t0

t1 − t0

Wt1 − Wt0√
t1 − t0

which gives:

E[Xt ] =
√

t − t0

t1 − t0
(Wt1 − Wt0) (2.8.9)

The variate X̂t = E[Xt ] + √
Var[Xt ]Zt has the same distribution as P(Xt |Zt).

So we can substitute X̂t for Xt in Eq. (2.8.1) to obtain:

Wt = Wt0 + √
t − t0

{
E[Xt ] +

√
Var[Xt ]Zt

}
which gives:

Wt = Wt0 + √
t − t0

{√
t − t0

t1 − t0
(Wt1 − Wt0) +

√
t1 − t

t1 − t0
Zt

}
and simplifying we obtain:

Wt = Wt0

t1 − t0

t1 − t0
+ t − t0

t1 − t0
(Wt1 − Wt0) +

√
(t1 − t)(t − t0)

t1 − t0
Zt (2.8.10)

Variates, Wt , from the distribution of P(Wt |{Wt0,Wt1}) can therefore be gener-
ated by using

Wt = Wt0

t1 − t

t1 − t0
+ Wt1

t − t0

t1 − t0
+

√
(t1 − t)(t − t0)

t1 − t0
Zt (2.8.11)

An alternative derivation of the Brownian bridge is given in Appendix G.

2.9 Time-transformed Brownian motion

Let us consider the Brownian motion:

dWt = σ
√

dt dZt (2.9.1)

and also the scaled and time-transformed Brownian motion

YW,t = atWft (2.9.2)

where the scale factor, at , is a real function and the time transformation, ft , is a
continuous increasing function satisfying ft � 0; see Cox and Miller (1965).
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Using Ito’s lemma,

dYW,t = ∂Yt

∂t
dt + ∂Yt

∂Wt

dWt (2.9.3)

where we have used the fact that ∂2Yt

∂W 2
t

= 0.

From Eq. (2.9.3)

dYW,t =
(

∂at

∂t

)
Wft dt + at dWft (2.9.4)

Now

dWft =
√

dft dZt =
√

∂ft

∂t
dt dZt (2.9.5)

so we can write:

dYW,t = a′
tWft dt + at

√
f ′

t dt dZt (2.9.6)

where

a′
t = ∂at

∂t
and f ′

t = ∂ft

∂t

2.9.1 Scaled Brownian motion

We will prove that Ŵt defined by

Ŵt = 1

c
Wc2t , c > 0,

is Brownian motion.
Let us consider the process

Yt = Wc2t

From Eq. (2.9.2) we have at = 1, ft = c2t , a′
t = 0 and f ′

t = c2. Substituting
these values into Eq. (2.9.6), yields

dYt =
√

c2dt dZt

which gives

dYt = c
√

dt dZt = c dWt

Therefore Ŵt = dYt/c is Brownian motion.

2.9.2 The Ornstein–Uhlenbeck process

We will now show that the Ornstein–Uhlenbeck process (see Section 2.10) can
be represented as follows:

YW,t = exp(−αt)Wψt where ψt = σ 2 exp(2αt)

2α
, α > 0 (2.9.7)
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Proof. From Eqs. (2.9.2) and (2.9.7) we have:

ft = σ 2 exp(σ 2 exp(2αt))

2α
and at = exp(−2αt) (2.9.8)

Therefore

a′
t

at

= −−α exp(−αt)

exp(−αt)
= −α (2.9.9)

and

f ′
t = σ 2

2α
2α exp(2αt) = σ 2 exp(2αt) (2.9.10)

So √
f ′

t dt =
√

σ 2 exp(2αt) = σ exp(αt)
√

dt (2.9.11)

Thus

dYW,t = −αYW,t dt + exp(−αt)σ exp(αt)
√

dt dZ (2.9.12)

which means that

dYW,t = −αYW,t dt + σ dWt (2.9.13)

From Eq. (2.9.13) it can be seen that conditional mean and variance are

E[dYW,t |Ft ] = αYW,t dt (2.9.14)

Var[dYW,t |Ft ] = σ 2 dt (2.9.15)

�

Unconditional mean

The unconditional mean is

E[YW,t ] = E

[
exp(−αt)W

(
σ 2 exp(2αt)

2α

)]
where α > 0 and t → ∞

(2.9.16)

So

E[YW,t ] = 0 (2.9.17)

Unconditional variance and covariance

Let

YW,t = exp(−αt)Wψt where ψt =
(

σ 2 exp(2αt)

2α

)
(2.9.18)
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and

YW,s = exp(−αs)Wψs where ψs =
(

σ 2 exp(2αs)

2α

)
(2.9.19)

The covariance is:

Cov[YW,s, YW,t ] = E[YW,tYW,s] − E[YW,t ]E[YW,s]
= E[YW,tYW,s] (2.9.20)

since E[YW,s] = E[YW,t ] = 0.
Shortening the notation of YW,t to Yt we obtain

Cov[Ys, Yt ] = E
[
exp(−αt)Wψt exp(−αt)Wψs

]
= exp

(−α(t + s)
)
E

[{Wψt Wψs }
]

From Eq. (2.1.2)

E[Ws,Wt ] = s ∧ t (2.9.21)

Therefore, if s � t

E[Wψt Wψs ] = Wψs (2.9.22)

and

Cov[Ys, Yt ] = exp(−α(t + s))σ 2 exp(2αs)

2α
= σ 2

2α
exp

(−α(t − s)
)

(2.9.23)

The unconditional variance (obtained by setting s = t) is

Var[Yt ] = σ 2

2α
(2.9.24)

2.10 Ornstein–Uhlenbeck process

The Ornstein–Uhlenbeck process is often used to model interest rates because
of its mean reverting property. It is defined by the equation

dXt = −αXt dt + σ dWt (2.10.1)

Using the integrating factor exp(αt) we have:

exp(αt) dXt = −αXt exp(αt) dt + σ exp(αt) dWt

so

exp(αt) dXt + αXt exp(αt) dt = σ exp(αt) dWt (2.10.2)

Using the Ito product rule we have:

d
(
Xt exp(αt)

) = exp(αt) dXt + αXt exp(αt) dt (2.10.3)
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So from Eqs. (2.10.2) and (2.10.3) we obtain

d
(
Xt exp(αt)

) = σ exp(αt) dWt (2.10.4)

Integrating Eq. (2.10.4) gives∫ s=t

s=0
d
(
Xs exp(αs)

) = σ

∫ s=t

s=0
exp(αs) dWs

which yields

Xt exp(αt) − Xt0 = σ

∫ s=t

s=0
exp(αs) dWs

and thus the solution of Eq. (2.10.1) is

Xt = Xt0 exp(−αt) + σ exp(−αt)

∫ s=t

s=0
exp(αs) dWs (2.10.5)

We will now derive expressions for both the unconditional mean and the un-
conditional variance of Xt .

The mean

Taking expectations of both sides of Eq. (2.10.5) yields

E[Xt ] = E
[
Xt0 exp(−αt)

] + E

[
σ exp(−αt)

∫ s=t

s=0
exp(αs) dWs

]
(2.10.6)

since

E

[
σ exp(−αt)

∫ s=t

s=0
exp(αs) dWs

]
= σ exp(−αt)E

[∫ s=t

s=0
exp(αs) dWs

]
= 0

the unconditional mean is

E[Xt ] = Xt0 exp(−αt) (2.10.7)

The variance

To derive the expression for unconditional variance requires a bit more effort.
We have

Var[Xt ] = E
[{

Xt − E[Xt ]
}2] (2.10.8)

= E
[{

Xt − Xt0 exp(−αt)
}2]

However, from Eq. (2.10.5)

Xt − Xt0 exp(−αt) = σ exp(−αt)

∫ s=t

s=0
exp(αs) dWs
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So substituting the above expression into Eq. (2.10.8)

Var[Xt ] = E

[{
exp(−αt)σ

∫ s=t

s=0
exp(αs) dWs

}2]
(2.10.9)

Var[Xt ] = σ 2 exp(−2αt)E

[{∫ s=t

s=0
exp(αs) dWs

}2]
(2.10.10)

Using Ito’s isometry (see Section 2.12.2)

E

[{∫ s=t

s=0
exp(αs) dWs

}2]
= E

[∫ s=t

s=0

{
exp(αs)

}2 ds

]
Then using Fubini’s theorem (see Section 2.12.1)

E

[∫ s=t

s=0

{
exp(αs)

}2 ds

]
=

∫ s=t

s=0
E

[{
exp(αs)

}2] ds

=
∫ s=t

s=0
exp(2αs) ds

= exp(2αs)

2α

]s=t

s=0

= exp(2αt) − 1

2α

Substituting the above result into Eq. (2.10.10)

Var[Xt ] = σ 2 exp(−2αt)

{
exp(2αt) − 1

2α

}
which yields the following expression for the variance

Var[Xt ] = σ 2
{

1 − exp(−2αt)

2α

}
(2.10.11)

The expressions for the mean and variance derived in Eqs. (2.10.7) and
(2.10.11) allow us to write the distribution of Xt as

Xt ∼ N
(

Xt0 exp(−αt), σ 2
{

1 − exp(−2αt)

2α

})
(2.10.12)

which, if Xt0 = 0, reduces to

Xt ∼ N
(

0, σ 2
{

1 − exp(−2αt)

2α

})
(2.10.13)

The transition density from Xt0 to Xt is:

P(Xt |Xt0) =
√

K

2π(1 − γ 2)
exp

{
−K(Xt − Xt0 exp(−α(t − t0)))

2

1 − γ 2

}
(2.10.14)

where K = 2α/σ 2 and γ = exp(−α(t − t0)).
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Ornstein–Uhlenbeck stochastic paths can thus be simulated using

Xt+dt = Xt exp(−α dt) + σ

√
1 − exp(−2α dt)

2α
dZ (2.10.15)

From Eq. (2.10.14) we can write

E[Xt+dt |Xt ] = Xt exp(−α dt)

Var[Xt+dt |Xt ] = σ 2
{

1 − exp(−2α dt)

2α

}
We will now show that in the limit dt → 0, Eq. (2.10.15) reduces to the
Ornstein–Uhlenbeck process given in Eq. (2.10.1).

For small dt we can take a first-order expansion of the exponentials in
Eq. (2.10.15) to obtain

Xt+dt = Xt

{
(1 − α dt)

} + σ

√
(1 − (1 − 2α dt))

2α
dZ

so

Xt+dt = Xt − Xtα dt + σ

√
2α dt

2α
dZ

Therefore

Xt+dt − Xt = −αXt dt + σ
√

dt dZ

which is

dXt = −αXt dt + σ dWt

2.11 The Ornstein–Uhlenbeck bridge

Let an Ornstein–Uhlenbeck process have value Xt0 at time t0 and Xt1 at time t1.
We are interested in the distribution of Xt at an intermediate point, that is
P(Xt |{Xt0 , Xt1}), where t0 < t < t1.

We will show that Xt is a Gaussian with conditional mean

μt = Xt0 exp
(−α(t − t0)

){1 − exp(−2α(t1 − t))

1 − γ 2

}
+ Xt1 exp

(−α(t1 − t)
){1 − exp(−2α(t − t0))

1 − γ 2

}
(2.11.1)

and conditional variance

Vt = (1 − exp(−2α(t − t0)))(1 − exp(−2α(t1 − t)))

2α(1 − exp(−2α(t1 − t0)))
(2.11.2)

where γ = exp(−α(t1 − t0)).
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Proof. The standard Ornstein–Uhlenbeck process (σ = 1) is defined by the
process:

dXt = −αXt dt + √
dt dZt (2.11.3)

From Section 2.10 we have that

Xt = Xt0 exp
(−α(t − t0)

) +
{

1 − exp(−2α(t − t0))

2α

}
dZt (2.11.4)

and that the transition density from Xt0 to Xt is

P(Xt |Xt0) =
√

2α√
2π(1 − exp(−2α(t − t0)))

× exp

{
−α(Xt − Xt0 exp(−α(t − t0)))

2

1 − exp(−2α(t − t0))

}
(2.11.5)

The joint density of Xt and Xt1 given Xt0 is:

P
({Xt,Xt1}|Xt0

) = P(Xt1 |Xt)P (Xt |Xt0) (2.11.6)

We thus have:

P
({Xt,Xt1}|Xt0

) = κ exp

{
−α(Xt − Xt0 exp(−α(t − t0)))

2

(1 − exp(−2α(t − t0)))

}
× exp

{
−α(Xt1 − Xt exp(−α(t1 − t)))2

1 − exp(−2α(t1 − t))

}
where

κ = 1

2π

2α√
(1 − exp(−2α(t − t0)))(1 − exp(−2α(t1 − t)))

The distribution of Xt given Xt0 and Xt1 , P(Xt |Xt0, Xt1) is:

P
(
Xt |{Xt0, Xt1}

) = P({Xt,Xt1}|Xt0)

P (Xt1 |Xt0)
(2.11.7)

where

P(Xt1 |Xt0) =
√

2α√
2π(1 − exp(−2α(t1 − t0)))

× exp

{
−α(Xt1 − Xt0 exp(−α(t1 − t0)))

2

1 − exp(−2α(t1 − t0))

}
(2.11.8)

After some algebra we can re-express Eq. (2.11.7) as

P
(
Xt |{Xt0, Xt1}

) =
√

α

πφt

exp{A} (2.11.9)
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where

A = −α

φ
(B1 + B2 − B3)

B1 = {
X2

t + X2
t0

exp
(−2α(t − t0)

) − 2XtXt0 exp
(−α(t − t0)

)}
×

{
1 − exp(−2α(t1 − t))

1 − γ 2

}
(2.11.10)

B2 = {
X2

t1
+ X2

t exp
(−2α(t1 − t)

) − 2XtXt1 exp
(−α(t1 − t)

)}
×

{
1 − exp(−2α(t − t0))

1 − γ 2

}
(2.11.11)

B3 = {
X2

t1
+ X2

t0
exp

(−2α(t1 − t0)
) − 2Xt1Xt0 exp

(−α(t1 − t0)
)}

× {
1 − exp

(−2α(t − t0)
)}{1 − exp(−2α(t1 − t))

(1 − γ 2)2

}
(2.11.12)

φt = (1 − exp(−2α(t − t0)))(1 − exp(−2α(t1 − t)))

1 − exp(−2α(t1 − t0))

and

γ = exp
(−α(t1 − t0)

)
Let us now assume that P(Xt |{Xt0, Xt1}) is a normal distribution with condi-
tional mean μt and conditional variance Vt . We thus have:

P
(
Xt |{Xt0, Xt1}

) = 1√
2πVt

exp

{
− (Xt − μt)

2

2Vt

}
(2.11.13)

Equating Eqs. (2.11.7) and (2.11.13)

− 1

2Vt

{
(Xt − μt)

2} = − 1

2Vt

{
X2

t − μ2
t − 2Xtμt

}
= −α

φ
(B1 + B2 − B3) (2.11.14)

The conditional variance Vt can be obtained by noting that:

1

2Vt

= α

φt

and hence:

Vt = φ

2α
(2.11.15)

so substituting for φ in Eq. (2.11.15) we obtain the following expression for the
conditional variance:

Vt = (1 − exp(−2α(t − t0)))(1 − exp(−2α(t1 − t)))

1 − exp(−2α(t1 − t0))
= φt

2α
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The conditional mean can be obtained by noting that Xt0 and Xt1 are constants
and the coefficients of Xt and X2

t in Eq. (2.11.14) must be the same. Comparing
coefficients of Xt we thus have:

−2μt = −2Xt0 exp
(−α(t − t0)

){1 − exp(−2α(t1 − t))

1 − γ 2

}
− 2Xt1 exp

(−α(t1 − t)
){1 − exp(−2α(t − t0))

1 − γ 2

}
So the conditional mean μt is:

μt = Xt0 exp
(−α(t − t0)

){1 − exp(−2α(t1 − t))

1 − γ 2

}
+ Xt1 exp

(−α(t1 − t)
){1 − exp(−2α(t − t0))

1 − γ 2

}
This completes the proof. �

Relation to the Brownian bridge

We will now prove that in the limit (t1 − t0) → 0 the Brownian bridge result is
obtained.

For the conditional mean, we have:

μ = Xt0 exp
(−α(t − t0)

){1 − exp(−2α(t1 − t))

1 − γ 2

}
+ Xt1 exp

(−α(t1 − t)
){1 − exp(−2α(t − t0))

1 − γ 2

}
where:

γ = exp
(−α(t1 − t0)

)
which is:

μ = Xt0

{
exp(−α(t − t0)) − exp(−2α(t1 − t))

1 − exp(−2α(t1 − t0) − α(t − t0))

}
+ Xt1

{
exp(−α(t1 − t)) − exp(−2α(t − t0) − α(t1 − t))

1 − exp(−2α(t1 − t0))

}
For small t1 − t0 both t1 − t and t − t0 are small, so:

μ → Xt0

{
1 − α(t − t0) − {1 − 2α(t1 − t) − α(t − t0)}

1 − {1 − 2α(t1 − t0)}
}

+ Xt1

{
1 − α(t1 − t) − {1 − 2α(t − t0) − α(t1 − t)}

1 − {1 − 2α(t1 − t0)}
}

which yields the Brownian bridge result for the conditional mean:

μ → Xt0

t1 − t0

t1 − t0
+ Xt1

t − t0

t1 − t0
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For the conditional variance:

Vt = (1 − exp(−2α(t − t0)))(1 − exp(−2α(t1 − t)))

2α(1 − exp(−2α(t1 − t0)))

For small t1 − t0 both t1 − t and t − t0 are small, so we can write:

V → (1 − {1 − 2α(t − t0)})(1 − {1 − 2α(t1 − t)})
2α(1 − {1 − 2α(t1 − t0)})

which yields the Brownian bridge result for the conditional variance:

Vt → (t − t0)(t1 − t)

t1 − t0

2.12 Other useful results

2.12.1 Fubini’s theorem

Fubini’s theorem states that (for well-behaved functions) the value of a multidi-
mensional integral is independent of the order in which the integral is evaluated.

For example, the two-dimensional integral of the function f (X, Y ) can be
evaluated as:∫ b

X=a

∫ d

Y=c

f (X, Y ) dX dY =
∫ d

Y=c

{∫ b

X=a

f (X, Y ) dX

}
dY

=
∫ b

X=a

{∫ d

Y=c

f (X, Y ) dY

}
dX

We will mainly use this result in the form:

E

[∫ t

s=0
f (W, s) ds

]
=

∫ t

s=0
E

[
f (W, s)

]
ds (2.12.1)

Since

E
[
f (W, s)

] =
∫ ∞

−∞
P(W, s)f (W, s) dW

where P(W, s) is the probability density function of f (W, s), we can thus write
Eq. (2.12.1) in full as:∫ ∞

W=−∞

{∫ t

s=0
P(W, s)f (W, s) ds

}
dW

=
∫ t

s=0

{∫ ∞

W=−∞
P(W, s)f (W, s) dW

}
ds
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2.12.2 Ito’s isometry

The expected value of the integral of the well-behaved function f (Wt , t) satisfies:

E

[(∫ tb

s=ta

f (Ws, s) dWs

)2]
= E

[∫ tb

s=ta

{
f (Ws, s)

}2 ds

]
(2.12.2)

Proof. We first use the following approximation:∫ s=tb

s=ta

f (W, s) dWs =
n−1∑
i=0

f (Wti , ti ){Wti+1 − Wti }

where a < t0 < t1 < · · · < tn < tb and ti+1 − ti = dt . Thus the integral on the
left-hand side of Eq. (2.12.2) is:(∫ tb

s=ta

f (Ws, s) dWs

)2

=
n−1∑
i=0

n−1∑
j=0

f (Wti , ti )f (Wtj , tj ){Wti+1 − Wti }{Wtj+1 − Wtj } (2.12.3)

Taking expectations of Eq. (2.12.3) we obtain:

E

[(∫ tb

s=ta

f (Ws, s) dWs

)]2

= E

[
n−1∑
i=0

n−1∑
j=0

f (Wti , ti )f (Wtj , tj ){Wti+1 − Wti }{Wtj+1 − Wtj }
]

(2.12.4)

which means that:

E

[(∫ tb

s=ta

f (Ws, s) dWs

)]2

=
n−1∑
i=0

n−1∑
j=0

f (Wti , ti )f (Wtj , tj )E
[{Wti+1 − Wti }{Wtj+1 − Wtj }

]
(2.12.5)

However from the Brownian motion property (iii) in Section 2.1 we have:

E
[{Wti+1 − Wti }{Wtj+1 − Wtj }

] = 0 when i �= j and dt when i = j

Therefore Eq. (2.12.5) can be rewritten as:

E

[(∫ tb

s=ta

f (Ws, s) dWs

)]2

=
n−1∑
i=0

{
f (Wti , ti )

}2 dt

which means:

E

[(∫ tb

s=ta

f (Ws, s) dWs

)]2

= E

[∫ tb

s=ta

{
f (Ws, s)

}2 ds

]
�
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2.12.3 Expectation of a stochastic integral

If f (t) is a deterministic function of time then

E

[∫ s=b

s=a

f (s) dWs

]
= 0 (2.12.6)

Proof. We first express the integral (2.12.6) by the following summation:∫ s=tb

s=ta

f (s) dWs =
n−1∑
i=0

f (ti){Wti+1 − Wti },

where a < t0 < t1 < · · · < tn < tb

Taking expectations of the above equation yields:

E

[∫ s=b

s=a

f (s) dWs

]
= E

[
n−1∑
i=0

f (ti){Wti+1 − Wti }
]

=
n−1∑
i=0

f (ti)E[Wti+1 − Wti ]

= 0

where we have used E[Wti+1 −Wti ] = 0, which is Brownian motion property (iii)
in Section 2.1. �

2.13 Selected problems

In this section we provide various problems that test the reader’s understanding
of stochastic calculus. The answers are given in the appendix at the end of the
book.

Problem 1 (Problem 4.5, Øksendal (2003)). Let βk
t = E[Wk

t ], k = 0, 1, 2, . . . ,

t � 0, where Wt0 = 0.

(a) Show using Ito’s formula for k = 2, 3, 4, . . . , that:

βk
t = 1

2
(k − 1)

∫ t

s=0
βk−2

s ds

(b) Deduce that E[W 4
t ] = 3t2

(c) What is E[W 6
t ]?

Problem 2 (Problem 5.4(ii), Øksendal (2003)). Solve the stochastic differential
equation:

dXt = Xt dt + dWt
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Problem 3 (Problem 5.4(iii), Øksendal (2003)). Solve the stochastic differen-
tial equation:

dXt = −Xt dt + exp(−t) dWt

Problem 4 (Problem 4.2, Øksendal (2003)). Use Ito’s formula to prove that∫
s=0

W 2
s dWs = 1

3
W 3

t −
∫ t

s=0
Ws ds

where Wt0 = 0.

Problem 5 (Problem 5.6, Øksendal (2003)). Solve:

dYt = r dt + αYt dWt

where r and α are real constants. Use the integrating factor Ft = exp(−αWt +
(α2/2)t).

Problem 6 (Problem 5.7, Øksendal (2003)). The mean reverting Ornstein–
Uhlenbeck process is the solution Xt of the stochastic differential equation:

dXt = (m − Xt) dt + σ dWt

where m and σ are constants.

(a) Solve this equation
(b) Find E[Xt ] and Var[Xt ] = E[{Xt − E[Xt ]}2].
Problem 7. Consider the equation dSt = μtSt dt +σtSt dWt where the value of
St at time t = 0 is denoted by S0.

(a) Show that the mean is:

E
[
log(St )

] = log(S0) +
∫ t

τ=0

{
μτ − σ 2

τ

2

}
dτ

(b) Show that the variance is:

Var
[
log(St )

] =
∫ t

τ=0
σ 2

τ dτ

Problem 8. Prove that if φ = exp(tWt ) then

dφ = φ

(
Wt + t2

2

)
dt + tφ dWt

Problem 9 (Problem 4.4, Øksendal (2003)). Define:

Zt = exp

(∫ t

s=0
θs dWs − 1

2

∫ t

s=0
θ2
s ds

)
Use Ito’s formula to prove that

dZt = Ztθt dWt
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Problem 10. Let St = S0 exp(μt + σWt) where μ and σ are constants.

(a) Show by Ito’s lemma that:

dSt =
(

μ + σ 2

2

)
St dt + σSt dWt

(b) Show that:

E[St ] − E[S0] =
(

μ + σ 2

2

) ∫ t

τ=0
E

[
S(τ)

]
dτ

(c) Show that:

E[St ] = S0 exp

(
μt + σ 2

2
t

)
Problem 11 (Problem 4.3, Øksendal (2003)). Let Xt, Yt be stochastic processes.
Prove that:

d(XtYt ) = Xt dYt + Yt dXt + E[dXt dYt ]
Deduce the following general integration by parts formula:∫ t

s=0
Xs dYs = XtYt − Xt0Yt0 −

∫ t

s=0
Ys dXs −

∫ t

s=0
E[dXs dYs]
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3 Generation of random variates

3.1 Introduction

Monte Carlo simulation and random number generation are techniques that
are widely used in financial engineering as a means of assessing the level of
exposure to risk. Typical applications include the pricing of financial derivatives
and scenario generation in portfolio management. In fact many of the financial
applications that use Monte Carlo simulation involve the evaluation of various
stochastic integrals which are related to the probabilities of particular events
occurring.

In many cases, however, the assumptions of constant volatility and a lognor-
mal distribution for ST are quite restrictive. Real financial applications may re-
quire a variety of extensions to the standard Black–Scholes model. Common re-
quirements are for: nonlognormal distributions, time-varying volatilities, caps,
floors, barriers, etc. In these circumstances, it is often the case that there is no
closed form solution to the problem. Monte Carlo simulation can then provide
a very useful means of evaluating the required integrals.

When we evaluate the integral of a function, f (x), in the s-dimensional unit
cube, IS , by the Monte Carlo method we are in fact calculating the average of
the function at a set of randomly sampled points. This means that each point
adds linearly to the accumulated sum that will become the integral and also
linearly to the accumulated sum of squares that will become the variance of the
integral.

When there are N sample points, the integral is:

ν = 1

N

N∑
i=1

f
(
xi

)
where ν is used to denote the approximation to the integral and x1, x2, . . . , xN

are the N , s-dimensional, sample points. If a pseudo-random number generator
is used the points xi will be (should be) independently and identically distrib-
uted. From standard statistical results we can then estimate the expected error
of the integral as follows:

If we set χi = f (xi) then since xi is independently and identically distributed
χi is also independently and identically distributed. The mean of χi is ν and we
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will denote the variance as Var[χi] = Δ2. It is a well-known statistical prop-
erty that the variance of ν is given by Var[ν] = N−1Δ2 (see Appendix E.1 for
further details). We can therefore conclude that the estimated integral ν has a
standard error of N−1/2Δ. This means that the estimated error of the integral
will decrease at the rate of N−1/2.

It is possible to achieve faster convergence than this if the sample points are
chosen to lie on a Cartesian grid. If we sample each grid point exactly once, then
the Monte Carlo method effectively becomes a deterministic quadrature scheme,
whose fractional error decreases at the rate of N−1 or faster. The trouble with
the grid approach is that it is necessary to decide in advance how fine it should
be, and all the grid points need to be used. It is therefore not possible to sample
until some convergence criterion has been met.

Quasi-random number sequences seek to bridge the gap between the flexibil-
ity of pseudo-random number generators and the advantages of a regular grid.
They are designed to have a high level of uniformity in multidimensional space,
but unlike pseudo-random numbers they are not statistically independent.

3.2 Pseudo-random and quasi-random sequences

Here we consider the generation of multidimensional pseudo-random and quasi-
random sequences to approximate the multidimensional uniform distribution
over the interval [0, 1], that is the distribution U(0, 1).

Quasi-random numbers are also called low-discrepancy sequences. The dis-
crepancy of a sequence is a measure of its uniformity and is defined as follows:

Given a set of points x1, x2, . . . , xN ∈ IS and a subset G ⊂ IS , define
the counting function SN(G) as the number of points xi ∈ G. For each
x = (x1, x2, . . . , xs) ∈ IS , let Gx be the rectangular s-dimensional region
Gx = [0, x1) × [0, x2) × · · · × [0, xs), with volume x1, x2, . . . , xn. Then the dis-
crepancy of the points x1, x2, . . . , xN is given by:

D∗
N

(
x1, x2, . . . , xN

) = sup
x∈IS

∣∣SN(Gx) − Nx1x2, . . . , xs

∣∣
The discrepancy is therefore computed by comparing the actual number of sam-
ple points in a given volume of multidimensional space with the number of
sample points that should be there assuming a uniform distribution.

It can be shown that the discrepancy of the first terms of quasi-random se-
quence has the form:

D∗
N

(
x1, x2, . . . , xN

)
� CS(log N)S + O

(
(log N)S−1)

for all N � 2.
The principal aim in the construction of low-discrepancy sequences is thus to

find sequences in which the constant is as small as possible. Various sequences
have been constructed to achieve this goal. Here we consider the following
quasi-random sequences: Niederreiter, Sobol, and Faure.
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The results of using various random number generators are shown below.
Figures 3.1–3.3 illustrate the visual uniformity of the sequences. They were cre-

Figure 3.1 The scatter diagram formed by one thousand points from a 16-dimensional
U(0, 1) pseudo-random sequence. For each point the 4th-dimensional component is plot-
ted against the 5th-dimensional component.

Figure 3.2 The scatter diagram formed by one thousand points from a 16-dimensional
U(0, 1) Sobol sequence. For each point the 4th-dimensional component is plotted against
the 5th-dimensional component.
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Figure 3.3 The scatter diagram formed by one thousand points from a 16-dimensional
U(0, 1) Niederreiter sequence. For each point the 4th-dimensional component is plotted
against the 5th-dimensional component.

ated by generating one thousand 16-dimensional U(0, 1) sample points, and
then plotting the 4th-dimensional component of each point against its 5th-
dimensional component.

In Fig. 3.1, it can be seen that the pseudo-random sequence exhibits clustering
of points, and there are regions with no points at all.

Visual inspection of Figs. 3.2 and 3.3 shows that both the Sobol and Nieder-
reiter quasi-random sequences appear to cover the area more uniformly.

It is interesting to note that the Sobol sequence appears to be a structured
lattice which still has some gaps. The Niederreiter sequence, on the other hand,
appears to be more irregular and covers the area better. However, we cannot
automatically conclude from this that the Niederreiter sequence is the best. This
is because we have not considered all the other possible pairs of dimensions.

Perhaps the easiest way to evaluate the random number sequences is to use
them to calculate an integral.

In Fig. 3.4 Monte Carlo results are presented for the calculation of the
6-dimensional integral:

I =
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

6∏
i=1

cos(ixi) dx1 dx2 dx3 dx4 dx5 dx6

The exact value of this integral is:

I =
6∏

i=1

sin(i)

which for i = 6, gives I = −0.0219.
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Figure 3.4 Monte Carlo integration using random numbers.

It can be seen that the pseudo-random sequence gives the worst performance.
But as the number of points increases, its approximation to the integral im-
proves. Of the quasi-random sequences, it can be seen that the Faure sequence
has the worst performance, while both the Sobol and Neiderreiter sequences
give rapid convergence to the solution.

Finance literature contains many references to the benefits of using quasi-
random numbers for computing important financial integrals. For instance,
Brotherton-Ratcliffe (1994) discusses the use of Sobol sequences for the val-
uation of geometric mean stock options, and provides results that show that
the root-mean-squared pricing error obtained using quasi-random numbers is
considerably less than that computed with pseudo-random numbers. Another
financial application of quasi-random numbers is the efficient pricing mort-
gage backed securities, Caflisch, Morokoff, and Owen (1997). Here Brownian
bridge techniques are employed to reduce the effective dimension of the prob-
lem and thus provide greater pricing accuracy than if pseudo-random numbers
were used.

3.3 Generation of multivariate distributions:
independent variates

In this section we show how to generate multivariate distributions that contain
independent variates; that is, the variates have zero correlation.
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3.3.1 Normal distribution

The most fundamental distribution is the univariate standard normal distri-
bution, N(0, 1), with zero mean and unit variance. In the case of p indepen-
dent variates this takes the form of a p variate independent normal distribution
N(0, Ip) with zero mean and p × p unit covariance matrix Ip.

First we will quote a result concerning multivariate probability density func-
tions; see Press, Teukolsky, Vetterling, and Flannery (1992). If x1, x2, . . . are ran-
dom variates with a joint probability density function p(x1, x2, . . .), and if there
are an equal number of y variates y1, y2, . . . that are functions of the x’s, then
the joint probability density function of the y variates, p(y1, y2, . . .), is given by
the following expression:

p(y1, y2, . . .) dy1 dy2, . . . = p(x1, x2, . . .)Jx,y dy1 dy2, . . . (3.3.1)

where Jx,y is the Jacobian determinant of the x’s with respect to the y’s.
An important application of this result is the Box–Muller transformation in

which a p variate independent normal distribution N(0, Ip) is generated from a
p variate uniform distribution U(0, 1); see Box and Muller (1958).

We will now describe how the method works.
Consider two independently distributed N(0, 1) variables x and y, and use the

polar transformation to obtain:

x = r cos θ, y = r sin θ, and r2 = x2 + y2 (3.3.2)

From Eq. (3.3.1) the joint probability density functions f (r, θ) and f (x, y) obey
the equation

f (r, θ) dr dθ = f (x, y)Jxy,rθ dr dθ

where the Jacobian is

Jxy,rθ =
∣∣∣∣ cos θ sin θ

−r sin θ r cos θ

∣∣∣∣ = r

We therefore have

f (r, θ) = rf (x, y) (3.3.3)

Furthermore since x and y are independent N(0, 1)

f (x, y) = f (x)f (y)

where

f (x) = e−x2/2

√
2π

and f (y) = e−y2/2

√
2π

Therefore:

f (r, θ) = rf (x)f (y) = r
e−x2/2

√
2π

e−y2/2

√
2π
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which gives

f (r, θ) = r

2π
e(−x2+y2)/2 = 1

2π
re−r2/2 = f (θ)f (r) (3.3.4)

where f (θ) = 1/(2π), f (r) = re−r2/2 are independent probability density func-
tions.

The corresponding cumulative probability distribution functions F(θ) and
F(r) can be found by evaluating the following integrals:

F(θ) = 1

2π

∫ θ

0
dθ = θ

2π

and

F(r) =
∫ r

0
re−r2/2 dr = [−e−r2/2]r

0 = 1 − e−r2/2

We now want to draw variates r̂ and θ̂ from the probability distributions f (r)

and f (θ) respectively. To do this we will use the result (see for example Evans,
Hastings, and Peacock (2000)), that a uniform variate ū, from the distribution
U(0, 1) can be transformed into a variate v̄ from the distribution f (v) by using
v̄ = F−1(ū), or equivalently F(v̄) = ū. The variates v̄ are thus found by first
drawing the uniform variate ū and then finding the value of v which makes
cumulative distribution function F(v) equal to ū.

Therefore, if variates V ′
1 and V ′

2 are from U(0, 1), then the variates r̂ and θ̂

which satisfy V ′
1 = F(r̂) = 1 − e−r̂2/2, and V ′

2 = F(θ̂) = θ̂/(2π) are from the
distributions f (r) and f (θ) respectively.

For convenience we will define the U(0, 1) variates

V1 = 1 − V ′
1 = e−r̂2/2 and V2 = V ′

2

So we have:

V1 = e−r̂2/2, V2 = θ̂

2π

and

log V1 = −r̂2

2
, r̂ = (−2 log V1)

1/2, and θ̂ = 2πV2

Since r̂ is from the same distribution as r, and θ̂ is from the same distribution
as θ , we can use

log V1 = −r2/2, r = (−2 log V1)
1/2, and θ = 2πV2

Substituting these results into Eq. (3.3.2) gives

x = (−2 log V1)
1/2 cos 2πV2, y = (−2 log V1)

1/2 sin 2πV2 (3.3.5)

where x and y are N(0, 1).
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The Box–Muller method is contained in Eq. (3.3.5), which shows that the
N(0, 1) variates are generated in pairs from the uniform U(0, 1) variates V1

and V2.
Since the N(0, 1) variates are created two at a time, if we want to generate a

normal distribution with an odd number of dimensions, nodd, it is necessary to
generate nodd + 1 dimensions and discard one of the dimensions.

It is easy to modify Eq. (3.3.5) so that we can specify the means and variances
of the variates x and y; this is accomplished as follows:

x = σ1(−2 log V1)
1/2 cos 2πV2 + μ1,

(3.3.6)
y = σ2(−2 log V1)

1/2 sin 2πV2 + μ2

where the distributions of x and y are now

x ∼ N
(
μ1, σ

2
1

)
and y ∼ N

(
μ2, σ

2
2

)
Code excerpt 3.1 illustrates how to generate quasi-random normal variates with
given means and standard deviations.

long Quasi_Normal_Independent(long fcall, long seq, double xmean[], double std[],
long idim, double quasi[])

{
/* Input parameters:

=================
fcall - if fcall == 1 then it is an initialisation call,

if fcall == 0 then a continuation call
seq - if seq == 0 then a Faure sequence, if seq == 1 then a Niederreiter sequence,

if seq == 2 then a Sobol sequence
xmean[] - the means of the independent normal variates
std[] - the standard deviations of the independent normal variates
idim - the number of independent normal variates, idim must be less than 40

Output parameters:
==================
quasi[] - the elements quasi[0], .. quasi[idim-1] contain the independent normal variates

*/

long ierr, i, j;
double twopi, v1, v2, pi;
long ind1, ind2;
#define QUASI(I) quasi[(I)-1]
#define STD(I) std[(I)-1]
#define XMEAN(I) xmean[(I)-1]

if ((idim / 2) * 2 != idim) {
printf("Error on entry, idim is not an even number: idim = %ld\n" ,idim);
return 1;

} else if (idim > 40) {
printf("On entry, idim > 40: idim = %ld\n" ,idim);
return 1;

}
for (i = 1; i <= idim; ++i) {

if (STD(i) <= 0.0) {
printf("On entry, the standard deviation is not greater than zero:

STD(%ld) = %12.4f\n" ,i,STD(i));
return 1;

}
}
pi = 4.0*atan(1.0);

Code excerpt 3.1 Generating quasi-random normal variates using the Box–Muller trans-
formation.
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if (fcall) { /* first call for initialisation */
if (seq == 0) {

Generate_Faure_Sequence(fcall, idim, &QUASI(1));
}
else if (seq == 1) {

Generate_Niederreiter_Sequence(fcall, idim, &QUASI(1));
}
else if (seq == 2) {

Generate_Sobol_Sequence(fcall, idim, &QUASI(1));
}

} else { /* a continuation call */
if (seq == 0) {

Generate_Faure_Sequence(fcall, idim, &QUASI(1));
}
else if (seq == 1) {

Generate_ Niederreiter_Sequence(fcall, idim, &QUASI(1));
}
else if (seq == 2) {

Generate_Sobol_Sequence(fcall, idim, &QUASI(1));
}
for (i = 1; i <= idim/2; ++i) { /* generate the normal variates */

ind1 = i * 2 - 1;
ind2 = i * 2;
twopi = pi * 2.0;
v1 = sqrt(log(QUASI(ind1)) * -2.0);
v2 = twopi * QUASI(ind2);
QUASI(ind1) = XMEAN(ind1) + STD(ind1) * v1 * cos(v2);
QUASI(ind2) = XMEAN(ind2) + STD(ind2) * v1 * sin(v2);

}
}
return 0 ;

}

Code excerpt 3.1 (Continued).

3.3.2 Lognormal distribution

The lognormal distribution can be generated from the normal distribution dis-
cussed in the previous section by means of a simple transformation. If y ∼
N(μ, σ 2) and y = log(x) then x = exp(y), and we say that the variable x has the
lognormal distribution �(μ, σ 2).

The lognormal density function is:

f (x) = 1

xσ(2π)1/2
exp

(
− (log x − μ)2

2σ 2

)
(3.3.7)

If zi, i = 1, . . . , p, are independent normal variates N(μi, σ
2
i ), i = 1, . . . , p, then

lognormal variates �i, i = 1, . . . , p, can be generated using the transformation:

�i = exp(zi), i = 1, . . . , p, (3.3.8)

where the mean of the ith lognormal variate is

E[xi] = m̄i = exp

(
μi + σ 2

i

2

)
(3.3.9)

and the variance is

Var[xi] = s2
i = exp

(
2μi + σ 2

i

)(
exp

(
σ 2

i

) − 1
)

(3.3.10)

The ratio of variance to the mean squared is therefore

s2
i

m̄2
i

= exp
(
σ 2

i

) − 1 (3.3.11)
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or equivalently

σ 2
i = log

(
1 + s2

i

m̄2
i

)
(3.3.12)

A lognormal distribution consisting of p independent variates with means
m̄i, i = 1, . . . , p, and variances s2

i , i = 1, . . . , p, can thus be generated using
the following procedure.

First, generate the p independent normal variates:

zi ∼ N
(
μi, σ

2
i

)
, i = 1, . . . , p,

where

μi = log(m̄i) − σ 2
i

2
(3.3.13)

and

σ 2
i = log

(
1 + s2

i

m̄2
i

)
(3.3.14)

Then create the independent lognormal variates using

�i = exp(zi), i = 1, . . . , p

3.3.3 Student’s t-distribution

If St (μ, ν) represents the Student’s t-distribution with mean μ and number of
degrees of freedom ν, then variates X ∼ St (0, ν) can be generated as follows:

X ∼ Z√
Y/ν

(3.3.15)

where Z ∼ N(0, 1), and Y ∼ χ2
ν . The variance of X is:

E
[
X2] = ν

ν − 2

Variates X′ from a Student’s t-distribution having ν degrees of freedom with
mean μ and variance s can be generated by modifying Eq. (3.3.15) as follows:

X′ ∼ μ + s1/2

√
ν/(ν − 2)

Z√
Y/ν

(3.3.16)

The probability density function, f (x), for X′ is:

f (x) = �((ν + 1)/2)(ν − 2)−1/2s−1/2

π1/2�(ν/2)

[
1 + (x − μ)2

s(ν − 2)

]−(ν+1)/2

(3.3.17)

where ν > 2.



Generation of random variates 47

3.4 Generation of multivariate distributions:
correlated variates

In this section we will show how to generate variates from a multivariate distri-
bution with a known mean and a given covariance or correlation matrix. The
methods described for covariance matrices are also applicable to correlation ma-
trices, although in this case the generated variates are normalized to have unit
variance.

3.4.1 Estimation of correlation and covariance

Here we show how to obtain a valid correlation matrix Cr or covariance ma-
trix C from historic market data.

Let X̂ be an n by p data matrix, with the entries in the ith row corresponding
to the ith observation, and the j th column containing the values of the j th
variable. If we create a new matrix X such that the entries of the j th column of
X are Xi,j = X̂i,j − μj , i = 1, . . . , n, where μj is the mean of the j th column of
X̂, then the p by p matrix C = XTX is the covariance matrix of X̂.

Further, if another matrix �X is defined such that �Xi,j = X̂i,j −μj

σj
, i = 1, . . . , n,

where μj is the mean of the j th column of X̂, and σj is the standard deviation
of the j th column, then the p by p matrix Cr = �XT�X is the correlation matrix
of X̂.

Correlation matrix

Let us first consider the properties of a valid correlation matrix. They are:

• The matrix is symmetric with unit diagonal
• The matrix has to be positive definite—that is, all the eigenvalues need to be

positive.
We will now show that the p by p matrix Cr is a valid correlation matrix

if it can be factored as Cr = XTX, where X is a nonsingular (that is, full rank)
n by m data matrix.

The proof is as follows:
Since X is nonsingular we can perform the singular value decomposition:

X = UKV T

where U is an n by n unitary matrix, K is an n by p matrix containing the
(nonzero) singular values σi, i = 1, . . . , p, as the diagonal elements and zero
elsewhere, and V is a p by p unitary matrix.

We thus have

XTX = (
UKV T)T

UKV T

= V KTUTUKV T
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= V TKTKV T since UTU = UUT = In

= V ΣV T

Therefore

Cr = XTX = V ΣV T

where Σ is the p by p diagonal matrix containing the eigenvalues of Cr , and
V is the corresponding matrix of eigenvectors. Since the ith eigenvalue satisfies
λi = σ 2

i it can be seen that all the eigenvalues are positive, and thus Cr must be
positive definite.

If Cr is positive definite, then we can perform the Cholesky decomposition
Cr = LLT where L is a lower triangular matrix.

3.4.2 Repairing correlation and covariance matrices

There are situations when a supplied correlation matrix is not positive definite.
Some of the reasons for this are:

• There may be missing data, or asynchronous data feeds. As a consequence
the elements in the correlation matrix may have then been computed using
pairwise correlations, with a variety of sequence lengths. Under these circum-
stances the equation Cr = XTX is no longer true, and so Cr cannot be guar-
anteed to be positive definite

• Manual adjustment of a correlation matrix may have occurred to reflect ex-
pected market conditions. This especially occurs when the market crashes and
certain stock prices become highly correlated

• There may be rounding error in computing Cr = XTX.

Under these circumstances the best that can be done is to try and repair the
correlation matrix Cr into a valid correlation matrix Ĉr .

We proceed as follows.
When Cr is not positive definite (the Cholesky decomposition fails) then we

use the eigen decomposition:

Cr = V ΣV T

where

Σ =

⎛⎜⎜⎜⎝
λ1

λ2
.

.

λp

⎞⎟⎟⎟⎠
We then form the matrix

C+
r = V KKTV T = V K(V K)T
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where the matrix K is formed by taking the square root of the maximum of
each eigenvalue and a very small number ε (say ∼10−16). Thus:

K =

⎛⎜⎜⎜⎝
√

max(λ1, ε) √
max(λ2, ε)

.

. √
max(λp, ε)

⎞⎟⎟⎟⎠
The matrix C+

r is not acceptable as a correlation matrix because, although real,
symmetric and positive definite, its diagonal elements are not unity. It is possi-
ble to remedy this by premultiplying and postmultiplying C+ by the diagonal
matrix F :

Ĉr = FC+
r F = FC+

r F T

where Ĉ is the new repaired correlation matrix—i.e., it is positive definite, sym-
metric, and has unit diagonal elements. To achieve this, the diagonal elements
of F must be given by:

Fii = 1√
C+

rii

We thus have:

Ĉr = FC+
r F T

= FV K(V K)TF T

= (FV K)
(
KTV TF T)

= (FV K)(FV K)T (3.4.1)

An optimally repaired correlation matrix C∗
r , which minimizes the distance

‖Cr − C∗
r ‖, can be obtained via numerical optimization on the n-dimensional

unit hypersphere; this is described below.
However, it has been found that Ĉr is a very good approximation for the

optimal estimate C∗
r .

Optimally repaired correlation matrix

Here we provide details of how to obtain an optimally repaired correlation
matrix by using hyperspherical coordinates and the method of Rebonato and
Jäckel (1999/2000)—for a different approach see Higham (2002) or Qi and
Sun (2006).

The Cartesian coordinates of the ith point on an n-dimensional hypersphere
with radius r can be shown to be:

xi,1 = r cos(θi,1)

xi,2 = r sin(θi,1) cos(θi,2)
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xi,3 = r sin(θi,1) sin(θi,2) cos(θi,3)

xi,4 = r sin(θi,1) sin(θi,2) sin(θi,3) cos(θi,4)

...

xi,n−1 = r sin(θi,1) sin(θi,2) · · · sin(θi,n−3) sin(θi,n−2) cos(θi,n−1)

xi,n = r sin(θi,1) sin(θi,2) · · · sin(θi,n−2) sin(θi,n−1)

where θi,1 are spherical coordinates and have the following constraints: 0 �
θi,k � π, k = 1, . . . , n − 2, and 0 � θi,n−1 � 2π.

By construction the radius of the sphere satisfies

r2 =
n∑

k=1

(xi,k)
2

This can be seen as follows:
n∑

k=1

(xi,k)
2

= r2{cos2(θi,1) + sin2(θi,1)
(
cos2(θi,2)

+ sin2(θi,2)
(
cos2(θi,3)

+ sin2(θi,3)
(
cos4(θi,4)

+ · · · + sin2(θi,n−2)

× (
cos2(θi,n−1) + sin2(θi,n−1)

) · · ·)}
= r2

where we have used

cos2(θi,k) + sin2(θi,k) = 1, k = 1, . . . , n − 1

If, when r = 1, the coordinates of n hyperspherical points are stored in the n

rows of the n by n matrix BT, then:

BT
i,1 = cos(θi,1)

BT
i,j = cos(θi,j )

j−1∏
k=1

sin(θi,k), j = 2, . . . , n − 1,

BT
i,n =

n−1∏
k=1

sin(θi,k), n > 1,

BT =

⎛⎜⎜⎝
cos(θ1,1) sin(θ1,1) cos(θ1,2) sin(θ1,1) sin(θ1,2) cos(θ1,3) · · ·
cos(θ2,1) sin(θ2,1) cos(θ2,2) sin(θ2,1) sin(θ2,2) cos(θ2,3) · · ·
cos(θ3,1) sin(θ3,1) cos(θ3,2) sin(θ3,1) sin(θ3,2) cos(θ3,3) · · ·

...
...

...
. . .

⎞⎟⎟⎠
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It can thus be seen that the diagonal elements of BTB are

(
BTB

)
i,i

=
n∑

k=1

(xi,k)
2 = 1

The Cholesky decomposition can be formed by setting the angles of the upper
triangular elements of BT to zero, and this results in

LT =

⎛⎜⎜⎝
1 0 0 · · ·

cos(θ2,1) sin(θ2,1) 0 · · ·
cos(θ3,1) sin(θ3,1) cos(θ3,2) sin(θ3,1) sin(θ3,2) · · ·

...
...

...
. . .

⎞⎟⎟⎠
LT

1,1 = 1

LT
i,1 = cos(θi,1)

LT
i,j = cos(θi,j )

j−1∏
k=1

sin(θi,k), j = 2, . . . , i − 1,

LT
i,i =

i−1∏
k=1

sin(θi,k), i > 1,

LT
i,j = 0, j = i + 1, . . . , n

We want to find the positive definite matrix C∗
r which minimizes ‖Cr − C∗

r ‖.
This can be found by writing

C∗
r = LTL

and using numerical optimization to determine the appropriate n(n − 1)/2 an-
gles. An initial approximation can be obtained by computing the Cholesky fac-
torization Ĉr = L̂TL̂ and then calculating the angles corresponding to each
nonzero element of L̂T.

Covariance matrix

We will now consider the case when a covariance matrix C is supplied which
is not positive definite—that is, there is no Cholesky decomposition C = LTL,
where L is lower triangular.

In these circumstances, since a covariance matrix does not require unit diag-
onal elements, it is possible to repair C using:

C+ = V K(V K)T

where V and K have the same meanings as before. A better approximation
could be obtained via numerical optimization of the elements of the Cholesky
decomposition. However, these optimal points are no longer constrained to lie
on the n-dimensional unit hypersphere.
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3.4.3 Normal distribution

Here we show how to generate a p variate normal distribution with a given
mean and covariance matrix.

We will denote the vector containing the variates of the ith observation from
a p variate zero mean normal distribution by Zi ; that is, we write a sample of n

observations as:

Zi ∼ N(0, C), i = 1, . . . , n, (3.4.2)

where C is the p × p covariance matrix.
Further Zi,k is used to denote the kth element of Zi , which contains the value

of the kth variate for the ith observation.
From a computational point of view, we can then consider a sample of n

observations to be represented by the n×p matrix Z. The ith row of Z contains
the values for ith the observation, and the kth column of the ith row, Zi,k,
contains the value of the kth variate for the ith observation.

Also, since the distribution has zero mean, the sample covariance matrix is
given by: C = ZTZ.

To generate variates with the covariance matrix C we can use the fact that, if
the matrix C is positive definite, a Cholesky factorization exists in which:

C = AAT (3.4.3)

where A is lower triangular.
We can therefore generate p variates which have a covariance matrix C as

follows.
First generate by (for example) using the Box–Muller method described in

Section 3.3.1, the independent normal variates:

X ∼ N(0, Ip)

where the vector X contains the p variates, Ip is the unit matrix, and XXT = Ip.
Then, using the Cholesky factorization of Eq. (3.4.4), form:

Y = AX (3.4.4)

where Y is a p-element vector.
Now, since YY T = AX(AX)T = A(XXT)AT = AAT = C, we have that

Y ∼ N(0, C)

Variates that have nonzero means μk, k = 1, . . . , p, can be obtained by simply
modifying Eq. (3.4.4) to:

Y ′ = AX + μ (3.4.5)

where Y ′ is a p variate vector that is distributed as N(μ,C), and the p elements
of vector μ contain the means of the variates Y ′

k, k = 1, . . . , p.
If the matrix C is not positive definite, then we can create a repaired matrix,

Ĉ, by using the approach outlined in Section 3.4.2.
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We now use the decomposition:

Ĉ = V K(V K)T

Under these circumstances the p-element vectors Y and Y ′ are generated using
the following modified versions of Eqs. (3.4.4) and (3.4.5):

Y = V KX and Y ′ = V KX + μ (3.4.6)

The method for generating variates Y from a given correlation matrix Cr

is identical. However, in this case nonpositive definite matrices are repaired as
Ĉr = FV K(FV K)T; see Section 3.4.2.

A function to generate correlated normal and lognormal variates is given in
Code excerpt 3.2.

long Quasirandom_Normal_LogNormal_Correlated(long fcall, long seq, long lnorm,
double means[], long n, double c[], long tdc, double tol, long *irank,
double x[], double work[], long lwk) {

/* Input parameters:
=================
fcall - if fcall == 1 then it is an initialisation call,

if fcall == 0 then a continuation call
seq - if seq == 0 then a Faure sequence, if seq == 1 then a Niederreiter sequence,

if seq == 2 then a Sobol sequence
lnorm - if lnorm == 1 then it is a lognormal distribution,

if lnorm == 0 then a normal distribution
n - the number of variates, n must be less than 40
c[] - a matrix which contains the required covariance matrix, C
tdc - the second dimension of the matrix C
tol - the tolerance used for calculating the rank of the covariance matrix C
means[] - the means of the independent normal variates
std[] - the standard deviations of the independent normal variates
lwk - the size of the work array, work

Output parameters:
==================
rank - the computed rank of the covariance matrix C
x[] - the elements x[0], .. x[n-1] contain the variates

Input/Output parameters:
=========================
work - a work array

*/

double zero = 0.0, one = 1.0, two = 2.0;
long n1, i, j, k, kk;
double mtol, alpha;
long ptrc, ptre, ptrv, ptrw, ptrw0, ptrw1;

#define C(I,J) c[((I)-1) * tdc + ((J)-1)]
#define MEANS(I) means[(I)-1]
#define X(I) x[(I)-1]
#define WORK(I) work[(I)-1]

if (lwk < (2 + 3*n + 2*n*n + 3)) {
printf ("Error lwk is too small \n");
return 1;

}

ptre = 2;
ptrv = n+2;
ptrw = n*n + n + 2;

Code excerpt 3.2 The function Quasirandom_Normal_LogNormal_Correlated
which generates correlated quasi-random normal variates and correlated quasi-random
lognormal variates.
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/* add extra 1 to allow for odd values of n */
ptrw0 = ptrw + 1 + n;
ptrw1 = ptrw0 + 1 + n;
ptrc = ptrw1 + n + 1;
n1 = n;
if (((n/2)*2) != n) { /* test for odd n */

n1 = n + 1;
}
if (fcall) { /* first call for initialisation */

if (lnorm) { /* lognormal distribution */
for (i = 1; i <=n; ++i) { /* Load the modified covariance matrix into WORK */

for (j = 1; j <= n; ++j) {
WORK(ptrc+(i-1)*n+j-1) = log(one + C(i,j)/(MEANS(i)*MEANS(j)));

}
}

}
else { /* normal distribution */

for (i = 1; i <=n; ++i) { /* Load the covariance matrix into WORK */
for (j = 1; j <= n; ++j) {

WORK(ptrc+(i-1)*n+j-1) = C(i,j);
}

}
}

/* calculate the eigenvalues and eigenvector of the matrix that
has been loaded into WORK */

calc_eigvals_eigvecs (n,&WORK(ptrc),n,&WORK(ptre),&WORK(ptrv),n);
/* The code uses NAG routine f02abc */
*irank = 0;

/* printf ("The eigenvalues are \n");
for (j=n; j >= 1; --j) {

printf ("%12.5f \n", WORK(ptre+j-1));
}

*/
for (j=n; j >= 1; --j) { /* use the eigenvalues to calculate the rank of the matrix */

if (WORK(ptre+j-1) < tol) goto L24;
*irank = *irank + 1;

}
printf ("*irank = %ld \n",*irank);

L24:
mtol = -tol;
if (WORK(ptre) < mtol) {

printf ("Warning there is an eigenvalue less than %12.4f \n",mtol);
}
for (j=1; j <= *irank; ++j) {

kk = 1;
for (k=1; k <=n; ++k) {

if(WORK(ptrv+(k-1)*n+(j-1)) != zero) goto L28;
kk = kk + 1;

}
L28:
/* ensure that all eigenvectors have the same sign on different machines */

alpha = sqrt(WORK(ptre+j-1));
if (WORK(ptrv+(kk-1)*n+(j-1)) < zero) alpha = -sqrt(WORK(ptre+j-1));
for (i = 1; i <= n; ++i) {

WORK(ptrv+(j-1)+(i-1)*n)=WORK(ptrv+(j-1)+(i-1)*n)*alpha;
}

}
/* printf ("The eigenvectors are \n");

for (j=1; j <= *irank; ++j) {
for (i = 1; i <= n; ++i) {

printf ("%10.5f ", WORK(ptrv+(j-1)+(i-1)*n));
}
printf ("\n");

}
*/

for (i = 1; i <=n; ++i)
{ /* store a vector of ones and zeros for generating the quasi-random numbers */

WORK(ptrw0+i-1) = zero;
WORK(ptrw1+i-1) = one;

}

Code excerpt 3.2 (Continued).
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for (i = n; i <= n1; ++ i) {
WORK(ptrw0+i-1) = zero;
WORK(ptrw1+i-1) = one;

}
} /* end of first call section */

/* generate a vector of n1 random variables from a standard normal distribution,
zero mean and unit variance */

Quasi_Normal_Independent(fcall, seq, &WORK(ptrw0), &WORK(ptrw1), n1, &WORK(ptrw));

/* printf ("The quasi random numbers are:\n");
for (i = 1; i <= n; ++i) {

printf ("%12.4f \n", WORK(ptrw+(i-1)));
}

*/
/* Now generate variates with the specified mean and variance */

if (lnorm) { /* a lognormal distribution */
for (i = 1; i <= n; ++i) {

X(i) = log(MEANS(i)) - WORK(ptrc+(i-1)*n+i-1)/two;
for (k = 1; k <= *irank; ++k) {

X(i)=X(i)+WORK(ptrv+(k-1)+(i-1)*n)*WORK(ptrw+k-1);
}

}
for (i = 1; i <= n; ++i) {

X(i) = exp(X(i));
}

}
else { /* a normal distribution */

for (i = 1; i <= n; ++i) {
X(i) = MEANS(i);
for (k = 1; k <= *irank; ++k) {

X(i)=X(i)+WORK(ptrv+(k-1)+(i-1)*n)*WORK(ptrw+k-1);
}

}
}

/* printf ("The generated variates are:\n");
for (i = 1; i <= n; ++i) {

printf (" %12.4f \n", X(i));
}

*/
return 0;

}

Code excerpt 3.2 (Continued).

In order to visualize the effect of the covariance matrix we will display the
results of using function Quasirandom_Normal_LogNormal_Correlated

to generate the following variates:

• A vector of three normal independent variates with covariance matrix:

C1 =
( 1.0 0.0 0.0

0.0 1.0 0.0
0.0 0.0 1.0

)

• A vector of three normal variates in which the elements of the covariance
matrix are all positive; the covariance matrix is:

C2 =
( 1.0 0.8 0.8

0.8 1.0 0.8
0.8 0.8 1.0

)
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Figure 3.5 Scatter diagram for a sample of 3000 observations (Zi, i = 1, . . . , 3000) gener-
ated from a multivariate normal distribution consisting of three variates with covariance
matrix C1 and mean μ. Here we plot the values of the first variate against the values of
the second variate. If we use the notation of Eq. (3.4.2), then the (x, y) coordinates for
the points are xi = Zi,1, i = 1, . . . , 3000, and yi = Zi,2, i = 1, . . . , 3000.

• A vector of three normal variates in which two elements of the covariance
matrix are negative; the covariance matrix is:

C3 =
( 1.0 −0.7 0.2

−0.7 1.0 0.2
0.2 0.2 1.0

)
In all cases the mean vector is given by:

μ =
( 2.0

2.0
2.0

)
The results are displayed in Figs. 3.5–3.7.

3.4.4 Lognormal distribution

The multivariate lognormal distribution is important because it is the asset re-
turns distribution assumed by the Black–Scholes equation.

Let the p-element vectors Y and X be related by Y = log(X) where Y ∼
N(μ,Σ), μ is a p-element vector, and Σ is a p×p matrix. Then X = exp(Y ) and
X has multivariate lognormal distribution, which we denote by X ∼ �(μ,Σ).

We will represent the p-element mean vector of X by m̄ and the p × p covari-
ance matrix of X by S.
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Figure 3.6 Scatter diagram for a sample of 3000 observations (Zi, i = 1, . . . , 3000) gener-
ated from a multivariate normal distribution consisting of three variates with covariance
matrix C2 and mean μ. Here we plot the values of the first variate against the values of
the second variate. If we use the notation of Eq. (3.4.2), then the (x, y) coordinates for
the points are xi = Zi,1, i = 1, . . . , 3000, and yi = Zi,2, i = 1, . . . , 3000.

Figure 3.7 Scatter diagram for a sample of 3000 observations (Zi, i = 1, . . . , 3000) gener-
ated from a multivariate normal distribution consisting of three variates with covariance
matrix C3 and mean μ. Here we plot the values of the first variate against the values of
the second variate. If we use the notation of Eq. (3.4.2), then the (x, y) coordinates for
the points are xi = Zi,1, i = 1, . . . , 3000, and yi = Zi,2, i = 1, . . . , 3000.



58 Computational Finance Using C and C#

It can be shown that:

Σi,j = log

(
1 + Si,j

m̄im̄j

)
(3.4.7)

and

μi = log(m̄i) − Σi,i

2
, i = 1, . . . , p, and j = 1, . . . , p (3.4.8)

For the case of independent variates we then have:

μi = log(m̄i) − σ 2
i

2
, i = 1, . . . , p,

and

Σi,i = σ 2
i = log

(
1 + s2

i

m̄i
2

)
, i = 1, . . . , p, and for i �= j, Σi,j = 0

which are just Eqs. (3.3.13) and (3.3.14) given in Section 3.3.2.
Code excerpt 3.3 shows how to generate a multivariate lognormal distri-

bution with a given mean m̄ and covariance matrix S. More complete infor-
mation can be found in the function Quasirandom_Normal_LogNormal_
Correlated which is provided in Code excerpt 3.2.

double sig[40][40], s[40][40]; /* limit of 40 */
double means[40], x[40], lx[40], tmp;

. . .
#define S(I,J) s[(I)-1][(J)-1]
#define SIG(I,J) sig[(I)-1][(J)-1]
#define MEANS(i) means[(I)-1] /* the means of the lognormal distribution */
#define X(I) x[(I)-1] /* normal variates */
#define LX(I) lx[(I)-1] /* lognormal variates */

. . .
/* obtain the Gaussian covariance matrix SIG, that corresponds to the

lognormal covariance matrix S. */

for (i=1; i <= m; ++i) {
for (j=1; j <= m; ++j) {

tmp = MEANS(i) * MEANS(j);
SIG(i,j) = log( 1 + (S(i,j)/tmp));

}
}

. . .
/* Generate multivariate Gaussian variates X(i),i = 1,..,m, with zero mean and

covariance matrix SIG, using section .. */
. . .

/* Using equation () generate normal variates with the correct mean */
for (i=1; i <= m; ++i) {

X(i) = X(i) + log(MEANS(i)) - SIG(i,i)/2;
}

/* Now exponentiate to create lognormal variates with mean
XMEAN, and covariance matrix S */

for (i=1; i <= m; ++i) {
LX(i) = exp(X(i));

}

Code excerpt 3.3 Illustrating how to generate variates from a lognormal distribution
with a given mean and covariance matrix.



4 European options

4.1 Introduction

A European option taken out at current time t gives the owner the right (but not
the obligation) to do something when the option matures at time T . This could,
for example, be the right to buy or sell stocks at a particular strike price. The
option would of course only be exercised if it was in the owner’s interest to do
so. For example, a single asset European vanilla put option, with strike price E

and expiry time T , gives the owner the right at time T to sell a particular asset
for E. If the asset is worth ST at maturity then the value of the put option at
maturity, known as the payoff, is thus max(E −ST , 0). By contrast a single asset
European vanilla call option, with strike price E and expiry time T , gives the
owner the right at time T to buy an asset for E; the payoff at maturity for a call
option is max(ST − E, 0).

The owner of an American option has the right (but not the obligation) to
exercise the option at any time from current time t to option maturity. These
options are more difficult to value than European options because of this ex-
tra flexibility. Even the simple single asset American vanilla put has no analytic
solution and requires finite-difference and lattice methods to estimate its value.
Many European options, on the other hand, take the form of a relatively easy
definite integral from which it is possible to compute a closed form solution.
The valuation of multiasset European options, dependent on a large number of
underlying assets, is more complicated but can conveniently be achieved by us-
ing Monte Carlo simulation to compute the required multidimensional definite
integral.

The expected current value of a single asset European vanilla option will de-
pend on the current asset price at time t , S, the duration of the option, τ = T −t ,
the strike price, E, the riskless interest rate, r, and the probability density func-
tion of the underlying asset at maturity, p(ST ).

4.2 Pricing derivatives using a martingale measure

In this section we will briefly summarize the results of Harrison and Kreps
(1979) and Harrison and Pliska (1981). Let us consider an economy over the
time interval [0, T ] which consists of n assets Si, i = 1, . . . , n, which can take
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the values Si
t , i = 1, . . . , n, 0 � t � T . Any asset Si which only takes values that

are greater than zero is called a numeraire. Numeraires can be used to denom-
inate all the asset prices in the economy. So (for example) if S1 is a numeraire
then the prices of the other assets denominated in units of S1 are the relative
prices Zi

t = (Si
t /S

1
t ), i = 2, . . . , n.

One can find a unique probability measure Q such that the relative prices
Zi

t , i = 2, . . . , n, are martingales. If the economy is free of arbitrage opportu-
nities then every payoff pattern HT can be represented as a linear combination
of the asset values Si

t , i = 1, . . . , n, and in addition the relative price process
(HT /S1

T ) is a martingale.
This means that we can write

EQ

[
Ht

S1
t

]
= EQ

[
HT

S1
T

]
, where 0 � t � T

The current (time t) value Vt of the payoff HT is thus

Vt = S1
t EQ

[
HT

S1
T

]
In general for a numeraire N which takes the values Nt, 0 � t � T , we can write

Vt = NtE
Q

[
HT

NT

]
(4.2.1)

Equation (4.2.1) is very important because Vt is the current (time t) price of a
financial derivative with maturity T and payoff HT .

It should be mentioned that the price of a financial derivative is independent
of the martingale measure under which it is valued, and thus the same price Vt

will be obtained for different numeraires N .

4.3 Put call parity

4.3.1 Discrete dividends

Here we consider single asset European put and call options, and derive the
following relationship between their values in the presence of cash dividends:

c(S,E, τ) + E exp(−rτ ) + D = p(S,E, τ) + S (4.3.1)

where D is the present value of the dividends that are paid during the life of the
option. That is:

D =
n∑

k=1

Dk exp
(−r(tk − t)

)
with Dk the kth cash dividend paid at time tk; the other symbols have already
been defined in Section 4.1.

This result can be proved by considering the following two investments:
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Portfolio A: One European call, c(S,E, τ), and cash of value E exp(−rτ )+D.

Portfolio B: One European put, p(S,E, τ), and one share of value S.

At option maturity the value of the call and put are c(ST ,E, 0) and
p(ST ,E, 0), respectively; also at time T the value of the dividends paid dur-
ing the life of the option is D exp(rτ ).

We now consider the value of both portfolios at time T under all possible
conditions.

If ST � E

Portfolio A is worth:

max(ST − E, 0) + exp(rτ )
{
E exp(−tτ ) + D

} = ST − E + E + D exp(rτ )

= ST + D exp(rτ )

Portfolio B is worth:

max(E − ST , 0) + ST + D exp(rτ ) = 0 + ST + D exp(rτ )

= ST + D exp(rτ )

If ST < E

Portfolio A is worth:

max(ST − E, 0) + exp(rτ )
{
E exp(−tτ ) + D

} = 0 + E + D exp(rτ )

= E + D exp(rτ )

Portfolio B is worth:

max(E − ST , 0) + ST + D exp(rτ ) = E − ST + ST + D exp(rτ )

= E + D exp(rτ )

We have therefore shown that under all conditions the value of portfolio A is
the same as that of portfolio B.

4.3.2 Continuous dividends

Here we consider single asset European put and call options, and derive the
following relationship:

c(S,E, τ) + E exp(−rτ ) = p(S,E, τ) + S exp(−qτ) (4.3.2)

where q is the asset’s continuous dividend yield that is paid during the life of the
option. The result can be proved by considering the following two investments:

Portfolio A: One European call, c(S,E, τ), and cash of value E exp(−rτ ).
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Portfolio B: One European put, p(S,E, τ), and one share of value
S exp(−qτ).

At option expiry the value of the call and put are c(ST ,E, 0) and p(ST ,E, 0),
respectively. Also, if the value of the share at time t is denoted by S, the com-
bined value of shares and dividends at time T is S exp(qτ): Note that q is treated
in a similar manner to the continuously compounded riskless interest rate r.

If ST � E

Portfolio A is worth:

max(ST − E, 0) + exp(rτ )E exp(−rτ ) = ST − E + E = ST

Portfolio B is worth:

max(E − ST , 0) + ST exp(−qτ) exp(qτ) = 0 + ST = ST

where ST exp(−qτ) exp(qτ) is the combined value of the shares and dividends at
option maturity.

If ST < E

Portfolio A is worth:

max(ST − E, 0) + exp(rτ )E exp(−rτ ) = 0 + E = E

Portfolio B is worth:

max(E − ST , 0) + ST exp(−qτ) exp(qτ) = E − ST + ST = E

We have therefore shown that under all conditions the value of portfolio A is
the same as that of portfolio B.

4.4 Vanilla options and the Black–Scholes model

4.4.1 The option pricing partial differential equation

In this section we will derive the (Black–Scholes) partial differential equation
that is obeyed by options written on a single asset.

Previously, in Section 2.3 and Section 2.5, we derived Ito’s lemma, which
provides an expression for the change in value of the function φ(X, t), where
X is a stochastic variable. When the stochastic variable, X, follows GBM, the
change in the value of φ was shown to be given by Eq. (2.3.6). Here we will
assume that the function φ(S, t) is the value of a financial option and that the
price of the underlying asset, S, follows GBM.

If we denote the value of the financial derivative by f , then its change, df ,
over the time interval dt is given by:

df =
(

μS
∂f

∂S
+ ∂f

∂t
+ σ 2S2

2

∂2f

∂S2

)
dt + ∂f

∂S
σS dW, dW ∼ N(0, dt)
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The discretized version of this equation is:

�f = �t

(
μS

∂f

∂S
+ ∂f

∂t
+ σ 2S2

2

∂2f

∂S2

)
+ ∂f

∂S
σS�W, �W ∼ N(0,�t),

(4.4.1)

where the time interval is now �t and the change in derivative value is �f .
If we assume that the asset price, S, follows GBM we also have:

�S = μS�t + σS�W, �W ∼ N(0,�t), (4.4.2)

where μ is the constant drift and the definition of the other symbols is as before.
Let us now consider a portfolio consisting of −1 derivative and ∂f

∂S
units of the

underlying stock. In other words we have gone short (that is sold) a derivative
on an asset and have ∂f

∂S
stocks of the (same) underlying asset. The value of the

portfolio, Π , is therefore:

Π = −f + ∂f

∂S
S (4.4.3)

and the change, �Π , in the value of the portfolio over time �t is:

�Π = −�f + ∂f

∂S
�S (4.4.4)

Substituting Eqs. (4.4.1) and (4.4.2) into Eq. (4.4.4) we obtain:

�Π = −
(

μS
∂f

∂S
+ ∂f

∂t
+ 1

2
σ 2S2 ∂2f

∂S2

)
�t

− σS�W
∂f

∂S
+ ∂f

∂S
{μS�t + σS�W }

∴ �Π = −μS�t
∂f

∂S
− �t

∂f

∂t
− 1

2
�tσ 2S2 ∂2f

∂S2

− σS�W
∂f

∂S
+ μS�t

∂f

∂S
+ σS�W

∂f

∂S
(4.4.5)

Cancelling terms we obtain:

�Π = −�t

{
∂f

∂t
+ 1

2
σ 2S2 ∂2f

∂S2

}
(4.4.6)

If this portfolio is to grow at the riskless interest rate r, we have:

rΠ�t = �Π

So we have that:

rΠ�t = −�t

{
∂f

∂t
+ 1

2
σ 2S2 ∂2f

∂S2

}
(4.4.7)

Substituting for Π , we obtain:

r�t

(
f − S

∂f

∂S

)
= −�t

{
∂f

∂t
+ 1

2
σ 2S2 ∂2f

∂S2

}
(4.4.8)
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On rearranging we have:

∂f

∂t
+ S

∂f

∂S
+ 1

2
σ 2S2 ∂2f

∂S2
= rf (4.4.9)

which is the Black–Scholes partial differential equation. See Appendix I con-
cerning the Feynman–Kac formula.

Let us now consider put and call options on the same underlying asset. If we
let c be the value of a European call option and p that of a European put option
then we have the following equations:

∂p

∂t
+ S

∂p

∂S
+ 1

2
σ 2S2 ∂2p

∂S2
= rp (4.4.10)

and

∂c

∂t
+ S

∂c

∂S
+ 1

2
σ 2S2 ∂2c

∂S2
= rc (4.4.11)

If we now form a linear combination of put and call options, Ψ = a1c + a2p,
where both a1 and a2 are constants, then Ψ also obeys the Black–Scholes equa-
tion:

∂Ψ

∂t
+ S

∂Ψ

∂S
+ 1

2
σ 2S2 ∂2Ψ

∂S2
= rΨ (4.4.12)

We will now prove that Ψ satisfies Eq. (4.4.12).
First we rewrite Eq. (4.4.12) as:

∂(a1c + a2p)

∂t
+ S

∂(a1c + a2p)

∂S
+ 1

2
σ 2S2 ∂2(a1c + a2p)

∂S2

= r(a1c + a2p) (4.4.13)

and use the following results from elementary calculus:

∂(a1c + a2p)

∂t
= a1

∂c

∂t
+ a2

∂p

∂t

∂(a1c + a2p)

∂S
= a1

∂c

∂S
+ a2

∂p

∂S

and

∂2(a1c + a2p)

∂S2
= a1

∂2c

∂S2
+ a2

∂2p

∂S2

If we denote the left-hand side of Eq. (4.4.12) by LHS, then we have:

LHS = a1

{
∂c

∂t
+ S

∂c

∂S
+ 1

2
σ 2S2 ∂2c

∂S2

}
+ a2

{
∂p

∂t
+ S

∂p

∂S
+ 1

2
σ 2S2 ∂2p

∂S2

}
(4.4.14)
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We now use Eqs. (4.4.10) and (4.4.11) to substitute for the values in the curly
brackets in Eq. (4.4.14), and we obtain:

LHS = a1rc + a2rp (4.4.15)

which is just the right-hand side of Eq. (4.4.12); so we have proved the result.
It should be noted that this result is also true for American options, since they
also obey the Black–Scholes equation.

The above result can be generalized to include a portfolio consisting of n sin-
gle asset options. Here we have:

Ψ =
n∑

j=1

ajfj , j = 1, . . . , n,

where fj represents the value of the j th derivative and aj is the number of
units of the j th derivative. To prove that Ψ follows the Black–Scholes equa-
tion we simply partition the portfolio into sectors whose options depend on the
same underlying asset. We then proceed as before by showing that the value
of each individual sector obeys the Black–Scholes equation and thus the value
of the complete portfolio (the sum of the values of all the sectors) obeys the
Black–Scholes equation. It should be mentioned that this result applies for both
American and European options and it does not matter whether we have bought
or sold the options.

In Chapter 5 we will use the fact that the difference between the value of a
European option and the equivalent American option obeys the Black–Scholes
equation. We can see this immediately by considering the following portfolios
that are long in an American option and short (i.e., have sold) a European op-
tion:

Ψ p = P − p, Ψ c = C − c

where P and C are the values of American put and call options. Ψ p and Ψ c both
obey the Black–Scholes equations, and are the respective differences in value of
American/European put options and American/European call options.

4.4.2 The multiasset option pricing partial differential equation

In this section we will derive the multiasset (Black–Scholes) differential equation
that is obeyed by options written on n assets. Proceeding as in Section 4.4.1, we
will use the n-dimensional version of Ito’s lemma to find the process followed
by the value of a multiasset financial derivative. We will denote the value of this
derivative by f (S, t), where S is an n-element stochastic vector containing the
prices of the underlying assets, Si, i = 1, . . . , n. If we assume that S follows
n-dimensional GBM then the change in the value of the derivative, df , is (see
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Eq. (2.5.8)) given by:

df =
{

∂f

∂t
+

n∑
i=1

μiSi

∂f

∂Si

+ 1

2

n∑
i=1

n∑
j=1

σiσjSiSjρij

∂2f

∂Si ∂Sj

}
dt

+
n∑

i=1

∂f

∂Si

σiSi dWi (4.4.16)

The discretized version of this equation is:

�f =
{

∂f

∂t
+

n∑
i=1

μiSi

∂f

∂Si

+ 1

2

n∑
i=1

n∑
j=1

σiσjSiSjρij

∂2f

∂Si ∂Sj

}
�t

+
n∑

i=1

∂f

∂Si

σiSi�Wi (4.4.17)

where the time interval is now �t and the change in derivative value is �f .
Let us now consider a portfolio consisting of −1 derivative and ∂f

∂Si
units of

the ith underlying stock. In other words we have gone short (that is sold) a
derivative that depends on the price, Si, i = 1, . . . , n, of n underlying assets, and
have ∂f

∂Si
units of the ith asset. The value of the portfolio, Π , is therefore:

Π = −f +
n∑

i=1

∂f

∂Si

Si (4.4.18)

and the change, �Π , in the value of the portfolio over the time interval �t is:

�Π = −�f +
n∑

i=1

∂f

∂Si

�Si (4.4.19)

Since the stochastic variables Si, i = 1, . . . , n, follow n-dimensional GBM, the
change in the ith asset price, �Si , over the time interval �t is given by:

�Si = μiSi�t + σiSi�Wi, i = 1, . . . , n, (4.4.20)

where �Wi = dZi

√
�t ,

E
[
dZ2

i

] = 1, i = 1, . . . , n,

and

E[dZi dZj ] = ρi,j , i = 1, . . . , n, j = 1, . . . , n, i �= j

Substituting Eqs. (4.4.17) and (4.4.20) into Eq. (4.4.19), we obtain:

�Π = −
{

∂f

∂t
+

n∑
i=1

μiSi

∂f

∂Si

+ 1

2

n∑
i=1

n∑
j=1

σiσjρij SiSj

∂2f

∂Si ∂Sj

}
�t

−
n∑

i=1

σiSi�Wi

∂f

∂Si

+
n∑

i=1

∂f

∂Si

{μiSi�t + σSi�Wi}
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∴ �Π = −
n∑

i=1

μiSi�t
∂f

∂Si

− �t
∂f

∂t
− 1

2
�t

n∑
i=1

n∑
j=1

σiσjρij SiSj

∂2f

∂Si ∂Sj

−
n∑

i=1

σiSi�Wi

∂f

∂Si

+
n∑

i=1

μiSi�t
∂f

∂Si

+
n∑

i=1

σiSi�Wi

∂f

∂Si

(4.4.21)

Cancelling terms we obtain:

�Π = −�t

{
∂f

∂t
+ 1

2

n∑
i=1

n∑
j=1

σiσjρij SiSj

∂2f

∂Si ∂Sj

}
(4.4.22)

If this portfolio is to grow at the riskless interest rate r we have:

rΠ�t = �Π

So from Eq. (4.4.22) we have that:

rΠ�t = −�t

{
∂f

∂t
+ 1

2

n∑
i=1

n∑
j=1

σiσjρij SiSj

∂2f

∂Si ∂Sj

}
(4.4.23)

Substituting for Π we obtain:

r�t

{
f −

n∑
i=1

Si

∂f

∂Si

}

= −�t

{
∂f

∂t
+ 1

2

n∑
i=1

n∑
j=1

σiσjρij SiSj

∂2f

∂Si ∂Sj

}
(4.4.24)

Rearranging Eq. (4.4.24) gives:

∂f

∂t
+

n∑
i=1

Si

∂f

∂Si

+ 1

2

n∑
i=1

n∑
j=1

σiσjρij SiSj

∂2f

∂Si ∂Sj

= rf (4.4.25)

which is the n-dimensional Black–Scholes partial differential equation.

4.4.3 The Black–Scholes formula

The Black–Scholes model consists of two assets: the riskless money account and
an equity. It can be cast as the following two-dimensional Ito equation:

dSt = μSt dt + σSt dWP

(4.4.26)
dBt = rBt dt

where WP is Brownian motion (without drift) under measure P, so dWP ∼
N(0, dt).
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Current time will be denoted by t0, and the option maturity time by T . The
money market account has value Bt0 = 1 at time t0 and BT = exp(r(T − t0) at
time T .

We will now consider the process followed by the relative value φ(St , Bt ) =
St/Bt .

Using the Ito quotient rule as described in Section 2.6.2 and substituting X1 =
St and X2 = Bt in Eq. (2.6.8) we have:

d
(

St

Bt

)
=

(
St

Bt

)
(μ − r) dt +

(
St

Bt

)
σ dWP

So finally we can write:

dS∗
t = S∗

t (μ − r) dt + S∗
t σ dWP (4.4.27)

where S∗
t = St/Bt .

Referring to Girsanov’s theorem in Section 2.4, we can choose a probability
measure Q such that:

dWp = dWQ −
(

μ − r

σ

)
dt (4.4.28)

In Eq. (2.4.3) we thus have k(t) = −((μ − r)/σ ) and

dQ

dP
= exp

{
−

(
μ − r

σ

)
WP − 1

2

(
μ − r

σ

)2

t

}
(4.4.29)

See p. 114 of Musiela (1998). Substituting for dWp in Eq. (4.4.27) yields

dS∗
t = S∗

t {μ − r} dt − S∗
t σ

(
μ − r

σ

)
dt + S∗σ dWQ

which simplifies to

dS∗
t = S∗

t σ dWQ (4.4.30)

Equation (4.4.30) means that the process for S∗
t is a martingale under proba-

bility measure Q.
Replacing dWp in Eq. (4.4.26) with the value in Eq. (4.4.28) yields

dSt = μSt dt + Stσ dWP

= μSt dt + Stσ

{
dWQ −

(
μ − r

σ

)
dt

}
=

{
Stμ dt − Stσ

(
μ − r

σ

)}
dt + Stσ dWQ

So in the risk neutral measure Q the dynamics of dS are

dSt = St r dt + Stσ dWQ (4.4.31)

Comparing Eq. (4.4.31) with the original Eq. (4.4.26) we see that changing from
the real-world measure to the risk neutral measure simply involves substituting
dWQ for dWP and r for μ.
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We can now solve Eq. (4.4.31) by using the result given in Eq. (2.3.11). We
have

ST = S exp
(
ν(T − t0) + σW

Q
T −t0

)
where S is the asset price at current time t0, and ν = r − σ 2/2.

The forward price with maturity T , denoted by S(t0, T ), is E[ST ]. From Ap-
pendix D.2 we have

S(t0, T ) = E[ST ] = S exp
(
r(T − t0)

)
(4.4.32)

Using Eq. (2.3.9) the distribution of the asset price at time T is:

log

(
ST

S

)
∼ N

(
ν(T − t0), σ

2(T − t0)
)

(4.4.33)

We want to obtain the current price of a vanilla European option with strike
price E which matures at future time T , and thus has a duration of τ = T − t0.
The approach we will adopt here is to first derive an expression for the value
of a European call option, and then use the put/call parity relationships of Sec-
tion 2.2 to obtain the value of the corresponding European put option.

Referring to (4.2.1) we have

Vt0 = Bt0E
Q

[
HT

BT

]
= Bt0

BT

EQ[HT ] (4.4.34)

Substituting Bt0 = 1, BT = exp(r(T −t0)) = exp(rτ ), and HT = max(ST −E, 0)

we have:

Vt0 = 1

exp(rτ )
EQ

[
max(ST − E, 0)

]
(4.4.35)

and so denoting the value of the call option by c(S,E, τ) we obtain

c(S,E, τ) = exp(−rτ )EQ
[
max(ST − E, 0)

]
(4.4.36)

It can be seen from Eq. (4.4.36) that the value of the European call option is the
expected value of the option’s payoff at maturity, discounted to current time t

by the riskless interest rate r.
This means that the value of the call option can be written as

c(S,E, τ) = exp(−rτ )

∫ ∞

ST =E

f (ST )(ST − E) dST (4.4.37)

where f (ST ) is the probability density function of ST .
Instead of integrating over ST we will evaluate (4.4.37) by using the variable

X = log(ST /S). From Eq. (4.4.33), we know that the probability density func-
tion of X is

f (X) = 1

σ
√

τ
√

2π
exp

(
− (X − (r − σ 2/2)τ )2

2σ 2τ

)
(4.4.38)
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and therefore the value of the option is

c(S,E, τ) = exp(−rτ )

∫ ∞

X=log(E/S)

{
S exp(X) − E

}
f (X) dX (4.4.39)

where we have used ST = S exp(X). The lower limit in Eq. (4.4.39) correspond-
ing to ST = E in Eq. (4.4.37) is found by setting E = exp(X); this yields the
lower limit X = log(E/S).

The integral in Eq. (4.4.39) is evaluated by splitting it into the two parts:

c(S,E, τ) = IA − IB (4.4.40)

where

IA = S exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

exp(X) exp

(
−{X − (r − σ 2/2)τ }2

2σ 2τ

)
dX

(4.4.41)

and

IB = E exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

exp

(
−{X − (r − σ 2/2)τ }2

2σ 2τ

)
E dX (4.4.42)

To evaluate these integrals we will make use of the fact that the univariate cu-
mulative normal function N1(x) is:

N1(x) = 1√
2π

∫ x

u=−∞
exp

(
−u2

2

)
du

By symmetry we have N1(−x) = 1 − N1(x) and

1√
2π

∫ ∞

x

exp

(
−u2

2

)
du = 1√

2π

∫ −x

−∞
exp

(
−u2

2

)
du = N1(−x)

We will first consider IB , which is the easier of the two integrals.

IB = E exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

exp

(
−{X − (r − σ 2/2)τ }2

2σ 2τ

)
dX

If we let u = X−(r−σ 2/2)τ

σ
√

τ
then dX = σ

√
τ du. So

IB = E exp(−rτ )σ
√

τ

σ
√

2π
√

τ

∫ ∞

u=k2

exp

(
−u2

2

)
du

where the lower integration limit is k2 = log(E/S)−(r−σ 2/2)τ

σ
√

τ
.

We therefore have:

IB = E exp(−rτ )N1(−k2) (4.4.43)

We will now consider the integral IA.

IA = S exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

exp(X) exp

(
−{X − (r − σ 2/2)τ }2

2σ 2τ

)
dX
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Rearranging the integrand:

IA = exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

exp

(
−{X − (r − σ 2/2)τ }2 − 2σ 2τX

2σ 2τ

)
dX

(4.4.44)

Expanding the terms in the exponential:{
X − (

r − σ 2/2
)
τ
}2 − 2σ 2τX

= X2 − 2
{(

r − σ 2/2
)
τ
}
X + {(

r − σ 2/2
)
τ
}2 − 2σ 2τX

= X2 − 2
{(

r + σ 2/2
)
τ
}
X + {(

r − σ 2/2
)
τ
}2

= {
X − (

r + σ 2/2
)
τ
}2 + {(

r − σ 2/2
)
τ
}2 − {(

r + σ 2/2
)
τ
}2

Which results in:{
X − (

r − σ 2/2
)
τ
}2 − 2σ 2τX = {

X − (
r + σ 2/2

)
τ
}2 − 2σ 2rτ 2 (4.4.45)

Substituting Eq. (4.4.45) into the integrand of Eq. (4.4.44) we have:

exp(X) exp

(
−{X − (r − σ 2/2)τ }2

2σ 2τ

)
= exp(rτ ) exp

(
−{X − (r + σ 2/2)τ }2

2σ 2τ

)
The integral IA can therefore be expressed as:

IA = S exp(rτ ) exp(−rτ )

στ
√

2π

∫ ∞

X=log(E/S)

exp

(
−{X − (r + σ 2/2)τ }2

2σ 2τ

)
dX

If we let u = X−(r+σ 2/2)τ

σ
√

τ
then dX = σ

√
τ du. So

IA = Sσ
√

τ

σ
√

2π
√

τ

∫ ∞

u=k1

exp

(
−u2

2

)
du

where the lower limit of integration is k1 = log(E/S)−(r+σ 2/2)τ

σ
√

τ
. We therefore

have:

IA = SN1(−k1) (4.4.46)

Therefore the value of a European call is:

c(S,E, τ) = SN1(−k1) − E exp(−rτ )N1(−k2)

which gives the usual form of the Black–Scholes formula for a European
call as:

c(S,E, τ) = SN1(d1) − E exp(−rτ )N1(d2) (4.4.47)
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where

d1 = log(S/E) + (r + σ 2/2)τ

σ
√

τ
and

(4.4.48)
d2 = log(S/E) + (r − σ 2/2)τ

σ
√

τ
= d1 − σ

√
τ

To gain some insight into the meaning of the above equation, we will rewrite it
in the following form:

c(S,E, τ) = exp(−rτ )
{
SN1(d1) exp(rτ ) − EN1(d2)

}
(4.4.49)

The term N1(d2) is the probability that the option will be exercised in a risk-
neutral world, so that EN1(d2) is the strike price multiplied by the probability
that the strike price will be paid. The term SN1(d1) exp(rτ ) is the expected value
of a variable, in a risk neutral world, that equals ST if ST > E and is otherwise
zero.

The corresponding formula for a put can be shown using put call parity (see
Section 4.3) to be:

p(S,E, τ) = E exp(−rτ )N1(−d2) − SN1(−d1) (4.4.50)

or equivalently, using N1(−x) = 1 − N1(x) we have

p(S,E, τ) = E exp(−rτ )
{
1 − N1(d2)

} − S
{
1 − N1(d1)

}
(4.4.51)

The inclusion of continuous dividends

The effect of dividends on the value of a European option can be dealt with
by assuming that the asset price is the sum of a riskless component involving
known dividends that will be paid during the life of the option, and a risky
(stochastic) component; see Hull (2003).

As continuous dividends q are paid, the stock price is reduced by the same
amount, and by the time the European option matures all the dividends will
have been paid, leaving only the risky component of the asset price.

From Eq. (4.4.26) we thus have:

dS = μS dt − Sq dt + σS dWP

(4.4.52)
dB = rB dt

where under probability measure P we know that dWP ∼ N(0, dt).
As before (using Girsanov’s theorem), we choose probability measure Q so

that

dWp = dWQ −
(

μ − r

σ

)
dt

and thus under this measure the process for S is

dS = Sμ dt − Sq dt −
(

μ − r

σ

)
dt + Sσ dWQ, where dWQ ∼ N(0, dt)
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which results in

dS = S(r − q) dt + σS dWQ where dWQ ∼ N(0, dt) (4.4.53)

Proceeding as before we obtain:

X ∼ N
({

r − q − σ 2/2
}
τ, σ 2τ

)
where X = ST /S. The probability density function of X is now:

f (X) = 1

σ
√

τ
√

2π
exp

(
− (X − (r − q − σ 2/2)τ )2

2σ 2τ

)
The value of a call option is thus:

c(S,E, τ) = exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

{
S exp(X) − E

}
× exp

(
− (X − (r − q − σ 2/2)τ )2

2σ 2τ

)
dX (4.4.54)

with

IA = S exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

exp(X) exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
dX

and

IB = E exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
E dX

So IB = E exp(−rτ )N1(−k2), where k2 = log(E/S)−(r−q−σ 2/2)τ

σ
√

τ
.

We will now consider the integral IA.

IA = S exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

exp(X) exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
dX

Rearranging the integrand:

IA = exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

exp

(
−{X − (r − q − σ 2/2)τ }2 − 2σ 2τX

2σ 2τ

)
dX

Expanding the exponential, we obtain:{
X − (

r − q − σ 2/2
)
τ
}2 − 2σ 2τX

= 2
{
X − (

r − q + σ 2/2
)
τ
}2 − 2σ 2(r − q)τ 2

The integral IA can therefore be expressed as:

IA = S exp((r − q)τ) exp(−rτ )

στ
√

2π

×
∫ ∞

X=log(E/S)

exp

(
−{X − (r − q + σ 2/2)τ }2

2σ 2τ

)
dX

which gives IA = S exp(−qτ)N1(−k1) where k1 = log(E/S)−(r−q+σ 2/2)τ

σ
√

τ
.
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The Black–Scholes formula for the value of a European call including contin-
uous dividends is thus:

c(S,E, τ) = S exp(−qτ)N1(d1) − E exp(−rτ )N1(d2) (4.4.55)

and the corresponding formula for a put can be shown (using put call parity) to
be:

p(S,E, τ) = −S exp(−qτ)N1(−d1) + E exp(−rτ )N1(−d2) (4.4.56)

or equivalently, using N1(−x) = 1 − N1(x), we have

p(S,E, τ) = E exp(−rτ )
{
1 − N1(d2)

}
− S exp(−qτ)

{
1 − N1(d1)

}
(4.4.57)

where

d1 = log(S/E) + (r − q + σ 2/2)τ

σ
√

τ
, d2 = log(S/E) + (r − q − σ 2/2)τ

σ
√

τ

Thus European put/call options with continuous dividends can be priced us-
ing Eqs. (4.4.47) and (4.4.50) but with S replaced by S exp(−qτ).

These formulae can also be re-expressed in terms of the current equity for-
ward price with maturity T , S(t, T ), as follows:

ct = exp
(−r(T − t)

){
S(t, T )N1(d1) − EN1(d2)

}
(4.4.58)

pt = exp
(−r(T − t)

){−S(t, T )N1(−d1) + EN1(−d2)
}

(4.4.59)

where we have used the shortened notation pt and ct to denote the current
(time t) value of put and call options; the current equity forward price with
maturity T is

S(t, T ) = S exp
(
(r − q)(T − t)

)
, t � T ,

and

d1 = log(S(t, T )/E) + (σ 2/2)τ

σ
√

(T − t)
, d2 = log(S(t, T )/E) − (σ 2/2)(T − t)

σ
√

(T − t)

The inclusion of discrete dividends

Here we consider n discrete cash dividends Di, i = 1, . . . , n, paid at times
ti , i = 1, . . . , n, during the life of the option. In these circumstances the
Black–Scholes formula can be used to price European options, but with
the current asset value S reduced by the present value of the cash divi-
dends.

This means that instead of S we use the quantity SD which is computed as

SD = S −
n∑

i=1

Di exp(−rti)
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where r is the (in this case constant) riskless interest rate. The formulae for
European puts and calls is then

c(S,E, τ) = SDN1(d1) − E exp(−rτ )N1(d2) (4.4.60)

p(S,E, τ) = E exp(−rτ )
{
1 − N1(d2)

} − SD

{
1 − N1(d1)

}
(4.4.61)

where

d1 = log(SD/E) + (r + σ 2/2)τ

σ
√

τ
and

(4.4.62)
d2 = log(SD/E) + (r − σ 2/2)τ

σ
√

τ
= d1 − σ

√
τ

The Greeks

Now that we have derived formulae to price European vanilla puts and calls
it is possible to work out their partial derivatives (hedge statistics). We will
now merely quote expressions for the Greeks (hedge statistics) for European
options. Here the subscript c refers to a European call, and the subscript p

refers to a European put. Complete derivations of these results can be found in
Appendix A.

Gamma:

Γc = ∂2c

∂S2
= Γp = ∂2p

∂S2
= exp(−qτ)

n(d1)

Sσ
√

τ
(4.4.63)

Delta:

Δc = ∂c

∂S
= exp(−qτ)N1(d1)

(4.4.64)
Δp = ∂p

∂S
= exp(−qτ)

{
N1(d1) − 1

}
Theta:

Θc = ∂c

∂t
= q exp(−qτ)SN1(d1) − rE exp(−rτ )N1(d2)

− Sn(d1)σ exp(−qτ)

2
√

τ
(4.4.65)

Θp = ∂p

∂t
= −q exp(−qτ)SN1(−d1) + rE exp(−rτ )N1(−d2)

− Sn(d1)σ exp(−qτ)

2
√

τ

Rho:

ρc = ∂c

∂r
= EτN1(d2), ρp = ∂p

∂r
= −EτN1(−d2) (4.4.66)
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Vega:

Vc = ∂c

∂σ
= Vp = ∂p

∂σ
= S exp(−qτ)n(d1)

√
τ (4.4.67)

where n(x) = 1√
2π

exp(−x2/2)

We now present, in Code excerpt 4.1, a computer program to calculate the
Black–Scholes option value and Greeks given in Eqs. (4.4.63)–(4.4.67). The rou-
tine uses EPS = 1.0e-16 to identify whether the arguments are too small,

void black_scholes(double *value, double greeks[], double s0, double x,
double sigma, double t, double r, double q, long put, long *iflag)
{
/* Input parameters:

=================
s0 - the current price of the underlying asset
x - the strike price
sigma - the volatility
t - the time to maturity
r - the interest rate
q - the continuous dividend yield
put - if put is 0 then a call option, otherwise a put option
Output parameters:
==================
value - the value of the option
greeks[] - the hedge statistics output as follows: greeks[0] is gamma, greeks[1] is delta

greeks[2] is theta, greeks[3] is rho, and greeks[4] is vega
iflag - an error indicator

*/
double one=1.0,two=2.0,zero=0.0;
double eps,d1,d2,temp,temp1,temp2,pi,np;

if( (x < EPS) || (sigma < EPS) || (t < EPS) ) { /* Check if any of the the input
arguments are too small */

*iflag = 2;
return;

}
temp = log(s0/x);
d1 = temp+(r-q+(sigma*sigma/two))*t;
d1 = d1/(sigma*sqrt(t));
d2 = d1-sigma*sqrt(t);
/* evaluate the option price */
if (put==0)

*value = (s0*exp(-q*t)*cum_norm(d1)- x*exp(-r*t)*cum_norm(d2));
else

*value = (-s0*exp(-q*t)*cum_norm(-d1) + x*exp(-r*t)*cum_norm(-d2));
if (greeks) { /* then calculate the Greeks */

temp1 = -d1*d1/two;
d2 = d1-sigma*sqrt(t);
np = (one/sqrt(two*PI)) * exp(temp1);
if (put==0) { /* a call option */

greeks[1] = (cum_norm(d1))*exp(-q*t); /* delta */
greeks[2] = -s0*exp(-q*t)*np*sigma/(two*sqrt(t))

+ q*s0*cum_norm(d1)*exp(-q*t)- r*x*exp(-r*t)*cum_norm(d2); /* theta */
greeks[3] = x*t*exp(-r*t)*cum_norm(d2); /* rho */

}
else { /* a put option */

greeks[1] = (cum_norm(d1) - one)*exp(-q*t); /* delta */
greeks[2] = -s0*exp(-q*t)*np*sigma/(two*sqrt(t)) -

q*s0*cum_norm(-d1)*exp(-q*t) + r*x*exp(-r*t)*cum_norm(-d2); /* theta */
greeks[3] = -x*t*exp(-r*t)*cum_norm(-d2); /* rho */

}
greeks[0] = np*exp(-q*t)/(s0*sigma*sqrt(t)); /* gamma */
greeks[4] = s0*sqrt(t)*np*exp(-q*t); /* vega */

}
return;

}

Code excerpt 4.1 Function to compute the Black–Scholes value for European options.
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PI = 3.14159, and also the function cum_norm to compute the cumulative
normal distribution function.

It can be seen in Tables 4.1 and 4.2 that the values for gamma and vega are
the same for both puts and calls. We can also demonstrate that the option values
are consistent by using put call parity.

c(S,E, τ) + E exp(−rτ ) = p(S,E, τ) + S exp(−qτ)

For example, when τ = 1.0 we have c(S,E, τ) = 12.952 and P(S,E, T ) =
9.260. So: c(S,E, τ) + E exp(−rτ ) = 12.952 + 100 × exp(−0.1) = 103.436 and
p(S,E, τ) + S exp(−qτ) = 9.260 + 100 × exp(−0.06) = 103.436.

Table 4.1 European put option values and Greeks

τ Value Delta Gamma Theta Vega Rho

0.100 3.558 −0.462 0.042 −16.533 12.490 −4.971
0.200 4.879 −0.444 0.029 −10.851 17.487 −9.860
0.300 5.824 −0.431 0.024 −8.298 21.204 −14.663
0.400 6.571 −0.419 0.020 −6.758 24.241 −19.377
0.500 7.191 −0.408 0.018 −5.698 26.832 −24.004
0.600 7.720 −0.399 0.016 −4.909 29.100 −28.544
0.700 8.179 −0.390 0.015 −4.292 31.118 −32.997
0.800 8.582 −0.381 0.014 −3.792 32.935 −37.364
0.900 8.940 −0.373 0.013 −3.377 34.585 −41.646
1.000 9.260 −0.366 0.012 −3.025 36.093 −45.843

The parameters are: S = 100.0, E = 100.0, r = 0.10, σ = 0.30, q = 0.06.

Table 4.2 European call option values and Greeks

τ Value Delta Gamma Theta Vega Rho

0.100 3.955 0.532 0.042 −20.469 12.490 4.929
0.200 5.667 0.544 0.029 −14.724 17.487 9.744
0.300 6.996 0.552 0.024 −12.109 21.204 14.451
0.400 8.121 0.558 0.020 −10.508 24.241 19.054
0.500 9.113 0.562 0.018 −9.387 26.832 23.557
0.600 10.007 0.566 0.016 −8.539 29.100 27.962
0.700 10.826 0.569 0.015 −7.863 31.118 32.271
0.800 11.584 0.572 0.014 −7.305 32.935 36.485
0.900 12.290 0.574 0.013 −6.832 34.585 40.608
1.000 12.952 0.576 0.012 −6.422 36.093 44.640

The parameters are: S = 100.0, E = 100.0, r = 0.10, σ = 0.30, q = 0.06.
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4.4.4 Historical and implied volatility

Obtaining the best estimate of the volatility parameter, σ , in the Black–Scholes
formula is of crucial importance. There are many different approaches to volatil-
ity estimation. These include:

• Historical estimation
• Implied volatility

We will now consider both historical and implied volatility estimation.

Historical volatility

In this method we calculate the volatility using n + 1 historical asset prices,
Si, i = 0, . . . , n, and we assume that the asset prices are observed at the regular
time interval, dτ . Since the asset prices are assumed to follow GBM the volatil-
ity is computed as the standard deviation of the n continuously compounded
returns, ui, i = 1, . . . , n, where

Si = Si−1 exp(ui)

or

ui = log

(
Si

Si−1

)
We already know (see Eq. (2.1.10)) that the expected standard deviation of the
asset returns over the time interval is σ

√
dτ . This means that we obtain the

following expression for σ̂ , the estimated volatility:

σ̂
√

dτ =
√√√√ 1

n − 1

n∑
i=1

(ui − ū)2 (4.4.68)

or

σ̂ =
√√√√ 1

(n − 1) dτ

n∑
i=1

(ui − ū)2 (4.4.69)

It is accepted practice to express all times in years, and so the volatility is the
annualized standard deviation of the returns. There is also the issue of how to
account for non-trading days such as weekends and holidays. For example, let
us suppose that the history of assets prices Si, i = 0, . . . , n, was obtained by
recording the price on each trading day. One approach is to use dτ = 1/Ntd,
where Ntd is the number of trading days in a year. If we take Ntd = 250 then
Eq. (4.4.69) becomes

σ̂ =
√√√√ 250

(n − 1)

n∑
i=1

(ui − ū)2 (4.4.70)
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void hist_vol(double *sigma, double *err, double data[], long n, double dt, long *ifail)
{
/* Input parameters:

=================
data[] - the data, which consists of n asset prices
n - the number of data points
dt - the (constant) time spacing between the data points (in years)
Output parameters:
==================
sigma - the computed historical volatility
err - the standard error in the volatility estimate sigma
iflag - an error indicator

*/

#define DATA(I) data[(I)-1]

double mean=0.0,sum=0.0;
double temp,tn;
long i;

for(i = 2; i <= n; ++i)
mean = mean + log(DATA(i))-log(DATA(i-1));

mean = mean/(double)(n-1);

for(i = 2; i <= n; ++i) {
temp = log(DATA(i))-log(DATA(i-1));
sum = sum + (temp-mean)*(temp-mean);

}
sum = sum/(double)(n-2);
*sigma = sqrt(sum/dt);
tn = (double)(2*(n-1));
*err = *sigma/sqrt(tn);
return;

}

Code excerpt 4.2 Function to compute the historical volatility from asset data.

The estimated standard error in σ̂ is (see for example Hull (2003)) given by

σ̂std = σ̂

√
1

2(n − 1)
(4.4.71)

A computer program to perform these calculations is given in Code excerpt 4.2.

Implied volatility

The implied volatility of a European option is the volatility that, when sub-
stituted into the Black–Scholes equation, yields the market value quoted for the
same option. In general the implied volatility will depend on both the time to ex-
piry of the option and also the ratio of the current asset price to the strike—this
is known as the volatility smile. These values are usually stored in a multidi-
mensional implied volatility surface, and the volatility for pricing a given option
obtained via multidimensional interpolation.

The routine provided in Code excerpt 4.3 uses Newton’s method to calcu-
late the implied volatility for a European option from its market price. We
will now ilustrate this technique for a European call option with market value
opt_value. The implied volatility, σ , is then that value which satisfies:

K(σ) = c(S,E, τ, σ ) − opt_value = 0

where c(S,E, τ, σ ) represents the value of the European call and the other sym-
bols have their usual meaning.
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void implied_volatility(double value, double s0, double x, double sigma[],
double t, double r, double q, long put, long *iflag)

{
/* Input parameters:

=================
value - the current value of the option
s0 - the current price of the underlying asset
x - the strike price
sigma[] - the input bounds on the volatility: sigma[0], the lower bound and, sigma[1],

the upper bound
t - the time to maturity
r - the interest rate
q - the continuous dividend yield
put - if put is 0 then a call option, otherwise a put option
Output parameters:
==================
sigma[] - the element sigma[0] contains the estimated implied volatility
iflag - an error indicator

*/
double zero=0.0;
double fx, sig1, sig2;
double val,tolx;
double temp,eps,epsqrt,temp1,v1;
long max_iters, i, ind, ir;
double greeks[5],c[20],sig,vega;
long done;

tolx = eps;
epsqrt = sqrt(EPS);
if(put == 0) /* a call option */

temp1 = MAX(s0*exp(-q*t)-x*exp(-r*t),zero);
else /* a put option */

temp1 = MAX(x*exp(-r*t)-s0*exp(-q*t),zero);
v1 = fabs(value-temp1);
if (v1 <= epsqrt) { /* the volatility is too small */

*iflag = 3;
return;

}
*iflag = 0;
i = 0;
max_iters = 50;
done = 0;
sig = sigma[0]; /* initial estimate */
val = value;
while ((i < max_iters) && (!done)) { /* Newton iteration */

black_scholes(&val,greeks,s0,x,sig,t,r,q,put,iflag); /* compute the Black-Scholes option
value, val */

vega = greeks[4]; /* and vega. */
sig1 = sig - ((val - value)/vega); /* compute the new estimate of sigma

using Newton’s method */

if (tolx > fabs((sig1 - sig)/sig1)) { /* check whether the specified
accuracy has been reached */

done = 1;
}
sig = sig1; /* up date sigma */
++i;

}
sigma[0] = sig1; /* return the estimate for sigma */
return;

}

Code excerpt 4.3 Function to compute the implied volatility of European options.

From Newton’s method we have:

σi+1 = σi − F(σi)

F ′(σi)

where

F ′(σi) = ∂F

∂σ
= ∂c(S,E, τ, σ )

∂σ
= Vc
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Therefore the iterative procedure is

σi+1 = σi − c(S,E, τ, σ ) − opt_value

Vc

where σ0 is the initial estimate, and σi+1 is the improved estimate of the implied
volatility based on the ith estimate σi . Termination of this iteration occurs when
ABS(σi+1 − σi) < tol, for a specified tolerance, tol.

It can be seen that as σ → 0, d1 → ∞, d2 → ∞ and, from Eq. (4.4.67), we
have Vc → 0. Under these circumstances Newton’s method fails.

The same procedure can be used to compute the implied volatility for a Eu-
ropean put, in this case we just replace c(S,E, τ, σ ) by p(S,E, τ, σ ), the value
of a European put; from Eq. (4.4.67) Vc = Vp.

If the implied volatility of American options is required, the procedure is ex-
actly the same. However, instead of using the Black–Scholes formula to compute
both the option value and vega we use a binomial lattice to do this. The use of
binomial lattices to obtain option prices and the Greeks is described in Chap-
ter 5.

Code excerpt 4.4 provides a simple test program which illustrates the use of
the function implied_volatility; the results are presented in Table 4.3.

double X, value, S, sigma[2], sigmat, T, r, q;
long i, ifail, put;

ifail = 0;
S = 10.0;
X = 10.5;
r = 0.1;
sigmat = 0.1;
q = 0.04;
put = 0;
printf (" Time option value implied volatility (Error)\n");
for(i = 1;i < 6; ++i) {

T = (double)i*0.5;
black_scholes(&value,NULL,S,X,sigmat,T,r,q,put,&flag);
sigma[0] = 0.05;
sigma[1] = 1.0;
implied_volatility(value,S,X,sigma,T,r,q,put,&flag);
printf("%8.4f %15.4f %15.4f (%8.4e) \n",T,value,sigma[0],

fabs(sigmat-sigma[0]));
sigmat = sigmat + 0.1;

}

Code excerpt 4.4 Simple test program for function implied_volatility.

Table 4.3 Calculated option values and implied volatilities from Code excerpt 4.4

Time (years) Option value True σ Error in estimated σ

0.5 0.1959 0.1 2.7756 × 10−16

1.0 0.8158 0.2 2.2204 × 10−16

1.5 1.5435 0.3 3.8858 × 10−16

2.0 2.3177 0.4 5.5511 × 10−17

2.5 3.1033 0.5 1.1102 × 10−16
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4.4.5 Pricing options with Microsoft Excel

In this section we show how the Visual Basic within Excel can be used to create
powerful derivative pricing applications based on the Black–Scholes formula.
We will explain how Excel’s Visual Basic can be used to create an application
that prices a selection of simple European put and call options at the press of a
button.

In Section 4.4.3 we derived the Black–Scholes formula:

c(S,E, τ) = SN1(d1) − e−rτEN1(d2)

and

p(S,E, τ) = −SN1(−d1) + e−rτEN1(−d2)

where

d1 = log(S/E)(r − σ 2/2)τ

σ
√

τ
= d1 − σ

√
τ

where S is the current value of the asset and σ is the volatility of the asset, and
N1(x) = 1√

2π

∫ x

−∞ e−x2/2 dx.
The univariate cumulative standard normal distribution, N1(x), can be eval-

uated in Excel by using its built-in function NORMDIST. The definition of this
function is as follows:

NORMDIST(x,mean,standard_dev,cumulative)

This function returns the normal cumulative distribution for the specified mean
and standard deviation.

Function parameters:

x: is the value for which you want the distribution.
mean: is the arithmetic mean of the distribution.

standard_dev: is the standard deviation of the distribution.
cumulative: is a logical value that determines the form of the function. If

cumulative is TRUE, NORMDIST returns the cumulative distri-
bution function; if FALSE, it returns the probability density
function.

If mean = 0 and standard_dev = 1, NORMDIST returns the standard
normal distribution.

This function can be used to create a Visual Basic function to calculate Euro-
pean option values within Excel, see Code excerpt 4.5.

Once the function has been defined, it can be accessed interactively using the
Paste Function facility within Excel as shown in Fig. 4.1.

The function bs_opt can also be incorporated into other Visual Basic
code within Excel. Code excerpt 4.6 defines the Visual Basic subroutine
MANY_EUROPEANS_Click().
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Function bs_opt(S0 As Double, _
ByVal X As Double, sigma As Double, T As Double, _
r As Double, q As Double, ByVal putcall As Long) As Double

’ Visual Basic Routine to calculate the value of
’ either a European Put or European Call option.
’ Author: George Levy

Dim temp As Double
Dim d1 As Double
Dim d2 As Double
Dim SQT As Double
Dim value As Double

temp = Log(S0 / X)
d1 = temp + (r - q + (sigma * sigma / 2#)) * T
SQT = Sqr(T)
d1 = d1 / (sigma * SQT)
d2 = d1 - sigma * SQT

If (putcall = 0) Then ’ a call option
value = S0 * Exp(-q * T) * WorksheetFunction.NormDist(d1, 0#, 1#, True) _

- WorksheetFunction.NormDist(d2, 0#, 1#, True) * X * Exp(-r * T)

Else ’ a put option
value = -S0 * Exp(-q * T) * WorksheetFunction.NormDist(-d1, 0#, 1#, True) + _

X * WorksheetFunction.NormDist(-d2, 0#, 1#, True) * Exp(-r * T)

End If

bs_opt = value

End Function

Code excerpt 4.5 Visual Basic code to price European options using the Black–Scholes
formula.

Figure 4.1 Using the function bs_opt interactively within Excel. Here a call option is
processed with the following parameters: S = 10.0, X = 9.0, q = 0.0, T = 1.5, r = 0.1,
and σ = 0.2.
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Private Sub MANY_EUROPEANS_Click()

Dim i As Long
Dim putcall As Long
Dim S0 As Double
Dim q As Double
Dim sigma As Double
Dim T As Double
Dim r As Double

q = 0#
T = 1.5
r = 0.1
sigma = 0.2

For i = 1 To 22

S0 = Sheet1.Cells(i + 1, 1).value
X = Sheet1.Cells(i + 1, 2).value
putcall = Sheet1.Cells(i + 1, 3).value
Sheet1.Cells(i + 1, 4).value = bs_opt(S0, X, sigma, T, r, q, putcall)

Next i

End Sub

Code excerpt 4.6 Visual Basic code that uses the function bs_opt.

Figure 4.2 Excel worksheet before calculation of the European option values.

When the button labelled “CALCULATE OPTIONS” is clicked, the values
of 22 European options will be calculated using the data in columns 1–3 on
worksheet 1, see Figs. 4.2 and 4.3.
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Figure 4.3 Excel worksheet after calculation of the European option values.

The cumulative standard normal distribution can also be used to provide an-
alytic solutions for a range of other exotic options such as: Barrier options,
Exchange options, Lookback options, Binary options, etc.

4.5 Barrier options

4.5.1 Introduction

Barrier options are derivatives where the payoff depends on whether the asset
price reaches a given barrier level, B. Knockout options become worthless (cease
to exist) if the asset price reaches the barrier, whereas knockin options come into
existence when the asset price hits the barrier. We will consider the following
single asset European barrier options:

• Down and out call: A knockout vanilla call option, value cdo, which ceases
to exist when the asset price reaches or goes below the barrier level.

• Up and out call: A knockout vanilla call option, value cuo, which ceases to
exist when the asset price reaches, or goes above the barrier level.

• Down and in call: A knockin vanilla call option, value cdi, which comes
into existence when the asset prices reaches or goes below the barrier
level.
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• Up and in call: A knockin vanilla call option, value cui, which comes
into existence when the asset price reaches or goes above the barrier
level.

The following expressions must be true:

c = cuo + cui (4.5.1)

c = cdo + cdi (4.5.2)

where c is the value of a vanilla call option. We thus need only derive expressions
for both the knockout options, and then use the above equations to calculate
the value of the corresponding knockin options.

The notation that we will use is as follows: The symbol t represents the cur-
rent time, T represents the time at which the option matures, and τ = T − t ,
the duration of the option. The symbol s, with constraint t � s � T , is any
intermediate time during which the option is alive.

4.5.2 Analytic pricing of down and out call options

If we consider Brownian motion (with zero drift) Xs ∼ N(0, (s − t)σ 2),
t � s � T , which starts at Xt = 0 and, after time τ = T − t , ends at the
point XT = X then (for example, see Freedman, 1983) the probability density
function for this motion not to exceed the value X = b (where b > 0) during
time τ is given by:

f
(
b � Xmax

s , X
) = Ω

√
2

π
exp

(
2b(X − b)

σ 2τ

)
exp

(
− X2

2σ 2τ

)
(4.5.3)

where for convenience we have used Ω = (2b − X)/(σ 3τ 3/2), and Xmax
s =

max(Xs, t � s � T ). Since Xs is Brownian motion without drift and volatility σ ,
then −Xs is identical Brownian motion. Therefore by substituting X → −X, and
b → −b in the above equation we obtain:

f
(
b � Xmin

s , X
) = −Ω

√
2

π
exp

(
2b(X − b)

σ 2τ

)
exp

(
− X2

2σ 2τ

)
(4.5.4)

where we have used Xmin
s = min(Xs, t � s � T ). Equation (4.5.4) is the prob-

ability density function of −Xs staying above the value X = b, where b < 0.
These results can be generalized to include drift (Musiela and Rutkowski, 1998,
p. 212), so that Xs ∼ N((r − q − σ 2/2)(s − t), σ (s − t)), for t � s � T . We now
have the following results:

f
(
b � Xmax

s , X
)

= Ω

√
2

π
exp

(
2b(X − b)

σ 2τ

)
exp

(
− (X − (r − q − σ 2/2)τ )2

2σ 2τ

)
(4.5.5)
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f
(
b � Xmin

s , X
)

= −Ω

√
2

π
exp

(
2b(X − b)

σ 2τ

)
exp

(
− (X − (r − q − σ 2/2)τ )2

2σ 2τ

)
(4.5.6)

where r is the risk free rate and q is the continuous dividend yield. A European
down and out barrier option with maturity τ and a barrier at X = B will cease
to exist (become worthless) if at any time Xs � B, for t � s � T . The probability
density function that the barrier option will continue to exist at time T if the
end point is X is therefore:

f (X > B) = −
√

2

π

∫ b=X

B=S exp(b)

Ω exp

(
2b(X − b)

σ 2τ

)
× exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
db (4.5.7)

or

f (X > B) = −
√

2

π
exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
×

∫ b=X

b=log(B/S)

Ω exp

(
2b(X − b)

σ 2τ

)
db (4.5.8)

where we have integrated over all possible values of b (i.e., B < b < X) that
keep the option alive. Recalling that:

−
∫ b=X

b=log(B/S)

Ω exp

(
2b(X − b)

σ 2τ

)
db

=
∫ b=X

b=log(B/S)

(X − 2b)

σ 3τ 3/2
exp

(
2b(X − b)

σ 2τ

)
db

and noting that:

∂

∂b
exp

(
2b(X − b)

σ 2τ

)
= 2(X − 2b)

σ 2τ
exp

(
2b(X − b)

σ 2τ

)
we have:∫ b=X

b=log(B/S)

2(X − 2b)

σ 2τ
exp

(
2b(X − b)

σ 2τ

)
db

= exp

(
2b(X − b)

σ 2τ

)]b=X

b=log(B/S)

= 1 − exp

(
2 log(B/S)(X − log(B/S))

σ 2τ

)
So we have:

f (X > B) = 1

σ
√

τ
√

2π
exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
×

{
1 − exp

(
2 log(B/S)(X − log(B/S)

σ 2τ

)}
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The value cdo of a European down and out call option with strike E, satisfying
E > B, is given by:

cdo = exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

{
S exp(X) − E

}
f (X > B) dX (4.5.9)

This integral is evaluated in Appendix B.1, and the value of the down and out
call option cdo is:

cdo = c − cdi (4.5.10)

where

c = S exp(−qτ)N1(d1) − E exp(−rτ )N1(d2)

cdi = S exp(−qτ)N1(d4)

(
B

S

) 2(r−q)

σ2 +1

− E exp(−rτ )N1(d3)

(
B

S

) 2(r−q)

σ2 −1

d1 = log(S/E) + (r − q + σ 2/2)τ

σ
√

τ

d2 = log(S/E) + (r − q − σ 2/2)τ

σ
√

τ

d3 = log(B2/SE) + (r − q − σ 2/2)τ

σ
√

τ

and

d4 = log(B2/ES) + (r − q + σ 2/2)τ

σ
√

τ

In Code excerpt 4.7 we provide the function bs_opt_barrier_downout_
call which uses Eq. (4.5.10) to price a down and out European call option.
This routine will be used in Chapter 5 to measure the accuracy achieved by
using various finite-difference grid techniques to solve the Black–Scholes equa-
tion.

4.5.3 Analytic pricing of up and out call options

Here we will obtain an expression for an up and out European call option with
continuous dividend yield q, in a similar manner to that used in Section 4.5.2 for
the down and out European call option. A European up and out barrier option
with maturity τ and a barrier at X = B will cease to exist (become worthless)
if at any time Xs � B, for t � s � T . The probability density function that the
barrier option will continue to exist at time T if the end point is X is therefore:

f (X < B) =
√

2

π

∫ B=S exp(b)

b=X

Ω exp

(
2b(X − b)

σ 2t

)
× exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
db (4.5.11)



European options 89

void bs_opt_barrier_downout_call(double *value, double barrier_level,
double s0, double x, double sigma, double t, double r,
double q, long *iflag)

{
/* Input parameters:

=================
barrier_level - the level of the barrier
s0 - the current price of the underlying asset
x - the strike price
sigma - the volatility
t - the time to maturity
r - the risk free interest rate
q - the dividend yield
Output parameters:
==================
value - the value of the option
iflag - an error indicator

*/
double one=1.0,two=2.0,zero=0.0;
double temp,temp1,temp2,a,b,d1,d2,d3,d4,d5,d6,d7,d8;
double fac;

if(x < EPS) { /* then strike price (X) is too small */
*iflag = 2;
return;

}
if (sigma < EPS) { /* then volatility (sigma) is too small */

*iflag = 3;
return;

}
if (t < EPS) { /* then time to expiry (t) is too small */

*ifail = 3;
return;

}
if (barrier_level <= 0) { /* barrier level must be greater than zero */

*iflag = 4;
}

if (s0 <= barrier_level) { /* option has already been knocked out */
*value = 0.0;
return;

}

fac = sigma*sqrt(t);
temp1 = -one+(two*(r-q)/(sigma*sigma));
temp2 = barrier_level/s0;
a = pow(temp2,temp1);
temp1 = one+(two*(r-q)/(sigma*sigma));
b = pow(temp2,temp1);
if (x > barrier_level) { /* strike > barrier_level */

d1 = (log(s0/x)+(r-q+0.5*sigma*sigma)*t)/fac;
d2 = (log(s0/x)+(r-q-0.5*sigma*sigma)*t)/fac;
temp = (s0*x)/(barrier_level*barrier_level);
d7 = (log(temp)-(r-q-0.5*sigma*sigma)*t)/fac;
d8 = (log(temp)-(r-q+0.5*sigma*sigma)*t)/fac;

temp1 = s0*exp(-q*t)*(cum_norm(d1)-b*(one-cum_norm(d8)));
temp2 = x*exp(-r*t)*(cum_norm(d2)-a*(one-cum_norm(d7)));
*value = temp1-temp2;

}
else { /* strike <= barrier_level */

d3 = (log(s0/barrier_level)+(r-q-0.5*sigma*sigma)*t)/fac;
d6 = (log(s0/barrier_level)-(r-q-0.5*sigma*sigma)*t)/fac;
d4 = (log(s0/barrier_level)+(r-q+0.5*sigma*sigma)*t)/fac;
d5 = (log(s0/barrier_level)-(r-q+0.5*sigma*sigma)*t)/fac;

temp1 = s0*exp(-q*t)*(cum_norm(d3)-b*(one-cum_norm(d6)));
temp2 = x*exp(-r*t)*(cum_norm(d4)-a*(one-cum_norm(d5)));
*value = temp1-temp2;

}
return;

}

Code excerpt 4.7 Function to compute the value for European down and out call op-
tions.
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or

f (X < B) =
√

2

π
exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
×

∫ b=log(B/S)

b=X

Ω exp

(
2b(X − b)

σ 2τ

)
db (4.5.12)

where, as in Section 4.5.2, we have used Ω = (2b−X)

σ 3τ 3/2 and have integrated over
all possible values of b (i.e., B > b > X) that keep the option alive. Recalling
that: ∫ b=log(B/S)

b=X

Ω exp

(
2b(X − b)

σ 2τ

)
db

=
∫ b=log(B/S)

b=X

(2b − X)

σ 3τ 3/2
exp

(
2b(X − b)

σ 2τ

)
db

and noting:

− ∂

∂b
exp

(
2b(X − b)

σ 2τ

)
= 2(X − 2b)

σ 2τ
exp

(
2b(X − b)

σ 2τ

)
(4.5.13)

we have:∫ b=log(B/S)

b=X

2(2b − X)

σ 2τ
exp

(
2b(X − b)

σ 2τ

)
db

= − exp

(
2b(X − b)

σ 2τ

)]b=log(B/S)

b=X

=
{

1 − exp

(
2 log(B/S)(X − log(B/S))

σ 2τ

)}
Therefore:

f (X < B) = 1

σ
√

τ
√

2π

√
2

π
exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
×

{
1 − exp

(
2 log(B/S)(X − log(B/S))

σ 2τ

)}
(4.5.14)

We will now derive the formula for an up and out call option when E < B.
In fact if E > B then the option is worthless, since at the current time t the
call option’s payout, max(St − E, 0) = 0, and if St > E then the option will be
knocked out.

cuo = exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

{
S exp(X) − E

}
f (X < B) dX (4.5.15)

Taking into account the fact the option becomes worthless when S exp(X) > B,
(i.e., X > log(B/S)) we have:

cuo = exp(−rτ )

σ
√

τ
√

2π

∫ log(B/S)

X=log(E/S)

{
S exp(X) − E

}
f (X < B) dX (4.5.16)
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This integral is evaluated in Appendix B.2, and the value of the down and out
call option cuo is:

cuo = c − cui

where c is the value of a vanilla call and cui, the value of an up and in call, is
given by:

cui = S exp(−qτ)N1(d2) − E exp(−rτ )N1(d4)

− E exp(−rτ )
{
N1(d5) − N1(d6)

}(B

S

) 2(r−q)

σ2 −1

+ S exp(−rτ )
{
N1(d7) − N1(d8)

}(B

S

) 2(r−q)

σ2 +1

(4.5.17)

and

d1 = log(S/E) + (r − q + σ 2/2)τ

σ
√

τ

d2 = log(S/B) + (r − q + σ 2/2)τ√
τ

d3 = log(S/E) + (r − q − σ 2/2)τ

σ
√

τ

d4 = log(S/B) + (r − q − σ 2/2)τ

σ
√

τ

d5 = log(B2/ES) − (r − q − σ 2/2)τ

σ
√

τ

d6 = log(B/S) + (r − q − σ 2/2)τ

σ
√

τ

d7 = log(B2/ES) + (r − q + σ 2/2)τ

σ
√

τ

d8 = log(B/S) + (r − q + σ 2/2)τ

σ
√

τ

4.5.4 Monte Carlo pricing of down and out options

In this section we show how Monte Carlo simulation can be used to price
down and out barrier options. We will describe both a basic Monte Carlo ap-
proach and also a Brownian bridge method which gives more accurate results
(see Chapter 8).

The asset price, S, will be assumed to be GBM, so the logarithm of the asset
price X follows the Brownian process:

�X = ν�t + σ�Wt (4.5.18)

where ν is the drift and σ is the volatility.
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If the barrier level is B then the option will be knocked out when S � B,
or equivalently log(S) � log(B). This will be expressed as X � b, where b =
log(B).

The basic approach to simulating the down and out option is to first de-
cide how many Scenarios to use and also how many TimeSteps there
are to be in each scenario. The size of each time step is then time_step =
TimeToExpiry/TimeSteps. For each scenario the path of Xt is advanced
in time from t to t + �t using Eq. (4.5.18), with dt = time_step and a
value for �Wt output from a Gaussian random number generator. Path con-
struction is stopped if either the option expiry time is reached or if the option
is knocked out—i.e., X � b. When the option is knocked out before expiry
the payoff for that scenario is zero. We will denote the option value obtained
from the ith scenario by DOi where i = 1, . . . , Scenarios. The option value
is the average value of DOi over all scenarios; for more details see Code ex-
cerpt 4.8.

One problem with this approach to simulation is that it does not take into
account the possibility that Xτ � b, t < τ < t + �t , even though Xt > b and
Xt+�t > b. In these circumstances the option should be treated as knocked out,
since X hit (or crossed) the barrier b at time τ , but then increased to the value
Xt+�t > b at time t + �t .

We will now discuss how the Brownian bridge method deals with this situa-
tion.

Let us take two consecutive time points t1 and t2 = t1 + �t , and assume that
both Xt1 , and Xt2 are above the (logarithmic) barrier level b. We want to find the
probability that in the time interval [t1, t2], the asset price went lower than B,
and use this to get more accurate values for down and out options. The required
barrier crossing probability is thus:

P
(
mX

t1,t2
� b|{Xt2, Xt1}

)
where mX

t1,t2
denotes the minimum of X over the time interval [t1, t2].

The probability density of Xt2 conditional on Xt1 is

p(Xt2 |Xt1) = 1

σ
√

2π�t
exp

{
− (Xt2 − Xt1 − ν�t)2

2σ 2�t

}
where �t = t2 − t1.

From Bayes law we know that:

P
(
mX

t1,t2
� b|{Xt2, Xt1}

) = p({mX � b,Xt2}|Xt1)

p(Xt2 |Xt1)

We show in Appendix I that

p
({

mX
t1,t2

� b,Xt2

}|Xt1

)
= 1

σ
√

2π�t
exp

{
2ν(b − Xt1)

σ 2

}
exp

{
− (Xt2 + Xt1 − 2b − ν�t)2

2σ 2�t

}
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so

P
(
mX

t1,t2
� b|{Xt2, Xt1}

)
= exp

{
2ν(b − Xt1)

σ 2

}
× exp

{
−−(Xt2 + Xt1 − 2b − ν�t)2 + (Xt2 − Xt1 − ν�t)2

2σ 2�t

}
We will now use some algebra to simplify this expression.

P
(
mX

t1,t2
� b|{Xt2, Xt1}

)
= exp

{
4ν�t(b − Xt1) − (Xt2 + Xt1 − 2b − ν�t)2 + (Xt2 − Xt1 − ν�t)2

2σ 2�t

}
= exp

{(
4ν�t(b − Xt1) − (

(Xt2 − Xt1 − ν�t) − 2(b − Xt1)
)2

+ (Xt2 − Xt1 − ν�t)2)/(2σ 2�t
)}

= exp

{
4ν�t(b − Xt1) + 4(b − Xt1)(Xt2 − Xt1 − ν�t) + 4(b − Xt1)

2

2σ 2�t

}
= exp

{
−2(b − Xt1)(b − Xt2)

σ 2�t

}
which finally yields

P
(
m

log(S)
t1,t2

� b|{log(St2), log(St1)
})

= exp

{
−2(log(B) − log(St1))(log(B) − log(St2))

σ 2�t

}
(4.5.19)

Equation (4.5.19) gives the probability of the option having been knocked out
between times t1 and t2 even though the asset prices St1 and St2 are greater
than B. The probability that the option hasn’t been knocked out between times
t1 and t2 is therefore

P
(
m

log(S)
t1,t2

> b|{log(St2), log(St1)
})

= 1 − exp

{
−2(log(B) − log(St1))(log(B) − log(St2))

σ 2�t

}
(4.5.20)

This means that for the (complete) ith scenario path, of n time steps, the prob-
ability that mlog(S) > b is

BBi
c =

n−1∏
j=0

{
1 − exp

{
−

2(log(B) − log(Si
tj
))(log(B) − log(Si

tj+1
))

σ 2�t

}}
where Si

tj
is the ith scenario asset price at time tj .

The basic Monte Carlo ith scenario option value DOi can therefore be ad-
justed as follows

DO∗
i = DOi BBi

c
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and the new Monte Carlo estimate DO∗ is

DO∗ =
∑Scenarios

i=1 DO∗
i

Scenarios

where more details can be found in Code excerpt 4.8.

private double MonteCarloSim(bool is_put)
{

int seed = 111;
double[] asset_path = new double[fTimeSteps];
double time_step = fTimeToExpiry / fTimeSteps;
double sqrt_time_step = System.Math.Sqrt(time_step);
double disc = System.Math.Exp(-fRiskFreeRate * fTimeToExpiry);

set_seed(seed);

double opt_val = 0.0;
bool not_out = true;
int k = 0;
double STN = 0.0;
double mean = (fRiskFreeRate - fDividendYield - fSigma1 * fSigma1 * 0.5) * time_step;
double std = System.Math.Sqrt(fSigma1 * fSigma1 * time_step);
double z;
double sum_opt_vals = 0.0;

for (int i = 0; i < fNumberScenarios; ++i)
{

// generate the asset path
double ST1 = fS1;
not_out = true;
k = 0;

while (not_out && k < fTimeSteps)
{

z = RndNorm(mean, std);
STN = ST1 * System.Math.Exp(z);
if (STN < fBarrierLevel) not_out = false;
ST1 = STN;
asset_path[k] = STN;
++k;

}
if (is_put)
{

opt_val = System.Math.Max(fStrike - STN, 0.0);
}
else
{

opt_val = System.Math.Max(STN - fStrike, 0.0);
}
if (not_out)
{ // only has value if asset value is above the barrier_level

// compute the probability that the asset remained above the barrier
if (UseBrownianBridge)
{

double total_probability_above = 1.0, pr;
double sigma_2 = fSigma1 * fSigma1;
double log_barrier_level = System.Math.Log(fBarrierLevel);
double fac;
for (int jj = 0; jj < fTimeSteps - 1; ++jj)
{

double log_S_i = System.Math.Log(asset_path[jj]);
double log_S_i1 = System.Math.Log(asset_path[jj + 1]);

fac = 2.0 * (log_barrier_level - log_S_i)
* (log_barrier_level - log_S_i1) / (sigma_2 * time_step);

pr = (1.0 - System.Math.Exp(-fac)); // probability of staying above the
barrier between i and i+1

total_probability_above *= pr;

Code excerpt 4.8 An example of using the Brownian bridge barrier crossing probability
to enhance the pricing of a European down and out option.
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}
sum_opt_vals += total_probability_above * opt_val * disc; }

else
{ // don’t use the Brownian Bridge

sum_opt_vals += opt_val * disc;
}

}
}
double temp = sum_opt_vals / (double)fNumberScenarios;

return temp;
}

Code excerpt 4.8 (Continued).
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5 Single asset American options

5.1 Introduction

In Chapter 4 we discussed single asset European options and the analytic for-
mulae that can be used to price them. Here we will consider the valuation of
single asset American-style options using both numeric methods and analytic
formulae; in addition we will discuss the use of numerical techniques to value
certain European options. The coverage in this chapter is as follows:

• Analytic approximation techniques for the valuation of American options
• Binomial lattice techniques used for the valuation of American and European

options
• The valuation of American and European vanilla and barrier options using

finite-difference grids
• The valuation of American options via Monte Carlo simulation.

It should be mentioned that although much of the discussion here concerns the
valuation of vanilla European and American puts and calls, the techniques used
can be modified without much difficulty to include more exotic options with
customized payoffs and early exercise features.

5.2 Approximations for vanilla American options

5.2.1 American call options with cash dividends

In this section we will consider the valuation of vanilla American call options
with cash dividends and discuss the methods of Roll, Geske, Whaley and Black.
We will first consider the Roll–Geske–Whaley method.

The Roll–Geske–Whaley approximation

This method uses the work of Roll (1977), Geske (1979), and Whaley (1981).
Let S be the current (time t) price of an asset which pays a single cash dividend
D1 at time t1. At the ex-dividend date, t1, there will be a decrease in the asset’s
value from St1 to St1 −D1. Also the current asset price net of escrowed dividends
is:

SD = S − D1 exp
(−r(t1 − t)

)
(5.2.1)
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where r is the riskless interest rate.
Now consider an American call option, with strike price E and expiry time T ,

which is taken out on this asset. At t1 there will be a given ex-dividend asset
price, S∗, above which the option will be exercised early. This value can be
found by solving the following equation:

c
(
S∗, E, τ1

) = S∗ + D1 − E (5.2.2)

where c(S∗, E, τ1) is the Black–Scholes value of a European call option with
strike price E and maturity τ1 = T − t1, on an asset with current value S∗ at
time t1. If just prior to the ex-dividend date St1 > S∗ then the American option
will be exercised and realize a cash payoff of St1 + D1 − E. On the other hand
if St1 � S∗ then the option is worth more unexercised and it will be held until
option maturity at time T .

We can rewrite Eq. (5.2.2) so that S∗ is the root of the following equation:

K
(
S∗) = c

(
S∗, E, τ1

) − S∗ − D1 + E = 0 (5.2.3)

where K(S∗) denotes the function in the single variable S∗.
A well-known technique for solving Eq. (5.2.3) is Newton’s method, which

in this case takes the form:

S∗
i+1 = S∗

i − K(S∗
i )

K ′(Si)∗
(5.2.4)

where S∗
i is the ith approximation to S∗ and S∗

i+1 is the improved (i + 1)th
approximation.

If we now consider the terms in Eq. (5.2.4) we have from Eqs. (5.2.2) and
(5.2.3) that

K
(
S∗

i

) = c
(
S∗

i , E, τ1
) − S∗

i − D1 + E

and

K ′(S∗
i

) = ∂K(S∗
i )

∂S∗
i

= ∂c(S∗
i , E, τ1)

∂S∗
i

− 1

Also from Eq. (A.3.2) in Appendix A.3:

∂c(S∗
i , E, τ1)

∂S∗
i

= N1
(
d1

(
S∗

i

))
we note that here the continuous dividend yield q = 0.

So

K ′(S∗
i

) = ∂K(S∗
i )

∂S∗
i

= N1
(
d1

(
S∗

i

)) − 1

where d1 = log(S∗
i /E) + (r + σ 2/2)τ1

σ
√

T − t1

Substituting these results into Eq. (5.2.4) gives:

S∗
i+1 = S∗

i − c(S∗
i , E, τ1) − (S∗

i + D1 − E)

N1(d1(S
∗
i )) − 1
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On rearrangement this yields:

S∗
i+1 = S∗

i N1(d1(S
∗
i )) − c(S∗

i , E, τ1) + D1 − E

N1(d1(S
∗
i )) − 1

for i = 0, . . . , max_iter (5.2.5)

where a convenient initial approximation is to choose S∗
0 = E, and max_iter

is the maximum number of iterations that are to be used.
We will now quote the Roll, Geske, and Whaley formula for the current value

of an American call which pays a single cash dividend D1 at time t1; it is:

C(S,E, τ)

= SD

{
N1(b1) + N2

(
a1,−b1,

√
t1 − t

τ

)}
+ D1 exp

(−r(t1 − t)
)
N1(b2)

− E exp(−rτ )

{
N1(b2) exp(rτ1) + N2

(
a2,−b2,−

√
t1 − t

τ

)}
(5.2.6)

where SD is given by Eq. (5.2.1), E is the exercise price, T is the option ex-
piry date, t represents the current time, τ is the option maturity, N1(a) is the
univariate cumulative normal density function with upper intergral limit a, and
N2(a, b, ρ) is the bivariate cumulative normal density function with upper inte-
gral limits a and b and correlation coefficient ρ. The other symbols used in Eq.
(5.2.6) are defined as

a1 = log(S/E) + (r + σ 2/2)τ

σ
√

τ
, a2 = a1 − σ

√
τ

b2 = log(S/S∗) + (r + σ 2/2)(t1 − t)

σ
√

t1 − t
, b2 = b1 − σ

√
t1 − t

and S is the current (time t) asset price, S∗ is found using Eq. (5.2.5), r is the
riskless interest rate, σ is the asset’s volatility, τ = T − t and τ1 = T − t1.

To compute the value of an American call option which pays n cash dividends
Di , i = 1, . . . , n, at times ti , i = 1, . . . , n, we can use the fact that optimal exer-
cise normally only ever occurs at the final ex-dividend date tn; see for example
Hull (2003). Under these circumstances Eq. (5.2.6) can still be shown to value
the American call but now t1 should be set to tn, D1 should be set to Dn, and SD

is given by:

SD = S −
n∑

i=1

Di exp
(−r(ti − t)

)
(5.2.7)

A program to compute the Roll–Geske–Whaley approximation for an American
call option with multiple cash dividends is given in Code excerpt 5.1. Here the
functions cum_norm and cum_norm2 are used to calculate the values of N1(a)

and N2(a, b, ρ), respectively. Code excerpt 5.3 was used to compute the values
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void RGW_approx(double *opt_value, double *critical_value, long n_divs, double dividends[],_
double Divs_T[],
double S0, double X, double sigma, double T, double r, long *iflag)

{
/* Input parameters:

=================
n_divs - the number of dividends
dividends[] - the dividends: dividends[0] contains the first dividend, dividend[1]

the second etc.
Divs_T[] - the times at which the dividends are paid: Divs_T[0] is the time at which_

the first dividend is paid
Divs_T[1] is the time at which the second dividend is paid, etc.

S0 - the current value of the underlying asset
X - the strike price
sigma - the volatility
T - the time to maturity
r - the interest rate
Output parameters:
==================
opt_value - the value of the option
critical_value - the critical value
iflag - an error indicator

*/
double A_1,A_2,S_star,a1,a2,nt1,t1,S;
double b1,b2,d1,alpha,h,div,beta,temp,temp1,temp2,temp3;
double pdf,b,eur_val,fac,tol,loc_q,err,zero=0.0;
long iterate;
long i,iflagx,putx;

loc_q = 0.0;
temp = 0.0;
for (i=0; i < n_divs; ++i) { /Check the Divs_T array */

if ((Divs_T[i] <= temp) || (Divs_T[i] > T) || (Divs_T[i] <= zero)) {
*flag = 2;
return;

}
temp = Divs_T[i];

}
/* calculate the present value of the dividends (excluding the final one) */
temp = 0.0;
for (i=0; i < n_divs-1; ++i) {

temp = fac + dividends[i] * exp(-r*Divs_T[i]);
}
t1 = Divs_T[n_divs-1];
/* decrease the stock price by the present value of all dividends */
div = dividends[n_divs-1];
S = S0-temp-div*exp(-r*t1);
iterate = 1;
tol = 0.000001;
S_star = X;
while (iterate) { /* calculate S_star, iteratively */

/* calculate the Black-Scholes value of a European call */
d1 = (log(S_star/X) + (r+(sigma*sigma/2.0))*(T-t1))/(sigma*sqrt(T-t1));
putx = 0;
loc_q = 0.0;
black_scholes(&eur_val,NULL,S_star,X,sigma,T-t1,r,loc_q,putx,&iflag);
S_star = (S_star*cum_norm(d1)-eur_val+div-X)/(cum_norm(d1)-1.0);
err = fabs(eur_val - (S_star + div- X))/X;
if (err < tol) iterate = 0;

}
a1 = (log(S/X) + (r+(sigma*sigma/2.0))*T)/(sigma*sqrt(T));
a2 = a1 - sigma*sqrt(T);
b1 = (log(S/S_star)+(r+(sigma*sigma/2.0))*t1)/(sigma*sqrt(t1));
b2 = b1 - sigma*sqrt(t1);
nt1 = sqrt(t1/T);
temp1 = S*(cum_norm(b1)+cum_norm2(a1,-b1,-nt1,&iflagx));
temp2 = -X*exp(-r*T)*cum_norm2(a2,-b2,-nt1,&iflagx)-(X-div)*exp(-r*t1)*cum_norm(b2);
*opt_value = temp1+temp2;
*critical_value = S_star;

}

Code excerpt 5.1 Function to compute the Roll–Geske–Whaley approximation for the
value of an American call option with discrete dividends.



Single asset American options 101

Table 5.1 A comparison of the computed values for American call options with
dividends, using the Roll–Geske–Whaley approximation and the Black approximation

Stock price Critical price, S∗ RGW approximation Black approximation

80.0 123.582 3.212 3.208
85.0 123.582 4.818 4.808
90.0 123.582 6.839 6.820
95.0 123.582 9.276 9.239

100.0 123.582 12.111 12.048
105.0 123.582 15.316 15.215
110.0 123.582 18.851 18.703
115.0 123.582 22.676 22.470
120.0 123.582 26.748 26.476

The parameters used were: E = 100.0, r = 0.04, σ = 0.2, τ = 2.0, and there is one cash
dividend of value 5.0 at time t = 1.0. The current stock price, S, is varied from 80.0 to
120.0. The results are in agreement with those given in Table 1 of Whaley (1981).

presented in Table 5.1. These compare the Roll–Geske–Whaley approximation
with the Black approximation, which we will now briefly discuss.

We will now consider the Black approximation.

The Black approximation

The Black (1973) approximation for an American call with cash dividends is
simpler than the Roll–Geske–Whaley method we have just described. For an
American call option which expires at time T , with n discrete cash dividends
Di, i = 1, . . . , n, at times ti , i = 1, . . . , n, it involves calculating the prices of
European options that mature at times T , and tn, and then setting the option
price to the greater of these two values, see for example Hull (2003).

The Black approximation, CBL, can be expressed more concisely in terms of
our previously defined notation as:

CBL(S,E, τ) = max(v1, v2)

where v1 and v2 are the following European calls:

v1 = c(SD,E, τ) and v2 = c
(
S+

D,E, τ1
)
, τ = T − t, τ1 = T − tn

and

SD = S −
n∑

i=1

Di and S+
D = S −

n−1∑
i=1

Di

Code excerpt 5.2 computes the Black approximation.
Code excerpt 5.3 uses the same values as in Whaley (1981) and compares the

Roll–Geske–Whaley approximation with that of Black; the results are presented
in Table 5.1.
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void black_approx(double *value, long n_divs, double dividends[], double Divs_T[],
double S0, double X, double sigma, double T, double r, long put, long *ifail)

{
/* Input parameters:

=================
n_divs - the number of dividends
dividends[] - the dividends, dividends[0] contains the first dividend, dividend[1] the_

second etc.
Divs_T[] - the times at which the dividends are paid, Divs_T[0] is the time at which_

the first dividend is paid
Divs_T[1] is the time at which the second dividend is paid, etc.

S0 - the current value of the underlying asset
X - the strike price
sigma - the volatility
T - the time to maturity
r - the interest rate
put - if put is 0 then a call option, otherwise a put option
Output parameters:
==================
value - the value of the option, iflag - an error indicator

*/
double zero = 0.0;
double beta,temp,temp1,temp2,temp3;
double tn,val_T,val_tn,tol,loc_q,err,fac;
long i,ifailx;

loc_q = 0.0;
temp = 0.0;
for (i=0; i < n_divs; ++i) {

if (Divs_T[i] <= temp ) printf ("Error in Divs_T array, elements not increasing \n");
if (Divs_T[i] > T) printf ("Error in Divs_T array element has a value greater than T \n");
if (Divs_T[i] <= zero) printf ("Error in Divs_T array element <= zero \n");
temp = Divs_T[i];

}
/* calculate the present value of the dividends */
fac = 0.0;
for (i=0; i < n_divs; ++i) {

fac = fac + dividends[i] * exp(-r*Divs_T[i]);
}
temp = S0 - fac;
/* calculate the value of the option on expiry */
black_scholes(&val_T,NULL,temp,X,sigma,T,r,loc_q,put,&ifailx);

/* calculate the value of the option on last dividend date */
tn = Divs_T[n_divs-1];
temp = temp + dividends[n_divs-1]*exp(-r*tn);
nag_opt_bs(&val_tn,NULL,temp,X,sigma,tn,r,loc_q,putx,&ifailx);
*value = MAX(val_tn,val_T);

}

Code excerpt 5.2 Function to compute the value of the Black approximation for the
value of an American call option with discrete dividends.

We will now consider a more general technique for pricing both American
puts and calls.

5.2.2 The MacMillan–Barone-Adesi–Whaley method

Here we consider a method of pricing American options which relies on an ap-
proximation that reduces a transformed Black–Scholes equation into a second-
order ordinary differential equation, see Barone-Adesi and Whaley (1987) and
MacMillan (1986). It thus provides an alternative way of evaluating American
options that can be used instead of computationally intensive techniques such
as finite-difference methods. Although the method prices American options, it
is really based on the value of an American option relative to the corresponding



Single asset American options 103

double q,r,temp,loc_r;
long i,m,m2,m_acc;
double S0,E,T,sigma,t1,delta,value,ad_value,put_value;
long is_american,ifail,put;
double bin_greeks[5],greeks[5],bin_value,bs_value;
double opt_value, critical_value, E1, E2, crit1, crit2;
double black_value;
double Divs_T[3],dividends[3];
long n_divs, put;

E = 100.0;
r = 0.04;
sigma = 0.2;
T = 2.0;
t1 = 1.0;
put = 0;

/* check using the same parameters as in \inlinecite{Wha1981} */
Divs_T[0] = 1.0;
dividends[0] = 5.0;
n_divs = 1;
printf ("\nPrice S RGW Approximation Black Approximation \n\n");
for (i=0; i < 9; ++i) {

put = 0;
S0 = 80.0+(double)i*5.0;
opt_RGW_approx(&opt_value,&critical_value,n_divs,dividends,Divs_T,S0,E,sigma,T,r,&ifail);
printf("%8.4f ",S0);
printf("%12.3f %12.3f ",opt_value,critical_value);
opt_black_approx(&black_value,n_divs,dividends,Divs_T,S0,E,sigma,T,r,put,&ifail);
printf("%12.3f (%8.4e) ",black_value);

}

Code excerpt 5.3 Simple test program to compare the results of function
opt_RGW_approx with function opt_black_approx; the parameters used are the
same as in Whaley (1981).

European option value (which can readily be computed using the Black–Scholes
pricing formula).

Since an American option gives more choice, its value is always at least that of
its European counterpart. This early exercise premium (ν(S,E, τ) � 0) is now
defined more precisely for American puts and calls. If at current time t the asset
price is S, then the early exercise premium for an American call which expires
at time T , and therefore has maturity τ = T − t , is:

νc(S,E, τ) = C(S,E, τ) − c(S,E, τ) � 0 (5.2.8)

where C(S,E, τ) denotes the value of the American call and c(S,E, τ) denotes
the value of the corresponding European call. The early exercise premium of an
American put option, νp(S,E, τ), is similarly defined as:

νp(S,E, τ) = P(S,E, τ) − p(S,E, τ) � 0 (5.2.9)

where P(S,E, τ) is the value of the American put, and p(S,E, τ) is the value of
the corresponding European put. The key insight provided by the MacMillan–
Barone-Adesi–Whaley method is that, since both the American and European
option values satisfy the Black–Scholes partial differential equation, so does the
early exercise premium, ν(S,E, τ); see Section 4.4.1. This means that we can
write:

∂ν

∂t
+ (r − q)S

∂ν

∂S
+ σ 2S2

2

∂2ν

∂S2
= rν (5.2.10)
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where as usual S is the asset price, r is the continuously compounded interest
rate, q is the continuously compounded dividend, σ is the volatility, and time t

increases from the current time to the expiry time T .
We will now introduce the variable h(τ) = 1 − exp(−rτ ) and use the factor-

ization ν(S,E, τ) = h(τ)g(S,E, h). From standard calculus we obtain:

∂ν

∂t
= g

∂h

∂t
+ h

∂g

∂t
= rg(h − 1) + h

∂g

∂h

∂h

∂t
= rg(h − 1) + hr(h − 1)

∂g

∂h

and also

∂ν

∂S
= h

∂g

∂S
and

∂2ν

∂S2
= h

∂2g

∂S2

Substituting these results into Eq. (5.2.10) yields the following transformed
Black–Scholes equation:

S2σ 2h

2

∂2g

∂S2
+ (r − q)Sh

∂g

∂S
+ rg(h − 1) + rh(h − 1)

∂g

∂h
= rgh (5.2.11)

which can be further simplified to give:

S2σ 2 ∂2g

∂S2
+ 2(r − q)S

σ 2

∂g

∂S
− 2rg

hσ 2
− 2r(1 − h)

σ 2

∂g

∂h
= rgh (5.2.12)

or

S2 ∂2g

∂S2
+ βS

∂g

∂S
− α

h
g − (1 − h)α

∂g

∂h
= 0 (5.2.13)

where α = 2r/σ 2 and β = 2(r − q)/σ 2.
We now consider the last term of Eq. (5.2.13) and note that when τ is large,

1 − h(τ) ∼ 0. Also when τ → 0 the option is close to maturity, and the
value of both the European and American options converge; this means that
ν(S,E, τ) ∼ 0 and ∂g

∂h
∼ 0. It can thus be seen that the last term is generally

quite small and the MacMillan–Barone-Adesi–Whaley approximation assumes
that it can be ignored. This results in the following equation:

S2 ∂2g

∂S2
+ βS

∂g

∂S
− α

h
g = 0 (5.2.14)

which is a second-order differential equation with two linearly independent so-
lutions of the form aSγ . They can be found by substituting g(S,E, h) = aSγ

into Eq. (5.2.14) as follows:

∂g

∂S
= γ Sγ−1,

∂2g

∂S2
= aγ (γ − 1)Sγ−2 = aγ 2Sγ−2 − aγ Sγ−2

so

S2 ∂2g

∂S2
= aγ 2Sγ − aγ Sγ = γ 2g − γg

and

βS
∂g

∂S
= βSaγ Sγ−1 = βγ Sγ = βγg
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When the above results are substituted in Eq. (5.2.14) we obtain the quadratic
equation:

γ 2g − γg + βγg − α

h
= g

(
γ 2 − γ + (β − 1)γ − α

h

)
= 0

or

γ 2 − γ + (β − 1)γ − α

h
= 0 (5.2.15)

which has the two solutions

γ1 = 1

2

{
−(β − 1) −

√
(β − 1)2 + 4

α

h

}
(5.2.16)

and

γ2 = 1

2

{
−(β − 1) +

√
(β − 1)2 + 4

α

h

}
(5.2.17)

where we note that since α/h > 0, we have γ1 < 0 and γ2 > 0.
The general solution to Eq. (5.2.14) is thus:

g(S,E, h) = a1S
γ1 + a2S

γ2 (5.2.18)

We will now derive the appropriate solutions pertaining to American call op-
tions and American put options.

American call options

Here we use the fact that both the value and the early exercise premium
(νc(S,E, τ) = hgc(S,E, h)) of an American call tend to zero as the asset price
S → 0. This means that as S → 0, gc(S,E, h) → 0.

However, since γ1 < 0, the only way this can be achieved in Eq. (5.2.18) is if
a1 = 0. So gc(S,E, h) = a2S

γ2 , and the value of an American call is:

C(S,E, τ) = c(S,E, τ) + ha2S
γ2 (5.2.19)

An expression for a2 can be found by considering the critical asset price (point
on the early exercise boundary), S∗, above which the American option will be
exercised. For S < S∗, the value of the American call is governed by Eq. (5.2.19),
and when S > S∗ we have C(S,E, τ) = S − E.

Now, since the value of the American option is continuous, at the critical asset
value S∗ the following equation applies:

S∗ − E = c
(
S∗, E, τ

) + ha2S
∗γ2 (5.2.20)

Furthermore, since the gradient of the American option value is also continuous,
at S∗ we have:

∂(S∗ − E)

∂S∗ = ∂

∂S∗
{
c
(
S∗, E, τ

) + ha2S
∗γ2

}
(5.2.21)

which gives:

1 = exp(−qτ)N1
(
d1

(
S∗)) + γ2ha2S

∗(γ2−1) (5.2.22)
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where we have used the value of the hedge parameter Δc for a European call
(see the section on the Greeks):

Δc = ∂c(S∗, E, τ)

∂S∗ = exp(−qτ)N1
(
d1

(
S∗))

Equation (5.2.22) can therefore be written as:

ha2S
∗γ2 = S∗

γ2

{
1 − exp(−qτ)N1

(
d1

(
S∗))} (5.2.23)

When the left-hand side of the above equation is substituted into Eq. (5.2.20)
we obtain the following equation for S∗:

S∗ − E = c
(
S∗, E, τ

) + S∗

γ2

{
1 − exp(−qτ)N1

(
d1

(
S∗))} (5.2.24)

This equation can be solved for S∗ using standard iterative methods (see the
section on the numerical solution of critical asset values). Once S∗ has been
found Eq. (5.2.23) gives:

ha2 = A2S
∗−γ2

where

A2 = S∗

γ2

{
1 − exp(−qτ)N1

(
d1

(
S∗))}

From Eq. (5.2.19) the value of an American call is thus of the form:

C(S,E, τ) = c(S,E, τ) + A2

(
S

S∗

)γ2

when S < S∗ (5.2.25)

C(S,E, τ) = S − E when S � S∗ (5.2.26)

American put options

For an American put option we proceed in a similar manner to that for the
American call. We now use the fact that both the value and early exercise pre-
mium (νp(S,E, τ) = hgp(S,E, h)) of an American put tend to zero as the asset
price S → ∞. So gp(S,E, h) → 0 as S → ∞. Since γ2 > 0 the only way this can
be achieved by Eq. (5.2.18) is if a2 = 0. This gives gp(S,E, h) = a1S

γ1 and the
value of an American put is:

P(S,E, τ) = p(S,E, τ) + ha1S
γ1 (5.2.27)

An expression for a1 can be found by considering the critical asset price, S∗∗,
below which the American option will be exercised. For S > S∗∗ the value
of the American put is given by Eq. (5.2.27), and for S < S∗∗ we have
P(S,E, τ) = E − S.

Continuity of the American option value at the critical asset price gives:

E − S∗∗ = p
(
S∗∗, E, τ

) + ha1S
∗∗γ1 (5.2.28)
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and continuity of the option value’s gradient at the critical asset price yields:

∂(E − S∗∗)
∂S∗∗ = ∂

∂S∗∗
{
p
(
S∗∗, E, τ

) + ha1S
∗∗γ1

}
(5.2.29)

which can be simplified to:

−1 = −N1
(−d1

(
S∗∗)) exp(−qτ) + γ1a1S

∗∗(γ1−1) (5.2.30)

where we have used the value of hedge parameter Δp for a European put (see
Appendix A.3):

Δp = ∂p(S∗∗, E, τ)

∂S∗∗
= {

N1
(
d1

(
S∗∗)) − 1

}
exp(−qτ) = −N1

(−d1
(
S∗∗)) exp(−qτ)

Equation (5.2.30) can therefore be written as:

ha1S
∗∗γ1 = −S∗∗

γ1

{
1 − N1

(−d1
(
S∗∗)) exp(−qτ)

}
(5.2.31)

When the left-hand side of the above equation is substituted into Eq. (5.2.28)
we obtain the following equation for S∗∗:

E − S∗∗ = p
(
S∗∗, E, τ

) + {
1 − exp(−qτ)N

[−d1
(
S∗∗)]}S∗∗

γ1
(5.2.32)

which can be solved iteratively to yield S∗∗ (see the section on the numerical
solution of critical asset values). Once S∗∗ has been found Eq. (5.2.31) gives:

ha1 = A1S
∗∗−γ1

where

A1 = −
(

S∗∗

γ1

){
1 − exp(−qτ)N1

(−d1
(
S∗∗))}

We note here that A1 > 0 since, γ1 < 0, S∗∗ > 0, and N1(−d1(S
∗∗))

exp(−qτ) < 1.
From Eq. (5.2.27) the value of an American put is thus:

P(S,E, τ) = p(S,E, τ) + A1

(
S

S∗∗

)γ2

when S > S∗∗

P(S,E, τ) = E − S when S � S∗∗

5.2.3 Numerical solution of critical asset values

We now provide details on how to iteratively solve for the critical asset price in
Eqs. (5.2.24) and (5.2.32).
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American call options

For American call options we need to solve Eq. (5.2.24), which is:

S∗ − E = c
(
S∗, E, τ

) + S∗

γ2

{
1 − exp(−qτ)N1

(
d1

(
S∗))}

We denote the ith approximation to the critical asset value S∗ by S∗
i , and repre-

sent the left-hand side of the equation by:

LHS
(
S∗

i , E, τ
) = S∗

i − E

and the right-hand side of the equation by:

RHS
(
S∗

i , E, τ
) = c

(
S∗

i , E, τ
) + S∗

i

γ2

{
1 − exp(−qτ)N1

(
d1

(
S∗

i

))}
If we let K(S∗

i , E, τ ) = RHS(S∗
i , E, τ )− LHS(S∗

i , E, τ ) then we want to find the
value of S∗

i which (to a specified tolerance) gives K(S∗
i , E, τ ) ∼ 0. This can be

achieved with Newton’s root finding method, in which a better approximation,
S∗

i+1, can be found using:

S∗
i+1 = S∗

i − K(S∗
i , E, τ )

K
′
(S∗

i , E, τ )
(5.2.33)

where:

K ′(S∗
i , E, τ

) = ∂

∂S∗
i

{
RHS

(
S∗

i , E, τ
) − LHS

(
S∗

i , E, τ
)}

= ∂

∂S∗
i

{
RHS

(
S∗

i , E, τ
)} − ∂

∂S∗
i

{
LHS

(
S∗

i , E, τ
)}

= bi − 1

Here we have used bi = ∂
∂S∗

i
{RHS(S∗

i , E, τ )}, and the expression for bi is given

by Eq. (5.2.35), which is derived at the end of this section.
Substituting for K(S∗

i , E, τ ) and K ′(S∗
i , E, τ ) into Eq. (5.2.32), we therefore

obtain:

S∗
i+1 = S∗

i − RHS(S∗
i , E, τ ) − LHS(S∗

i , E, τ )

bi − 1

= S∗
i − RHS(S∗

i , E, τ ) − (S∗
i − E)

bi − 1

= biS
∗
i − RHS(S∗

i , E, τ ) − E

bi − 1

The final iterative algorithm for the American call is therefore:

S∗
i+1 = E + RHS(S∗

i , E, τ ) − biS
∗
i

1 − bi

(5.2.34)
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where we can use S∗
0 = E for the initial estimate of the critical value (see the

computer Code excerpt 5.4).

The expression for bi

Here we derive an expression for the term bi which is used in Eq. (5.2.34).

bi = ∂c(S∗
i , E, τ )

∂S∗
i

+ 1

γ2

{
1 − exp(−qτ)N1

(
d1

(
S∗

i

))}
− S∗

i

γ2

∂N1(d1(S
∗
i ))

∂d1(S
∗
i )

∂d1(S
∗
i )

∂S∗
i

We will now quote the following results which are derived in Appendix A:
Appendix A, Eq. (A.1.3)

∂N1(d1(S
∗
i ))

∂d1(S
∗
i )

= n
(
d1

(
S∗

i

))
Appendix A, Eq. (A.1.6)

∂d1(S
∗
i )

∂S∗
i

= 1

S∗
i σ

√
τ

Appendix A, Eq. (A.3.2)

Δc = ∂c(S∗
i , E, τ )

∂S∗
i

= exp(−qτ)N1
(
d1

(
S∗

i

))
Substituting these results into the above expression, we therefore obtain:

bi = exp(−qτ)N1
(
d1

(
S∗

i

)) + 1

γ2
− exp(−qτ)N1(d1(S

∗
i ))

γ2

− exp(−qτ)n(d1(S
∗
i ))

γ2σ
√

τ

which can be rearranged to yield:

bi = exp(−qτ)N1
(
d1

(
S∗

i

)){
1 − 1

γ2

}
+ 1

γ2

{
1 − exp(−qτ)n(d1(S

∗
i ))

σ
√

τ

}
(5.2.35)

American put options

For American put options we need to solve Eq. (5.2.32) which is:

E − S∗∗
i = p

(
S∗∗

i , E, τ
) − S∗∗

i

γ1

{
1 − N1

(−d1
(
S∗∗

i

))
exp(−qτ)

}
If we let S∗∗

i denote the ith approximation to the critical asset value S∗∗, then
we can represent the left-hand side of the equation by:

LHS
(
S∗∗

i , E, τ
) = E − S∗∗

i
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and the right-hand side of the equation by:

RHS
(
S∗∗

i , E, τ
) = p

(
S∗∗

i , τ
) − S∗∗

i

γ1

{
1 − N1

(−d1
(
S∗∗

i

))
exp(−qτ)

}
= p

(
S∗∗

i , E, τ
) − S∗∗

i

γ1

{
1 − [

1 − N1
(
d1

(
S∗∗

i

))]
exp(−qτ)

}
= p

(
S∗∗

i , E, τ
) − S∗∗

i

γ1

{
1 − exp(−qτ)

+ N1
(
d1

(
S∗∗

i

))
exp(−qτ)

}
We then denote K(S∗∗

i , E, τ ) = RHS(S∗∗
i , E, τ ) − LHS(S∗∗

i , E, τ ) and using
Newton’s method we obtain:

S∗∗
i+1 = S∗∗

i − K(S∗∗
i , E, τ )

K ′(S∗∗
i , E, τ )

(5.2.36)

where as before:

K ′(S∗∗
i , E, τ

) = ∂

∂S∗∗
i

{
RHS

(
S∗∗

i , E, τ
) − LHS

(
S∗∗

i , E, τ
)}

So K ′(S∗∗
i , E, τ ) = 1 + bi , where bi = ∂(RHS(S∗∗

i ,E,τ))

∂S∗∗
i

, and the expression for bi

is given by Eq. (5.2.38), which is derived at the end of this section.
Equation (5.2.36) can therefore be written as:

S∗∗
i+1 = S∗∗

i − RHS(S∗∗
i , E, τ ) − LHS(S∗∗

i , E, τ )

1 + bi

= S∗∗
i (1 + bi) − RHS(S∗∗

i , E, τ ) + E − S∗∗
i

1 + bi

The final iterative algorithm for the American put is therefore:

S∗∗
i = E − RHS(S∗∗

i , E, τ ) + biS
∗∗
i

1 + bi

(5.2.37)

where we can use S∗∗
0 = E for the initial estimate of the critical asset value (see

the computer Code excerpt 5.4).

The expression for bi

Here we derive an expression for the term bi which is used in Eq. (5.2.37).
Since

bi = ∂

∂S∗∗
i

{
p
(
S∗∗

i , E, τ
) − S∗∗

i

γ1

(
1 − exp(−qτ) + N1

(
d1

(
S∗∗

i

))
exp(−qτ)

)}
we have

bi = ∂p(S∗∗
i , E, τ )

∂S∗∗
i

− 1

γ1

{
1 − exp(−qτ)

} − 1

γ1
exp(−qτ)N1

(
d1

(
S∗∗

i

))
− S∗∗

i exp(−qτ)

γ1

∂N1(d1(S
∗∗
i ))

∂d1(S
∗∗
i )

∂d1(S
∗∗
i )

∂S∗∗
i
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We will now quote the following results which are derived in Appendix A:
Appendix A, Eq. (A.1.3):

∂N1(d1(S
∗∗
i ))

∂d1(S
∗∗
i )

= n
(
d1

(
S∗∗

i

))
Appendix A, Eq. (A.1.6):

∂d1(S
∗∗
i )

∂S∗∗
i

= 1

S∗∗
i σ

√
τ

Appendix A, Eq. (A.3.4):

Δp = ∂p(S∗∗
i , E, τ )

∂S∗∗
i

= exp(−qτ)
{
N1

(
d1

(
S∗∗

i

)) − 1
}

Substituting these results into the above expression, we therefore obtain:

bi = exp(−qτ)
{
N1

(
d1

(
S∗∗

i

)) − 1
}

− 1

γ1

{
1 − exp(−qτ) + N1

(
d1

(
S∗∗

i

))
exp(−qτ)

}
− S∗∗

i exp(−qτ)

γ1

∂N1(d1(S
∗∗
i ))

∂d1(S
∗∗
i )

∂d1(S
∗∗
i )

∂S∗∗
i

= exp(−qτ)
{
N1

(
d1

(
S∗∗

i

)) − 1
}

− 1

γ1

{
1 − exp(−qτ) + N1

(
d1

(
S∗∗

i

))
exp(−qτ)

}
− S∗∗

i exp(−qτ)n(d1(S
∗∗
i ))

γ1σ
√

τ

which can be rearranged to yield:

bi = exp(−qτ)N1
(
d1

(
S∗∗

i

)){
1 − 1

γ1

}
+ 1

γ1

{
exp(−qτ) − 1 − exp(−qτ)n(d1(S

∗∗
i ))

σ
√

τ

}
− exp(−qτ) (5.2.38)

In Code excerpt 5.4 we provide computer code to implement the MacMillan–
Barone-Adesi–Whaley method.

void MBW_approx(double *opt_value, double *critical_value, double S0, double X,
double sigma, double T, double r, double q, long put, long *iflag)

{
/* Input parameters:

=================
S0 - the current value of the underlying asset
X - the strike price
sigma - the volatility
T - the time to maturity
r - the interest rate

Code excerpt 5.4.
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q - the continuous dividend yield
put - if put is 0 then a call option, otherwise a put option
Output parameters:
==================
opt_value - the value of the option
critical_value - the critical value
iflag - an error indicator

*/
double A_1,A_2,S_star,gamma_2,gamma_1;
double d1,alpha,h,beta,temp,temp1;
double pdf,pi,b,rhs,eur_val,tol,err;
long iterate;
long iflagx,putx;

pi = PI;
beta = 2.0 * (r - q) / (sigma * sigma);
alpha = 2.0 * r / (sigma * sigma);
h = 1.0 - exp(-r*T);
temp = beta - 1.0;
iterate = 1;
tol = 0.000001;
if (!put) { /* An American call */

gamma_2 = (-temp + sqrt((temp*temp) + (4.0*alpha/h)));
gamma_2 = gamma_2 / 2.0;
S_star = X;
while (iterate) { /* calculate S_star, iteratively */

d1 = log(S_star/X) + (r-q+(sigma*sigma/2.0))*T;
d1 = d1/(sigma*sqrt(T));
pdf = (1.0/sqrt(2.0*pi))*exp(-d1*d1/2.0);
temp = exp (-q*T)*cum_norm(d1)*(1.0 - (1.0/gamma_2));
temp1 = (1.0 - ((exp(-q*T)*pdf)/(sigma*sqrt(T))))/gamma_2;
b = temp + temp1;
/* calculate the Black-Scholes value of a European call */
putx = 0;
black_scholes(&eur_val,NULL,S_star,X,sigma,T,r,q,putx,&iflagx);
rhs = eur_val+(1.0-exp(-q*T)*cum_norm(d1))*S_star/gamma_2;
S_star = (X + rhs - b*S_star)/(1.0-b);
err = fabs((S_star - X) - rhs)/X;

if (err < tol) iterate = 0;
}
A_2 = (S_star/gamma_2)*(1.0 - exp(-q*T)*cum_norm(d1));
if (S0 < S_star) {

temp1 = S0/S_star;
black_scholes(&temp,NULL,S0,X,sigma,T,r,q,putx,&iflagx);
*opt_value = temp + A_2 * pow(temp1,gamma_2);

}
else {

*opt_value = S0 - X;
}

}
else { /* An American put */

gamma_1 = (-temp - sqrt((temp*temp) + (4.0*alpha/h)));
gamma_1 = gamma_1 / 2.0;
S_star = X;
while (iterate) { /* calculate S_star, iteratively */

d1 = log(S_star/X) + (r-q+(sigma*sigma/2.0))*T;
d1 = d1/(sigma*sqrt(T));
pdf = (1.0/sqrt(2.0*pi))*exp(-d1*d1/2.0);
temp = exp(-q*T)*(cum_norm(d1)*(1.0-(1.0/gamma_1))-1.0);
temp1 = (exp(-q*T)-1.0-((exp(-q*T)*pdf)/(sigma*sqrt(T))))/gamma_1;
b = temp + temp1;
/* calculate the Black-Scholes value of a European put */
putx = 1;
black_scholes(&eur_val,NULL,S_star,X,sigma,T,r,q,putx,&iflagx);
rhs = eur_val-(1.0-exp(-q*T)+exp(-q*T)*cum_norm(d1))*S_star/gamma_1;
S_star = (X - rhs + b*S_star)/(1.0+b);
err = fabs((X - S_star) - rhs)/X;
if (err < tol) iterate = FALSE;

}
A_1 = -(S_star/gamma_1)*(1.0 - exp(-q*T)*cum_norm(-d1));
if (S0 > S_star) {

temp1 = S0/S_star;
black_scholes(&temp,NULL,S0,X,sigma,T,r,q,putx,&iflagx);
*opt_value = temp + A_1 * pow(temp1,gamma_1);

}

Code excerpt 5.4 (Continued).
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else {
*opt_value = X - S0;

}
}
*critical_value = S_star;

}

Code excerpt 5.4 Function to compute the MacMillan–Barone-Adesi–Whaley approxi-
mation for American options.

Table 5.2 The MacMillan–Barone-Adesi–Whaley method for American option values
computed by the routine MBW_approx

Stock price Call Put

Accurate value Error Accurate value Error

86.0 1.2064 5.54 × 10−4 14.0987 −3.69 × 10−2

89.0 1.8838 1.95 × 10−4 11.5120 −4.85 × 10−2

92.0 2.7890 7.03 × 10−4 9.2478 −3.58 × 10−2

95.0 3.9427 1.16 × 10−3 7.3031 −1.66 × 10−2

98.0 5.3522 1.15 × 10−3 5.6674 7.19 × 10−4

101.0 7.0119 1.10 × 10−3 4.3209 1.35 × 10−2

104.0 8.9043 2.21 × 10−3 3.2362 2.22 × 10−2

107.0 11.0072 2.63 × 10−3 2.3823 2.63 × 10−2

110.0 13.2905 4.20 × 10−3 1.7235 2.80 × 10−2

113.0 15.7264 4.77 × 10−3 1.2272 2.66 × 10−2

The parameters used were: τ = 0.5, X = 100.0, r = 0.1, q = 0.06, σ = 0.2. The accurate
value was calculated using a standard lattice with 2000 time steps, and the error was the
MacMillan–Barone-Adesi–Whaley estimate minus the accurate value.

Table 5.3 The MacMillan, Barone-Adesi, and Whaley critical asset values for the early
exercise boundary of an American put computed by the routine MBW_approx

Time to expiry, τ Critical asset value, S∗∗ Time to expiry, τ Critical asset value, S∗∗

1.00 82.1510 0.50 85.1701
0.95 82.3751 0.45 85.6199
0.90 82.6115 0.40 86.1176
0.85 82.8618 0.35 86.6740
0.80 83.1273 0.30 87.3049
0.75 83.4098 0.25 88.0333
0.70 83.7115 0.20 88.8959
0.65 84.0349 0.15 89.9568
0.60 84.3830 0.10 91.3469
0.55 84.7598 0.05 93.4260

The parameters used were: S = 101.0, X = 101.0, r = 0.1, q = 0.06, and σ = 0.20.

The results given in Tables 5.2 and 5.3 were obtained by using the function
MBW_approx.
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5.3 Lattice methods for vanilla options

5.3.1 Binomial lattice

In this section we will derive equations for a binomial lattice that describes the
GBM movement of asset price changes. The approach that we will adopt is
based on the work of Cox, Ross, and Rubinstein (1979) and will be referred to
as the CRR lattice.

From Chapter 2, Eq. (2.3.9), we know that if the price of an asset, St , follows
GBM then the change in value of its price over time interval �t has the following
distribution:

log

(
St+�t

St

)
∼ N

((
r − σ 2

2

)
�t, σ 2�t

)
If we use the notation:

X = St+�t

St

and

η =
(

r − σ 2

2

)
�t, ν2 = σ 2�t

the above equation becomes:

log(X) ∼ N
(
η, ν2)

or equivalently

X ∼ �
(
η, ν2)

where �(η, ν2) is the lognormal distribution derived from a Gaussian distribu-
tion with mean η and variance ν2. It is well known—see for example Evans,
Hastings, and Peacock (2000)—that the first two moments of a variable X

drawn from a lognormal distribution are:

Lognormal mean

E[X] = exp

(
η + ν2

2

)
(5.3.1)

substituting for η and ν2 gives:

E[X] = exp

{(
r − σ 2

2

)
�t + σ 2

2
�t

}
(5.3.2)
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Lognormal variance

Var[X] = E
[(

X − E[X])2] = E
[
X2] − (

E[X])2

= exp
(
2η + ν2){exp

(
ν2) − 1

}
(5.3.3)

substituting for η and ν2 gives:

Var[X] = exp

{
2r

(
r − σ 2

2

)
�t + σ 2�t

}
which can be simplified to yield:

Var[X] = exp{2r�t}{exp
(
σ 2�t

) − 1
}

(5.3.4)

Since we can assume that the expected value of X grows at the riskless interest
rate, r, we can also write:

E[X] = exp(r�t) (5.3.5)

The above results can be used to find the first two moments of the asset price
distribution St+�t , given that we know the asset price, St , at time instant t . To
do this we will use (see Appendix C.3 for a proof) the fact that for a random
variable G we have:

E[a + bG] = E[a] + bE[G] and Var[a + bG] = b2 Var[G]
where a and b are constants. Applying this to the variable X gives:

E[X] = E

[
St+�t

St

]
= 1

St

E[St+�t ] (5.3.6)

and

Var[X] = Var
[
St+�t

St

]
= 1

S2
t

Var[St+�t ] (5.3.7)

where we have used a = 0 and b = 1

St

. Note: It is also easy to show that:

Var[St+�t ] = Var[�S] (5.3.8)

where the change in asset price over the time interval �t is denoted by �S =
St+�t − St . This elementary result sometimes is used without proof, see for ex-
ample Hull (1997), p. 344. The proof is simple:

Var[St+�t ] = Var[St + �S] = Var[�S]
where again we have used:

Var[a + bG] = b2 Var[G], this time with a = 0 and b = 1.

To find expressions for the mean and variance of St+�t we simply substitute
Eq. (5.3.5) into Eq. (5.3.6) and obtain:

E[St+�t ] = St exp(r�t) (5.3.9)
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and substituting Eq. (5.3.4) into Eq. (5.3.7) gives:

Var[St+�t ] = S2
t exp

(
2r�t

){
exp

(
σ 2�t

) − 1
}

(5.3.10)

Since we are modelling asset price movements with a binomial lattice, the asset
price, St , at any given node is only permitted to either jump up or jump down
in value over the next time step �t . Here we will assume that the new asset
price, St+�t , is Stu for an up jump and Std for a down jump where u and d are
constants that apply to all lattice nodes. If we further denote the probability of
an up jump by p, then the probability of a down jump must (by definition) be
1 − p.

Now that we have specified the lattice parameters we will use these to match
the first two moments of the lognormal distribution. This results in the following
equation for the mean:

E[St+�t ] = pStu + (1 − p)Std = St exp(r�t) (5.3.11)

The corresponding equation for the variance requires a little more work:

Var[St+�t ] = E
[
(St+�t )

2] − (
E[St+�t ]

)2 (5.3.12)

Since

E
[
(St+�t )

2] = p(Stu)2 + (1 − p)(Std)2 = S2
t

{
pu2 + (1 − p)d2} (5.3.13)

and, from Eq. (5.3.9), we have:(
E[St+�t ]

)2 = {
St exp(r�t)

}2 = S2
t exp(2r�t) (5.3.14)

we can substitute Eqs. (5.3.13) and (5.3.14) into Eq. (5.3.12) to obtain:

Var[St+�t ] = S2
t

{
pu2 + (1 − p)d2} − S2

t exp(2r�t) (5.3.15)

So from Eqs. (5.3.10) and (5.3.15):

exp(2r�t)
{
exp

(
σ 2�t

) − 1
} = pu2 + (1 − p)d2

= pu2 + (1 − p)d2 − exp(2r�t) (5.3.16)

So, restating Eq. (5.3.11) and simplifying Eq. (5.3.16), we obtain the following
two equations:

pu + (1 − p)d = exp(r�t) (5.3.17)

exp
(
2r�t + σ 2�t

) = pu2 + (1 − p)d2 (5.3.18)

which we will use to solve for the three parameters u, d, and p. Since there
are three unknowns and only two equations, we can impose an additional con-
straint to obtain a unique solution. The constraint used in the CRR binomial
model is:

u = 1

d

We now use the following notation:

a = exp(r�t)
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and

b2 = exp(2r�t)
{
exp

(
σ 2�t

) − 1
} = a2{exp

(
σ 2�t

) − 1
}

This means that Eq. (5.3.17) can be written as:

a = pu + (1 − p)d

which gives:

p = a − d

u − d
(5.3.19)

From Eq. (5.3.18) we have:

exp
(
2r�t + σ 2�t

) = a2 exp
(
σ 2�t

) = a2 + b2

and so:

a2 + b2 = pu2 + (1 − p)d2

Rearranging we have:

pu2 + (1 − p)d2 − a2 = b2

pu3 + (1 − p)d2u − a2u − b2u = 0

but:

(1 − p)d2u = (1 − p)d = a − pu

so

pu3 + (a − pu) − a2u − b2u = 0

or

p
(
u3 − u

) + a − a2u − b2u = 0

Now,

p
(
u3 − u

) = u2p(u − d) = u2(a − d) = u2a − u

which gives:

au2 − u + a − a2u − b2u = 0

So we obtain the following quadratic equation in u:

au2 − u
(
1 + a2 + b2) + a = 0

The solution is:

u = (1 + a2 + b2) + √
(1 + a2 + b2)2 − 4a2

2a

If �t is small we can obtain a reasonable approximation to the solution by
neglecting terms of order higher than �t .
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In these circumstances we have:

a2 + b2 + 1 = exp(2r�t) + exp(2r�t)
{
exp

(
σ 2�t

) − 1
}+1

∼ 1 + 2r�t + (1 + 2r�t)σ 2�t + 1 ∼ 2 + 2r�t + σ 2�t

Therefore,√(
a2 + b2 + 1

)2 − 4a2 ∼
√(

2 + 2r�t + σ 2�t
)2 − 4(1 + 2r�t)

∼
√

4 + 8r�t + 4σ 2�t − 4 − 8r�t

=
√

4σ 2�t = 2σ
√

�t

and so

u ∼ 2 + 2r�t + σ 2�t + 2σ
√

�t

2 exp(r�t)

u ∼
(

1 + r�t + σ 2�t

2
+ σ

√
�t

)
(1 − r�t)

u ∼ 1 + r�t + σ 2�t

2
+ σ

√
�t − r�t = 1 + σ

√
�t + σ 2�t

2
which to order �t gives:

u = exp
(
σ
√

�t
)

and d = exp
(−σ

√
�t

)
(5.3.20)

where we have used

exp
(
σ
√

�t
) = 1 + σ

√
�t + σ 2�t

2
+ σ 3(�t)3/2

6
+ · · ·

and

d = 1

u

It is interesting to note (by substituting into Eq. (5.3.19)) that when r = 0 and
�t → 0, we have p → 1

2 .
Now that we know the values of the lattice parameters u, d, and p we can use

these to build a lattice with a specified number of time steps. Once this has been
constructed, it can be used to compute the values and Greeks for various types
of financial options. These could simply be American/European vanilla options,
or more exotic options that may incorporate features such as: lockout periods,
barriers, and nonstandard payoff functions.

We will now discuss how to create a lattice which can be used to value Amer-
ican and European vanilla options.

If the current value of the underlying asset is S, and the duration of the option
is τ and we use a lattice with n equally spaced time intervals �t , then we have:

�t = τ

n

The values of the asset price at various nodes in the lattice can easily be com-
puted. This is illustrated, in Fig. 5.1, for a lattice with six time steps (that is
seven lattice levels).
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Figure 5.1 A standard binomial lattice consisting of six time steps. The root lattice
node R corresponds to the current time t , and the terminal nodes G to M are those at
option maturity; that is time t + τ , where τ is the duration of the option. The asset value
at node R is S, where S is the current asset value. Asset values at other nodes are, for ex-
ample, node S: Su, node T: Sd, node V: S, and node A: Su5. Option values are computed
using a backward iterative process: the option values at nodes A–F on the penultimate
time step are computed from the payouts of the terminal nodes G–M, and this process con-
tinues until the root node is reached which yields the current value of the option. Here
we compute the Greeks using the following nodes: Delta uses nodes S and T, Gamma
uses nodes U, V, and W, and Theta uses nodes R and V.

The asset values at the labelled nodes are:

Lattice level 1: Time t

SR = S

Lattice level 2: Time t + �t

SS = Su, ST = Sd

Lattice level 6: Time t + 5�t

SA = Su5, SB = Su3, SC = Su,

SD = Sd, SE = S, SF = Sd5

Lattice level 7: Time t + 6�t

SG = Su6, SH = Su4, SI = Su2, SJ = S,

SK = Sd2, SL = Sd4, SM = Sd6
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In general, at time t + i�t , there are i + 1 stock prices; these are:

Si,j = Sujdi−j , j = 0, 1, . . . , i

We note that, since u = 1/d, an up movement followed by a down movement
gives the same stock price as a down movement followed by an up movement;
for instance, Su2d = Su. This means that the tree recombines, and the number of
nodes required to represent all the different asset prices is significantly reduced.

5.3.2 Constructing and using the binomial lattice

In this section we are concerned with the practical details of how to construct,
and then use, a standard one-dimensional binomial lattice to value Ameri-
can and European options. Since this lattice forms the basis for other one-
dimensional and multidimensional lattice techniques, we will discuss its con-
struction in some detail. A complete computer program for a standard bino-
mial lattice is given in Code excerpt 5.11, and we will use this as a basis for
our discussions. The results of using this code are presented in Fig. 5.2. For

Figure 5.2 The error in the estimated value, est_val, of an American put using a stan-
dard binomial lattice. The parameters used were: T = 1.0, S = 105.0, X = 105.0, r = 0.1,
q = 0.02, σ = 0.3. The very accurate value (acc_val) was 9.2508 and was computed us-
ing a 6000 step standard binomial lattice. The error in the estimated value was obtained
as est_val − acc_val.
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easy reference we will now list the input parameters used by this computer pro-
gram:

S0 the current price of the underlying asset, S

X the strike price
sigma the volatility of the asset
T the maturity of the option in years
r the risk-free interest rate
q the continuous dividend yield
put if put equals 1 then the option is a put

option, if put equals 0 then it is a call option
is_american if is_american equals 1 then it is an

American option, if is_american equals 0 then it is a
European option

M the number of time steps in the lattice

We will now discuss in more detail the computational issues involved in each
stage of the calculation.

Compute the values of the constants used by the lattice

First calculate the values of various constants that will be used, see Code ex-
cerpt 5.5.

For convenience, we have used the variables p_u and p_d to store, respec-
tively, the up and down jump probabilities discounted by the interest rate r

over one time step; these values will be used later on when we work backwards
through the lattice to calculate the current option value.

Assign the asset values to the lattice nodes

We will now show that the number of different asset prices, LSn, for an n step
recombining lattice is 2n + 1.

The nodes in a recombining lattice can be considered as being composed of
two kinds: those corresponding to an even time step, and those corresponding
to an odd time step.

This is because the set of node asset values, ET , for an even time step is
distinct from the set of node asset values, OT , for an odd time step. Although

dt = T/(double)M;
t1 = sigma*sqrt(dt);
u = exp(t1);
d = exp(-t1);
a = exp((r-q)*dt);
p = (a - d)/(u - d);
if ((p < zero) || (p > 1.0)) printf ("Error p out of range\n");
discount = exp(-r*dt);
p_u = discount*p;
p_d = discount*(1.0-p);

Code excerpt 5.5 A code fragment which computes the values of various lattice con-
stants.



122 Computational Finance Using C and C#

s[M] = S0;
for (i = 1; i <= M; ++i) {

s[M+i] = u*s[M+i-1];
s[M-i] = d*s[M-i+1];

}

Code excerpt 5.6 A code fragment which assigns the different binomial lattice asset
values to the storage array s by using the up and down jump ratios u and d de-
fined in Section 3.4.1. The current asset value S is assigned to the central array el-
ement s[M], where M is the number of time steps in the lattice. The array elements
above center are S[M+i] = Sui, i = 1, . . . ,M, and the array elements below center are
S[M-i] = Sdi, i = 1, . . . ,M.

ET ∩OT = ∅, the elements of ET and OT for any consecutive pair of time steps
are related by the simple constant multiplicative factor d. Also, for an even time
step there is a central node corresponding to the current asset price S0, and the
remaining nodes are symmetrically arranged about this, see Code excerpt 5.6.
These features are illustrated in Fig. 5.1, for a standard lattice with six time
steps.

The number of distinct asset prices in a lattice is therefore the sum of the
number of nodes in the last two time steps. Since the number of nodes in the ith
time step, Si , is i + 1 (see Fig. 5.1), for an n time step lattice we have:

Sn = n + 1 and Sn−1 = n

This means that the number of different asset values in an n time step lattice is:

LSn = Sn + Sn−1 = 2n + 1

The number of nodes in an n time step lattice, LN n, is:

LN n =
n∑

i=0

(i + 1) = (n + 1)(n + 2)

2

where we have used the fact that LN n is the sum of an arithmetic progression
with first term 1, increment 1 and last term n + 1.

One might initially think that, in order to price options, it is necessary to
store the asset value of each lattice node which would entail storing LN n values.
However, this is not the case. We only need to store the number of different asset
values in the lattice; that is, LSn values.

Storing LSn values instead of LN n can result in dramatic economies of stor-
age. For example, an accurate, 1000 step lattice, has LN n = 2001×2002×1/2 =
2003001, while the corresponding value of LSn is only 2 × 1000 + 1 = 2001.

Compute the option payoff at the terminal nodes

The current value of an option is evaluated by starting at option maturity, the
end of the tree, and working backwards. The option values for the terminal
nodes of the tree are just given by the payoff (at maturity) of the option; this
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if (((M+1)/2) == (M/2)) { /* then M is even */
if (put)

v[M/2] = MAX(X - s[M],zero);
else

v[M/2] = MAX(s[M]-X,zero);
}
P1 = 2*M;
P2 = 0;
for (i = 0; i < (M+1)/2; ++i) {

if (put) {
v[M-i] = MAX(X - s[P1],zero);
v[i] = MAX(X - s[P2],zero);

}
else {

v[M-i] = MAX(s[P1]-X,zero);
v[i] = MAX(s[P2]-X,zero);

}
P1 = P1 - 2;
P2 = P2 + 2;

}

Code excerpt 5.7 A code fragment that computes the payouts for puts and calls at the
lattice terminal nodes. The payouts are assigned to elements of the array v and are com-
puted using the strike price, X, and the previously computed asset values stored in ar-
ray s; as before M is the number of time steps in the lattice.

is independent of whether the option is an American or European. For a lattice
with n time steps there are n + 1 terminal nodes, with option values, fn,j , j =
0, . . . , n.

To compute the values of vanilla American and European options, with exer-
cise price E, then we will start with the following terminal node values:

for put options:

fn,j = max
(
E − Sujdn−j , 0

)
, j = 0, . . . , n,

and for call options:

fn,j = max
(
Sujdn−j − E, 0

)
, j = 0, . . . , n

The computer code used to achieve this is Code excerpt 5.7.

Iterate backwards through the lattice

The probability of moving from node (i, j) at time i�t to node (i + 1, j + 1) at
time (i + 1)�t is p, and the probability of moving from node (i, j) at time i�t

to the node (i + 1, j) at time (i + 1)�t is 1 − p. If we assume that there is no
early exercise then:

f E
i,j = exp(−r�t)

{
pfi+1,j+1 + (1 − p)fi+1,j

}
, j � i � n − 1, 0 � j � i

(5.3.21)
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When early exercise, for an American option, is taken into account we have:

f A
i,j = max

{
E − Si,j , f

E
i,j

}
(5.3.22)

or for an American call option:

f A
i,j = max

{
Si,j − E, f E

i,j

}
, j � i � N − 1, 0 � j � i, (5.3.23)

where f E
i,j is given by Eq. (5.3.21).

Code excerpt 5.8 works backward through the lattice and uses the array v to
store the option values.

At each time step the newly calculated option values overwrite those com-
puted by the previous time step. This process is continued until the second time
step (m1 = 2) is reached. A different technique is then used, which doesn’t
overwrite the option values and thus allows the Greeks to be computed in the
vicinity of the root lattice node R. If the Greeks are not required, continue work-
ing backward through the lattice until the root node R (m1 = 0) is reached, and
the current value of the option is then given by v[0] (or its multidimensional
equivalent).

The option values at all lattice nodes in time steps 0, 1, and 2 are made acces-
sible by the Code excerpt 5.9.

P2 = 0;

for (m1 = M-1; m1 >= 2; --m1) {

P2 = P2 + 1;

P1 = P2;

for (n =0; n <= m1; ++n) {

if ((v[n] == zero) && (v[n+1] == zero)) {

hold = zero;

}

else

hold = p_d*v[n] + p_u*v[n+1];

if (is_american) {

if (put)

v[n] = MAX(hold,X-s[P1]);

else

v[n] = MAX(hold,s[P1]-X);

}

else

v[n] = hold;

P1 = P1 + 2;

}

}

Code excerpt 5.8 Computer code that works iteratively backward through the lattice
computing the option values at each time step. The array v contains the option values
computed from the previous time step, and these are overwritten with option values
computed for the current time step. The iteration stops at the second time step, since we
do not want to overwrite values in the array v which are required for calculating the
Greeks in the neighborhood of the root node.
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jj = 2;
for (m1 = 2; m1 >= 1; --m1) {

ind = M-m1+1;
for (n =0; n < m1; ++n) {

hold = p_d*v[5-jj-m1-1] + p_u*v[5-jj-m1];
if (is_american) {

if (put)
v[5-jj] = MAX(hold,X-s[ind]);

else
v[5-jj] = MAX(hold,s[ind]-X);

}
else

v[5-jj] = hold;
--jj;
ind = ind + 2;

}
}
*value = v[5];

Code excerpt 5.9 Code fragment illustrating how the option values are stored for the
first two time steps so that the Greeks can be computed in the vicinity of the root node R.

Table 5.4 Lattice node values in the vicinity of the root node R

Node Time step Asset array element Asset value Option array element

R 0 s[M] S v[5]
S 1 s[M+1] Su v[4]
T 1 s[M-1] Sd v[3]
U 2 s[M+2] Su2 v[2]
V 2 s[M] S v[1]
W 2 s[M-2] Sd2 v[0]

Computing the Greeks: Δ,Γ and Θ

We will now describe how to calculate the option’s hedge statistics (Greeks).
Let the option value and asset value at lattice node k be denoted by fk and

Sk respectively. So, for instance, ST represents the asset price at node T and fT

is the corresponding option value at node T. Table 5.4 supplies details of the
lattice node values in the vicinity of the root node R.

The computation of each Greek is now considered.

Delta
The definition of Δ is the rate of change of the option value with asset price

all other parameters remaining fixed. Thus,

Δ = ∂f

∂S
= �f

�S

where �f is the change option value corresponding to the change in the asset
price �S. Ideally we would like to evaluate this partial derivative at the root
node R (m1=0); however, we cannot because we need at least two lattice nodes
to compute a value. The best we can do is to evaluate the derivative at the first
time step (m1=1) as follows:

Δ = fS − fT

SS − ST

= v[4] − v[3]
s[M + 1] − s[M − 1]
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Gamma
The definition of Γ is the rate of change of Δ with asset price all other para-

meters remaining fixed. Thus,

Γ = ∂2f

∂S2
= ∂Δ

∂S

In order to evaluate Γ we require at least two values of Δ. The nearest this can
be achieved to the root node R is at time step 2, where we have:

Γ = Δ∗
UV − Δ∗

V W

S∗
UV − S∗

V W

with the midpoints

S∗
UV = 1

2
{SU + SV }

and the values of Δ at the midpoints S∗
UV and S∗

V W denoted by Δ∗
UV and Δ∗

V W ,
respectively. Since

Δ∗
UV = fU − fV

SU − SV

Δ∗
V W = fV − fW

SV − SW

and

S∗
UV − S∗

V W = 1

2
{SU − SW }

we have

Δ∗
UV = v[2] − v[1]

s[M + 2] − s[M]
Δ∗

V W = v[1] − v[0]
s[M] − s[M − 2]

The value of Γ can therefore be approximated as:

Γ = 2{Δ∗
UV − Δ∗

V W }
s[M + 2] − s[M − 2]

Theta
The definition of Θ is the rate of change of option value with time all other

parameters remaining fixed. Thus,

Θ = ∂f

∂t
= �f

�t

The nearest to the root node R this can be computed is over the time interval
from time step 0 to time step 2. We then obtain the following approximation:

Θ = fV − fR

2�t
= v[1] − v[5]

2�t
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Code excerpt 5.10 computes the Δ,Γ , and Θ by using the approximations we
have just discussed.

Vega
The definition of V is the rate of change of the option value with volatility:

V = ∂f

∂σ

In a standard binomial lattice V cannot be computed directly. A simple approach
is to use two binomial lattices as follows:

V = fσ+�σ − fσ

�σ

where fσ+�σ is the option value computed using a binomial lattice with volatil-
ity σ + �σ , and fσ is the option value computed using another binomial lattice
with a volatility of σ ; all other lattice parameters remain constant.

The implied volatility of American options can be computed using the method
outlined for European options in Section 5.4.4; however, in this case the option
value and Greeks are computed using a binomial lattice (see Code excerpt 5.11).

/* assign the value of delta (obtained from m1 = 1) */
greeks[1] = (v[4]-v[3])/(s[M+1]-s[M-1]);

/* assign the value of gamma (use the values at time step m1 = 2) */
dv1 = v[2] - v[1];
ds1 = s[M+2] - s[M];
dv2 = v[1] - v[0];
ds2 = s[M] - s[M-2];
h = 0.5*(s[M+2] - s[M-2]);
greeks[0] = ((dv1/ds1) - (dv2/ds2))/h;
/* assign the value of theta */
greeks[2] = (v[1]-*value)/(2.0*dt); /* can also write: greeks[2] = (v[1]-v[5])/(2.0*dt); */

}

Code excerpt 5.10 A code fragment that computes the values of the Greeks, Delta,
Gamma and Theta, in the vicinity of the root lattice node R.

void standard_lattice(double *value, double greeks[], double S0,_
double X, double sigma, double T, double r,
double q, long put, long is_american, long M, long *iflag)

{
/* Input parameters:

=================
S0 - the current price of the underlying asset
X - the strike price
sigma - the volatility
T - the time to maturity
r - the interest rate
q - the continuous dividend yield
put - if put is 0 then a call option, otherwise a put option
is_american - if is_american is 0 then a European option, otherwise an American option
M - the number of time steps
Output parameters:
==================
value - the value of the option,
greeks[] - the hedge statistics output as follows: greeks[0] is gamma, greeks[1]_

is delta, greeks[2] is theta,
iflag - an error indicator.

*/
. . .

/* Allocate the arrays s[2*M+1], and v[M+1] */

Code excerpt 5.11.
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dt = T/(double)M;
t1 = sigma*sqrt(dt);
u = exp(t1);
d = exp(-t1);
a = exp((r-q)*dt);
p = (a - d)/(u - d);
if ((p < zero) || (p > 1.0)) printf ("Error p out of range\n");
discount = exp(-r*dt);
p_u = discount*p;
p_d = discount*(1.0-p);

/* assign the 2*M+1 asset values */
s[M] = S0;
for (i = 1; i <= M; ++i) {

s[M+i] = u*s[M+i-1];
s[M-i] = d*s[M-i+1];

}
/* Find out if the number of time steps, M, is odd or even */
if (((M+1)/2) == (M/2)) { /* then M is even */

if (put)
v[M/2] = MAX(X - s[M],zero);

else
v[M/2] = MAX(s[M]-X,zero);

}
/* Calculate the option values at maturity */
P1 = 2*M;
P2 = 0;
for (i = 0; i < (M+1)/2; ++i) {

if (put) {
v[M-i] = MAX(X - s[P1],zero);
v[i] = MAX(X - s[P2],zero);

}
else {

v[M-i] = MAX(s[P1]-X,zero);
v[i] = MAX(s[P2]-X,zero);

}
P1 = P1 - 2;
P2 = P2 + 2;

}
/* now work backwards through the lattice to calculate the current option value */

P2 = 0;
for (m1 = M-1; m1 >= 2; --m1) {

P2 = P2 + 1;
P1 = P2;
for (n =0; n <= m1; ++n) {

if ((v[n] == zero) && (v[n+1] == zero)) {
hold = zero;

}
else

hold = p_d*v[n] + p_u*v[n+1];
if (is_american) {

if (put)
v[n] = MAX(hold,X-s[P1]);

else
v[n] = MAX(hold,s[P1]-X);

}
else

v[n] = hold;
P1 = P1 + 2;

}
}
/* The values v[0], v[1] & v[2] correspond to the nodes for m1 = 2, v[3] & v[4] correspond_

the nodes for m1 = 1 and the
option value (*value) is the node for m1 = 0, v[5]. For a given time step v[0]_
corresponds to the lowest asset price,
v[1] to the next lowest etc.. */

jj = 2;
for (m1 = 2; m1 >= 1; --m1) {

ind = M-m1+1;
for (n =0; n < m1; ++n) {

hold = p_d*v[5-jj-m1-1] + p_u*v[5-jj-m1];
if (is_american) {

if (put)
v[5-jj] = MAX(hold,X-s[ind]);

else

Code excerpt 5.11 (Continued).
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v[5-jj] = MAX(hold,s[ind]-X);
}
else

v[5-jj] = hold;
--jj;
ind = ind + 2;

}
}
*value = v[5];
if(greeks) {

/* assign the value of delta (obtained from m1 = 1) */
greeks[1] = (v[4]-v[3])/(s[M+1]-s[M-1]);

/* assign the value of gamma (use the values at time step m1 = 2) */
dv1 = v[2] - v[1];
ds1 = s[M+2] - s[M];
dv2 = v[1] - v[0];
ds2 = s[M] - s[M-2];
h = 0.5*(s[M+2] - s[M-2]);
greeks[0] = ((dv1/ds1) - (dv2/ds2))/h;
/* assign the value of theta */
greeks[2] = (v[1]-*value)/(2.0*dt); /* can also write:y greeks[2] = (v[1]-v[5])/_
(2.0*dt); */

}

Code excerpt 5.11 Function to compute the value of an option using a standard binomial
lattice.

5.3.3 Binomial lattice with a control variate

The control variate technique can be used to enhance the accuracy that a stan-
dard binomial lattice gives for the value of an American vanilla option. It in-
volves using the same standard binomial lattice to value both an American op-
tion and also the equivalent European option. The Black–Scholes formula is
then used to compute the accurate value of the European option. If we assume
that the error in pricing the European option is the same as that for the Ameri-
can option, we can achieve an improved estimate for the value of the American
option.

When applied to the valuation of an American put option this can be ex-
pressed as follows:

European pricing error, �E = pBS(S,E, τ) − pL(S,E, τ)

American pricing error, �A = P ∗(S,E, τ) − P L(S,E, τ)

where as usual S is the current value of the asset, E is the strike price, and τ is
the maturity of the option. Also pBS(S,E, τ) is the Black–Scholes value of the
European put option, pL(S,E, τ) is the binomial lattice estimate of the Euro-
pean put option, P ∗(S,E, τ) is the (unknown) accurate value of the American
put option, and P L(S,E, τ) is the binomial lattice estimate of the American put
option.

Letting �E = �A we then have:

pBS(S,E, τ) − pL(S,E, τ) = P ∗(S,E, τ) − P L(S,E, τ)

which on rearrangement yields:

P ∗(S,E, τ) = pBS(S,E, τ) − pL(S,E, τ) + P L(S,E, τ)

We thus use P ∗(S,E, τ) as the improved, control variate estimate for the value
of the American put option. Of course, exactly the same approach can be used
to obtain an improved estimate for the value of an American call.
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Code excerpt 5.12 shows the use of the control variate technique in a standard
binomial lattice to provide improved estimates for both the value and the hedge
statistics of an American option.

/* Set up the arrays as in the standard lattice */
. . .

for (i = 0; i < (M+1)/2; ++i) { /* Calculate the option values at maturity */
if (put) {

a_v[M-i] = MAX(X - s[P1],zero);
a_v[i] = MAX(X - s[P2],zero);

}
else {

a_v[M-i] = MAX(s[P1]-X,zero);
a_v[i] = MAX(s[P2]-X,zero);

}
e_v[i] = a_v[i];
e_v[M-i] = a_v[M-i];
P1 = P1 - 2;
P2 = P2 + 2;

}
/* now work backwards through the lattice to calculate the current option value */

P2 = 0;
for (m1 = M-1; m1 >= 2; --m1) {

P2 = P2 + 1;
P1 = P2;
for (n =0; n <= m1; ++n) {

if ((a_v[n] == zero) && (a_v[n+1] == zero))
hold = zero;

else
hold = p_d*a_v[n] + p_u*a_v[n+1];

if (put)
a_v[n] = MAX(hold,X-s[P1]);

else
a_v[n] = MAX(hold,s[P1]-X);

if ((e_v[n] == zero) && (e_v[n+1] == zero))
e_v[n] = zero;

else
e_v[n] = p_d*e_v[n] + p_u*e_v[n+1];

P1 = P1 + 2;
}

}
/* The American values are stored in the array a_v, and the European values in the array_

e_v. The array
indexing is the same as for the standard lattice */

jj = 2;
for (m1 = 2; m1 >= 1; --m1) {

ind = M-m1+1;
for (n =0; n < m1; ++n) {

hold = p_d*a_v[5-jj-m1-1] + p_u*a_v[5-jj-m1];
if (put)

a_v[5-jj] = MAX(hold,X-s[ind]);
else

a_v[5-jj] = MAX(hold,s[ind]-X);
e_v[5-jj] = p_d*e_v[5-jj-m1-1] + p_u*e_v[5-jj-m1];
--jj;
ind = ind + 2;

}
}

/* v1 = American binomial approximation, v2 = European Binomial approximation, temp =_
exact (European) Black-Scholes value */
black_scholes(&temp,bs_greeks,S0,X,sigma,T,r,q,put,&iflagx);
*value = (a_v[5] - e_v[5]) + temp; /* return the control variate approximation */
if(greeks) {

/* assign the value of delta (obtained from m1 = 1) */
a_delta = (a_v[4]-a_v[3])/(s[M+1]-s[M-1]);
e_delta = (e_v[4]-e_v[3])/(s[M+1]-s[M-1]);
greeks[1] = a_delta - e_delta + bs_greeks[1];

/* assign the value of gamma (use the values at time step m1 = 2) */
dv1 = a_v[2] - a_v[1];

Code excerpt 5.12.
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ds1 = s[M+2] - s[M];
dv2 = a_v[1] - a_v[0];
ds2 = s[M] - s[M-2];
h = 0.5*(s[M+2] - s[M-2]);
a_gamma = ((dv1/ds1) - (dv2/ds2))/h;
dv1 = e_v[2] - e_v[1];
dv2 = e_v[1] - e_v[0];
e_gamma = ((dv1/ds1) - (dv2/ds2))/h;
greeks[0] = (a_gamma - e_gamma) + bs_greeks[0];
/* assign the value of theta */
a_theta = (a_v[1]-a_v[5])/(2.0*dt);
e_theta = (e_v[1]-e_v[5])/(2.0*dt);
greeks[2] = (a_theta - e_theta) + bs_greeks[2];

}

Code excerpt 5.12 Function to compute the value and hedge statistics of an American
option using a binomial lattice with a control variate.

Finally we should mention that the control variate technique does not just
apply to American vanilla options. The method is quite general and can be used
to obtain improved estimates for any integral (or exotic option) so long as an
accurate (closed form) solution of a similar integral is known. One common
use of the control variate method is to improve the accuracy of Monte Carlo
estimates.

5.3.4 The Binomial lattice with BBS and BBSR

Here we consider the Binomial Black–Scholes (BBS) method and also the Bino-
mial Black–Scholes method with Richardson extrapolation (BBSR) (see Broadie
and DeTemple (1996)). As with the control variate method discussed in the
previous section, both of these techniques can be used in conjunction with a
standard binomial lattice to improve the computed results.

We will first discuss the BBS method.

The BBS method

The BBS method is identical to the standard binomial lattice except that in the
last time step (that is just before option maturity) the Black–Scholes formula is
used to calculate the option values at maturity. For an n time step binomial lat-
tice this involves evaluating the Black–Scholes formula at each of the n nodes in
the penultimate time step; see Fig. 5.1. In Code excerpt 5.13 we define the func-
tion bs_lattice which incorporates the BBS method into a standard binomial
lattice. The reader will have noticed that bbs_lattice is rather lax concern-
ing the amount of storage that is required; see Section 5.3.2. It uses an array of
size LN n rather than LSn to store the lattice asset prices; the modification to
use an array of size LSn is left as an exercise.

The benefits of using the BBS approach to price an American call are illus-
trated in Fig 5.3. Here we compare the results obtained using the function
bbs_lattice with those computed by the function standard_ lattice,
the standard binomial lattice of Code excerpt 5.11. It can be clearly seen that
the BBS method is significantly more accurate than the standard binomial lattice
approach, in which option pricing error exhibits pronounced oscillations.
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void bbs_lattice(double *value, double greeks[], double S0, double X, double sigma, double T,_
double r,
double q, long put, long M, long *iflag)

{
/* Input parameters:

=================
S0 - the current price of the underlying asset
X - the strike price
sigma - the volatility
T - the time to maturity
r - the interest rate
q - the continuous dividend yield
put - if put is 0 then a call option, otherwise a put option
M - the number of time steps
Output parameters:
==================
value - the value of the option, greeks[] - the hedge statistics output as follows:_

greeks[0] is gamma,
greeks[1] is delta, greeks[2] is theta,

iflag - an error indicator.
*/

. . .
/* allocate the arrays s[((M+2)*(M+1))/2], and v[M+1] */

dt = T/(double)M;
t1 = sigma*sqrt(dt);
u = exp(t1);
d = exp(-t1);
a = exp((r-q)*dt);
p = (a - d)/(u - d);
if ((p < zero) || (p > 1.0)) return; /* Invalid probability */
discount = exp(-r*dt);
p_u = p*discount;

p_d = (1.0-p)*discount;
jj = 0;
s[0] = S0;
/* The "higher" the value of jj, at a given time instant, the lower the value of the_
asset price */
for (m1 = 1; m1 <= M-1; ++m1) { /* Calculate asset values up to (M-1)th time step */

for (n = m1; n >= 1; --n) {
++jj;
s[jj] = u*s[jj-m1];

}
++jj;
s[jj] = d*s[jj-m1-1];

}
for (n = 0; n <= M-1; ++n) { /* Use Black-Scholes for the final step */

black_scholes(&temp,NULL,s[jj],X,sigma,dt,r,q,put,&iflagx);
v[n] = temp;
--jj;

}
for (m1 = M-1; m1 >= 3; --m1) { /* work backwards through the lattice */

for (n =0; n < m1; ++n) {
if ((v[n] == zero) && (v[n+1] == zero)) {

hold = zero;
}
else

hold = p_d*v[n] + p_u*v[n+1];
if (is_american) {

if (put)
v[n] = MAX(hold,X-s[jj]);

else
v[n] = MAX(hold,s[jj]-X);

}
else

v[n] = hold;
--jj;

}
}

/* The values v[0], v[1] & v[2] correspond to the nodes for m1 = 2, v1 & v2 correspond to_
the nodes for m1 = 1 and the
option value (*value) is the node for m1 = 0. For a given time step v[0] corresponds to_
the lowest asset price,

v[1] to the next lowest etc.. */

Code excerpt 5.13.
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hold = p_d*v[0] + p_u*v[1];
if (is_american) {

if (put)
v1 = MAX(hold,X-s[jj]);

else
v1 = MAX(hold,s[jj]-X);

}
else

v1 = hold;
--jj;

hold = p_d*v[1] + p_u*v[2];
if (is_american) {

if (put)
v2 = MAX(hold,X-s[jj]);

else
v2 = MAX(hold,s[jj]-X);

}
else

v2 = hold;
--jj;

hold = p_d*v1 + p_u*v2;
if (is_american) {

if (put)
*value = MAX(hold,X-s[0]);

else
*value = MAX(hold,s[0]-X);

}
else

*value = hold;
if(greeks) {

/* assign the value of delta (obtained from m1 = 1) */
greeks[1] = (v2-v1)/(s[1]-s[2]);

/* assign the value of gamma (use the values at time step m1 = 2) */
dv1 = v[2] - v[1];
ds1 = s[3] - s[4];
dv2 = v[1] - v[0];
ds2 = s[4] - s[5];
h = 0.5*(s[3] - s[5]);
greeks[0] = ((dv1/ds1) - (dv2/ds2))/h;
/* assign the value of theta */
greeks[2] = (v[1]-*value)/(2.0*dt);

}
}

Code excerpt 5.13 The function bbs_lattice which incorporates the BBS method
into a standard binomial lattice. The Black–Scholes formula is evaluated by using the
function black_scholes, given in Code excerpt 4.1.

The BBSR method

The BBSR method applies two point Richardson extrapolation to the com-
puted BBS values; for more information concerning Richardson extrapolation
see Marchuk and Shaidurov (1983). In this method the option price estimates
from two BBS lattices, with differing numbers of time steps, are combined to
form an improved estimate.

Here we use the following BBSR scheme to compute the value of an American
call option:

CBBSR(S,E, τ, 2n) = 4

3
CBBS(S,E, τ, 2n) − 1

3
CBBS(S,E, τ, n) (5.3.24)

where S is the current asset value, E is the strike price, τ is the option maturity,
CBBS(S,E, τ, n) is the value of the call option computed using a BBS lattice with
n time steps, CBBS(S,E, τ, 2n) is the value of the call option computed using a
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Figure 5.3 The error in the estimated value, est_val, of an American call using both a
standard binomial lattice and BBS binomial lattice. The parameters used were: T = 1.0,
S = 105.0, E = 105.0, r = 0.1, q = 0.02, σ = 0.3. The very accurate value (acc_val) was
16.1697, and was computed using a 6000 step standard binomial lattice. The error in
the estimated value was obtained as est_val − acc_val.

BBS lattice with 2n time steps, and CBBSR(S,E, τ, 2n) is the BBSR estimate. We
compute the value of an American put using:

PBBSR(S,E, τ, 2n) = 4

3
PBBS(S,E, τ, 2n) − 1

3
PBBS(S,E, τ, n) (5.3.25)

Figure 5.4 displays the computed BBSR results for an American call option
with S = 105.0, τ = 1.0, E = 105.0, q = 0.02 and σ = 0.3.

In Tables 5.5 and 5.6 the errors in computing both an American put and an
American call option are presented; the methods used are the standard binomial
lattice, the BBS lattice and the BBSR lattice. It can be seen that the BBSR lattice
gives the most accurate results. This is not surprising since, from Eqs. (5.3.24)
and (5.3.25) we see that when we use either an n time step standard binomial
lattice or an n time step BBS lattice the corresponding BBSR estimate is obtained
using both an n time step BBS lattice and also a 2n time step BBS lattice. One way
of checking whether Richardson extrapolation is providing increased accuracy
is to compare the results for a 2n time step BBS latticewith those for an n time
step BBSR lattice. Inspection of the results shows that Richardson extrapolation
has in fact led to an improvement. For example, in Table 5.5 the error for a 160
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Figure 5.4 The error in the estimated value, est_val, of an American call, using a BBSR
binomial lattice. The parameters used were: T = 1.0, S = 105.0, E = 105.0, r = 0.1,
q = 0.02, σ = 0.3. The very accurate value (acc_val) was 16.1697, and was computed
using a 6000 step standard binomial lattice. The error in the estimated value was ob-
tained as est_val − acc_val.

time step BBS lattice is 5.0869e-003, while that for an 80 time step BBSR
lattice is 3.5725e-003; in Table 5.6 the error for an 80 time step BBS lattice
is 6.3858e-003, and that for a 40 time step BBSR lattice is 3.5725e-003.

5.4 Grid methods for vanilla options

5.4.1 Introduction

In Section 5.3 we discussed the use of binomial lattice methods for valuing both
European and American options. The lattice methods we described have the
advantage that they are fairly easy to implement and can value simple options,
such as vanilla puts and calls, reasonably accurately. The use of up and down
jump probabilities at the lattice nodes is also an appealing feature, since they
are directly related to the stochastic process which is being modelled. However,
lattice techniques have the following drawbacks:

• They require small time steps to ensure numerical stability
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Table 5.5 The pricing errors for an American call option computed by: a standard
binomial lattice, a BBS lattice and also a BBSR lattice

n steps Standard lattice BBS lattice BBSR lattice

20 −1.5075e−001 3.6187e−002 1.2754e−002
30 −1.0057e−001 2.4526e−002 8.6771e−003
40 −7.5382e−002 1.8612e−002 6.6361e−003
50 −6.0244e−002 1.5036e−002 5.4109e−003
60 −5.0141e−002 1.2639e−002 4.5939e−003
70 −4.2919e−002 1.0922e−002 4.0103e−003
80 −3.7499e−002 9.6302e−003 3.5725e−003
90 −3.3282e−002 8.6236e−003 3.2320e−003

100 −2.9908e−002 7.8171e−003 2.9596e−003
110 −2.7146e−002 7.1565e−003 2.7367e−003
120 −2.4844e−002 6.6053e−003 2.5509e−003
130 −2.2896e−002 6.1385e−003 2.3938e−003
140 −2.1226e−002 5.7382e−003 2.2590e−003
150 −1.9778e−002 5.3909e−003 2.1423e−003
160 −1.8511e−002 5.0869e−003 2.0401e−003
170 −1.7393e−002 4.8186e−003 1.9500e−003
180 −1.6399e−002 4.5799e−003 1.8698e−003
190 −1.5510e−002 4.3663e−003 1.7981e−003
200 −1.4710e−002 4.1740e−003 1.7336e−003

The pricing error is defined as estimated value − accurate value, where the accurate
value, 16.1697, was obtained by using a 6000 step standard binomial lattice. The option
parameters used were: T = 1.0, S = 105.0, E = 105.0, r = 0.1, q = 0.02, and σ = 0.3.

• There is little control over where the lattice nodes are located. This can lead
to very poor accuracy when valuing certain types of options; for example,
those with barriers at particular asset prices.

One method of avoiding these limitations is through the use of finite-difference
grids. Although this approach no longer has the probabilistic interpretation of
the binomial lattice it has the following advantages:

• Fewer time steps are required to ensure numerical stability
• There is complete control over the placement of grid lines, and their associ-

ated grid nodes.

5.4.2 Uniform grids

The Black–Scholes equation for the value of an option f is given by:

∂f

∂t
+ (r − q)S

∂f

∂S
+ 1

2
σ 2S2 ∂2f

∂S2
= rf (5.4.1)

We want to solve this equation over the duration of the option, that is from
the current time t to the maturity of the option at time t + τ . To do this we
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Table 5.6 The pricing errors for an American put option computed by: a standard
binomial lattice, a BBS lattice and also a BBSR lattice

n steps Standard lattice BBS lattice BBSR lattice

20 −6.1971e−002 2.3917e−002 7.6191e−003
30 −4.1648e−002 1.6800e−002 6.0465e−003
40 −3.2264e−002 1.1694e−002 4.6165e−003
50 −2.6538e−002 8.4790e−003 4.2654e−003
60 −2.1069e−002 8.7348e−003 3.2946e−003
70 −1.8298e−002 7.2743e−003 2.9633e−003
80 −1.5885e−002 6.3858e−003 2.6088e−003
90 −1.3977e−002 5.9417e−003 2.2099e−003

100 −1.2612e−002 5.3188e−003 2.1793e−003
110 −1.1338e−002 4.9652e−003 2.0992e−003
120 −1.0239e−002 4.6547e−003 1.8723e−003
130 −9.5208e−003 4.1505e−003 1.8808e−003
140 −8.6142e−003 4.0411e−003 1.7505e−003
150 −8.2382e−003 3.6020e−003 1.7341e−003
160 −7.5811e−003 3.5531e−003 1.6411e−003
170 −7.1097e−003 3.3726e−003 1.5507e−003
180 −6.7887e−003 3.1428e−003 1.5478e−003
190 −6.3033e−003 3.1345e−003 1.4134e−003
200 −6.0276e−003 2.9642e−003 1.3973e−003

The pricing error is defined as estimated value − accurate value, where the accurate
value, 9.2508, was obtained by using a 6000 step standard binomial lattice. The option
parameters used were: T = 1.0, S = 105.0, E = 105.0, r = 0.1, q = 0.02, and σ = 0.3.

will use a grid in which the asset price S takes ns uniformly spaced values,
Sj = j�S, j = 0, . . . , ns − 1, where �S is the spacing between grid points. If
Smax is the maximum asset value we want to represent, then the grid spacing,
�S∗, can be simply calculated as:

�S∗ = Smax

ns − 1
(5.4.2)

However, since we would like to solve the option values and Greeks at the
current asset price S0, we would also like an asset grid line to coincide with
the current asset price. This avoids the use of interpolation which is necessary
when the asset value does not correspond to a grid line. The method by which
we achieve this is outlined in Code excerpt 5.12. Here the user supplies the
function opt_gfd with values for Smax and ns −1 from which �S∗ is computed
using Eq. (5.4.2). We then find the integer, n1, that is just below (or equal to)
the value S0/�S∗, and use this to obtain a new grid spacing �S = S0/n1. This
leads to the new asset price discretization Sj = j�S, j = 0, . . . , ns − 1, where
we have now ensured that Sn1 = S0.
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The user also supplies the function opt_gfd with the number of time inter-
vals for the grid. When there are nt time intervals, the grid has nt + 1 uniformly
spaced time instants, ti = i�t, i = 0, . . . , nt , and the time step is simply:

�t = τ

nt

(5.4.3)

As with the binomial lattice methods we will solve the equation backwards in
time from maturity (at time t + τ ) to the present (time t). So as we solve the
equation the time index will start at i = nt (time t + τ ) and decrease to i = 0
(current time t).

Here we discuss the grid method of solving the Black–Scholes equation in
terms of:

• The finite-difference approximation
• The boundary conditions
• Computation of the option values at a given time instant
• Backwards iteration and early exercise

Each of these aspects will now be considered in turn.

The finite-difference approximation

The option value corresponding to the grid node at which ti = i�t and Sj =
j�S will be denoted by fi,j . We will approximate the partial derivative of fi,j

with respect to time simply as:

∂f

∂t
= fi+1,j − fi,j

�t
(5.4.4)

For the other terms in Eq. (5.4.1) we will use the weighted, Θm, method. This
technique involves selecting an appropriate choice for Θm in the range 0 �
Θm � 1 so that the contribution from node (i, j) is a weighted sum involving
the values at nodes (i, j) and (i+1, j). For instance, the term rf |i,j in Eq. (5.4.1)
is approximated as:

rf |i,j = r
{
Θmfi+1,j + (1 − Θm)fi,j

}
(5.4.5)

and the term ∂f
∂S

|i,j in Eq. (5.4.1) is approximated as:

∂f

∂S

∣∣∣∣
i,j

=
{
Θm

∂f

∂S

∣∣∣∣
i+1,j

+ (1 − Θm)
∂f

∂S

∣∣∣∣
i,j

}
(5.4.6)

Using this method we thus obtain, at node (i, j), the following discretized ver-
sion of Eq. (5.4.1):

fi+1,j − fi,j

�t
+ (r − q)Sj

{
Θmf ′

i+1,j + Θ∗
mf ′

i,j

}
+ 1

2
σ 2S2

j

{
Θmf ′′

i+1,j + Θ∗
mf ′′

i,j

} = r
{
Θmfi+1,j + Θ∗

mfi,j

}
(5.4.7)
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where for compactness we have written Θ∗
m = 1 − Θm, and denote the partial

derivatives w.r.t. S at node (i, j) as: f ′
i,j = ∂f

∂S
|i,j and f ′′

i,j = ∂2f

∂S2 |i,j .
Finite-difference approximations for these derivatives can be obtained by

considering a Taylor expansion about the point fi,j . We proceed as fol-
lows:

fi,j+1 = fi,j + f ′
i,j�S + 1

2
f ′′

i,j (�S)2 (5.4.8)

fi,j−1 = fi,j − f ′
i,j�S + 1

2
f ′′

i,j (�S)2 (5.4.9)

Subtracting Eq. (5.4.9) from Eq. (5.4.8) we obtain:

fi,j+1 − fi,j−1 = 2f ′
i,j�S

and so

f ′
i,j = fi,j+1 − fi,j−1

2�S
(5.4.10)

Adding Eqs. (5.4.9) and (5.4.8) we obtain:

fi,j+1 + fi,j−1 = 2fi,j + f ′′
i,j�S2

which gives:

f ′′
i,j = fi,j+1 − 2fi,j + fi,j−1

�S2
(5.4.11)

The complete finite-difference approximation to the Black–Scholes equation can
then be found by substituting the approximations for the first and second par-
tial derivatives, given in Eqs. (5.4.10) and (5.4.11), into (5.4.7). We thus ob-
tain:

r�t
{
Θmfi+1,j + Θ∗

mfi,j

}
= fi+1,j − fi,j + (r − q)j�tA1

2
+ σ 2j2�tA2

2
(5.4.12)

where we have used the fact that Sj = j�S, and for compactness have defined
the terms:

A1 = Θmfi+1,j+1 − Θmfi+1,j−1 + Θ∗
mfi,j+1 − Θ∗

mfi,j−1

and

A2 = Θmfi+1,j+1 + Θmfi+1,j−1 − 2Θmfi+1,j + Θ∗
mfi,j+1

+ Θ∗
mfi,j−1 − 2Θ∗

mfi,j

Collecting like terms in fi,j , fi+1,j , etc. results in:

B1fi,j−1 + B2fi,j + B3fi,j+1 + C1fi+1,j−1 + C2fi+1,j

+ C3fi+1,j+1 = 0 (5.4.13)
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where

B1 = −Θ∗
m(r − q)j�t

2
+ Θ∗

mσ 2j2�t

2

B2 = −1 − r�tΘ∗
m − Θ∗

mσ 2j2�t

B3 = Θ∗
m(r − q)j�t

2
+ Θ∗

mσ 2j2�t

2

C1 = Θmσ 2j2�t

2
− Θm(r − q)j�t

2

C2 = 1 − r�tΘm − Θmσ 2j2�t

C3 = Θm(r − q)j�t

2
+ Θmσ 2j2�t

2

Since we are solving the equation backwards in time and we want to de-
termine the option values at time index i from the known option values
(fi+1,j+1, fi+1,j and fi+1,j−1) at time index i + 1. This can be achieved by
rearranging Eq. (5.4.13) as follows:

ajfi,j−1 + bjfi,j + cjfi,j+1 = Ri+1,j (5.4.14)

where the right-hand side, Ri+1,j , is:

Ri+1,j = āj fi+1,j−1 + b̄j fi+1,j + c̄j fi+1,j+1 (5.4.15)

The six coefficients are:

aj = (1 − Θm)
�t

2

{
(r − q)j − σ 2j2} (5.4.16)

bj = 1 + (1 − Θm)�t
{
r + σ 2j2} (5.4.17)

cj = −(1 − Θm)
�t

2

{
(r − q)j + σ 2j2} (5.4.18)

āj = −Θm

�t

2

{
(r − q)j − σ 2j2} (5.4.19)

b̄j = 1 − Θm�t
{
r + σ 2j2} (5.4.20)

c̄j = Θm

�t

2

{
(r − q)j + σ 2j2} (5.4.21)

For each value of j Eq. (5.4.14) gives us a relationship between three option
values, fi+1,j−1, fi+1,j , fi+1,j+1 at time index i + 1, and three option values
fi,j−1, fi,j , fi,j+1 at time index i.

This situation is shown in Fig. 5.5 where we have labelled the grid nodes that
contribute to the option value f5,5 at grid node E. These are the known option
values:

node A: f6,6, node B: f6,5, and node C: f6,4
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and the unknown option values

node D: f5,6, node E: f5,5, and node F: f5,4.

Before we solve Eq. (5.4.14), we will briefly consider its characteristics for dif-
ferent values of the weight parameter Θm.

When Θm = 1 the values of the coefficients in Eq. (5.4.14) are aj = cj = 0,
and bj = 1. This means that Eq. (5.4.14) reduces to:

fi,j = āj fi+1,j−1 + b̄j fi+1,j + c̄j fi+1,j+1

This is termed the explicit method, and it can be seen that the unknown option
value fi,j , at the grid node (i, j) is just a weighted sum of the (known) op-
tion values fi+1,j−1, fi+1,j , fi+1,j+1. This is the simplest situation to deal with
and actually corresponds to a trinomial lattice. However, it has poor numerical
properties and usually requires a very small step size to obtain accurate results;
see Smith (1985).

When Θm �= 1, the unknown option value fi,j depends not only on the
known option values fi+1,j−1, fi+1,j , fi+1,j+1 (as in the explicit method above),
but also on the neighboring unknown option values fi,j−1 and fi,j+1. It is
now necessary to solve a set of simultaneous equations in order to com-
pute the value fi,j . This is therefore called an implicit method; see Smith
(1985).

The implicit method Θm = 0 is also called the fully implicit method,
since now the unknown value fi,j only depends on the neighboring values
fi,j−1, fi,j+1, and its previous value, fi+1,j , at time step i + 1. This can
be shown by substituting Θm = 0 in Eqs. (5.4.16)–(5.4.21). We then ob-
tain āj = c̄j = 0, and b̄j = 1, which means that Eq. (5.4.14) reduces
to:

ajfi,j−1 + bjfi,j + cjfi,j+1 = fi+1,j

The implicit method Θm = 0.5 is also termed the Crank–Nicolson method.
This method, first used by John Crank and Phyliss Nicolson in 1946 (see
Crank and Nicolson (1947)), computes fi,j by giving equal weight to the con-
tributions from time step i + 1 and time step i. Substituting Θm = 0.5 in
Eq. (5.4.16) to Eq. (5.4.21) we obtain the following Crank–Nicolson coeffi-
cients:

aj = −āj = �t

4

{
(r − q)j − σ 2j2}

bj = 1 + �t

2

{
r + σ 2j2}

b̄j = 1 − �t

2

{
r + σ 2j2}

cj = −c̄j = −�t

4

{
(r − q)j + σ 2j2}

We notice that since we are solving backwards in time, but index time in the
forward direction, our values of Θm corresponding to implicit and explicit are
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different from those normally used. For example, in Smith (1985) Θm = 0 is
the explicit method and Θm = 1 is the implicit method; the Crank–Nicolson
method is still Θm = 0.5.

The boundary conditions

In order to solve Eq. (5.4.14) at time instant i�t we need to obtain the option
values at: the upper asset boundary, the lower asset boundary, and the initial
values that are specified at option maturity.

Here we calculate the boundary values by using the time independent payoff,
pj , at the j th asset index within the grid. If E is the strike price then vanilla call
options have payoffs:

pj = max(j�S − E, 0), j = 0, . . . , ns − 1,

and vanilla put options have payoffs:

pj = max(E − j�S, 0), j = 0, . . . , ns − 1

Upper asset boundary values
At the upper boundary j = ns −1 and (ns −1)�S = Smax; where we note that

for the grid to be useful we require Smax > E.
Here we assume that Smax > E and so for call options:

pns−1 = Smax − E

and for put options:

pns−1 = 0

The option value at the upper boundary, denoted by fBU, is set to pns−1, and
we have fi,ns−1 = fBU, i = 0, . . . , nt .

Lower asset boundary values
At the lower boundary j = 0, and the value of j�S is zero.
So for call options:

p0 = 0

and for put options:

p0 = E

The option value at the lower boundary, denoted by fBL, is set to p0, and we
have fi,0 = fBL, i = 0, . . . , nt .

Boundary values at option maturity
At option maturity (i = nt ) the initial option (boundary) values are the pre-

viously mentioned payouts. If E is the strike price then for vanilla call op-
tions:

fnt ,j = max(j�S − E, 0), j = 0, . . . , ns − 1,
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and for vanilla put options:

fnt ,j = max(E − j�S, 0), j = 0, . . . , ns − 1

This is illustrated in Fig. 5.5 for a vanilla put option with current asset value
S0 = 20, strike, E = 25, and maturity τ = 2. The grid asset price spacing is
�S = 5, and the time increment is �t = 0.2. At option maturity, corresponding
to time index i = 10, the value of the put option is zero for all asset indices
j � 5.

Computation of the option values at a given time instant

Having found the option boundary values, we are now in a position to solve
Eq. (5.4.14) at time instant ti = i�t .

First we note that since fi,0 = fBL and fi,ns−1 = fBU Eq. (5.4.14) only needs
to be solved for values of the asset index j in the range j = 1 to j = ns − 2.

We now deal with the following situations:

• Case 1: j = 1, the asset grid line just above the lower boundary
• Case 2: j = ns − 2, the asset grid line just below the upper boundary
• Case 3: all other asset grid lines not included in Case 1 or Case 2

and consider the form that Eq. (5.4.14) takes under each condition.

Case 1: j = 1
Substituting j = 1 into Eq. (5.4.14) we obtain:

a1fi,0 + b1fi,1 + c1fi,2 = ā1fi+1,0 + b̄1fi+1,1 + c̄1fi+1,2

Now, since fi,0 = fBL, this becomes:

b1fi,1 + c1fi,2 = (ā1 − a1)fBL + b̄1fi+1,1 + c̄1fi+1,2

or equivalently:

b1fi,1 + c1fi,2 = Ri+1,1 (5.4.22)

where

Ri+1,1 = (ā1 − a1)fBL + b̄1fi+1,1 + c̄1fi+1,2 (5.4.23)

Case 2: j = ns − 2
Substituting j = ns − 1 into Eq. (5.4.14) we obtain:

ans−2fi,ns−3 + bns−2fi,ns−2 + cns−2fi,ns−1

= āns−2fi+1,ns−3 + b̄ns−2fi+1,ns−2 + c̄ns−2fi+1,ns−1

Since fi,ns−1 = fBU this gives:

ans−2fi,ns−3 + bns−2fi,ns−2

= āns−2fi+1,ns−3 + b̄ns−2fi+1,ns−2 + (c̄ns−2 − cns−2)fBU
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or equivalently:

ans−2fi,ns−3 + bns−2fi,ns−2 = Ri+1,ns−2 (5.4.24)

where

Ri+1,ns−2 = āns−2fi+1,ns−3 + b̄ns−2fi+1,ns−2 + (c̄ns−2 − cns−2)fBU (5.4.25)

Case 3
In this case the boundary values do not enter into the expressions, and we

simply restate Eq. (5.4.14) as:

ajfi,j−1 + bjfi,j + cjfi,j+1 = Ri+1,j , j = 3, . . . , ns − 3, (5.4.26)

where as before the right-hand side, Ri+1,j , is:

Ri+1,j = āj fi+1,j−1 + b̄j fi+1,j + c̄j fi+1,j+1 (5.4.27)

We can now gather all the information in Eqs. (5.4.23)–(5.4.27) and represent
it by the following tridiagonal system:⎛⎜⎜⎜⎜⎜⎝

b1 c1 0 0 0 0
a2 b2 c2 0 0 0
0 0 . . 0 0
0 0 0 . . 0
0 0 0 ans−3 bns−3 cns−3
0 0 0 0 ans−2 bns−2

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
fi,1
fi,2
.

.

fi,ns−3
fi,ns−2

⎞⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎝
Ri+1,1
Ri+1,2

.

.

Ri+1,ns−3
Ri+1,ns−2

⎞⎟⎟⎟⎟⎟⎠ (5.4.28)

In matrix notation Eq. (5.4.28) can be written as:

Ax = R (5.4.29)

where A is the (ns − 2) × (ns − 2) tridiagonal matrix containing the known
coefficients aj , j = 2, . . . , ns −2, bj , j = 1, . . . , ns −2, and cj , j = 1, . . . , ns −3.
The vector R denotes the known right-hand side, Ri+1,j , j = 1, . . . , ns − 2,
and the vector x contains the unknown option values that we wish to compute,
fi,j , j = 1, . . . , ns − 2.

It is well known that, if matrix A is nonsingular, Eq. (5.4.29) can be solved
using an LU decomposition. Here we factorize the n × n matrix A as:

A = LU

where L is an n × n lower triangular matrix with 1s on the diagonal and U is
an n × n upper triangular matrix. We illustrate the LU decomposition for a full
4 × 4 matrix below:
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⎛⎜⎝
a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

⎞⎟⎠

=
⎛⎜⎝

1 0 0 0
l2,1 1 0 0
l3,1 l3,2 1 0
l4,1 l4,2 l4,3 1

⎞⎟⎠
⎛⎜⎝

u1,1 u1,2 u1,3 u1,4
0 u2,2 u2,3 u2,4
0 0 u3,3 u3,4
0 0 0 u4,4

⎞⎟⎠ (5.4.30)

If A is a tridiagonal matrix then the LU decomposition takes the simpler form:⎛⎜⎝
a1,1 a1,2 0 0
a2,1 a2,2 a2,3 0
0 a3,2 a3,3 a3,4
0 0 a4,3 a4,4

⎞⎟⎠

=
⎛⎜⎝

1 0 0 0
l2,1 1 0 0
0 l3,2 1 0
0 0 l4,3 1

⎞⎟⎠
⎛⎜⎝

u1,1 u1,2 0 0
0 u2,2 u2,3 0
0 0 u3,3 u3,4
0 0 0 u4,4

⎞⎟⎠ (5.4.31)

where it can be seen that now both L and U are bidiagonal.
Once the LU decomposition of A has been found, it is possible to solve for

x in Eq. (5.4.29) by using a two stage method (see for example Golub and Van
Loan (1989)). Here forward elimination is used to solve Ly = R, and then
back-substitution is applied to Ux = y. We can thus write the procedure as:

Ax = (LU)x = L(Ux) = Ly = R
We will now provide code excerpts which show how to solve the (ns − 2) ×
(ns − 2) tridiagonal system represented by Eq. (5.4.29). These excerpts are in
fact contained within the larger Code excerpt 5.18, which displays the complete
C code for the option pricing function opt_gfd. If the reader requires more
detail concerning the precise code used for option pricing, then this code should
be consulted. (It should be noted that in Code excerpt 5.18, time is indexed
using j and asset price using index i. We have modified the indices for the
smaller code excerpts given below so that, as might be expected, time is indexed
using i, and asset price using j . The author apologizes for any inconvenience
this may cause.) Here, for brevity, we will assume that all the required arrays
have already been allocated and loaded with the relevant information.

First we need to compute the LU decomposition of the tridiagonal matrix A.
The code to achieve this is given in Code excerpt 5.14. Here we use the following
three arrays to store the elements of the tridiagonal matrix A: array b contains
the diagonal elements, array c contains the upper diagonal elements, and array a
holds the lower diagonal elements.

It should be noted we do not explicitly compute the elements of the matrix L.
This is because all the diagonal elements of L are known to be 1, and the sub-
diagonal elements of L can be computed from the diagonal elements of U by
using l[j] = a[j]/u[j-1]. Also we do not need to compute the upper di-
agonal elements of U since they are known to be the same as the upper diagonal



146 Computational Finance Using C and C#

u[1] = b[1];
if (u[1] == 0.0) printf ("ERROR in array u \n");
for(j=2; j <=ns-2; ++j) {

u[j] = b[j] - a[j]*c[j-1]/u[j-1];
if (u[j] == 0.0) printf ("ERROR in array u \n");

}

Code excerpt 5.14 Computer code that calculates the diagonal elements of the matrix U ,
in an LU decomposition of a tridiagonal matrix A. The elements of matrix A are stored
in the following arrays: array b contains the diagonal elements, array c contains the
upper diagonal elements, and array a holds the lower diagonal elements. The diagonal
elements of U are stored in the array u for later use, in Code excerpts 5.15 and 5.16.

work[1] = rhs[1];
for(j=2; j<=ns-2; ++j) {

work[j] = rhs[j] - a[j]*work[j-1]/u[j-1];
}

Code excerpt 5.15 Computer code that uses forward elimination to solve the lower tri-
angular system Ly = R, where y is stored in the array work.

opt_vals[ns-2] = work[ns-2]/u[ns-2];
for(j = ns-2; j >= 1; --j)

opt_vals[j] = (work[j] - c[j]*opt_vals[j+1])/u[j];

Code excerpt 5.16 Computer code that uses back-substitution to solve the upper trian-
gular system Ux = y. At time instant ti = i�t , the elements of x are the calculated option
values fi,j , i = 1, . . . , ns−2.

elements of the original matrix A, and are contained in the array c; see for
example Hager (1988).

Having computed the LU decomposition we can now solve the lower tri-
angular system Ly = R using forward elimination; this is shown in Code ex-
cerpt 5.15.

In Code excerpt 5.15 we make use of the following two arrays: the array rhs
which is used to store the elements of the right-hand side R, and the array work
which is both used as workspace and to store the computed solution vector y.
As previously mentioned the subdiagonal elements of L are given by l[j] =
a[j]/u[j-1]. This means that in Code excerpt 5.15, the line:

work[j] = rhs[j] − a[j] ∗ work[j − 1]/u[j − 1];
is in fact equivalent to:

work[j] = rhs[j] − l[j] ∗ work[j − 1];
where l[j],j=2,..,ns-2, contains the subdiagonal elements of L, if we had
(needlessly) decided to allocate space for an extra array called l.

We are now in a position to solve the triangular system Ux = y by using back-
substitution. The code to achieve this is given in Code excerpt 5.16. Here the
array work contains the previously computed values of y, the diagonal elements
of U are contained in the array u, and (as previously mentioned) the upper
diagonal elements of U are stored in the array a.
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In Code excerpt 5.16 the array opt_vals contains the solution vector x. As
its name suggests the contents of the array opt_vals are in fact the computed
option values, fi,j , j = 1, . . . , ns − 2, in Eq. (5.4.28) and represent the solution
of the Black–Scholes partial differential equation at time instant ti = i�t based
on the previously computed option values fi+1,j , j = 1, . . . , ns − 2.

Backwards iteration and early exercise

The Black–Scholes equation can be solved over the time interval t to t+τ by iter-
atively solving Eq. (5.4.28). We iterate backwards in time by solving Eq. (5.4.28)
at the ith time step and then using the computed values to solve Eq. (5.4.28) for
the (i − 1)th time step. The option values at current time t are obtained when
time index i = 0 is reached. It can be seen that the grid method yields ns − 2
option values, f0,j , j = 1, . . . , ns − 2, which correspond to the current asset
prices:

S
j

0 = j�S, j = 1, . . . , ns − 2

As previously mentioned the asset price S0 coincides with grid index j = n1.
Therefore S0 = S

n1
0 , and the option value for the current asset price S0 is given

by f0,n1 .
This is in contrast to the lattice methods discussed in Chapter 4, which yield

a single option value corresponding to the root node.
The option values obtained using the grid methods we have just described

are for vanilla European options. However, vanilla European options can
be more accurately valued by using the Black–Scholes option pricing for-
mula discussed in Chapter 4. The importance of finite difference grids is
that, by slightly modifying our backward iterative method, we can take
into account the possibility of early exercise, and thus price American op-
tions.

This can be achieved by using Code excerpt 5.17 to modify the option prices
contained in the array opt_vals as follows:

if (put) { /* a put */
for(j=1; j<=ns-2; ++j)

opt_vals[j] = MAX(opt_vals[j],E-s[j]);
}
else { /* a call */
for(j=1; j<=ns-2; ++j)

opt_vals[j] = MAX(opt_vals[j],s[j]-E);
}

Code excerpt 5.17 Computer code that modifies the computed option values contained
in array opt_vals to include the possibility of early exercise; this is required if we are
to determine the value of American options. Here s[j] contains the asset value at asset
index j , opt_vals[j] contains the option value (computed by Code excerpt 5.16) at
asset index j , and E is the strike price.
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Figure 5.5 An example uniform grid, which could be used to estimate the value of a
vanilla option which matures in two years’ time. The grid parameters are: ns = nt = 10,
�t = 0.2, �S = 5, and Smax = 50. The option parameters are E = 25, S0 = 20, and
τ = 2.0. As usual we denote the grid node option values by fi,j , where i is the time index
and j is the asset index. The option values of the grid nodes at maturity for a vanilla put
are thus labelled as val, f10,j , j = 0, . . . , 10, where val is the value of the option at the
node; these are shown on the right-hand grid boundary. Since E = 25 only those nodes
with j < 5 have nonzero option values.

Now that we know how to solve the Black–Scholes equation it is possible to
include, without much difficulty, more exotic features such as lock out periods,
barriers, rebates, etc.

The routine opt_gfd solves the Black–Scholes equation using a uniform grid.
The asset price is set to one of the grid lines, which means that interpolation is
not required.

5.4.3 Nonuniform grids

In the previous section we showed how to solve the Black–Scholes equation
using a uniform grid. Although this approach will provide satisfactory solutions
to many option pricing problems, there are situations in which it is important to
be able to place grid lines at locations that do not correspond to those available
in a uniform grid. Increasing the density of grid lines in regions of interest can
lead to improved accuracy in both the estimated option values and also the
estimates of the hedge statistics (the Greeks).

Here we provide an example which illustrates the benefits of using a nonuni-
form grids in the evaluation of down and out call barrier options. Later on in
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Section 5.4.6 we give a further example which shows the use of nonuniform
grids to evaluate double barrier options.

The purpose of this section is to show how to discretize the Black–Scholes
equation using a nonuniform grid, and to derive an expression (see Eq. (5.4.39))
that is equivalent to Eq. (5.4.14). Although the tridiagonal system of equa-
tions we have to solve in this section will be different from that in Section
5.4, the solution method is exactly the same. This means that once we have
derived Eq. (5.4.39) all the other information which we require to evaluate
both European and American options is available in Section 5.4 under the head-
ings:

• The boundary conditions
• Computation of the option values at a given time instant
• Backwards iteration and early exercise.

We will now consider the finite-difference approximation for a nonuniform
grid, and then show how to value the down and out call barrier option.

The finite-difference approximation

Here we consider how to discretize the Black–Scholes equation using a nonuni-
form grid, in which both the asset price interval �S and the time step �t are
not constant but can vary throughout the grid.

Allowing for a nonconstant time step is quite simple. The time step oc-
curs in both the first derivative fi,j (see Eq. (5.4.4)) and in the option value
equations (see Eqs. (5.4.14)–(5.4.21)) as the constant �t . To incorporate a
varying time step, �ti, i = 0, nt , thus only requires setting �t = �ti , at the
ith time step and then continuing with the solution method outlined in Sec-
tion 5.4.

The incorporation of nonconstant asset price intervals requires more work.
This is because the finite-difference approximations to the first and second deriv-
atives f ′

i,j and f ′′
i,j , in Eqs. (5.4.10) and (5.4.11) are based on a Taylor expansion

about the point fi,j .
We will now derive expressions for these derivatives.
If we let �X−

j = Sj − Sj−1 and �X+
j = Sj+1 − Sj and then use a Taylor

expansion about fi+1,j we have

fi+1,j+1 = fi+1,j + f ′
i+1,j�X+

j + 1

2
f ′′

i+1,j

(
�X+

j

)2 (5.4.32)

and also

fi+1,j−1 = fi+1,j − f ′
i+1,j�X−

j + 1

2
f ′′

i+1,j

(
�X−

j

)2 (5.4.33)

Multiplying Eq. (5.4.32) by �X−
j and adding it to �X+

j times Eq. (5.4.33), gives

�X+
j fi+1,j−1 + �X−

j fi+1,j+1

= �X−
j fi+1,j + �X+

j fi+1,j + 1

2
f ′′

i+1,j

{(
�X+

j

)2
�X−

j + (
�X−

j

)2
�X+

j

}
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Therefore

1

2
f ′′

i+1,j = �X+
j fi+1,j−1 + �X−

j fi+1,j+1 − �X−
j fi+1,j − �X+

j fi+1,j

(�X+
j )2�X−

j + (�X−
j )2�X+

j

So

f ′′
i+1,j = 2{�X+

j fi+1,j−1 + �X−
j fi+1,j+1 − fi+1,j (�X−

j + �X+
j )}

(�X+
j )2�X−

j + (�X−
j )2�X+

j

(5.4.34)

To calculate f ′
i+1,j we rearrange Eq. (5.4.33) to obtain

−f ′
i+1,j�X−

j = fi+1,j−1 − fi+1,j − 1

2
f ′′

i+1,j

(
�X−

j

)2

and

f ′
i+1,j = fi+1,j − fi+1,j−1

�X−
j

+ 1

2
f ′′

i+1,j�X−
j (5.4.35)

If we now substitute for f ′′
i+1,j , from Eq. (5.4.34), into Eq. (5.4.35) we have

f ′
i+1,j = fi+1,j − fi+1,j−1

�X−
j

+ {�X+
j fi+1,j−1 − (�X−

j + �X+
j )fi+1,j + �X−

j fi+1,j+1}�X−
j

(�X+
j )2�X−

j + (�X−
j )2�X+

j

which simplifies to give

f ′
i+1,j = (�X+

j )2(fi+1,j − fi+1,j−1) − (�X−
j )2fi+1,j + (�X−

j )2fi+1,j+1

(�X+
j )2�X−

j + (�X−
j )2�X+

j

so that we finally have

f ′
i+1,j = (�X−

j )2fi+1,j+1 + ((�X+
j )2 − (�X−

j )2)fi+1,j − (�X+
j )2fi+1,j−1

(�X+
j )2�X−

j + (�X−
j )2�X+

j

(5.4.36)

As in Section 5.4, we can now substitute the expressions for f ′
i+1,j and f ′′

i+1,j

given in Eqs. (5.4.36) and (5.4.34), into Eq. (5.4.7) the discretized Black–Scholes
equation. If we let D = (�X+

j )2�X−
j + (�X−

j )2�X+
j we then obtain

r�t
(
Θmfi+1,j + Θ∗

mfi,j

)
= fi+1,j − fi,j + (r − q)Sj�tA1

D
+ σ 2S2

j �tA2

D
(5.4.37)
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where Θ∗
m = 1 − Θm, and

A1 = Θm

[
fi+1,j+1

(
�X−

j

)2 − fi+1,j−1
(
�X+

j

)2

− fi+1,j

{(
�X−

j

)2 − (
�X+

j

)2}]
+ Θ∗

m

[
fi,j+1

(
�X−

j

)2 − fi,j−1
(
�X+

j

)2 − fi,j

{(
�X−

j

)2 − (
�X+

j

)2}]
and

A2 = Θm

[
fi+1,j+1�X−

j + fi+1,j−1�X+
j − fi+1,j

{
�X−

j + �X+
j

}]
+ Θ∗

m

[
fi,j+1�X−

j + fi,j−1�X+
j − fi,j

{
�X−

j + �X+
j

}]
Collecting like terms, we obtain:

B1fi,j−1 + B2fi,j + B3fi,j+1 + C1fi+1,j−1 + C2fi+1,j

+ C3fi+1,j+1 = 0 (5.4.38)

where

B1 = −Θ∗
m(r − q)Sj�t(�X+

j )2

D
+ (1 − θ)σ 2S2

j �t�X+
j

D

B2 = −1 − r�tΘ∗
m − Θ∗

mσ 2S2
j �t(�X−

j + �X+
j )

D

− Θ∗
m(r − q)Sj�t{(�X−

j )2 − (�X+
j )2}

D

B3 = Θ∗
m(r − q)Sj�t(�X−

j )2

D
+ Θ∗

mσ 2S2
j �t�X−

j

D

C1 = Θmσ 2S2
j �t�X+

j

D
− Θm(r − q)Sj�t(�X+

j )2

D

C2 = 1 − r�tΘm − Θm(r − q)Sj�t{(�X−
j )2 − (�X+

j )2}
D

− Θmσ 2S2
j �t{�X−

j + �X+
j }

D

C3 = Θm(r − q)Sj�t(�X−
j )2

D
+ Θmσ 2S2

j �t�X−
j

D

Since we are solving the Black–Scholes equation backwards in time we will re-
arrange Eq. (5.4.38) as:

ajfi,j−1 + bjfi,j + cj = Ri+1,j (5.4.39)

where the right-hand side Ri+1,j is:

Ri+1,j = āj fi+1,j−1 + b̄j fi+1,j + c̄j fi+1,j+1 (5.4.40)
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and the coefficients are

aj = Θ∗
m�t

{
(r − q)Sj (�X+

j )2

D
− σ 2S2

j �X+
j

D

}
(5.4.41)

bj = 1 + �tΘ∗
m

{
r + σ 2S2

j (�X−
j + �X+

j )

D

+ (r − q)Sj {(�X−
j )2 − (�X+

j )2}
D

}
(5.4.42)

cj = Θ∗
m�t

{−(r − q)Sj (�X−
j )2

D
− σ 2S2

j �X−
j

D

}
(5.4.43)

āj = Θm�t

{
σ 2S2

j �X+
j

D
− (r − q)Sj (�X+

j )2

D

}
(5.4.44)

b̄j = 1 − Θmr�t

− Θm�t

{
(r − q)Sj {(�X−

j )2 − (�X+
j )2}

D
+ σ 2S2

j {�X−
j + �X+

j }
D

}
(5.4.45)

c̄j = Θm�t

{
(r − q)Sj (�X−

j )2

D
+ σ 2S2

j �X−
j

D

}
(5.4.46)

Here Eq. (5.4.39), as is the case for Eq. (5.4.14) in Section 5.4, provides the
relationship between the three option values fi+1,j−1, fi+1,j , fi+1,j+1 at time
index i + 1, and the three option values fi,j−1, fi,j , fi,j+1 at time index i. It can
also be seen that Eq. (5.4.39) is the nonuniform grid equivalent of Eq. (5.4.14)
given in Section 5.4. We will now show that Eqs. (5.4.39) and (5.4.14) are
identical when a uniform grid is used, that is �X+

j = �X−
j . We proceed as

follows:
Let �X+

j = �X−
j = �S and Sj = j�S.

So

D = (
�X+

j

)2
�X−

j + (
�X−

j

)2
�X+

j

= 2(�S)3
(�X+

j )2

D
= (�X−

j )2

D
= (�S)2

2(�S)3
= 1

2�S

�X+
j

D
= �X−

j

D
= 1

2�S2

(�X+
j )2 − (�X−

j )2

D
= 0

If we substitute the above values into Eqs. (5.4.41)–(5.4.46) we obtain the fol-
lowing expressions for the coefficients in Eq. (5.4.39).
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aj = (1 − Θm)�t
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It can be seen that these coefficients are identical to those given in Section 5.4.2
Eqs. (5.4.16)–(5.4.21).

We now provide examples of using nonuniform grids to evaluate European
down and out call options.

Valuation of a down and out call option

Here the improved accuracy that can be achieved by using nonuniform grids
instead of uniform grids is illustrated in Figs. 5.7 and 5.8. The uniform grids are
constructed using the method outlined in Section 5.4 and Code excerpt 5.18.
That is, an asset grid line is set to coincide with the current asset price S0, and
the other grid lines are positioned above and below S0 with a uniform spacing
of �S. The disadvantage of this approach is that there will be an unspecified
pricing error that depends on the distance, ds , of the barrier level, B, to the

void opt_gfd(double theta_m, double asset_price, double sigma, double r, double T,
double strike, long is_american, long put, double *option_value,
double greeks[], double q, long pns, long nt, double smax, long *iflag)

{
/* Input parameters:

=================
theta_m - the value of theta used for the finite difference method,
asset_price - the current price of the underlying asset,
sigma - the volatility,
r - the interest rate,
T - the time to maturity,
strike - the strike price,
is_american - if is_american is 0 then a European option, otherwise an American_

option,

Code excerpt 5.18.
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put - if put is 0 then a call option, otherwise a put option,
q - the continuous dividend yield,
pns - the maximum asset index on the grid, corresponding to the upper_

boundary,
nt - the number of time intervals,
smax - the maximum asset price.
Output parameters:
option_value - the value of the option,
greeks[] - the hedge statistics output as follows: greeks[0] is gamma, greeks[1]_

is delta, and greeks[2] is theta,
iflag - an error indicator.

*/
double *a,*b,*c,*a1,*b1,*c1,*opt_vals,*vals,*rhs,*s,*work,*u;
double ds,dt;
long i,j;
double tmp,t2,time_2mat;
long n1,n2,ind=0;
double sig2,temp[4];

if (asset_price >= smax) printf ("ERROR asset price >= smax");
n1 = floor((asset_price/smax)*(double)pns);
n2 = pns - n1;
ds = asset_price/(double)n1;
dt = T/(double)nt; /* time interval size */
ns = n1+n2+1;

/* Note: Now nps = ns-1. Since we define asset grid lines 0...ns-1, this is the maximum grid_
line; corresponding
to the upper boundary. The lower boundary is at the asset grid line 0, and we solve for_
option values between
the asset grid line 1 and the asset grid line ns-2 */

/* Allocate (all size ns+1) the arrays: a, b, c, a1, b1, c1, opt_vals, vals, rhs, s, work_
and u */

. . .
s[0] = 0.0;
s[n1] = asset_price;
for(i=1; i<=n1-1; ++i ) /* set prices below asset_price */

s[i] = (double)i * ds;
for(i=1; i<= n2+1; ++i ) /* set prices above asset_price */

s[n1+i] = asset_price + (double)i * ds;

/* Set up the RHS and LHS coefficients a[], b[] and c[] are the LHS coefficients
for the unknown option values (time step j) a1[], b1[] and c1[] are the values of the
RHS coefficients for the known option prices (time step j+1).
Note: a1, b1 and c1 are used to form the RHS vector rhs[] of the tridiagonal system. */

sig2 = sigma*sigma;
t2 = dt/2.0;
tmp = 1.0-theta_m; /* 1 - theta (for theta method) */
for( i=1; i<=ns-2; ++i) { /* Assign elements of the (ns-2)*(ns-2) tridiagonal matrix */

a[i] = -i*(i*sig2-(r-q))*t2*tmp;
a1[i] = i*(i*sig2-(r-q))*t2*theta_m;;
c[i] = -i*(i*sig2+(r-q))*t2*tmp;
c1[i] = i*(i*sig2+(r-q))*t2*theta_m;;
b[i] = 1.0+r*dt*tmp+(i*i*sig2)*dt*tmp;
b1[i]= 1.0-(i*i*sig2+r)*dt*theta_m;

}
/* Perform LU decomposition of the tridiagonal matrix with:

diagonal elements contained in the array b[], upper diagonal elements contained in the_
array c[]
and lower diagonal elements in the array a[]. Store the elements of U but not those of L
(they will be computed from U)
Matrix U: The diagonal elements of U are stored in the array u[] and the upper diagonal_
elements of U
are just c[].
Matrix L: For the lower triangular matrix L, the diagonal elements are 1 and the lower_
diagonal elements
are l[i] = a[i]/u[i-1], where u[] is the upper diagonal of U. */

u[1] = b[1];
if (u[1] == 0.0) printf ("ERROR in array u \n");
for(i=2; i <=ns-2; ++i) {

u[i] = b[i] - a[i]*c[i-1]/u[i-1];

Code excerpt 5.18 (Continued).
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if (u[i] == 0.0) printf ("ERROR in array u \n");
}

/* Set option values at maturity. Note : opt_vals[0] and opt_vals[ns-1] are the lower and_
upper
(put/call) option price boundary values. */

if (!put) { /* a call */
for( i=0; i<ns; ++i )

opt_vals[i] = MAX(s[i]-strike, 0.0 );
}
else { /* a put */

for( i=0; i<ns; ++i)
opt_vals[i] = MAX(strike - s[i], 0.0);

}
/* From the option values at maturity (t = nt*dt) calculate values at earlier times (nt-1)*dt_

etc.. */
for( j=nt-1; j>=-2; --j) { /* Go two steps past current time (0) so that can evaluate_
theta */

time_2mat = T-j*dt;
for(i=2; i<=ns-3; ++i) /* set up the rhs of equation for Crank-Nicolson method */

rhs[i] = a1[i]*opt_vals[i-1]+b1[i]*opt_vals[i]+c1[i]*opt_vals[i+1];

/* Incorporate the boundary conditions at the upper/lower asset value boundaries */
rhs[1] = (a1[1]-a[1])*opt_vals[0]+ b1[1]*opt_vals[1]+c1[1]*opt_vals[2];
rhs[ns-2] = a1[ns-2]*opt_vals[ns-3]+b1[ns-2]*opt_vals[ns-2]+(c1[ns-2]-c[ns-2])_
*opt_vals[ns-1];

/* Solve the lower triangular system Ly = b, where y is stored in array work[].
Compute the elements of L from those of U, l[i] = a[i]/u[i-1]. */

work[1] = rhs[1];
for( i=2; i<=ns-2; ++i ) {

work[i] = rhs[i] - a[i]*work[i-1]/u[i-1];
}

/* Solve the upper (ns-2)*(ns-2) triangular system Ux = y (where x = opt_vals) */
opt_vals[ns-2] = work[ns-2]/u[ns-2];
for( i = ns-2; i >= 1; --i )

opt_vals[i] = (work[i] - c[i]*opt_vals[i+1])/u[i];
if (is_american) { /* take into account early exercise for american options */

if (put) { /* a put */
for(i=1; i<=ns-2; ++i)

opt_vals[i] = MAX(opt_vals[i],strike-s[i]);
}
else { /* a call */

for(i=1; i<=ns-2; ++i)
opt_vals[i] = MAX(opt_vals[i],s[i]-strike);

}
}
if (j==0) {

for (i=0; i < ns; ++i)
vals[i] = opt_vals[i];

}
if ((j==1)||(j==2)||(j==-1)||(j==-2)) { /* Store option values so that can compute_
theta */

temp[ind] = opt_vals[n1];
++ind;

}
}

if (greeks) {
/* Compute gamma (4th order accuracy) */

greeks[0] = (-vals[n1+2]+16.0*vals[n1+1]-30.0*vals[n1]+16.0*vals[n1-1]-vals[n1-2])_
/(12.0*ds*ds);

/* Compute delta (4th order accuracy) */
greeks[1] = (-vals[n1+2]+8.0*vals[n1+1]-8.0*vals[n1-1]+vals[n1-2])/(12.0*ds);

/* Compute theta (4th order accuracy) */
greeks[2] = (-temp[0]+8.0*temp[1]-8.0*temp[2]+temp[3])/(12.0*dt);

/* Note: could also compute theta as greeks[2] = (-temp[0]+4.0*temp[1]-3.0*vals[n1])
/(2.0*dt); */

}
*option_value = vals[n1]; /* Return option value */

}

Code excerpt 5.18 Function to compute the value of a vanilla option using a uniform
grid.



156 Computational Finance Using C and C#

nearest asset grid line. Furthermore, as the number of asset points, ns , increases
the magnitude of ds will oscillate within the range 0 to �S/2.

When ds ∼ 0 the grid will be accurate, but when |ds | ∼ �S/2 there will be
a large pricing error. This gives rise to the oscillating pricing errors shown in
Figs. 5.7 and 5.8.

The nonuniform grids are constructed using the techniques mentioned earlier
in this section, and also Code excerpt 5.19. We now, irrespective of ns , arrange
for one asset grid line to coincide with the current asset value, S0, and another
asset grid line to coincide with B, the barrier asset price. In Fig 5.6 this corre-
sponds to setting BL to B and not using BU .

It can be seen in Figs. 5.7 and 5.8 that in this case the pricing error is very
much less, and also does not exhibit the pronounced oscillations that are pro-
duced by a uniform grid. In Code excerpt 5.19 we give the computer program
which was used to obtained the nonuniform grid values for the down and out
call options presented in Figs. 5.7 and 5.8. Although this program only deals
with European options it can easily be altered, using the same techniques as in
Code excerpt 5.18, to deal with American-style options; this is left as an exercise
for the reader.

Figure 5.6 A nonuniform grid in which the grid spacing is reduced near current time t ,
and also in the neighborhood of the asset price 25; this can lead to greater accuracy in
the computed option values and the associated Greeks. Grid lines are also placed at asset
prices of BU and BL; this enables the accurate evaluation of options which have barriers
at these asset prices.
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void barrier_downout(double barrier_level, double theta_m, double asset_price, double sigma,_
double r, double T,
double strike, long put, double *option_value, double greeks[], double q, long ns,_
long nt, double smax, long *ifail)

{
/* ns - the number of asset intervals

nt - the number of time intervals
*/

double *a,*b,*c,*a1,*b1,*c1,*opt_vals,*vals,*rhs,*s,*work,*u;
double ds,time_step;
long i,j,barrier_index;
double tmp,t2,time_2mat,zero = 0.0;
long n1,n2,ind=0,ns1;
double sig2,temp[4],ds_plus,ds_minus,temp1,temp2,temp3;
double D;

n1 = floor((asset_price/smax)*(double)ns);
if (n1 < 3) {

printf ("increase the number of asset points \n");
}
n2 = ns - n1;
ds = asset_price/(double)n1;
time_step = T/(double)nt; /* time interval size */
ns1 = n1+n2+2; /* number of nodes - including extra grid line*/
/* allocate the required arrays (all of size ns1+1): a, b, c, a1, b1, c1, opt_vals,_
vals, rhs, s, work, u */

. . .
/* set prices below asset_price */
s[0] = zero;
s[n1] = asset_price;
for(i=1; i < n1; ++i )

s[i] = (double)i * ds;
/* set prices above asset_price */
for(i=1; i<= n2+2; ++i ) {

s[n1+i] = asset_price + (double)i * ds;
}

/* find out the index corresponding to barrier_level */
barrier_index = 0;
while(barrier_level > s[barrier_index]) {

++barrier_index;
}
if (barrier_level != s[barrier_index]) { /* decrement barrier index */

--barrier_index;
}
if (s[barrier_index] != barrier_level) { /* then barrier does not correspond_

to an existing grid line so create another_
one*/

for (i=1; i < ns1-barrier_index; ++i) {
s[barrier_index+1+i] = s[barrier_index] + (double)i*ds;

}
++barrier_index;
s[barrier_index] = barrier_level;
if (n1>barrier_index) {

++n1;
}

}
/* set up the RHS and LHS coefficients a[], b[] and c[] are the LHS coefficients

for the unknown option values (time step j) a1[], b1[] and c1[] are the values of the
RHS coefficients for the known option prices (time step j+1).
Note: a1, b1 and c1 are used to form the RHS vector rhs[] of the tridiagonal_
system. */

sig2 = sigma*sigma;
t2 = time_step/2.0;
tmp = 1.0-theta_m; /* 1 - theta (for theta method) */
/* assign elements of the (ns1-2)*(ns1-2) tridiagonal matrix */
for( i=1; i<=ns1-2; ++i) {

ds_plus = s[i+1]-s[i];
ds_minus = s[i] - s[i-1];
D = ((ds_plus*ds_plus*ds_minus) + (ds_minus*ds_minus*ds_plus));
temp1 = tmp*time_step/D;
a[i] = temp1*((r-q)*s[i]*ds_plus*ds_plus) -temp1*ds_plus*(s[i]*s[i]*sig2);
temp1 = theta_m*time_step/D;
a1[i] = -(temp1*((r-q)*s[i]*ds_plus*ds_plus) -temp1*ds_plus*(s[i]*s[i]*sig2));
temp1 = (ds_minus*ds_minus)/D;
temp2 = ds_minus/D;

Code excerpt 5.19.
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c[i] = -time_step*tmp*(temp1*s[i]*(r-q)+(sig2*s[i]*s[i]*temp2));
c1[i] = time_step*theta_m*(temp1*s[i]*(r-q)+(sig2*s[i]*s[i]*temp2));
temp1 = ((ds_minus*ds_minus) - (ds_plus*ds_plus))/D;
temp2 = (ds_minus+ds_plus)/D;
b[i] = 1.0+time_step*tmp*(r+((r-q)*s[i]*temp1)+(s[i]*s[i]*sig2)*temp2);
b1[i] = 1.0-time_step*theta_m*(r+((r-q)*s[i]*temp1)+(s[i]*s[i]*sig2)*temp2);

}
/* Perform LU decomposition of the tridiagonal matrix with: diagonal elements contained_

in the array b[],
upper diagonal elements contained in the array c[] and lower diagonal elements in_
the array a[].
Store the elements of U but not those of L (they will be computed from U)
Matrix U: The diagonal elements of U are stored in the array u[] and the upper
diagonal elements of U are just c[].
Matrix L: For the lower triangular matrix L, the diagonal elements are 1 and the_
lower diagonal
elements are l[i] = a[i]/u[i-1], where u[] is the upper diagonal of U. */

u[1] = b[1];
if (u[1] == zero) printf ("error in array u \n");
for( i=2; i <=ns1-2; ++i) {

u[i] = b[i] - a[i]*c[i-1]/u[i-1];
if (u[i] == zero) printf ("error in array u \n");

}
/* Set option values at maturity. Note : opt_vals[0] and opt_vals[ns1-1] are the lower and_

upper
(put/call) option price boundary values. */

if (!put) { /* a call */
for( i=0; i<ns1; ++i )

opt_vals[i] = MAX(s[i]-strike, zero );
/* now modify option values to include the barrier */
for( i=0; i <= barrier_index; ++i )

opt_vals[i] = zero;
}

else { /* a put */
for( i=0; i<ns1; ++i)

opt_vals[i] = MAX(strike - s[i], zero);
}
/* From the option values at maturity, t = nt*time_step, compute

the values at times (nt-1)*time_step to 0 (current time)
*/

for( j=nt-1; j>=-2; --j) { /* go two steps past current time so that can evaluate_
theta */

time_2mat = T-j*time_step;
/* set up the rhs of equation for the Theta method */
for(i=2; i<=ns1-3; ++i)

rhs[i] = a1[i]*opt_vals[i-1]+b1[i]*opt_vals[i]+c1[i]*opt_vals[i+1];
/* incorporate the boundary conditions1 at the upper/lower asset value boundaries */
rhs[1] = (a1[1]-a[1])*opt_vals[0]+ b1[1]*opt_vals[1]+c1[1]*opt_vals[2];
rhs[ns1-2] = a1[ns1-2]*opt_vals[ns1-3]+b1[ns1-2]*opt_vals[ns1-2]+(c1[ns1-2]-c[ns1-2])_
*opt_vals[ns1-1];

/* Solve the lower triangular system Ly = b, where y is stored in array work[].
Compute the elements of L from those of U, l[i] = a[i]/u[i-1]. */

work[1] = rhs[1];
for( i=2; i<=ns1-2; ++i ) {

work[i] = rhs[i] - a[i]*work[i-1]/u[i-1];
}
/* Solve the upper (ns1-2)*(ns1-2) triangular system Ux = y (where x = opt_vals) */
opt_vals[ns1-2] = work[ns1-2]/u[ns1-2];
for( i = ns1-2; i >= 1; --i )

opt_vals[i] = (work[i] - c[i]*opt_vals[i+1])/u[i];
if (j==0) {

for (i=0; i < ns1; ++i)
vals[i] = opt_vals[i];

}
/* store option values so that can compute theta */
if ((j==1)||(j==2)||(j==-1)||(j==-2)) {

temp[ind] = opt_vals[n1];
++ind;

}
/* now modify for barrier */
for( i=0; i <= barrier_index; ++i )

opt_vals[i] = zero;
}

if (greeks) { /* assume an irregular grid */
ds_minus = s[n1]-s[n1-1];

Code excerpt 5.19 (Continued).
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ds_plus = s[n1+1]-s[n1];
D = (ds_minus*ds_minus*ds_plus) + (ds_plus*ds_plus*ds_minus);
temp1 = ds_minus*ds_minus;
temp2 = ds_plus*ds_plus;
temp3 = temp1-temp2;
/* GAMMA */

greeks[0] = (ds_minus*vals[n1+1]+ds_plus*vals[n1-1]-vals[n1]*(ds_plus+ds_minus))_
/(0.5*D);
/* DELTA */

greeks[1] = (temp1*vals[n1+1] - temp2*vals[n1-1] - vals[n1]*temp3)/D;
/* THETA */
greeks[2] = (-temp[0]+8.0*temp[1]-8.0*temp[2]+temp[3])/(12.0*time_step);

/* could also compute theta like this:
greeks[2] = (-temp[0]+4.0*temp[1]-3.0*vals[n1])/(2.0*time_step); */

}
*option_value = vals[n1]; /* Return option value */

/* deallocate the arrays that were previously allocated */
. . .

}

Code excerpt 5.19 Function to compute the value of a European down and out barrier
option using a nonuniform grid.

Figure 5.7 The absolute error in the estimated values for a European down and out call
barrier option (B < E) as the number of asset grid points, ns , are varied. Here we show
a comparison of the results obtained using both uniform and nonuniform grids; loga-
rithmic transformations were not employed. The algorithm for the uniform grid is de-
scribed in Section 5.4.2, and that for the nonuniform grid is outlined in Section 5.4.3. The
Crank–Nicolson method (Θm = 0.5) was used and the other parameters were E = 50.0,
B = 47.5, S0 = 55.0, Smax = 300.0, T = 0.5, σ = 0.2, r = log(1.1), q = 0.0, nt = 100.
The correct option value was 7.6512, which was obtained using the analytic formulae
given in Code excerpt 4.7.
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Figure 5.8 The absolute error in the estimated values for a European down and out call
barrier option (E < B) as the number of asset grid points, ns , is varied. Here we show
a comparison of the results obtained using both uniform and nonuniform grids; loga-
rithmic transformations were not employed. The algorithm for the uniform grid is de-
scribed in Section 5.4.2 and that for the nonuniform grid is outlined in Section 5.4.3. The
Crank–Nicolson method (Θm = 0.5) was used and the other parameters were E = 50.0,
B = 52.5, S0 = 65.0, Smax = 300.0, T = 0.5, σ = 0.2, r = log(1.1), q = 0.0, nt = 100.
The correct option value was 17.0386, which was obtained using the analytic formulae
given in Code excerpt 4.7.

5.4.4 The log transformation and uniform grids

Up to this point we have been dealing with the standard Black–Scholes equation,
which is:

∂f

∂t
+ (r − q)S

∂f

∂S
+ σ 2S2

2

∂2f

∂S2
= rf (5.4.47)

However, if we introduce the change of variable Z = log S, we obtain the fol-
lowing equation:

∂f

∂t
+ b

∂f

∂Z
+ σ 2

2

∂2f

∂Z2
= rf (5.4.48)

where b = r − q − σ 2/2. This form of the Black–Scholes equation has beneficial
numerical properties—see Appendix F.
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Derivation of Eq. (5.4.48)

We will now derive an expression for the logarithmic Black–Scholes equation,
and show that it agrees with Eq. (5.4.48).

Since Z = log S we have ∂Z
∂S

= 1
S

. This gives:

∂f

∂S
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∂Z

∂Z
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= 1

S
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(
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(
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∂2f
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So Eq. (5.4.47) becomes:

∂f

∂t
+ (r − q)S

S

∂f

∂Z
− σ 2S2

2S2

∂f

∂Z
+ σ 2S2

2S2

∂2f

∂Z2
= rf

thus setting b = r − q − σ 2/2 we obtain:

∂f

∂t
+ b

∂f

∂Z
+ σ 2

2

∂2f

∂Z2
= rf

We will now consider the finite difference discretization of Eq. (5.4.48).

The finite-difference method

Application of the finite-difference method to the log transformed Black–
Scholes equation is very similar to that already outlined in Sections 5.4.2
and 5.4.3.

Use of the Θm method on Eq. (5.4.48) results in:

fi+1,j − fi,j

�t
+ b

{
Θmf ′

i+1,j + Θ∗
mf ′

i,j

} + 1

2
σ 2{Θmf ′′

i+1,j + Θ∗
mf ′′

i,j

}
= r

{
Θmfi+1,j + Θ∗

mfi,j

}
where Θ∗

m = 1−Θm. Applying a uniform discretization at node (i, j) we obtain:

fi+1,j − fi,j + b�tA1

2�Z
+ σ 2�tA2

2�Z2
= r�t

{
Θmfi+1,j + Θ∗

mfi,j

}
(5.4.49)

where

A1 = Θm{fi+1,j+1 − fi+1,j−1} + Θ∗
m{fi,j+1 − fi,j−1}

A2 = Θm{fi+1,j+1 − 2fi+1,j + fi+1,j−1} + Θ∗
m{fi,j+1 − 2fi,j + fi,j−1}

Collecting like terms we obtain:

B1fi,j−1 + B2fi,j + B3fi,j+1 + C1fi+1,j−1 + C2fi+1,j + C3fi+1,j+1 = 0
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where

B1 = −Θ∗
mb�t

2�Z
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mσ 2�t
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B2 = −1 − r�tΘ∗
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mσ 2�t

�Z2
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2�Z
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2�Z

C2 = 1 − r�tΘm − Θmσ 2�t

�Z2

C3 = Θmb�t

2�Z
+ Θmσ 2�t

2�Z2

If we rearrange we have the following equation:

ajfi,j−1 + bjfi,j + cj = āj fi+1,j−1 + b̄j fi+1,j + c̄j fi+1,j+1

where:

aj = (1 − Θm)�t

2�Z2

{
b�Z − σ 2} (5.4.50)

bj = 1 + (1 − Θm)�t

{
r + σ 2

�Z2

}
(5.4.51)

cj = − (1 − Θm)�t

2�Z2

{
b�Z + σ 2} (5.4.52)

āj = −Θm�t

2�Z2

{
b�Z − σ 2} (5.4.53)

b̄j = 1 − Θm�t

{
r + σ 2

�Z2

}
(5.4.54)

c̄j = Θm�t

2�Z2

{
b�Z + σ 2} (5.4.55)

It can be seen that, unlike in Section 5.4.2, the coefficients in Eqs. (5.4.50)–
(5.4.55) are independent of the asset price index j .

When Θm = 0.5 (the Crank–Nicolson method) we have the following coeffi-
cients:

aj = −āj = �t
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{
b�Z − σ 2}

bj = 1 + �t

2

{
r + σ 2

�Z2

}
cj = −c̄j = − �t

4�Z2

{
b�Z + σ 2}

b̄j = 1 − �t

2

{
r + σ 2

�Z2

}
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Table 5.7 Valuation results and pricing errors for a vanilla American put option using a
uniform grid with and without a logarithmic transformation; the implicit method and

Crank–Nicolson method are used

Time Value Θm = 0.0 Θm = 0.5

BS Log BS BS Log BS

0.1 0.7599 1.4733 × 10−2 7.7803 × 10−3 1.4719 × 10−2 7.6716 × 10−3

0.2 0.8335 4.5838 × 10−2 1.2924 × 10−2 4.5682 × 10−2 1.1997 × 10−2

0.3 0.8921 6.4218 × 10−2 1.4125 × 10−2 6.3800 × 10−2 1.2567 × 10−2

0.4 0.9403 7.4699 × 10−2 1.6559 × 10−2 7.3924 × 10−2 1.4655 × 10−2

0.5 0.9812 8.0297 × 10−2 1.8471 × 10−2 7.9101 × 10−2 1.6041 × 10−2

0.6 1.0167 8.2796 × 10−2 1.9125 × 10−2 8.1135 × 10−2 1.6067 × 10−2

0.7 1.0479 8.3285 × 10−2 1.8959 × 10−2 8.1131 × 10−2 1.5273 × 10−2

0.8 1.0758 8.2470 × 10−2 1.8408 × 10−2 7.9803 × 10−2 1.4159 × 10−2

0.9 1.1009 8.0829 × 10−2 1.7756 × 10−2 7.7647 × 10−2 1.3020 × 10−2

1.0 1.1237 7.8646 × 10−2 1.7138 × 10−2 7.4947 × 10−2 1.1997 × 10−2

1.1 1.1445 7.6164 × 10−2 1.6643 × 10−2 7.1961 × 10−2 1.1174 × 10−2

1.2 1.1637 7.3514 × 10−2 1.6290 × 10−2 6.8803 × 10−2 1.0552 × 10−2

1.3 1.1813 7.0785 × 10−2 1.6092 × 10−2 6.5594 × 10−2 1.0143 × 10−2

1.4 1.1977 6.8080 × 10−2 1.6042 × 10−2 6.2419 × 10−2 9.9309 × 10−3

1.5 1.2129 6.5424 × 10−2 1.6128 × 10−2 5.9295 × 10−2 9.8909 × 10−3

The accurate values (obtained using a logarithmic transformed grid with ns = 1000 and
nt = 1000) are presented in the column labelled “Value”. The absolute pricing errors,
ABS (accurate value − estimated value) presented in the column labelled BS were ob-
tained using a standard uniform grid (as outlined in Section 5.4.2), and those in the
column labelled Log BS use a uniform grid and logarithmic transformation as explained
in this section. The maturity of the option was varied from 0.1 years to 1.5 years, and
the other parameters were: S = 9.0, X = 9.7, r = 0.1, q = 0.0, σ = 0.30, Smax = 100.0,
ns = 50, and nt = 50.

The method of using the finite-difference grid to compute option prices is iden-
tical to that already outlined in Section 5.4.2, which solves the standard (non-
logarithmic) Black–Scholes equation. Table 5.7 compares the results obtained
with and without a logarithmic transformation.

5.4.5 The log transformation and nonuniform grids

In the previous section we considered the use of a uniform grid to discretize the
logarithmically transformed Black–Scholes equation:

∂f

∂t
+ b

∂f

∂Z
+ σ 2

2

∂2f

∂Z2
= rf (5.4.56)
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where

b = r − q − σ 2

2
and Z = log S

Here we will generalize these results and use a nonuniform grid to solve
Eq. (5.4.56).

Our description will be very brief since most of the details have already been
discussed in previous sections. Here we are only concerned with the finite-
difference approximation and derive the equations that need to be solved at
each time step. Later, in Section 5.4.6, we will apply our results to solving a
European double knockout barrier option.

The finite-difference approximation

At the grid node (i, j) we have

�Z−
j = Zj − Zj−1 and �Z+

j = Zj + 1 − Zj

Following Section 5.4.2 the first and second derivatives of f w.r.t. Z are
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Then discretizing Eq. (5.4.56) in the usual manner we obtain
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Collecting like terms we obtain:

B1fi,j−1 + B2fi,j + B3fi,j+1 + C1fi+1,j−1 + C2fi+1,j + C3fi+1,j+1 = 0

where
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If we rearrange we have the following equation:

ajfi,j−1 + bjfi,j + cj = āj fi+1,j−1 + b̄j fi+1,j + c̄j fi+1,j+1 (5.4.58)

where:
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The incorporation of boundary conditions and the solution of Eq. (5.4.58) is
similar in manner to that already discussed in Section 5.4.2. If further details



166 Computational Finance Using C and C#

are required Code excerpt 5.19, which uses a nonuniform grid to solve the log
transformed Black–Scholes equation, can be consulted.

When a uniform grid is used �Z+
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which are the same as Eqs. (5.4.50)–(5.4.55) in Section 5.4.4.

5.4.6 The double knockout call option

The purpose of this section is to provide an example that illustrates the benefits
to be gained from using both the log transformed Black–Scholes equation and
also a nonuniform grid.

The problem we will consider is the European double knockout call option
with strike price E, and expiry date T . This is a barrier option with both an
upper barrier at BU and a lower barrier at BL. If, during the life of the option,
the asset price either goes above the upper barrier or below the lower barrier,
then the option becomes worthless. If, on the other hand, the asset price stays
between the barriers then the option has value max(ST − E, 0), where ST is the
asset price at time T .

This problem has been previously investigated by Boyle and Tian (1998),
henceforth referred to as BT, who used an explicit finite-difference method
based on a modified trinomial lattice. The method we use here is based on
the finite-difference equations given in Section 5.4.5, and all the results ob-
tained by using the function dko_call (see Code excerpt 5.20) are presented
in Tables 5.8–5.12.



Single asset American options 167

void dko_call(double lower_barrier, double upper_barrier, double theta_m,
double S0, double sigma_array[], double sigma_times[], long n_sigma, double r,
double opt_mat, double X, double *option_value, double greeks[], double q,
long ns_below_S0, long ns_above_S0, long nt, long *iflag)

{
/* Input parameters:

=================
lower_barrier - the asset price corresponding to the lower barrier,
upper_barrier - the asset price corresponding to the upper barrier,
theta_m - the value of theta used for the finite difference method,
S0 - the current price of the underlying asset,
sigma_array[] - an array containing values of the volatility: sigma_array[0] is the_

first value of the volatility,
sigma_array[1] is the second value of the volatility, etc..,

sigma_times[] - an array containing the times for different volatilities:_
sigma_times[0] is the time corresponding to
the first volatility, sigma_times[1] is the time corresponding to_
the second volatility, etc..,

n_sigma - the number of elements in sigma_array[], and sigma_times[],
r - the interest rate,
opt_mat - the time to maturity,
X - the strike price,
q - the continuous dividend yield,
ns_below_S0 - the number of asset intervals below the current price S0,
ns_above_S0 - the number of asset intervals above the current price S0,
nt - the number of time intervals.
Output parameters:
==================
option_value - the value of the option,
greeks[] - the hedge statistics output as follows: greeks[0] is gamma,_

greeks[1] is delta, and greeks[2] is theta,
iflag - an error indicator.

*/
double *a,*b,*c,*vals,*a1,*b1,*c1,*opt_vals,*rhs,*z,*delta,*gamma,*work,*u;
double dt,dz,dz1,dz2,zmax,zmin;
long i,j;
double tmp,t2,t4,dt2;
long ind=0,n1,n2,ns1;
double ds,log_asset,sig2,alpha,v2,b_fac,temp[4];
double zero = 0.0;
long barrier_index,ind2;
double dz_shift,time_step,log_barrier_level1,log_barrier_level2;
double temp1, temp2, ds_plus, ds_minus, bb, D;
double curr_time;

if (S0 >= upper_barrier) printf ("ERROR current asset price is greater than_
upper_barrier \n");
if (lower_barrier >= S0) printf("ERROR lower barrier is greater than current asset_
price \n");
if (S0 <= zero) printf ("ERROR asset price is not > 0 \n");
if (upper_barrier <= lower_barrier) printf ("ERROR upper_barrier must be >_
lower_barrier \n");
log_asset = log(S0);
log_barrier_level1 = log(lower_barrier);
log_barrier_level2 = log(upper_barrier);
dz1 = (log_asset-log_barrier_level1)/(double)ns_below_S0;
n1 = ns_below_S0;

/* Include 5 extra points above the asset price so that don’t get discontinuity in grid_
spacing
which may adversely affect the computation of the greeks */

n2 = ns_above_S0 + 5;
dz_shift = dz1*5.0; /* shift caused by extra 5 grid points */
dz2 = (log_barrier_level2-log_asset-dz_shift)/(double)ns_above_S0;
dt = opt_mat/(double)nt; /* time interval size */
time_step = dt;
--n2;
ns1 = n1+n2+2;

/* Set up the RHS and LHS coefficients a[], b[] and c[] are the LHS coefficients for the_
unknown option
values (time step j) a1[], b1[] and c1[] are the values of the RHS coefficients for the_
known option prices
(time step j+1). Note: a1, b1 and c1 are used to form the RHS vector rhs[] of the_
tridiagonal system. */

/* Allocate the required arrays (all of size (ns1+2): a,b,c,a1,b1,c1,opt_vals,vals,_
rhs,z,delta,gamma,work,u */

Code excerpt 5.20.
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. . .
/* Set up the RHS and LHS coefficients a[], b[] and c[] are the LHS coefficients

for the unknown option values (time step j) a1[], b1[] and c1[] are the values of the
RHS coefficients for the known option prices (time step j+1). Note: a1, b1 and c1 are used_
to form the RHS
vector rhs[] of the tridiagonal system. */

/* Set grid line asset values, set one grid spacing to align with the asset price, then won’t_
have to
interpolate to get the option value */

z[n1] = log_asset;
for (i = 1; i <=n1; ++i) /* This should be the fine mesh */

z[n1-i] = log_asset - (double)i*dz1;
for (i = 1; i <= 5; ++i) /* Include 5 extra fine mesh points here */

z[n1+i] = log_asset + (double)i*dz1;
for (i = 6; i <= n2+2; ++i) { /* The coarse mesh */

j = i - 5;
z[n1+i] = z[n1+5] + (double)j*dz2;

}
/* Set option values at maturity (for a call). Note : opt_vals[0] and opt_vals[ns1-1] are the

lower and upper
(put/call) option price boundary values. */

for( i=1; i<ns1; ++i ) {
opt_vals[i] = MAX(exp(z[i])-X, zero);

}
opt_vals[0] = zero;
opt_vals[ns1-1] = zero;
tmp = 1.0-theta_m; /* 1 - theta (for theta method) */
curr_time = -1.0;
ind2 = n_sigma - 1;
for( j=nt-1; j>=-2; --j) { /* Iterate from maturity to current time */

if ((ind2 >= 0) && (curr_time <= sigma_times[ind2])) {
sig2 = sigma_array[ind2]*sigma_array[ind2];
t2 = time_step/2.0;
bb = r - q - (sig2/2.0);
--ind2;
for( i=1; i<=ns1-2; ++i) { /* Assign elements of the (ns1-2)*(ns1-2) tridiagonal_
matrix */

ds_plus = z[i+1]-z[i];
ds_minus = z[i] - z[i-1];
D = ((ds_plus*ds_plus*ds_minus) + (ds_minus*ds_minus*ds_plus));
temp1 = tmp*time_step/D;
a[i] = temp1*(bb*ds_plus*ds_plus) -temp1*ds_plus*(sig2);
temp1 = theta_m*time_step/D;
a1[i] = temp1*ds_plus*(sig2)-temp1*(bb*ds_plus*ds_plus);
temp1 = (ds_minus*ds_minus)/D;
temp2 = ds_minus/D;
c[i] = -time_step*tmp*(temp1*bb+(sig2*temp2));
c1[i] = time_step*theta_m*(temp1*bb+(sig2*temp2));
temp1 = ((ds_minus*ds_minus) - (ds_plus*ds_plus))/D;
temp2 = (ds_minus+ds_plus)/D;
b[i] = 1.0+time_step*tmp*(r+(bb*temp1)+(sig2)*temp2);
b1[i] = 1.0-time_step*theta_m*(r+(bb*temp1)+(sig2)*temp2);

}
u[1] = b[1];
if (u[1] == zero) printf ("ERROR in array u \n");

for( i=2; i <=ns1-2; ++i) {
u[i] = b[i] - a[i]*c[i-1]/u[i-1];
if (u[i] == zero) printf ("ERROR in array u \n");

}
}
curr_time = j*dt;

/* Set up the rhs of equation for the theta method */
for(i=2; i<=ns1-3; ++i)

rhs[i] = a1[i]*opt_vals[i-1]+b1[i]*opt_vals[i]+c1[i]*opt_vals[i+1];
/* Incorporate the boundary conditions1 at the upper/lower asset value boundaries */

rhs[1] = (a1[1]-a[1])*opt_vals[0]+ b1[1]*opt_vals[1]+c1[1]*opt_vals[2];
rhs[ns1-2] = a1[ns1-2]*opt_vals[ns1-3]+b1[ns1-2]*opt_vals[ns1-2]+(c1[ns1-2]-c[ns1-2])_
*opt_vals[ns1-1];

/* Solve the lower triangular system Ly = b, where y is stored in array work[]. Compute the_
elements of L from those of U, l[i] = a[i]/u[i-1]. */

work[1] = rhs[1];
for( i=2; i<=ns1-2; ++i ) {

work[i] = rhs[i] - a[i]*work[i-1]/u[i-1];
}

Code excerpt 5.20 (Continued).
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/* Solve the upper (ns1-2)*(ns1-2) triangular system Ux = y (where x = vold) */
opt_vals[ns1-2] = work[ns1-2]/u[ns1-2];
for( i = ns1-2; i >= 1; --i )

opt_vals[i] = (work[i] - c[i]*opt_vals[i+1])/u[i];
if (j==0) {

for (i=0; i < ns1; ++i)
vals[i] = opt_vals[i];

}
/* Store option values so that can compute theta */

if ((j==1)||(j==2)||(j==-1)||(j==-2)) {
temp[ind] = opt_vals[n1];
++ind;

}
}

if (greeks) {
/* Compute gamma and delta (4th order accuracy) */

greeks[1] = (-vals[n1+2]+8.0*vals[n1+1]-8.0*vals[n1-1]+vals[n1-2])/(12.0*dz1);
/* Compute gamma (4th order accuracy) - use chain rule to obtain derivative wrt S */

greeks[0] = (-vals[n1+2]+16.0*vals[n1+1]-30.0*vals[n1]+16.0*vals[n1-1]-vals[n1-2])_
/(12.0*dz1*dz1);
greeks[0] = greeks[0]-greeks[1];
greeks[0] = greeks[0]/(S0*S0);
greeks[1] = greeks[1]/S0;

/* Compute theta (4th order accuracy) */
greeks[2] = (-temp[0]+8.0*temp[1]-8.0*temp[2]+temp[3])/(12.0*dt);
/* could also compute theta as: greeks[2] = (-temp[0]+4.0*temp[1]-3.0*vals[n1])_
/(2.0*dt); */

}
*option_value = vals[n1];

}

Code excerpt 5.20 Code excerpt 5.20 Function to compute the value and Greeks of
a European double knockout call option using a nonuniform grid and a logarithmic
transformation.

Table 5.8 Estimated value of a European double knockout call option

Time steps (n) Estimated value Boyle and Tian (1998)

50 1.4569 1.4238
100 1.4578 1.4437
200 1.4583 1.4495
300 1.4583 1.4524
400 1.4584 1.4542
500 1.4584 1.4553
600 1.4584 1.4557
700 1.4584 1.4559
800 1.4584 1.4563
900 1.4584 1.4565

1000 1.4584 1.4566
2000 1.4584 1.4576
3000 1.4584 1.4578
4000 1.4584 1.4580
5000 1.4584 1.4581

The values in column two were computed by the function dko_call, and those in column three
are the results reported in Table 2 of Boyle and Tian (1998). The model parameters were: current
asset price S = 95.0, exercise price E = 100.0, volatility σ = 0.25, maturity τ = 1.0, interest rate
r = 0.1, dividend yield q = 0.0. The upper barrier level is set at 140.0 and the lower barrier is
set at 90.0. The other parameters used by the function dko_call were: nt = n, ns_below_S0

= n/2, ns_above_S0 = n/2, and Θm = 0.5 (i.e., the Crank–Nicolson method).
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Table 5.9 The estimated values of European down and out call options calculated by
the function dko_call

Time steps Stock price

92 91 90.5 90.4 90.3 90.2

50 2.5652 1.3046 0.6588 0.5282 0.3971 0.2653
100 2.5221 1.2816 0.6466 0.5182 0.3894 0.2601
200 2.5104 1.2758 0.6435 0.5157 0.3875 0.2588
300 2.5080 1.2747 0.6429 0.5152 0.3871 0.2585
400 2.5072 1.2743 0.6427 0.5150 0.3869 0.2584
500 2.5069 1.2742 0.6426 0.5149 0.3869 0.2584
600 2.5067 1.2741 0.6425 0.5149 0.3868 0.2583
700 2.5066 1.2740 0.6425 0.5149 0.3868 0.2583
800 2.5065 1.2740 0.6424 0.5148 0.3868 0.2583
900 2.5065 1.2739 0.6424 0.5148 0.3868 0.2583

1000 2.5064 1.2739 0.6424 0.5148 0.3868 0.2583
2000 2.5063 1.2738 0.6424 0.5148 0.3868 0.2583

Closed form 2.5063 1.2738 0.6424 0.5148 0.3868 0.2583

The fixed model parameters were: exercise price E = 100.0, volatility σ = 0.25, maturity τ = 1.0,
interest rate r = 0.1, dividend yield q = 0.0, and the lower barrier is set at 90.0. The other parameters
used by the function dko_call were: nt = n, ns_below_S0 = n/2, ns_above_S0 = n/2,
upper_barrier = 1000.0, lower_barrier = 90.0, and Θm = 0.5 (i.e., the Crank–Nicolson
method).

Table 5.10 The estimated values of European down and out call options as calculated
by the function dko_call

Time steps Stock price

92 91 90.5 90.4 90.3 90.2

50 2.5572 1.3005 0.6567 0.5266 0.3958 0.2645
100 2.5181 1.2796 0.6455 0.5174 0.3888 0.2597
200 2.5084 1.2748 0.6429 0.5153 0.3872 0.2586
300 2.5067 1.2741 0.6425 0.5149 0.3869 0.2584
400 2.5062 1.2738 0.6424 0.5148 0.3868 0.2583
500 2.5061 1.2738 0.6424 0.5148 0.3868 0.2583
600 2.5061 1.2737 0.6423 0.5148 0.3867 0.2583
700 2.5060 1.2737 0.6423 0.5147 0.3867 0.2583
800 2.5060 1.2747 0.6423 0.5147 0.3867 0.2583
900 2.5060 1.2737 0.6423 0.5147 0.3867 0.2583

1000 2.5060 1.2737 0.6423 0.5147 0.3867 0.2583
2000 2.5061 1.2737 0.6423 0.5147 0.3867 0.2583

Closed form 2.5063 1.2738 0.6424 0.5148 0.3868 0.2583

The fixed parameters used were: exercise price E = 100.0, volatility σ = 0.25, maturity τ = 1.0,
interest rate r = 0.1, dividend yield q = 0.0, and the lower barrier is set at 90.0. The other parameters
used by the function dko_call were: nt = n, ns_below_S0 = n/2, ns_above_S0 = n/2,
upper_barrier = 1000.0, lower_barrier = 90.0, and Θm = 0.0 (i.e., the implicit method).
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Table 5.11 The estimated values of European double knockout call options computed
by the function dko_call

Time steps Stock price

92 91 90.5 90.4 90.3 90.2

50 0.6251 (0.6184) 0.3189 (0.3177) 0.1610 0.1290 0.0969 0.0647
100 0.6260 (0.6212) 0.3194 (0.3184) 0.1613 0.1292 0.0971 0.0649
200 0.6263 (0.6228) 0.3196 (0.3186) 0.1613 0.1293 0.0972 0.0649
300 0.6263 (0.6236) 0.3196 (0.3187) 0.1613 0.1293 0.0972 0.0649
400 0.6263 (0.6242) 0.3196 (0.3189) 0.1613 0.1293 0.0972 0.0649
500 0.6263 (0.6252) 0.3196 (0.3190) 0.1613 0.1293 0.0972 0.0649
600 0.6263 (0.6253) 0.3196 (0.3191) 0.1613 0.1293 0.0972 0.0649
700 0.6263 (0.6253) 0.3196 (0.3191) 0.1613 0.1293 0.0972 0.0649
800 0.6263 (0.6255) 0.3196 (0.3192) 0.1613 0.1293 0.0972 0.0649
900 0.6263 (0.6256) 0.3196 (0.3192) 0.1613 0.1293 0.0972 0.0649

1000 0.6263 (0.6255) 0.3196 (0.3192) 0.1613 0.1293 0.0972 0.0649
2000 0.6263 (0.6260) 0.3196 (0.3195) 0.1613 0.1293 0.0972 0.0649

In column 2 and column 3 the values given in Boyle and Tian (1998), Table 5, are shown
for comparison. The fixed model parameters were: exercise price E = 100.0, volatility
σ = 0.25, dividend yield q = 0.0, maturity τ = 1.0, interest rate r = 0.1, the lower
barrier is set at 90.0, and the upper barrier is set at 140.0. The other parameters used
by the function dko_call were: nt = n, ns_below_S0 = n/2, ns_above_S0 = n/2,
and Θm = 0.5 (i.e., the Crank–Nicolson method).

Table 5.12 The estimated Greeks for European double knockout call options computed
by the function dko_call

Asset price Gamma Delta Theta

95.0 −0.0165 (−0.0166) 0.2536 (0.2551) 2.3982 (2.3928)
92.0 −0.0141 (−0.0141) 0.2998 (0.3016) 1.0268 (1.0242)
91.0 −0.0129 (−0.0130) 0.3133 (0.3151) 0.5237 (0.5224)
90.5 −0.0123 (−0.0123) 0.3196 (0.3215) 0.2643 (0.2636)
90.4 −0.0121 (−0.0122) 0.3208 (0.3227) 0.2119 (0.2113)
90.3 −0.0120 (−0.0121) 0.3221 (0.3239) 0.1592 (0.1588)
90.2 −0.0119 (−0.0119) 0.3233 (0.3251) 0.1063 (0.1060)

The fixed model parameters: the exercise price E = 100.0, volatility σ = 0.25, dividend
yield q = 0.0, maturity τ = 1.0, interest rate r = 0.1, the lower barrier is set at 90.0, and
the upper barrier is set at 140.0. The other parameters used by the function dko_call
were: nt = 200, ns_below_S0 = 100, ns_above_S0 = 100, and Θm = 0.5 (i.e., the
Crank–Nicolson method). The results for Θm = 0.0 (i.e., the implicit method) are shown
in brackets; see Table 6, Boyle and Tian (1998).

Inspection of the results shows that the finite-difference grid method has both
greater accuracy and faster convergence than the method proposed by BT. The
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key to the accuracy achieved by dko_call is a combination of:

• The logarithmic transformation of the Black–Scholes equation
• The ability to place a grid line at both the upper barrier BU, and also at the

lower boundary BL
• The use of a weighted Θm finite-difference scheme, 0 � Θm � 1, instead of

the numerically unstable explicit finite-difference method used by a trinomial
lattice which in our notation (see Section 5.4.2) is equivalent to Θm = 1.

It should be mentioned that the function dko_call could, without much
difficulty, be modified to deal with:

• American double knockout call options
• European double knockout put options
• American double knockout put options

and also a range of other variations which may include lockout periods, rebates,
etc. In particular, options with time-varying barrier levels can be dealt with by
using grid lines to locate the barrier position at each time instant.

5.5 Pricing American options using a stochastic lattice

In this section we consider the use of Monte Carlo simulation and stochastic
lattices to price American options. Information on the use of Monte Carlo sim-
ulation to value both single asset and multiasset European options is provided
in Chapter 4 and Chapter 6. The main difficulty in using simulation to value
American options is the need to incorporate optimal early exercise policies. The
standard simulation algorithms for valuing European contracts are forward in
time. That is each price path, which contributes to the value of the option, is
generated by stepping forward from current time, t , to option maturity, t + τ ,
where τ is the duration of the option. For instance if there are n equispaced
time steps of size �t , and only one underlying asset, then we use the asset values
Si, i = 0, . . . , n, where Si corresponds to the asset value at the ith time instant,
ti , and t0 = t . Here Si+1 is generated from the previous asset value Si as follows:

Si+1

Si

= dSi for i = 0, . . . , n − 1 (5.5.1)

where dSi is a random variate taken from a given distribution. When Si follows
GBM, we have from Eq. (2.3.11) that:

Si+1

Si

= exp

{(
r − σ 2

i

2

)
�t + σi dWi

}
, i = 0, . . . , n − 1, (5.5.2)

where dWi ∼ N(0,�t) and the usual definitions are used for σi and r.
For European exotic options (such as time dependent barrier options) the

value of a particular price path will depend on the asset values Si, i = 0, . . . , n.
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This is not true of European vanilla options whose value only depends on Sn,
the underlying asset price at option maturity. The Monte Carlo approximation
to the value of a European option is thus:

f =
∑nsim

j=1 pj (nj )

nsim

where nsim is the number of simulations used, nj is the number of time steps
associated with the j th price path, and pj (nj ) is the value of the j th price path.
In the case of European vanilla options we can use nj = 1, j = 1, . . . , nsim; the
accuracy obviously improves with increasing nsim.

The valuation of American-style options, which include the possibility of early
exercise, is more complicated. In Chapter 5 we described the use of binomial lat-
tices to price American options when the underlying asset price process is GBM.
Dynamic programming was used and the option prices were computed by work-
ing backward in time through the lattice. The application of Monte Carlo meth-
ods for pricing American options is described in Tilley (1993), Barraquand and
Martineau (1995), and also Boyle, Broadie, and Glasserman (1997). Here we
will outline the stochastic lattice approach discussed in Broadie and Glasserman
(1997), where both a high estimator and a low estimator of the American op-
tion value are calculated. Since both of these biased estimators converge (with
increasing number of simulations and lattice nodes) to the true option value, we
will only consider how to compute the high estimator, θH. We summarize the
approach as follows

• Set the parameters
• Generate the lattice asset prices
• Compute the lattice option prices
• Compute the Monte Carlo estimate.

We will now consider each of these steps in more detail.

Set the parameters

First we set the simulation parameters; that is: nsim is the number of lattice
simulations, b is the number of branches per lattice node, and d is the number
of time instants in the lattice. Note: This definition of d here is different from
that used in the original paper by Broadie and Glasserman (1997) where d is
defined as the number of time steps in the lattice.

Generate the lattice asset prices

Next we generate the asset prices for the pth stochastic lattice. Since the lattice is
non recombining at the i lattice time instant there are bi nodes/asset prices. This
contrasts with the binomial lattice of Chapter 5 where the asset prices at a given
time step are arranged in ascending order, that is S

j
i increases with increasing j .
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Figure 5.9 An example showing the asset prices generated for a stochastic lattice with
three branches per node and two time steps, that is b = 3 and d = 3. The current asset
value, 101, is at time t0, and the asset values at option maturity are at time t2.

We will denote the j th value at the ith time step by S
j
i . For example, in Fig. 5.9,

where b = 3 and d = 3, we have for the first time step:

S1
1 = 115, S2

1 = 60, and S3
1 = 114

and for the second time step:

S1
2 = 116, S2

2 = 90, S3
2 = 149, . . . , S7

2 = 102,

S8
2 = 88, S9

2 = 80

The kth asset price at the ith time step, Sk
i then generates the following asset

prices at the (i + 1)th time step:

S
(k−1)b+j

i+1

Sk
i

= dSj , j = 1, . . . , b, k = 1, . . . , bi,

where (see Eq. (5.5.1)), dSj is a random variate from a given distribution. When
Si follows GBM, we therefore have:

S
(k−1)b+j

i+1

Sk
i

= exp

{(
r − σ 2

i

2

)
�t + σi dWi

}
, j = 1, . . . , b, k = 1, . . . , bi

Compute the lattice option prices

The method used to compute the option values is similar to that used by the
binomial lattice. The main difference is that there are now b branches per node
instead of two. The option values are computed by starting at the lattice termi-
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nal nodes and then iterating backward. Here we denote the kth option value at
the ith time step by f k

i .
The option values at the terminal nodes, time instant td−1, are computed in

the usual manner. For a put we have:

f k
d−1 = max

(
E − Sk

d−1, 0
)
, k = 1, . . . , bd−1,

where E is the exercise price.
The option values at the (i − 1)th time step are computed from those at the

ith time step as follows:

f k
i−1 = max

(
gk

i−1, h
k
i−1

)
where

hk
i−1 = exp(−r�t)

b

b∑
j=1

f
(k−1)b+j
i

and

gk
i−1 = max

(
E − Sk

i−1, 0
)

The option value for the pth stochastic lattice is therefore:

θ
p

H = f 1
0 = exp(−r�t)

b

b∑
j=1

f
j

1

Figure 5.10 shows the option values for an American call with strike price E =
100 and interest rate r = 0, when the lattice asset prices in Fig. 5.9 have been

Figure 5.10 The option prices for the b = 3, d = 3 lattice in Fig. 5.9 corresponding to an
American put with strike E = 100 and interest rate r = 0. The option values at the lattice
nodes are computed backwards in time from the payoffs at maturity, t2 to the current
time t0; the value of the option is 11.9.



176 Computational Finance Using C and C#

used. To make things as clear as possible, we will show how the value of each
node is computed.

Terminal nodes
The option values at the terminal nodes are:

f 1
2 = max(116 − 100, 0) = 16, f 2

2 = max(90 − 100, 0) = 0,

f 3
2 = max(149 − 100, 0) = 49, f 4

2 = max(32 − 100, 0) = 0,

f 5
2 = max(50 − 100, 0) = 0, f 6

2 = max(48 − 100, 0) = 0,

f 7
2 = max(102 − 100, 0) = 2, f 8

2 = max(88 − 100, 0) = 0,

f 9
2 = max(80 − 100, 0) = 0

Time step 1
Here we have:

g1
1 = max(115 − 100, 0) = 15, g2

1 = max(60 − 100, 0) = 0,

g3
1 = max(114 − 100, 0) = 14

Since r = 0, we have exp(−r�t) = 1 which gives:

h1
1 = 1

3

{
f 1

2 + f 2
2 + f 3

2

} = 1

3
{16 + 0 + 49} = 21.7

h2
1 = 1

3

{
f 4

2 + f 5
2 + f 6

2

} = 1

3
{0 + 0 + 0} = 0

h3
1 = 1

3

{
f 7

2 + f 8
2 + f 9

2

} = 1

3
{2 + 0 + 0} = 0.66

The option values are then computed as follows:

f 1
1 = max

(
h1

1, g
1
1

) = max(21.7, 15) = 21.7

f 2
1 = max

(
h2

1, g
2
1

) = max(0, 0) = 0

f 3
1 = max

(
h3

1, g
3
1

) = max(0.66, 14.0) = 14.0

Time step 0
Here

g1
0 = max(101 − 100, 0) = 1 and

h1
0 = 1

3

{
f 1

1 + f 2
1 + f 3

1

} = 1

3
{21.7 + 0 + 14.0} = 11.9

The final value of the option for this particular lattice is therefore:

f 1
1 = max

(
h1

0, g
1
0

) = max(11.9, 1) = 11.9
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Compute the Monte Carlo estimate

The Monte Carlo estimate, θH , is computed as the average of θ
p

H, p =
1, . . . , nsim, where nsim is the number of simulations:

θH =
∑nsim

i=1 θi
H

nsim

In Code excerpt 5.21, we provide a computer program which prices single asset
American put and call options using a stochastic lattice. The method used by the
program is the depth first procedure outlined in Broadie and Glasserman (1997),
which has the advantage that the memory requirements are only of order b × d;
as before, b is the number of branches per node and d is the number of time
intervals.

Here it is assumed the underlying asset follows GBM and the function
normal(M, S) is used to generate a normal distribution with mean M and
standard deviation S. We can therefore check the accuracy of the simulation
with that obtained by a closed form solution which assumes a lognormal asset
distribution, in this case the formula in Geske and Johnson (1984).

However, the real power of this method is when the underlying asset fol-
lows a more realistic process which is non-Gaussian and time varying. The only
modification to the code is to replace the call to normal with that of another
probability distribution and supply the time-varying parameters to it.

// Stochastic lattice for computing the value of American and European options via Monte Carlo_
simulation.

// Here we assume that the asset prices have a lognormal distribution, and so generate
// normal variates; this assumption can easily be removed.

void __cdecl main()
{

long i,j,jj,is_put,is_american,w[200],num_simulations,b,d,seed;
double T,time_step,sqrt_time_step,opt_value,pay_off,log_fac,asset_price;
double temp,opt_val,hold,sum_opt_val,disc;
double tot_opt_vals, X, drift_term, std_term, S0, q, r, sigma, zero = 0.0;
double v[200][60], opt_v[200][60];

printf("Stochastic lattice for pricing European and American options \n");
is_put = 1; // If is_put == 0 then a call option, otherwise a put option
T = 1.0; // The time to maturity of the option
is_american = 1; // If is_american == 0 then an European option, otherwise an American_

option
sigma = 0.2; // The volatility of the underlying asset
X = 110.0; // The strike price
S0 = 100.0; // The current price of the underlying assset
r = 0.1; // The risk free interest rate
q = 0.05; // The continuous dividend yield
d = 4; // The number of time steps, the number time intervals = d - 1
b = 50; // The number of branches per node in the lattice
time_step = T/(double)(d-1); // time step = T/(number of time intervals)
sqrt_time_step = sqrt(time_step);
disc = exp(-r*time_step); // The discount factor between time steps
std_term = sigma*sqrt(time_step); // The standard deviation of each normal variate generated
drift_term = (r - q - sigma*sigma*0.5)*time_step; // The mean value of each normal variate_

generated
seed = 111; // The seed for the random number generator
srand(seed);
tot_opt_vals = zero;
num_simulations = 100;
for (jj = 1; jj <= num_simulations; ++jj) {

v[1][1] = S0;

Code excerpt 5.21.
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w[1] = 1;
asset_price = S0;
for (j = 2; j <= d; ++j) {

w[j] = 1;
log_fac = normal(drift_term,std_term); // A normal variate:mean==drift_term,_
standard deviation==std_term
asset_price = asset_price*exp(log_fac); // Compute the new asset price: assuming a_
lognormal distribution
v[1][j] = asset_price;

}
j = d;
while (j > 0) {

if ((j == d) && (w[j] < b)) { // CASE 1::Terminal node, set asset prices for b branches,_
and option values for b-1 branches

if (is_put ) {
pay_off = MAX (X - v[w[j]][j],zero);

}
else {

pay_off = MAX (v[w[j]][j]-X,zero);
}
opt_v[w[j]][j] = pay_off;
asset_price = v[w[j-1]][j-1];
log_fac = normal(drift_term,std_term);
v[w[j]+1][j] = asset_price*exp(log_fac);
w[j] = w[j] + 1;

}
else if ((j == d) && (w[j] == b)) { // CASE 2::Terminal node, set option value for last_
branch

if (is_put) {
pay_off = MAX (X - v[w[j]][j],zero);

}
else {

pay_off = MAX (v[w[j]][j]-X,zero);
}
opt_v[w[j]][j] = pay_off;
w[j] = 0;
j = j - 1;

}
else if ((j < d) && (w[j] < b)) { // CASE 3::Internal node, calculate option value for_
node (parent wrt to cases 1 & 2)

sum_opt_val = zero; // Also generate a new terminal node and set asset_
values.

for (i = 1; i <= b; ++i) {
sum_opt_val += opt_v[i][j+1];

}
temp = sum_opt_val/(double)b;
hold = temp*disc;
if (is_american) { // An American option

if (is_put) {
pay_off = MAX(X-v[w[j]][j],zero); // pay off for a put option

}
else {

pay_off = MAX(v[w[j]][j]-X,zero); // pay off for a call option
}
opt_val = MAX(pay_off,hold);

}
else { // A European option

opt_val = hold;
}
opt_v[w[j]][j] = opt_val;
if (j > 1) {

asset_price = v[w[j-1]][j-1];
log_fac = normal(drift_term,std_term);
v[w[j]+1][j] = asset_price*exp(log_fac);
w[j] = w[j] + 1;
for (i = j + 1; i <= d; ++i) { // Generate a new terminal node

log_fac = normal(drift_term,std_term);
asset_price = asset_price*exp(log_fac);
v[1][i] = asset_price;
w[i] = 1;

}
j = d;

}
else {

j = 0;
}

Code excerpt 5.21 (Continued).
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}
else if ((j < d) && (w[j] == b)) { // CASE 4::Internal node, calculate the option value_

for the last branch
sum_opt_val = zero;
for (i = 1; i <= b; ++i) {

sum_opt_val += opt_v[i][j+1];
}
temp = sum_opt_val/(double)b;
hold = temp*disc;
if (is_american) { // An American option

if (is_put) {
pay_off = MAX(X - v[w[j]][j],zero); // pay off for a put option

}
else {

pay_off = MAX(v[w[j]][j]-X,zero); // pay off for a call option
}
opt_val = MAX(pay_off,hold);

}
else { // A European option

opt_val = hold;
}
opt_v[w[j]][j] = opt_val;
w[j] = 0;
j = j - 1;

}
}
tot_opt_vals = tot_opt_vals + opt_v[1][1]; // Sum the option values for each simulation

}
opt_value = tot_opt_vals/(double)num_simulations; // Compute the average option value
printf ("The estimated option value = %12.4f\n", opt_value);

}

Code excerpt 5.21 A computer program that uses a stochastic lattice to value American
and European options.

Table 5.13 American put option values, computed using the stochastic lattice given in
Code excerpt 5.21, with four exercise times t, t + τ/3, t + 2τ/3 and t + τ

X MC100
50 MC1

250 True Binomial lattice

70 0.118 (0.003) 0.123 (0.002) 0.121 0.126
80 0.663 (0.007) 0.672 (0.002) 0.670 0.696
90 2.317 (0.014) 2.307 (0.004) 2.303 2.389

100 5.830 (0.099) 5.720 (0.011) 5.731 5.928
110 11.564 (0.223) 11.361 (0.020) 11.341 11.770
120 20.205 (0.205) 20.000 (0.000) 20.000 20.052
130 30.054 (0.054) 30.000 (0.000) 30.000 30.000

The option parameters used were: r = 0.1, q = 0.05, τ = 1.0, σ = 0.2, and S = 100.0.
The column labelled MC100

50 refers to the results obtained using d = 4, b = 50,
num_simulations = 100, and the column labelled MC1

250 refers to the results obtained
using d = 4, b = 50, num_simulations = 1. The true values are those given in Broadie
and Glasserman (1997), and were computed with the formula in Geske and Johnson
(1984). The absolute error, ABS(stochastic_lattice_value − true_value), is given in
brackets. The last column gives the values computed using an accurate (6000 time step)
binomial lattice.

In Table 5.13 we present computed values of an American put option with
maturity τ , which can only be exercised at the following four times: t, t + τ/3,
t + 2τ/3 and t + τ , where t is the current time.
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The column labelled MC100
50 contains the results obtained using 100 simula-

tions of a stochastic lattice with 50 branches per node, and the column labelled
MC1

250 contains the values computed using a single stochastic lattice with 250
branches per node. These values demonstrate that one high accuracy stochas-
tic lattice can give better results than using the average of 100 lower accuracy
lattices. In the last column we present the results obtained using a 6000 step
binomial lattice in which it is possible to exercise the option at every time step.
It can be seen that the binomial option values are higher than the true values,
which only permit the option to be exercised at four distinct times. This is in
agreement with the extra flexibility present in the binomial lattice.



6 Multiasset options

6.1 Introduction

In this section we consider the valuation of multiasset, basket, options within
the Black–Scholes pricing framework. These options will be priced using the
following techniques:

• Analytic methods
• Monte Carlo methods
• Multidimensional lattices

Analytic methods can be useful for pricing multiasset European options which
have a known closed form solution. They are particularly appropriate for low
dimensional European options, when the closed form expressions are not too
difficult to evaluate.

Monte Carlo methods have the advantage that they can easily compute the
value of multiasset European options, but have difficulty including the possibil-
ity of early exercise; this is required for American-style options.

On the other hand, multidimensional lattice techniques allow American op-
tions to be evaluated with ease. However, lattices become increasingly difficult
to program as the number of dimensions increases, and the constraints of com-
puter storage limits their use to problems involving (about) four or less assets.

6.2 The multiasset Black–Scholes equation

In Chapter 2 we mentioned that when the price, S, of a single asset follows
geometric Brownian motion (GBM) the change in price, dS, over a time interval,
dt , is given by:

dS = rS dt + σS dW

where r is the risk free interest rate, σ is the volatility of asset S, and dW ∼
N(0, dt).

We also proved using Ito’s lemma that the process followed by Y = log(S) is:

dY =
(

r − σ 2

2

)
dt + σ dW
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where dY is the change in the value of log(S) over the time interval dt . Later on
we derived the (Black–Scholes) partial differential equation that is satisfied by
the value, V , of an option written on a single underlying asset. The equation is

∂V

∂t
+ σ 2S2

2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0

The above result can be generalized to deal with multiasset options. Suppose
that m assets are described by the following processes:

dYi =
(

r − σ 2
i

2

)
dt + σi dWi, i = 1, . . . , m, (6.2.1)

where the subscript i refers to the value associated with the ith asset. The
m-element random vector dW is distributed according to dW ∼ N(0, C). The
diagonal elements of C are Cii = Var[dWi] = dt, i = 1, . . . , m, and off-diagonal
elements are:

Cij = E[dWi dWj ] = ρi,j dt, i = 1, . . . , m, j = 1, . . . , m, i �= j

We can also write the above equation in vector form by introducing the
m-element vector dY which is normally distributed as:

dY ∼ N(ν, �C) (6.2.2)

where ν is the mean vector and �C is the covariance matrix. The elements of the
covariance matrix are:

�Cii = σ 2
i dt, i = 1, . . . , m,

�Cij = σiσjρij dt, i �= j, i = 1, . . . , m, j = 1, . . . , m, (6.2.3)

where ρij is the correlation coefficient between asset i and asset j ; that is, the
correlation between dWi and dWj . The elements of the mean vector ν are:

νi = r − σ 2
i

2
, i = 1, . . . , m (6.2.4)

The value V of an option written on m assets satisfies the following partial
differential equation:

∂V

∂t
+ 1

2

m∑
i=1

m∑
j=1

σiσjρij SiSj

∂2V

∂Si ∂Sj

+ r

m∑
i=1

Si

∂V

∂Si

− rV = 0.

For a European call on the maximum of m assets the pay-off PMAX
c at maturity

(time τ ) is given by PMAX
c = max(max(Sτ

1 , Sτ
2 , . . . , Sτ

m) − E, 0), where Sτ
i , i =

1, . . . , m, denotes the value of the ith asset at maturity, and E represents the
strike price. Similarly a European put option on the minimum of m assets has a
pay-off, PMIN

p , at time τ , given by PMIN
p = max(E − min(Sτ

1 , Sτ
2 , . . . , Sτ

m), 0).
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6.3 Multidimensional Monte Carlo methods

We have already mentioned that Monte Carlo simulation can easily price Euro-
pean multiasset options (also sometimes referred to as basket options, or rain-
bow options) involving a large number of assets (say 20 or more).

In addition Monte Carlo simulation can also include the following features
into an option without much difficulty:

• Non-Gaussian distribution of stock returns; distributions with heavy tails are
usually of interest because they more accurately represent what is observed in
the financial markets

• Options with path dependency (such as barrier options, etc.); these are known
as exotic options

• Complex time dependency (e.g., ARMA, GARCH or Levy processes) of
model parameters such as interest rates, asset prices, etc.

The main drawbacks with Monte Carlo simulation are:

• It is to difficult compute the value of American-style options
• It is difficult (or impossible) to achieve the same accuracy that can be obtained

using finite difference methods.

In a different section of this book we will show how Monte Carlo simulation
can be used to price American options by using a hybrid Monte Carlo lattice
approach originally developed by Boyle, Evnine, and Gibbs (1997).

In Chapter 3 we show that when pseudo-random numbers are used, the stan-
dard errors of integrals computed via Monte Carlo simulation decrease at the
rate N1/2, where N is the number of simulations. This means that it can re-
quire hundreds of thousands of simulations just to achieve an accuracy of 10−1

or 10−2 in the estimated option price. It is because of this that various Monte
Carlo variance reduction techniques are used to increase the accuracy of the
computed integral.

In this section we show how to price a three-asset basket option using Monte
Carlo simulation; the accuracy of the results obtained with quasirandom num-
bers and pseudo-random numbers are compared.

The options we consider are European put and call options on the maximum
and minimum of three assets. All the options have a maturity of one year, and
the other model parameters used are given in Tables 6.1 and 6.2.

In Code excerpt 6.1 most of the work is done by the routine multivari-
ate_normal. This generates a vector of multivariate pseudo-random numbers
with a particular covariance matrix. In the program the values of the assets at
current time t are S1 = S2 = S3 = 100, and the option matures in one year.

The asset process evolves according to

dYi = log(Si,t+dt ) − log(Si,t ) =
(

r − σ 2
i

2

)
dt + σi dWi, i = 1, . . . , m,
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Table 6.1 The computed values and absolute errors, in brackets, for European options
on the maximum of three assets

Nsim Put

Quasi Pseudo

500 0.890 (4.5948 × 10−2) 1.1044 (1.6839 × 10−1)
1000 0.924 (1.1534 × 10−2) 1.0193 (8.3297 × 10−2)
1500 0.919 (1.6807 × 10−2) 0.8957 (4.0344 × 10−2)
2000 0.932 (4.3221 × 10−3) 0.8995 (3.6488 × 10−2)
2500 0.932 (3.5698 × 10−3) 0.8886 (4.7352 × 10−2)
3000 0.937 (1.1376 × 10−3) 0.9025 (3.3548 × 10−2)

Call

Quasi Pseudo

500 22.629 (4.3231 × 10−2) 22.4089 (2.6312 × 10−1)
1000 22.683 (1.1306 × 10−2) 22.3520 (3.1998 × 10−1)
1500 22.670 (2.2954 × 10−3) 22.6346 (3.7430 × 10−2)
2000 22.685 (1.3299 × 10−2) 22.7675 (9.5491 × 10−2)
2500 22.670 (1.6619 × 10−3) 22.9326 (2.6058 × 10−1)
3000 22.679 (7.2766 × 10−3) 22.8050 (1.3301 × 10−1)

Monte Carlo simulation was used with both quasirandom (Sobol) sequences and pseudo-
random sequences. The number of paths used varied from 500 to 3000. The parameters
were: E = 100.0, S1 = S2 = S3 = 100.0, r = 0.1, τ = 1.0, σ1 = σ2 = σ3 = 0.2, ρ12 =
ρ13 = ρ23 = 0.5, q1 = q2 = q3 = 0.0. The accurate values were 0.936 for a put and
22.672 for a call; see Table 6.7 and Table 2 of Boyle, Evnine, and Gibbs (1989).

where we have used the notation Si,t to denote the value of the ith asset at
current time t , and Si,t+dt to denote the value of the asset at the future time
t + dt . Simple rearrangement of the above equation gives:

log

(
Si,t+dt

Si,t

)
=

(
r − σ 2

i

2

)
dt + σi dWi, i = 1, . . . , m

Taking exponentials of both sides we obtain:

Si,t+dt

Si,t

= exp

{(
r − σ 2

i

2

)
dt + σi dWi

}
, i = 1, . . . , m,

which is equivalent to:

Si,t+dt = Si,t exp

{(
r − σ 2

i

2

)
dt + σi dWi

}
(6.3.1)
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Table 6.2 The computed values and absolute errors, in brackets, for European options
on the minimum of three assets

Nsim Put

Quasi Pseudo

500 7.365 (3.8122 × 10−2) 7.6760 (2.7298 × 10−1)
1000 7.425 (2.1554 × 10−2) 7.7607 (3.5772 × 10−1)
1500 7.408 (5.1232 × 10−3) 7.5654 (1.6240 × 10−1)
2000 7.399 (3.6364 × 10−3) 7.4820 (7.8995 × 10−2)
2500 7.407 (4.1463 × 10−3) 7.3592 (4.3754 × 10−2)
3000 7.400 (2.7166 × 10−3) 7.3997 (3.3236 × 10−3)

Call

Quasi Pseudo

500 5.312 (6.3431 × 10−2) 5.3086 (5.9591 × 10−2)
1000 5.293 (4.3958 × 10−2) 5.4376 (1.8857 × 10−1)
1500 5.253 (4.0761 × 10−3) 5.4121 (1.6307 × 10−1)
2000 5.266 (1.7236 × 10−2) 5.4029 (1.5390 × 10−1)
2500 5.267 (1.7707 × 10−2) 5.4690 (2.2005 × 10−1)
3000 5.245 (3.5024 × 10−3) 5.4331 (1.8407 × 10−1)

Monte Carlo simulation was used with both quasirandom (Sobol) sequences and pseudo-
random sequences. The number of paths used varied from 500 to 3000. The parameters
were: E = 100.0, S1 = S2 = S3 = 100.0, r = 0.1, τ = 1.0, σ1 = σ2 = σ3 = 0.2, ρ12 =
ρ13 = ρ23 = 0.5, q1 = q2 = q3 = 0.0. The accurate values were 7.403 for a put and 5.249
for a call; see Table 6.8 and Table 2 of Boyle, Evnine, and Gibbs (1989).

6.4 Introduction to multidimensional lattice methods

Finite-difference lattices can be used to value options on up to about 4 assets
before they require impossibly large amounts of computer memory. The main
advantage of finite-difference methods is that they are able to easily cater for
American style early exercise within the option. This is not true of Monte Carlo
methods. They can easily model complex European options, but have difficulty
modelling American-style options.

In this section we use the approach of Kamrad and Ritchken (1991), and
Boyle, Evnine, and Gibbs (1989), which we will call the BEGKR method, to
price multiasset options. We first derive expressions for the jump size and jump
probabilities for a single asset, and show that these are equivalent to those of the
Cox, Ross, and Rubinstein binomial lattice (CRR lattice) discussed in Chapter 5.
We will then give expressions for the jump sizes and jump probabilities of a
general multiasset option.

To derive the BEGKR equations for one asset we first assume that the asset
follows a lognormal process with drift μ = r − σ 2/2, where r is the riskless
interest rate and σ is the instantaneous volatility.
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/* Monte Carlo simulation: 3 dimensional Black-Scholes, The results are compared with those_
of Boyle et. al.,1989
George Levy: 2007

*/
long seed,i,num_simulations,iflag;
double time_step,sqrt_time_step,rho, zero = 0.0, half = 0.5;
double r,opt_val, opt_val1, tol;
double the_max, the_min, X, ST1, ST2, ST3, ST4, S1, S2, S3, S4;
double disc, sumit_max_put, sumit_max_call;
double sumit_min_put, sumit_min_call;
double *rvec = (double *)0;
double rho_12, rho_13, rho_23;
double *c3, *c4, *z, *std, *means;
double tmp1, tmp2, tmp3, tmp4, sigma1, sigma2, sigma3, sigma4;
long is_fcall;

#define MEANS(I) means[(I)-1]
#define XBAR(I) xbar[(I)-1]
#define Z(I) z[(I)-1]
#define STD(I) std[(I)-1]
#define C3(I,J) c3[((I)-1) * 3 + ((J)-1)]

seed = 111;
r = 0.1;

sigma1 = 0.2;
sigma2 = 0.2;
sigma3 = 0.2;
S1 = 100.0;
S2 = 100.0;
S3 = 100.0;
X = 100.0;

rho_12 = 0.5;
rho_13 = 0.5;
rho_23 = 0.5;

time_step = 1.0;
sqrt_time_step = sqrt(time_step);
disc = exp(-r*time_step);

c3 = ALLOCATE(3*3, double);
means = ALLOCATE(3, double);
z = ALLOCATE(3, double);
std = ALLOCATE(3, double);

if ((!means) || (!std) || (!z) ) {
printf("Allocation error \n");

}

tmp1 = sigma1*sigma1*time_step;
tmp2 = sigma2*sigma2*time_step;
tmp3 = sigma3*sigma3*time_step;

C3(1,1) = tmp1;
C3(2,2) = tmp2;
C3(3,3) = tmp3;
C3(1,2) = sigma1*sigma2*time_step*rho_12;
C3(2,3) = sigma2*sigma3*time_step*rho_23;
C3(1,3) = sigma1*sigma3*time_step*rho_13;
C3(2,1) = C3(1,2);
C3(3,1) = C3(1,3);
C3(3,2) = C3(2,3);

tmp1 = (r - sigma1*sigma1*half)*time_step;
tmp2 = (r - sigma2*sigma2*half)*time_step;
tmp3 = (r - sigma3*sigma3*half)*time_step;

MEANS(1) = tmp1;
MEANS(2) = tmp2;
MEANS(3) = tmp3;

Code excerpt 6.1 A Monte Carlo simulation computer program, using pseudo-random
numbers, for estimating the value of European put and call options on the maximum and
minimum of three underlying assets. The results are presented in Tables 6.1 and 6.2.
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sumit_max_put = zero;
sumit_max_call = zero;
sumit_min_put = zero;
sumit_min_call = zero;

tol = 1.0e-8;

srand(seed);
is_fcall = 1; /* initialisation call to the random number generator */
multivariate_normal(is_fcall,&MEANS(1),3,&C3(1,1),3,tol,&rvec,&Z(1),&iflag);

num_simulations = 6000;
is_fcall = 0;
for (i = 1; i <= num_simulations ; ++i) {

/* continuation calls to the random number generator */
multivariate_normal(is_fcall,&MEANS(1),3,&C3(1,1),3,tol,&rvec,&Z(1),&iflag);

ST1 = S1*exp(Z(1));
ST2 = S2*exp(Z(2));
ST3 = S3*exp(Z(3));

// options on the maximum
tmp2 = MAX(ST1,ST2);
the_max = MAX(tmp2,ST3);
tmp1 = the_max-X;
opt_val1 = MAX(tmp1, zero);
sumit_max_call += opt_val1*disc;

tmp1 = X-the_max;
opt_val1 = MAX(tmp1, zero);
sumit_max_put += opt_val1*disc;

// options on the minimum
tmp2 = MIN(ST1,ST2);
the_min = MIN(tmp2,ST3);

tmp1 = the_min-X;
opt_val1 = MAX(tmp1, zero);
sumit_min_call += opt_val1*disc;

tmp1 = X-the_min;
opt_val1 = MAX(tmp1, zero);
sumit_min_put += opt_val1*disc;

}

opt_val = sumit_max_put/(double)num_simulations; /* put option value on the maximum_
of three assets */
opt_val = sumit_max_call/(double)num_simulations; /* call option value on the maximum_
of three assets */

opt_val = sumit_min_put/(double)num_simulations; /* put option value on the minimum_
of three assets */
opt_val = sumit_min_call/(double)num_simulations; /* call option value on the maximum_
of three assets */

}

Code excerpt 6.1 (Continued).

Therefore if St is the price of the asset at time t , and St+�t is the price at time
instant t + �t , we then have the following equations:

log(St+�t ) = log(St ) + εt , εt ∼ N
(
μ�t, σ 2�t

)
,

or equivalently

log

(
St+�t

St

)
∼ N

(
μ�t, σ 2�t

)
where εt represents a random variable and as usual N(μ�t, σ 2�t) denotes a
Gaussian with mean μ�t and variance σ 2�t .
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We will now consider the situation when εt either jumps up or down by an
amount ν = σ

√
�t . For an up jump:

log

(
St+�t

St

)
= σ

√
�t

and therefore St+�t = St exp(σ
√

�t).
While for a down jump we have

log

(
St+�t

St

)
= −σ

√
�t

and therefore St+�t = St exp(−σ
√

�t).
The reader will notice that these expressions are the same as those for the

CCR lattice of Chapter 5. That is: for an up jump St+�t = Stu, for a down
jump St+�t = Std, and u = 1/d = exp(σ

√
�t).

The probability of undergoing either an up or down jump occurring can be
found by matching the mean and variance of εt .

From the mean:

E[εt ] = ν(pu − pd) = μ�t (6.4.1)

and from the variance:

Var[εt ] = ν2(pu + pd) = σ 2�t (6.4.2)

So combining Eqs. (6.4.1) and (6.4.2) we obtain:

νμ�t + σ 2�t = 2ν2pu

so

pu = 1

2

{
σ 2�t

ν2
+ μ�t

ν

}
Substituting ν = σ

√
�t we obtain:

pu = 1

2

{
1 + μ

√
�t

σ

}
(6.4.3)

and using the fact that pd = 1 − pu gives:

pd = 1

2

{
1 − μ

√
�t

σ

}
(6.4.4)

We shall now show that this is equivalent to the Cox–Rubinstein–Ross binomial
model.

For the CRR model (Chapter 5, Eq. (5.3.19)) we have:

pu = exp(r�t) − d

u − d

expanding exp(r�t), u and d to order �t we obtain:
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exp(r�t) ∼ 1 + r�t

u = exp
(
σ
√

�t
) ∼ 1 + σ

√
�t + σ 2

2
�t

d = exp
(
σ
√

�t
) ∼ 1 − σ

√
�t + σ 2

2
�t

so

exp(r�t) − d ∼ r�t + σ
√

�t − σ 2�t

2

and

u − d ∼ 2σ
√

�t

So

pu = exp(r�t) − d

u − d
∼ r�t + σ − σ 2/2�t

2σ
√

�t

which simplifies to

pu = 1

2

{
1 + μ

√
�t

σ

}
and therefore

pd = 1 − pu = 1

2

{
1 − μ

√
�t

σ

}
which are the expressions for pu and pd given in Eqs. (6.4.1) and (6.4.2), re-
spectively. So we have shown that, to first order in �t , both the size of the jump
and the probability of the jump are the same as the CRR binomial model.

The attractive feature of the BEGKR binomial lattice model is that it can easily
be generalized to describe a model consisting of k assets. Here we will merely
quote the results in Kamrad and Ritchken (1991). As before it is assumed that
the asset prices follow a multivariate lognormal distribution. Let μi = r −σ 2

i /2,
and σi be the instantaneous mean and variance, respectively (i = 1, 2, . . . , k)
and let ρij be the correlation between asset i and j . The binomial model now
requires 2k possible jumps in the time interval �t . Let m denote the state of
the process after time �t with pm representing the probability of state m (m =
1, . . . , 2k). The probabilities of these jumps are now given by:

pm =
{

1 + √
�t

k∑
i=1

xim

(
μi

σi

)
+

k−1∑
i=1

k∑
j=i+1

(
xm
ij ρij

)}
,

m = 1, 2, . . . , 2k, k � 2,

where xim = 1 if asset i has an up jump in state m, and xim = −1 if asset i has
a down jump in state m. In addition xm

ij = 1 if asset i and asset j have jumps in
the same direction in state m, and xm

ij = −1 if asset i and asset j have jumps in
the opposite direction in state m.
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6.5 Two asset options

In this section we consider options based on the underlying prices of two as-
sets, S1 and S2. We give analytic formulae to price European exchange options
and also those based on the maximum or minimum of two assets. In addi-
tion we show how to construct binomial lattices for the valuation of two asset
American-style options.

6.5.1 European exchange options

A European exchange option gives the holder the right to exchange one asset
for another asset at maturity; see Margrabe (1978). Let the real-world processes
of assets SA and SB be:

dSA
t = SA

t μA dt + SA
t σA dWP

A

dSB
t = SB

t μB dt + SB
t σB dWP

B

where SA
t denotes the value of asset A at time t and SB

t denotes the value of
asset B at time t—the other symbols have their obvious meanings.

We will now find the value, at current time t0, of an option that gives the
holder the right to exchange asset A for asset B at maturity T . The payoff at
maturity is HT = max(SB

T − SA
T , 0).

If we use the value of asset A as the numeraire then, from Eq. (4.2.1), the
value of the exchange option at time t0 is:

V (t0) = SA
t0
EQ

[
max(SB

T − SB
T , 0)

SA
T

]
which can be written as

V (t0) = SA
t0
EQ

[
max

((
SB

T

SA
T

)
− 1, 0

)]
(6.5.1)

where Q is the probability measure under which the relative price (SB
t /SA

t ) is a
martingale.

The process followed by (SB
t /SA

t ) can be found by substituting X1 = SB
t and

X2 = SA
t into Eq. (2.6.7). This yields

d
(

SB
t

SA
t

)
=

(
SB

t

SA
t

){
μB − μA + σ 2

A − σAσBρAB

}
dt

+
(

SB
t

SA
t

){
σB dWP

B − σA dWP
A

}
Let X̂ = σB dWP

B − σA dWP
A , so E[X̂] = σBE[dWP

B ] − σAE[dWP
A ] = 0, and

Var[X̂] = σ 2
B dt +σ 2

A dt − 2σBσAρAB dt where we have used (see Appendix C.3):

Var[a dW1 + b dW2] = a2 Var[dW1] + b2 Var[dW2] + 2ab Cov[dW1, dW2]
Var

[
dWP

B

] = Var
[
dWP

A

] = dt and Cov
[
dWP

B , dWP
A

] = σBσAρAB dt



Multiasset options 191

which means that X̂ ∼ N(0, σ 2
B dt +σ 2

A dt − 2σBσAρAB dt) and the variate (σ 2
B +

σ 2
A − 2σBσAρAB) dWP is from the same distribution as X̂.
Therefore we can write:

d
(

SB
t

SA
t

)
=

(
SB

t

SA
t

)
μ̄ dt +

(
SB

t

SA
t

)
σ̄ dWP (6.5.2)

where

σ̄ =
√

σ 2
B + σ 2

A − 2σBσA

and

μ̄ = μB − μA + σ 2
A − σBσAρAB

Following Section 4.4.3 we choose the probability measure Q so that the drift
term in Eq. (6.5.2) is zero. We have

dWP = dWQ −
(

μ̄

σ̄

)
dt

Substituting this into Eq. (6.5.2) gives

d
(

SB
t

SA
t

)
=

(
SB

t

SA
t

)
σ̄ dWQ (6.5.3)

It can be seen that Eq. (6.5.3) is identical to Eq. (4.4.31) but with the mapping:

St →
(

SB
t

SA
t

)
, σ → σ̄ , r → 0 (6.5.4)

Now combining Eqs. (4.4.35) and (4.4.37) we have

exp(−rτ )EQ
[
max(ST − E, 0)

] = SN1(d1) − E exp(−rτ )N1(d2)

where d1 and d2 have been defined in Section 4.4.3.
Therefore,

EQ
[
max(ST − 1, 0)

] = exp(rτ )SN1(d1) − N1(d2)

Using the mapping defined in Eq. (6.5.4), and also E = 1 in the Black–Scholes
formula, we have:

EQ

[((
SB

T

SA
T

)
− 1, 0

)]
=

(
SB

t0

SA
t0

)
N1(d1) − N1(d2)

and from Eq. (6.5.1):

V (t0) = SA
t0

{(
SB

t0

SA
t0

)
N1(d1) − N1(d2)

}
This means that the value of the exchange option at time t0 is:

V (t0) = SB
t0

N1(d1) − SA
t0
N1(d2)
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where

d1 = log(SA
t0
/SB

t0
) + 1

2 (T − t0)σ̄
2

σ̄
√

T − t0

d2 = log(SA
t0
/SB

t0
) − 1

2 (T − t0)σ̄
2

σ̄
√

T − t0

6.5.2 European options on the maximum or minimum

Here we present the results from Stulz (1982) and Johnson (1987) concerning
the value of European put and call options on the maximum and minimum of
two assets, see Code excerpts 6.2 and 6.3, and results in Tables 6.3 and 6.4.

void rainbow_bs_2d(double *opt_value, double S1, double S2, double X, double sigma1,
double sigma2, double rho, double opt_mat, double r, long is_max,_
long *iflag)

{
/* Input parameters:

=================
S1 - the current price of the underlying asset 1,
S2 - the current price of the underlying asset 2,
X - the strike price,
sigma1 - the volatility of asset 1,
sigma2 - the volatility of asset 2,
rho - the correlation coefficient between asset 1 and asset 2,
opt_mat - the time to maturity,
r - the interest rate,
is_max - if is_max is 1 then the option is a call on the maximum of two assets,_

otherwise the option is a
call on the minimum of two assets.

Output parameters:
==================
opt_value - the value of the option,
iflag - an error indicator.

*/

double one=1.0,two=2.0,zero=0.0;
double eps,d1,d2_1,d2_2,temp,temp1,temp2,pi,np;
double rho_112, rho_212, d1_prime;
double sigma, term1, term2, term3;
long ifailx = 0;

if(X < EPS) { /* ERROR the strike price is too small */
*iflag = 2;

return;
}
if (sigma1 < EPS) { /* ERROR the volatility (sigma1) is too small */

*iflag = 3;
return;

}
if (sigma2 < EPS) { /* ERROR the volatility (sigma2) is too small */

*flag = 3;
return;

}
if (opt_mat < EPS) { /* ERROR the time to maturity (opt_mat) is too small */

*iflag = 3;
return;

}
sigma = sqrt((sigma1*sigma1 + sigma2*sigma2) - two*sigma1*sigma2*rho);

Code excerpt 6.2 Function to calculate the value of a European call on the maximum or
minimum of two assets using the analytic result of Johnson (1987) and Stulz (1982).
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if (is_max == 1) { /* then the maximum of two assets */
/* calculate term1 */
temp = log(S1/X);
d1 = temp+(r+(sigma1*sigma1/two))*opt_mat;
d1 = d1/(sigma1*sqrt(opt_mat));
temp = log(S1/S2);
d1_prime = temp+(sigma*sigma/two)*opt_mat;
d1_prime = d1_prime/(sigma*sqrt(opt_mat));
rho_112 = (sigma1 - rho*sigma2) / sigma;
term1 = cum_norm2(d1,d1_prime,rho_112,&ifailx);
term1 = term1*S1;
/* calculate term2 */
temp = log(S2/X);
d1 = temp+(r+(sigma2*sigma2/two))*opt_mat;
d1 = d1/(sigma2*sqrt(opt_mat));
temp = log(S2/S1);
d1_prime = temp+(sigma*sigma/two)*opt_mat;
d1_prime = d1_prime/(sigma*sqrt(opt_mat));
rho_212 = (sigma2 - rho*sigma1) / sigma;
term2 = S2*cum_norm2(d1,d1_prime,rho_212,&ifailx);
/* calculate term3 */
temp = log(S1/X);
d2_1 = temp+(r-(sigma1*sigma1/two))*opt_mat;
d2_1 = d2_1/(sigma1*sqrt(opt_mat));
temp = log(S2/X);
d2_2 = temp+(r-(sigma2*sigma2/two))*opt_mat;
d2_2 = d2_2/(sigma2*sqrt(opt_mat));
term3 = one-cum_norm2(-d2_1,-d2_2,rho,&ifailx);
*opt_value = term1+term2-X*exp(-r*opt_mat)*term3;

}
else { /* the minimum of two assets */

/* calculate term1 */
temp = log(S1/X);
d1 = temp+(r+(sigma1*sigma1/two))*opt_mat;
d1 = d1/(sigma1*sqrt(opt_mat));
temp = log(S1/S2);
d1_prime = temp+(sigma*sigma/two)*opt_mat;
d1_prime = d1_prime/(sigma*sqrt(opt_mat));
rho_112 = (sigma1 - rho*sigma2) / sigma;
term1 = cum_norm2(d1,-d1_prime,-rho_112,&ifailx);
term1 = term1*S1;
/* calculate term2 */
temp = log(S2/X);
d1 = temp+(r+(sigma2*sigma2/two))*opt_mat;
d1 = d1/(sigma2*sqrt(opt_mat));
temp = log(S2/S1);
d1_prime = temp+(sigma*sigma/two)*opt_mat;
d1_prime = d1_prime/(sigma*sqrt(opt_mat));
rho_212 = (sigma2 - rho*sigma1) / sigma;
term2 = S2*cum_norm2(d1,-d1_prime,-rho_212,&ifailx);
/* calculate term3 */
temp = log(S1/X);
d2_1 = temp+(r-(sigma1*sigma1/two))*opt_mat;
d2_1 = d2_1/(sigma1*sqrt(opt_mat));
temp = log(S2/X);
d2_2 = temp+(r-(sigma2*sigma2/two))*opt_mat;
d2_2 = d2_2/(sigma2*sqrt(opt_mat));
term3 = cum_norm2(d2_1,d2_2,rho,&ifailx);
*opt_value = term1+term2-X*exp(-r*opt_mat)*term3;

}
return;

}

Code excerpt 6.2 (Continued).

Call options on the maximum and minimum of two assets

Let the value of a European call option on the minimum of two assets, S1 and
S2, with strike price E, maturity τ , and correlation coefficient ρ, be denoted by
cmin. The value of the corresponding call option on the maximum of these assets
will be represented by cmax.
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void opt_rainbow_bs_2d(double *opt_value, double S1, double S2, double X, double sigma1,
double sigma2, double rho, double opt_mat, double r, long is_max, long putcall,_
long *flag)

{
/* Input parameters:

=================
S1 - the current price of the underlying asset 1,
S2 - the current price of the underlying asset 2,
X - the strike price,
sigma1 - the volatility of asset 1,
sigma2 - the volatility of asset 2,
rho - the correlation coefficient between asset 1 and asset 2,
opt_mat - the time to maturity,
r - the interest rate,
is_max - if is_max is 1 then the option is on the maximum of two assets,_

otherwise the option is on
the minimum of two assets,

putcall - if putcall is 0 then the option is a call, otherwise the option is a put.
Output parameters:
==================
opt_value - the value of the option,
iflag - an error indicator.

*/

double temp1;
double temp2;
double fac;
double a_zero = 1.0e-6; /* approximate zero number to prevent overflow in rainbow_bs_2d */
if (putcall) { /* a put option */

fac = X*exp(-r*opt_mat);
rainbow_bs_2d(&temp1, S1, S2, a_zero, sigma1, sigma2, rho, opt_mat, r, is_max, flag);
rainbow_bs_2d(&temp2, S1, S2, X, sigma1, sigma2, rho, opt_mat, r, is_max, flag);
*opt_value = fac - temp1 + temp2;

} else { /* a call option */
rainbow_bs_2d(opt_value, S1, S2, X, sigma1, sigma2, rho, opt_mat, r, is_max, flag);

}
}

Code excerpt 6.3 Function to calculate the value of a European put or call on the max-
imum or minimum of two assets using the analytic result of Johnson (1987) and Stulz
(1982).

Table 6.3 The computed values and absolute errors for European put and call options
on the maximum of two assets

Time Call Put

Analytic Lattice Error Analytic Lattice Error

0.1 6.45320 6.45245 7.4972 × 10−4 0.01524 0.01451 7.3344 × 10−4

0.2 6.96192 6.95953 2.3845 × 10−3 0.08252 0.08001 2.5106 × 10−3

0.3 7.49587 7.49376 2.1084 × 10−3 0.15787 0.15580 2.0675 × 10−3

0.4 8.03710 8.04022 3.1260 × 10−3 0.22362 0.22680 3.1768 × 10−3

0.5 8.57808 8.57916 1.0757 × 10−3 0.27762 0.27683 7.8867 × 10−4

0.6 9.11529 9.10809 7.2006 × 10−3 0.32115 0.31872 2.4328 × 10−3

0.7 9.64700 9.64838 1.3826 × 10−3 0.35598 0.35714 1.1548 × 10−3

0.8 10.17238 10.17663 4.2571 ×10−3 0.38372 0.38711 3.3891 × 10−3

The results were obtained using a binomial lattice and the analytic formula (Johnson
(1987) and Stulz (1982)). The time to maturity of the option is varied from 0.1 years to
0.8 years. The parameters are: E = 44.0, S1 = 40.0, S2 = 50.0, r = 0.1, σ1 = 0.2, σ2 =
0.2, q1 = q2 = 0.0, ρ = 0.5, n_steps = 50.
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Table 6.4 The computed values and absolute errors for European put and call options
on the minimum of two assets

Time Call Put

Analytic Lattice Error Analytic Lattice Error

0.1 0.10810 0.10753 5.7048 × 10−4 3.67044 3.66993 5.0955 × 10−4

0.2 0.40862 0.40781 8.1047 × 10−4 3.54551 3.54514 3.6961 × 10−4

0.3 0.74162 0.73418 7.4339 × 10−3 3.47882 3.47206 6.7642 × 10−3

0.4 1.06989 1.07299 3.1076 × 10−3 3.43283 3.43715 4.3214 × 10−3

0.5 1.38675 1.38909 2.3414 × 10−3 3.39540 3.40159 6.1826 × 10−3

0.6 1.69203 1.69025 1.7757 × 10−3 3.36145 3.35775 3.6964 × 10−3

0.7 1.98691 1.96939 1.7520 × 10−2 3.32859 3.31517 1.3417 × 10−2

0.8 2.27276 2.26274 1.0018 × 10−2 3.29566 3.29157 4.0885 × 10−3

The results were obtained using a binomial lattice and the analytic formula (Johnson
(1987) and Stulz (1982)). The time to maturity of the option is varied from 0.1 years to
0.8 years. The parameters are: E = 44.0, S1 = 40.0, S2 = 50.0, r = 0.1, σ1 = 0.2, σ2 =
0.2, q1 = q2 = 0.0, ρ = 0.5, n_steps = 50.

Then, following Stulz (1982) and Johnson (1987), we have:

cmax = S1N2
(
d1

(
S1, E, σ 2

1

)
, d ′

1

(
S1, S2, σ

2∗
)
, ρ1

)
+ S2N2

(
d1

(
S2, E, σ 2

2

)
, d ′

1

(
S2, S1, σ

2∗
)
, ρ2

)
− E exp(−rτ )

{
1 − N2

(−d2
(
S1, E, σ 2

1

)
,−d2

(
S2, E, σ 2

2

)
, ρ

)}
(6.5.5)

and

cmin = S1N2
(
d1

(
S1, E, σ 2

1

)
,−d ′

1

(
S1, S2, σ

2∗
)
,−ρ1

)
+ S2N2

(
d1

(
S2, E, σ 2

2

)
,−d ′

1

(
S2, S1, σ

2∗
)
,−ρ2

)
− E exp(−rτ )N2

(
d2

(
S1, E, σ 2

1

)
, d2

(
S2, E, σ 2

2

)
, ρ

)
(6.5.6)

where N2(a, b, ρ) is the bivariate cumulative normal. It gives the cumulative
probability, in a standardized bivariate normal distribution, that the variables
x1 and x2 satisfy x1 � a and x2 � b when the correlation coefficient between
x1 and x2 is ρ—the value is computed using the routine cum_norm2. The other
symbols are defined as follows:

σ 2∗ = σ 2
1 − 2ρσ1σ2 + σ 2

2

d1
(
Si, E, σ 2

i

) = log(Si/E) + (r + σ 2
i /2)τ

σi

√
τ

, i = 1, 2,

d2
(
Si, E, σ 2

i

) = log(Si/E) + (r − σ 2
i /2)τ

σi

√
τ

, i = 1, 2,

d ′
1

(
Si, Sj , σ

2∗
) = log(Si/Sj ) + (σ 2∗ /2)τ

σ∗
√

τ
for i = 1, j = 2, or i = 2, j = 1
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and

ρ1 = σ1 − ρσ2

σ∗
, ρ2 = σ2 − ρσ1

σ∗
It can also be shown that:

cmax(S1, S2, E, τ) + cmin(S1, S2, E, τ) = c(S1, E, τ) + c(S2, E, τ) (6.5.7)

where c(S,E, τ) is the value of a vanilla European call.
We will now derive an expression for the value of the corresponding European

put options.

Put options on the minimum of two assets

It will now be shown that the price of a European put option on the minimum
of two assets, pmin(S1, S2, E, τ) is:

pmin(S1, S2, E, τ) = E exp(−rτ ) − cmin(S1, S2, 0, τ ) + cmin(S1, S2, E, τ)

(6.5.8)

where the meaning of the symbols has been previously defined.
This result can be proved by considering the following two investments:

Portfolio A: Purchase one put option on the minimum of S1 and S2 with
exercise price E.

Portfolio B: Purchase one discount bond which pays E at maturity. Write
(that is, sell) one option on the minimum of S1 and S2 with an exercise price of
zero. Purchase one option on the minimum of S1 and S2 with exercise price E.

We now consider the values of these portfolios at option maturity, time τ .

If min(S1, S2) � E

Portfolio A: pays zero
Portfolio B: Pays E − min(S1, S2) + min(S1, S2) − E = 0

If min(S − 1, S2) = S1 < E

Portfolio A: Pays E − S1

Portfolio B: Pays E − S1 + 0 = E − S1

If min(S1, S2) = S2 < E

Portfolio A: Pays E − S2

Portfolio B: Pays E − S2 + 0 = E − S2

We have therefore shown that, under all possible circumstances, Portfolio A
has the same value as Portfolio B. This means that Eq. (6.5.8) is true.
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Put options on the maximum of two assets

It will now be shown that the price of a European put option on the maximum
of two assets, pmax(S1, S2, E, τ) is:

pmax(S1, S2, E, τ) = E exp(−rτ ) − cmax(S1, S2, 0, τ ) + cmax(S1, S2, E, τ)

(6.5.9)

where, as before, the meaning of the symbols has been previously defined.
This result can be proved by considering the following two investments:

Portfolio A: Purchase one put option on the maximum of S1 and S2 with
exercise price E.

Portfolio B: Purchase one discount bond which pays E at maturity. Write
(that is, sell) one option on the maximum of S1 and S2 with an exercise price
of zero. Purchase one option on the maximum of S1 and S2 with exercise
price E.

As before we now consider the values of these portfolios at option maturity,
time τ .

If max(S1, S2) � E

Portfolio A: Pays zero
Portfolio B: Pays E − max(S1, S2) + max(S1, S2) − E = 0

If max(S1, S2) = S1 < E

Portfolio A: Pays E − S1
Portfolio B: Pays E − S1 + 0 = E − S1

If max(S1, S2) = S2 < E

Portfolio A: Pays E − S2
Portfolio B: Pays E − S2 + 0 = E − S2

It therefore follows that, under all possible circumstances, Portfolio A has the
same value as Portfolio B, and this means that Eq. (6.5.9) is true.

6.5.3 American options

We assume that the prices of asset 1 and asset 2 follow a lognormal process with
drift terms of μ1 = r − σ 2

1 /2 and μ2 = r − σ 2
2 /2, respectively. As before, r is the

riskless interest rate and σ1 and σ2 are the instantaneous volatilities of asset 1
and asset 2.

If we let S1,t and S2.t denote the respective prices of asset 1 and asset 2 at
time t , then we can write:

log(S1,t+�t ) = log(S1,t ) + ε1,t (6.5.10)
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and

log(S2,t+�t ) = log(S2,t ) + ε2,t (6.5.11)

where ε1,t is a random normal variable with mean μ1�t and variance σ 2
1 �t , and

ε2,t is a random normal variable with mean μ2�t and variance σ 2
2 �t .

In the binomial lattice model, over the time interval �t , the variate log(S1,t )

is only allowed to jump up or down by an amount ν1 = σ1
√

�t , and simi-
larly the variate log(S2,t ) is only permitted to jump up and down by the amount
ν2 = σ2

√
�t . We will denote the probability of both log(S1,t ) and log(S2,t ) hav-

ing an up jump over �t by puu, and the probability of log(S1,t ) having an up
jump and log(S2,t ) having a down jump by pud , etc.

The mean values in Eqs. (5.15) and (5.16) then give

E[ε1,t ] = ν1(puu + pud − pdd − pdu) = μ1�t (6.5.12)

E[ε2,t ] = ν2(puu + pud − pdd − pdu) = μ2�t (6.5.13)

and the variance/covariance terms yields

Var[ε1,t ] = ν2
1(puu + pud + pdd + pdu) = σ 2

1 �t (6.5.14)

Var[ε2,t ] = ν2
2(puu + pud + pdd + pdu) = σ 2

2 �t (6.5.15)

E[ε1,t ε2,t ] = ν1ν2(puu − pud + pdd − pdu) = ρσ1σ2�t (6.5.16)

where ρ is the correlation coefficient between ε1,t and ε2,t .
We therefore obtain:

puu + pud − pdd + pdu = μ1
√

�t

σ1

puu − pud − pdd + pdu = μ2
√

�t

σ2

puu + pud + pdd + pdu = 1

puu − pud + pdd − pdu = ρ

These lead to the following jump probabilities:

puu = 1

4

{
1 + √

�t

(
μ1

σ1
+ μ2

σ2

)
+ ρ

}
pud = 1

4

{
1 + √

�t

(
μ1

σ1
− μ2

σ2

)
− ρ

}
pdd = 1

4

{
1 + √

�t

(
−μ1

σ1
− μ2

σ2

)
+ ρ

}
pdu = 1

4

{
1 + √

�t

(
−μ1

σ1
+ μ2

σ2

)
− ρ

}
In Code excerpt 6.4, we provide the computer code for a standard binomial
lattice which prices options on the maximum and minimum of two assets.
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The parameter M is the number of time steps used, and the lattice is con-
structed under the assumption that M is even.

void standard_2D_binomial(double *value, double S1, double S2, double X,
double sigma1, double sigma2, double rho, double T,
double r, double q1, double q2, long put,
long M, long opt_type, long is_american, long *iflag)

{
/* Input parameters:

=================
S1 - the current price of the underlying asset 1
S2 - the current price of the underlying asset 2
X - the strike price
sigma1 - the volatility of asset 1
sigma2 - the volatility of asset 2
rho - the correlation coefficient between asset 1 and asset 2
T - the time to maturity
r - the interest rate
q1 - the continuous dividend yield for asset 1
q2 - the continuous dividend yield for asset 2
put - if put is 0 then a call option, otherwise a put option
M - the number of time steps, the zeroth time step is the root node_

of the lattice
opt_type - if opt_type is 0 then an option on the maximum of two asset

otherwise an option on the minimum of two assets
is_american - if is_american is 0 then a European option, otherwise_

an American option
Output parameters:
==================
value - the value of the option,
iflag - an error indicator.

*/
double discount,t1,dt,d1,d2,u1,u2;
long i,j,m1,n,iflagx,jj,ind;
double zero=0.0,hold;
double temp,ds1,ds2,dv1,dv2,h,tmp;
double *s1, *s2, *v;
double p[4];
long P1,P2,tdv;
double sqrt_dt, t, mu1, mu2, jp1, jp2;
double one = 1.0, half = 0.5, quarter = 0.25;
long v1;
if (!((M+1)/2) == (M/2)) printf ("ERROR THE NUMBER OF TIME STEPS IS NOT EVEN \n");
tdv = M + 1;

#define V(I,J) v[(I) * tdv + (J)]
#define UU 0
#define UD 1
#define DD 2
#define DU 3

dt = T/(double)M;
sqrt_dt = sqrt(dt);
jp1 = sigma1*sqrt_dt;
jp2 = sigma2*sqrt_dt;
mu1 = r - q1 - sigma1*sigma1*half;
mu2 = r - q2 - sigma2*sigma2*half;
u1 = exp(jp1); /* assign the jump sizes */
u2 = exp(jp2);
d1 = exp(-jp1);
d2 = exp(-jp2);
p[UU] = quarter*(one + sqrt_dt * ((mu1/sigma1) + (mu2/sigma2)) + rho); /* set up the jump_

probabilities */
p[UD] = quarter*(one + sqrt_dt * ((mu1/sigma1) - (mu2/sigma2)) - rho);
p[DD] = quarter*(one + sqrt_dt * (-(mu1/sigma1) - (mu2/sigma2)) + rho);
p[DU] = quarter*(one + sqrt_dt * (-(mu1/sigma1) + (mu2/sigma2)) - rho);
for (i = 0; i < 4; ++i) {

if ((p[i] < zero) || (p[i] > 1.0)) printf ("ERROR p out of range\n");
}
discount = exp(-r*dt);

Code excerpt 6.4 Function to calculate the value of a European put or call on the maxi-
mum or minimum of two assets using a standard binomial lattice.
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for (i = 0; i < 4; ++i) {
p[i] = p[i]*discount;

}
/* Allocate the arrays v[(M+1)*(M+1)], s1[2*M+1] and s2[2*M+1] */

. . .
s1[M] = S1; /* assign the 2*M+1 asset values for s1 */
for (i = 1; i <= M; ++i) {

s1[M+i] = u1*s1[M+i-1];
s1[M-i] = d1*s1[M-i+1];

}
s2[M] = S2; /* assign the 2*M+1 asset values for s2 */
for (i = 1; i <= M; ++i) {

s2[M+i] = u2*s2[M+i-1];
s2[M-i] = d2*s2[M-i+1];

}
P1 = 0;
for (i = 0; i <= M; ++i) { /* Calculate the option values at maturity */

P2 = 0;
for (j = 0; j <= M; ++j) {

if (opt_type == 0) { /* Maximum of two assets */
if (put) {

V(i,j) = MAX(X - MAX(s1[P1],s2[P2]),zero);
}
else {

V(i,j) = MAX(MAX(s1[P1],s2[P2])-X,zero);
}

}
else {

if (put) { /* Minimum of two assets */
V(i,j) = MAX(X - MIN(s1[P1],s2[P2]),zero);

}
else {

V(i,j) = MAX(MIN(s1[P1],s2[P2])-X,zero);
}

}
P2 = P2 + 2;

}
P1 = P1 + 2;

}
for (m1 = M-1; m1 >= 0; --m1) { /* work backwards through the lattice_

to calculate option value */
P1 = M-m1;
for (i = 0; i <= m1; ++i) {

P2 = M-m1;
for (j = 0; j <= m1; ++j) {

hold = p[UD]*V(i+1,j) + p[UU]*V(i+1,j+1) + p[DU]*V(i,j+1) + p[DD]*V(i,j);
if (is_american) { /* An American option */

if (opt_type == 0) { /* Maximum of two assets */
if (put)

V(i,j) = MAX(hold,X-MAX(s1[P1],s2[P2]));
else

V(i,j) = MAX(hold,MAX(s1[P1],s2[P2])-X);
}
else { /* Minimum of two assets */

if (put)
V(i,j) = MAX(hold,X-MIN(s1[P1],s2[P2]));

else
V(i,j) = MAX(hold,MIN(s1[P1],s2[P2])-X);

}
}
else {

V(i,j) = hold;
}
P2 = P2 + 2;

}
P1 = P1 + 2;

}
}
*value = V(0,0);

}

Code excerpt 6.4 (Continued).
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6.6 Three asset options

For three asset options (see Code excerpt 6.5 and results in Tables 6.5–6.8), we
have the following jump probabilities:
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void standard_3D_binomial(double *value, double S1, double S2, double S3, double X,
double sigma1, double sigma2, double sigma3, double rho_12, double rho_13, double rho_23,
double T, double r, long put, long M, long opt_type, long is_american, long *iflag)

{
/* Input parameters:

=================
S1 - the current price of the underlying asset 1
S2 - the current price of the underlying asset 2
S3 - the current price of the underlying asset 3
X - the strike price
sigma1 - the volatility of asset 1
sigma2 - the volatility of asset 2
sigma3 - the volatility of asset 3
rho_12 - the correlation coefficient between asset 1 and asset 2
rho_13 - the correlation coefficient between asset 1 and asset 3
rho_23 - the correlation coefficient between asset 2 and asset 3
T - the time to maturity
r - the interest rate
put - if put is 0 then a call option, otherwise a put option
M - the number of time steps, the zeroth time step is the root node_

of the lattice
opt_type - if opt_type is 0 then an option on the maximum of two asset

otherwise an option on the minimum of two assets
is_american - if is_american is 0 then a European option, otherwise an American option.
Output parameters:
==================
value - the value of the option,
iflag - an error indicator.

Code excerpt 6.5 Standard 3-dimensional binomial lattice.
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*/
double discount,t1,dt,d1,d2,d3,u1,u2,u3;
long i,j,k,m1,n,iflagx,jj,ind;
double zero=0.0,hold;
double temp,ds1,ds2,dv1,dv2,h,tmp,tmp1,tmp2;
double *s1, *s2, *s3, *v;
double p[9];
long P1,P2,P3,tdv, tdv2;
double sqrt_dt, t, mu1, mu2, mu3, jp1, jp2, jp3;
double one = 1.0, half = 0.5, eighth = 0.125;
long v1;
if (!((M+1)/2) == (M/2)) printf ("ERROR THE NUMBER OF TIME STEPS IS NOT EVEN \n");
tdv = M + 1;
tdv2 = tdv*tdv;

#define V(I,J, K) v[(I) * tdv2 + (J)*tdv + (K)]
#define UUU 0
#define UUD 1
#define UDU 2
#define UDD 3
#define DUU 4
#define DUD 5
#define DDU 6
#define DDD 7

dt = T/(double)M;
sqrt_dt = sqrt(dt);
jp1 = sigma1*sqrt_dt;
jp2 = sigma2*sqrt_dt;
jp3 = sigma3*sqrt_dt;
mu1 = r - sigma1*sigma1*half;
mu2 = r - sigma2*sigma2*half;
mu3 = r - sigma3*sigma3*half;
u1 = exp(jp1); /* assign the jump sizes */
u2 = exp(jp2);
u3 = exp(jp3);
d1 = exp(-jp1);
d2 = exp(-jp2);
d3 = exp(-jp3);

/* set up the jump probabilities */
p[UUU] = eighth*(one + sqrt_dt * ((mu1/sigma1) + (mu2/sigma2)_
+ (mu3/sigma3)) + rho_12 + rho_13 + rho_23);
p[UUD] = eighth*(one + sqrt_dt * ((mu1/sigma1) + (mu2/sigma2)_
- (mu3/sigma3)) + rho_12 - rho_13 - rho_23);
p[UDU] = eighth*(one + sqrt_dt * ((mu1/sigma1) - (mu2/sigma2)_
+ (mu3/sigma3)) - rho_12 + rho_13 - rho_23);

p[UDD] = eighth*(one + sqrt_dt * ((mu1/sigma1) - (mu2/sigma2)_
- (mu3/sigma3)) - rho_12 - rho_13 + rho_23);
p[DUU] = eighth*(one + sqrt_dt * (-(mu1/sigma1) + (mu2/sigma2)_
+ (mu3/sigma3)) - rho_12 - rho_13 + rho_23);
p[DUD] = eighth*(one + sqrt_dt * (-(mu1/sigma1) + (mu2/sigma2)_
- (mu3/sigma3)) - rho_12 + rho_13 - rho_23);
p[DDU] = eighth*(one + sqrt_dt * (-(mu1/sigma1) - (mu2/sigma2)_
+ (mu3/sigma3)) + rho_12 - rho_13 - rho_23);
p[DDD] = eighth*(one + sqrt_dt * (-(mu1/sigma1) - (mu2/sigma2)_
- (mu3/sigma3)) + rho_12 + rho_13 + rho_23);
for (i = 0; i < 8; ++i) {

if ((p[i] < zero) || (p[i] > 1.0)) printf ("ERROR p[%ld] = %12.4f out_
of range\n",i, p[i]);

}
discount = exp(-r*dt);
for (i = 0; i < 8; ++i) {

p[i] = p[i]*discount;
}

/* Allocate the arrays v[(M+1)*(M+1)*(M+1)], s1[2*M+1], s2[2*M+1], and s3[2*M+1] */
. . .

s1[M] = S1;
for (i = 1; i <= M; ++i) { /* assign the 2*M+1 asset values for s1 */

s1[M+i] = u1*s1[M+i-1];
s1[M-i] = d1*s1[M-i+1];

}
s2[M] = S2;

Code excerpt 6.5 (Continued).
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for (i = 1; i <= M; ++i) { /* assign the 2*M+1 asset values for s2 */
s2[M+i] = u2*s2[M+i-1];
s2[M-i] = d2*s2[M-i+1];

}
s3[M] = S3;
for (i = 1; i <= M; ++i) { /* assign the 2*M+1 asset values for s2 */

s3[M+i] = u3*s3[M+i-1];
s3[M-i] = d3*s3[M-i+1];

}
/* Calculate the option values at maturity */
P1 = 0;
for (i = 0; i <= M; ++i) {

P2 = 0;
for (j = 0; j <= M; ++j) {

P3 = 0;
for (k = 0; k <= M; ++k) {

if (put) { /* put */
if (opt_type == 0) { /* Maximum of 3 assets */

tmp = MAX(s1[P1],s2[P2]);
V(i,j,k) = MAX(X - MAX(tmp,s3[P3]),zero);

}
else if (opt_type == 1) { /* Minimum of 3 assets */

tmp = MIN(s1[P1],s2[P2]);
V(i,j,k) = MAX(X - MIN(tmp,s3[P3]),zero);

}
}
else { /* call */

** Insert call option code using the supplied put option code as a template **
}
P3 = P3 + 2;

}
P2 = P2 + 2;

}
P1 = P1 + 2;

}
for (m1 = M-1; m1 >= 0; --m1) { /* work backwards through the lattice to calculate_

the option value */
P1 = M-m1;
for (i = 0; i <= m1; ++i) {

P2 = M-m1;
for (j = 0; j <= m1; ++j) {

P3 = M-m1;
for (k = 0; k <= m1; ++k) {

hold = p[UUU]*V(i+1,j+1,k+1) + p[UUD]*V(i+1,j+1,k) + p[UDU]*V(i+1,j,k+1)_
+ p[UDD]*V(i+1,j,k) + p[DUU]*V(i,j+1,k+1) + p[DUD]*V(i,j+1,k)_
+ p[DDU]*V(i,j,k+1) + p[DDD]*V(i,j,k);

if (is_american) {
if (put) {
if (opt_type == 0) { /* Maximum of 3 assets */

tmp = MAX(s1[P1],s2[P2]);
if (opt_type == 0) { /* Maximum of 3 assets */

tmp = MAX(s1[P1],s2[P2]);
tmp1 = MAX(tmp,s3[P3]);
tmp2 = MAX(X-tmp1,hold);
V(i,j,k) = MAX(tmp2,zero);

}
else if (opt_type == 1) { /* Minimum of 3 assets */

tmp = MIN(s1[P1],s2[P2]);
tmp1 = MIN(tmp,s3[P3]);
tmp2 = MAX(X-tmp1,hold);
V(i,j,k) = MAX(tmp2,zero);

}
}
else { /* call option */

** Insert call option code using the supplied put option_
code as a template **

}
}

Code excerpt 6.5 (Continued).



204 Computational Finance Using C and C#

else { /* European option */
V(i,j,k) = hold;

}
P3 = P3 + 2;

}
P2 = P2 + 2;

}
P1 = P1 + 2;

}
}
*value = V(0,0,0);

}

Code excerpt 6.5 (Continued).

Table 6.5 The computed values and absolute errors for European options on the
maximum of three assets

N steps Put Call

Computed value Error Computed value Error

10 0.9112 2.485 ×10−2 21.8601 8.119 ×10−1

20 0.9192 1.678 ×10−2 22.2807 3.913 ×10−1

30 0.9232 1.276 ×10−2 22.4137 2.583 ×10−1

40 0.9254 1.056 ×10−2 22.4792 1.928 ×10−1

50 0.9268 9.180 ×10−3 22.5182 1.538 ×10−1

60 0.9278 8.236 ×10−3 22.5441 1.279 ×10−1

A binomial lattice was used and we show how the accuracy of the results depends on
the number of time steps. The parameters are: E = 100.0, S1 = S2 = S3 = 100.0, r =
0.1, τ = 1.0, σ1 = σ2 = σ3 = 0.2, ρ12 = ρ13 = ρ23 = 0.5, q1 = q2 = q3 = 0.0. The
accurate values are 0.936 for a put and 22.672 for a call; see Table 2, Boyle, Evnine, and
Gibbs (1989).

Table 6.6 The computed values and absolute errors for European options on the
minimum of three assets

N steps Put Call

Computed value Error Computed value Error

10 7.0759 3.271 ×10−1 5.2072 4.176 ×10−2

20 7.2402 1.628 ×10−1 5.2263 2.269 ×10−2

30 7.2953 1.077 ×10−1 5.2334 1.560 ×10−2

40 7.3229 8.015 ×10−2 5.2371 1.192 ×10−2

50 7.3394 6.357 ×10−2 5.2393 9.665 ×10−2

60 7.3505 5.251 ×10−2 5.2409 8.143 ×10−3

A binomial lattice was used and we show how the accuracy of the results depends on
the number of time steps. The parameters are: E = 100.0, S1 = S2 = S3 = 100.0, r =
0.1, τ = 1.0, σ1 = σ2 = σ3 = 0.2, ρ12 = ρ13 = ρ23 = 0.5, q1 = q2 = q3 = 0.0. The
accurate values are 7.403 for a put and 5.249 for a call; see Table 2, Boyle, Evnine, and
Gibbs (1989).
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Table 6.7 The computed values and absolute errors for European options on the
maximum of three assets

N steps Put Call

Computed value Error Computed value Error

10 0.0122 4.041 ×10−2 27.3180 5.091 ×10−1

20 0.0295 2.314 ×10−2 27.5743 2.528 ×10−1

30 0.0366 1.600 ×10−2 27.6589 1.682 ×10−1

40 0.0404 1.221 ×10−2 27.7010 1.261 ×10−1

50 0.0427 9.868 ×10−3 27.7263 1.008 ×10−1

60 0.0443 8.280 ×10−3 27.7431 8.396 ×10−2

A binomial lattice was used and we show how the accuracy depends on the number of
time steps. The parameters are: E = 100.0, S1 = S2 = S3 = 100.0, r = 0.1, τ = 1.0, σ1 =
σ2 = σ3 = 0.2, ρ12 = −0.5, ρ13 = −0.5, ρ23 = 0.5, q1 = q2 = q3 = 0.0. The accurate
values are 0.0526 for a put and 27.8271 for a call, and were computed using Monte Carlo
simulation with 107 paths.

Table 6.8 The computed values and absolute errors for European options on the
minimum of three assets

N steps Put Call

Computed value Error Computed value Error

10 8.9646 3.130 ×10−1 1.4047 1.800 ×10−1

20 9.1231 1.545 ×10−1 1.4963 8.836 ×10−2

30 9.1749 1.027 ×10−1 1.5261 5.857 ×10−2

40 9.2007 7.694 ×10−2 1.5409 4.381 ×10−2

50 9.2161 6.151 ×10−2 1.5497 3.499 ×10−2

60 9.2264 5.123 ×10−2 1.5556 2.913 ×10−2

A binomial lattice was used and we show how the accuracy depends on the number of
time steps. The parameters are: E = 100.0, S1 = S2 = S3 = 100.0, r = 0.1, τ = 1.0, σ1 =
σ2 = σ3 = 0.2, ρ12 = −0.5, ρ13 = −0.5, ρ23 = 0.5, q1 = q2 = q3 = 0.0. The accurate
values are 9.2776 for a put and 1.5847 for a call, and were computed using Monte Carlo
simulation with 107 paths.

6.7 Four asset options

The results for four assets are presented in Tables 6.9 and 6.10. We have the
following jump probabilities:

puuuu = 1

16

{
1 + √

�t

(
μ1

σ1
+ μ2

σ2
+ μ3

σ3
+ μ4

σ4

)
+ ρ12 + ρ13 + ρ14 + ρ23 + ρ24 + ρ34

}



206 Computational Finance Using C and C#
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pdudd = 1
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Table 6.9 The computed values and absolute errors for European options on the
maximum of four assets

N steps Put Call

Computed value Error Computed value Error

4 0.6548 2.386 ×10−2 22.1403 3.096
8 0.6268 4.129 ×10−3 23.8640 1.372

12 0.6246 6.275 ×10−3 24.3630 8.733 ×10−1

16 0.6251 5.836 ×10−3 24.5934 6.429 ×10−1

20 0.6257 5.167 ×10−3 24.7270 5.093 ×10−1

24 0.6263 4.570 ×10−3 24.8144 4.219 ×10−1

28 0.6268 4.074 ×10−3 24.8762 3.601 ×10−1

32 0.6272 3.665 ×10−3 24.9222 3.141 ×10−1

A binomial lattice was used and we show how the accuracy depends on the number of
time steps. The parameters are: E = 100.0, S1 = S2 = S3 = S4 = 100.0, r = 0.1, τ =
1.0, σ1 = σ2 = σ3 = σ4 = 0.2, ρ12 = 0.5, ρ13 = 0.5, ρ23 = 0.5, q1 = q2 = q3 = q4 = 0.0.
The accurate values are 0.6309 for a put and 25.2363 for a call, and were computed using
Monte Carlo simulation with 107 paths.
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Table 6.10 The computed values and absolute errors for European options on the
minimum of four assets

N steps Put Call

Computed value Error Computed value Error

4 7.8274 7.120 ×10−1 3.5676 4.986 ×10−1

8 8.1571 3.823 ×10−1 3.8528 2.134 ×10−1

12 8.2794 2.600 ×10−1 3.9300 1.362 ×10−1

16 8.3429 1.965 ×10−1 3.9659 1.003 ×10−1

20 8.3815 1.579 ×10−1 3.9868 7.944 ×10−2

24 8.4075 1.319 ×10−1 4.0004 6.577 ×10−2

28 8.4262 1.132 ×10−1 4.0101 5.612 ×10−2

32 8.4402 9.920 ×10−2 4.0173 4.894 ×10−2

A binomial lattice was used and we show how the accuracy depends on the number of
time steps. The parameters are: E = 100.0, S1 = S2 = S3 = S4 = 100.0, r = 0.1, τ =
1.0, σ1 = σ2σ3 = σ4 = 0.2, ρ12 = 0.5, ρ13 = 0.5, ρ23 = 0.5, q1 = q2 = q3 = q4 = 0.0.
The accurate values are 8.5394 for a put and 4.0662 for a call, and were computed using
Monte Carlo simulation with 107 paths.



7 Other financial derivatives

7.1 Introduction

In the preceding sections of the book we have only dealt with the valuation of
equity derivatives. We are now going to consider some of the other types of
trades such as

• Interest rate derivatives
• Foreign exchange derivatives
• Credit derivatives

A selection of these trades will be used by the C# portfolio pricing example in
Chapter 8.

7.2 Interest rate derivatives

It is not possible to make real profit without risk. For example, if we (without
risk) invest £1 in a bank account, then allowing for interest, the total number
of pounds at future time T will be 1 + �I (t, T ), where �I (t, T ) is the amount
of interest accrued from t to time T . Since our investment grew by the riskless
interest rate, the real value which allows for inflation must still be £1, so:

DF(t, T )
{
1 + �I (t, T )

} = 1

where DF(t, T ) is the discount factor from t to T .

Continuously compounded spot rate

When continuous compounding is used 1 + �I (t, T ) = exp{R(t, T )(T − t)},
where R(t, T ) is the annual continuously compounded spot rate between times
t years and T years. We thus have:

DF(t, T ) exp
{
R(t, T )(T − t)

} = 1 (7.2.1)

so the discount factor is given by

DF(t, T ) = exp
{−R(t, T )(T − t)

}
(7.2.2)

and the continuously compounded rate is

R(t, T ) = − log(DF(t, T ))

T − t
(7.2.3)
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Simply compounded spot rate

When simple compounding is used �I (t, T ) = L(t, T )(T − t), where L(t, T ) is
the simply compounded spot rate between time t and T . Thus,

DF(t, T )
{
1 + L(t, T )(T − t)

} = 1

and so the simply compounded rate is:

L(t, T ) = 1

T − t

{
1

DF(t, T )
− 1

}
(7.2.4)

7.2.1 Forward rate agreement

A Forward Rate Agreement (FRA) is a contract between two counterparties
(referred to here as A and B), in which one counterparty (say A) agrees to pay
interest at the (variable) spot rate, while the other agrees to pay at a fixed interest
rate. Let the agreement start at time Ts and end at the maturity Tm, at which time
the counterparties settle the amount that is owed. If P is the principal then, at
time Tm, the contract has the following value to A:

V (Tm) = P
{
(Tm − Ts)K − L(Ts, Tm)(Tm − Ts)

}
(7.2.5)

where K is the agreed fixed rate, and L(Ts, Tm) is the simply compounded rate
between times Ts and Tm. From Eq. (7.2.4) we have:

L(Ts, Tm) = 1

Tm − Ts

{
1

DF(Ts, Tm)
− 1

}
so

V (Tm) = P

{
(Tm − Ts)K −

(
1

DF(Ts, Tm)
− 1

)}
(7.2.6)

The value of the FRA to A at time t � Tm is therefore FRA(t) = DF(t, Tm)V (Tm)

which means that

FRA(t) = DF(t, Tm)P

{
(Tm − Ts)K −

(
1

DF(Ts, Tm)
− 1

)}
(7.2.7)

Using DF(t, Tm) = DF(t, Ts)DF(Ts, Tm) we can rewrite Eq. (7.2.7) as

FRA(t) = DF(t, Tm)P

{
(Tm − Ts)K −

(
DF(t, Ts)

DF(t, Tm)
− 1

)}
(7.2.8)

The value of K that sets FRA(t) to zero is termed the time t forward rate be-
tween times Ts and Tm, and is here denoted by F(t, Ts, Tm). From Eq. (7.2.8),

F(t, Ts, Tm) = 1

Tm − Ts

{
DF(t, Ts)

DF(t, Tm)
− 1

}
(7.2.9)

Combining Eqs. (7.2.8) and (7.2.10) we can express the value of the FRA as:

FRA(t) = DF(t, Tm)P τ
{
K − F(t, Ts, Ts + τ)

}
(7.2.10)

where τ = Tm − Ts is known as the tenor of the FRA, and Ts is the reset time
for forward rate F(t, Ts, Ts + τ).
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7.2.2 Interest rate swap

Interest Rate Swaps (IRS) are very common financial instruments—it is not un-
usual for 80 percent of the trades in a portfolio to be IRS deals. Here we will
provide a description of some of the characteristics of interest rate swaps; more
detail can be found in Hull (2003).

A vanilla IRS consists of a strip of FRA trades, each FRA starting when the
previous FRA finishes. The maturity date of the IRS thus corresponds to the
maturity date of the last FRA.

Let the start times of the FRAs be ti , i = 0, . . . , n − 1, and the maturity times
of the FRAs be ti , i = 1, . . . , n; note that the FRA start times correspond to
the forward rate reset times, and the maturity times correspond to the FRA
payment times. We will now adopt the (common) convention of calling the
trades swaplets, so an IRS is made up of a number of swaplets.

When the counterparty A pays the fixed rate and receives the floating rate the
trade (from A perspective) is termed a payer IRS. Alternatively, if A receives the
fixed rate and pays the floating rate, then the trade is termed a receiver IRS.

The value of an IRS at time t , where tk−1 < t < tk, will now be considered.
We will assume that discount factors used to compute the forward rates and

those used to discount the coupon payments are associated with the same yield
curve. Using Eq. (7.2.10) we have:

IRS(t) = CDF(t, tk) +
n∑

i=k+1

DF(t, ti )P τi

{
K − F(t, ti−1, ti−1 + τi)

}
(7.2.11)

where C is the next coupon payment after current time t (this occurs at time tk),
and τi is the tenor of the ith swaplet which starts at time ti−1 and ends at time
ti .

Note that the next coupon payment C for the swaplet starting at time tk−1

and maturing at time tj is already known with certainty at time t because the
forward rate F(t, tk−1, tk) was reset in the past; tk−1 < t .

We will now rewrite Eq. (7.2.11) as:

IRS(t) = CDF(t, tk) + FXD(t) − FLT(t) (7.2.12)

where FXD(t), the time t value of the fixed leg, is:

FXD(t) = PK

n∑
i=k+1

DF(t, ti )τi (7.2.13)

and FLT(t), the time t value of the floating leg, is:

FLT(t) = P

n∑
i=k+1

DF(t, ti )τiF (t, ti−1, ti−1 + τi) (7.2.14)
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The floating leg

We will now evaluate Eq. (7.2.14). The floating leg coupon payment at time ti
will be denoted by Ci and has value:

Ci = PF(t, ti−1, ti−1 + τi)τi

where

F(t, ti−1, ti−1 + τi) =
{

DF(t, ti−1)

DF(t, ti−1 + τi)
− 1

}
1

τi

From Eq. (7.2.14) we thus have:

FLT(t) =
n∑

i=k+1

CiDF(t, ti )

= P

n∑
i=k+1

DF(t, ti )τi

{
DF(t, ti−1)

DF(t, ti )
− 1

}
1

τi

= P

n∑
i=k+1

{
DF(t, ti−1) − DF(t, ti )

}
= P

{
DF(t, tk) − DF(t, tk+1) + DF(t, tk+1) − · · ·
− DF(t, ti ) + DF(t, ti ) − · · · − DF(t, tn)

}
= P

{
DF(t, tk) − DF(t, tn)

}
and so the value of the floating leg is

FLT(t) = P
{
DF(t, tk) − DF(t, tn)

}
(7.2.15)

The swap rate

The time t swap rate SRt is the value of the fixed rate K that makes the IRS(t)

zero. Thus, from Eqs. (7.2.12)–(7.2.14):

P
{
DF(t, tk) − DF(t, tn)

} − CDF(t, tk) = PSRt

n∑
i=k+1

DF(t, ti )τi (7.2.16)

so

SRt = {DF(t, tk) − DF(t, tn)} − C
P

DF(t, tk)∑n
i=k+1 DF(t, ti )τi

(7.2.17)

Amortization

So far we have assumed that the principal is fixed and set to the value P . We
will now deal with the situation where the principal varies with time according
to the following amortization schedule:

AMi = Pi−1 − Pi, i = 0, . . . , n − 1, (7.2.18)



Other financial derivatives 213

where Pi is the value of the principal at time ti and P0 = P .
The value of the floating leg is now computed as:

FLT(t) =
n∑

i=k+1

Pi−1DF(t, ti )τi

{
DF(t, ti−1)

DF(t, ti )
− 1

}
1

τi

=
n∑

i=k+1

Pi−1
{
DF(t, ti−1) − DF(t, ti )

}
= PkDF(t, tk) − PkDF(t, tk+1)

+ Pk+1DF(t, tk+1) − Pk+1DF(t, tk+2) + · · ·
+ Pn−2DF(t, tn−1) − Pn−1DF(t, tn−1) − Pn−1DF(t, tn)

= PkDF(t, tk) − DF(t, tk+1){Pk − Pk+1} − Pk+1 − · · ·
− DF(t, tn−2){Pn−2 − Pn−1} − Pn−1DF(t, tn)

= PkDF(t, tk) − Pn−1DF(t, tn) +
n−1∑

i=k+1

AMiDF(t, ti ) (7.2.19)

and so the value of the floating leg is:

FLT(t) = PkDF(t, tk) − Pn−1DF(t, tn) +
n−1∑

i=k+1

AMiDF(t, ti ) (7.2.20)

When there is no amortization (Pk = Pn−1 and AMi = 0, i = 0, . . . , n − 1)
then Eq. (7.2.20) reduces to Eq. (7.2.15).

Basis swap

This is very similar to an interest rate swap, but now there are two floating legs,
each with their associated principal amount.

For example, floating leg 1 could be associated with the one month LIBOR
(London Inter Bank Offer Rate) and have a schedule of monthly payments,
while floating leg 2 could use the three month LIBOR rates and have quarterly
payments. In this case, the forward rates and discount factors for leg 1 would
be computed using the 1 month LIBOR yield curve and the forward rates and
discount factors for leg 2 will be computed using the three month LIBOR yield
curve.

We will use the subscripts 1 and 2 to denote quantities associated with
legs 1 and 2 respectively. The payment times associated with leg 1 are t i1, i =
1, . . . , n1, while those for leg 2 are t i2, i = 1, . . . , n2, and (for this example)
n1 = 3n2.

If counterparty A makes the quarterly payments (that is, receives the pay-
ments made on leg 1), then the time t value of the basis swap is:

BS(t) = C1DF1(t, tk1) + FLT1(t) − C2DF2(t, tk2) − FLT2(t) (7.2.21)
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where we have used similar notation to that used in Eq. (7.2.12), with

FLT1(t) = P1
(
DF1(t, tk1) − DF1(t, tn)

)
(7.2.22)

and

FLT2(t) = P2
(
DF2(t, tk2) − DF2(t, tn)

)
(7.2.23)

In Eqs. (7.2.22) and (7.2.23) P1 is the principal for leg 1 and P2 is the principal
for leg 2. The time of the next coupon payment for leg 1 is tk1 , while that for
leg 2 is tk2 : in addition we have used the fact that tn1 = tn2 = tn.

We will now consider the case in which the basis swap has been traded at
time t , and shall also assume that C1 = C2 = 0 and t = tk1 = tk2 . In addition, we
will specify that principal exchange occurs at the start (time t) and end (time tn)
of the swap.

The cash flows associated with principal exchange at the start of the swap leg
are in the opposite direction to those for the remainder of the swap leg; see Hull
(2003). We have:

FLT1(t) = P1 − P1DF1(t, tn) + {−P1 + P1DF(t, tn)
}

(7.2.24)

and

FLT2(t) = P2 − P2DF2(t, tn) + {−P2 + P2DF(t, tn)
}

(7.2.25)

where the principal exchange terms are in the curly brackets, and use discount
factors DF(t, T ) derived from the main currency yield curve (in this case GBP)
rather than DF1(t, T ) or DF2(t, T ).

It can be seen from Eq. (7.2.21) that principal exchange at the start of the
swap causes leg 2 to contribute the positive amount P2 to the value of the swap,
while leg 1 contributes the negative amount P2 to the value of the swap. In
contrast, principal exchange at the end of the swap results in leg 2 contributing
the negative amount −P2DF(t, tn) to the swap value, while leg 1 contributes
the positive amount P1DF(t, tn). If P1 = P2 = P then principal exchange does
not affect the value of the basis swap. It can also be seen from Eq. (7.2.24)
that if leg 1 used the main GBP yield curve instead of the one month LIBOR
curve, then DF1(t, tn) = DF(t, tn) which would result in FLT1(t) = 0. Similarly
DF2(t, tn) = DF(t, tn) would mean that FLT2(t) = 0.

If the valuation time t is after the trade has started, then Eq. (7.2.21) can be
used to price the basis swap, but Eqs. (7.2.24) and (7.2.25) need to be modified
as follows:

FLT1(t) = P1DF1(t, tk1) − P1DF1(t, tn) + {
P1DF(t, tn)

}
(7.2.26)

and

FLT2(t) = P2DF2(t, tk2) − P2DF2(t, tn) + {
P2DF(t, tn)

}
(7.2.27)

We will now consider how the timing of the coupon payment in relation to its
associated forward rate affects the present value, Vt0 , of the coupon.



Other financial derivatives 215

Coupon payment on time

In this section we will justify the approach we have adopted in obtaining the
present value of future cashflows generated from vanilla forward rates.

From Eq. (4.2.1) we know that the value at time t0 of a coupon payment at
time tk is:

Vt0 = DF(t0, tk)E
Qk

[
F(tk−1, tk−1, tk)

DF(tk, tk)

]
τP

where the symbols have their usual meaning, and we have chosen the numeraire
to be the zero coupon bond which matures at time tk. Since DF(tk, tk) = 1 we
can write

Vt0 = DF(t0, tk)E
Qk [

F(tk−1, tk−1, tk)
]
τP (7.2.28)

In Section 7.2.3 we show that F(t, tk−1, tk) follows the process:

d
(
F(t, tk−1, tk)

) = σkF (t, tk−1, tk) dWk (7.2.29)

If we assume that σk is constant, then Eq. (7.2.29) is GBM (see Chapter 2) and
has the solution:

F(t, tk−1, tk) = F(t0, tk−1, tk) exp

(
− (t − t0)σ

2
k

2
+ σkW

k
t

)
(7.2.30)

where we have taken Wk
t0

= 0.
Substituting t = tk−1 into Eq. (7.2.30) gives:

F(tk−1, tk−1, tk) = F(t0, tk−1, tk) exp

(
− (tk−1 − t0)σ

2
k

2
+ σkW

k
tk−1

)
(7.2.31)

which means that:

EQk [
F(tk−1, tk−1, tk)

]
= EQk

[
F(t0, tk−1, tk) exp

(
− (tk−1 − t0)σ

2
k

2
+ σkW

k
tk−1

)]
= F(t0, tk−1, tk)E

Qk

[
exp

(
− (tk−1 − t0)σ

2
k

2
+ σkW

k
tk−1

)]
= F(t0, tk−1, tk)E

Qk

[
exp

(
− (tk−1 − t0)σ

2
k

2
+ σk

√
tk−1 − t0 N(0, 1)

)]
= F(t0, tk−1, tk)

where we have used the fact (see Appendix D.2) that

EQk

[
exp

(
− (tk−1 − t0)σ

2
k

2
+ σk

√
tk−1 − t0 N(0, 1)

)]
= exp

(
− (tk−1 − t0)σ

2
k

2
+ (tk−1 − t0)σ

2
k

2

)
= 1
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Substituting for EQk [F(tk−1, tk−1, tk)] in Eq. (7.2.28):

Vt0 = PτF(t0, tk−1, tk) = DF(t0, tk)
1

τ

(
DF(t0, tk−1)

DF(t0, tk)
− 1

)
Pτ

This yields

Vt0 = P
{
DF(t0, tk−1) − DF(t0, tk)

}
(7.2.32)

which is our current method of valuing the future coupons generated by forward
rates.

General payment timing

For the general case, in which the coupon payment date does not correspond to
the end of its associated forward rate, we use the result from Eq. (7.2.43) that

dWk =
(

μk

σk

)
dt + dWi, i �= k (7.2.33)

Equation (7.2.33) states that Brownian motion Wi under numeraire DF(t, ti )

can be transformed into Brownian motion Wk under numeraire DF(t, tk) by the
addition of a drift term—more detail can be found in Section 7.2.3. If we assume
constant drift μk, Wk

t0
= Wi

t0
= 0 we obtain:

Wk
t = (t − t0)

(
μk

σk

)
+ Wi

t (7.2.34)

and in Eq. (7.2.30)

σkW
k
t = (t − t0)μk + σkW

i
t

A constant μk can be achieved by freezing the forward rates that make up μk;
for example, F(t, tk−1, tk) → F(t0, tk−1, tk); see Section 7.2.3 for more details
concerning μk.

This means that F(t, tk−1, tk) follows the process:

d
(
F(t, tk−1, tk)

) = F(t, tk−1, tk)μk dt + F(t, tk−1, tk)σk dWi

The above equation is GBM with drift and can be solved by modifying
Eq. (7.2.30) to:

F(t, tk−1, tk)

= F(t0, tk−1, tk) exp

(
(t − t0)μk − (t − t0)σ

2
k

2
+ σkW

i
t

)
(7.2.35)

As before, the time t0 value of the coupon payment at time ti is:

Vt0 = DF(t0, ti )E
Qi

[
F(tk−1, tk−1, tk)

DF(ti , ti )

]
τP

which since DF(ti , ti) = 1 becomes

Vt0 = DF(t0, ti )E
Qi [

F(tk−1, tk−1, tk)
]
τP (7.2.36)
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Now, from Eq. (7.2.35) we have:

EQi [
F(tk−1, tk−1, tk)

]
= EQi

[
F(t0, tk−1, tk) exp

(
(t − t0)μk − (tk−1 − t0)σ

2
k

2
+ σkW

i
tk−1

)]
= F(t0, tk−1, tk) exp

(
(tk−1 − t0)μk

)
× EQi

[
exp

(
− (tk−1 − t0)σ

2
k

2
+ σkW

i
tk−1

)]
= F(t0, tk−1, tk) exp

(
(tk−1 − t0)μk

)
(7.2.37)

where, as before, we have used the expectation given in Appendix D.2.
By expanding Eq. (7.2.37) to first order we obtain:

EQi [
F(tk−1, tk−1, tk)

]
= F(t0, tk−1, tk) + F(t0, tk−1, tk)(tk−1 − t0)μk (7.2.38)

Substituting Eq. (7.2.38) into Eq. (7.2.36), we obtain a general expression for
the value of the coupon payment:

Vt0 = DF(t0, ti )τ
{
F(t0, tk−1, tk) + F(t0, tk−1, tk)(tk−1 − t0)μk

}
(7.2.39)

We will now consider the cases of early and late coupon payments.

Early coupon payment

Let us consider the case when i = k − 1. From Eq. (7.2.50):

μk = τσ 2
k F (t, tk−1, tk)

1 + τF (t, tk−1, tk)

First we freeze the forward rates in μk so we use the following:

μk = τσ 2
k F (t0, tk−1, tk)

1 + τF (t0, tk−1, tk)

Substituting for μk in Eq. (7.2.39) we obtain:

Vt0 = DF(t0, tk−1)τP

{
F(t0, tk−1, tk) + (tk−1 − t0)

σ 2
k τkF

2(t0, tk−1, tk)

1 + τF (t0, tk−1, tk)

}
(see Brigo and Mercurio, 2001, p. 387, and Hull, 2003).

Late coupon payment

We consider the case when i = k + 1. From Eq. (7.2.66):

μk = −τρk,k+1σkσk+1F(t, tk, tk+1)

1 + τF (t, tk, tk+1)
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Freezing the forward rates we obtain:

μk = −τρk,k+1σkσk+1F(t0, tk, tk+1)

1 + τF (t0, tk, tk+1)

Substituting for μk in Eq. (7.2.39) we obtain:

Vt0 = DF(t0, tk+1)

× τP

{
F(t0, tk−1, tk)

− (tk − t0)
τρk,k+1σkσk+1F(t0, tk−1, tk)F (t0, tk, tk+1)

1 + τF (t0, tk, tk+1)

}

7.2.3 Timing adjustment

In this section we derive expressions for the drift of the forward rate F(t, tk−1, tk)

under various probability measures. We will denote the time t value of a zero
coupon bond which pays 1 unit of currency at maturity ti by DF(t, ti ). For
convenience we will also use the shortened notation Fk = F(t, tk−1, tk) and
DFi = DF(t, ti ).

The probability measure under which all tradable assets are priced relative to
the zero coupon bond price DFi (that is, DFi is the numeraire) will be denoted
by Qi ; under this probability measure the relative prices will be martingales. We
will also denote Brownian motion under probability measure Qi by Wi .

Case i = k

Here the maturity of the numeraire DFk is at the expiry of the forward rate Fk.
Since DFk(1+ τFk) is a tradable its relative price, (1 + τFk)/DFk, is a martin-

gale under Qk and thus has zero drift.
Also DFk(1 + τFk)/DFk = 1 + τFk and, since both τ and 1 are constants,

Fk must be a martingale under Qk. Thus the process for Fk has zero drift and is:

dFk = Fkσk dWk (7.2.40)

For the general case in which i �= k, the process followed by Fk is:

dFk = Fkμk dt + Fkσk dWi (7.2.41)

where μk is a drift that needs to be determined. Equation (7.2.41) can be rewrit-
ten as:

dFk = Fkσk

(
μk

σk

dt + dWi

)
(7.2.42)

Comparing Eqs. (7.2.41) and (7.2.42) we have:

dWk = μk

σk

dt + dWi (7.2.43)

This equation gives the relation between Brownian motions under probability
measures Qk and Qi . We will now show how to compute the value of μk.
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Case i < k

Here we consider situations in which the maturity of the numeraire DFi is before
the expiry of the forward rate Fk.

i = k − 1
In this case DFk−1 is the numeraire, the forward rate is Fk = F(t, tk−1, tk),

and the numeraire matures at time tk−1, while the forward rate has expiry tk.
Since DFk is a tradable the relative price, φ = DFk/DFk−1, is a martingale

under Qk−1, and thus has zero drift.
Now

φ = DFk

DFk−1
= 1

1 + τFk

(7.2.44)

where we have used:

DFk−1 = DFk(1 + τFk) (7.2.45)

Let the stochastic process followed by Fk under Qk−1 be:

dFk = Fkμk dt + Fkσk dWk−1 (7.2.46)

and the drift, μk, is to be determined.
Using Ito we have:

dφ = ∂φ

∂Fk

dFk + 1

2

∂2φ

∂F 2
k

E
[
(dFk)

2], E
[
(dFk)

2] = σ 2
k F 2

k dt, (7.2.47)

where from Eq. (7.2.44):

∂φ

∂Fk

= − τ

(1 + τFk)2
,

∂2φ

∂Fk
2

= 2τ 2

(1 + τFk)3
(7.2.48)

Substituting the values in Eq. (7.2.48) into Eq. (7.2.47) we obtain:

dφ = − τφ

1 + τFk

{
Fkμk dt + Fkσk dWk−1} + 1

2

τ 22φσ 2F 2
k dt

(1 + τFk)2

which can be rearranged as:

dφ =
{
−τFkμkφ

1 + τFk

+ φτ 2σ 2
k F 2

k

(1 + τFk)2

}
dt − τφFkσk

1 + τFk

dWk−1 (7.2.49)

Now since Eq. (7.2.49) is driftless:{
−τFkμkφ

1 + τFk

+ φτ 2σ 2
k F 2

k

(1 + τFk)2

}
dt = 0

and

μk = τσ 2
k Fk

1 + τFk

(7.2.50)
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Substituting Eq. (7.2.50) into Eq. (7.2.46):

dFk = τσ 2
k F 2

k

1 + Fkτ
dt + Fkσk dWk−1

or

dFk = Fkσk

{
τσ 2

k Fk

1 + Fkτ
dt + dWk−1

}
(7.2.51)

Comparing Eqs. (7.2.51) and (7.2.40) thus yields:

dWk = τσkFk

1 + Fkτ
dt + dWk−1 (7.2.52)

which is the relationship between the Brownian motions dWk−1 and dWk under
the respective probability measures Qk−1 and Qk.

i � k − 2
Let the stochastic process followed by Fk under Qk−2 be:

dFk = Fkμk dt + Fkσk dWk−2 (7.2.53)

where Wk−2 is Brownian motion under probability measure Qk−2, and the drift,
μk, is unknown.

Replacing k with k − 1 in Eq. (7.2.52) gives:

dWk−1 = τσk−1Fk−1

1 + Fk−1τ
dt + dWk−2 (7.2.54)

and using Eq. (7.2.54) to substitute for dWk−1 in Eq. (7.2.52) we obtain:

dWk = τσkFk

1 + Fkτ
dt + τσk−1Fk−1

1 + Fk−1τ
dt + dWk−2 (7.2.55)

Replacing dWk in Eq. (7.2.40) with that given in Eq. (7.2.55):

dFk = Fkσk

{
τσkFk

1 + Fkτ
dt + τσk−1Fk−1

1 + Fk−1τ
dt

}
+ Fkσk dWk−2 (7.2.56)

so the drift is:

μk = τσ 2
k Fk

1 + τFk

+ τFk−1σkσk−1ρk,k−1

1 + τFk−1
(7.2.57)

The following general expression can be derived in a similar manner:

dFk = σkFk

k∑
j=i+1

ρk,j τσjFj

1 + τFj

dt + σkFk dWi (7.2.58)

where all the symbols have the same meanings as before, but now i can take
any integer value less than k.
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Case i > k

We now consider the case when the maturity of the numeraire DFi is after the
expiry of the forward rate Fk.

i = k + 1
Here DFk+1 is the numeraire and Fk is the forward rate which starts at time

tk−1 and ends at time tk.
Since DFk−1 is a tradable its relative price, φ = DFk−1/DFk+1, is a martingale

under Qk+1, and thus has zero drift.
Now:

φ = DFk−1

DFk+1
= (1 + τFk)(1 + τFk+1) (7.2.59)

where the processes for Fk and Fk+1 are

dFk+1 = Fk+1σk+1dWk+1 (7.2.60)

dFk = Fkμk dt + Fkσk dWk+1 (7.2.61)

and the drift, μk, is to be determined.
Using Ito we have:

dφ = ∂φ

∂Fk

dFk + ∂φ

∂Fk+1
dFk+1 + 1

2

k+1∑
i=k

k+1∑
j=k

∂2φ

∂Fi ∂Fj

E[dFi, dFj ] (7.2.62)

where

∂φ

∂Fk

= τ(1 + τFk+1),
∂φ

∂Fk+1
= τ(1 + τFk)

∂2φ

∂F 2
k

= ∂2φ

∂F 2
k+1

= 0,
∂2φ

∂Fk+1 ∂Fk

= ∂2φ

∂Fk ∂Fk+1
= τ 2 (7.2.63)

E[dFk, dFk+1] = [dFk+1, dFk] = ρk,k+1σkσk+1FkFk+1 dt

Substituting the values in (7.2.63) into Eq. (7.2.62) we obtain:

dφ = τ(1 + τFk+1) dFk + τ(1 + τFk) dFk+1 + τ 2ρk,k+1σkσk+1FkFk+1 dt

After expanding the terms in dFk and dFk+1 we have:

dφ = τ(1 + τFk+1)
{
Fkμk dt + Fkσk dWk+1}

+ τ(1 + τFk)Fk+1σk+1 dWk+1 + τ 2ρk,k+1σkσk+1FkFk+1 dt

and this can be re-expressed as:

dφ = D + τ(1 + τFk+1)Fkσk dWk+1

+ τ(1 + τFk)Fk+1σk+1 dWk+1 (7.2.64)

where the drift term D in Eq. (7.2.64) is given by:

D = τ(1 + τFk+1)Fkμk dt + τ 2ρk,k+1σkσk+1FkFk+1 dt (7.2.65)
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Now since φ is a martingale under Qk+1 we know that D = 0, and therefore
Eq. (7.2.65) results in:

(1 + τFk+1)Fkμk dt = −ρk,k+1σkσk+1FkFk+1 dt

This means that the drift is:

μk = −τρk,k+1σkσk+1Fk+1

1 + τFk+1
(7.2.66)

Substituting for μk in Eq. (7.2.61) gives:

dFk = Fkσk

{
−τρk,k+1σk+1Fk+1

1 + τFk+1
dt + dWk+1

}
(7.2.67)

Comparing Eq. (7.2.67) with Eq. (7.2.40) we have:

dWk = −τρk,k+1σk+1Fk+1

1 + τFk+1
dt + dWk+1 (7.2.68)

which is the relationship between Brownian motions dWk and dWk+1.

i � k + 2
Let the stochastic process followed by Fk under Qk+2 be:

dFk = Fkμk dt + Fkσk dWk+2 (7.2.69)

where Wk+2 is Brownian motion under probability measure Qk+2, and drift
term μk is to be found.

Replacing k with k + 1 in Eq. (7.2.68) gives:

dWk+1 = −τρk+1,k+2σk+2Fk+2

1 + τFk+2
dt + dWk+2 (7.2.70)

and using Eq. (7.2.70) to substitute for dWk+1 in Eq. (7.2.68) gives:

dWk = −τρk,k+1σk+1Fk+1

1 + τFk+1
dt − τρk+1,k+2σk+2Fk+2

1 + τFk+2
dt + dWk+2

Substituting for dWk in Eq. (7.2.40) gives:

dWk = −Fkσk

{
τρk,k+1σk+1Fk+1

1 + τFk+1
dt + τρk+1,k+2σk+2Fk+2

1 + τFk+2
dt

}
+ Fkσk dWk+2 (7.2.71)

and thus the drift is a

μk = −τρk,k+1σk+1Fk+1

1 + τFk+1
− τρk+1,k+2σk+2Fk+2

1 + τFk+2
(7.2.72)

The following general expression can be derived in a similar manner:

dFk = −σkFk

i∑
j=k+1

ρk,j τσjFj

1 + τFj

dt + σkFk dWi (7.2.73)

where all the symbols have the same meanings as before, but now i can take
any integer value greater than k.
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7.2.4 Interest rate quantos

This section considers derivatives whose value depends on the foreign interest
rate yield curve but have a payoff in domestic currency. We use the same nota-
tion as in Section 7.3, which deals with foreign exchange derivatives.

For example, a standard interest rate caplet has a payoff in domestic currency
and also depends on the domestic currency forward rates. The value at time t0
of a caplet which pays at time tk and extends from time tk−1 to time tk is:

Caplet(t0) = PτDFd(t0, tk)E
Qk [

max
(
Fd

k − K, 0
)]

(7.2.74)

where P is the principal, K is the strike, τ = tk−1−tk, Fk is the domestic forward
rate F(t0, tk−1, tk). Equation (7.2.74) can be evaluated using the Black–Scholes
formula as follows:

Caplet(t0) = PτDFd(t0, tk)
{
Fd(t0, tk−1, tk)N1(d1) − KN1(d2)

}
(7.2.75)

where σd is the volatility of Fk, and

d1 = log(F d(t0, tk−1, tk)/K) + σ 2
d

2 (tk−1 − t0)

σd
√

tk−1 − t0

d2 = log(F d(t0, tk−1, tk)/K) − σ 2
d

2 (tk−1 − t0)

σd
√

tk−1 − t0
(7.2.76)

In Section 7.2.3 we showed that the process (F d(t, tk−1, tk)/DFd(t, tk)) is a mar-
tingale, that is has zero drift when DFd(t, tk) is used as a numeraire.

d
(
Fd(t, tk−1, tk)

) = σdF d(t, tk−1, tk) dW
Q
k

Quanto caplet

In a quanto caplet instead of using the domestic forward rate Fd(t0, tk−1, tk) we
use the foreign forward rate Ff (t0, tk−1, tk). Under the probability measure F

associated with a foreign zero coupon bond DFf (t, kk) the foreign forward rate
is a martingale, and is described by the following equation:

d
(
Ff (t, tk−1, tk)

) = σf Ff (t, tk−1, tk) dWF
f (7.2.77)

However, when we use DFd(t, tk) as a numeraire the process (F f (t, tk−1, tk)/

DFd(t, tk)) has a drift, and follows the process:

d
(
Ff (t, tk−1, tk)

) = Ff (t, tk−1, tk)α dt + σf Ff (t, tk−1, Tk) dW
Q
f (7.2.78)

Our aim is to find the value of α and then price the quanto caplet using:

QCaplet(t0) = PτDFd(t0, tk)

× {
Ff (t0, tk−1, tk) exp

(
α(tk−1 − t0)

)
N1(d1) − KN1(d2)

}
(7.2.79)
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where P is the principal, K is the strike, τ = tk−1 − tk, Ff (t0, tk−1, tk) is the
foreign currency forward rate, σf is the volatility of Ff (t0, tk−1, tk) and

d1 = log(F f (t0, tk−1, tk)/K) + (α + σ 2
f /2)(tk−1 − t0)

σf
√

tk−1 − t0

d2 = log(F f (t0, tk−1, tk)/K) + (α − σ 2
f /2)(tk−1 − t0)

σf
√

tk−1 − t0

We will now derive the value of α.
First we define two processes X1(t) and X2(t) such that:

X1(t) =
(

DFf (t, tk−1) − DFf (t, tk)

DFd(t, tk)

)
X

f
d (t) (7.2.80)

and

X2(t) = τX
f
d (t)

DFf (t, tk)

DFd(t, tk)
= τX

f
d (t, tk) (7.2.81)

where X
f
d (t, tk) is the forward foreign exchange rate (see Section 7.3). Therefore,

X1(t)

X2(t)
= DFf (t, tk−1) − DFf (t, tk)

τDFf (t, tk)
= Ff (t, tk−1, tk) (7.2.82)

Now X1 and X2 are martingales under Q so we have:

dX1 = σ1X1 dW
Q
1 (7.2.83)

and

dX2 = σ2X2 dW
Q
2 (7.2.84)

Equation (7.2.84) can also be expressed as

d(τX
f
d (t, tk))

τX
f
d (t, tk)

= σx dWQ
x (7.2.85)

Using Ito we obtain:

d
(

X1

X2

)
= X1

X2

{
σ1 dW

Q
1 − σ2 dW

Q
2

}
+ X1

X2

{
E

[(
σ2 dW

Q
2

)2] − E
[(

σ1 dW
Q
1

)(
σ2 dW

Q
2

)]}
(7.2.86)

and the following processes for log(X1) and log(X2):

d
(
log(X1)

) = −σ 2
1

2
dt + σ1 dW

Q
1

d
(
log(X2)

) = −σ 2
2

2
dt + σ2 dW

Q
2 (7.2.87)
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Using Eq. (7.2.85) we can write Eq. (7.2.87) as:

d
(
log

(
τX

f
d (t, tk)

)) = −σ 2
x

2
dt + σx dWQ

x (7.2.88)

Now,

E
[
d
(
log(X2)

){
d
(
log(X2)

) − d
(
log(X1)

)}]
= E

[(
d
(
log(X2)

))2] − E
[
d
(
log(X1)

)
d
(
log(X2)

)]
= E

[(
σ2 dW

Q
2

)2] − E
[(

σ1 dW
Q
1

)(
σ2 dW

Q
2

)]
where we have ignored terms in dt with order greater than 1.

In addition,

E
[
d
(
log(X2)

){
d
(
log(X2)

) − d
(
log(X1)

)}]
= −E

[
d(log(X2)) d

(
log

(
X1

X2

))]
= −E

[
d
(
log(X2)

)
d
(
log

(
Ff (t, tk−1, tk)

))]
= −E

[
d
(
log

(
τX

f
d (t, tk)

))
d
(
log

(
Ff (t, tk−1, tk)

))]
= −E

[
d
(
log

(
X

f
d (t, tk)

))
d
(
log

(
Ff (t, tk−1, tk)

))]
= −σxσf ρx,f dt

where σx is the volatility of the forward foreign exchange rate X
f
d (t, tk), σf is the

volatility of the foreign forward rate Ff (t, tk−1, k), and ρx,f is the correlation
between dW

Q
x and dWF

f .
Therefore Eq. (7.2.86) can be written as:

d
(

X1

X2

)
= −X1

X2
{σxσf ρx,f } dt + X1

X2

{
σ1 dW

Q
1 − σ2 dW

Q
2

}
which means that

d
(
Ff (t, tk−1, tk)

)
= −Ff (t, tk−1, tk){σxσf ρx,f } dt + Ff (t, tk−1, tk)

{
σ1 dW

Q
1 − σ2 dW

Q
2

}
Comparing the above equation with Eq. (7.2.78):

d
(
Ff (t, tk−1, tk)

)
= −Ff (t, tk−1, tk){σxσf ρx,F } dt + σf Ff (t, tk−1, tk) dWQ (7.2.89)

and so α = −σxσf ρx,f .
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Quanto floorlet

The formula to value a quanto floorlet can be obtained in similar manner to
that used for the quanto caplet.

The value at time t0 of a standard floorlet which pays at time tk and extends
from time tk−1 to time tk is:

Floorlet(t0) = PτDFd(t0, tk)E
Qk [

max
(
K − Fd

k , 0
)]

(7.2.90)

where P is the principal, K is the strike, τ = tk−1−tk, Fk is the domestic forward
rate F(t0, tk−1, tk). Equation (7.2.90) can be evaluated using the Black–Scholes
formula as follows:

Floorlet(t0) = PτDFd(t0, tk)
{−Fd(t0, tk−1, tk)N1(−d1) + KN1(−d2)

}
(7.2.91)

where the symbols have the same meaning as for the corresponding quanto
caplet.

d1 = log(F d(t0, tk−1, tk)/K) + σ 2
d

2 (tk−1 − t0)

σd
√

tk−1 − t0
,

d2 = log(F d(t0, tk−1, tk/K) − σ 2
d

2 (tk−1 − t0)

σd
√

tk−1 − t0
(7.2.92)

In a quanto floorlet, instead of using the domestic forward rate Fd(t0, tk−1, tk),
we use the foreign forward rate Ff (t0, tk−1, tk):

QFloorlet(t0)

= PτDFd(t0, tk)

× {−Ff (t0, tk−1, tk) exp
(
α(tk−1 − t0)

)
N1(−d1) + KN1(−d2)

}
(7.2.93)

where P is the principal, K is the strike, τ = tk−1 − tk, Ff (t0, tk−1, tk) is the
foreign currency forward rate, σf is the volatility of Ff (t0, tk−1, tk) and

d1 = log(F f (t0, tk−1, tk)/K) + (α + σ 2
f

2 )(tk−1 − t0)

σf
√

tk−1 − t0

d2 = log(F f (t0, tk−1, tk)/K) + (α − σ 2
f

2 )(tk−1 − t0)

σf
√

tk−1 − t0

and as before α = −σxσf ρx,f .
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Quanto swaplet

A quanto (also known as diff or differential) swaplet is an agreement in which
one party makes floating rate payments based on the foreign forward rate while
the other makes fixed or floating payments based on the domestic interest rates.

Here we consider quanto swaplets in which the received floating leg coupons
(in domestic currency) are computed using foreign forward rates.

The value of a standard swaplet (in which all the currencies are domestic) can
be found by using Eqs. (7.2.90) and (7.2.74) to write:

Caplet(t0) − Floorlet(t0)

= PτDFd(t0, tk)E
Qk [

max
(
Fd

k − K, 0
) − max

(
K − Fd

k , 0
)]

= PτDFd(t0, tk)E
Qk [

Fd
k − K

]
= PτDFd(t0, tk)

{
EQk [

Fd
k

] − K
}

= PτDFd(t0, tk)
{
Fd

k (t0, tk−1, tk) − K
}

(7.2.94)

From Eq. (7.2.94) we can see that Caplet(t0) − Floorlet(t0) is the value of a
swaplet in which the owner pays the fixed rate K and receives the floating rate
Fd

k (t0, tk−1, tk).
The value of the floating leg payment can be found by setting K = 0 in

Eq. (7.2.94), and is PτDFd(t0, tk)F
d
k (t0, tk−1, tk).

The value of the floating leg payments in a quanto swap can be found in a
similar manner:

QCaplet(t0) − QFloorlet(t0)

= PτDFd(t0, tk)E
Qk [

max
(
F

f
k − K, 0

) − max
(
K − F

f
k , 0

)]
Substituting from Eqs. (7.2.79) and (7.2.93):

QCaplet(t0) − QFloorlet(t0)

= PτDFd(t0, tk)
{
Ff (t0, tk−1, tk) exp

(
α(tk−1 − t0)

)
N1(d1) − KN1(d2)

− Ff (t0, tk−1, tk)N1(−d1) + KN1(−d2)
}

When K = 0 we have d1 = ∞, N1(d1) = 1 and N1(−d1) = 0, which means that
the value of the floating leg payment is:

FloatLeg(t0) = PτDFd(t0, tk)F
f (t0, tk−1, tk) exp

(
α(tk−1 − t0)

)
(7.2.95)

where as before α = −σxσf ρx,f .
Using Eq. (7.2.95) the value of a quanto swaplet with (pay) fixed domestic

rate and (receive) foreign floating rate is:

QSwaplet(t0) = PτDFd(t0, tk)
{
Ff (t0, tk−1, tk) exp

(
α(tk−1 − t0)

) − K
}
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7.3 Foreign exchange derivatives

Here we consider derivatives based on the exchange rate between a domestic
currency and a foreign currency. We will use the convention that quantities re-
lating to the domestic currency will have the superscript d, while those for the
foreign currency will have the superscript f . The notation for the various ex-
change rates is as follows:

• X
f
d (t) is the spot value of one unit of foreign currency in domestic currency

at time t

• X
f
b (t) is the spot value of one unit of foreign currency in base currency at

time t

• Xd
b (t) is the spot value of one unit of domestic currency in base currency at

time t

• X
f
d (t, T ) is the (time t) forward value of one unit of foreign currency in do-

mestic currency at time T .

Covered interest arbitrage

If the current spot exchange rate, X
f
d (t), is known then using covered interest

arbitrage it is possible to obtain a value for the future spot exchange rate—we
denote this forward exchange rate by X

f
d (t, T ), where T > t .

Let us consider the following two scenarios:

Scenario A
At time t an investor deposits one unit of foreign currency which grows

at the (constant) foreign risk free interest rate rf . By time T the initial
amount will have increased to 1/DFf (t, T ) units of foreign currency, where
DFf (t, T ) = exp(−rf (T − t)). The foreign currency is then converted into do-
mestic currency at the time T forward exchange rate X

f
d (t, T ), and thus yields

X
f
d (t, T )/DFf (t, T ) units of domestic currency.

Scenario B
At time t an investor deposits X

f
d (t) units of domestic currency (the sum is

equivalent to one unit of foreign currency), and this grows at the (constant)
domestic risk free interest rate rd . At time T the initial sum will have increased
to X

f
d (t)/DFd(t, T ) units of domestic currency, where DFd(t, T ) = exp(−rd(T −

t)).
For no arbitrage to occur the final amount of domestic currency in both sce-

narios must be the same—we have assumed that there is no charge in converting
one currency into another.

We thus have:

X
f
d (t, T )

DFf (t, T )
= X

f
d (t)

DFd(t, T )
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which means that the forward exchange rate, at time T is

X
f
d (t, T ) = X

f
d (t)

DFf (t, T )

DFd(t, T )
(7.3.1)

7.3.1 FX forward

An FX forward is a contract to exchange a given amount of domestic currency
for an agreed amount of foreign currency at a future time T . If P f is the amount
(number of units) of foreign currency, and P d is the amount (number of units)
of domestic currency, then the value (in domestic currency) of the FX contract
at time T is:

FXd(T ) = P f X
f
d (T ) − P d

The value of the contract at time t is thus:

FXd(t) = {
P f X

f
d (t, T ) − P d

}
DFd(t, T )

where t < T . Substituting for X
f
d (t, T ) from Eq. (7.3.1) then gives:

FXd(t) =
{
P f X

f
d (t)

DFf (t, T )

DFd(t, T )
− P d

}
DFd(t, T )

which can be re-expressed as

FXd(t) = P f X
f
d (t)DFf (t, T ) − P dDFd(t, T ) (7.3.2)

The value of this FX forward contract in base currency is thus

FXb(t) = {
P f X

f
d (t)DFf (t, T ) − P dDFd(t, T )

}
Xd

b

That is,

FXb(t) = P f X
f
b (t)DFf (t, T ) − P dDFd(t, T )Xd

b (t) (7.3.3)

where we have used the fact that X
f
d (t)Xd

b (t) = X
f
b (t).

An alternative way of expressing Eq. (7.3.3) is as:

FXb(t) = P f
{
X

f
b (t)DFf (t, T ) − KDFd(t, T )Xd

b (t)
}

(7.3.4)

where K = P d/P f . In the next section we will see that K, the agreed rate to be
paid for one unit of foreign currency in units of domestic currency, corresponds
to the strike of an FX call option.

7.3.2 European FX option

Foreign exchange options can be priced using the Black–Scholes formula (Gar-
man and Kohlhagen, 1983). There are three processes involved in foreign ex-
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change options and, under the real-world probability measure P, they are:

dBf = rf Bf dt

dX
f
d = X

f
d μ dt + X

f
d σ dWP , dWP ∼ N(0, dt) (7.3.5)

dBd = rdBd dt

where X
f
d is the value of one unit of foreign currency in units of domestic cur-

rency, Bd is the domestic money account where money grows at the (constant)
risk free rate rd , Bf is the foreign money account where money grows at the
(constant) risk free rate rf , and σ is the volatility of X

f
d . From a domestic point

of view there are only two assets—the money market account Bd , and the value
of the foreign money market account in domestic currency, Bf X

f
d .

From Ito’s product rule in Chapter 2, and using Eq. (2.6.3) with X1 = X
f
d

and X2 = Bd , we have:

d
(
X

f
d Bf

) = X
f
d Bf

{
rf + μ

}
dt + X

f
d Bf σ dWP

We will now choose Bd as the numeraire and obtain the process for Bf X
f
d /Bd

using the Ito quotient rule given in Chapter 2. Substituting X1 = Bf X
f
d and

X2 = Bd in Eq. (2.6.8) we obtain:

d
(

Bf X
f
d

Bd

)
= Bf X

f
d

Bd

{(
rf − rd + μ

)
dt

} + Bf X
f
d

Bd
σ dWP

If we choose the probability measure Q such that:

dWP = dWQ − (rf − rd + μ)

σ
dt (7.3.6)

then (Bf X
f
d /Bd) is a martingale since

d
(

Bf X
f
d

Bd

)
= Bf X

f
d

Bd
σ dWQ

Substituting for dWP in Eq. (7.3.5) yields:

dX
f
d = X

f
d μ dt + X

f
d σ

{
dWQ − (rf − rd + μ) dt

σ

}
= X

f
d μ dt − X

f
d

(
rf − rd + μ

)
dt + X

f
d σ dWQ

so

dX
f
d = X

f
d

(
rd − rf

)
dt + X

f
d σ dWQ (7.3.7)

It can be seen that Eq. (7.3.7) is identical to Eq. (4.4.53) if the following map-
ping is used:

S → X
f
d , r → rd , q → rf (7.3.8)

This means that the above mapping allows us to price European FX puts and
calls with the Black–Scholes formulae given in Eqs. (4.4.55) and (4.4.56).
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FX call

The time t value (in domestic currency) of an FX call to buy one unit of foreign
currency can be found from Eq. (4.4.55) and the substitutions given in (7.3.8).
We have:

Cd(t) = X
f
d (t) exp

(−rf (T − t)
)
N(d1) − K exp

(−rd(T − t)
)
N(d2) (7.3.9)

d1 = 1

σ
√

T − t

{
log

(
X

f
d (t)

K

)
+ (

rd − rf
)
(T − t) + 1

2
σ 2(T − t)

}
(7.3.10)

d2 = d1 − σ
√

T − t (7.3.11)

where K is the strike the rate that has been agreed to pay for one unit of foreign
currency in units of domestic currency, and σ is the implied foreign/domestic
currency exchange rate FX option volatility, which may depend on effects such
as time to maturity, volatility smile, etc.

In practice the following, modified version of Eq. (7.3.9) is usually used:

Cd(t) = P f
{
X

f
d (t) exp

(−rf (T − t)
)
N(d1) − K exp

(−rd(T − t)
)
N(d2)

}
(7.3.12)

where P f is the number of units of foreign currency and all the other symbols
have their previous meanings.

The value Cb(t) of the call option in base currency can be found by using
Cb(t) = Xd

bCd(t). From Eq. (7.3.12) we have:

Cb(t) = P f
{
X

f
b (t)N(d1)DFf (t, T ) − KXd

b (t)N(d2)DFd(t, T )
}

(7.3.13)

where we have used the fact that Xd
b (t)X

f
d (t) = X

f
b (t), DFf (t, T ) =

exp(−rf (T − t)) and DFd(t, T ) = exp(−rd(T − t)). We can also re-express
the values for d1 given in Eq. (7.3.10) as:

d1 = 1

σ
√

T − t

{
log

(
X

f
b (t)

KXd
b (t)

)
+ log

(
DFf (t, T )

DFd(t, T )

)
+ 1

2
σ 2(T − t)

}
(7.3.14)

where we have used the fact that

log
(
DFf (t, T )

) = −rf (T − t), log
(
DFd(t, T )

) = −rd(T − t)

and

log

(
X

f
d (t)

K

)
= log

(
X

f
b (t)Xd

b (t)

KXd
b (t)

)
= log

(
X

f
b (t)

KXd
b (t)

)
We note that the term KXd

b is the strike in units of base currency—that is, the
amount that has been agreed to pay for one unit of foreign currency in units of
base currency.



232 Computational Finance Using C and C#

In the case when N(d1) = N(d2) = 1 (i.e., there is no uncertainty) Eq. (7.3.13)
becomes:

Cb(t) = P f
{
X

f
b (t)DFf (t, T ) − KXd

b (t)DFd(t, T )
}

which is the same as that already given in Eq. (7.3.4) for the FX forward.

FX put

The time t value of the corresponding put in units of base currency is:

Pb(t) = P f
{−X

f
b (t)DFf (t, T )N(−d1) + KXd

b (t)DFd(t, T )N(−d2)
}
(7.3.15)

where the symbols have the same meanings as for the FX call.

7.4 Credit derivatives

Credit derivatives take into account the fact that a counterparty may not honor
(for reasons of bankruptcy, etc.) the obligations set out in a given financial con-
tract. In order to obtain the time t value of these derivatives it is necessary to
determine the probability that the counterparty (and thus the contract) will sur-
vive until some future time T > t . Here we will denote the survival probability
between times t and T by S(t, T ), and we compute its value from the hazard
rate.

The hazard rate

As previously mentioned the survival probability between times t and T , where
T > t , is denoted by S(t, T ). This means that the probability of default between
times t and T is:

Pdef(t, T ) = 1 − S(t, T )

and the probability of default, as seen from time t , between times T1 and T2 is:

Pdef(t, T1, T2) = S(t, T1) − S(t, T2), T2 > T1 (7.4.1)

The time t discrete hazard rate between times T and T + �T , denoted by
H(t, T , T + �T ) is defined by:

H(t, T , T + �T ) = 1

�T

Pdef(t, T , T + �T )

S(t, T + �T )

= 1

�T

S(t, T ) − S(t, T + �T )

S(t, T + �T )

which means that

H(t, T , T + �T ) = −S(t, T + �T ) − S(t, T )

�T

1

S(t, T + �T )
(7.4.2)
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As �T → 0,H(t, T , T +�T ) → h(t, T ), where h(t, T ) is termed the continuous
hazard rate between times t and T .

We observe that as �T → 0 Eq. (7.4.2) becomes:

h(t, T ) = −∂S(t, T )

∂T

1

S(t, T )
(7.4.3)

Now Eq. (7.4.3) can be re-expressed as:

h(t, s) = −∂S(t, s)

∂s

∂{ln(S(t, s))}
∂S(t, s)

= −∂{ln(S(t, s))}
∂s

(7.4.4)

where s > t , and we have used:

1

S(t, T )
= −∂{ln(S(t, T ))}

∂S(t, T )

Integrating Eq. (7.4.4) yields:∫ T

s=t

h(t, s) ds = −
∫ T

s=t

d
{
ln

(
S(t, s)

)}
= −{

ln
(
S(t, T )

) − ln
(
S(t, t)

)}
= − ln

(
S(t, T )

)
(7.4.5)

where we have used S(t, t) = 1 and ln(S(t, t)) = 0.
So using Eq. (7.4.5) the survival probability can be expressed as:

S(t, T ) = exp

{
−

∫ T

s=t

h(t, s) ds

}
(7.4.6)

or

S(t, T ) = exp
{
I (t, T )

}
(7.4.7)

where I (t, T ) is the cummulative hazard rate from time t to time T .
It is usual to approximate I (t, T ) as follows:

I (t, T ) ∼ I (t, tk) =
k∑

i=1

h(ti−1, t)(ti − ti−1) (7.4.8)

where t0 = t , tk = T , and the following section gives details on how to estimate
h(ti−1, t) from market observables.

One way of representing the hazard rates is to use a hazard rate curve which
is defined as:{

t0, I (t0, ti)
}
, i = 0, , . . . , n (7.4.9)

If we further define t0 = t = 0 and tn = T , then Eq. (7.4.9) becomes:

{0, 0}, {
t1, I (0, t1)

}
,
{
t2, I (0, t2)

}
, . . . ,

{
tn, I (0, tn)

}
(7.4.10)

where we have used the fact that I (t0, t0) = I (0, 0) = 0.
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Estimating the hazard rate from market observables

From Eq. (7.2.10) we know that the time t forward rate between times T1 and
T2 is given by:

F(t, T1, T2) = 1

T2 − T1

{
DF(t, T1)

DF(t, T2)
− 1

}
(7.4.11)

where DF(t, T1) and DF(t, T2) are the prices of the nondefaultable zero coupon
bonds with maturities T1 and T2, respectively.

Letting T1 = T and T2 = T + �T we obtain:

F(t, T , T + �T ) = 1

�T

{
DF(t, T )

DF(t, T + �T )
− 1

}
(7.4.12)

which can be re-expressed as

F(t, T , T + �T )

= −DF(t, T + �T ) − DF(t, T )

�T

1

DF(t, T + �T )
(7.4.13)

If �T → 0 then F(t, T , T + �T ) → f (t, T ) and from Eq. (7.4.13) we obtain:

f (t, T ) = −∂DF(t, T )

∂T

1

DF(t, T )

= −∂DF(t, T )

∂T

ln(DF(t, T ))

∂DF(t, T )
(7.4.14)

Using Eq. (7.4.14) the instantaneous forward rate computed using nondefault-
able zero coupon bond prices is:

f (t, T ) = − ln(DF(t, T ))

∂T
(7.4.15)

and the corresponding instantaneous forward rate computed from defaultable
zero coupon bond prices is:

f̄ (t, T ) = − ln(DF(t, T ))

∂T
(7.4.16)

Taking the survival probability S(t, T ) to be the ratio of the prices of defaultable
and nondefaultable zero coupon bonds:

S(t, T ) = DF(t, T )

DF(t, T )
(7.4.17)

Now from Eqs. (7.4.15) and (7.4.16) we have:

f̄ (t, T ) − f (t, T ) = − ln(DF(t, T ) − DF(t, T ))

∂T

= − ∂

∂T
ln

{
DF(t, T )

DF(t, T )

}
(7.4.18)
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so from Eqs. (7.4.18) and (7.4.17):

f̄ (t, T ) − f (t, T ) = − ∂

∂T
ln

(
S(t, T )

)
(7.4.19)

Combining Eqs. (7.4.19) and (7.4.4) we have:

h(t, T ) = f̄ (t, T ) − f (t, T ) (7.4.20)

This means that we can compute the hazard rate h(t, T ) by taking the differ-
ence between the instantaneous forward rates computed using defaultable and
nondefaultable zero coupon bonds.

7.4.1 Defaultable bond

For a defaultable bond we need to take into account the fact that the bond issuer
may default, that is cease to make the bond coupon payments.

The time t value of a defaultable bond is:

�B(t) = PDF(t, tm) principal

+
m∑

j=1

Cj DF(t, tj ) coupons

+ PR

m∑
j=1

DF(t, tj )
{
S(t, tj−1) − S(t, tj )

}
recovery value

where tm is the maturity of the bond, P is the principal, Cj is the value of
the j th coupon, R is the recovery rate, S(t, tj ) is the probability that the bond
will survive until time tj , and the zero coupon defaultable bond prices are de-
fined by DF(t, tm) = S(t, tm)DF(t, tm) and DF(t, tj ) = DF(t, tj )S(t, tj ). The term
{S(t, tj−1) − S(t, tj )} is the probability that the bond will default between times
tj−1 and tj .

7.4.2 Credit default swap

A Credit Default Swap (CDS) is a contract between two counterparties in which
one (say A) makes periodic fixed payments to the other (say B) in order to obtain
protection on the default of a reference credit. In the event of default, B pays
A the default payment of 1 − R, where R is the recovery rate, and the contract
ceases.

The time t value of the credit default swap to A, the purchaser of the insur-
ance, is:

CDS(t) = −
m∑

j=1

CjDF(t, tj ) coupons

+ P(1 − R)

m∑
j=1

DF(t, tj )
{
S(t, tj−1) − S(t, tj )

}
recovery value
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where the symbols have the same meanings as for the defaultable bond.

7.4.3 Total return swap

A Total Return Swap (TRS) is a synthetic replication of the return of a reference
asset (bond) B. The receiver of the TRS receives the coupon payments of the
reference asset during the life of the swap in return for making periodic coupon
payments at the risk-free floating rate plus an agreed margin. In the event of
default, the receiver makes a default payment to the payer equal to the agreed
initial price of the reference asset less the price at default, and the transaction
terminates. If there is no default then the difference between the initial asset
(bond) price B0 and the price at maturity B(tm) is settled between the payer and
the receiver, with the receiver paying (receiving) if the asset (bond) is worth less
(more) at maturity. The maturity of the reference asset (bond) may be longer
than the maturity tm of the swap.

To the receiver of the reference asset coupons a TRS has value TRSr , which is
given by:

TRSr = total bond return − total floating coupon payments of the swap

where total bond return is given by:

total bond return = total bond fixed coupons over the duration of the
TRS+increase in the bond value at maturity of the TRS−default payment,
if the bond defaults over the duration of the TRS

The value of TRSr at time t is:

TRSr (t)

= �C
tm∑

tj =t1

DF(t, tj ) fixed reference bond payments

+ P

{
B(tm) − B0

B0

}
DF(t, tm) increase in value of reference bond

−
tm∑

tj =t1

CjDF(t, tj ) floating payments of swap

at LIBOR + margin

− P(1 − R)

tm∑
tj =t1

DF(t, tj )

× {
S(t, tj−1) − S(t, tj )

}
bond default payments

and the reference bond satisfies:

B(tR) = 1

B(tm) = DF(tm, tR)|t + �C
tR∑

tj =tm

DF(tm, tj )|t
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+ R

tR∑
tj =tm

DF(tm, tj )|t
{
S(t, tj−1) − S(tm, tj )

}
All symbols already defined in this chapter have their previous meanings. In

addition,

P – the swap principal
�C – the fixed coupon of the reference bond
tm – the swap maturity
tR – the maturity of the reference bond B

B0 – the initial price of the reference bond
B(tm) – the final price of the reference bond (at swap maturity)

Cj – the floating coupon payment at time tj . It is computed as:

Cj = P
{
F(t, tj−1, tj ) + marginTRS}{tj − tj−1}

DF(t1, t2)|t – the discount factor between times t1 and t2 (as seen from time t)
is:

DF(t1, t2)|t = D(t, t2)

D(t, t1)

DF(t1, t2)|t – the defaultable discount factor between times t1 and t2 (as seen
from time t) is:

DF(t1, t2)|t = DF(t, t2)

DF(t, t1)
= DF(t, t2)

DF(t, t1)

S(t, t2)

S(t, t1)

DF(t, t1) – the defaultable discount factor between times t and t1 is:

DF(t, t1) = DF(t, t1)S(t, t1)

7.5 Equity derivatives

7.5.1 Total return swap

An equity total return swap consists of an equity leg (whose coupons are de-
termined by the change in value of the equity) and a floating leg which pays
according to the forwards of the floating interest rate.

Here we ignore the effect of equity dividends and also assume that the cur-
rencies for both the floating and equity legs of the swap are the same.

Equity leg

Let the equity leg be specified by coupon payments at times tk, k = 1, . . . , Ne,
where τe = tk − tk−1. If, at time t the next coupon payment occurs at ti then the
value of the equity leg is:
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Ve(t) =
{

S(t)

DF(t, ti )
− L(ti−1)

}
DF(t, ti )

+
Ne∑

k=i+1

{
S(t)

DF(t, tk)
− S(t)

DF(t, tk−1)

}
DF(t, tk) (7.5.1)

where S(t) is the equity value at current time t , L(ti−1) is the reset value of
the equity at time ti−1, and DF(t, tk) is the discount factor between times t and
tk, tk > t . It can be seen that the value of the equity S(t1) at time t1 > t is
obtained by inflating the current value, S(t) by the reciprocal of the discount
factor, DF(t, t1); that is, S(t1) = S(t)/DF(t, t1).

Floating leg

Let the floating leg have coupon payments at times tm,m = 1, . . . , Nf , where
τf = tm − tm−1. If the next coupon is at time tj , then the value of the floating leg
is:

Vf (t) = L(tj−1)
{
R(tj−1) + Φ

}
τf DF(t, tj )

+
Nf∑

m=j+1

S(t)

DF(t, tm−1)

{
F(t, tm−1, tm) + Φ

}
τf DF(t, tm) (7.5.2)

where Φ is the margin added to the forward rate used to compute coupons,
F(t, tm−1, tm) is the time t forward rate between times tm−1 and tm, and R(tj−1)

is the reset rate that is used between times tj−1 and tj to compute the coupon
payment at time tj .

Payer equity total return swap

The owner of a payer equity TRS pays the equity leg coupons, and thus at time
t the swap has value:

ETRSp(t) = Vf (t) − Ve(t) (7.5.3)

The owner of a receiver equity TRS receives the equity leg coupons, and the
value of the swap is:

ETRSr (t) = −Vf (t) + Ve(t) (7.5.4)

We will now compute an expression for the value of a payer equity swap. Since

F(t, tm−1, tm) = 1

tm − tm−1

(
DF(t, tm−1)

DF(t, tm)
− 1

)
we have:

τf F (t, tm−1, tm) = DF(t, tm−1)

DF(t, tm)
− 1 (7.5.5)

Substituting Eq. (7.5.5) into Eq. (7.5.2) and using Eq. (7.5.3) we obtain:
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ETRSp(t) =
Nf∑

m=j+1

S(t)DF(t, tm)

DF(t, tm−1)

{
DF(t, tm−1)

DF(t, tm)
− 1

}

+
Nf∑

m=j+1

S(t)

DF(t, tm−1)
Φτf DF(t, tm)

+ L(tj−1)(R(tj−1) + Φ)τf DF(t, tj )

−
Ne∑

k=i+1

S(t)

{
1 − DF(t, tk)

DF(t, tk−1)

}

−
{

S(t)

DF(t, ti )
− L(ti−1)

}
DF(t, ti ) (7.5.6)

If Ne = Nf = N , and τe = τf = τ , then all the equity and float leg payments
coincide and Eq. (7.5.6) simplifies to:

ETRSp(t) = S(t)

N∑
k=j+1

DF(t, tk)

DF(t, tk−1)
ΦτDF(t, tk)

+ L(R + Φ)τDF(t, tj ) −
{

S(t)

DF(t, tj )
− L

}
DF(t, tj ) (7.5.7)

Thus, if the spread Φ is zero the value of the payer equity TRS is:

ETRSp(t) = L(tj−1)R(tj−1)τDF(t, tj )

−
{

S(t)

DF(t, tj )
− L(tj−1)

}
DF(t, tj ) (7.5.8)

In these circumstances the value of the equity TRS at time t only depends on the
current swaplet, which extends from tj−1 to tj , where tj−1 < t < tj .

Equity swap

A special case of an equity TRS is an equity swap. Here one party (say A) pays
the total returns on a given equity and receives (from party B) the returns on
another equity, together with the interest on the net difference of the last reset
notional of the two equity assets. An equity swap, ESWP, can be constructed
from a structured deal consisting of a long position in one equity TRS and a
short position in another equity TRS, with the same coupon payment dates and
currency. If the individual equity TRS deals are denoted by ETRS1

p and ETRS2
p,

then the value of the equity swap at time t is:

ESWP(t) = ETRS1
p(t) − ETRS2

p(t) (7.5.9)

Substituting Eq. (7.5.8) into Eq. (7.5.9) we have:



240 Computational Finance Using C and C#

ESWP(t) = L1(tj−1)R(tj−1)τDF(t, tj ) −
{

S1(t)

DF(t, tj )
− L1(tj−1)

}
DF(t, tj )

−
{
L2(tj−1)R(tj−1)τDF(t, tj )

−
{

S2(t)

DF(t, tj )
− L2(tj−1)

}
DF(t, tj )

}
so the value of the equity swap to party A is:

ESWP(t) = −
{

S1(t)

DF(t, tj )
− L1(tj−1)

}
DF(t, tj )

equity 1 returns paid by A

+ (
L1(tj−1) − L2(tj−1)

)
R(tj−1)τDF(t, tj )

interest on difference of reset notionals paid by B

+
{

S2(t)

DF(t, tj )
− L2(tj−1)

}
DF(t, tj )

equity 2 returns paid by B

7.5.2 Equity quantos

The Black–Scholes equation can also be used to price equity quanto options
(Reiner (1992)). We have the following processes:

dSf = μsS
f dt + σsS

f dWP
s

dX
f
d = μxX

f
d dt + σxX

f
d dWP

x (7.5.10)
dBf = rf Bf dt

dBd = rdBd dt

Here Sf is the price (in foreign currency units) of the foreign stock. Bd is the
domestic money market account where money grows at the (constant) risk free
interest rate rd . Bf is the foreign money market account where money grows at
the (constant) risk free interest rate rf . X

f
d is the foreign exchange rate, that is

the value of one unit of foreign currency in units of domestic currency.
The tradables for the domestic investor are the foreign money market account

priced in domestic currency units (that is, X
f
d Bf ) and the foreign stock priced

in domestic currency units, X
f
d Sf .

We know from Eq. (4.4.30) that there is a probability measure (the risk neu-
tral measure) Q under which the relative price of domestic tradables such as
equities are martingales. Also we established that under Q the process followed
by these tradables is GBM with constant drift rd . So the process for the domestic
equity Sd is:

dSd = Sdrd dt + σSd dWQ (7.5.11)
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Similarly the process followed by the price of a foreign equity Sf under the
foreign risk neutral measure F is:

dSf = Sf rf dt + σsS
f dWF

s (7.5.12)

However, the process followed by the price of a foreign equity Sf under the
domestic risk neutal measure Q is:

dSf = Sf
(
rf + α

)
dt + σsS

f dWQ
s (7.5.13)

where α (the quanto adjustment) is to be determined.
We will now derive the value for α, and then use this to price both quanto

forwards and quanto options.

Determining the quanto adjustment, α

Since X
f
d Bf and X

f
d Sf are domestic tradables it means that the relative prices

X
f
d Bf /Bd and X

f
d Sf /Bd are also martingales under the probability measure Q

Now since X
f
d Bf /Bd is a martingale,

d
(

X
f
d Bf

Bd

)
= σx

X
f
d Bf

Bd
dWQ

x (7.5.14)

We will start by writing X
f
d Bf /Bd as (Sf /Bf )(X

f
d Bf /Bd). Using the Ito

product rule we have:

d
{

Sf

Bf

X
f
d Bf

Bd

}
= X

f
d Bf

Bd
d
(

Sf

Bf

)
+ Sf

Bf
d
(

X
f
d Bf

Bd

)
+ E

[
d
(

Sf

Bf

)
d
(

X
f
d Bf

Bd

)]
(7.5.15)

Substituting for d(X
f
d Bf /Bd) from Eq. (7.5.14) into Eq. (7.5.15) gives:

d
{

Sf

Bf

X
f
d Bf

Bd

}
= X

f
d Bf

Bd
d
(

Sf

Bf

)
+ σx

Sf

Bf

X
f
d Bf

Bd
dWQ

x

+ E

[
d
(

Sf

Bf

)
d
(

X
f
d Bd

Bf

)]
(7.5.16)

Using the Ito quotient rule (see Section 1.7.2) with one source of randomness,
Eqs. (7.5.13) and (7.5.10) yield:

d
(

Sf

Bf

)
= Sf

Bf
α dt + Sf

Bf
σs dWQ

s (7.5.17)

We now consider the term E[d(Sf /Bf ) d(X
f
d Bf /Bd)] in Eq. (7.5.16):
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E

[
d
(

Sf

Bf

)
d
(

X
f
d Bf

Bd

)]
= E

[
Sf

Bf

{
α dt + Sf

Bf
σs dWQ

s

}
σx

X
f
d Bf

Bd
dWQ

x

]
= X

f
d Bf

Bd

Sf

Bf
α dt σxE

[
dWQ

x

] + Sf

Bf

X
f
d Bf

Bd
σsσxE

[
dWQ

x dWQ
s

]
Since E[dW

Q
x ] = 0 and E[dW

Q
x dW

Q
s ] = ρxs dt

E

[
d
(

Sf

Bf

)
d
(

X
f
d Bd

Bf

)]
= Sf

Bf

X
f
d Bf

Bd
σsσxρxs dt (7.5.18)

Using the values of d(Sf /Bf ) and E[d(Sf /Bf ) d(X
f
d Bd/Bf )] from Eqs. (7.5.17)

and (7.5.18) in Eq. (7.5.16) results in:

d
{

Sf

Bf

X
f
d Bf

Bd

}
= X

f
d Bf

Bd

Sf

Bf
α dt + X

f
d Bf

Bd

Sf

Bf
σsσx dWQ

s

+ σx

X
f
d Sf

Bd
dWQ

x + Sf

Bf

X
f
d Bf

Bd
σsσxρxs dt

Rearranging we obtain:

d
{

X
f
d Sf

Bd

}
= X

f
d Sf

Bd
{α + σsσxρxs} dt

+ X
f
d Sf

Bd

(
σs dWQ

s + σx dWQ
x

)
(7.5.19)

We already mentioned that X
f
d Bf /Bd is a martingale under probability measure

Q so the drift term in Eq. (7.5.19) must be zero. This means that:

α = −σsσxρxs

where σs is volatility of the foreign equity, σx is volatility of the foreign exchange
rate and ρxs is the correlation between dWs and dWx .

Equation (7.5.13) can then be written as:

dSf = {
rf − σsσxρxs

}
Sf dt + σsS

f dWQ
s (7.5.20)

Equity quanto forward

The (time t) value of a domestic equity forward contract with maturity T is:

F(t) = DFd(t, T )
{
Sd(t, T ) − Kd

}
where Kd is the strike in domestic currency and Sd(t, T ) is the domestic forward
price.

To value an equity quanto forward contract we need to know the forward
price of the foreign equity Sf .
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It can be seen from Eqs. (4.4.31), (4.4.32) and (7.5.20) that this forward price
is:

Sf (t, T ) = Sf (t) exp
((

rf − σxσsρxs

)
(T − t)

)
(7.5.21)

where Sf (t) is the current price of the foreign equity and T is the maturity of
the forward.

In an equity quanto forward the payoff is in foreign currency but it is con-
verted to domestic currency at a predetermined exchange rate (which we denote
here by X). The value equity quanto forward is thus:

QF(t) = DFd(t, T )
{
Sf (t, T ) − Kf

}
X

where X is the prespecified exchange rate, Kf is the strike in units of foreign
currency, and Sf (t, T ) is the foreign forward equity price.

Equity quanto option

In Chapter 4 Eqs. (4.4.58) and (4.4.59) expressed the value of vanilla European
put and call options as:

Call(t) = exp
(−rd(T − t)

){
Sd(t, T )N1(d1) − EN1(d2)

}
Put(t) = exp

(−rd(T − t)
){−Sd(t, T )N1(−d1) + EN1(−d2)

}
d1 = log(Sd(t, T )/Ed) + (σ 2/2)τ

σ
√

(T − t)

d2 = log(Sd(t, T )/Ed) − (σ 2/2)(T − t)

σ
√

(T − t)

where we have used superscripts to denote the domestic currency, and the cur-
rent equity forward price with maturity T is:

Sd(t, T ) = Sd(t) exp
(
rd(T − t)

)
, t � T

The value of an equity quanto option can be found by substituting Sf for Sd

in the above expression. We obtain:

QCall(t) = exp
(−rd(T − t)

){
Sf (t, T )N1(d1) − Ef N1(d2)

}
X

QPut(t) = exp
(−rd(T − t)

){−Sf (t, T )N1(−d1) + Ef N1(−d2)
}
X

d1 = log(Sf (t, T )/Ef ) + (σ 2
s /2)τ

σs

√
(T − t)

d2 = log(Sf (t, T )/Ef ) − (σ 2
s /2)(T − t)

σs

√
(T − t)

where Ef is the strike in foreign currency units, Sf (t, T ) is the foreign equity
forward price (obtained from Eq. (7.5.21)) and X is the prespecified exchange
rate (number of units of domestic currency per foreign currency unit).
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8 C# portfolio pricing application

8.1 Introduction

This section provides details concerning a C# application, created using Mi-
crosoft Visual Studio 2005 (version 2.0), which values the deals contained in a
set of user specified portfolios. It has been included to illustrate how the pricing
functions discussed in the previous sections of the book can be incorporated
into the kind of software that may be found in a bank, financial institution, or
educational establishment. Here we provide code excerpts from the application;
however, additional source code is available from the publisher’s website.

The main features of this application are as follows:

• User defined portfolios of deals can be valued without the need to compile
either C or C# programs. This means that the application is easy to use and is
accessible to those who may possess business or financial knowledge, but do
not have the technical skills required to write computer code.

• This application only deals with equity, foreign exchange derivatives—the ex-
ception is the inclusion of an interest rate forward rate trade. However, the
software can be easily extended to include new deal types.

• All input/output to the application is by means of text files which can be easily
edited.

• The software is modular and consists of a main C# program which calls
both a compiled C# DealLibrary and also a compiled C Analytics_
MathLib. It should be mentioned that in many cases the C# deal class calls
the C pricing function with reasonable values for various parameters. For
example, the number of time steps in a binomial lattice is set internally and
cannot be altered by the user. Also the initial random seed for all Monte
Carlo simulation is set internally to the same number (111) and this cannot
be changed by the user.

We will now provide a brief overview of each component part of the applica-
tion; more detail will be given later when specific deal classes are described.

8.1.1 The C# code

The application is defined by the C# solution PortfolioValuer.sln, and
the projects DealLibrary.csproj and PortfolioValuer.csproj.
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The project PortfolioValuer.csproj is the driver for the application
and contains the C# code given in Code excerpt 8.1. The user interface is simply
a windows form with a button to start the application, and if required this could
easily be customized by the reader. Once the application has been started, it first
loads a market data file and then reads a portfolio configuration file to determine
which portfolios are to be valued. Valuation then proceeds for all the deals
contained in the portfolio files and the results are written to the appropriate
portfolio results file.

The project DealLibrary.csproj is concerned with the valuation of the
available trades in the application. A separate C# deal class, derived from a
single abstract base class BaseDeal, is provided for each trade type. The
BaseDeal class provides abstract methods such as Price() and Vali-
date(), which need to be implemented in deal classes. We will be primarily
concerned with the method Price(), which is used to return the current value
of a trade. Deal valuation may either be performed completely in C# code or
by calling appropriate C routines in the Analytics_MathLib dynamic link
library—this contains C pricing functions discussed in previous sections of the
book and also utilities (such as random number generators), etc.

Code excerpt 8.2 provides the declaration of BaseDeal and illustrates how
the deal class EquityOptionDeal implements the necessary methods; the
complete C# code for a range of deals is provided later.

It can be seen that the deal class needs to specify the attributes which it will
present to the user, and in addition access market data such as the equity price.

8.1.2 The text files

The application is driven by a portfolio configuration file and also a number of
portfolio definition files, each of which is in plain text format and thus can easily
be edited by the user. The portfolio configuration file specifies the names of the
portfolio files that are to be valued, and each portfolio definition file provides
the details of the trades contained in a given portfolio. In addition there is a
market data file (also in text format) which provides the market data required
to value the trades.

A portfolio configuration file and also two portfolio definition files are given
in Exhibit 8.1. It can be seen that comments may be included in the portfolio
definition files; these are useful for documenting the deals contained in the port-
folio. It is also possible to ignore a single trade by using a // at the beginning
of a line. Complete sections of a portfolio definition file can also be ignored by
using the C style comment syntax /**/.

The syntax of each deal entry in the Portfolio Definition file is as follows:

Trade=<DealClass>,Reference=<Descriptive Text>,DealClassParam1=<Value1>, . . . ,_

DealClassParamN=<ValueN>

Each deal line must begin with an assignment to the Trade attribute using
the syntax Trade=<DealClass>, where <DealClass> is the name of the
C# class used to represent the given deal—i.e., EquityOptionDeal for an
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namespace PortfolioValuer
{

public partial class Form1 : Form
{

public Form1()
{

InitializeComponent();
}
private void button1_Click(object sender, EventArgs e)
{

StreamReader sr_config;
StreamReader sr_tests;
StreamWriter sw;

MessageBox.Show("Computing value of portfolios");
string AppDir = Path.GetDirectoryName(Application.ExecutablePath);
string config_filename = AppDir + "\\Portfolios.txt";
string MD_filename = AppDir + "\\MarketData.txt";
try {

BaseDeal.LoadMarketData(MD_filename);
// Load and execute the specified tests

sr_config = new StreamReader(config_filename);
string assembly_name = AppDir + "\\DealLibrary.dll";
Assembly Assm = Assembly.LoadFrom(assembly_name);
Type[] LoadedTypes = Assm.GetTypes();
string test_file;
int block_comment_depth = 0;
double port_val = 0.0;
string BaseCurrency = BaseDeal.GetBaseCurrency();
while ((test_file = sr_config.ReadLine()) != null)
{

sr_tests = new StreamReader(test_file + ".txt");
string current_test;
string sdate = DateTime.Now.ToString();
string results_filename = AppDir + "\\" + test_file + "results.txt";
bool append = false;
sw = new StreamWriter(results_filename, append, Encoding.ASCII);
sw.WriteLine("=============================");
sw.WriteLine(test_file + " in units of " + BaseCurrency);
sw.WriteLine(test_file +" :" +sdate);
sw.WriteLine("=============================");
port_val = 0.0;
block_comment_depth = 0;
while ((current_test = sr_tests.ReadLine()) != null) {

block_comment_depth += ((current_test.Length > 1)_
&& (current_test.Substring(0,2) == "/*")) ? 1:0;

block_comment_depth -= ((current_test.Length > 1)_
&& (current_test.Substring(0, 2) == "*/")) ? 1 : 0;

. . .
try
{

deal_value = ac1.Price(); // return the value of the deal
}
catch (Exception ex)
{

sr_config.Close();
sw.Close();
sr_tests.Close();
throw new Exception(ex.Message);

}
port_val += deal_value; // add to the value to the portfolio
string str_deal_val = deal_value.ToString(" 0.0000;-0.0000; 0.0000");
sw.WriteLine(str_deal_val + "=" + ac1.Reference+","+ac1.Name());

}

} // end of tests for a given portfolio

Code excerpt 8.1 The main driver for the C# portfolio valuer application. After reading
the market data file, it prices the trades contained in the portfolio definition files. The
total value of each portfolio is also computed.
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public abstract class BaseDeal // The declaration for BaseDeal
{

public abstract string Name();

public abstract double Price();
protected abstract void Validate();
public string Reference { get { return Reference_; } set { Reference_ = value; } }

protected string Reference_;

public string BaseCurrency {get { return MarketDataDictionaries.GetBaseCurrency(); }}
}

public class EquityOptionDeal: BaseDeal // The declaration for EquityOptionDeal
{

public string Equity { get { return EquityName_; } set { EquityName_ = value; } }
public int NumberOfUnits { get { return NumberOfUnits_; }_

set { NumberOfUnits_ = value; } }
public double Time_To_Expiry { get { return Time_To_Expiry_; }_

set { Time_To_Expiry_ = value; } }

. . .

public override string Name() // implement method Name()
{

return "Equity Option";
}

public override double Price() // implement method Price()
{

Validate();

double val=0.0;
double[] greeks = new double[6];
double s0 = 0.0;
double fx_spot = 0.0;
try
{

s0 = MarketDataDictionaries.EquityTable[EquityName_].Spot;_
// get current equity price

Currency_ = MarketDataDictionaries.EquityTable[EquityName_].Currency;_
// get equity volatility (assumed constant)

DividendYield_ = MarketDataDictionaries.EquityTable[EquityName_].DivYield;_
// get equity dividend yield

}
catch
{

throw new Exception(Pre_string_ + "--- No Market Data supplied for " + EquityName_);
}

. . .

val *= fx_spot * NumberOfUnits_; // return value in base currency
return val;

}

protected override void Validate() // implelement method Validate()
{

Pre_string_ = Name() + " (" + Reference_ +")";
if (Time_To_Expiry_ < 0.0)
{

throw new Exception(Pre_string_ + "--- Time to expiry cannot be less than zero
years");

}
if (Strike_ < 0.0)
{

throw new Exception(Pre_string_ + "--- The strike cannot be less than zero");
}

. . .
}

Code excerpt 8.2 C# code showing the declaration of class BaseDeal and illustrating the
implementation of methods Price(), Validate(), and Name().
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// write the portfolio value
sw.WriteLine("========================");
string str_port_val = port_val.ToString(" 0.00;-0.00; 0.00");
sw.WriteLine("TOTAL VALUE = " + str_port_val + " " + BaseCurrency + " ");
sw.WriteLine("=========================");
sw.Close();
sr_tests.Close();

}
MessageBox.Show("Have completed computing portfolio values");
sr_config.Close();
// Clear the dictionaries
BaseDeal.CurrencyTable.Clear();
BaseDeal.EquityTable.Clear();
BaseDeal.BondTable.Clear();
BaseDeal.CorrelationTable.Clear();

}
}
catch (Exception ex)
{

MessageBox.Show("Computation aborted : exception : " + ex.Message);
}

}
}

Code excerpt 8.2 (Continued).

equity option. The other deal attributes are the public properties of Deal-
Class and can be in any order. Deal valuation proceeds by first construct-
ing an empty class object of type DealClass. The application then con-
verts the string representation of the deal attribute values to the types ex-
pected by the DealClass, and assignment to the deal object occurs. Once
the deal object has been populated with the required trade data, the deal’s
Price() method is run. This retrieves the required market data, computes
the deal value, and returns this to the application for output to the portfolio
results file. All deals have the Reference attribute which is used for the pur-
poses of identification. The deal reference is a description (or alphanumeric
code) assigned to the trade, for instance Reference=EQ:LaserComm-1001
or Reference=Tech-10008_Generic. The portfolio results files contain
both the value and reference for each deal which has been valued.

The portfolio driver file

EQ-Investments
Broad-Investments

Portfolio definition file: EQ-investments

// EQ-Investments : Only contains equities
//=========================================
Trade=EquityOptionDeal,Reference=EQ:LaserComm-1001,Equity=LaserComm,Volatility=0.1,_
Strike=95.0,Time_To_Expiry=1.5,OptionType=Put,ExerciseStyle=European

Trade=EquityOptionDeal,Reference=EQ:WebComm-1004A,Equity=WebComm,Volatility=0.1,_
Strike=95.0,Time_To_Expiry=1.0,OptionType=Call,ExerciseStyle=European

Trade=EquityOptionDeal,Reference=EQ:LaserComm-1004,Equity=LaserComm,Volatility=0.1,_
Strike=95.0,Time_To_Expiry=1.0,OptionType=Call,ExerciseStyle=American
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Trade=TwoEquityOptionDeal,Reference=EQ:CompuKalc-1005,Equity1=Mobile-Tech,_
Equity2=CompuKalc,Volatility1=0.2,Volatility2=0.2,RiskFreeRate=0.1,Strike=44.0,_
Time_To_Expiry=0.8,OptionType=Call,MinMax=Minimum,ExerciseStyle=European

Trade=TwoEquityOptionDeal,Reference=EQ:MobileTech|CompuKalc-1006,Equity1=Mobile-Tech,_
Equity2=CompuKalc,Volatility1=0.2,Volatility2=0.2,RiskFreeRate=0.1,Strike=94.0,_
Time_To_Expiry=0.8,OptionType=Call,MinMax=Maximum,ExerciseStyle=European

Trade=ThreeEquityOptionDeal,Reference=Tech-10001,Equity1=LaserComm,Equity2=TelComm,_
Equity3=SmartWeb,Volatility1=0.2,Volatility2=0.2,Volatility3=0.2,NumberOfUnits=100,_
Strike=100.0,Time_To_Expiry=1.0,OptionType=Put,MinMax=Maximum,MonteCarlo=No

Trade=GenericEquityBasketOptionDeal,Reference=Tech-10008_Generic,Volatilities=0.2%0.2%0.2,_
Equities=LaserComm%TelComm%SmartWeb,NumberOfUnits=100,_
Strike=100.0,Time_To_Expiry=1.0,OptionType=Call,MinMax=Maximum,MonteCarlo=Yes

Trade=FourEquityOptionDeal,Reference=Drinks-20001,Equity1=Drinks-4U,Equity2=Beverage-Ltd,_
Equity3=H2O-Ltd,Equity4=Fine-Wines-Ltd,Volatility1=0.2,Volatility2=0.2,Volatility3=0.2,_
Volatility4=0.2,NumberOfUnits=100,Strike=100.0,_
Time_To_Expiry=1.0,OptionType=Call,MinMax=Maximum,MonteCarlo=No

Trade=DownOutEquityOptionDeal,Reference=JPCA_111,Equity=H2O-Ltd,Volatility=0.2,Strike=100.0,_
Time_To_Expiry=1.0,Barrier_Level=90.0,OptionType=Call

Trade=DoubleKnockOutCallEquityOptionDeal,Reference=JPCAPP_115,Equity=LaserComm,Volatility=0.2,
Strike=100.0,Time_To_Expiry=1.0,Lower_Barrier_Level=90.0,Upper_Barrier_Level=340.0

Portfolio definition file: broad-investments

In the C derivative pricing functions developed in the earlier part of this book,
all the deal information such as asset price, risk free interest rate, etc. was passed
explicitly to the pricing function.

For instance, let us consider the pricing of the simple EquityOption,
Reference=EQ:WebComm-1004A, which is specified in Exhibit 8.1. The en-
try (which we will refer to as E1 in the portfolio definition file EQ-investments)
is:

Trade=EquityOptionDeal,Reference=EQ:WebComm-1004A,Equity=WebComm,Volatility=0.1,_

Strike=95.0,Time_To_Expiry=1.0,OptionType=Call,ExerciseStyle=European

The reason for the inclusion of the Volatility attribute will be discussed
later.

If we explicitly passed all the information required by the underlying C func-
tion black_scholes then the form of the required entry (referred to here as
E2) would be:

Trade=EquityOptionDeal,Reference=EQ:WebComm-1004A,Equity=WebComm,Volatility=0.1,_

Strike=95.0,Time_To_Expiry=1.5,OptionType=Put,ExerciseStyle=European,EquitySpot=100,_

FXEquityCurrency=0.5565,RiskFreeRate=0.1,DividendYield=0.05

The reason that E1 does not require the extra four deal attributes
EquitySpot=100,FXEquityCurrency=0.5565,RiskFreeRate=0.1,
DividendYield=0.05 is that these are stored in a market data dictionar-
ies object and are accessed by the C# class EquityOptionDeal before the C
function black_scholes is called.

The market data dictionaries are populated as soon as the application starts.
Exhibit 8.2 shows an example market data file. This is a plain text file, and pro-
vides a common repository for the market parameters that are required by the
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// Broad-Investments : Contains equity, FX and IR products
//=========================================================
// Example FX deal Foreign currency = GBP Domestic Currency = USD, Strike = 1.5,
Settlement = 4.0 years
// Note: The Strike is the number of units of domestic currency that have been agreed to be
paid for one unit
// of foreign currency.

Trade=FXForwardDeal,Reference=FX-5001,ForeignAmount=100,Strike=1.5,ForeignCurrency=GBP,_
DomesticCurrency=USD,Settlement=4.0,BuySell=Buy

Trade=ForwardRateAgreementDeal,Reference=IR-6001,Principal=100.0,Strike=3.0,Currency=GBP,_
Maturity=4.5,Start=4.0,BuySell=Buy

//Trade=FXOptionDeal,Reference=FXOption_Call,NumberOfUnits=123,Strike=0.5,Volatility=0.1375,_
ForeignCurrency=USD,DomesticCurrency=GBP,_
Time_To_Expiry=5.0,ExerciseStyle=European,OptionType=Call,BuySell=Buy

Trade=DownOutEquityOptionDeal,Reference=Tech-7001,Equity=Real-Computers,Volatility=0.2,_
Strike=100.0,Time_To_Expiry=1.0,Barrier_Level=90.0,OptionType=Call,CalcMethod=Analytic
/*
Trade=DownOutEquityOptionDeal,Reference=Tech-7002,Equity=Real-Computers,Volatility=0.2,_
Strike=100.0,Time_To_Expiry=1.0,Barrier_Level=90.0,CalcMethod=MonteCarlo,OptionType=Call,_
NumberScenarios=10000,UseBrownianBridge=true

Trade=DownOutEquityOptionDeal,Reference=Tech-7005,Equity=Real-Computers,Volatility=0.2,_
Strike=100.0,Time_To_Expiry=1.0,Barrier_Level=90.0,CalcMethod=Analytic,OptionType=Call
*/
Trade=DownOutEquityOptionDeal,Reference=Tech-7006,Equity=Real-Computers,Volatility=0.2,_
Strike=100.0,Time_To_Expiry=1.0,Barrier_Level=90.0,CalcMethod=Numeric,OptionType=Call

Trade=DownOutEquityOptionDeal,Reference=Tech-7007,Equity=Real-Computers,Volatility=0.2,_
Strike=100.0,Time_To_Expiry=1.0,Barrier_Level=90.0,CalcMethod=Numeric,OptionType=Call,_
ExerciseStyle=American

//Trade=DownOutEquityOptionDeal,Reference=JPCA_BB_False,Equity=Real-Computers,Strike=100.0,_
Time_To_Expiry=1.0,Barrier_Level=90.0,CalcMethod=MonteCarlo,OptionType=Call,_
NumberScenarios=10000,UseBrownianBridge=false

Trade=DownOutFXOptionDeal,Reference=FX-5004,NumberOfUnits=123,Strike=0.5,Volatility=0.1375,_
ForeignCurrency=USD,DomesticCurrency=GBP,Time_To_Expiry=5.0,ExerciseStyle=European,_
OptionType=Call,BuySell=Buy,CalcMethod=Analytic,Barrier_Level=0.01

Trade=DownOutFXOptionDeal,Reference=FX-5006,NumberOfUnits=123,Strike=0.5,Volatility=0.1375,_
ForeignCurrency=USD,DomesticCurrency=GBP,Time_To_Expiry=5.0,ExerciseStyle=European,_
OptionType=Call,BuySell=Buy,CalcMethod=MonteCarlo,UseBrownianBridge=true,Barrier_Level=0.01

// American FX Barrier Call
Trade=DownOutFXOptionDeal,Reference=FX-5007,NumberOfUnits=123,Strike=0.5,Volatility=0.1375,_
ForeignCurrency=USD,DomesticCurrency=GBP,Time_To_Expiry=5.0,OptionType=Call,BuySell=Buy,_
CalcMethod=Numeric,Barrier_Level=0.01,ExerciseStyle=American

// European Put
Trade=FXOptionDeal,Reference=FX-5008,NumberOfUnits=123,Strike=0.5,Volatility=0.1375,_
ForeignCurrency=USD,DomesticCurrency=GBP,Time_To_Expiry=5.0,ExerciseStyle=European,_
OptionType=Put,BuySell=Buy

Trade=DownOutFXOptionDeal,Reference=FX-5009,NumberOfUnits=123,Strike=0.5,Volatility=0.1375,_
ForeignCurrency=USD,DomesticCurrency=GBP,Time_To_Expiry=5.0,OptionType=Put,BuySell=Buy,_
CalcMethod=MonteCarlo,Barrier_Level=0.01,ExerciseStyle=European

Exhibit 8.1 Here we show an example portfolio driver file and the individual portfolio
definition files EQ-Investments.txt and Broad-Investments.txt. The symbol
_ is used to indicate a line continuation; it should be noted the C# application requires
each deal to be specified on a single line.

deal classes. For instance, all foreign exchange derivatives will need access to the
current FX rates, and all equity derivatives will require the current equity price.
The contents of the market data file can be updated as frequently as required
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// Currency market data. This is used for pricing interest rate swaps, FX options, etc...

Currency.USD,FXSpot=0.5565,YieldCurve=[(0.0027,0.0184),...,(40.58,0.0533)],
VolCurve=[(0.0,0.10),(1.0,0.12),(3.0,0.13),(6.0,0.14),(20,0.15)]
Currency.GBP<<--Base,FXSpot=1.0,YieldCurve=[(0.0027,0.047),...,(50.03,0.042)],
VolCurve=[(0.0,0.10),(1.0,0.12),(3.0,0.13),(6.0,0.14),(20,0.15)]
Currency.EUR,FXSpot=0.689024,YieldCurve=[(0.0,0.04),...,(20,0.056)],
VolCurve=[(0.0,0.10),(1.0,0.12),(3.0,0.13),(6.0,0.14),(20,0.15)]
Currency.CAD,FXSpot=1.5,YieldCurve=[(0.0,0.04),...,(20,0.056)],
VolCurve=[(0.0,0.10),(1.0,0.12),(3.0,0.13),(6.0,0.14),(20,0.15)]

// Equity market data. This is used for pricing equity options, etc...

Equity.Imperial-Art,Currency=GBP,Spot=9.0,DivYield=0.03
Equity.Real-Computers,Currency=USD,Spot=200.0,DivYield=0.04
Equity.TelComm,Currency=GBP,Spot=120.0,DivYield=0.09
Equity.WebComm,Currency=USD,Spot=100.0,DivYield=0.07
Equity.Hackers,Currency=GBP,Spot=40.0,DivYield=0.02
Equity.LaserComm,Currency=GBP,Spot=95.0,DivYield=0.05
Equity.SmartWeb,Currency=GBP,Spot=100.0,DivYield=0.01
Equity.Web-Comm,Currency=GBP,Spot=100.0,DivYield=0.04
Equity.Mobile-Tech,Currency=GBP,Spot=92.0,DivYield=0.02
Equity.CompuKalc,Currency=GBP,Spot=95.0,DivYield=0.11
Equity.The-Bookshop,Currency=GBP,Spot=100.0,DivYield=0.02
Equity.Everyman-Books,Currency=GBP,Spot=100.0,DivYield=0.03
Equity.The-RealBook-Company,Currency=GBP,Spot=100.0,DivYield=0.04
Equity.Drinks-4U,Currency=GBP,Spot=100.0,DivYield=0.05
Equity.Beverage-Ltd,Currency=GBP,Spot=100.0,DivYield=0.06
Equity.H2O-Ltd,Currency=GBP,Spot=100.0,DivYield=0.05
Equity.Fine-Wines-Ltd,Currency=GBP,Spot=100.0,DivYield=0.03
Equity.French-Wines-Ltd,Currency=EUR,Spot=100.0,DivYield=0.2
Equity.The-English-Beer-Company,Currency=GBP,Spot=100.0,DivYield=0.03
Equity.Water-Works-Ltd,Currency=GBP,Spot=100.0,DivYield=0.012
Equity.Welsh-Spring,Currency=GBP,Spot=100.0,DivYield=0.06
Equity.ThamesBeer,Currency=GBP,Spot=100.0,DivYield=0.05
Equity.Edingburgh-Whiskey,Currency=GBP,Spot=100.0,DivYield=0.04
Equity.The-Wine-Box,Currency=GBP,Spot=100.0,DivYield=0.085

// Bond market data. This is used for pricing bonds, and credit derivatives such as CDS, and
TRS

Bond.Fine-Wines-Ltd-Bond-2020,Currency=GBP,Spot=150.0,
SurvivalProb=[(0.0,1.0),(1.0,0.9),(3.0,0.96),(6.0,0.9),(20,0.5)]
Bond.Hackers-Bond-2018,Currency=GBP,Spot=200.0,
SurvivalProb=[(0.0,1.0),(2.0,0.91),(5.0,0.9),(8.0,0.8),(30,0.6)]
Bond.Hackers-Bond-2060,Currency=GBP,Spot=260.0,
SurvivalProb=[(0.0,1.0),(1.0,0.92),(20.0,0.8),(20.0,0.65),(60,0.7)]
Bond.Real-Computers-Bond-2020,Currency=USD,Spot=100.0,
SurvivalProb=[(0.0,1.0),(1.0,0.94),(4.0,0.9),(8.0,0.6),(30,0.5)]

// Market data correlation. These are used for multiasset options

Correlation.Imperial-Art,Real-Computers=0.5

Correlation.Real-Computers,WebComm=0.4
Correlation.Real-Computers,Hackers=0.5
Correlation.Real-Computers,LaserComm=0.3
Correlation.Real-Computers,SmartWeb=0.4

Correlation.TelComm,Hackers=0.5
Correlation.TelComm,LaserComm=0.5
Correlation.TelComm,SmartWeb=0.5
Correlation.TelComm,Web-Comm=0.5
Correlation.LaserComm,SmartWeb=0.5

Correlation.Hackers,Mobile-Tech=0.4
Correlation.LaserComm,Mobile-Tech=0.4
Correlation.SmartWeb,Mobile-Tech=0.5
Correlation.Web-Comm,Mobile-Tech=0.5

Exhibit 8.2 An example market data file, which is used to specify the current market
values such as equity spot, FX spot, interest rate yield curves, etc. The third line in
the file provides currency information for GBP, and the entry Currency.GBP«--Base
specifies that the base currency will be GBP, and thus all portfolio and deal values will be
computed in GBP.
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Correlation.Mobile-Tech,The-Bookshop=0.1
Correlation.CompuKalc,LaserComm=0.3

Correlation.ThamesBeer,French-Wines-Ltd=0.3
Correlation.ThamesBeer,Fine-Wines-Ltd=0.5
Correlation.ThamesBeer,H2O-Ltd=0.5
Correlation.ThamesBeer,Beverage-Ltd=0.6
Correlation.ThamesBeer,Drinks-4U=0.6
Correlation.ThamesBeer,The-RealBook-Company=0.8
Correlation.ThamesBeer,People-Books=0.1

. . .

Correlation.Edingburgh-Whiskey,French-Wines-Ltd=0.5
Correlation.Edingburgh-Whiskey,Water-Works-Ltd=0.5
Correlation.Edingburgh-Whiskey,The-English-Beer-Company=0.6

Exhibit 8.2 (Continued).

(i.e., daily, hourly, etc.) but will always maintain a set of market values that can
be used consistently across all deal valuations.

It should be mentioned that the main advantage of type E1 deal entries is
not just that the portfolio definition file is smaller—it also ensures that consis-
tent market data values are used to price all the trades in the portfolio. When
type E2 deal entries are used, it is necessary to ensure that all the extra deal
attributes are updated as new market data becomes available. This would be
a time-consuming task and, if only a partial update occurs, could give rise to
invalid deal valuations caused by inconsistent deal attribute values such as FX-
EquityCurrency, DividendYield.

The format of the result files is shown in Exhibit 8.3. The output syntax is
simply:

<deal value>=<deal reference>,<deal type>

It can be seen that each deal is valued in base currency (which here is specified
in the market data file as GBP) and the total value for the portfolio is also
reported.

Results file for portfolio EQ-investments

=============================
EQ-Investments in units of GBP
EQ-Investments :14/07/2007 00:00:00
=============================

4.3501=EQ:LaserComm-1001,Equity Option
2.9278=EQ:LaserComm-1002,Equity Option
3.5716=EQ:LaserComm-1003,Equity Option
2.0245=EQ:LaserComm-1004,Equity Option
2.2171=EQ:WebComm-1004A,Equity Option
41.7119=EQ:CompuKalc-1005,Rainbow option(two equities)
14.0274=EQ:MobileTech|CompuKalc-1006,Rainbow option(two equities)
8.8511=EQ:MobileTech|CompuKalc-1007,Rainbow option(two equities)
70.3151=EQ:MobileTech|TelComm-1008,Rainbow option(two equities)
13.3263=JPCAM11,Rainbow option(two equities)
6.5840=JPCAM111,Rainbow option(two equities)
72.7866=Tech-10001,Three Equity Option
70.1046=Tech-10002,Three Equity Option
69.7412=Tech-10003,Three Equity Option
1010.6123=Tech-10004,Three Equity Option
1030.3894=Tech-10005,Three Equity Option
2850.8918=Tech-10006,Three Equity Option
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2838.9643=Tech-10007,Three Equity Option
2838.9643=Tech-10008_Generic,Generic Equity Option
399.4981=Tech-10009,Three Equity Option
409.1153=Tech-10010,Three Equity Option
2646.6473=Drinks-20001,Four Equity Option
2644.3642=Drinks-20002,Four Equity Option
15.3381=Drinks-20003,Four Equity Option
21.8691=Drinks-20004,Four Equity Option
53.8106=Drinks-20005,Four Equity Option
63.2889=Drinks-20006,Four Equity Option
1511.6543=Drinks-20007,Four Equity Option
1524.5000=Drinks-20008,Four Equity Option
1510.7045=Drinks-20009,Four Equity Option
1518.8670=Drinks-20010,Four Equity Option
1513.7578=Drinks-20011,Four Equity Option
1524.5000=Drinks-20012,Generic Equity Option
1513.7578=Drinks-20013,Four Equity Option
2030.2451=Drinks-20013,Generic Equity Option
6.1238=JPCA_111,Down Out Equity Option
6.1240=JPCA_111A,Down Out Equity Option
3.0006=JPCA_112,Down Out Equity Option
3.0006=JPCA_113,Down Out Equity Option
3.0006=JPCA_114,Down Out Equity Option
3.0036=JPCAPP_115,Double Knock Out Call Equity Option

========================
TOTAL VALUE = 29878.53 GBP
=========================

Results file for portfolio broad-investments

=============================
Broad-Investments in units of GBP
Broad-Investments :14/07/2007 00:00:00
=============================

9.4359=FX-5001,FX Forward
-9.4359=FX-5002,FX Forward

0.8661=IR-6001,Forward Rate Agreement
1.1755=IR-6002,Forward Rate Agreement
52.6353=Tech-7001,Down Out Equity Option
52.6757=Tech-7002,Down Out Equity Option
52.6757=Tech-7003,Down Out Equity Option
52.6583=Tech-7004,Down Out Equity Option
52.6353=Tech-7005,Down Out Equity Option
52.6358=Tech-7006,Down Out Equity Option
55.6500=Tech-7007,Down Out Equity Option
11.6849=FX-5003,FX Option
11.6849=FX-5004,Down Out FX Option
11.6813=FX-5005,Down Out FX Option
11.5356=FX-5006,Down Out FX Option
11.9998=FX-5007,Down Out FX Option
2.9173=FX-5008,FX Option
2.9827=FX-5009,Down Out FX Option

========================
TOTAL VALUE = 438.09 GBP
=========================

Exhibit 8.3 Portfolio results files. The reporting currency is set in the market data file; in
this example, all values are given in pounds sterling.

8.2 Storing and retrieving the market data

As mentioned before, the market data required to price derivatives is stored
in market data dictionaries. The MarketDataDictionaries class, shown in
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Code excerpt 8.4, contains a set of C# Dictionary member items which hold all
the market data required by the deal classes. Below we give the declaration of
the CurrencyTable, EquityTable and CorrelationTable dictionaries:

public static Dictionary<string, Currency> CurrencyTable = new Dictionary<string,_

Currency>();

public static Dictionary<string, Equity> EquityTable = new Dictionary<string,_

Equity>();

public static Dictionary<string, Correlation> CorrelationTable = new Dictionary<string,_

Correlation>();

Each dictionary entry is made up of a {<unique-key>, <value-object>}
pair, where unique-key is a unique string, and value-object is a class
containing the corresponding market data. We will now consider each of the
above dictionaries and the information they hold in more detail.

8.2.1 CurrencyTable

In a CurrencyTable dictionary value-object is a class of type Currency
and is used to store currency information. The class declaration is provided in
Code excerpt 8.3.

public class TPair : IComparable
{

public double t;
public double val;

public TPair(double t1, double val1)
{

t = t1;
val = val1;

}

int IComparable.CompareTo(object obj)
{

TPair temp = (TPair)obj;
if (this.t > temp.t)

return (1);
if (this.t < temp.t)

return (-1);
else

return (0);
}

}

// ICurve - a curve for storing interest rates
public class ICurve: List<TPair>
{

private double t_pt; // internal value used for matching
private string name_ = "";

public ICurve (string name) {
name_ = name;

}

public double this[double t_0, double t]
{ get { // return the discount factor between t and t1

double eps = 1.0e-6;
double val;

Code excerpt 8.3 Code showing the class Currency and also the classes ICurve and
TPair which all enable the interest rate yield curve to be stored.
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t_pt = t;
// find the bounding indicies corresponding to a given t value
int indx1 = this.FindIndex(TPairFind);

if (indx1 == -1)
throw new Exception("Invalid market data interest rate yield curve for currency "

+ name_);

double v2 = this[indx1].val;
double v1 = this[indx1 - 1].val;
double t2 = this[indx1].t;
double t1 = this[indx1 - 1].t;

if (Math.Abs(t2 - t) < eps)
{

val = v2;
}
else
{ // use linear interpolation to compute the value of DF

val = v1 + ((v2 - v1) / (t2 - t1)) * (t - t1);
}

val = Math.Exp(-val * t);

return val;
}

}

public double this[double t, double t1, double t2] {
get {

// return the forward rate between t1 and t2
// t2 >= t1

double DF1 = this[t, t1];
double DF2 = this[t, t2];
double fwd = (DF1 / DF2 - 1.0) / (t2 - t1);

return fwd;
}

}

private bool TPairFind(TPair v)
{

if ((v.t >= t_pt))
{

return true;
}
else
{

return false;
}

}
}

public class Currency
{

public string name; // the name of the currency (e.g GBP, or USD)
public double spot; // the FX spot of the currency with respect to base

currency
public ICurve YieldCurve; // the currency yield curve
public VCurve VolCurve; // the volatility of the yield curve (not currently used

by the C# application)
public Currency(string name1, double spot1) // two parameter constructor
{

name = name1;
spot = spot1;
YieldCurve = new ICurve(name1);

}

public Currency(string name1) // single parameter constructor
{

YieldCurve = new ICurve(name1);
VolCurve = new VCurve(name1);

}
}

Code excerpt 8.3 (Continued).
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string CcyCode = "USD"; // set the unique currency code to USD

// create a new (empty) entry in the CurrencyTable for USD
CurrencyTable.Add(CcyCode, new Currency(CcyCode));

double FXSpot = 0.5565; // set the USD to base currency FX spot

// assign to public data member spot, in class Currency
CurrencyTable[CcyCode].spot = FXSpot;
// assign to public data member name, in class Currency
CurrencyTable[CcyCode].name = CcyCode;

double t;
double rt;

t= 0.0027; // time - for point 1
rt = 0.0184; // rate - for point 1

// add the first point to the public data member YieldCurve, in class Currency
CurrencyTable[CcyCode].YieldCurve.Add(new TPair(t, rt));

. . .
t = 40.58;
rt = 0.0533;
CurrencyTable[CcyCode].YieldCurve.Add(new TPair(t, rt));

Code excerpt 8.4 C# code showing the addition of USD currency market data to the
CurrencyTable dictionary.

It is straightforward to add currency data to CurrencyTable. The C# code
fragment shown in Excerpt 8.4 illustrates the addition of USD information.

The information in the CurrencyTable is accessed by the deal classes and
used to compute discount factors, forward rates and FX spots. In the market
data file (see Exhibit 8.2) the YieldCurve consists of a set of time/value pairs
and is defined using the following syntax:

YieldCurve = [(t1, r1), . . . , (ti , ri), . . . , (tn, rn)], where ti is the time in years,
and ri is the corresponding zero coupon rate with tenor ti .

The value, at t = 0, of a zero coupon bond with unit cash flow at maturity, ti ,
is exp(−ri ti ), and is known as the discount factor DF(0, ti ). Code excerpt 8.4
shows the addition of two data items to the USD yield curve, while Code ex-
cerpt 8.5 illustrates the retrieval from DF(0, ti ) of ri . The code fragment:

double discount_fac = DF[0, Time_To_Expiry_];

RiskFreeRate = -Math.Log(discount_fac) / Time_To_Expiry_;

computes the zero coupon rate RiskFreeRate and this can be used as a
value for the risk free rate required by the option pricing routines in Analyt-
ics_MathLib.dll. It should be mentioned that it would have been more effi-
cient to have written code to directly obtain the interpolated risk free rate from
the USD yield curve (without first computing the associated discount factor).
However, the required code can easily be supplied by the reader.

Discount factors and forward rates are accessed from an ICurve object. The
discount factor is obtained as follows:

ICurve DF = MarketDataDictionaries.

CurrencyTable[Currency_].YieldCurve;
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try
{

string Currency_ = "USD";
// DF will be used to access discount factors
ICurve DF = MarketDataDictionaries.CurrencyTable[Currency_].YieldCurve;

// FWD will be used to access forward rates
ICurve FWD = MarketDataDictionaries.CurrencyTable[BaseCurrency].YieldCurve;

// obtain the discount factor DF(0,1) using methods in class ICurve
double discount_fac = DF[0, Time_To_Expiry_];

RiskFreeRate = -Math.Log(discount_fac) / Time_To_Expiry_;
double Time_To_Expiry_ = 1.0;
double FXspot =

// obtain the FX spot with repect the base currency (GBP)
MarketDataDictionaries.CurrencyTable[Currency_].spot;

double t1 = 1.0;;
double t2 = 1.5;

// obtain the forward rate F(0,1,1.5) using methods in class ICurve
double forward_rate = FWD[0, t1, t2];

}
catch
{

throw new Exception(Pre_string_ + "--- No Market Data supplied for " + Currency_);
}

Code excerpt 8.5 Code showing the retrieval of USD currency market data from the
CurrencyTable dictionary.

public class Equity
{

public string Name;
public double Spot;
public string Currency;
public double DivYield;

public Equity(string Name1, double Spot1, string Currency1, double DivYield1)
{

Name = Name1;
Spot = Spot1;
Currency = Currency1;
DivYield = DivYield1;

}

public Equity()
{
}

}

public class Correlation
{

public string Name1;
public string Name2;
public double Correl;

public Correlation(string Name11, string Name12, double Correl1)
{

Name1 = Name11;
Name2 = Name12;
Correl = Correl1;

}
public Correlation()
{
}

}

Code excerpt 8.6 The equity and correlation classes.
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declares the ICurve object DF. Then the discount factor between 0 and
Time_To_Expiry_ is computed with the statement:

double discount_fac = DF[0, Time_To_Expiry_];

where DF[0, Time_To_Expiry_] calls the ICurve accessor (declared as
public double this[double t_0, double t]) with t_0 = 0 and t
= Time_To_Expiry. It can be seen from Code excerpt 8.3 that linear inter-
polation is performed by the accessor if required.

The forward rate is obtained in a similar manner:

ICurve FWD = MarketDataDictionaries.

CurrencyTable[Currency_].YieldCurve;

declares the ICurve object FWD. Then the forward rate F(0, t1, t2) is returned
with the statement:

double forward_rate = FWD[0, 0.5, 1.5];

where FWD[0, t1, t2] calls the ICurve accessor (declared as public
double this[double t, double t1, double t2]) with t = 0,
t1=0.5, and t2 = 1.5. It can be seen from Code excerpt 8.3 that the ac-
cessor computes the forward rate as:

FWD[0,t1,t2] = (DF[0,t1] / DF[0,t2] - 1.0)

/ (t2 - t1);

EquityTable and CorrelationTable

Code excerpt 8.7 shows how market data is added to the internal dictionaries
of the MarketDataDictionaries class. For instance, to add a correlation

public class MarketDataDictionaries
{

public static Dictionary<string, Currency> CurrencyTable = new Dictionary<string,
Currency>();
public static Dictionary<string, Equity> EquityTable = new Dictionary<string,
Equity>();
public static Dictionary<string, Correlation> CorrelationTable = new Dictionary<string,
Correlation>();
protected static string BaseCurrency_ = "";

public static string GetBaseCurrency()
{

return BaseCurrency_;
}

public static void LoadMarketData(string marketdata_file)
{

// Load the market data file and assign values to dictionaries
StreamReader MDFILE = new StreamReader(marketdata_file);
string cur_line = "";

while ((cur_line = MDFILE.ReadLine()) != null) // loop through the market data
file

Code excerpt 8.7 The MarketDataDictionaries class, illustrating how market data
is added to the internal dictionaries.
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{
if ((cur_line.Length > 1) && ((cur_line.Substring(0, 2) != "//")))
{

char[] seps = new char[] { ’=’, ’,’ };
string[] v = cur_line.Split(seps, StringSplitOptions.None);

int num_elems = v.GetUpperBound(0);
int k = 0;
double t_, val_;
bool stop;
double FXSpot = 0.0;

if (v[0].Substring(0, 8) == "Currency") // currency data
{

string CcyCode = v[0].Substring(9, 3);

if (v[0].IndexOf("<<--Base") != -1) BaseCurrency_ = CcyCode;

k += 2;

if (!CurrencyTable.ContainsKey(CcyCode))
{

CurrencyTable.Add(CcyCode, new Currency(CcyCode));
}
else
{

throw new Exception("Spot & interest rate market data already
supplied for " + CcyCode);

}

FXSpot = (double)Convert.ChangeType(v[k], typeof(double));
CurrencyTable[CcyCode].spot = FXSpot;
CurrencyTable[CcyCode].name = CcyCode;

k += 2;
t_ = (double)Convert.ChangeType(v[k].Substring(2, v[k].Length - 2),

typeof(double));
k += 1;
val_ = (double)Convert.ChangeType(v[k].Substring(0, v[k].Length - 1),

typeof(double));
CurrencyTable[CcyCode].YieldCurve.Add(new TPair(t_, val_));
k += 1;
int vv = v[k].IndexOf(")]");
stop = false;
while (!stop) // Add the yield curve data
{

t_ = (double)Convert.ChangeType(v[k].Substring(1, v[k].Length - 1),
typeof(double));

k += 1;
if (v[k].IndexOf(")]") == -1)
{

val_ = (double)Convert.ChangeType(v[k].Substring(0, v[k].
Length - 1),typeof(double));

}
else
{

val_ = (double)Convert.ChangeType(v[k].Substring(0, v[k].
Length - 2), typeof(double));
stop = true;

}
k += 1;
CurrencyTable[CcyCode].YieldCurve.Add(new TPair(t_, val_));

}
CurrencyTable[CcyCode].YieldCurve.Sort();

. . .

}
else if (v[0].Substring(0, 6) == "Equity") // equity data
{

int idx = v[k].IndexOf(".");
string EquityName = v[0].Substring(idx + 1, v[0].Length - idx - 1);
k += 2;
string CcyCode = v[k];

Code excerpt 8.7 (Continued).
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k += +2;
double spot = (double)Convert.ChangeType(v[k], typeof(double));
k += +2;
double div = (double)Convert.ChangeType(v[k], typeof(double));

if (!EquityTable.ContainsKey(EquityName))
{

EquityTable.Add(EquityName, new Equity());
EquityTable[EquityName].Currency = CcyCode;
EquityTable[EquityName].Name = EquityName;
EquityTable[EquityName].Spot = spot;
EquityTable[EquityName].DivYield = div;

}
else
{

throw new Exception("Spot & currency market data already supplied
for " + EquityName);

}
}

. . .

else if (v[0].Length >= 12 && v[0].Substring(0, 11) == "Correlation")
// correlation data
{

int idx = v[0].IndexOf(".");
string AssetName1 = v[0].Substring(idx + 1, v[0].Length - idx - 1);
k += 1;
string AssetName2 = v[k];
k += 1;
double corr = (double)Convert.ChangeType(v[k], typeof(double));
string CorrelationKey = AssetName1 + "%" + AssetName2;

if(!CorrelationTable.ContainsKey(CorrelationKey))
{

// ie The-Wine-Box%Water-Works-Ltd and The-Wine-Box%Water-Works-Ltd

CorrelationTable.Add(CorrelationKey, new Correlation());
CorrelationTable[CorrelationKey].Correl = corr;
CorrelationTable[CorrelationKey].Name1 = AssetName1;
CorrelationTable[CorrelationKey].Name2 = AssetName2;

CorrelationKey = AssetName2 + "%" + AssetName1;
CorrelationTable.Add(CorrelationKey, new Correlation());
CorrelationTable[CorrelationKey].Correl = corr;
CorrelationTable[CorrelationKey].Name1 = AssetName2;
CorrelationTable[CorrelationKey].Name2 = AssetName1;

}
else
{

throw new Exception("market data already supplied for "
+ CorrelationKey);

}
}

}
}
MDFILE.Close();

}
}

Code excerpt 8.7 (Continued).

entry it is first necessary to construct the dictionary key, and then determine
whether or not the entry already exists in the dictionary. This is shown in the
code fragment below:
// first construct the unique key string from AssetName1 and AssetName2

string CorrelationKey = AssetName1 + "%" + AssetName2;

// Now check whether this key already exists in the dictionary CorrelationTable.
// If it doesn’t then add a new entry, if it does then raise an exception

if(!CorrelationTable.ContainsKey(CorrelationKey))



262 Computational Finance Using C and C#

{
// Create a new empty dictionary entry for the unique key
CorrelationTable.Add(CorrelationKey, new Correlation());

// Now fill out the entry by assigning the correlation and the asset names
CorrelationTable[CorrelationKey].Correl = corr;
CorrelationTable[CorrelationKey].Name1 = AssetName1;
CorrelationTable[CorrelationKey].Name2 = AssetName2;

// Create another empty dictionary entry with the asset names in reverse order
// (because correlation(a,b) = correlation(b,a)

CorrelationKey = AssetName2 + "%" + AssetName1;

// Now fill out the entry by assigning the correlation and the asset names
CorrelationTable.Add(CorrelationKey, new Correlation());
CorrelationTable[CorrelationKey].Correl = corr;
CorrelationTable[CorrelationKey].Name1 = AssetName2;
CorrelationTable[CorrelationKey].Name2 = AssetName1;

}
else
{

throw new Exception("market data already supplied for " + CorrelationKey);
}

8.3 The PricingUtils class and the
Analytics_MathLib

It has already been mentioned that the deal classes often make calls to the C
pricing function that are contained in Analytics_MathLib.dll. To do this
it is necessary to provide a C# declaration for the corresponding C function.
This is carried out in the PricingUtils class by declaring the routines as ex-
tern and using the C# DllImport attribute, which is defined in the namespace
System.Runtime.InteropServices. Code excerpt 8.8 provides a sample
of the C# declarations in PricingUtils and some of the corresponding C dec-

using System;
using System.Collections.Generic;
using System.Collections;
using System.IO;
using System.Text;
using System.Runtime.InteropServices;

public class PricingUtils
{

public static double EPS = 1.0e-6;

[DllImport("Analytics_MathLib.dll")]
public static extern void dko_call(double lower_barrier, double upper_barrier,

double theta_m, double S0, ref double sigma_array, ref double sigma_times,
int n_sigma, double r, double opt_mat, double X, int is_american, ref double
option_value,
IntPtr greeks, double q, int ns_below_S0, int ns_above_S0, int nt, ref int iflag);

[DllImport("Analytics_MathLib.dll", EntryPoint = "black_scholes")]
public static extern void black_scholes2(ref double value, ref double greeks, double s0,

double x, double sigma,
double t, double r, double q, int put, ref int iflag);

Code excerpt 8.8 The PricingUtils class, which permits C# code to call the C func-
tions that reside in Analytics_Mathlib.dll. The attribute DllImport (defined in
namespace System.Runtime.InteropServices) indicates to C# Interop services
that unmanaged code is being called.
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[DllImport("Analytics_MathLib.dll", EntryPoint = "black_scholes")]
public static extern void black_scholes(ref double value, IntPtr greeks, double s0,

double x, double sigma,
double t, double r, double q, int put, ref int iflag);

[DllImport("Analytics_MathLib.dll")]
public static extern void opt_gfd(double theta, double S0, double sigma, double r,

double T, double X, int is_american,
int put, ref double value, IntPtr greeks, double q, int ns, int nt,
double smax, ref int iflag);

[DllImport("Analytics_MathLib.dll")]
public static extern void standard_2D_binomial(ref double value, double S1, double S2,

double X, double sigma1,
double sigma2, double rho, double T, double r, double q1, double q2, int put,
int M, int is_max,
int is_american, ref int iflag);

. . .

public static double RndNorm(double mean, double std)
{

return mean + std * normal(0.0, 1.0);
}

[DllImport("Analytics_MathLib.dll")]
public static extern double normal(double mean, double std);

[DllImport("Analytics_MathLib.dll")]
public static extern void set_seed(int seed);

[DllImport("Analytics_MathLib.dll", EntryPoint = "multivariate_normal2")]
public static extern void multivariate_normal(int is_fcall, ref double a, int n,

ref double c, int tdc, double eps,
ref double r, ref double z, ref int iflag);

// array r has size nr = ((n+1)*(n+2))/2 + 1
}

Code excerpt 8.8 (Continued).

larations are given in Code excerpt 8.9. It can be seen that C function parameters
passed by value and declared as double dval and long ival correspond to
C# double dval and int ival parameters, respectively. C functions that
are passed by reference are a little more tricky to deal with in C#. This is be-
cause C# does not explicitly support pointers. A C double parameter passed
by reference using double *dval can be mapped in C# by using ref dou-
ble dval. Similarly, the C function parameter long* ival is declared in C#
as ref int ival. It should be noted that for clarity we use the C syntax
double a_dval[] and long a_ival[] for arrays of double and long,
respectively; it is also correct to declare these as double *a_dval, and long
*a_ival.

However, there is still a problem because C functions can be coded to check
whether or not a null pointer has been supplied as a parameter, and then take
appropriate action. For instance, the function black_scholes in Code ex-
cerpt 4.1, will not compute the Greeks if the parameter double greeks[] is
null. The code fragment below shows how IntPtr, which is a recent addition
to C#, can be used to resolve this:

[DllImport("Analytics_MathLib.dll", EntryPoint = "black_scholes")]

public static extern void black_scholes2(ref double value, ref double greeks,_

double s0, double x,double sigma, double t, double r, double q, int put, ref int iflag);
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[DllImport("Analytics_MathLib.dll", EntryPoint = "black_scholes")]

public static extern void black_scholes(ref double value, IntPtr greeks, double s0,_

double x, double sigma, double t, double r, double q, int put, ref int iflag);

The first declaration specifies that the function called black_scholes
in Analytics_MathLib.dll will have the name black_scholes2 in C#.
In addition the C parameter double greeks[] is mapped to ref double
greeks in C#. This means that we will need to declare an array variable (say
the_greeks which will hold the five Greeks and pass it to black_scholes2
using the syntax ref the_greeks[0]. In this case the Greeks will always be
computed, even if we don’t want to use them.

The second declaration specifies that the function black_scholes2 in C#
will also call the routine black_scholes in Analytics_MathLib.dll.
However, in this case, the C parameter double greeks[] is mapped
to IntPtr greeks in C#. This allows us to set the parameter double
greeks[] to null by passing the value IntPtr.Zero—see for example
class EquityOptionDeal in Code excerpt 8.10.

#define DLLExport __declspec(dllexport)

void DLLExport __stdcall black_scholes(double *value, double greeks[],double s0,double x,
double sigma,
double t,double r,double q, long put, long *iflag)

{
. . .

See code excerpt 4.1 for more detail

. . .

}

void DLLExport __stdcall opt_gfd(double theta_m, double asset_price, double sigma, double r,
double T,
double strike, long is_american, long put, double *option_value,
double greeks[], double q, long pns, long nt, double smax, long *iflag)

{
. . .

See code excerpt 5.18 for more detail

. . .
}

void DLLExport __stdcall multivariate_normal2(long is_fcall, double a[], long n, double c[],
long tdc,
double eps, double r[], double z[], long *iflag)

{
. . .

Standard C code to generate a multivariate normal

. . .
}

Code excerpt 8.9 Illustrative C code which is contained in the windows dynamic link
library Analytics_MathLib.dll.
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using System;

namespace Computational_Lib
{

public class EquityOptionDeal: BaseDeal
{

public string Equity { get { return EquityName_; } set { EquityName_ = value; } }
public int NumberOfUnits { get { return NumberOfUnits_; }_

set { NumberOfUnits_ = value; } }
public double Time_To_Expiry { get { return Time_To_Expiry_; }_

set { Time_To_Expiry_ = value; } }
public PutCall OptionType{ get {return OptionType_;} set { OptionType_= value;}}
public EuropeanAmerican ExerciseStyle { get { return ExerciseStyle_; }_

set { ExerciseStyle_ = value; } }
public double Strike { get { return Strike_; } set { Strike_ = value; } }
public BuySell BuySell { get { return BuySell_; } set { BuySell_ = value; } }
public double Volatility { get { return Sigma_; } set { Sigma_ = value; } }

protected PutCall OptionType_ = PutCall.Put;
protected EuropeanAmerican ExerciseStyle_ = EuropeanAmerican.European;
protected double Strike_ = 0;
protected string EquityName_ = "";
protected double Time_To_Expiry_ = 0.0;
protected string Currency_ = "";
protected double DividendYield_ = 0.0;
protected string Pre_string_ = "";
protected BuySell BuySell_ = BuySell.Buy;
protected int NumberOfUnits_ = 1;
protected double Sigma_ = 0.0;

public override string Name()
{

return "Equity Option";
}

public override double Price()
{

Validate();

double val=0.0;
double[] greeks = new double[6];
double s0 = 0.0;
double fx_spot = 0.0;
try
{

s0 = MarketDataDictionaries.EquityTable[EquityName_].Spot;
// get current equity price
Currency_ = MarketDataDictionaries.EquityTable[EquityName_].Currency;
// get equity volatility (assumed constant)
DividendYield_ = MarketDataDictionaries.EquityTable[EquityName_].DivYield;
// get equity dividend yield

}

catch
{

throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ EquityName_);

}
// get the risk free rate to use
double discount_fac = 0.0;
double RiskFreeRate = 0.0;

try
{

ICurve DF = MarketDataDictionaries.CurrencyTable[Currency_].YieldCurve;
// obtain the discount factor
discount_fac = DF[0, Time_To_Expiry_];
RiskFreeRate = -Math.Log(discount_fac) / Time_To_Expiry_;
fx_spot = MarketDataDictionaries.CurrencyTable[Currency_].spot;

}

Code excerpt 8.10 The complete C# code for class EquityOptionDeal, which com-
putes the value of a single equity option.
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catch
{

throw new Exception(Pre_string_ + "--- No Market Data supplied for " + Currency_);
}

int iflag, put;

iflag = 0;
put = OptionType_ == PutCall.Put ? 1 : 0;

if (ExerciseStyle_ == EuropeanAmerican.European) // use BlackScholes
{

// call C routine.
// Note: A null pointer is supplied so that the Greeks are not computed
PricingUtils.black_scholes(ref val, IntPtr.Zero, s0, Strike_, Sigma_,

Time_To_Expiry_,
RiskFreeRate, DividendYield_, put, ref iflag);

}
else
{

// Use Crank Nicolson
double theta = 0.5;
int is_american = 1;
// fix the geometry of the grid (these values should give "reasonable" results)
int ns = 50; // 50 divisions on asset axis
int nt = 50; // 50 divisions on time axis
double smax = 10.0 * s0;

PricingUtils.opt_gfd(theta, s0, Sigma_,RiskFreeRate, Time_To_Expiry_, Strike_,
is_american, put, ref val, IntPtr.Zero, DividendYield_, ns,
nt, smax, ref iflag);

}

if (iflag != 0)
throw new Exception(Pre_string_ + "--- An error occurred in a call to the_

pricing library");

val *= fx_spot * NumberOfUnits_; // return value in base currency

return val;
}

protected override void Validate()
{

Pre_string_ = Name() + " (" + Reference_ +")";
if (Time_To_Expiry_ < 0.0)
{

throw new Exception(Pre_string_ + "--- Time to expiry cannot be less than_
zero years");

}
if (Strike_ < 0.0)
{

throw new Exception(Pre_string_ + "--- The strike cannot be less than zero");
}
if (NumberOfUnits_ < 0)
{

throw new Exception(Pre_string_ + "--- The number of units cannot be less_
than zero");

}

if (Sigma_ < 0.0)
{

throw new Exception(Pre_string_ + "--- Volatility cannot be less than zero");
}

}
}

}

Code excerpt 8.10 (Continued).
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8.4 Equity deal classes

In this section we provide the C# code for both single and multiasset equity
options. The trade attributes correspond to the public properties of the deal
class, and attribute default values can be readily found by reading the C# code.

The enumerations used by the deal attributes are declared below.

public enum BuySell { Buy, Sell };

public enum PutCall { Put, Call };

public enum EuropeanAmerican { European, American };

public enum MinimumMaximum { Minimum, Maximum };

public enum UseMonteCarlo { Yes, No };

public enum CalculationMethod { Analytic, Numeric, MonteCarlo };

and it can be seen that the enumerators have obvious names.
It has already been noted that the volatility used by the application to price

options is supplied as a deal attribute, rather than being stored as market data.
The reason for this is simplicity. In Chapter 4 we mentioned that a volatility
surface is required to represent the implied volatility used to price options. Stor-
ing the implied volatility would thus require a set of volatility surfaces in the
market data file and also multidimensional interpolation to retrieve the volatil-
ity applicable to a given option. It was thus decided to supply the volatility as a
trade attribute—and update its value appropriately.

8.4.1 Single equity option

Code excerpt 8.10 gives the C# code for class EquityOptionDeal, which
computes the values of a single equity option.

8.4.2 Option on the price of two equities

Code excerpt 8.11 gives the C# code to compute the value of options that de-
pend on the price of two equities.

using System;

namespace Computational_Lib
{

public class TwoEquityOptionDeal : BaseDeal
{

public string Equity1 { get { return EquityName1_; } set { EquityName1_ = value; } }
public string Equity2 { get { return EquityName2_; } set { EquityName2_ = value; } }
public double Time_To_Expiry { get { return Time_To_Expiry_; }_

set { Time_To_Expiry_ = value; } }
public int NumberOfUnits { get { return NumberOfUnits_; }_

set { NumberOfUnits_ = value; } }
public PutCall OptionType { get { return OptionType_; } set { OptionType_ = value; } }
public MinimumMaximum MinMax{ get { return MinMax_; } set { MinMax_ = value; } }
public EuropeanAmerican ExerciseStyle { get { return ExerciseStyle_; }_

set { ExerciseStyle_ = value; } }

Code excerpt 8.11 C# code to compute the value of options which depend on the price
of two equities. For example, it is possible to specify whether the option is European or
American, and if it is on the minimum or maximum of the equity prices.
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public double Strike { get { return Strike_; } set { Strike_ = value; } }
public BuySell BuySell { get { return BuySell_; } set { BuySell_ = value; } }
public double Volatility1 { get { return Sigma1_; } set { Sigma1_ = value; } }
public double Volatility2 { get { return Sigma2_; } set { Sigma2_ = value; } }

protected PutCall OptionType_ = PutCall.Put;
protected MinimumMaximum MinMax_ = MinimumMaximum.Maximum;
protected EuropeanAmerican ExerciseStyle_ = EuropeanAmerican.European;
protected double Strike_ = 0;
protected string EquityName1_ = "";
protected string EquityName2_ = "";
protected string Currency_ = "";
protected int NumberOfUnits_ = 1;
protected double Time_To_Expiry_ = 0.0;
protected string Pre_string_ = "";
protected double S1_ = 0.0;
protected double S2_ = 0.0;
protected double Sigma1_ = 0.0;
protected double Sigma2_ = 0.0;
protected BuySell BuySell_ = BuySell.Buy;

public override string Name()
{

return "Rainbow option(two equities)";
}

public override double Price()
{

Validate();

double val = 0.0;
double rho = 0.0; // default correlation set to zero
double RiskFreeRate = 0.0;
double fx_spot = 0.0;

try
{

S1_ = MarketDataDictionaries.EquityTable[EquityName1_].Spot;
}
catch
{

throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ EquityName1_);

}

try
{

S2_ = MarketDataDictionaries.EquityTable[EquityName2_].Spot;
S1_ = MarketDataDictionaries.EquityTable[EquityName1_].Spot;

}
catch
{

throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ EquityName2_);

}

if(string.Compare(MarketDataDictionaries.EquityTable[EquityName1_].Currency,
MarketDataDictionaries.EquityTable[EquityName2_].Currency) != 0){

throw new Exception(Pre_string_ + "--- Currencies for both equities are not
the same");

}

Currency_ = MarketDataDictionaries.EquityTable[EquityName1_].Currency;

try
{

ICurve DF = MarketDataDictionaries.CurrencyTable[Currency_].YieldCurve;
// obtain the discount factor
double discount_fac = DF[0, Time_To_Expiry_];
RiskFreeRate = -Math.Log(discount_fac) / Time_To_Expiry_;
fx_spot = MarketDataDictionaries.CurrencyTable[Currency_].spot;

}

Code excerpt 8.11 (Continued).
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catch
{

throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ Currency_);

}

string corr_key = EquityName1_ + "%" + EquityName2_;

if (MarketDataDictionaries.CorrelationTable.ContainsKey(corr_key))
rho = MarketDataDictionaries.CorrelationTable[corr_key].Correl;

else
rho = 0.0;

int iflag, put, is_max;

iflag = 0;
put = OptionType_ == PutCall.Put ? 1 : 0;
is_max = MinMax_ == MinimumMaximum.Maximum ? 1 : 0;

if (ExerciseStyle_ == EuropeanAmerican.European) // use analytic method
{

PricingUtils.opt_rainbow_bs_2d(ref val, S1_, S2_, Strike_, Sigma1_, Sigma2_,
rho, Time_To_Expiry_, RiskFreeRate, is_max,
put, ref iflag);

}
else { // use numeric method

double q1 = 0.0;
double q2 = 0.0;
int num_steps = 200; // need to use an even number of time steps for the lattice
int is_american = 1;
PricingUtils.standard_2D_binomial(ref val, S1_, S2_, Strike_, Sigma1_, Sigma2_,

rho, Time_To_Expiry_, RiskFreeRate,
q1, q2, put, num_steps, is_max, is_american, ref iflag);

}

if (iflag != 0)
throw new Exception(Pre_string_ + "--- An error occurred in a call to the

pricing library");
val *= fx_spot * NumberOfUnits_; // return value in base currency
return val;

}

protected override void Validate()
{

Pre_string_ = Name() + " (" + Reference_ + ")";

if (Time_To_Expiry_ < 0.0)
{

throw new Exception(Pre_string_ + "--- Time to expiry cannot be less than zero
years");

}
if (NumberOfUnits_ < 0)
{

throw new Exception(Pre_string_ + "--- Number of units cannot be less than
zero");

}
if (Strike_ < 0.0)
{

throw new Exception(Pre_string_ + "--- The strike cannot be less than zero");
}
if (Sigma1_ < 0.0)
{

throw new Exception(Pre_string_ + "--- Volatility1 cannot be less than zero");
}
if (Sigma2_ < 0.0)
{

throw new Exception(Pre_string_ + "--- Volatility2 cannot be less than zero");
}

}
}

}

Code excerpt 8.11 (Continued).
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8.4.3 Generic equity basket option

Here (see Code excerpt 8.12) we consider the abstract deal class GenericE-
quityBasketOptionDeal which enables its derived classes to value an op-

using System;

namespace Computational_Lib
{

public abstract class GenericEquityBasketOptionDeal : BaseDeal
{

public string Equities { set { Equities_ = value; } }
public string Volatilities { set { Volatilities_ = value; } }
public double Time_To_Expiry { get { return Time_To_Expiry_; }

set { Time_To_Expiry_ = value; } }
public int NumberScenarios { get { return NumberScenarios_; }

set { NumberScenarios_ = value; } }
public BuySell BuySell { get { return BuySell_; } set { BuySell_ = value; } }
public int NumberOfUnits { get { return NumberOfUnits_; }

set { NumberOfUnits_ = value; } }
public string Currency { get { return Currency_; } set { Currency_ = value; } }
public double Strike { get { return Strike_; } set { Strike_ = value; } }

protected string Equities_ = "";
protected string Volatilities_ = "";
protected double Time_To_Expiry_ = 0.0;
protected double RiskFreeRate_ = 0.0;
protected string Pre_string_ = "";
protected double[] S_;

protected double[] Sigma_;
protected int NumberScenarios_ = 3000;
protected double[,] Correlations_;
protected int n_ = 0;
protected int NumberOfUnits_ = 1;
protected string Currency_ = "";
protected BuySell BuySell_ = BuySell.Buy;
protected double[] ST_;
protected double Strike_ = 0.0;
public override string Name()
{

return "Generic Equity Option";
}

public abstract double Payoff();

public override double Price()
{

Validate();
double val = 0.0;
double fx_spot = 0.0;

char[] seps = new char[] { ’%’ };
string[] EquityNames = Equities_.Split(seps, StringSplitOptions.None);

n_ = EquityNames.Length;

ST_ = new double[n_];

S_ = new double[n_];
Sigma_ = new double[n_];
for (int k = 0; k < n_; ++k)
{

try
{

S_[k] = MarketDataDictionaries.EquityTable[EquityNames[k]].Spot;
}

Code excerpt 8.12 C# code for the abstract class GenericEquityBasketOption-
Deal. It contains the abstract method Payoff().
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catch
{

throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ EquityNames[k]);

}
}

for (int k = 1; k < n_; ++k)
{

if (string.Compare(MarketDataDictionaries.EquityTable[EquityNames[k - 1]].
Currency, MarketDataDictionaries.EquityTable[EquityNames[k]].Currency) != 0)

throw new Exception(Pre_string_ + "--- Not all the currencies are
the same");

}

Currency_ = MarketDataDictionaries.EquityTable[EquityNames[1]].Currency;

try
{

ICurve DF = MarketDataDictionaries.CurrencyTable[Currency_].YieldCurve;
// obtain the discount factor
double discount_fac = DF[0, Time_To_Expiry_];
RiskFreeRate_ = -Math.Log(discount_fac) / Time_To_Expiry_;
fx_spot = MarketDataDictionaries.CurrencyTable[Currency_].spot;

}
catch
{

throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ Currency_);

}

string[] Vols = Volatilities_.Split(seps, StringSplitOptions.None);
int n_v;
n_v = Vols.Length;

if (n_v != n_)
throw new Exception(Pre_string_ + "--- Number of volatilities is not the same

as the number of equities ");

Sigma_ = new double[n_];
for (int k = 0; k < n_; ++k)
{

try
{

Sigma_[k] = double.Parse(Vols[k]);
}
catch
{

throw new Exception(Pre_string_ + "--- Invalid volatility supplied for "
+ EquityNames[k]);

}
}

Correlations_ = new double[n_, n_];

for (int i = 0; i < n_; ++i)
{

for (int j = 0; j < n_; ++j)
{

if (i != j)
{

string corr_key = EquityNames[i] + "%" + EquityNames[j];
if (MarketDataDictionaries.CorrelationTable.ContainsKey(corr_key))

Correlations_[i, j] = MarketDataDictionaries
.CorrelationTable[corr_key].Correl;

else
Correlations_[i, j] = 0.0; // default correlation is zero

}
else
{

Correlations_[i, j] = 1.0;
}

}
}

Code excerpt 8.12 (Continued).
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int iflag=0;

val = MonteCarloSim(ref iflag);

if (iflag != 0)
throw new Exception(Pre_string_ + "--- An error occurred in a call to the

pricing library");

val *= fx_spot * NumberOfUnits_;

return val;
}

protected override void Validate()
{

Pre_string_ = Name() + " (" + Reference_ + ")";

if (Time_To_Expiry_ < 0.0)
{

throw new Exception(Pre_string_ + "--- Time to expiry cannot be less than zero
years");

}

if (NumberOfUnits_ < 0)
{

throw new Exception(Pre_string_ + "--- Number of units cannot be less than
zero");

}

if (Strike_ < 0.0)
{

throw new Exception(Pre_string_ + "--- The strike cannot be less than zero");
}

}

private double MonteCarloSim(ref int iflag)
{

double[] C = new double[n_ * n_];
double half = 0.5;
double zero = 0.0;
double sumit_val = zero;
double tol = 1.0e-8;
double opt_val = 0.0;

// set the covariance matrix
for (int i = 0; i < n_; ++i)
{

for (int j = 0; j < n_; ++j) {
C[i * n_ + j] = Sigma_[i] * Sigma_[j] * Correlations_[i, j]

* Time_To_Expiry_;
}

}

double[] MEANS = new double[n_];
// set the means
for (int i = 0; i < n_; ++i) {

MEANS[i] = (RiskFreeRate_ - Sigma_[i] * Sigma_[i] * half) * Time_To_Expiry_;
}

int seed = 111;

PricingUtils.set_seed(seed);

int len_rvec = ((n_ + 1) * (n_ + 2)) / 2 + 1;
double[] rvec = new double[len_rvec];
double[] Z = new double[n_];

double disc = Math.Exp(-RiskFreeRate_ * Time_To_Expiry_);

Code excerpt 8.12 (Continued).
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int is_fcall = 1;
PricingUtils.multivariate_normal(is_fcall, ref MEANS[0], n_, ref C[0], n_, tol,

ref rvec[0], ref Z[0], ref iflag);
is_fcall = 0;
for (int i = 1; i <= NumberScenarios_; ++i)
{

PricingUtils.multivariate_normal(is_fcall, ref MEANS[0], n_, ref C[0], n_, tol,
ref rvec[0], ref Z[0], ref iflag);

for (int jj=0; jj < n_; ++jj) {
ST_[jj] = S_[jj] * Math.Exp(Z[jj]);

}
sumit_val += Payoff();

}
opt_val = sumit_val * disc / (double)NumberScenarios_;

return opt_val;
}

}
}

Code excerpt 8.12 (Continued).

tion on an arbitrary number of underlying assets; the derived class also must
implement the abstract method Payoff. In the earlier sections of this book,
we have considered options with standard payoffs such as: vanilla put, vanilla
call, and call/put on the min/max of a number of assets. However, the class
GenericEquityBasketOptionDeal now opens the possibility of supplying
a user-defined Payoff function so that options with nonstandard payoffs can
be valued.

Below we provide some example results for options on four and ten assets.
The assets were: Drinks-4U, Beverage-Ltd, H2O-Ltd, and Fine-Wines-
Ltd. The trade attributes are a time to expiry of one year, all volatilities are 0.2,
and the number of units is 100. Other information required to price the option,
such as the correlations between the equities and the risk free interest rate, is
taken from the market data dictionaries.

The syntax for using the deal class GenericEquityBasketOptionDeal
with the portfolio definition File is:

Trade=GenericEquityBasketOptionDeal:Payoff_MaxPut,Reference=1A,Strike=100.0,_

Volatilities=0.2%0.2%0.2%0.2,_

Equities=Drinks-4U%Beverage-Ltd%H2O-Ltd%Fine-Wines-Ltd,NumberOfUnits=100,_

Time_To_Expiry=1.0,NumberScenarios=1000

while that for calling the deal class FourEquityOptionDeal is:

Trade=FourEquityOptionDeal,Reference=1B,Volatility1=0.2,Volatility2=0.2,_

Volatility3=0.2,Volatility4=0.2,Equity1=Drinks-4U,Equity2=Beverage-Ltd,_

Equity3=H2O-Ltd,Equity4=Fine-Wines-Ltd,NumberOfUnits=100,Strike=100.0,_

Time_To_Expiry=1.0,OptionType=Put,MinMax=Maximum,MonteCarlo=Yes,NumberScenarios=1000

The crucial diffference is that the entry for GenericEquityBasketOption-
Deal contains the extra directive Trade=GenericEquityBasketOptionDeal:

Payoff_MaxPut, whereas FourEquityOptionDeal is the usual Trade=
FourEquityOptionDeal. The directive GenericEquityBasketOption-
Deal:Payoff_MaxPut means that the contents of the file Payoff_MaxPut.
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txt will be compiled at runtime and thereby create the (sub)class Generic
EquityBasketOptionDeal_MaxPut, which is derived from the abstract
base class GenericEquityBasketOptionDeal. The .NET assembly con-
taining the class GenericEquityBasketOptionDeal_MaxPut is stored in
memory and its Price() method is called to value the option.

The file Payoff_MaxPut.txt contains the following C# code:
using System;
namespace Computational_Lib
{

public class GenericEquityBasketOptionDeal_MaxPut : GenericEquityBasketOptionDeal
{

public override string Name()
{

string temp_string = "";
temp_string = "Generic option: Put on the maximum of " + n_.ToString() + " assets";
return temp_string;

}

public override double Payoff() { // implement max, put
double the_max = 0.0;
double pay_val = 0.0;
double zero = 0.0;

the_max = ST_[0];
for (int jj = 1; jj < n_; ++jj)
{

if (ST_[jj] > the_max) the_max = ST_[jj];
}
pay_val = Math.Max(Strike_ - the_max, zero);

return pay_val;
}

}
}

In the above code ST_, Strike_, and n_ are data members of the base class
GenericEquityBasketOptionDeal. We now present some other entries
in the portfolio definition file which illustrate the versatility of the deal class
GenericEquityBasketOptionDeal.
// Call on average of 4 assets
Trade=GenericEquityBasketOptionDeal:Payoff_AvgCall,Reference=5,Strike=100.0,_
Volatilities=0.2%0.2%0.2%0.2,Equities=Drinks-4U%Beverage-Ltd%H2O-Ltd%Fine-Wines-Ltd,_
NumberOfUnits=100,Time_To_Expiry=1.0,NumberScenarios=1000

// Put on the average of 10 assets (Strike=100)
Trade=GenericEquityBasketOptionDeal:Payoff_AvgPut,Reference=8,Strike=100.0,_
Volatilities=0.2%0.2%0.2%0.2%0.2%0.2%0.2%0.2%0.2%0.2,_
Equities=Drinks-4U%Beverage-Ltd%H2O-Ltd%Fine-Wines-Ltd%The-English-Beer-Company_
%Water-Works-Ltd%Welsh-Spring%ThamesBeer_
%Edingburgh-Whiskey%The-Wine-Box,NumberOfUnits=100,Time_To_Expiry=1.0,NumberScenarios=10000

// Put on the average of 10 assets (Strike=99)
Trade=GenericEquityBasketOptionDeal:Payoff_AvgPut,Reference=9,Strike=99.0,_
Volatilities=0.2%0.2%0.2%0.2%0.2%0.2%0.2%0.2%0.2%0.2,_
Equities=Drinks-4U%Beverage-Ltd%H2O-Ltd%Fine-Wines-Ltd%The-English-Beer-Company_
%Water-Works-Ltd%Welsh-Spring%ThamesBeer%_
Edingburgh-Whiskey%The-Wine-Box,NumberOfUnits=100,Time_To_Expiry=1.0,NumberScenarios=10000

where the file Payoff_AvgCall.txt contains the C# code:
using System;

namespace Computational_Lib
{

public class GenericEquityBasketOptionDealAverageCall : GenericEquityBasketOptionDeal
{

public override string Name()
string temp_string = "";
temp_string = "Generic option: Call on the average of_

" + n_.ToString() + " assets";
return temp_string;
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}

public override double Payoff() { // implement Call on average of n_assets
double the_average = 0.0;
double pay_val = 0.0;
double zero = 0.0;
the_average = ST_[0];
for (int jj = 1; jj < n_; ++jj)
{

the_average += ST_[jj];
}
the_average = the_average/n_;

pay_val = Math.Max(the_average - Strike_, zero);

return pay_val;
}

}
}

The contents of the file Payoff_AvgPut can be deduced from
Payoff_AvgCall in the obvious manner.

The output from the application is given below:
================================================================
TestGenericEQ in units of GBP
TestGenericEQ :31/07/2007 19:05:10
=============================

23.0100=1A,Generic option: Put on the maximum of 4 assets
23.0100=1B,Four Equity Option

. . .
681.4034=5,Generic option: Call on the average of 4 assets

. . .
338.3212=8,Generic option: Put on the average of 10 assets
302.6056=9,Generic option: Put on the average of 10 assets

=========================
TOTAL VALUE = 10936.18 GBP
=========================

It can be seen that result 1A, obtained using the deal class GenericEquity-
BasketOptionDeal, is exactly the same as result 1B, which was computed
with the deal class FourEquityOptionDeal. This is because in both cases
Monte Carlo simulation is used, and the same initial random seed is used for all
Monte Carlo simulations.

8.4.4 Equity barrier option

Code excerpt 8.13 gives the C# code for computing the value of an equity barrier
option.

using System;

namespace Computational_Lib
{

public class DownOutEquityOptionDeal : BaseDeal
{

public string Equity { get { return EquityName_; } set { EquityName_ = value; } }
public double Barrier_Level { get { return BarrierLevel_; }_

set { BarrierLevel_ = value; } }
public double Time_To_Expiry { get { return Time_To_Expiry_; }_

set { Time_To_Expiry_ = value; } }
public PutCall OptionType { get { return OptionType_; } set { OptionType_ = value; } }
public double Strike { get { return Strike_; } set { Strike_ = value; } }
public CalculationMethod CalcMethod { get { return CalcMethod_; }_

set { CalcMethod_ = value; } }

Code excerpt 8.13 C# code to compute the value of an equity barrier option.



276 Computational Finance Using C and C#

public EuropeanAmerican ExerciseStyle { get { return ExerciseStyle_; }_
set { ExerciseStyle_ = value; } }

public int TimeSteps { get { return TimeSteps_; } set { TimeSteps_ = value; } }
public int NumberScenarios { get { return NumberScenarios_; }_

set { NumberScenarios_ = value; } }
public bool UseBrownianBridge{ get { return UseBrownianBridge_; }_

set { UseBrownianBridge_ = value; } }
public BuySell BuySell { get { return BuySell_; } set { BuySell_ = value; } }
public double Volatility { get { return Sigma1_; } set { Sigma1_ = value; } }
public int NumberOfUnits { get { return NumberOfUnits_; }_

set { NumberOfUnits_ = value; } }

protected PutCall OptionType_ = PutCall.Call;
protected double Strike_ = 0;
protected double BarrierLevel_ = 0.0;
protected string EquityName_ = "";
protected double Time_To_Expiry_ = 0.0;
protected double RiskFreeRate_ = 0.0;
protected double DividendYield_ = 0.0;
protected string Pre_string_ = "";
protected CalculationMethod CalcMethod_ = CalculationMethod.Analytic;
protected int TimeSteps_ = 300;
protected int NumberScenarios_ = 3000;
protected bool UseBrownianBridge_ = true;
protected double S1_ = 0.0;
protected double Sigma1_ = 0.0;
protected int NumberOfUnits_ = 1;
protected BuySell BuySell_ = BuySell.Buy;
protected EuropeanAmerican ExerciseStyle_ = EuropeanAmerican.European;
protected string Currency_ = "";

public override string Name()
{

return "Down Out Equity Option";
}

public override double Price()
{

Validate();
double val = 0.0;
double fx_spot = 0.0;
try
{

S1_ = MarketDataDictionaries.EquityTable[EquityName_].Spot;
Currency_ = MarketDataDictionaries.EquityTable[EquityName_].Currency;
// get equity volatility (assumed constant)
DividendYield_ = MarketDataDictionaries.EquityTable[EquityName_].DivYield;
// get equity dividend yield

}
catch
{

throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ EquityName_);

}

double discount_fac = 0.0;
try
{

ICurve DF = MarketDataDictionaries.CurrencyTable[Currency_].YieldCurve;
// obtain the discount factor
discount_fac = DF[0, Time_To_Expiry_];
RiskFreeRate_ = -Math.Log(discount_fac) / Time_To_Expiry_;
fx_spot = MarketDataDictionaries.CurrencyTable[Currency_].spot;

}
catch
{

throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ Currency_);

}

int iflag, put, is_american;

iflag = 0;
put = OptionType_ == PutCall.Put ? 1 : 0;
is_american = ExerciseStyle_ == EuropeanAmerican.American ? 1 : 0;

Code excerpt 8.13 (Continued).
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BarrierLevel_ = Math.Max(BarrierLevel_, PricingUtils.EPS);

if (CalcMethod_ == CalculationMethod.Analytic)
{

if (put == 1) throw new Exception(Pre_string_ + "--- Can’t price a put using
this calculation method");

if (is_american == 1) throw new Exception(Pre_string_ + "--- Can’t price an
American option using this calculation method");

PricingUtils.bs_opt_barrier_downout_call(ref val, BarrierLevel_,
S1_, Strike_, Sigma1_,
Time_To_Expiry_, RiskFreeRate_, DividendYield_,

ref iflag);
if (iflag != 0)

throw new Exception(Pre_string_ + "--- An error occurred in a call to the
pricing library");

}
else if (CalcMethod_ == CalculationMethod.Numeric)
{

if (put == 1) throw new Exception(Pre_string_ + "--- Can’t price a put using
this calculation method");

int n_sigma = 2;

// set up the parameters so that have "reasonable accuracy"
double[] sigma_array = new double[n_sigma];
double[] sigma_times = new double[n_sigma];

sigma_array[0] = Sigma1_;
sigma_array[1] = Sigma1_;

sigma_times[0] = 0.0;
sigma_times[1] = Time_To_Expiry_;

int nt = 100;
int ns_below_S0 = nt / 2;
int ns_above_S0 = nt / 2;
double theta_m = 0.5;
double UpperBarrierLevel = S1_ * 5.0;

iflag = 0;

PricingUtils.dko_call(BarrierLevel_, UpperBarrierLevel,
theta_m, S1_, ref sigma_array[0], ref sigma_times[0],
n_sigma, RiskFreeRate_, Time_To_Expiry_,
Strike_, is_american, ref val,
IntPtr.Zero, DividendYield_, ns_below_S0, ns_above_S0,
nt, ref iflag);

if (iflag != 0)
throw new Exception(Pre_string_ + "--- An error occurred in a call to the

pricing library");
}
else
{

bool is_put = (put == 1);
if (is_american == 1) throw new Exception(Pre_string_ + "--- Can’t price an

American option using this calculation method");

if (S1_ < BarrierLevel_) // the opton is already knocked out
val = 0.0;

else
val = MonteCarloSim(is_put);

}

val *= fx_spot * NumberOfUnits_;

return val;
}

Code excerpt 8.13 (Continued).
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protected override void Validate()
{

Pre_string_ = Name() + " (" + Reference_ + ")";

if (NumberOfUnits_ < 0)
{

throw new Exception(Pre_string_ + "--- Number of units cannot be less than
zero");

}
if (Time_To_Expiry_ < 0.0)
{

throw new Exception(Pre_string_ + "--- Time to expiry cannot be less than zero
years");

}
if (RiskFreeRate_ < 0.0)
{

throw new Exception(Pre_string_ + "--- Risk free rate cannot be less than
zero");

}
if (Strike_ < 0.0)
{

throw new Exception(Pre_string_ + "--- The strike cannot be less than zero");
}
if (BarrierLevel_ < 0.0)
{

throw new Exception(Pre_string_ + "--- BarrierLevel cannot be less than zero");
}
if (Sigma1_ < 0.0)
{

throw new Exception(Pre_string_ + "--- Volatility cannot be less than zero");
}

}

private double MonteCarloSim(bool is_put)
{

// Use the Brownian Bridge to compute the value of a down and out call option

int seed = 111;
double[] asset_path = new double[TimeSteps_];
double time_step = Time_To_Expiry_ / TimeSteps_;
double sqrt_time_step = System.Math.Sqrt(time_step);
double disc = System.Math.Exp(-RiskFreeRate_ * Time_To_Expiry_);

PricingUtils.set_seed(seed);

double opt_val = 0.0;
bool not_out = true;
int k = 0;
double STN = 0.0;
double mean = (RiskFreeRate_ - DividendYield_ - Sigma1_ * Sigma1_ * 0.5)

* time_step;
double std = System.Math.Sqrt(Sigma1_ * Sigma1_ * time_step);
double z;
double sum_opt_vals = 0.0;

for (int i = 0; i < NumberScenarios_; ++i)
{

// generate the asset path
double ST1 = S1_;
not_out = true;
k = 0;

while (not_out && k < TimeSteps_)
{

z = PricingUtils.RndNorm(mean, std);
STN = ST1 * System.Math.Exp(z);
if (STN < BarrierLevel_) not_out = false;
ST1 = STN;
asset_path[k] = STN;
++k;

}

Code excerpt 8.13 (Continued).
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if (is_put)
{

opt_val = System.Math.Max(Strike_ - STN, 0.0);
}
else
{

opt_val = System.Math.Max(STN - Strike_, 0.0);
}

if (not_out)
{ // only has value if asset value is above the barrier_level

// compute the probability that the asset remained above the barrier
if (UseBrownianBridge)
{

double total_probability_above = 1.0, pr;
double sigma_2 = Sigma1_ * Sigma1_;
double log_barrier_level = System.Math.Log(BarrierLevel_);
double fac;
for (int jj = 0; jj < TimeSteps_ - 1; ++jj)
{

double log_S_i = System.Math.Log(asset_path[jj]);
double log_S_i1 = System.Math.Log(asset_path[jj + 1]);
fac = 2.0 * (log_barrier_level - log_S_i)

* (log_barrier_level - log_S_i1) / (sigma_2 * time_step);
pr = (1.0 - System.Math.Exp(-fac));
// probability of staying above the barrier between i and i+1
total_probability_above *= pr;

}
sum_opt_vals += total_probability_above * opt_val * disc;

}
else
{ // don’t use the Brownian Bridge

sum_opt_vals += opt_val * disc;
}

}
}
double temp = sum_opt_vals / (double)NumberScenarios_;

return temp;
}

}
}

Code excerpt 8.13 (Continued).

Below we show the results of using the deal class DownOutEquityOption-
Deal to value Down and Out call options on LaserComm which is a GBP
equity with current (spot) price of £95, and a dividend yield of 5 percent (i.e.,
0.05). All the options priced had a barrier level of £90, a strike of £90, a time to
expiry of one year, and a volatility of 20 percent (i.e., 0.2). The first value,
£3.8347, was computed by a call to bs_opt_barrier_downout_call,
which uses the closed form analytic expression provided in Code excerpt 2.6.

The second price, £3.8269, which is in close agreement with the first, was
obtained from dko_call and uses a finite-difference grid. The third valuation
was also computed using dko_call, and illustrates the early exercise premium
for an American call option (with a nonzero dividend). The other values were
estimated using Monte Carlo simulation as the number of scenarios varied from
1000 to 64000; the default of 300 time steps was used throughout.

It can be seen that, when the Brownian bridge is used, much closer agreement
is obtained with both the analytic and numeric estimates.
DownOutTests in units of GBP
DownOutTests :26/07/2007 13:11:28
=============================

3.8347=Analytic,Down Out Equity Option
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3.8269=Numeric,Down Out Equity Option
3.8860=Numeric (American style),Down Out Equity Option
4.1871=MonteCarlo(1000 Scenarios: not using BrownianBridge),Down Out Equity Option
3.8908=MonteCarlo(2000 Scenarios: not using BrownianBridge),Down Out Equity Option
4.1968=MonteCarlo(4000 Scenarios: not using BrownianBridge),Down Out Equity Option
4.1176=MonteCarlo(8000 Scenarios: not using BrownianBridge),Down Out Equity Option
4.1790=MonteCarlo(16000 Scenarios: not using BrownianBridge),Down Out Equity Option
4.1961=MonteCarlo(32000 Scenarios: not using BrownianBridge),Down Out Equity Option
4.1833=MonteCarlo(64000 Scenarios: not using BrownianBridge),Down Out Equity Option
3.8375=MonteCarlo(1000 Scenarios: using BrownianBridge),Down Out Equity Option
3.5469=MonteCarlo(2000 Scenarios: using BrownianBridge),Down Out Equity Option
3.8737=MonteCarlo(4000 Scenarios: using BrownianBridge),Down Out Equity Option
3.7356=MonteCarlo(8000 Scenarios: using BrownianBridge),Down Out Equity Option
3.8089=MonteCarlo(16000 Scenarios: using BrownianBridge),Down Out Equity Option
3.8506=MonteCarlo(32000 Scenarios: using BrownianBridge),Down Out Equity Option
3.8482=MonteCarlo(64000 Scenarios: using BrownianBridge),Down Out Equity Option

=========================
TOTAL VALUE = 70.83 GBP
=========================

8.5 FX deal classes

Here we provide code for valuing FX derivatives. The FX option routines are
very similar to the equity option routines we have already considered, the funda-
mental difference being that for FX routines there is both a domestic and foreign
currency. The FX routine calls the Black–Scholes routine with the dividend yield
set to the foreign currency risk free interest rate, and the supplied volatility is
that of the foreign/domestic exchange rate. In the market data file the currency
FX spot rates are with respect to the base currency.

8.5.1 FX forward

Code excerpt 8.14 gives the C# code to compute the value of FX forwards.

using System;

namespace Computational_Lib
{

public class FXForwardDeal : BaseDeal
{

public double ForeignAmount { get { return fForeignAmount; }_
set { fForeignAmount = value; } }

// Note: Strike is the number of units of domestic currency required to
// obtain one unit of foreign currency.
public double Strike { get { return fStrike; } set { fStrike = value; } }
public string ForeignCurrency { get { return fForeignCurrency; }_

set { fForeignCurrency = value; } }
public string DomesticCurrency { get { return fDomesticCurrency; }_

set { fDomesticCurrency = value; } }
public BuySell BuySell { get { return fBuySell; } set { fBuySell = value; } }
public double Settlement { get { return fSettlement; } set { fSettlement = value; } }

Code excerpt 8.14 C# code to compute the value of FX forwards.
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protected double fStrike = 0;
protected string fForeignCurrency = "";
protected string fDomesticCurrency = "";
protected double fForeignAmount = 0;
protected BuySell fBuySell = BuySell.Buy;
protected double fSettlement = 0;
protected string pre_string = "";

public override string Name()
{

return "FX Forward";
}

public override double Price()
{

double val=0.0;
Validate();
double sign = fBuySell == BuySell.Buy ? 1.0 : -1.0;

try
{

ICurve DF_F = CurrencyTable[fForeignCurrency].YieldCurve;
// obtain the discount factor
ICurve DF_D = CurrencyTable[fDomesticCurrency].YieldCurve;
// obtain the discount factor
double X_fb = CurrencyTable[fForeignCurrency].spot;
double X_db = CurrencyTable[fDomesticCurrency].spot;
double DF_f = DF_F[0,fSettlement];
double DF_d = DF_D[0,fSettlement];

val = fForeignAmount *( DF_f * X_fb - X_db * DF_d * fStrike);

val = val * sign;
}
catch(Exception ex)
{

throw new Exception(pre_string + " : " + ex.Message);
}

return val;
}

protected override void Validate()
{

pre_string = Name() + " (" + fReference + ")";

}
}

}

Code excerpt 8.14 C# code to compute the value of FX forwards.

8.5.2 Single FX option

The code for the single FX option, given in Code excerpt 8.15, is very similar
to that for the single equity option. For example, European equity options are
priced using the call:

PricingUtils.black_scholes(ref val, IntPtr.Zero, s0, Strike_, Sigma_,

Time_To_Expiry_, RiskFreeRate, DividendYield_, put,

ref iflag);

while European FX options use:

PricingUtils.black_scholes(ref val, IntPtr.Zero, S0, Strike_b,Sigma_f_d_,

Time_To_Expiry_, DomesticRiskFreeRate_, ForeignRiskFreeRate_, put, ref iflag);
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using System;

namespace Computational_Lib
{

public class FXOptionDeal: BaseDeal
{

public int NumberOfUnits { get { return NumberOfUnits_; }_
set { NumberOfUnits_ = value; } }

// Note: Strike is the number of units of domestic currency required to
// obtain one unit of foreign currency.
public double Strike { get { return Strike_f_d_; } set { Strike_f_d_ = value; } }

// Volatility is that of the Foreign/Domestic exchange rate.
public double Volatility { get { return Sigma_f_d_; } set { Sigma_f_d_ = value; } }

public string ForeignCurrency { get { return ForeignCurrency_; }_
set { ForeignCurrency_ = value; } }

public string DomesticCurrency { get { return DomesticCurrency_; }_
set { DomesticCurrency_ = value; } }

public BuySell BuySell { get { return BuySell_; } set { BuySell_ = value; } }
public double Time_To_Expiry { get { return Time_To_Expiry_; }_

set { Time_To_Expiry_ = value; } }
public PutCall OptionType { get { return OptionType_; } set { OptionType_ = value; } }
public EuropeanAmerican ExerciseStyle { get { return ExerciseStyle_; }_

set { ExerciseStyle_ = value; } }
protected double Strike_f_d_ = 0.0;
protected string ForeignCurrency_ = "";
protected string DomesticCurrency_ = "";
protected BuySell BuySell_ = BuySell.Buy;
protected int NumberOfUnits_ = 1;
protected PutCall OptionType_ = PutCall.Put;
protected EuropeanAmerican ExerciseStyle_ = EuropeanAmerican.European;
protected double Time_To_Expiry_ = 0.0;
protected double ForeignRiskFreeRate_ = 0.0;
protected double DomesticRiskFreeRate_ = 0.0;
protected double Sigma_f_d_ = 0.0;
protected string Pre_string_ = "";

public override string Name()
{

return "FX Option";
}

public override double Price()
{

Validate();

double val = 0.0;
double[] greeks = new double[6];

int iflag, put;
double discount_fac = 0.0;
double X_f_b = 0.0, X_d_b = 0.0;
double S0=0.0,Strike_b;

// Get domestic currency information
try
{

ICurve DF = MarketDataDictionaries.CurrencyTable[DomesticCurrency_].YieldCurve;
// obtain the domestic discount factor
discount_fac = DF[0, Time_To_Expiry_];
DomesticRiskFreeRate_ = -Math.Log(discount_fac) / Time_To_Expiry_;
X_d_b = MarketDataDictionaries.CurrencyTable[DomesticCurrency_].spot;
Strike_b = X_d_b * Strike_f_d_;
// Strike_b is the Strike in base currency units

}
catch
{

throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ DomesticCurrency_);

}

Code excerpt 8.15 C# code to compute the value of FX options.
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// Get foreign currency information
try
{

ICurve DF = MarketDataDictionaries.CurrencyTable[ForeignCurrency_].YieldCurve;
// obtain the domestic discount factor
discount_fac = DF[0, Time_To_Expiry_];
ForeignRiskFreeRate_ = -Math.Log(discount_fac) / Time_To_Expiry_;
X_f_b = MarketDataDictionaries.CurrencyTable[ForeignCurrency_].spot;
S0 = X_f_b; // Foreign exchange wrt base currency

}
catch
{

throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ ForeignCurrency_);

}

iflag = 0;
put = OptionType_ == PutCall.Put ? 1 : 0;

if (ExerciseStyle_ == EuropeanAmerican.European) // use BlackScholes
{

// Note: A null pointer is supplied so that the Greeks are not computed
// Dividend yield is set to foreign risk free rate
// Risk free interest rate is set to the domestic rate
// S0 the value of the "asset" in base cuurency units
// val is the value of the FX option in base currency units
PricingUtils.black_scholes(ref val, IntPtr.Zero, S0, Strike_b, Sigma_f_d_,

Time_To_Expiry_,
DomesticRiskFreeRate_, ForeignRiskFreeRate_, put, ref iflag);

}
else
{ // Use Finite Difference Grid - Crank Nicolson

double theta = 0.5;
int is_american = 1;

// fix the geometry of the grid (these avluse should give "reasonable" results)
int ns = 50; // 50 divisions on asset axis
int nt = 50; // 50 divisions on time axis
double smax = 10.0 * S0;

PricingUtils.opt_gfd(theta, S0, Sigma_f_d_, DomesticRiskFreeRate_,
Time_To_Expiry_, Strike,
is_american, put, ref val, IntPtr.Zero, ForeignRiskFreeRate_, ns,
nt, smax, ref iflag);

// val is the value of the FX option in base currency units
}

if (iflag != 0)
throw new Exception(Pre_string_ + "--- An error occurred in a call to the

pricing library");

val *= NumberOfUnits_;

return val;
}

protected override void Validate()
{

Pre_string_ = Name() + " (" + Reference_ + ")";
if (Time_To_Expiry_ < 0.0)
{

throw new Exception(Pre_string_ + "--- Time to expiry cannot be less than zero
years");

}
if (NumberOfUnits_ < 0)
{

throw new Exception(Pre_string_ + "--- Number of units cannot be less than
zero");

}

Code excerpt 8.15 (Continued).
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if (Strike_f_d_ < 0.0)
{

throw new Exception(Pre_string_ + "--- The strike cannot be less than zero");
}

}
}

}

Code excerpt 8.15 (Continued).

It can be seen that, when pricing FX options, the foreign risk free rate is
used instead of the dividend yield, and the supplied volatility is that of the for-
eign/domestic exchange rate. Another difference is that the equity option value
val returned by the call to black_scholes is in domestic currency units, and
is then converted to base currency, while in the case of FX options the value
val is already in base currency units, and requires no conversion.

8.5.3 FX barrier option

The C# code for the Barrier option is given in Code excerpt 8.16.

using System;

namespace Computational_Lib
{

public class DownOutFXOptionDeal: BaseDeal
{

public int NumberOfUnits { get { return NumberOfUnits_; }_
set { NumberOfUnits_ = value; } }

// Note: Strike is the number of units of domestic currency required to obtain one
// unit of foreign currency.
public double Strike { get { return Strike_f_d_; } set { Strike_f_d_ = value; } }
// Barrier is in the same units a the strike
public double Barrier_Level { get { return Barrier_f_d_; }_

set { Barrier_f_d_ = value; } }
// Volatiliy is that of the Foreign/Domestic exchange rate.

public double Volatility { get { return Sigma_f_d_; } set { Sigma_f_d_ = value; } }
public string ForeignCurrency { get { return ForeignCurrency_; }_

set { ForeignCurrency_ = value; } }
public string DomesticCurrency { get { return DomesticCurrency_; }_

set { DomesticCurrency_ = value; } }
public BuySell BuySell { get { return BuySell_; } set { BuySell_ = value; } }

public CalculationMethod CalcMethod { get { return CalcMethod_; }_
set { CalcMethod_ = value; } }

public EuropeanAmerican ExerciseStyle { get { return ExerciseStyle_; }_
set { ExerciseStyle_ = value; } }

public int NumberScenarios { get { return NumberScenarios_; }_
set { NumberScenarios_ = value; } }

public bool UseBrownianBridge { get { return UseBrownianBridge_; }_
set { UseBrownianBridge_ = value; } }

protected double Strike_f_d_ = 0.0;
protected double Barrier_f_d_ = 0.0;
protected string ForeignCurrency_ = "";
protected string DomesticCurrency_ = "";
protected BuySell BuySell_ = BuySell.Buy;
protected int NumberOfUnits_ = 1;
public double Time_To_Expiry { get { return Time_To_Expiry_; }_

set { Time_To_Expiry_ = value; } }
public PutCall OptionType { get { return OptionType; } set { OptionType_ = value; } }
protected PutCall OptionType_ = PutCall.Call;
protected double Time_To_Expiry_ = 0.0;

Code excerpt 8.16 C# code to compute the value of FX barrier options.
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protected double ForeignRiskFreeRate_ = 0.0;
protected double DomesticRiskFreeRate_ = 0.0;
protected double Sigma_f_d_ = 0.0;
protected EuropeanAmerican ExerciseStyle_ = EuropeanAmerican.European;
protected CalculationMethod CalcMethod_ = CalculationMethod.Analytic;
protected int TimeSteps_ = 300;
protected int NumberScenarios_ = 3000;
protected double S0_,Strike_b_,BarrierLevel_b_;
protected bool UseBrownianBridge_ = true;
protected string Pre_string_ = "";

public override string Name()
{

return "Down Out FX Option";
}

public override double Price()
{

Validate();

double val = 0.0;
int iflag, put, is_american;
double discount_fac = 0.0;
double X_f_b = 0.0, X_d_b = 0.0;

// Get domestic currency information
try
{

ICurve DF = MarketDataDictionaries.CurrencyTable[DomesticCurrency_].YieldCurve;
// obtain the domestic discount factor
discount_fac = DF[0, Time_To_Expiry_];
DomesticRiskFreeRate_ = -Math.Log(discount_fac) / Time_To_Expiry_;
X_d_b = MarketDataDictionaries.CurrencyTable[DomesticCurrency_].spot;
Strike_b_ = X_d_b * Strike_f_d_;
// Strike is the Strike in base currency units
BarrierLevel_b_ = X_d_b * Barrier_f_d_;
BarrierLevel_b_ = Math.Max(BarrierLevel_b_, PricingUtils.EPS);

}
catch
{

throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ DomesticCurrency_);

}

// Get foreign currency information
try
{

ICurve DF = MarketDataDictionaries.CurrencyTable[ForeignCurrency_].YieldCurve;
// obtain the domestic discount factor
discount_fac = DF[0, Time_To_Expiry_];
ForeignRiskFreeRate_ = -Math.Log(discount_fac) / Time_To_Expiry_;
X_f_b = MarketDataDictionaries.CurrencyTable[ForeignCurrency_].spot;
S0_ = X_f_b; // Foreign exchange wrt base currency

}
catch
{

throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ ForeignCurrency_);

}

iflag = 0;
put = OptionType_ == PutCall.Put ? 1 : 0;
is_american = ExerciseStyle_ == EuropeanAmerican.American ? 1 : 0;

if (CalcMethod_ == CalculationMethod.Analytic)
{

if (put == 1) throw new Exception(Pre_string_ + "--- Can’t price a put using
this calculation method");

if (is_american == 1) throw new Exception(Pre_string_ + "--- Can’t price an
American option using this calculation method");

// call C routine.
// Note: A null pointer is supplied so that the Greeks are not computed
// Dividend yield is set to foreign risk free rate
// Risk free interest rate is set to the domestic rate

Code excerpt 8.16 (Continued).
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// val is the value of the FX option in base currency units
PricingUtils.bs_opt_barrier_downout_call(ref val, BarrierLevel_b_,

S0_, Strike_b_, Sigma_f_d_,
Time_To_Expiry_, DomesticRiskFreeRate_,
ForeignRiskFreeRate_, ref iflag);

if (iflag != 0)
throw new Exception(Pre_string_ + "--- An error occurred in a call to the

pricing library");
}
else if (CalcMethod_ == CalculationMethod.Numeric)
{

if (put == 1) throw new Exception(Pre_string_ + "--- Can’t price a put using
this calculation method");

int n_sigma = 2;

// set up the parameters so that have "reasonable accuracy"
double[] sigma_array = new double[n_sigma];
double[] sigma_times = new double[n_sigma];

sigma_array[0] = Sigma_f_d_;
sigma_array[1] = Sigma_f_d_;
sigma_times[0] = 0.0;
sigma_times[1] = Time_To_Expiry_;

int nt = 100;
int ns_below_S0 = nt / 2;
int ns_above_S0 = nt / 2;
double theta_m = 0.5;
double UpperBarrierLevel = S0_ * 5.0;

iflag = 0;
// val is the value of the FX option in base currency units
PricingUtils.dko_call(BarrierLevel_b_, UpperBarrierLevel,

theta_m, S0_, ref sigma_array[0], ref sigma_times[0],
n_sigma, DomesticRiskFreeRate_, Time_To_Expiry_,
Strike_b_, is_american, ref val,
IntPtr.Zero, ForeignRiskFreeRate_, ns_below_S0, ns_above_S0,
nt, ref iflag);

if (iflag != 0)
throw new Exception(Pre_string_ + "--- An error occurred in a call to the

pricing library");
}
else
{

bool is_put = (put == 1);
if (is_american == 1) throw new Exception(Pre_string_ + "--- Can’t price an

American option using this calculation method");

if (S0_ < BarrierLevel_b) // the option has already been knocked out
val = 0.0;

else
val = MonteCarloSim(is_put);

}

val *= NumberOfUnits_;

return val;
}

protected override void Validate()
{

Pre_string_ = Name() + " (" + Reference_ + ")";
if (Time_To_Expiry_ < 0.0)
{

throw new Exception(Pre_string_ + "--- Time to expiry cannot be less than
zero years");

}

Code excerpt 8.16 (Continued).
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if (NumberOfUnits_ < 0)
{

throw new Exception(Pre_string_ + "--- Number of units cannot be less than
zero");

}
if (Strike_f_d_ < 0.0)
{

throw new Exception(Pre_string_ + "--- The strike cannot be less than zero");
}
if (Barrier_f_d_ < 0.0)
{

throw new Exception(Pre_string_ + "--- BarrierLevel cannot be less than zero");
}
if (Sigma_f_d_ < 0.0)
{

throw new Exception(Pre_string_ + "--- Volatility cannot be less than zero");
}

}

private double MonteCarloSim(bool is_put)
{

// Use the Brownian Bridge to compute the value of a down and out call option

int seed = 111;
double[] asset_path = new double[TimeSteps_];
double time_step = Time_To_Expiry_ / TimeSteps_;
double sqrt_time_step = System.Math.Sqrt(time_step);
double disc = System.Math.Exp(-DomesticRiskFreeRate_ * Time_To_Expiry_);

PricingUtils.set_seed(seed);

double opt_val = 0.0;
bool not_out = true;
int k = 0;
double STN = 0.0;
double mean = (DomesticRiskFreeRate_ - ForeignRiskFreeRate_

- Sigma_f_d_ * Sigma_f_d_ * 0.5) * time_step;
double std = System.Math.Sqrt(Sigma_f_d_ * Sigma_f_d_ * time_step);
double z;
double sum_opt_vals = 0.0;

for (int i = 0; i < NumberScenarios_; ++i)
{

// generate the asset path
double ST1 = S0_;
not_out = true;
k = 0;

while (not_out && k < TimeSteps_)
{

z = PricingUtils.RndNorm(mean, std);
STN = ST1 * System.Math.Exp(z);
if (STN < BarrierLevel_b_) not_out = false;
ST1 = STN;
asset_path[k] = STN;
++k;

}
if (is_put)
{

opt_val = System.Math.Max(Strike_b_ - STN, 0.0);
}
else
{

opt_val = System.Math.Max(STN - Strike_b_, 0.0);
}

if (not_out)
{ // only has value if asset value is above the barrier_level

// compute the probability that the asset remained above the barrier
if (UseBrownianBridge)
{

double total_probability_above = 1.0, pr;
double sigma_2 = Sigma_f_d_ * Sigma_f_d_;

Code excerpt 8.16 (Continued).
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double log_barrier_level = System.Math.Log(BarrierLevel_b_);
double fac;
for (int jj = 0; jj < TimeSteps_ - 1; ++jj)
{

double log_S_i = System.Math.Log(asset_path[jj]);
double log_S_i1 = System.Math.Log(asset_path[jj + 1]);
fac = 2.0 * (log_barrier_level - log_S_i)

* (log_barrier_level - log_S_i1) / (sigma_2 * time_step);
pr = (1.0 - System.Math.Exp(-fac));
// probability of staying above the barrier between i and i+1
total_probability_above *= pr;

}
sum_opt_vals += total_probability_above * opt_val * disc;

}
else
{ // don’t use the Brownian Bridge

sum_opt_vals += opt_val * disc;
}

}
}
double temp = sum_opt_vals / (double)NumberScenarios_;

return temp;
}

}
}

Code excerpt 8.16 (Continued).



Appendix A:

The Greeks for vanilla European
options

A.1 Introduction

In this section we will present some useful results which will be used later on to
derive expressions for the Greeks.

A fundamental result of calculus is that:
∂

∂x

∫
f (x) dx = f (x) (A.1.1)

Also the indefinite integral,
∫

f (x) dx, can be expressed as a definite integral
with variable upper bound as follows:∫

f (x) dx =
∫ x

a

f (x) dx + c

so
∂

∂x

∫ y=x

y=a

f (y) dy = f (x) (A.1.2)

We can now use this result to obtain the derivative of the cumulative distribution
function:

N1(x) = 1√
2π

∫ y=x

y=−∞
exp

(
−y2

2

)
dy

which gives:

∂N1(x)

∂x
= n(x) (A.1.3)

where

n(x) = 1√
2π

exp

(
−x2

2

)
We now derive various results for the parameters d1 and d2 which appear in

the Black–Scholes equation:

d1 = log(S/E) + (r − q + σ 2/2)(T − t)

σ
√

T − t
(A.1.4)
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and

d2 = log(S/E) + (r − q − σ 2/2)(T − t)

σ
√

T − t
= d1 − σ

√
T − t (A.1.5)

We have:
∂d2

∂S
= ∂d1

∂S
= 1

Sσ
√

T − t
(A.1.6)

∂d2

∂σ
= ∂d1

∂σ
− √

T − t (A.1.7)

∂d1

∂r
= ∂d2

∂r
=

√
T − t

σ
(A.1.8)

∂d2

∂t
= ∂d1

∂t
+ σ

2(T − t)
(A.1.9)

Also:

n(d2) = 1√
2π

exp

(
−d2

2

2

)
= 1√

2π
exp

(
−d2

1

2

)
exp

{
σd1

√
T − t − σ 2(T − t)

2

}
= n(d1) exp

{
log

(
S

E

)
+

(
r − q + σ 2

2

)
(T − t) − σ 2(T − t)

2

}
so

n(d2) = S

E
n(d1) exp

(
r(T − t)

)
exp

(−q(T − t)
)

(A.1.10)

We note that:
∂N1(d1)

∂S
= ∂N1(d1)

∂d1

∂d1

∂S
= n(d1)

1

Sσ
√

T − t

This technique will be used for computing the Greeks.

A.2 Gamma

Gamma is defined as the second derivative of the option value with respect to
the underlying stock price. This means (see Section A.3) it is the rate of change
of delta with the underlying stock price.

For a European call the value of gamma is:

Γc = ∂2c

∂S2
= ∂Δc

∂S
= ∂

∂S

{
N1(d1) exp

(−q(T − t)
)}

where the value of Δc is given in Section A.3. So

Γc = exp
(−q(T − t)

)∂N1(d1)

∂S
= exp

(−q(T − t)
)
n(d1)

∂d1

∂S
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Therefore:

Γc = n(d1)

Sσ
√

T − t
exp

(−q(T − t)
)

(A.2.1)

The value of gamma for a European put can be calculated similarly:

Γp = ∂2p

∂S2
= ∂Δp

∂S
= ∂

∂S

{(
N1(d1) − 1

)
exp

(−q(T − t)
)}

where we have used the value of Δp, derived in Section A.3. Therefore:

Γp = exp
(−q(T − t)

)∂(N1(d1) − 1)

∂S
= exp

(−q(T − t)
)
n(d1)

∂d1

∂S

So

Γp = Γc = n(d1)

Sσ
√

T − t
exp

(−q(T − t)
)

(A.2.2)

So the value of gamma for both a put and a call is the same.

A.3 Delta

Delta is defined as the rate of change of option value with the underlying stock
price.

For a European call we have:

Δc = ∂c

∂S
= ∂

∂S

{
S exp

(−q(T − t)
)
N1(d1) − E exp

(−r(T − t)
)
N1(d2)

}
So

Δc = exp
(−q(T − t)

){
N1(d1) + Sn(d1)

∂d1

∂S

}
− E exp

(−r(T − t)
)
n(d2)

∂d2

∂S
(A.3.1)

Substituting for n(d2) and ∂d2
∂S

we obtain:

Δc = exp
(−q(T − t)

)
N1(d1) (A.3.2)

In similar manner we have for a European put:

Δp = ∂p

∂S

= ∂

∂S

{
E exp

(−r(T − t)
)(

1 − N1(d2)
) − S exp

(−q(T − t)
)(

1 − N1(d1)
)}

So

Δp = −E exp
(−r(T − t)

)
n(d2)

∂d2

∂S

− exp
(−q(T − t)

){(
1 − N1(d1)

) + Sn(d1)
∂d1

∂S

}
(A.3.3)
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Substituting for n(d2) and ∂d2
∂S

we obtain:

Δp = exp
(−q(T − t)

){
N1(d1) − 1

}
(A.3.4)

A.4 Theta

Theta is defined as the rate of change of the option value with time.
For a European call option we have:

Θc = ∂c

∂t
= ∂

∂t

{
S exp

(−q(T − t)
)
N1(d1) − E exp

(−r(T − t)
)
N1(d2)

}
= q exp

(−q(T − t)
)
SN1(d1) + exp

(−q(T − t)
)
Sn(d1)

∂d1

∂t

− rE exp
(−r(T − t)

)
N1(d2) − E exp

(−r(T − t)
)
n(d2)

∂d2

∂t

Substituting for n(d2) and ∂d2
∂t

we obtain:

Θc = q exp
(−q(T − t)

)
SN1(d1) − rE exp

(−r(T − t)
)
N1(d2)

+ exp
(−q(T − t)

)
Sn(d1)

∂d1

∂t

− E exp
(−r(T − t)

)
n(d1)

S

E
exp

(
r(T − t)

)
× exp

(−q(T − t)
){∂d1

∂t
+ σ

2(T − t)

}
= q exp

(−q(T − t)
)
SN1(d1)

− rE exp
(−r(T − t)

)
N1(d2) − Sn(d1)σ exp(−q(T − t))

2
√

T − t

Therefore the value of theta is:

Θc = exp
(−q(T − t)

){
q − SN1(d1)

Sn(d1)σ

2
√

T − t

}
− rE exp

(−r(T − t)
)
N1(d2) (A.4.1)

For a put we can similarly show that

Θp = ∂p

∂t
= ∂

∂t

{
E exp

(−r(T − t)
)(

1 − N1(d2)
)

− S exp
(−q(T − t)

)(
1 − N1(d1)

)}
Θp = rE exp

(−r(T − t)
)(

1 − N1(d2)
) − E exp

(−r(T − t)
)
n(d2)

∂d2

∂t

− qS exp
(−q(T − t)

)(
1 − N1(d1)

) + S exp
(−q(T − t)

)
n(d1)

∂d1

∂t

Substituting for n(d2) and ∂d2
∂t

we obtain:
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Θp = rE exp
(−r(T − t)

)
N1(−d2) − qS exp

(−q(T − t)
)
N1(−d1)

− E exp
(−r(T − t)

)
exp

(
r(T − t)

)
× exp

(−q(T − t)
)
n(d1)

S

E

{
∂d1

∂t
+ σ

2(T − t)

}
+ S exp

(−q(T − t)
)
n(d1)

∂d1

∂t

So we have:

Θp = − exp
(−q(T − t)

){
qSN1(−d1) + Sn(d1)σ

2
√

T − t

}
+ rE exp

(−r(T − t)
)
N1(−d2) (A.4.2)

A.5 Rho

Rho is the rate of change of the option value with interest rate.
For a call we have:

ρc = ∂c

∂r
= ∂

∂r

{
S exp

(−q(T − t)
)
N1(d1) − E exp

(−r(T − t)
)
N1(d2)

}
= S exp

(−q(T − t)
)
n(d1)

∂d1

∂r
+ E(T − t)N1(d2)

− E exp
(−r(T − t)

)
n(d2)

∂d2

∂r

Substituting for n(d2) and ∂d2
∂r

we obtain:

ρc = E(T − t)N1(d2) (A.5.1)

For a European put we have:

ρp = ∂p

∂r

= ∂

∂r

{
E exp

(−r(T − t)
)(

1 − N1(d2)
) − S exp

(−q(T − t)
)(

1 − N1(d2)
)}

= −E(T − t)
(
1 − N1(d2)

) − E exp
(−r(T − t)

)
n(d2)

∂d2

∂r

+ S exp
(−q(T − t)

)
n(d1)

∂d1

∂r

= −E(T − t)N1(−d2) − E exp
(−r(T − t)

)
n(d2)

∂d2

∂r

+ S exp
(−q(T − t)

)
n(d1)

∂d1

∂r

Substituting for n(d2) and ∂d2
∂r

we obtain:

ρp = −E(T − t)N1(−d2) (A.5.2)
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A.6 Vega

Vega is the rate of change of option value with volatility. For a call we have:

Vc = ∂c

∂σ

= ∂

∂σ

{
S exp

(−q(T − t)
)
N1(d1) − E exp

(−r(T − t)
)
N1(d2)

}
= S exp

(−q(T − t)
)
n(d1)

∂d1

∂σ
− E exp

(−r(T − t)
)
n(d2)

∂d2

∂r
(A.6.1)

Substituting for n(d2) and ∂d2
∂σ

we obtain:

Vc = S exp
(−q(T − t)

)
n(d1)

∂d1

∂σ

− Sn(d1) exp
(−q(T − t)

){∂d1

∂σ
− √

T − t

}
Therefore

Vc = S exp
(−q(T − t)

)
n(d1)

√
T − t (A.6.2)

For a European put we have:

Vp = ∂c

∂σ

= ∂

∂σ

{
E exp

(−r(T − t)
)(

1 − N1(d2)
) − S exp

(−q(T − t)
)(

1 − N1(d1)
)}

= −E exp
(−r(T − t)

)
n(d2)

∂d2

∂σ
+ S exp

(−q(T − t)
)
n(d1)

∂d1

∂σ

Substituting for n(d2) and ∂d2
∂σ

we obtain:

Vp = S exp
(−q(T − t)

)
n(d1)

√
T − t (A.6.3)

which is the same as for a call.



Appendix B:

Barrier option integrals

B.1 The down and out call

We will now derive the formula for the value cdo of a European down and out
call option with dividend yield q when the strike, E, satisfies E > B.

cdo = exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

{
S exp(X) − E

}
f (X > B) dX (B.1.1)

Substituting for f (X > B) we have cdo = IA + IB where:

IA = exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

{
S exp(X) − E

}
× exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
dX

and

IB = − exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

{
S exp(X) − E

}
× exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
× exp

(
2 log(B/S)(X − log(B/S))

σ 2τ

)
dX

Now comparing IA with Eq. (4.4.54) we can identify IA as c, the price of a
European call. That is:

IA = S exp(−qτ)N1(d1) − E exp(−rτ )N1(d2) (B.1.2)

where:

d1 = log(S/E) + (r − q + σ 2/2)τ

σ
√

τ

d2 = log(S/E) + (r − q − σ 2/2)τ

σ
√

τ

We now consider the term IB , and let IB = IC + ID where:
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IC = −S exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

exp(X) exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
× exp

(
2 log(B/S)(X − log(B/S))

σ 2τ

)
dX

and

ID = E exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
× exp

(
2 log(B/S)(X − log(B/S))

σ 2τ

)
dX

We will first consider ID and factor the integrand as follows:

− exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
exp

(
2 log(B/S)(X − log(B/S))

σ 2τ

)
= exp

(
−{X − (r − q − σ 2/2)τ }2 − 4 log(B/S)(X − log(B/S))

2σ 2τ

)
= exp

(
−{X − (r − q − σ 2/2)τ − 2 log(B/S)}2

2σ 2τ

)
× exp

(
4(r − q − σ 2/2)τ log(B/S)

2σ 2τ

)
(B.1.3)

This means that ID can be expressed as:

∴ ID =
(

B

S

)2((r−q)σ 2/2)/σ 2
E exp(−rτ )

σ
√

τ
√

2π

×
∫ ∞

X=log(E/S)

exp

(
−{X − (r − qσ 2/2)τ − 2 log(B/S)}2

2σ 2τ

)
dX

Letting u = (X − (r − q − σ 2/2)τ − 2 log(B/S))/(σ
√

τ) we have dX = σ
√

τ du

and

ID =
(

B

S

)2(r−q−σ 2/2)/σ 2
E exp(−rτ )

σ
√

τ
√

2π

∫ ∞

u=k3

exp

(
−u2

2

)
du

where

k3 = log(E/S) − (r − q − σ 2/2)τ − 2 log(B/S)

σ
√

τ

= log(ES/B2) − (r − q − σ 2/2)τ

σ
√

τ

So

ID =
(

B

S

)2r/σ 2−1

E exp(−rτ )N1(−k3) (B.1.4)
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Letting d3 = −k3 we have:

d3 = log(B2/SE) + (r − q − σ 2/2)τ

σ
√

τ

and

ID =
(

B

S

)2r/σ 2−1

E exp(−rτ )N1(d3) (B.1.5)

Now consider the term:

IC = S exp(−rτ )

σ
√

τ
√

2π

∫ ∞

X=log(E/S)

exp(X) exp

(
−{X − (r − σ 2/2)τ }2

2σ 2τ

)
× exp

(
2 log(B/S)(X − log(B/S))

σ 2τ

)
dX

Now we have

exp(X) exp

(
− (X − (r − q − σ 2/2)τ )2

2σ 2τ

)
exp

(
2 log(B/S)(X − log(B/S))

σ 2τ

)
= exp

((−{(
X − (−qr − σ 2/2

)
τ
)2 − 2σ 2τX

− 4 log(B/S)X + 4
(
log(B/S)

)2})
/
(
2σ 2τ

))
= exp

(((
σ 2τ

)2 + 2
(
r − q − σ 2/2

)
τ 2σ 2

+ 4
(
r − q − σ 2/2

)
τ log(B/S) + 4σ 2τ log(B/S)

)
/
(
2σ 2τ

))
× exp

(−{X − (r − q − σ 2/2)τ − σ 2τ − 2 log(B/S)}2

2σ 2τ

)
= exp

(
(r − q)τ

)
exp

({
2(r − q)

σ 2
+ 1

}
log

(
B

S

))
× exp

(−{X − (r − q − σ 2/2)τ − σ 2τ − 2 log(B/S)}2

2σ 2τ

)
= exp

(
(r − q)τ

)(B

S

)2(r−q)/σ 2+1

× exp

(−{X − (r − q − σ 2/2)τ − σ 2τ − 2 log(B/S)}2

2σ 2τ

)
So we have:

IC = −
(

B

S

)2(r−q)/σ 2+1
S exp(−qτ)

σ
√

τ
√

2π

×
∫ ∞

X=log(E/S)

exp
(−{

X − (
r − q − σ 2/2

)
τ − σ 2τ − 2 log(B/S)

}2

× (
2σ 2τ

)−1) dX
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Letting

u = X − (r − q − σ 2/2)τ − σ 2τ − 2 log(B/S)

σ
√

τ

we have dX = σ
√

τ du and

IC = −S exp(−qτ)

(
B

S

)2(r−q)/σ 2+1

N1(−k4) (B.1.6)

where

k4 = log(E/S) − (r − q − σ 2/2)τ − σ 2τ − 2 log(B/S)

σ
√

τ

= log(ES/B2) − (r − q + σ 2/2)τ

σ
√

τ

∴ IC = −S exp(−qτ)

(
B

S

)2(r−q)/σ 2+1

N1(−k4)

or letting d4 = −k4 we have

d4 = log(B2/ES) + (r − q + σ 2/2)τ

σ
√

τ

IC = −S exp(−qτ)

(
B

S

)2(r−q)/σ 2+1

N1(d4) (B.1.7)

Therefore the value for the down and out call option is:

cdo = IA + IC + ID = IA − (−IC − ID)

Since cdo + cdi = c, where c is the value of vanilla call and cdi is the value of
down and in call, we can write:

cdo = c − cdi

where

cdi = S exp(−qτ)N1(d4)

(
B

S

)2(r−q)/σ 2+1

− E exp(−rτ )N1(d3)

(
B

S

)2(r−q)/σ 2−1

B.2 The up and out call

We will now derive the formula for a European up and out call option with
dividend yield q when the strike, E, satisfies B > E.

cuo = exp(−rτ )

σ
√

τ
√

2π

∫ log(B/S)

X=log(E/S)

{
S exp(X) − E

}
f (X < B) dX (B.2.1)
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Substituting for f (X < B) we have cuo = IA + IB where:

IA = exp(−rτ )

σ
√

τ
√

2π

∫ log(B/S)

X=log(E/S)

{
S exp(X) − E

}
× exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
dX

and

IB = − exp(−rτ )

σ
√

τ
√

2π

×
∫ log(B/S)

X=log(E/S)

{
S exp(X) − E

}
exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
× exp

(
2 log(B/S)(X − log(B/S))

σ 2τ

)
dX

Letting IA = I1 + I2 where

I1 = S exp(−rτ )

σ
√

τ
√

2π

∫ log(B/S)

X=log(E/S)

exp(X) exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
dX

and

I2 = −E exp(−rτ )

σ
√

τ
√

2π

∫ log(B/S)

X=log(E/S)

exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
dX

From our previous derivation of the Black–Scholes formula in Chapter 4 we
have:

I1 = S exp(−qτ)

σ
√

τ
√

2π

∫ k2

u=k1

exp

(
−u2

2

)
du = S exp(−qτ)

{
N1(k2) − N1(k1)

}
where

k1 = log(E/S) − (r − q + σ 2/2)τ

σ
√

τ

and

k2 = log(B/S) − (r − q + σ 2/2)τ

σ
√

τ

I2 = −E exp(−rτ )

σ
√

τ
√

2π

∫ k4

u=k3

exp

(
−u2

2

)
du = −E exp(−rτ )

{
N1(k4) − N1(k3)

}
where

k3 = log(E/S) − (r − q − σ 2/2)τ

σ
√

τ

and

k4 = log(B/S) − (r − q − σ 2/2)τ

σ
√

τ
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Therefore,

IA = S exp(−qτ)
{
N1(k2) − N1(k1)

} − E exp(−rτ )
{
N1(k4) − N1(k3)

}
Since N1(−x) = 1 − N1(x) we have

N1(k2) − N1(k1) = N1(−k1) − N1(−k2)

so

IA = S exp(−qτ)
{
N1(d1) − N1(d2)

} − E exp(−rτ )
{
N1(d3) − N1(d4)

}
= S exp(−qτ)N1(d1) − E exp(−rτ )N1(d3)

− S exp(−qτ)N1(d2) + E exp(−rτ )N1(d4)

which gives:

IA = c − S exp(−qτ)N1(d2) + E exp(−rτ )N1(d4) (B.2.2)

where c is the value of a vanilla call and

d1 = log(S/E) + (r − q + σ 2/2)τ

σ
√

τ
, d2 = log(S/B) + (r − q + σ 2/2)τ

σ
√

τ

d3 = log(S/E) + (r − q − σ 2/2)τ

σ
√

τ
, d4 = log(S/B) + (r − q − σ 2/2)τ

σ
√

τ

Letting IB = IC + ID where:

IC = −S exp(−rτ )

σ
√

τ
√

2π

∫ log(B/S)

X=log(E/S)

exp(X) exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
× exp

(
2 log(B/S)(X − log(B/S))

σ 2τ

)
dX

and

ID = E exp(−rτ )

σ
√

τ
√

2π

∫ log(B/S)

X=log(E/S)

exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
× exp

(
2 log(B/S)(X − log(B/S))

σ 2τ

)
dX

In a similar manner to that in Section B.1 we have:

ID =
(

B

S

)2(r−q−σ 2/2)/σ 2
E exp(−rτ )

σ
√

τ
√

2π

×
∫ log(B/S)

X=log(E/S)

exp

(
−{X − (r − q − σ 2/2)τ − 2 log(B/S)}2

2σ 2τ

)
dX

Letting

u = X − (r − q − σ 2/2)τ − 2 log(B/S)

σ
√

τ
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gives

ID =
(

B

S

)2(r−q−σ 2/2)/σ 2
E exp(−rτ )

σ
√

τ
√

2π

∫ k6

u=k5
exp

(
−u2

2

)
du (B.2.3)

where

k5 = log(E/S) − (r − q − σ 2/2)τ − 2 log(B/S)

σ
√

τ

= log(ES/B2) − (r − q − σ 2/2)τ

σ
√

τ

and

k6 = log(B/S) − (r − q − σ 2/2)τ − 2 log(B/S)

σ
√

τ

= log(S/B) − (r − q − σ 2/2)τ

σ
√

τ

and so

ID =
(

B

S

)2(r−q)/σ 2−1

E exp(−rτ )
{
N1(k6) − N1(k5)

}
This can be re-expressed as:

ID =
(

B

S

)2(r−q)/σ 2−1

E exp(−rτ )
{
N1(d5) − N1(d6)

}
(B.2.4)

where

d5 = log(B2/ES) − (r − q − σ 2/2)τ

σ
√

τ

d6 = log(B/S) + (r − q − σ 2/2)τ

σ
√

τ

We now consider the term:

IC = −S exp(−rτ )

σ
√

τ
√

2π

∫ log(B/S)

X=log(E/S)

exp(X) exp

(
−{X − (r − q − σ 2/2)τ }2

2σ 2τ

)
× exp

(
2 log(B/S)(X − log(B/S))

σ 2τ

)
dX

In a similar manner to Section B.1 we let

u = X − (r − q − σ 2/2)τ − σ 2τ − 2 log(B/S)

σ
√

τ

which gives:

IC = −S exp(−rτ )

(
B

S

)2(r−q)/σ 2+1{
N1(k8) − N1(k7)

}
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where

k7 = log(E/S) − (r − q − σ 2/2)τ − σ 2τ − 2 log(B/S)

σ
√

τ

= log(ES/B2) − (r − q + σ 2/2)τ

σ
√

τ

and

k8 = log(B/S) − (r − q − σ 2/2)τ − σ 2τ − 2 log(B/S)

σ
√

τ

= log(S/B) − (r − q + σ 2/2)τ

σ
√

τ

This can be re-expressed as:

IC = −S exp(−rτ )

(
B

S

)2(r−q)/σ 2+1{
N1(d7) − N1(d8)

}
where

d7 = log(B2/ES) + (r − q + σ 2/2)τ

σ
√

τ
,

d8 = log(B/S) + (r − q + σ 2/2)τ

σ
√

τ

So we have:

cuo = IA + IC + ID

which can be written as:

cuo = c − cui

where c is the value of a vanilla call and cui, the value of an up and in call, is
given by:

cui = S exp(−qτ)N1(d2) − E exp(−rτ )N1(d4)

− E exp(−rτ )
{
N1(d5) − N1(d6)

}(B

S

)2(r−q)/σ 2−1

+ S exp(−rτ )
{
N1(d7) − N1(d8)

}(B

S

)2(r−q)/σ 2+1

(B.2.5)
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Standard statistical results

C.1 The law of large numbers

Let x1, x2, . . . be a sequence of independent, identically distributed random vari-
ables (IID), each with expected value μ and variance σ 2. Define the sequence of
averages

yn =
∑n

i=1 xi

n
= x1 + x2 + · · · + xn

n
, n = 1, 2, . . .

Then the law of large numbers states that yn converges to μ as n → ∞, that is
Var[yn] → 0.

The mean of yn is:

E[yn] = 1

n

(
E[x1] + E[x2] + · · · + E[xn]

) = 1

n
nμ = μ

For the variance of yn we have:

Var[yn] = Var
[∑n

i=1 xi

n

]
= 1

n2
Var

[
n∑

i=1

xi

]

= 1

n2

n∑
i=1

Var[xi] = 1

n2
nσ 2 = σ 2

n

where we have used the fact that the variance of the sum of independent random
variables is the sum of their variances; see Section C.2.

We have therefore shown that as n → ∞, Var[yn] → 0.

C.2 The central limit theorem

Let x1, x2, . . . be a sequence of independent, identically distributed random vari-
ables (IID), each with expected value μ and variance σ 2. If we define ui = xi −μ

then:

E[ui] = E[u] = 0, Var[ui] = E
[
u2] = σ 2
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Let

sn =
n∑

i=1

ui + nμ

So

sn =
n∑

i=1

xi

We now introduce the normalized value zn, as follows:

zn = sn − nμ

σ
√

n
= 1

σ
√

n

n∑
i=1

ui

The central limit theorem states that as n tends to infinity the probability distri-
bution of zn tends to a normal distribution with zero mean and unit variance;
mathematically zn → N(0, 1) as n → ∞.

Proof. From Section C.5, Eq. (C.5.3)

Mzn = E
[
exp(tzn)

] = E

[
exp

{
t

σ
√

n

n∑
i=1

ui

}]
and using Eq. (C.5.5)

Mzn =
{
Mu

(
t

σ
√

n

)}n

Equation (C.5.1) then yields:

Mu

(
t

σ
√

n

)
≈ 1 + t

σ
√

n
E[u] + 1

2

(
t

σ
√

n

)2

E
[
u2] + · · ·

As n → ∞, t
σ
√

n
→ 0 and

Mu

(
t

σ
√

n

)
→ 1 + t

σ
√

n
E[u] + 1

2

(
t

σ
√

n

)2

E
[
u2] = 1 + t2

2n

Thus {
Mu

(
t

σ
√

n

)}n

=
(

1 + t2

2n

)n

→ 1 + t2

2
as n → ∞

where we have used the fact that t � 1; see Grimmett and Welsh (1986).
We have therefore shown that as n → ∞

Mzn(t) → 1 + t2

2
→ et2/2

However, from Section D.1 the moment generating function Mz(t) for a stan-
dard normal distribution (μ = 0, σ 2 = 1) is:

Mz(t) = et2/2 where z ∼ N(0, 1)

Thus we have proved that zn → N(0, 1) as n → ∞. �
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C.3 The variance and covariance of random variables

C.3.1 Variance

One variable

Let X be a variate from a given distribution, and Z be the following linear
function of this variate:

Z = a + bX

where and a and b are constants. Then

E[Z] = E[a] + E[bX] = a + bE[X]
and

Var[Z] = E
[(

Z − E[Z])2]
= E

[(
a + bX − a − bE[X])2]

= E
[(

bX − bE[X])2]
= E

[
b2(X − E[X])2]

= b2E
[(

X − E[X])2]
Therefore the mean is a + bE[X], and the variance is b2 Var[X].

Two variables

Let Z = a + b1X1 + b2X2, where a, b1 and b2 are constants.
Then the mean is E[Z] = E[a]+E[b1X1]+E[b2X2] = a+b1E[X1]+b2E[X2].
The variance Var[Z] is computed as follows:

Var[Z] = E
[{

a + b1X1 + b2X2 − a − b1E[X1] − b2E[X2]
}2]

= E
[{

b1
(
X1 − E[X1]

) + b2
(
X2 − E[X2]

)}2]
= b2

1E
[(

X1 − E[X1]
)2] + b2

2E
[(

X2 − E[X2]
)2]

+ 2b1b2E
[(

X1 − E[X1]
)]

E
[(

X2 − E[X2]
)]

= b2
1 Var[X1] + b2

2 Var[X2] + 2b1b2 Cov[X1, X2]
where Cov[X1, X2] is the covariance between X1 and X2. If X1 and X2 are iden-
tical independently distributed random variables (IID) then Cov[X1, X2] = 0,
and we thus have:

Var[Z] = b2
1 Var[X1] + b2

2 Var[X2]
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Three variables

Let Z = a + b1X1 + b2X2 = b3X3, where a, b1, b2 and b3 are constants.
Then the mean is E[Z] = E[a]+E[b1X1]+E[b2X2]+E[b3X3] = a+b1E[X1]+

b2E[X2] + b3E[X3].
The variance Var[Z] is computed as follows:

Var[Z] = E
[{

a + b1X1 + b2X2 + b3X3 − a

− b1E[X1] − b2E[X2] − b3E[X3]
}2]

= E
[{

b1
(
X1 − E[X1]

) + b2
(
X2 − E[X2]

) + b3
(
X3 − E[X3]

)}2]
= b2

1E
[(

X1 − E[X1]
)2] + b2

2E
[(

X2 − E[X2]
)2]

+ b2
3E

[(
X3 − E[X3]

)2]
+ 2b1b2E

[(
X1 − E[X1]

)]
E

[(
X2 − E[X2]

)]
+ 2b2b3E

[(
X2 − E[X2]

)]
E

[(
X3 − E[X3]

)]
+ 2b1b3E

[(
X1 − E[X1]

)]
E

[(
X3 − E[X3]

)]
= b2

1 Var[X1] + b2
2 Var[X2] + b2

3 Var[X2] + 2b2b3 Cov[X2, X3]
+ 2b1b2 Cov[X2, X3] + 2b1b3 Cov[X1, X3]

If X1, X2 and X3 are IID all the covariance terms are zero and the variance is:

Var[Z] = b2
1 Var[X1] + b2

2 Var[X2] + b2
3 Var[X3]

Variance of n variables

We will now derive an expression for the sum of n IID random variables.
Let Z = a + ∑n

i=1 biXi , where a and bi , i = 1, . . . , n, are constants.
Then we have: E[Z] = E[a] + E[∑n

i=1 biXi] = a + ∑n
i=1 biE[Xi] and

Var[Z] = E

[{
a +

n∑
i=1

biXi − a −
n∑

i=1

biE[Xi]
}2]

= E

[{
n∑

i=1

biXi −
n∑

i=1

biE[Xi]
}2]

= E

[{
n∑

i=1

bi

(
Xi − E[Xi]

)}2]

=
n∑

i=1

b2
i E

[(
Xi − E[Xi]

)2]
+

n∑
i=1

n∑
j=1(j �=i)

bibjE
[(

Xi − E[Xi]
)(

Xj − E[Xj ]
)]



Appendix C: Standard statistical results 307

=
n∑

i=1

b2
i Var[Xi] +

n∑
i=1

n∑
j=1(j �=i)

bibj Cov[Xi,Xj ]

As before if all the X variables are IID then the covariance terms are zero, and
we have:

Var[Z] =
n∑

i=1

b2
i Var[xi]

If in addition all the bi terms are one and all the X variable have variance σ 2 we
obtain:

Var[Z] =
n∑

i=1

Var[xi] = nσ 2

C.3.2 Covariance

The covariance between two variables X and Y is defined by:

Cov[X, Y ] = E
[(

X − E[X])(Y − E[Y ])]
= E

[
XY − YE[X] − XE[Y ] + E[X]E[Y ]]

= E[XY ] − E[Y ]E[X] − E[X]E[Y ] + E[X]E[Y ]
= E[XY ] − E[X]E[Y ]

By symmetry it can be seen that Cov[X, Y ] = Cov[Y,X].

Two variables

Let Z1 = a + bX and Z2 = c + dY , where a, b, c and d are constants.
We have:

Cov[Z1, Z2] = Cov[a + bX, c + dY ]
= E

[
(a + bX)(c + dY )

] − E
[
(a + bX)

]
E

[
(c + dY )

]
= E[ac + bcX + adY + bdXY ] − {(

a + bE[X])(c + dE[Y ])}
= ac + bcE[X] + adE[Y ] + bdE[XY ]

− ac + bcE[X] − adE[Y ] − bdE[X]E[Y ]
= bd

{
E[XY ] − E[X]E[Y ]}

∴ Cov[Z1, Z2] = bd Cov[X, Y ]

Three variables

Let Z1 = a+b1X1+b2X2 and Z2 = c+dY , where a, b1, b2, c and d are constants.
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We have:

Cov[Z1, Z2] = Cov[a + b1X1 + b2X2, c + dY ]
= E

[
(a + b1X1 + b2X2)(c + dY )

]
− E

[
(a + b1X1 + b2X2)

]
E

[
(c + dY )

]
= E

[
(a + b1X1)(c + dY ) + b2X2(c + dY )

]
− {

E
[
(a + b1X1)

]
E[c + dY ] + E[b2X2]E[c + dY ]}

= E
[
(a + b1X1)(c + dY )

] + E
[
b2X2(c + dY )

]
− E

[
(a + b1X1)

]
E[c + dY ] − E[b2X2]E[c + dY ]

= {
E

[
(a + b1X1)(c + dY )

] − E
[
(a + b1X1)

]
E[c + dY ]}

− {
E

[
(b2X2)(c + dY )

] − E[b2X2)]E[c + dY ]}
∴ Cov[Z1, Z2] = b1d Cov[X1, Y ] + b2d Cov[X2, Y ]

Four variables

Let Z1 = a + b1X1 + b2X2 + b3X3 and Z2 = c + dY , where a, b1, b2, b3, c and d

are constants.
We have:

Cov[Z1, Z2] = Cov[a + b1X1 + b2X2 + b3X3, c + dY ]
= E

[
(a + b1X1 + b2X2 + b3X3)(c + dY )

]
− E

[
(a + b1X1 + b2X2 + b3X3)

]
E

[
(c + dY )

]
= E

[
(a + b1X1 + b2X2)(c + dY ) + b3X3(c + dY )

]
− {

E
[
(a + b1X1 + b2X2)

]
E[c + dY ] + E[b3X3]E[c + dY ]}

= E
[
(a + b1X1 + b2X2)(c + dY )

] + E
[
b3X3(c + dY )

]
− E

[
(a + b1X1 + b2X2)

]
E[c + dY ] − E[b3X3]E[c + dY ]

= {
E

[
(a + b1X1 + b2X2)(c + dY )

]
− E

[
(a + b1X1 + b2X2)

]
E[c + dY ]}

+ {
E

[
(b3X3)(c + dY )

] − E[b3X3]E[c + dY ]}
= Cov

[
(a + b1X1 + b2X2), c + dY

] + Cov[b3X3, c + dY ]
∴ Cov[Z1, Z2] = b1d Cov[X1, Y ] + b2d Cov[X2, Y ] + b3d Cov[X3, Y ]

Covariance of n variables

In a similar manner to that outlined above:

Cov

[
a +

n∑
i=1

biXi, c + dY

]
= d

n∑
i=1

bi Cov[Xi, Y ]
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For the most general case let: Z1 = a + ∑n
i=1 biXi and Z2 = c + ∑M

j=1 bjYj .
So

Cov[Z1, Z2] = Cov

[
a +

n∑
i=1

biXi, c +
M∑

j=1

djYj

]

= Cov

[
a +

n∑
i=1

biXi, c +
M∑

j=1

djYj

]
So

Cov

[
a +

n∑
i=1

biXi, c +
M∑

j=1

djYj

]
=

n∑
i=1

Cov

[
biXi,

M∑
j=1

djYj

]

=
n∑

i=1

bi Cov

[
Xi,

M∑
j=1

djYj

]

=
n∑

i=1

bi Cov

[
M∑

j=1

djYj ,Xi

]

∴ Cov[Z1, Z2] =
n∑

i=1

{
bi

M∑
j=1

dj Cov[Yj ,Xi]
}

C.3.3 Covariance matrix

Let X denote the n element vector containing the random variates Xi, i =
1, . . . , n. The mean and variance of the ith variate is then E[Xi] and E[(Xi −
E[Xi])2] respectively. The covariance Cov[X]ij between the ith and j th vari-
ates is E[(Xi − E[Xi])(Xj − E[Xj ])]. The elements of n by n covariance matrix
Cov[X] are then:

Cov[X]ij = E
[(

Xi − E[Xi]
)(

Xj − E[Xj ]
)]

,

i = 1, . . . , n, j = 1, . . . , n (C.3.1)

We will now show that Cov[X + A] = Cov[X] where A is an n element vector
containing the constants Ai, i = 1, . . . , n. Since E[Xi + Ai] = E[Xi] + Ai we
obtain:

Var
[
(X + A)i

] = Var[Xi + Ai]
= E

[(
Xi + Ai − E[Xi + Ai]

)2] = E
[(

Xi − E[Xi]
)2]

and

Cov[X + A]ij = E
[(

Xi + Ai − E[Xi + Ai]
)(

Xj + Aj − E[Xj + Aj ]
)]

= E
[(

Xi − E[Xi]
)(

Xj − E[Xj ]
)]

= Cov[X]ij (C.3.2)
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C.4 Conditional mean and covariance of normal
distributions

Let X = [ X1
X2

] be distributed as Np(μ,Σ) with μ = [ μ1
μ2

], and Σ = [ Σ11 Σ12
Σ21 Σ22

],
and |Σ22| > 0.

We will prove that the conditional distribution of X1, given that X2 = x2, is
normal and has:

Mean = μes1 + Σ11Σ
−1
22 (x2 − μ2), and covariance = Σ11 − Σ12Σ

−1
22 Σ21.

Let the inverse of Σ be Σ−1, where:

Σ−1 =
(

Σ11 Σ12

Σ21 Σ22

)
(C.4.1)

So Σ−1Σ = Ip, where Ip represents the p × p unit matrix, and:(
Σ11 Σ12

Σ21 Σ22

) (
Σ11 Σ12
Σ21 Σ22

)
=

(
Iq 0
0 Ip−q

)
(C.4.2)

Multiplying out these matrices yields the following equations:

Σ11Σ11 + Σ21Σ21 = Iq (C.4.3)

Σ21Σ11 + Σ22Σ22 = 0 (C.4.4)

Σ11Σ12 + Σ12Σ22 = 0 (C.4.5)

Σ21Σ12 + Σ22Σ22 = Ip−q (C.4.6)

Multiplying Eq. (C.4.5) on the left by (Σ11)−1 and on the right by Σ−1
22 gives:(

Σ11)−1
Σ12 = −Σ12Σ

−1
22 (C.4.7)

Multiplying Eq. (C.4.3) on the left by (Σ11)−1 yields

Σ11 + (
Σ11)−1

Σ12Σ21 = (Σ11)
−1 (C.4.8)

and substituting for (Σ11)−1Σ12 from Eq. (C.4.7) into Eq. (C.4.8) gives

(Σ11)
−1 = Σ11 − Σ12Σ

−1
22 Σ21 (C.4.9)

The joint probability density function of x is:

f (x) = (2π)−p/2|Σ |−1/2 exp

{
−1

2
(x − μ)�Σ−1(x − μ)

}
writing x, μ and Σ−1 in their partitioned form and expanding gives:

f (x) = (2π)−p/2|Σ |−1/2

× exp

[
−1

2

{
(x1 − μ1)

�Σ11(x1 − μ1) + 2(x1 − μ1)
�Σ12(x2 − μ2)

+ (x2 − μ2)
�Σ22(x2 − μ2)

}]
(C.4.10)
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The conditional distribution of x1 given the value of x2 is thus obtained by
dividing this density by the marginal density of x2, and treating x2 as a constant
in the resulting expression. The only portion of the resultant that is not constant
is the portion involving terms in x1. It can easily be shown that:

f (x1|x2) ∝ exp

[
−1

2

{
(x1 − μ1)

�Σ11(x1 − μ1)

+ 2(x1 − μ1)
�Σ12(x2 − μ2)

}]
where the constant of proportionality is obtained using

∫
f (x1|x2) dx1 = 1.

If we let G = (x1 − μ1)
�Σ11(x1 − μ1) + 2(x1 − μ1)

�Σ12(x2 − μ2) we then
obtain:

G = (x1 − μ1)
�Σ11(x1 − μ1) + (x1 − μ1)

�Σ12(x2 − μ2)

+ (x2 − μ2)
�Σ21(x1 − μ1)

G = {
x1 − μ1 + (

Σ11)−1
Σ12(x2 − μ2)

}�

× Σ11{x1 − μ1 + (
Σ11)−1

Σ12(x2 − μ2)
}

− (x2 − μ2)
�Σ21(Σ12)−1

(x2 − μ2) (C.4.11)

where, for instance, we have used the fact that the scalar quantity{
(x1 − μ1)

�Σ12(x2 − μ2)
} = (x2 − μ2)

�Σ21(x1 − μ1)

Since the last term in Eq. (C.4.11) only involves constants (as far as f (x1|x2) is
concerned), it follows that:

f (x1|x2) ∝ exp

[
−1

2

{
x1 − μ1 + (

Σ11)−1
Σ12(x2 − μ2)

}�

× Σ11{x1 − μ1 + (
Σ11)−1

Σ12(x2 − μ2)
}]

which is the density of a multivariate normal distribution that has a mean of
μ1 − (Σ11)−1Σ12(x2 − μ2), which from Eq. (C.4.7) can be expressed as μ1 +
Σ12Σ

−1
22 (x2 − μ2). The covariance matrix is (Σ11)−1, which from Eq. (C.4.9)

can be written as Σ11 − Σ12Σ
−1
22 Σ21.

C.5 Moment generating functions

If x is a random variable with probability distribution fx(x) then the moment
generating function Mx(t) is defined by:

Mx(t) = E
[
etx

] =
∫ ∞

−∞
etxfx(x) dx
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We can expand the above expression as follows:

E
[
etx

] = E

[
1 + tx + 1

2
(tx)2 + · · ·

]
Mx(t) = 1 + tE[x] + 1

2
t2E

[
x2] + · · · (C.5.1)

Now

dk(Mx(t))

dtk
= dk

dtk

{
E

[
etx

]} = E

[
dketx

dtk

]
= E

[
xketx

]
For t = 0 we thus have:

dk(Mx(t))

dtk

∣∣∣∣
t=0

= dk(Mx(0))

dtk
= E

[
xke0] = E

[
xk

]
(C.5.2)

Moment generating function of a linear function of a random variable x

If the random variable y is defined as: y = ax + b then the moment generating
function of y, My(t) is obtained as follows:

My(t) = Max+b(t) = E
[
ety

] = E
[
eatx+bt

] = ebtE
[
etx

]
Therefore:

My(t) = ebtMx(at) (C.5.3)

Moment generating function of a linear combination of random variables

Let z = x + y where x and y are independent random variables. Then

Mz(t) = E
[
etz

] = E
[
ex+y

] = E
[
etxety

]
Since x and y are independent:

E
[
etxety

] = E
[
etx

]
E

[
ety

] = Mx(t)My(t)

More generally if sn = ∑n
i=1 xi where xi, i = 1, . . . , n, are independent variables

then:

Msn(t) =
n∏

i=1

Mxi
(t) (C.5.4)

If xi, i = 1, . . . , n, are IID then we have

Msn(t) = E

[
exp

(
t

n∑
i=1

xi

)]
= (

E
[
etx

])n = (
Mx(t)

)n (C.5.5)
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Statistical distribution functions

D.1 The normal (Gaussian) distribution

Here we describe some properties of the normal distribution. If x comes from a
normal distribution, then the associated moment generating function, Mx(t), is
given by:

Mx(t) = E
[
etx

]
= 1

σ
√

2π

∫ ∞

−∞
exp(tx) exp

(
− (x − μ)2

2σ 2

)
dx

= 1

σ
√

2π

∫ ∞

−∞
exp

(
− (x − μ)2 − 2σ 2tx

2σ 2

)
dx

Now completing the square we have:

− 1

2σ 2

{
(x − μ)2 − 2tσ 2x

} = − 1

2σ 2

{
x2 + μ2 − 2μx − 2tσ 2}

= − 1

2σ 2

{(
x − σ 2t − μ

)2 − 2μtσ 2 − σ 4t2}
= μt + σ 2t2

2
− 1

2σ 2

{(
x − σ 2t − μ

)2}
We thus have:

E
[
etx

] = 1

σ
√

2π
exp

(
μt + σ 2t2

2

) ∫ x=∞

x=−∞
exp

(
− (x − σ 2t − μ)2

2σ 2

)
dx

Now letting y = x − σ 2t − μ, dx = dy and

E
[
etx

] = 1

σ
√

2π
exp

(
μt + σ 2t2

2

) ∫ y=∞

y=−∞
exp

(
− y2

2σ 2

)
dy

= 1

σ
√

2π
σ
√

2π exp

(
μt + σ 2t2

2

)
= exp

(
μt + σ 2t2

2

)
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where we have used (see Section E.1) the fact that∫ ∞

−∞
exp

(−ay2) dy =
√

π

a

Thus the moment generating function Mx(t) for a normal distribution with
mean μ and variance σ 2 is:

Mx(t) = exp

(
μt + σ 2t2

2

)

D.1.1 Some elementary results involving the mean and variance of
a normal distribution

From first principles we have:

• The mean:

E[x] = 1

σ
√

2π

∫ x=∞

x=−∞
x exp

(
− (x − μ)2

2σ 2

)
dx

Letting y = x − μ we have dx = dy and x = y + μ; therefore:

E[x] = 1

σ
√

2π

∫ y=∞

y=−∞
(y + μ) exp

(
− y2

2σ 2

)
dy

E[x] = μ
1

σ
√

2π

∫ y=∞

y=−∞
exp

(
− y2

2σ 2

)
dy

+ 1

σ
√

2π

∫ y=∞

y=−∞
y exp

(
− y2

2σ 2

)
dy

Since ∫ ∞

−∞
y exp

(
− y2

2σ 2

)
dy = 0

we have using the integral result (i) in Section E.1 with a = 1/(2σ 2):

E[x] = μ
1

σ
√

2π

∫ ∞

−∞
exp

(
− y2

2σ 2

)
dy = μ

• The variance:

E
[
x2] = 1

σ
√

2π

∫ x=∞

x=−∞
x2 exp

(
− (x − μ)2

2σ 2

)
dx

Letting y = x − μ we have dx = dy and x2 = y2 + 2μy + μ2; therefore:

E
[
x2] = 1

σ
√

2π

∫ y=∞

y=−∞
(
y2 + 2μy + μ2) exp

(
− y2

2σ 2

)
dy
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E
[
x2] = μ2 1

σ
√

2π

∫ ∞

−∞
exp

(
− y2

2σ 2

)
dy

+ 1

σ
√

2π

∫ y∞

−∞
y2 exp

(
− y2

2σ 2

)
dy

So

E
[
x2] = μ2 + σ 2

where we have used (see Section E.1 result (ii) with a = 1/(2σ 2)) that

1

σ
√

2π

∫ ∞

−∞
y2 exp

(
− y2

2σ 2

)
dy = σ 2

Therefore:

Var[x] = E
[
x2] − (

E[x])2 = μ2 + σ 2 − μ2 = σ 2

The mean and variance can also be obtained by using the moment generating
function, Mx(t).

From Section C.5:

E[x] = dMx(t)

dt

∣∣∣∣
t=0

= d
dt

{
exp

(
μt + σ 2t2

2

)}
t=0

= (
μ + σ 2t

)
exp

(
μt + σ 2t2

2

)∣∣∣∣
t=0

= μ

also

E
[
x2] = d2Mx(t)

dt2

∣∣∣∣
t=0

= d
dt

{(
μ + σ 2t

)
exp

(
μt + σ 2t2

2

)}
t=0

E
[
x2] =

{
exp

(
μt + σ 2t2

2

)(
μ + μσ 2t

)2 + σ 2
}

t=0

= μ2 + σ 2

These results are the same as those we previously derived from first principles:

E[x] = μ and E
[
x2] = μ2 + σ 2

D.2 The lognormal distribution

If the variable x follows a lognormal distribution then the probability density
function f (x) is given by:

1

xσ
√

2π
exp

(
− (log(x) − μ)2

2σ 2

)
(D.2.1)

where x > 0. Here we denote the lognormal distribution for x as: x ∼ �(μ, σ 2).
Setting y = log(x) it can be seen that y ∼ N(μ, σ 2). Thus if x is a lognormal
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distribution �(μ, σ 2) then log(x) is a normal distribution with mean μ and
variance σ 2. Conversely if y ∼ N(μ, σ 2) then the distribution for x = ey is
x ∼ �(μ, σ 2).

The expectation of the tth moment (where t is a positive integer) of x is thus:

E
[
xt

] = 1

σ
√

2π

∫ x=∞

x=−∞
xt 1

x
exp

(
− (log(x) − μ)2

2σ 2

)
dx

Using y = log(x) we have:

dy

dx
= d log(x)

dx
= 1

x
, dx = x dy, and xt = (

ey
)t = ety

Thus,

E
[
xt

] = E
[
ety

] = My(t) = 1

σ
√

2π

∫ y=∞

y=−∞
ety exp

(
− (y − μ)2

2σ 2

)
dy

where My(t) is the moment generating function of a normal distribution with
mean μ and variance σ 2.

From Section D.1:

E
[
xt

] = My(t) = exp

(
μt + σ 2t2

2

)
Therefore if x ∼ �(μ, σ 2) then:

For t = 1

E[x] = exp

(
μ + σ 2

2

)
(D.2.2)

for t = 2

E
[
x2] = exp

(
2μ + 2σ 2) (D.2.3)

and the variance is obtained using

Var[x] = E
[
x2] − (

E[x])2 = exp
(
2μ + 2σ 2) − exp

(
2μ + σ 2)

So

Var[x] = exp
(
2μ + σ 2)(exp

(
σ 2) − 1

)
or

Var[x] = (
E[x])2(exp

(
σ 2) − 1

)
(D.2.4)

Note. If x1 = exp(μ + σZ), where Z ∼ N(0, 1) then x1 ∼ �(μ, σ 2). So E[x1]
and Var[x1] are given by Eqs. (D.2.2) and (D.2.4).
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D.3 The Student’s t distribution

This section derives an expression for the kurtosis of the Student’s t distribution.
Since the Student’s t distribution density function is:

f (εi) = K
[
1 + εi

2

hi(ν − 2)

]−(ν+1)/2

where

K = �((ν + 1)/2)(ν − 2)−1/2h
−1/2
i

π1/2�(ν/2)

we have:

E
[
ε2
i

] = 2K
∫ ∞

0

ε2
i dεi

(1 + ε2
i /(hi(ν − 2)))

(ν+1)/2

= 2K
(
hi(ν − 2)

)(ν+1)/2
∫ ∞

0

ε2
i dεi

(hi(ν − 2) + ε2
i )(ν+1)/2

Using the standard integrals in Section E.1 with a = 2, b = 2, c = (ν + 1)/2
and m = (ν − 2)hi gives:

m(a+1−bc)/b

b
= (hi(ν − 2))(2−ν)/2

2
, �

(
a + 1

b

)
= �

(
3

2

)
,

�

(
c − a + 1

b

)
= �

(
ν − 2

2

)
, �(c) = �

(
ν + 1

2

)
This gives

E
[
ε2
i

] = 2K
(
hi(ν − 2)

)(ν+1)/2
{

(hi(ν − 2))(2−ν)/2√π�((ν − 2)/2)

4�((ν + 1)/2)

}
Substituting for K and simplifying we obtain:

E
[
ε2
i

] = hi(ν − 2)�((ν − 1)/2)

�(ν/2)

But (
ν − 2

2

)
�

(
ν − 2

2

)
= �

(
ν − 1

2
+ 1

)
= �

(
ν

2

)
So

E
[
ε2
i

] = hi(ν − 2)�(ν/2)

2(ν − 2)�(ν/2)
= hi
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Similarly we have:

E
[
ε4
i

] = 2K
∫ ∞

0

ε4
i dεi

(1 + ε2
i /(hi(ν − 2)))

(ν+1)/2

= 2K
(
hi(ν − 2)

)(ν+1)/2
∫ ∞

0

ε4
i dεi

(hi(ν − 2) + ε2
i )(ν+1)/2

Using the standard integrals in Section E.1 with a = 4, b = 2, c = (ν +1)/2, and
m = (ν − 2)hi gives:

m(a+1−bc)/b

b
= (hi(ν − 2))(4−ν)/2

2
, �

(
a + 1

b

)
= �

(
5

2

)
,

�

(
c − a + 1

b

)
= �

(
ν − 4

2

)
, �(c) = �

(
ν + 1

2

)
and

E
[
ε4
i

] = 2K
(
hi(ν − 2)

)(ν+1)/2
{

(hi(ν − 2))(4−ν)/23
√

π�((ν − 4)/2)

8�((ν + 1)/2)

}
Substituting for K and simplifying we obtain:

E
[
ε4
i

] = 3hi(ν − 2)2�((ν − 4)/2)h2
i

4�(ν/2)

But (
ν − 4

2

)
�

(
ν − 4

2

)
= �

(
ν − 2

2

)
and (

ν − 2

2

)
�

(
ν − 2

2

)
= �

(
ν

2

)
Therefore:

�

(
ν − 4

2

)
= 4�(ν/2)

(ν − 4)(ν − 2)

So

E
[
ε4
i

] = 3(ν − 2)24�(ν/2)h2
i

4�(ν/2)(ν − 4)(ν − 2)
= 3(ν − 2)h2

i

ν − 4

The kurtosis is then:

ℵ = E[e4
i ]

(E[e2
i ])2

= 3(ν − 2)h2
i

(ν − 4)h2
i

= 3(ν − 2)

ν − 4
(D.3.1)
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D.4 The general error distribution

This section proves various relations for the generalized error distribution.
The density function for the generalized error distribution is:

f (εi) = K exp

(
−1

2

∣∣∣∣εi

λ

∣∣∣∣a) where K = a

λ2(1+1/a)�(1/a)
(D.4.1)

D.4.1 Value of λ for variance hi

Calculation of the scale factor λ required for a generalized error distribution
with mean zero and variance hi .

The variance of the distribution, E(ε2
i ), is given by:

E
(
ε2
i

) = K
∫ ∞

−∞
ε2
i exp

(
−1

2

∣∣∣∣εi

λ

∣∣∣∣a) dεi = 2K
∫ ∞

0
ε2
i exp

(
−1

2

(
εi

λ

)a)
dεi

Using the standard integrals in Section E.1 with n = 2, p = a, and b = 1
2 ( 1

λ
)a

gives:

hi = 2K
a

�

(
3

a

){
1

2

(
1

λ

)a}−3/a

which after some simplification yields:

hi = 2K23/aλ3

a
�

(
3

a

)
Substituting for K and simplifying then gives:

hi = λ222/a �(3/a)

�(1/a)

The required value of λ is therefore:

λ =
{
hi2

−2/a �(1/a)

�(3/a)

}1/2

D.4.2 The kurtosis

E
(
ε4
i

) = K
∫ ∞

−∞
ε4
i exp

(
−1

2

∣∣∣∣εi

λ

∣∣∣∣a) dεi = 2K
∫ ∞

0
ε4
i exp

(
−1

2

(
εi

λ

)a)
dεi

However, from standard mathematical tables:∫ ∞

0
ε4
i exp

(−bε
p
i

) = �(k)

pbk

where p = a, b = 1
2 ( 1

λ
)a , and k = 5/a which gives:

E
[
ε4
i

] = 2K25/aλ5

a
�

(
5

a

)
= 22/aλ2hi

�(5/a)

�(3/a)
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From Section E.1 we have:

E
[
ε2
i

] = hi = 2K23/aλ3

a
�

(
3

a

)
and λ2 = hi2−2/a�(1/a)

�(3/a)

Therefore:

E
[
ε4
i

] = h2
i

�(5/a)�(1/a)

�(3/a)�(3/a)

which gives the kurtosis as:

ℵ = E[ε4
i ]

(E[ε2
i ])2

= h2
i

h2
i

�(5/a)�(1/a)

�(3/a)�(3/a)
= �(5/a)�(1/a)

�(3/a)�(3/a)

D.4.3 The distribution for shape parameter, a

If the distribution has variance hi then, from Section D.4.1:

λ =
(

2−2/a�(1/a)hi

�(3/a)

)1/2

Now for 0 < x < 1 we have �(1 + x) = 1 + a1x + a2x
2 + a3x

3 + · · ·, where
the coefficients are |ai | < 1 (see Abramowitz and Stegun (1968)).

Since x�(x) = �(1 + x), to third order in x, we have:

x�(x) = 1 + a1x + a2x
2 + a3x

3

This gives �(x) = 1
x

+ a1 + a2x + a3x
2, and �(x) ≈ 1

x
as x → 0.

So as a → ∞ we have the following:

2(1+1/a) ≈ 2, 2−2/a ≈ 1,
1

�(1/a)
≈ 1

a
,

�(1/a)

�(3/a)
≈ 3a

a
= 3 and

�(5/a)

�(3/a)
≈ 3a

5a
= 3

5

The kurtosis is then:

ℵ = �(5/a)�(1/a)

�(3/a)�(3/a)
= 9

5

Also as a → ∞, λ ≈ (3hi)
1/2, and for the range −(3hi)

1/2 < εi < (3hi)
1/2, we

have: ∣∣∣∣εi

λ

∣∣∣∣a ≈
∣∣∣∣ εi

(3hi)1/2

∣∣∣∣ ≈ 0 and therefore exp

(
−1

2

∣∣∣∣εi

λ

∣∣∣∣a) ≈ 1

Substituting the above results into Eq. (D.4.1), the probability density function
reduces to:

f (εi) ≈ 1

2(3hi)1/2

which is a uniform distribution U(−(3hi)
1/2, (3hi)

1/2), with lower limit
−(3hi)

1/2 and upper limit −(3hi)
1/2.
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Mathematical reference

E.1 Standard integrals

∫ ∞

0
exp

(−ay2) dy = 1

2

√
π

a
(i)∫ ∞

0
y exp

(−ay2) dy = 1

2
(ii)∫ ∞

0
y2 exp

(−ay2) dy = 1

4a

√
π

a
(iii)∫ ∞

0
y4 exp

(−ay2) dy = 3

8a2

√
π

a
(iv)∫ ∞

0
y2n exp

(−ay2) dy = 1 × 3 × 5 × · · · × (2n − 1)

2n+1an

√
π

a
(v)∫ ∞

0
εn
i exp

(−bε
p
i

) = �(k)

pbk
,

(vi)
where n > −1, p > 0, b > 0 and k = n + 1

p∫ ∞

0

εa
i dεi

(m + εb
i )c

= m(a+1−bc)/b

b

�((a + 1)/b)�(c − (a + 1)/b)

�(c)
(vii)

where a > −1, b > 0,m > 0 and c >
a + 1

b

E.2 Gamma function

For more detail see Abramowitz and Stegun (1968).

�(1 + x) = x!
x�(x) = �(x + 1)

�

(
1

2

)
= √

π
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�

(
3

2

)
=

√
π

2

�

(
5

2

)
= 3

√
π

4
∂ log(�(x))

∂x
= ψ(x)

For 0 � x � 1 we have:

�(1 + x) = 1 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5

where a1 = −0.5748, a2 = 0.9512, a3 = −0.6998, a4 = 0.4245 and a5 =
−0.1010.

E.3 The cumulative normal distribution function

In this section we show that the cumulative normal distribution function, N1(x),
is related to the complementary error function, erfc(x), by the following equa-
tion:

N1(x) = 1

2
erfc

(
− x√

2

)
(E.3.1)

If we let the error function be represented by erf(x) then we have:

erf(x) = 2√
π

∫ ∞

0
exp

(−t2) dt

Now we have the following:

erfc(x) = 1 − erf(x), erf(−x) = − erf(x),

erf(∞) = 1 and erfc(−x) = 2 − erfc(x)

We will consider the integral

I (x) = 2√
π

∫ x

−∞
exp

(−t2) dt

= 2√
π

∫ 0

−∞
exp

(−t2) dt + 2√
π

∫ x

0
exp

(−t2) dt

Since

2√
π

∫ 0

−∞
exp

(−t2) dt = 1

we therefore have

I (x) = 1 + erf(x) = 1 + {
1 − erfc(x)

} = 2 − erfc(x)
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Substituting for erfc(x) we obtain:

I (x) = 2 − {
2 − erfc(−x)

} = erfc(−x)

So we have

erfc(−x) = 2√
π

∫ x

−∞
exp

(−t2) dt (E.3.2)

Now the cumulative normal distribution is defined as

N1(x) = 1√
2π

∫ x

−∞
exp

(−t2) dt

Letting u = t
√

2, we have du = √
2 dt , and for the upper limit we have x = t

√
2,

or t = x/
√

2.
This integral becomes:

N1(x) = 1√
2π

∫ t=x/
√

2

∞
exp

(−t2)√2 dt (E.3.3)

So from Eq. (E.3.2) we have:

N1(x) = 1

2
erfc

(
− x√

2

)
We also note that:

N1(−x) = 1 − N1(x)

E.4 Arithmetic and geometric progressions

Arithmetic progression

The sum of the first n terms of an arithmetic progression is:

sn = n

2

{
2a1 + (n − 1)d

}
(E.4.1)

where a1 is the first term, and d is the common difference; that is, the terms in
the sequence are: a1, a1 + d, a1 + 2d, a1 + 3d, . . . .

Geometric progression

The sum of the first n terms of a geometric progression is:

sn = a1(1 − rn)

1 − r
(E.4.2)

where a1 is the first term, and r is the common ratio; that is, the terms in se-
quence are: a1, a1r, a1r

2, a1r
3, . . . .
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Appendix F:

Black–Scholes finite-difference
schemes

F.1 The general case

In this section we consider the stability of the finite-difference schemes described
in Chapter 5. It is assumed that the grid contains ns asset points, and we will
denote the time dependent option values at the ith and (i + 1)th time instants
by the ns − 2 element vectors Xi and Xi+1 respectively. We can therefore write:

T1X
i = T2X

i+1 (F.1.1)

where T1 and T2 are (ns − 2) × (ns − 2) tridiagonal matrices, and xi
k, k = 1, . . . ,

ns − 2, will be used to denote the elements of the vector Xi .
The option values at the ith time instant are computed from those at the

(i + 1)th time instant by using

Xi = T −1
1 T2X

i+1 (F.1.2)

However, Eq. (F.1.2) is only stable if the eigenvalues of the (ns − 2) × (ns − 2)

matrix T −1
1 T2 all have modulus less than one (see Smith (1985)).

F.2 The log transformation and a uniform grid

We will now prove that the implicit finite difference method, Θm = 0, when used
on the log transformed Black–Scholes equation with a uniform grid is uncondi-
tionally stable which means that the stability does not depend on the values of
σ , �t , �Z, etc.

From Chapter 5 the finite-difference scheme is described by the following
tridiagonal system:⎛⎜⎜⎜⎜⎜⎝

B C 0 0 0 0
A B C 0 0 0
0 0 . . 0 0
0 0 0 . . 0
0 0 0 A B C

0 0 0 0 A B

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

xi
1

xi
2
.

.

xi
s−1

xi
s−2

⎞⎟⎟⎟⎟⎟⎟⎠
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=

⎛⎜⎜⎜⎜⎜⎝
�B �C 0 0 0 0
�A �B �C 0 0 0
0 0 . . 0 0
0 0 0 . . 0
0 0 0 �A �B �C
0 0 0 0 �A �B

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

xi+1
1

xi+1
2
.

.

xi+1
s−3

xi+1
s−2

⎞⎟⎟⎟⎟⎟⎟⎠
where

A = (1 − Θm)�t

2�Z2

{
b�Z − σ 2} (F.2.1)

B = 1 + (1 − Θm)�t

{
r + σ 2

�Z2

}
(F.2.2)

C = − (1 − Θm)�t

2�Z2

{
b�Z + σ 2} (F.2.3)

�A = −Θm�t

2�Z2

{
b�Z − σ 2} (F.2.4)

�B = 1 − Θm�t

{
r + σ 2

�Z2

}
(F.2.5)

�C = Θm�t

2�Z2

{
b�Z + σ 2} (F.2.6)

As in Chapter 5, b = r − q − σ 2

2
and r > 0.

Substituting Θm = 0 into Eqs. (F.2.1)–(F.2.6) we have �A = �C = 0, �B = 1, and

A = �t

2�Z2

{
b�Z − σ 2}, B = 1 + �t

{
r + σ 2

�Z2

}
,

C = − �t

2�Z2

{
b�Z + σ 2}

The finite-difference scheme is thus represented by the equations⎛⎜⎜⎜⎜⎜⎝
B C 0 0 0 0
A B C 0 0 0
0 0 . . 0 0
0 0 0 . . 0
0 0 0 A B C

0 0 0 0 A B

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

xi
1

xi
2
.

.

xi
s−1

xi
s−2

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 . . 0 0
0 0 0 . . 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

xi+1
1

xi+1
2
.

.

xi+1
s−3

xi+1
s−2

⎞⎟⎟⎟⎟⎟⎟⎠
or in matrix notation

Xi = T1
−1Xi+1 (F.2.7)

where T2 = I in Eq. (F.1.1).
As mentioned in Section F.1, Eq. (F.2.7) is stable if the modulus of all the

eigenvalues of T −1
1 are less than one. We will now show that this is in fact the

case.
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If the eigenvalues of T1 are λk, k = 1, . . . , ns − 2, then the eigenvalues of
T −1

1 are λ−1
k , k = 1, . . . , ns − 2. This means that the system is stable if all the

eigenvalues of T1 have a modulus greater than one. This result can be proved
by considering the eigenvalue with the smallest modulus, λmin. If |λmin| > 1 then
the result is proved.

Now the eigenvalues of T1, see Smith (1985), are given by:

λk = 1 + �t

(
r + σ 2

�Z2

)
+ 2

√
AC cos

(
kπ

ns − 2 + 1

)
(F.2.8)

k = 1, . . . , ns − 2,

where the term

2
√

AC =
√

�t2(σ 4 − b2�Z2)

�Z4
(F.2.9)

It can be seen that if b2�Z2 > σ 4 then the eigenvalues are complex and if
σ 4 � b2�Z2 then eigenvalues are real. We will consider each of these cases in
turn.

Complex eigenvalues: b2�Z2 > σ 4

We will represent the kth complex eigenvalue as:

λk = R + iY

where the real part is

R = 1 + �t

(
r + σ 2

�Z2

)
and the imaginary part is

Y = 2
√

AC cos

(
kπ

ns − 2 + 1

)
Since

|λk| > |R| + |Y | and |R| > 1,

we conclude that

|λmin| > 1

Real eigenvalues: σ 4 ��� b2�Z2

In this case the kth eigenvalue is real, and from Eq. (F.2.8) we have:

λk > 1 + �t

(
r + σ 2

�Z2

)
− 2

√
AC
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Since b2�2 > 0 from Eq. (F.2.9) we have

2
√

AC <

√
σ 4�t2

�Z4

or ∣∣2√
AC

∣∣ <
σ 2�t

�Z2

So

λmin > 1 + �t

(
r + σ 2

�Z2

)
− σ 2�t

�Z2

Therefore we have

|λmin| > 1 + r�t

and, since r > 0, we have:

|λmin| > 1



Appendix G:

The Brownian bridge:
alternative derivation

Here we provide an alternative derivation of the Brownian bridge equation
given in Chapter 2.

Let a Brownian process have values Wt0 at time t0 and Wt1 at time t1. We want
to find the conditional distribution of Wt , where t0 < t < t1. This distribution
will be denoted by P(Wt |{Wt0,Wt1}), to indicate that Wt is conditional on the
end values Wt0 and Wt1 .

We have:

P(Wt |Wt0) = 1√
2π(t − t0)

exp

{
− (Wt − Wt0)

2

2(t − t0)

}
The joint distribution of Wt and Wt1 given Wt0 is:

P
({Wt,Wt1}|Wt0

)
= P(Wt1 |Wt)P (Wt |Wt0)

= 1√
2π(t − t0)(t1 − t)

exp

{
− (Wt − Wt0)

2

2(t − t0)
− (Wt1 − Wt)

2

2(t1 − t)

}
= 1√

2π(t − t0)(t1 − t)
exp

{
−1

2

(
(Wt − Wt0)

2

2(t − t0)
+ (Wt1 − Wt)

2

2(t1 − t)

)}
Similarly

P(Wt1 |Wt0) = 1√
2π(t1 − t0)

exp

{
− (Wt1 − Wt0)

2

2(t1 − t0)

}
Now we have:

P
(
Wt |{Wt0,Wt1}

)
= P({Wt,Wt1}|Wt0)

P (Wt1 |Wt0)

= 1√
2π

√
t1 − t0

(t − t0)(t1 − t)

× exp

{
−1

2

(
(Wt − Wt0)

2

2(t − t0)
+ (Wt1 − Wt)

2

2(t1 − t)
− (Wt1 − Wt0)

2

2(t1 − t0)

)}
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For ease of reference we will write the above equation as:

P
(
Wt |{Wt0,Wt1}

) = 1√
2π

√
t1 − t0

(t − t0)(t1 − t)
exp{A}

We now consider the terms in the exponent A.

A = −1

2

(
(X − Xt0)

2(t1 − t)(t1 − t0)

(t − t0)(t1 − t)(t1 − t0)

+ (X1 − X)2(t − t0)(t1 − t0)

(t − t0)(t1 − t)(t1 − t0)
− (X1 − Xt0)

2(t − t0)(t1 − t)

(t − t0)(t1 − t)(t1 − t0)

}
Dividing top and bottom of the above expression for A by (t1 − t0)

2 we then
obtain:

A = − 1

2V

{(
W 2

t + W 2
t0

− 2WtWt0

) t1 − t

t1 − t0
+ (

W 2
t1

+ W 2
t − 2WtWt1

) t − t0

t1 − t0

− (
W 2

t1
+ W 2

t0
− 2Wt1Wt0

) (t − t0)(t1 − t)

(t1 − t0)2

}
where

V = (t − t0)(t1 − t)

t1 − t0

So

A = − 1

2V

(
W 2

t

{
t1 − t

t1 − t0
+ t − t0

t1 − t0

}
+ W 2

t1

{
t − t0

t1 − t0
− (t − t0)(t1 − t)

(t1 − t0)2

}
+ W 2

t0

{
t − t0

t1 − t0
− (t − t0)(t1 − t)

(t1 − t0)2

}
− 2WtWt0

{
t1 − t

t1 − t0

}
− 2WtWt1

{
t − t0

t1 − t0

}
+ 2Wt1Wt0

{
(t − t0)(t1 − t)

(t1 − t0)2

})
We now show that A can be expressed as quadratic form:

B = − 1

2V
(Wt − μ)2 = − 1

2V

(
W 2

t + μ2 − 2μWt

)
where

V = (t − t0)(t1 − t)

t1 − t0
and μ = Wt0

t1 − t

t1 − t0
+ Wt1

t − t0

t1 − t0

Therefore we have:

B = − 1

2V

(
W 2

t +
{
Wt0

t1 − t

t1 − t0
+ Wt1

t − t0

t1 − t0

}2

− 2Wt

{
Wt0

t1 − t

t1 − t0
+ Wt1

t − t0

t1 − t0

})
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Expanding and gathering terms we obtain:

B = − 1

2V

(
W 2

t + W 2
t0

(t1 − t)2

(t1 − t0)2
+ W 2

t1

(t − t0)
2

(t1 − t0)2
+ 2Wt0Wt1

(t1 − t)(t − t0)

(t1 − t0)2

− 2WtWt0

t1 − t

t1 − t0
− 2WtWt1

t − t0

t1 − t0

)
Comparing coefficients of A and B we have:

Coefficients for W2
t

A : − 1

2V

{
t1 − t

t1 − t0
+ t − t0

t1 − t0

}
= − 1

2V

{
t1 − t + t − t0

t1 − t0

}
= − 1

2V

B : − 1

2V

Coefficients for W2
t0

A : − 1

2V

{
t1 − t

t1 − t0
− (t − t0)(t1 − t)

(t1 − t0)2

}
= − 1

2V

{
(t1 − t)(t1 − t0) − (t − t0)(t1 − t)

(t1 − t0)2

}
A : − 1

2V

{
(t1 − t)(t1 − t0 − t + t0)

(t1 − t0)2

}
= − 1

2V

{
(t1 − t)2

(t1 − t0)2

}
B : − 1

2V

{
(t1 − t)2

(t1 − t0)2

}

Coefficients for W2
t1

A : − 1

2V

{
(t − t0)(t1 − t0) − (t − t0)(t1 − t)

(t1 − t0)2

}
= − 1

2V

{
(t − t0)(t1 − t0 − t1 + t)

(t1 − t0)2

}
A : − 1

2V

{
(t1 − t)2

(t1 − t0)2

}
B : − 1

2V

{
(t − t0)

2

(t1 − t0)2

}
The remaining coefficients in A and B for Wt0Wt1 , WtWt1 and Wt0Wt are identi-
cal.
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We have thus shown that:

P
(
Wt |{Wt0,Wt1}

) = 1√
2π

√
t1 − t0

(t − t0)(t1 − t)
exp

{
− (Wt − μ)2

2V

}
= 1√

2πV
exp

{
− (Wt − μ)2

2V

}
Thus the conditional distribution of Wt is a Gaussian with mean

μ = Wt0

t1 − t

t1 − t0
+ Wt1

t − t0

t1 − t0

and variance

V = (t − t0)(t1 − t)

t1 − t0

and we can obtain a variate Ŵt from this distribution by using:

Ŵt = Wt0

t1 − t

t1 − t0
+ Wt1

t − t0

t1 − t0
+

√
(t − t0)(t1 − t)

t1 − t0
Z, where Z ∼ N(0, 1)



Appendix H:

Brownian motion: more results

H.1 Some results concerning Brownian motion

Here we will prove some facts concerning Brownian motion.
If the Brownian motion has zero drift then:

dXt = σ
√

dt dZt , dZt ∼ N(0, 1) (H.1.1)

and

P
(
mX

t � b,Xt � x
) = N1

(
2b − x

σ
√

t

)
(H.1.2)

where mX
t denotes the minimum value of Xt over the time interval [0, t], b � 0,

and x � 0.
When the Brownian motion has nonzero drift

d�Xt = ν dt + σ
√

dt dZt , dZt ∼ N(0, 1) (H.1.3)

and the following equations are satisfied by m
�X
t and �Xt :

P(�Xt � K) = N1

(
K − νt

σ
√

t

)
(H.1.4)

P(�Xt � K) = N1

(
νt − K

σ
√

t

)
(H.1.5)

P
(
m

�X
t � b, �Xt � x

) = exp

(
2νb

σ 2

)
N1

(
2b − x + νt

σ
√

t

)
(H.1.6)

P
(
m

�X
t � b, �Xt � x

) = N1

(
νt − x

σ
√

t

)
− exp

(
2νb

σ 2

)
N1

(
2b − x + νt

σ
√

t

)
(H.1.7)

P
(
m

�X
t � b

) = N1

(
b − νt

σ
√

t

)
+ exp

(
2νb

σ 2

)
N1

(
b + νt

σ
√

t

)
(H.1.8)

P
(
m

�X
t � b

) = N1

(
νt − b

σ
√

t

)
− exp

(
2νb

σ 2

)
N1

(
b + νt

σ
√

t

)
(H.1.9)

where K is a constant, �X � 0, b � 0, and P(condition) denotes the probability
associated with the appropriate condition, i.e., �Xt � K, m

�X
t � b, �Xt � x, etc.
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The conditional probability density function associated with P(m
�X
t � b, �Xt �

x) is

p
({

m
�X
t1,t2

� b, �Xt2

}|�Xt1

)
= 1

σ
√

2π�t
exp

(
2ν(b − �Xt1)

σ 2

)
exp

(
− (�Xt1 + �Xt2 − 2b + ν�t)2

2σ 2�t

)
(H.1.10)

where t2 � t1 and �t = t2 − t1.

H.2 Proof of Eq. (H.1.2)

From Eq. (H.1.1):

Xt = σ
√

t Zt , Zt ∼ N(0, 1)

where X0 = 0. We will derive the probability of events mX
t � b and Xt � x

occurring. For event mX
t to occur there must be a time τ at which Xτ � b,

where 0 < τ � t . At time τ , instead of continuing with the original Brownian
motion, Xt we will consider the reflected motion XR

t defined by:

XR
s = Xs, s < τ

XR
s = 2b − Xs, s � τ

Therefore, before time τ the motion Xs is identical to XR
s . For s � τ the coordi-

nates of XR
s are obtained by reflecting those of Xs about the level b. The event

Xt � x is thus equivalent to the event XR
t � 2b−x (remember b � 0 and x � 0).

However, the event XR
t � 2b − x only occurs if mX

t � b also occurs, giving:

P
(
XR

t � 2b − x
) = P

(
mX

t � b,Xt � x
)

At time τ we have

XR
τ = 2b − Xτ (H.2.1)

and after time τ

XR
τ+γ = 2b − Xτ+γ , γ > 0 (H.2.2)

Thus subtracting Eq. (H.2.1) from Eq. (H.2.2) gives:

XR
τ+γ − XR

τ = Xτ − Xτ+γ

XR
τ+γ − XR

τ = −(Xτ+γ − Xτ ) (H.2.3)

However, we know that:

(Xτ+γ − Xτ ) ∼ N
(
0, σ 2γ

)
(H.2.4)

So (
XR

τ+γ − XR
τ

) ∼ −N
(
0, σ 2γ

)
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which means that:(
XR

τ+γ − XR
τ

) ∼ N
(
0, σ 2γ

)
(H.2.5)

Since the left-hand sides of Eqs. (H.2.4) and (H.2.5) have the same distribution,
and Xt satisfies the three Brownian properties given in Section 2.1, we can write:

P
(
XR

t � 2b − x
) = P(Xt � 2b − x) = N1

(
2b − x

σ
√

t

)
Therefore:

P
(
mX

t � b,Xt � x
) = N1

(
2b − x

σ
√

t

)

H.3 Proof of Eq. (H.1.4)

From Eq. (H.1.3) �Xt = νt + σ
√

tZt , Zt ∼ N(0, 1).
So we can write:

P(�Xt � K) = P
(
νt + σ

√
tZt � K

)
= P

(
Zt � K − νt

σ
√

t

)
= N1

(
K − νt

σ
√

t

)
, Zt ∼ N(0, 1)

H.4 Proof of Eq. (H.1.5)

We know that P(�Xt � K) = 1 − P(�Xt � K).
Substituting from Eq. (H.1.4) gives:

P(�Xt � K) = 1 − N1

(
K − νt

σ
√

t

)
Since 1 − N1(x) = N1(−x) we obtain:

P(�Xt � K) = N1

(
νt − K

σ
√

t

)

H.5 Proof of Eq. (H.1.6)

From Eq. (H.1.1):

dXt = σ
√

dt dZt , dZt ∼ N(0, 1)
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This can be expressed as zero drift Brownian motion under probability mea-
sure P:

dXt = σ dWP, dWP ∼ N(0, dt) (H.5.1)

or

Xt = σWP
t , WP

t ∼ N(0, t)

Now we can choose another probability measure Q so that:

dWP = dWQ + ν

σ
dt (H.5.2)

where ν is a constant.
Under probability measure Q the motion in Eq. (H.5.1) is:

d�Xt = σ

(
dWQ + ν

σ
dt

)
(H.5.3)

so

d�Xt = ν dt + σ dWQ (H.5.4)

It can be seen from Section 2.4 that the transformation between measures
P and Q can be accomplished using k = ν/σ , and that the associated Radon–
Nikodym derivative is:

dQ

dP
= exp

(
kWP

t − 1

2
k2t

)
= exp

(
ν

σ
WP

t − 1

2

ν2t

σ

)
= exp

(
ν

σ 2
Xt − 1

2

ν2t

σ

)
(H.5.5)

where we have used the fact that under probability measure P we can write:
WP

t = Xt/σ .
Now

P
(
m

�X
t � b, �Xt � x

) = EQ
[
I{m�X

t �b}I{�Xt�x}
]

(H.5.6)

where I{condition} is an indicator function which takes unit value when condition

is satisfied and zero otherwise—for example I{m�X
t �b} is one when m

�X
t � b and

zero when m
�X
t > b.

However (see for example Baxter and Rennie (1996)), we have:

EQ
[
I{m�X

t �b}I{�Xt�x}
] = EP

[
I{mX

t �b}I{Xt�x}
dQ

dP

]
(H.5.7)

So substituting for dQ
dP

from Eq. (H.5.5) gives:

EQ
[
I{m�X

t �b}I{�Xt�x}
] = EP

[
I{mX

t �b}I{Xt�x} exp

(
νXt

σ 2
− ν2t

2σ 2

)]
(H.5.8)
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Expressed in terms of the reflected Brownian motion, XR
t = 2b−Xt , Eq. (H.5.8)

can be written:

P
(
m

�X
t � b, �Xt � x

)
= EP

[
I{2b−XR

t �x} exp

(
ν(2b − XR

t )

σ 2
− ν2t

2σ 2

)]
= exp

(
2νb

σ 2

)
EP

[
I{2b−Xt�x} exp

(
−νXR

t

σ 2
− ν2t

2σ 2

)]
(H.5.9)

Since

I{2b−XR
t >x} = I{−2b+XR

t <−x} = I{XR
t <2b−x}

Equation (H.5.9) becomes:

P
(
m

�X
t � b, �Xt � x

)
= exp

(
2νb

σ 2

)
EP

[
I{Xt<2b−x} exp

(
−νXt

σ 2
− ν2t

2σ 2

)]
(H.5.10)

where, for ease of notation, we now denote XR
t by Xt on the right-hand side of

Eq. (H.5.10).
Therefore:

P
(
m

�X
t � b, �Xt � x

)
= exp

(
2νb

σ 2

) ∫ Xt=2b−x

Xt=−∞
1

σ
√

2πt
exp

(
− X2

t

2σ 2t

)
exp

(
νXt

σ 2
− ν2t

σ 2

)
dXt

= 1

σ
√

2πt
exp

(
2νb

σ 2

) ∫ Xt=2b−x

Xt=−∞
exp

(
− (X2

t + 2νXt t + ν2t2)

2σ 2t

)
dXt

= 1

σ
√

2πt
exp

(
2νb

σ 2

) ∫ Xt=2b−x

Xt=−∞
exp

(
− (Xt + νt)2

2σ 2t

)
dXt

If V = (Xt + νt)/(σ
√

t) then dXt = σ
√

t dV , Xt = 2b − x corresponds to
V = (2b − x + νt)/(σ

√
t), and Xt = −∞ corresponds to V = −∞.

1

σ
√

2πt

∫ Xt=2b−x

Xt=−∞
exp

(
− (Xt + νt)2

2σ 2t

)
dXt

= 1

σ
√

2πt

∫ V =(2b−x+νt)/(σ
√

t)

V =−∞
exp

(
−V 2

2

)
dV

= N1

(
2b − x + νt

σ
√

t

)
We thus obtain:

P
(
m

�X
t � b, �Xt � x

) = exp

(
2νb

σ 2

)
N1

(
2b − x + νt

σ
√

t

)
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H.6 Proof of Eq. (H.1.7)

Since P(�Xt � x) = P(m
�X
t � b, �Xt � x) + P(m

�X
t � b, �Xt � x) we have:

P
(
m

�X
t � b, �Xt � x

) = P(�Xt � x) − P
(
m

�X
t � b, �Xt � x

)
(H.6.1)

Substituting the results of Eqs. (H.1.4) and (H.1.6) into Eq. (H.6.1) yields:

P
(
m

�X
t � b, �Xt � x

) = N1

(
νt − x

σ
√

t

)
− exp

(
2νb

σ 2

)
N1

(
2b − x + νt

σ
√

t

)

H.7 Proof of Eq. (H.1.8)

We start by writing:

P
(
m

�X
t � b

) = P
(
m

�X
t � b, �Xt � b

) + P
(
m

�X
t � b, �Xt � b

)
However, P(m

�X
t � b, �Xt � b) = P(�Xt � b) since the probability that the

minimum is less than b and the final value �Xt is less than b is the same as the
probability that the final value �Xt is less than b. Therefore:

P
(
m

�X
t � b

) = P(�Xt � b) + P
(
m

�X
t � b, �Xt � b

)
Substituting for P(�Xt � b) from Eq. (H.1.4) gives:

P
(
m

�X
t � b

) = N1

(
b − νt

σ
√

t

)
+ P

(
m

�X
t � b, �Xt � b

)
(H.7.1)

From Eq. (H.1.6):

P
(
m

�X
t � b, �Xt � b

) = exp

(
2νb

σ 2

)
N1

(
2b − b + νt

σ
√

t

)
= exp

(
2νb

σ 2

)
N1

(
b + νt

σ
√

t

)
(H.7.2)

Combining Eqs. (H.7.2) and (H.7.1) yields:

P
(
m

�X
t � b

) = N1

(
b − νt

σ
√

t

)
+ exp

(
2νb

σ 2

)
N1

(
b + νt

σ
√

t

)

H.8 Proof of Eq. (H.1.9)

We start with:

P
(
m

�X
t � b

) = 1 − P
(
m

�X
t � b

)
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Substituting from (H.1.8):

P
(
m

�X
t � b

) = 1 − N1

(
b − νt

σ
√

t

)
+ exp

(
2νb

σ 2

)
N1

(
b + νt

σ
√

t

)
(H.8.1)

But since 1 − N1(x) = N1(−x), Eq. (H.8.1) can be expressed as:

P
(
m

�X
t � b

) = N1

(
νt − b

σ
√

t

)
+ exp

(
2νb

σ 2

)
N1

(
b + νt

σ
√

t

)

H.9 Proof of Eq. (H.1.10)

We will use Eq. (H.1.6) to compute ∂P
∂x

, where P(m
�X
t � b, �Xt � x) is denoted

by P .
Letting Θ = (2b − x + νt)/(σ

√
t) we obtain:

∂P

∂x
= exp

(
2νb

σ 2

)
∂

∂x

{
N1(Θ)

}
= exp

(
2νb

σ 2

)
∂

∂Θ

{
N1(Θ)

}∂Θ

∂x

= − exp

(
2νb

σ 2

)
1

σ
√

t
n(Θ)

= − 1

σ
√

2πt
exp

(
2νb

σ 2

)
exp

(
(2b − x + νt)2

2σ 2t

)
(H.9.1)

Now since the probability P(m
�X
t � b, �Xt � x) decreases as x increases we have:

P
(
m

�X
t � b, �Xt � x

) − P
(
m

�X
t � b, �Xt � x + �x

) = −∂P

∂x
�x (H.9.2)

and also:

P
(
m

�X
t � b, �Xt � x

) − P
(
m

�X
t � b, �Xt � x + �x

)
∼ p

(
m

�X
t � b, �Xt = x

)
�x (H.9.3)

where p(m
�X
t � b, �Xt = x) is the probability density function of P(m

�X
t � b, �Xt �

x), and �x → 0.
Combining Eqs. (H.9.2) and (H.9.3) we thus obtain

p
(
m

�X
t � b, �Xt = x

) = −∂P

∂x
�x

So,

p
(
m

�X
t � b, �Xt = x

) = 1

σ
√

2πt
exp

(
2νb

σ 2

)
exp

(
− (2b − x + νt)2

2σ 2t

)
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which means that:

p
({

m
�X
t � b, �Xt

}|�X0
) = 1

σ
√

2πt
exp

(
2νb

σ 2

)
× exp

(
− (2b − �Xt + νt)2

2σ 2t

)
(H.9.4)

where as usual we take �X0 = 0. So Eq. (H.9.4) gives the probability density
for the Brownian motion which goes through the points �X0 and �Xt and has a
minimum value which is less than or equal to b.

Instead of considering the complete path of �Xt from �X0 we can move the
origin to the point �Xt1 , where t1 � t . Substituting into Eq. (H.9.4) we then
obtain:

p
({

m
�X
t1,t

� b, �Xt

}|�Xt1

) = 1

σ
√

2π(t − t1)
exp

(
2ν(b − �Xt1)

σ 2

)
× exp

(
− (2(b − �Xt1) − (�Xt − �Xt1) + ν(t − t1))

2

2σ 2(t − t1)

)
= 1

σ
√

2π(t − t1)
exp

(
2ν(b − �Xt1)

σ 2

)
× exp

(
− (2b − �Xt1 − �Xt + ν(t − t1))

2

2σ 2(t − t1)

)
which can be re-expressed as:

p
({

m
�X
t1,t2

� b, �Xt2

}|�Xt1

) = 1

σ
√

2π�t
exp

(
2ν(b − �Xt1)

σ 2

)
× exp

(
− (�Xt1 + �Xt2 − 2b − ν�t)2

2σ 2�t

)
where t2 � t1 and �t = t2 − t1.
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The Feynman–Kac formula

The Feynman–Kac formula provides a link between stochastic processes and
partial differential equations, which we will now illustrate.

In the risk neutral measure the equation followed by the asset price is:

dS = rS dt + σS dW (I.1.1)

and that of the money account:

dB = Br dt (I.1.2)

If f (S, t) is the value of a derivative then using Ito’s lemma we have:

df =
{

∂f

∂t
+ rS

∂f

∂S
+ σ 2S2

2

∂2f

∂S2

}
+ ∂f

∂S
σ dW (I.1.3)

Since f is a tradable we know that the process (
f
B

) must be a martingale in the
risk neutral measure, and therefore have zero drift.

We will now evaluate d(
f
B

) using the Ito quotient rule (see Eq. (2.6.4)):

d
(

X1

X2

)
=

(
X1

X2

){
dX1

X1
− dX2

X2

}
+ E

[(
dX2

X2

)(
dX2

X2

)]
− E

[(
dX2

X2

)(
dX1

X1

)]
(I.1.4)

and rewrite Eqs. (I.1.2) and (I.1.3) as:

dX1 = μ̄1 dt + σ̄1 dW

dX2 = X2μ̄2 dt

where

d
(

X1

X2

)
= d

(
f

B

)
, μ̄1 =

{
∂f

∂t
+ σ 2S2

2

∂2f

∂S2

}
σ̄1 = σ1

∂f

∂S
, X1 = f, X2 = B, μ̄2 = r

Evaluating Eq. (I.1.4) we obtain:

E

[(
dX2

X2

)(
dX2

X2

)]
= E

[
μ̄2

2 dt2] → 0

E

[(
dX1

X1

)(
dX2

X2

)]
= E

[(
μ̄1 dt + σ̄1 dW

X1

)(
X2μ̄2 dt

X2

)]
→ 0
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and therefore:

d
(

X1

X2

)
=

(
X1

X2

){
μ1 dt + σ̄1 dW

X1
− X2μ̄2 dt

X2

}
=

{
μ̄1

X2
−

(
X1

X2

)
μ̄2

}
dt +

(
σ̄1

X2

)
= 1

X2
{μ̄1 − X1μ̄2} dt +

(
σ̄1

X2

)
(I.1.5)

Since (X1
X2

) is a martingale, the drift term in Eq. (I.1.5) is zero so:

μ̄1 − X1μ̄2 = 0 (I.1.6)

Therefore, substituting for μ̄1, X1 and μ̄2 in Eq. (I.1.6) we obtain:

∂f

∂t
+ rS

∂f

∂S
+ σ 2S2

2

∂2f

∂S2
− rf = 0 (I.1.7)

or

∂f

∂t
+ rS

∂f

∂S
+ σ 2S2

2

∂2f

∂S2
= rf (I.1.8)

which is the Black–Scholes partial differential equation, which we derived in
Chapter 4.

In general if an asset follows the process:

dS = μ̄ dt + σ̄ dW (I.1.9)

then the price of a derivative f (S, t) obeys the partial differential equation:

∂f

∂t
+ μ̄

∂f

∂S
+ μ̄2

2

∂2f

∂S2
= rf (I.1.10)

or (
∂

∂t
+ μ̄

∂

∂S
+ μ̄2

2

∂2

∂S2

)
f = rf (I.1.11)
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Answers to problems

Problem 1

Let βk
t = E[Wk

t ], where Wt0 = 0.

(a) Show using Ito’s formula for k = 2, 3, 4, . . . that

βk
t = 1

2
(k − 1)

∫ t

s=0
βk−2

s ds

(b) Deduce that E[W 4
t ] = 3t2

(c) What is E[W 6
t ]

1(a)

Let φ(Wt) = Wk
t ; using Ito’s formula we have:

dφ = ∂φ

∂Wt

dWt + 1

2

∂2φ

dW 2
t

dt

So

d
(
Wk

t

) = kWk−1
t dWt + 1

2
k(k − 1)Wk−2

t dt

Integrating both sides∫ t

s=0
d
(
Wk

s

) = k

∫ t

s=0
Wk−1

s dWs + 1

2
(k − 1)

∫ t

s=0
Wk−2

s ds

Wk
t − Wk

t0
= k

∫ t

s=0
Wk−1

s dWs + 1

2
(k − 1)

∫ t

s=0
Wk−2

s ds

Now

E

[∫
s=0

Wk−1
s dWs

]
= 0

and using Fubini’s theorem

E

[∫ t

s=0
Wk−2

s ds

]
=

∫ t

s=0
E

[
Wk−2

s

]
ds
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Therefore

E
[
Wk

t

] − E
[
Wk

t0

] = kE

[∫ t

s=0
Wk−1

s dWs

]
+ 1

2
(k − 1)

∫ t

s=0
E

[
Wk−2

s

]
ds

= 1

2
(k − 1)

∫ t

s=0
E

[
Wk−2

s

]
ds

Since E[Wk
t0
] = 0 we obtain

βk
t = 1

2
(k − 1)

∫ t

s=0
βk−2

s ds

1(b)

Since Wt is standard Brownian motion (zero drift and σ = 1)

E
[
W 2

t

] = t

Substituting k = 4 in the relation from part (a) yields

E
[
W 4

t

] = 4 × 3

2

∫ t

s=0
E

[
W 2

s

]
ds = 12

2

∫ t

s=0
s ds = 6

t2

2
= 3t2

1(c)

Using the relation from part (a) with k = 6 yields

E
[
W 6

t

] = 6 × 5

2

∫ t

s=0
E

[
W 4

s

]
ds = 6 × 5

2

∫ t

s=0
3s2 ds = 30

2

3t3

3
= 15t3

Problem 2

Solve

dXt = Xt dt + dWt

Rearranging we have

dXt − Xt dXt = dWt

Using the integrating factor exp(−t) gives

exp(−t) dXt − Xt exp(−t) dt = exp(−t) dWt

and

d
(
Xt exp(−t)

) = −Xt exp(−t) dt + exp(−t) dXt = exp(−t) dWt

So

d
(
Xt exp(−t)

) = exp(−t) dWt
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Integrating both sides∫ t

s=0
d
(
Xs exp(−s)

) =
∫ t

s=0
exp(−s) dWs

and

Xt exp(−t) − Xt0 =
∫ t

s=0
exp(−s) dWs

which means that

Xt = Xt0 exp(t) +
∫ t

s=0
exp(t − s) dWs

Problem 3

Solve

dXt = −Xt dt + exp(−t) dWt

Rearranging yields

dXt + Xt dt = exp(−t) dWt

Using the integrating factor exp(t) we obtain

exp(t) dXt + exp(t)Xt dt = dWt

and

d
(
exp(t)Xt

) = exp(t) dXt + exp(t)Xt dt

which means that

d
(
exp(t)Xt

) = dWt and
∫ t

s=0
d
(
exp(s)Xs

) =
∫ t

s=0
dWs

Integrating

Xt exp(t) − Xt0 = Wt − Wt0

Since Wt0 = 0

Xt exp(t) − Xt0 = Wt

that is

Xt = Xt0 exp(−t) + Wt exp(−t)
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Problem 4

Prove∫
s=0

W 2
s dWs = 1

3
W 3

t −
∫ t

s=0
Ws ds

Using Ito’s formula

d
(
W 3

t

) = 3W 2
t dW + 6

2
Wt dt

Therefore∫ t

s=0
d
(
W 3

t

) = 3
∫ t

s=0
W 2

s dWs + 3
∫ t

s=0
Ws ds

and

W 3
t − W 3

t0
= 3

∫ t

s=0
W 2

s dWs + 3
∫ t

s=0
Ws ds

Using Wt0 = 0 we obtain

W 3
t = 3

∫ t

s=0
W 2

s dWs + 3
∫ t

s=0
Ws ds

So ∫ t

s=0
W 2

s dWs = 1

3
W 3

t −
∫ t

s=0
Ws ds

Problem 5

Solve dYt = r dt + αYt dWt where r and α are real constants.
Use the integrating factor Ft = exp(−αWt + α2

2 t)

dYt − αYt dt = r dt

Multiplying by Ft

dYt exp

(
−αWt + α2

2
t

)
− αYt exp

(
−αWt + α2

2
t

)
= r exp

(
−αWt + α2

2
t

)
dt

Using Ito’s formula

d
(

Yt exp

(
−αWt + α2

2
t

))
= dYt exp

(
−αWt + α2

2
t

)
− αYt exp

(
−αWt + α2

2
t

)
dWt
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= r exp

(
−αWt + α2

2
t

)
dt

Integrating∫ t

s=0
d
(

Ys exp

(
−αWs + α2

2
s

))
= r

∫ t

s=0
exp

(
−αWs + α2

2
s

)
ds

Yt exp

(
−αWt + α2

2
t

)
− Yt0 exp(−αWt0) = r

∫ t

s=0
exp

(
−αWs + α2

2
s

)
ds

Using Wt0 = 0 yields

Yt exp

(
−αWt + α2

2
t

)
= Yt0 + r

∫ t

s=0
exp

(
−αWs + α2

2
s

)
ds

So

Yt = Yt0 exp

(
αWt − α2

2
t

)
+ r

∫ t

s=0
exp

(
α(Wt − Ws) + α2

2
(t − s)

)
ds

Problem 6

6(a)

Solve

dXt = (m − Xt) dt + σ dWt

where m and σ are constants.
Rearranging

dXt + Xt dt = m dt + σ dWt

Use the integrating factor exp(t)

d
(
Xt exp(t)

) = exp(t) dXt + Xt exp(t) dt

= m exp(t) dt + σ exp(t) dWt

Integrating∫ t

s=0
d
(
Xs exp(s)

) = m

∫ t

s=0
exp(s) ds + σ

∫ t

s=0
exp(s) dWs

Xt exp(t) − Xt0 = m
(
exp(t) − 1

) + σ

∫ t

s=0
exp(s) dWs

which can be expressed as

Xt = m + (Xt0 − m) exp(−t) + σ exp(−t)

∫ t

s=0
exp(s) dWs
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6(b)

Taking expectations of the expression for Xt derived in part (a)

E[Xt ] = m + (Xt0 − m) exp(−t)

where we have used

E

[∫ t

s=0
exp(s) dWs

]
= 0

Var[Xt ] = E
[(

Xt − E[Xt ]
)2]

= E

[
σ 2 exp(−2t)

{∫ t

s=0
exp(s) dWs

}2]
= σ 2 exp(−2t)E

[{∫ t

s=0
exp(s) dWs

}2]
From Ito’s isometry

Var[Xt ] = σ 2 exp(−2t)E

[∫ t

s=0
exp(2s) ds

]
= σ 2 exp(−2t)

[
exp(2s)

2

]t

s=0

= σ 2 exp(−2t)

{
exp(2t)

2
− 1

2

}
which gives

Var[Xt ] = 1

2σ 2

{
1 − exp(−2t)

}

Problem 7

Consider the equation dSt = μtSt dt + σtSt dWt where the value of St at time
t = 0 is denoted by S0.

(a) Show that the mean is

E
[
log(St )

] = log(S0) +
∫ t

τ=0

{
μτ − σ 2

τ

2

}
dτ

(b) Show that the variance is

Var
[
log(St )

] =
∫ t

τ=0
σ 2

τ dτ
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7(a)

If φ = log(S) then using Ito’s formula we have

dφ = ∂φ

∂S
dS + 1

2

∂2φ

∂S2
E

[
(dS)2] = 1

S
{μtSt dt + σtSt dWt } − 1

2

S2

S2
σt dt

So

d
(
log(St )

) =
(

μt − σ 2
t

2

)
dt + σt dWt

and therefore∫ t

τ=0
d
(
log(Sτ )

) =
∫ t

τ=0

(
μτ − σ 2

τ

2

)
dτ +

∫ t

τ=0
στ dWτ

which gives

log(Sτ ) − log(S0) =
∫ t

τ=0

(
μτ − σ 2

τ

2

)
dτ +

∫ t

τ=0
στ dWτ

Taking expectations we obtain

E
[
log(St )

] − E
[
log(S0)

] = E

[∫ t

τ=0

(
μτ − σ 2

τ

2

)
dτ

]
+ E

[∫ t

τ=0
στ dWτ

]
Since

∫ t

τ=0(μτ − σ 2
τ

2 ) dτ is deterministic

E

[∫ t

τ=0

(
μτ − σ 2

τ

2

)
dτ

]
=

∫ t

τ=0

(
μτ − σ 2

τ

2

)
dτ

and using

E

[∫ t

τ=0
στ dWτ

]
= 0

and

E
[
log(S0)

] = log(S0)

we finally obtain

E
[
log(St )

] = log(S0) +
∫ t

τ=0

(
μτ − σ 2

τ

2

)
dτ

7(b)

Var
[
log(St )

] = E
[{

log(St ) − E
[
log(St )

]}2]
= E

[{
log(S0) +

∫ t

τ=0

(
μτ − σ 2

τ

2

)
dτ

+
∫ t

τ=0
στ dWτ − log(S0) −

∫ t

τ=0

(
μτ − σ 2

τ

2

)
dτ

}2]
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= E

[(∫ t

τ=0
στ dWτ

)2]
Using Ito’s isometry we have:

E

[(∫ t

τ=0
στ dτ

)2]
= E

[∫ t

τ=0
σ 2

τ dτ

]
Since

∫ t

τ=0 σ 2
τ dτ is deterministic we can write

E

[∫ t

τ=0
σ 2

τ dτ

]
=

∫ t

τ=0
σ 2

τ dτ

and finally we obtain

Var
[
log(St )

] =
∫ t

τ=0
σ 2

τ dτ

Problem 8

Prove that if φ = exp(tWt ) then

dφ = φ

(
Wt + t2

2

)
dt + tφ dWt

From Ito we have

dφ = ∂φ

∂t
dt + ∂φ

∂Wt

dWt + 1

2

∂2φ

∂W 2
t

E
[
( dWt)

2]
Now

∂φ

∂t
= Wt exp(tWt ),

∂φ

∂Wt

= t exp(tWt ),
∂2φ

∂W 2
t

= t2 exp(tWt )

So

dφ = Wt exp(tWt ) dt + t exp(tWt ) dWt + t2

2
exp(tWt ) dt

where we have used E[(dWt)
2] = dt .

Therefore

dφ = φ

(
Wt + t2

2

)
dt + tφ dWt

Problem 9

Given

Zt = exp

(∫ t

s=0
θs dWs − 1

2

∫ t

s=0
θ2
s ds

)
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Use Ito to prove that the process for Zt is dZt = Ztθt dWt .

9(a)

Let

Xt =
∫ t

s=0
θs dWs − 1

2

∫ t

s=0
θ2
s ds

so

dXt = θt dWt − 1

2
θ2
t dt

We thus have:

Zt = exp(Xt )

Using Ito we have

dZt = ∂Zt

∂Xt

dXt + ∂2Zt

∂X2
t

(dXt)
2

so

dZt = Zt

{
θt dWt − 1

2
θ2
t dt

}
+ ZtE

[(
θt dWt − 1

2
θ2
t dt

)(
θt dWt − 1

2
θ2
t dt

)]
Now

E

[(
θt dWt − 1

2
θ2
t dt

)(
θt dWt − 1

2
θ2
t dt

)]
= E

[
θ2
t dW 2

t

] + E

[
1

4
θ4
t dt2

]
− E

[
θ3
t dWt dt

]
Ignoring terms in dt of order higher than 1 using the fact that:

E
[
dW 2

t

] = θ2
t E

[
dW 2

t

] = θ2
t dt and E

[
θ3
t θt dWt dt

] = θ3
t dt E[dWt ] = 0

We have

dZt = Zt

{
θt dWt − 1

2
θ2
t dt

}
+ 1

2
Ztθ

2
t dt = Ztθt dWt

Hence we have shown that

dZt = Ztθt dWt
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Problem 10

Let St = S0 exp(μt + σWt) where μ and σ are constants.

(a) Show by Ito’s lemma that

dSt =
(

μ + σ 2

2

)
St dt + σSt dWt

(b) Show that

E[St ] − E[S0] =
(

μ + σ 2

2

) ∫ t

τ=0
E

[
S(τ)

]
dτ

(c) Show that

E[St ] = S0 exp

(
μt + σ 2

2
t

)

10(a)

Let φ = S0 exp(μt + σWt).
Then using Ito’s formula:

dφ = ∂φ

∂t
dt + ∂φ

∂Wt

dWt + 1

2

∂2φ

∂W 2
t

E
[
(dWt)

2]
So

dφ = μφ dt + σφ dWt + 1

2
φσ 2 dt

where we have used ∂2φ

∂W 2
t

= φσ 2 and E[(dWt)] = dt .

Therefore

dSt =
(

μ + 1

2
σ 2

)
St dt + Stσ dWt

10(b)

From part (a) we have∫ t

τ=0
dSτ =

(
μ + 1

2
σ 2

) ∫ t

τ=0
Sτ dτ + σ

∫ t

τ=0
Sτ dWτ

Therefore

St − S0 =
(

μ + 1

2
σ 2

) ∫ t

τ=0
Sτ dτ + σ

∫ t

τ=0
Sτ dWτ

Taking expectations we have

E[St ] − E[S0] =
(

μ + 1

2
σ 2

)
E

[∫ t

τ=0
Sτ dτ

]
+ σE

[∫ t

τ=0
Sτ dWτ

]
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Using the fact that:

E

[∫ t

τ=0
f (τ) dWτ

]
= 0

and from Fubini’s theorem:

E

[∫ t

τ

S(τ ) dτ

]
=

∫ t

τ

E
[
S(τ)

]
dτ

we thus finally obtain:

E[St ] − E[S0] =
(

μ + 1

2
σ 2

) ∫ t

τ=0
E[Sτ ] dτ

10(c)

From part (a) we know:

dSt =
(

μ + 1

2
σ 2

)
St dt + Stσ dWt

Therefore

d
(
log (St )

) =
(

μ + 1

2
σ 2

)
dt + σ dWt∫ t

τ=0
d
(
log (Sτ )

) =
(

μ + 1

2
σ 2

) ∫ t

τ=0
dτ + σ

∫ t

τ=0
dWτ

So

log (St ) − log (S0) =
(

μ + 1

2
σ 2

)
t + σ

∫ t

τ=0
dWτ

Taking expectations we obtain:

E
[
log(St )

] − E
[
log(S0)

] =
(

μ + 1

2
σ 2

)
t + E

[
σ

∫ t

τ=0
dWτ

]
Since

E

[
σ

∫ t

τ=0
dWτ

]
= 0 and E[S0] = S0

we have:

log

(
E[St ]

S0

)
=

(
μ + 1

2
σ 2

)
t

which yields:

E[St ] = S0 exp

{(
μ + 1

2
σ 2

)
t

}



354 Computational Finance Using C and C#

Problem 11

Let φ = XtYt .
From Ito’s formula we obtain:

dφ = ∂φ

∂Xt

dXt + E

[
∂Yt

∂Yt

dYt + 1

2

∂2φ

∂Xt ∂Yt

dXt dYt + 1

2

∂2φ

∂Yt ∂Xt

dYt dXt

]
Now

∂2φ

∂Xt ∂Yt

= ∂2φ

∂Yt ∂Xt

= 1,
∂φ

∂Xt

= Yt and
∂φ

∂Yt

= Xt

We thus obtain:

dφ = Yt dXt + Xt dYt + E[dXt dYt ]
Using

d(XtYt ) = Yt dXt + Xt dYt + E[dXt dYt ]
we have:∫ t

s=0
d(XtYt ) =

∫ t

s=0
Ys dXs +

∫ t

s=0
XsdYs +

∫ t

s=0
E[dXs dYs]

Therefore

XtYt − Xt0Yt0 =
∫ t

s=0
YsdXs +

∫ t

s=0
XsdYs +

∫ t

s=0
E[dXs dYs]

Thus ∫ t

s=0
XsdYs = XtYt − Xt0Yt0 −

∫ t

s=0
YsdXs −

∫ t

s=0
E[dXs dYs]
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continuous dividends 61, 62
discrete dividends 60, 61

Put options
American 179

critical asset values 109–111
MacMillan–Barone-Adesi–

Whaley method 106, 107,
112–114

pricing errors 136
European 59

four assets 208
three assets 202, 204, 205
two assets 197, 198

multiasset
four assets 208
three assets 201, 204
two assets 194, 197, 198

Q
Quantos

equity 240–243
equity quanto forward 242, 243
quanto adjustment factor 241,

242
interest rate 223–227

caplet 223–225
floorlet 226
swaplet 227

Quasirandom_Normal_LogNormal_
Correlated function 53–55

Quasi-random sequences 38–41

R
Radon–Nikodym derivative 12

Random variates 37–58
correlated variates 47–58
independent 41–46

lognormal distribution 45, 46
normal distribution 42–44
Student’s t-distribution 46

pseudo-random/quasi-random
sequences 38–41

Random walk see Brownian motion
Rate swap 211–218

amortization 212
basis swap 212–214
coupon payment

early 217
late 217, 218
on time 215, 216

floating leg 212
general payment timing 216, 217
payer 211
receiver 211
swap rate 212
vanilla 211

Receiver interest rate swap 211
Return 9
Rho 75

vanilla European options 293
RiskFreeRate 257
Roll–Geske–Whaley approximation

97–101

S
Scaled Brownian motion 22
Siedentopf, Henry 5
Simply compounded spot rate 210
Single equity options 267
Single FX option 281–284
Sobol sequences 39, 41, 184, 185
Spot rate

continuously compounded 209
simply compounded 210

Standard deviation, annualized 78
Standard integrals 321
Stochastic integral, expectation of 33
Stochastic lattice 172–180

asset prices 173–174
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Monte Carlo estimate 177–180
option prices 174–176
simulation parameters 173

Stochastic processes 5–35
Brownian bridge 19–21
Brownian model of asset price

movements 9, 10
Brownian motion 5–9

time-transformed 21–24
Girsanov’s theorem 12, 13
Ito’s product

in n dimensions 18, 19
and quotient rules 15–18

Ito’s formula 10–12
multiasset geometric Brownian

motion 13–15
Ornstein–Uhlenbeck bridge 27–31
Ornstein–Uhlenbeck process 22–27

Strike price 59
Structured deal 239
Student’s t-distribution 46, 317, 318
Swaplets 211

quanto 227
Swap rate 212

T
Taylor expansion 10, 14, 151
Theta 75, 119, 169

computation of 125, 126
vanilla European options 292, 293

Three asset options 201–205
Time-transformed Brownian motion

21–24
Timing adjustment 218–223
Total return swap

credit 236, 237
equity 237–240

equity leg 237, 238
equity swap 239, 240
floating leg 238
payer equity 238, 239

Trading days 78
Two asset options 190–201

American 197–200
European 190–192

maximum or minimum 192–194
Two-equity option 267–269

U
Unconditional mean 23
Unconditional variance 23, 24
Uniform grids 136–150

backwards iteration and early
exercise 147–150

boundary conditions 142, 143
finite-difference approximation

138–142
log transformation 156–163
option values 143–147

Up and in call options 86
Up and out call options 83, 88–91

analytic pricing 88–91
derivation of 298–302

V
Vanilla options

American 97–111
call with cash dividends 97–102
grid methods 135–167
lattice methods 114–135
MacMillan–Barone-Adesi–

Whaley method 102–107
numerical solution of critical asset

values 107–111
binomial lattice 81, 114–122

with BBS and BBSR 131–135
construction and use 120–128
with control variate 129, 130

European 59, 62–84
call 59, 69, 83, 85
Greeks for 289–294
put 59

grid methods 135–167
double knockout call option

166–169
nonuniform grids 148–159
uniform grids 136–150

interest rate swap 211
Variance 25, 26, 305–307

n variables 306, 307
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one variable 305
Ornstein–Uhlenbeck process 25, 26
three variables 306
two variables 305
unconditional 23, 24

Vega 76
computation of 126
vanilla European options 294

Visual Basic 82–84
bs_opt 84
bs_opt_barrier_downout_call 88

Volatility 7
historical 78, 79
implied 79–81

volatility smile 79

W
Wiener, Norbert 5
Wiener process see Brownian motion

Y
YieldCurve 257

Z
Zero coupon rate 257
Zero drift 8
Zsigmondy, Richard 5



Glossary

The notation used is as follows:

GBM Geometric Brownian motion

BM Brownian motion

Wt Brownian motion at time t

ρ the correlation coefficient

E[x] the expectation value of X

Var[X] the variance of X

Cov[X, Y ] the covariance between X and Y

Cov[X] the covariance between the variates contained in the vector X

σ the volatility. Since assets are assumed to follow GBM it is com-
puted as the annualized standard deviation of the n continuously
compounded returns

N1(a) the univariate cumulative normal distribution function. It gives the
cumulative probability, in a standardized univariate normal distrib-
ution, that the variable x1 satisfied x1 � a

N2(a, b, ρ) the bivariate cumulative normal distribution. It gives the cumulative
probability, in a standardized bivariate normal distribution, that the
variables x1 and x2 satisfy x1 � a and x2 � b when with correlation
coefficient between x1 and x2 is ρ

r the risk free interest rate

q the continously compounded dividend yield

Sit the ith asset price at time t

Inn the n by n unit matrix

�(μ, σ 2) a lognormal distribution with parameters μ and σ 2. If y = log(x)

and y ∼ N(μ, σ 2) then the distribution for x = ey is x ∼ �(μ, σ 2).
We have E[x] = exp(μ+ σ 2

2 ) and Var[x] = exp(2μ+σ 2)(exp(σ 2)−1)

Continued on back cover



Glossary (Continued)

DF(t, T ) the discount factor between times t and T , where T � t . The price
of a nondefaultable zero coupon bond which matures at time T

is the expected value of DF(t, T ). In this book we assume that in-
terest rates are deterministic and thus DF(t, T ) is the value of a
nondefaultable zero coupon bond maturing at T

DF(t, T ) the discount factor (including the possibility of default) between
times t and T , where T � t : DF(t, T ) = S(t, T )DF(t, T ). The price
of a defaultable zero coupon bond which matures at time T is the
expected value of DF(t, T ). In this book we assume that interest
rates are deterministic and thus DF(t, T ) is the value of a default-
able zero coupon bond maturing at T

F(t, T1, T2) the forward rate at time t between times T1 and T2 where T2 � T1
and T1 � t

L(T1, T2) the simply compounded spot rate between times T1 and T2, where
T2 � T1

log(x) the natural logarithm of x

N(a, b) normal distribution, with mean a and variance b

dWt a normal variate (sampled at time t) from the distribution N(0, dt),
where dt a specified time interval e.g. dx = μ dt + dWt

dZt a normal variate (sampled at time t) from the distribution N(0, 1).
Note: The variate dψ = √

dt dZt has the same distribution as dWt

IID independently and identically distributed

U(a, b) the uniform distribution, with lower limit a and upper limit b

|x| the absolute value of the variable x

PDF the probability density function of a given distribution

x ∧ y the minimum of x and y, that is min(x, y)

S(t, T ) the survival probability between time t and T , T > t

‖A − B‖ the distance between two matrices with the same dimensions. If A

and B both have n rows and m columns then this distance is:√√√√ n∑
i=1

m∑
j=1

{Ai,j − Bi,j }2

where Ai,j and Bi,j refer to the element in the ith row and j th
column


