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Preface

This book builds on the author’s previous book Computational Finance: Nu-
merical Methods for Pricing Financial Instruments, which contained informa-
tion on pricing equity options using C code. The current book covers the fol-
lowing instrument types:

Equity derivatives

Interest rate derivatives
Foreign exchange derivatives
Credit derivatives

There is also an extensive final chapter which demonstrates how a C-based
analytics pricing library can be used by C# portfolio valuation software. In ad-
dition this application:

e illustrates the use of C# dictionaries, abstract classes and .NET InteropSer-
vices

e permits the reader to value bespoke portfolios

e allows market data to be specified via a configuration file

e contains a generic basket pricer for which the reader can specify the payoff
function

e can be freely downloaded for use by the reader.

The current book also contains increased coverage of stochastic processes, Ito
calculus and Monte Carlo simulation. These topics are supported by practical
applications and solved example problems.

In addition the Numerical Algorithms Group (NAG) have allowed readers
to enjoy an extended trial licence for the NAG C library and associated finan-
cial routines from the following url: www.nag.co.uk/market/elsevier_glevy. The
NAG C library may be called into C# and provides a large suite of mathematical
routines addressing many areas covered in this book (random numbers, statisti-
cal distributions, option pricing, correlation and covariance matrices etc.).

Computational Finance Using C and C# also includes supporting software
that may be downloaded for free. The software consists of executable files, con-
figuration files and results files. With these files the user can run the example
portfolio application in Chapter 8 and change the portfolio composition and
the attributes of the deals.

Additional upgrade software is available for purchase with Computational
Finance Using C and C#. The software includes:

e Code to run all the C, C# and Excel examples in the book
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e Complete C source code for the Analytics_Mathlib math library that is used
in the book

e C# source code, market data and portfolio files for the portfolio application
described in Chapter 8

All the C/C# software in the book can be compiled using either Visual Studio
.NET 2005, or the freely available Microsoft Visual C#/C++ Express Editions.

I would like to take this opportunity of thanking my wife Kathy for her sup-
port.

In addition I am grateful to Karen Maloney of Elsevier for her patience with
regard to the book’s delivery date, and Dr. Stephen Satchell of Trinity College
Cambridge for allowing me the opportunity to write a sequel.

George Levy
Benson, Oxfordshire, UK
2008



Overview of financial derivatives

A financial derivative is a contract between two counterparties (here referred
to as A and B) which derives its value from the state of underlying financial
quantities. We can further divide derivatives into those that carry a future oblig-
ation and those that don’t. In the financial world a derivative which gives the
owner the right but not the obligation to participate in a given financial contract
is called an option. We will now illustrate this using both a Foreign Exchange
Forward contract and a Foreign Exchange option.

Foreign Exchange Forward—a contract with an obligation

In a Foreign Exchange Forward contract a certain amount of foreign currency
will be bought (or sold) at a future date using a prearranged foreign exchange
rate.

For instance, counterparty A may own a Foreign Exchange Forward which,
in one year’s time, contractually obliges A to purchase from B the sum of $200
for £100. At the end of one year several things may have happened.

(i) The value of the pound may have decreased with respect to the dollar
(ii) The value of the pound may have increased with respect to the dollar
(iii) Counterparty B may refuse to honor the contract—B may have gone bust,
etc.
(iv) Counterparty A may refuse to honor the contract—A may have gone bust,
etc.

We will now consider events (i)—(iv) from A’s perspective.

Firstly, if (i) occurs then A will be able to obtain $200 for less than the current
market rate, say £120. In this case the $200 can be bought for £100 and then
immediately sold for £120, giving a profit of £20. However, this profit can only
be realized if B honors the contract—that is, event (iii) does not happen.

Secondly, when (ii) occurs then A is obliged to purchase $200 for more than
the current market rate, say £90. In this case the $200 are bought for £100 but
could have been bought for only £90, giving a loss of £10.

The probability of events (iii) and (iv) occurring are related to the Credit Risk
associated with counterparty B. The value of the contract to A is not affected
by (iv), although A may be sued if both (ii) and (iv) occur. Counterparty A
should only be concerned with the possibility of events (i) and (iii) occurring—
that is, the probability that the contract is worth a positive amount in one year
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and the probability that B will honor the contract (which is one minus the
probability that event (iii) will happen).

From B’s point of view the important Credit Risk is when both (ii) and (iv)
occur—that is, when the contract has positive value but counterparty A defaults.

Foreign Exchange option—a contract without an obligation

A Foreign Exchange option is similar to the Foreign Exchange Forward, the
difference being that if event (ii) occurs then A is not obliged to buy dollars
at an unfavorable exchange rate. To have this flexibility A needs to buy a For-
eign Exchange option from B, which here can be regarded as insurance against
unexpected exchange rate fluctuations.

For instance, counterparty A may own a Foreign Exchange option which, in
one year, contractually allows A to purchase from B the sum of $200 for £100.
As before, at the end of one year the following may have happened:

(i) The value of the pound may have decreased with respect to the dollar
(ii) The value of the pound may have increased with respect to the dollar
(iii) Counterparty B may refuse to honor the contract—B may have gone bust,
etc.
(iv) Counterparty A may have gone bust, etc.

We will now consider events (i)—(iv) from A’s perspective.

Firstly, if (i) occurs then A will be able to obtain $200 for less than the current
market rate, say £120. In this case the $200 can be bought for £100 and then
immediately sold for £120, giving a profit of £20. However, this profit can only
be realized if B honors the contract—that is, event (iii) does not happen.

Secondly, when (ii) occurs then A will decide not to purchase $200 for more
than the current market rate; in this case the option is worthless.

We can thus see that A is still concerned with the Credit Risk when events
(1) and (iii) occur simultaneously.

The Credit Risk from counterparty B’s point of view is different. B has sold
to A a Foreign Exchange option, which matures in one year, and has already
received the money—the current fair price for the option. Counterparty B has
no Credit Risk associated with A. This is because if event (iv) occurs, and A
goes bust, it doesn’t matter to B since the money for the option has already
been received. On the other hand, if event (iii) occurs B may be sued by A but
B still has no Credit Risk associated with A.

This book considers the valuation of financial derivatives that carry obliga-
tions and also financial options.

Chapters 1-7 deal with both the theory of stochastic processes and the pric-
ing of financial instruments. In Chapter 8 this information is then applied to a
C# portfolio valuer. The application is easy to use (the portfolios and current
market rates are defined in text files) and can also be extended to include new
trade types.
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The book has been written so that (as far as possible) financial mathematics
results are derived from first principles.

Finally, the appendices contain various information, which we hope the
reader will find useful.
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2 Introduction to stochastic
processes

2.1 Brownian motion

Brownian motion is named after the botanist Robert Brown who used a micro-
scope to study the fertilization mechanism of flowering plants. He first observed
the random motion of pollen particles (obtained from the American species
Clarkia pulchella) suspended in water, and wrote:

The fovilla or granules fill the whole orbicular disk but do not extend to the
projecting angles. They are not sphaerical but oblong or nearly cylindrical,
and the particles have manifest motion. This motion is only visible to my
lens which magnifies 370 times. The motion is obscure yet certain. ..

Robert Brown, 12th June 1827; see Ramsbottom (1932)

It appears that Brown considered this motion no more than a curiosity (he be-
lieved that the particles were alive) and continued undistracted with his botan-
ical research. The full significance of his observations only became apparent
about eighty years later when it was shown (Einstein, 1905) that the motion
is caused by the collisions that occur between the pollen grains and the water
molecules. In 1908 Perrin (1909) was finally able to confirm Einstein’s predic-
tions experimentally. His work was made possible by the development of the
ultramicroscope by Richard Zsigmondy and Henry Siedentopf in 1903. He was
able to work out from his experimental results and Einstein’s formula the size
of the water molecule and a precise value for Avogadro’s number. His work
established the physical theory of Brownian motion and ended the skepticism
about the existence of atoms and molecules as actual physical entities. Many of
the fundamental properties of Brownian motion were discovered by Paul Levy
(Levy, 1939, 1948), and the first mathematically rigorous treatment was pro-
vided by Norbert Wiener (Wiener, 1923, 1924). Karatzas and Shreve (1991) is
an excellent textbook on the theoretical properties of Brownian motion, while
Shreve, Chalasani, and Jha (1997) provides much useful information concerning
the use of Brownian processes within finance.

Brownian motion is also called a random walk, a Wiener process, or some-
times (more poetically) the drunkard’s walk. We will now present the three fun-
damental properties of Brownian motion.
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2.1.1 The properties of Brownian motion

In formal terms a process W = (W;:¢t > 0) is (one-dimensional) Brownian
motion if:

(i) W, is continuous, and Wp = 0,
(i) W, ~ N(O, 1),
(iii) The increment dW; = W, 4, — W, is normally distributed as dW, ~ N(0, dr),
so E[dW;] = 0 and Var[dW;] = d¢. The increment dW; is also independent
of the history of the process up to time z.

From (iii) we can further state that, since the increments dW; are independent
of past values W;, a Brownian process is also a Markov process. In addition we
shall now show that a Brownian process is also a martingale process.

In a martingale process P, ¢t > 0, the conditional expectation E[P; 4| F:] =
P;, where F; is called the filtration generated by the process and contains the
information learned by observing the process up to time ¢. Since for Brownian
motion we have

EW;salFil = E[(Wipar — W) + Wil Fr] = E[Wypq — Wil + W
= E[dW[] + Wt = W[
where we have used the fact that E[dW;] = 0. Since E[W, 4|F;] = W, the
Brownian motion W is a martingale process.

Using property (iii) we can also derive an expression for the covariance of
Brownian motion. The independent increment requirement means that for the

ntimes0< g <t <2 <-- <ty <oo the random variables Wy, — W,,, W;, —
Wy, ..., W, — W, _, are independent. So
COV[W;]- — Wti—l’ Wtj — Wtj—l] = 0, i ;é J (2.11)

We will show that Cov[W, W;] =s A t.

Proor. Using Wy, = 0, and assuming 7 > s we have

Cov[Ws — Wio, Wy — Wyo] = Cov[ Wy, W] = Cov[ Wy, Wy + (W, — Wy)]
From Appendix C.3.2 we have

Cov|[ Wy, Wy + (W; — Wy)]| = Cov[W, Wy] + Cov[Ws, Wy — W]

= Var[W,] + Cov[W;, W; — W,]

Therefore

Cov[W,, W] = s + Cov[W,, W, — W]
Now

Cov[Wy, W; — W] = Cov[W; — Wy, W; — W] =0

where we have used Eq. (2.1.1) withn =2,y = s and rp = 1.
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We thus obtain
Cov[W,, Wil =5
So
Cov[Wy, W,] = s At (2.1.2)

We will now consider the Brownian increments over the time interval d¢ in
more detail. Let us first define the process X such that:

dX[ = th (2.13)

where dW; is a random variable drawn from a normal distribution with mean
zero and variance dr, which we denote as dW; ~ N(0, dr). Equation (2.1.3) can
also be written in the equivalent form:

dX, = Vdtdz (2.1.4)

where dZ is a random variable drawn from a standard normal distribution (that
is a normal distribution with zero mean and unit variance).

Equations (2.1.3) and (2.1.4) give the incremental change in the value of X
over the time interval dt for standard Brownian motion.

We shall now generalize these equations slightly by introducing the extra
(volatility) parameter o which controls the variance of the process. We now
have:

dX; ZUth (2.1.5)

where dW; ~ N(0,dr) and dX, ~ N(0, ¢?dr). Equation (2.1.5) can also be
written in the equivalent form:

dX, =ov/drdz, dz ~N(0,1) (2.1.6)
or equivalently
dX, =~/ditdZ, dZ ~N(0,0?) (2.1.7)

We are now in a position to provide a mathematical description of the move-
ment of the pollen grains observed by Robert Brown in 1827. We will start
by assuming that the container of water is perfectly level. This will ensure that
there is no drift of the pollen grains in any particular direction. Let us denote
the position of a particular pollen grain at time ¢ by X,, and set the position
atr = 0, Xy, to zero. The statistical distribution of the grain’s position, X7, at
some later time r = T, can be found as follows:

Let us divide the time T into n equal intervals df = T/n. Since the position of
the particle changes by the amount dX; = o+/dr dZ; over the ith time interval
dz, the final position X7 is given by:

XT =i(c@dzi) =a«/§id2i

i=1 i=1
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Since dZ; ~ N(0, 1), by the Law of Large Numbers (see Appendix C.1), we have
that the expected value of position X7 is:

E[X7] = o~dtE [Z dzi] -0
i=1

The variance of the position X7 is:

Var[X7] = Var[a@Zdzl} =o?dr Var|:z dzl} (2.1.8)
i=1 i=1
Since all the dZ; variates are IID N(O,1) we have Var[dZ;] = 1 and
Var[Y_7 4 X;]1 = >4 Var[X;] (see Appendix C.3.1).
Thus
Var[X7] =0%dt ) Var[dZi]=o0%dt ) 1 (2.1.9)
i=1 i=1

which gives:
Var[X7] = 0?ndt = To? (2.1.10)

So, at time T, the position of the pollen grain X7 is distributed as X7 ~
N(O, To?).

If the water container is not perfectly level then the pollen grains will ex-
hibit drift in a particular direction. We can modify Eq. (2.1.5) to take this into
account as follows:

dX, = pdt + ov/drdz;, dz; ~ N(O, 1), (2.1.11)
or equivalently
dX[ = Mdt + o0 dW[, dW[ ~ N(O, dt), (2.1.12)

where we have included the constant drift u. Proceeding in a similar manner to
that for the case of zero drift Brownian motion we have:

n

Xr=) (ndt+0vVdtdz)=p ) di+ovVdt ) dz

=1 i=1 i=1
=uT + o@i dz;
i=1
which gives
ELXr] = E[MT +o¢aidz,}
i=1

E[X7] = uT + o@E[Z dzl} =uT

i=1
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The variance of the position X7 is:

Var[X7] = Var|:u,T + a«/&ZdZi:| = Var[a@Zle}

i=1 i=1

Here we have used the fact (see Appendix C.3.1) that Var[a + bX] = b? Var[X],
where a = uT, and b = 1. From Egs. (2.1.9) and (2.1.10) we have:

n
Var[X7] = Var[a@ZdZ,} = To?
i=1
So, at time T, the position of the pollen grain X7 is distributed as X7 ~
N(uT, To?).
We have just shown that when we vary the drift of a Brownian motion, its
volatility remains unchanged. This is a very important property and (as we will
see later) is used extensively in the theory of derivative pricing.

2.2 A Brownian model of asset price movements

In the previous section we showed how Brownian motion can be used to de-
scribe the random motion of small particles suspended in a liquid. The first
attempt at using Brownian motion to describe financial asset price movements
was provided by Bachelier (1900). This, however, only had limited success be-
cause the significance of a given absolute change in asset price depends on the
original asset price. For example, a £1 increase in the value of a share originally
worth £1.10 is much more significant than a £1 increase in the value of a share
originally worth £100. It is for this reason that asset price movements are gen-
erally described in terms of relative or percentage changes. For example, if the
£1.10 share increases in value by 11 pence and the £100 share increases in value
by £10, then both of these price changes have the same significance, and corre-
spond to a 10 percent increase in value. The idea of relative price changes in the
value of a share can be formalized by defining a quantity called the return, R;,
of a share at time ¢. The return R; is defined as follows:

Stvdr — St ds;
= s, =3 (2.2.1)
where S, 4, is the value of the share at time ¢ + d¢, S; is the value of the share at
time ¢, and dS; is the change in value of the share over the time interval dr. The
percentage return R* over the time interval dz is simply defined as R* = 100x R;.

We are now in a position to construct a simple Brownian model of asset
price movements; further information on Brownian motion within finance can
be found in Shreve, Chalasani, and Jha (1997).

The asset return at time ¢ is now given by:

R = % — pwdr +odW,, dw, ~N(O,dn), (2.2.2)

t

R;
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or equivalently:
dS[ = SI‘M dt + S[U dW[ (2.2.3)

The process in Egs. (2.2.2) and (2.2.3) is termed geometric Brownian motion;
which we will abbreviate as GBM. This is because the relative (rather than ab-
solute) price changes follow Brownian motion.

2.3 Ito’s formula (or lemma)

In this section we will derive Ito’s formula; a more rigorous treatment can be
found in Karatzas and Shreve (1991).
Let us consider the stochastic process X:
dX =adt +bdW = adr +bvVdrdz, dzZ ~N(0,1),dW ~ N(0, dr)
(2.3.1)

where a and b are constants. We want to find the process followed by a function

of the stochastic variable X, that is ¢ (X, t). This can be done by applying a

Taylor expansion, up to second order, in the two variables X and ¢ as follows:
1824

99 09 18¢dX2+——d2+ %0

= —dt dXx dr
9 =0+ + 290X? 2 312 X ot

(2.3.2)

where ¢* is used to denote the value ¢ (X +dX, ¢ +dr), and ¢ denotes the value
¢ (X, 1). We will now consider the magnitude of the terms dx2, dx d¢, and df?
as dr — 0. First

dXx? = (adt +bv/dr dZ)(a dr + bv/dr dZ)
a?dr? + 2ab dr¥2dZ + b dr d 72

dX+

then
dXdr =ad® +bdr¥?dz

So as dr — 0, and ignoring all terms in dr of order greater than 1, we have:
dx? ~b?drdz? dr*>~0, and dxdr~0

Therefore Eq. (2.3.2) can be rewritten as:

2
do = ¢dt+ ¢ +§%E[dx2] (2.3.3)

where d¢ = ¢* — ¢, and we have replaced dX? by its expected value E[dX?].
Now

E[dX?] = E[b*drdZ?] = b? dtE[dZ?] = b*dt
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where we have used the fact that, since dZ ~ N(O, 1), the variance of dZ,
E[dZ?), is by definition equal to 1. Using these values in Eq. (2.3.3) and substi-
tuting for dX from Eq. (2.3.1), we obtain:

YY) ¢ b2 9%¢

d
d¢:§dt+a—x(adt+bdw)+5ﬁdt (2.3.4)

This gives Ito’s formula

(3 ¢ | b% 0% d¢
do = <§+aa_x+5m) ar+ 2 paw (2.3.5)

In particular if we consider the geometric Brownian process:
dS=puSdr+oSdw

where u and o are constants, then substituting X = S, a = uS, and b = o S into
Eq. (2.3.5) yields:

d i) dp 025292 IO 36
Equation (2.3.6) describes the change in value of a function ¢ (S, t) over the time
interval dr, when the stochastic variable S follows GBM. This result has very
important applications in the pricing of financial derivatives. Here the function
¢ (S, 1) is taken as the price of a financial derivative, f(S, r), that depends on the
value of an underlying asset S, which is assumed to follow GBM. In Chapter 4
we will use Eq. (2.3.6) to derive the (Black—Scholes) partial differential equation
that is satisfied by the price of a financial derivative.

We can also use Eq. (2.3.3) to derive the process followed by ¢ = log(S;). We
have:

¢ dlogs) 1 29 9 (alog(s,)) 3 <1>_ 1

as, — as ST as? as,\ as, ) as\s/) s?
% . alog(S;) -0
o ot
So
52
d(log(S)) =vdt + o dW; wherev =p — > (2.3.7)
Integrating Eq. (2.3.7) yields
T T T
/ d(log(Sy)) :/ vdt+/ o dw,
t=tg t=tg t=tg
S0
log(S7) —10g(Sy,) = vT +oWr (2.3.8)

where we have used 7o = 0 and W;, = 0.
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We obtain
N
Iog(—T) ~N(vT,o°T) (2.3.9)
Sto
and so
St
Iog(—) =vl +oWr (2.3.10)
Sto
The solution to the geometric Brownian motion (GBM) in Eq. (2.2.3) is
2
St = St &XpOT + o Wr), v=p— % (2.3.11)

The asset value at time ¢ + dr can therefore be generated from its value at
time ¢ by using

Sivdi = Srexp{vdr + o dW;}

We have shown that if the asset price follows geometric Brownian motion,
then the logarithm of the asset price follows standard Brownian motion. An-
other way of stating this is that, over the time interval dz, the change in the
logarithm of the asset price is a Gaussian distribution with mean (u — 02/2) dt,
and variance o2 dt.

These results can easily be generalized to include time varying drift and
volatility. Now instead of Eq. (2.2.3) we have

dS[ = S[/,Lt dt + SIO} dW[ (2312)
which results in
d(log(S))) = v dr + oy dW, (2.3.13)

SO
T T T
/ d(|0g(S;)) = / Vr dr +/ Ot dW[
t=tp t=to t=to
which results in the following solution for Sy

T T 52
St = Sp exp(/ v dt +/ oy dW,) where v, = pu;, — - (2.3.14)
t t

o o 2

The results presented in Egs. (2.3.11) and (2.3.14) are very important and
will be referred to in later sections of the book.

2.4 Girsanov's theorem

This theorem states that for any stochastic process k(¢) such that fé k(s)2ds <
oo then the Radon—-Nikodym derivative ?i_lP = p(1) is given by:

t t
p(t) = exp{/ k(s)dw, — }/ k(S)st} (2.4.1)
0 2 Jo
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where W/ is Brownian motion (possibly with drift) under probability measure
PP, see Baxter and Rennie (1996). Under probability measure Q we have:

t
we =wr - / k(s) ds (2.4.2)
0

where W,Q is also Brownian motion (possibly with drift).
We can also write

dwP =dw?@ + k(1) dr (2.4.3)

Girsanov’s theorem thus provides a mechanism for changing the drift of a
Brownian motion.

2.5 Ito’s lemma for multiasset geometric Brownian motion

We will now consider the n-dimensional stochastic process:

dX; =a;dt + b;vV/dtdZ; = a; dt +b; dW;, i=1,...,n, (2.5.1)
or in vector form:

dX = Adr+ VdiBdZ = Adr + BdwW (2.5.2)
where A and B are n-element vectors respectively containing the constants,
ai,i = 1,...,n,and b;,i = 1,...,n. The stochastic vector dX contains the
n stochastic variables X;,i =1, ..., n.

We will assume that the n element random vector dZ is drawn from a mul-
tivariate normal distribution with zero mean and covariance matrix C. That is,
we can write:

dz ~N(, 0)

Since C;; = VarLdZi] =1,i =1,...,n, the diagonal elements of C are all unity
and the matrix C is in fact a correlation matrix with off-diagonal elements given

by:
Cij=EIdZ;dZ1=pij, i=1....,n, j=1...,n i#}]

where p;; is the correlation coefficient between the ith and jth elements of the
vector dZ.

Similarly the n-element random vector dW is drawn from a multivariate nor-
mal distribution with zero mean and covariance matrix C. We can thus write:

dw ~N(0, C)

The diagonal elements of C are C;; = Var[dW;] = dr,i = 1,...,n, and off-
diagonal elements are

CijZE[dWide]Zpi,jdt, i=1...,n, j:l,...,n, l;ﬁ]
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As in Section 2.3 we want to find the process followed by a function of the
stochastic vector X, that is the process followed by ¢ (X, r). This can be done by
applying an n-dimensional Taylor expansion, up to second order, in the variables
X and ¢ as follows:
n 82¢
o =gt dr+ZaX dx; + E[;;ax 59 dx; dx; ]

n

1%  , ¢

where ¢* is used to denote the value ¢ (X + dX, ¢ +dr), and ¢ denotes the value
(X, ). We will now consider the magnitude of the terms dX; dX;, dX; dr, and
dr? as dt — 0. Expanding the terms dX; dX; and dX; dr we have:
dXx; de = (ai dr + b,’@dzi)(al‘ dr + bjx/adzj')
codX; de = q;a; dr? + aib; de¥? de +ajb; dr®/? dz;
+bib;j drdz; de
dX; dt = a; dr? + b; dr®/? dz;

(2.5.4)

So as dr — 0, and ignoring all terms in dr of order greater than 1, we have:
dX;dt ~0
and
dX; dX; ~ b;b; dr dZ; dZ;
Therefore Eq. (2.5.3) can be rewritten as
2

dg = ¢d +Z % - dX; + E[Zzax 7% 9 dX} (2.5.5)

where d¢p = ¢* — ¢.
Now

E[dX,' dX]] e E[b,‘bj dtdZ,' de] e b,‘bj dlE[dZ,‘ de] = b,‘bj,o,'j dr

where p;; is the correlation coefficient between the ith and jth assets.
Using these values in Eq. (2.5.5), and substituting for dX; from Eq. (2.5.1),
we obtain:
9%
dr + 3 ZZb bjpij dt ——— X 9K,

i=1j=1

dg = Z (a,dt+de,)+ ¢

(2.5.6)

This gives Ito’s n-dimensional formula:
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+Z o * 3 ZbeijaX 59 dr

i=1j=1

d¢
+Zaxi AW, (2.5.7)
i=1

In particular if we consider the geometric Brownian motion:
dS; = u;S;dt +0;8;dW;, i=1,...,n

where u; is the constant drift of the ith asset and o; is the constant volatility of
the ith asset, then substituting X; = S;, ¢; = w;S;, and b; = 0;S; into Eq. (2.5.7)
yields:

+ZM1S1 ZZZUIU/StS/pz/aS ;S }dl

i=1j=1

¢
+ Z 8—&0,-5,- dw; (2.5.8)
i=1

2.6 Ito product and quotient rules in two dimensions

We will now derive expressions for the product and quotient of two stochastic
processes. In this case ¢ — ¢ (X1, X2), with
dX1=a1dt +b1dW1 and dXo =apdr + by dW>

The following two-dimensional version of Ito’s lemma will be used:

a¢> 8¢> SdXe+ 3 E[ZZBX 59 dx; dxj} (2.6.1)

i=1j=1

dp = S dXat oo

where we have used the fact that 3¢ =

2.6.1 [Ito product rule

Here ¢ = ¢(X1X>2), and the partial derivatives are as follows:

B] B] 92 92
—¢=X2, _¢=X_¢;=_d;=0,
X1 X2 X3  9Xx3

’y 0%

0X10X2 - 0X20X3 B
Therefore using Eq. (2.6.1)
2E[dX1dX>]

dop = XodX; + X1dXo + >
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and the product rule is

d(X1X2) = XodX1 + X1dX2 + E[dX1dX>] (2.6.2)

Brownian motion with one source of randomness

For the special case where X1 is Brownian motion and X2 has no random term
we have:

dX; = X1u1dt + X100dW1 and dX, = Xouodt
Now
E[dX1dX2] = E[(X1p1dr + X101 dW1) Xouo dt ]
= X1 Xppap2 dr? + X1 Xo01 02 dt Xoup dr E[dW1]
=0

where we have ignored terms in df with order higher than 1, and used
E[dW1] = 0.
Therefore Eq. (2.6.2) becomes:

d(X1X2) = X2dX1 + X1dX2
d(X1X2) = Xo(X1p1dr + X101 dW1) + X1 Xouo dt
So we finally obtain:

d(X1X2) = (X1X2){p1 + p2} df + (X1X2)01 dW1q (2.6.3)

2.6.2 Ito quotient rule

Here ¢ = ¢(X1/X>2) and the partial derivatives are as follows:

Ip 1 o X1 ’¢

X e K3 axd o
3% X1 929 929 1
E)—XS - X_g’ 0X10X> - 0X20X1 - _X_S

Therefore using Eq. (2.6.1)

dXx, dx, 1 |:{ 2Xq 2 dX1dX2}i|
dp=——-X1— + -E| | —dX5—-2———=
= T x2 T27| %3 X3

We obtain the following expression for the quotient rule:
() =Gl -5 el ()]
X2 X2 X1 X2 X2 X2
(S 264
X1 X
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Brownian motion

Here we have:

dX; = X1u1dr + X100dW1  and  dX» = Xouodr + X202 dWo
or equivalently

dX—Xll = u1dt +o01dW;1  and dX—X22 = updt + o dW>
Therefore

(%))

E[(,uz dt + oo dWo) (2 dt + o7 sz)]

E[u3dr?] + E[02(dW2)?] + 2E[o2 dt dW5]
15 di? + o2 dt + 202 dt E[dW5]

which results in

E[(@> (ﬁ)} =oZdt (2.6.5)
X2 X2

where we have ignored all terms in d¢ with order higher than 1, and used the
fact that E[dW>] = 0.
In a similar manner

E [(dX—Xll> (dx—}?)} = E[(n1dt + o1 dW1)(uadt + o2 dW2)]
= E[puapp di?] + Elo1up dr dWq]
+ El[oou1dr dWa] + E[o102 dW1 dW3]
= pap2de? + o1 dr E[dWi] + oppq dr E[dW5)
+ 0102 E[dW1 dW5]

which gives

d d
E[(%) <X122)i| = o102dt p12 (2.6.6)

where we have proceeded as before but also used the fact that E[dW1 dW>] =

p12dr.
Substituting these into Eq. (2.6.4) we have:

X1 _ X1\ [dX1 dX» 2
d(X—2> = <X—2>{X—l — X—Z + 05 dr —O'lo'zplzdt}
= (;(—;) {/let +o1dt — podt — oo dt +622dt — 0102p12 dt}

X
= <X—l> {/Ll dt + o1dWy — uodt — oo dWo + 022 dt — 0102012 dt}
2
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This yields:
X1 X1
d<X—2) = (X_2> {11 — 12+ 0f — 0102012} dt
X3
+ <—>{Ul dWi — oo dWo} (2.6.7)

X2

Brownian motion with one source of randomness

We have

dX; = X1u1dt + X100dW1 and dXp = Xouo dt
As before

(%))
(%))

E[/L% dt2] = M% d? >0

E[(,LL]_ dt +o1dWi)uo dt]

= E[MlMZ dr? + o1 dt dWl]
= pipod? + oo dt E[dW1] — 0
Therefore

d(ﬁ) _ (ﬁ) dxy _ dX;
X>)  \X> X1 X2
X
= <—1>{,u1dl‘ + o1 dW1 — pp dr)
X2

So the final expression is

X1 X1 X3
d(X—2> = (X—2>{u1 —p2tdr + (X—2)01 dwy (2.6.8)

2.7 Ito product in n dimensions

Using Eq. (2.5.7) we will now derive an expression for the product of n sto-
chastic processes. In this case ¢ — []7_; X;, and the partial derivatives are as
follows:

0 dX;

¢:¢ L fori=1,....n
0X; Xi

929

—5 =0 fori=1,...,n
o
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¢ 9%
0X;0X; - 0X;0X;
dX; de .
<X1>(Xj>¢ ori £ j,i R | R 1
9% _yo
ot
So substituting into Eq. (2.5.7) we have
=L (dX; " [(dXi /dX;
dg = ¢Z< e )+¢E|:Z > ( e )(X—fﬂ (2.7.1)
=1 i=1j=1G#j) > ' /
which in full is
d<HXi) _ ( x,-) > (%)
i=1 i=1 i=1
n n n dX,‘ dx.
+ (]_[ X,->E|:Z > (7> (X—f)} (2.7.2)
i=1 ! J

i=1 j=1(i#))

2.8 The Brownian bridge

Let a Brownian process have values Wy, at time 7o and W;, at time #1. We want
to find the conditional distribution of W;, where 19 < t < t;. This distribution
will be denoted by P(W;|{Wy,, W,}), to indicate that W, is conditional on the

end values Wy, and W;,. We now write W, and W;, as
Wt = W[0+\/l_t0X[, X[ ’\’N(O, 1),
Wy =W, +t1—1tY,, Y ~N(@O,1),

where X; and Y; are independent normal variates.
Combining Egs. (2.8.1) and (2.8.2) we have

Wi = Wiy + V1 — 10X, + /11 — 1Y,
which can be re-expressed as
Wi — Wiy = V1 — 10X, + /11 — 1Y,
Using the Brownian motion property (iii) in Section 2.1
th - Wto = mzt, Z;, ~N(,1)
So
Vi —10Z; =i — 10X, + /11— 1Y,
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and
S —10Z — JT—10X
Y(X,, z,) = YLl = v = fof (2.8.3)
Vi1 —t

Now P(W;|{W;y, W;,}) = P(X|Z;), the probability distribution of X; condi-
tional on Z;. From Bayes law

P(X)P(Y (X, Zy)) 1 { X2+ Y2 - 272
= ex -
P(Z;) V27 2
Since X, Y; and Z; are Gaussians we can write
1 {ﬁ+ﬁ—ﬁ}
/27 2
First let us compute Y2.

v2_ <./t1 —t0Zs — JT — tOX,>2
2 _

P(X/1Z)) = } (2.8.4)

P(X,|1Z) = (2.8.5)

i1 —t

SO

_ (11 — to)th + (r — to)th — 2/t1 — to/t — 10X, Z; (2.8.6)

11—t

Y2

Next we compute X? + Y2 — Z? as follows
X2+ Y2 - 72
(1 — 1) XZ 4 (1 — 10)Z2 — 2\/t1 — lo\/T — 10X, Z; (2.87)

n—t

Dividing top and bottom of Eq. (2.8.7) by #1 — top we obtain:
X?4y?2 - 277
X2+ ((t — t0) /(11 — 10)) Z? — 2/11 — fo/T — 1o/ (11 — 10) X1 Z4
(t1—1)/(t1 —t0)
_ X2+ —10)/ (11— 10)Z} = 2T —10)/ (11 — 10) X, Zi
(t1—1)/(t1 — t0)

which gives

(X; — (T —10) /(11 — t0) Z1)?

(1 —1)/(t1 —t0)

X24v2-72= (2.8.8)

where we have used
2
t — 1 t — 1 t — I
<Xl‘_ OZt) =Xt2+ OZIZ_Z OX[Z;

11— 1o t1—1o n—1o

Substituting Eq. (2.8.8) into Eq. (2.8.5) yields
0—@Ka—m%ﬂ}

2(t1 — 1)/ (t1 — t0)

1 (X, —
P(X|Z;) = ﬁ@(p{—
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Therefore P(X,|Z,) is a Gaussian distribution with:

—t h—t
E[X,] = 07, and Var[X,] = —
11 —1o 11 —1o
Substituting for Z, we have
r— to t— to th - WtO

E[X,]= Z;, =
[X:] q—m’ 11—t /11— 1o

which gives:

ELX/] = 20w, — W) (2.8.9)

The variate X, = E[X,] + v/Var[X,]Z, has the same distribution as P(X:|Z,).
So we can substitute X; for X; in Eq. (2.8.1) to obtain:

W, = Wy, + /1 — 10 E[X;] + v/ Var[X,]Z;}

which gives:

VE— 1o 11—t
Wt = Wlo + »\/l - to{ [0 (th - W[o) + Z[}

11— n—1o
and simplifying we obtain:
(11— 1)(t — 10)

1 — 1o t—1o
W, — W, - 7 2.8.10
tl—l0+l1—l0( n to)+ 1 — to t ( )

Wt == Wlo

Variates, W;, from the distribution of P(W;|[{Wy,, W,,}) can therefore be gener-
ated by using

11—t t—t 11— 1) —t
Wy = Wiy + W, 0, [a=0t-), (2.8.11)
11 —1o 11 —1 11 —1o

An alternative derivation of the Brownian bridge is given in Appendix G.

2.9 Time-transformed Brownian motion

Let us consider the Brownian motion:

dW, = ov/dr dz, (2.9.1)
and also the scaled and time-transformed Brownian motion

Yw. =a Wy, (2.9.2)

where the scale factor, a;, is a real function and the time transformation, f;, is a
continuous increasing function satisfying f; > 0; see Cox and Miller (1965).
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Using Ito’s lemma,

aY; aY;
dYw, = —dt + — dW,
Wa = G g, W
where we have used the fact that g;ﬁ
t

From Eq. (2.9.3)

9
dyw, = <%>Wﬁ dt +a, dwy,

Now

dw, = df dz, = ‘/% dr dz,

SO We can write:

dYw, = a,Wy, dt + a,/ f/ dr dZ,
where
, aa; d ; %

a;=— and f; = ”
2.9.1 Scaled Brownian motion
We will prove that W, defined by

—~ 1
le_Wcztv C>09
c

is Brownian motion.
Let us consider the process

YT = Wczt

(2.9.3)

(2.9.4)

(2.9.5)

(2.9.6)

From Eq. (2.9.2) we have a; = 1, f; = ¢, a, = 0and f/ = 2. Substituting

these values into Eq. (2.9.6), yields
dYt =V Czdt er
which gives

dYt ZCN/ECIZ; =Cth

Therefore W; = dY;/c is Brownian motion.

2.9.2 The Ornstein-Uhlenbeck process

We will now show that the Ornstein—-Uhlenbeck process (see Section 2.10) can

be represented as follows:

Yw, = exp(—at)Wy, where ¥

o2 exp(2at)
20 *

,oo >0 (2.9.7)



Introduction to stochastic processes 23

Proor. From Egs. (2.9.2) and (2.9.7) we have:

2 2
=2 eXp("z P nd ay = exp(—2a) (2.9.8)
o
Therefore
a _ _—oep(-an (2.9.9)
a; exp(—at)
and
o2
fl = o 20 &Xp(2at) = o2 exp(Rat) (2.9.10)
o
So
\/f/ dr = \/02 exp(2at) = o exp(at)v/dr (2.9.11)
Thus
dYw, = —aYy, df + exp(—at)o exp(at)/dr dZ (2.9.12)
which means that
dYW,t = _aYW’t dt+Uth (2913)

From Eq. (2.9.13) it can be seen that conditional mean and variance are

Var[dYw,|F] = o dt (2.9.15)
0

Unconditional mean

The unconditional mean is

2 exp(2
ElYw.l= E[exp(—at)W(%“w»} where ¢ > Oand t — oo
o
(2.9.16)
So
E[Yw;]=0 (2.9.17)
Unconditional variance and covariance
Let
2
Y., = exp(—ar)Wy, where ¥, = (%@) (2.9.18)
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and

o2 exp(Zas))

2.9.19
> ( )

Yw,s = exp(—as)Wy, where i, = <
The covariance is:
CovYw,s, Yw,:l = E[Yw,Yws] — E[Yw :1E[Yw ]

= E[YwYw,s] (2.9.20)

since E[Yw ] = E[Yw.] =0.
Shortening the notation of Yy, to ¥; we obtain

Covl[Y;, Y] = E[exp(—at) Wy, exp(—at) Wy, |
= exp(—a(t + ) E[{Wy, Wy, }]
From Eq. (2.1.2)
E[W,, W, =s At (2.9.21)

Therefore, if s < ¢

E[Wy, Wy, 1= Wy, (2.9.22)
and
_ 2 2
CovlY,. ¥,] = exp(—a(t + 5))o “ exp(2as) _ a—exp(—a(t —9) (2923)
2 2
The unconditional variance (obtained by setting s = ) is
o2
Var[Y;] = o (2.9.24)

2.10 Ornstein-Uhlenbeck process
The Ornstein—Uhlenbeck process is often used to model interest rates because
of its mean reverting property. It is defined by the equation

dX;, = —aX,dt + o dW, (2.10.1)
Using the integrating factor exp(at) we have:

exp(at) dX, = —a X, exp(at) dt + o exp(at) dW;
$O

exp(at) dX, + a X, exp(ar) dt = o exp(at) dW,; (2.10.2)
Using the Ito product rule we have:

d(X; exp(at)) = exp(ar) dX; + a X, exp(at) dt (2.10.3)
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So from Egs. (2.10.2) and (2.10.3) we obtain
d(X; exp(at)) = o exp(at) dW; (2.10.4)
Integrating Eq. (2.10.4) gives
s=t s=t
/ d(XS exp(ozs)) =0 / exp(as) dWy
s=0 s=0
which yields
s=t
X, exp(at) — Xy = af exp(as) dW;
s=0
and thus the solution of Eq. (2.10.1) is
s=t
X = Xipexp(—at) + o exp(—at)/ exp(as) dW; (2.10.5)
s=0

We will now derive expressions for both the unconditional mean and the un-
conditional variance of X,.

The mean

Taking expectations of both sides of Eq. (2.10.5) yields
s=t
E[X:] = E[X,0 exp(—at)] + E[a exp(—at)/ exp(as) dWs] (2.10.6)
s=0
since

s=t
E |:a exp(—at) exp(as) dWs]

S= o
=0 exp(—ozt)E[/ exp(as) dWS} =0
s=0

the unconditional mean is

E[X/] = X, exp(—at) (2.10.7)

The variance

To derive the expression for unconditional variance requires a bit more effort.
We have

Var[X,] = E[{X, — E[X1}’] (2.10.8)
= E[{X, — X,y exp(—an)}?]
However, from Eq. (2.10.5)

s=t
X — Xppexp(—at) =0 exp(—at)/ exp(as) dWy
s=0
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So substituting the above expression into Eq. (2.10.8)
s=t 2
Var[X,] = E[{exp(—at)a/ exp(as) dWS} ] (2.10.9)
s=0

s=t 2
Var[X,] = azexp(—Zat)E“/ exp(as)dWs} } (2.10.10)
s=0

Using Ito’s isometry (see Section 2.12.2)

o s=t 2 s=t
E { exp(as) dWs} :| = E|:/ {exp((xs)}zdsi|

s=0 =0
Then using Fubini’s theorem (see Section 2.12.1)

s=t 5 s=t 5
E / {exp(as)} ds] =/ E[{exp(as)} ]ds
K s=0

L Js=0
s=t
= exp(2as) ds
s=0
_exp(2as) §=t
- 20 s=0
_ eXpat) — 1
N 2
Substituting the above result into Eq. (2.10.10)
20t) — 1
Var[X,] = 02 eXp(—Zott){ M }
2a
which yields the following expression for the variance
Var[X,] :aZ{W} (2.10.11)

The expressions for the mean and variance derived in Egs. (2.10.7) and
(2.10.11) allow us to write the distribution of X, as

1— exp(—2
X, ~ N(X,o exp(—ar), GZ{M}) (2.10.12)
(0%
which, if X,, = 0, reduces to
1_ _
X, ~ N(O,GZ{MD (2.10.13)
o

The transition density from Xy, to X, is:

_K(Xi — Xipexp(—alt — to)))z}

P(X¢|Xy) = -2 EXP{ 1—,2

(2.10.14)

where K = 20/02 and y = exp(—a(r — 19)).
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Ornstein-Uhlenbeck stochastic paths can thus be simulated using

Xipar = X, exp(—a dr) +a,/%a_2“d’)dz (2.10.15)

From Eq. (2.10.14) we can write
E[X;14/|1X:] = X, exp(—a dr)
1— exp(—2adr)
2

We will now show that in the limit d¢ — 0, Eq. (2.10.15) reduces to the
Ornstein—-Uhlenbeck process given in Eq. (2.10.1).

For small dr we can take a first-order expansion of the exponentials in
Eq. (2.10.15) to obtain

Vaf[Xt+dz|Xz] = 02{

Xirdr = Xi{(1—adn)} +o\/w dz

20 dt
Xt+dt:Xt_Xtadt+U TdZ

Therefore
Xiiqr — X, = —aX; dt + 0v/dt dZ

SO

which is

dXt = —0le dt +Uth

2.11 The Ornstein-Uhlenbeck bridge

Let an Ornstein—-Uhlenbeck process have value X, at time 79 and X, at time #1.
We are interested in the distribution of X; at an intermediate point, that is
P(X:{ X1, Xy }), where tg < t < 11.

We will show that X; is a Gaussian with conditional mean

1—exp(—2a(t1 — 1)) }

e = X exp(—a(t — to)){

1—y2
+ Xy, exp(—a(n — t)){ 1- expi—_z)o/zgt —0) } (2.11.1)
and conditional variance
v, = (1 — exp(—20(t — 10)))(1 — exp(—2a(t1 — 1))) (2.11.2)

20 (1 — exp(—2a(t1 — 10)))
where y = exp(—a(t1 — 10)).
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ProofF. The standard Ornstein—Uhlenbeck process (o = 1) is defined by the

process:

dXt = —(xX, dt + \/adzt

From Section 2.10 we have that

1 — exp(—2a(t — tg))
X = Xy exp(—a(t — to)) + { P > }dZ,
o
and that the transition density from X, to X; is

V2a
V271 — exp(—2«(t — 19)))

a(X; — X exp(—a(t — 1)))? }
1 — exp(—2a(t — t0))

P(X1|Xzo) =

X exp{—

The joint density of X; and X,, given X, is:
P({X:, X1} X1) = P(Xiy | X0) P (X1 X10)
We thus have:

a(X; — X €Xp(—a(t — 10)))?

P({X1, X1y }|Xp) = eXp{_ (1 — exp(—2a(t — 19)))

a (X — X, exp(—a(ts — 1)))?

8 exp{_ 1~ exp(—2a(11 — 1))

where

1 2a

20 /(1 — exp(—2a(t — 10))) (1 — exp(—2(11 — 1))
The distribution of X, given X;, and X;,, P(X;|Xy,. Xy,) is:
P({X:, X} Xyp)

P(XIHXtov th}) =

P(Xy|X1)
where
V20
P(Xt1|Xt0) =

V21(1 — exp(—2a(11 — 10)))

a(Xyy, — Xi &Xp(—a(ty — 10)))? }
1 — exp(—2a(t1 — to))

X exp{ -
After some algebra we can re-express Eq. (2.11.7) as

P(Xl{ X, X1y)) = n% exp{A)

(2.11.3)

(2.11.4)

(2.11.5)

(2.11.6)

(2.11.7)

(2.11.8)

(2.11.9)
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where

o
A= —5(31 + B2 — B3)

By = {X?+ X2 exp(—2a(t — 10)) — 2X, X, exp(—a(t — 10))}

x {1_@('0(_2“(”_”)} (2.11.10)
1—y2
By = {XZ + XZexp(—2a(t1 — 1)) — 2X, X, exp(—a(t1 — 1)) }
x {1_ EXp(_Z“S - IO))} (2.11.11)
1-y
Bz = {X? + X7 exp(—2x(t1 — t0)) — 2X;, X, exp(—a(t1 — t0)) }
1—exp(—2x(t1 —t))
x {1 — exp(—2at —zo))}{ 0=, } (2.11.12)

_ A —exp(=2a( —10))(1 — exp(=2a(1 — 1))

¢ 1 — exp(—2a (i1 — fo))

and

y = exp(—a(r — 10))

Let us now assume that P(X;|{X;), Xy,}) is a normal distribution with condi-
tional mean u, and conditional variance V;. We thus have:

1 (X, — m)z}
P( X { Xy, X1}) = ——e&Xp} ————— 2.11.13
( t|{ o tl}) \/m p{ 2Vt ( )
Equating Egs. (2.11.7) and (2.11.13)
1 2 12 2
_Z_VI{(XI — )} = _Z_VI{Xt — i —2Xi .}
=—%(31+Bz—33) (2.11.14)
The conditional variance V; can be obtained by noting that:
1 «
2V &
and hence:
V, = LA (2.11.15)
2

so substituting for ¢ in Eq. (2.11.15) we obtain the following expression for the
conditional variance:

_ A —exp(=20(r —10)) (L —exp(—2a(t1 — 1)) _ ¢
- 1 — exp(—2a(f1 — 19)) T 2w

Vi
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The conditional mean can be obtained by noting that X, and X;, are constants
and the coefficients of X, and X? in Eq. (2.11.14) must be the same. Comparing
coefficients of X, we thus have:

—2u = —2Xp exp(—a(t — m)){ 1-ep(2o(n —1) }

1- yz
1—exp(—2a(t — 10)) }
1—y2

— 2X;, exp(—a (1 — t)){

So the conditional mean pu; is:

1—exp(—2ux(t1 — 1))
1-y2 }
1— exp(—2a(r — 19))
1-y2 }
This completes the proof. O

i = Xio exp(—alr — to)){

+ X, exp(—a(tn — t)){

Relation to the Brownian bridge

We will now prove that in the limit (11 — 7o) — O the Brownian bridge result is
obtained.
For the conditional mean, we have:

1—exp(—2a(11 — 1)) }

1= Xy exp(—alt — to)){

1—y2
1 — exp(—2a(t — ¢
+ Xy exp(—a(n — t)){ pi a; o) }
-V
where:
y = exp(—a(r — 10))
which is:

e {eXp(—a(t — 10)) — exp(—2a(r1 — t))}
H=20] 1 = exp(—2a(t — 10) — ot — 10))

exp(—a(ty — 1)) — exp(—2a(t — 19) — a(t1 — 1)) }
1 — exp(—2a(t1 — to))

For small 11 — tg both 11 — ¢ and ¢ — g are small, so:
1—oa(—1)—{1—2a(t1 —1t) —a(t — tp)}
1—{1— 201 —10)} }
1—a(1—1t) —{1—20(t —tg) —a(t1 — 1)}
1-{1-2ua(t1 — t0)} }
which yields the Brownian bridge result for the conditional mean:

11—1o t—1o
nw— Xto th
I1—1Io 11 —1Io

X,

n— Xto{

o
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For the conditional variance:

_ A —exp(—2a(t — 10))(1 — exp(=2x(t — 1))

Vi 20(1 — exp(—2a(t1 — t0)))

For small #; — tg both #; — ¢ and # — #g are small, so we can write:

1-{1-20( —19Hh (A — {1 - 2@t —1)})

V —>
20(1 — {1 —2a(t1 — t0)})

which yields the Brownian bridge result for the conditional variance:

(t —10)(t1 —1)
_ - -

! -1

2.12 Other useful results

2.12.1 Fubini’s theorem

Fubini’s theorem states that (for well-behaved functions) the value of a multidi-
mensional integral is independent of the order in which the integral is evaluated.

For example, the two-dimensional integral of the function f(X,Y) can be
evaluated as:

b d d b
/ f, Y)dde=/ { f(X, Y)dX}dY
X=aJY=c Y

=c X=a

b d
=/ { f(X, Y)dY} dx

X=a Y=c

We will mainly use this result in the form:

EUZ f(W,S)ds:| =/I E[f(W,s)]ds (2.12.1)
s=0 s=0

Since

o0

E[f(W,s)]:/ P(W,s)f(W,s)dwW

—0o0

where P(W, s) is the probability density function of f(W, s), we can thus write
Eq. (2.12.1) in full as:

9] t
/ {/ P(W, 5)f(W, s)ds} dw
W=—o00 lJs=0

t [e)e]
:/ {/ P(W,s)f(W,s)dW}ds
s=0

W=—00



32 Computational Finance Using C and C#

2.12.2 Ito’s isometry

The expected value of the integral of the well-behaved function f(W;, 1) satisfies:

Iy 2 1y
E|:(/ f(Ws,S)dWs) :| =E|:/ {f(WS,S)}st:| (2.12.2)

Proor. We first use the following approximation:

= n—1

p
/ FW,s)dW; = E S Wy t){Wyyy — Wi}
S=l4

i=0

wherea <19 <11 <--- <ty <tp and f;41 — 1; = dr. Thus the integral on the
left-hand side of Eq. (2.12.2) is:

Ip 2
</1 f(“G,S)dWG>
S=ly4

n—1ln-1
=Y 3 S W t) f Wiy )i Wii g — Wi H Wiy — Wi} (2.12.3)

i=0 j=0

Taking expectations of Eq. (2.12.3) we obtain:

17 2
E|:(f f(WhS)de>i|

n—1n—1
= E[Z D Wit f(Wa t) Wiy — Wi H Wiy — W,,-}} (2.12.4)

i=0 j=0

which means that:

Ip 2
E[( f(WG,S)dWQ)}
s=t,

n—1n-1
=33 Wi t) fF Wi tDE[{Wry — Wil (Wi, — Wi}] (2.12.5)
i=0 j=0
However from the Brownian motion property (iii) in Section 2.1 we have:
E[{Wiy — Wl {Wi,, — W3] =0 wheni # j and df wheni = j
Therefore Eq. (2.12.5) can be rewritten as:
1

-2 n
E (/Zh f(WS‘aS)dWY> {f(Wt,7tl)}2dt
s=t4 s

I
o

which means:

r p 12 Iy 2
E( f(WS,s)dWS) =E|:/ {r(ws, 9} dsi|

S=lq =lq
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2.12.3 Expectation of a stochastic integral

If f(¢) is a deterministic function of time then

s=b
E|: f(s) dWS:| =0 (2.12.6)
ProoFr. We first express the integral (2.12.6) by the following summation:

n—1

S=tp
/ F& AW, =3 FE) Wiy — Wi,
s i=0

=t,
wherea <tg<t1 <---<t, <tp

Taking expectations of the above equation yields:

s=b n—1
E|: f(S) dWsi| = E|:Z f(ti){Wt,url - Wt,'}:|
i=0

sS=a
n—1

=Y FU)EIW,,y — W]
i=0
=0

where we have used E[W;, , — W;,] = 0, which is Brownian motion property (iii)
in Section 2.1.

2.13 Selected problems

In this section we provide various problems that test the reader’s understanding
of stochastic calculus. The answers are given in the appendix at the end of the

book.

PrROBLEM T (Problem 4.5, Oksendal (2003)). Let g5 = E[W],k =0,1,2,...,
t > 0, where Wy, = 0.

(a) Show using Ito’s formula for k = 2, 3, 4, ..., that:

1 t
Br=Zk-1 [ B 2ds
2 s=0

(b) Deduce that E[W;‘] =32
(c) What is E[W?]?

PrOBLEM 2 (Problem 5.4(ii), Oksendal (2003)). Solve the stochastic differential
equation:

dX[ == X[ dl + th
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ProBLEM 3 (Problem 5.4(iii), Pksendal (2003)). Solve the stochastic differen-
tial equation:

dX; = —X; dr + exp(—t) dW;
PrROBLEM 4 (Problem 4.2, Oksendal (2003)). Use Ito’s formula to prove that

1 t
w2dw, = w2 —/ W, ds
s=0 3 s=0

where W;, = 0.

ProBLEM § (Problem 5.6, Qksendal (2003)). Solve:
dY[ = th +aY, dW[
where r and « are real constants. Use the integrating factor F; = exp(—aW; +
(@2/2)1).
ProBLEM 6 (Problem 5.7, Oksendal (2003)). The mean reverting Ornstein—
Uhlenbeck process is the solution X; of the stochastic differential equation:
dXt = (m — X;) dt +O'dW;
where m and o are constants.
(a) Solve this equation
(b) Find E[X,] and Var[X,] = E[{X; — E[X/1}?].
ProBLEM 7. Consider the equation dS; = u;S; dr + 0;S; dW; where the value of
Sy at time ¢ = 0 is denoted by Sp.
(a) Show that the mean is:
t 02
E[log(S)] = log(So) +/ O{Mt — é}df
(b) Show that the variance is:
t

Var[log(S,)] = /_0 o2dr

7=

ProBLEM 8. Prove that if ¢ = exp(tW,) then

2
dep = ¢<W, + %) dt + 1 dW,

PrOBLEM 9 (Problem 4.4, Oksendal (2003)). Define:

t 1 t
7, = exp(/ 0, dW, — —/ GSZdS)
s=0 2 s=0

Use Ito’s formula to prove that
dZ[ = Z;@; dW[
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PROBLEM I0O. Let S; = Soexp(ut + o W;) where u and o are constants.

(a) Show by Ito’s lemma that:
o2
(b) Show that:

o2 '
E[S:] — E[Sol = (M + 7) / E[S(1)]dr

=0
(¢) Show that:

o2
E[S:] = So exp(;u + ?t)

PrOBLEM 11T (Problem 4.3, Oksendal (2003)). Let X, ¥; be stochastic processes.

Prove that:
d(Xth) == Xt dYt + Yt dXt + E[dXt dY[]

Deduce the following general integration by parts formula:

t t t
/ X, dY, = X, Y, — X, Yy — f Y, dX; — / E[dX, dY,]
s=0 s=0 s=0
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Generation of random variates

3.1 Introduction

Monte Carlo simulation and random number generation are techniques that
are widely used in financial engineering as a means of assessing the level of
exposure to risk. Typical applications include the pricing of financial derivatives
and scenario generation in portfolio management. In fact many of the financial
applications that use Monte Carlo simulation involve the evaluation of various
stochastic integrals which are related to the probabilities of particular events
occurring.

In many cases, however, the assumptions of constant volatility and a lognor-
mal distribution for Sy are quite restrictive. Real financial applications may re-
quire a variety of extensions to the standard Black-Scholes model. Common re-
quirements are for: nonlognormal distributions, time-varying volatilities, caps,
floors, barriers, etc. In these circumstances, it is often the case that there is no
closed form solution to the problem. Monte Carlo simulation can then provide
a very useful means of evaluating the required integrals.

When we evaluate the integral of a function, f(x), in the s-dimensional unit
cube, IS, by the Monte Carlo method we are in fact calculating the average of
the function at a set of randomly sampled points. This means that each point
adds linearly to the accumulated sum that will become the integral and also
linearly to the accumulated sum of squares that will become the variance of the
integral.

When there are N sample points, the integral is:

1.
Uzﬁ;f(XZ)

where v is used to denote the approximation to the integral and x%, x2, ... xV

are the N, s-dimensional, sample points. If a pseudo-random number generator
is used the points x’ will be (should be) independently and identically distrib-
uted. From standard statistical results we can then estimate the expected error
of the integral as follows:

If we set x' = f(x') then since x’ is independently and identically distributed
x' is also independently and identically distributed. The mean of x is v and we
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will denote the variance as Var[x’] = AZ2. It is a well-known statistical prop-
erty that the variance of v is given by Var[v] = N~1A? (see Appendix E.1 for
further details). We can therefore conclude that the estimated integral v has a
standard error of N™Y2A. This means that the estimated error of the integral
will decrease at the rate of N~1/2,

It is possible to achieve faster convergence than this if the sample points are
chosen to lie on a Cartesian grid. If we sample each grid point exactly once, then
the Monte Carlo method effectively becomes a deterministic quadrature scheme,
whose fractional error decreases at the rate of N1 or faster. The trouble with
the grid approach is that it is necessary to decide in advance how fine it should
be, and all the grid points need to be used. It is therefore not possible to sample
until some convergence criterion has been met.

Quasi-random number sequences seek to bridge the gap between the flexibil-
ity of pseudo-random number generators and the advantages of a regular grid.
They are designed to have a high level of uniformity in multidimensional space,
but unlike pseudo-random numbers they are not statistically independent.

3.2 Pseudo-random and quasi-random sequences

Here we consider the generation of multidimensional pseudo-random and quasi-
random sequences to approximate the multidimensional uniform distribution
over the interval [0, 1], that is the distribution U(0, 1).

Quasi-random numbers are also called low-discrepancy sequences. The dis-
crepancy of a sequence is a measure of its uniformity and is defined as follows:

Given a set of points x1,x2, ..., xN € IS and a subset G C I°, define
the counting function Sy(G) as the number of points x' € G. For each
x = (x1,x2,...,x) € IS, let G, be the rectangular s-dimensional region
G, = [0, x1) x [0, x2) x --- x [0, xy), with volume x1, x2, ..., x,. Then the dis-
crepancy of the points x1, x2, ..., x"V is given by:

D;‘v(xl,xz, ... ,xN) = Sup|SN(Gx) — Nx1x2, ..., xs‘
xel$

The discrepancy is therefore computed by comparing the actual number of sam-
ple points in a given volume of multidimensional space with the number of
sample points that should be there assuming a uniform distribution.

It can be shown that the discrepancy of the first terms of quasi-random se-
quence has the form:

Dy (x 2% ... xN) < Cs(log N)S + O((log N)S71)

forall N > 2.

The principal aim in the construction of low-discrepancy sequences is thus to
find sequences in which the constant is as small as possible. Various sequences
have been constructed to achieve this goal. Here we consider the following
quasi-random sequences: Niederreiter, Sobol, and Faure.
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The results of using various random number generators are shown below.
Figures 3.1-3.3 illustrate the visual uniformity of the sequences. They were cre-

Pseudo-random sequences
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Figure 3.1 The scatter diagram formed by one thousand points from a 16-dimensional
U(0, 1) pseudo-random sequence. For each point the 4th-dimensional component is plot-
ted against the 5th-dimensional component.

Sobol sequences
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Figure 3.2 The scatter diagram formed by one thousand points from a 16-dimensional
U(0, 1) Sobol sequence. For each point the 4th-dimensional component is plotted against
the 5th-dimensional component.
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Niederreiter sequences
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Figure 3.3 The scatter diagram formed by one thousand points from a 16-dimensional
U(0, 1) Niederreiter sequence. For each point the 4th-dimensional component is plotted
against the 5th-dimensional component.

ated by generating one thousand 16-dimensional U(0, 1) sample points, and
then plotting the 4th-dimensional component of each point against its Sth-
dimensional component.

In Fig. 3.1, it can be seen that the pseudo-random sequence exhibits clustering
of points, and there are regions with no points at all.

Visual inspection of Figs. 3.2 and 3.3 shows that both the Sobol and Nieder-
reiter quasi-random sequences appear to cover the area more uniformly.

It is interesting to note that the Sobol sequence appears to be a structured
lattice which still has some gaps. The Niederreiter sequence, on the other hand,
appears to be more irregular and covers the area better. However, we cannot
automatically conclude from this that the Niederreiter sequence is the best. This
is because we have not considered all the other possible pairs of dimensions.

Perhaps the easiest way to evaluate the random number sequences is to use
them to calculate an integral.

In Fig. 3.4 Monte Carlo results are presented for the calculation of the
6-dimensional integral:

1 p1 p1 p1 p1 1 6
= / / / / / f [ [ costixi) dr1 dxa dra dxs dxs dxg
0oJoJoJoJoJo ;3

The exact value of this integral is:

6
I = nsin(i)
i=1

which for i = 6, gives I = —0.0219.
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Monte Carlo integration
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Figure 3.4 Monte Carlo integration using random numbers.

It can be seen that the pseudo-random sequence gives the worst performance.
But as the number of points increases, its approximation to the integral im-
proves. Of the quasi-random sequences, it can be seen that the Faure sequence
has the worst performance, while both the Sobol and Neiderreiter sequences
give rapid convergence to the solution.

Finance literature contains many references to the benefits of using quasi-
random numbers for computing important financial integrals. For instance,
Brotherton-Ratcliffe (1994) discusses the use of Sobol sequences for the val-
uation of geometric mean stock options, and provides results that show that
the root-mean-squared pricing error obtained using quasi-random numbers is
considerably less than that computed with pseudo-random numbers. Another
financial application of quasi-random numbers is the efficient pricing mort-
gage backed securities, Caflisch, Morokoff, and Owen (1997). Here Brownian
bridge techniques are employed to reduce the effective dimension of the prob-
lem and thus provide greater pricing accuracy than if pseudo-random numbers
were used.

3.3 Generation of multivariate distributions:
independent variates

In this section we show how to generate multivariate distributions that contain
independent variates; that is, the variates have zero correlation.
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3.3.1 Normal distribution

The most fundamental distribution is the univariate standard normal distri-
bution, N(0, 1), with zero mean and unit variance. In the case of p indepen-
dent variates this takes the form of a p variate independent normal distribution
N(O, I,) with zero mean and p X p unit covariance matrix /,.

First we will quote a result concerning multivariate probability density func-
tions; see Press, Teukolsky, Vetterling, and Flannery (1992). If x1, x2, ... are ran-
dom variates with a joint probability density function p(x1, x2, ...), and if there
are an equal number of y variates y1, y, ... that are functions of the x’s, then
the joint probability density function of the y variates, p(y1, y2, ...), is given by
the following expression:

POy, y2, .. )dyrdys, ... = p(x1, x2, .. )Ty ydyrdyz, . .. (3.3.1)

where J, , is the Jacobian determinant of the x’s with respect to the y’s.

An important application of this result is the Box—Muller transformation in
which a p variate independent normal distribution N(O, 1,,) is generated from a
p variate uniform distribution U(0, 1); see Box and Muller (1958).

We will now describe how the method works.

Consider two independently distributed N(0, 1) variables x and y, and use the
polar transformation to obtain:

X = r Ccosé, y=rsnf, and r2=x2+y2 (3.3.2)

From Eq. (3.3.1) the joint probability density functions f(r, 8) and f(x, y) obey
the equation

f(r,0)drdd = f(x, y)Txy.ro drdo
where the Jacobian is

cosé siné

9 = . =r
Jevrd =\ _1'6ng  rcosd

We therefore have

fr,0)=rf(x,y) (3.3.3)

Furthermore since x and y are independent N(0, 1)

[, y)=Ffxf»

where
e—x2/2 e Y?/2
(x) = and f(y) =
! V2 7o 27
Therefore:
—x%/2 o=y?/2

€
’9 = =
fr0)y=rf(x)f(y)=r NN
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which gives

1
Fr0) = e 02 = 2 = £ 0) f(r) (3.3.4)
27 27
where f(0) = 1/(2n), f(r) = re~"*/2 are independent probability density func-
tions.
The corresponding cumulative probability distribution functions F(0) and
F(r) can be found by evaluating the following integrals:

1 [? 0

and

F(r) = [ re "12dy = [—e_rz/z]g —1_¢"2
0

We now want to draw variates 7 and 6 from the probability distributions f(r)
and f(0) respectively. To do this we will use the result (see for example Evans,
Hastings, and Peacock (2000)), that a uniform variate u, from the distribution
U(0, 1) can be transformed into a variate v from the distribution f(v) by using
v = F~1(i1), or equivalently F(v) = ii. The variates ¥ are thus found by first
drawing the uniform variate # and then finding the value of v which makes
cumulative distribution function F(v) equal to i.

Therefore, if variates V] and V; are from U(0, 1), then the variates 7 and 6
which satisfy V] = F(7) = 1 - e_fz/z, and V; = F(6) = 6/(27) are from the
distributions f(r) and f(0) respectively.

For convenience we will define the U(Q, 1) variates

Vi=1-V[=e"72 and Vo=V}

So we have:
. 0
Vi = e—r2/2’ Vo= —
27
and
_p2 .
log Vq = — F=(=2logV)Y¥?, and 6 =27V

Since 7 is from the same distribution as r, and 6 is from the same distribution
as 6, we can use

logVi = —r2/2, r=(=2logVy)Y?, and 6 =2nV,
Substituting these results into Eq. (3.3.2) gives
x = (=2log V1)¥? cos 2 Vs, y = (=2log V1)Y2sin2n v (3.3.5)

where x and y are N(0, 1).
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The Box—Muller method is contained in Eq. (3.3.5), which shows that the
N(O, 1) variates are generated in pairs from the uniform U(0O, 1) variates Vi
and V5.

Since the N(0, 1) variates are created two at a time, if we want to generate a
normal distribution with an odd number of dimensions, n,4, it is necessary to
generate n,44 + 1 dimensions and discard one of the dimensions.

It is easy to modify Eq. (3.3.5) so that we can specify the means and variances
of the variates x and y; this is accomplished as follows:

X

o1(—2log Vi)Y? cos2n Vo + p1,
(3.3.6)

y = o2(—=2log V)2 sin2n Vs + u2
where the distributions of x and y are now
X ~ N(Ml, 012) and y~ N(Mz, 022)

Code excerpt 3.1 illustrates how to generate quasi-random normal variates with
given means and standard deviations.

| ong Quasi _Normal _I ndependent (I ong fcall, |long seq, double xnmean[], double std[],
long idim double quasi[])
{
/* Input paraneters:
fcall - if fcall == 1 then it is an initialisation call,
if fcall == 0 then a continuation call
seq - if seq == 0 then a Faure sequence, if seq == 1 then a N ederreiter sequence,
if seq == 2 then a Sobol sequence
xnean[] - the neans of the independent nornal variates
std[] - the standard deviations of the independent normal variates
idim - the nunber of independent normal variates, idimnust be |ess than 40

Qut put paraneters:

quasi[] - the elenents quasi[0], .. quasi[idim1l] contain the independent normal variates
*/

long ierr, i, j;

doubl e twopi, vi1, v2, pi;
long indl, ind2;

#define QUASI (1) quasi[(1)-1]
#define STD(1) std[(I)-1]
#define XMEAN(I) xmean[(l)-1]

if ((idim/ 2) * 2 1=idim {
printf("Error on entry, idimis not an even nunber: idim= %d\n" ,idim;
return 1,
} else if (idim> 40) {
printf("On entry, idim> 40: idim= %d\n" ,idim;
return 1,
}
for (i =1; i <=idim ++i) {
if (STD(i) <= 0.0) {
printf("On entry, the standard deviation is not greater than zero:
STD(% d) = 9d2.4f\n" ,i,STD(i));
return 1;

}

}
pi = 4.0*atan(1.0);

Code excerpt 3.1 Generating quasi-random normal variates using the Box—Muller trans-
formation.
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if (fcall) { /* first call for initialisation */
if (seq == 0) {
Gener at e_Faur e_Sequence(fcal |, idim &QUASI(1));
}
else if (seq == 1) {
Generate_Ni ederreiter_Sequence(fcall, idim &QUASI(1));
}

else if (seq == 2) {
Gener at e_Sobol _Sequence(fcall, idim &QUASI(1));

} else { /* a continuation call */
if (seq == 0) {

Gener at e_Faur e_Sequence(fcall, idim &QUASI(1));
}
else if (seq == 1) {
Generate_ Niederreiter_Sequence(fcall, idim &QUASI(1));
}
else if (seq == 2) {
Gener at e_Sobol _Sequence(fcall, idim &QUASI(1));
}
for (i =1; i <=idim2; ++i) { /* generate the normal variates */
indl =i * 2 - 1;
ind2 =i * 2;

twopi = pi * 2.0;
vl = sqrt(l og( QUASI (indl)) * -2.0);
v2 = twopi * QUASI(ind2);
QUASI (i ndl) = XMEAN(indl) + STD(indl) * vl * cos(v2);
QUASI (i nd2) = XMEAN(ind2) + STD(ind2) * vl * sin(v2);
}
}
return 0 ;

}

Code excerpt 3.1 (Continued).

3.3.2 Lognormal distribution

The lognormal distribution can be generated from the normal distribution dis-
cussed in the previous section by means of a simple transformation. If y ~
N(u, 02) and y = log(x) then x = exp(y), and we say that the variable x has the
lognormal distribution A (, a?).

The lognormal density function is:

_ 1 (logx — )2
foo = xo (2m)1/2 eXp(_ 202 )

Ifz;,i =1,..., p, are independent normal variates N(u;, aiz),i =1,...,p,then
lognormal variates ¢;,i =1, ..., p, can be generated using the transformation:

6 =expz), i=1...,p, (3.3.8)

where the mean of the ith lognormal variate is

(3.3.7)

o2
Elx;]=m; = eXp(,bLi + ?l) (3.3.9)
and the variance is
Var[x;] = s? = exp(2u; + o) (exp(af) — 1) (3.3.10)
The ratio of variance to the mean squared is therefore
2
S~ exp(o?) — 1 (3.3.11)
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or equivalently

2
o2 = Iog<1+ S—") (3.3.12)
; = 3.
i
A lognormal distribution consisting of p independent variates with means
m;,i = 1,..., p, and variances sl.z,i = 1,..., p, can thus be generated using
the following procedure.
First, generate the p independent normal variates:

Zi NN(/L,-,UiZ), i=1...,p,

where
o2
and
52
0= Iog(l + _—’2) (3.3.14)

1

Then create the independent lognormal variates using

Li=exp(zi), i=1...,p

3.3.3 Student’s t-distribution

If S;(u,v) represents the Student’s z-distribution with mean u and number of
degrees of freedom v, then variates X ~ S;(0, v) can be generated as follows:

V4
JY/v

where Z ~ N(0, 1), and Y ~ x2. The variance of X is:

X ~

(3.3.15)

Variates X’ from a Student’s ¢-distribution having v degrees of freedom with
mean p and variance s can be generated by modifying Eq. (3.3.15) as follows:

X’ 7 z (3.3.16)
~ + D
KT AT =2 ST
The probability density function, f(x), for X’ is:
_ T+ D/2w -2 V22— )P
flx) = 2T 0/2) [ P 2)] (3.3.17)

where v > 2.
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3.4 Generation of multivariate distributions:
correlated variates

In this section we will show how to generate variates from a multivariate distri-
bution with a known mean and a given covariance or correlation matrix. The
methods described for covariance matrices are also applicable to correlation ma-
trices, although in this case the generated variates are normalized to have unit
variance.

3.4.1 Estimation of correlation and covariance

Here we show how to obtain a valid correlation matrix C, or covariance ma-
trix C from historic market data.

Let X be an n by p data matrix, with the entries in the ith row corresponding
to the ith observation, and the jth column containing the values of the jth
variable. If we create a new matrix X such that the entries of the jth column of

XareX;j=X;j—uj,i =1...,n,where ; is the mean of the jth column of
X, then the p by p matrix C = XX is the covariance matrix of X.
. . o= - X i—p; .
Further, if another matrix X is defined such that X; ; = %’” i=1,...,n,
J

where p; is the mean of the jth column of X, and o; is the standard deviation
of the jth column, then the p by p matrix C, = XTX is the correlation matrix
of X.

Correlation matrix
Let us first consider the properties of a valid correlation matrix. They are:

e The matrix is symmetric with unit diagonal
e The matrix has to be positive definite—that is, all the eigenvalues need to be
positive.
We will now show that the p by p matrix C, is a valid correlation matrix
if it can be factored as C, = X1 X, where X is a nonsingular (that is, full rank)
n by m data matrix.

The proof is as follows:
Since X is nonsingular we can perform the singular value decomposition:

X=UKVT

where U is an n by n unitary matrix, K is an n by p matrix containing the
(nonzero) singular values o;,i = 1,..., p, as the diagonal elements and zero
elsewhere, and V is a p by p unitary matrix.

We thus have

x"x = (WUkvT) UukvT
=VvKTUTukvT
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=VvTikTkvT since UTU =UvUT = 1,
=yxvT
Therefore
C,=X'x=vzvT

where X is the p by p diagonal matrix containing the eigenvalues of C,, and
V is the corresponding matrix of eigenvectors. Since the ith eigenvalue satisfies
A; = 02 it can be seen that all the eigenvalues are positive, and thus C, must be
positive definite.

If C, is positive definite, then we can perform the Cholesky decomposition
C, = LLT where L is a lower triangular matrix.

3.4.2 Repairing correlation and covariance matrices

There are situations when a supplied correlation matrix is not positive definite.
Some of the reasons for this are:

e There may be missing data, or asynchronous data feeds. As a consequence
the elements in the correlation matrix may have then been computed using
pairwise correlations, with a variety of sequence lengths. Under these circum-
stances the equation C, = XTX is no longer true, and so C, cannot be guar-
anteed to be positive definite

e Manual adjustment of a correlation matrix may have occurred to reflect ex-
pected market conditions. This especially occurs when the market crashes and
certain stock prices become highly correlated

e There may be rounding error in computing C, = XX,

Under these circumstances the best that can be done is to try and repair the
correlation matrix C, into a valid correlation matrix C,.

We proceed as follows.

When C, is not positive definite (the Cholesky decomposition fails) then we
use the eigen decomposition:

C,=vxve?
where
Al
A2
Yy =

Ap
We then form the matrix

ct=vKkK'vT =vkWK)T
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where the matrix K is formed by taking the square root of the maximum of
each eigenvalue and a very small number ¢ (say ~10~16). Thus:

Jmax(ig, €)
~/max(io, €)

VmaX(p, €)

The matrix C," is not acceptable as a correlation matrix because, although real,
symmetric and positive definite, its diagonal elements are not unity. It is possi-
ble to remedy this by premultiplying and postmultiplying C* by the diagonal
matrix F:

C,=FCfF=FC'FT

where C is the new repaired correlation matrix—i.e., it is positive definite, sym-
metric, and has unit diagonal elements. To achieve this, the diagonal elements
of F must be given by:

1
Fii =
Jer
We thus have:
C,=FCIFT
= FVKWEK)'FT
= (FVK)(KTVTFT)
= (FVK)(FVK)" (3.4.1)

An optimally repaired correlation matrix CJ, which minimizes the distance
IC — Cl, can be obtained via numerical optimization on the n-dimensional
unit hypersphere; this is described below.

However, it has been found that C, is a very good approximation for the
optimal estimate C;.

Optimally repaired correlation matrix

Here we provide details of how to obtain an optimally repaired correlation
matrix by using hyperspherical coordinates and the method of Rebonato and
Jackel (1999/2000)—for a different approach see Higham (2002) or Qi and
Sun (2006).

The Cartesian coordinates of the ith point on an n-dimensional hypersphere
with radius r can be shown to be:

X1 = r Cos(6; 1)
X2 = r Sin(6; 1) cos(6; 2)
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x;,3 = r Sin(6; 1) sSin(6;,2) cos(6; 3)
Xi,.4 = r Sin(6; 1) SiN(6; 2) SiN(6; 3) cos(6;,4)

Xin—1=rSin(6; 1) sin(9; 2) - - - SiN(B; ,—3) SIN(6; ,—2) COS(6; 1)
Xin =7 SiN(G;1) SiNB; 2) - - - SIN(B;,»—2) SINB; 1)

where 6; 1 are spherical coordinates and have the following constraints: 0 <
ixr<mk=1...,n—2and 0< 6, ,-1 < 27.
By construction the radius of the sphere satisfies

n

r?= Z(xi,k)z

k=1

This can be seen as follows:

> (xin)?
k=1
= r?{cos?(6; 1) + sin?(6;,1) (cOS?(4; 2)
+ sin?(6; 2) (cos*(9;,3)
+ sin®(6;.3) (cos*(6;.4)
+ -+ S% (G 0-2)
x (€08 (G n—1) + SN2 n-1)) ---) }
=2
where we have used
cos?(Bix) + s ) =1, k=1,....n—1

If, when r = 1, the coordinates of n hyperspherical points are stored in the n
rows of the n by n matrix BT, then:

B;,rl = €0s(6;,1)
j—1

ij = cos(6;, ) ]_[ sSn@ix), j=2,...,n—1,
k=1

n—1
B!, =[]sn@ip). n>1
k=1

€oS(f1,1) SiN(01,1) CoS(01,2)  SiN(61,1) SiN(61,2) COS(61,3)
€0s(62,1) S!n(92,1) cos(62,2) S!n(92,1)51_n(92,2) €0s(602,3)
B" =1 cos(631) sin(@s1)cosBz2) Sin(ds 1) Sin(ds2) cos(33)
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It can thus be seen that the diagonal elements of BT B are
(B"B), Z(x, 7=

The Cholesky decomposition can be formed by setting the angles of the upper
triangular elements of BT to zero, and this results in

1 0 0
Cos(62,1) sin(62,1) 0
= | cos(@31) sin(f3 1) cos(@32) SiN(B3 1) SIN(B3,2)

T
LI, =1
LT1 = €0s(6;,1)
j—1
L} =cos@ ) [[sn@in). j=2....i-1

i—-1
=[[sn@0. i>1,
k=1

L}, =0, j=i+1....n

We want to find the positive definite matrix C; which minimizes ||C, — C}||.
This can be found by writing

cr=LTL

and using numerical optimization to determine the appropriate n(n — 1)/2 an-
gles. An initial approx1mat10n can be obtained by computing the Cholesky fac-
torization C, = LT L and then calculating the angles corresponding to each
nonzero element of LT

Covariance matrix

We will now consider the case when a covariance matrix C is supplied which
is not positive definite—that is, there is no Cholesky decomposition C = LTL,
where L is lower triangular.

In these circumstances, since a covariance matrix does not require unit diag-
onal elements, it is possible to repair C using:

ct=VKWK)T

where V and K have the same meanings as before. A better approximation
could be obtained via numerical optimization of the elements of the Cholesky
decomposition. However, these optimal points are no longer constrained to lie
on the n-dimensional unit hypersphere.
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3.4.3 Normal distribution

Here we show how to generate a p variate normal distribution with a given
mean and covariance matrix.

We will denote the vector containing the variates of the ith observation from
a p variate zero mean normal distribution by Z;; that is, we write a sample of n
observations as:

Z; ~N@©O,C), i=1,...,n, (3.4.2)

where C is the p x p covariance matrix.

Further Z; ; is used to denote the kth element of Z;, which contains the value
of the kth variate for the ith observation.

From a computational point of view, we can then consider a sample of n
observations to be represented by the n x p matrix Z. The ith row of Z contains
the values for ith the observation, and the kth column of the ith row, Z; 4,
contains the value of the kth variate for the ith observation.

Also, since the distribution has zero mean, the sample covariance matrix is
given by: C = Z1Z.

To generate variates with the covariance matrix C we can use the fact that, if
the matrix C is positive definite, a Cholesky factorization exists in which:

C = AAT (3.4.3)

where A is lower triangular.

We can therefore generate p variates which have a covariance matrix C as
follows.

First generate by (for example) using the Box—Muller method described in
Section 3.3.1, the independent normal variates:

X ~N(, 1,)

where the vector X contains the p variates, I, is the unit matrix, and XX T—7p P
Then, using the Cholesky factorization of Eq. (3.4.4), form:

Y = AX (3.4.4)

where Y is a p-element vector.
Now, since YYT = AX(AX)T = A(XXT)AT = AAT = C, we have that

Y ~ N(, C)
Variates that have nonzero means u;, k = 1,..., p, can be obtained by simply
modifying Eq. (3.4.4) to:

Y =AX +pu (3.4.5)

where Y’ is a p variate vector that is distributed as N(u, C), and the p elements
of vector  contain the means of the variates Y,k =1,..., p.

If the matrix C is not positive definite, then we can create a repaired matrix,
C, by using the approach outlined in Section 3.4.2.
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We now use the decomposition:
C=VKWVK)"

Under these circumstances the p-element vectors Y and Y’ are generated using
the following modified versions of Egs. (3.4.4) and (3.4.5):

Y=VKX and Y =VKX+pu (3.4.6)

The method for generating variates ¥ from a given correlation matrix C,
is identical. However, in this case nonpositive definite matrices are repaired as
C, = FVK(FVK)T; see Section 3.4.2.

A function to generate correlated normal and lognormal variates is given in
Code excerpt 3.2.

I ong Quasi random Nor nal _LogNormal _Correl ated(long fcall, |ong seq, long I norm
doubl e means[], long n, double c[], long tdc, double tol, long *irank,
doubl e x[], double work[], long Iwk) {

/* Input paraneters:

fcall - if fcall == 1 then it is an initialisation call,
if fcall == 0 then a continuation call
seq - if seq == 0 then a Faure sequence, if seq == 1 then a N ederreiter sequence,
if seq == 2 then a Sobol sequence
| norm - if 1 then it is a |lognormal distribution,
if Inorm==0 then a normal distribution
n - the nunber of variates, n nust be |ess than 40
cl] - a matrix which contains the required covariance nmatrix, C
tdc - the second dinension of the matrix C
tol - the tolerance used for calculating the rank of the covariance matrix C
neans[] - the neans of the independent normal variates
std[] - the standard deviations of the independent normal variates
| wk - the size of the work array, work

Qut put paraneters:

rank - the conputed rank of the covariance matrix C
x[] - the elements x[0], .. x[n-1] contain the variates

I nput/ Qut put paraneters:

wor k - a work array
*/

doubl e zero = 0.0, one = 1.0, two = 2.0;
long ni, i, j, k, kk;

doubl e ntol, alpha;

long ptrc, ptre, ptrv, ptrw, ptrwo, ptrwil;

#define C(1,J) c[((1)-1) * tdc + ((J3)-1)]
#define MEANS(1) means[(1)-1]

#define X(1) x[(1)-1]

#define WORK(1) work[(1)-1]

if (Iwk < (2 + 3*n + 2*n*n + 3)) {
printf ("Error Iwk is too small \n");

return 1;
}
ptre = 2;
ptrv = n+2;
ptrw = n*n + n + 2;

Code excerpt 3.2 The function Quasi random Nor mal _LogNor mal _Corr el at ed
which generates correlated quasi-random normal variates and correlated quasi-random
lognormal variates.
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/* add extra 1 to allow for odd values of n */
ptrwo = ptrw + 1 + n;
ptrwl = ptrwo + 1 + n;

ptrc ptrwl + n + 1;

nl =n;

if (((n/f2)*2) '=n) { /* test for odd n */
nl =n+1;

if (fcall) { /* first call for initialisation */
if (Inorm { /* lognormal distribution */
for (i =1, i <=n; ++i) { /* Load the nodified covariance matrix into WORK */
for (j =1; j <=n; +4) {
WORK(ptrc+(i-1)*n+j-1) = log(one + C(i,j)/(MEANS(i)*MEANS(j))):

}
}
else { /* normal distribution */

for (i =1; i <=n; ++i) { /* Load the covariance nmatrix into WORK */

for (j =1, ] <=n; +4)
WORK(ptrc+(i-1)*n+j-1) = C(i,j);

}

}

/* calculate the eigenval ues and ei genvector of the matrix that
has been | oaded into WORK */

cal c_ei gval s_ei gvecs (n, &NORK(ptrc), n, &AORK(ptre), &NORK(ptrv), n);

/* The code uses NAG routine f02abc */

*irank = 0;

I* printf ("The eigenvalues are \n");

for (j=n; j >=1; --j) {
printf ("942.5f \n", WORK(ptre+j-1));

}

for (j=n; j >=1; --j) { /* use the eigenvalues to calculate the rank of the matrix */
if (WORK(ptre+j-1) < tol) goto L24;
*irank = *irank + 1;

}

printf ("*irank = %d \n", *irank);

L24:

ntol = -tol;

if (WORK(ptre) < ntol) {
printf ("Warning there is an eigenvalue |ess than %42.4f \n" ntol);

*/

for (j=1; j <= *irank; ++) {
kk = 1;
for (k=1; k <=n; ++k) {
if (WORK(ptrv+(k-1)*n+(j-1)) != zero) goto L28;
kk = kk + 1;
}
L28:
/* ensure that all eigenvectors have the sanme sign on different machines */
al pha = sqrt (WORK(ptre+j-1));
if (WORK(ptrv+(kk-1)*n+(j-1)) < zero) alpha = -sqrt(WORK(ptre+j-1));
for (i =1; i <=n; ++)
WORK( pt rv+(j -1)+(i-1)*n)=WORK(ptrv+(j-1)+(i-1)*n)*al pha;

/* printf ("The eigenvectors are \n");
for (j=1; j <= *irank; ++j) {
for (i =1; i <=n; ++i)
printf ("9%0.5f ", WORK(ptrv+(j-1)+(i-1)*n));

printf ("\n");
}

for (i =1; i <=n; ++i)

{ /* store a vector of ones and zeros for generating the quasi-random nunbers */
WORK(pt rwo+i -1) = zero;
WORK( pt rwl+i -1) = one;

*/

}

Code excerpt 3.2 (Continued).



Generation of random variates 55

for (i =n; i <=nl1; ++ i) {
WORK(pt rwo+i -1) = zero;
WORK( pt rwl+i -1) = one;

}
} /* end of first «call section */

/* generate a vector of nl randomvariables froma standard nornal distribution,
zero nmean and unit variance */
Quasi _Normal _I ndependent (fcal |, seq, &ANORK(ptrw0), &WORK(ptrwl), nl, &WORK(ptrw));

I* printf ("The quasi random nunbers are:\n");
for (i =1; i <=n; ++) {
printf ("%2.4f \n", WORK(ptrw+(i-1)));

*/
/* Now generate variates with the specified nmean and variance */
if (Inorm { /* a lognormal distribution */
for (i =1; i <=n; ++) {
X(i) = 1og(MEANS(i)) - WORK(ptrc+(i-1)*n+i-1)/two;
for (k =1; k <= *irank; ++k) {
X(i)=X(i)+WORK(ptrv+(k-1)+(i-1)*n)*WORK(ptrwk-1);
}
}
for (i =1; i <=n; ++i) {
X(i) = exp(X(i));
}
}
else { /* a normal distribution */
for (i =1; i <=n; ++i) {
X(i) = MEANS(i);
for (k = 1; k <= *irank; ++k) {
X(i)=X(i)+WORK( pt rv+(k-1)+(i-1)*n)*WORK(ptrw+k-1);
}
/* printf ("The generated variates are:\n");
for (i =1; i <=n; ++) {
printf (" 9d2.4f \n", X(i));
*/
return 0;
}

Code excerpt 3.2 (Continued).

In order to visualize the effect of the covariance matrix we will display the
results of using function Quasi random Nor nal _LogNor mal _Corr el at ed
to generate the following variates:

e A vector of three normal independent variates with covariance matrix:

10 00 0.0
C;=(00 10 00
00 00 10

e A vector of three normal variates in which the elements of the covariance
matrix are all positive; the covariance matrix is:

10 08 0.8
C,=(08 10 08
0.8 0.8 10
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Figure 3.5 Scatter diagram for a sample of 3000 observations (Z;,i =1, ..., 3000) gener-
ated from a multivariate normal distribution consisting of three variates with covariance
matrix Cq and mean u. Here we plot the values of the first variate against the values of
the second variate. If we use the notation of Eq. (3.4.2), then the (x, y) coordinates for
the points are x; = Z; 1,i =1,...,3000, and y; = Z; »,i =1, ..., 3000.

e A vector of three normal variates in which two elements of the covariance
matrix are negative; the covariance matrix is:

10 -0.7 0.2
C3= (—0.7 1.0 0.2)
02 02 10

In all cases the mean vector is given by:

2.0
w= (2.0)
2.0

The results are displayed in Figs. 3.5-3.7.

3.4.4 Lognormal distribution

The multivariate lognormal distribution is important because it is the asset re-
turns distribution assumed by the Black—Scholes equation.

Let the p-element vectors Y and X be related by ¥ = log(X) where ¥ ~
N(u, X), u is a p-element vector, and X is a p x p matrix. Then X = exp(Y) and
X has multivariate lognormal distribution, which we denote by X ~ A(u, X).

We will represent the p-element mean vector of X by /i and the p x p covari-
ance matrix of X by S.
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Figure 3.6 Scatter diagram for a sample of 3000 observations (Z;,i =1, ..., 3000) gener-
ated from a multivariate normal distribution consisting of three variates with covariance
matrix Co and mean u. Here we plot the values of the first variate against the values of
the second variate. If we use the notation of Eq. (3.4.2), then the (x, y) coordinates for
the points are x; = Z; 1,i =1,...,3000, and y; = Z; »,i =1, ..., 3000.

15 T
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Figure 3.7 Scatter diagram for a sample of 3000 observations (Z;,i = 1, ..., 3000) gener-
ated from a multivariate normal distribution consisting of three variates with covariance
matrix C3 and mean u. Here we plot the values of the first variate against the values of
the second variate. If we use the notation of Eq. (3.4.2), then the (x, y) coordinates for
the points are x; = Z; 1,i =1,...,3000, and y; = Z; »,i =1, ..., 3000.
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It can be shown that:

Sij
Xij= Iog<1+ ) (3.4.7)
mim;j
and
Zl i=1"”7p’ andj=1""’p (3'4'8)
For the case of independent variates we then have:
o2
wi = log(m;) — 71 i=1...,p,
and

2
§°
Z‘,-Jzol-zzlog< _’2>, i=1...,p, andfori#j, ZX;;=0

m;
which are just Egs. (3.3.13) and (3.3.14) given in Section 3.3.2.

Code excerpt 3.3 shows how to generate a multivariate lognormal distri-
bution with a given mean m and covariance matrix S. More complete infor-
mation can be found in the function Quasi random Nor mal _LogNor nal _
Cor r el at ed which is provided in Code excerpt 3.2.

doubl e sig[40][40], s[40][40]; /* limt of 40 */
doubl e neans[40], x[40], |x[40], tnp;

#define S(1,J3) s[(1)-1][(J)-1]

#define SIQ(1,J) sig[(1)-11[(J)-1]

#define MEANS(i) neans[(l)-1] /* the means of the | ognormal distribution */
#define X(1) x[(l1)-1] /* normal variates */

#define LX(I) Ix[(1)-1] /* lognormal variates */

/* obtain the Gaussian covariance matrix SIG that corresponds to the
| ognornal covariance matrix S. */

for (i=1; i <=m ++i) {
for (j=1; j <=m ++) {
thp = MEANS(i) * MEANS(j);
) SIGi,j) =log( 1+ (S(i,j)/tnp));
}

/* Generate mJItlvarlate Gaussian variates X(i),i =1,..,m with zero mean and
covariance matrix SIG using section .. */

/* Usi ng equation () generate normal variates with the correct mean */
for (i=1; i <= m ++i) {
X(i) = X(i) + log(MEANS(i)) - SIQi,i)/2;

/* Now exponentiate to create |ognornmal variates with mean
XMEAN, and covariance matrix S */
for (i=1;, i <=m ++i) {
LX(i) = exp(X(i));
}

Code excerpt 3.3 Illustrating how to generate variates from a lognormal distribution
with a given mean and covariance matrix.
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4.1 Introduction

European options

A European option taken out at current time ¢ gives the owner the right (but not
the obligation) to do something when the option matures at time T. This could,
for example, be the right to buy or sell stocks at a particular strike price. The
option would of course only be exercised if it was in the owner’s interest to do
so. For example, a single asset European vanilla put option, with strike price E
and expiry time T, gives the owner the right at time T to sell a particular asset
for E. If the asset is worth St at maturity then the value of the put option at
maturity, known as the payoff, is thus max(E — Sr, 0). By contrast a single asset
European vanilla call option, with strike price E and expiry time T, gives the
owner the right at time T to buy an asset for E; the payoff at maturity for a call
option is max(Sy — E, 0).

The owner of an American option has the right (but not the obligation) to
exercise the option at any time from current time ¢ to option maturity. These
options are more difficult to value than European options because of this ex-
tra flexibility. Even the simple single asset American vanilla put has no analytic
solution and requires finite-difference and lattice methods to estimate its value.
Many European options, on the other hand, take the form of a relatively easy
definite integral from which it is possible to compute a closed form solution.
The valuation of multiasset European options, dependent on a large number of
underlying assets, is more complicated but can conveniently be achieved by us-
ing Monte Carlo simulation to compute the required multidimensional definite
integral.

The expected current value of a single asset European vanilla option will de-
pend on the current asset price at time ¢, S, the duration of the option, 7 = T —1,
the strike price, E, the riskless interest rate, r, and the probability density func-
tion of the underlying asset at maturity, p(St).

4.2 Pricing derivatives using a martingale measure

In this section we will briefly summarize the results of Harrison and Kreps
(1979) and Harrison and Pliska (1981). Let us .consider an economy over the
time interval [0, T] which consists of n assets S*,i = 1, ..., n, which can take
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the values S',i =1,...,n,0<t < T. Any asset S’ which only takes values that
are greater than zero is called a numeraire. Numeraires can be used to denom-
inate all the asset prices in the economy. So (for example) if S is a numeraire
then the prices of the other assets denominated in units of S1 are the relative
prices Z! = (Si/SY),i=2,...,n.

One can find a unique probability measure Q such that the relative prices
Zl,i = 2,...,n, are martingales. If the economy is free of arbitrage opportu-
nities then every payoff pattern Hr can be represented as a linear combination
of the asset values S/,i = 1,...,n, and in addition the relative price process
(HT/S%) is a martingale.

This means that we can write

H, H
EQ[—i] = E@[—f}, where 0< ¢t < T
s st

The current (time ¢) value V; of the payoff Hy is thus

— ¢lpQ 28
Vi=SiE?| 5|
In general for a numeraire N which takes the values N;, 0 < r < T, we can write

FHy T
| N7 |
Equation (4.2.1) is very important because V; is the current (time ¢) price of a
financial derivative with maturity T and payoff Hr.

It should be mentioned that the price of a financial derivative is independent

of the martingale measure under which it is valued, and thus the same price V;
will be obtained for different numeraires N.

V, = N,EQ (4.2.1)

4.3 Put call parity

4.3.1 Discrete dividends

Here we consider single asset European put and call options, and derive the
following relationship between their values in the presence of cash dividends:

¢(S,E,7)+ Eexp(—rt)+ D = p(S, E,7) + S (4.3.1)

where D is the present value of the dividends that are paid during the life of the
option. That is:

n
D= Dyexp(—r(t —1)
k=1
with Dy the kth cash dividend paid at time f;; the other symbols have already
been defined in Section 4.1.
This result can be proved by considering the following two investments:
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PortFoLIO A: One European call, ¢(S, E, t), and cash of value E exp(—rt)+D.
PortFoLIO B: One European put, p(S, E, 1), and one share of value S.

At option maturity the value of the call and put are c¢(St, E,0) and
p(St, E, 0), respectively; also at time T the value of the dividends paid dur-
ing the life of the option is D exp(rt).

We now consider the value of both portfolios at time 7 under all possible
conditions.

IfSr>E
Portfolio A is worth:
max(Sy — E, 0) + exp(rt){E exp(—tt) + D} = St — E + E + D exp(rt)
= St + D exp(rt)
Portfolio B is worth:
max(E — S7,0) + St + Dexp(rt) =0+ Sy + D exp(rr)
= ST+ Dexp(rr)
If ST < E
Portfolio A is worth:
max(Sy — E, 0) + exp(rt){E exp(—tt) + D} = 0+ E + D exp(r7)
=FE+ Dexp(rr)
Portfolio B is worth:
max(E — S7,0) + St + Dexp(rt) = E — St + St + D exp(rt)
=FE+ Dexp(rr)

We have therefore shown that under all conditions the value of portfolio A is
the same as that of portfolio B.

4.3.2 Continuous dividends

Here we consider single asset European put and call options, and derive the
following relationship:

c(S,E, 1)+ Eexp(—rt) = p(S, E, ) + SeXp(—q1) (4.3.2)

where g is the asset’s continuous dividend yield that is paid during the life of the
option. The result can be proved by considering the following two investments:

PorTFOLIO A: One European call, ¢(S, E, t), and cash of value E exp(—rt).
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PortrFoLIO B: One European put, p(S,E,7), and one share of value
Sexp(—qr).

At option expiry the value of the call and put are ¢(St, E, 0) and p(Sr, E, 0),
respectively. Also, if the value of the share at time 7 is denoted by S, the com-
bined value of shares and dividends at time T is S exp(gt): Note that g is treated
in a similar manner to the continuously compounded riskless interest rate r.

IfSr > E
Portfolio A is worth:

max(St — E,O0) + exp(rr)Eexp(—rt) =St — E+ E =St
Portfolio B is worth:

max(E — St, 0) + St exp(—qgrt) exp(gt) = 0+ St = St

where St exp(—qt) exp(gt) is the combined value of the shares and dividends at
option maturity.

If St <E
Portfolio A is worth:

max(St — E,0) + exp(rt)Eexp(—rt) =0+ E=FE
Portfolio B is worth:

max(E — St,0) + St exp(—gr)exp(gr) = E—-St+ St =E

We have therefore shown that under all conditions the value of portfolio A is
the same as that of portfolio B.

4.4 \Vanilla options and the Black-Scholes model

4.4.1 The option pricing partial differential equation

In this section we will derive the (Black-Scholes) partial differential equation
that is obeyed by options written on a single asset.

Previously, in Section 2.3 and Section 2.5, we derived Ito’s lemma, which
provides an expression for the change in value of the function ¢(X, 1), where
X is a stochastic variable. When the stochastic variable, X, follows GBM, the
change in the value of ¢ was shown to be given by Eq. (2.3.6). Here we will
assume that the function ¢ (S, ¢) is the value of a financial option and that the
price of the underlying asset, S, follows GBM.

If we denote the value of the financial derivative by f, then its change, df,
over the time interval dz is given by:

af  df o2829%f of
df = (uSas +o T 8S2)df+ G50 SdW. dW ~ N, dn)
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The discretized version of this equation is:

af  df o2829%f af
Af = At{pS== + L 4+ 22 22 ) L L o9AW, AW ~ N(O, A1),
f (“ as T T2 as2) Tas’ . 20

(4.4.1)

where the time interval is now At and the change in derivative value is Af.
If we assume that the asset price, S, follows GBM we also have:

AS = uSAt + o SAW, AW ~ N(O, A1), (4.4.2)

where u is the constant drift and the definition of the other symbols is as before.
Let us now consider a portfolio consisting of —1 derivative and % units of the
underlying stock. In other words we have gone short (that is sold) a derivative
on an asset and have g—é stocks of the (same) underlying asset. The value of the
portfolio, I1, is therefore:

af
I=— -8 4.4.3
f+ 53 ( )
and the change, ATl, in the value of the portfolio over time At is:
a
AIT = _Af+£AS (4.4.4)

Substituting Egs. (4.4.1) and (4.4.2) into Eq. (4.4.4) we obtain:

f f 1 5 00°f
Al = — S— + — + —0°5°—= | At
(“ s Tar T27 0 5s2

af  of
—o0SAW =+ —{uSAt SAW
o 35 + aS{pL +o )
af af 1 5, 00%f
VAN = —uSAt— — At— — ZAto“S"—
Hoes ~ % T 2717 0 a2
af of af
—oSAW = SAt— SAW — 4.4.5
M T TR T (345)
Cancelling terms we obtain:
af 1, ,9%f
Al = —Aty— + 0“5 — 4.4.6
{81‘ R (4.4.6)
If this portfolio is to grow at the riskless interest rate r, we have:
rlTAt = AIT
So we have that:
of 1 500%f
At = —Aty —+ -0°S"— 4.4.7
" {8[ 270 g5 (4:4.7)

Substituting for IT, we obtain:

AN K ey
VAt<f-—S5§> - At{at4-20-s 352} (4.4.8)
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On rearranging we have:

2
% + S% %0252% =rf (4.4.9)
which is the Black—Scholes partial differential equation. See Appendix I con-
cerning the Feynman—Kac formula.
Let us now consider put and call options on the same underlying asset. If we
let ¢ be the value of a European call option and p that of a European put option
then we have the following equations:

9 9 1 92
P p 52522 P _

P g = - 4.4.10

or TPas 200 g2 =P ( )
and

ac dc 1 5, 9%

gc  g0¢ 1 2420%¢ 4.4.11

or TPas 20 a2 T ( )

If we now form a linear combination of put and call options, ¥ = ajc + azp,
where both a; and ap are constants, then ¥ also obeys the Black—Scholes equa-
tion:
ow v 1 zszaznp
- —+ —0o —_— =
at as 2 352

We will now prove that ¥ satisfies Eq. (4.4.12).
First we rewrite Eq. (4.4.12) as:

o (4.4.12)

darc +azp) | (darc+azp) 1 5070 +azp)
ot as 2 952

=r(aic + azp) (4.4.13)

and use the following results from elementary calculus:

d(aic + azp) dc ap
) S A

ot Tor T2,
d(aic + azp) dc ap
a5 s T9%%s
and
92(a1c + azp) 92c 3%p
a5z ‘s T2

If we denote the left-hand side of Eq. (4.4.12) by LHS, then we have:

dc dc 1, 282c
o8 —
ot s 2 952

LHS:al{—+S—+—

3 ap 1 82
P, 0P _(,252_1’} (4.4.14)

L el
+“2{ar s T 27 Y g2
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We now use Eqgs. (4.4.10) and (4.4.11) to substitute for the values in the curly
brackets in Eq. (4.4.14), and we obtain:

LHS = ajrc + azrp (4.4.15)

which is just the right-hand side of Eq. (4.4.12); so we have proved the result.
It should be noted that this result is also true for American options, since they
also obey the Black—Scholes equation.

The above result can be generalized to include a portfolio consisting of n sin-
gle asset options. Here we have:

n
lI/:Zajfj, j=1,...,n,
j=1

where f; represents the value of the jth derivative and a; is the number of
units of the jth derivative. To prove that ¥ follows the Black-Scholes equa-
tion we simply partition the portfolio into sectors whose options depend on the
same underlying asset. We then proceed as before by showing that the value
of each individual sector obeys the Black-Scholes equation and thus the value
of the complete portfolio (the sum of the values of all the sectors) obeys the
Black-Scholes equation. It should be mentioned that this result applies for both
American and European options and it does not matter whether we have bought
or sold the options.

In Chapter 5 we will use the fact that the difference between the value of a
European option and the equivalent American option obeys the Black—Scholes
equation. We can see this immediately by considering the following portfolios
that are long in an American option and short (i.e., have sold) a European op-
tion:

P =P —p, Ue=C-c

where P and C are the values of American put and call options. ¥? and ¥¢ both
obey the Black—Scholes equations, and are the respective differences in value of
American/European put options and American/European call options.

4.4.2 The multiasset option pricing partial differential equation

In this section we will derive the multiasset (Black—Scholes) differential equation
that is obeyed by options written on n assets. Proceeding as in Section 4.4.1, we
will use the n-dimensional version of Ito’s lemma to find the process followed
by the value of a multiasset financial derivative. We will denote the value of this
derivative by f (S, t), where S is an n-element stochastic vector containing the
prices of the underlying assets, S;,i = 1,...,n. If we assume that S follows
n-dimensional GBM then the change in the value of the derivative, df, is (see
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Eq. (2.5.8)) given by:

{ —l—Zu, = ZZZO’ZU]S,S],OUSS JS }dt

i=1j=1
of
Y i dw; 4.4.16

The discretized version of this equation is:

= [_‘i‘ZIM zaS + = ZZO'G]SS]'O”(‘)S ({{S }

i=1j=1
of
+ ; B—SiaiSiAWi (4.4.17)

where the time interval is now At and the change in derivative Value is Af.
Let us now consider a portfolio consisting of —1 derivative and units of

the ith underlying stock. In other words we have gone short (that is sold) a
derivative that depends on the price, S;,i = 1, ..., n, of n underlying assets, and

have §—£ units of the ith asset. The value of the portfolio, I, is therefore:

.9
H:—f+za—§5i (4.4.18)
i=1 """

and the change, AT, in the value of the portfolio over the time interval Ar is:

=— —AS 4.4.19

Af + Z oS, ( )

Since the stochastic varlables S;,i =1,...,n, follow n-dimensional GBM, the
change in the ith asset price, AS;, over the time interval At is given by:

ASi ZMiSiAt+O'iSiAWi7 I = l,...,n, (4420)

where AW; = dZ;/At,

E[dz?] =1 i=1...,n,
and

E[dZ;dZj1=pij, i=1....n, j=1...,n i#]
Substituting Eqgs. (4.4.17) and (4.4.20) into Eq. (4.4.19), we obtain:

f 2f
Al = — E_FZ ZZZU,U,,OUS,S/BS 25, At

i=1 i=1j=1

—ZUISAW Z—{,ulSAt—i—oSAW}
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ZMzSzAt— — At— — _AtZZUlUJpZJSlS] 35, afs

i=1j=1
—Za,SAW +Z SAt
Si AW T 4.4.21
+ Zal BSl ( )
Cancelling terms we obtain:
af 3% f
AT = —At[ + 2 Zza,a,p,,s Sigs05 55, ] (4.4.22)
i=1j=1
If this portfolio is to grow at the riskless interest rate r we have:
rlIAt = Al
So from Eq. (4.4.22) we have that:
2/ 4.4
rIIAt = —At + ZZO,OJ,O”S S,as 95, (4.4.23)
i=1j=1
Substituting for IT we obtain:
At Si—
' [f Z 25, }
= —At + Z Za,o],o,]S Sj——a— i (4.4.24)
oo 08; 0S5

Rearranging Eq. (4.4.24) gives:

0%f
+Zs 35 3 Zza,a,p,,s Sigsras; =" (4.4.25)

11]1

which is the n-dimensional Black-Scholes partial differential equation.

4.4.3 The Black-Scholes formula

The Black—Scholes model consists of two assets: the riskless money account and
an equity. It can be cast as the following two-dimensional Ito equation:
dS; = uS;dt + oS, dw”
PR t (4.4.26)
dB[ = rB[ dl

where W¥ is Brownian motion (without drift) under measure P, so dW* ~
N(O, dr).
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Current time will be denoted by 1o, and the option maturity time by 7. The
money market account has value B, = 1 at time 7o and Br = exp(r(T — 1g) at
time 7.

We will now consider the process followed by the relative value ¢ (S;, B;) =
S,/B..

Using the Ito quotient rule as described in Section 2.6.2 and substituting X3 =
S; and X2 = B; in Eq. (2.6.8) we have:

Y _ (Vs (5o
d(E)‘(BI)(“ r)dt+<B,>“dW

So finally we can write:
dsF = SF(u—r)dt + Sfo dw? (4.4.27)

where S} = S;/B;.
Referring to Girsanov’s theorem in Section 2.4, we can choose a probability
measure Q such that:

o

dw? = dw@ — (“ — ’) d (4.4.28)

In Eq. (2.4.3) we thus have k(t) = —((x — r)/o) and

dQ w—r p lin-—r 2
B (e ]

See p. 114 of Musiela (1998). Substituting for dW? in Eq. (4.4.27) yields

dsf = SH{u —r}de — S?o(”“;r)dtJrS*odWQ

which simplifies to
dsF = Sfo dw? (4.4.30)
Equation (4.4.30) means that the process for S/ is a martingale under proba-

bility measure Q.
Replacing dW? in Eq. (4.4.26) with the value in Eq. (4.4.28) yields

dS[ = ,LLS{ dt + StO' dWP
= uS, dr +S,a{dWQ - (“ _r> dz}

o

= {S,/Ldt - Sta<M;r>}dt+StadWQ

So in the risk neutral measure Q the dynamics of dS are
ds, = S;rdt + S0 dW@ (4.4.31)

Comparing Eq. (4.4.31) with the original Eq. (4.4.26) we see that changing from
the real-world measure to the risk neutral measure simply involves substituting
dw€ for dW?* and r for u.
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We can now solve Eq. (4.4.31) by using the result given in Eq. (2.3.11). We
have

St = Sexp(v(T —10) + o WE, )

where S is the asset price at current time fg, and v = r — 62/2.
The forward price with maturity T, denoted by S(t, T), is E[S7]. From Ap-
pendix D.2 we have

S(t0, T) = E[St] = Sexp(r(T — 10)) (4.4.32)

Using Eq. (2.3.9) the distribution of the asset price at time T is:
S
I0g<%> ~N((T - 10), o*(T — 10)) (4.4.33)

We want to obtain the current price of a vanilla European option with strike
price E which matures at future time T, and thus has a duration of t =T — 1.
The approach we will adopt here is to first derive an expression for the value
of a European call option, and then use the put/call parity relationships of Sec-
tion 2.2 to obtain the value of the corresponding European put option.
Referring to (4.2.1) we have
Vig = B,OEQ[E} = %E@[HT] (4.4.34)
Br Br
Substituting By, = 1, By = exp(r(T —19)) = exp(rt), and Hr = max(Sy—E, 0)
we have:

1
— Q 4.4
[/,0 = p(rr) E [max(ST E, O)] ( . 35)

and so denoting the value of the call option by ¢(S, E, t) we obtain
(S, E, 1) = exp(—rt) EX[max(Sy — E, 0)] (4.4.36)

It can be seen from Eq. (4.4.36) that the value of the European call option is the
expected value of the option’s payoff at maturity, discounted to current time ¢
by the riskless interest rate r.

This means that the value of the call option can be written as

(S, E, 7) = exp(—r1) /Oo F(S7)(Sr — E)dSy (4.4.37)
St=E

where f(Sr) is the probability density function of Sr.

Instead of integrating over St we will evaluate (4.4.37) by using the variable
X = log(S7/S). From Eq. (4.4.33), we know that the probability density func-
tion of X is

F(X) = (4.4.38)

1 o (_ X—-@r- 02/2)1)2)
ovivan P 20%%
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and therefore the value of the option is
oo
c(S, E, t) = exp(—rt) {Sexp(X) — E} f(X)dX (4.4.39)
X=log(E/S)
where we have used S7 = S exp(X). The lower limit in Eq. (4.4.39) correspond-
ing to St = E in Eq. (4.4.37) is found by setting E = exp(X); this yields the
lower limit X = log(E/S).
The integral in Eq. (4.4.39) is evaluated by splitting it into the two parts:

(S, E,T)=14—Ip (4.4.40)
where
Sexp(—rr) [ ( (X —@— 02/2)1}2)
Jfj=— - exp(X) exp| — dx
AT oAV Jxcogess) P exp 2027
(4.4.41)
and
Eexp(—rz) [ ( (X —(r— 02/2)1}2>
Ip=—"7—+ " exp( — EdX (4.4.42
g o/TV2r Jx=log(E/s) P 2027 ( )

To evaluate these integrals we will make use of the fact that the univariate cu-
mulative normal function N1(x) is:

M == [ en( ”Z)d
=— —— ) du

! 21 Ju=—0c0 2

By symmetry we have N1(—x) = 1 — N1(x) and

1 o u? 1 - u?

We will first consider /g, which is the easier of the two integrals.

E exp(—rt) [ ( (X —(r— 02/2)1}2>
== exp| — dx
o /TA/21 Jx=log(E/S) P 2021

If we letu = % then dX = o /7 du. So

Eexp(—rt)o/t [* ( uz)
Ip= —— 2 TTONT L
i o271/t u=kp o)

where the lower integration limit is k2 =

Ip

log(E/S)—(r—c2/2)t
oJT :
We therefore have:
Ip = E exp(—rt)N1(—k2) (4.4.43)
We will now consider the integral I4.
_ Sexp(—rr) o

o JTV2n Jxzioge)s)

2 2
’ X o/2>r}>dX

exp(X) exp( 7
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Rearranging the integrand:

_ 00 2 2 o2
_ exp(—rt) exp(—{X r—o /22)t} 20 TX)dX
oTN 27 Jx=log(E/S) 20°t

A

(4.4.44)
Expanding the terms in the exponential:
X = (r —o?/2)7)? = 20%rX
=Xx%-2{(r—o%/2)t}X +{(r - 02/2)1}2 —20%tX
=X2-2{(r+0%/2)t}X +{(r - 02/2)1}2
={X = (r+0%2t P +{(r —0%2)t)> = {(r +o¥2)7}’
Which results in:
{X — (r - 62/2)t}2 — 202X = {X - (r + 02/2)r}2 — 20272 (4.4.45)
Substituting Eq. (4.4.45) into the integrand of Eq. (4.4.44) we have:

X — (r —o02/2)1)?
exp(X)exp<_{ L /2)1) )
o2t
X — (r4+02%/2)1)?
=exp(rr)exp<—{ (2 5 /29t) >
o2t
The integral 14 can therefore be expressed as:
— 0 _ 2 2
L= Sexp(rt) exp(—rrt) exp(— (X - +20 /2)t} )dX
0TV 21 X=log(E/S) 204t
If we let u = % then dX = o/7 du. So
00 2
o277 Ju=ky 2
where the lower limit of integration is k1 = w. We therefore
have:
I4 = SN1(—k1) (4.4.46)

Therefore the value of a European call is:
c(S, E, ) = SN1(—k1) — E exp(—rt)N1(—k2)

which gives the usual form of the Black-Scholes formula for a European
call as:

c(S, E, t) = SN1(d1) — E exp(—rt)N1(d2) (4.4.47)
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where
log(S/E) + (r + 02/2)t
d1 = and
T (4.4.48)
log(S/E) + (r — 62/2)t
dp = - =di—oT

To gain some insight into the meaning of the above equation, we will rewrite it
in the following form:

(S, E, ) = exp(—r1){SN1(d1) exp(rt) — EN1(d2)} (4.4.49)

The term N1(d2) is the probability that the option will be exercised in a risk-
neutral world, so that EN1(dy) is the strike price multiplied by the probability
that the strike price will be paid. The term SN1(d1) exp(rt) is the expected value
of a variable, in a risk neutral world, that equals Sy if St > E and is otherwise
zero.

The corresponding formula for a put can be shown using put call parity (see
Section 4.3) to be:

p(S, E, 1) = Eexp(—rt)N1(—d2) — SN1(—d1) (4.4.50)
or equivalently, using N1(—x) = 1 — N1(x) we have

p(S,E, 1) = Eexp(—r1){1— Ni(d2)} — S{1— N1(d1)} (4.4.51)

The inclusion of continuous dividends

The effect of dividends on the value of a European option can be dealt with
by assuming that the asset price is the sum of a riskless component involving
known dividends that will be paid during the life of the option, and a risky
(stochastic) component; see Hull (2003).

As continuous dividends g are paid, the stock price is reduced by the same
amount, and by the time the European option matures all the dividends will
have been paid, leaving only the risky component of the asset price.

From Eq. (4.4.26) we thus have:

dS =puSdt — Sqgdt +oSdw?

(4.4.52)
dB =rBdt

where under probability measure P we know that dW¥ ~ N(O, d¢).
As before (using Girsanov’s theorem), we choose probability measure Q so
that

dwP =dw? — (ﬂ> dr
o
and thus under this measure the process for S is

dS = S dt — Sq dr — <u> dr + So dw?,  where dW2 ~ N(O, dr)
o
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which results in
dS =S —q)dt +oSdW? where dW? ~ N(0, dr) (4.4.53)
Proceeding as before we obtain:
X ~ N({r —q— 02/2}r, azr)
where X = S7/S. The probability density function of X is now:
1 X —(r—q—02/2)1)?
7GﬁmeXp<_< ( < /2)0) )

The value of a call option is thus:

f(X) =

exp(—rt) [

S, E,71)= — Sexp(X) — E
« 2 oJ/TV/ 21 X=Iog(E/S){ PO — £}
_ o, 2 2
x exp(—(X - -2 /27) )dX (4.4.54)
204t
with
Sexp(—rr) [ ( {X—(r—q—oz/ar}z)
=" exp(X) exp| — dx
4 o /TV21 Jx=logE/s) pX) exp 2027
and
Eexp(—rt) [ ( {X—(r—q—oz/2>r}2)
- exp( — EdXx
g o JTV21 Jx=iogE/S) 2021

2
So Ip = E exp(—rt)N1(—k2), where kp = log(E/S);(i/;qfa /Dt

We will now consider the integral 14.
_ Sexp(—rt) [
© oTV2r Jx=logss)
Rearranging the integrand:

_ exp(=rr) [ exp(_ (X —(r—q—02/2)1}% - 202tX) X

o /T2 Jx=togiiss) 20T
Expanding the exponential, we obtain:
{X — (r —q— 02/2)1}2 — 202X

= Z{X — (r —q+ 02/2)7:}2 —20%(r — q)‘L'2

The integral 14 can therefore be expressed as:

7, = S&pr — q)r) &Xp(=r1)
A —

o 212
A (X-(r—gq 0/2)T}>dX

exp(X) exp(— P

I4

ot/ 27

5 /“ exp(_{x —(r—q +oz/2)r}2> .

X=log(E/S) 202t

2
which gives Iy = S exp(—qt)N1(—k1) where k1 = Iog(E/S);(f/}qug /2t



74 Computational Finance Using C and C#

The Black-Scholes formula for the value of a European call including contin-
uous dividends is thus:

(S, E, 1) = Sexp(—qt)N1(d1) — E exp(—r1)N1(da) (4.4.55)

and the corresponding formula for a put can be shown (using put call parity) to

be:
p(S, E, 1) = =Sexp(—qt)N1(—d1) + E exp(—rt)N1(—d2) (4.4.56)
or equivalently, using N1(—x) = 1 — N1(x), we have

p(S, E, 1) = Eexp(—rt){1— Ni(d2)}
— Sexp(—q1){1— Ni(d1)} (4.4.57)
where
_ 10g(S/E) + (r — g + 02/2)t g 09S/E) +(r—q - o2/2)t
- O'ﬁ k] 2 = O'ﬁ
Thus European put/call options with continuous dividends can be priced us-
ing Egs. (4.4.47) and (4.4.50) but with S replaced by S exp(—¢7).

These formulae can also be re-expressed in terms of the current equity for-
ward price with maturity T, S(¢, T), as follows:

d1

c; = exp(—r(T — 1)){S(, T)N1(d1) — EN1(d2)} (4.4.58)
pr = exp(—r(T — 1)){=S(t, T)N1(—d1) + EN1(—d>)} (4.4.59)

where we have used the shortened notation p; and c¢; to denote the current
(time ¢) value of put and call options; the current equity forward price with
maturity 7T is

S, T)=Sexp((r —g)(T —1)), t<T,

and

J log(S(t, T)/E) + (62/2)t J log(S(t, T)/E) — (62/2)(T —t)
1= 2=

o (T —1) ’ o T —1)
The inclusion of discrete dividends
Here we consider n discrete cash dividends D;,i = 1,...,n, paid at times
ti,i = 1,...,n, during the life of the option. In these circumstances the

Black-Scholes formula can be used to price European options, but with
the current asset value S reduced by the present value of the cash divi-

dends.

This means that instead of S we use the quantity Sp which is computed as

n
Sp=5-_ Djexp(—rt;)
i=1
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where 7 is the (in this case constant) riskless interest rate. The formulae for
European puts and calls is then

c(S, E, ) = SpN1(d1) — E exp(—rt)N1(d2) (4.4.60)
p(S, E, 7) = Eexp(—r1)|{1— Ni(d2)} — Sp{1— N1(dp)} (4.4.61)
where
log(Sp/E) + (r + 0?/2)t
d1 = and
o /T
N (4.4.62)
log(Sp/E) + (r — o/t
dr = =d1—oT
ot
The Greeks

Now that we have derived formulae to price European vanilla puts and calls
it is possible to work out their partial derivatives (hedge statistics). We will
now merely quote expressions for the Greeks (hedge statistics) for European
options. Here the subscript ¢ refers to a European call, and the subscript p
refers to a European put. Complete derivations of these results can be found in
Appendix A.

Gamma:
92c 82p n(di)
N=—=I,=— = — 4.4.63
Delta:
ac
Ac = — = eXp(—qt)N1(d1)
38150 (4.4.64)
Ap=c= exp(—q7){N1(d1) — 1}
Theta:
dc
O, = o 4 exp(—qt)SN1(d1) — r E exp(—rt)Ni(d2)
_ Sn(d1)o exp(—q7)
2./t
) VT (4.4.65)
O = 2 = g ep(~qT)SN1(~d1) + r E exp(=r7)N1(~dy)
_ Sn(d1))o exp(—q7)
2yt
Rho:
ac ap
pe = — = ETN1(d2), pp = - = —EtNi1(—d2) (4.4.66)
ar ar
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Vega:

ac ap
=—=V,=— = Sexp(—q1)n(d)JT (4.4.67)
do do

where n(x) = ﬁ exp(—x2/2)

Ve

We now present, in Code excerpt 4.1, a computer program to calculate the
Black-Scholes option value and Greeks given in Egs. (4.4.63)—(4.4.67). The rou-
tine uses EPS = 1. Oe- 16 to identify whether the arguments are too small,

voi d bl ack_schol es(doubl e *val ue, doubl e greeks[], double sO, double x,
doubl e sigma, double t, double r, double g, long put, long *iflag)

{

/* Input parameters:

sO - the current price of the underlying asset

X - the strike price

signma - the volatility

t - the time to maturity

r - the interest rate

g - the continuous dividend yield

put - if put is O then a call option, otherwi se a put option
Qut put paraneters:

value - the value of the option

greeks[] - the hedge statistics output as follows: greeks[0] is gamm, greeks[1] is delta
greeks[2] is theta, greeks[3] is rho, and greeks[4] is vega

iflag - an error indicator

*/
doubl e one=1. 0, t wo=2. 0, zer 0=0. 0;
doubl e eps, d1, d2, tenp, tenpl, t enp2, pi, np;
if( (x <EPS) || (sigma < EPS) || (t <EPS) ) { /* Check if any of the the input
argunents are too small */
*iflag = 2;
return;
}
tenp = log(s0/x);
dl = tenp+(r-q+(sigma*sigma/two))*t;
dl = di/(sigma*sqrt(t));
d2 = di1-sigma*sqrt(t);
/* evaluate the option price */
if (put==0)
*val ue = (sO*exp(-qg*t)*cumnorn{dl)- x*exp(-r*t)*cum.norn(d2));
el se
*val ue = (-sO*exp(-qg*t)*cumnorn(-dl) + x*exp(-r*t)*cum.norn(-d2));
if (greeks) { /* then calculate the G eeks */
tenpl = -d1*d1/two;
d2 = di1-sigma*sqrt(t);
np = (one/sqrt(two*Pl)) * exp(tenpl);
if (put==0) { /* a call option */
greeks[1] = (cumnorm(dl))*exp(-q*t); /* delta */
greeks[2] = -sO*exp(-q*t)*np*sigma/(two*sqrt(t))
+ g*sO0*cum norm(dl) *exp(-q*t)- r*x*exp(-r*t)*cumnorn(d2); /* theta */
greeks[3] = x*t*exp(-r*t)*cumnorm(d2); /* rho */
}
else { /* a put option */
greeks[1] = (cumnorm(dl) - one)*exp(-g*t); /* delta */
greeks[2] = -sO*exp(-qg*t)*np*sigma/(two*sqrt(t)) -
g*sO0*cum norn(-dl) *exp(-qg*t) + r*x*exp(-r*t)*cumnorn(-d2); /* theta */
greeks[3] = -x*t*exp(-r*t)*cumnorm(-d2); /* rho */
}
greeks[0] = np*exp(-qg*t)/(sO*signma*sqrt(t)); /* gamm */
greeks[4] = sO*sqrt(t)*np*exp(-q*t); /* vega */
}
return;
}

Code excerpt 4.1 Function to compute the Black—Scholes value for European options.
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Pl = 3.14159, and also the function cum nor mto compute the cumulative
normal distribution function.

It can be seen in Tables 4.1 and 4.2 that the values for gamma and vega are
the same for both puts and calls. We can also demonstrate that the option values
are consistent by using put call parity.

c(S,E, 1)+ Eexp(—rt) = p(S, E, t) + Sexp(—qr)

For example, when t = 1.0 we have ¢(S, E,t) = 12952 and P(S,E,T) =
9.260. So: ¢(S, E, 1) + E exp(—rt) = 12.952 4+ 100 x exp(—0.1) = 103.436 and
p(S, E, 7) + Sexp(—qt) = 9.260 + 100 x exp(—0.06) = 103.436.

Table 4.1 European put option values and Greeks

T Value Delta Gamma Theta Vega Rho

0.100 3.558 —0.462 0.042 -16.533 12.490 —4.971
0.200 4.879 —0.444 0.029 -10.851 17.487 —9.860
0.300 5.824 —0.431 0.024 —8.298 21.204 —14.663
0.400 6.571 —0.419 0.020 —6.758 24.241 -19.377
0.500 7.191 —0.408 0.018 —5.698 26.832 —24.004
0.600 7.720 —0.399 0.016 —4.909 29.100 —28.544
0.700 8.179 —0.390 0.015 —4.292 31.118 —32.997
0.800 8.582 —0.381 0.014 -3.792 32.935 —37.364
0.900 8.940 —0.373 0.013 -3.377 34.585 —41.646
1.000 9.260 —0.366 0.012 -3.025 36.093 —45.843

The parameters are: S = 100.0, E = 100.0, r = 0.10, o = 0.30, g = 0.06.

Table 4.2 European call option values and Greeks

T Value Delta Gamma Theta Vega Rho

0.100 3.955 0.532 0.042 —20.469 12.490 4.929
0.200 5.667 0.544 0.029 —14.724 17.487 9.744
0.300 6.996 0.552 0.024 —12.109 21.204 14.451
0.400 8.121 0.558 0.020 —10.508 24.241 19.054
0.500 9.113 0.562 0.018 -9.387 26.832 23.557
0.600 10.007 0.566 0.016 —8.539 29.100 27.962
0.700 10.826 0.569 0.015 —7.863 31.118 32.271
0.800 11.584 0.572 0.014 -7.305 32.935 36.485
0.900 12.290 0.574 0.013 —6.832 34.585 40.608
1.000 12.952 0.576 0.012 —6.422 36.093 44.640

The parameters are: S = 100.0, E = 100.0, r = 0.10, o = 0.30, g = 0.06.
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4.4.4 Historical and implied volatility

Obtaining the best estimate of the volatility parameter, o, in the Black—Scholes
formula is of crucial importance. There are many different approaches to volatil-
ity estimation. These include:

e Historical estimation
o Implied volatility

We will now consider both historical and implied volatility estimation.

Historical volatility

In this method we calculate the volatility using n + 1 historical asset prices,
Si,i =0,...,n,and we assume that the asset prices are observed at the regular
time interval, dt. Since the asset prices are assumed to follow GBM the volatil-
ity is computed as the standard deviation of the n continuously compounded
returns, u;,i = 1,...,n, where

S = 81 exp(u;)
or

S
“ =|0g<5' 1)

We already know (see Eq. (2.1.10)) that the expected standard deviation of the
asset returns over the time interval is o+/dt. This means that we obtain the
following expression for &, the estimated volatility:

R 1 _

6/dr = — ;(u,- — )2 (4.4.68)
or

5 = #Xn:(-—')z (4.4.69)

o= (n—l)drl_zlul u 4.

It is accepted practice to express all times in years, and so the volatility is the
annualized standard deviation of the returns. There is also the issue of how to
account for non-trading days such as weekends and holidays. For example, let
us suppose that the history of assets prices S;,i = 0, ..., n, was obtained by
recording the price on each #rading day. One approach is to use dt = 1/N.q,
where N4 is the number of trading days in a year. If we take N,y = 250 then
Eq. (4.4.69) becomes

n

250
6= > (i — )2 (4.4.70)
i=1

(n—1)“
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voi d hist_vol (doubl e *sigma, double *err, double data[], long n, double dt, long *ifail)

/* Input paraneters:

dat a[ ] - the data, which consists of n asset prices
n - the nunber of data points
dt - the (constant) time spacing between the data points (in years)

signa - the conputed historical volatility
err - the standard error in the volatility estimte sigm
iflag - an error indicator

*/
#define DATA(l) data[(l)-1]

doubl e nean=0. 0, sun=0. 0;
doubl e tenp, tn;
long i;

for(i =2; i <=n; ++)

mean = nean + | og(DATA(i))-1o0g(DATA(i-1));
mean = nean/ (doubl e)(n-1);

for(i =2; i <=n; ++) {
tenp = | og( DATA(i))-1og(DATA(i-1));
sum = sum + (tenp-mean)*(tenp-nean);

}

sum = sunt (doubl e) (n-2);

*sigma = sqrt(sunmdt);

tn = (double)(2*(n-1));

*err = *sigma/sqrt(tn);

return;

}

Code excerpt 4.2 Function to compute the historical volatility from asset data.

The estimated standard error in ¢ is (see for example Hull (2003)) given by

1

m (4.4-71)

Ostd =0

A computer program to perform these calculations is given in Code excerpt 4.2.

Implied volatility

The implied volatility of a European option is the volatility that, when sub-
stituted into the Black-Scholes equation, yields the market value quoted for the
same option. In general the implied volatility will depend on both the time to ex-
piry of the option and also the ratio of the current asset price to the strike—this
is known as the volatility smile. These values are usually stored in a multidi-
mensional implied volatility surface, and the volatility for pricing a given option
obtained via multidimensional interpolation.

The routine provided in Code excerpt 4.3 uses Newton’s method to calcu-
late the implied volatility for a European option from its market price. We
will now ilustrate this technique for a European call option with market value
opt _val ue. The implied volatility, o, is then that value which satisfies:

K(o)=c(S,E,1,0) —opt_value =0

where (S, E, 7, o) represents the value of the European call and the other sym-
bols have their usual meaning.
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void inplied_volatility(double value, double sO, double x, double sigma[],
double t, double r, double g, long put, long *iflag)

{
/* Input paraneters:

val ue - the current value of the option

s0 - the current price of the underlying asset

X - the strike price

sigma[] - the input bounds on the volatility: sigma[0], the |ower bound and, sigma[1],

the upper bound

t - the tinme to maturity

r - the interest rate

q - the continuous dividend yield

put - if put is O then a call option, otherwi se a put option

Qut put paraneters:

si gma(]

- the elenment sigma[0] contains the estimated inplied volatility
iflag - an error indicator
*/
doubl e zero0=0. 0;
doubl e fx, sigl, sig2;

doubl e val, tol x;
doubl e tenp, eps, epsqrt, tenpl, vi;
long max_iters, i, ind, ir;
doubl e greeks[5], c[20], sig, vega;
| ong done;
tolx =
epsqrt
if(put
tenpl
el se
tenpl MAX( x*exp(-r*t)-s0*exp(-q*t), zero);
vl = fabs(val ue-tenpl);
if (vl <= epsqrt) {
*iflag = 3;
return;

eps;
sqrt (EPS);

MAX(sO*exp(-qg*t)-x*exp(-r*t), zero);

/* the

}
*iflag = 0;
i =0;
max_iters = 50;
done = 0;
sig = signa[0];
val = val ue;
while ((i < max_iters) & (!done)) {
bl ack_schol es(&val , greeks, s0,x,sig,t,r,q,put,iflag);

vega
sigl

greeks[4];
sig - ((val

- value)/vega);

if (tolx > fabs((sigl - sig)/sigl)) {

done = 1;
b .
sig = sigl;
++i
}
sigma[0] = sigl;
return;

}

/* a call

option */

/* a put option */

volatility is too small */

initial estimate */
1%
%

Newt on iteration */

conput e the Bl ack-Schol es option
val ue, val */

and vega. */

conpute the new estimate of signma
using Newton's nethod */

%
%

check whether the specified
accuracy has been reached */

up date sigma */

return the estimate for sigma */

Code excerpt 4.3 Function to compute the implied volatility of European options.

From Newton’s method we have:

PO i /)
i+1 = 0j F’(O'i)
where
oF _ dc(S,E,t,0) _

F'(o}) = Fy. Ve

do
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Therefore the iterative procedure is

(S, E,t,0) —opt _val ue
Ve

where o9 is the initial estimate, and o;1 is the improved estimate of the implied
volatility based on the ith estimate o;. Termination of this iteration occurs when
ABS(o;+1 — 0;) < tol, for a specified tolerance, t ol .

It can be seen that as 0 — 0, di — 00, d» — 00 and, from Eq. (4.4.67), we
have V. — 0. Under these circumstances Newton’s method fails.

The same procedure can be used to compute the implied volatility for a Eu-
ropean put, in this case we just replace ¢(S, E, 7, o) by p(S, E, 7, o), the value
of a European put; from Eq. (4.4.67) V. = V).

If the implied volatility of American options is required, the procedure is ex-
actly the same. However, instead of using the Black—Scholes formula to compute
both the option value and vega we use a binomial lattice to do this. The use of
binomial lattices to obtain option prices and the Greeks is described in Chap-
ter S.

Code excerpt 4.4 provides a simple test program which illustrates the use of
the function i npl i ed_vol ati | i ty; the results are presented in Table 4.3.

Oi4l = 0j —

double X, value, S, sigma[2], sigmat, T, r, q;

long i, ifail, put;

ifail = 0;

S = 10.0;

X = 10.5;

r =0.1;

sigmat = 0.1;

q = 0.04;

put =0;

printf (" Tinme option val ue inplied volatility (Error)\n");

for(i = 1;i < 6; ++i) {
T = (doubl e)i*0.5;
bl ack_schol es(&val ue, NULL, S, X, sigmat, T, r, q, put, & | ag) ;
signa[0] = 0.05;
sigma[1] = 1.0;
inplied_volatility(value,S, X sigm,T,r,q,put, &l ag);
printf("98. 4f %45. 4f %5. 4f (98.4e) \n", T, val ue, signa[0],
fabs(sigmat-sigm[0]));
sigmat = sigmat + 0.1;

}

Code excerpt 4.4 Simple test program for function i npl i ed_vol atility.

Table 4.3 Calculated option values and implied volatilities from Code excerpt 4.4

Time (years) Option value True o Error in estimated o
0.5 0.1959 0.1 2.7756 x 1016
1.0 0.8158 0.2 2.2204 x 10~16
1.5 1.5435 0.3 3.8858 x 10~16
2.0 2.3177 0.4 5.5511 x 10~17

2.5 3.1033 0.5 1.1102 x 1016
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4.4.5 Pricing options with Microsoft Excel

In this section we show how the Visual Basic within Excel can be used to create
powerful derivative pricing applications based on the Black—Scholes formula.
We will explain how Excel’s Visual Basic can be used to create an application
that prices a selection of simple European put and call options at the press of a
button.

In Section 4.4.3 we derived the Black-Scholes formula:

c(S, E,t) = SN1(d1) — ¢ ""EN1(d>)
and

p(S, E, t) = —SN1(—d1) + e ""EN1(—d>)

where
log(S/E)(r — o?/2
dy = 9(S/E)(r —o*/ )r:dl_aﬁ
oJT
where S is the current value of the asset and o is the volatility of the asset, and
2
Ni(x) = \/% [F e "/ 2dx.

The univariate cumulative standard normal distribution, N1(x), can be eval-
uated in Excel by using its built-in function NORMDIST. The definition of this
function is as follows:

NORMDI ST( x, nean, st andar d_dev, cunul ati ve)

This function returns the normal cumulative distribution for the specified mean
and standard deviation.
Function parameters:

X: is the value for which you want the distribution.
mean: is the arithmetic mean of the distribution.
st andar d_dev: is the standard deviation of the distribution.
cumulative: is a logical value that determines the form of the function. If
cumulative is TRUE, NORVDI ST returns the cumulative distri-
bution function; if FALSE, it returns the probability density
function.

If mrean = 0 and standard _dev = 1, NORVDI ST returns the standard
normal distribution.

This function can be used to create a Visual Basic function to calculate Euro-
pean option values within Excel, see Code excerpt 4.5.

Once the function has been defined, it can be accessed interactively using the
Paste Function facility within Excel as shown in Fig. 4.1.

The function bs_opt can also be incorporated into other Visual Basic
code within Excel. Code excerpt 4.6 defines the Visual Basic subroutine
MANY_EURCPEANS _Cl i ck().
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Function bs_opt (S0 As Double, _
ByVal X As Double, signa As Double, T As Double, _
r As Double, q As Double, ByVal putcall As Long) As Double

Visual Basic Routine to calculate the val ue of
either a European Put or European Call option.
Aut hor: George Levy

Dimtenp As Double
Dimdl As Doubl e
Dim d2 As Doubl e
Di m SQT As Doubl e
Di m val ue As Doubl e

tenp = Log(S0 / X)

dl = temp + (r - g + (sigma * sigma / 2#))
SQT Sar (T)

dl / (sigma * SQT)

d2 dl - sigma * SQT

If (putcall = 0) Then ' a call option

value = SO * Exp(-q * T) * Worksheet Function. Nor nDi st (d1, O0#, 1#, True) _

- Worksheet Function. Nor nDi st (d2, O0#, 1#, True) * X * Exp(-r * T)

Else ' a put option

value = -S0 * Exp(-q * T) * Worksheet Function. NornDi st (-d1, O#, 1#, True) + _

X * Worksheet Functi on. Nor nDi st (-d2, O#, 1#, True) * Exp(-r * T)

End | f
bs_opt = val ue

End Function

Code excerpt 4.5 Visual Basic code to price European options using the Black-Scholes
formula.

_I!ZINJ_IQIE]S]MFH“

=4 0 0

IDTHINSRID sheet2 (FRET. il

:sil_l W | ke | el | emnne | srenn | jenl |[SEwie |8 ra | Ppuie | !:.n |||| 899 ;n.-::.u n"_EmIm m

Figure 4.1 Using the function bs_opt interactively within Excel. Here a call option is
processed with the following parameters: § = 10.0, X =9.0,¢ = 0.0, 7 = 1.5, = 0.1,
and 0 =0.2.
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Private Sub MANY_EUROPEANS O i ck()

Dimi As Long

Di m putcall As Long
Dim SO As Doubl e
Dim g As Doubl e

Di m si gma As Doubl e
Dim T As Doubl e
Dimr As Double

q = O#
T=15

r =0.1
sigma = 0.2
For i =1 To 22

SO = Sheetl.Cells(i + 1, 1).value

X = Sheetl.Cells(i + 1, 2).value

putcall = Sheetl.Cells(i + 1, 3).value

Sheet1.Cel Is(i + 1, 4).value = bs_opt(S0, X, signma, T, r, q, putcall)
Next i

End Sub

Code excerpt 4.6 Visual Basic code that uses the function bs_opt .
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Figure 4.2 Excel worksheet before calculation of the European option values.

When the button labelled “CALCULATE OPTIONS” is clicked, the values
of 22 European options will be calculated using the data in columns 1-3 on
worksheet 1, see Figs. 4.2 and 4.3.
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Figure 4.3 Excel worksheet after calculation of the European option values.

The cumulative standard normal distribution can also be used to provide an-
alytic solutions for a range of other exotic options such as: Barrier options,
Exchange options, Lookback options, Binary options, etc.

4.5 Barrier options

4.5.1 Introduction

Barrier options are derivatives where the payoff depends on whether the asset
price reaches a given barrier level, B. Knockout options become worthless (cease
to exist) if the asset price reaches the barrier, whereas knockin options come into
existence when the asset price bits the barrier. We will consider the following
single asset European barrier options:

e Down and out call: A knockout vanilla call option, value c4,, which ceases
to exist when the asset price reaches or goes below the barrier level.

e Up and out call: A knockout vanilla call option, value ¢y, which ceases to
exist when the asset price reaches, or goes above the barrier level.

e Down and in call: A knockin vanilla call option, value cg;, which comes
into existence when the asset prices reaches or goes below the barrier
level.
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e Up and in call: A knockin vanilla call option, value ¢y, which comes
into existence when the asset price reaches or goes above the barrier
level.

The following expressions must be true:

¢ = Cuo + Cui (4.5.1)
¢ = 4o + Cdi (4.5.2)

where c is the value of a vanilla call option. We thus need only derive expressions
for both the knockout options, and then use the above equations to calculate
the value of the corresponding knockin options.

The notation that we will use is as follows: The symbol ¢ represents the cur-
rent time, T represents the time at which the option matures, and t = T — 1,
the duration of the option. The symbol s, with constraint t+ < s < T, is any
intermediate time during which the option is alive.

4.5.2 Analytic pricing of down and out call options

If we consider Brownian motion (with zero drift) X, ~ N(O, (s — 1)o?),
t < s < T, which starts at X; = 0 and, after time t = T — ¢, ends at the
point X7 = X then (for example, see Freedman, 1983) the probability density
function for this motion not to exceed the value X = b (where b > 0) during
time t is given by:

2 2b(X —b x?
o= X X)= Q/?exp(%) exp(— 202T> (4.5.3)

where for convenience we have used 2 = (2b — X)/(03t%/?), and XM =
max(X,t < s < T). Since X, is Brownian motion without drift and volatility o,
then — X is identical Brownian motion. Therefore by substituting X — —X, and
b — —b in the above equation we obtain:

, 2 2b(X — b X2
Fo<xM™ X) = —Q@exp(%) exp(— 20%) (4.5.4)

where we have used X™" = min(X,, s < s < T). Equation (4.5.4) is the prob-
ability density function of —X; staying above the value X = b, where b < O.
These results can be generalized to include drift (Musiela and Rutkowski, 1998,
p. 212), so that X; ~ N((r —gq — 62/2)(s —1),0(s — 1)), for t < s < T. We now
have the following results:

1o X7, )

— _ A2 2
=Q Eexp(M) exp(_(X r 612 0/2)7) )
T 204t

o (4.5.5)
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76 < X7, %)

_ _ 2 2
_ —Q\/?exp<72b(xz b)>exp(— X-C -7 /A7) ) (4.5.6)
o 0T 2041

where r is the risk free rate and ¢ is the continuous dividend yield. A European
down and out barrier option with maturity  and a barrier at X = B will cease
to exist (become worthless) if at any time X; < B, fort < s < T. The probability
density function that the barrier option will continue to exist at time 7T if the
end point is X is therefore:

2 (=X 2b(X — b)
rxsm =2 [ Qa(__f_)
T JB=Sexp(b) o°T

2 2
x exp(—{X =407/} )db (4.5.7)
20T
or
2 X = —q—0%1}?
fX>B)=— —exp(— 5 )
o1 204t
b=X _
x/ Qexp(ZbLzb)) db (4.5.8)
b=log(B/S) o°T

where we have integrated over all possible values of b (i.e., B < b < X) that
keep the option alive. Recalling that:

b=X 2b(X —
b=log(B/S) ot

b=X _ —
2/ (X — 2b) exp(zb(x b)) Wb
b

—log(s/s) 03T%? ot

and noting that:

iex <2b(X —b)) _ 2(X —2b) exp(Zb(X —b))

ab o2t o2t o2t

we have:

/b—X 2(X — 2b) exp(zz;(x - b)) &b
b

—log(B/s) 0T o2t
2b(X — b)\ 17X 2log(B/S)(X — log(B/S
=e>(p(¥>i| :1—eXp< 0g(B/S)( : 0g(B/ ))>
ot b=log(B/S) o°T
So we have:
B (X = —q—0%/21}?
R bt e s

5 {1_ exp(ZIog(B/S)(X - Iog(B/S))}

o2t
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The value c¢g4, of a European down and out call option with strike E, satisfying
E > B, is given by:
_exp(=rr) [

B o/t 27 Jx=log(E/S)

This integral is evaluated in Appendix B.1, and the value of the down and out
call option ¢y, is:

Cdo = € — Cdi (4.5.10)

{Sexp(X) — E} f(X > B)dX (4.5.9)

do

where

¢ = Sexp(—gt)N1(d1) — E exp(—rt)N1(d2)
2(r*q)+1

B o2
cdi = SeXp(—qf)Nl(dzl)(E)

_ log(S/E) + (r —q + o?/2)t

20—q)
=1

B -
- E@(p(—”f)Nl(dS)<§>

d1

ot
iy = \O9S/E) - (r — g — o?/2)t
ot
da = log(B?/SE) + (r —q — 0%/t
ot
and
dym log(B2/ES) + (r —q +0%/2)t

o T
In Code excerpt 4.7 we provide the function bs_opt _barri er _downout _
cal | which uses Eq. (4.5.10) to price a down and out European call option.
This routine will be used in Chapter 5 to measure the accuracy achieved by
using various finite-difference grid techniques to solve the Black-Scholes equa-
tion.

4.5.3 Analytic pricing of up and out call options

Here we will obtain an expression for an u#p and out European call option with
continuous dividend yield ¢, in a similar manner to that used in Section 4.5.2 for
the down and out European call option. A European up and out barrier option
with maturity 7 and a barrier at X = B will cease to exist (become worthless)
if at any time X; > B, for t <s < T. The probability density function that the
barrier option will continue to exist at time T if the end point is X is therefore:

2 [B=Sep®) 2b(X — b)
f(X<B)=,/_/ _Qexp<72>
T Jp=x o“t

_ A2 2
><exp(—{X 4 S Lid )db (4.5.11)
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voi d bs_opt_barrier_downout _cal | (doubl e *val ue, double barrier_level,
doubl e sO, double x, double signa, double t, double r,
double g, long *iflag)

/* Input paraneters
barrier_|evel - the level of the barrier
s0 - the current price of the underlying asset
X - the strike price
si gma - the volatility
t - the time to maturity
r - the risk free interest rate

q - the dividend yield
Qut put paraneters:

val ue - the value of the option
iflag - an error indicator
*/
doubl e one=1.0, two=2. 0, zer 0=0. 0;
doubl e tenp, tenpl, tenp2, a, b, d1, d2, d3, d4, d5, d6, d7, d8;
doubl e fac;
if(x <EPS) { /* then strike price (X) is too small */
*iflag = 2;
return;
}
if (sigma < EPS) { /* then volatility (sigma) is too small */
*iflag = 3;
return;
}
if (t <EPS) { /* then tine to expiry (t) is too small */
*ifail = 3;
return;
}
if (barrier_level <= 0) { /* barrier |level nust be greater than zero */
*iflag = 4;
}
if (sO <= barrier_level) { /* option has already been knocked out */
*val ue = 0.0;
return;
}
fac = sigma*sqrt(t);
tenpl = -one+(two*(r-q)/(sigm*sigma));
tenp2 = barrier_|level /s0;
a = pow(tenp2,tenpl);
tenpl = one+(two*(r-q)/(sigma*sigm));
b = pow(tenp2, tenpl);
if (x > barrier_level) { /* strike > barrier_level */
dl = (1 og(s0/x)+(r-q+0.5*si gma*si gma) *t)/fac;
d2 = (log(s0/x)+(r-qg-0.5*si gma*sigma)*t)/fac;
tenp = (sO0*x)/(barrier_level *barrier_|level);
d7 = (log(tenp)-(r-qg-0.5*si gma*sigma)*t)/fac;
d8 = (log(tenp)-(r-q+0.5*si gma*sigma)*t)/fac;
tenpl = sO*exp(-qg*t)*(cumnnorn(dl)-b*(one-cumnorn(d8)));
tenp2 = x*exp(-r*t)*(cumnnorn(d2)-a*(one-cumnorn(d7)));
*val ue = tenpl-tenp2;
}
else { /* strike <= barrier_|level */
d3 = (log(s0/barrier_|level)+(r-g-0.5*si gna*sigma)*t)/fac;
d6 = (log(s0/barrier_level)-(r-qg-0.5*si gma*sigma)*t)/fac;
d4 = (log(s0/barrier_|level)+(r-qg+0.5*si gna*si gma)*t)/fac;
d5 = (log(s0/barrier_|level)-(r-q+0.5*si gma*sigma)*t)/fac;
tenpl = sO*exp(-qg*t)*(cum norn(d3)-b*(one-cum norm(d6)));
tenp2 = x*exp(-r*t)*(cum.norn(d4)-a*(one-cumnorn(d5)));
*val ue = tenpl-tenp2;
}
return;
}

Code excerpt 4.7 Function to compute the value for European down and out call op-

tions.
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or

_ A2 2
f(X < B) =\/?exp(_{x (r 512 o“/2)t} )
T 204t
b=log(B/S) _
x/ Qexp(ZbLZb)> db (4.5.12)
b=X ot

where, as in Section 4.5.2, we have used 2 = (513’%(2) and have integrated over

all possible values of b (i.e., B > b > X) that keep the option alive. Recalling

that:
b=log(B/S) _
b=X ot
b=log(B/9) (2p — X) 2b(X — b)
= /b:X 3372 exp( g )db
and noting;:
d 2b(X — b) _ 2(X — 2b) 2b(X — b)
—ﬁex < - ) =3 ex < - ) (4.5.13)
we have:
b=log(B/S) _ _
/ 2(2b — X) exp(Zb(X b)) db
=X o2t o2t
<2b(X - b))}b='°9<3/5>
o°T b=X
2log(B/S)(X — log(B/S
_ {1—exp< g(B/ )((th g(B/ )))}
Therefore:
B 1 2 (X —(r—q—0°/2)1)
JX <B)= oﬁm\/gexp<_ 202t )
X {1 — eXp(2|Og(B/S)(X2T_ IOQ(B/S)))} (4.5.14)
o

We will now derive the formula for an up and out call option when E < B.
In fact if E > B then the option is worthless, since at the current time ¢ the
call option’s payout, max(S; — E,0) = 0, and if S; > E then the option will be
knocked out.
_exp(—rr) [~

o/t 27 Jx=log(E/S)
Taking into account the fact the option becomes worthless when S exp(X) > B,
(i.e., X > log(B/S)) we have:

_ exp(_rt) log(B/S)

B o/t 27 Jx=log(E/s)

{Sexp(X) — E} f(X < B)dX (4.5.15)

Cuo

Cuo

{Sexp(X) — E} f(X < B)dX (4.5.16)
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This integral is evaluated in Appendix B.2, and the value of the down and out
call option ¢y is:

Cuo = € — Cyj

where ¢ is the value of a vanilla call and ¢y, the value of an up and in call, is
given by:

Cui = SeXP(—q1)N1(d2) — E exp(—rt)N1(da)

2r—q) _q
B\ 42
— E exp(—r7){N1(ds) — Nl(dG)}<§>
B\ 252 +1
+ Sexp(—rt){N1(d7) — N1(ds)} <§> ’ (4.5.17)

and
gy \US/E) +(r—g + 02/2)t

ot
iy 109S/B) +(r —g + o?/2)t
JT
dy— log(S/E) + (r —q —0%/2)T
ot
dy = log(S/B) + (r —q —0?/2)T
ot
ds = log(B%/ES) — (r —q — 0%/2)T
ot
ds = log(B/S) + (r —q — 02/2)t
o7
s log(B2/ES) + (r —q +0%/2)t
o7
dg— 109B/S) +(r — g+ o?/2)t
o7

4.5.4 Monte Carlo pricing of down and out options

In this section we show how Monte Carlo simulation can be used to price
down and out barrier options. We will describe both a basic Monte Carlo ap-
proach and also a Brownian bridge method which gives more accurate results
(see Chapter 8).

The asset price, S, will be assumed to be GBM, so the logarithm of the asset
price X follows the Brownian process:

AX = vAt+ o AW, (4.5.18)

where v is the drift and o is the volatility.
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If the barrier level is B then the option will be knocked out when S < B,
or equivalently log(S) < log(B). This will be expressed as X < b, where b =
log(B).

The basic approach to simulating the down and out option is to first de-
cide how many Scenari 0s to use and also how many Ti meSt eps there
are to be in each scenario. The size of each time step is then tinme_step =
Ti meToExpi ry/ Ti meSt eps. For each scenario the path of X; is advanced
in time from ¢ to t + Ar using Eq. (4.5.18), with dr = tine_step and a
value for AW; output from a Gaussian random number generator. Path con-
struction is stopped if either the option expiry time is reached or if the option
is knocked out—i.e., X < b. When the option is knocked out before expiry
the payoff for that scenario is zero. We will denote the option value obtained

from the ith scenario by DO; wherei =1, ..., Scenari 0s. The option value
is the average value of DO; over all scenarios; for more details see Code ex-
cerpt 4.8.

One problem with this approach to simulation is that it does not take into
account the possibility that X; < b, < t < t + At, even though X, > b and
X;+ar > b. In these circumstances the option should be treated as knocked out,
since X hit (or crossed) the barrier b at time 7, but then increased to the value
Xi+ar > b at time t + At.

We will now discuss how the Brownian bridge method deals with this situa-
tion.

Let us take two consecutive time points #1 and o = #1 + At, and assume that
both X,, and X, are above the (logarithmic) barrier level b. We want to find the
probability that in the time interval [r1, #2], the asset price went lower than B,
and use this to get more accurate values for down and out options. The required
barrier crossing probability is thus:

P(mzl tr X b|{X12’X11})

where mt denotes the minimum of X over the time interval [11, £2].
The probablhty density of X,, conditional on X, is

{_ (X1, — X1y — qu)z}

X X)) =
P(Xpy| Xoy) =y

1
—€&X
o~/ 2T At P
where At =1t — 1.

From Bayes law we know that:
p({mx g bv Xt2}|Xt1)
p(Xt2|th)

P(mtl n S X, th})

We show in Appendix I that

p({mtl tp N b Xt2}|th)

1 2v(b — Xyy) (X1, + Xy — 2b — vAL)?
& { 02 }eXp{ 202At

N o~/ 2T AL




European options 93

SO
P(mé(_,tz g b|{Xt27 th})
{2v(b - th)}

= e&X
p o2

~(Xp, + Xy —2b —vAD? + (X;, — X1y — VAL)?
202At

We will now use some algebra to simplify this expression.

X exp{—

P(mp , <bl{Xs,. Xu,})
{41)At(b - th) - (th + th —2b — UA[)Z —+ (th — th — I)AI)Z}

202At
exp (4UAt(b — th) — ((th — th — VAZ) — 2(b — th))
+ (X, — X —vAD?)/(20%A1)}

AAL(h — Xyy) +8b — X)) (Xs, — Xy — VAL + 4(b — X;)?
P 202At

2

ex

S

which finally yields

P < bi{log(S,,), 10g(Si)})

_ 2(log(B) — log(S;,))(log(B) — log(S,))
=P~ o2At

(4.5.19)

Equation (4.5.19) gives the probability of the option having been knocked out
between times #1 and #; even though the asset prices S;, and S, are greater
than B. The probability that the option hasn’t been knocked out between times
1 and 7 is therefore

P(m% > bl{log(S,,), 10g(Si)})
~ 2(log(B) — log(Sy,))(log(B) — l0g(S,)) }

(4.5.20)

=1- exp{ o2At

This means that for the (complete) ith scenario path, of n time steps, the prob-
ability that m'%9) > p is

s 2(log(B) — log(s;,))(log(B) — log(S; , )
[ J Jj+1
o] 0 5
j=0
where Slij is the ith scenario asset price at time ¢;.
The basic Monte Carlo ith scenario option value DO; can therefore be ad-
justed as follows

DO} = DO; BB!
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and the new Monte Carlo estimate DO* is

Scenari os %
DO* — Zi:l DO[
Scenari os

where more details can be found in Code excerpt 4.8.

private

int

doubl e[] asset_path = new doubl e[ f Ti meSt eps] ;

doubl e MonteCarl oSi m(bool is_put)

seed = 111;

double time_step = fTimeToExpiry / fTineSteps;
doubl e sqrt_time_step = System Math. Sqrt(tine_step);

doubl e disc =

System Mat h. Exp(-f Ri skFreeRate * fTi meToExpiry);

(fRi skFreeRate - fDividendYield - fSigmal * fSigmal * 0.5) * tine_step;

set _seed(seed);

doubl e opt_val = 0.0;

bool not_out = true;

int k =0;

doubl e STN = 0.0;

doubl e nean =

doubl e std = System Math. Sqrt(fSigmal * fSigmal * tinme_step);
doubl e z;

doubl e sumopt_vals = 0.0;

for (int i = 0; i < fNunberScenarios; ++i)

Il generate the asset path
double ST1 = fSI1;

not _out = true;

k = 0;

while (not_out &% k < fTineSteps)

{
z = RndNor n(nean, std);
STN = ST1 * System Mat h. Exp(z);
if (STN < fBarrierlLevel) not_out

= fal se;

ST1 = STN,
asset _path[k] = STN,
++k;
}
if (is_put)
{
opt _val = System Math. Max(fStrike - STN, 0.0);
}
el se
{
opt _val = System Math. Max(STN - fStrike,

if (not_out)

0.

0);

{ /] only has value if asset value is above the barrier_|evel
/1 conpute the probability that the asset r

if (UseBrownianBridge)

{
doubl e total _probability_above
doubl e signma_2 =
doubl e I og_barrier_|evel
doubl e fac;
for (int jj =0;
{

i

double log_S_i
double log_S_il =

fac = 2.0 * (log_barrier_|evel

* (log_barrier_|evel

1.0, p

fSigmal * fSignmal;
= System Mat h. Log(fBarrierLevel);

< fTimeSteps - 1; +

= System Mat h. Log(asset _path[j]j
System Mat h. Log(asset _pat h[j

- lo
log_S |

pr = (1.0 - System Math. Exp(-fac));

total _probability_above *= pr;

emai ned above the barrier

r;

)

1
o+ 1)

9_S.i)

il) / (sigma_2 * time_step);

/1 probability of staying above the
barrier between i and i+1

Code excerpt 4.8 An example of using the Brownian bridge barrier crossing probability
to enhance the pricing of a European down and out option.
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}
sumopt _vals += total _probability_above * opt_val * disc; }
el se

{ // don’t use the Brownian Bridge
sum opt _vals += opt_val * disc;
}

}
doubl e temp = sumopt_vals / (double)fNunber Scenari os;

return tenp;

}

Code excerpt 4.8 (Continued).
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5

5.1 Introduction

Single asset American options

In Chapter 4 we discussed single asset European options and the analytic for-
mulae that can be used to price them. Here we will consider the valuation of
single asset American-style options using both numeric methods and analytic
formulae; in addition we will discuss the use of numerical techniques to value
certain European options. The coverage in this chapter is as follows:

e Analytic approximation techniques for the valuation of American options

e Binomial lattice techniques used for the valuation of American and European
options

e The valuation of American and European vanilla and barrier options using
finite-difference grids

e The valuation of American options via Monte Carlo simulation.

It should be mentioned that although much of the discussion here concerns the
valuation of vanilla European and American puts and calls, the techniques used
can be modified without much difficulty to include more exotic options with
customized payoffs and early exercise features.

5.2 Approximations for vanilla American options

5.2.1 American call options with cash dividends

In this section we will consider the valuation of vanilla American call options
with cash dividends and discuss the methods of Roll, Geske, Whaley and Black.
We will first consider the Roll-Geske—Whaley method.

The Roll-Geske—Whaley approximation

This method uses the work of Roll (1977), Geske (1979), and Whaley (1981).
Let S be the current (time f) price of an asset which pays a single cash dividend
D; at time #1. At the ex-dividend date, t1, there will be a decrease in the asset’s
value from §;, to S;; — D1. Also the current asset price net of escrowed dividends
is:

Sp=S— Diexp(—r(t1— 1)) (5.2.1)
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where r is the riskless interest rate.

Now consider an American call option, with strike price E and expiry time 7,
which is taken out on this asset. At 1 there will be a given ex-dividend asset
price, S*, above which the option will be exercised early. This value can be
found by solving the following equation:

(S, E,11) = S* + D1 — E (5.2.2)

where ¢(S*, E, t1) is the Black-Scholes value of a European call option with
strike price E and maturity 71 = T — 1, on an asset with current value S* at
time #1. If just prior to the ex-dividend date S;, > S* then the American option
will be exercised and realize a cash payoff of S;, + D1 — E. On the other hand
if S;; < S* then the option is worth more unexercised and it will be held until
option maturity at time 7.

We can rewrite Eq. (5.2.2) so that $* is the root of the following equation:

K(8*) =¢(S*, E,11) = S* = D1+ E =0 (5.2.3)

where K (S*) denotes the function in the single variable S*.
A well-known technique for solving Eq. (5.2.3) is Newton’s method, which
in this case takes the form:
. e KB
S JO%
where S} is the ith approximation to §* and S, , is the improved (i + 1)th
approximation.

If we now consider the terms in Eq. (5.2.4) we have from Egs. (5.2.2) and
(5.2.3) that

K(Sf)=c(Sf E,11) =S — D1+ E

(5.2.4)

and
0K (S ac(S*, E, 11)
K/ * = ! = L _1
( ') aS* aS*

i i

Also from Eq. (A.3.2) in Appendix A.3:
dc(S), E, 11)
0S¥

1

— Na(a(57))

we note that here the continuous dividend yield g = 0.
So

DK (SF)
aS?
log(S}/E) + (r + 02/2)11
oJT -1
Substituting these results into Eq. (5.2.4) gives:
g C(STE.T) = (Sf + D1 E)
e N1(d1(S}) -1

K'(S)) =

1

= Nafen (7)) - 1

where di =
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On rearrangement this yields:
« _ SIN1(du(S5)) — (S E, 1))+ D1 — E
ol N1(da(S) — 1
fori =0,...,max_i ter (5.2.5)

where a convenient initial approximation is to choose S5 = E, and max_i t er
is the maximum number of iterations that are to be used.

We will now quote the Roll, Geske, and Whaley formula for the current value
of an American call which pays a single cash dividend D; at time 11; it is:

C(S,E, 1)
n—t
= SD{Nl(bl) + N2<al, —b, . )}

+ Dyexp(—r(ty — 1)) N1(b2)

_ Eexp(—rr){Nl(bz) exp(rr1) +N2<a2, by, — tlr t)} (5.2.6)
where Sp is given by Eq. (5.2.1), E is the exercise price, T is the option ex-
piry date, r represents the current time, t is the option maturity, N1(a) is the
univariate cumulative normal density function with upper intergral limit a, and
Na(a, b, p) is the bivariate cumulative normal density function with upper inte-
gral limits @ and b and correlation coefficient p. The other symbols used in Eq.
(5.2.6) are defined as

log(S/E) + (r +0%/2)t
a1 =

G : ap=a1—o~T
l0g(S/S*) + (r + 02/2)(t1 — 1
b2: g(/ )U(rtl_at/ )(l )’ bzzbl—U«/tth

and S is the current (time ) asset price, S* is found using Eq. (5.2.5), r is the
riskless interest rate, o is the asset’s volatility, t =T —tand 11 =T — 1.

To compute the value of an American call option which pays n cash dividends
Di,i=1,...,n,attimes f;,i = 1,...,n, we can use the fact that optimal exer-
cise normally only ever occurs at the final ex-dividend date #,; see for example
Hull (2003). Under these circumstances Eq. (5.2.6) can still be shown to value
the American call but now #1 should be set to 1,,, D1 should be set to D, and Sp
is given by:

n
Sp=2S— Z Di exp(—r(t; — 1)) (5.2.7)
i=1
A program to compute the Roll-Geske—~Whaley approximation for an American
call option with multiple cash dividends is given in Code excerpt 5.1. Here the
functions cum_nor mand cum nor n2 are used to calculate the values of N1(a)
and Naz(a, b, p), respectively. Code excerpt 5.3 was used to compute the values
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voi d RGW approx(doubl e *opt_val ue, double *critical _value, long n_divs, double dividends[], _
double Divs_T[],
doubl e SO, double X, double sigma, double T, double r, long *iflag)

{

/* Input paraneters:

n_divs - the nunber of dividends

di vi dends[ ] - the dividends: dividends[0] contains the first dividend, dividend[1]
the second etc.
Divs_T[] - the tines at which the dividends are paid: Divs_T[O] is the tine at which_

the first dividend is paid
Divs_T[1] is the time at which the second dividend is paid, etc.

SO - the current value of the underlying asset
X - the strike price

si gna - the volatility

T - the tine to maturity

r - the interest rate

Qut put paraneters:

opt _val ue - the value of the option
critical _value - the critical value
iflag - an error indicator

*/
double A 1,A 2,S star,al,a2,ntl,t1,S;
doubl e b1, b2, d1, al pha, h, di v, beta, tenp, tenpl, t enp2, t enp3;
doubl e pdf, b, eur_val,fac,tol,loc_q,err,zero=0.0;
long iterate;

long i,iflagx, putx;
loc_q = 0.0;
temp = 0.0;

for (i=0; i < n_divs; ++i) { /Check the Divs_T array */
if ((Divs_T[i] <= tenp) || (Divs_T[i] > T) || (Divs_T[i] <= zero)) {
*flag = 2;
return;
}
tenp = Divs_T[i];
}
/* calculate the present value of the dividends (excluding the final one) */
temp = 0.0;
for (i=0; i < n_divs-1; ++i) {
tenp = fac + dividends[i] * exp(-r*Divs_T[i]);

}
tl = Divs_T[n_divs-1];
/* decrease the stock price by the present value of all dividends */
div = dividends[n_divs-1];
S = SO-tenp-div¥exp(-r*tl);
iterate = 1;
tol = 0.000001;
S star = X
while (iterate) { /* calculate S_star, iteratively */
/* calculate the Bl ack-Schol es val ue of a European call */
dl = (log(S_star/X) + (r+(sigma*sigma/2.0))*(T-t1))/(sigma*sqrt(T-t1));
putx = 0O;
loc_q = 0.0;
bl ack_schol es(&eur _val , NULL, S_star, X, sigma, T-t1,r,loc_q, putx, & flag);
S star = (S_star*cum.norn(dl)-eur_val +di v- X)/ (cum norn(dl)-1.0);
err = fabs(eur_val - (S_star + div- X))/X
if (err <tol) iterate = 0;
}
al = (log(S/X) + (r+(signma*signa/2.0))*T)/(sigma*sqrt(T));
a2 = al - sigma*sqrt(T);
bl = (log(S/S_star)+(r+(sigma*signa/2.0))*t1)/(sigma*sqrt(tl));
b2 = bl - sigma*sqrt(tl);
ntl = sqrt(t1/T);
tenpl = S*(cum.norm(bl) +cum norn2(al,-bl,-ntl, & flagx));
temp2 = -X*exp(-r*T)*cum norn2(a2,-b2,-ntl, & flagx)-(X-div)*exp(-r*tl)*cumnornmb2);
*opt _val ue = tenpl+tenp2;
*critical _value = S_star;

}

Code excerpt 5.1 Function to compute the Roll-Geske—~Whaley approximation for the
value of an American call option with discrete dividends.
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Table 5.1 A comparison of the computed values for American call options with
dividends, using the Roll-Geske-~Whaley approximation and the Black approximation

Stock price Critical price, S* RGW approximation Black approximation
80.0 123.582 3.212 3.208
85.0 123.582 4.818 4.808
90.0 123.582 6.839 6.820
95.0 123.582 9.276 9.239
100.0 123.582 12.111 12.048
105.0 123.582 15.316 15.215
110.0 123.582 18.851 18.703
115.0 123.582 22.676 22.470
120.0 123.582 26.748 26.476

The parameters used were: E = 100.0, r = 0.04, 0 = 0.2, 7 = 2.0, and there is one cash
dividend of value 5.0 at time ¢ = 1.0. The current stock price, S, is varied from 80.0 to
120.0. The results are in agreement with those given in Table 1 of Whaley (1981).

presented in Table 5.1. These compare the Roll-Geske~Whaley approximation
with the Black approximation, which we will now briefly discuss.
We will now consider the Black approximation.

The Black approximation

The Black (1973) approximation for an American call with cash dividends is
simpler than the Roll-Geske~Whaley method we have just described. For an
American call option which expires at time T, with n discrete cash dividends
D;,i = 1,...,n,at times #;,i = 1,...,n, it involves calculating the prices of
European options that mature at times T, and #,, and then setting the option
price to the greater of these two values, see for example Hull (2003).

The Black approximation, Cg, can be expressed more concisely in terms of
our previously defined notation as:

CpL(S, E, 1) = maX(v1, v2)
where v1 and vy are the following European calls:

v1=c(Sp, E,t) and v2=c(Sg,E,rl), t=T—-t, 1=T —1t,

and
n n—1
Sp=8->D; and SH=5->"D;
i=1 i=1

Code excerpt 5.2 computes the Black approximation.

Code excerpt 5.3 uses the same values as in Whaley (1981) and compares the
Roll-Geske-Whaley approximation with that of Black; the results are presented
in Table 5.1.
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voi d bl ack_approx(doubl e *val ue, |ong n_divs, double dividends[], double Divs_T[],
doubl e SO, double X, double signa, double T, double r, long put, long *ifail)

/* I nput paraneters:

n_divs - the nunber of dividends
di vidends[] - the dividends, dividends[0] contains the first dividend, dividend[1] the_
second etc.

Divs_T[] - the tinmes at which the dividends are paid, Divs_T[0] is the time at which_
the first dividend is paid
Divs_T[1] is the tinme at which the second dividend is paid, etc.

S0 - the current value of the underlying asset

X - the strike price

signa - the volatility

T - the tinme to maturity

r - the interest rate

put - if put is O then a call option, otherwise a put option

Qut put paraneters:

val ue - the value of the option, iflag - an error indicator
*/

doubl e zero = 0.0;

doubl e beta, tenp, tenpl, tenp2, tenp3;

double tn,val _T,val _tn,tol,loc_q,err,fac;

long i,ifailx;

loc_q = 0.0;

tenp = 0.0;

for (i=0; i < n_divs; ++i) {

if (Divs_T[i] <=tenp ) printf ("Error in Divs_T array, elenments not increasing \n");
if (Divs_T[i] > T) printf ("Error in Divs_T array elenment has a value greater than T \n");
if (Divs_T[i] <= zero) printf ("Error in Divs_T array el ement <= zero \n");
temp = Divs_T[i];
/* calculate the present value of the dividends */
fac = 0.0;
for (i=0; i < n_divs; ++i) {
fac = fac + dividends[i] * exp(-r*Divs_T[i]);
}
tenp = SO - fac;
/* calculate the value of the option on expiry */
bl ack_schol es(&val _T, NULL, tenp, X, sigma, T,r, |l oc_q, put, & fail x);
/* calculate the value of the option on |ast dividend date */
tn = Divs_T[n_divs-1];
temp = tenp + dividends[n_divs-1]*exp(-r*tn);
nag_opt _bs(&val _tn, NULL, tenp, X, signe, tn, r,loc_q, putx, & failx);
*value = MAX(val _tn,val _T);
}
Code excerpt 5.2 Function to compute the value of the Black approximation for the

value of an American call option with discrete dividends.

We will now consider a more general technique for pricing both American
puts and calls.

5.2.2 The MacMillan-Barone-Adesi-Whaley method

Here we consider a method of pricing American options which relies on an ap-
proximation that reduces a transformed Black-Scholes equation into a second-
order ordinary differential equation, see Barone-Adesi and Whaley (1987) and
MacMillan (1986). It thus provides an alternative way of evaluating American
options that can be used instead of computationally intensive techniques such
as finite-difference methods. Although the method prices American options, it
is really based on the value of an American option relative to the corresponding
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double q,r,tenp,loc_r;

long i, mnk, macc;

double SO, E T,signma,tl,delta, val ue, ad_val ue, put _val ue;
long is_anerican,ifail, put;

doubl e bi n_greeks[5], greeks[ 5], bi n_val ue, bs_val ue;
doubl e opt _value, critical _value, El, E2, critl, crit2;
doubl e bl ack_val ue;

doubl e Divs_T[ 3], di vi dends[ 3] ;

long n_divs, put;

E = 100.0
r = 0.04;
sigm = 0.2
T= 2.0
tl = 1.0;
put = 0;

/* check using the same parameters as in \inlinecite{Wa1981} */
Divs_T[0] = 1.0;
di vi dends[0] = 5.0;

n_divs = 1;
printf ("\nPrice S RGW Appr oxi mat i on Bl ack Approximation \n\n");
for (i=0; i <9; ++i) {

put = 0;

SO = 80. 0+(doubl e)i*5.0;
opt _RGW appr ox( &opt _val ue, &critical _val ue, n_di vs, di vidends,Divs_T, SO, E, sigma, T, r, & fail);
printf("98.4f ",S0);
printf("od2. 3f 942.3f ", opt_value,critical_value);
opt _bl ack_appr ox( &bl ack_val ue, n_di vs, di vi dends, Di vs_T, SO, E, si gna, T, r, put, & fail);
printf("od2. 3f (u8.4e) ", black_value);

}

Code excerpt 5.3 Simple test program to compare the results of function
opt _RGW appr ox with function opt _bl ack_appr ox; the parameters used are the
same as in Whaley (1981).

European option value (which can readily be computed using the Black—Scholes
pricing formula).

Since an American option gives more choice, its value is always at least that of
its European counterpart. This early exercise premium (v(S, E, t) > 0) is now
defined more precisely for American puts and calls. If at current time 7 the asset
price is S, then the early exercise premium for an American call which expires
at time T, and therefore has maturity t = T — ¢, is:

ve(S,E,T)=C(S,E,7)—c(S,E,t) >0 (5.2.8)

where C(S, E, t) denotes the value of the American call and ¢(S, E, t) denotes
the value of the corresponding European call. The early exercise premium of an
American put option, v, (S, E, 7), is similarly defined as:

vp(S,E, 1) =P(S,E, 1) —p(S,E, 1) 20 (5.2.9)

where P(S, E, 7) is the value of the American put, and p(S, E, t) is the value of
the corresponding European put. The key insight provided by the MacMillan—
Barone-Adesi-Whaley method is that, since both the American and European
option values satisfy the Black-Scholes partial differential equation, so does the
early exercise premium, v(S, E, 7); see Section 4.4.1. This means that we can
write:

v 0282 9%

v
W s T2V 5.2.10
or TUT DSt e =Y ( )



104 Computational Finance Using C and C#

where as usual S is the asset price, r is the continuously compounded interest
rate, g is the continuously compounded dividend, o is the volatility, and time ¢
increases from the current time to the expiry time 7.

We will now introduce the variable h(t) = 1 — exp(—rt) and use the factor-
ization v(S, E, t) = h(1)g(S, E, h). From standard calculus we obtain:

0 98— +h 28 et — 1)+ e - 1)
— =g— — = - —— = r —
or S T T8 onor ¢

and also
9 9 92 92
W _p2 and 2%
as ~ 'as 952~ '9s2

Substituting these results into Eq. (5.2.10) yields the following transformed
Black-Scholes equation:

S2 Zh 32
2 9S82
which can be further simplified to give:

25 28 g 20r—q)Sog 2rg 2r(1—h) Bg

+(r —q)Sh—S+rg(h 1) + rh(h — 1)——rgh (5.2.11)

or
92
SZBSé; + ,BS— - %g - h)oz— —0 (5.2.13)

where @ = 2r/o2 and g = 2(r — ¢) /o2

We now consider the last term of Eq. (5.2.13) and note that when 7 is large,
1— h(r) ~ 0. Also when  — 0 the option is close to maturity, and the
value of both the European and American options converge; this means that
v(S, E,t) ~ 0 and g—i ~ 0. It can thus be seen that the last term is generally
quite small and the MacMillan-Barone-Adesi-Whaley approximation assumes
that it can be ignored. This results in the following equation:

28 g a
S 352 +ﬁS w8 = 0 (5.2.14)

which is a second—order differential equation with two linearly independent so-
lutions of the form aS”. They can be found by substituting g(S, E, h) = aSY
into Eq. (5.2.14) as follows:

3 92
% =ysr 1 a_sé; =ay(y - DS %> =ay®s"" % —ays’?
SO
5282 = ay?S’ —ayS’ = y?g —
552 =Y ySY =y°g—vg
and

0g _
pSo5 = FSays” L= ByS” = Byg
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When the above results are substituted in Eq. (5.2.14) we obtain the quadratic
equation:

o o
Vzg—VngﬁVg—E=g<yz—y+(ﬂ—1)y—ﬁ)=0

or

y2—y+ (B -1y - % =0 (5.2.15)

which has the two solutions

7/1=%{—(ﬁ—1)—,/(ﬁ—1)2+4%} (5.2.16)
1
Vz=§{—(ﬁ—l)+,/(ﬂ—l)2+4%} (5.2.17)

where we note that since «/h > 0, we have y; < 0and y, > 0.
The general solution to Eq. (5.2.14) is thus:

g(S, E, h) = a1S™ + apS"? (5.2.18)

We will now derive the appropriate solutions pertaining to American call op-
tions and American put options.

and

American call options

Here we use the fact that both the value and the early exercise premium
(ve(S, E, 1) = hg.(S, E, h)) of an American call tend to zero as the asset price
S — 0. This means that as § — 0, g.(S, E, h) — 0.

However, since y1 < 0, the only way this can be achieved in Eq. (5.2.18) is if
a1 = 0. So g.(S, E, h) = a»S"2, and the value of an American call is:

C(S,E, 1) =c(S, E, 1) + hapS"? (5.2.19)

An expression for az can be found by considering the critical asset price (point
on the early exercise boundary), §*, above which the American option will be
exercised. For § < §*, the value of the American call is governed by Eq. (5.2.19),
and when S > $* we have C(S,E,7) =S — E.

Now, since the value of the American option is continuous, at the critical asset
value S* the following equation applies:

§* —E =c(S8* E, ) 4+ hazS™? (5.2.20)

Furthermore, since the gradient of the American option value is also continuous,
at §* we have:

S*—E) D
as*  as*

which gives:
1= exp(—q7)N1(d1(S*)) + y2haps*2~ (5.2.22)

[c(S*, E, 7) + hap§™7?) (5.2.21)
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where we have used the value of the hedge parameter A, for a European call
(see the section on the Greeks):

. oc(S*, E, 1)
s
Equation (5.2.22) can therefore be written as:

Ac — exp(—q)N1(d1(5%))

*

S
hazS*? = - {1—exp(—g7)N1(d1(S*))} (5.2.23)

When the left-hand side of the above equation is substituted into Eq. (5.2.20)
we obtain the following equation for S*:

S*—E=c(S* E, 1)+ %{1 — exp(—q7)N1(d1(S¥))} (5.2.24)

This equation can be solved for S* using standard iterative methods (see the
section on the numerical solution of critical asset values). Once S* has been
found Eq. (5.2.23) gives:

hap = A,S* 72
where

S*
Ap = E{l — exp(—q7t)N1(d1(5%))}

From Eq. (5.2.19) the value of an American call is thus of the form:

S Y2
C(S,E, 1) =c(S, E, 1) + A2(§> when § < §* (5.2.25)
C(S,E,t)=S—E whenS§>S* (5.2.26)

American put options

For an American put option we proceed in a similar manner to that for the
American call. We now use the fact that both the value and early exercise pre-
mium (v, (S, E, t) = hg,(S, E, h)) of an American put tend to zero as the asset
price S — 00. S0 g,(S, E, h) — Oas § — oo. Since y» > 0 the only way this can
be achieved by Eq. (5.2.18) is if ap = 0. This gives g,(S, E, h) = a1S" and the
value of an American put is:

P(S,E,t) = p(S,E, 1) + ha1S"™ (5.2.27)

An expression for aj can be found by considering the critical asset price, $**,
below which the American option will be exercised. For § > S$** the value
of the American put is given by Eq. (5.2.27), and for S < S§** we have
P(S,E,7)=E — 5.

Continuity of the American option value at the critical asset price gives:

E — §** = p(S*, E, T) 4+ ha1 S*" (5.2.28)
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and continuity of the option value’s gradient at the critical asset price yields:
A(E — §*) a

which can be simplified to:

[p(S™, E, 7) + ha1§**71) (5.2.29)

~1=—N1(—d1(5™)) exp(—q ) + yrar S+~ (5.2.30)

where we have used the value of hedge parameter A, for a European put (see
Appendix A.3):

kek
A, = op(S™,E, 1)
BS**
= {N1(d1(5™)) — 1} exp(—g1) = —N1(—d1(5*)) exp(—q7)
Equation (5.2.30) can therefore be written as:

Sk
han ™ = == {1 Na(~da (7)) expl—gv)] (5.2.31)

When the left-hand side of the above equation is substituted into Eq. (5.2.28)
we obtain the following equation for S**:

E— % = p(S™ E.7) + [1— exp(_qmv[_dl(s**)]}sy_l (5.2.32)

which can be solved iteratively to yield S** (see the section on the numerical
solution of critical asset values). Once S** has been found Eq. (5.2.31) gives:

hay = A1 SN
where
S** kk
Ap=— ” {1— exp(—g7)N1(—d1(5*))}
We note here that A; > 0 since, 317 < 0, $** > 0, and Ni(—d1(5*%))

exp(—qr) < 1.
From Eq. (5.2.27) the value of an American put is thus:

S Y2
P(S,E,t)=p(S, E, T)+A1< ) when S > $**

S**
P(S,E,71)=E—S whenS < 8*

5.2.3 Numerical solution of critical asset values

We now provide details on how to iteratively solve for the critical asset price in
Egs. (5.2.24) and (5.2.32).
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American call options

For American call options we need to solve Eq. (5.2.24), which is:
S*
S*—E=c(8* E,t) + —{1— exp(—q7)N1(d1(5"))}
V2

We denote the ith approximation to the critical asset value S* by S}, and repre-
sent the left-hand side of the equation by:
LHS(S}, E. 7)) =S} — E

and the right-hand side of the equation by:
S*
RHS(S;, E.t) =c(S]. E.7) + —{1— exp(—q7)N1(d1(S}))}
V2
If we let K(S}', E, ) = RHS(S}, E, 1) — LHS(S}, E, 7) then we want to find the

value of S¥ which (to a specified tolerance) gives K (S}, E, ) ~ 0. This can be
achieved with Newton’s root finding method, in which a better approximation,

Sf. 1, can be found using;:
K(S* E, 1)
¥ gk _ T 7 5.2.33
i+1 1 K/(S?,E,T) ( )
where:
0

K'(S}.E, 1) {RHS(S}, E,t) — LHS(S}. E, 1)}

oS’
g (RHS(ST. £.7)) = S [LHS(S7. £.7)
=b; —1

Here we have used b; = as* {RHS(S?, E, 1)}, and the expression for b; is given
by Eq. (5.2.35), which is derived at the end of this section.
Substituting for K (S}, E, t) and K'(S}, E, 7) into Eq. (5.2.32), we therefore
obtain:
RHS(S?, E, ) — LHS(S}, E. 7)
b —1
. RHS(S},E, ) = (S — E)
i bi — 1
b;S¥ — RHS(S, E. 1) —
B b —1

*
1+1_S

The final iterative algorithm for the American call is therefore:

. E+RHS(S! E.v)—b;S*

1= 1-b, (5.2.34)
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where we can use S§ = E for the initial estimate of the critical value (see the
computer Code excerpt 5.4).

The expression for b;
Here we derive an expression for the term b; which is used in Eq. (5.2.34).
ac(SH, E, 1) 1
b= —"—— + —{1—exp(—qt)N1(d1(S*
L BSZ* +]/2{ p( C]T) 1( 1(1))}
87 ON1(da(S])) 9du(S))
y2  9di(S}) a8}

1

We will now quote the following results which are derived in Appendix A:
Appendix A, Eq. (A.1.3)
IN1(d1(S}))
SV o (dy (ST
D) — ()
Appendix A, Eq. (A.1.6)
3d1(S?) 1

sk Sfot
Appendix A, Eq. (A.3.2)
_ 9c(S;L E.7)

T sy

— eXp(—qT)NL(da(5)))

Substituting these results into the above expression, we therefore obtain:

1 —qT)N1(d1(S*
by = eXp(—qt)Nl(dl(S;k)) L= exp(—qt)N1(d1(S;))
V2 v2

 exp(—q0)n(du(S))
Y20 /T

which can be rearranged to yield:

1 1 exp(—qt)n(di(SF))
bi = exp(—qt)N1(dr(SF)){1— =t + —{1— ’
ep-goma(aa(s)fr- 1)+ 2 e

(5.2.35)

American put options

For American put options we need to solve Eq. (5.2.32) which is:
S

B =S5 = p(S17Eot) = S {1 Ma(aa(557)) explog)
V1

If we let S denote the ith approximation to the critical asset value $**, then
we can represent the left-hand side of the equation by:

LHS(S;*,E.t)=E — S§*
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and the right-hand side of the equation by:

RHS(S7*, E.7) = p(S:*. 7) - Syfl [1— Ni(—da(S7)) exp(—qm)]

kk

= (57" Bor) = P 1= [ Mafaa(57)] e-q)

k%

= p(S;*, E, 1) — ~—{1— exp(—q7)

Y1
+ N1(d1(S7)) exp(—q1)}

We then denote K(S'*, E,t) = RHS(S*, E,t) — LHS(S/*, E, ) and using
Newton’s method we obtain:
o _ g KT ET)
LT KIS E, 1)

(5.2.36)

where as before:
K'(S*, E,7) = 8S%{RHS(S,.**, E,t) — LHS(S, E, 1)}
i

So K'(8*, E, 1) = 14 b;, where b; = W, and the expression for b;

is given by Eq. (5.2.38), which is derived at the end of this section.
Equation (5.2.36) can therefore be written as:

RHS(S}*, E, ©) — LHS(S*, E, 7)

St =8" - 1+b;
1
_ SP(1+b;) — RHS(S}* E, 1) + E — 5%
= 1+ b;

The final iterative algorithm for the American put is therefore:
o _ E—RHS(S]* E.v) + byS}*
! 1+ b;

where we can use S§* = E for the initial estimate of the critical asset value (see
the computer Code excerpt 5.4).

(5.2.37)

The expression for b;
Here we derive an expression for the term b; which is used in Eq. (5.2.37).
Since
9 s+
bi = W{p(si**, E.v) =~ (1= ep(=g7) + Ni(da(S]")) exp(—gr))}
L

we have
p(S* E, 1) 1 1
= i T ] exp(—q1)) — — exp(—qT)Na(da (S
i a5+ )/1{ p(—q1)} ” P(—q7)N1(d1(S;™))
S¥* exp(—qt) ON1(d1(S7™)) 3d1(S]™)
v1 0d1(S1™) 98"
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We will now quote the following results which are derived in Appendix A:
Appendix A, Eq. (A.1.3):

IN1(d1(S]™)) e
TS n(di(S;7))

Appendix A, Eq. (A.1.6):
ddu(S) 1

IS SFoT
Appendix A, Eq. (A.3.4):
ap(S;™*, E, 1)
p= W = exp(—q1){N1(d1(S]*)) — 1}
14
Substituting these results into the above expression, we therefore obtain:

bi = exp(—q){N1(da(S7¥)) — 1)
1
- {1— exp(—q7) + N1(d1(S;*)) exp(—q1)}
| SpFexp(—qT) IN1(da(S])) dda(S})
Y1 8d1(S;k*) E)S,.**
= exp(—q ) | N1 (da (7)) — 1)

1
= (1= ep(—gm) + Na(da(S7)) exp(—qm)]}

S ep(—grn(di(S;)
y1o/T

which can be rearranged to yield:

1
b = a(p(—qt)Nl(dl(Si**)){l— Z}

exp(—qt)n(di(S;™))
o /T
In Code excerpt 5.4 we provide computer code to implement the MacMillan—
Barone-Adesi—-Whaley method.

+ %{exp(—qr) —1- } —exp(—q7)  (5.2.38)

voi d MBW appr ox(doubl e *opt_val ue, double *critical _value, double SO, double X
doubl e sigma, double T, double r, double g, long put, long *iflag)

/* Input paranmeters:

S0 - the current value of the underlying asset
X - the strike price

signa - the volatility

T - the tine to maturity

r - the interest rate

Code excerpt 5.4.
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*/

the continuous dividend yield
if put is O then a call option,

a -
put -
Qut put paraneters:

opt _val ue - the value of the option
critical _value - the critical value
iflag - an error indicator

double A 1,A 2,S star, gamme_2, ganme_1;
doubl e d1i, al pha, h, beta, tenp, tenpl;
doubl e pdf, pi, b, rhs,eur_val,tol,err;
long iterate;

long iflagx, putx;

Pl;
beta = 2.0 * (r - q) / (sigm * sigm);
alpha = 2.0 * r / (sigma * sigm);

h =1.0 - exp(-r*T);

tenp = beta - 1.0;

iterate = 1;
tol = 0.000001;
if (tput) { /*

pi

An Anerican call */

ot herwi se a put option

gamma_2 = (-tenp + sqrt((temp*tenp) + (4.0*al pha/h)));

gamma_2 = gamma_2 / 2.0;

S star = X;

while (iterate) { /* calculate S star, iteratively */
dl = log(S_star/X) + (r-q+(sigma*signa/2.0))*T;
dl = d1/(sigma*sqrt(T));
pdf = (1.0/sqrt(2.0*pi))*exp(-di*dl/2.0);

tenp = exp (-q*T)*cumnorn(dl)*(1.0 -
tenpl (1.0 -
b = tenp + tenpl;

/* cal cul ate the Bl ack-Schol es val ue of a European call

putx = 0;

(1.0/gamma_2));
((exp(-g*T)*pdf)/ (sigma*sqrt(T))))/gamma_2;

*/

bl ack_schol es(&eur _val , NULL, S_star, X, signe, T, r, g, putx, & fl agx) ;

rhs
S star = (X + rhs - b*S_star)/(1.0-b);
err = fabs((S_star - X) - rhs)/X;

if (err <tol) iterate = 0;

eur _val +( 1. 0-exp(-qg*T)*cum norm(dl))*S_star/gamma_2;

}
A 2 = (S_star/gamma_2)*(1.0 - exp(-qg*T)*cumnorn(dl));

if (SO < S star) {
tenpl = SO/ S star;

bl ack_schol es( &t enp, NULL, SO, X, signe, T, r, g, putx, & fl agx);

*opt_value = tenp + A 2 * powtenpl, ganma_2);

}
el se {
*opt_value = SO - X
}
}
else { /* An Anerican put */

gamme_1 = (-tenp - sqrt((temp*tenp) + (4.0*al pha/h)));

gamme_1 ganme_1 / 2.0;

S star = X

while (iterate) { /* calculate S_star, iteratively */
di log(S_star/X) + (r-qg+(signma*sigma/2.0))*T;

dl = d1/(sigma*sqrt(T));
pdf = (1.0/sqrt(2.0*pi))*exp(-di*d1/2.0);

temp = exp(-q*T)*(cumnorn(dl)*(1.0-(1.0/ganma_1))-1.0);
tenmpl = (exp(-qg*T)-1.0-((exp(-q*T)*pdf)/(sigma*sqrt(T))))/gama_1;

b = tenp + tenpl;

/* calculate the Bl ack-Schol es val ue of a European put */

putx = 1;

bl ack_schol es(&eur _val , NULL, S_star, X, sigma, T, r, q, putx, & flagx);
rhs = eur_val - (1.0-exp(-qg*T)+exp(-q*T)*cum norn(dl))*S star/gamm_1;

S star = (X - rhs + b*S_star)/(1.0+b);
err = fabs((X - S_star) - rhs)/X
if (err <tol) iterate = FALSE;

}
A1l =-(S star/gamma_1)*(1.0 - exp(-qg*T)*cumnorn(-dl));

it (SO > S star) {
tenpl S0/ S_star;

bl ack_schol es( &t enp, NULL, SO, X, signme, T, r, g, putx, & fl agx);

*opt _val ue

temp + A1 * powtenpl, gamma_1);

Code excerpt 5.4 (Continued).
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el se {
*opt _val ue
}
}
*critical _value = S star;

}

X - S0;

Code excerpt 5.4 Function to compute the MacMillan—-Barone-Adesi-Whaley approxi-
mation for American options.

Table 5.2 The MacMillan-Barone-Adesi—-Whaley method for American option values
computed by the routine MBW appr ox

Stock price Call Put
Accurate value Error Accurate value Error

86.0 1.2064 554 x 1074 14.0987 —3.69 x 102

89.0 1.8838 1.95 x 104 11.5120 —4.85 x 1072

92.0 2.7890 7.03 x 1074 9.2478 —3.58 x 102

95.0 3.9427 1.16 x 103 7.3031 —1.66 x 102

98.0 5.3522 1.15 x 103 5.6674 7.19 x 1074
101.0 7.0119 1.10 x 103 4.3209 1.35 x 102
104.0 8.9043 221 x 1073 3.2362 2.22 x 1072
107.0 11.0072 2.63x 1073 2.3823 2.63 x 1072
110.0 13.2905 4.20 x 103 1.7235 2.80 x 1072
113.0 15.7264 4.77 x 1073 1.2272 2.66 x 10~2

The parameters used were: T = 0.5, X = 100.0, r = 0.1, ¢ = 0.06, 0 = 0.2. The accurate
value was calculated using a standard lattice with 2000 time steps, and the error was the
MacMillan-Barone-Adesi-Whaley estimate minus the accurate value.

Table 5.3 The MacMillan, Barone-Adesi, and Whaley critical asset values for the early
exercise boundary of an American put computed by the routine MBW appr ox

Time to expiry, t Critical asset value, $** Time to expiry, t Critical asset value, §**

1.00 82.1510 0.50 85.1701
0.95 82.3751 0.45 85.6199
0.90 82.6115 0.40 86.1176
0.85 82.8618 0.35 86.6740
0.80 8§3.1273 0.30 87.3049
0.75 83.4098 0.25 88.0333
0.70 83.7115 0.20 88.8959
0.65 8§4.0349 0.15 89.9568
0.60 84.3830 0.10 91.3469
0.55 84.7598 0.05 93.4260

The parameters used were: § = 101.0, X = 101.0, r = 0.1, ¢ = 0.06, and o = 0.20.

The results given in Tables 5.2 and 5.3 were obtained by using the function
MBW appr ox.
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5.3 Lattice methods for vanilla options

5.3.1 Binomial lattice

In this section we will derive equations for a binomial lattice that describes the
GBM movement of asset price changes. The approach that we will adopt is
based on the work of Cox, Ross, and Rubinstein (1979) and will be referred to
as the CRR lattice.

From Chapter 2, Eq. (2.3.9), we know that if the price of an asset, S, follows
GBM then the change in value of its price over time interval Az has the following
distribution:

2
Iog(%) ~ N((r — %)At, ozAt>
'

If we use the notation:

St Ar
Sy

X =

and

the above equation becomes:
log(X) ~ N(n, v?)

or equivalently
X ~ A(n,v%)

where A(n, v?) is the lognormal distribution derived from a Gaussian distribu-
tion with mean 5 and variance v2. It is well known—see for example Evans,
Hastings, and Peacock (2000)—that the first two moments of a variable X
drawn from a lognormal distribution are:

Lognormal mean

vZ
E[X] = exp(n + ?> (5.3.1)

substituting for n and v? gives:

2 2
E[X] = exp{ (r - %)At + %At} (5.3.2)
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Lognormal variance

VarlX) = E[( ~ ELXI)?) = E[X7] - (LX)
= exp(2n + v?) {exp(v?) — 1 (5.3.3)

substituting for n and v? gives:

2
Var[X] = exp{Zr(r - %)At + azAt}

which can be simplified to yield:
Var[X] = exp{2r At}{exp(c?Ar) — 1} (5.3.4)

Since we can assume that the expected value of X grows at the riskless interest
rate, r, we can also write:

E[X] = exp(rAt) (5.3.5)

The above results can be used to find the first two moments of the asset price
distribution S,4 A, given that we know the asset price, S;, at time instant ¢. To
do this we will use (see Appendix C.3 for a proof) the fact that for a random
variable G we have:

Ela +bG] = E[a]l + bE[G] and Var[a +bG] = b? Var[G]
where a and b are constants. Applying this to the variable X gives:

1
S%A] = LS (5.3.6)

E[X] = E[ 5

t

and

Var[X] = Var[sl;m]

t

1
= ?Var[SHA,] (5.3.7)

t

1 .
where we have used a = 0 and b = —. Note: It is also easy to show that:
t

Var[S;1as] = Var[AS] (5.3.8)

where the change in asset price over the time interval Az is denoted by AS =
St+ar — S:. This elementary result sometimes is used without proof, see for ex-
ample Hull (1997), p. 344. The proof is simple:

Var[S;ar] = Var[S; + AS] = Var[AS]
where again we have used:
Var[a + bG] = b?Var[G], this time witha = Oand b = 1.

To find expressions for the mean and variance of S,1A, we simply substitute
Eq. (5.3.5) into Eq. (5.3.6) and obtain:

E[Si+a:] = S exp(rAr) (5.3.9)
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and substituting Eq. (5.3.4) into Eq. (5.3.7) gives:
Var[Siac] = SZexp(2r At) |exp(o?At) — 1} (5.3.10)

Since we are modelling asset price movements with a binomial lattice, the asset
price, S, at any given node is only permitted to either jump up or jump down
in value over the next time step Ar. Here we will assume that the new asset
price, S¢1ar, is S;u for an up jump and S;d for a down jump where u and d are
constants that apply to all lattice nodes. If we further denote the probability of
an up jump by p, then the probability of a down jump must (by definition) be
1-p.

Now that we have specified the lattice parameters we will use these to match
the first two moments of the lognormal distribution. This results in the following
equation for the mean:

E[Sisarl = pSu + (1 — p)S,d = S, exp(r At) (5.3.11)
The corresponding equation for the variance requires a little more work:
2
Var[Sivaid = E[(Si+a0?] = (ESi+arl) (5.3.12)
Since

E[(Sr+a0%] = p(Su)® + (L= p)(Sid)? = SP{pu? + (1 — p)d®}  (5.3.13)
and, from Eq. (5.3.9), we have:

(E[Sisai])” = {Si exp(rAn)? = S2exp(2r Ar) (5.3.14)
we can substitute Egs. (5.3.13) and (5.3.14) into Eq. (5.3.12) to obtain:

Var[Siacl = S2{ pu® + (1 — p)d?} — S? exp(2r At) (5.3.15)
So from Egs. (5.3.10) and (5.3.15):

exp(2r An){exp(02Ar) — 1} = pu? + (1 — p)d?

= pu® + (1 — p)d? — exp(2r A1) (5.3.16)

So, restating Eq. (5.3.11) and simplifying Eq. (5.3.16), we obtain the following
two equations:

pu+ (1 — p)d = exp(rAt) (5.3.17)
exp(2r At + 0?At) = pu® + (1 — p)d® (5.3.18)

which we will use to solve for the three parameters u, d, and p. Since there
are three unknowns and only two equations, we can impose an additional con-
straint to obtain a unique solution. The constraint used in the CRR binomial
model is:

1

u=-

d
We now use the following notation:

a = exp(rAt)
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and
b? = exp(2r An)|exp(c?At) — 1} = a®{exp(c?Ar) — 1}

This means that Eq. (5.3.17) can be written as:
a=pu+(1-p)d

which gives:

a—d

u—d

From Eq. (5.3.18) we have:

p= (5.3.19)

exp(2r At + o%At) = a® exp(o?At) = a® + b?
and so:
a? +b% = pu® + (1 — p)d?
Rearranging we have:
pu2 +(1- p)d2 —a®=b?
pu3 +(1- p)dzu —ad’u—bu=0
but:
(1—p)d2u =1-p)d=a— pu
SO
pu3+(a — pu) —a’u —b’u=0
or
p(u3—u)+a—a2u —b’u=0
Now,
p(u3 — u) = uzp(u —d) = uz(a —d) = ula —u
which gives:
au® —u+a —a’u —b%u =0
So we obtain the following quadratic equation in u:
auz—u(1+a2+b2) +a=0
The solution is:

(A4 da?+b%) + V(A + a2 + b2)2 — 442
u =
2a

If At is small we can obtain a reasonable approximation to the solution by
neglecting terms of order higher than Ar.
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In these circumstances we have:
a? +b% + 1= exp(2r At) + exp(2r Ar) |exp(o?At) — 1}+1
~ 142 At 4+ (L+ 2rA)02AL + 1~ 2+ 2r At + 0 2At

Therefore,

\/(aZ + b2+ 1)° —4a? ~ \/(2 +2r At + 62A1)% — 41+ 2r A1)

~ A+ 8 At + 402At — 4— 8rAt
= V406?2At = 20/ At

and so
24 2r At + 02At 4+ 20 /At
2exp(rAt)

2
At
"~ (1+rAt +2 5 —i—a«/At)(l— rAL)

o2At

u

o2At

+oNVAt —rAt=1+0V At + >

u~1+rAr—+

which to order At gives:

u=exp(cvAr) and d=exp(—o~v/At) (5.3.20)
where we have used

2At 3At 3/2
eXp(o«/At):l—i—o«/At—i—oz +0(6)

and

d=-=

u

It is interesting to note (by substituting into Eq. (5.3.19)) that when r = 0 and
At — 0, we have p — 3

Now that we know the values of the lattice parameters u, d, and p we can use
these to build a lattice with a specified number of time steps. Once this has been
constructed, it can be used to compute the values and Greeks for various types
of financial options. These could simply be American/European vanilla options,
or more exotic options that may incorporate features such as: lockout periods,
barriers, and nonstandard payoff functions.

We will now discuss how to create a lattice which can be used to value Amer-
ican and European vanilla options.

If the current value of the underlying asset is S, and the duration of the option
is T and we use a lattice with n equally spaced time intervals At, then we have:

T
At = -
n

The values of the asset price at various nodes in the lattice can easily be com-
puted. This is illustrated, in Fig. 5.1, for a lattice with six time steps (that is
seven lattice levels).
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Figure 5.1 A standard binomial lattice consisting of six time steps. The root lattice
node R corresponds to the current time #, and the terminal nodes G to Mare those at
option maturity; that is time ¢ + t, where 7 is the duration of the option. The asset value
at node Ris S, where S is the current asset value. Asset values at other nodes are, for ex-
ample, node S: Su, node T: Sd, node V: S, and node A: Su®. Option values are computed
using a backward iterative process: the option values at nodes A-F on the penultimate
time step are computed from the payouts of the terminal nodes G-M and this process con-
tinues until the root node is reached which yields the current value of the option. Here
we compute the Greeks using the following nodes: Delta uses nodes S and T, Gamma
uses nodes U, V, and W and Theta uses nodes Rand V.

The asset values at the labelled nodes are:
Lattice level 1: Time ¢
Sp=S
Lattice level 2: Time t + At
Ss = Su, St = Sd
Lattice level 6: Time r + 5At
Sa=58u®  Sp=5Su®,  Sc=Su,
Sp=Sd, Sg=S,  Sp=58d°
Lattice level 7: Time t + 6At
Sg=8Sub,  Sy=sut, S, =Su’:, S,
Sk =Sd%, Sy =8d% Sy =Sd®

Il
=«
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In general, at time 7 + i Az, there are i + 1 stock prices; these are:
Sij=Su/d™I, j=0,1,...,i

We note that, since u = 1/d, an up movement followed by a down movement
gives the same stock price as a down movement followed by an up movement;
for instance, Su?d = Su. This means that the tree recombines, and the number of
nodes required to represent all the different asset prices is significantly reduced.

5.3.2 Constructing and using the binomial lattice

In this section we are concerned with the practical details of how to construct,
and then use, a standard one-dimensional binomial lattice to value Ameri-
can and European options. Since this lattice forms the basis for other one-
dimensional and multidimensional lattice techniques, we will discuss its con-
struction in some detail. A complete computer program for a standard bino-
mial lattice is given in Code excerpt 5.11, and we will use this as a basis for
our discussions. The results of using this code are presented in Fig. 5.2. For

American put

0.2 T

015 B

0.05+- q

-0.05+ B

Error in estimated value
(=)
T

-0.15- B

.0.2 I 1 I I 1 I 1 I I
0 10 20 30 40 50 60 70 80 90 100

Number of time steps

Figure 5.2 The error in the estimated value, est_val, of an American put using a stan-
dard binomial lattice. The parameters used were: T = 1.0, S = 105.0, X = 105.0, » = 0.1,
g = 0.02, 0 = 0.3. The very accurate value (acc_val) was 9.2508 and was computed us-
ing a 6000 step standard binomial lattice. The error in the estimated value was obtained
as est_val — acc_val.
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easy reference we will now list the input parameters used by this computer pro-
gram:

SO the current price of the underlying asset,S
X the strike price

si gma the volatility of the asset

T the maturity of the option in years

r the risk-free interest rate

q the continuous dividend yield

put if put equals 1 then the option is a put

option,if put equals O then it is a call option
is_anerican if is_american equals 1 then it is an
Anerican option,if is_american equals O then it is a
Eur opean option
M the nunmber of tine steps in the lattice

We will now discuss in more detail the computational issues involved in each
stage of the calculation.

Compute the values of the constants used by the lattice

First calculate the values of various constants that will be used, see Code ex-
cerpt 5.5.

For convenience, we have used the variables p_u and p_d to store, respec-
tively, the up and down jump probabilities discounted by the interest rate r
over one time step; these values will be used later on when we work backwards
through the lattice to calculate the current option value.

Assign the asset values to the lattice nodes

We will now show that the number of different asset prices, £S,, for an n step
recombining lattice is 2n + 1.

The nodes in a recombining lattice can be considered as being composed of
two kinds: those corresponding to an even time step, and those corresponding
to an odd time step.

This is because the set of node asset values, £7, for an even time step is
distinct from the set of node asset values, O7, for an odd time step. Although

dt = T/ (doubl e) M
tl = sigma*sqrt(dt);
u = exp(tl);

d = exp(-tl);

a = exp((r-qg)*dt);
p=(a-d/(u- d;

if ((p<zero) || (p>1.0)) printf ("Error p out of range\n");
di scount = exp(-r*dt);

p_u = di scount *p;

p_d = discount*(1.0-p);

Code excerpt 5.5 A code fragment which computes the values of various lattice con-
stants.
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s[M = SO;

for (i =1; i <= M ++i) {
S[M+i] = u*s[Mri-1];
s[Mi] = d*s[Mi+1];

}

Code excerpt 5.6 A code fragment which assigns the different binomial lattice asset
values to the storage array s by using the up and down jump ratios u and d de-
fined in Section 3.4.1. The current asset value S is assigned to the central array el-
ement S[ M, where Mis the number of time steps in the lattice. The array elements
above center are S{M+i ] = Su’,i = 1,...,M and the array elements below center are
S[Mi] =8d,i=1,....M

ETNOT = @, the elements of £T and OT for any consecutive pair of time steps
are related by the simple constant multiplicative factor d. Also, for an even time
step there is a central node corresponding to the current asset price SO, and the
remaining nodes are symmetrically arranged about this, see Code excerpt 5.6.
These features are illustrated in Fig. 5.1, for a standard lattice with six time
steps.

The number of distinct asset prices in a lattice is therefore the sum of the
number of nodes in the last two time steps. Since the number of nodes in the ith
time step, S;, is i + 1 (see Fig. 5.1), for an n time step lattice we have:

Si=n+1 and S,.1=n
This means that the number of different asset values in an n time step lattice is:
LS, =85 +S-1=2n+1
The number of nodes in an n time step lattice, LN, is:

n+DHn+2)

LNy =) (i+D= 5

i=0
where we have used the fact that LN, is the sum of an arithmetic progression
with first term 1, increment 1 and last term n + 1.

One might initially think that, in order to price options, it is necessary to
store the asset value of each lattice node which would entail storing LN, values.
However, this is not the case. We only need to store the number of different asset
values in the lattice; that is, £S,, values.

Storing LS, values instead of LN, can result in dramatic economies of stor-
age. For example, an accurate, 1000 step lattice, has LN, = 2001 x 2002x 1/2 =
2003001, while the corresponding value of LS, is only 2 x 1000 + 1 = 2001.

Compute the option payoff at the terminal nodes

The current value of an option is evaluated by starting at option maturity, the
end of the tree, and working backwards. The option values for the terminal
nodes of the tree are just given by the payoff (at maturity) of the option; this
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if (((M1)/2) == (M2)) { /* then Mis even */

if (put)
v[M2] = MAX(X - s[M, zero);
el se
v[M2] = MAX(sS[M - X, zero);
}
P1 = 2*M
P2 = 0;
for (i =0; i < (M1)/2; ++i) {
if (put) {
v[Mi] = MAX(X - s[P1], zero);
v[i] = MAX(X - s[P2], zero);
}
el se {
v[Mi] = MAX(s[P1]-X zero);
v[i] = MAX(s[P2]-X zero);
}
PL =Pl - 2;
P2 = P2 + 2;
}

Code excerpt 5.7 A code fragment that computes the payouts for puts and calls at the
lattice terminal nodes. The payouts are assigned to elements of the array v and are com-
puted using the strike price, X, and the previously computed asset values stored in ar-
ray S; as before Mis the number of time steps in the lattice.

is independent of whether the option is an American or European. For a lattice
with n time steps there are n + 1 terminal nodes, with option values, f, ;, j =
0,...,n.

To compute the values of vanilla American and European options, with exer-
cise price E, then we will start with the following terminal node values:

for put options:

fuj = max(E — Su/d"~7,0), j=0,...,n,
and for call options:

foj = max(Su/d"/ —E,0), j=0,....n

The computer code used to achieve this is Code excerpt 5.7.

Iterate backwards through the lattice

The probability of moving from node (i, j) at time i A7 to node (i + 1, j + 1) at
time (i + 1)Ar is p, and the probability of moving from node (i, j) at time i At
to the node (i + 1, j) at time (i + 1)Ar is 1 — p. If we assume that there is no
early exercise then:

[ =ep=rAn{pfirrjpn+A—p fira;}, Jj<i<n-10<j<i
(5.3.21)
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When early exercise, for an American option, is taken into account we have:
A E
[y =max{E = Sij. i} (5.3.22)
or for an American call option:
fy=max{s; ;- E. 5}, j<i<N-1,0<j<i, (5.3.23)

where flE] is given by Eq. (5.3.21).

Code excerpt 5.8 works backward through the lattice and uses the array v to
store the option values.

At each time step the newly calculated option values overwrite those com-
puted by the previous time step. This process is continued until the second time
step (ML = 2) is reached. A different technique is then used, which doesn’t
overwrite the option values and thus allows the Greeks to be computed in the
vicinity of the root lattice node R. If the Greeks are not required, continue work-
ing backward through the lattice until the root node R(ml = 0) is reached, and
the current value of the option is then given by v[ 0] (or its multidimensional
equivalent).

The option values at all lattice nodes in time steps 0, 1, and 2 are made acces-
sible by the Code excerpt 5.9.

P2 = 0;
for (ML = M1; m >= 2; --nl) {
P2 = P2 + 1,
P1 = P2;
for (n =0; n <= ml; ++n) {
if ((v[n] == zero) && (v[n+l] == zero)) {
hold = zero;
}
el se
hold = p_d*v[n] + p_u*v[n+1];
if (is_american) {
if (put)
v[n] = MAX(hol d, X-s[P1]);

el se
v[n] = MAX(hol d, s[P1]-X);
}
el se
v[n] = hold;
P1 = P1 + 2;

}

Code excerpt 5.8 Computer code that works iteratively backward through the lattice
computing the option values at each time step. The array v contains the option values
computed from the previous time step, and these are overwritten with option values
computed for the current time step. The iteration stops at the second time step, since we
do not want to overwrite values in the array v which are required for calculating the
Greeks in the neighborhood of the root node.
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J
for (mt =2; m >=1; --ml) {
ind = Mnml+1;
for (n =0; n < ml; ++n) {
hold = p_d*v[5-jj-nml-1] + p_u*v[5-jj-ml];
if (is_american) {

if (put)
v[5-jj] = MAX(hold, X-s[ind]);
el se
v[5-jj] = MAX(hold, s[ind]-X);
el se
v[5-jj] = hold;
--ii
ind =ind + 2;

}

*val ue = v[5];

Code excerpt 5.9 Code fragment illustrating how the option values are stored for the
first two time steps so that the Greeks can be computed in the vicinity of the root node R.

Table 5.4 Lattice node values in the vicinity of the root node R

Node Time step Asset array element Asset value Option array element
R 0 s[M S v[ 5]
S 1 s[ M+1] Su v[ 4]
T 1 s[ M 1] Sd v[ 3]
U 2 s[ M+2] Su? v[ 2]
\% 2 s[M S v[ 1]
w 2 s[ M 2] Sd? v[ 0]

Computing the Greeks: A, I' and ©

We will now describe how to calculate the option’s hedge statistics (Greeks).
Let the option value and asset value at lattice node k be denoted by f; and
Sk respectively. So, for instance, S represents the asset price at node T and fr
is the corresponding option value at node T. Table 5.4 supplies details of the
lattice node values in the vicinity of the root node R.
The computation of each Greek is now considered.

Delta
The definition of A is the rate of change of the option value with asset price
all other parameters remaining fixed. Thus,

LA
as AS
where Af is the change option value corresponding to the change in the asset
price AS. Ideally we would like to evaluate this partial derivative at the root
node R (mL=0); however, we cannot because we need at least two lattice nodes
to compute a value. The best we can do is to evaluate the derivative at the first
time step (ML=1) as follows:

fs—Jr _ v[4] —v[3]

A = =
Ss— Sy s[M+1]—s[M—1]
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Gamma
The definition of I' is the rate of change of A with asset price all other para-
meters remaining fixed. Thus,
2f A
T 982 T as
In order to evaluate I we require at least two values of A. The nearest this can
be achieved to the root node Ris at time step 2, where we have:

o Ay = By
Sov = Svw
with the midpoints

1
Sy = E{SU + Sv}

and the values of A at the midpoints S}, and S, denoted by A}, and A},
respectively. Since

* _ fU _fV
AUV - SU _SV
* _ fV _fW
and
* * 1
Sy — Syw = E{SU — Sw}
we have
« _ VI2]—v[1]
UV'™ sIM+2]—s[M
N v[1] — v[O]

VT SIM - s[M-2]
The value of I' can therefore be approximated as:
28y, — 4y
S[M+ 2] —s[M— 2]
Theta

The definition of ® is the rate of change of option value with time all other
parameters remaining fixed. Thus,

0 A
o= _AF
at At
The nearest to the root node R this can be computed is over the time interval
from time step O to time step 2. We then obtain the following approximation:

_ fv—fr _ VIl =VI5]

2At 2At

e
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Code excerpt 5.10 computes the A, I', and © by using the approximations we
have just discussed.

Vega
The definition of V is the rate of change of the option value with volatility:
a
bW

T 9o
In a standard binomial lattice V cannot be computed directly. A simple approach
is to use two binomial lattices as follows:

V= f<7+A<7 - fa
Ao

where fy1 a0 is the option value computed using a binomial lattice with volatil-
ity 0 + Ao, and f, is the option value computed using another binomial lattice
with a volatility of o; all other lattice parameters remain constant.

The implied volatility of American options can be computed using the method
outlined for European options in Section 5.4.4; however, in this case the option
value and Greeks are computed using a binomial lattice (see Code excerpt 5.11).

/* assign the value of delta (obtained fromnl = 1) */
greeks[1] = (v[4]-v[3])/(s[M+1]-s[M1]);

/* assign the value of gammma (use the values at tine step nl = 2) */
dvl = v[2] - v[1];

dsl ; s[M2] - s[M;
dv2 = v[1] - v[O];
ds2 = s[M - s[M2];

h = 0.5%(s[M2] - s[M2]);

greeks[0] = ((dvl/dsl) - (dv2/ds2))/h;

/* assign the value of theta */

greeks[2] = (v[1]-*value)/(2.0*dt); /* can also wite: greeks[2] = (v[1]-v[5])/(2.0*dt); */
}

Code excerpt 5.10 A code fragment that computes the values of the Greeks, Delta,
Gamma and Theta, in the vicinity of the root lattice node R.

void standard_| attice(doubl e *val ue, double greeks[], double SO, _
doubl e X, double sigm, double T, double r,
double g, long put, long is_anerican, long M long *iflag)

/* Input paraneters:

S0 - the current price of the underlying asset

X - the strike price

signa - the volatility

T - the tinme to maturity

r - the interest rate

q - the continuous dividend yield

put - if put is O then a call option, otherwi se a put option

is_american - if is_american is 0 then a European option, otherwi se an Anerican option
M - the nunber of tine steps

Qut put paraneters:

val ue - the value of the option,

greeks([] - the hedge statistics output as follows: greeks[0] is gamm, greeks[1]_
is delta, greeks[2] is theta,

iflag - an error indicator.

*/

/* Allocate the arrays s[2*Ml], and v[M1] */

Code excerpt 5.11.
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dt = T/(doubl e) M
tl = sigma*sqrt(dt);
u = exp(tl);

d = exp(-t1);

a = exp((r-g)*dt);

(a - d)/(u - d);

if ((p<zero) || (p>1.0)) printf ("Error p out

di scount = exp(-r*dt);
p_u = di scount*p;
p_d = discount*(1.0-p);

/* assign the 2*Mrl asset val ues */

s[M = S0;

for (i =1; i <=M ++) {
s[Mri] = u*s[ M+ -1];
s[Mi] = d*s[Mi+1];

/* Find out if the nunber of tine steps,

M

of range\n");

is odd or even */
(((Mr1)/2) == (M2)) { /* then Mis even */

*/

/* now work backwards through the lattice to calculate the current option value */

== zero))

if (put)
v[M2] = MAX(X - s[M, zero);
el se
v[M2] = MAX(s[M-X, zero);
}
/* Calculate the option values at maturity
P1 = 2*M
P2 = 0;
for (i =0; i < (M1)/2; ++) {
if (put) {
v[Mi] = MAX(X - s[P1], zero);
v[i] = MAX(X - s[P2], zero);
}
el se {
v[Mi] = MAX(s[P1]-X zero);
v[i] = MAX(s[ P2]-X, zero);
}
PL =Pl - 2;
P2 = P2 + 2;
}
P2 = 0;
for (m = M1, m >= 2; --nl) {
P2 = P2 + 1,
P1 = P2;
for (n =0; n <= nl; ++n) {
if ((v[n] == zero) && (v[n+1]
hold = zero;
}
el se

hold = p_d*v[n] + p_u*v[n+1];

if (is_anerican) {

if (put)
v[n] = MAX(hold, X-s[P1]);
el se
v[n] = MAX(hol d, s[P1]-X);
}
el se
v[n] = hold;
Pl = P1 + 2;

}
}

{

/* The values v[0], v[1] & v[2] correspond to the nodes for mi = 2, v[3] & v[4] correspond_

the nodes for ml = 1 and the

option value (*value) is the node for miL = 0, v[5]. For a given time step v[O0]_

corresponds to the | owest asset
v[1] to the next |owest etc.. */

i =2z
for (mi =2; m >=1; --ml) {
ind = Mnl+1;
for (n =0; n < nml; ++n) {
hold = p_d*v[5-jj-nl-1] + p_u*v[5-jj-nmil];
if (is_anerican) {
if (put)
v[5-jj] = MAX(hold, X-s[ind]);
el se

Code excerpt 5.11 (Continued).
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v[5-jj] = MAX(hol d, s[ind]-X);
el se
v[5-jj] = hold;
--i0s
ind =ind + 2;

}

*val ue = v[5];
if(greeks) {
/* assign the value of delta (obtained fromml = 1) */
greeks[1] = (v[4]-Vv[3])/(s[M1]-s[M1]);
/* assign the value of gamma (use the values at tinme step ml = 2) */

dvl = v[2] - v[1];
dsl = s[M2] - s[M;
dv2 = v[1] - v[O];
ds2 = s[M - s[M2];

h 0.5%(s[M2] - s[M2]);
greeks[0] = ((dvl/dsl) - (dv2/ds2))/h;
/* assign the value of theta */
greeks[2] = (v[1]-*value)/(2.0*dt); /* can also wite:y greeks[2] = (v[1]-v[5])/_
(2.0%dt); */
}

Code excerpt 5.11 Function to compute the value of an option using a standard binomial
lattice.

5.3.3 Binomial lattice with a control variate

The control variate technique can be used to enhance the accuracy that a stan-
dard binomial lattice gives for the value of an American vanilla option. It in-
volves using the same standard binomial lattice to value both an American op-
tion and also the equivalent European option. The Black-Scholes formula is
then used to compute the accurate value of the European option. If we assume
that the error in pricing the European option is the same as that for the Ameri-
can option, we can achieve an improved estimate for the value of the American
option.

When applied to the valuation of an American put option this can be ex-
pressed as follows:

European pricing error, Ag = pBS(S, E, 1) — pL(S, E, 1)
American pricing error, Ay = P*(S, E, 1) — PL(S, E, 1)

where as usual S is the current value of the asset, E is the strike price, and 7 is
the maturity of the option. Also pBS(S, E, 1) is the Black=Scholes value of the
European put option, pY(S, E, ) is the binomial lattice estimate of the Euro-
pean put option, P*(S, E, 1) is the (unknown) accurate value of the American
put option, and PL(S, E, 7) is the binomial lattice estimate of the American put
option.

Letting Ag = A we then have:

PP(S, E 1) — pM(S, E, T) = P¥(S, E,7) — PL(S, E, 7)
which on rearrangement yields:
P*(S,E,t) = pP(S, E,v) — p*(S, E, 1) + PL(S, E, 1)

We thus use P*(S, E, t) as the improved, control variate estimate for the value
of the American put option. Of course, exactly the same approach can be used
to obtain an improved estimate for the value of an American call.
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Code excerpt 5.12 shows the use of the control variate technique in a standard
binomial lattice to provide improved estimates for both the value and the hedge
statistics of an American option.

/* Set up the arrays as in the standard lattice */

for (i =0; i < (M1)/2; ++i) { /* Calculate the option values at maturity */

if (put) {
a_Vv[Mi] = MAX(X - s[P1], zero);
a_v[i] = MAX(X - s[P2], zero);
}
el se {
a_v[Mi] = MAX(s[P1]-X zero);
a_v[i] = MAX(s[P2]-X, zero);
}
e_v[i] =av[i];
e viMi] = av[Mi];
P1L =Pl - 2
P2 = P2 + 2;
}
/* now work backwards through the lattice to calculate the current option value */
P2 = 0;
for (mL = M1; ml >= 2; --nl) {
P2 = P2 + 1;
P1 = P2;
for (n =0; n <= nml; ++n) {
if ((a_v[n] == zero) && (a_v[n+l] == zero))
hold = zero;
el se
hold = p_d*a_v[n] + p_u*a_v[n+1];
if (put)
a_v[n] = MAX(hold, X-s[P1]);
el se
a_v[n] = MAX(hold, s[P1]-X);
if ((e_v[n] == zero) && (e_v[n+l] == zero))
e_v[n] = zero;
el se
e_v[n] = p_d*e_v[n] + p_u*e_v[n+1];
PL = P1 + 2;
}
}

/* The Anerican values are stored in the array a_v, and the European values in the array_
e_v. The array
indexing is the sane as for the standard lattice */

i =2
for (ml =2, ml >= 1; --nl) {
ind = Mnl+1;
for (n =0; n < ml; ++n) {
hold = p_d*a_v[5-jj-ml-1] + p_u*a_v[5-jj-ntl];
if (put)
a_v[5-jj] = MAX(hold, X-s[ind]);
el se
a_v[5-jj] = MAX(hold,s[ind]-X);
e_v[5-jj] = p_d*e_v[5-jj-nl-1] + p_u*e_v[5-jj-nl];
--l
ind =ind + 2;
}

/* vl = Anerican binonial approximation, v2 = European Binonial approximtion, tenp =_
exact (European) Bl ack-Schol es value */
bl ack_schol es( &t enp, bs_gr eeks, SO, X, signma, T, r, g, put, & fl agx) ;
*value = (a_v[5] - e_v[5]) + tenp; /* return the control variate approxi nation */
if(greeks) {

/* assign the value of delta (obtained fromntl = 1) */

a_delta = (a_v[4]-a_v[3])/(s[M1]-s[M1]);

e_delta = (e_v[4]-e_v[3])/(s[M1]-s[M1]);

greeks[1] = a_delta - e_delta + bs_greeks[1];

/* assign the value of gamma (use the values at time step mL = 2) */

dvl = a_v[2] - a_v[1];

Code excerpt 5.12.
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dsl = s[M2] - s[M;
dv2 = a_v[1] - a_v[O];
ds2 = s[M - s[M2];

h 0.5%(s[Mr2] - s[M2]);

a_ganmma = ((dvl/dsl) - (dv2/ds2))/h;

dvl = e_v[2] - e_v[1];

dv2 = e_v[1] - e_v[O];

e_gamma = ((dvl/dsl) - (dv2/ds2))/h;

greeks[0] = (a_gamma - e_gamm) + bs_greeks[0];

/* assign the value of theta */

a_theta = (a_v[1]-a_v[5])/(2.0*dt);

e_theta = (e_v[1]-e_v[5])/(2.0*dt);

greeks[2] = (a_theta - e_theta) + bs_greeks[2];
}

Code excerpt 5.12 Function to compute the value and hedge statistics of an American
option using a binomial lattice with a control variate.

Finally we should mention that the control variate technique does not just
apply to American vanilla options. The method is quite general and can be used
to obtain improved estimates for any integral (or exotic option) so long as an
accurate (closed form) solution of a similar integral is known. One common
use of the control variate method is to improve the accuracy of Monte Carlo
estimates.

5.3.4 The Binomial lattice with BBS and BBSR

Here we consider the Binomial Black—Scholes (BBS) method and also the Bino-
mial Black-Scholes method with Richardson extrapolation (BBSR) (see Broadie
and DeTemple (1996)). As with the control variate method discussed in the
previous section, both of these techniques can be used in conjunction with a
standard binomial lattice to improve the computed results.

We will first discuss the BBS method.

The BBS method

The BBS method is identical to the standard binomial lattice except that in the
last time step (that is just before option maturity) the Black-Scholes formula is
used to calculate the option values at maturity. For an n time step binomial lat-
tice this involves evaluating the Black—Scholes formula at each of the n nodes in
the penultimate time step; see Fig. 5.1. In Code excerpt 5.13 we define the func-
tion bs_| at t i ce which incorporates the BBS method into a standard binomial
lattice. The reader will have noticed that bbs_| at ti ce is rather lax concern-
ing the amount of storage that is required; see Section 5.3.2. It uses an array of
size LN, rather than LS, to store the lattice asset prices; the modification to
use an array of size LS, is left as an exercise.

The benefits of using the BBS approach to price an American call are illus-
trated in Fig 5.3. Here we compare the results obtained using the function
bbs_| atti ce with those computed by the function st andard_ | atti ce,
the standard binomial lattice of Code excerpt 5.11. It can be clearly seen that
the BBS method is significantly more accurate than the standard binomial lattice
approach, in which option pricing error exhibits pronounced oscillations.
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void bbs_|attice(double *val ue, double greeks[], double SO, double X, double sigm, double T, _
doubl e r,
double g, long put, long M long *iflag)

{
/* Input paraneters:
SO - the current price of the underlying asset
X - the strike price
signa - the volatility
T - the tinme to maturity
r - the interest rate
q - the continuous dividend yield
put - if put is O then a call option, otherwise a put option
M - the nunber of tine steps

Qut put paraneters:

val ue - the value of the option, greeks[] - the hedge statistics output as follows:_
greeks[0] is gamm,
greeks[1] is delta, greeks[2] is theta,
iflag - an error indicator.
*/

"/* allocate the arrays s[((M2)*(M1))/2], and v[M1] */

T/ (doubl e) M
sigma*sqrt(dt);
exp(tl);
exp(-t1);
exp((r-q)*dt);
(a - d)/(u - d);
if ((p<zero) || (p>1.0)) return; /* Invalid probability */
di scount = exp(-r*dt);
p_u = p*di scount;

p_d = (1.0-p)*discount;
i =0
s[0] = SO;
/* The "higher" the value of jj, at a given time instant, the lower the value of the_
asset price */
for (ml =1; nml <= M1; ++nl) { /* Calculate asset values up to (M1)th tinme step */

for (n=m; n>=1; --n) {

i
s[jj]l = wu*s[jj-mi];

}

]

s[jj] = d*s[jj-ntl-1];

d
t

u
d
a
P

for (n =0; n<=M1; ++n) { /* Use Black-Scholes for the final step */
bl ack_schol es( & enmp, NULL, s[jj], X, sigm, dt,r, g, put, & fl agx);
v[n] = tenp;
--iis
}
for (mi = M1, ml >=3; --nl) { /* work backwards through the lattice */
for (n =0; n < nml; ++n) {
if ((v[n] == zero) && (v[n+l] == zero)) {
hold = zero;

el se
hold = p_d*v[n] + p_u*v[n+1];
if (is_anmerican) {

if (put)
v[in] = MAX(hold, X-s[jj]);
el se
v[in] = MAX(hold,s[jj]-X;
}
el se

v[n] = hold;
--i0s
}
/* The values v[0], v[1] & v[2] correspond to the nodes for miL = 2, vl & v2 correspond to_
the nodes for mlL = 1 and the
option value (*value) is the node for mL = 0. For a given tinme step v[0] corresponds to_
the | owest asset price,
v[1] to the next |owest etc.. */

Code excerpt 5.13.
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hold = p_d*v[0] + p_u*v[1];
if (is_american) {
if (put)
vl = MAX(hold, X-s[jjl);
el se
vl = MAX(hol d,s[jj]-X);
}

el se
vl = hol d;

--11s
hold = p_d*v[1] + p_u*v[2];
if (is_american) {
if (put)
v2 = MAX(hold, X-s[jjl);
el se
v2 = MAX(hol d, s[jj]-X);
}

el se
v2 = hol d;

-
hold = p_d*vl + p_u*v2;
if (is_american) {
if (put)
*val ue = MAX(hol d, X-s[0]);
el se
*val ue = MAX(hol d, s[ 0] - X);
}

el se
*val ue = hol d;
if(greeks) {
/* assign the value of delta (obtained fromnl = 1) */
greeks[1] = (v2-v1)/(s[1]-s[2]);
/* assign the value of gamma (use the values at tinme step nlL = 2) */

dvl = v[2] - v[1];
dsl = s[3] - s[4];
dv2 = v[1] - v[O];
ds2 = s[4] - s[5];
h = 0.5%(s[3] - s[5]);

greeks[0] = ((dvl/dsl) - (dv2/ds2))/h;
/* assign the value of theta */
greeks[2] = (v[1]-*value)/(2.0*dt);

}

Code excerpt 5.13 The function bbs_| atti ce which incorporates the BBS method
into a standard binomial lattice. The Black-Scholes formula is evaluated by using the
function bl ack_schol es, given in Code excerpt 4.1.

The BBSR method

The BBSR method applies two point Richardson extrapolation to the com-
puted BBS values; for more information concerning Richardson extrapolation
see Marchuk and Shaidurov (1983). In this method the option price estimates
from two BBS lattices, with differing numbers of time steps, are combined to
form an improved estimate.

Here we use the following BBSR scheme to compute the value of an American
call option:

4 1
Cpesr(S, E, 7,2n) = §CBBS(S, E,t,2n) — §CBBS(S, E,t,n) (5.3.24)

where S is the current asset value, E is the strike price,  is the option maturity,
Cpps(S, E, 7, n) is the value of the call option computed using a BBS lattice with
n time steps, Cpps(S, E, T, 2n) is the value of the call option computed using a
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Figure 5.3 The error in the estimated value, est_val, of an American call using both a
standard binomial lattice and BBS binomial lattice. The parameters used were: T = 1.0,
S =105.0, E = 105.0, r = 0.1, ¢ = 0.02, 0 = 0.3. The very accurate value (acc_val) was
16.1697, and was computed using a 6000 step standard binomial lattice. The error in
the estimated value was obtained as est_val — acc_val.

BBS lattice with 2n time steps, and Cgpsr (S, E, T, 21) is the BBSR estimate. We
compute the value of an American put using:

4 1
Pppsr(S, E, 17,2n) = §P]335(S, E,t,2n) — §PBBS(S» E,t,n) (5.3.25)

Figure 5.4 displays the computed BBSR results for an American call option
with § = 105.0,7 = 1.0, E = 105.0,¢ = 0.02 and o = 0.3.

In Tables 5.5 and 5.6 the errors in computing both an American put and an
American call option are presented; the methods used are the standard binomial
lattice, the BBS lattice and the BBSR lattice. It can be seen that the BBSR lattice
gives the most accurate results. This is not surprising since, from Egs. (5.3.24)
and (5.3.25) we see that when we use either an n time step standard binomial
lattice or an n time step BBS lattice the corresponding BBSR estimate is obtained
using both an n time step BBS lattice and also a 2n time step BBS lattice. One way
of checking whether Richardson extrapolation is providing increased accuracy
is to compare the results for a 2n time step BBS latticewith those for an n time
step BBSR lattice. Inspection of the results shows that Richardson extrapolation
has in fact led to an improvement. For example, in Table 5.5 the error for a 160
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Richardson extrapolation: American call
0.035 T ‘ ‘ . ‘ ‘ : ‘

0.031 B

0.025 B

0.015- B

0.005| \/\M

Number of time steps

Error in estimated value

Figure 5.4 The error in the estimated value, est_val, of an American call, using a BBSR
binomial lattice. The parameters used were: T = 1.0, S = 105.0, E = 105.0, r = 0.1,
g = 0.02, 0 = 0.3. The very accurate value (acc_val) was 16.1697, and was computed
using a 6000 step standard binomial lattice. The error in the estimated value was ob-
tained as est_val — acc_val.

time step BBS lattice is 5. 0869e- 003, while that for an 80 time step BBSR
lattice is 3. 5725e- 003; in Table 5.6 the error for an 80 time step BBS lattice
is 6. 3858e- 003, and that for a 40 time step BBSR lattice is 3. 5725e- 003.

5.4 Grid methods for vanilla options

5.4.1 Introduction

In Section 5.3 we discussed the use of binomial lattice methods for valuing both
European and American options. The lattice methods we described have the
advantage that they are fairly easy to implement and can value simple options,
such as vanilla puts and calls, reasonably accurately. The use of up and down
jump probabilities at the lattice nodes is also an appealing feature, since they
are directly related to the stochastic process which is being modelled. However,
lattice techniques have the following drawbacks:

e They require small time steps to ensure numerical stability
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Table 5.5 The pricing errors for an American call option computed by: a standard

binomial lattice, a BBS lattice and also a BBSR lattice

n steps Standard lattice BBS lattice BBSR lattice
20 —1.5075e-001 3.6187e—002 1.2754e—002
30 —1.0057e—001 2.4526e—002 8.6771e—003
40 —7.5382e—002 1.8612e—002 6.6361e—003
50 —6.0244e—002 1.5036e—002 5.4109¢—-003
60 —5.0141e-002 1.2639e—002 4.5939¢—-003
70 —4.2919e—002 1.0922e—002 4.0103e—003
80 —3.7499e—002 9.6302¢—003 3.5725e—003
90 —3.3282e-002 8.6236e—003 3.2320e—003

100 —2.9908e—002 7.8171e—003 2.9596e—003

110 —2.7146e—002 7.1565¢—003 2.7367e—003

120 —2.4844e—002 6.6053e—003 2.5509e—-003

130 —2.2896e—002 6.1385e—003 2.3938e—003

140 —2.1226e—002 5.7382e—003 2.2590e—003

150 —1.9778e—002 5.3909¢—003 2.1423e-003

160 —1.8511e—002 5.0869¢—003 2.0401e—003

170 —1.7393e—002 4.8186e—003 1.9500e—003

180 —1.6399e—002 4.5799e—003 1.8698e—003

190 —1.5510e—002 4.3663e—003 1.7981e—003

200 —1.4710e—002 4.1740e—003 1.7336e—003

The pricing error is defined as estimated value — accurate value, where the accurate
value, 16.1697, was obtained by using a 6000 step standard binomial lattice. The option
parameters used were: T = 1.0, § = 105.0, £ = 105.0, r = 0.1, ¢ = 0.02, and 0 = 0.3.

e There is little control over where the lattice nodes are located. This can lead
to very poor accuracy when valuing certain types of options; for example,
those with barriers at particular asset prices.

One method of avoiding these limitations is through the use of finite-difference
grids. Although this approach no longer has the probabilistic interpretation of
the binomial lattice it has the following advantages:

e Fewer time steps are required to ensure numerical stability
e There is complete control over the placement of grid lines, and their associ-
ated grid nodes.

5.4.2 Uniform grids
The Black-Scholes equation for the value of an option f is given by:

af of | 15 20%f
o e
o +(r—q) + 208552
We want to solve thlS equation over the duration of the option, that is from

the current time ¢ to the maturity of the option at time ¢ + 7. To do this we

—rf (5.4.1)
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Table 5.6 The pricing errors for an American put option computed by: a standard

binomial lattice, a BBS lattice and also a BBSR lattice

n steps Standard lattice BBS lattice BBSR lattice
20 —6.1971e—002 2.3917e—002 7.6191e—003
30 —4.1648e—002 1.6800e—002 6.0465e—003
40 —3.2264e—002 1.1694e—002 4.6165e—003
50 —2.6538e—002 8.4790e—003 4.2654e—003
60 —2.1069e—002 8.7348e—003 3.2946e—003
70 —1.8298e—002 7.2743e—003 2.9633e—003
80 —1.5885e—002 6.3858¢—003 2.6088e—003
90 —1.3977e—002 5.9417e—003 2.2099¢—-003

100 —1.2612e—002 5.3188e—003 2.1793e—003

110 —1.1338e—002 4.9652e—003 2.0992e—-003

120 —1.0239e-002 4.6547e—003 1.8723e—003

130 —9.5208e—003 4.1505e—003 1.8808e—003

140 —8.6142e—003 4.0411e—-003 1.7505e—003

150 —8.2382e-003 3.6020e—003 1.7341e—003

160 —7.5811e—003 3.5531e—003 1.6411e—003

170 —7.1097e—003 3.3726e—003 1.5507e—003

180 —6.7887e—003 3.1428e—003 1.5478e—003

190 —6.3033e—003 3.1345e—003 1.4134e—003

200 —6.0276e—003 2.9642e—003 1.3973e—003

The pricing error is defined as estimated value — accurate value, where the accurate
value, 9.2508, was obtained by using a 6000 step standard binomial lattice. The option
parameters used were: T = 1.0, § = 105.0, £ = 105.0, r = 0.1, ¢ = 0.02, and 0 = 0.3.

will use a grid in which the asset price S takes n; uniformly spaced values,
S; = jAS,j =0,...,n; — 1, where AS is the spacing between grid points. If
Smax is the maximum asset value we want to represent, then the grid spacing,
AS*, can be simply calculated as:

AS*H = _Smax (5.4.2)
ng—1

However, since we would like to solve the option values and Greeks at the
current asset price So, we would also like an asset grid line to coincide with
the current asset price. This avoids the use of interpolation which is necessary
when the asset value does not correspond to a grid line. The method by which
we achieve this is outlined in Code excerpt 5.12. Here the user supplies the
function opt _gf d with values for Spax and ny — 1 from which AS* is computed
using Eq. (5.4.2). We then find the integer, n1, that is just below (or equal to)
the value So/AS*, and use this to obtain a new grid spacing AS = So/n1. This
leads to the new asset price discretization S; = jAS, j =0,...,n; — 1, where
we have now ensured that S,;, = So.
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The user also supplies the function opt _gf d with the number of time inter-
vals for the grid. When there are n, time intervals, the grid has n; + 1 uniformly

spaced time instants, t; = iAt,i =0, ..., n;, and the time step is simply:
T
At = — (5.4.3)
ny

As with the binomial lattice methods we will solve the equation backwards in
time from maturity (at time 7 + t) to the present (time 7). So as we solve the
equation the time index will start at i = n; (time ¢ + 7) and decrease toi = 0
(current time t).

Here we discuss the grid method of solving the Black-Scholes equation in
terms of:

o The finite-difference approximation

e The boundary conditions

e Computation of the option values at a given time instant
e Backwards iteration and early exercise

Each of these aspects will now be considered in turn.

The finite-difference approximation

The option value corresponding to the grid node at which ; = iAr and §; =
JjAS will be denoted by f; ;. We will approximate the partial derivative of f; ;
with respect to time simply as:

of _ firvj— Jij

=" - (5.4.4)
ot At

For the other terms in Eq. (5.4.1) we will use the weighted, ©,,, method. This
technique involves selecting an appropriate choice for @, in the range 0 <
Om < 1 so that the contribution from node (i, j) is a weighted sum involving
the values at nodes (i, j) and (i+1, j). For instance, the term rf; ; in Eq. (5.4.1)
is approximated as:

rflij =r{Onfisrj + A — O fij} (5.4.5)
and the term g—é li,j in Eq. (5.4.1) is approximated as:

9 9 9

of - {@m_f +(1_@m)_f } (5.4.6)

aS i as i+1,] as i

Using this method we thus obtain, at node (i, j), the following discretized ver-
sion of Eq. (5.4.1):

Jiv1j — fij
At

1
+ 5025 On fliaj + O S} = r{Onfivaj + 6} £} (5:4.7)

+ = Si{Onfli1;+Onf ;]
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where for compactness we have written ;% = 1 — ©,,, and denote the partial
.. .. e Of no_ 33f

derivatives w.r.t. § at node (i, j) as: fl] = 5cli.j and fz] = 25zlij-
Finite-difference approximations for these derivatives can be obtained by

considering a Taylor expansion about the point f; ;. We proceed as fol-
lows:

/ 1 4
fij+1=fij+ f{;AS+ if,{j(AS)z (5.4.8)
! 1 i
fij-1= fij— fi;AS+ 5}2-,,-(AS)2 (5.4.9)
Subtracting Eq. (5.4.9) from Eq. (5.4.8) we obtain:

fij+1— fij-1=2f] ;AS

and so
;o Jij+r— fij-1
e A M Y R 5.4.10
fij SAS ( )
Adding Egs. (5.4.9) and (5.4.8) we obtain:
fijri+ fij1=2fi; + f/fjASZ
which gives:
ij+1— 2fi,j + fij-
g, = = 2l & Jij (5.4.11)

AS?
The complete finite-difference approximation to the Black—Scholes equation can
then be found by substituting the approximations for the first and second par-
tial derivatives, given in Egs. (5.4.10) and (5.4.11), into (5.4.7). We thus ob-
tain:

rAt{@mﬁ+1,j + @Zf,]}
(r—q)jAtA1  o2j2At A
2 + 2

where we have used the fact that §; = jAS, and for compactness have defined
the terms:

AL=Opfis1j+1— Omfirsj-1+ Oy fij+1— O fij—1

= fivrj — fij + (5.4.12)

and
A2 = O fis1j+1+ Om fit1,j-1 — 20m fit1,j + O fi j+1
+ O, fi.j-1— 20, fi j
Collecting like terms in f; j, fi+1,;j, etc. results in:

Bifij-1+ Bafij+ Bsfij+1+ Cifivaj-1+Cafivaj
+C3fit1,j+1=0 (5.4.13)
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where

By — —O(r —q)jAt N O a?j?At
2 2

By = —1—rAt®}, — 0}0%j2At
OF(r —q)jAt N Ok a?j?At

2 2
01— Oma?j?At  On(r —q)jAt

2 2

Co=1-rAt®,, — O,02j°At
Op(r —q)jAt  Ono?j2At

2 + 2
Since we are solving the equation backwards in time and we want to de-
termine the option values at time index i from the known option values

(fi+1,j+1, fi+1,; and fi41j—1) at time index i + 1. This can be achieved by
rearranging Eq. (5.4.13) as follows:

B3 =

C3=

ajfij-1+bjfij+cjfij+1=Rit1j (5.4.14)
where the right-hand side, R;;1 ;, is:

Riy1; =a;fit1,j-1+Dbj fisrj + ¢ fit1j+1 (5.4.15)
The six coefficients are:

At . .
aj=01=0,)5{r—q)j —02j?} (5.4.16)
bj =14 (1— On)At{r +o?j? (5.4.17)
At . .

¢j === {0 —a)j+0%?) (5.4.18)

_ At . .

aj = —@m7{(’” —q)j— 02]2} (5.4.19)

bj =1— OuAt]r+02j?) (5.4.20)

- At . .

cjz@m7{(r—q)1 +02]2} (5.4.21)

For each value of j Eq. (5.4.14) gives us a relationship between three option
values, fi+1,j-1, fi+1,j> fi+1 j+1 at time index i + 1, and three option values
fi.j-1, fi,j» fi,j+1 at time index i.

This situation is shown in Fig. 5.5 where we have labelled the grid nodes that
contribute to the option value f55 at grid node E. These are the known option
values:

node A: fs6, node B: fg5, and node C: fga
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and the unknown option values
node D: f56, node E: f55, and node F: f5 4.

Before we solve Eq. (5.4.14), we will briefly consider its characteristics for dif-
ferent values of the weight parameter ©,,.

When ©,, = 1 the values of the coefficients in Eq. (5.4.14) are a; = ¢; = 0,
and b; = 1. This means that Eq. (5.4.14) reduces to:

fij=ajfixrj-1+bjfirrj+Cjfirrj1
This is termed the explicit method, and it can be seen that the unknown option
value f; j, at the grid node (i, j) is just a weighted sum of the (known) op-
tion values fiy1 -1, fi+1,j> fi+1 j+1. This is the simplest situation to deal with
and actually corresponds to a trinomial lattice. However, it has poor numerical
properties and usually requires a very small step size to obtain accurate results;
see Smith (1985).

When ©,, # 1, the unknown option value f;; depends not only on the
known option values fij+1 j—1, fi+1,j, fi+1 j+1 (as in the explicit method above),
but also on the neighboring unknown option values f; j_1 and fi j11. It is
now necessary to solve a set of simultaneous equations in order to com-
pute the value f; ;. This is therefore called an implicit method; see Smith
(1985).

The implicit method ©, = 0 is also called the fully implicit method,
since now the unknown value f; ; only depends on the neighboring values
fi.ji-1, fi,j+1, and its previous value, fiy1 j, at time step i + 1. This can
be shown by substituting ®,, = 0 in Egs. (5.4.16)—(5.4.21). We then ob-
tain a; = ¢; = 0, and 15]- = 1, which means that Eq. (5.4.14) reduces
to:

ajfij-1+bjfijtecjfijrr= fi+rj
The implicit method ®,, = 0.5 is also termed the Crank-Nicolson method.
This method, first used by John Crank and Phyliss Nicolson in 1946 (see
Crank and Nicolson (1947)), computes f; ; by giving equal weight to the con-
tributions from time step i + 1 and time step i. Substituting ®,, = 0.5 in

Eq. (5.4.16) to Eq. (5.4.21) we obtain the following Crank-Nicolson coeffi-
clents:

At
aj =—a; = T{(r —q)j—o%j?)

A
bj =1+ %{r+02j2}
A
—-E;{rﬁ-ozjz}

At
cj=—Cj= —T{(r —q)j +O'2j2}

We notice that since we are solving backwards in time, but index time in the
forward direction, our values of ®,, corresponding to implicit and explicit are
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different from those normally used. For example, in Smith (1985) ®,, = O is
the explicit method and ©,, = 1 is the implicit method; the Crank-Nicolson
method is still ®,, = 0.5.

The boundary conditions

In order to solve Eq. (5.4.14) at time instant i Ar we need to obtain the option
values at: the upper asset boundary, the lower asset boundary, and the initial
values that are specified at option maturity.

Here we calculate the boundary values by using the time independent payoff,
pj, at the jth asset index within the grid. If E is the strike price then vanilla call
options have payoffs:

p;=max(jAS — E.0), j=0,....n—1,
and vanilla put options have payoffs:
pj =maX(E — jAS,0), j=0,...,n;—1

Upper asset boundary values

At the upper boundary j = ny —1and (ny — 1) AS = Smax; where we note that
for the grid to be useful we require Smax > E.

Here we assume that Smax > E and so for call options:

DPng—1 = Smax — E
and for put options:
Png—1 = 0

The option value at the upper boundary, denoted by fpy, is set to p,,_1, and
we have fing—1=fou, i =0,...,n;:.

Lower asset boundary values
At the lower boundary j = 0, and the value of jAS is zero.
So for call options:

po=0
and for put options:
po=E

The option value at the lower boundary, denoted by fgy, is set to po, and we
have fi0= faL,i =0,...,n,.

Boundary values at option maturity

At option maturity (i = n,) the initial option (boundary) values are the pre-

viously mentioned payouts. If E is the strike price then for vanilla call op-
tions:

Jne,j =max(jJAS — E, 0, j=0,...,n;—1,
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and for vanilla put options:
Jrij =max(E — jAS,0), j=0,...,n;—1

This is illustrated in Fig. 5.5 for a vanilla put option with current asset value
So = 20, strike, E = 25, and maturity T = 2. The grid asset price spacing is
AS = 5, and the time increment is Ar = 0.2. At option maturity, corresponding
to time index i = 10, the value of the put option is zero for all asset indices
J =5

Computation of the option values at a given time instant

Having found the option boundary values, we are now in a position to solve
Eq. (5.4.14) at time instant #; = i Az.
First we note that since fi o = fpr and fin,—1 = feu Eq. (5.4.14) only needs
to be solved for values of the asset index j in the range j = 1to j = ng — 2.
We now deal with the following situations:

e Case 1: j = 1, the asset grid line just above the lower boundary
o Case 2: j = ny — 2, the asset grid line just below the upper boundary
e Case 3: all other asset grid lines not included in Case 1 or Case 2

and consider the form that Eq. (5.4.14) takes under each condition.

Casel: j=1
Substituting j = 1 into Eq. (5.4.14) we obtain:

arfio+bifii+cifiz=aifix10+bifiyr1+1fir12

Now, since f; 0 = fpL, this becomes:

bifi1+c1fiz = (@1 — a1) for + b1 fit11 + C1fi41,2

or equivalently:

bifii+cifiz=Riy11 (5.4.22)
where
Riy11= (@1 —a) fpr +b1fivr1+c1fir12 (5.4.23)

Case2: j=ny—2
Substituting j = ny — 1 into Eq. (5.4.14) we obtain:
any—2fing—3 + bug—2fin,—2 + cng—2fins—1
= dn,—2 fi+1n,—3 + bp,—2 fit1n,—2 + Cny—2 fit1n—1
Since fn,—1 = fpu this gives:
anS—Zfi,n_;—B + bnS—Zfi,ns—Z

= C_l”xfz.fl"?l,nx*g + bn,rfz.fi‘Fl,nx*Z + (Ensfz - cnx*Z)fBU
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or equivalently:

an,—2fing—3+ bug—2fin—2 = Ritin,—2 (5.4.24)
where
Rizin—2 = an,—2fi41n,—3 + bny—2fit1.n,—2 + (Cn,—2 — Cn,—2) fou (5.4.25)
Case 3

In this case the boundary values do not enter into the expressions, and we
simply restate Eq. (5.4.14) as:

ajfijj-1+bjfijtcifijqr=Riy1, j=3,...,n,—3, (5.4.26)
where as before the right-hand side, R; ;1 ;, is:
Riy1j=a;jfis1j-1+bjfiv1 +)firtjr (5.4.27)

We can now gather all the information in Egs. (5.4.23)—-(5.4.27) and represent
it by the following tridiagonal system:

b1 ¢1 O 0 0 0 fia
a by ¢ 0 0 0 fi2
o 0 . . 0 0 .
0O 0 O . . 0 .
0O 0 O ang—3 bn_qf3 Cng—3 fi,nx -3
0 0 O 0 ay 2 by 2 Sing—2
Rit11
Rit12
= ’ (5.4.28)
Ri+1,ns—3
Rit1n,—2

In matrix notation Eq. (5.4.28) can be written as:
Ax =R (5.4.29)

where A is the (ny — 2) x (ny — 2) tridiagonal matrix containing the known
coefficientsa;, j =2,...,ny—2,b;, j=1,...,ng—2,andcj, j=1,...,n,—3.
The vector R denotes the known right-hand side, Riy1;,/ = 1,...,n, — 2,
and the vector x contains the unknown option values that we wish to compute,
fi,jvj :1,...,n5 -2

It is well known that, if matrix A is nonsingular, Eq. (5.4.29) can be solved
using an LU decomposition. Here we factorize the n x n matrix A as:

A=LU

where L is an n x n lower triangular matrix with 1s on the diagonal and U is
an n x n upper triangular matrix. We illustrate the LU decomposition for a full
4 x 4 matrix below:
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ai1l a2 ai3 als

az1 a2 a3 a4

az1 azp az3 azs

(41 Q42 G43 Q44
1 0 0 O U1 ul2 U13 Ul4
lpba 1 0 O 0 wuz2 up3z uza (5.4.30)
Iz1 3 1 0 0 0 uz3 usa o
lag lap laz 1 0 0 0 uga

If A is a tridiagonal matrix then the LU decomposition takes the simpler form:

ain a2 O 0

a1 az2 az3z O

0 a32 az3 aza

0 O as3 aasa
1 0 0 O\ fur1 w2 O O
b1 1 0 0| 0 wuzp ups O
0 a2 1 0 0 0 U33 u3a4
0 0 s 1/ N0 0 0 usg

where it can be seen that now both L and U are bidiagonal.

Once the LU decomposition of A has been found, it is possible to solve for
x in Eq. (5.4.29) by using a two stage method (see for example Golub and Van
Loan (1989)). Here forward elimination is used to solve Ly = R, and then
back-substitution is applied to Ux = y. We can thus write the procedure as:

Ax =(LU)x =LWUx)=Ly=7R

(5.4.31)

We will now provide code excerpts which show how to solve the (ny — 2) x
(ns — 2) tridiagonal system represented by Eq. (5.4.29). These excerpts are in
fact contained within the larger Code excerpt 5.18, which displays the complete
C code for the option pricing function opt _gf d. If the reader requires more
detail concerning the precise code used for option pricing, then this code should
be consulted. (It should be noted that in Code excerpt 5.18, time is indexed
using j and asset price using index i. We have modified the indices for the
smaller code excerpts given below so that, as might be expected, time is indexed
using i, and asset price using j. The author apologizes for any inconvenience
this may cause.) Here, for brevity, we will assume that all the required arrays
have already been allocated and loaded with the relevant information.

First we need to compute the LU decomposition of the tridiagonal matrix A.
The code to achieve this is given in Code excerpt 5.14. Here we use the following
three arrays to store the elements of the tridiagonal matrix A: array b contains
the diagonal elements, array c contains the upper diagonal elements, and array a
holds the lower diagonal elements.

It should be noted we do not explicitly compute the elements of the matrix L.
This is because all the diagonal elements of L are known to be 1, and the sub-
diagonal elements of L can be computed from the diagonal elements of U by
using | [j] = a[j]/u[j-1]. Also we do not need to compute the upper di-
agonal elements of U since they are known to be the same as the upper diagonal
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uf1] = b[1];
if (u[1] == 0.0) printf ("ERROR in array u \n");
for(j=2; j <=ns-2; ++j) {

ufjl =b[j] - aljl*c[j-1]/u[j-1];

if (u[j] ==0.0) printf ("ERROR in array u \n");

}

Code excerpt 5.14 Computer code that calculates the diagonal elements of the matrix U,
in an LU decomposition of a tridiagonal matrix A. The elements of matrix A are stored
in the following arrays: array b contains the diagonal elements, array ¢ contains the
upper diagonal elements, and array a holds the lower diagonal elements. The diagonal
elements of U are stored in the array u for later use, in Code excerpts 5.15 and 5.16.

work[ 1] = rhs[1];
for(j=2; j<=ns-2; ++) {
) work[j] = rhs[j] - a[j]*work[j-1]/u[j-1];

Code excerpt 5.15 Computer code that uses forward elimination to solve the lower tri-
angular system Ly = R, where y is stored in the array wor k.

opt _val s[ns-2] = work[ns-2]/u[ns-2];
for(j =mns-2; j >=1; --j)
opt_vals[j] = (work[j] - c[j]*opt_vals[j+1])/u[j];

Code excerpt 5.16 Computer code that uses back-substitution to solve the upper trian-
gular system Ux = y. At time instant #; = i At, the elements of x are the calculated option
values f; j,i =1,...,n5_p.

elements of the original matrix A, and are contained in the array c; see for
example Hager (1988).

Having computed the LU decomposition we can now solve the lower tri-
angular system Ly = R using forward elimination; this is shown in Code ex-
cerpt 5.15.

In Code excerpt 5.15 we make use of the following two arrays: the array r hs
which is used to store the elements of the right-hand side R, and the array wor k
which is both used as workspace and to store the computed solution vector y.
As previously mentioned the subdiagonal elements of L are given by I [j] =
alj]/u[j-1]. This means that in Code excerpt 5.15, the line:

wor k[j 1 =rhs[j ] —alj 1xwork[j —1]/ufj —1J;
is in fact equivalent to:
work[j ]=rhs[j]—1[j]«work[j —1J;

wherel [j],]=2,..,ns-2,contains the subdiagonal elements of L, if we had
(needlessly) decided to allocate space for an extra array called | .

We are now in a position to solve the triangular system Ux = y by using back-
substitution. The code to achieve this is given in Code excerpt 5.16. Here the
array Wor k contains the previously computed values of y, the diagonal elements
of U are contained in the array u, and (as previously mentioned) the upper
diagonal elements of U are stored in the array a.
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In Code excerpt 5.16 the array opt _val s contains the solution vector x. As
its name suggests the contents of the array opt _val s are in fact the computed

option values, fi j, j =1,...,ny — 2, in Eq. (5.4.28) and represent the solution
of the Black-Scholes partial differential equation at time instant #; = i At based
on the previously computed option values fi41,j=1,...,n5 — 2.

Backwards iteration and early exercise

The Black—Scholes equation can be solved over the time interval 7 to ¢+t by iter-
atively solving Eq. (5.4.28). We iterate backwards in time by solving Eq. (5.4.28)
at the ith time step and then using the computed values to solve Eq. (5.4.28) for
the (i — 1)th time step. The option values at current time ¢ are obtained when
time index i = 0 is reached. It can be seen that the grid method yields ny — 2
option values, fo j,j = 1,...,ny — 2, which correspond to the current asset
prices:

S{=jAS, j=1..,n,-2

As previously mentioned the asset price So coincides with grid index j = nj.
Therefore So = Sy*, and the option value for the current asset price Sp is given
by fO,n1~

This is in contrast to the lattice methods discussed in Chapter 4, which yield
a single option value corresponding to the root node.

The option values obtained using the grid methods we have just described
are for vanilla European options. However, vanilla European options can
be more accurately valued by using the Black-Scholes option pricing for-
mula discussed in Chapter 4. The importance of finite difference grids is
that, by slightly modifying our backward iterative method, we can take
into account the possibility of early exercise, and thus price American op-
tions.

This can be achieved by using Code excerpt 5.17 to modify the option prices
contained in the array opt _val s as follows:

if (put) { /* a put */
for(j=1; j<=ns-2; ++j)
opt_vals[j] = MAX(opt_vals[j],Es[j]);

else { /* a call */
for(j=1; j<=ns-2; +4j)

opt_val s[j] = MAX(opt_vals[j],s[j]-E);
}

Code excerpt 5.17 Computer code that modifies the computed option values contained
in array opt _val s to include the possibility of early exercise; this is required if we are
to determine the value of American options. Here s[j ] contains the asset value at asset
index j, opt _val s[j] contains the option value (computed by Code excerpt 5.16) at
asset index j, and E is the strike price.
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Figure 5.5 An example uniform grid, which could be used to estimate the value of a
vanilla option which matures in two years’ time. The grid parameters are: ng = n; = 10,
At = 0.2, AS = 5, and Smax = 50. The option parameters are E = 25, Sg = 20, and
T = 2.0. As usual we denote the grid node option values by f; ;, where i is the time index
and j is the asset index. The option values of the grid nodes at maturity for a vanilla put
are thus labelled as val, fig,j, j =0, ..., 10, where val is the value of the option at the
node; these are shown on the right-hand grid boundary. Since E = 25 only those nodes
with j < 5 have nonzero option values.

Now that we know how to solve the Black-Scholes equation it is possible to
include, without much difficulty, more exotic features such as lock out periods,
barriers, rebates, etc.

The routine opt _gf d solves the Black—Scholes equation using a uniform grid.
The asset price is set to one of the grid lines, which means that interpolation is
not required.

5.4.3 Nonuniform grids

In the previous section we showed how to solve the Black—Scholes equation
using a uniform grid. Although this approach will provide satisfactory solutions
to many option pricing problems, there are situations in which it is important to
be able to place grid lines at locations that do not correspond to those available
in a uniform grid. Increasing the density of grid lines in regions of interest can
lead to improved accuracy in both the estimated option values and also the
estimates of the hedge statistics (the Greeks).

Here we provide an example which illustrates the benefits of using a nonuni-
form grids in the evaluation of down and out call barrier options. Later on in
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Section 5.4.6 we give a further example which shows the use of nonuniform
grids to evaluate double barrier options.

The purpose of this section is to show how to discretize the Black—Scholes
equation using a nonuniform grid, and to derive an expression (see Eq. (5.4.39))
that is equivalent to Eq. (5.4.14). Although the tridiagonal system of equa-
tions we have to solve in this section will be different from that in Section
5.4, the solution method is exactly the same. This means that once we have
derived Eq. (5.4.39) all the other information which we require to evaluate
both European and American options is available in Section 5.4 under the head-
ings:

e The boundary conditions
e Computation of the option values at a given time instant
e Backwards iteration and early exercise.

We will now consider the finite-difference approximation for a nonuniform
grid, and then show how to value the down and out call barrier option.

The finite-difference approximation

Here we consider how to discretize the Black-Scholes equation using a nonuni-
form grid, in which both the asset price interval AS and the time step At are
not constant but can vary throughout the grid.

Allowing for a nonconstant time step is quite simple. The time step oc-
curs in both the first derivative f;; (see Eq. (5.4.4)) and in the option value
equations (see Eqs. (5.4.14)-(5.4.21)) as the constant Az. To incorporate a
varying time step, Af;,i = 0, n;, thus only requires setting At = Ay, at the
ith time step and then continuing with the solution method outlined in Sec-
tion 5.4.

The incorporation of nonconstant asset price intervals requires more work.
This is because the finite-difference approximations to the first and second deriv-
atives f,’j and l/”j, in Egs. (5.4.10) and (5.4.11) are based on a Taylor expansion
about the point f; ;.

We will now derive expressions for these derivatives.

If we let AXJ._ = §; —Sj_1 and AX}' = Sj4+1 — S; and then use a Taylor

expansion about fj11 ; we have
1 2
fi+1,j+l = fi+l»j + fi/_’_l’jAX}i» + Efl/'/i‘l,](AXf) (5.4.32)
and also
/ — 1 1" —
firrj-1= fivrj = fiyr ; AX; + éfi—l-l,j(AXj )

Multiplying Eq. (5.4.32) by AXT and adding it to AX;.|r times Eq. (5.4.33), gives

2 (5.4.33)

AXT fisr,j-1+ AX firn 1

_ 1 _ _
= AX; firnj + AX] fiynj + Efi’;l,j{(AXj)zij +(aX7)’AXT)
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Therefore
1f” _AXT fivr o1+ AXG fis e = AXG fivnj = AXT fien
27+ (AX2AXT +(AX))2AX]
So
s 2AAXT fian i1+ AXG fisa e — fivn (AX; + AXD))
i+l (AX)2AX; + (AX;)2AX ]
(5.4.34)
To calculate f/ +1,; e rearrange Eq. (5.4.33) to obtain
1
f—l,-l]AX - ﬁ‘i’l,j*l - ﬁ+1,] 2f+lj(AX )
and
fit1,j — fi+1,j-1 _
flaj=—""F5———+ JZHJAX (5.4.35)

j
If we now substitute for f+1 I from Eq. (5.4.34), into Eq. (5.4.35) we have
;o Jitaj — fit1j-1

fH—l,,/ - AXT
J

(AXT fivrjo1— (AX + AXD) firj + AX] firrj+1)AX]
(AX].*)ZAXJ.— + (ij—)ZAXj+

which simplifies to give

: AXD2(fiv1j = firrj-0) = (AXD2fivaj + (AX)2 fii jia
i+1j = (AXT)2AX; + (AX;)2AX]

so that we finally have

X fi i+ (AXD? = (AX) fisa — (AX P fia
i+1j = (AXT)2AX; + (AX;)2AX T

(5.4.36)

As in Section 5.4, we can now substitute the expressions for f/,; ; and f/" ;
given in Egs. (5.4.36) and (5.4.34), into Eq. (5.4.7) the discretized Black—Scholes
equation. If we let D = (AX;L)ZAX/.* + (A)(’I.*)zAX;r we then obtain

VAt(@me-l,,/ + @,Zfl,/)

98 Ads o2S7ALA,

(5.4.37)
D D

(r
= fiv1j— fij +
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where ©) =1— 0, and
Ar= @m[fiJrl,j+1(AX;)2 - fi+1,j71(AX;r)2
\2 2
= firn {(aX5)" = (ax7)7}]
+OnL i (AX) = fia(AXT)" = fisf(ax7)* = (Ax]))]
and
A = @m[ﬁ+l,j+lAX; + fi+1,]>1AXjr - fi+1,j{AXf + AXf}]
+ Opfijr1AXT + fij-1AXT — fi {AXT + AXT]
Collecting like terms, we obtain:

Bifij-1+ Bafij+ Bsfij+1+ Cifivaj-1+Cafivaj

+Cafiy1,j+1=0 (5.4.38)
where
—On(r—q)SjAt(AXT)Z (1—0)0?S7AtAXT
Bl = J + J J
D D
Oro282At(AXT + AXT)
By =—-1-rAt@F — 2 J J
D
O (r — ) At{(AXT)? = (AX])?)
a D
On(r —@)SjAH(AXT)?  Ono?SEAIAXT
3= D + D
2¢2 + . ) +\2
oo Ono?SEALAXT  On(r —q)S;AL(AXT)
D D
Opn(r —q)S; At{(AX7)2 — (AXT)?)
Co=1—rAtO — — / J j
D
Omo?SEAH{AXT + AXT)
a D
On(r — )SjAH(AXT)?  Opo?SEAIAXT
C3= D — + ) :

Since we are solving the Black-Scholes equation backwards in time we will re-
arrange Eq. (5.4.38) as:

ajf,-,j_l—i—bjf,',j—i-Cj =R,'+1,j (5.4.39)
where the right-hand side R; 41 ; is:

Rij1j=ajfisr,j—1+bjfir1; +¢jfitrj1 (5.4.40)
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and the coefficients are

(r—q)S;(AXH?2  o252AxT
a,-:(a;;m{ bl S ’} (5.4.41)
D D
o2S2(AXT + AXT)
b,=1+At@;;,{r+ E :
’ D
r —)Si{(AX7)? — (AXT)?)
PR ] } (5.4.42)
D
—(r —q@)S;(AX7)?  o282AX7
cj:@;;m{ bt RN f} (5.4.43)
D D
2¢2 + +\2
02S2AXT  (r— @)S;(AXT)
aj = @mm{ A 1]) / } (5.4.44)

l;j =1-0,rAt
- @mm{ (r— C])Sj{(AXj_)Z — (ij)z} N azsjz.{ijf +AXT) }
D D

(5.4.45)

(r— q)sj(AX;)Z GZSJZ.AXJ._ } (5.4.46)

D D

Here Eq. (5.4.39), as is the case for Eq. (5.4.14) in Section 5.4, provides the
relationship between the three option values fii1 -1, fi+1,j, fi+1 j+1 at time
index i + 1, and the three option values f; j_1, fi j, fi,j+1 at time index i. It can
also be seen that Eq. (5.4.39) is the nonuniform grid equivalent of Eq. (5.4.14)
given in Section 5.4. We will now show that Egs. (5.4.39) and (5.4.14) are
identical when a uniform grid is used, that is AX;r = AX;. We proceed as
follows:

Let AX] = AX; = ASand S; = jAS.

So

¢ =@mm{

2 - —\2
D = (AX])°AX; + (AX;)°AX]
(AX])?  (AX)? (as)2 1

(A5) D D 2(AS)3  2AS
AX}L AX; 1
D D 2AS?
+\2 —\2
(AX7) = (AX7) _o
D

If we substitute the above values into Egs. (5.4.41)—(5.4.46) we obtain the fol-
lowing expressions for the coefficients in Eq. (5.4.39).
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2¢2
r—q)8; °o°5; At P
2¢2
75 2.2
bj =1+At(1—@m){"+ AS2 } =1+(1—@m)At{r+0 j }
2¢2
—(r—q)S; 0°S5
i =0—-0,)At —
Cj ( m) { 2AS ZASZ
At ) )
= —(1—@m)7{(”—q)J +02]2}
2¢2
o7 =S, At
g — J Jl_ 2 _ . 2.2
aj _@mAt{ZASZ SAS } Onm 5 {(r q)j— 0% }
- Opno2S2At
bj=1=Oural — —— g — =1, Aifr +0°)7)
2¢2
— r—q)S;  9°S; At ) 2.2
Cj ZQmAt{ ZAS ASZ Z(”)rn?{(r—q)j + o J }

It can be seen that these coefficients are identical to those given in Section 5.4.2
Egs. (5.4.16)—(5.4.21).

We now provide examples of using nonuniform grids to evaluate European
down and out call options.

Valuation of a down and out call option

Here the improved accuracy that can be achieved by using nonuniform grids
instead of uniform grids is illustrated in Figs. 5.7 and 5.8. The uniform grids are
constructed using the method outlined in Section 5.4 and Code excerpt 5.18.
That is, an asset grid line is set to coincide with the current asset price Sp, and
the other grid lines are positioned above and below Sp with a uniform spacing
of AS. The disadvantage of this approach is that there will be an unspecified
pricing error that depends on the distance, ds, of the barrier level, B, to the

voi d opt_gfd(double theta_m double asset_price, double signa, double r, double T,
doubl e strike, long is_anerican, |ong put, double *option_val ue,
doubl e greeks[], double q, long pns, long nt, double smax, long *iflag)

/* Input paraneters:

theta_m - the value of theta used for the finite difference nethod,

asset_price - the current price of the underlying asset,

signa - the volatility,

r - the interest rate,

T - the tine to maturity,

strike - the strike price,

is_american - if is_anerican is O then a European option, otherwi se an Anerican_
option,

Code excerpt 5.18.
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put - if put is O then a call option, otherwise a put option,
q - the continuous dividend yield,
pns - the nmaxi num asset index on the grid, corresponding to the upper_
boundary,
nt - the nunber of tine intervals,
smax - the nmaxi num asset price.
Qut put paraneters:
option_val ue - the value of the option,
greeks[] - the hedge statistics output as follows: greeks[0] is gamm, greeks[1]_
is delta, and greeks[2] is theta,
iflag - an error indicator.
*/
doubl e *a, *b, *c, *al, *bl, *cl1, *opt _val s, *val s, *rhs, *s, *work, *u;
doubl e ds, dt;
long i,j;

double tnp, t2,time_2mat;
I ong n1, n2, i nd=0;
doubl e sig2,tenp[4];

if (asset_price >= snmax) printf ("ERROR asset price >= smax");

nl = floor((asset_price/smax)*(doubl e)pns);

n2 = pns - ni;

ds = asset_price/ (doubl e)ni;

dt = T/ (doubl e)nt; /* tine interval size */

ns = nl+n2+1;
/* Note: Now nps = ns-1. Since we define asset grid lines 0...ns-1, this is the maximumgrid_
line; corresponding
to the upper boundary. The |ower boundary is at the asset grid line 0, and we solve for_
option val ues between
the asset grid line 1 and the asset grid line ns-2 */

/* Allocate (all size ns+l) the arrays: a, b, c, al, bl, c1, opt_vals, vals, rhs, s, work_
and u */

s[0] = 0.0;

s[nl] = asset_price;

for(i=1; i<=nl-1; ++i ) /* set prices bel ow asset_price */
s[i] = (double)i * ds;

for(i=1; i<= n2+1; ++i ) /* set prices above asset_price */
s[nl+i] = asset_price + (double)i * ds;

/* Set up the RHS and LHS coefficients a[], b[] and c[] are the LHS coefficients
for the unknown option values (time step j) al[], bl[] and cl[] are the values of the
RHS coefficients for the known option prices (tine step j+1).
Note: al, bl and cl are used to formthe RHS vector rhs[] of the tridiagonal system */
sig2 = sigma*signg;
t2 = dt/2.0;
tmp = 1.0-theta_m /* 1 - theta (for theta nethod) */

for( i i<=ns-2; ++i) { /* Assign elenents of the (ns-2)*(ns-2) tridiagonal matrix */
af[i] = -i*(i*sig2-(r-q))*t2*tnp;
all[i] = i*(i*sig2-(r-q))*t2*theta_m;
c[i] = -i*(i*sig2+(r-q))*t2*tnp;
cl[i] = i*(i*sig2+(r-q))*t2*theta_n;
b[i] = 1.0+r*dt*tnp+(i*i*sig2)*dt*tnp;
bl[i]= 1.0-(i*i*sig2+r)*dt*theta_m

/* Perform LU deconposition of the tridiagonal matrix with:
di agonal elements contained in the array b[], upper diagonal elenments contained in the_
array c[]
and | ower diagonal elements in the array a[]. Store the elenents of U but not those of L
(they will be conputed from U)
Matrix U The diagonal elenments of U are stored in the array u[] and the upper diagonal _
el enents of U
are just c[].
Matrix L: For the lower triangular matrix L, the diagonal elenments are 1 and the |ower_
di agonal el enments
are |[i] = a[i]/u[i-1], where u[] is the upper diagonal of U */

up1] = b[1];
if (u[1] == 0.0) printf ("ERROR in array u \n");
for(i=2; i <=ns-2; ++i) {

u[i] = b[i] - a[i]*c[i-1]/u[i-1];

Code excerpt 5.18 (Continued).
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I *

/*

| *
| *

| *

}

if (u[i] == 0.0) printf ("ERRORin array u \n");

Set option values at maturity. Note : opt_vals[0] and opt_vals[ns-1] are the lower and_
upper
(put/call) option price boundary val ues. */
if (tput) { /* acall */
for( i=0; i<ns; ++ )
opt_vals[i] = MAX(s[i]-strike, 0.0 );
}
else { /* a put */
for( i=0; i<ns; ++i)
opt_vals[i] = MAX(strike - s[i], 0.0);
}
From the option values at maturity (t = nt*dt) calculate values at earlier tines (nt-1)*dt_
etc.. */
for( j=nt-1; j>=-2; --j) { /* Go two steps past current tine (0) so that can evaluate_
theta */
tinme_2mat = T-j*dt;
for(i=2; i<=ns-3; ++i) /* set up the rhs of equation for Crank-Ni col son nethod */
rhs[i] = al[i]*opt_vals[i-1]+bl[i]*opt_vals[i]+cl[i]*opt_vals[i+1];

I ncorporate the boundary conditions at the upper/|ower asset val ue boundaries */
rhs[1] = (al[1]-a[1])*opt_vals[0]+ bl[1]*opt_val s[1] +c1[ 1] *opt_val s[2];
rhs[ns-2] = al[ns-2]*opt_val s[ ns-3] +b1[ ns-2] *opt _val s[ns-2] +(c1[ns-2]-c[ns-2]) _
*opt _val s[ns-1];

Sol ve the lower triangular systemlLy = b, where y is stored in array work[].
Conpute the elements of L fromthose of U, I[i] = a[i]/u[i-1]. */
work[1] = rhs[1];
for( i=2; i<=ns-2; ++i
work[i] = rhs[i] - a[i]*work[i-1]/u[i-1];

Sol ve the upper (ns-2)*(ns-2) triangular systemUx =y (where x = opt_vals) */
opt _val s[ns-2] = work[ns-2]/u[ns-2];
for( i =ns-2; i >=1; --i )
opt_vals[i] = (work[i] - c[i]*opt_vals[i+1])/u[i];
if (is_anerican) { /* take into account early exercise for anmerican options */
if (put) { /* a put */
for(i=1; i<=ns-2; ++i)
opt_val s[i] = MAX(opt_vals[i],strike-s[i]);

else { /* acall */
for(i=1; i<=ns-2; ++i)
opt _vals[i] = MAX(opt_vals[i],s[i]-strike);

}
it (j==0) {
for (i=0; i < ns; ++i)
val s[i] = opt_vals[i];

}
if ((J==1)11(j==2)||(j==-2)||(j==-2)) { /* Store option values so that can conpute_
theta */
tenp[ind] = opt_val s[nl];
++i nd;
}
}
if (greeks) {
Conput e ganma (4th order accuracy) */
greeks[0] = (-vals[nl1+2]+16.0*val s[nl+1]-30.0*val s[n1]+16.0*val s[nl-1]-vals[n1-2])_
/(12. 0*ds*ds);
Conpute delta (4th order accuracy) */
greeks[1] = (-val s[n1+2]+8.0*val s[ n1+1]-8.0*val s[nl-1]+val s[n1-2])/(12.0*ds);
Conpute theta (4th order accuracy) */
greeks[2] = (-tenp[0]+8.0*tenp[1]-8.0*tenp[2] +tenp[3])/(12.0*dt);
Note: could al so conpute theta as greeks[2] = (-tenp[O0]+4.0*tenp[1]-3.0*val s[nl])

[(2.0%dt); */
}

*option_value = vals[nl]; /* Return option value */

Code excerpt 5.18 Function to compute the value of a vanilla option using a uniform
grid.
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nearest asset grid line. Furthermore, as the number of asset points, ng, increases
the magnitude of d; will oscillate within the range 0 to AS/2.

When dy; ~ 0 the grid will be accurate, but when |ds| ~ AS/2 there will be
a large pricing error. This gives rise to the oscillating pricing errors shown in
Figs. 5.7 and 5.8.

The nonuniform grids are constructed using the techniques mentioned earlier
in this section, and also Code excerpt 5.19. We now, irrespective of ny, arrange
for one asset grid line to coincide with the current asset value, Sp, and another
asset grid line to coincide with B, the barrier asset price. In Fig 5.6 this corre-
sponds to setting By, to B and not using By .

It can be seen in Figs. 5.7 and 5.8 that in this case the pricing error is very
much less, and also does not exhibit the pronounced oscillations that are pro-
duced by a uniform grid. In Code excerpt 5.19 we give the computer program
which was used to obtained the nonuniform grid values for the down and out
call options presented in Figs. 5.7 and 5.8. Although this program only deals
with European options it can easily be altered, using the same techniques as in
Code excerpt 5.18, to deal with American-style options; this is left as an exercise
for the reader.
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Figure 5.6 A nonuniform grid in which the grid spacing is reduced near current time 7,
and also in the neighborhood of the asset price 235; this can lead to greater accuracy in
the computed option values and the associated Greeks. Grid lines are also placed at asset
prices of Byy and By ; this enables the accurate evaluation of options which have barriers
at these asset prices.
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voi d barrier_downout (doubl e barrier_|level, double theta_m double asset_price, double sigm, _
doubl e r, double T,
doubl e strike, long put, double *option_value, double greeks[], double g, long ns, _
long nt, double smax, long *ifail)
{
/* ns - the nunber of asset intervals
nt - the nunber of tine intervals
*/
doubl e *a, *b, *c, *al, *bl, *c1, *opt _val s, *val s, *rhs, *s, *wor k, *u;
doubl e ds, tine_step;
long i,j,barrier_index;
double tnp,t2,ti me_2mat, zero = 0.0;
I ong ni,n2,ind=0, ns1;
doubl e sig2,tenp[4],ds_pl us, ds_minus, tenpl, tenp2, t enp3;
doubl e D;

nl = floor((asset_price/smax)*(doubl e)ns);
if (n1<3)
printf ("increase the number of asset points \n");

n2 = ns - nl;

ds = asset_price/ (doubl e)ni;

time_step = T/(double)nt; /* time interval size */

nsl = nl+n2+2; /* nunber of nodes - including extra grid |ine*/

/* allocate the required arrays (all of size nsl+l): a, b, ¢, al, bl, cl, opt_vals,_
vals, rhs, s, work, u */

/* set prices bel ow asset_price */
s[0] = zero;
s[nl] = asset_price;
for(i=1; i < nl; ++i )
s[i] = (double)i * ds;
/* set prices above asset_price */
for(i=1; i<= n2+2; ++i
s[nl+i] = asset_price + (double)i * ds;

/* find out the index corresponding to barrier_|level */
barrier_index = 0;
whi | e(barrier_|level > s[barrier_index]) {
++barrier_i ndex;

if (barrier_level !'= s[barrier_index]) { /* decrement barrier index */
--barrier_index;
if (s[barrier_index] != barrier_level) { /* then barrier does not correspond_
to an existing grid line so create another_
one*/
for (i=1; i < nsl-barrier_index; ++) {

s[barrier_index+1+i] = s[barrier_index] + (double)i*ds;

++barrier _i ndex;

s[barrier_index] = barrier_|level;
if (nl>barrier_index) {

++nl,;
}

}
/* set up the RHS and LHS coefficients a[], b[] and c[] are the LHS coefficients

for the unknown option values (time step j) al[], bi[] and cl[] are the values of the
RHS coefficients for the known option prices (tinme step j+1).
Note: al, bl and cl are used to formthe RHS vector rhs[] of the tridiagonal _
system */
si g2 = sigma*signa;
t2 = tine_step/2.0;
tmp = 1.0-theta_m /* 1 - theta (for theta nethod) */
/* assign elements of the (nsl-2)*(nsl1l-2) tridiagonal matrix */
for( i=1;, i<=nsl-2; ++i) {
ds_plus = s[i+1]-s[i];
ds_minus = s[i] - s[i-1];
D = ((ds_pl us*ds_plus*ds_mi nus) + (ds_mi nus*ds_mi nus*ds_pl us));
tenmpl = tnp*tine_step/ D,
a[i] = templ*((r-q)*s[i]*ds_plus*ds_plus) -tenpl*ds_plus*(s[i]*s[i]*sig2);

tenmpl = theta_n¥tine_step/D;

alli] = -(tenpl*((r-q)*s[i]*ds_plus*ds_plus) -tenpl*ds_plus*(s[i]*s[i]*sig2));
templ = (ds_mi nus*ds_mi nus)/D;

tenp2 = ds_m nus/D;

Code excerpt 5.19.
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cli] -tinme_step*tnp*(tenpl*s[i]*(r-q)+(sig2*s[i]*s[i]*tenp2));

cl[i] = time_step*theta_nt(tenpl*s[i]*(r-q)+(sig2*s[i]*s[i]*tenp2));
templ = ((ds_mi nus*ds_m nus) - (ds_plus*ds_plus))/D;
tenp2 = (ds_mi nus+ds_plus)/D;

b[i] = 1.0+time_step*tmp*(r+((r-q)*s[i]*tenpl)+(s[i]*s[i]*sig2)*tenp2);
bl[i] = 1.0-tine_step*theta_n¥(r+((r-q)*s[i]*tenpl)+(s[i]*s[i]*sig2)*tenp2);
}
/* Perform LU deconposition of the tridiagonal matrix w th: diagonal elenments contained_
inthe array b[],
upper di agonal elenents contained in the array c[] and |ower diagonal elenents in_
the array a[].
Store the elements of U but not those of L (they will be conputed from U)
Matrix U The diagonal elenments of U are stored in the array u[] and the upper
di agonal elerments of Uare just c[].
Matrix L: For the |ower triangular matrix L, the diagonal elements are 1 and the_
| oner di agonal
elements are |[i] = a[i]/u[i-1], where u[] is the upper diagonal of U */
uf1] = b[1]
if (u[1] == zero) printf ("error in array u \n");
for( i=2; i <=nsl-2; ++i) {
uli] =b[i] - a[i]*c[i-1]/u[i-1];
if (u[i] == zero) printf ("error in array u\n");

}
/* Set option values at maturity. Note : opt_val s[0] and opt_val s[nsl-1] are the |ower and_
upper
(put/call) option price boundary val ues. */
if (tput) { /* acall */
for( i=0; i<nsl; ++i )
opt_vals[i] = MAX(s[i]-strike, zero);
/* now nodify option values to include the barrier */
for( i=0; i <= barrier_index; ++i )
opt_val s[i] = zero;
}
else { /* a put */
for( i=0; i<nsl; ++i)
opt_vals[i] = MAX(strike - s[i], zero);

/* Fromthe option values at maturity, t = nt*time_step, conpute
the values at tines (nt-1)*tine_step to O (current tine)

*/
for( j=nt-1; j>=-2; --j) { /* go two steps past current time so that can evaluate_
theta */

time_2mat = T-j*tinme_step;
/* set up the rhs of equation for the Theta method */
for(i=2; i<=nsl-3; ++i)
rhs[i] = al[i]*opt_vals[i-1]+b1l[i]*opt_vals[i]+cl[i]*opt_vals[i+1];
/* incorporate the boundary conditionsl at the upper/|ower asset val ue boundaries */
rhs[1] = (al[1]-a[1])*opt_val s[0]+ bil[1]*opt_val s[1] +c1[ 1] *opt _val s[2];
rhs[nsl1l-2] = al[nsl1-2]*opt_val s[nsl-3] +bl[ nsl-2]*opt_val s[nsl-2]+(cl[nsl-2]-c[nsl-2])_
*opt _val s[ns1-1];
/* Solve the lower triangular systemlLy = b, where y is stored in array work[].
Conpute the elenents of L fromthose of U, I[i] = a[i]/u[i-1]. */
work[1] = rhs[1];
for( i=2; i<=nsl-2; ++ ) {
work[i] =rhs[i] - a[i]*work[i-1]/u[i-1];

}
/* Solve the upper (nsl-2)*(nsl-2) triangular systemUx =y (where x = opt_vals) */
opt _val s[ns1-2] = work[ns1-2]/u[ns1-2];

for( i =ns1-2; i >=1; --i

opt_vals[i] = (work[i] - c[i]*opt_vals[i+1])/u[i];
it (j==0) {

for (i=0; i < nsl; ++i)

val s[i] = opt_vals[i];
}
/* store option values so that can conpute theta */
it ((G=D110==2)[1(==1D]1(j==-2)) {
tenmp[ind] = opt_vals[nl];
++i nd;

/* now nodify for barrier */
for( i=0; i <= barrier_index; ++i )
opt_val s[i] = zero;
}
if (greeks) { /* assune an irregular grid */
ds_minus = s[nl]-s[nl-1];

Code excerpt 5.19 (Continued).
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ds_plus = s[nl+1]-s[nl];
D = (ds_m nus*ds_mi nus*ds_pl us) + (ds_plus*ds_pl us*ds_mi nus);
tenpl = ds_m nus*ds_m nus;

tenp2 = ds_pl us*ds_pl us;
tenp3 = tenpl-tenp2;
1* GAMVA */
greeks[0] = (ds_mi nus*val s[ n1+1] +ds_pl us*val s[ n1- 1] - val s[ n1] *(ds_pl us+ds_mi nus)) _
1(0.5*D);
/* DELTA */
greeks[1] = (tenpl*val s[nl1+l1] - tenp2*val s[nl-1] - vals[nl]*tenp3)/D;
/* THETA */

greeks[2] = (-tenp[0]+8.0*tenp[1]-8.0*tenp[2] +tenp[3])/(12.0*tine_step);
/* could also conpute theta |ike this:
greeks[2] = (-tenp[O0] +4.0*tenp[1]-3.0%val s[nl])/(2.0*time_step); */
}

*option_value = vals[nl]; /* Return option value */
/* deall ocate the arrays that were previously allocated */

}

Code excerpt 5.19 Function to compute the value of a European down and out barrier
option using a nonuniform grid.
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Figure 5.7 The absolute error in the estimated values for a European down and out call
barrier option (B < E) as the number of asset grid points, ng, are varied. Here we show
a comparison of the results obtained using both uniform and nonuniform grids; loga-
rithmic transformations were not employed. The algorithm for the uniform grid is de-
scribed in Section 5.4.2, and that for the nonuniform grid is outlined in Section 5.4.3. The
Crank-Nicolson method (®,, = 0.5) was used and the other parameters were E = 50.0,
B = 475, Sg = 55.0, Smax = 300.0, T = 0.5, 0 = 0.2, r = log(1.1), ¢ = 0.0, n; = 100.
The correct option value was 7.6512, which was obtained using the analytic formulae
given in Code excerpt 4.7.
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Figure 5.8 The absolute error in the estimated values for a European down and out call
barrier option (E < B) as the number of asset grid points, ng, is varied. Here we show
a comparison of the results obtained using both uniform and nonuniform grids; loga-
rithmic transformations were not employed. The algorithm for the uniform grid is de-
scribed in Section 5.4.2 and that for the nonuniform grid is outlined in Section 5.4.3. The
Crank—Nicolson method (®,, = 0.5) was used and the other parameters were E = 50.0,
B =525, S = 65.0, Smax = 300.0, T = 0.5, 0 = 0.2, r = log(1.1), ¢ = 0.0, n; = 100.
The correct option value was 17.0386, which was obtained using the analytic formulae
given in Code excerpt 4.7.

5.4.4 The log transformation and uniform grids
Up to this point we have been dealing with the standard Black—Scholes equation,
which is:
af af  o2829%f
= —S—+——5 = 4.4
o TOT DSt e = (5.447)

However, if we introduce the change of variable Z = log S, we obtain the fol-
lowing equation:

O L2l L 70T e (5.4.48)

where b = r — g — 02/2. This form of the Black-Scholes equation has beneficial
numerical properties—see Appendix E
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Derivation of Eq. (5.4.48)

We will now derive an expression for the logarithmic Black-Scholes equation,
and show that it agrees with Eq. (5.4.48).

Since Z = log S we have ‘3? = l. This gives:

of of 0z _ 1af
s~ 9z oS Sz

3’f of _18f+18 af 18f+1828 af
352 — as\as/)  Ss2az ' SaS S29Z SS9z

92 f 19f 1d%f

382~ S29z @ S29z22

So Eq. (5.4.47) becomes:
of (r—q)Saf o2S%af N 0252 092f s
ot S 9z 2823z ' 252 972

thus setting b = r — g — 02/2 we obtain:

and

We will now consider the finite difference discretization of Eq. (5.4.48).

The finite-difference method

Application of the finite-difference method to the log transformed Black-
Scholes equation is very similar to that already outlined in Sections 5.4.2
and 5.4.3.

Use of the ©,, method on Eq. (5.4.48) results in:

fi+l Jj fl
At
=r{Onfirrj + O fij}
where @ = 1— ©,,. Applying a uniform discretization at node (i, j) we obtain:
bAt Ay 2AtA2
20Z  2AZ2

1
+b{@ fl+1j+@ flj}+20 {@ f‘l/-/f—lj_’_@ fl }

fivrj = fij+ = r A Onfir1, + OLfi) (5.4.49)

where

A1 = Ol fits, j+1 — firr,j-1} + Oplfijr1 — fij-1}
A2 = Onlfivrj+1 — 2fivrj + fivrj—2} + Oplfijr1 — 2fij + fij-1)
Collecting like terms we obtain:

Bifij-1+ Bafij+Bsfij+1+ Cifivaj-1+Cafiv1j +Cafit1,j+1=0
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where
By — —@XbAt  OFo?At
2AZ 2AZ2
O*o2At
— &/ * —_— —m
B2 =—-1-rAt®, 72
2
By = OkbAt N OFo?At
2AZ 2AZ2
o Ono?At  OnbAt
1= oAz 2AZ
@mUZAt
szl—rAl@m—v
e OubAt  O,0°At
3T oAz 2AZ2

If we rearrange we have the following equation:

ajfij-1+bjfij+ci=ajfiy1j- 1+b]f,+1j+c,fl+1]+1
where:
(1— Op) At

= bAZ — o 5.4.50
aj oA 72 { o } ( )
o2
b;=1+1-0O,)Atir + — 5.4.51
=tea-osirs 2] sasn
(1— 6,)At )
cj = _T{bAZ +o } (5.4.52)
() At
a; = bAZ — 5.4.53
aj T oAz 2{ } ( )
_ 0'2
b =1— 0O, At\r + — 5.4.54
J {r AZZ} ( )
O, At
Ci = bAZ + o 5.4.55
Cj = A 72 { } ( )

It can be seen that, unlike in Section 5.4.2, the coefficients in Egs. (5.4.50)-
(5.4.55) are independent of the asset price index ;.
When ©,, = 0.5 (the Crank—Nicolson method) we have the following coeffi-
cients:
At

aj==4; = 75 {bAZ —o?}
bjzl—i—% r+Z—Zzz
q:—@:—%{bAZ—i—az}
2
Ejzl—% r+é
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Table 5.7 Valuation results and pricing errors for a vanilla American put option using a
uniform grid with and without a logarithmic transformation; the implicit method and
Crank-Nicolson method are used

Time  Value ®, =0.0 ®, =05
BS Log BS BS Log BS

0.1 0.7599 14733 x 1072  7.7803x 103 14719 x 1072  7.6716 x 1073
0.2 0.8335 45838x 1072 12924 x 102 45682 x 1072  1.1997 x 10~2
0.3 0.8921 6.4218x 1072  1.4125x 1072  6.3800 x 1072  1.2567 x 10~2
0.4 0.9403  7.4699 x 1072  1.6559 x 102  7.3924 x 1072 1.4655 x 10~2
0.5 0.9812 8.0297 x 1072  1.8471x 1072 7.9101 x 1072  1.6041 x 10~2
0.6 1.0167 8279 x 1072 19125x 1072 8.1135x 1072  1.6067 x 102
0.7 1.0479 83285x 1072 18959 x 1072 81131 x 1072 15273 x 102
0.8 1.0758 82470 x 1072  1.8408 x 1072  7.9803 x 1072  1.4159 x 10~2
0.9 1.1009 8.0829 x 1072 17756 x 1072  7.7647 x 1072 1.3020 x 102
1.0 1.1237 7.8646 x 1072 17138 x 1072  7.4947 x 1072 1.1997 x 102
1.1 1.1445 7.6164x 1072 16643 x 1072 7.1961x 1072  1.1174 x 102
1.2 1.1637 7.3514x 1072 16290 x 1072  6.8803 x 1072  1.0552 x 102
1.3 1.1813 7.0785x 1072 16092 x 1072  6.5594 x 102  1.0143 x 102
1.4 1.1977 6.8080 x 1072  1.6042 x 1072  6.2419 x 1072 9.9309 x 10~3
1.5 12129 65424x 1072 16128x 1072 59295 x 1072  9.8909 x 103

The accurate values (obtained using a logarithmic transformed grid with ng = 1000 and
ny = 1000) are presented in the column labelled “Value”. The absolute pricing errors,
ABS (accurate value — estimated value) presented in the column labelled BS were ob-
tained using a standard uniform grid (as outlined in Section 5.4.2), and those in the
column labelled Log BS use a uniform grid and logarithmic transformation as explained
in this section. The maturity of the option was varied from 0.1 years to 1.5 years, and
the other parameters were: S = 9.0, X = 9.7,r = 0.1, ¢ = 0.0, 0 = 0.30, Smax = 100.0,
ns = 50, and n; = 50.

The method of using the finite-difference grid to compute option prices is iden-
tical to that already outlined in Section 5.4.2, which solves the standard (non-
logarithmic) Black-Scholes equation. Table 5.7 compares the results obtained
with and without a logarithmic transformation.

5.4.5 The log transformation and nonuniform grids

In the previous section we considered the use of a uniform grid to discretize the
logarithmically transformed Black—Scholes equation:

9 9 o2 92

o7 _ 4,
or Thaz T 2 a2 (5.4.56)
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where
o2
b:r—q—7 and Z=|OgS

Here we will generalize these results and use a nonuniform grid to solve
Eq. (5.4.56).

Our description will be very brief since most of the details have already been
discussed in previous sections. Here we are only concerned with the finite-
difference approximation and derive the equations that need to be solved at
each time step. Later, in Section 5.4.6, we will apply our results to solving a
European double knockout barrier option.

The finite-difference approximation
At the grid node (i, j) we have
AZ; =Zj—Zj1 and AZ] =Z;+1-2Z,
Following Section 5.4.2 the first and second derivatives of f w.r.t. Z are
s AMZT fin a4 AZS fia = AZ fivaj = AZ] fin )
i+l (AZTYAZT +(AZ))2AZT

and
;o AZ)P firaja + (AZD2 = (AZ))P) firrj — (AZ))? fivnj1
i+ = (AZT2AZ; + (AZ)2AZF

Then discretizing Eq. (5.4.56) in the usual manner we obtain

fisrj — fij o2
wg—t” +0{On flin; + Onti i+ =

=r{Onfit1j+ 65 fij}
where 0, = 1 — ©,,. Letting D = (AZ)?AZ; + (AZ;)*AZ] we obtain

{On [l +On 1 }

rAt(@mf,'.:,.l,j + @;;f,j)
bAt A1 N o2At Ay
D D

(5.4.57)

= fivrj — fij+
where
A= @m[fi-i-l,j-‘rl(AZj_)z - fi—&-l,j—l(AZ;_)z
— fini{(827)° = (82])7)]
+ 0, f41(827) = fia(aZ])’ - fi{(827)° - (a2))*)]
Az = Op[ fir1,j10Z] + fis1j-1AZ] = firr j{AZ] + AZT}]
+OLLfinAZ; + fiyaAZf - fisaZy +Az])]
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Collecting like terms we obtain:

Bifij-1+ B2fi,j + Bafi,j+1+ Cifit1,j-1+ C2fit1,j + C3fi+1,j+1 =0
where
—@;;bm(Azj)z . @,;;a?AtAzj
D D
By =—-1-rAtO),
Ono?AL(AZT + AZT) ~ OnbAH(AZ])? = (AZ])?)

B =

D D
B OnbAL(AZT)?  @%o2AtAZ™
3= D + D
o @mGZAIAZ;' @mbAr(Az]f)Z
1= D D
OmbAH{(AZ7)2 — (AZD2)  OpnolAt{AZT + AZT)
Co=1-rAtO, — / U / J
D D
OnbAL(AZT)?  Ono?AIAZ;
3= 5+ 5
If we rearrange we have the following equation:
ajfij-1+Dbjfij+cj=a;fisrj-1+bjfivr; +7C;fir1j+1 (5.4.58)
where:
b(AZT2  o2AZT
a; =(1—@m)m{ D’ -5 / } (5.4.59)
bj =1+ At(1—6y)
5 {r ~ az(AZj* + Azj) ~ b{(AZJT)z - (Azj)z}} (5.4.60)
D D
—b(AZ7)? aZAzjf
c,:(l—@m)m{ 5 U 5 } (5.4.61)
) JZAZ}L b(AZJJF)Z
aj = @mm{ -5 } (5.4.62)
l;j =1-0,rAt
- @mm{b{mzf_)z — Az + oi(AZ; +AZ]) } (5.4.63)
D D
. b(Az;)Z UZAZ;
¢j = @mm{ 5+t } (5.4.64)

The incorporation of boundary conditions and the solution of Eq. (5.4.58) is
similar in manner to that already discussed in Section 5.4.2. If further details
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are required Code excerpt 5.19, which uses a nonuniform grid to solve the log
transformed Black—Scholes equation, can be consulted.
When a uniform grid is used AZ+ AZ; =AZ and therefore

D= (Azj*) AZ7 + (Azf) AZ = 2(AZ)°

(AZ])?  (AZ))?  (az)?2 1
D D  2Az)3 2az
Az,.+ AZ7 1 (Azj)2 - (Az;)2
D D 2azz " D B
Il’l these circumstances
(1— O, At 5
aj=——""hAZ — 0o
J ZAZZ { }
2
— -l L o
" 2AZ  2AZ72
_ O At
aj = BN {bAZ —0 }

4= az?
which are the same as Egs. (5.4.50)—(5.4.55) in Section 5.4.4.

5.4.6 The double knockout call option

The purpose of this section is to provide an example that illustrates the benefits
to be gained from using both the log transformed Black-Scholes equation and
also a nonuniform grid.

The problem we will consider is the European double knockout call option
with strike price E, and expiry date T. This is a barrier option with both an
upper barrier at By and a lower barrier at Br. If, during the life of the option,
the asset price either goes above the upper barrier or below the lower barrier,
then the option becomes worthless. If, on the other hand, the asset price stays
between the barriers then the option has value max(Sy — E, 0), where S7 is the
asset price at time 7.

This problem has been previously investigated by Boyle and Tian (1998),
henceforth referred to as BT, who used an explicit finite-difference method
based on a modified trinomial lattice. The method we use here is based on
the finite-difference equations given in Section 5.4.5, and all the results ob-
tained by using the function dko_cal | (see Code excerpt 5.20) are presented
in Tables 5.8-5.12.
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voi d dko_cal | (doubl e | ower _barrier, double upper_barrier, double theta_m
doubl e SO, double signma_array[], double sigma_times[], long n_sigma, double r,
doubl e opt _mat, double X, double *option_value, double greeks[], double q,
I ong ns_bel ow_SO, |ong ns_above_SO, long nt, long *iflag)

/* Input paraneters:

| ower _barrier - the asset price corresponding to the |lower barrier,

upper _barrier - the asset price corresponding to the upper barrier,

theta_m - the value of theta used for the finite difference nethod,

S0 - the current price of the underlying asset,

signa_array[] - an array containing values of the volatility: sigma_array[0] is the_

first value of the volatility,

sigma_array[1l] is the second value of the volatility, etc..,
sigma_times[] - an array containing the times for different volatilities:_

sigma_tinmes[0] is the tine corresponding to

the first volatility, sigma_times[1l] is the tinme corresponding to_

the second volatility, etc..,

n_si gnma - the nunmber of elenents in sigma_array[], and sigma_tines[],
r - the interest rate,

opt _mat - the time to maturity,

X - the strike price,

q - the continuous dividend yield,

ns_bel ow_SO - the nunber of asset intervals below the current price SO,
ns_above_S0 - the nunber of asset intervals above the current price SO,
nt - the number of time intervals.

Qut put paraneters:

option_val ue - the value of the option,

greeks[] - the hedge statistics output as follows: greeks[0] is gamms, _
greeks[1] is delta, and greeks[2] is theta,

iflag - an error indicator.

*/
doubl e *a, *b, *c, *val s, *al, *b1, *cl1, *opt _val s, *rhs, *z, *del t a, *gamma, *wor k, *u;
doubl e dt, dz, dz1, dz2, zmax, zmi n;
long i,j;
doubl e tnp,t2,t4,dt2;
I ong ind=0, n1, n2, ns1;
doubl e ds, | og_asset, si g2, al pha, v2, b_fac, tenp[4];
doubl e zero = 0.0;
I ong barrier_index, i nd2;
doubl e dz_shift,time_step,log_barrier_level1,log_barrier_|evel2;
doubl e tenpl, tenp2, ds_plus, ds_mnus, bb, D;
doubl e curr_tinme;

if (SO >= upper_barrier) printf ("ERROR current asset price is greater than_
upper _barrier \n");
if (lower_barrier >= S0) printf("ERROR |ower barrier is greater than current asset_
price \n");
if (SO <= zero) printf ("ERROR asset price is not >0 \n");
if (upper_barrier <= lower_barrier) printf ("ERROR upper_barrier nmust be >_
| ower _barrier \n");
| og_asset = | 0g(S0);
log_barrier_levell | og(| ower _barrier);
| og_barrier_|level 2 | og(upper _barrier);
dz1l = (log_asset-log_barrier_|evel 1)/ (doubl e) ns_bel ow_S0;
nl = ns_bel ow_SO;
/* Include 5 extra points above the asset price so that don't get discontinuity in grid_
spaci ng
whi ch may adversely affect the conputation of the greeks */
n2 = ns_above_SO + 5;
dz_shift = dz1*5.0; /* shift caused by extra 5 grid points */
dz2 = (log_barrier_|evel 2-10g_asset-dz_shift)/(doubl e) ns_above_S0;
dt = opt_mat/ (doubl e)nt; /* time interval size */
time_step = dt;
--n2;
nsl = nl+n2+2;
/* Set up the RHS and LHS coefficients a[], b[] and c[] are the LHS coefficients for the_
unknown option
values (time step j) al[], bl[] and cl[] are the values of the RHS coefficients for the_
known option prices
(time step j+1). Note: al, bl and cl are used to formthe RHS vector rhs[] of the_
tridiagonal system */
/* Allocate the required arrays (all of size (ns1+2): a,b,c,al, bl, cl,opt_vals,vals, _
rhs, z, del t a, ganma, wor k, u */

Code excerpt 5.20.
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/* Set up the RHS and LHS coefficients a[], b[] and c[] are the LHS coefficients
for the unknown option values (time step j) al[], bl[] and cl[] are the values of the
RHS coefficients for the known option prices (time step j+1). Note: al, bl and cl are used_
to formthe RHS
vector rhs[] of the tridiagonal system */
/* Set grid line asset values, set one grid spacing to align with the asset price, then won't_

have to
interpolate to get the option value */
z[nl] = |og_asset;
for (i =1; i <=nl; ++i) /* This should be the fine mesh */
z[nl-i] = log_asset - (double)i*dzl;
for (i =1; i <=5; ++i) /* Include 5 extra fine nmesh points here */
z[nl+i] = |l og_asset + (double)i*dzl;
for (i =6; i <= n2+2; ++i) { /* The coarse mesh */

jo=1i -5
z[nl+i] = z[nl1+5] + (double)j*dz2;

/* Set option values at maturity (for a call). Note : opt_val s[0] and opt_vals[nsl-1] are the
| ower and upper
(put/call) option price boundary val ues. */
for( i=1; i<nsl; ++ ) {
opt _vals[i] = MAX(exp(z[i])-X, zero);

opt _val s[0] = zero;
opt _val s[ns1-1] = zero;
tnp = 1.0-theta_m /* 1 - theta (for theta nethod) */

curr_tinme = -1.0;
ind2 = n_sigma - 1;
for( j=nt-1; j>=-2; --j) { /* Iterate frommaturity to current tinme */

if ((ind2 >=0) &k (curr_tinme <= sigma_tinmes[ind2])) {
sig2 = sigma_array[ind2]*sigma_array[ind2];
t2 = time_step/2.0;
bb =r - q- (sig2/2.0);
--ind2;
for( i=1; i<=nsl-2; ++i) { /* Assign elenents of the (nsl-2)*(nsl-2) tridiagonal _
matrix */
ds_plus = z[i+1]-z[i];
ds_minus = z[i] - z[i-1];
D = ((ds_pl us*ds_plus*ds_mi nus) + (ds_m nus*ds_mi nus*ds_pl us));
templ = tnp*time_step/D;
a[i] = tenmpl*(bb*ds_plus*ds_plus) -tenpl*ds_plus*(sig2);

templ = theta_n¥tinme_step/D;

alli] = tenpl*ds_pl us*(sig2)-tenpl*(bb*ds_plus*ds_plus);
tenpl = (ds_minus*ds_mi nus)/D;

tenp2 = ds_minus/D;

c[i] = -tinme_step*tnp*(tenpl*bb+(sig2*tenp2));

cl[i] = time_step*theta_nt(tenpl*bb+(sig2*tenp2));

tenpl = ((ds_mi nus*ds_minus) - (ds_plus*ds_plus))/D;
tenp2 = (ds_minus+ds_plus)/D;

b[i] = 1.0+tine_step*tnp*(r+(bb*tenpl)+(sig2)*tenp2);
bi[i] = 1.0-tinme_step*theta_n*(r+(bb*tenpl)+(sig2)*tenp2);

}
uf1] = b[1];
if (u[l] == zero) printf ("ERROR in array u \n");
for( i=2; i <=ns1-2; ++i) {
ufi] =b[i] - a[il*c[i-1]/u[i-1];
if (u[i] == zero) printf ("ERROR in array u \n");

}
curr_tinme = j*dt;
/* Set up the rhs of equation for the theta method */
for(i=2; i<=nsl-3; ++i)
rhs[i] = al[i]*opt_vals[i-1]+b1[i]*opt_vals[i]+cl[i]*opt_vals[i+1];
/* Incorporate the boundary conditionsl at the upper/lower asset value boundaries */
rhs[1] = (al[1]-a[1])*opt_val s[0]+ bl[1]*opt_val s[ 1] +c1[ 1] *opt _val s[2];
rhs[ns1-2] = al[nsl-2]*opt_val s[nsl-3] +b1[ nsl-2] *opt _val s[ nsl1-2] +(cl[nsl-2]-c[nsl-2]) _
*opt _val s[ns1-1];
/* Solve the |ower triangular systemLy = b, where y is stored in array work[]. Conpute the_
elenents of L fromthose of U, I[i] = a[i]/u[i-1]. */
work[1] = rhs[1];
for( i=2; i<=nsl-2; ++ ) {
work[i] = rhs[i] - a[i]*work[i-1]/u[i-1];
}

Code excerpt 5.20 (Continued).
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/* Solve the upper (nsl-2)*(nsl-2) triangular systemUx =y (where x = vold) */
opt _val s[ns1-2] = work[ns1-2]/u[nsl-2];

for( i =nsl-2; i >=1; --i )

opt _vals[i] = (work[i] - c[i]*opt_vals[i+1])/u[i];
it (j==0) {

for (i=0; i < nsl; ++i)

val s[i] = opt_vals[i];
}
/* Store option values so that can conpute theta */
it ((G=D1100==2)[1(==-1D]1(j==-2)) {
tenmp[ind] = opt_val s[nl];
++i nd;
}
}
if (greeks) {
/* Conpute gamma and delta (4th order accuracy) */
greeks[1] = (-vals[n1+2]+8.0%val s[n1+1]-8.0*val s[nl-1]+val s[nl1-2])/(12.0*dz1);
/* Compute gamma (4th order accuracy) - use chain rule to obtain derivative wt S */
greeks[0] = (-val s[n1+2]+16. 0*val s[ n1+1] - 30. O*val s[ n1] +16. 0*val s[n1-1]-val s[n1-2]) _
/(12. 0*dz1*dz1);
greeks[0] = greeks[O0]-greeks[1];
greeks[ 0] greeks[ 0]/ (S0*S0) ;
greeks[1] = greeks[1]/S0;
/* Conpute theta (4th order accuracy) */
greeks[2] = (-tenp[0] +8. 0*tenp[1]-8.0*tenp[ 2] +tenp[3])/(12.0*dt);
/* could also conpute theta as: greeks[2] = (-tenp[O]+4.0*tenp[1]-3.0*val s[nl])_
/1(2.0%dt); */

*option_val ue = val s[nl];

}

Code excerpt 5.20 Code excerpt 5.20 Function to compute the value and Greeks of
a European double knockout call option using a nonuniform grid and a logarithmic
transformation.

Table 5.8 Estimated value of a European double knockout call option

Time steps (n) Estimated value Boyle and Tian (1998)
S50 1.4569 1.4238
100 1.4578 1.4437
200 1.4583 1.4495
300 1.4583 1.4524
400 1.4584 1.4542
500 1.4584 1.4553
600 1.4584 1.4557
700 1.4584 1.4559
800 1.4584 1.4563
900 1.4584 1.4565
1000 1.4584 1.4566
2000 1.4584 1.4576
3000 1.4584 1.4578
4000 1.4584 1.4580
5000 1.4584 1.4581

The values in column two were computed by the function dko_cal | , and those in column three
are the results reported in Table 2 of Boyle and Tian (1998). The model parameters were: current
asset price § = 95.0, exercise price E = 100.0, volatility o = 0.25, maturity T = 1.0, interest rate
r = 0.1, dividend yield ¢ = 0.0. The upper barrier level is set at 140.0 and the lower barrier is
set at 90.0. The other parameters used by the function dko_cal | were: nt =n, ns_bel ow_S0
=n/2,ns_above_S0 =n/2, and ©,, = 0.5 (i.e., the Crank—Nicolson method).
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Table 5.9 The estimated values of European down and out call options calculated by
the function dko_cal |

Time steps Stock price
92 91 90.5 90.4 90.3 90.2

50 2.5652 1.3046 0.6588 0.5282 0.3971 0.2653
100 2.5221 1.2816 0.6466 0.5182 0.3894 0.2601
200 2.5104 1.2758 0.6435 0.5157 0.3875 0.2588
300 2.5080 1.2747 0.6429 0.5152 0.3871 0.2585
400 2.5072 1.2743 0.6427 0.5150 0.3869 0.2584
500 2.5069 1.2742 0.6426 0.5149 0.3869 0.2584
600 2.5067 1.2741 0.6425 0.5149 0.3868 0.2583
700 2.5066 1.2740 0.6425 0.5149 0.3868 0.2583
800 2.5065 1.2740 0.6424 0.5148 0.3868 0.2583
900 2.5065 1.2739 0.6424 0.5148 0.3868 0.2583
1000 2.5064 1.2739 0.6424 0.5148 0.3868 0.2583
2000 2.5063 1.2738 0.6424 0.5148 0.3868 0.2583

Closed form 2.5063 1.2738 0.6424 0.5148 0.3868 0.2583

The fixed model parameters were: exercise price E = 100.0, volatility o = 0.25, maturity T = 1.0,
interest rate r = 0.1, dividend yield ¢ = 0.0, and the lower barrier is set at 90.0. The other parameters
used by the function dko_cal | were: nt = n, ns_bel ow_SO = n/2, ns_above_S0 = n/2,
upper _barrier = 1000.0, | ower _barrier = 90.0, and ®,, = 0.5 (i.e., the Crank-Nicolson
method).

Table 5.10 The estimated values of European down and out call options as calculated
by the function dko_cal |

Time steps Stock price
92 91 90.5 90.4 90.3 90.2

50 2.5572 1.3005 0.6567 0.5266 0.3958 0.2645
100 2.5181 1.2796 0.6455 0.5174 0.3888 0.2597
200 2.5084 1.2748 0.6429 0.5153 0.3872 0.2586
300 2.5067 1.2741 0.6425 0.5149 0.3869 0.2584
400 2.5062 1.2738 0.6424 0.5148 0.3868 0.2583
500 2.5061 1.2738 0.6424 0.5148 0.3868 0.2583
600 2.5061 1.2737 0.6423 0.5148 0.3867 0.2583
700 2.5060 1.2737 0.6423 0.5147 0.3867 0.2583
800 2.5060 1.2747 0.6423 0.5147 0.3867 0.2583
900 2.5060 1.2737 0.6423 0.5147 0.3867 0.2583
1000 2.5060 1.2737 0.6423 0.5147 0.3867 0.2583
2000 2.5061 1.2737 0.6423 0.5147 0.3867 0.2583

Closed form 2.5063 1.2738 0.6424 0.5148 0.3868 0.2583

The fixed parameters used were: exercise price E = 100.0, volatility o = 0.25, maturity t = 1.0,
interest rate r = 0.1, dividend yield ¢ = 0.0, and the lower barrier is set at 90.0. The other parameters
used by the function dko_cal | were: nt = n, ns_bel ow_SO = n/2, ns_above_S0 = n/2,
upper _barrier =1000.0, | ower _barrier =90.0, and ®,, = 0.0 (i.e., the implicit method).
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Table 5.11 The estimated values of European double knockout call options computed
by the function dko_cal |

Time steps Stock price
92 91 90.5 90.4 90.3 90.2

50 0.6251 (0.6184) 0.3189 (0.3177) 0.1610 0.1290 0.0969 0.0647
100 0.6260 (0.6212) 0.3194 (0.3184) 0.1613 0.1292 0.0971 0.0649
200 0.6263 (0.6228) 0.3196 (0.3186) 0.1613 0.1293 0.0972 0.0649
300 0.6263 (0.6236) 0.3196 (0.3187) 0.1613 0.1293 0.0972 0.0649
400 0.6263 (0.6242) 0.3196 (0.3189) 0.1613 0.1293 0.0972 0.0649
500 0.6263 (0.6252 0.1613 0.1293 0.0972 0.0649

700 0.6263 (0.6253) 0.3196 (0.3191) 0.1613 0.1293 0.0972 0.0649
800 0.6263 (0.6255) 0.3196 (0.3192) 0.1613 0.1293 0.0972 0.0649
900 0.6263 (0.6256) 0.3196 (0.3192) 0.1613 0.1293 0.0972 0.0649
1000 0.6263 (0.6255) 0.3196 (0.3192) 0.1613 0.1293 0.0972 0.0649
2000 0.6263 (0.6260) 0.3196 (0.3195) 0.1613 0.1293 0.0972 0.0649

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) 0.3196 (0.3190)
600 0.6263 (0.6253) 0.3196 (0.3191) 0.1613  0.1293  0.0972  0.0649
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

In column 2 and column 3 the values given in Boyle and Tian (1998), Table 5, are shown
for comparison. The fixed model parameters were: exercise price E = 100.0, volatility
o = 0.25, dividend yield ¢ = 0.0, maturity t = 1.0, interest rate r = 0.1, the lower
barrier is set at 90.0, and the upper barrier is set at 140.0. The other parameters used
by the function dko_cal | were: nt =n, ns_bel ow_S0 = n/2, ns_above_S0 =n/2,
and @,, = 0.5 (i.e., the Crank-Nicolson method).

Table 5.12 The estimated Greeks for European double knockout call options computed
by the function dko_cal |

Asset price Gamma Delta Theta

95.0 —0.0165 (—0.0166) 0.2536 (0.2551) 2.3982 (2.3928)
92.0 —0.0141 (-0.0141) 0.2998 (0.3016) 1.0268 (1.0242)
91.0 —0.0129 (-0.0130) 0.3133 (0.3151) 0.5237 (0.5224)
90.5 —0.0123 (—-0.0123) 0.3196 (0.3215) 0.2643 (0.2636)
90.4 —0.0121 (—-0.0122) 0.3208 (0.3227) 0.2119 (0.2113)
90.3 —0.0120 (—0.0121) 0.3221 (0.3239) 0.1592 (0.1588)
90.2 —0.0119 (-0.0119) 0.3233 (0.3251) 0.1063 (0.1060)

The fixed model parameters: the exercise price E = 100.0, volatility o = 0.25, dividend
yield ¢ = 0.0, maturity T = 1.0, interest rate r = 0.1, the lower barrier is set at 90.0, and
the upper barrier is set at 140.0. The other parameters used by the function dko_cal |
were: Nt = 200, ns_bel ow SO = 100, ns_above_S0 = 100, and ®,, = 0.5 (i.e., the
Crank-Nicolson method). The results for ®,, = 0.0 (i.e., the implicit method) are shown
in brackets; see Table 6, Boyle and Tian (1998).

Inspection of the results shows that the finite-difference grid method has both
greater accuracy and faster convergence than the method proposed by BT. The
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key to the accuracy achieved by dko_cal | is a combination of:

e The logarithmic transformation of the Black-Scholes equation

e The ability to place a grid line at both the upper barrier By, and also at the
lower boundary By

e The use of a weighted ©,, finite-difference scheme, 0 < ©,, < 1, instead of
the numerically unstable explicit finite-difference method used by a trinomial
lattice which in our notation (see Section 5.4.2) is equivalent to ©,, = 1.

It should be mentioned that the function dko_cal | could, without much
difficulty, be modified to deal with:

e American double knockout call options
e European double knockout put options
e American double knockout put options

and also a range of other variations which may include lockout periods, rebates,
etc. In particular, options with time-varying barrier levels can be dealt with by
using grid lines to locate the barrier position at each time instant.

5.5 Pricing American options using a stochastic lattice

In this section we consider the use of Monte Carlo simulation and stochastic
lattices to price American options. Information on the use of Monte Carlo sim-
ulation to value both single asset and multiasset European options is provided
in Chapter 4 and Chapter 6. The main difficulty in using simulation to value
American options is the need to incorporate optimal early exercise policies. The
standard simulation algorithms for valuing European contracts are forward in
time. That is each price path, which contributes to the value of the option, is
generated by stepping forward from current time, ¢, to option maturity, ¢ + 7,
where 7 is the duration of the option. For instance if there are n equispaced
time steps of size Az, and only one underlying asset, then we use the asset values
Si;,i =0,...,n, where S; corresponds to the asset value at the ith time instant,
ti, and fo = t. Here S;11 is generated from the previous asset value S; as follows:

Sit+1
S
where dS; is a random variate taken from a given distribution. When S; follows
GBM, we have from Eq. (2.3.11) that:

=dS; fori=0,...,n—1 (5.5.1)

Si+1 {( 0,~2> } :
—— =expilr— 2+ At +o0;dW;}, i=0,...,n—1, (5.5.2)
Si 2
where dW; ~ N(O, At) and the usual definitions are used for o; and r.

For European exotic options (such as time dependent barrier options) the
value of a particular price path will depend on the asset values S;,i =0, ..., n.
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This is not true of European vanilla options whose value only depends on S,
the underlying asset price at option maturity. The Monte Carlo approximation
to the value of a European option is thus:

> ping)

Nsim

f=

where ngjmy is the number of simulations used, n; is the number of time steps
associated with the jth price path, and p;(n;) is the value of the jth price path.
In the case of European vanilla options we can use n; = 1, j = 1,..., ngm; the
accuracy obviously improves with increasing ngjp,.

The valuation of American-style options, which include the possibility of early
exercise, is more complicated. In Chapter 5 we described the use of binomial lat-
tices to price American options when the underlying asset price process is GBM.
Dynamic programming was used and the option prices were computed by work-
ing backward in time through the lattice. The application of Monte Carlo meth-
ods for pricing American options is described in Tilley (1993), Barraquand and
Martineau (1995), and also Boyle, Broadie, and Glasserman (1997). Here we
will outline the stochastic lattice approach discussed in Broadie and Glasserman
(1997), where both a high estimator and a low estimator of the American op-
tion value are calculated. Since both of these biased estimators converge (with
increasing number of simulations and lattice nodes) to the true option value, we
will only consider how to compute the high estimator, 6. We summarize the
approach as follows

o Set the parameters

o Generate the lattice asset prices

e Compute the lattice option prices

e Compute the Monte Carlo estimate.

We will now consider each of these steps in more detail.

Set the parameters

First we set the simulation parameters; that is: ngy, is the number of lattice
simulations, b is the number of branches per lattice node, and d is the number
of time instants in the lattice. Note: This definition of d here is different from
that used in the original paper by Broadie and Glasserman (1997) where d is
defined as the number of time steps in the lattice.

Generate the lattice asset prices

Next we generate the asset prices for the pth stochastic lattice. Since the lattice is
non recombining at the i lattice time instant there are b’ nodes/asset prices. This
contrasts with the binomial lattice of Chapter 5 where the asset prices at a given
time step are arranged in ascending order, that is S; increases with increasing ;.
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Figure 5.9 An example showing the asset prices generated for a stochastic lattice with
three branches per node and two time steps, that is » = 3 and d = 3. The current asset
value, 101, is at time 7y, and the asset values at option maturity are at time fo.

We will denote the jth value at the ith time step by Slj For example, in Fig. 5.9,
where b = 3and d = 3, we have for the first time step:

St =115,  $?2=60, and S =114
and for the second time step:

st=116, $3=90, S3=149, ..., Si=102
s5 = 88, S5 =80

The kth asset price at the ith time step, S¥ then generates the following asset
prices at the (i + 1)th time step:
sl |
% =ds/, j=1,...,b, k=1,...,b,
S

1

where (see Eq. (5.5.1)), dS/ is a random variate from a given distribution. When
S; follows GBM, we therefore have:
gk=Db+j 2 '
% =exp{(r—?’)At+aidW,-}, j=1....b, k=1...,b

1

Compute the lattice option prices

The method used to compute the option values is similar to that used by the
binomial lattice. The main difference is that there are now b branches per node
instead of two. The option values are computed by starting at the lattice termi-
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nal nodes and then iterating backward. Here we denote the kth option value at
the ith time step by fl.k.

The option values at the terminal nodes, time instant 7;_1, are computed in
the usual manner. For a put we have:

fy i =max(E-Sk_ 1,0, k=1 p"",
where E is the exercise price.
The option values at the (i — 1)th time step are computed from those at the
ith time step as follows:
fy = max(gf_g, hi_y)
where
b
X exp(—rAt) (k=1)b+j
hi*l = b Z fl ’
j=1
and
ko k
gi—1=MaX(E - §;_;,0)

The option value for the pth stochastic lattice is therefore:
b
exp(—rAt) i
bh=fo=—"F D f
=1

Figure 5.10 shows the option values for an American call with strike price E =
100 and interest rate r = O, when the lattice asset prices in Fig. 5.9 have been

tO t1 t2
Figure 5.10 The option prices for the b = 3, d = 3 lattice in Fig. 5.9 corresponding to an
American put with strike £ = 100 and interest rate r = 0. The option values at the lattice
nodes are computed backwards in time from the payoffs at maturity, 7, to the current
time fq; the value of the option is 11.9.
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used. To make things as clear as possible, we will show how the value of each
node is computed.

Terminal nodes
The option values at the terminal nodes are:

14 = max(116 — 100, 0) = 16, f2 = max(90 — 100, 0) = 0,
13 = max(149 — 100, 0) = 49, f2 = max(32 — 100, 0) = 0,
f3 = max(50 — 100, 0) = 0, f2 = max(48 — 100, 0) = 0,
f4 = max(102 — 100, 0) = 2, 18 = max(88 — 100, 0) = 0,
f5 = max(80 — 100, 0) = 0

Time step 1
Here we have:

¢} = max(115 — 100,0) = 15, g2 = max(60 — 100, 0) = O,
g3 = max(114 — 100,0) = 14

Since r = 0, we have exp(—r At) = 1 which gives:

1 1
ht= é{f21+f22+f23} = 3{16+0+49) =217

hi:%{fz“+f§+f§}=}{0+o+0}=o

3
s_lp7 8 .o _1
hi=3{f2 + 2+ f2} = 3(2+0+0) =066

The option values are then computed as follows:
fi = max(h1, g1) = max(21.7, 15) = 21.7
f£ = max(h%, gf) = max(0,0) = 0
f2 = max(h3, g3) = max(0.66, 14.0) = 14.0

Time step 0
Here

g8 =max(101 - 100,0) =1 and
1 1
h} = é{fll + R+ )= 3(2L7+0+1404 =119

The final value of the option for this particular lattice is therefore:

fi = max(hg, g5) = max(11.9,1) = 11.9
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Compute the Monte Carlo estimate

The Monte Carlo estimate, 0y, is computed as the average of 6/, p =
1,..., ngm, where ngy is the number of simulations:

Nsim i
Zi:l GH

Ngim

O =

In Code excerpt 5.21, we provide a computer program which prices single asset
American put and call options using a stochastic lattice. The method used by the
program is the depth first procedure outlined in Broadie and Glasserman (1997),
which has the advantage that the memory requirements are only of order b x d;
as before, b is the number of branches per node and d is the number of time
intervals.

Here it is assumed the underlying asset follows GBM and the function
normal (M S) is used to generate a normal distribution with mean Mand
standard deviation S. We can therefore check the accuracy of the simulation
with that obtained by a closed form solution which assumes a lognormal asset
distribution, in this case the formula in Geske and Johnson (1984).

However, the real power of this method is when the underlying asset fol-
lows a more realistic process which is non-Gaussian and time varying. The only
modification to the code is to replace the call to nor mal with that of another
probability distribution and supply the time-varying parameters to it.

/

-

Stochastic lattice for conputing the value of American and European options via Mnte Carlo_
sinul ation.
/1 Here we assunme that the asset prices have a |ognormal distribution, and so generate
/1 normal variates; this assunption can easily be renoved.
void __cdecl nain()
{
long i,j,jj,is_put,is_anerican, W 200], num si nmul ations, b, d, seed;
double T,tine_step,sqrt_time_step, opt_val ue, pay_off, | og_fac, asset_price;
doubl e tenp, opt _val, hol d, sum opt _val , di sc;
doubl e tot_opt_vals, X drift_term std_term SO, q, r, sigma, zero = 0.0;
doubl e v[200][60], opt_v[200][60];

printf("Stochastic lattice for pricing European and Anerican options \n");

is_put = 1; /1 If is_put == 0 then a call option, otherw se a put option

T=10; /1 The tinme to maturity of the option

is_american = 1; // |f is_american == 0 then an European option, otherw se an Anerican_
option

sigma = 0.2; /1 The volatility of the underlying asset

X = 110.0; /1 The strike price

SO0 = 100. 0; /1 The current price of the underlying assset

r =0.1; /1l The risk free interest rate

g = 0.05; /1 The continuous dividend yield

d = 4 /1 The nunber of time steps, the nunber tinme intervals =d - 1

b = 50; /1 The nunber of branches per node in the lattice

time_step = T/(double)(d-1); // time step = T/(nunber of tine intervals)
sqrt_time_step = sqrt(tine_step);
disc = exp(-r*tinme_step); // The discount factor between tine steps
std_term = signa*sqrt(tine_step); // The standard deviation of each normal variate generated
drift_term= (r - g - sigma*signma*0.5)*tine_step; // The nmean val ue of each nornal variate_
gener at ed
seed = 111; /1 The seed for the random nunber generator
srand(seed);
tot_opt_vals = zero;
num si nul ati ons = 100;
for (jj =1; jj <= numsimlations; ++j) {
v[1][1] = SO;

Code excerpt 5.21.
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W1 =1

asset_price = SO;

for (j =27 ] <=d; ++) {
Wil =1
log_fac = normal (drift_termstd_term; // A nornmal variate:mean==drift_term_
standard devi ati on==std_term
asset _price = asset_price*exp(log_fac); // Conpute the new asset price: assumng a_
| ognornal distribution
v[1][j] = asset_price;

jo=d
while (j >0) {
if ((j ==d) & (WMj] < b)) { // CASE 1::Ternminal node, set asset prices for b branches, _
and option values for b-1 branches
if (is_put ) {
) pay_of f = MAX (X - v[wj]][j], zero);

el se {
pay_off = MAX (V[Wj]1[j]-X zero);

opt_v[wj]][i] = pay_off;

asset _price = v[wj-1]1[j-1];

log_fac = normal (drift_termstd_term;
viwj]+1][j] = asset_price*exp(log_fac);

) Wil =wj] + 1
else if ((j ==d) & (Wj] == b)) { // CASE 2::Terminal node, set option value for |ast_
branch

if (is_put) {

) pay_off = MAX (X - v[wj]][j],zero);

el se {

pay_off = MAX (v[w{j]][j]-X zero);

}

opt_v[wj]][j] = pay_off;
Wil =0;

=i

}
else if ((j <d) & (wj] < b)) { // CASE 3::Internal node, calculate option value for_
node (parent wrt to cases 1 & 2)
sumopt_val = zero; /1 Al'so generate a new termnal node and set asset_
val ues.
for (i =1; i <=b; ++i) {
sumopt _val += opt_v[i][]+1];
}
tenp = sum opt_val / (doubl e) b;
hol d = tenp*di sc;
if (is_american) { // An American option

if (is_put) {

pay_of f = MAX(X-v[wWj]][j],zero); // pay off for a put option
}
el se {

pay_of f = MAX(v[Wj]1[j]-X zero); // pay off for a call option
}
opt _val = MAX(pay_off, hold);

else { // A European option
opt _val = hol d;

}
opt_v[wj]][i] = opt_val;
it >1{
asset_price = v[wj-1]]1[j-1];
log_fac = normal (drift_termstd_term;
viwj]+1][j] = asset_price*exp(log_fac);
Wil =wj] + 1
for (i =j +1; i <=d; ++i) { // Generate a new ternmi nal node
log_fac = normal (drift_termstd_term;
asset _price = asset_price*exp(log_fac);
v[1][i] = asset_price;

Wil =1
}
j =d;
}
el se {
j =0;
}

Code excerpt 5.21 (Continued).
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}
else if ((j <d) & (Wj] == b)) { // CASE 4::Internal node,
for the last branch
sum opt _val = zero;
for (i =1; i <=b; ++i) {
sum opt _val += opt_v[i][]+1];

}
}

}

tot_opt_vals = tot_opt_vals + opt_v[1][1];

opt _val ue = tot_opt_val s/ (doubl e) num si nul ati ons;

}

tenp = sum opt_val/(doubl e)b;

hol d = tenp*di sc;
if (is_anerican) { // An Anerican option
if (is_put) {
pay_off = MAX(X - v[w{j]][j],zero); // pay off for a put option
}
el se {
pay_off = MAX(v[W j]][j]-X zero); // pay off for a call option
opt _val = MAX(pay_off, hol d);

else { // A European option

opt _val =

Wi ]
=i

hol d;

}
opt_vw(i]11j] = opt_val;

printf ("The estimated option value = 9%2.4f\n", opt_val ue);

}

cal cul ate the option val ue_

/1 Sumthe option values for each sinulation

/| Conpute the average option val ue

Code excerpt 5.21 A computer program that uses a stochastic lattice to value American
and European options.

Table 5.13 American put option values, computed using the stochastic lattice given in
Code excerpt 5.21, with four exercise times 7, ¢t + t/3,1 + 2r/3and t + ¢

X McLyp MCL, True Binomial lattice
70 0.118 (0.003) 0.123 (0.002) 0.121 0.126
80 0.663 (0.007) 0.672 (0.002) 0.670 0.696
90 2.317 (0.014) 2.307 (0.004) 2.303 2.389

100 5.830 (0.099) 5.720 (0.011) 5.731 5.928

110 11.564 (0.223) 11.361 (0.020) 11.341 11.770

120 20.205 (0.205) 20.000 (0.000) 20.000 20.052

130 30.054 (0.054) 30.000 (0.000) 30.000 30.000

The option parameters used were: r = 0.1, g = 0.05, 7 = 1.0, 0 = 0.2, and S = 100.0.
The column labelled MC%SO refers to the results obtained using d = 4, b = 50,

num_simulations = 100, and the column labelled MC%50 refers to the results obtained
using d = 4, b = 50, num_simulations = 1. The true values are those given in Broadie
and Glasserman (1997), and were computed with the formula in Geske and Johnson
(1984). The absolute error, ABS(stochastic_lattice_value — true_value), is given in
brackets. The last column gives the values computed using an accurate (6000 time step)
binomial lattice.

In Table 5.13 we present computed values of an American put option with
maturity t, which can only be exercised at the following four times: ¢, 7 + /3,

t + 27/3 and r + 7, where ¢ is the current time.



180 Computational Finance Using C and C#

The column labelled MC%SO contains the results obtained using 100 simula-
tions of a stochastic lattice with 50 branches per node, and the column labelled
MC3s, contains the values computed using a single stochastic lattice with 250
branches per node. These values demonstrate that one high accuracy stochas-
tic lattice can give better results than using the average of 100 lower accuracy
lattices. In the last column we present the results obtained using a 6000 step
binomial lattice in which it is possible to exercise the option at every time step.
It can be seen that the binomial option values are higher than the true values,
which only permit the option to be exercised at four distinct times. This is in
agreement with the extra flexibility present in the binomial lattice.
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6.1 Introduction

Multiasset options

In this section we consider the valuation of multiasset, basket, options within
the Black—Scholes pricing framework. These options will be priced using the
following techniques:

e Analytic methods
e Monte Carlo methods
e Multidimensional lattices

Analytic methods can be useful for pricing multiasset European options which
have a known closed form solution. They are particularly appropriate for low
dimensional European options, when the closed form expressions are not too
difficult to evaluate.

Monte Carlo methods have the advantage that they can easily compute the
value of multiasset European options, but have difficulty including the possibil-
ity of early exercise; this is required for American-style options.

On the other hand, multidimensional lattice techniques allow American op-
tions to be evaluated with ease. However, lattices become increasingly difficult
to program as the number of dimensions increases, and the constraints of com-
puter storage limits their use to problems involving (about) four or less assets.

6.2 The multiasset Black-Scholes equation

In Chapter 2 we mentioned that when the price, S, of a single asset follows
geometric Brownian motion (GBM) the change in price, dS, over a time interval,
dr, is given by:

dS=rSdt +oSdw

where r is the risk free interest rate, o is the volatility of asset S, and dW ~
N(O, dr).
We also proved using Ito’s lemma that the process followed by ¥ = log(S) is:

0_2
dY:(V—7>dt+O'dW
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where dY is the change in the value of log(S) over the time interval dr. Later on
we derived the (Black—Scholes) partial differential equation that is satisfied by
the value, V, of an option written on a single underlying asset. The equation is
oV . 028292y s voo
— +——+rS— —rV =
ot 2 93582 N
The above result can be generalized to deal with multiasset options. Suppose
that m assets are described by the following processes:

2
inz(r—%>dt+oidWi, i=1...m, (6.2.1)

where the subscript i refers to the value associated with the ith asset. The
m-element random vector dW is distributed according to dW ~ N(O, C). The
diagonal elements of C are C;; = Var[dW;] =d¢,i =1, ..., m, and off-diagonal
elements are:

CijZE[dWide]Zpi’jdl‘, i=1...,m, j=1,...,m, 175]

We can also write the above equation in vector form by introducing the
m-element vector dY which is normally distributed as:

dY ~N(@, C) (6.2.2)

where v is the mean vector and C is the covariance matrix. The elements of the
covariance matrix are:

aiZO'izdl, i=1...,m,

C,'.,'ZU,'O'j,O,'jdt, i#j,i=1....m j=1...,m, (6.2.3)

where p;; is the correlation coefficient between asset i and asset j; that is, the
correlation between dW; and dW;. The elements of the mean vector v are:

o?
vi=r——+, i=1....m (6.2.4)
2
The value V of an option written on m assets satisfies the following partial
differential equation:

m

WOl 92V v
— 4z 508 — S _,V =0
o1 +2;/X_;G"”p’f I8 0S; H; a5

For a European call on the maximum of m assets the pay-off PMAX at maturity
(time t) is given by PSAAX = max(max(Sj, S5, ..., Sy) — E,0), where S7,i =
1,...,m, denotes the value of the ith asset at maturity, and E represents the
strike price. Similarly a European put option on the minimum of m assets has a
pay-off, PYN, at time 7, given by PN = max(E — min(S], S3. ..., S5,), 0).
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6.3 Multidimensional Monte Carlo methods

We have already mentioned that Monte Carlo simulation can easily price Euro-
pean multiasset options (also sometimes referred to as basket options, or rain-
bow options) involving a large number of assets (say 20 or more).

In addition Monte Carlo simulation can also include the following features
into an option without much difficulty:

e Non-Gaussian distribution of stock returns; distributions with beavy tails are
usually of interest because they more accurately represent what is observed in
the financial markets

e Options with path dependency (such as barrier options, etc.); these are known
as exotic options

e Complex time dependency (e.g., ARMA, GARCH or Levy processes) of
model parameters such as interest rates, asset prices, etc.

The main drawbacks with Monte Carlo simulation are:

o It is to difficult compute the value of American-style options
o It is difficult (or impossible) to achieve the same accuracy that can be obtained
using finite difference methods.

In a different section of this book we will show how Monte Carlo simulation
can be used to price American options by using a hybrid Monte Carlo lattice
approach originally developed by Boyle, Evnine, and Gibbs (1997).

In Chapter 3 we show that when pseudo-random numbers are used, the stan-
dard errors of integrals computed via Monte Carlo simulation decrease at the
rate NV/2, where N is the number of simulations. This means that it can re-
quire hundreds of thousands of simulations just to achieve an accuracy of 1071
or 1072 in the estimated option price. It is because of this that various Monte
Carlo variance reduction techniques are used to increase the accuracy of the
computed integral.

In this section we show how to price a three-asset basket option using Monte
Carlo simulation; the accuracy of the results obtained with quasirandom num-
bers and pseudo-random numbers are compared.

The options we consider are European put and call options on the maximum
and minimum of three assets. All the options have a maturity of one year, and
the other model parameters used are given in Tables 6.1 and 6.2.

In Code excerpt 6.1 most of the work is done by the routine rmul ti vari -
at e_nor mal . This generates a vector of multivariate pseudo-random numbers
with a particular covariance matrix. In the program the values of the assets at
current time ¢ are S; = S» = S3 = 100, and the option matures in one year.

The asset process evolves according to

2

O
dY; =109(S; ;+d:) — 109(Si ;) = (r -

%)dl—i—didWi, i=1...,m,
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Table 6.1 The computed values and absolute errors, in brackets, for European options

on the maximum of three assets

Ngim Put
Quasi Pseudo
500 0.890 (4.5948 x 1072) 1.1044 (1.6839 x 101
1000 0.924 (1.1534 x 10~ 2) 1.0193 (8.3297 x 1072)
1500 0.919 (1.6807 x 10~2) 0.8957 (4.0344 x 102)
2000 0.932 (4.3221 x 1073) 0.8995 (3.6488 x 10~2)
2500 0.932 (3.5698 x 10~ 3) 0.8886 (4.7352 x 102)
3000 0.937 (1.1376 x 10~3) 0.9025 (3.3548 x 10~2)
Call
Quasi Pseudo
500 22.629 (4.3231 x 1072) 22.4089 (2.6312 x 1071)
1000 22.683 (1.1306 x 10~2) 22.3520 (3.1998 x 1071)
1500 22.670 (2.2954 x 10~3) 22.6346 (3.7430 x 102)
2000 22.685 (1.3299 x 1072) 22.7675 (9.5491 x 10~2)
2500 22.670 (1.6619 x 10~3) 22.9326 (2.6058 x 10~1)
3000 22.679 (7.2766 x 1073) 22.8050 (1.3301 x 1071)

Monte Carlo simulation was used with both quasirandom (Sobol) sequences and pseudo-
random sequences. The number of paths used varied from 500 to 3000. The parameters
were: E = 100.0, §1 = So = §3 = 100.0,r = 0.1,7 = 1.0,01 = 02 = 03 = 0.2, p12 =
p13 = p23 = 0.5,q1 = g2 = g3 = 0.0. The accurate values were 0.936 for a put and
22.672 for a call; see Table 6.7 and Table 2 of Boyle, Evnine, and Gibbs (1989).

where we have used the notation S;; to denote the value of the ith asset at

current time ¢, and S; .4, to denote the value of the asset at the future time

t + dr. Simple rearrangement of the above equation gives:

N o? .
|0g<—l;; t> = <r — ?’) dt +o0;dW;, i =
Taking exponentials of both sides we obtain:
S; o?
bitdt exp{ (r — —’) dt +o; dW,-}, i=
Sit 2

which is equivalent to:

2

(o
Si t+dt = Sit eXp{ (V - é) dt + o dW,-}

1...

1 ...

(6.3.1)
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Table 6.2 The computed values and absolute errors, in brackets, for European options
on the minimum of three assets

Ngim Put
Quasi Pseudo
500 7.365 (3.8122 x 102) 7.6760 (2.7298 x 10~1)
1000 7.425 (2.1554 x 1072) 7.7607 (3.5772 x 10~1)
1500 7.408 (5.1232 x 1073) 7.5654 (1.6240 x 10~1)
2000 7.399 (3.6364 x 103) 7.4820 (7.8995 x 10~2)
2500 7.407 (4.1463 x 10~3) 7.3592 (4.3754 x 10~2)
3000 7.400 (2.7166 x 10~3) 7.3997 (3.3236 x 1073)
Call
Quasi Pseudo
500 5.312 (6.3431 x 1072) 5.3086 (5.9591 x 102)
1000 5.293 (4.3958 x 1072) 5.4376 (1.8857 x 1071)
1500 5.253 (4.0761 x 10~3) 5.4121 (1.6307 x 10~1)
2000 5.266 (1.7236 x 1072) 5.4029 (1.5390 x 10~1)
2500 5.267 (1.7707 x 10~2) 5.4690 (2.2005 x 10~1)
3000 5.245 (3.5024 x 10~3) 5.4331 (1.8407 x 10~1)

Monte Carlo simulation was used with both quasirandom (Sobol) sequences and pseudo-
random sequences. The number of paths used varied from 500 to 3000. The parameters
were: E = 100.0, §1 = So = §3 = 100.0,r = 0.1,7 = 1.0,01 = 02 = 03 = 0.2, p12 =
013 = p23 = 0.5, g1 = g2 = g3 = 0.0. The accurate values were 7.403 for a put and 5.249
for a call; see Table 6.8 and Table 2 of Boyle, Evnine, and Gibbs (1989).

6.4 Introduction to multidimensional lattice methods

Finite-difference lattices can be used to value options on up to about 4 assets
before they require impossibly large amounts of computer memory. The main
advantage of finite-difference methods is that they are able to easily cater for
American style early exercise within the option. This is not true of Monte Carlo
methods. They can easily model complex European options, but have difficulty
modelling American-style options.

In this section we use the approach of Kamrad and Ritchken (1991), and
Boyle, Evnine, and Gibbs (1989), which we will call the BEGKR method, to
price multiasset options. We first derive expressions for the jump size and jump
probabilities for a single asset, and show that these are equivalent to those of the
Cox, Ross, and Rubinstein binomial lattice (CRR lattice) discussed in Chapter 5.
We will then give expressions for the jump sizes and jump probabilities of a
general multiasset option.

To derive the BEGKR equations for one asset we first assume that the asset
follows a lognormal process with drift © = r — 0?/2, where r is the riskless
interest rate and o is the instantaneous volatility.
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/* Monte Carlo sinulation: 3 dinensional Black-Scholes, The results are conpared with those_
of Boyle et. al., 1989
George Levy: 2007
*/
| ong seed,i,numsinulations,iflag;
doubl e time_step,sqrt_tine_step,rho, zero = 0.0, half = 0.5;
doubl e r,opt_val, opt_vall, tol;
doubl e the_max, the_min, X, ST1, ST2, ST3, ST4, S1, S2, S3, $4;
doubl e disc, sumt_max_put, sumit_nmax_call;
doubl e sumt_mn_put, sunmt_mn_call;
doubl e *rvec = (double *)O0;
doubl e rho_12, rho_13, rho_23;
double *c¢3, *c4, *z, *std, *neans;
doubl e tnpl, tnp2, tnp3, tnp4, sigmal, sigma2, sigma3, signe4;
long is_fcall;

#define MEANS(1) neans[(1)-1]

#define XBAR(l) xbar[(I)-1]

#define Z(1) z[(1)-1]

#define STD(1) std[(1)-1]

#define C3(1,J) c3[((1)-1) * 3 + ((I)-1)]

seed = 111;
r =0.1;

signal
si gna2
signa3
S1 100.
S2 100.
S3 100.
X = 100. 0;

o
ceeooee
My

rho_12
rho_13
rho_23

o
coo
aaa

time_step = 1.0;
sqrt_time_step = sqrt(tinme_step);
disc = exp(-r*tine_step);

c3 = ALLOCATE(3*3, double);
means = ALLOCATE(3, double);
z = ALLOCATE(3, double);
std = ALLOCATE(3, double);

if ((‘means) || (!std) || ('z) ) {
printf("Alocation error \n");

}
tmpl = sigmal*si gnal*ti me_step;
tnp2 = sigma2*si gnma2*ti me_step;
tmp3 = sigma3*si gne3*ti me_step;
C3(1,1) = tnpl;
C3(2,2) = tnpz;
C3(3,3) = tnp3;
C3(1,2) = sigmal*signa2*time_step*rho_12;
C3(2,3) = sigma2*si gna3*time_step*rho_23;
C3(1,3) = sigmal*signa3*time_step*rho_13;
C3(2,1) = C3(1,2);

C3(3,1) = C3(1,3);

C3(3,2) = C3(2,3);
tnpl = (r - sigmal*sigmal*hal f)*tine_step;
tnp2 = (r - sigma2*sigma2*hal f)*tine_step;
tnp3 = (r - sigma3*sigma3*hal f)*tine_step;
MEANS(1) = tnpil;

MEANS(2) = tnp2;

MEANS(3) = tnp3;

Code excerpt 6.1 A Monte Carlo simulation computer program, using pseudo-random
numbers, for estimating the value of European put and call options on the maximum and
minimum of three underlying assets. The results are presented in Tables 6.1 and 6.2.
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sumit_nmax_put = zero;

sunmt_max_call = zero;
sunmit_mn_put = zero;
sunmit_mn_call = zero;

tol = 1.0e-8;

srand(seed);
is_fcall =1; /* initialisation call to the random nunber generator */
mul tivariate_normal (is_fcall, &EANS(1), 3, &3(1,1), 3,tol, & vec, &(1), & fl ag);

num si nul ati ons = 6000;
is_fcall = 0;
for (i =1; i <= numsimlations ; ++i) {

/* continuation calls to the random nunber generator */
nul tivariate_normal (is_fcall, &EANS(1), 3,&C3(1,1),3,tol, & vec, &(1), & fl ag);

ST1 = Sl*exp(Z(1));
ST2 = S2*exp(Z(2));
ST3 = S3*exp(Z(3));

/1 options on the maxi num

tnp2 = MAX(ST1, ST2);

the_max = MAX(tnp2, ST3);

tnpl = the_max-X;

opt_val 1 = MAX(tnpl, zero);

sumit _max_cal | += opt_val 1*di sc;

tnpl = X-the_nux;
opt_val 1 = MAX(tnpl, zero);
sumi t _max_put += opt_val 1*di sc;

/1 options on the m ninum

}

tnp2 = M N(ST1, ST2);
the_mn = M N(tnp2, ST3);

tnpl = the_mn-X;
opt_val 1 = MAX(tnpl, zero);
sumit_min_call += opt_val 1*di sc;

tnpl = X-the_nin;
opt_val 1 = MAX(tnpl, zero);
sumt_nmin_put += opt_val 1*di sc;

}

opt _val = sum t_max_put/ (doubl €)num simlations; /* put option value on the naxi mum_

of three assets */

opt _val = sumit_max_cal |/ (doubl e)num sinulations; /* call option value on the maximum_

of three assets */

opt _val = sumit_m n_put/(doubl e)num simlations; /* put option value on the m ni num_

of three assets */

opt _val = sumit_mn_call/(doubl e)numsinulations; /* call option value on the maxi num_

of three assets */

Code excerpt 6.1 (Continued).

instant ¢ + At, we then have the following equations:

10g(Siar) = 109(S)) + &1, & ~ N(uAt, 0?At),

or equivalently

log Scear ~ N(nAt, 62At)

t

Therefore if S; is the price of the asset at time 7, and S, A, is the price at time

where ¢; represents a random variable and as usual N(uAf, 02Ar) denotes a
Gaussian with mean u A7 and variance o2Ar.
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We will now consider the situation when ¢, either jumps up or down by an
amount v = o+/At. For an up jump:

Iog<S'§At) = o/At

t

and therefore S;1a; = S; exp(o v/ At).
While for a down jump we have

Iog(%) = —o+ At

t

and therefore S;; a; = S; exp(—o +/At).

The reader will notice that these expressions are the same as those for the
CCR lattice of Chapter 5. That is: for an up jump S;1a; = Su, for a down
jump S;4a; = Sid, and u = 1/d = exp(o v/ At).

The probability of undergoing either an up or down jump occurring can be
found by matching the mean and variance of ;.

From the mean:

Ele] = v(pu — pa) = nAt (6.4.1)
and from the variance:

Varle;] = v2(py + pa) = 02At (6.4.2)
So combining Egs. (6.4.1) and (6.4.2) we obtain:

VAt 4+ oAt = 202 p,

SO

1 o2At pAt
Pu= 2| v? v

Substituting v = o+/Ar we obtain:

1 VAt
pu=211+1 (6.4.3)
2 o
and using the fact that py = 1 — p,, gives:
1 v At
pa=5{1- e (6.4.4)
o

We shall now show that this is equivalent to the Cox—Rubinstein—Ross binomial
model.
For the CRR model (Chapter 5, Eq. (5.3.19)) we have:
_ exp(rAt) —d
Pu = W —d
expanding exp(r At), u and d to order At we obtain:
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exp(rAt) ~ 1+ rAt

2
u=exp(ovAr) ~ 1+ oAt + %At

2
d =exp(ovVAt) ~1—ovAr + %At

$O
am@An—dmmAt+a¢Z?—GZn
and
u—d~ 20\ At
So
exp(rAt) —d  rAt+o —o?/2At
Pu = W —d ~ 20 /AL
which simplifies to
Pu = %{1 + 'WC/IE}
and therefore
1 uN At
Pd=1—Pu=§{1— po }

which are the expressions for p, and py given in Egs. (6.4.1) and (6.4.2), re-
spectively. So we have shown that, to first order in Az, both the size of the jump
and the probability of the jump are the same as the CRR binomial model.

The attractive feature of the BEGKR binomial lattice model is that it can easily
be generalized to describe a model consisting of k assets. Here we will merely
quote the results in Kamrad and Ritchken (1991). As before it is assumed that
the asset prices follow a multivariate lognormal distribution. Let yt; = r —02/2,
and o; be the instantaneous mean and variance, respectively (i = 1,2, ...,k)
and let p;; be the correlation between asset i and j. The binomial model now
requires 2¢ possible jumps in the time interval Az. Let m denote the state of
the process after time At with p,, representing the probability of state m (m =

1,...,2%). The probabilities of these jumps are now given by:
k PR =
1
Dm = {1+ v At ZX””((I_Z) + Z Z (x{';pij)},
i=1 i=1j=i+1
m=12...,2k>2
where x;,, = 1if asset i has an up jump in state m, and x;,, = —1 if asset i has
a down jump in state m. In addition x/? = 1if asset i and asset j have jumps in
the same direction in state m, and x; = —1 if asset i and asset j have jumps in

the opposite direction in state m.
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6.5 Two asset options

In this section we consider options based on the underlying prices of two as-
sets, S1 and S2. We give analytic formulae to price European exchange options
and also those based on the maximum or minimum of two assets. In addi-
tion we show how to construct binomial lattices for the valuation of two asset
American-style options.

6.5.1 European exchange options

A European exchange option gives the holder the right to exchange one asset
for another asset at maturity; see Margrabe (1978). Let the real-world processes
of assets S4 and S% be:

ds?A = SAuadr + S2on dw?

dsB = sPupde + SPopdwy
where S denotes the value of asset A at time t and SP denotes the value of
asset B at time t—the other symbols have their obvious meanings.

We will now find the value, at current time o, of an option that gives the
holder the right to exchange asset A for asset B at maturity 7. The payoff at
maturity is Hy = max(Sﬁ — S?, 0).

If we use the value of asset A as the numeraire then, from Eq. (4.2.1), the
value of the exchange option at time 1y is:

max(S2 — 58,0
V(tg) = SSEQ[#}
St

which can be written as
SB
V(to) = SpEY [max((s—f‘) —1, 0)} (6.5.1)
T

where Q is the probability measure under which the relative price (SZ/S4) is a
martingale.

The process followed by (S2/S#) can be found by substituting X1 = S? and
X2 = S# into Eq. (2.6.7). This yields

SB SB 2
d(S_tA> N (S_1A>{HB — pta + 04 —oaoppap)ds
t t

SB
+ (SLA> log dWE —oadW}}

t
Let X = opdW} — o4 dW?, so E[X] = ogE[dW[] — 64E[dW!] = 0, and
Var[X] = alzg dr +U§ dr — 20304 pap dtf where we have used (see Appendix C.3):
Var[a dW1 + b dWs] = a® Var[dWh] + b2 Var[dWa] + 2ab Cov[dW1, dW>]
Var[dWlf] = Var[de] =dr and Cov[dWlf, de] = ogoapapdt
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which means that X ~ N(O, a§ dr+ ai dt —20poapap dt) and the variate (ag +
ag —20p04pag) dWT is from the same distribution as X.
Therefore we can write:

B B B
d(‘;_'A) = (*;LA)M dr + <§—’A)a dw? (6.5.2)
t t t

where

o = \/0'5 —i—og — 20p04
and
L= — A+ 02 —0poapaB

Following Section 4.4.3 we choose the probability measure Q so that the drift
term in Eq. (6.5.2) is zero. We have

dwP = dw? — (g) d

Substituting this into Eq. (6.5.2) gives

Sk SE
d(—’A> = (ﬁ)& dw? (6.5.3)
St St
It can be seen that Eq. (6.5.3) is identical to Eq. (4.4.31) but with the mapping;:

SB
S; — (LA>, oc—o,r—0 (6.5.4)
S

Now combining Egs. (4.4.35) and (4.4.37) we have
exp(—rt)EQ[max(ST — E,0)] = SN1(d1) — E exp(—r1)N1(d2)

where d1 and d» have been defined in Section 4.4.3.
Therefore,

EQ[max(Sy — 1,0)] = exp(r7)SN1(d1) — N1(d2)

Using the mapping defined in Eq. (6.5.4), and also E = 1 in the Black-Scholes
formula, we have:

o ((SE Sia
£ ((55) - 2.0) | = (55 )maaw - waca
ST Sto

and from Eq. (6.5.1):
B

S
V(to) = Sfé{(s—’j)zvl(do - Nl(dz)}

fo

This means that the value of the exchange option at time 1g is:

V(t0) = S N1(d1) — S; N1(d2)
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where

_ log(S2/SE) + 3(T — 10)52

- o/T — 1ty

. log(SA/SB) — 3(T — 10)52
2 =

o T — 1ty

1

6.5.2 European options on the maximum or minimum

Here we present the results from Stulz (1982) and Johnson (1987) concerning
the value of European put and call options on the maximum and minimum of
two assets, see Code excerpts 6.2 and 6.3, and results in Tables 6.3 and 6.4.

voi d rai nbow _bs_2d(doubl e *opt_val ue, double S1, double S2, double X, double signal,
doubl e sigma2, double rho, double opt_mat, double r, long is_nax,_
long *iflag)

{

/* Input paraneters:

S1 - the current price of the underlying asset 1,

S2 - the current price of the underlying asset 2,

X - the strike price,

signal - the volatility of asset 1,

si gna2 - the volatility of asset 2,

rho - the correlation coefficient between asset 1 and asset 2,

opt _mat - the tinme to maturity,

r - the interest rate,

i s_max - if is_max is 1 then the option is a call on the maxi mnumof two assets, _

ot herwi se the optionis a
call on the mninumof two assets.
Qut put paraneters:

opt _val ue - the value of the option,
iflag - an error indicator.

*/

doubl e one=1.0, two=2. 0, zer 0=0. 0;

doubl e eps, dl,d2_1,d2_2,tenp, tenpl, tenp2, pi, np;
doubl e rho_112, rho_212, dl_prine;

doubl e sigma, terml, ternR, ternB;

long ifailx = 0;

if(X < EPS) { /* ERROR the strike price is too small */
*iflag = 2;
return;

if (sigmal < EPS) { /* ERROR the volatility (sigmal) is too small */
*iflag = 3;
return;

if (sigma2 < EPS) { /* ERROR the volatility (sigma2) is too small */
*flag = 3;
return;
if (opt_mat < EPS) { /* ERROR the tinme to naturity (opt_nat) is too small */
*iflag = 3;
return;

}

signma = sqrt((signal*sigmal + sigma2*signa2) - two*signal*si gma2*rho);

Code excerpt 6.2 Function to calculate the value of a European call on the maximum or
minimum of two assets using the analytic result of Johnson (1987) and Stulz (1982).
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if (is_max == 1) { /* then the maxi mum of two assets */

}

/* calculate ternml */

temp = | og(S1/X);

dl = tenp+(r+(signmal*si gmal/two))*opt_nmat;
dl = di1/(signmal*sqrt(opt_nat));

temp = | og(S1/S2);

dl_prime = tenp+(sigma*si gna/two)*opt_mat;
dl_prime = d1_prine/(sigm*sqrt(opt_mat));
rho_112 = (sigmal - rho*sigma2) / sigm;
terml = cumnnorn2(dl,dl_prine,rho_112, & failx);
ternl = terml*Sl;

/* calculate tern2 */

tenmp = log(S2/ X);

dl = tenp+(r+(sigma2*si gma2/two))*opt_nat;
dl = d1/(sigma2*sqrt(opt_nmat));

temp = | og(S2/S1);

dl_prine = tenp+(sigma*signa/two)*opt_mat;
dl_prine = dl_prinme/(sigma*sqrt(opt_mat));
rho_212 = (sigma2 - rho*sigmal) / sigmy;
tern2 = S2*cum nornR(dl,dl_prime, rho_212, & failx);
/* calculate tern8 */

temp = | og(S1/X);

d2_1 = tenp+(r-(sigmal*signmal/two))*opt_mat;
d2_1 = d2_1/(sigmal*sqrt(opt_mat));

temp = 1 og(S2/X);

d2_2 = tenp+(r-(sigma2*si gna2/two))*opt_mat;
d2_2 = d2_2/(signma2*sqrt(opt_mat));

tern8 = one-cumnorn2(-d2_1,-d2_2,rho, & failx);
*opt _val ue = ternil+tern2-X*exp(-r*opt_mat)*terns;

else { /* the mnimmof two assets */

}

/* calculate terml */

temp = |l og(S1/ X);

d1 temp+(r+(signmal*si gmal/ t wo)) *opt _mat;

d1 d1/ (sigmal*sqrt(opt_nmat));

temp = | og(S1/S2);

dl_prine = tenp+(sigma*signa/two)*opt_mat;
dl_prine = dl_prine/(sigma*sqrt(opt_mat));

rho_112 = (sigmal - rho*sigma2) / sigmy;

terml = cumnorn2(dl,-dl_prine,-rho_112, & failx);
terml = terml*Sl,

/* calculate tern2 */

temp = | og(S2/X);

d1 temp+(r+(si gma2*si gma2/ two) ) *opt _mat ;

d1 dl/ (signma2*sqrt(opt_nat));

temp = | og(S2/S1);

dl_prime = tenp+(sigma*si gna/two)*opt_mat;
dl_prime = d1_prine/(sigm*sqrt(opt_mat));

rho_212 = (sigma2 - rho*sigmal) / sigm;

tern2 = S2*cum.norn2(dl,-dl_prine,-rho_212, & failx);
/* calculate tern8 */

temp = |l og(S1l/X);

d2_1 = tenp+(r-(sigmal*sigmal/two))*opt_mat;
d2_1 = d2_1/(signal*sqrt(opt_nat));

tenp = 1 og(S2/X);

d2_2 = tenp+(r-(sigma2*si gma2/two))*opt _mat;
d2_2 = d2_2/(signa2*sqrt(opt_mat));

tern8 = cumnornR(d2_1,d2_2,rho, & failx);
*opt _val ue = ternil+tern2- X*exp(-r*opt_mat)*terns;

return,

}

Code excerpt 6.2 (Continued).

Call options on the maximum and minimum of two assets

Let the value of a European call option on the minimum of two assets, S and
S2, with strike price E, maturity 7, and correlation coefficient p, be denoted by
¢min- The value of the corresponding call option on the maximum of these assets
will be represented by ¢max.
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voi d opt _rai nbow_bs_2d(doubl e *opt _val ue, double S1, double S2, double X, double signal,
doubl e sigma2, double rho, double opt_mat, double r, long is_max, long putcall, _

long *flag)
{
/* Input paraneters:
S1 - the current price of the underlying asset 1,
S2 - the current price of the underlying asset 2,
X - the strike price,
signal - the volatility of asset 1,
si gnma2 - the volatility of asset 2,
rho - the correlation coefficient between asset 1 and asset 2,
opt _mat - the tine to maturity,
r - the interest rate,
i s_max - if is_max is 1 then the option is on the nmaxi mum of two assets, _

otherwi se the option is on

the mninumof two assets,
put cal | - if putcall is O then the option is a call, otherwise the option is a put.
Qut put paraneters:

opt _val ue - the value of the option,
iflag - an error indicator.
*
/
doubl e tenpl;
doubl e tenmp2;

doubl e fac;
doubl e a_zero = 1.0e-6; /* approxi mate zero nunber to prevent overflow in rai nbow bs_2d */
if (putcall) { /* a put option */
fac = X*exp(-r*opt_mat);
rai nbow_bs_2d(& enpl, S1, S2, a_zero, sigmal, sigma2, rho, opt_mat, r, is_max, flag);
rai nbow_bs_2d(& enp2, S1, S2, X, sigmal, sigma2, rho, opt_mat, r, is_max, flag);
*opt _value = fac - tenpl + tenp2;
} else { /* a call option */
rai nbow_bs_2d(opt _value, S1, S2, X, sigmal, sigma2, rho, opt_mat, r, is_nax, flag);
}
}

Code excerpt 6.3 Function to calculate the value of a European put or call on the max-
imum or minimum of two assets using the analytic result of Johnson (1987) and Stulz
(1982).

Table 6.3 The computed values and absolute errors for European put and call options
on the maximum of two assets

Time Call Put
Analytic  Lattice Error Analytic  Lattice Error

0.1 6.45320  6.45245 7.4972x 1004 0.01524 0.01451 7.3344 x 104
0.2 6.96192  6.95953 2.3845x 1073  0.08252 0.08001 25106 x 103
0.3 7.49587  7.49376 21084 x 1073 0.15787 0.15580 2.0675 x 103
0.4 8.03710  8.04022 3.1260x 1073 0.22362 0.22680 3.1768 x 103
0.5 8.57808  8.57916 1.0757 x 1073  0.27762 0.27683 7.8867 x 10~4
0.6 9.11529  9.10809 7.2006 x 103 0.32115 0.31872 2.4328 x 103
0.7 9.64700  9.64838 1.3826 x 1073 0.35598 0.35714 1.1548 x 103
0.8 10.17238  10.17663 4.2571 x10~3 0.38372 0.38711 3.3891 x 103

The results were obtained using a binomial lattice and the analytic formula (Johnson
(1987) and Stulz (1982)). The time to maturity of the option is varied from 0.1 years to
0.8 years. The parameters are: E = 44.0, S7 = 40.0, S = 50.0,r = 0.1,07 = 0.2,09 =
0.2,q1 = g2 =0.0, p = 0.5, n_steps = 50.
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Table 6.4 The computed values and absolute errors for European put and call options
on the minimum of two assets

Time Call Put
Analytic  Lattice Error Analytic  Lattice Error

0.1 0.10810 0.10753 57048 x 1074  3.67044 3.66993 5.0955 x 10~4
0.2 0.40862  0.40781 81047 x 10°%  3.54551 3.54514 3.6961 x 104
0.3 0.74162 0.73418 7.4339x 1073  3.47882 3.47206 6.7642 x 103
0.4 1.06989  1.07299 31076 x 1073 3.43283  3.43715 4.3214 x 103
0.5 1.38675 1.38909 23414 x 1073  3.39540 3.40159 6.1826 x 1073
0.6 1.69203  1.69025 17757 x 1073 3.36145 3.35775 3.6964 x 103
0.7 1.98691 1.96939 17520 x 1072 3.32859 3.31517 1.3417 x 102
0.8 227276 226274 10018 x 1072 3.29566 3.29157 4.0885 x 103

The results were obtained using a binomial lattice and the analytic formula (Johnson
(1987) and Stulz (1982)). The time to maturity of the option is varied from 0.1 years to
0.8 years. The parameters are: E = 44.0, S7 = 40.0, S = 50.0,r = 0.1,07 = 0.2,00 =
0.2,q1 = g2 = 0.0, p = 0.5, n_steps = 50.

Then, following Stulz (1982) and Johnson (1987), we have:

Cmax = SlNz(dl(Sl, E, Uf), di(Sl’ So, 0*2), ,01)
+ SzNz(dl(Sz, E, 022), di(Sz, S1, 0*2), pz)
— Eexp(—r7){1— No(—do(S1, E, 0F), —do(S2, E, 02), p)} (6.5.5)

and

Cmin = S1N2(d1(S1, E, 012), —d1(S1, S2, 0*2), —p1)

+ SoNo(di(S2, E, 022), —d;(S2, S1, 0'*2), —p2)

— Eexp(—r1)Na(d2(S1, E, 0f). do(S2, E, 02). p) (6.5.6)
where Na(a, b, p) is the bivariate cumulative normal. It gives the cumulative
probability, in a standardized bivariate normal distribution, that the variables
x1 and x2 satisfy x1 < a and x2 < b when the correlation coefficient between

x1 and xz is p—the value is computed using the routine cum_nor n2. The other
symbols are defined as follows:

2 2 2
0f =01 — 2p0102 + 05

_log(Si/E) + (r + 67/2)t

di(Si, E, o) = —c , i=12
1
log(S;/E) + (r — 0?/2)t
i .of) = TS s
l
log(S;/S; 2/2
d:/l_(Si,Sj,O’*z)= g(Si/Sj) + (o5/Dt fori=1j=2 ori=2,j=1

OsA/T
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and

01— po? 02 — po1
pr=—"2  pp=-———
O« Oy

It can also be shown that:
cmax(Sla SZ’ Ev 7:) + cmil’l(Sl’ SZ, Ev 7:) = C(Slv Ev 7:) + C(S21 E’ T) (6'5'7)

where ¢(S, E, 7) is the value of a vanilla European call.
We will now derive an expression for the value of the corresponding European
put options.

Put options on the minimum of two assets

It will now be shown that the price of a European put option on the minimum
of two assets, pmin(S1, S2, E, T) is:

Pmin(S81, 82, E, 1) = E&Xp(—r7) — cmin(S1, 52, 0, T) + cmin(S1, $2, E, 7)
(6.5.8)
where the meaning of the symbols has been previously defined.

This result can be proved by considering the following two investments:

PorTFOLIO A: Purchase one put option on the minimum of §; and S» with
exercise price E.

PorTFOLIO B: Purchase one discount bond which pays E at maturity. Write
(that is, sell) one option on the minimum of S and S» with an exercise price of
zero. Purchase one option on the minimum of S1 and S» with exercise price E.
We now consider the values of these portfolios at option maturity, time .
If min(Sy, S2) > E

Portfolio A: pays zero
Portfolio B: Pays E — min(S1, S2) + min(S1, S2) — E =0

fmin(S—1,5) =8 < E

Portfolio A: Pays E — §1
Portfolio B: Pays E — S1 +0=E — $1

If min(Sy, S$2) =82 < E

Portfolio A: Pays E — >
Portfolio B: Pays E — S, +0=E — S»

We have therefore shown that, under all possible circumstances, Portfolio A
has the same value as Portfolio B. This means that Eq. (6.5.8) is true.
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Put options on the maximum of two assets

It will now be shown that the price of a European put option on the maximum
of two assets, pmax(S1, S2, E, T) is:

pmax(Sl, 521 Ev T) =E exp(_rf) - Cmax(Slv S27 O’ T) + Cmax(Sl» SZ: E’ T)
(6.5.9)

where, as before, the meaning of the symbols has been previously defined.
This result can be proved by considering the following two investments:

PorTFOLIO A: Purchase one put option on the maximum of S; and S» with
exercise price E.

PorTFOLIO B: Purchase one discount bond which pays E at maturity. Write
(that is, sell) one option on the maximum of S; and Sz with an exercise price
of zero. Purchase one option on the maximum of §1 and S» with exercise
price E.

As before we now consider the values of these portfolios at option maturity,
time 7.

If max(Sy, S2) > E

Portfolio A: Pays zero
Portfolio B: Pays E — max(S1, S2) + max(S1, S2) — E =0

If max(Sy, S2) =81 < E

Portfolio A: Pays E — §1
Portfolio B: Pays E — S1 +0=FE — $1

If max(Sy, S2) = S» < E

Portfolio A: Pays E — S>
Portfolio B: Pays E — So +0=FE — S»

It therefore follows that, under all possible circumstances, Portfolio A has the
same value as Portfolio B, and this means that Eq. (6.5.9) is true.

6.5.3 American options

We assume that the prices of asset 1 and asset 2 follow a lognormal process with
drift terms of 1 = r —02/2 and 2 = r — 02/2, respectively. As before, r is the
riskless interest rate and o1 and o7 are the instantaneous volatilities of asset 1
and asset 2.

If we let S1; and S2; denote the respective prices of asset 1 and asset 2 at
time 7, then we can write:

109(S1,14-a:) = 109(S1,/) + €1 (6.5.10)
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and

109(S2,14-a1) = 109(S2,1) + €2, (6.5.11)

where &1 ; is a random normal variable with mean 1At and variance o5 2At, and
€2 is a random normal variable with mean usAr and variance 022At.

In the binomial lattice model, over the time interval Az, the variate log(Sy ;)
is only allowed to jump up or down by an amount v; = o1+/Ar, and simi-
larly the variate log(S2,;) is only permitted to jump up and down by the amount
vp = 02+/At. We will denote the probability of both log(S1,,) and log(S2,,) hav-
ing an up jump over At by p,,, and the probability of log(S1 ) having an up
jump and log(S2,;) having a down jump by p,4, etc.

The mean values in Egs. (5.15) and (5.16) then give

Ele1,] = vi(Puu + Pud — Pdd — Pau) = n1At (6.5.12)

Ele2,:]1 = v2(puu + Pud — Pdd — Pau) = H2At (6.5.13)
and the variance/covariance terms yields

Varle1] = vZ(puu + Pud + Pdd + Pau) = O£ At (6.5.14)

Varlez] = v3(puu + Pud + Pdd + Pau) = 02 At (6.5.15)

Ele1,e2,¢] = v1v2(Puu — pud + Pad — pdau) = po102At (6.5.16)

where p is the correlation coefficient between ¢1; and ¢;;.
We therefore obtain:

niv At
Puu + Pud — Pdd + Pdu =
o1
ua~ At
Puu — Pud — Pdd + Pdu = o

Puu + Pud + Pdd + pan =1
Puu — Pud + Pdd — Pdu = P
These lead to the following jump probabilities:

1
Pt =5 1+«/At(&+&>+p}
4 o 02
1 M1 M2
Pua =711+ vA (———)—p}
02
1
Pdd = 1+\/At<—&—&>+p}
4 o1 02
1
pauw= i1+ VA <——+&>—p}
o1 02

In Code excerpt 6.4, we provide the computer code for a standard binomial
lattice which prices options on the maximum and minimum of two assets.
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The parameter Mis the number of time steps used, and the lattice is con-
structed under the assumption that Mis even.

voi d standard_2D_bi noni al (doubl e *val ue, double S1, double S2, double X
doubl e sigmal, doubl e sigma2, double rho, double T,
doubl e r, double g1, double g2, |ong put,
long M long opt_type, long is_anerican, long *iflag)

{
/* Input paraneters:
S1 - the current price of the underlying asset 1
S2 - the current price of the underlying asset 2
X - the strike price
sigmal - the volatility of asset 1
si gma2 - the volatility of asset 2
rho - the correlation coefficient between asset 1 and asset 2
T - the tine to maturity
r - the interest rate
ql - the continuous dividend yield for asset 1
g2 - the continuous dividend yield for asset 2
put - if put is O then a call option, otherwise a put option
M - the nunber of time steps, the zeroth time step is the root node_

of the lattice

if opt_type is O then an option on the nmaxi num of two asset
otherwi se an option on the mninumof two assets

if is_anmerican is 0 then a European option, otherw se_

an Anerican option

opt _type

i s_american

Qut put paraneters:

val ue - the value of the option,
iflag - an error indicator.
*/
doubl e discount, t1,dt,dl,d2, ul, u2;
long i,j,m,n,iflagx,jj,ind;
doubl e zer0=0. 0, hol d;
doubl e tenp, dsl, ds2, dvl, dv2, h, tnp;
doubl e *s1, *s2, *v;
doubl e p[4];
long P1, P2, tdv;
double sqrt_dt, t, mul, nu2, jpl, jp2;
double one = 1.0, half = 0.5, quarter = 0.25;
long vi1;
if (1((M1)/2) == (M2)) printf ("ERROR THE NUMBER OF TIME STEPS IS NOT EVEN \n");
tdv = M+ 1;
#define V(1,J) v[(I) * tdv + (J)]
#define WU 0
#define UD 1
#define DD 2
#define DU 3
dt = T/(double)M
sqrt_dt = sqrt(dt);

jpl = sigmal*sqrt_dt;

jp2 = sigma2*sqgrt_dt;

mul =r - gl - sigmal*sigmal*half;

nmi2 =r - g2 - sigma2*si gna2*hal f;

ul = exp(jpl); /* assign the junp sizes */
uz2 = exp(jp2);

dl = exp(-jpl);

d2 = exp(-jp2);
p[WJ] = quarter*(one + sqrt_dt * ((nul/sigmal) + (nmu2/sigma2)) + rho); /* set up the junp_
probabilities */
p[UD] = quarter*(one + sqrt_dt * ((nul/sigmal) - (nmu2/signa2)) - rho);
p[DD] = quarter*(one + sqrt_dt * (-(mul/signal) - (mu2/sigma2)) + rho);
p[DU = quarter*(one + sqrt_dt * (-(rmul/sigmal) + (nu2/sigma2)) - rho);
for (i =0; i < 4; ++i) {
if ((p[i] < zero) || (p[i] > 1.0)) printf ("ERROR p out of range\n");

di scount = exp(-r*dt);

Code excerpt 6.4 Function to calculate the value of a European put or call on the maxi-
mum or minimum of two assets using a standard binomial lattice.
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for (i

plil]

}
/* Allocate the arrays v[(Mr1)*(M1)], s1[2*Mrl] and s2[2*Mrl] */

0; i < 4; ++) {
p[i]*discount;

s1[M = S1; /* assign the 2*M+l asset values for sl */
for (i =1; i <=M ++i) {

S1[Mri] = ul*sl[ M+i-1];
s1[Mi] = di*s1[Mi +1];
}
s2[M = S2; /* assign the 2*Mrl asset values for s2 */
for (i =1; i <=M ++) {
S2[ Mri] = u2*s2[ Mri-1];
s2[Mi] = d2*s2[ Mi+1];
P1 = 0;
for (i =0; i <=M ++i) { /* Calculate the option values at maturity */
P2 = 0;

for (j =0; j <=M ++) {
if (opt_type == 0) { /* Maxi numof two assets */
if (put) {
V(i,j) = MAX(X - MAX(s1[P1],s2[P2]), zero);

el se {

V(i,j) = MAX(MAX(s1[P1],s2[P2])-X, zero);

el se {
if (put) { /* Mninumof two assets */
V(i,j) = MAX(X - MN(sl[P1],s2[P2]), zero);
el se {
V(i,j) = MAX(M N(s1[P1],s2[P2])-X, zero);
P2 = P2 + 2;
}
P1 = P1 + 2;

}
for (ml = M1, mlL >=0; --nl) { /* work backwards through the lattice_
to cal cul ate option value */

P1 = Mnt,;
for (i =0; i <=nml; ++i) {
P2 = Mni;
for (j =0; j <=l +4j) {
hold = p[UD] *V(i+1,j) + p[UJ*V(i+1,j+1) + p[DU*V(i,j+1) + p[DD]*V(i,j);
if (is_american) { /* An Anerican option */
if (opt_type == 0) { /* Maxinum of two assets */
if (put)
V(i,j) = MAX(hol d, X- MAX(s1[P1],s2[P2]));
el se

V(i,j) = MAX(hol d, MAX(s1[P1],s2[P2])-X);

el se { /* Mnimmof two assets */
if (put)
V(i,j) = MAX(hold, X-M N(s1[P1],s2[P2]));
el se
V(i,j) = MAX(hold, M N(s1[P1],s2[P2])-X);
}
el se {

V(i.j) = hold;

P2 = P2 + 2
}
PL = Pl + 2;

}
}
*value = V(0,0);
}

Code excerpt 6.4 (Continued).
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6.6 Three asset options

For three asset options (see Code excerpt 6.5 and results in Tables 6.5-6.8), we
have the following jump probabilities:

puuu

Puud

Pudu

Pudd

Pduu

Pdud

Pddu

Pdad

@I~ Ol Ol Ok 0k Wk Wk k-

voi d standard_3D_bi noni al (doubl e *val ue,

doubl e sigmal,

{

/* I nput paraneters:

1+«/_<”1+—+
1+ Va2

02

m2  u3

02

2 3
he 1

)+/012+/013+p23
+———)+,012—,013—1023
03

—) — P12+ P13 — P23
03

doubl e S1, double S2, double S3, double X,

doubl e sigma2, doubl e sigma3, double rho_12, double rho_13, double rho_23,
double T, double r,

opt _type

i s_american

- the
- the
- the
- the
- the
- the
- the
- the
- the
- the
- the
- the
- if put is O then a call option,
- the

| ong put,

current price
current price
current price
strike price
volatility of
volatility of asset 2
volatility of asset 3

correl ation coefficient between
correl ation coefficient between
correl ation coefficient between
time to maturity

interest rate

of the underlying
of the underlying
of the underlying

asset 1

nunber of time steps,

of the lattice

long M long opt_type,

| ong

asset
asset
asset

asset
asset
asset

ot herwi se
the zeroth tine

is_american, long *iflag)

W N

1 and asset 2
1 and asset 3
2 and asset 3

a put option
step is the root node_

- if opt_type is O then an option on the naxi mum of two asset

otherwi se an option on the mininumof two assets

Qut put paraneters:

- the
- an error indicator.

val ue of the option,

- if is_american is O then a European option,

Code excerpt 6.5 Standard 3-dimensional binomial lattice.

ot herwi se an Anerican option.
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*/

doubl e discount, t1,dt,dl,d2,d3, ul, u2, u3;

long i,j,k,m,n,iflagx,jj,ind;

doubl e zero0=0. 0, hol d;

doubl e tenp, dsl, ds2, dvl, dv2, h, tnp, t npl, t np2;

doubl e *s1, *s2, *s3, *v;

doubl e p[9];

long P1, P2, P3,tdv, tdv2;

double sqrt_dt, t, mul, nu2, nu3, jpl, jp2, jp3;

doubl e one = 1.0, half = 0.5, eighth = 0.125;

long vi1;

if (1((M1)/2) == (M2)) printf ("ERROR THE NUMBER OF TIME STEPS IS NOT EVEN \n");

tdv = M+ 1;

tdv2 = tdv*tdv;
#define V(1,J3, K) v[(l) * tdv2 + (J)*tdv + (K)]
#defi ne UULU
#defi ne UUD
#defi ne UDU
#defi ne UDD
#defi ne DUU
#defi ne DUD
#defi ne DDU
#defi ne DDD

dt = T/ (doubl e) M

sqrt_dt = sqrt(dt);

jpl = sigmal*sqgrt_dt;

jp2 = sigma2*sqrt_dt;

~NOUBAWNREO

jp3 = sigma3*sqrt_dt;

mul = r - sigmal*signal*half;

mi2 = r - sigma2*si gna2*hal f;

mu3 = r - sigma3*signa3*hal f;

ul = exp(jpl); /* assign the junp sizes */
u2 = exp(jp2);

u3 = exp(j p3);

dl = exp(-jpl);

d2 = exp(-jp2);

d3 = exp(-jp3);

/* set up the junp probabilities */
p[UU = eighth*(one + sqrt_dt * ((nul/sigmal) + (nmu2/signa2)_
+ (mu3/sigma3)) + rho_12 + rho_13 + rho_23);
p[UUD] = eighth*(one + sqrt_dt * ((mul/sigmal) + (mu2/sigma2)_
- (mu3/sigma3)) + rho_12 - rho_13 - rho_23);
p[UDU] = eighth*(one + sqrt_dt * ((mul/sigmal) - (nmu2/sigma2)_
+ (nu3/sigma3)) - rho_12 + rho_13 - rho_23);

p[UDD] = eighth*(one + sqrt_dt * ((nul/sigmal) - (nmu2/sigma2)_
- (nu3/sigma3)) - rho_12 - rho_13 + rho_23);

p[DUU = eighth*(one + sqrt_dt * (-(rul/sigmal) + (nmu2/signa2)_
+ (nu3/sigma3)) - rho_12 - rho_13 + rho_23);

p[DUD] = eighth*(one + sqrt_dt * (-(rul/sigmal) + (nmu2/signa2)_
- (mu3/sigma3)) - rho_12 + rho_13 - rho_23);

p[DDU = eighth*(one + sqrt_dt * (-(rul/sigmal) - (nu2/signa2)_
+ (mu3/sigma3)) + rho_12 - rho_13 - rho_23);

p[DDD] = eighth*(one + sqrt_dt * (-(rul/sigmal) - (nu2/signe2)_
- (nu3/sigma3)) + rho_12 + rho_13 + rho_23);

for (i =0; i <8; ++i) {

if ((p[i] < zero) || (p[i] > 1.0)) printf ("ERROR p[%d] = %2.4f out_

of range\n",i, p[il]);
}
di scount = exp(-r*dt);
for (i =0; i <8, ++i) {

pli] = p[i]*discount;
/* Allocate the arrays v[(M1)*(M1)*(M1)], sI[2*M+l], s2[2*M+l], and s3[2*M+1] */
s1[M = s1;
for (i =1; i <=M ++i) { /* assign the 2*M+1l asset values for sl */
SI[MH ] = ul*si[ M -1];
SI[Mi] = dl*si[Mi+1];

}
s2[M = S2;

Code excerpt 6.5 (Continued).
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for (i =1; i <=M ++i) { /* assign the 2*M+1 asset values for s2 */
S2[ M+ ] = u2*s2[ M+i-1];
s2[Mi] = d2*s2[ Mi +1];
}
s3[M = S3;
for (i =1; i <=M ++i) { /* assign the 2*M+l asset values for s2 */
S3[Mri] = u3*s3[ Mri-1];
s3[Mi] = d3*s3[Mi +1];
/* Calculate the option values at maturity */
P1 = 0;
for (i =0; i <=M ++) {
P2 = 0;
for (j =0, j <=M ++) {
P3 = 0;
for (k =0, k <= M ++k) {
if (put) { /* put */
if (opt_type == 0) { /* Maximum of 3 assets */
tnp = MAX(s1[P1],s2[P2]);
V(i,j, k) = MAX(X - MAX(tnp,s3[P3]), zero);
}
else if (opt_type == 1) { /* Mninumof 3 assets */
tnmp = MN(s1[P1],s2[P2]);
V(i,j, k) = MAX(X - MN(tnp,s3[P3]), zero);
else { /* call */
** |nsert call option code using the supplied put option code as a tenplate **
}
P3 = P3 + 2;
}
P2 = P2 + 2;
}
Pl = P1 + 2;

}
for (mk = M1; ml >= 0; --nl) { /* work backwards through the lattice to calculate_
the option value */

P1 = Mnt;
for (i =0; i <=nl; ++i) {
P2 = Mni;
for (j =0; j <=l ++j) {
P3 = Mni;

for (k = 0; k <= ntl; ++k) {
hol d = p[UUU] *V(i +1,j +1, k+1) + p[UUD] *V(i+1,j+1,k) + p[UDU *V(i+1,]j, k+1)_
+ p[UDD] *V(i+1,j,k) + p[DUU *V(i,j+1, k+1) + p[DUD|*V(i,]+1,Kk)_
+ p[DDU *V(i,j, k+1) + p[DDD] *V(i,j,K);
if (is_american) {
if (put) {
if (opt_type == 0) { /* Maxi mum of 3 assets */
tnp = MAX(s1[P1],s2[P2]);
if (opt_type == 0) { /* Maxinumof 3 assets */
tnp = MAX(s1[P1],s2[P2]);
tnpl = MAX(tnp, s3[P3]);
tnp2 = MAX(X-tnpl, hol d);
V(i,j,k) = MAX(tnp2, zero);

else if (opt_type == 1) { /* Mnimmof 3 assets */
tnp = MN(s1[P1],s2[P2]);
tmpl = MN(tnp, s3[P3]);
tmp2 = MAX(X-tnpl, hold);
V(i,j,k) = MAX(tnp2,zero);
}

else { /* call option */
** |nsert call option code using the supplied put option_
code as a tenplate **

Code excerpt 6.5 (Continued).



204 Computational Finance Using C and C#

else { /* European option */
V(i,j,k) = hold;
}
P3 = P3 + 2;
}
P2 = P2 + 2;

}
Pl = P1 + 2;
}

}
*value = V(0,0,0);
}

Code excerpt 6.5 (Continued).

Table 6.5 The computed values and absolute errors for European options on the
maximum of three assets

N steps Put Call
Computed value Error Computed value Error

10 0.9112 2.485 x10™2 21.8601 8.119 x1071
20 0.9192 1.678 x10~2 22.2807 3.913 x1071
30 0.9232 1.276 x10~2 22.4137 2.583 x101
40 0.9254 1.056 x102 22.4792 1.928 x10™1
50 0.9268 9.180 x103 22.5182 1.538 x1071
60 0.9278 8.236 x1073 22.5441 1.279 x10™71

A binomial lattice was used and we show how the accuracy of the results depends on
the number of time steps. The parameters are: E = 100.0, S1 = S» = S3 = 100.0,r =
01,7 = 10,00 =0p =03 = 0.2, p12 = p13 = p23 = 05,91 = g2 = q3 = 0.0. The
accurate values are 0.936 for a put and 22.672 for a call; see Table 2, Boyle, Evnine, and
Gibbs (1989).

Table 6.6 The computed values and absolute errors for European options on the
minimum of three assets

N steps Put Call
Computed value Error Computed value Error

10 7.0759 3.271 x1071 5.2072 4,176 x1072
20 7.2402 1.628 x10~1 5.2263 2.269 x10~2
30 7.2953 1.077 x10™1 5.2334 1.560 x10~2
40 7.3229 8.015 x1072 5.2371 1.192 x10~2
50 7.3394 6.357 x1072 5.2393 9.665 x1072
60 7.3505 5.251 x1072 5.2409 8.143 x1073

A binomial lattice was used and we show how the accuracy of the results depends on
the number of time steps. The parameters are: E = 100.0, S1 = S» = S3 = 100.0,r =
01,7 =10,00 =0p =03 =02,p12 = p13 = p23 = 05,91 = g2 = g3 = 0.0. The
accurate values are 7.403 for a put and 5.249 for a call; see Table 2, Boyle, Evnine, and
Gibbs (1989).
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Table 6.7 The computed values and absolute errors for European options on the
maximum of three assets

N steps Put Call
Computed value Error Computed value Error

10 0.0122 4.041 x10~2 27.3180 5.091 x1071
20 0.0295 2.314 x1072 27.5743 2.528 x1071
30 0.0366 1.600 x102 27.6589 1.682 x10™1
40 0.0404 1.221 x10~2 27.7010 1.261 x10™1
50 0.0427 9.868 x1073 27.7263 1.008 x1071
60 0.0443 8.280 x1073 27.7431 8.396 x1072

A binomial lattice was used and we show how the accuracy depends on the number of
time steps. The parameters are: E = 100.0, S1 = S» = §3 =100.0,» =0.1,7 = 1.0,07 =
o9 = 03 = 0.2, p12 = —0.5, p13 = —0.5, po3 = 0.5,¢1 = g2 = g3 = 0.0. The accurate
values are 0.0526 for a put and 27.8271 for a call, and were computed using Monte Carlo
simulation with 10 paths.

Table 6.8 The computed values and absolute errors for European options on the
minimum of three assets

N steps Put Call
Computed value Error Computed value Error

10 8.9646 3.130 x1071 1.4047 1.800 x10™1
20 9.1231 1.545 x1071 1.4963 8.836 x1072
30 9.1749 1.027 x10™1 1.5261 5.857 x1072
40 9.2007 7.694 x1072 1.5409 4.381 x10~2
50 9.2161 6.151 x1072 1.5497 3.499 x10~2
60 9.2264 5.123 x1072 1.5556 2.913 x10~2

A binomial lattice was used and we show how the accuracy depends on the number of
time steps. The parameters are: E = 100.0, S1 = Sp = §3 =100.0,r = 0.1,7 = 10,01 =
o9 = 03 = 0.2, p1o0 = —0.5, p13 = —0.5, pp3 = 0.5,¢1 = ¢2 = g3 = 0.0. The accurate
values are 9.2776 for a put and 1.5847 for a call, and were computed using Monte Carlo
simulation with 107 paths.

6.7 Four asset options

The results for four assets are presented in Tables 6.9 and 6.10. We have the
following jump probabilities:

Puvuu = - 1+V M1+_+E+E
16 o4

02 o3

+ p12 + p13 + P14 + P23 + P24 + ,034}



206

Computational Finance Using C and C#
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Table 6.9 The computed values and absolute errors for European options on the
maximum of four assets

N steps Put Call
Computed value Error Computed value Error
4 0.6548 2.386 x1072 22.1403 3.096
8 0.6268 4129 x1073 23.8640 1.372
12 0.6246 6.275 x103 24.3630 8.733 x1071
16 0.6251 5.836 x1073 24.5934 6.429 x1071
20 0.6257 5.167 x10~3 24.7270 5.093 x1071
24 0.6263 4,570 x103 24.8144 4219 x10~1
28 0.6268 4.074 x10™3 24.8762 3.601 x1071
32 0.6272 3.665 x103 24.9222 3.141 x101

A binomial lattice was used and we show how the accuracy depends on the number of
time steps. The parameters are: E = 100.0, §7 = S = S§3 = S4 = 100.0,r = 0.1, 7t =
10,01 =02 =03 =04 = 0.2, p12 = 0.5, p13 = 0.5, pp3 = 0.5, g1 = g2 = g3 = g4 = 0.0.
The accurate values are 0.6309 for a put and 25.2363 for a call, and were computed using
Monte Carlo simulation with 10 paths.
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Table 6.10 The computed values and absolute errors for European options on the
minimum of four assets

N steps Put Call
Computed value Error Computed value Error

4 7.8274 7.120 x1071 3.5676 4.986 x10™1

8 8.1571 3.823 x101 3.8528 2.134 x1071
12 8.2794 2.600 x10~1 3.9300 1.362 x1071
16 8.3429 1.965 x10™1 3.9659 1.003 x10™1
20 8.3815 1.579 x10™1 3.9868 7.944 x10~2
24 8.4075 1.319 x101 4.0004 6.577 x1072
28 8.4262 1.132 x10™1 4.0101 5.612 x1072
32 8.4402 9.920 x102 4.0173 4.894 %102

A binomial lattice was used and we show how the accuracy depends on the number of
time steps. The parameters are: E = 100.0, §7 = §» = S§3 = S4 = 100.0,r = 0.1, 7 =
10,01 = 0903 = 04 = 0.2, p12 = 0.5, p13 = 0.5, p2o3 = 0.5, 91 = g2 = g3 = g4 = 0.0.
The accurate values are 8.5394 for a put and 4.0662 for a call, and were computed using
Monte Carlo simulation with 107 paths.



7

7.1 Introduction

Other financial derivatives

In the preceding sections of the book we have only dealt with the valuation of
equity derivatives. We are now going to consider some of the other types of
trades such as

o Interest rate derivatives
e Foreign exchange derivatives
e Credit derivatives

A selection of these trades will be used by the C# portfolio pricing example in
Chapter 8.

7.2 Interest rate derivatives

It is not possible to make real profit without risk. For example, if we (without
risk) invest £1 in a bank account, then allowing for interest, the total number
of pounds at future time T will be 1 + AI (¢, T), where Al (¢, T) is the amount
of interest accrued from 7 to time T. Since our investment grew by the riskless
interest rate, the real value which allows for inflation must still be £1, so:

DF(t, T){1+ AI(, T)} =1
where DF(z, T) is the discount factor from ¢ to T'.

Continuously compounded spot rate

When continuous compounding is used 1 + AI(z,T) = exp{R(t, T)(T — 1)},
where R(t, T) is the annual continuously compounded spot rate between times
t years and T years. We thus have:

DF(t, T)exp{R(t, T)(T —1)} =1 (7.2.1)
so the discount factor is given by
DE(1, T) = exp{—R(t, T)(T — 1)} (7.2.2)

and the continuously compounded rate is
log(DF(t, T))

R(.T) = ————

(7.2.3)
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Simply compounded spot rate
When simple compounding is used AI(z, T) = L(t, T)(T — t), where L(z,T) is
the simply compounded spot rate between time ¢ and T. Thus,
DF(t, TY{1+ L, TYT —1)} =1
and so the simply compounded rate is:

1 1

7.2.1 Forward rate agreement

A Forward Rate Agreement (FRA) is a contract between two counterparties
(referred to here as A and B), in which one counterparty (say A) agrees to pay
interest at the (variable) spot rate, while the other agrees to pay at a fixed interest
rate. Let the agreement start at time T and end at the maturity T,,,, at which time
the counterparties settle the amount that is owed. If P is the principal then, at
time T}, the contract has the following value to A:

V(Tw) = P{(Tn — T))K — L(Ty, T))(Tn — Ty)} (7.2.5)

where K is the agreed fixed rate, and L(Ty, T,,) is the simply compounded rate
between times Ty and T},,. From Eq. (7.2.4) we have:

L(T;, T,) = ! 1 1
( S, m)— Tm_Ts{DF(Tme) a }
SO
1
V(Tn) = P{(Tm - THK — (m - 1)} (7.2.6)

The value of the FRA to A at time t < T,, is therefore FRA(t) = DF(t, T,,) V(T;,)
which means that

1

Using DF(¢t, T,,) = DF(t, Ts) DF(Ty, T,,) we can rewrite Eq. (7.2.7) as

The value of K that sets FRA(¢) to zero is termed the time ¢ forward rate be-
tween times Ty and T, and is here denoted by F(¢, Ty, T,,). From Eq. (7.2.8),

FRA(t) = DF(, Tm)P{(Tm ~THK — ( (7.2.8)

1 DF(t, Ty)
ss dm) = -1 7.2.9
e e Rl 722
Combining Egs. (7.2.8) and (7.2.10) we can express the value of the FRA as:
FRA(t) = DF(t, T,) Pt{K — F(t, Ty, Ty + 1)} (7.2.10)

where T = T,, — Ty is known as the tenor of the FRA, and T; is the reset time
for forward rate F(¢t, Ty, Ty + 7).
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7.2.2 Interest rate swap

Interest Rate Swaps (IRS) are very common financial instruments—it is not un-
usual for 80 percent of the trades in a portfolio to be IRS deals. Here we will
provide a description of some of the characteristics of interest rate swaps; more
detail can be found in Hull (2003).

A vanilla IRS consists of a strip of FRA trades, each FRA starting when the
previous FRA finishes. The maturity date of the IRS thus corresponds to the
maturity date of the last FRA.

Let the start times of the FRAs be #;,i =0, ..., n — 1, and the maturity times
of the FRAs be 1;,i = 1,...,n; note that the FRA start times correspond to
the forward rate reset times, and the maturity times correspond to the FRA
payment times. We will now adopt the (common) convention of calling the
trades swaplets, so an IRS is made up of a number of swaplets.

When the counterparty A pays the fixed rate and receives the floating rate the
trade (from A perspective) is termed a payer IRS. Alternatively, if A receives the
fixed rate and pays the floating rate, then the trade is termed a receiver IRS.

The value of an IRS at time ¢, where #;_1 < t < t;, will now be considered.

We will assume that discount factors used to compute the forward rates and
those used to discount the coupon payments are associated with the same yield
curve. Using Eq. (7.2.10) we have:

IRS(t) = CDF(t, ;) + Z DF(t,t) Pt {K — F(t,ti—1. ti—1 + 7))
i=k+1
(7.2.11)

where C is the next coupon payment after current time ¢ (this occurs at time f;),
and 7; is the tenor of the ith swaplet which starts at time ;1 and ends at time
t.

Note that the next coupon payment C for the swaplet starting at time ;1
and maturing at time 7; is already known with certainty at time ¢ because the
forward rate F (¢, ty—1, ty) was reset in the past; 1 < 7.

We will now rewrite Eq. (7.2.11) as:

IRS(t) = CDE(t, ty) + EXD(t) — FLT(7) (7.2.12)
where FXD(t), the time ¢ value of the fixed leg, is:
FXD(t) = PK Z DE(, 1)t (7.2.13)
i=k+1
and FLT(z), the time ¢ value of the floating leg, is:

n
FLT(t) =P Y DF(t.t)tF(t.ti 1. ti 1+ T) (7.2.14)
i=k+1
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The floating leg

We will now evaluate Eq. (7.2.14). The floating leg coupon payment at time ¢
will be denoted by C; and has value:
Ci=PF(, ti—1,ti-1+ )T
where
DF(t. tic) 1} 1
DEF(, ti-1+ )
From Eq. (7.2.14) we thus have:

F(t, ti1,tic1+ 1) = { -
1

FLT(t)= Y CiDF(t, 1)
i=k+1

n
=P Z DF(t, t;)t;

i=k+1

DF@,ti-1) 1 1
DEF(, 1)

Ti

=P Z {DF(t, ti—1) — DF(t, 1)}

i=k+1
= P{DF(, i) — DF(t, txy1) + DE(t, frg1) — - -
— DF(t, ;) + DF(t, ;) — - -- — DF(t, 1,) }

= P{DF(t, %) — DF(t,1,)}
and so the value of the floating leg is
FLT(1) = P{DF(t, i) — DF(t, 1)} (7.2.15)

The swap rate

The time ¢ swap rate SR; is the value of the fixed rate K that makes the IRS(r)
zero. Thus, from Egs. (7.2.12)—(7.2.14):

P{DF(t,t;) — DF(t,t,)} — CDF(t,tt) = PSR, »  DF(t.1))t;  (7.2.16)
i=k+1
SO

DE(t, ;) — DF(t, 1,)} — SDF(,
SR, ={ (@, 1) _ (t, 1))} — FDF@, 1) (7.2.17)
> i—k+1 DF(@, t)

Amortization

So far we have assumed that the principal is fixed and set to the value P. We
will now deal with the situation where the principal varies with time according
to the following amortization schedule:

AM; =Py~ P, i=0,....n—1 (7.2.18)
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where P; is the value of the principal at time #; and Py = P.
The value of the floating leg is now computed as:

DF(t, ti-) 1}1

FLT(t) = Pi_lDF(t,ti)t,-{ DFG. 1)

I
i=k+1 !

n
= Z Pi_1{DF(, ti_1) — DF(t, 1)}

i=k+1
= PrDF(t, ty) — PrDF(t, tyy1)

+ PrtaDFE(t, tiv1) — PeyaDF(2, tgy2) + - - -

+ Py—2DF(t, t,—1) — Pu—1DF(t, t,—1) — P,—1DF(t, t,)
= PcDF(z, 1) — DF(t, iy {Pr — Piva} — Pry1 — -+

- DF(I, tn—Z){Pn—Z - Pn—l} - Pn—lDF(tv In)
n—1

= PDF(t.tt) — P,_1DF(t. 1) + Y AM;DF(t, 1;) (7.2.19)
i=k+1
and so the value of the floating leg is:
n—1
FLT(t) = P.DF(t, t) — P_aDF(t.1,) + > AM;DF(t. 1;) (7.2.20)
i=k+1
When there is no amortization (Py = P,_1 and AM; = 0,i =0,...,n — 1)

then Eq. (7.2.20) reduces to Eq. (7.2.15).

Basis swap

This is very similar to an interest rate swap, but now there are two floating legs,
each with their associated principal amount.

For example, floating leg 1 could be associated with the one month LIBOR
(London Inter Bank Offer Rate) and have a schedule of monthly payments,
while floating leg 2 could use the three month LIBOR rates and have quarterly
payments. In this case, the forward rates and discount factors for leg 1 would
be computed using the 1 month LIBOR yield curve and the forward rates and
discount factors for leg 2 will be computed using the three month LIBOR yield
curve.

We will use the subscripts 1 and 2 to denote quantities associated with
legs 1 and 2 respectively. The payment times associated with leg 1 are #i,i =
1,...,n1, while those for leg 2 are té,i = 1,...,n2, and (for this example)
ni1 = 3no.

If counterparty A makes the quarterly payments (that is, receives the pay-
ments made on leg 1), then the time 7 value of the basis swap is:

BS(t) = C1DF1(t, t;) + FLT1(t) — C2DFa(t, ti,) — FLT2(¢) (7.2.21)
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where we have used similar notation to that used in Eq. (7.2.12), with

FLT1(t) = P1(DFa(t, ti;) — DF1(t, 1)) (7.2.22)
and

FLT(t) = Po(DFa(t, tr,) — DFa(t, 1)) (7.2.23)

In Egs. (7.2.22) and (7.2.23) P; is the principal for leg 1 and P is the principal
for leg 2. The time of the next coupon payment for leg 1 is #,, while that for
leg 2 is #,: in addition we have used the fact that #,,;, = t,,, = t,,.

We will now consider the case in which the basis swap has been traded at
time #, and shall also assume that C1 = C2 = Oand r = i, = #,. In addition, we
will specify that principal exchange occurs at the start (time 7) and end (time #,)
of the swap.

The cash flows associated with principal exchange at the start of the swap leg
are in the opposite direction to those for the remainder of the swap leg; see Hull
(2003). We have:

FLT1(t) = P1 — PADF1(t, t,) + {—Pl + P1DF(t, tn)} (7.2.24)
and
FLT2(t) = P» — Po2DFa(t, 1) + {—Pg + P2DF(t, tn)} (7.2.25)

where the principal exchange terms are in the curly brackets, and use discount
factors DF(t, T) derived from the main currency yield curve (in this case GBP)
rather than DFy(¢, T) or DF»(¢, T).

It can be seen from Eq. (7.2.21) that principal exchange at the start of the
swap causes leg 2 to contribute the positive amount P, to the value of the swap,
while leg 1 contributes the negative amount P, to the value of the swap. In
contrast, principal exchange at the end of the swap results in leg 2 contributing
the negative amount —P>,DF(t, t,) to the swap value, while leg 1 contributes
the positive amount P1DF(z, ;). If P1 = P, = P then principal exchange does
not affect the value of the basis swap. It can also be seen from Eq. (7.2.24)
that if leg 1 used the main GBP yield curve instead of the one month LIBOR
curve, then DF4(t, t,) = DF(z, t,) which would result in FLT1(¢) = O. Similarly
DFy(t,t,) = DF(t, t,) would mean that FLT»(t) = 0.

If the valuation time 7 is after the trade has started, then Eq. (7.2.21) can be
used to price the basis swap, but Egs. (7.2.24) and (7.2.25) need to be modified
as follows:

FLT1(t) = P1DF1(t, t,) — PIDF1(¢, 1) + {PlDF(t, tn)} (7.2.26)
and
FLT(t) = PoDFy(t, ty,) — P2DFo(t, t,) + {PzDF(t, t,,)} (7.2.27)

We will now consider how the timing of the coupon payment in relation to its
associated forward rate affects the present value, Vy,, of the coupon.
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Coupon payment on time

In this section we will justify the approach we have adopted in obtaining the
present value of future cashflows generated from vanilla forward rates.

From Eq. (4.2.1) we know that the value at time 7o of a coupon payment at
time fy, is:

F(t—1, te—1, 1)
Vi, = DF(1o, t EQk — " |TP
o (r0, 1) [ DF(t, t) i|T

where the symbols have their usual meaning, and we have chosen the numeraire
to be the zero coupon bond which matures at time f. Since DF(#, 1;) = 1 we
can write

Vig = DF(t0, 1) EY [F (61, ti—1, 1) ] P (7.2.28)
In Section 7.2.3 we show that F (¢, 1x—_1, 1) follows the process:
d(F(t, i1, 1)) = 0w F (¢, i1, 1) dWF (7.2.29)

If we assume that oy is constant, then Eq. (7.2.29) is GBM (see Chapter 2) and
has the solution:

(1t — 10)of ’

where we have taken W = 0.
Substituting ¢ = #_1 into Eq. (7.2.30) gives:

(k-1 — 10)0?
F(ti-1, i1, tr) = F(to, tk—1, 1) exp(—fk + UkthZ_1> (7.2.31)

which means that:

EY[F(t-1, i1, 10)]

2
Ik—1 — lo)o
= EQk [F(to, tk—1, tr) exp(—% + oy W,i_l):|

k (ty—1 — to)o?
= F(t0, i1, ) EY [eXp<—fk + Uszil)}

fr_1 — 10)0 2
= F(to, ti—1, tk)EQk [exp(—% + op/ti—1 — to N(O, 1)>:|

= F(t0, tr—1, 1)

where we have used the fact (see Appendix D.2) that

2
EY [exp(—w + ox/Tr—1 — to N(O, 1))}

(ti-1—1t0)0?  (tr—1 — t0)07 _
(st oty
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Substituting for EQ[F(tx_1, te_1, %] in Eq. (7.2.28):

DF(t0, f-1) 1>Pr

1
Vi = PTF (o, tr—1, tx) = DF(to, t;)—
0 TF(to, tk—1, 1) (t0, 1) (DF(tg,tk)

T
This yields
Vio = P{DF(1o, tx—1) — DF(10, ) } (7.2.32)

which is our current method of valuing the future coupons generated by forward
rates.

General payment timing

For the general case, in which the coupon payment date does not correspond to
the end of its associated forward rate, we use the result from Eq. (7.2.43) that

dwk = <ﬂ> dr +dWi, i #k (7.2.33)
Ok

Equation (7.2.33) states that Brownian motion W' under numeraire DF(t, t;)
can be transformed into Brownian motion W* under numeraire DF(z, #) by the
addition of a drift term—more detail can be found in Section 7.2.3. If we assume
constant drift t, Wr = W/ = 0 we obtain:

Wk = (1 — zo)(ﬁ> + W (7.2.34)

Ok
and in Eq. (7.2.30)
Wk =t — o)ur + oW/

A constant puy can be achieved by freezing the forward rates that make up
for example, F(t, t—1, 1) — F(to, tx—1, Ix); see Section 7.2.3 for more details
concerning .

This means that F(z, t;_1, t) follows the process:

d(F(t, tr—1. 1)) = F(t, tr—1, t) e dt + F(t, te1, tr)og W'

The above equation is GBM with drift and can be solved by modifying
Eq. (7.2.30) to:

F, ti—1, 1)

(t — 10)0f ;
= F(to, k-1, tr) exp| (t — o)k — —  t oW, (7.2.35)

As before, the time 7 value of the coupon payment at time  is:

Fte—1, tr—1, 1)
DEF(;, 1)

which since DF(t;, t;) = 1 becomes

Vig = DF(t0, 1) EQ [F(tx_1, tr—1, 1) ] P (7.2.36)

Vi, = DF(10, l‘i)EQi |:
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Now, from Eq. (7.2.35) we have:

EY [F(te—1, i1, )]

i tk—1 — to)o P2 .
— EQ [F(to, 1, 1) eXp((t o~ B, w;k_l)}
= F(t0, tx—1. tr) exp((tx—1 — o) k)
i (tg—1 — to)az ;
x E° [exp(—% + UkWtk_l)]
= F(t0, k-1, i) ep((tx—1 — t0) k) (7.2.37)

where, as before, we have used the expectation given in Appendix D.2.
By expanding Eq. (7.2.37) to first order we obtain:

EY [F(tk—1. k-1, 1) ]

= F(tg, tx—1, k) + F(to, tk—1, 1) (tk—1 — t0) i (7.2.38)

Substituting Eq. (7.2.38) into Eq. (7.2.36), we obtain a general expression for
the value of the coupon payment:

Vio = DF(t0, )T { F (t0. tx—1. tx) + F (t0, tx—1. ) (tk—1 — o) jux } (7.2.39)

We will now consider the cases of early and late coupon payments.

Early coupon payment
Let us consider the case when i = k — 1. From Eq. (7.2.50):

ToPF (1, tk—1, )
e = 1+ cF(t, tr—1, %)

First we freeze the forward rates in uy so we use the following;:

_ TofF(to, i1, 1)
1+ tF(to, tk1, k)

Mk

Substituting for uy in Eq. (7.2.39) we obtain:

02T F2(to, tr—1, 1) }
1+t F(to, tk—1, t)
(see Brigo and Mercurio, 2001, p. 387, and Hull, 2003).

Vio = DF(to, tk—l)TP{F(to, t—1, k) + (te—1 — t0)

Late coupon payment
We consider the case when i = k + 1. From Eq. (7.2.66):

TPk k+10kOk+1F (t, Ty iy 1)
1+2F (@t trg1)

e =
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Freezing the forward rates we obtain:

TPk k+10k0k+1F (f0, Tk, Tk41)
B 1+ tF(to, t, tr+1)
Substituting for uy in Eq. (7.2.39) we obtain:

Kk =

Vio = DF(to, ty+1)

X TP{F(IO, k-1, 1)

e—10) TPk k+10k0k+1 F (0, 11, 1K) F (10, I, tk+1)}

1+ tF(to, tk, trs1)

7.2.3 Timing adjustment

In this section we derive expressions for the drift of the forward rate F (¢, tx—1, t)
under various probability measures. We will denote the time ¢ value of a zero
coupon bond which pays 1 unit of currency at maturity #; by DF(z, ;). For
convenience we will also use the shortened notation F, = F(z, t;_1, ;) and
DF; = DF(, ).

The probability measure under which all tradable assets are priced relative to
the zero coupon bond price DF; (that is, DF; is the numeraire) will be denoted
by Q'; under this probability measure the relative prices will be martingales. We
will also denote Brownian motion under probability measure Q' by W'.

Casei =k

Here the maturity of the numeraire DF; is at the expiry of the forward rate Fg.
Since DFy (14 t Fy) is a tradable its relative price, (1 + t Fy)/DFg, is a martin-
gale under Q¥ and thus has zero drift.
Also DF;(1+ tF;)/DF; = 1+ tF; and, since both 7 and 1 are constants,
Fi must be a martingale under Q. Thus the process for Fy has zero drift and is:

dF, = Fiox dwk (7.2.40)
For the general case in which i # k, the process followed by Fy is:
dF, = Fypy dr + Frop dW! (7.2.41)

where 1 is a drift that needs to be determined. Equation (7.2.41) can be rewrit-
ten as:

dF, = Fkak<ﬂ dr + dWi> (7.2.42)
ok
Comparing Egs. (7.2.41) and (7.2.42) we have:
dwk = £ qr 4 dw' (7.2.43)
ok

This equation gives the relation between Brownian motions under probability
measures QF and Q'. We will now show how to compute the value of 1.
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Casei < k

Here we consider situations in which the maturity of the numeraire DF; is before
the expiry of the forward rate Fy.

i=k-—-1
In this case DFj_; is the numeraire, the forward rate is F, = F(t, tx_1, k),
and the numeraire matures at time #;_1, while the forward rate has expiry #.
Since DFy is a tradable the relative price, ¢ = DF;/DFy_1, is a martingale
under @1, and thus has zero drift.
Now
DF; 1

— — 7.2.44
¢ DF;_1 1+ tF; ( )

where we have used:

DF,_ 1 = DE,(1+tF) (7.2.45)
Let the stochastic process followed by Fj under Q1 be:

dFy = Frpk dt + Frop dw 1 (7.2.46)

and the drift, g, is to be determined.
Using Ito we have:

d¢ = 9 gpy t L% E[(dF0?], E[(dF)?] = o2F?dt, (7.2.47)
8Fk k 2 8Fk k 5 k k Uk oL

where from Eq. (7.2.44):

3 32 272

LA S— A — (7.2.48)

dFy, A+ tFy) 0 Fy A+tF)
Substituting the values in Eq. (7.2.48) into Eq. (7.2.47) we obtain:

T _ 1122¢02F2dt
dop = — F; d Fro dwk—1 i S S
=15 T+ B b g Ry

which can be rearranged as:

dp = _tFk/Lk¢ ¢'L’20k2sz _ t¢ Froy dwk-1
| 14tFR 0 A+ tF)? 1+ tF;

Now since Eq. (7.2.49) is driftless:

{_rka ¢pt2olFE }

(7.2.49)

1+ 1tF; (14 TF;)?
and
10} Fk

(7.2.50)
1+ F

Mk =
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Substituting Eq. (7.2.50) into Eq. (7.2.46):
252

an = £ dt oy awt
or
dF, = Fkak{ /LI dwk—l} (7.2.51)
1+ Fit
Comparing Egs. (7.2.51) and (7.2.40) thus yields:
dwk = 1’1"2"7 di +dwr1 (7.2.52)

which is the relationship between the Brownian motions dW*~1 and dW* under
the respective probability measures Q¥~1 and QF.

i<k-—-2

Let the stochastic process followed by F; under Q¥=2 be:

dFy = Fyug dt + Frop dWF—2 (7.2.53)

where W¥~2 is Brownian motion under probability measure Q=2, and the drift,

Wk, is unknown.
Replacing k with k — 1 in Eq. (7.2.52) gives:

dwk-1 — Tok—1Fk—1

ok dr + dwk=2 (7.2.54)

and using Eq. (7.2.54) to substitute for dW*~1 in Eq. (7.2.52) we obtain:

dwk — oy Fy Tog—1Fp-1

= dr +dwk=2 7.2.55
1+ Ft 14+ Fp_17 + ( )
Replacing dW* in Eq. (7.2.40) with that given in Eq. (7.2.55):

F 1F
dFk:Fkak{ TORTk 4 TOk=LTK 1dt}+Fkok dwk-2 (7.2.56)

1+ Fit 14 Frat
so the drift is:

2
10 Fe  TF—10k0k—10k k-1

= 7.2.57
Hi 1+1F 1+tF ( )
The following general expression can be derived in a similar manner:
k Pk, iTO; F; .
dFc=ocFi Y P20 di 4 oy By dW! (7.2.58)

et 1+ TF;

where all the symbols have the same meanings as before, but now i can take
any integer value less than k.
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Casei > k

We now consider the case when the maturity of the numeraire DF; is after the
expiry of the forward rate Fj.

i=k+1

Here DFj. 1 is the numeraire and Fy is the forward rate which starts at time
tr—1 and ends at time #;.

Since DFy_1 is a tradable its relative price, ¢ = DF;_1/DF1, is a martingale
under Q1) and thus has zero drift.

Now:
DF;_
¢= =21 — A+ 1FYA+ TFirn) (7.2.59)
DFy 11
where the processes for F and Fyy1 are
dFiy1 = Fryr0pp1dWht (7.2.60)
dFy = Fuug di + Frop dwktt (7.2.61)

and the drift, g, is to be determined.
Using Ito we have:

8¢ 26 LT oy
d —dF, + ——dF, E E —— FE[dF;, dF; 7.2.62
¢ = 3, k+8F 1+ = l_] e [ il )
where
99 1+ tFrt2), 1+ 1F)
=T T =T T
I k+1 P k
52 52 2 2
0 d
L 2¢ =0, v b _ 2 (7.2.63)
OF7  9FZ, dFis10Fc  9F0Fis1

E[dFy, dFiy1] = [dFiq1, dF] = prorr10x0ks 1 Fi Frpa de
Substituting the values in (7.2.63) into Eq. (7.2.62) we obtain:
dp = t(1+ tFi1) dFe + t(L+ T Fy) dFis1 + t20k k410k0k+1 Fi Fip1 dt
After expanding the terms in dF; and dFy+1 we have:
d¢ = v (1 + t Fiy){ Fepur dt + Fro dWF1}
+ 7(L+ TF) Fip10i01 AW + 12 iy 10k0n 1 Fi Frya dt
and this can be re-expressed as:
d¢ = D + t(1 + 1 Fyq1) Frop dW*t
+ 11+ T F) Fiy10k41 dWET (7.2.64)
where the drift term D in Eq. (7.2.64) is given by:
D = t(1+ t Fi1) Fepr dt + t2 01 k410001 Fic Fier1 dt (7.2.65)
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Now since ¢ is a martingale under Q**1 we know that D = 0, and therefore
Eq. (7.2.65) results in:
(1 + t Fiy 1) Frper dt = —pr k110%0% 41 Fi Fry 1 dt
This means that the drift is:
TPk k+10kOk+1Fk+1
1+ thoq
Substituting for uy in Eq. (7.2.61) gives:

Mk = (7.2.66)

F
dF;, = Fkok{—%w dr + de+1} (7.2.67)
+

Comparing Eq. (7.2.67) with Eq. (7.2.40) we have:

F
dwk = ~TPLIHATKITAL 4, | qyykrd (7.2.68)
1+ tFrsa

which is the relationship between Brownian motions dW* and dW*+1,

iZ2k+2
Let the stochastic process followed by F; under Q¥+2 be:

dF; = Feuy dt + Froy dwk+2 (7.2.69)

where W**2 is Brownian motion under probability measure Q“*2, and drift
term uy is to be found.
Replacing k with k + 1 in Eq. (7.2.68) gives:

F
dwk+t — _ TPkALk+20k+2 k42 dr + dwk+2 (7.2.70)
1+ tFq2

and using Eq. (7.2.70) to substitute for dW**1 in Eq. (7.2.68) gives:

_ TPkkt10k 1 Pkt (o TP 1k20k 2 k2 4 dwh+?
14+ tFr1 1+ 1tFy2

Substituting for dW* in Eq. (7.2.40) gives:

dwk =

F; F
dwk — — FkUk{ Phk10k1Flert TPkt iy 202 Fier2 dz}
1+ tFrsa 14 tFpy2
+ Frop dw+? (7.2.71)
and thus the drift is a
T F T F
= — Pk k+10k4+10%k+1  TPk41,k+20k+2 k42 (7.2.72)
1+ tFs1 1+ tFiy2
The following general expression can be derived in a similar manner:
d Pk, iTo ;i F;
dFi = —oxFe Y PI0T dr 4 op B dW (7.2.73)

o LHTE

where all the symbols have the same meanings as before, but now i can take
any integer value greater than k.
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7.2.4 Interest rate quantos

This section considers derivatives whose value depends on the foreign interest
rate yield curve but have a payoff in domestic currency. We use the same nota-
tion as in Section 7.3, which deals with foreign exchange derivatives.

For example, a standard interest rate caplet has a payoff in domestic currency
and also depends on the domestic currency forward rates. The value at time rg
of a caplet which pays at time #; and extends from time 7;_1 to time # is:

Caplet(to) = PrDF (19, ) EY [max(F{ — K, 0)] (7.2.74)

where P is the principal, K is the strike, T = t_1—fx, F} is the domestic forward
rate F (o, tx—1, t). Equation (7.2.74) can be evaluated using the Black—Scholes
formula as follows:

Caplet(to) = PTDF (to, tx) [ F¥ (to, tk—1, ) N1(d1) — K N1(dp)}  (7.2.75)

where oy is the volatility of Fg, and

o2
g log(F (10, tk—1, 1)/ K) + % (11 — 1)

! 0d/T—1 — 10
2
log(F¥(t0, tx—1. 1)/ K) — "4 (11 — 1
dp = g(F“(to, tk—1, tx)/ K) — 4 (tx—1 — t0) (7.2.76)
0d/T—1—fo

In Section 7.2.3 we showed that the process (F?(t, tx_1, tx)/DF%(t, 1)) is a mar-
tingale, that is has zero drift when DF?(t, 1) is used as a numeraire.

d(FA(t, i1, 10)) = 0a FO(t, tr—1, tr) dW2

Quanto caplet

In a quanto caplet instead of using the domestic forward rate F%(tq, tx_1, tx) we
use the foreign forward rate F7 (to, t_1, ;). Under the probability measure F
associated with a foreign zero coupon bond DF/ (¢, k;) the foreign forward rate
is a martingale, and is described by the following equation:

d(F/(t, tie1, 1)) = op FI (¢, i1, 1) dW}F (7.2.77)

However, when we use DF? (¢, ;) as a numeraire the process (FT(t, tr_1, 1)/
DF(t, 1)) has a drift, and follows the process:

d(Ff(t, t—1, tk)) = Ff(t, t—1, e dr + O'fFf(l‘, te—1, T) dVV}Q (7.2.78)
Our aim is to find the value of « and then price the quanto caplet using:
QCaplet(19) = PtDF(to, 1)

x {F/ (to, tk—1, tr) exp(a(te—1 — 10)) N1(d1) — K N1(d)}
(7.2.79)
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where P is the principal, K is the strike, T = 1,1 — 1, F/(to, tr_1, 1) is the
foreign currency forward rate, o7 is the volatility of F' (1o, ti—1, 1) and

log(F/ (1o, tk—1, 1)/ K) + (@ + 0.7/2) (tx—1 — t0)

di =
Of/tk—1— 10
log(F/ (10, ty-1, 1)/ K) + (@ — 07/2) (tx—1 — 10)
2 =
Of/lk—1—10

We will now derive the value of .
First we define two processes X1(f) and X2(¢) such that:

DF/(t,tx_1) — DF/ (t, 1)\ , s
X = X 7.2.80
10 ( e ) o (7.2.80)
and
s DF (1, 1) !
Xz(t) ZTXd(t)m ZTXd(t,fk) (7.2.81)

where X;; (¢, 1) is the forward foreign exchange rate (see Section 7.3). Therefore,
X1(t) _ DF/(t,t_1) — DF/ (¢, 1)
Xa(t) tDF/ (¢, 1)

Now X; and X» are martingales under Q so we have:

=Flt, 51, 1) (7.2.82)

dX1 = 01X, dWp (7.2.83)
and

dXp = 02 X2 dWy (7.2.84)
Equation (7.2.84) can also be expressed as

f
AL _ 7289
‘L’Xd (t, ty)

Using Ito we obtain:

X1 X1
d(X—2> - X—Z{alde — opdWy)
X
+ X—;{E[(UZ dW2)?] — E[(01dW2) (02 dW )]} (7.2.86)
and the following processes for log(X1) and log(X>):

2
d(log(XD) = = dr + o1 dW:

2
d(10g(X2)) = — 2 dt + 02 AWy (7.2.87)
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Using Eq. (7.2.85) we can write Eq. (7.2.87) as:

. 2
d(l0g( X (1. 1)) = =% dr + 0, dW2 (7.2.88)
Now,

E[d(log(X2)){d(log(X2)) — d(log(X1))}]
= E[(d(log(X2)))?] — E[d(log(X1)) d(log(X2))]
= E[(02dW2)?] = E[(01dW2) (02 dW2)]

where we have ignored terms in dr with order greater than 1.
In addition,

E[d(log(X2)){d(log(X2)) — d(log(X1))}]

- _E[ddog(Xz)) d("’g(%))}

= —E[d(log(X2)) d(log(F/ (¢, tx—1, )))]

= —E[d(log(z X} ¢, 1)) d(log(F/ (¢, t5-1, 1)))]
= —E[d(log(Xj(t, 1)) d(log(F7 (¢, tk—1, 10)))]
= —0x0fpx, s dt

where o, is the volatility of the forward foreign exchange rate X 5 (t, x), 07 is the
volatility of the foreign forward rate F/ (¢, t;_1, k), and py. 7 is the correlation
between dW;@ and dW}:.

Therefore Eq. (7.2.86) can be written as:

X1 X1 X1 Q Q
d(X—2> = —X—z{axafpx,f}dt + X—z{aldW1 —o2dW, }

which means that
d(F/ (¢, te-1. 1))
= —F/(t, -1, t)loxo ey dt + FI (0 01, 1) {or dWE — o2 dW3)
Comparing the above equation with Eq. (7.2.78):
d(F/ (¢, t-1. 1))
= —Ff(t, k-1, t){oxo f px F} dr + UfFf(t, th—1, tr) dw®@ (7.2.89)

and so @ = —0, 07 px, f.
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Quanto floorlet

The formula to value a quanto floorlet can be obtained in similar manner to
that used for the quanto caplet.

The value at time fg of a standard floorlet which pays at time #; and extends
from time #;_1 to time #;, is:

Floorlet(tg) = PtDF (1o, tk)EQk [max(K - F,f, O)] (7.2.90)

where P is the principal, K is the strike, T = t_1—fx, F} is the domestic forward
rate F (o, ty—1, t). Equation (7.2.90) can be evaluated using the Black—Scholes
formula as follows:

Floorlet(to) = PtDF(to, tt){— F* (to, tr—1, tx) N1(—d1) + K N1(—d>)}
(7.2.91)

where the symbols have the same meaning as for the corresponding quanto
caplet.

2
p log(F (to, tr—1., 1)/ K) + %4 (tk—1 — t0)
l = b
Od/tk—1 — 10

2
4 log(F (to. ty—1, e/ K) — % (tk—1 — t0)
2 =
0d/lk-1— 10

(7.2.92)

In a quanto floorlet, instead of using the domestic forward rate F¥(rg, tx_1, tx),
we use the foreign forward rate F/ (t, ty_1, t):
QFloorlet(ty)
= PtDF (10, 1)
x {=F (to, tr—1, te) exp(ec(t—1 — 10)) N1(—d1) + K N1(—d2)}
(7.2.93)

where P is the principal, K is the strike, T = #_1 — 1, F/ (to, tr_1, ;) is the
foreign currency forward rate, o s is the volatility of F F(to, te—1, ;) and

. 2
o 09(FT (0, e, 8)/K) + (o + ) (11 — 10)
l =
Of/tk—1— 10

. 2
o 109(FT (0, e, 1)/ K) + (o = ) (tr — 10)
2 =
Of/tk—1 — 10

and as before o = —oo 70y, 1.
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Quanto swaplet

A quanto (also known as diff or differential) swaplet is an agreement in which
one party makes floating rate payments based on the foreign forward rate while
the other makes fixed or floating payments based on the domestic interest rates.
Here we consider quanto swaplets in which the received floating leg coupons
(in domestic currency) are computed using foreign forward rates.
The value of a standard swaplet (in which all the currencies are domestic) can
be found by using Egs. (7.2.90) and (7.2.74) to write:
Caplet(tg) — Floorlet(to)
= PtDF (19, 1) EY [max(F{ — K, 0) — max(K — F{, 0)]
= PtDF (19, ) EY [F{ — K]
= PtDF (g, 1) {EY [F?] — k)
= PtDF (1o, 1) [ F{ (to, tk—1. tx) — K } (7.2.94)

From Eq. (7.2.94) we can see that Caplet(tg) — Floorlet(tp) is the value of a
swaplet in which the owner pays the fixed rate K and receives the floating rate
F,fl(to, -1, ).

The value of the floating leg payment can be found by setting K = 0 in
Eq. (7.2.94), and is P‘EDFd(to, tk)de(to, th—1, tr).

The value of the floating leg payments in a quanto swap can be found in a
similar manner:

QCaplet(tg) — QFloorlet(tp)
— PtDF (g, 1) EY [max(ka — K,0) —max(K — ka, 0)]
Substituting from Egs. (7.2.79) and (7.2.93):

QCaplet(tg) — QFloorlet(tp)
= PTDF (o, 1) { F/ (to, t—1. 1) exp(a(t—1 — 10)) N1(d1) — K N1(d2)
— F/(to, ti—1. ) N1(—d1) + K N1(—d)}

When K = 0 we have di = 00, N1(d1) = 1 and N1(—d1) = 0, which means that
the value of the floating leg payment is:

FloatLeg(to) = PtDF (1o, tx) F/ (to, te—1, t) exp(a (fe—1 — 10)) (7.2.95)

where as before « = —o 07 px, ¢
Using Eq. (7.2.95) the value of a quanto swaplet with (pay) fixed domestic
rate and (receive) foreign floating rate is:

QSwaplet(to) = PTDF (o, tr) [ F7 (to, tk—1, tt) exp(a(tx—1 — 10)) — K }
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7.3 Foreign exchange derivatives

Here we consider derivatives based on the exchange rate between a domestic
currency and a foreign currency. We will use the convention that quantities re-
lating to the domestic currency will have the superscript d, while those for the
foreign currency will have the superscript f. The notation for the various ex-
change rates is as follows:

e X 5 (¢) is the spot value of one unit of foreign currency in domestic currency
at time ¢

e X g (¢) is the spot value of one unit of foreign currency in base currency at
ume ¢

e X{() is the spot value of one unit of domestic currency in base currency at
time 7

. X(J; (¢, T) is the (time t) forward value of one unit of foreign currency in do-
mestic currency at time 7.

Covered interest arbitrage

If the current spot exchange rate, X 5 (#), is known then using covered interest
arbitrage it is possible to obtain a value for the future spot exchange rate—we
denote this forward exchange rate by Xl‘; (t,T), where T > t.

Let us consider the following two scenarios:

Scenario A

At time 7 an investor deposits one unit of foreign currency which grows
at the (constant) foreign risk free interest rate r/. By time 7 the initial
amount will have increased to 1/DF/ (¢, T) units of foreign currency, where
DF/(t,T) = exp(—r/ (T —1)). The foreign currency is then converted into do-
mestic currency at the time T forward exchange rate X 5 (¢, T), and thus yields

X'[{ (t, T)/DF/ (¢, T) units of domestic currency.

Scenario B .

At time ¢ an investor deposits X 5 () units of domestic currency (the sum is
equivalent to one unit of foreign currency), and this grows at the (constant)
domestic risk free interest rate r¢. At time T the initial sum will have increased
to XL];(I)/DFd(t, T) units of domestic currency, where DF? (7, T) = exp(—r?(T —
).

For no arbitrage to occur the final amount of domestic currency in both sce-
narios must be the same—we have assumed that there is no charge in converting
one currency into another.

We thus have:

X1, T) _ X1 (@)
DFEf, T) DF.(,T)
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which means that the forward exchange rate, at time T is

DE/ (¢, T)

f —_ v/
X;@,T)=X;() DFG.T)

(7.3.1)

7.3.1 FX forward

An FX forward is a contract to exchange a given amount of domestic currency
for an agreed amount of foreign currency at a future time 7. If P/ is the amount
(number of units) of foreign currency, and P is the amount (number of units)
of domestic currency, then the value (in domestic currency) of the FX contract
at time 7 is:

FX4(T) = P/ X} (T) — P¢
The value of the contract at time ¢ is thus:
FX4(t) = {P/ X}, T) — PYYDF (1, T)
where t < T. Substituting for XCJ;(I, T) from Eq. (7.3.1) then gives:

DF/(t,T)

_Ipryf
EFX, () = {P X, (t)DFd(t, )

- Pd}DFd(t, T)

which can be re-expressed as

FX4(t) = PY X} (0)DF/ (1, T) — PYDF (1, T) (7.3.2)
The value of this FX forward contract in base currency is thus

FXp(1) = {P/ X} ()DF/ (1, T) — P'DF* (1, T)} X{
That is,

FXy(t) = P/ X (1)DF/ (1, T) — P'DF' (¢, T)X{ (1) (7.3.3)

where we have used the fact that XZ; (t)Xg (t) = X}{ (t).
An alternative way of expressing Eq. (7.3.3) is as:

FXy(1) = PY{X] ()DF/ (1, T) — KDF'(t, T)X{ (1)} (7.3.4)

where K = P?/P/. In the next section we will see that K, the agreed rate to be
paid for one unit of foreign currency in units of domestic currency, corresponds
to the strike of an FX call option.

7.3.2 European FX option

Foreign exchange options can be priced using the Black—Scholes formula (Gar-
man and Kohlhagen, 1983). There are three processes involved in foreign ex-
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change options and, under the real-world probability measure P, they are:

dBf =+'Bf dt
dX) = XJudi + XJodw?, dw” ~N(O, dr) (7.3.5)
dB¢ = r?B4 ds

where X 5 is the value of one unit of foreign currency in units of domestic cur-

rency, B? is the domestic money account where money grows at the (constant)
risk free rate r¢, B/ is the foreign money account where money grows at the

(constant) risk free rate 7/, and o is the volatility of x/ ;- From a domestic point
of view there are only two assets—the money market account B¢, and the value
of the foreign money market account in domestic currency, B/ X 5 .
From Ito’s product rule in Chapter 2, and using Eq. (2.6.3) with X1 = X‘{
and X, = BY, we have:
d(x)B") = X} B/ {r/ + u}di + X} B o dW?

We will now choose B as the numeraire and obtain the process for Bfo/Bd

using the Ito quotient rule given in Chapter 2. Substituting X1 = B/ X} f and
X7 = B% in Eq. (2.6.8) we obtain:

B/xI\ BI/XxJ :15¢A
d d d d P
d( 5 ): 5 {(r! = r? + p)de} + odw
If we choose the probability measure Q such that:
r! —r?+ ) dr
o

dw? =dw? — (7.3.6)
then (Bf X f; /B%) is a martingale since

odw?

B/X]\ B/X]
Bd ) Bd
Substituting for dW* in Eq. (7.3.5) yields:

F—rd 4 pyde
dX) = X udt + XJodw? — v rU " }
= XJpudi — X (7 =14+ p) de + X)o dW2

$O

dx) = x4 = 7Y dt + X o dW2 (7.3.7)
It can be seen that Eq. (7.3.7) is identical to Eq. (4.4.53) if the following map-
ping is used:

I A (7.3.8)

This means that the above mapping allows us to price European FX puts and
calls with the Black-Scholes formulae given in Egs. (4.4.55) and (4.4.56).



Other financial derivatives 231

FX call

The time ¢ value (in domestic currency) of an FX call to buy one unit of foreign
currency can be found from Eq. (4.4.55) and the substitutions given in (7.3.8).
We have:

Cat) = X (1) exp(—r/ (T — 1)) N(d1) — K exp(—r?(T —1))N(d2) (7.3.9)

1 xJ ) 0 e 1, }
di = Om{log< © >+(r rIWT —1)+ 50 (T -1} (7.3.10)
dp=dy— T —1t (7.3.11)

where K is the strike the rate that has been agreed to pay for one unit of foreign
currency in units of domestic currency, and o is the implied foreign/domestic
currency exchange rate FX option volatility, which may depend on effects such
as time to maturity, volatility smile, etc.

In practice the following, modified version of Eq. (7.3.9) is usually used:

Ca(t) = Pf{XZ;(t) exp(—r/ (T — 1)) N(d1) — K exp(—r*(T — 1)) N(d2)}
(7.3.12)

where P/ is the number of units of foreign currency and all the other symbols
have their previous meanings.

The value Cp(¢) of the call option in base currency can be found by using
Cp(t) = X{ C4(1). From Eq. (7.3.12) we have:

Cp(t) = Pf{xl{(z)zv(dl)DFf(t, T) — KX{(t)N(d2)DF'(t,T)} ~ (7.3.13)

where we have used the fact that XZ(Z)X‘];(I) = Xl{(t), DFf ¢, T) =
exp(—rf (T — 1)) and DF(t, T) = exp(—r?(T — 1)). We can also re-express
the values for dq given in Eq. (7.3.10) as:

f f
X3 () ) + Iog<—DF G T)> + }az(T - t)}

1
dy = |
! o*«/T—t{ og(Kxg(t) DFG. 1)) 2

(7.3.14)
where we have used the fact that

log(DF/ (¢, T)) = —r/(T — 1), log(DF!(t, T)) = —r(T — 1)

f f d f
|og<Xd (t)) _ Iog(X” (t)jfbm) _ Iog( X0 )
K KX%(1) KX4()

We note that the term K X¢ is the strike in units of base currency—that is, the
amount that has been agreed to pay for one unit of foreign currency in units of
base currency.

and
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In the case when N (d1) = N(d2) = 1 (i.e., there is no uncertainty) Eq. (7.3.13)
becomes:

Cy(t) = PT{X] (®)DF/ (1, T) — KX{()DF(¢, T))
which is the same as that already given in Eq. (7.3.4) for the FX forward.

FX put
The time ¢ value of the corresponding put in units of base currency is:

Py(t) = P/ {=X] ()DF/ (¢, T)N(=dy) + K X{ (1) DF(¢t, T)N (—d2)}
(7.3.15)

where the symbols have the same meanings as for the FX call.

7.4 Credit derivatives

Credit derivatives take into account the fact that a counterparty may not honor
(for reasons of bankruptcy, etc.) the obligations set out in a given financial con-
tract. In order to obtain the time ¢ value of these derivatives it is necessary to
determine the probability that the counterparty (and thus the contract) will sur-
vive until some future time T > t. Here we will denote the survival probability
between times ¢t and T by S(¢, T), and we compute its value from the hazard
rate.

The hazard rate

As previously mentioned the survival probability between times ¢ and T, where
T > t, is denoted by S(¢, T). This means that the probability of default between
times ¢ and T is:
Pyes(t, T) =1—8@,T)
and the probability of default, as seen from time 7, between times 71 and 7> is:
Puef(t, T1, T2) = S(t, T1) — S(t, T2), T2>T (7.4.1)
The time ¢ discrete hazard rate between times T and T + AT, denoted by
H(@, T, T + AT) is defined by:
1 Pyes(t, T, T 4+ AT)
AT S(t, T + AT)
1S4, T)—S@t, T+ AT)
AT S, T+ AT)

H(t,T,T + AT) =

which means that
S, T+ AT)— S, T) 1

Ht, T,T + AT) =
( +AT) AT S(t, T + AT)

(7.4.2)
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AsAT — O, H(t, T, T+ AT) — h(t, T), where h(t, T) is termed the continuous
hazard rate between times ¢t and T.
We observe that as AT — 0 Eq. (7.4.2) becomes:

s, T) 1

ht, T) = — 3T SG.T) (7.4.3)
Now Eq. (7.4.3) can be re-expressed as:
ht.s) = _BS(I, s) a{In(S(, 5))} _ _3{|n(S(l, SN} (7.4.4)
as aS(t, s) as
where s > r, and we have used:
1 _ _3{|n(S(t, 7))}
S, T) as(t, T)

Integrating Eq. (7.4.4) yields:

T T
/ h(t. 5)ds = —/ d{In(s(. )}

s=t s=t

= —{In(s(t, 7)) — In(S(r, 1))}
= —In(S(, T)) (7:43)

where we have used S(¢,¢) = 1and In(S(z, t)) = 0.
So using Eq. (7.4.5) the survival probability can be expressed as:

T
St T)= exp{—/ h(t,s) ds} (7.4.6)
s=t
or
S(t,T) =exp{l(t,T)} (7.4.7)

where I(t, T) is the cummulative hazard rate from time ¢ to time 7.
It is usual to approximate I (z, T) as follows:

k
16, T) ~ 1 10) = ) h(ti-1. (@ = 1i-1) (7.4.8)
i=1

where 19 = t, 1y, = T, and the following section gives details on how to estimate
h(t;_1, t) from market observables.

One way of representing the hazard rates is to use a hazard rate curve which
is defined as:

{to, 1(t0. 1)}, i=0,,....n (7.4.9)
If we further define o = r = 0and ¢, = T, then Eq. (7.4.9) becomes:
{0,0}, {r1, 10, r))}, {r2. 1, 1)}, ..., {tu, 1(0, 1)} (7.4.10)

where we have used the fact that 7 (g, tg) = 1(0,0) = 0.
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Estimating the hazard rate from market observables

From Eq. (7.2.10) we know that the time ¢ forward rate between times 77 and
T> is given by:

F(t. Ty Ty) = 1 {DF(t, T1) 1}

— 7.4.11
T> — Ty | DF(t, T) ( )

where DF(t, T1) and DF(z, T>) are the prices of the nondefaultable zero coupon
bonds with maturities 71 and 7>, respectively.
Letting 71 = T and T> = T + AT we obtain:

F(@t, T, T+ AT) = A—j}"{% —1} (7.4.12)
which can be re-expressed as
F(t,T,T + AT)
_ DF(, T+ AT) - DF@, T) 1 (413
AT DE@, T + AT)
If AT - Othen F(t,T,T + AT) — f(¢t,T) and from Eq. (7.4.13) we obtain:
oDF(t, T 1
f@.1) =~ B(T )DF(t, 7
__ODF(t, T) IN(DF(, ) 7414)

oT oDF(t,T)
Using Eq. (7.4.14) the instantaneous forward rate computed using nondefault-
able zero coupon bond prices is:
_In(DE(, T))
oT

and the corresponding instantaneous forward rate computed from defaultable
zero coupon bond prices is:

£, T) = (7.4.15)

In(DE(z, T))
AT

Taking the survival probability S(z, T) to be the ratio of the prices of defaultable
and nondefaultable zero coupon bonds:

f@,T)= (7.4.16)

_DFG.T)
ST =B, 1) (7.4.17)
Now from Egs. (7.4.15) and (7.4.16) we have:
F In(DF(t, T) — DF(t, T
7. T) - f, T) = —DEC ;T (t, 7))
9 DE@t, T)
AT '”{m} (7.4.18)
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so from Egs. (7.4.18) and (7.4.17):

f@, Ty — f(t,T)= _8% In(S(t, 7)) (7.4.19)
Combining Egs. (7.4.19) and (7.4.4) we have:
h(t, T)= f(t,T)— f(t,T) (7.4.20)

This means that we can compute the hazard rate h(¢, T) by taking the differ-
ence between the instantaneous forward rates computed using defaultable and
nondefaultable zero coupon bonds.

7.4.1 Defaultable bond

For a defaultable bond we need to take into account the fact that the bond issuer
may default, that is cease to make the bond coupon payments.
The time ¢ value of a defaultable bond is:

B(1) = PDE(, ty) principal
m
+ Z C;DF(,t;) coupons
j=1

+ PRY DF(t,1)){S(t.1j-1) — S(t. 1)} recovery value
j=1

where 1, is the maturity of the bond, P is the principal, C; is the value of
the jth coupon, R is the recovery rate, S(z, t;) is the probability that the bond
will survive until time #;, and the zero coupon defaultable bond prices are de-
fined by DF(t, t,y) = S(t, tn)DE(t, t,,) and DF(t, t;) = DF(t, t;)S(t, t;). The term
{S(t,1j—1) — S(t,1j)} is the probability that the bond will default between times
tj—1 and ¢ je

7.4.2 Credit default swap

A Credit Default Swap (CDS) is a contract between two counterparties in which
one (say A) makes periodic fixed payments to the other (say B) in order to obtain
protection on the default of a reference credit. In the event of default, B pays
A the default payment of 1 — R, where R is the recovery rate, and the contract
ceases.

The time ¢ value of the credit default swap to A, the purchaser of the insur-
ance, is:

CDS(t) = — Z Cjﬁ(t, t) coupons
j=1

+P(1—R)Y_ DF(t,t){S(t.tj-1) — S(t.1j)} recovery value
j=1
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where the symbols have the same meanings as for the defaultable bond.

7.4.3 Total return swap

A Total Return Swap (TRS) is a synthetic replication of the return of a reference
asset (bond) B. The receiver of the TRS receives the coupon payments of the
reference asset during the life of the swap in return for making periodic coupon
payments at the risk-free floating rate plus an agreed margin. In the event of
default, the receiver makes a default payment to the payer equal to the agreed
initial price of the reference asset less the price at default, and the transaction
terminates. If there is no default then the difference between the initial asset
(bond) price Bgp and the price at maturity B(#,) is settled between the payer and
the receiver, with the receiver paying (receiving) if the asset (bond) is worth less
(more) at maturity. The maturity of the reference asset (bond) may be longer
than the maturity ¢, of the swap.

To the receiver of the reference asset coupons a TRS has value TRS,, which is
given by:

TRS, = total bond return — total floating coupon payments of the swap

where total bond return is given by:

total bond return = total bond fixed coupons over the duration of the
TRS+increase in the bond value at maturity of the TRS—default payment,
if the bond defaults over the duration of the TRS

The value of TRS, at time ¢ is:

TRS, (1)

n
=C Z DF(t,t;) fixed reference bond payments
t

i=h
B(t,,) — Bo | —
+ P { % }DF(t, tm) Increase in value of reference bond
0
Im o
— Z C;DF(, 1) floating payments of swap
i=h at LIBOR + margin

tm

—P(L-R) Z DF(t, 1))

lj =1
x {S(t,tj_1) — S(1,1))} bond default payments
and the reference bond satisfies:

B(tg) =1

IR
B(tw) = DF(iy, 1R)|t + C ) DF(tm, 1))t

tj =Im
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IR
+ R Y DF(ty. t))t{S(t. tj-1) = S(tm. 1))

tj=tm

All symbols already defined in this chapter have their previous meanings. In
addition,

P - the swap principal
C - the fixed coupon of the reference bond
tm — the swap maturity
tg — the maturity of the reference bond B
Bo - the initial price of the reference bond
B(t,,) - the final price of the reference bond (at swap maturity)
C; — the floating coupon payment at time ¢;. It is computed as:

C;= P{F(l, tj-1,tj) +marginTRS}{tj —tj-1}

DF(t1, t2)|t — the discount factor between times 1 and #, (as seen from time ¢)
is:
D(t, 1)

DE(t1, )|t =
(t1, 12)| D10

DF(r1, t2)|t — the defaultable discount factor between times 71 and 7, (as seen
from time t) is:
DF(1,13) _ DF(t,12) S(t, 12)

DEFE(t1, to)|t = — -
(2l = S i) = DEG. 1) SG. 1)

DF(t, 11) - the defaultable discount factor between times ¢ and #1 is:

DF(t, t1) = DE(t, t1)S(t, 11)

7.5 Equity derivatives

7.5.1 Total return swap

An equity total return swap consists of an equity leg (whose coupons are de-
termined by the change in value of the equity) and a floating leg which pays
according to the forwards of the floating interest rate.

Here we ignore the effect of equity dividends and also assume that the cur-
rencies for both the floating and equity legs of the swap are the same.

Equity leg

Let the equity leg be specified by coupon payments at times #,k = 1,..., N,,
where 1, = 1 — tx_1. If, at time ¢ the next coupon payment occurs at f; then the
value of the equity leg is:
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_ | S® ' '
Vo(t) = {m — L(tl—l)}DF(l‘, t)
N,
- S@t) S@t)
" k:Xi}rl{ DF(t,ty) DF(t, tr_1) }DF(t’ ) (7.5.1)

where S(7) is the equity value at current time 7, L(t;_1) is the reset value of
the equity at time #;_1, and DF(¢, ;) is the discount factor between times ¢ and
fr, tr > t. It can be seen that the value of the equity S(¢1) at time 17 > 1 is
obtained by inflating the current value, S(r) by the reciprocal of the discount
factor, DF(t, t1); that is, S(t1) = S(t)/DEFE(t, t1).

Floating leg

Let the floating leg have coupon payments at times #,,,m = 1,..., Ny, where
Tf =ty — ty—1. If the next coupon is at time #;, then the value of the floating leg
is:

Vit) = L(tj,l){R(t,»,l) + @}ty DF(, 1))

: _S@
- Z DE. tn-1) {F(t, tn-1, tm) + @)1 DF(t, 1) (7.5.2)

where @ is the margin added to the forward rate used to compute coupons,
F(t, tm—1, ty) is the time 7 forward rate between times #,,_1 and #,,, and R(t;_1)
is the reset rate that is used between times #;_1 and ; to compute the coupon
payment at time ;.

Payer equity total return swap

The owner of a payer equity TRS pays the equity leg coupons, and thus at time
t the swap has value:

ETRS,(t) = Vf(t) — V. (1) (7.5.3)

The owner of a receiver equity TRS receives the equity leg coupons, and the
value of the swap is:

ETRS,(t) = —V;(t) + V. (1) (7.5.4)
We will now compute an expression for the value of a payer equity swap. Since
1 DF(I’ tmfl)
F(t, ty_1,tn) = -1
€, b1 m) Im _tm—l< DF(I, tm)
we have:
DF(t7 tm—l)

TrF(t, 1, tm) = (7.5.5)

DF(I’ tm)
Substituting Eq. (7.5.5) into Eq. (7.5.2) and using Eq. (7.5.3) we obtain:
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Ny
ETRS,(t) = )

S(t)DEF(t, ty,) { DEF(t, ty,—1) B 1}
m=j+1

DF(tstm—l) DF(lstm)

Ny

S(t)
+ Z DR 1)q>rfDF(t,tm)

+ L(tj—l)(R(tj—l) + @)ty DEF(t, 1))
N
¢ DF(t, t) }
_ syl 2k
k;rl (t){ DEF(t, ty—1)

B { S(t)

m — L([i_]_)}DF(l‘, t;) (756)

If Ne = Ny = N, and . = 7y = 1, then all the equity and float leg payments
coincide and Eq. (7.5.6) simplifies to:

N
. DEF(t, t)
ETRSP([) = S(t) Z m@fDF(t,[k)
k=j+1
+ L(R + ®)tDF(t,t;) — {& —L}DF(t t;) (7.5.7)
PR T DEG L) ' o

Thus, if the spread @ is zero the value of the payer equity TRS is:

ETRS,(t) = L(t;_1)R(t;_1)T DF(, 1;)

_{ S(t)

m —L([j_l)}DF(t,tj) (7.5.8)

In these circumstances the value of the equity TRS at time ¢ only depends on the
current swaplet, which extends from 7;_1 to t;, where ;1 <1 < t;.

Equity swap

A special case of an equity TRS is an equity swap. Here one party (say A) pays
the total returns on a given equity and receives (from party B) the returns on
another equity, together with the interest on the net difference of the last reset
notional of the two equity assets. An equity swap, ESWP, can be constructed
from a structured deal consisting of a long position in one equity TRS and a
short position in another equity TRS, with the same coupon payment dates and
currency. If the individual equity TRS deals are denoted by ETRS}, and ETRS?,,
then the value of the equity swap at time 7 is:

ESWP(t) = ETRS},(t) — ETRS5(1) (7.5.9)
Substituting Eq. (7.5.8) into Eq. (7.5.9) we have:
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Sl
ESWP(t) = LY(t;_1)R(t;_1)TDF(t, 1)) — {er) - Ll(tjl)}DF(t, 0
()

- {Lz(tj_l)R(tj_l)‘cDF(t, 1)

S2(t) )
- {W -2 |DFa.1p |

so the value of the equity swap to party A is:
RO
DEF(,1t))
equity 1 returns paid by A
+ (L*tj-1) — L?(tj-1)) R(tj-1)TDF(1, 1))
interest on difference of reset notionals paid by B
Q) 2
——— — L°(tj_1) { DF(t, t;
+{DF(t,lj) (] l)} ( ])
equity 2 returns paid by B

ESWP(t) = —{ - Ll(tj_l)}DF(t, 1)

7.5.2 Equity quantos

The Black—Scholes equation can also be used to price equity quanto options
(Reiner (1992)). We have the following processes:

ds’ = pyS dr + 0,87 dWF
dX) =, x1 dt + o, x5 dw?
dB/ =r/Bf dst

dB¢ = r?B4 ds

(7.5.10)

Here S/ is the price (in foreign currency units) of the foreign stock. BY is the
domestic money market account where money grows at the (constant) risk free
interest rate r¢. B/ is the foreign money market account where money grows at
the (constant) risk free interest rate r/. Xj is the foreign exchange rate, that is
the value of one unit of foreign currency in units of domestic currency.

The tradables for the domestic investor are the foreign money market account
priced in domestic currency units (that is, X 5 B/) and the foreign stock priced

in domestic currency units, X 5 st

We know from Eq. (4.4.30) that there is a probability measure (the risk neu-
tral measure) Q under which the relative price of domestic tradables such as
equities are martingales. Also we established that under Q the process followed
by these tradables is GBM with constant drift 7. So the process for the domestic
equity S¢ is:

ds? = s%4dt + o857 dw?@ (7.5.11)
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Similarly the process followed by the price of a foreign equity S/ under the
foreign risk neutral measure T is:

ds/ = s/r/ dt 4+ 0,87 dWE (7.5.12)

However, the process followed by the price of a foreign equity S/ under the
domestic risk neutal measure Q is:

ds’ =8/ (r/ + &) dt + 0,57 dW2 (7.5.13)

where « (the guanto adjustment) is to be determined.
We will now derive the value for o, and then use this to price both quanto
forwards and quanto options.

Determining the quanto adjustment, a

Since X 5 B/ and X 5 S/ are domestic tradables it means that the relative prices
X;;Bf/Bd and X(f ST /B4 are also martingales under the probability measure Q
Now since X;;Bf/Bd is a martingale,

fnf fnf

X'B X’B

d< d ):ox d— _ qwg (7.5.14)
B4 B4 *

We will start by writing X‘];Bf/Bd as (Sf/Bf)(XLJ;Bf/Bd). Using the Ito
product rule we have:

Bf B4

X)B/ (s/\ s/ (x)B' SIN (X5 B

Substituting for d(XZ;Bf/Bd) from Eq. (7.5.14) into Eq. (7.5.15) gives:

{sf XjBf}

st xIBfy xIBf /sf s/ x/Bf
i B P R Y (B PPl R 174
B/ Bd Bd Bf B/ Bd x

N

eArE) 251

Using the Ito quotient rule (see Section 1.7.2) with one source of randomness,
Egs. (7.5.13) and (7.5.10) yield:

s/ s/ s/
o)y == Il 0
d<Bf) = Bfotdt+ BfanWS (7.5.17)

We now consider the term E[d(S//B/) d(XjBf/Bd)] in Eq. (7.5.16):
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[o(5) (5]

s/ sf x!Bf
_E|:B {adt—l— oSdW} 4 dWxQ]

f f
X B/ s/ st x/ B/
0 d—

— fozdto*x [dWE] + 7 md

Since E[dWxQ] = 0and E[dWXQ dWSQ] = pys dt

sf\ /x!pd st xIBf
E|:d<ﬁ> d(#)} = EdB—daszpxs dr (7.5.18)

os0.E [dWXQ dWsQ]

Using the values of d(S//B7) and E[d(S//B/) d(XZ; B4/B7)] from Egs. (7.5.17)
and (7.5.18) in Eq. (7.5.16) results in:

s/ X]B/\ _ x)BS ST Xa B/ s/ awe
57 g | = gT pr Yt g o
rsf eyl
XS S/ X4 B
+ oy Zd dWxQ-i-E%—dUsz,Oxsdl
Rearranging we obtain:
fof fof
XS XS
{ gd }: 2(1 {a+050xpxs}dt
feof
XS
(0, dWE + o dW2) (7.5.19)

We already mentioned that X c}; BY /B¢ is a martingale under probability measure
Q so the drift term in Eq. (7.5.19) must be zero. This means that:

Q& = —050x Pxs

where oy is volatility of the foreign equity, oy is volatility of the foreign exchange
rate and p,; is the correlation between dW, and dW,.
Equation (7.5.13) can then be written as:

dsf = {r! — o500} ST dt + 0,87 dW2 (7.5.20)

Equity quanto forward

The (time t) value of a domestic equity forward contract with maturity T is:
F(t) = DF'(t, T){s%t, T) — K9}

where K¢ is the strike in domestic currency and ¢ (z, T') is the domestic forward
price.

To value an equity quanto forward contract we need to know the forward
price of the foreign equity S-.
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It can be seen from Egs. (4.4.31), (4.4.32) and (7.5.20) that this forward price
is:

§T@, Ty = 87 (@) exp((r! — 0405 px5) (T — 1)) (7.5.21)
where S/ (1) is the current price of the foreign equity and 7T is the maturity of
the forward.

In an equity quanto forward the payoff is in foreign currency but it is con-

verted to domestic currency at a predetermined exchange rate (which we denote
here by X). The value equity quanto forward is thus:

QF(t) = DFY(t, )| (1, T) — KT} X

where X is the prespecified exchange rate, K/ is the strike in units of foreign
currency, and S/ (¢, T) is the foreign forward equity price.

Equity quanto option

In Chapter 4 Egs. (4.4.58) and (4.4.59) expressed the value of vanilla European
put and call options as:

Call(t) = exp(—r*(T — 0)){S*(t, T)N1(d1) — EN1(d2)}
Put(t) = exp(—r?(T — 1)){=$%(t, T)N1(~d1) + EN1(—dp)}
_log(s?(t, T)/EY) + (6%/2)1

91 o ST =1)
4 1098, T)/EY) — (0?/2)(T —1)
2= o/ T =1

where we have used superscripts to denote the domestic currency, and the cur-
rent equity forward price with maturity T is:

§U, Ty = STy exp(r!(T — 1)), < T
The value of an equity quanto option can be found by substituting S/ for §¢
in the above expression. We obtain:
QCall(t) = exp(—r(T — )){ S/ (t, T)N1(dr) — E/ N1(d2)} X
QPut(t) = exp(—r*(T — 0)){=S$7 (t, T)N1(=d1) + Ef N1(=d2)} X
o log(S/ (¢, T)/EY) + (02/2)7
' o /(T —1)
4, 109 @, TY/ET) — (/2T 1)
2= o (T —1)

where E/ is the strike in foreign currency units, S/ (z, T) is the foreign equity
forward price (obtained from Eq. (7.5.21)) and X is the prespecified exchange
rate (number of units of domestic currency per foreign currency unit).
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8.1 Introduction

Ci#t portfolio pricing application

This section provides details concerning a C# application, created using Mi-
crosoft Visual Studio 2005 (version 2.0), which values the deals contained in a
set of user specified portfolios. It has been included to illustrate how the pricing
functions discussed in the previous sections of the book can be incorporated
into the kind of software that may be found in a bank, financial institution, or
educational establishment. Here we provide code excerpts from the application;
however, additional source code is available from the publisher’s website.
The main features of this application are as follows:

e User defined portfolios of deals can be valued without the need to compile
either C or C# programs. This means that the application is easy to use and is
accessible to those who may possess business or financial knowledge, but do
not have the technical skills required to write computer code.

e This application only deals with equity, foreign exchange derivatives—the ex-
ception is the inclusion of an interest rate forward rate trade. However, the
software can be easily extended to include new deal types.

e All input/output to the application is by means of text files which can be easily
edited.

e The software is modular and consists of a main C# program which calls
both a compiled C# Deal Li brary and also a compiled C Anal ytics_
Mat hLi b. It should be mentioned that in many cases the C# deal class calls
the C pricing function with reasonable values for various parameters. For
example, the number of time steps in a binomial lattice is set internally and
cannot be altered by the user. Also the initial random seed for all Monte
Carlo simulation is set internally to the same number (111) and this cannot
be changed by the user.

We will now provide a brief overview of each component part of the applica-
tion; more detail will be given later when specific deal classes are described.

8.1.1 The C# code

The application is defined by the C# solution Port f ol i oVal uer. sl n, and
the projects Deal Li brary. csproj and PortfolioVal uer.csproj.
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The project Port folioVal uer.csproj is the driver for the application
and contains the C# code given in Code excerpt 8.1. The user interface is simply
a windows form with a button to start the application, and if required this could
easily be customized by the reader. Once the application has been started, it first
loads a market data file and then reads a portfolio configuration file to determine
which portfolios are to be valued. Valuation then proceeds for all the deals
contained in the portfolio files and the results are written to the appropriate
portfolio results file.

The project Deal Li brary. csproj is concerned with the valuation of the
available trades in the application. A separate C# deal class, derived from a
single abstract base class BaseDeal , is provided for each trade type. The
BaseDeal class provides abstract methods such as Price() and Vali -
dat e(), which need to be implemented in deal classes. We will be primarily
concerned with the method Pri ce(), which is used to return the current value
of a trade. Deal valuation may either be performed completely in C# code or
by calling appropriate C routines in the Anal yti cs_Mat hLi b dynamic link
library—this contains C pricing functions discussed in previous sections of the
book and also utilities (such as random number generators), etc.

Code excerpt 8.2 provides the declaration of BaseDeal and illustrates how
the deal class Equi t yOpti onDeal implements the necessary methods; the
complete C# code for a range of deals is provided later.

It can be seen that the deal class needs to specify the attributes which it will
present to the user, and in addition access market data such as the equity price.

8.1.2 The text files

The application is driven by a porifolio configuration file and also a number of
portfolio definition files, each of which is in plain text format and thus can easily
be edited by the user. The portfolio configuration file specifies the names of the
portfolio files that are to be valued, and each portfolio definition file provides
the details of the trades contained in a given portfolio. In addition there is a
market data file (also in text format) which provides the market data required
to value the trades.

A portfolio configuration file and also two portfolio definition files are given
in Exhibit 8.1. It can be seen that comments may be included in the portfolio
definition files; these are useful for documenting the deals contained in the port-
folio. It is also possible to ignore a single trade by using a // at the beginning
of a line. Complete sections of a portfolio definition file can also be ignored by
using the C style comment syntax /**/.

The syntax of each deal entry in the Portfolio Definition file is as follows:

Tr ade=<Deal O ass>, Ref erence=<Descri pti ve Text>, Deal O assPar anml=<Val uel>, . . . ,

Deal C assPar amN=<Val ueN>

Each deal line must begin with an assignment to the Tr ade attribute using
the syntax Tr ade=<Deal Cl ass>, where <Deal O ass> is the name of the
C# class used to represent the given deal—i.e., Equi t yOpt i onDeal for an
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nanespace PortfolioVal uer

{

public partial class Fornl : Form

public Forml()

{
InitializeConponent();

private void buttonl_dick(object sender, EventArgs e)

St reanReader sr_config;
StreanReader sr_tests;
StreamWiter sw

MessageBox. Show( " Conputi ng val ue of portfolios");
string AppDir = Path. GetDirectoryName(Application. Execut abl ePath);
string config_filename = AppDir + "\\Portfolios.txt";
string MD_filenane = AppDir + "\\MarketData.txt";
try {
BaseDeal . LoadMar ket Dat a( MD_fi | enane) ;
/'l Load and execute the specified tests
sr_config = new StreanReader (config_filenane);
string assenbly_name = AppDir + "\\Deal Library.dlI";
Assenbly Assm = Assenbly. LoadFron{assenbl y_nane) ;
Type[] LoadedTypes = Assm Get Types();
string test_file;
int bl ock_comrent _depth = 0;
doubl e port_val = 0.0;
string BaseCurrency = BaseDeal . Get BaseCurrency();
while ((test_file = sr_config.ReadLine()) != null)
{
sr_tests = new StreanReader (test_file + ".txt");
string current_test;
string sdate = DateTi me. Now. ToString();
string results_filename = AppDir + "\\" + test_file + "results.txt";
bool append = fal se;
sw = new StreanmWiter(results_filenane, append, Encoding.ASCII);
sw. WiteLine(" ;
sw. WiteLine(test_file + " in units of
sw. WiteLine(test_file +" 1" +sdate);
sw. WiteLine(" N
port_val = 0.0;
bl ock_comment _depth = 0;
while ((current_test = sr_tests.ReadLine()) != null) {

+ BaseCurrency);

bl ock_comment _depth += ((current_test.Length > 1)_
& (current_test.Substring(0,2) == "/*")) ? 1:0;

bl ock_comment _depth -= ((current_test.Length > 1)_
& (current_test.Substring(0, 2) == "*/")) ? 1: O;

try
deal _value = acl.Price(); // return the value of the deal

catch (Exception ex)
{
sr_config. Cose();
sw. Cl ose();
sr_tests.dose();
t hrow new Excepti on(ex. Message);

port_val += deal _value; // add to the value to the portfolio
string str_deal _val = deal _val ue. ToString(" 0.0000;-0.0000; 0.0000");
sw. WitelLine(str_deal _val + "=" + acl.Reference+","+acl. Name());

}

} /1 end of tests for a given portfolio

Code excerpt 8.1 The main driver for the C# portfolio valuer application. After reading
the market data file, it prices the trades contained in the portfolio definition files. The
total value of each portfolio is also computed.
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public abstract class BaseDeal /1 The declaration for BaseDeal
public abstract string Name();
public abstract double Price();
protected abstract void Validate();
public string Reference { get { return Reference_; } set { Reference_ = value; } }

protected string Reference_;

public string BaseCurrency {get {

public class EquityOptionDeal: BaseDeal

{
public string Equity { get { return EquityNane_;
public int NunmberCfUnits { get { return NumberOfUnits_; }_
set { NumberOfUnits_ = value; } }
public double Tinme_To_Expiry { get { return Tinme_To_Expiry_;
set { Time_To_Expiry_ = value; } }

public override string Nane() 11

{
}

public override double Price() 11

i npl enent nethod Nane()

return "Equity Option";

inpl enent nethod Price()
Val i date();

doubl e val =0. 0;
doubl e[] greeks =
double sO = 0.0;
doubl e fx_spot = 0.0;
try

{

new doubl e[ 6] ;

sO = Market DataDi ctionaries. Equi t yTabl e[ Equi t yNane_] . Spot ;

/1 get current equity price

/1 The declaration for

} set { EquityNane_ =

return MarketDataDi ctionaries. Get BaseCurrency(); }}

Equi t yOpt i onDeal

value; } }

o

Currency_ = Market DataDi ctionaries. Equi tyTabl e[ Equi t yName_] . Currency; _

/1 get equity volatility (assumed constant)

Di vi dendYi el d_ = Market Dat aDi ctionaries. EquityTabl e[ Equi tyNane_].Di vYield; _

/'l get equity dividend yield
}
catch
throw new Exception(Pre_string_ + "--- No Market Data supplied for " + EquityNane_);
}
val *= fx_spot * NumberOfUnits_; // return value in base currency
return val;
}
protected override void Validate() I/ inplelement nmethod Validate()
{
Pre_string_ = Name() + " (" + Reference_ +")";
if (Time_To_Expiry_ < 0.0)
throw new Exception(Pre_string_ + "--- Time to expiry cannot be |less than zero
years");
}
if (Strike_ < 0.0)
{
throw new Exception(Pre_string_ + "--- The strike cannot be | ess than zero");
}
}

Code excerpt 8.2 C# code showing the declaration of class BaseDeal and illustrating the

implementation of methods Price(), Validate(), and Name().
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/1 wite the portfolio value
sw. WiteLine(" "),

string str_port_val = port_val.ToString(" 0.00;-0.00; 0.00");
sw. WitelLine("TOTAL VALUE = " + str_port_val + " " + BaseCurrency + " ");
sw. WiteLine(" ")

sw. O ose();

sr_tests.d ose();

MessageBox. Show( "Have conpl eted conputing portfolio values");
sr_config. C ose();
/1 Clear the dictionaries
BaseDeal . CurrencyTabl e. O ear();
BaseDeal . Equi tyTabl e. O ear();
BaseDeal . BondTabl e. Cl ear () ;
BaseDeal . Correl ati onTabl e. G ear();
}

catch (Exception ex)

MessageBox. Show( " Conput ati on aborted : exception : " + ex.Message);

}

Code excerpt 8.2 (Continued).

equity option. The other deal attributes are the public properties of Deal -
Cl ass and can be in any order. Deal valuation proceeds by first construct-
ing an empty class object of type Deal Cl ass. The application then con-
verts the string representation of the deal attribute values to the types ex-
pected by the Deal O ass, and assignment to the deal object occurs. Once
the deal object has been populated with the required trade data, the deal’s
Price() method is run. This retrieves the required market data, computes
the deal value, and returns this to the application for output to the portfolio
results file. All deals have the Reference attribute which is used for the pur-
poses of identification. The deal reference is a description (or alphanumeric
code) assigned to the trade, for instance Ref er ence=EQ Laser Conm 1001
or Ref erence=Tech- 10008_GCeneri c. The portfolio results files contain
both the value and reference for each deal which has been valued.

The portfolio driver file

EQ I nvest nent s
Broad- | nvest nent s

Portfolio definition file: EQ-investments

/'l EQInvestnments : Only contains equities
11
Trade=Equi t yOpti onDeal , Ref er ence=EQ Laser Comm 1001, Equi t y=Laser Conm Vol atility=0.1, _
Strike=95.0, Ti me_To_Expi ry=1. 5, Opti onType=Put, Exer ci seStyl e=Eur opean

Trade=Equi t yOpt i onDeal , Ref er ence=EQ WebComm 1004A, Equi t y=WebConm Vol atility=0.1, _
Strike=95.0, Ti me_To_Expi ry=1. 0, Opti onType=Cal | , Exer ci seSt y| e=Eur opean

Trade=Equi t yOpt i onDeal , Ref er ence=EQ Laser Comm 1004, Equi t y=Laser Conm Vol atility=0.1, _
Strike=95.0, Ti me_To_Expi ry=1. 0, Opti onType=Cal | , Exer ci seStyl e=Aneri can
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Trade=TwoEqui t yOpt i onDeal , Ref er ence=EQ ConpukKal c- 1005, Equi t y1=Nobi | e- Tech, _
Equi t y2=ConpuKal c, Vol atility1=0.2, Vol atility2=0.2, Ri skFreeRate=0.1, Strike=44.0, _
Ti me_To_Expi ry=0. 8, Opti onType=Cal | , M nMax=M ni num Exer ci seSt yl e=Eur opean

Trade=TwoEqui t yOpt i onDeal , Ref er ence=EQ Mobi | eTech| ConpuKal c- 1006, Equi t y1=Nbbi | e- Tech, _
Equi t y2=ConpuKal c, Vol atility1=0.2, Vol atility2=0.2, R skFreeRate=0.1, Strike=94.0, _

Ti me_To_Expi ry=0. 8, Opti onType=Cal | , M nMax=Maxi mum Exer ci seSt yl e=Eur opean

Trade=Thr eeEqui t yOpt i onDeal , Ref er ence=Tech- 10001, Equi t yl=Laser Comm Equi t y2=Tel Conm _
Equi t y3=Snart Wb, Vol atilityl1=0.2,Volatility2=0.2,Volatility3=0.2, Nunber O Uni t s=100, _
Stri ke=100. 0, Ti me_To_Expi ry=1. 0, Opti onType=Put, M nMax=Maxi mum Mont eCar | 0=No

Trade=Generi cEqui t yBasket Opti onDeal , Ref er ence=Tech- 10008_Generic, Vol atilities=0.2%. 290. 2, _
Equi ti es=Laser CommPael Cormi/Bmar t Web, Nunber Of Uni t s=100, _

Stri ke=100. 0, Ti ne_To_Expi ry=1. 0, Opti onType=Cal | , M nMax=Maxi mum Mont eCar | o=Yes

Tr ade=Four Equi t yOpt i onDeal , Ref er ence=Dri nks- 20001, Equi t y1=Dri nks- 4U, Equi t y2=Bever age- Ltd, _
Equi t y3=H2O Lt d, Equi t y4=Fi ne- W nes- Ltd, Vol atility1=0.2, Vol atility2=0.2, Volatility3=0.2, _
Vol atility4=0.2, Nunber & Uni t s=100, Stri ke=100. 0, _

Ti me_To_Expi ry=1. 0, Opti onType=Cal | , M nMax=Maxi num Mont eCar | o=No

Tr ade=DownQut Equi t yOpt i onDeal , Ref er ence=JPCA 111, Equi t y=H2O- Lt d, Vol ati | i ty=0. 2, Stri ke=100.0, _
Time_To_Expiry=1.0, Barrier_Level =90. 0, Opti onType=Cal |

Tr ade=Doubl eKnockQut Cal | Equi t yOpt i onDeal , Ref er ence=JPCAPP_115, Equi t y=Laser Conm Vol atility=0. 2,
Strike=100.0, Ti me_To_Expi ry=1. 0, Lower _Barri er_Level =90. 0, Upper _Barri er_Level =340.0

Portfolio definition file: broad-investments

In the C derivative pricing functions developed in the earlier part of this book,
all the deal information such as asset price, risk free interest rate, etc. was passed
explicitly to the pricing function.

For instance, let us consider the pricing of the simple EquityQOpti on,
Ref er ence=EQ WebComm 1004A, which is specified in Exhibit 8.1. The en-
try (which we will refer to as Ej in the portfolio definition file EQ-investments)
is:

Trade=Equi t yOpt i onDeal , Ref er ence=EQ WebConm 1004A, Equi t y=WWbComm Vol ati | i ty=0.1, _
Strike=95.0, Ti me_To_Expi ry=1. 0, Opti onType=Cal | , Exer ci seSt yl e=Eur opean

The reason for the inclusion of the Vol ati | ity attribute will be discussed
later.

If we explicitly passed all the information required by the underlying C func-
tion bl ack_schol es then the form of the required entry (referred to here as
E2) would be:

Tr ade=Equi t yOpt i onDeal , Ref er ence=EQ WebComm 1004A, Equi t y=WebConm Vol atility=0.1, _
Stri ke=95.0, Ti me_To_Expi ry=1. 5, Opti onType=Put , Exer ci seSt yl e=Eur opean, Equi t ySpot =100, _
FXEqui t yCurr ency=0. 5565, Ri skFr eeRat e=0. 1, Di vi dendYi el d=0. 05

The reason that E; does not require the extra four deal attributes
Equi t ySpot =100, FXEqui t yCur r ency=0. 5565, Ri skFr eeRat e=0. 1,
Di vi dendYi el d=0. 05 is that these are stored in a market data dictionar-
ies object and are accessed by the C# class Equi t yOpt i onDeal before the C
function bl ack_schol es is called.

The market data dictionaries are populated as soon as the application starts.
Exhibit 8.2 shows an example market data file. This is a plain text file, and pro-
vides a common repository for the market parameters that are required by the
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/1 Broad-lnvestments : Contains equity, FX and IR products

/'l Exanple FX deal Foreign currency = GBP Donestic Currency = USD, Strike = 1.5,

Settlenent = 4.0 years

/1 Note: The Strike is the nunmber of units of domestic currency that have been agreed to be
paid for one unit

/1 of foreign currency.

Tr ade=FXFor war dDeal , Ref er ence=FX- 5001, For ei gnAmount =100, Stri ke=1. 5, For ei gnCurrency=GBP, _
Domest i cCurrency=USD, Set t| enent =4. 0, BuySel | =Buy

Tr ade=For war dRat eAgr eenent Deal , Ref er ence=I R- 6001, Pri nci pal =100. 0, Stri ke=3. 0, Currency=GBP, _
Maturity=4.5, Start=4.0, BuySel | =Buy

/1 Trade=FXOpt i onDeal , Ref er ence=FXOpt i on_Cal | , Nunber Of Uni t s=123, Stri ke=0. 5, Vol ati | ity=0.1375, _
For ei gnCur r ency=USD, Donest i cCurrency=GBP, _
Ti me_To_Expi ry=5. 0, Exer ci seStyl e=Eur opean, Opti onType=Cal | , BuySel | =Buy

Tr ade=DownQut Equi t yOpt i onDeal , Ref er ence=Tech- 7001, Equi t y=Real - Conput ers, Vol atility=0.2, _
Strike=100.0, Ti me_To_Expi ry=1. 0, Barri er _Level =90. 0, Opti onType=Cal | , Cal cMet hod=Anal ytic

/*

Tr ade=DownQut Equi t yOpt i onDeal , Ref er ence=Tech- 7002, Equi t y=Real - Conputers, Vol atility=0.2, _
Strike=100.0, Ti me_To_Expi ry=1. 0, Barri er _Level =90. 0, Cal cMet hod=Mont eCar | o, Opti onType=Cal | , _
Nurber Scenar i 0s=10000, UseBr owni anBr i dge=t r ue

Tr ade=DownQut Equi t yOpt i onDeal , Ref er ence=Tech- 7005, Equi t y=Real - Conputers, Vol atility=0.2, _
Stri ke=100.0, Ti me_To_Expi ry=1. 0, Barri er _Level =90. 0, Cal cMet hod=Anal yti c, Opti onType=Cal |
*

/
Tr ade=DownQut Equi t yOpt i onDeal , Ref er ence=Tech- 7006, Equi t y=Real - Conput ers, Vol atility=0.2, _
Stri ke=100.0, Ti ne_To_Expi ry=1. 0, Barri er _Level =90. 0, Cal cMet hod=Nuneri c, Opti onType=Cal |

Tr ade=DownQut Equi t yOpt i onDeal , Ref er ence=Tech- 7007, Equi t y=Real - Conput ers, Vol atility=0.2, _
Stri ke=100. 0, Ti me_To_Expiry=1. 0, Barri er_Level =90. 0, Cal cMet hod=Nurreri c, Opti onType=Cal | , _
Exer ci seStyl e=Aneri can

/1 Tr ade=DownQut Equi t yOpt i onDeal , Ref er ence=JPCA_BB_Fal se, Equi t y=Real - Conput er s, Stri ke=100. 0, _
Ti me_To_Expiry=1.0, Barrier_Level =90. 0, Cal cMet hod=Mbnt eCar | o, Opti onType=Cal | , _
Nurber Scenar i 0s=10000, UseBr owni anBr i dge=f al se

Tr ade=DownQut FXOpt i onDeal , Ref er ence=FX- 5004, Nunber Of Uni t s=123, Stri ke=0. 5, Vol ati | ity=0.1375, _
For ei gnCur r ency=USD, Donest i cCur rency=CBP, Ti me_To_Expi ry=5. 0, Exer ci seSt yl e=Eur opean, _
Opti onType=Cal | , BuySel | =Buy, Cal cMet hod=Anal yti c, Barrier_Level =0. 01

Tr ade=DownQut FXOpt i onDeal , Ref er ence=FX- 5006, Nunber Of Uni t s=123, Stri ke=0.5, Vol atility=0.1375, _
For ei gnCur r ency=USD, Donest i cCur rency=CGBP, Ti me_To_Expi ry=5. 0, Exer ci seSt yl e=Eur opean, _
Opti onType=Cal | , BuySel | =Buy, Cal cMet hod=Mont eCar | o, UseBr owni anBri dge=true, Barri er _Level =0. 01

/1l Anerican FX Barrier Call

Tr ade=DownQut FXOpt i onDeal , Ref er ence=FX- 5007, Nunber Of Uni t s=123, Stri ke=0. 5, Vol ati | i ty=0. 1375, _
For ei gnCur r ency=USD, Donest i cCur rency=GBP, Ti me_To_Expi ry=5. 0, Opti onType=Cal | , BuySel | =Buy, _
Cal cMet hod=Nunreri c, Barri er_Level =0. 01, Exer ci seSt yl e=Ameri can

/1 European Put

Trade=FXOpt i onDeal , Ref er ence=FX- 5008, Nunber Of Uni t s=123, Stri ke=0. 5, Vol ati | i ty=0. 1375, _
For ei gnCur r ency=USD, Donest i cCurrency=GBP, Ti me_To_Expi ry=5. 0, Exer ci seSt yl e=Eur opean, _
Opt i onType=Put, BuySel | =Buy

Tr ade=DownQut FXOpt i onDeal , Ref er ence=FX- 5009, Nunber O Uni t s=123, Stri ke=0. 5, Vol ati | ity=0.1375, _

For ei gnCur r ency=USD, Donest i cCurrency=GBP, Ti me_To_Expi ry=5. 0, Opti onType=Put, BuySel | =Buy, _
Cal cMet hod=Mont eCar | o, Barri er _Level =0. 01, Exer ci seSt yl e=Eur opean

Exhibit 8.1 Here we show an example portfolio driver file and the individual portfolio
definition files EQ | nvest ment s. t xt and Br oad- | nvest nent s. t xt . The symbol
_ is used to indicate a line continuation; it should be noted the C# application requires
each deal to be specified on a single line.

deal classes. For instance, all foreign exchange derivatives will need access to the
current FX rates, and all equity derivatives will require the current equity price.
The contents of the market data file can be updated as frequently as required
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/1 Currency market data. This is used for pricing interest rate swaps, FX options, etc...

Currency. USD, FXSpot =0. 5565, Yi el dCur ve=[ (0. 0027, 0. 0184), ..., (40.58,0.0533)],
Vol Curve=[ (0.0, 0.10),(1.0,0.12),(3.0,0.13),(6.0,0.14), (20, 0.15)]

Currency. GBP<<- - Base, FXSpot =1. 0, Yi el dCurve=[ (0. 0027, 0. 047),...,(50.03,0.042)],
Vol Curve=[ (0.0, 0.10),(1.0,0.12),(3.0,0.13), (6.0,0.14), (20, 0.15)]

Currency. EUR, FXSpot =0. 689024, Yi el dCurve=[ (0.0, 0.04),...,(20,0.056)],

Vol Curve=[ (0.0, 0.10), (1.0, 0.12), (3.0, 0.13), (6.0, 0. 14), (20, 0. 15)]

Currency. CAD, FXSpot =1. 5, Yi el dCurve=[ (0.0, 0.04),...,(20,0.056)],

Vol Curve=[ (0.0, 0.10), (1.0, 0.12),(3.0,0.13), (6.0, 0. 14), (20, 0. 15)]

/1 Equity market data. This is used for pricing equity options, etc...

Equity. I nperial -Art, Currency=GBP, Spot =9. 0, Di vYi el d=0. 03

Equi ty. Real - Conput er s, Cur r ency=USD, Spot =200. 0, Di vYi el d=0. 04

Equi ty. Tel Conm Curr ency=GBP, Spot =120. 0, Di vYi el d=0. 09

Equi ty. WebConm Cur r ency=USD, Spot =100. 0, Di vYi el d=0. 07

Equi ty. Hackers, Currency=GBP, Spot =40. 0, Di vYi el d=0. 02

Equi ty. Laser Conm Cur r ency=GBP, Spot =95. 0, Di vYi el d=0. 05

Equi ty. Smart Web, Cur r ency=GBP, Spot =100. 0, Di vYi el d=0. 01

Equi ty. Web- Conm Cur r ency=GBP, Spot =100. 0, Di vYi el d=0. 04

Equi ty. Mobi | e- Tech, Currency=GBP, Spot =92. 0, Di vYi el d=0. 02

Equi ty. ConpuKal c, Curr ency=GBP, Spot =95. 0, Di vYi el d=0. 11

Equi ty. The- Bookshop, Cur rency=GBP, Spot =100. 0, Di vYi el d=0. 02

Equi ty. Ever yman- Books, Cur r ency=GBP, Spot =100. 0, Di vYi el d=0. 03

Equi ty. The- Real Book- Conpany, Cur r ency=GBP, Spot =100. 0, Di vYi el d=0. 04
Equi ty. Dri nks-4U, Curr ency=GBP, Spot =100. 0, Di vYi el d=0. 05

Equi ty. Bever age- Lt d, Currency=GBP, Spot =100. 0, Di vYi el d=0. 06

Equi ty. H2O- Lt d, Cur r ency=GBP, Spot =100. 0, Di vYi el d=0. 05

Equi ty. Fi ne- Wnes- Lt d, Currency=GBP, Spot =100. 0, Di vYi el d=0. 03

Equi ty. French- W nes- Lt d, Curr ency=EUR, Spot =100. 0, Di vYi el d=0. 2
Equi ty. The- Engl i sh- Beer - Conpany, Cur r ency=GBP, Spot =100. 0, Di vYi el d=0. 03
Equi ty. Wat er - Wor ks- Lt d, Cur r ency=GBP, Spot =100. 0, Di vYi el d=0. 012
Equi ty. Wl sh- Spri ng, Currency=GBP, Spot =100. 0, Di vYi el d=0. 06

Equi ty. ThanesBeer, Curr ency=GBP, Spot =100. 0, Di vYi el d=0. 05

Equi ty. Edi ngbur gh- Wi skey, Currency=GBP, Spot =100. 0, Di vYi el d=0. 04
Equi ty. The- W ne- Box, Cur r ency=GBP, Spot =100. 0, Di vYi el d=0. 085

/1 Bond market data. This is used for pricing bonds, and credit derivatives such as CDS, and
TRS

Bond. Fi ne- W nes- Lt d- Bond- 2020, Cur r ency=GBP, Spot =150. 0,

Survi val Prob=[(0.0,1.0),(1.0,0.9),(3.0,0.96),(6.0,0.9),(20,0.5)]
Bond. Hacker s- Bond- 2018, Cur r ency=GBP, Spot =200. 0,

Survi val Prob=[(0.0,1.0),(2.0,0.91),(5.0,0.9),(8.0,0.8),(30,0.6)]
Bond. Hacker s- Bond- 2060, Cur r ency=GBP, Spot =260. 0,

Sur vi val Prob=[ (0.0, 1.0), (1.0, 0. 92), (20.0, 0. 8), (20.0, 0. 65), (60, 0.7)]
Bond. Real - Conput er s- Bond- 2020, Cur r ency=USD, Spot =100. 0,

Sur vi val Prob=[ (0.0, 1.0),(1.0,0.94), (4.0,0.9),(8.0,0.6),(30,0.5)]

/1 Market data correlation. These are used for nultiasset options
Correl ation. I nperial -Art, Real - Conput ers=0. 5

Correl ati on. Real - Conput er s, WebComrm+0. 4
Correl ation. Real - Conput er s, Hacker s=0. 5
Correl ati on. Real - Conput er s, Laser Cormr0. 3
Correl ati on. Real - Conput er s, Smart Web=0. 4

Correl ation. Tel Corm Hacker s=0. 5
Correl ation. Tel Corm Laser Corm¥0. 5
Correl ation. Tel Conrm Smart Web=0. 5
Correl ati on. Tel Corm Web- Conm=0. 5
Correl ation. Laser Conm Snar t Web=0. 5

Correl ati on. Hacker s, Mobi | e- Tech=0. 4
Correl ati on. Laser Comm Mobi | e- Tech=0. 4
Correl ati on. Smart Wb, Mobi | e- Tech=0. 5
Correl ati on. Web- Comm Mobi | e- Tech=0. 5

Exhibit 8.2 An example market data file, which is used to specify the current market
values such as equity spot, FX spot, interest rate yield curves, etc. The third line in
the file provides currency information for GBP, and the entry Cur r ency. GBP«- - Base
specifies that the base currency will be GBP, and thus all portfolio and deal values will be
computed in GBP.
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Correl ati on. Mobi | e- Tech, The- Bookshop=0. 1
Correl ati on. ConpuKal c, Laser Coom+0. 3

Correl ati on. ThamesBeer, French- W nes- Lt d=0. 3
Correl ati on. ThanesBeer, Fi ne- Wnes-Ltd=0.5
Correl ati on. ThanmesBeer, H20- Lt d=0. 5

Correl ati on. ThanesBeer, Bever age- Lt d=0. 6

Correl ati on. ThanmesBeer, Dri nks-4U=0. 6

Correl ati on. ThanesBeer, The- Real Book- Conpany=0. 8
Correl ati on. ThanesBeer, Peopl e- Books=0. 1

Correl ati on. Edi ngbur gh- Whi skey, French- W nes-Ltd=0.5
Correl ation. Edi ngbur gh- Whi skey, Wt er - Wr ks- Lt d=0. 5
Correl ation. Edi ngbur gh- Whi skey, The- Engl i sh- Beer - Conpany=0. 6

Exhibit 8.2 (Continued).

(i.e., daily, hourly, etc.) but will always maintain a set of market values that can
be used consistently across all deal valuations.

It should be mentioned that the main advantage of type E1 deal entries is
not just that the portfolio definition file is smaller—it also ensures that consis-
tent market data values are used to price all the trades in the portfolio. When
type E2 deal entries are used, it is necessary to ensure that all the extra deal
attributes are updated as new market data becomes available. This would be
a time-consuming task and, if only a partial update occurs, could give rise to
invalid deal valuations caused by inconsistent deal attribute values such as FX-
Equi t yCurrency, Di vi dendYi el d.

The format of the result files is shown in Exhibit 8.3. The output syntax is
simply:

<deal val ue>=<deal reference>, <deal type>

It can be seen that each deal is valued in base currency (which here is specified
in the market data file as GBP) and the total value for the portfolio is also
reported.

Results file for portfolio EQ-investments

EQ I nvestnents in units of GBP
EQ I nvest nent s : 14/ 07/ 2007 00: 00: 00

4. 3501=EQ Laser Comm 1001, Equity Option

2.9278=EQ Laser Comm 1002, Equi ty Option

3. 5716=EQ Laser Conm 1003, Equi ty Option

2. 0245=EQ Laser Comm 1004, Equi ty Option

2.2171=EQ WebConm 1004A, Equity Option

41. 7119=EQ ConpukKal c- 1005, Rai nbow opti on(two equities)

14. 0274=EQ Mobi | eTech| ConpuKal c- 1006, Rai nbow opti on(two equities)
8. 8511=EQ Mbbi | eTech| ConpuKal c- 1007, Rai nbow option(two equities)
70. 3151=EQ Mobi | eTech| Tel Comm 1008, Rai nbow opti on(two equities)
13. 3263=JPCAML1, Rai nbow option(two equities)

6. 5840=JPCAML11, Rai nbow option(two equities)

72.7866=Tech- 10001, Three Equity Option

70. 1046=Tech- 10002, Three Equity Option

69. 7412=Tech- 10003, Three Equity Option

1010. 6123=Tech- 10004, Three Equity Option

1030. 3894=Tech- 10005, Three Equity Option

2850. 8918=Tech- 10006, Three Equity Option
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2838. 9643=Tech- 10007, Three Equity Option
2838. 9643=Tech- 10008_Ceneric, Generic Equity Option
399. 4981=Tech- 10009, Three Equity Option

409. 1153=Tech- 10010, Three Equity Option
2646. 6473=Dri nks- 20001, Four Equity Option
2644. 3642=Dri nks- 20002, Four Equity Option
15. 3381=Dr i nks- 20003, Four Equity Option
21.8691=Dri nks- 20004, Four Equity Option

53. 8106=Dr i nks- 20005, Four Equity Option

63. 2889=Dr i nks- 20006, Four Equity Option
1511. 6543=Dri nks- 20007, Four Equity Option
1524. 5000=Dri nks- 20008, Four Equity Option
1510. 7045=Dri nks- 20009, Four Equity Option
1518. 8670=Dri nks- 20010, Four Equity Option
1513. 7578=Dri nks- 20011, Four Equity Option
1524. 5000=Dri nks- 20012, Generic Equity Option
1513. 7578=Dri nks- 20013, Four Equity Option
2030. 2451=Dr i nks- 20013, Generic Equity Option
6.1238=JPCA_111, Down Qut Equity Option

6. 1240=JPCA_111A, Down Qut Equity Option
3.0006=JPCA_112, Down Qut Equity Option
3.0006=JPCA_113, Down Qut Equity Option

3. 0006=JPCA 114, Down Qut Equity Option

3. 0036=JPCAPP_115, Doubl e Knock Qut Call Equity Option

TOTAL VALUE = 29878.53 GBP

Results file for portfolio broad-investments

Broad- I nvestnents in units of GBP
Br oad- | nvest nent s : 14/ 07/ 2007 00: 00: 00

9. 4359=FX- 5001, FX Forward

- 9. 4359=FX- 5002, FX For ward
0. 8661=I R- 6001, Forward Rate Agreenent
1.1755=1 R- 6002, Forward Rate Agreenent
52. 6353=Tech- 7001, Down Qut Equity Option
52. 6757=Tech- 7002, Down Qut Equity Option
52. 6757=Tech- 7003, Down Qut Equity Option
52. 6583=Tech- 7004, Down Qut Equity Option
52. 6353=Tech- 7005, Down Qut Equity Option
52. 6358=Tech- 7006, Down Qut Equity Option
55. 6500=Tech- 7007, Down Qut Equity Option
11. 6849=FX- 5003, FX Option
11. 6849=FX- 5004, Down Qut FX Option
11. 6813=FX- 5005, Down Qut FX Option
11. 5356=FX- 5006, Down Qut FX Option
11. 9998=FX- 5007, Down Qut FX Option
2.9173=FX- 5008, FX Option
2.9827=FX- 5009, Down Qut FX Option

TOTAL VALUE = 438.09 GBP

Exhibit 8.3 Portfolio results files. The reporting currency is set in the market data file; in
this example, all values are given in pounds sterling.

8.2 Storing and retrieving the market data

As mentioned before, the market data required to price derivatives is stored
in market data dictionaries. The Mar ket Dat aDi ct i onari es class, shown in
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Code excerpt 8.4, contains a set of C# Dictionary member items which hold all
the market data required by the deal classes. Below we give the declaration of
the CurrencyTabl e, Equi t yTabl e and Corr el ati onTabl e dictionaries:

public static Dictionary<string, Currency> CurrencyTable = new Dictionary<string, _
Currency>();

public static Dictionary<string, Equity> EquityTable = new Dictionary<string, _

Equi ty>();

public static Dictionary<string, Correlation> CorrelationTable = new Dictionary<string, _
Correlation>();

Each dictionary entry is made up of a { <uni que- key>, <val ue-obj ect >}
pair, where uni que- key is a unique string, and val ue- obj ect is a class
containing the corresponding market data. We will now consider each of the
above dictionaries and the information they hold in more detail.

8.2.1 CurrencyTabl e

In a Cur rencyTabl e dictionary val ue- obj ect is a class of type Cur r ency
and is used to store currency information. The class declaration is provided in
Code excerpt 8.3.

public class TPair : | Conparable
{

public double t;

public double val;

public TPair(double t1, double vall)
{

t =1t1;

val = val1l;

i nt | Conpar abl e. Conpar eTo( obj ect obj)

TPair tenp = (TPair)obj;

if (this.t > tenp.t)
return (1);

if (this.t < tenp.t)
return (-1);

el se
return (0);

}

/1 ICurve - a curve for storing interest rates
public class | Curve: List<TPair>

{
private double t_pt; // internal value used for matching
private string name_ = "";

public ICurve (string name) {
nane_ = nane;
}
public double this[double t_0, double t]

{ get { // return the discount factor between t and t1

doubl e eps = 1. 0e-6;
doubl e val ;

Code excerpt 8.3 Code showing the class Curr ency and also the classes | Cur ve and
TPai r which all enable the interest rate yield curve to be stored.
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t_pt =t;
/1 find the bounding indicies corresponding to a given t val ue
int indxl = this.Findlndex(TPairFind);
if (indx1 == -1)
throw new Exception("lInvalid market data interest rate yield curve for currency "
+ name_);
doubl e v2 = this[indx1].val;
double vl = this[indx1l - 1].val;
double t2 = this[indx1l].t;
double t1 = this[indxl - 1].t;
if (Math.Abs(t2 - t) < eps)
{
val = v2;
}
el se
{ // use linear interpolation to conpute the value of DF
val = vl + ((v2 - vl) / (t2 - t1)) * (t - t1);
}
val = Math. Exp(-val * t);
return val;
}
public double this[double t, double t1, double t2] {
get {
/1 return the forward rate between t1 and t2
/Il t2 >=t1
double DF1 = this[t, t1];
double DF2 = this[t, t2];
double fwd = (DF1 / DF2 - 1.0) / (t2 - t1);
return fwd;
}
}
private bool TPairFind(TPair v)
if ((v.t >=t_pt))
{
return true;
el se
{
return false;
}
}
}
public class Currency
public string name; /1 the nane of the currency (e.g GBP, or USD)
public double spot; /1 the FX spot of the currency with respect to base
currency
public I Curve YieldCurve; /1 the currency yield curve
public VCurve Vol Curve; /1 the volatility of the yield curve (not currently used

}

by the C# application)

public Currency(string nanel, double spotl) // two paraneter constructor

{

}

name = nanel;
spot = spot1;
Yi el dCurve = new | Curve(nanel);

public Currency(string nanel) // single parameter constructor

Yi el dCurve = new | Curve(nanel);
Vol Curve = new VCurve(nanel);

Code excerpt 8.3 (Continued).
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string CcyCode = "USD'; // set the unique currency code to USD

/1 create a new (enpty) entry in the CurrencyTable for USD
CurrencyTabl e. Add( CcyCode, new Currency(CcyCode));

doubl e FXSpot = 0.5565; // set the USD to base currency FX spot

/1 assign to public data nenber spot, in class Currency
CurrencyTabl e[ CcyCode] . spot = FXSpot ;

/1 assign to public data nenber name, in class Currency
CurrencyTabl e[ CcyCode] . nanme = CcyCode;

doubl e t;
double rt;

t= 0.0027; /1 time - for point 1

rt = 0.0184; /1l rate - for point 1

/1 add the first point to the public data nenber YieldCurve, in class Currency
Cur rencyTabl e[ CcyCode] . Vi el dCurve. Add(new TPRair(t, rt));

t = 40.58;

rt = 0.0533;

CurrencyTabl e[ CcyCode] . Yi el dCur ve. Add(new TPRair(t, rt));
Code excerpt 8.4 C# code showing the addition of USD currency market data to the
CurrencyTabl e dictionary.

It is straightforward to add currency data to Cur r encyTabl e. The C# code
fragment shown in Excerpt 8.4 illustrates the addition of USD information.

The information in the Cur r encyTabl e is accessed by the deal classes and
used to compute discount factors, forward rates and FX spots. In the market
data file (see Exhibit 8.2) the YieldCurve consists of a set of time/value pairs
and is defined using the following syntax:

YieldCurve = [(t1,71), ..., (t;,Fi), ..., (ta, rn)], where #; is the time in years,
and r; is the corresponding zero coupon rate with tenor ¢;.

The value, at 1 = 0, of a zero coupon bond with unit cash flow at maturity, ¢,
is exp(—r; t;), and is known as the discount factor DF(0, ;). Code excerpt 8.4
shows the addition of two data items to the USD yield curve, while Code ex-
cerpt 8.5 illustrates the retrieval from DF(0, ;) of r;. The code fragment:

doubl e discount_fac = DF[0, Time_To_Expiry_];
Ri skFreeRate = -Math. Log(di scount_fac) / Tine_To_Expiry_;

computes the zero coupon rate Ri skFreeRat e and this can be used as a
value for the risk free rate required by the option pricing routines in Anal yt -
i cs_Mat hLi b. dI | . It should be mentioned that it would have been more effi-
cient to have written code to directly obtain the interpolated risk free rate from
the USD vyield curve (without first computing the associated discount factor).
However, the required code can easily be supplied by the reader.

Discount factors and forward rates are accessed from an | Cur ve object. The
discount factor is obtained as follows:

| Curve DF = Market Dat aDi cti onari es.
CurrencyTabl e[ Currency_]. Yi el dCurve;
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try

string Currency_ = "USD';
/1 DF wll be used to access discount factors
| Curve DF = MarketDataDictionaries.CurrencyTabl e[ Currency_].YieldCurve;

/1 FWD will be used to access forward rates
| Curve FWD = Market DataDi ctionaries. CurrencyTabl e[ BaseCurrency] . Yi el dCurve;

/1 obtain the discount factor DF(0,1) using nethods in class |Curve
doubl e discount_fac = DF[0, Time_To_Expiry_];

Ri skFreeRate = -Math. Log(di scount_fac) / Tine_To_Expiry_;
double Time_To_Expiry_ = 1.0;
doubl e FXspot =

/1 obtain the FX spot with repect the base currency (GBP)
Mar ket Dat aDi cti onari es. CurrencyTabl e[ Currency_] . spot;

double t1 =

0
double t2 5

1.
1.5:

/] obtain the forward rate F(0,1,1.5) using nethods in class |Curve
double forward_rate = FW)[ O, t1, t2];

}
catch
{
throw new Exception(Pre_string_ + "--- No Market Data supplied for " + Currency_);
}

Code excerpt 8.5 Code showing the retrieval of USD currency market data from the
CurrencyTable dictionary.

public class Equity

public string Nane;
public doubl e Spot;
public string Currency;
public double DivYield;

public Equity(string Nanel, double Spotl, string Currencyl, double DivYieldl)

{
Nanme = Nanel;
Spot = Spot1;
Currency = Currencyl;
DivYield = DivYieldl;
}
public Equity()
{
}
}
public class Correlation
{
public string Nanel;
public string Nane2;
public double Correl;
public Correlation(string Nanell, string Nanel2, double Correl 1)
{
Nanel = Nanell;
Nane2 = Nanel2;
Correl = Correl 1;
}
public Correlation()
{
}
}

Code excerpt 8.6 The equity and correlation classes.
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declares the | Curve object DF. Then the discount factor between 0 and
Ti me_To_Expi ry_ is computed with the statement:

doubl e di scount_fac = DF[0, Time_To_Expiry_];

where DF[ 0, Time_To_Expiry_] calls the | Curve accessor (declared as
public double this[double t 0, double t])witht O = O andt
= Tinme_To_Expiry. It can be seen from Code excerpt 8.3 that linear inter-
polation is performed by the accessor if required.

The forward rate is obtained in a similar manner:

| Curve FWD = Mar ket Dat aDi ctionari es.
CurrencyTabl e[ Currency_] . Yi el dCurve;

declares the | Cur ve object FVD. Then the forward rate F (0, t1, ) is returned
with the statement:

double forward rate = FWD[O, 0.5, 1.5];

where FWD[ O, t1, t2] calls the | Curve accessor (declared as public
doubl e this[double t, double t1, double t2]) with t = 0,
t1=0.5, and t2 = 1.5. It can be seen from Code excerpt 8.3 that the ac-
cessor computes the forward rate as:

FWY 0,t1,t2] = (DF[0,t1] / DF[0,t2] - 1.0)
I (t2 - t1);

Equi t yTabl e and Correl ati onTabl e

Code excerpt 8.7 shows how market data is added to the internal dictionaries
of the Mar ket Dat aDi cti onari es class. For instance, to add a correlation

public class MarketDatabDictionaries
{
public static Dictionary<string, Currency> CurrencyTable = new Dictionary<string,
Currency>();
public static Dictionary<string, Equity> EquityTable = new Dictionary<string,
Equi ty>();
public static Dictionary<string, Correlation> CorrelationTable = new Dictionary<string,
Correlation>();
protected static string BaseCurrency_ = "";

public static string GetBaseCurrency()

return BaseCurrency_;

}

public static void LoadMarket Data(string marketdata_file)

{
/'l Load the market data file and assign values to dictionaries
StreanReader MDFILE = new StreanReader (nmarketdata_file);
string cur_line ="";

while ((cur_line = MDFILE. ReadLine()) != null) // loop through the narket data

file

Code excerpt 8.7 The Mar ket Dat aDi cti onari es class, illustrating how market data
is added to the internal dictionaries.
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if ((cur_line.Length > 1) && ((cur_line.Substring(0, 2) !="//")))
{

char[] seps = new char[] { '=", '," }:
string[] v = cur_line.Split(seps, StringSplitOptions.None);

int numelens = v. Get Upper Bound(0);
int kK =0;
double t_, val
bool stop;
doubl e FXSpot = 0.0;

if (v[O].Substring(0, 8) == "Currency") // currency data

{ string CcyCode = v[O0].Substring(9, 3);
if (v[O].IndexOf ("<<--Base") != -1) BaseCurrency_ = CcyCode;
k += 2;

if (!CurrencyTabl e. Contai nsKey( CcyCode))

CurrencyTabl e. Add( CcyCode, new Currency(CcyCode));

}
el se
{
throw new Exception("Spot & interest rate narket data already
supplied for " + CcyCode);
}

FXSpot = (doubl e) Convert. ChangeType(v[k], typeof(double));
Cur rencyTabl e[ CcyCode] . spot = FXSpot ;
Cur rencyTabl e[ CcyCode] . nane = CcyCode;

k += 2;

t_ = (doubl e) Convert. ChangeType(Vv[Kk]. Substring(2, v[k].Length - 2),
typeof (doubl e));

k += 1;

val _ = (doubl e) Convert. ChangeType(Vv[Kk]. Substring(0, v[k].Length - 1),

typeof (doubl e));

CurrencyTabl e[ CcyCode] . Yi el dCurve. Add(new TPRair(t_, val_));

k += 1;

int vwv = v[k].IndexCf(")]");

stop = fal se;

while (!stop) // Add the yield curve data

{

t_ = (doubl e) Convert. ChangeType(v[k].Substring(1, v[k].Length - 1),
t ypeof (doubl e));

k += 1;
if (v[k].lndexCF(")]") == -1)
{
val _ = (doubl e) Convert. ChangeType(v[k]. Substring(0, v[k].
Length - 1), typeof (double));
el se
{
val _ = (doubl e) Convert. ChangeType(v[k]. Substring(0, v[k].

Length - 2), typeof (double));
stop = true;

k += 1;
CurrencyTabl e[ CcyCode] . Yi el dCurve. Add(new TPair(t_, val _));

}
CurrencyTabl e[ CcyCode] . Yi el dCurve. Sort();

}
else if (v[O].Substring(0, 6) == "Equity") // equity data

int idx = v[k].IndexOr(".");

string EquityName = v[O0].Substring(idx + 1, v[O].Length - idx - 1);
k += 2;

string CcyCode = v[Kk];

Code excerpt 8.7 (Continued).
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k += +2;

doubl e spot = (doubl e) Convert. ChangeType(v[k], typeof(double));
k += +2;

doubl e div = (doubl e) Convert. ChangeType(Vv[k], typeof(double));

if (!EquityTable. Contai nsKey(EquityNane))
{

Equi t yTabl e. Add( Equi t yName, new Equity());
Equi t yTabl e[ Equi t yNane] . Currency = CcyCode;
Equi t yTabl e[ Equi t yName] . Nanme = Equi t yName;
Equi t yTabl e[ Equi t yNanme] . Spot = spot;

Equi t yTabl e[ Equi tyNarme] . DivYield = div;

}
el se
t hrow new Exception("Spot & currency market data al ready supplied
for " + EquityNane);
}
}
else if (v[0].Length >= 12 && v[O]. Substring(0, 11) == "Correl ation")

/1 correlation data

int idx = v[O].IndexOf(".");

string AssetNamel = v[O0].Substring(idx + 1, v[O].Length - idx - 1);
k += 1;

string AssetName2 = v[Kk];

k += 1;

doubl e corr = (doubl e) Convert. ChangeType(v[k], typeof(double));
string Correl ati onKey = AssetNamel + "% + Asset Nane2;

if(!Correl ati onTabl e. Cont ai nsKey( Correl ati onKey))
Il ie The- W ne- Box%at er - Wrks-Ltd and The- W ne- Box%at er - Wor ks- Lt d

Correl ationTabl e. Add( Correl ati onKey, new Correlation());
Correl ationTabl e[ Correl ati onKey] . Correl = corr;

Correl ationTabl e[ Correl ati onKey] . Nanmel = Asset Nanel;
Correl ationTabl e[ Correl ati onKey] . Name2 = Asset Nane2;

Correl ati onKey = AssetName2 + "% + Asset Nanel;

Correl ati onTabl e. Add(Correl ati onKey, new Correlation());
Correl ati onTabl e[ Correl ati onKey] . Correl = corr;

Correl ati onTabl e[ Correl ati onKey] . Nanel Asset Nane2;
Correl ati onTabl e[ Correl ati onKey] . Nane2 Asset Nanel;

el se

{
t hrow new Exception("market data already supplied for "
+ Correl ati onKey);

}
}
MDFI LE. Ol ose();

}

Code excerpt 8.7 (Continued).

entry it is first necessary to construct the dictionary key, and then determine
whether or not the entry already exists in the dictionary. This is shown in the
code fragment below:

/1 first construct the unique key string from Asset Nanel and Asset Nane2

string Correl ati onKey = Asset Namel + "% + Asset Nane2;

/1 Now check whether this key already exists in the dictionary Correl ati onTabl e.
/1 1f it doesn't then add a new entry, if it does then raise an exception

if(!Correl ationTabl e. Cont ai nsKey( Corr el ati onKey))
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/1 Create a new enpty dictionary entry for the unique key
Correl ati onTabl e. Add(Correl ati onKey, new Correlation());

I/ Now fill out the entry by assigning the correlation and the asset nanes
Correl ati onTabl e[ Correl ati onKey]. Correl = corr;

Correl ationTabl e[ Correl ati onKey] . Namel = Asset Nanel;

Correl ationTabl e[ Correl ati onKey] . Name2 = Asset Nane2;
Il Create another enpty dictionary entry with the asset names in reverse order
/'l (because correlation(a,b) = correlation(b, a)

Correl ati onKey = Asset Nane2 + "% + Asset Nanel;

/1 Now fill out the entry by assigning the correlation and the asset nanes
Correl ati onTabl e. Add( Correl ati onKey, new Correlation());
Correl ationTabl e[ Correl ati onKey] . Correl = corr;
Correl ationTabl e[ Correl ati onKey] . Namel = Asset Nanme2;
Correl ationTabl e[ Correl ati onKey] . Name2 = Asset Nanel;

}

el se

throw new Exception("narket data already supplied for + Correl ati onKey);

}

8.3 ThePricingUtils class and the
Anal ytics_MathLib

It has already been mentioned that the deal classes often make calls to the C
pricing function that are contained in Anal yti cs_Mat hLi b. dI | . To do this
it is necessary to provide a C# declaration for the corresponding C function.
This is carried out in the Pri ci ngUt i | s class by declaring the routines as ex-
t er n and using the C# Dl | | npor t attribute, which is defined in the namespace
System Runti me. | nt er opSer vi ces. Code excerpt 8.8 provides a sample
of the C# declarations in Pri ci ngUt i | s and some of the corresponding C dec-

using System

usi ng System Col | ections. Generic;

usi ng System Col | ecti ons;

using System|Q

usi ng System Text;

usi ng System Runtime. | nteropServices;

public class PricingUils

{
public static double EPS = 1.0e-6;

[Di I nport("Analytics_MathLib.dll")]
public static extern void dko_cal |l (double | ower_barrier, double upper_barrier,
doubl e theta_m double SO, ref double sigma_array, ref double sigma_tines,
int n_sigma, double r, double opt_mat, double X, int is_anerican, ref double
option_val ue,
IntPtr greeks, double g, int ns_below SO, int ns_above_SO, int nt, ref int iflag);

[DIInport("Analytics_MthLib.dll", EntryPoint = "black_schol es")]

public static extern void black_schol es2(ref double value, ref double greeks, double sO,
doubl e x, doubl e signg,
double t, double r, double q, int put, ref int iflag);

Code excerpt 8.8 The PricingUtils class, which permits C# code to call the C func-
tions that reside in Anal yti cs_Mat hl i b. dl | . The attribute DI | | nport (defined in
namespace Syst em Runti me. | nt er opServi ces) indicates to C# Interop services
that unmanaged code is being called.
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[DilInport("Analytics_MathLib.dl ", EntryPoint = "black_schol es")]

public static extern void black_schol es(ref double value, IntPtr greeks, double sO,
doubl e x, double sigm,
double t, double r, double q, int put, ref int iflag);

[Di I nport("Analytics_MathLib.dll")]

public static extern void opt_gfd(double theta, double SO, double sigm, double r,
double T, double X, int is_anerican,
int put, ref double value, IntPtr greeks, double g, int ns, int nt,
doubl e smaex, ref int iflag);

[DilInport("Analytics_MathLib.dll")]

public static extern void standard_2D_bi nom al (ref double value, double S1, double S2,
doubl e X, double sigmal,
doubl e sigma2, double rho, double T, double r, double g1, double g2, int put,
int M int is_max,
int is_anerican, ref int iflag);

public static doubl e RndNor n(doubl e nmean, double std)

return nean + std * normal (0.0, 1.0);

}

[Di I nport("Analytics_MathLib.dll")]
public static extern doubl e normal (doubl e nean, double std);

[D I Inport("Analytics_MthLib.dll")]
public static extern void set_seed(int seed);

[DilInport("Analytics_MathLib.dll", EntryPoint = "nultivariate_normal 2")]
public static extern void nultivariate_normal (int is_fcall, ref double a, int n,
ref double c, int tdc, double eps,
ref double r, ref double z, ref int iflag);
/1 array r has size nr = ((n+l)*(n+2))/2 + 1

}

Code excerpt 8.8 (Continued).

larations are given in Code excerpt 8.9. It can be seen that C function parameters
passed by value and declared as doubl e dval and | ong i val correspond to
C# doubl e dval and int ival parameters, respectively. C functions that
are passed by reference are a little more tricky to deal with in C#. This is be-
cause C# does not explicitly support pointers. A C doubl e parameter passed
by reference using doubl e *dval can be mapped in C# by using r ef dou-
bl e dval . Similarly, the C function parameter | ong* i val is declared in C#
as ref int ival. It should be noted that for clarity we use the C syntax
doubl e a_dval[] and long a_ival [] for arrays of doubl e and | ong,
respectively; it is also correct to declare these as doubl e *a_dval , and | ong
*a ival.

However, there is still a problem because C functions can be coded to check
whether or not a nul | pointer has been supplied as a parameter, and then take
appropriate action. For instance, the function bl ack_schol es in Code ex-
cerpt 4.1, will not compute the Greeks if the parameter doubl e greeks[] is
nul | . The code fragment below shows how | nt Pt r , which is a recent addition
to C#, can be used to resolve this:

[DilInport("Analytics_MathLib.dll", EntryPoint = "black_scholes")]
public static extern void bl ack_schol es2(ref double value, ref double greeks, _

doubl e s0O, doubl e x, doubl e sigma, double t, double r, double g, int put, ref int iflag);
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[D I Inport("Analytics_MthLib.dll", EntryPoint = "black_schol es")]
public static extern void bl ack_schol es(ref double value, IntPtr greeks, double sO,_

doubl e x, double sigm, double t, double r, double q, int put, ref int iflag);

The first declaration specifies that the function called bl ack_schol es
in Anal yti cs_Mat hLi b. dl | will have the name bl ack_schol es2 in C#.
In addition the C parameter doubl e greeks[] is mapped to ref doubl e
gr eeks in C#. This means that we will need to declare an array variable (say
t he_gr eeks which will hold the five Greeks and pass it to bl ack_schol es2
using the syntax r ef t he_greeks[ 0] . In this case the Greeks will always be
computed, even if we don’t want to use them.

The second declaration specifies that the function bl ack_schol es2 in C#
will also call the routine bl ack_schol es in Anal ytics_MathLib.dlI.
However, in this case, the C parameter doubl e greeks[] is mapped
to IntPtr greeks in C#. This allows us to set the parameter doubl e
greeks[] to null by passing the value | nt Ptr. Zer o—see for example
class Equi t yOpt i onDeal in Code excerpt 8.10.

#define DLLExport __decl spec(dl|export)

void DLLExport __stdcal |l black_schol es(doubl e *val ue, doubl e greeks[], doubl e sO, doubl e x,
doubl e sigma,
doubl e t, double r,double g, long put, long *iflag)

{
See code excerpt 4.1 for nore detail
}
void DLLExport __stdcall opt_gfd(double theta_m double asset_price, double sigma, double r,
double T,
doubl e strike, long is_anerican, |long put, double *option_val ue,
doubl e greeks[], double g, long pns, long nt, double smax, |ong *iflag)
{
See code excerpt 5.18 for nore detail
}
voi d DLLExport __stdcall nultivariate_normal2(long is_fcall, double a[], long n, double c[],
long tdc,
doubl e eps, double r[], double z[], long *iflag)
{
Standard C code to generate a nultivariate normal
}

Code excerpt 8.9 Illustrative C code which is contained in the windows dynamic link
library Anal ytics_MathLib.dl .
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usi ng System
nanespace Conputational _Lib

public class EquityOptionDeal : BaseDeal
{
public string Equity { get { return EquityName_; } set { EquityNane_ = value; } }
public int NumberOfUnits { get { return NumberOfUnits_; }_
set { NumberOfUnits_ = value; } }
public double Time_To_Expiry { get { return Time_To_Expiry_; }_
set { Time_To_Expiry_ = value; } }
public PutCall OptionType{ get {return OptionType_;} set { OptionType_= value;}}
publ i ¢ EuropeanAnerican ExerciseStyle { get { return ExerciseStyle_;

set { ExerciseStyle_ = value; } }
public double Strike { get { return Strike_; } set { Strike_ = value; } }
public BuySell BuySell { get { return BuySell_; } set { BuySell_ = value; } }

public double Volatility { get { return Signa_; } set { Sigma_ = value; } }

protected PutCall OptionType_ = PutCall.Put;
protected EuropeanAnerican ExerciseStyle_ = EuropeanAnerican. Eur opean;
protected doubl e Strike_ = 0;

protected string Equi tyName_ = "";
protected doubl e Tinme_To_Expiry_ = 0.0;
protected string Currency_ ="";

protected doubl e Di videndYield_ = 0.0;
protected string Pre_string_ ="";
protected BuySel|l BuySell_ = BuySell. Buy;
protected int NumberOf Units_ = 1;

protected double Sigma_ = 0.0;

public override string Nane()

return "Equity Option";
}

public override double Price()

{
Val i date();

doubl e val =0. 0;

doubl e[] greeks = new doubl e[ 6] ;
double sO = 0.0;

doubl e fx_spot = 0.0;

try
{
sO = Market Dat aDi cti onari es. Equi t yTabl e[ Equi t yName_] . Spot ;
/1 get current equity price
Currency_ = Market DataDi ctionaries. Equi t yTabl e[ Equi t yNane_] . Currency;
/1 get equity volatility (assumed constant)
Di vi dendYi el d_ = Market DataDi cti onari es. Equi t yTabl e[ Equi t yNane_] . Di vYi el d;
/1 get equity dividend yield
}
catch

throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ Equi tyNane_);

/1 get the risk free rate to use

doubl e discount_fac = 0.0;
doubl e Ri skFreeRate = 0.0;
try
{
| Curve DF = Market DatabDi ctionaries. CurrencyTabl e[ Currency_]. Yi el dCurve;
/1 obtain the discount factor
di scount _fac = DF[0, Time_To_Expiry_];
Ri skFreeRate = -Math. Log(di scount_fac) / Tinme_To_Expiry_;
fx_spot = Market DataDi ctionaries. CurrencyTabl e[ Currency_]. spot;
}

Code excerpt 8.10 The complete C# code for class Equi t yOpt i onDeal , which com-
putes the value of a single equity option.
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catch

throw new Exception(Pre_string_ + "--- No Market Data supplied for " + Currency_);

int iflag, put;

iflag = 0;

put = OptionType_ == PutCall.Put ? 1 : O;

if (ExerciseStyle_ == EuropeanAnerican. European) // use Bl ackSchol es
{

/1 call Croutine.
/1 Note: A null pointer is supplied so that the Geeks are not conputed
PricingUils. bl ack_schol es(ref val, IntPtr.Zero, s0O, Strike_, Signa_,
Tinme_To_Expiry_,
Ri skFreeRate, DividendYield_, put, ref iflag);

el se
{
/1 Use Crank Nicol son
doubl e theta = 0.5;
int is_anmerican = 1;
Il fix the geonetry of the grid (these values should give "reasonable" results)
int ns =50, // 50 divisions on asset axis
int nt =50, // 50 divisions on tine axis
doubl e smax = 10.0 * sO;

PricingUils.opt_gfd(theta, sO, Sigma_, Ri skFreeRate, Time_To_Expiry_, Strike_,
is_american, put, ref val, IntPtr.Zero, DividendYield_, ns,
nt, smax, ref iflag);
}
if (iflag != 0)
throw new Exception(Pre_string_ + "--- An error occurred in a call to the_
pricing library");

val *= fx_spot * NumberOfUnits_; // return value in base currency

return val;
}
protected override void Validate()
{
Pre_string_ = Nanme() + " (" + Reference_ +")";
if (Time_To_Expiry_ < 0.0)
throw new Exception(Pre_string_ + "--- Tine to expiry cannot be less than_
zero years");
}
if (Strike_ < 0.0)
{
throw new Exception(Pre_string_ + "--- The strike cannot be |ess than zero");
}
if (NunberOfUnits_ < 0)
{
throw new Exception(Pre_string_ + "--- The nunber of units cannot be |ess_
than zero");
}
if (Sigma_ < 0.0)
{
throw new Exception(Pre_string_ + "--- Volatility cannot be |ess than zero");
}
}

Code excerpt 8.10 (Continued).
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8.4 Equity deal classes

In this section we provide the C# code for both single and multiasset equity

options. The trade attributes correspond to the public properties of the deal

class, and attribute default values can be readily found by reading the C# code.
The enumerations used by the deal attributes are declared below.

public enum BuySell { Buy, Sell };

public enum PutCall { Put, Call };

public enum EuropeanAnerican { European, Anerican };

public enum M ni numvaxi mrum { M ni num Maxi num };

public enum UseMonteCarlo { Yes, No };

public enum Cal cul ati onMethod { Analytic, Nuneric, MnteCarlo };

and it can be seen that the enumerators have obvious names.

It has already been noted that the volatility used by the application to price
options is supplied as a deal attribute, rather than being stored as market data.
The reason for this is simplicity. In Chapter 4 we mentioned that a volatility
surface is required to represent the implied volatility used to price options. Stor-
ing the implied volatility would thus require a set of volatility surfaces in the
market data file and also multidimensional interpolation to retrieve the volatil-
ity applicable to a given option. It was thus decided to supply the volatility as a
trade attribute—and update its value appropriately.

8.4.1 Single equity option

Code excerpt 8.10 gives the C# code for class Equi t yOpt i onDeal , which
computes the values of a single equity option.

8.4.2 Option on the price of two equities

Code excerpt 8.11 gives the C# code to compute the value of options that de-
pend on the price of two equities.

usi ng System

nanespace Conputational _Lib

{
public class TwoEqui tyOptionDeal : BaseDeal

public string Equityl { get { return EquityNamel_; } set { EquityNanmel_
public string Equity2 { get { return EquityName2_; } set { EquityNanme2_
public double Tinme_To_Expiry { get { return Time_To_Expiry_; }_

set { Time_To_Expiry_ = value; } }
public int NumberOfUnits { get { return NunberOfUnits_; }_

set { NunberOfUnits_ = value; } }
public PutCall OptionType { get { return OptionType_; } set { OptionType_ = value; } }
public M ni mumvaxi mum M nMax{ get { return MnMax_; } set { MnMax_ = value; } }
publ i c EuropeanAnerican ExerciseStyle { get { return ExerciseStyle_; }_

set { ExerciseStyle_ = value; } }

value; } }
val ue; } }

Code excerpt 8.11 C# code to compute the value of options which depend on the price
of two equities. For example, it is possible to specify whether the option is European or
American, and if it is on the minimum or maximum of the equity prices.
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public double Strike { get { return Strike_; } set { Strike_ = value; } }
public BuySell BuySell { get { return BuySell_; } set { BuySell_ = value; } }
public double Volatilityl { get { return Sigmal_; } set { Sigmal_ = value; } }
public double Volatility2 { get { return Sigma2_; } set { Sigma2_ = value; } }
protected PutCall OptionType_ = PutCall.Put;

protected M ni muniVaxi mum M nMax_ = M ni munaxi mum Maxi mum

protected EuropeanAnerican ExerciseStyle_ = EuropeanAnerican. Eur opean;
protected double Strike_ = 0;

protected string EquityNanel_ = "";
protected string EquityNane2_
protected string Currency_ = "";
protected int NunberOfUnits_ = 1;
protected double Tine_To_Expiry_ 0.0;
protected string Pre_string_ = "";

protected double S1_ = 0.0;

protected double S2_ = 0.0;

protected double Signal_ = 0.0;

protected double Signe2_ = 0.0;

protected BuySel |l BuySell_ = BuySell. Buy;

public override string Nane()

return "Rai nbow option(two equities)";

}
public override double Price()
Val i date();
doubl e val = 0.0;
double rho = 0.0; // default correlation set to zero

doubl e Ri skFreeRate = 0.0;
doubl e fx_spot = 0.0;

try
{

}

catch

S1_ = MarketDataDi ctionari es. Equi t yTabl e[ Equi t yNarmel_] . Spot ;

throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ Equi tyNanel_);

Mar ket Dat aDi cti onari es. Equi t yTabl e[ Equi t yName2_] . Spot ;
Mar ket Dat aDi cti onari es. Equi t yTabl e[ Equi t yNanmel_] . Spot ;

throw new Exception(Pre_string_ + "--- No Market Data supplied for
+ Equi tyNane2_);

if(string. Conpare(Market Dat abDi ctionari es. Equi t yTabl e[ Equi t yNamel_]. Currency,
Mar ket Dat aDi cti onari es. Equi t yTabl e[ Equi t yNanme2_] . Currency) != 0){

throw new Exception(Pre_string_ + "--- Currencies for both equities are not
the same");

}
Currency_ = Market DataDi ctionaries. Equi t yTabl e[ Equi t yNanel_]. Currency;

try
{
| Curve DF = Market DataDi ctionaries. CurrencyTabl e[ Currency_]. Yi el dCurve;
/1 obtain the discount factor
doubl e discount_fac = DF[0, Tine_To_Expiry_];
Ri skFreeRate = -Math. Log(di scount_fac) / Tinme_To_Expiry_;
fx_spot = MarketDataDictionaries. CurrencyTabl e[ Currency_]. spot;

Code excerpt 8.11 (Continued).
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catch

throw new Exception(Pre_string_ + "--- No Market Data supplied for
+ Currency_);
}

string corr_key = EquityNanmel_ + "% + EquityNanme2_;
if (MarketDataDictionaries.Correl ationTabl e. Cont ai nsKey(corr_key))
rho = Market Dat aDi ctionaries. Correl ati onTabl e[ corr_key]. Correl;
el se
rho = 0.0;

int iflag, put, is_max;

iflag = 0;

put = OptionType_ == PutCall.Put ? 1 : O;

is_max = M nMax_ == M ni nunVaxi mum Maxi mum ? 1 : O;

if (ExerciseStyle_ == EuropeanAnerican. European) // use analytic nethod

PricingUils.opt_rainbow bs_2d(ref val, S1_, S2_, Strike_, Sigmal_, Sigma2_,
rho, Tinme_To_Expiry_, R skFreeRate, is_nmax,
put, ref iflag);

else { // use nuneric nethod

double gl =
double g2 = H
int numsteps = 200; // need to use an even nunber of time steps for the lattice
int is_anmerican = 1;
PricingUils. standard_2D_binom al (ref val, S1_, S2_, Strike_, Sigmal_, Sigma2_,
rho, Time_To_Expiry_, RiskFreeRate,
gql, g2, put, numsteps, is_max, is_anerican, ref iflag);

0.
0.

I ©o

}
if (iflag !'=0)
throw new Exception(Pre_string_ + "--- An error occurred in a call to the
pricing library");
val *= fx_spot * NunberOfUnits_; // return value in base currency
return val;
}
protected override void Validate()
Pre_string_ = Name() + " (" + Reference_ + ")";

if (Time_To_Expiry_ < 0.0)

throw new Exception(Pre_string_ + "--- Time to expiry cannot be |less than zero
years");

}
if (NumberOfUnits_ < 0)
{

throw new Exception(Pre_string_ + "--- Nunber of units cannot be |ess than
zero");

?f (Strike_ < 0.0)

throw new Exception(Pre_string_ + "--- The strike cannot be |ess than zero");
i}f (Sigml_ < 0.0)
¢ throw new Exception(Pre_string_ + "--- Volatilityl cannot be |ess than zero");
if (Sigma2_ < 0.0)

throw new Exception(Pre_string_ + "--- Volatility2 cannot be |ess than zero");

Code excerpt 8.11 (Continued).
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8.4.3 Generic equity basket option

Here (see Code excerpt 8.12) we consider the abstract deal class Generi cE-
qui t yBasket Opt i onDeal which enables its derived classes to value an op-

usi ng System

nanespace Conputational _Lib

{
public abstract class Generi cEquityBasket OptionDeal : BaseDeal

public string Equities { set { Equities_ = value; } }
public string Volatilities { set { Volatilities_ = value; } }
public double Tinme_To_Expiry { get { return Time_To_Expiry_; }

set { Tine_To_Expiry_ = value; } }
public int NunmberScenarios { get { return NunberScenarios_; }

set { Number Scenarios_ = value; } }
public BuySell BuySell { get { return BuySell_; } set { BuySell_ = value; } }
public int NunberCfUnits { get { return NumberOfUnits_; }

set { NumberCfUnits_ = value; } }
public string Currency { get { return Currency_; } set { Currency_ = value; } }
public double Strike { get { return Strike_; } set { Strike_ = value; } }
protected string Equities_ = "";
protected string Volatilities_ =
protected double Tinme_To Expiry_ =
protected doubl e R skFreeRate_ = 0.
protected string Pre_string_ = "";
protected double[] S_;

b. 0;
0

protected double[] Sigma_;

protected int Nunber Scenari os_ = 3000;
protected double[,] Correlations_;
protected int n_ = 0;

protected int NunmberOfUnits_ = 1;
protected string Currency_ "
protected BuySel | BuySell _
protected double[] ST_;
protected double Strike_ = 0.0;
public override string Nane()

{
}

public abstract double Payoff();

BuySel | . Buy;

return "Generic Equity Option";

public override double Price()

{
Val i date();
doubl e val = 0.0;
doubl e fx_spot = 0.0;

char[] seps = newchar[] { '% };
string[] EquityNanmes = Equities_.Split(seps, StringSplitOptions.None);

n_ = Equi t yNanes. Lengt h;
ST_ = new doubl e[n_];
S = new double[n_];

= new doubl e[ n_];
for (int k =0; k < n_; ++k)

-~

try

S [k] = MarketDataDictionaries. EquityTabl e[ Equi t yNames[ k] ] . Spot ;

Code excerpt 8.12 C# code for the abstract class Generi cEqui t yBasket Opti on-
Deal . It contains the abstract method Payof f ().
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catch
throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ Equi tyNanmes[k]);
}
}
for (int k =1; k < n_; ++k)
{
if (string.Conpare(MarketDataDictionaries. EquityTabl e[ Equi tyNames[k - 1]].
Currency, MarketDatabDictionaries. EquityTabl e[ Equi tyNanes[k]].Currency) != 0)
throw new Exception(Pre_string_ + "--- Not all the currencies are
the sane");
}
Currency_ = Market DataDi ctionaries. Equi t yTabl e[ Equi t yNanmes[ 1]]. Currency;
try
{

| Curve DF = MarketDataDi ctionaries. CurrencyTabl e[ Currency_]. Yi el dCurve;
/1 obtain the discount factor

doubl e discount_fac = DF[0, Tine_To_Expiry_];

Ri skFreeRate_ = - Math. Log(di scount _fac) / Tinme_To_Expiry_;

fx_spot = MarketDataDictionaries. CurrencyTabl e[ Currency_]. spot;

catch

throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ Currency_);

}

string[] Vols = Volatilities_.Split(seps, StringSplitOptions.None);
int n_v;
n_v = Vol s. Length;

if (n_v!=n))
throw new Exception(Pre_string_ + "--- Nunber of volatilities is not the same
as the nunber of equities ");
Signma_ = new double[n_];
for (int k =0; k < n_; ++k)
{
try

Sigma_[ k] = doubl e. Parse(Vol s[k]);

catch
{
throw new Exception(Pre_string_ + "--- Invalid volatility supplied for "
+ EquityNanes[k]);
}
}
Correl ations_ = new double[n_, n_];
for (int i =0; i <n_; ++)
{
for (int j =0; j <n_; ++)
if (i '=1j)
{
string corr_key = EquityNanes[i] + "% + EquityNames[j];
if (MarketDatabDictionaries. Correl ationTabl e. Cont ai nsKey(corr_key))
Correlations_[i, j] = MarketDataDictionaries
.Correl ationTabl e[ corr_key] . Correl;
el se
Correlations_[i, j] = 0.0; // default correlation is zero
}
el se
Correlations_[i, j] = 1.0;
}
}
}

Code excerpt 8.12 (Continued).
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int iflag=0;
val = MonteCarloSin(ref iflag);
if (iflag !'=0)
throw new Exception(Pre_string_ + "--- An error occurred in a call to the
pricing library");
val *= fx_spot * NunberOfUnits_;

return val;

protected override void Validate()

Pre_string_ = Nanme() + " (" + Reference_ + ")";

if (Time_To_Expiry_ < 0.0)

throw new Exception(Pre_string_ + "--- Time to expiry cannot be |ess than zero
years");
}
if (NunberOfUnits_ < 0)
throw new Exception(Pre_string_ + "--- Nunber of units cannot be |ess than
zero");
}
if (Strike_ < 0.0)
throw new Exception(Pre_string_ + "--- The strike cannot be |ess than zero");
}
}
private doubl e MonteCarloSin(ref int iflag)

{

doubl e[] C = new double[n_ * n_];
doubl e half = 0.5;

doubl e zero = 0.0;

doubl e sumit_val = zero;

doubl e tol = 1.0e-8;

doubl e opt_val = 0.0;

/1 set the covariance matrix

for (int i =0; i <n_; ++)
{
for (int j =0; j <n_; ++) {
Ci *n_+j] =Sigma_[i] * Sigma_[j] * Correlations_[i, j]
* Time_To_Expiry_;

}

doubl e[] MEANS = new doubl e[ n_];
/1 set the neans
for (int i =0; i <n_; ++i)
MEANS[i] = (RiskFreeRate_ - Sigma_[i] * Sigma_[i] * half) * Time_To_Expiry_;
int seed = 111;
PricingUtils. set_seed(seed);
int len_rvec = ((n_+ 1) * (n_+2)) [/ 2 + 1;
doubl e[] rvec = new doubl e[l en_rvec];

doubl e[] Z = new double[n_];

doubl e disc = Math. Exp(-Ri skFreeRate_ * Tinme_To_Expiry_);

Code excerpt 8.12 (Continued).
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int is_fcall = 1;
Pricingtils. multivariate_normal (is_fcall, ref MEANS[O], n_, ref C[O], n_, tol,
ref rvec[0], ref Z[0], ref iflag);
is_fcall = 0;
for (int i =1; i <= NunberScenarios_; ++i)
PricingUils. multivariate_normal (is_fcall, ref MEANS[O], n_, ref C[O], n_, tol,
ref rvec[0], ref Z[0], ref iflag);
for (int jj=0; jj < n_; ++j)
ST_[jj]l = S[jj] * Math.Exp(Z[jj]);

sumt _val += Payoff();

}

opt_val = sumit_val * disc / (double)NunberScenarios_;

return opt_val;

}

Code excerpt 8.12 (Continued).

tion on an arbitrary number of underlying assets; the derived class also must
implement the abstract method Payof f . In the earlier sections of this book,
we have considered options with standard payoffs such as: vanilla put, vanilla
call, and call/put on the min/max of a number of assets. However, the class
Generi cEqui t yBasket Opti onDeal now opens the possibility of supplying
a user-defined Payof f function so that options with nonstandard payoffs can
be valued.

Below we provide some example results for options on four and ten assets.
The assets were: Dr i nks-4U, Bever age- Lt d, H2O- Lt d, and Fi ne- W nes-
Lt d. The trade attributes are a time to expiry of one year, all volatilities are 0.2,
and the number of units is 100. Other information required to price the option,
such as the correlations between the equities and the risk free interest rate, is
taken from the market data dictionaries.

The syntax for using the deal class Generi cEqui t yBasket Opt i onDeal
with the portfolio definition File is:

Trade=Generi cEqui t yBasket Opt i onDeal : Payof f _MaxPut, Ref er ence=1A, Stri ke=100. 0, _
Vol atilities=0.29%0.2%.2%9. 2, _

Equi ti es=Dri nks- 4U¥Bever age- Lt d%20 Lt d%-i ne- W nes- Lt d, Nunber Of Uni t s=100, _

Ti me_To_Expi ry=1. 0, Nunber Scenari 0s=1000

while that for calling the deal class Four Equi t yOpt i onDeal is:

Tr ade=Four Equi t yOpt i onDeal , Ref erence=1B, Vol ati | i ty1=0. 2, Vol atility2=0.2, _

Vol atility3=0.2,Volatility4=0.2, Equityl=Drinks-4U, Equi ty2=Beverage-Ltd, _

Equi t y3=H20O- Lt d, Equi t y4=Fi ne- W nes- Lt d, Nunber O Uni t s=100, Stri ke=100. 0, _

Ti me_To_Expi ry=1. 0, Opti onType=Put , M nMax=Maxi num Mont eCar | o=Yes, Nunber Scenar i 0s=1000

The crucial diffference is that the entry for Generi cEqui t yBasket Opti on-
Deal contains the extra directive Tr ade=Gener i cEqui t yBasket Opt i onDeal :
Payof f _MaxPut , whereas Four Equi t yQpt i onDeal is the usual Tr ade=
Four Equi t yOpt i onDeal . The directive Gener i cEqui t yBasket Opt i on-
Deal : Payof f _MaxPut means that the contents of the file Payof f _MaxPut .
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t xt will be compiled at runtime and thereby create the (sub)class Generi c
Equi t yBasket Opt i onDeal _MaxPut, which is derived from the abstract
base class Generi cEqui t yBasket Opti onDeal . The .NET assembly con-
taining the class Generi cEqui t yBasket Opti onDeal _MaxPut is stored in
memory and its Pri ce() method is called to value the option.

The file Payof f _MaxPut . t xt contains the following C# code:

usi ng System

nanespace Conputational _Lib

{
public class GenericEquityBasket OptionDeal _MaxPut : Generi cEquityBasket Opti onDeal
{

public override string Nane()

string temp_string = "";
tenp_string = "Generic option: Put on the maxi mumof " + n_.ToString() + " assets";
return tenp_string;

}

public override double Payoff() { // inplenent nmax, put
doubl e the_nmax = 0.0;
doubl e pay_val = 0.0;
doubl e zero = 0.0;

the_max = ST_[0];
for (int jj =1; jj <n_ ++j)

if (ST_[jj] > the_max) the_max = ST_[jj];
}
pay_val = Math. Max(Strike_ - the_nax, zero);
return pay_val;

}

In the above code ST , Stri ke_, and n_ are data members of the base class
Generi cEqui t yBasket Opti onDeal . We now present some other entries
in the portfolio definition file which illustrate the versatility of the deal class
Generi cEqui t yBasket Opti onDeal .

/1 Call on average of 4 assets

Trade=Generi cEqui t yBasket Opti onDeal : Payof f _AvgCal | , Ref er ence=5, Stri ke=100. 0, _

Vol atilities=0.2%.2%. 29%). 2, Equi ti es=Dri nks- 4U¥Bever age- Lt d%20 Lt d%-i ne- W nes- Ltd, _
Nurber O Uni t s=100, Ti me_To_Expi ry=1. 0, Nunber Scenar i 0s=1000

/1 Put on the average of 10 assets (Strike=100)

Trade=CGeneri cEqui t yBasket Opt i onDeal : Payof f _AvgPut, Ref erence=8, Stri ke=100. 0, _

Vol atilities=0.2%. 299. 29%0. 299. 290. 290. 290. 290. 29%0. 2, _

Equi ti es=Dri nks- 4WBever age- Lt d%20- Lt d%-i ne- W nes- Lt d%he- Engl i sh- Beer - Conpany _

oMt er - Wor ks- Lt d%Aél sh- Spri ng%ThanesBeer _

%Edi ngbur gh- Wi skey%lrhe- W ne- Box, Nunber O Uni t s=100, Ti ne_To_Expi ry=1. 0, Nunber Scenar i 0s=10000

/1 Put on the average of 10 assets (Strike=99)

Trade=CGeneri cEqui t yBasket Opti onDeal : Payof f _AvgPut, Ref erence=9, Stri ke=99.0, _

Vol atilities=0.2%.2%. 2%. 290. 299. 290. 290. 290. 290. 2, _

Equi ti es=Dri nks- 4UBever age- Lt d%20 Lt d%-i ne- W nes- Lt d%he- Engl i sh- Beer - Conpany _

%At er - Wor ks- Lt d9%él sh- Spri ng%@hanesBeer %_

Edi ngbur gh- Whi skey%The- W ne- Box, Nunber O Uni t s=100, Ti me_To_Expi ry=1. 0, Nunber Scenar i 0s=10000

where the file Payof f _AvgCal | . t xt contains the C# code:

usi ng System

nanespace Conputational _Lib

{
public class GenericEquityBasket OptionDeal AverageCal|l : GenericEquityBasket Opti onDeal

public override string Nane()
string tenmp_string = "";
tenp_string = "Generic option: Call on the average of _
" + n_.ToString() + " assets";
return tenp_string;
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}
public override double Payoff() { // inplenment Call on average of n_assets
doubl e the_average = 0.0;
doubl e pay_val = 0.0;
doubl e zero = 0.0;
the_average = ST_[0];
for (int jj =1; jj <n_, ++j)
the_average += ST_[jj]:
the_average = the_average/n_;
pay_val = Math. Max(the_average - Strike_, zero);

return pay_val;

}

The contents of the file Payoff AvgPut can be deduced
Payof f _AvgCal | in the obvious manner.
The output from the application is given below:

Test Generi cEQ in units of GBP
Test Generi cEQ  :31/07/2007 19:05: 10

23.0100=1A, Generic option: Put on the maxi mum of 4 assets
23.0100=1B, Four Equity Option

681. 4034=5, Generic option: Call on the average of 4 assets

338.3212=8, Generic option: Put on the average of 10 assets
302. 6056=9, Generic option: Put on the average of 10 assets

TOTAL VALUE = 10936.18 GBP

from

It can be seen that result 1A, obtained using the deal class Generi cEqui t y-
Basket Opt i onDeal , is exactly the same as result 1B, which was computed
with the deal class Four Equi t yOpti onDeal . This is because in both cases
Monte Carlo simulation is used, and the same initial random seed is used for all

Monte Carlo simulations.

8.4.4 Equity barrier option

Code excerpt 8.13 gives the C# code for computing the value of an equity barrier

option.

usi ng System

nanespace Conputational _Lib

{
public class DownQut Equi tyOpti onDeal : BaseDeal

public string Equity { get { return EquityName_; } set { EquityNane_ = value; } }

public double Barrier_Level { get { return BarrierLevel _; }_
set { BarrierlLevel _ = value; } }

public double Time_To_Expiry { get { return Time_To_Expiry_; }_
set { Time_To_Expiry_ = value; } }

public PutCall OptionType { get { return OptionType_; } set { OptionType_ = value; } }

public double Strike { get { return Strike_; } set { Strike_ = value; } }
public Cal cul ati onMet hod Cal cMethod { get { return CalcMethod_; }_
set { CalcMethod_ = value; } }

Code excerpt 8.13 C# code to compute the value of an equity barrier option.
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publ i c EuropeanAmerican ExerciseStyle { get { return ExerciseStyle_; }_

set { ExerciseStyle_ = value; } }

public int TimeSteps { get { return TineSteps_; } set { TineSteps_ = value; } }
public int NunmberScenarios { get { return NunmberScenarios_; }_

set { NunberScenarios_ = value; } }
public bool UseBrownianBridge{ get { return UseBrownianBridge_; }_

set { UseBrownianBridge_ = value; } }
public BuySell BuySell { get { return BuySell_; } set { BuySell_ = value; } }
public double Volatility { get { return Sigmal_; } set { Sigmal_ = value; } }

public int NumberOfUnits { get {
set { NunberOfUnits_ = value; } }

protected Put Cal | . Cal |
protected
protected
protected
protected
protected
protected
protected
protected
protected
protected
protected
protected
protected
protected
protected
protected
protected

Put Cal | OptionType_ =
double Strike_ = 0;
doubl e BarrierLevel _ =
string EquityName_ =
doubl e Tine_To_Expiry
doubl e Ri skFreeRate_
doubl e DividendYield_ =
string Pre_string_ =""
Cal cul ati onMet hod Cal cMet hod_
int TineSteps_ = 300;

int Nunber Scenarios_ = 3000;
bool UseBrowni anBridge_ = true;
double S1_ = 0.0;

doubl e Sigmal_ = 0.0;

int NunberCfUnits_ = 1;

BuySel | BuySel | _ = BuySel | . Buy;
Eur opeanAneri can Exer(:| seStyle_ =
string Currency_ ;

[
o

public override string Nane()

return "Down Qut Equity Option";

}
public override double Price()
Val i date();
doubl e val = 0.0;
doubl e fx_spot = 0.0;
try
{
S1_

Currency_ =

return NumberOfUnits_; }_

= Cal cul ati onMet hod. Anal yti c;

Eur opeanAneri can. Eur opean;

= Mar ket Dat aDi cti onari es. Equi t yTabl e[ Equi t yName_] . Spot ;
Mar ket Dat aDi cti onari es. Equi t yTabl e[ Equi t yNanme_] . Currency;

/1 get equity volatility (assumed constant)

Di videndYield_ =
/1 get equity dividend yield

Mar ket Dat aDi cti onari es. Equi t yTabl e[ Equi t yNanme_] . Di vYi el d;

+ Equi tyNane_);

+ Currency_);

}
catch
{
throw new Exception(Pre_string_ + "--- No Market Data supplied for "
}
doubl e discount_fac = 0.0;
try
{
| Curve DF = Market DataDi ctionaries. CurrencyTabl e[ Currency_]. Yiel dCurve;
/1 obtain the discount factor
discount _fac = DF[O, Tinme_To_Expiry_];
Ri skFreeRate_ = - Math. Log(di scount _fac) / Tinme_To_Expiry_;
fx_spot = MarketDataDictionaries. CurrencyTabl e[ Currency_]. spot;
}
catch
throw new Exception(Pre_string_ + "--- No Market Data supplied for
}
int iflag, put, is_anerican;
iflag = O;
put = OptionType_ == PutCall.Put ? 1 : O;

is_american = ExerciseStyle_

Code excerpt 8.13 (Continued).

== EuropeanAnerican. American ? 1 :

0;
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BarrierLevel _ = Math. Max(BarrierLevel _, PricingUils.EPS);
if (CalcMethod_ == Cal cul ati onMet hod. Anal yti c)
if (put == 1) throw new Exception(Pre_string_ + "--- Can't price a put using
this cal culation nethod");
if (is_american == 1) throw new Exception(Pre_string_ + "--- Can’'t price an

American option using this calculation nethod");

PricingUils. bs_opt_barrier_downout_call (ref val, BarrierLevel _,
S1_, Strike_, Sigmal_,
Time_To_Expiry_, RiskFreeRate_, DividendYield_,
ref iflag);
if (iflag != 0)
throw new Exception(Pre_string_ + "--- An error occurred in a call to the
pricing library");

}
else if (Cal cMethod_ == Cal cul ati onMet hod. Nuneri c)

if (put == 1) throw new Exception(Pre_string_ + "--- Can't price a put using
this calculation nethod");

int n_sigm = 2;
/'l set up the paraneters so that have "reasonabl e accuracy"

doubl e[] signa_array = new doubl e[ n_signg];
doubl e[] signa_tinmes = new doubl e[ n_signg];

sigma_array[0] = Sigmal_;
sigma_array[1l] = Sigmal_;
sigma_times[O0] 0.0;

sigma_tinmes[1] Time_To_Expiry_;

int nt = 100;
int ns_below SO =nt / 2;
int ns_above_SO = nt / 2;

doubl e theta_m = 0.5;
doubl e UpperBarrierLevel = S1_ * 5.0;

iflag = 0;

PricingUils.dko_call (BarrierLevel _, UpperBarrierLevel,
theta_m S1_, ref signa_array[0], ref sigma_tines[O],
n_sigma, RiskFreeRate_, Tinme_To_Expiry_,

Strike_, is_american, ref val,
IntPtr.Zero, DividendYield_, ns_below SO, ns_above_S0,
nt, ref iflag);

if (iflag !'= 0)
throw new Exception(Pre_string_ + "--- An error occurred in a call to the
pricing library");

}
el se
{
bool is_put = (put == 1);
if (is_anerican == 1) throw new Exception(Pre_string_ + "--- Can't price an
American option using this calculation nethod");
if (S1_ < BarrierLevel _) // the opton is already knocked out
val = 0.0;
el se
val = MonteCarl oSin(is_put);
}

val *= fx_spot * NumberOfUnits_;

return val;

Code excerpt 8.13 (Continued).
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protected override void Validate()

{
Pre_string_ = Nanme() + " (" + Reference_ + ")";
if (NunberOfUnits_ < 0)
{
throw new Exception(Pre_string_ + "--- Nunber of units cannot be |ess than
zero");
}
if (Time_To_Expiry_ < 0.0)
throw new Exception(Pre_string_ + "--- Time to expiry cannot be |ess than zero
years");
}
if (R skFreeRate_ < 0.0)
{
throw new Exception(Pre_string_ + "--- Risk free rate cannot be |ess than
zero");
}
if (Strike_ < 0.0)
throw new Exception(Pre_string_ + "--- The strike cannot be |ess than zero");
if (BarrierLevel _ < 0.0)
{
throw new Exception(Pre_string_ + "--- BarrierlLevel cannot be |ess than zero");
}
if (Sigmal_ < 0.0)
throw new Exception(Pre_string_ + "--- Volatility cannot be | ess than zero");
}
}

private doubl e MonteCarl oSi n{bool is_put)
/1 Use the Brownian Bridge to conpute the value of a down and out call option

int seed = 111;

doubl e[] asset_path = new doubl e[ Ti neSteps_];

double time_step = Tine_To_Expiry_ / TineSteps_;

doubl e sqrt_time_step = System Math. Sqrt(tinme_step);

doubl e disc = System Math. Exp(-Ri skFreeRate_ * Tine_To_Expiry_);

PricingUils. set_seed(seed);

doubl e opt_val = 0.0;

bool not_out = true;

int k =0;

double STN = 0.0;

doubl e mean = (RiskFreeRate_ - DividendYield_ - Signmal_ * Sigmal_ * 0.5)
* tinme_step;

doubl e std = System Math. Sqrt(Sigmal_ * Sigmal_ * tine_step);

doubl e z;

doubl e sumopt_vals = 0.0;

for (int i =0; i < NunberScenarios_; ++i)
/1 generate the asset path

double ST1 = S1_;
not_out = true;

k = 0;
while (not_out &% k < TinmeSteps_)
{
z = PricingUils. RndNor n{nean, std);
STN = ST1 * System Mat h. Exp(z);
if (STN < BarrierLevel _) not_out = false;
ST1 = STN
asset _path[k] = STN,
++k;
}

Code excerpt 8.13 (Continued).
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if (is_put)
{

opt _val = System Math. Max(Strike_ - STN, 0.0);
}

el se

opt _val = System Math. Max(STN - Strike_, 0.0);

if (not_out)
{ // only has value if asset value is above the barrier_|evel
/1 conpute the probability that the asset renmi ned above the barrier
if (UseBrowni anBridge)
{
doubl e total _probability_above = 1.0, pr;
double sigma_2 = Sigmal_ * Sigmal_;

doubl e log_barrier_level = System Math. Log(BarrierlLevel _);
doubl e fac;
for (int jj =0; jj < T TineSteps_ - 1; ++jj)
{

double log_S_ i = System Math. Log(asset_path[jj]);

double log_S il = System Math. Log(asset_path[jj + 1]);

fac = 2.0 * (log_barrier_level - log_S i)

* (log_barrier_level - log_S.il) / (sigma_2 * time_step);

pr = (1.0 - System Math. Exp(-fac));
/1 probability of staying above the barrier between i and i+1
total _probability_above *= pr;

sumopt_vals += total _probability_above * opt_val * disc;

el se

{ /] don't use the Brownian Bridge
sumopt_val s += opt_val * disc;

}

}
doubl e tenp = sumopt_vals / (doubl e)Nunber Scenari os_;

return tenp;

}

Code excerpt 8.13 (Continued).

Below we show the results of using the deal class DownQut Equi t yOpt i on-
Deal to value Down and Out call options on Laser Comm which is a GBP
equity with current (spot) price of £95, and a dividend yield of 5 percent (i.e.,
0.05). All the options priced had a barrier level of £90, a strike of £90, a time to
expiry of one year, and a volatility of 20 percent (i.e., 0.2). The first value,
£3.8347, was computed by a call to bs_opt_barrier_downout call,
which uses the closed form analytic expression provided in Code excerpt 2.6.

The second price, £3.8269, which is in close agreement with the first, was
obtained from dko_cal | and uses a finite-difference grid. The third valuation
was also computed using dko_cal | , and illustrates the early exercise premium
for an American call option (with a nonzero dividend). The other values were
estimated using Monte Carlo simulation as the number of scenarios varied from
1000 to 64000; the default of 300 time steps was used throughout.

It can be seen that, when the Brownian bridge is used, much closer agreement
is obtained with both the analytic and numeric estimates.

DownCut Tests in units of GBP
DownCQut Test s 126/ 07/2007 13:11:28

3.8347=Anal yti c, Down Qut Equity Option
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8269=Nuneric, Down Qut Equity Option

8860=Nuneric (American style), Down Qut Equity Option

1871=Mbnt eCar | 0( 1000 Scenari os: not using Browni anBridge), Down Qut Equity Option
8908=Mbnt eCar | 0(2000 Scenarios: not using Browni anBridge), Down Qut Equity Option
1968=Mbnt eCar | 0(4000 Scenarios: not using Browni anBridge), Down Qut Equity Option
1176=Mont eCar | 0o(8000 Scenarios: not using Browni anBridge), Down Qut Equity Option
1790=Mont eCar | 0( 16000 Scenarios: not using Browni anBridge), Down Qut Equity Option
1961=Mont eCar | 0( 32000 Scenarios: not using Browni anBridge), Down Qut Equity Option
1833=Mbont eCar | 0( 64000 Scenarios: not using Browni anBridge), Down Qut Equity Option
8375=Mont eCar| 0( 1000 Scenari os: using Browni anBridge), Down Qut Equity Option
5469=Mont eCar | 0( 2000 Scenari os: using Browni anBridge), Down Qut Equity Option
8737=Mont eCar| 0(4000 Scenari os: using Browni anBridge), Down Qut Equity Option
7356=Mbnt eCar | 0( 8000 Scenari os: using Browni anBridge), Down Qut Equity Option
8089=Mbnt eCar| 0( 16000 Scenarios: using Browni anBridge), Down Qut Equity Option
8506=Mbnt eCar | 0( 32000 Scenarios: using Browni anBridge), Down Qut Equity Option

. 8482=Nont eCar | 0( 64000 Scenari os: using Browni anBridge), Down Qut Equity Option

WORRRRER PR DRSO

TOTAL VALUE = 70.83 GBP

8.5 FX deal classes

Here we provide code for valuing FX derivatives. The FX option routines are
very similar to the equity option routines we have already considered, the funda-
mental difference being that for FX routines there is both a domestic and foreign
currency. The FX routine calls the Black-Scholes routine with the dividend yield
set to the foreign currency risk free interest rate, and the supplied volatility is
that of the foreign/domestic exchange rate. In the market data file the currency
FX spot rates are with respect to the base currency.

8.5.1 KX forward

Code excerpt 8.14 gives the C# code to compute the value of FX forwards.

usi ng System

nanespace Conputational _Lib

public class FXForwardDeal : BaseDeal

public doubl e Forei gnAmount { get { return fForeignAnount; }_
set { fForeignAmunt = value; } }

/1 Note: Strike is the number of units of domestic currency required to
11 obtain one unit of foreign currency.
public double Strike { get { return fStrike; } set { fStrike = value; } }
public string ForeignCurrency { get { return fForeignCurrency; }_
set { fForeignCurrency = value; } }
public string DomesticCurrency { get { return fDomesticCurrency; }_
set { fDomesticCurrency = value; } }
public BuySell BuySell { get { return fBuySell; } set { fBuySell = value; } }
public double Settlenent { get { return fSettlenent; } set { fSettlement = value; } }

Code excerpt 8.14 C# code to compute the value of FX forwards.
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protected double fStrike = 0;
protected string fForeignCurrency =
protected string fDonesticCurrency =
protected doubl e fForei gnAmount = O;
protected BuySel | fBuySell = BuySell.Buy;
protected double fSettlenent = O;
protected string pre_string = "";

public override string Name()

{
return "FX Forward";
}
public override double Price()
{
doubl e val =0. 0;
Val i date();
doubl e sign = fBuySell == BuySell.Buy ? 1.0 : -1.0;
try
{
| Curve DF_F = CurrencyTabl e[ f Forei gnCurrency]. Yi el dCurve;
/1 obtain the discount factor
| Curve DF_D = CurrencyTabl e[ f Domesti cCurrency] . Yi el dCurve;
/1 obtain the discount factor
doubl e X_fb = CurrencyTabl e[ f Forei gnCurrency]. spot;
doubl e X_db = CurrencyTabl e[ f Donesti cCurrency]. spot;
double DF_f = DF_F[O,fSettlenent];
double DF_d = DF_D[ O, fSettlenent];
val = fForeignAmount *( DF_f * X fb - X db * DF_d * fStrike);
val = val * sign;
cat ch( Exception ex)
throw new Exception(pre_string + " : " + ex.Message);
}
return val;
}
protected override void Validate()
{
pre_string = Nang() + " (" + fReference + ")";
}

}

Code excerpt 8.14 C# code to compute the value of FX forwards.

8.5.2 Single FX option

The code for the single FX option, given in Code excerpt 8.15, is very similar
to that for the single equity option. For example, European equity options are
priced using the call:

PricingUtils. bl ack_schol es(ref val, IntPtr.Zero, sO, Strike_, Sigma_,
Time_To_Expiry_, RiskFreeRate, DividendYield_, put,

ref iflag);

while European FX options use:

PricingUtils. black_schol es(ref val, IntPtr.Zero, SO, Strike_b,Signa_f_d_,

Time_To_Expiry_, DonesticRi skFreeRate_, ForeignRi skFreeRate_, put, ref iflag);
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using System

nanespace Conputational _Lib

{

public class FXOptionDeal : BaseDeal
{

public int NumberOfUnits { get { return NunberOfUnits_; }_
set { NunberOfUnits_ = value; } }
/1 Note: Strike is the number of units of domestic currency required to
1 obtain one unit of foreign currency.
public double Strike { get { return Strike_f_d_; } set { Strike_f_d_ = value; } }

/1 Volatility is that of the Foreign/Donestic exchange rate.
public double Volatility { get { return Signa_f_d_; } set { Sigma_f_d_ = value; } }

public string ForeignCurrency { get { return ForeignCurrency_; }_

set { ForeignCurrency_ = value; } }
public string DonesticCurrency { get { return DonesticCurrency_; }_
set { DonesticCurrency_ = value; } }
public BuySell BuySell { get { return BuySell_; } set { BuySell_ = value; } }

public double Tinme_To_Expiry { get { return Time_To_Expiry_; }_
set { Tine_To_Expiry_ = value; } }

public PutCall OptionType { get { return OptionType_; } set { OptionType_ = value; } }

public EuropeanAnerican ExerciseStyle { get { return ExerciseStyle_; }_
set { ExerciseStyle_ = value; } }

protected double Strike_f_d_ = 0.0;

protected string ForeignCurrency_ ="";

protected string DonesticCurrency_ = "";

protected BuySel | BuySell_ = BuySell.Buy;

protected int NumberOf Units_ = 1;

protected PutCall OptionType_ = PutCall.Put;

protected EuropeanAmerican ExerciseStyle_ = EuropeanAnerican. European;

protected double Tinme_To_Expiry_ = 0.0;

protected doubl e Forei gnRi skFreeRate_ = 0.0;

protected doubl e DonmesticRi skFreeRate_ = 0.0;

protected double Signa_f_d_ = 0.0;

protected string Pre_string_ = ;

public override string Nane()

{
return "FX Option";
}
public override double Price()
{

Val i date();

doubl e val = 0.0;
doubl e[] greeks = new doubl e[ 6] ;

int iflag, put;

doubl e di scount_fac = 0.0;
double X _f_b = 0.0, Xd_b =0.0;
doubl e S0=0. 0, Strike_b;

/1 Get donestic currency information
try

{
| Curve DF = MarketDatabDi ctionaries. CurrencyTabl e[ DonesticCurrency_]. Yiel dCurve;

/1 obtain the domestic discount factor

discount _fac = DF[O, Time_To_Expiry_];

Donest i cRi skFreeRate_ = -Math. Log(di scount _fac) / Tinme_To_Expiry_;

X d_b = Market DataDi ctionaries. CurrencyTabl e[ DonesticCurrency_]. spot;
Strike_b = X d_b * Strike_f_d_;

/1 Strike_b is the Strike in base currency units

catch
throw new Exception(Pre_string_ + "--- No Market Data supplied for "

+ DomesticCurrency_);

}

Code excerpt 8.15 C# code to compute the value of FX options.
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Il Get foreign currency information

try

{
| Curve DF = Market DataDi ctionaries. CurrencyTabl e[ Forei gnCurrency_]. Yi el dCurve;
/1 obtain the domestic discount factor
di scount _fac = DF[0, Tinme_To_Expiry_];

For ei gnRi skFreeRate_ = -Math. Log(di scount_fac) / Time_To_Expiry_;
X_f_b = Market DataDi ctionaries. CurrencyTabl e[ Forei gnCurrency_] . spot;
S0 = X f_b; // Foreign exchange wt base currency
}
catch
throw new Exception(Pre_string_ + "--- No Market Data supplied for
+ ForeignCurrency_);
}
iflag = 0;
put = OptionType_ == PutCall.Put ? 1 : O;
if (ExerciseStyle_ == EuropeanAmerican. European) // use Bl ackSchol es
{
/1 Note: A null pointer is supplied so that the Greeks are not conputed
// Dividend yield is set to foreign risk free rate
/!l Risk free interest rate is set to the donestic rate
/1 SO the value of the "asset" in base cuurency units
/1 val is the value of the FX option in base currency units
PricingUils. black_schol es(ref val, IntPtr.Zero, SO, Strike_b, Sigma_f_d_,
Time_To_Expiry_,
Donesti cRi skFreeRate_, ForeignRi skFreeRate_, put, ref iflag);
}
el se

{ /Il Use Finite Difference Gid - Crank N col son
doubl e theta = 0.5;
int is_anmerican = 1;

Il fix the geonetry of the grid (these avluse should give "reasonabl e" results)
int ns =50; // 50 divisions on asset axis

int nt =50; // 50 divisions on time axis

doubl e smax = 10.0 * SO;

PricingUils.opt_gfd(theta, SO, Signma_f_d_, DonesticRi skFreeRate_,
Time_To_Expiry_, Strike,
is_american, put, ref val, IntPtr.Zero, ForeignRi skFreeRate_, ns,
nt, smax, ref iflag);
/1 val is the value of the FX option in base currency units
if (iflag !'= 0)
throw new Exception(Pre_string_ + "--- An error occurred in a call to the
pricing library");
val *= NunberCOfUnits_;

return val;

}

protected override void Validate()

Pre_string_ = Name() + " (" + Reference_ + ")";
if (Time_To_Expiry_ < 0.0)

throw new Exception(Pre_string_ + "--- Tine to expiry cannot be |less than zero
years");
}
if (NumberCfUnits_ < 0)
t throw new Exception(Pre_string_ + "--- Number of units cannot be |ess than
zero");
}

Code excerpt 8.15 (Continued).
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if (Strike_f_d_ < 0.0)

throw new Exception(Pre_string_ + "--- The strike cannot be |ess than zero");

}

Code excerpt 8.15 (Continued).

It can be seen that, when pricing FX options, the foreign risk free rate is
used instead of the dividend yield, and the supplied volatility is that of the for-
eign/domestic exchange rate. Another difference is that the equity option value
val returned by the call to bl ack_schol es is in domestic currency units, and
is then converted to base currency, while in the case of FX options the value
val is already in base currency units, and requires no conversion.

8.5.3 FX barrier option

The C# code for the Barrier option is given in Code excerpt 8.16.

using System

nanespace Conputational _Lib
{
public class DownQut FXOptionDeal : BaseDeal
{
public int NumberOfUnits { get { return NumberOfUnits_; }_
set { NunberOfUnits_ = value; } }
/1 Note: Strike is the nunber of units of domestic currency required to obtain one
11 unit of foreign currency.
public double Strike { get { return Strike_f_d_; } set { Strike_f_d_ = value; } }
I/ Barrier is in the same units a the strike
public double Barrier_Level { get { return Barrier_f_d_; }_
set { Barrier_f_d_ = value; } }
/1 Volatiliy is that of the Foreign/Donmestic exchange rate.
public double Volatility { get { return Sigma_f_d_; } set { Sigma_f_d_ = value; } }
public string ForeignCurrency { get { return ForeignCurrency_; }_

set { ForeignCurrency_ = value; } }
public string DonmesticCurrency { get { return DonesticCurrency_; }_
set { DonesticCurrency_ = value; } }
public BuySell BuySell { get { return BuySell_; } set { BuySell_ = value; } }

public Cal cul ati onMet hod Cal cMethod { get { return CalcMethod_; }_
set { CalcMethod_ = value; } }
public EuropeanAnerican ExerciseStyle { get { return ExerciseStyle_; }_

set { ExerciseStyle_ = value; } }
public int NunmberScenarios { get { return NunmberScenarios_; }_
set { NunberScenarios_ = value; } }

public bool UseBrownianBridge { get { return UseBrownianBridge_; }_
set { UseBrownianBridge_ = value; } }

protected double Strike_f_d_ = 0.0;
protected double Barrier_f_d_ = 0.0;
protected string ForeignCurrency_ =
protected string DonesticCurrency_ = "";
protected BuySel | BuySell_ = BuySell.Buy;
protected int NumberOf Units_ = 1;
public double Tinme_To_Expiry { get { return Time_To_Expiry_; }_

set { Time_To_Expiry_ = value; } }
public PutCall OptionType { get { return OptionType; } set { OptionType_ = value; } }
protected PutCall OptionType_ = PutCall.Call;
protected double Time_To_Expiry_ = 0.0;

Code excerpt 8.16 C# code to compute the value of FX barrier options.
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protected doubl e Forei gnRi skFreeRate_ = 0.0;

protected doubl e DonesticRi skFreeRate_ = 0.0;

protected double Signa_f_d_ = 0.0;

protected EuropeanAnerican ExerciseStyle_ = EuropeanAnerican. Eur opean;
protected Cal cul ati onMet hod Cal cMet hod_ = Cal cul ati onMet hod. Anal yti c;
protected int TineSteps_ = 300;

protected int Nunber Scenarios_ = 3000;

protected double SO_, Strike_b_,BarrierLevel _b_;

protected bool UseBrowni anBridge_ = true;

protected string Pre_string_ ="";

publ
{

}
publ

ic override string Name()

return "Down Qut FX Option";

ic override double Price()

Val i date();

doubl e val = 0.0;

int iflag, put, is_anerican;
doubl e discount_fac = 0.0;
double X _f_b = 0.0, X.d_b = 0.0;

/1 Get donestic currency information

try
{
| Curve DF = Market DataDi ctionaries. CurrencyTabl e[ DonesticCurrency_]. Yiel dCurve;
/1 obtain the domestic discount factor
di scount _fac = DF[0, Time_To_Expiry_];
Donest i cRi skFreeRate_ = -Math. Log(di scount _fac) / Time_To_Expiry_;
X_d_b = Market Dat aDi ctionaries. CurrencyTabl e[ Domesti cCurrency_] . spot;
Strike_b_ = X d_b * Strike_f_d_;
/1 Strike is the Strike in base currency units
BarrierLevel _b_ = X d_b * Barrier_f_d_;
BarrierLevel _b_ = Math. Max(BarrierLevel _b_, PricingUils.EPS);
catch
throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ DonesticCurrency_);
}
Il Get foreign currency information
try
{
I Curve DF = Market DatabDi ctionaries. CurrencyTabl e[ Forei gnCurrency_]. Yi el dCurve;
/1 obtain the domestic discount factor
di scount _fac = DF[O, Tinme_To_Expiry_];
For ei gnRi skFreeRate_ = -Math. Log(di scount_fac) / Tine_To_Expiry_;
X_f_b = Market DataDi ctionari es. CurrencyTabl e[ Forei gnCurrency_] . spot;
S0_ = X f_b; // Foreign exchange wt base currency
catch
throw new Exception(Pre_string_ + "--- No Market Data supplied for "
+ ForeignCurrency_);
}
iflag = 0;
put = OptionType_ == PutCall.Put ? 1 : O;
is_american = ExerciseStyle_ == EuropeanAnerican. Anerican ? 1 : 0;
if (CalcMethod_ == Cal cul ati onMet hod. Anal yti c)
if (put == 1) throw new Exception(Pre_string_ + "--- Can’t price a put using
this cal culation nethod");
if (is_american == 1) throw new Exception(Pre_string_ + "--- Can’'t price an

Anerican option using this calculation nmethod");

/'l call Croutine.

/1 Note: A null pointer is supplied so that the Greeks are not conputed
/1 Dividend yield is set to foreign risk free rate

I/l Risk free interest rate is set to the donestic rate

Code excerpt 8.16 (Continued).
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/1 val is the value of the FX option in base currency units
PricingUtils. bs_opt_barrier_downout_call(ref val, BarrierLevel _b_,
SO_, Strike_b_, Sigma_f_d_,

Time_To_Expiry_, DonesticRi skFreeRate_,
Forei gnRi skFreeRate_, ref iflag);

if (iflag !'=0)
throw new Exception(Pre_string_ + "--- An error occurred in a call to the
pricing library");
}
else if (Cal cMethod_ == Cal cul ati onMet hod. Nuneri c)

if (put == 1) throw new Exception(Pre_string_ + "--- Can’t price a put using
this cal culation nethod");

int n_sigm = 2;
/1 set up the paraneters so that have "reasonabl e accuracy"

doubl e[] signma_array = new doubl e[ n_signg];
doubl e[] signma_tinmes = new doubl e[ n_signa] ;

sigma_array[0] = Sigma_f_d_;
sigma_array[1] = Sigma_f_d_;
sigma_tines[0] = 0.0;

si gma_tines[1] Time_To_Expiry_;

int nt = 100;

int ns_below SO = nt / 2;

int ns_above_SO = nt / 2;

doubl e theta_m = 0.5;

doubl e UpperBarrierLevel = SO_ * 5.0;

iflag = 0O;
/1 val is the value of the FX option in base currency units
PricingUils.dko_call (BarrierLevel _b_, UpperBarrierLevel,
theta_m SO_, ref signa_array[0], ref sigma_tinmes[O],
n_signa, DonesticRiskFreeRate_, Tinme_To_Expiry_,
Strike_b_, is_anerican, ref val,
IntPtr.Zero, ForeignRi skFreeRate_, ns_bel ow SO, ns_above_S0,
nt, ref iflag);

if (iflag !'= 0)
throw new Exception(Pre_string_ + "--- An error occurred in a call to the
pricing library");

}
el se
bool is_put = (put == 1);
if (is_american == 1) throw new Exception(Pre_string_ + "--- Can’'t price an
Anerican option using this cal culation nmethod");
if (SO_ < BarrierLevel _b) // the option has already been knocked out
val = 0.0;
el se
val = MonteCarl oSin(is_put);
}

val *= NunberCOfUnits_;

return val;
}
protected override void Validate()
{
Pre_string_ = Nane() + " (" + Reference_ + ")";
if (Time_To_Expiry_ < 0.0)
{
throw new Exception(Pre_string_ + "--- Tine to expiry cannot be |less than
zero years");
}

Code excerpt 8.16 (Continued).
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}

if (NumberOfUnits_ < 0)
{

throw new Exception(Pre_string_ + "--- Number of units cannot be |ess than
zero");

i}f (Strike_f_d_ < 0.0)

{ throw new Exception(Pre_string_ + "--- The strike cannot be |ess than zero");
i}f (Barrier_f_d_ < 0.0)

¢ throw new Exception(Pre_string_ + "--- BarrierlLevel cannot be |ess than zero");
i}f (Signa_f_d_ < 0.0)

throw new Exception(Pre_string_ + "--- Volatility cannot be |ess than zero");

private doubl e MonteCarl oSi n{bool is_put)

{

/1 Use the Brownian Bridge to conpute the value of a down and out call option

int seed = 111,

doubl e[] asset_path = new doubl e[ Ti meSteps_];

double tinme_step = Tine_To_Expiry_ / TinmeSteps_;

doubl e sqrt_tinme_step = System Math. Sqrt(time_step);

doubl e disc = System Mat h. Exp(- Donesti cRi skFreeRate_ * Time_To_Expiry_);

PricingUtils. set_seed(seed);

doubl e opt_val = 0.0;
bool not_out = true;
int k =0;
double STN = 0.0;
doubl e nean = (DonesticRi skFreeRate_ - Forei gnRi skFreeRate_
- Sigma_f_d_ * Sigma_f_d_ * 0.5) * tinme_step;
double std = System Math. Sqrt (Sigma_f_d_ * Sigma_f_d_ * tine_step);
doubl e z;
doubl e sum opt_vals = 0.0;

for (int i = 0; i < NunberScenarios_; ++i)
{

/1 generate the asset path

doubl e ST1 = SO_;

not_out = true;

k = 0;
while (not_out &% k < TinmeSteps_)
{
z = PricingUWils. RndNor m{nean, std);
STN = ST1 * System Mat h. Exp(z);
if (STN < BarrierLevel _b_) not_out = fal se;
ST1 = STN,
asset _path[k] = STN
++k;
}
if (is_put)
opt_val = System Math. Max(Strike_b_ - STN, 0.0);
el se

opt_val = System Math. Max(STN - Strike_b_, 0.0);

if (not_out)

{ // only has value if asset value is above the barrier_|evel
/1 conpute the probability that the asset remined above the barrier
if (UseBrowni anBridge)

doubl e total _probability_above = 1.0, pr;
double sigma_2 = Signma_f_d_ * Sigma_f_d_;

Code excerpt 8.16 (Continued).
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doubl e | og_barrier_|level = System Math. Log(BarrierLevel _b_);

doubl e fac;
for (int jj =0; jj < TimeSteps_ - 1; ++jj)

double log_S i = System Math. Log(asset_path[jj]);
double log_S i1 = System Mat h. Log(asset_path[jj + 1]);
fac = 2.0 * (log_barrier_level - log_S.i)

* (log_barrier_level - log_S.il) / (sigma_2 * time_step);
pr = (1.0 - System Math. Exp(-fac));
/'l probability of staying above the barrier between i and i+1
total _probability_above *= pr;

sum opt _val s += total _probability_above * opt_val * disc;
}
el se
{ // don’t use the Brownian Bridge
sum opt _vals += opt_val * disc;
}

doubl e tenp = sumopt_vals / (doubl e)Nunber Scenari os_;

return tenp;

}

Code excerpt 8.16 (Continued).



Appendix A:

The Greeks for vanilla European
options

A.1 Introduction

In this section we will present some useful results which will be used later on to
derive expressions for the Greeks.
A fundamental result of calculus is that:

d
a—/f(x)dx = f(x) (A.1.1)
x

Also the indefinite integral, [ f(x)dx, can be expressed as a definite integral
with variable upper bound as follows:

/f(x)dx:/xf(x)dx—i—c

SO

9 [y
—/ fdy = fx) (A.1.2)
y

0x Jy=g4

We can now use this result to obtain the derivative of the cumulative distribution
function:

1 y=x y2
Ni(x) = T f eXp<—7> dy
y=—00

which gives:
M =n(x) (A.1.3)
ax

where

n(x)—iex <_x_2)
ENZ A

We now derive various results for the parameters d1 and d» which appear in
the Black—Scholes equation:

g = l0g(S/E) + (r — q + 02/2)(T —1)
= oT —t

(A.1.4)
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and
log(S/E —q —0%/2)(T — T
,— 0g(S/ )+(; . 0/)( 1) —dy— T (A.1.5)
We have:
dd> ddy 1
ddp _ddy _ 1 A.L6
BN a5 SoT —t ( |
ody _ (A.1.7)
do do
ddi _ddy T —1 (A.1.8)
ar  ar o h
dd>2 _ adl o
w27 —n )
Also:
42
n(ds) = J—_ ( 22)
42 G -
-l )50
o2 o%(T —1)
:n(dl)exp{ ( ) (r—q+ )(T—f)—#}
SO
S
n(da) = Zn(dy) &p(r(T — 1)) ep(~q (T ~ 1) (A-1.10)

We note that:
dN1(d1)  9Ni(d1) 9d1 (o) 1
= —_—=n —_—
35S 9d1 98 Vo T =1

This technique will be used for computing the Greeks.

A.2 Gamma

Gamma is defined as the second derivative of the option value with respect to
the underlying stock price. This means (see Section A.3) it is the rate of change
of delta with the underlying stock price.
For a European call the value of gamma is:
% A, 2y
‘T 9827 95 T as

where the value of A, is given in Section A.3. So
3N1(d1)

Ni(dy) exp(—q(T — 1))}

ad
I = exp(—q(T — 1)) = exp(—q(T — t))n(dl)a—Sl
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Therefore:
n— n(dy)
SoT —t
The value of gamma for a European put can be calculated similarly:

?p 94,

P=55 = a5 = 351 (Mild) — D exp(—q(T — 1)}
where we have used the value of A, derived in Section A.3. Therefore:
I(N1(d) =D _

N

exp(—q(T — 1)) (A.2.1)

ad
I, = exp(—q(T — 1)) exp(—q(T — t))n(dl)a—sl

So
n(dy)
SoT —t

So the value of gamma for both a put and a call is the same.

ry="rI.= exp(—q(T — 1)) (A.2.2)

A.3 Delta

Delta is defined as the rate of change of option value with the underlying stock
price.
For a European call we have:

dc

0
Ac = o5 = 2o{Sep(=q(T = N)N1(d) — Eexp(=r(T — ) N1(d2)}

So

ad
Ac = exp(—q(T — t)){Nl(dl) + Sn(dl)a—Sl}

3d
— Eexp(—r(T — t))n(dz)a—sz (A.3.1)

Substituting for n(d2) and % we obtain:
Ac = exp(—q(T — 1)) N1(da) (A.3.2)
In similar manner we have for a European put:
_op
N

a
= oSl Eep(=r(T —0)(1 - N1(d2) — Sexp(—¢(T — 1) (1 - Ni(dv)}

Ap

So

3d
A, =—Eexp(—r(T — t))n(dz)a—Sz

od
—exp(—q(T — t)){(l — Ni(d1)) + Sn(d1)a—51} (A.3.3)
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Substituting for n(d2) and %—? we obtain:
A, = exp(—q(T — 1)){N1(d1) — 1} (A.3.4)
A.4 Theta

Theta is defined as the rate of change of the option value with time.

For a European call option we have:
a a
O = o = —-{Sexp(—q(T =) Ni(d1) — Eexp(—r(T — ) N1(d2)}

dd1
= g exp(—q(T — 1))SN1(d1) + exp(—q (T — t))Sn(dl)W

ad.
—rE exp(—r(T — 1)) N1(d2) — E exp(—r(T — t))n(dz)a—tz

ady

5L We obtain:

Substituting for n(d2) and
O, = gexp(—q(T — 1)) SN1(d1) — rE exp(—r(T — 1)) N1(d2)

dd
+exp(—q(T — r))Sn(dl)a—tl

S
— Eexp(—r(T — t))n(dl)f exp(r(T — 1))

od
= g &xp(—q(T — 1)) SN1(d1)
— rEexp(—r(T — 1)) N1(d2) — Sn(dy)o exp(—q(T — 1))

2JT —t

Therefore the value of theta is:

Sn(d
O = exp(—q(T — t>){q — SNy Zf/(Tl_iat}

— rE exp(—r(T — 1)) N1(d2) (A.4.1)
For a put we can similarly show that

0 d
o =2 —{Eexp(—r(T —1))(1— N1(d2))

=0 T o
_ Sexp(—q(T — t))(l - Nl(dl))}

ad
©, = rEexp(—r(T — 1) (1 — Ni(do)) — E exp(—r(T — t))n(dz)a—tz

od
— gSexp(—q(T — 1))(1 — N1(dp) + Sexp(—q (T — r))n(dﬂa—tl

ady

52 we obtain:

Substituting for n(dz) and
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©p = rEexp(—r(T — 1)) N1(—d2) — ¢S exp(—q(T — 1)) N1(—d1)
— Eexp(—r(T — 1)) exp(r(T — 1))
d0d1 o }

S
X EXp(—q(T - t))n(dl)f{g + m

ad
+ Sexp(—q(T — ”)”(dl’a_tl

So we have:
Sn(dy)o
Op=— eXp(—q(T - f)){qSNl(—dl) + 211/%}
+rEexp(—r(T — 1)) N1(—d) (A.4.2)

A.5 Rho

Rho is the rate of change of the option value with interest rate.
For a call we have:

_0_ 38

T or  or
d0d1

= Sexp(—q(T — r))n(dl)W + E(T — 1)N1(d2)

Pe {S exp(—q(T — 1)) N1(d1) — E exp(—r(T — 1)) N1(d2) }

od
— Eexp(—r(T — t))n(dz)a—rz
Substituting for n(dz) and % we obtain:
pe = E(T —t)N1(d2) (A.5.1)
For a European put we have:

ap
,Ong

9
= a—r{E exp(—r(T — 1)) (1 — N1(d2)) — Sexp(—q(T — 1))(1 — N1(d2))}
ad
= —E(T —1)(1 - N1(d2)) — E exp(—r(T — t))n(dz)a—rz
ad
+ Sexp(—q(T — t))n(dl)a—rl
dd>2
= —E(T — t)N1(—d2) — Eexp(—r(T — t))n(dz)g
ad
+ S exp(—q(T —n)n(d) 7>

Substituting for n(d2) and % we obtain:
pp = —E(T — 1)N1(—d>) (A.5.2)
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A.6 Vega

Vega is the rate of change of option value with volatility. For a call we have:
a
v o

T 9o
9
= s {Sep(=a(T = 0)N1@d1) — Eexp(=r(T =) N1(d2)}
ad dd
= Sexp(—q(T — t))n(dl)a—al — Eexp(—r(T — t))n(dz)a—rz (A.6.1)
Substituting for n(d2) and % we obtain:

ad
Ve = Sep(—q(T —0)n(d) =~

ad
— Sn(dy) exp(—q(T — t)){—l _JT = t}

do
Therefore
Ve = Sexp(—q(T — 0))n(d)VT —t (A.6.2)
For a European put we have:
ac
V), = o
= %{E exp(—r(T —1)(1— Ni(d2)) — Sexp(—¢q(T — 1) (1~ Na(dv)}

3d ad
= —Eexp(—r(T — t))n(dz)a—: + Sexp(—q(T — t))n(dl)a—al

Substituting for n(dz) and % we obtain:

V, = Sexp(—q(T —1))n(d)NVT —t (A.6.3)

which is the same as for a call.



Appendix B:
Barrier option integrals

B.1 The down and out call

We will now derive the formula for the value ¢y, of a European down and out
call option with dividend yield ¢ when the strike, E, satisfies E > B.

_eXp(—=rr) [~
o/TV 21 Jx=log(E/S)

Substituting for f(X > B) we have ¢4, = 14 + I where:

Cdo {Sexp(X) — E} f(X > B)dX (B.1.1)

_M * {Sexp(X)—E}
4T o /TN 21 Jx=log(E/5)
2 2
o exp(—{X_ (r—q—o0%/21} )dX
2027
and
exp(—rt) [
Ip=———"7-— S X)—E
5 o J/TV 21 X=Iog(E/S){ SPX) }
(X —(r—q—0?/2)1)?
x eXp<_ 202t )
eXp<2|0§1(15’/5)(X2—|09(B/S))>dX
o2t

Now comparing I4 with Eq. (4.4.54) we can identify I4 as ¢, the price of a
European call. That is:

Iy = Sexp(—qt)N1(d1) — E exp(—r1)N1(d2) (B.1.2)
where:
g log(S/E) + (r —q +0%/2)t
1= NG
4 109S/E) + ( — g = o?/2)
2= o7

We now consider the term I, and let Ig = I¢ + Ip where:
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Sexp(—rt) [ ( {X—(r—q—oz/zmz)
lr=——— - X —
¢ o T2 Jx=log(E/S) SPLO eP 2027
2log(B/S)(X —log(B/S
exp( g(B/ )(02-5 g(B/ ))>dX
and
;- _ Eepiro) [ exp(_{X—(r—q—oz/Z)r}2>
v oJTV21 Jx=loyE/s) 202t
e,Xp<2|0§](19/5)(?(2— |09(B/S))>dX
o“T

We will first consider Ip and factor the integrand as follows:

—(r—qg—o2 2 —
—exp(—{X (r—gq o‘/Z)T})exlo<2|09(B/S)(X |09(B/S))>

202t o2t
( (X — (r —q—0?/2)7)” — 410g(B/S) (X — Iog(B/S)))
202t
_ exp(_ (X—(r—q-0%/2)7 - 2log(B/S)}2>
202t
2
» eXp<4(r q—o /2)r|og(B/S)) (B.1.3)
202t
This means that Ip can be expressed as:
B\2=07%/2/7% pexn(_r1)
Ip=(% —
° ( S ) N
o0 _ _ 2 _ 2
y / exp(—{x (r—gqo /2)2T 2log(B/S)} ) dx
X=log(E/S) 20°T

Letting u = (X — (r —q — 02/2)t — 2l0g(B/S))/(c+/T) we have dX = o /T du
and

2(r—q—02/2)/c? _ 0o 2
Ip = <§) Eept-rn) exp(—u—> du
N U\/?\/E u=k3 2
where
log(E/S) — (r —q — 0?/2)t — 21l0g(B/S)
k3 =
o/T
_log(ES/B?) — (r —q — 0?/2)1
= =
So

B 2r/o%—1
Ip = <§> E exp(—rt)N1(—k3) (B.1.4)
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Letting d3 = —k3 we have:

J log(B?/SE) + (r —q — 0%/2)t
3 =

oNT
and
2r/o?-1

Ip = <§> E exp(—rt)N1(d3) (B.1.5)

Now consider the term:
Sexp(—rt) [ ( (X —(r— 02/2)1}2>
Ipr=— - exp(X) exp| —
¢ o /T2 Jx=logE/s) P(X) exp 202t
exp<2|09(3/5)(X2— |09(B/S))) dx
o2t

Now we have

202t o2t
= (| (X — (-7 — ?/2)r)" ~ 27
— 4log(B/S)X + 4(10g(B/S))*})/(20%7))
= e>(p(((02r)2 +2(r —q — 0?/2)t%02
+4(r — g — 0?/2)tlog(B/S) + 4ot log(B/S))/(20%7))

—{X—(r—q—02%/2)t — 0%t — 2log(B/S)}?
X eXp( 2027 >

= exp((r — @)7) WP({% + 1} Iog(?))

(—{x —(r—q—0%/21 —0%r — 2Iog(B/S)}2>
X exp

2027
B)Z(r—q)/02+1

= exp((r — q)r)(;

y exp(—{x —(r—q—0%/21 — 0%t — 2Iog(B/S)}2>

_ A2 2 _
eXp(X)exp<—(X r—q 0/2)r)>exp<2log(B/S)(X Iog(B/S)))

202t
So we have:
B\ /7 s exp(—g1)
fe= _(E> o/TV/ 21
x foo exp(—{X — (r — ¢ — 62/2)r — 6% — 2log(B/S)}?
X=log(E/S)

x (20%7) 1) dx
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Letting
X —(r—q—0?%/2)t —o?t —2log(B/S)
oJT
we have dX = o.4/7 du and
B)Z(r—q)/62+1

Ie =-§ E‘XP(—W)(E N1(—ka) (B.1.6)
where
ey log(E/S) — (r —q — 02/2)t — 0%t — 2log(B/S)
4= o7
_ 10g(ES/B?) — (r —q + 0%/2)t
= G
B\ 2r—a)/o?+1
SoAe=-=S§ eXp(—qr)<§> N1(—kas)
or letting dg = —k4 we have
g log(B2/ES) + (r — q + 0%/2)t
4= NG
B\ 2r—a)/o?+1
Ic =-S§ eXp(—qr)<§> N1(da) (B.1.7)

Therefore the value for the down and out call option is:
¢do =Ia+Ic+1Ip=1s—(—Ic — Ip)

Since cgo + cg4; = ¢, where ¢ is the value of vanilla call and cy; is the value of
down and in call, we can write:

Cdo =€ — €4
where
20r—q)/o?+1
cdi = SeXp(—qT)Nl(dzl)(E)

2(r7q)/<7271
—E eXD(—rT)Nl(d3)<§>

B.2 The up and out call

We will now derive the formula for a European up and out call option with
dividend yield ¢ when the strike, E, satisfies B > E.

_ exp(_rt) log(B/S)

= — Sexp(X) — E X B)dX B.2.1
N x:mg(E/S){ p(X) — E}f(X < B) ( )

Cuo
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Substituting for f(X < B) we have cyo = I4 + I where:

B eXp(—rr) log(B/S)

= " Sexp(X) — E
4 o /T2 X=Iog(E/S){ P }
2 2
xexp(—{X (r—q—o0°/2)7} >dX
2027
and
exp(—rr)
Ig=——"—""—2
o./TA/2T
log(B/S) 2 2
x/ {Sexp(X)—E}exp(—{X U qz /2 )
X=log(E/S) 20°T
exp(2|09(3/5)(X2— |09(B/S))> dx
o°T
Letting I4 = Iy + I> where
_ log(B/S) 2 2
j = SePCErD) exp(X)exp(—{X (r -0 /2)t) )dx
o/TV21 Jx=log(E/s) 2027
and
_ _ log(B/S) A2 2
I, = —EepCro) exp(—{X (r 1-¢ /) )dX
o /T21  Jx=logE/s) 202t

From our previous derivation of the Black-Scholes formula in Chapter 4 we
have:

S _ ko 2
_ J&n-97) exp(—”—) du = S exp(—q7) {Ny(ko) — N1(kp))

te oTV2n Ju=iy 2
where
by = log(E/S) — (r —q +0%/2)T
ot
and
k= log(B/S) — (r —q + 02/2)t
ot
k 2
I = % u_4k3 ap(—%) du = —E exp(—rt){N1(ka) — N1(ka)}
where
ko e log(E/S) — (r —q — 02/2)T
ot
and

ey log(B/S) — (r —q — 0%/2)t
4= NG
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Therefore,

Iy = Sexp(—q7){N1(k2) — N1(k1)} — E exp(—r7){N1(ks) — N1(k3)}
Since N1(—x) = 1 — N1(x) we have

Ni(k2) — N1(k1) = N1(—k1) — N1(—k2)
sO

Iy = Sexp(—qt){N1(d1) — N1(d2)} — E exp(—r1){N1(ds) — N1(da)}

= Sexp(—qt)N1(d1) — E exp(—rt)N1(d3)
— Sexp(—q1)N1(d2) + E exp(—rt)N1(da)

which gives:

Iy = c— Sexp(—qt)N1(d2) + E exp(—rt)N1(da) (B.2.2)
where c is the value of a vanilla call and

= log(S/E) + (r —q +02/2)t by log(S/B) + (r —q + 02/2)T

o T oT
g log(S/E) + (r —q — 6%/2)T g log(S/B) + (r —q — 6%/2)T
3= o /T ’ 4= oT

Letting /5 = I¢c + Ip where:

Sexp(—rr) [l09(B/9) ( {X—(r—q—oz/zmz)
lc=————""—— exp(X) exp| —
¢ o T2 Jx=log(E/S) PR exp 2027
2log(B/S)(X — log(B/S
exp< g(B/ )(azf g(B/ )))dX
and
,_ Eexp(-rr) (199 exp(_{X—(r—q—oz/2>r}2>
b= o /T2 Jx=log(E/S) 2027
exlO<2|09(B/S)(X2— |09(B/S))> dx
o°T

In a similar manner to that in Section B.1 we have:

<B )2(}'—(1—02/2)/02 E exp(—rt)
Ip =

S e
log(B/5) o ,
x/ exp<—{X (r—gq 02/22)1 2log(B/S)} )dx
X=log(E/S) 04T

Letting
X —(r—q—02/2t—2log(B/S)
u =
o/T
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gives
B 2r—g-0?/2)/0* E exp(—rrt) ke u?
Ip = <§) —U\/?\/E - exp(—?> du (B.2.3)
where
log(E/S) — (r —q — 0?/2)t — 21l0g(B/S)
kg =
o\t
log(ES/B?) — (r —q — 0?/2)t
= G
and
log(B/S) — (r — g — 02/2)t — 2log(B/S)
ke =
ot
log(S/B) — (r —q — 0?/2)t
= G
and so
B 2(r—q)/o%-1
Ip = <§> E exp(—r7){N1(ke) — N1(ks)}
This can be re-expressed as:
B 20r—q)/o%—1
Ip = (§> E exp(—rt){N1(ds) — N1(ds)} (B.2.4)
where
ds = log(B%/ES) — (r —q — 0%/2)T
o\/T
ds = log(B/S) + (r —q — 02/2)t
o\

We now consider the term:

Sexp(—rt) ['09B/S)
Ic =—

_— exp(X) ex (—
o /Tv/21 Jx=log(E/s) P P

o2t
In a similar manner to Section B.1 we let
X —(r—q—0%/2)t —o’t —2log(B/S)
u= NG

which gives:

B )Z(r—q)/02+l

Ic =-=S§ eXp(—rT)<§ {N1(kg) — N1(k7)}

X—(r—q- az/z)r}2>

2021
exp(2|Og(B/S)(X —log(B/S))

) ax
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where
log(E/S) — (r — q — 062/2)t — 0%t — 2log(B/S)
k7 =
o7
_ 10g(ES/B?) — (r —q + 0%/2)1
= NG
and
log(B/S) — (r —q — 02/2)t — 0%t — 2log(B/S)
kg =
o/t
_ 10g(S/B) — (r —q +02/2)t

o /T
This can be re-expressed as:

B 2(r7q)/c72+1
) {N1(d7) — N1(dg)}

Ic = —Sexp(—rt) (§

where
&= log(B2/ES) + (r —q + 0%/2)t
oT ’
o= log(B/S) + (r —q + 0%/2)t
o\t
So we have:

Ccoo=1Ia+1Ic+1Ip
which can be written as:

Cuo = € — Cyi

where ¢ is the value of a vanilla call and c,;, the value of an up and in call, is

given by:

cui = SEXP(—q1)N1(d2) — E exp(—rt)N1(ds)

B 2(r—q)/02—l
— E exp(—rt){N1(ds) — N1(de) } <§)
B)Z(r—q)/02+1

+ Sexp(—rt){N1(d7) — N1(dg)} <§

(B.2.5)



Appendix C:
Standard statistical results

C.1 The law of large numbers

Let x1, x2, ... be a sequence of independent, identically distributed random vari-
ables (IID), each with expected value u and variance o2. Define the sequence of
averages

diaXi X1t x4+ X

Yn = , n=12 ...
n n

Then the law of large numbers states that y, converges to u as n — oo, that is
Var[y,] — O.
The mean of y, is:

1 1
Ely.] = ;(E[xﬂ + Elx2] + - + E[x,]) = “np =

For the variance of y, we have:

Var[y,] = Var[%} = n—lear|:Zx,~:|

1 < 1 , o
= ; X;Var[.xl'] = ﬁno = 7
1=

where we have used the fact that the variance of the sum of independent random
variables is the sum of their variances; see Section C.2.
We have therefore shown that as n — oo, Var[y,] — 0.

C.2 The central limit theorem

Let x1, x2, ... be a sequence of independent, identically distributed random vari-
ables (IID), each with expected value 1 and variance o2, If we define u; = x; —
then:

Elu;] = E[u] =0, Var[u;] = E[uz] =2
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Let
So

We now introduce the normalized value z,, as follows:
Sy — N 1 <
" o/n o\/n ‘= '
i=

The central limit theorem states that as n tends to infinity the probability distri-
bution of z, tends to a normal distribution with zero mean and unit variance;
mathematically z, — N(0O, 1) as n — oc.

ProOF. From Section C.5, Eq. (C.5.3)

t n
e |
and using Eq. (C.5.5)

vl )]

Equation (C.5.1) then yields:

M=) ~14+—"_E ! tZEZ
(o) > s+ 5 ( ) E0+

Asn—>oo,(7’—ﬁ—>0and

M(L>—>1+LE[]+}<—>2E[ 14 L
“\ovn ovn T o\om) T T,
Thus

Y G L i
E—— = —_— e d —_— — X
“\on 2n 2 B
where we have used the fact that r « 1; see Grimmett and Welsh (1986).

We have therefore shown that asn — oo

t2 22
M, () = 1+ = — e/

However, from Section D.1 the moment generating function M,(¢) for a stan-
dard normal distribution (u = 0, 62 = 1) is:

M, (1) = ¢“/2 where 7 ~ N, 1)
Thus we have proved that z, — N(0, 1) as n — oo. a
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C.3 The variance and covariance of random variables

C.3.1 \Variance

One variable

Let X be a variate from a given distribution, and Z be the following linear
function of this variate:

Z=a+bX
where and a and b are constants. Then
E[Z] = Ela] + E[bX] =a + bE[X]
and
(z - E(2)°]
(a+bX —a—bE[X])?]

Var[Z] =

=E
= E[(bX — bE[X])?]

E|
[
[
E[b?(X — E[X])’]
b E[(X E[X]) ]

Therefore the mean is a + bE[X], and the variance is b2 Var[X].

Two variables

Let Z = a + b1 X1 + bp X2, where a, by and b are constants.
Then the mean is E[Z] = E[a]+ E[b1X1]+ E[b2X2] = a+b1E[X1]+b2E[X2].
The variance Var[Z] is computed as follows:
Var[Z] = E[{a + b1X1 + b2X2 — a — b1E[X1] — boE[X2]}’]
= E[{b1(X1 — E[X1]) + b2(X2 — E[X2])}]
= B3E[(X1— E[X1])°] + B3E[(X2 — E[X2])°]
+ 2b1b2E[(X1 — E[X1])]E[(X2 — E[X2])]
= b2 Var[X1] + b3 Var[X2] + 2b1b2 Cov[ X1, X2]

where Cov[X1, X>] is the covariance between X1 and X». If X1 and X, are iden-
tical independently distributed random variables (IID) then Cov[X1, X2] = O,
and we thus have:

Var[Z] = b? Var[X1] + b3 Var[X7]
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Three variables

Let Z = a + b1 X1 + bpXo = b3X3, where a, b1, by and b3 are constants.

Then the mean is E[Z] = E[a]l+E[b1X1]+E[b2X2]+E[b3X3] = a+b1E[X1]+
baE[X2] + b3E[X3].

The variance Var[Z] is computed as follows:

Var[Z] = E[{a + b1 X1+ b2X2+ b3X3—a
— biE[X1] — b2E[X2] — b3E[X3]}"]

— E[{b1(X1 — E[X1]) + ba2(X2 — E[X2]) + b3(X3 — E[X3])}’]

= b2E[(X1— E[X1])’] + B3E[(X2 — E[X2])°]
+b3E[ (X3 - E[X3))"]
+2b1boE[ (X1 — E[X1])]E[(X2 — ElXa])]
+ 2b2b3E[(X2 — E[X2])|E[(X3 — E[X3])]
+ 2b1b3E[ (X1 — E[X1])|E[(X3 — E[Xa3])]

= b? Var[X1] + b3 Var[X2] + b3 Var[X2] + 2b2b3 Cov[ X2, X3]
+ 2b1b Cov[ X2, X3] + 2b1b3 Cov[ X1, X3]

If X1, X2 and X3 are IID all the covariance terms are zero and the variance is:

Var[Z] = b? Var[X1] + b3 Var[X7] + b3 Var[X3]

Variance of n variables

We will now derive an expression for the sum of n IID random variables.
Let Z=a+ )/ _1biX;, wherea and b;,i =1, ...,n, are constants.
Then we have: E[Z] = E[a]l + E[Y_;_1biXil=a+ Y ;1 b E[X;] and

n n 2
Var[Z] = E| {a +ZbiXi —a— ZbiE[Xi]} ]
) i=1 ) i=1 ,
—E Zb,-Xi —ZbiE[Xi]} ]
1:1 i=1 ,
=E|{> bi(xi - E[Xi])} }
i=1

n

= Y B2E[(X; - ELX)’]

i=1

_|_zn: Zn: bibjE[(Xi—E[Xi])(Xj_E[Xj])]

i=1 j=1(j#i)
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=Xn:bl-2Var[Xi]+2n: Z bib; Cov[X;, X;]
i=1

i=1j=1(j#i)

As before if all the X variables are IID then the covariance terms are zero, and
we have:

Var[Z] = Z b? Var[x;]
i=1

If in addition all the b; terms are one and all the X variable have variance o2 we

obtain:

Var[Z] = ZVar[x,-] =no?
i=1

C.3.2 Covariance
The covariance between two variables X and Y is defined by:
Cov[X, Y] = E[(X — E[X])(Y — E[Y])]
= E[XY —YE[X]— XE[Y]+ E[X]E[Y]]
= E[XY]— E[Y]E[X] — E[X]E[Y] + E[X]E[Y]
= E[XY]— E[X]E[Y]

By symmetry it can be seen that Cov[X, Y] = Cov[Y, X].

Two variables

Let Zy =a+bX and Zo = ¢ +dY, where a, b, c and d are constants.
We have:

Cov[Z1, Z2] = Cov[a + bX, c +dY]
= E[(a+bX)(c+dY)] — E[(a + bX)]|E[(c + dY)]
= Elac 4+ bcX +adY + bdXY] — {(a + bE[X])(c + dE[Y])}
=ac + bcE[X]+ adE[Y] + bdE[XY]

—ac+ bcE[X] — adE[Y] — bdE[X]E[Y]

= bd{E[XY]— E[X]E[Y]}

.. Cov[Z1, Z2] = bd Cov[X, Y]

Three variables

Let Z1 = a+b1X1+b2Xo and Zy = c+dY, where a, b1, by, c and d are constants.
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We have:

Cov[Z1, Z3] = Covla + b1 X1+ b2Xo,c +dY]
= E[(a + b1X1+ b2X2)(c + dY)]
— E[(a + b1X1 + b2X2) |E[(c + dV)]
= E[(a + b1X1)(c + dY) + b2X2(c + dY)]
—{E[(a + b1X1)]Elc + dY]+ E[b2X2]Elc + dY1}
= E[(a + b1X1)(c + dY)] + E[b2Xa(c + dY)]
— E[(a + b1X1)]Elc + dY] — E[b2X2]E[c +dY]
= {E[(a + b1X1)(c +dY)] — E[(a + b1X1)|E[c + dY]}
—{E[(b2X2)(c +dY)]| — E[b2X2)]E[c + dY]}
.. CovlZi, Z2] = b1d Cov[X1, Y]+ bad Cov[X2, Y]

Four variables

Let Z1 = a + b1 X1+ boXo + b3X3 and Zo = ¢ +dY, where a, by, by, b3, c and d
are constants.
We have:
Cov[Z1, Z2] = Cov][a + b1 X1 + bX2 + b3 X3, c + dY]
= E[(a+b1X1+ b2X2 + b3X3)(c + dY)]
— E[(a 4+ b1X1+ b2X2 + b3X3)|E[(c + dY)]
= E[(a + b1X1+ b2X2)(c +dY) + b3X3(c + dY)]
—{E[(a +b1X1 + b2X2)|Elc + dY] + E[b3X3]Elc + dY]}
= E[(a + b1X1+ b2X2)(c +dY)| + E[b3X3(c +dY)]
— E[(a + b1X1 + b2X2)|Elc +dY] — E[b3X3]E[c +dY]
= {E[(a+b1X1 + b2X2)(c +dY)]
— E[(a + b1X1 + b2X2)]Elc +dY1}
+ {E[(b3X3)(c + dY)] — E[b3X3]E[c 4+ dY]}
= Cov[(a + b1 X1+ b2X2),c +dY] + Cov[bzX3, c + dY]
.. Cov[Z1, Z2] = b1d Cov[X1, Y]+ bad Cov[ X2, Y]+ bzd Cov[X3, Y]

Covariance of n variables

In a similar manner to that outlined above:

n n
COV[a + Y biXic+ dY} =d Y b Cov[X;. Y]
i=1 i=1
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For the most general case let: Z1 =a + ) 7 1 b;X; and Zo = ¢ + Z?”zl b;Y;.
So

n M
COV[Z]_, Zz] = COV|:(1 + ZbiX,-, c+ Zdej:|
i=1 j=1

n M
= Cov[a + ZbiX,-,c—i— Zdej:|
i=1 j=1
So

n M n M
COV|:CI + Zbixi, c+ Zdej:| = ZCOV|:b,'Xi, Zdej:|
i=1 j=1

i=1 j=1

n M
= Zb,’ COV|:X,', Zdej:|
i=1 j=1
n M
= Zb,‘ COV|:Zdej, X,':|
i=1 j=1

n M
. CovlZ1, Zo] = Z{bi > d; Covly;, X,»]}

i=1 j=1

C.3.3 Covariance matrix

Let X denote the n element vector containing the random variates X;,i =
1,...,n. The mean and variance of the ith variate is then E[X;] and E[(X; —
E[X;1)?] respectively. The covariance Cov[X]; ; between the ith and jth vari-
ates is E[(X; — E[X;])(X; — E[X,])]. The elements of n by n covariance matrix
Cov[X] are then:

Cov[X1;; = E[(Xi — E[Xi1)(X; — E[X,])].
i=1...,n,j=1...,n (C.3.1)
We will now show that Cov[X + A] = Cov[X] where A is an n element vector
containing the constants A;,i = 1,...,n. Since E[X; + A;] = E[X;] + A; we
obtain:
Var[(X + A);] = Var[X; + A;]
= E[(Xi + A — EIX; + A11)°] = E[(X; — E[X;])°]
and
CovlX + Alij = E[(Xi + Ai — E[X; + Ail)(X; + Aj — E[X; + Aj])]
— E[(X, — ELXO)(X; — EIX; )]
= Cov[X];; (C.3.2)
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C.4 Conditional mean and covariance of normal
distributions

Let X = [}}g] be distributed as N, (i, X) with u = [Z;], and ¥ = [gi g;g],
and | Y| > 0.

We will prove that the conditional distribution of X1, given that Xo = xp, is
normal and has:

Mean = u.s1+ lezgzl(xz — 12), and covariance = X3 — 2122521221.

Let the inverse of X be ¥ ~1, where:

B Ell 212
= ( w2 222> (C.4.1)

So X71% = I,, where I, represents the p x p unit matrix, and:
>l yi2 Y11 212 I, 0
<221 »22 Sa ¥n) - \0 I, (C.4.2)
Multiplying out these matrices yields the following equations:

SUey 4+ 5255 =1, (
IA5 4+ 3225%p =0 (C.4.4
Sz + 5255 =0 (
A3+ 325 =1, , (

Multiplying Eq. (C.4.5) on the left by (£11)~! and on the right by 22_21 gives:
(W) e = _xmpxt (C.4.7)
Multiplying Eq. (C.4.3) on the left by (211)~! yields
Zu+ (B9 Isry =zt (C.4.8)
and substituting for (1)~ 312 from Eq. (C.4.7) into Eq. (C.4.8) gives
(P17t =Yu - Y12y T (C.4.9)

The joint probability density function of x is:
_ _ 1 _
fo) = @m PR ETY? exp{—éu —w' 2 - m}
writing x, 1 and £~ in their partitioned form and expanding gives:
f@) = @)~ 1z|7Y?

1
x exp[—i{m — 1) T2 (g — pa) 4 2001 — 1) T E2(x2 — p2)

+ (x2 — 1) ' 22 (xp — Mz)}} (C.4.10)
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The conditional distribution of x1 given the value of x is thus obtained by
dividing this density by the marginal density of x2, and treating x as a constant
in the resulting expression. The only portion of the resultant that is not constant
is the portion involving terms in x1. It can easily be shown that:

1
(1 — p1) T e — pa)

fxalx2) o exp[—i{

+2(x1 — 1) " Z(xp — Mz)}]

where the constant of proportionality is obtained using | f(x1|x2) dx1 = 1.
If we let G = (x1 — p0) T M1 — 1) + 201 — 1) " (2 — p2) we then
obtain:
G =(x1—p1) T — p1) + (1 — pa) " T2 — p2)
+ (2= p2) 2 (v — )
G={x—mi+ (211)71212()@ - Mz)}T
x T8{x1 — p1 + (S 500 - o))
— (2 — 1) ER(5?) Mz — o) (C.4.11)
where, for instance, we have used the fact that the scalar quantity
{1 — D) " 2202 — p2)} = (2 — p2) " 2# (1 — pa)

Since the last term in Eq. (C.4.11) only involves constants (as far as f(x1]x2) is
concerned), it follows that:

1 _
f(x1lx2) o exp[—é{n — 1+ (EH T, — )|

X Ell{xl — 1+ (211)_1212()52 - M2)}i|

which is the density of a multivariate normal distribution that has a mean of
u1 — (M1 32(xy — o), which from Eq. (C.4.7) can be expressed as u1 +
Elzzgzl(xz — u2). The covariance matrix is (£)~1, which from Eq. (C.4.9)

can be written as Y11 — 21222_21221.

C.5 Moment generating functions

If x is a random variable with probability distribution f;(x) then the moment
generating function M, (¢) is defined by:

My (t) = E[e"] = /oo e fr(x)dx

—00
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We can expand the above expression as follows:

E[e"] = E|:1+tx + %(tx)2+~-~i|

M,(t) =1+ 1E[x]+ %tzE[xz] 4+ (C.5.1)

Now

(M @) dF . drer .
—r = @{E[et 1} = E[—dtk ] = E[xket ]

For t = 0 we thus have:

d* (M (1)) d* (M, (0))
T o = T = E[xkeo] = E[)Ck] (C.S.Z)

Moment generating function of a linear function of a random variable x

If the random variable y is defined as: y = ax + b then the moment generating
function of y, M,(r) is obtained as follows:

M}(t) — Max+b(t) — E[ety] — E[eatx+bt] — eblE[etX]
Therefore:

My (1) = " M, (at) (C.5.3)

Moment generating function of a linear combination of random variables
Let z = x + y where x and y are independent random variables. Then

M (t) = E[¢"*] = E[e""] = E[e""e"]
Since x and y are independent:

E[e™e] = E[e™]E[e"] = M (t) M,(1)

More generally if s, = Y 7_; x; where x;,i = 1,..., n, are independent variables
then:
n
M, () = [ [ M ®) (C.5.4)
i=1
Ifx;,i=1,..., n, are IID then we have

M, (t) = E[exp(zi:xiﬂ = (E[e"])" = (M. ()" (C.5.5)



Appendix D:
Statistical distribution functions

D.1 The normal (Gaussian) distribution

Here we describe some properties of the normal distribution. If x comes from a
normal distribution, then the associated moment generating function, M, (), is
given by:

M (t) = E[e"]

1 o (x — w)?

1 © (x — )2 — 20%x
N /—oo exp<— 202 )dx

Now completing the square we have:

_2_12{(x —w?—2t0%}) = _2_12{’C2 + ¥ = 2ux — 200°)
(o}

o
1 2
= —F{(x — o2t — ,u) — 2,ut02 — (74t2}
=t =5l met = u)
We thus have:
1 0.212 X=00 (x — Uzt _ M)Z
16— L (s Z) [ o5
("] o/2m PL# 2 =—00 P 202
Now letting y = x — 0% — i, dx = dy and

1 0’2t2 y=00 2
E[e"] = -~ exp(,ut + — )/V__Oo exp(—%) dy

= V2 exp( t+62t2)
= oV2n —
o/ 271 H 2

o212
= exp| ut + T
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where we have used (see Section E.1) the fact that

[owaro-

Thus the moment generating function M, (¢) for a normal distribution with

mean u and variance o is:

0212
My (t) = eXp(Ml + T)

D.1.1 Some elementary results involving the mean and variance of
a normal distribution

From first principles we have:

e The mean:

Y (x — p)?
E[x]= T /x:wxexp<—?> dx

Letting y = x — u we have dx = dy and x = y + u; therefore:

1 y=00 2
pi= [ orwen(- 5, )b
y=—00

o/ 21

1 y=00 y2 d
E = expl —=——
Ll MG 27 /y:—oo p( 202) g

1 y=00 y2 )
+ expl —== ) d
o+/2m /y—_oo Y p( 202 Y
Since

o) y2
2 -0
/my exp( 202>dy

we have using the integral result (i) in Section E.1 with a = 1/(2052):

1 =) y2
etel = | ooz ) 4=

e The variance:

1 X=00 X — 2
E[xz] = — /x:_oo x2 exp<—7( 20/;) )dx

Letting y = x — s« we have dx = dy and x? = y? + 2uy + u?; therefore:

2

E[xz] = 1 /y=0° (y2 +2uy + /LZ) exp _y_) dy
oA/ 2T y=—00 202
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E[xz]

2
d
0«/27( < 20 2) Y
yoo 2
2 _r
+O’\/21T /;oo Y E'Xp< 202>dy
So

E[xz] = 1% 402

where we have used (see Section E.1 result (i) with a = 1/(202)) that

1 o0 ) y2 4
eX| = O’
o271 —ooy ( 20 2) r=
Therefore:

Var[x] = E[xz] - (E[x])2 =u’+o0%—p?=o?

The mean and variance can also be obtained by using the moment generating
function, M, (t).
From Section C.5:

E[ ]—dMX(t) —i{ex < t—i—ﬁ)}
YT | T d Pl 2 )0
0212
=(n+o t)exp(m+—> =u
2 t=0
also
d’M, (1) d o%r?
21 _ x o
= 50| = (s 7))
2
E[x*] = {exp(m 1 %)(u + uo)’ + 02}
=0
— 2402

These results are the same as those we previously derived from first principles:

E[x]=pn and E[xz] = u?+o?

D.2 The lognormal distribution

If the variable x follows a lognormal distribution then the probability density
function f(x) is given by:

1 (log(x) — p)?
> exp(— 252 ) (D.2.1)

where x > 0. Here we denote the lognormal distribution for x as: x ~ A(u, o).
Setting y = log(x) it can be seen that y ~ N(u, 0?). Thus if x is a lognormal
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distribution A(u, o2) then log(x) is a normal distribution with mean u and
variance 2. Conversely if y ~ N(u, 0?) then the distribution for x = e’ is
x ~ A(u, 02).

The expectation of the rth moment (where ¢ is a positive integer) of x is thus:

U TR A ! (log(x) — p)?
E[x ] = /xz?oox ;exp(—iza2 dx

Using y = log(x) we have:

dy _ dlog(x) = }, dx =xdy, and x' = (ey)t =el
x

dx  dx
Thus,

—oo e
E[x’] = E[e’}‘] =M,@1) = 1 f} oty exp(— v —mw )dy
y

o2m 202

where M, (¢) is the moment generating function of a normal distribution with
mean p and variance o2,
From Section D.1:

2,2
E[x'] = My@t) = exp(;u + %)

Therefore if x ~ A(u, o) then:

Fortr=1
0,2
fort =2
E[x?] = exp(2u + 257) (D.2.3)

and the variance is obtained using

Var[x] = E[x?] — (E[x])® = exp(2u + 202) — exp(21 + 0?)
So

Var[x] = exp(2u + 0'?) (exp(a?) — 1)
or

Var[x] = (E[x])*(exp(c?) — 1) (D.2.4)

NoTEe. If x1 = exp(u + 0 Z), where Z ~ N(0, 1) then x1 ~ A(u, 02). So E[x1]
and Var[x1] are given by Eqgs. (D.2.2) and (D.2.4).
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D.3 The Student’s ¢ distribution

This section derives an expression for the kurtosis of the Student’s ¢ distribution.

Since the Student’s ¢ distribution density function is:
€2 —(+1)/2

Al I

fe) [ +h,-(v—2):|

where

T+ )/ -2 Y2

K /21 (v/2)

we have:

E[e-z] _ ZIC/OO el-z de;
’ 0 (L+e2/(hi(v—2))" 2

i

2
w+n2 [ el de;
=2K(h;(v — 2
(hi(v—2) /o (hi (v — 2) + eH)tD/2

Using the standard integrals in Section E.1 witha =2, =2,¢c = (v +1)/2
and m = (v — 2)h; gives:

m(a+1—bc)/b B (/’l,’(\) _ 2))(2—1})/2 F(a + 1) B F(3>

b 2 ’

a+1 v—2 v+1

()R ()
This gives

N o i o\ (D)2 (hi(v—2))(2_”)/2ﬁr((v—2)/2)}
E[ef] = 2K(hi(v — 2)) { CESE)

Substituting for K and simplifying we obtain:

_ hi(v=20((v — 1)/2)
/1= T (v/2)

(2 )r(57) =r (27 1) =r (3)

o hi—2T(/2)
Ele]= 20—2T(w/2) "

So
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Similarly we have:

E[€] ZIC/OO ci'dei
€| = ”

0 (14 €2/ (hi(w—2))" /2
ei4de,-

(hi(v —2) + /) +D/2

oo
= 2K (hi (v — 2))(”“)/2/
0

Using the standard integrals in Section E.1 witha =4,b =2, ¢ = (v+1)/2, and
m = (v — 2)h; gives:

ma+1-be)/b 3 (h; (v — 2))(4*1’)/2 r a+1 _r 5
b a 2 ’ b ) ’

a+1 v—4 v+1
r(e- ) =r(*57): ro=r(*57)

B o o\ (D)2 (hi(v—2)><4—”>/23ﬁr(<v—4)/2>}
E[e]'] = 2K(hi(v — 2)) { ST 1 D/2)

and

Substituting for K and simplifying we obtain:

_ 3hi(v— 27T ((v — 4)/2)h?
B AT (v/2)

(2 () = ()
(29)r(552) = ()

Therefore:

r v—4y ar'(v/2)
( 2 )_(v—4)<v—2)

E[e]

But

and

So
T Ul 224 (v/2)hZ  3(v — 2)h?
[€]= M0/ —-Bv—-2 v—4a

The kurtosis is then:
_ El] 3v-2hZ 31 -2
S (E[e?D?2 (v—dHRZ v —4

(D.3.1)
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D.4 The general error distribution

This section proves various relations for the generalized error distribution.
The density function for the generalized error distribution is:

1 €
2| x

a

_ D.4.1
220+Yar(1/a) ( )

fe) = ICeXp( ) where K =

D.4.1 Value of \ for variance h;

Calculation of the scale factor A required for a generalized error distribution
with mean zero and variance ;.
The variance of the distribution, E(e?), is given by:

E(e?) = IC/ el»zexp<—:—2L )dei = ZIC/ efexp(—%(%) )dei
—00 0

Using the standard integrals in Section E.1 withn =2, p = a, and b = %(%)“
gives:

= ORCT

which after some simplification yields:

2K23/4)3 /3
22 ()

€i
A

; —
a

a
Substituting for K and simplifying then gives:
I'(3/a)
'Q/a)
The required value of A is therefore:
L {hiz—Z/aM }1/2
I'3/a)

h; = )L222/a

D.4.2 The kurtosis

E(el.“) = IC/ ef‘exp(—% )dei = ZIC/ ef‘exp(—%(%) )déi
—00 0

However, from standard mathematical tables:

© (k)
4 —beP) = 2
/0 €; exp( be; ) P

where p =a, b = %(%)“, and k = 5/a which gives:

5, 5
_ 2K209 (5N oz, T /@)
a I'(3/a)

€

A

E[ef) .
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From Section E.1 we have:

21 _p. — z
Flei] == r@/a

a a

Therefore:
[ 4] _ hZF(5/a)F(l/a)
' 'T'(3/a)l (3/a)
which gives the kurtosis as:
_El]  WTG/aT/a) T/ (/a)
T (E[)?2 T K2TE/a)l@/a)  T(3/a) (3/a)

D.4.3 The distribution for shape parameter, a
If the distribution has variance h; then, from Section D.4.1:
A= (2‘2/“F<1/a>h,- )”2
T 3/a)

Now for 0 < x < 1 we have I'(1+ x) = 1+ aix + ax2 + azx3 + - - -, where
the coefficients are |a;| < 1 (see Abramowitz and Stegun (1968)).
Since xI'(x) = I'(1 + x), to third order in x, we have:
xIN'(x) =14 aix + ag)c2 + a3x3

This gives I'(x) = % + a1 + azx 4+ azx?, and ['(x) ~ ;1 as x — 0.
So as a — oo we have the following:

1 1

(14+1/a) ~ —2/a ~ ~ =

2 2, 2 1, rm S
I'(1/a) 3a r'5/a) 3a 3
~ — =3 and N — =
r'@/a) a I'3/a) 5a 5

The kurtosis is then:
_ TG/ar(L/a) 9

T I'G/a)r@/a) 5
Also as a — oo, A ~ (3h;)Y?, and for the range —(3h;)Y? < ¢; < (3h;)Y/?, we
1le:
~ 0 and therefore exp<__ €

have:
a
€ ~1
) AR )

Substituting the above results into Eq. (D.4.1), the probability density function
reduces to:

1
f(fi)NW

which is a uniform distribution U(—(3r)Y2, (3h)'/?), with lower limit
—(3h;)Y? and upper limit —(3h;)Y/2.

a N €
(3hi)t2
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Mathematical reference

E.1 Standard integrals

* e0(—avd dv = + [T ~
/O exp( ay)dy—2 » (i)

[e%e] 1 ..
/ yeXp(—ayz)dy:E (ii)
0

RV _i\/f
/(; y eXp( ay )d)’—4a P (1ii)

3 b1

/O ytexp(—ay®) dy = @\/; (iv)

© I1x3x5x---x@2n—-1) =
2 2
/O y* exp(—ay®) dy = g ”

o0 I'(k)
n —beP) = 2
/o e exp(—be!) o

a

(vi)

1
wheren > -1, p>0,b>0and k = nt
p
/00 efde;  m@PI T (@ + 1) /D)1 (c — (a + 1)/b)
o (m+ eib)‘f b (o) ..
a1 (vii)

wherea>—1,b>0,m>Oandc>T

E.2 Gamma function

For more detail see Abramowitz and Stegun (1968).

ra+x) =x!
xFx)=T(x+1)
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3\ /=
F(E) =7
5\ 3%
F(E) =4
al
Oga(F(X)) — )
X

For 0 < x < 1 we have:
rl+x)=1+a1x + a»x® + a3x3 +aax® + a5x5

where a1 = —0.5748, ap = 0.9512, a3 = —0.6998, a4 = 0.4245 and a5 =
—0.1010.

E.3 The cumulative normal distribution function

In this section we show that the cumulative normal distribution function, N1(x),
is related to the complementary error function, erfc(x), by the following equa-
tion:

Ny(x) = erfc< %) (E.3.1)

If we let the error function be represented by erf(x) then we have:

erf(x) = [ / exp dt

Now we have the following:

erfc(x) =1 — erf(x), erf(—x) = —erf(x),
erf(o0) =1 and erfc(—x) = 2 — erfc(x)

We will consider the integral

1()—i/x
X—ﬁ_oo

2 0
= — ex dt+—/ex
ﬁ/_w (= P
Since

% [0 exp(—1?)dr =1

we therefore have

Ix)=1+erf(x) =1+ {l - erfc(x)} =2 — erfc(x)
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Substituting for erfc(x) we obtain:
1(x) =2—{2—erfe(—x)} = erfe(—x)

So we have
erfc(—x) = f eXp dt (E.3.2)
«/—
Now the cumulative normal distribution is defined as

Ni(x) = %) dr

v o

Letting u = 1+/2, we have du = +/2dt, and for the upper limit we have x = 1+/2,
ort =x/v/2.

This integral becomes:

t= x/f

Ni(x) = —1?)V/2dr (E.3.3)

7 .
So from Eq. (E.3.2) we have:

Ni(x) = 1 erfc(—i)
' vz

We also note that:

Ni(—x) =1— Ni(x)

E.4 Arithmetic and geometric progressions

Arithmetic progression
The sum of the first n terms of an arithmetic progression is:

Sy = %{2511 +(n —Dd) (E.4.1)
where a1 is the first term, and d is the common difference; that is, the terms in

the sequence are: a1, a1 +d,a1+2d, a1+ 3d, ....

Geometric progression

The sum of the first n terms of a geometric progression is:

ai(l—r"

5 = 2= (E.4.2)
1-r

where a1 is the first term, and r is the common ratio; that is, the terms in se-

quence are: aj, air, arr?, aprd, . ...
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Appendix F:

Black-Scholes finite-difference
schemes

F.1 The general case

In this section we consider the stability of the finite-difference schemes described
in Chapter S. It is assumed that the grid contains ng asset points, and we will
denote the time dependent option values at the ith and (i + 1)th time instants
by the ny — 2 element vectors X’ and X*? respectively. We can therefore write:

X' = Tox'*t (E1.1)

where Ty and T3 are (n; — 2) x (ny — 2) tridiagonal matrices, and x,i, k=1,...,
ng — 2, will be used to denote the elements of the vector X’.

The option values at the ith time instant are computed from those at the
(i + Dth time instant by using

X' =1 X (F1.2)

However, Eq. (F1.2) is only stable if the eigenvalues of the (ny — 2) x (n; — 2)
matrix Tl_sz all have modulus less than one (see Smith (1985)).

F.2 The log transformation and a uniform grid

We will now prove that the implicit finite difference method, ®,, = 0, when used
on the log transformed Black—Scholes equation with a uniform grid is uncondi-
tionally stable which means that the stability does not depend on the values of
o, At, AZ, etc.

From Chapter 5 the finite-difference scheme is described by the following
tridiagonal system:

B C 0 O0O0O xq
A B C 0 0 O xb
0 0 . 0 0 .

0 0 0 . 0

0 00 A B CJ||x,
0 00 0 A B/ \i_,
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B C 00 0 0y
A B C 00O x’2+1
_lo o 00 .
“looo . . 0 .
0 00 A B C||xif3
0 00 0 A B/ \,itL
s—2
where
1-0,)At
= (- Omar 2A;2) (bAZ — 02} (F.2.1)
o2
1— Op)At
c= —%{bAZ +02) (F2.3)
—  OnAt
A —ZZZZ{bAZ—oz} (E2.4)
— 0'2
—  OuAt
C= 2122 bAZ + o2} (F2.6)

2
AsinChapterS,b:r—q—%andr>0.

Substituting ©,, = 0 into Egs. (F.2.1)-(F.2.6) we have A = C =0, B = 1, and

At 2
A=—5{baZ —o?}, —1+At{r+—2}
207 AZ
At
C=-——5{bAZ +0?}
207
The finite-difference scheme is thus represented by the equations
B C 00 0 0\/H 100 0 0\ (5"
A B COO0O xb 01 00 0]fax
0 0 0 0 .| _lo o . 0 0 :
000 . . O . |7]Jooo . . o0
0 00 A B C||xi, 000010 x;+§
00004 B/\4, 00000 1/ \,iHl

or in matrix notation
X =1 tx+ (F2.7)

where T» = I in Eq. (E1.1).

As mentioned in Section F1, Eq. (E2.7) is stable if the modulus of all the
eigenvalues of Tl_l are less than one. We will now show that this is in fact the
case.
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If the eigenvalues of Ty are ¢,k = 1,...,ny — 2, then the eigenvalues of
Tl_l are )»k_l, k= 1,...,n, — 2. This means that the system is stable if all the
eigenvalues of 71 have a modulus greater than one. This result can be proved
by considering the eigenvalue with the smallest modulus, Amin. If [Amin| > 1 then
the result is proved.

Now the eigenvalues of T1, see Smith (19835), are given by:

kT
A =14 At r—|—— + 2V ACcos| ——
ng—2+1

(F.2.8)
k:l,...,ns—Z,
where the term
At?(o% — b2AZ?
2JAC =\/ G - ) (F2.9)
AZ

It can be seen that if 52AZ? > o* then the eigenvalues are complex and if
o* > b2AZ2 then eigenvalues are real. We will consider each of these cases in
turn.

Complex eigenvalues: b>*AZ?* > ¢*

We will represent the kth complex eigenvalue as:
=R+1Y

where the real part is

0.2
eetai(rr )
AZ

and the imaginary part is

= 2V AC cos ke
- ng—2+1

Since
|Ak] > |R|+1Y| and |R|> 1,
we conclude that

[Amin| > 1

Real eigenvalues: * > b* A Z>

In this case the kth eigenvalue is real, and from Eq. (E.2.8) we have:
2

o> 14 At(r + a—2> —2JAC
AZ



328

Computational Finance Using C and C#

Since b°A? > 0 from Eq. (E.2.9) we have

4A12
AZ
or
o2At
|2V AC| < 5
AZ
So

_ 1 o2 o2At
hain = L4 AN 3 72) T a2

Therefore we have
and, since r > 0, we have:

[Amin| > 1



Appendix G:

The Brownian bridge:
alternative derivation

Here we provide an alternative derivation of the Brownian bridge equation
given in Chapter 2.

Let a Brownian process have values Wy, at time 79 and W;, at time 71. We want
to find the conditional distribution of W;, where 19 < ¢ < t;. This distribution
will be denoted by P(W;|{Wy,, W,}), to indicate that W; is conditional on the
end values Wy, and W,,.

We have:

P(W,|W,,) = #exp{_w}
o /21t — to) 2(t — to)
The joint distribution of W, and Wy, given Wy, is:
P({th th}lwto)

= P(Wy W) P(Wi|Wy)

_ 1 {_(Wf —Wi)? Wy — Wt)z}
N2n(t —10) (11 — 1) 2(t — to) 2(t1—1)
_ 1 (W= Wy)? <W,1—W,>2>}
VTS T exp{ 2( 2010 | 20—
Similarly
_ 1 (W — Wm)Z}
PWi[Wio) = V27 (t1 — to) & { 2(11 — tg)

Now we have:

P(WZHWIQv th})
_ PUWi, Wy} Wig)
P(Wt1|Wto)

_ 1 11— 1o
V2V =t —1)

y exp{_}<(Wz —Wi)? | Wy —W)? (W — W,O)Z)}

2\ 2(t —1o) 2(t1 — 1) 2(t1 — to)
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For ease of reference we will write the above equation as:

1 11 —1o
P(Wt|{Wtov th}) = \/E ([ — [0)(1‘1 — l‘) eXp{A}

We now consider the terms in the exponent A.

1 ( (X = X10)*(t = 1) (11 — t0)
2\ (1t —10)(t1 —1)(11 — to)
(X1 = X)2(t —t0) (1 —t0) (X1 — Xip)*(t —10) (11 — 1) }
(t — to)(t1 — 1)(t1 — 10) (t — t0) (11 — 1) (t1 — 10)

A=

Dividing top and bottom of the above expression for A by (11 — f0)? we then
obtain:

1 11—t t—1tg
A=——1(W?+ W2 —2W,W, W2 + W2 — 2W, W,,) ——
ZV{( e Vo ! tO)tl—to+( 0t W ! ’1)t1—to
(t —1t0)(11 — 1)
— (W2 + W2 — 2W, Wy, ) ——2—= 2
(Wi, + Wi u W) (11 — 10)? }
where
t—to)(tL—t
V=( 0)(f1—1)
11— 1o
So
1 11—t t—1to S t—1o (t—10)(t1 — 1)
A=——(w? w _
ZV( ’{tl—to+t1—to}+ i —10 (t1 — 10)?
t—to (t—to)(t1—1) fh—t
w2 - —2W, Wy ] ——
- ’O{tl—to (1, — 10)2 } ' to{fl—to}
t—1o (t —1t0)(11 — 1)
— 2W, W, 2W, Wy ———————
[tl{tl—lo}+ " IO{ (11 — 10)? })
We now show that A can be expressed as quadratic form:
B:_i(Wt_M)zz_i(Wz"‘Mz_ZMWt)
2V 2v !
where
(t—t)(t1—1) f—t t—1to
V=——— - d =W,
11— 1o an H totl—t() tltl—to

Therefore we have:

B— 1 W2+ W tl_t—l—W t—1o 2
To2v d loll—to tltl—to

11—t t—1o
—2W: 1 W, W,
[{ totl—to+ tlt1—t0}>
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Expanding and gathering terms we obtain:

1( 5 o(t1—1)? 5 (t —10)? (t1 — 1)(t — 1)
B=_—_— W, tow, W, 2V
2V< ot 0 (t1 — 10)? (11— 10)? 0T (1 — 10)?
11—t t — [
—2W, Wy — 2W, W, °>
11— 1o n—rt

Comparing coefficients of A and B we have:
. . 2
Coefficients for W;

11—t t—t 1 [(t1—t+1t—+¢ 1
A __{1 n o}: {1 + 0}:__

2V | lt1—tg 1t —1to _ﬁ 1n—1to 2V
B: -~
C2v
Coefficients for W},
1 {rl—t (t—to)(tl—t)}
A —— -
2V |11 —1o (t1 — 10)?
__i{(fl—t)(tl—to)—(I—IO)(fl—t)}
2V (t1 — 19)?

N _i{(fl—f)(ll—fo—l‘—i-lo)}__i{ (tl—t)z}
o2V (t1 — 10)2 2V | (11 —t0)?
1 (-2

b _W{m—to)z}

Coefficients for W7,

A _i{(t—to)(tl—to)—(t—to)(tl—t)}
o2V (t1 — 10)?
__i{(f—to)(fl—fo—fl—i-t)}
2V (t1 — 10)?
1 (-2
A _W{m—roﬂ}
5. _i{ (t—to)z}
2V | (11 — 1g)?

The remaining coefficients in A and B for Wy, W;,, W;W;, and W;,W; are identi-
cal.
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We have thus shown that:

1 f1— 1o (W, — w)?
P(W {W;,, W, = _
(WeltWig. Wer}) V2rV (t —10)(tL — 1) { 2v
- exp{_M}
V2V 2v
Thus the conditional distribution of W, is a Gaussian with mean
f—t t—1to
=W,
o t0t1—t0 tltl—to

and variance
(@t —1)(t1—1)
1—1Io

Vv

and we can obtain a variate W; from this distribution by using:

~ h—t r — 1 t—1tg)(f1 —t
W= Wy + Wy, —— + [(Z@ =0, ere Z ~ N, 1)
11—t t1—to 11 —1o
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Brownian motion: more results

H.1 Some results concerning Brownian motion

Here we will prove some facts concerning Brownian motion.
If the Brownian motion has zero drift then:

dX;, =ov/drdz,, dz, ~N(0,1) (H.1.1)
and
2b —x
PmX <b, X, >x)=N H.1.2
(m; ' > x) 1( 0 ) (H.1.2)
where mX denotes the minimum value of X; over the time interval [0, 1], b < 0,
and x > 0.
When the Brownian motion has nonzero drift
dX, =vdr +o/dtdz,, dz, ~N(0,1) (H.1.3)

and the following equations are satisfied by mf_( and X;:

P(X, < K) = (K:[”’) (H.1.4)
P(X, 2 K)= ( ) (H.1.5)
PmX <b. X, > =exp<%>Nl(2b_x+w) (H.1.6)
et onn () (2
(H.1.7)
B e S

() )

where K is a constant, X > 0, b < 0, and P (condition) denotes the probability
associated with the appropriate condition, i.e., X; > K, m} > b, X; > x, etc.
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The conditional probability density function associated with P(m,Y <b, X, >
x)is
P({m;}i,tz < b, Yt2}|)_(tl)
1 2v(b - X, Xy + Xi, — 2b + vAL)?
exp( e tl))exp<—( st e St oD )
o~/ 2T AL o 20 At

(H.1.10)

where tp > t1 and At =10 — 1.

H.2 Proof of Eq. (H.1.2)

From Eq. (H.1.1):
X, = U\/Z Z, Z, ~ N, 1)

where Xo = 0. We will derive the probability of events mX < b and X, > x
occurring. For event le to occur there must be a time 7 at which X; < b,
where 0 < 7 < r. At time 7, instead of continuing with the original Brownian
motion, X, we will consider the reflected motion XX defined by:

Xf:XS, s <T

XR=02p—X;, s>t

Therefore, before time t the motion X; is identical to X f. For s > 1 the coordi-

nates of XR are obtained by reflecting those of X about the level b. The event

X; > x is thus equivalent to the event X,R < 2b—x (remember b < 0and x > 0).

However, the event XX < 2b — x only occurs if mX < b also occurs, giving:
P(xF<2b—x)=P(m¥ <b, X, <x)

At time T we have

xR =2p—x, (H.2.1)
and after time t
XK, =2—Xcpy, y>0 (H.2.2)

Thus subtracting Eq. (H.2.1) from Eq. (H.2.2) gives:

R R
Xovy — Xy = Xo — Xogy
xF, - XF=—(Xryy — Xo) (H.2.3)

However, we know that:

X4y — X2) ~ N(0, 6%y) (H.2.4)
So
(X%, —X5) ~ =N(0,0%)
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which means that:

(xR, — X&) ~N(0,0%) (H.2.5)

Since the left-hand sides of Eqgs. (H.2.4) and (H.2.5) have the same distribution,
and X, satisfies the three Brownian properties given in Section 2.1, we can write:

2b_
P(XR<2p—x)=P(X, <2b—x) = N1< fx>
oA/t

Therefore:

2b —x
P(mX <b, X, >x)=N
i <22 = (27

H.3 Proof of Eq. (H.1.4)

From Eq. (H.1.3) X, = vt + 0/t Z;, Z; ~ N(O, 1).
So we can write:

P(X; < K)=P(vt+01Z; <K)

=P Z<K_W>
- X O’\/l_‘

K — vt
=N ., Z,~N(,1
1< oﬁ) ' 0,1

H.4 Proof of Eq. (H.1.5)

We know that P(X; > K) =1— P(X; < K).
Substituting from Eq. (H.1.4) gives:

P(X >K)—1—N<K_W)
t = - 1 0\/;

Since 1 — N1(x) = N1(—x) we obtain:

_ vt — K
P(XI>K)=N1< )

ot

H.5 Proof of Eq. (H.1.6)

From Eq. (H.1.1):
dX, = o/drdz,, dz, ~N(0,1)
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This can be expressed as zero drift Brownian motion under probability mea-
sure P:

dX, = o dw®, dwP ~N(,dr) (H.5.1)
or

X, =oWF, WF~NQ©1
Now we can choose another probability measure Q so that:

dWP = dwQ + g dr (H.5.2)

where v is a constant.
Under probability measure Q the motion in Eq. (H.5.1) is

dX, = o (dW@ + gdt) (H.5.3)
SO

dX, =vdr + o dw® (H.5.4)

It can be seen from Section 2.4 that the transformation between measures
P and Q can be accomplished using & = v/o, and that the associated Radon—
Nikodym derivative is:

dQ _ P 12)
@_exp<kWt —ékt

- pa ! 20

1v%
- exp( X, — ”—) (H.5.5)
20
where we have used the fact that under probability measure P we can write:
wF = X,/o.
Now
}_( —
P(m{ <b. X >x) = EUI 5 Tig,5x] (H.5.6)

where Ij o dition) 18 an indicator function which takes unit value Vvhen condition

is satisfied and zero otherwise—for example I is one when mX < b and

_ (m¥<b)
zero when mX > b.
However (see for example Baxter and Rennie (1996)), we have:

dQ}

]P
EQ[H{mly gl =E H{mx<h}ﬂ{x,>x} B (H.5.7)

So substituting for from Eq. (H.5.5) gives:

e Teo]=EP|I i Ve _ V% F.5.8
X< l@zal = E | Txcplixzn b — = 5 (H.5.8)

EQI
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Expressed in terms of the reflected Brownian motion, XX = 2b— X,, Eq. (H.5.8)
can be written:

P(mX <b X, >x)

P v(2b — X&) v2t
= E I:]I{Zb_XtR>x} eXp<_ 02 1 _ P
2vb\ p vXR 0%
Since
]I{beX,R>x} = H{72b+X,R<7x} = ]I{X,R<2bfx}
Equation (H.5.9) becomes:
P(mt)_( < b, )_(, > x)
2vb\ p vX; V2t
= EXP<?>E []I{X,<2b—x} exp<_? — F (HSlO)
where, for ease of notation, we now denote XX by X, on the right-hand side of
Eq. (H.5.10).
Therefore:

P(mlY < b, )_(, > x)

. 2vb /Xr—Z’H 1 o x? o vX, v X
- e 02 X,=—00 O+/2mt P 202t P o2 o2 !

Xi=2b—x 2 2.2
_ 1 exp(Zv_b)/ exp(— (X7 +2vXt + vt )) dx,

o/ 27t 02 ) Jx,=—o 2021

1 2vb\ [Xi=2—x (X, + vt)?
= — ——— | dX
i I ML G = T
If V= (X, +vt)/(c+/t) then dX; = o+/tdV, X; = 2b — x corresponds to
V = (2b — x +vt)/(04/1), and X; = —o0 corresponds to V = —oo.

1 X;=2b—x X ¢ 2
/ exp<_%> dXt
o2nt Jx,=—0 204t

1 V=(2b—x+v1)/(o /1) V2
= exp(——) dv
o/ 2mt =—00 2

2b — x + vt
= N[ =T
l( oA/t >

We thus obtain:

v — 2vb 2b — x + vt
P(mX <b. X, >x)=exp| = |Ny [ &Z— "
(m =) =ep(27) 1( 2 )
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H.6 Proof of Eq. (H.1.7)

Since P(X; > x) = P(mX > b, X; > x) + P(mX > b, X, < x) we have:
P(m¥X > b,X, > x) = P(X; > x) — P(m >b,X; <x) (H.6.1)
Substituting the results of Egs. (H.1.4) and (H.1.6) into Eq. (H.6.1) yields:

v — vt — X 2vb 2b —x + vt
Pt > 0.5 ) = (% ) e T3 ()

H.7 Proof of Eq. (H.1.8)

We start by writing:

P(mS <b)=P(mF <b, X, <b)+ P(mS <b,X; >b)

However, P(m,’_( < b, X, <b) = PX, < _b) since the probability that the
minimum is less than » and the_ﬁnal value X; is less than b is the same as the
probability that the final value X, is less than b. Therefore:

P(mS <b)=PX, <b)+ P(mX <b,X, >b)
Substituting for P(X; < b) from Eq. (H.1.4) gives:

e b — vt X =
P(mX <b)=N +P(mX<b, X, >b H.7.1
(mz ) 1( ot ) (mt t ) ( )
From Eq. (H.1.6):
v — 2vb 2b — b+ vt
P X < b, >b) = — IN| —
R
2vb b+ vt
=expl —5 |N1| —— H.7.2
N 72

Combining Egs. (H.7.2) and (H.7.1) yields:

X b—vt 2vb b+ vt
P(mt gb)ZNl O—\/z_‘ +e>(p7Nla—\/;

H.8 Proof of Eq. (H.1.9)

We start with:

P(m¥ > b)=1— P(mX <b)
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Substituting from (H.1.8):
7 b— vt 2vb b+ vt
P(m¥>b)=1-N + ex <—)N (—) H.8.1
o =) =1 w2 ) e 2 ) 1)
But since 1 — N1(x) = N1(—x), Eq. (H.8.1) can be expressed as:

v —b 2vb b+ vt
(mz ) 1( ot + exp o2 )"t o

H.9 Proof of Eq. (H.1.10)

We will use Eq. (H.1.6) to compute , where P(m, < b, X; > x) is denoted
by P.
Letting ©® = (2b — x + vt)/(0+/t) we obtain:
opP e 2vb\ 0 {N (())}
ax o2 ) ox !

2vb\ 0 hIC)
= exp( )80 {N1(0>}

——eo(22) Lo
= p =) J\/;n
_ 2
=—41 exp(ﬁ) exp(—(Zb X+ vi) ) (H.9.1)
o

27t o2 202t

Now since the probability P(ml < b, X; > x) decreases as x increases we have:
aP

P(mS <b, X, >x)— P(mF <b, X, >x+ Ax) = —an (H.9.2)
and also:
P(mX <b, X, >x)— P(mS <b,X; >x+ Ax)
~ p(m < b, X, =x)Ax (H.9.3)

where p(mtX < b, X; = x) is the probability density function of P(mtY <b X; >
x), and Ax — O.
Combining Egs. (H.9.2) and (H.9.3) we thus obtain

p(’/n[Y < b, )_(t :x) = —EAX

So,

= — 1 2vb (2b — x + v1)?
X<b, X, =x) = exp| = ) exp( - -—2—— "7
p(m; , X =x) o p( 02> p 02t
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which means that:

= . 1 2vb
(i <. %} 1%0) = ——e( 27

27t o

2b — X, + vi)?
X exp(—%) (H.9.4)

where as usual we take Xo = 0. So Eq. (H.9.4) gives the probability density
for the Brownian motion which goes through the points Xo and X; and has a
minimum value which is less than or equal to b.

Instead of considering the complete path of X, from Xo we can move the
origin to the point X,,, where f1 < t. Substituting into Eq. (H.9.4) we then
obtain:

X 1 2v(b — X;,)
p({mtlt b, Xt}| 1) = m@(p(%)
_ (2(b — Ytl) - ()_(t — )_(zl) +v(t — tl))2>
) eXp( 20’2(t —11)

B 1 o <2v(b X,l))
C o2n(t —h) P o?
@b =Xy — X 00— t1))2>
X ex'°< 202t —11)

which can be re-expressed as:
1 2v(b — X;y)
< b, Xp, t1 Xy ) = ex
p({mzl X 12}| ll) Gm p( 52 >

(X1, + X1, — 2b — vA1)?
x eXp<_ 202 At

where 2 > 1 and At =1, — 1.



Appendix I:
The Feynman-Kac formula

The Feynman-Kac formula provides a link between stochastic processes and
partial differential equations, which we will now illustrate.
In the risk neutral measure the equation followed by the asset price is:

dS =rSdt +oSdw (L.1.1)
and that of the money account:
dB = Brdr (1.1.2)

If (S, 1) is the value of a derivative then using Ito’s lemma we have:

9 028232
df = {f %4‘ > 8S£}+—f dw (1.1.3)

Since f is a tradable we know that the process ( ) must be a martingale in the
risk neutral measure, and therefore have zero drlft
We will now evaluate d( ) using the Ito quotient rule (see Eq. (2.6.4)):

() =GN - S+ () (52)
X2 X2 X1 Xo X2 X2
_ E[<@) (ﬁ)} (L14)
X2 X1
and rewrite Egs. (I1.1.2) and (I.1.3) as:
dX, = j1dt +01dW

dXo = Xofipdt
where
X1 f ) af  o2829%f
dl=)=d| =), =] =4+ ——
<x2> (B) Ha {Bt T s
- 9 _
01=01£, X1=f, X2 = B, H2=r

Evaluating Eq. (I.1.4) we obtain:
dXx, dXx, _ 2 4.2
)]y (] o
X1 X2 X1 X
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and therefore:

d(ﬁ) . (ﬁ) prdt +61dw _ Xofiodt
X2 - X2 X1 X2
"1 X1 g
={—=- dr + ( )
{X2 <X2> } X2

1 _ _ o1
X_Z{Ml — Xyjip}dr + (X_2> (I.1.5)

Since (;—;) is a martingale, the drift term in Eq. (I.1.5) is zero so:
m1— X1z =0 (I.1.6)
Therefore, substituting for jt1, X1 and 12 in Eq. (I1.1.6) we obtain:

2¢2 42
8{+ gé-l—%%—rfzo (I.1.7)
or
af g9 of | o%8%0%f
ar s T T2 a2
which is the Black-Scholes partial differential equation, which we derived in
Chapter 4.

In general if an asset follows the process:

dS=pdt+odw (L.1.9)

=rf (1.1.8)

then the price of a derivative f(S, t) obeys the partial differential equation:

af 3f f*ocf
or T Mos T 2 982

] o % 92
— 4B )= L1.11
<az Ty T2 aSZ)f o (11.1)

—rf (L.1.10)

or



Appendix J:
Answers to problems

Problem 1

Let gk = E[WX], where W,, = 0.
(a) Show using Ito’s formula for k = 2, 3, 4, ... that
1 t
BE=Zk—1) | B2ds
2 s=0

(b) Deduce that E[W] = 3¢2
(c) What is E[Wte’]

1(a)
Let ¢(W,) = WF; using Ito’s formula we have:
A 1 9%
d¢ = dw; + = d
R T P A
So

1
d(WF) = kwk=tdw, + Sk — DHWr2dr

Integrating both sides
t t 1 t
/ d(wk) = k/ wktdw, + Sk = 1)/ wk=2ds
s=0 s=0 s=0

t
W}‘—W,’g=k/

1 t
Wi AW, + Sk 1) f W2 ds
s=0 s=0

Now

E / Wf‘ldWS:| =0
LJ/s=0

and using Fubini’s theorem

t t
E / Wskzds] =/ E[WF=2]ds
s=0 s=0
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Therefore

E[w}] - E[W{] —kE[/ Wi 1dW]+ (k — 1)f E[W!?]ds

= —(k—l)/ E[wk=2
2 s=0

Since E[Wt’;] = 0 we obtain

ﬂ"—}(k—l)/t prE=2ds
t_2 0 s

1(b)

Since W; is standard Brownian motion (zero drift and o = 1)
E[Wf] =1t

Substituting k = 4 in the relation from part (a) yields

! / 2
E[Wf4]=4;3£_0E[W32]ds=%zl_OSdSZG%Z:SIZ

1(c)

Using the relation from part (a) with k = 6 yields

6x5 [’ 6x5 303t
6 4 2 3

Problem 2

Solve
dX, = X, dr +dw,
Rearranging we have
dx, — X, dX, = dw,
Using the integrating factor exp(—rt) gives
exp(—1) dX; — X, exp(—t) dt = exp(—1) dW;
and
d(X;exp(—1)) = =X, exp(—1) dt + exp(—1) dX, = exp(—1) dW;
So
d(X; exp(—1)) = exp(—1) dW,
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Integrating both sides

/ tod(Xx exp(—s)) = / t 0exp(—s) dw
and | |

Xrexp(—1) — Xiy = f;o exp(—s) dW;
which means that

t
X = Xy e><p(t)+/ exp(t — s) dW;
s=0

Problem 3

Solve
dX; = — X, dr + exp(—1t) dW,
Rearranging yields
dX; + X; dr = exp(—1) dW,
Using the integrating factor exp(r) we obtain
exp(r) dX; + exp(r) X, dt = dW,
and
d(exp(t)X,) = exp(t) dX; + exp(t) X, dt

which means that

t t
d(exp(t)X,) = dW, and / d(exp(s)X;) =/ dw,
s=0 s=0

Integrating

X exXp(t) — Xig = Wy — Wy
Since W;, =0

X exp(t) — X =W,
that is

X = Xig &Xp(—1) + W; exp(—1)
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Problem 4

Prove
l t
W2dw, = —W,3—/ W, ds
s=0 3 s=0
Using Ito’s formula

d(W?) = 3wW2dw + gW, dr
Therefore

' ' t
/ d(w?) = 3/ W2 dw; +3/ W ds
s=0 s=0 s=0
and
1 t
wi-w2=3 Wde5+3/ W, ds
s=0 s=0
Using W, = 0 we obtain

t 13
Wt3=3/ Wdes—i—S/ W, ds
s=0 s=0

So
t 1 t
/ W2dw, = —W,3—/ W, ds
s=0 3 s=0

Problem 5

Solve dY; = r dt + aY; dW; where r and « are regl constants.
Use the integrating factor F; = exp(—a W, + %1)

dY[ —OtY,dt :rdt

Multiplying by F;
2 2
a o
dy; exp(—ont + ?t> —aY; exp(—aW, + ?t>
o2
=r exp<—ont + 7Z) dr

Using Ito’s formula

aZ

2 2
o o
=dy; exp(—aW, + ?t> —aY, exp(—aW, + ?t) dw;
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2
o
=r exp(—ont + 7t) dr
Integrating

t (x2 t O[2
/ d(Ys eXp<—och + —s)) = r/ eXp<—an + —s) ds
s=0 2 s=0 2

az t az
Y, exp(—aW, + 7t> — Yy, eXp(—a W) = r/ exp(—aWS + 7s> ds
s=0

Using Wy, = O yields

2 t 2
a a

Y, exp| —aW; + —t =Yt0+r/ expl —aW; + —s | ds
2 o 2

So
0[2 t ot2
Y =Yy exp(aW, — 7;) —i—r/ exp(a(Wt — W) + 7(t - s)) ds
s=0
Problem 6
6(a)
Solve

dXt = (m — Xf)dt+Gth

where m and o are constants.
Rearranging

Use the integrating factor exp(7)

d(X; exp(n)) = exp(t) dX; + X, exp(r) dr
= mexp(t) dt + o exp(r) dW,

Integrating

t t t
/ d(XS eXp(s)) =m / exp(s)ds + o / exp(s) dW;
s=0 s=0 s=0

t
X, exp(t) — X;o = m(exp(t) — 1) + cr/ exp(s) dW;
s=0
which can be expressed as

t
X, =m+ (X, —m)exp(—t) + o eXp(—t)/ exp(s) dW,
s=0
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6(b)
Taking expectations of the expression for X; derived in part (a)
E[X:] =m + (X, —m) eXp(—1)

where we have used

t
E[/ exp(s)dWs] =0
s=0

Var[X,] = E[(X; — E[Xt])z]

t 2
= E[ozexp(—Zt){/ exp(s)dWs} ]
s=0

t 2
= azexp(—Zt)E[{/ exp(s)dWS} ]
s=0

From Ito’s isometry

t

Var[X,] = azexp(—Zt)E[ exp(2s) ds]

s=0
exp(2s) ]’

s=0
exp2r) 1 }

= azexp(—Zt)[

_ ;2 _
= o exp( 2[){ 5 >

which gives

1
Var[X,;] = ﬁ{l — exp(—21)}

Problem 7

Consider the equation dS; = u;S; dt + 0;S; dW, where the value of S; at time
t = Ois denoted by So.

(a) Show that the mean is

2
O

t
E[log(s.)] = log(so) + [ _O{M, _ ?} dr

(b) Show that the variance is

t
Var[log(S)] :/ o2dr
=0
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7(a)
If = log(S) then using Ito’s formula we have
A 192%¢ o 1 152
do = o5 ds + EWE[(dS) ]= E{M,S, dr + 0,8, dw,} — 5520 dr
So

2
d(IOQ(St)) = (Ml - %) dr + o, dW;

and therefore

t t 02 t
/ d(log(Sr)) = / (MT - _r) dr + / o dW;
=0 =0 2 =0

which gives
2

t t
log(S:) — log(So) = / <MT - %) dr +'/ or dW;
=0 =0

Taking expectations we obtain

t 2 t
E[log(S)] — E[log(S0)] = E[/ < e — %) dr] + E[/ o dw,}
=0 =0

2
Since fttzo(,ur - 07’) dt is deterministic

(L= L5

and using
t
E |:/ or dW,:| =0
=0

E[log(S0)] = l0g(So)

we finally obtain

t o2
E[log($,)] = log(So) + / _o<“f _ 7r> d

and

7(b)

Var[log(S,)] = E[{log(S;) — E[|09(St)]}2]

t 62
- EH|09(50) +/ (u, - —’) dr
=0 2
t t 02 2
+ [ ovdw. —togeso) - [ <u _ —f) dr} ]
=0 =0 2
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_ E|:</[=oa dwf)z]

Using Ito’s isometry we have:

f[([ o df)z] — [ [ otar]

. t . Coe . .
Since [!_y02dt is deterministic we can write

r t t
E / orzdti| =/ atzdr
=0 =0

and finally we obtain
t

Var[log(St)] :/ OO’TZd‘(

Problem 8
Prove that if ¢ = exp(tW;) then

2
d¢ = ¢(W[ + %) dt +t¢th

From Ito we have

¢ d¢ 10% 2
dp = —=dr + W, dw; + ZaWEE[(dW’) ]
Now
I 3o 1’
Pyl W; exp(t W), oW, =1 exXp(tWy), E)Wtz =t exp(tW;)
So

2
do = W, exp(t W,) dr + t exp(t W) dW, + %exp(tW,) dt

where we have used E[(dW;)?] = d.

Therefore
2
do = ¢(W, + %) dr +tp dw,
Problem 9
Given

t 1 t
Z, =exp(/ edeS——/ efds)
s=0 2 s=0



Appendix J: Answers to problems 351

Use Ito to prove that the process for Z; is dZ; = Z,6, dW;.

9(a)

Let
t 1 t
X,:/ esdws——/ 62 ds
s=0 2 s=0

1
dXt == 9; dW[ - Egtz dt

SO

We thus have:
Z; = exp(X;)

Using Ito we have

dZ, 3°Z, 5
dZ, = —dX; + dx
t aXt t BXIZ( l)
SO
1.
dZ[ - Z[ 9[ dW[ - E@, dt
1 2 1 2
+ Z;E 0[ dW; - E@, dr 9; th — Egt dr
Now

E[(Qt dw, — %9} dz) <9, dw, — %9,2 dt)]

1
= E[0?dW?] + E [19’4 dt2i| — E[63dW, dr]
Ignoring terms in dr of order higher than 1 using the fact that:
E[dW?] = 0?E[dW?] = 67dr and E[636, dW,dt] = 62 dr E[dW,1 =0
We have
12 1, .2
dZ[ = Zl 9[ th - EQI dt + EZIQI dt == Z,@, dWl

Hence we have shown that

dZ[ = Z;@; dW[
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Problem 10

Let S; = Soexp(ut + o W;) where u and o are constants.

(a) Show by Ito’s lemma that

2
dSt = (/L"‘ %)S;dt-i—oS,dW;

(b) Show that

02 t
E[S,] - E[So] = (,,L + 7) / JE[s@]dr

(c) Show that

0_2
E[S:] = So exp(;u + ?t)
10(a)
Let ¢ = Soexp(ut + o Wy).
Then using Ito’s formula:
2
d¢ d¢ dw, + 19 ¢

do = tdt+3W, 23

E[(dW)?]
So
dp = popdr + o dw, + }qﬁazdt

where we have used 2 = ¢o? and E[(dW;)] = dr.
Therefore

1

10(b)

From part (a) we have

t 1 t t
ds, = (M + —02> f S;dr + cr/ S, dw;,
=0 2 =0 =0

Therefore

1 t t
S,—So=<u+—02)f Srdr+0f S, dw;,
2 =0 =0

Taking expectations we have

t t
E[S/] — E[So] = (M + 302>E[/ S, dr] + aEU S, dWT}
=0 =0
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Using the fact that:

E[ f(r)de] =0

=0

and from Fubini’s theorem:

EU S(r)dt} =/ E[S(1)]dr

we thus finally obtain:

1 t
E[S:] — E[So]l = (M + 502> / E[S;]dr
=0

10(c)

From part (a) we know:
1
Therefore

d(log () = (u + %az> dt + o dW,;

t t t
/ d(log (s.)) = (u + 102> / dr + a/ dw,
=0 2 =0 =0

1 t
log (S;) —log (Sp) = <y, + Eoz)t +a/ dw,
=0

So

Taking expectations we obtain:

E[log(s))] - E[log(So)] = (u + %02>t + E[a ft dWT}
=0

Since
t
E|:a/ dWT] =0 and E[So] = So
=0
we have:
E[S]Y\ 1,
ol £ ") = (1 30°)

which yields:

1,
E[S;] = Soexp{ (M—i— 5 )t}
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Problem 11
Let ¢ == X;Y[.
From Ito’s formula we obtain:
d¢ oY, 1 9% 1 9%
dp = —dX, + E|—d¥Vi+ =——dX,dY, + -————dY¥,dX
¢ ax, ! [BY, " 2ax,0y, T T 29v0x,
Now
32 32 3 d
¢ = ¢ =1, —¢=Y, and —¢=X,
0X; dY; aY; 0X; 0X; daY;
We thus obtain:

d¢ == Yl‘ dXt + Xt dYt + E[dXt dYt]
Using

d(X,Y) =Y, dX, + X, dY; + E[dX, dY;]
we have:

t

t t t
d(X, Y, =/ Y dXs—}—/ XdeS—l—/
s=0 s=0 0 s

E[dX, dY,]
s=| =0
Therefore

t t t
Xth - XtOYto = / stXS +/ Xdes +/ E[dXs dYr]
s=0 s=0 s=0
Thus

t t t
/ XSdYSZXl‘Yl‘_XIOYIO_/ YSdXS—/
s=0 0 s

§=l

E[dX; dY;]
=0
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A
Absolute pricing errors 162
American options 59, 97-179
call options 99-102
Black approximation 101, 102
with cash dividends 97-102
critical asset values 107-109
MacMillan-Barone-Adesi—
Whaley method
105, 106, 112-114
pricing errors 135
Roll-Geske-Whaley
approximation 97-101
implied volatility 81
put options 179
critical asset values 109-111
MacMillan-Barone-Adesi—
Whaley method
106, 107, 112-114
pricing errors 136
stochastic lattice 172-180
asset prices 173, 174
Monte Carlo estimate 177-180
option prices 174-176
simulation parameters 173
two assets 194-200
vanilla 97-111
call with cash dividends 97-102
grid methods 135-167
lattice methods 114-135
MacMillan-Barone-Adesi—
Whaley method
102-107
numerical solution of critical
asset values 107-111
Amortization 212

Analytic pricing
down and out call options 86-88
up and out call options 88-91
Analytics_MathLib function 262-266
Annualized standard deviation 78
Arithmetic progression 323
Asset price, stochastic lattice 173, 174
Asset price index 161
Asset price movements, Brownian
motion 9, 10
Asset values 121, 122
Avogadro’s number 5

B
Back-substitution 146
Backwards iteration 123-125,
147-150
Barrier options 85-935, 118, 295-302
down and out call 86-88,295-298
Monte Carlo pricing 91-95
equity 275-280
foreign exchange 284-288
up and out call 88-91, 298-301
Base currency 231
Basis swap 212-214
Bayes law 20, 93
BBS see binomial
Black-Scholes method
BBSR see binomial
Black=Scholes method, with
Richardson extrapolation
BEGKR method 185, 187-189
Binomial Black-Scholes method
131-133
with Richardson extrapolation
133-135
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Binomial lattice 81, 114-122
backwards iteration 123-125
with BBS and BBSR 131-135
computation of Greeks 125-129
construction and use 120-128
with control variate 129, 130
node asset values 121, 122
terminal node option payoff 122
values of constants 121

Black approximation 101, 102

black_scholes function 264

Black-Scholes equation 11, 37, 55
American options 129, 130
binomial 131-133

with Richardson
extrapolation 133-135
continuous dividends 72-74
derivation of 62-65
discrete dividends 74, 75
equity quanto options 240-243
European options 62-83, 129
multiasset option 65-67
foreign exchange 229-232
Greeks 75-77
historical volatility 78, 79
implied volatility 79-81
multiasset options 181, 182
see also grid methods;
MacMillan-Barone-Adesi—
Whaley method
Black-Scholes finite-difference
approximation 325-328
general case 325
log transformation 325-328
nonuniform grid method 148-155
uniform grid method 138-142,
160-162, 325-328

Boundary values 142, 143
lower asset 142
option maturity 142, 143
upper asset 142

Box—Muller transformation 42-45, 52

Brownian bridge 19-21
alternative derivation 329-332
down and out call options 91-95

relation to Ornstein—-Uhlenbeck
bridge 30, 31
Brownian model of asset price
movements 9, 10
Brownian motion 5-9, 86
asset price movements 9, 10
drift
changing see Girsanov’s theorem
constant 8
zero 8
geometric 10, 12, 181
Ito’s quotient rule 17, 18
multiasset geometric 13-15
one source of randomness 16, 18
proofs 333-340
properties of 6-9
scaled 22
time-transformed 21-24
Brown, Robert 5, 7
bs_opt function 82
bs_opt_barrier_downout_call
function 88

C
C# code 245, 246
C# portfolio pricing 245-288
equity deal classes 267-280
equity barrier option 275-280
generic equity basket option
270-275
single equity options 267
two-equity option 267-269
foreign exchange deal classes
280-288
FX barrier option 284-288
FX forward 280, 281
single FX option 281-284
market data file 246
portfolio configuration file 246
portfolio definition file 246
broad-investments 250-254
EQ-investments 249, 250,
253,254
portfolio driver file 249
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portfolio valuer application
248, 249
PricingUtils and Analytics_MathLib
262-266
storing/retrieving market data
254-262
CurrencyTable 255-259
EquityTable and
CorrelationTable 259-262
Call options
American 99-102
Black approximation 101, 102
with cash dividends 97-102
critical asset values 107-109
MacMillan-Barone-Adesi—
Whaley method 1035, 106,
112-114
pricing errors 135
Roll-Geske-Whaley
approximation 97-101
double knockout 166-171
down and in 85
down and out 85-88, 168
analytic pricing 86-88
Brownian bridge 91-95
Monte Carlo pricing 91-95
nonuniform grid method
153, 154
European 60, 61, 64, 65, 69, 73, 74,
76,77, 79, 80, 82
multiasset
four assets 208
three assets 201, 204, 205
two assets 197, 198
up and in 85
up and out 85, 88-91
analytic pricing 88-91
vanilla
American 97-111
European 59, 69, 83, 84
Caplet, quanto 223-225
Central limit theorem 303, 304
Cholesky decomposition 48,
50, 52
Closed form solutions 181

Conditional mean 310, 311
Constant drift 8
Continuous dividends 61, 62, 72-74
Continuous hazard rate 233
Continuously compounded spot
rate 209
Control variate technique 129, 130
Correlated variates 47-58
correlation and covariance 46, 47
lognormal distribution 5658
normal distribution 51-55
repairing correlation and covariance
matrices 48-51
Correlation 47
Correlation matrix 13, 47
optimally repaired 49-51
repair of 48-51
CorrelationTable 259-262
Coupon payment 211
early 217
floating leg 212
late 217,218
on time 215, 216
Covariance 307-309
estimation of 47
four variables 308
normal distribution 310, 311
n variables 308, 309
three variables 307, 308
two variables 307
unconditional 23, 24
Covariance matrix 182, 309
repair of 48-51
Covered interest arbitrage 228, 229
Cox—Rubinstein—Ross binomial
model 188
Crank—Nicolson method 141,
159, 162, 163
Credit default swap 235, 236
Credit derivatives 232-237
credit default swap 235, 236
defaultable bond 235
hazard rate 232, 233
continuous 233
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estimation from market equity barrier option 275-280
observables 234, 235 generic equity basket option
total return swap 236, 237 270-275
Credit risk 2 single equity options 267

Critical asset values, numerical
solution 107-111

CRR lattice 113

Cumulative normal distribution
function 322, 323

CurrencyTable 255-259

Current value 59

D
Defaultable bond 235
Delta 75, 119, 169
computation of 125
vanilla European options 291, 292
Depth first procedure 177
Differential swaplet see
quanto, swaplet
Diff swaplet see quanto, swaplet
Discrete dividends 60, 61, 74, 75
Dividends
continuous 61, 62, 72-74
discrete 60, 61
Double knockout call option
166-171
Greeks 169
Down and in call options 85
Down and out call options 85-88,
168
analytic pricing 86-88
Brownian bridge 91-95
derivation of 295-298
Monte Carlo pricing 91-95
nonuniform grid method 153, 154
DownOutEquityOption-Deal 279
Drunkard’s walk see Brownian motion

E

Early coupon payment 217
Early exercise 147-150

Eigen decomposition 48
Equity barrier option 275-280
Equity deal classes 267-280

two-equity option 267-269
Equity derivatives 237-243
quantos 240-243
equity quanto forward 242, 243
quanto adjustment factor 241,
242
total return swap 237-240
equity leg 237, 238
equity swap 239, 240
floating leg 238
payer equity 238, 239
EquityOptionDeal 265-267
Equity quanto forward 242, 243
EquityTable 259-262
European options 59-95
barrier options 85-95
down and out call options 86-88
Monte Carlo pricing of down and
out options 91-95
up and out call options 88-91
call options 60, 61, 64, 65, 69, 73,
74,76, 77, 79, 80, 82
double knockout 166, 167, 169-
171
down and in 85
down and out 85-88, 1535,
156, 168
two assets 197, 198
foreign exchange 229-232
implied volatility 79-81
martingale measure 59, 60
multiasset
four assets 207, 208
three assets 201, 204, 205
two assets 190-194
put call parity 60-62
continuous dividends 61, 62
discrete dividends 60, 61
put options 59
four assets 208
three assets 202, 204, 205
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two assets 197, 198
vanilla 59, 62-83, 85
Black-Scholes equation 62-65
call options 59-85
Greeks for 289-294
put options 59
volatility
historical 78, 79
implied 79-81
Exotic options 83, 97, 118, 129, 147,
168,183
Explicit method 141

F
Faure sequence 41
Feynman-Kac formula 64, 341, 342
Filtration 6
Financial derivatives 1-3
Finite-difference approximation
see Black-Scholes finite-difference
approximation
Floorlet, quanto 226
Foreign exchange call 231, 232
Foreign exchange deal classes
280-288
FX barrier option 284-288
FX forward 280, 281
single FX option 281-284
Foreign exchange derivatives 228-232
covered interest arbitrage 228, 229
European option 229-232
FX forward 229
Foreign exchange forward 1, 229
Foreign exchange option 2, 3
Forward rate agreement 210
Four asset options 205-208
FourEquityOptionDeal 273
Fubini’s theorem 26, 31
Fully implicit method 141
FX see foreign exchange
FX forward 229, 280, 281

G
Gamma 75, 119, 169
computation of 125

vanilla European options 290, 291
Gamma function 321, 322
Gaussian distribution see normal

distribution
General error distribution 319, 320

kurtosis 319, 320

shape parameter a 320

value of A for variance h; 319
generic equity basket option 270-275
GenericEquityBasketOptionDeal

270-275
Geometric Brownian motion 10,
12,181
Geometric progression 323
Girsanov’s theorem 12, 13, 68, 72
Going short 63, 66
Greeks 119

binomial lattice 125-129

Black-Scholes equation 75-77

double knockout call option 169

vanilla European options 289-294

see also individual Greeks
Grid methods 135-167

double knockout call option

166-169
log transformation
nonuniform grids 162-165
uniform grids 156-163

nonuniform grids 148-159

down and out call option
153,154

finite-difference approximation
149-155

log transformation 162-165

uniform grids 136-150

backwards iteration and early
exercise 147-150

boundary conditions 142, 143

finite-difference approximation
138-142

log transformation 156-163

option values 143-147

H
Hazard rate 232, 233
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continuous 233
estimation from market observables
234,235
Hazard rate curve 233
Heavy tail distributions 183
Hedge statistics see Greeks

I
ICurve 257-259
Implicit method 141
implied_volatility function 81
Implied volatility
American options 81
European options 79-81
Independent variates 41-46
lognormal distribution 45, 46
normal distribution 42-44
Student’s ¢-distribution 46
Integrals
barrier option 295-302
down and out call 295-298
up and out call 298-302
standard 321
stochastic 33
Interest rate derivatives 209-227
continuously compounded spot rate
209, 210
forward rate agreement 210
quantos 223-227
caplet 223-225
floorlet 226
swaplet 227
simply compounded spot rate 210
timing adjustment 218-223
Interest rate swap 211-218
amortization 212
basis swap 212-214
coupon payment 215-218
floating leg 212
general payment timing 216, 217
swap rate 212
vanilla 211
Ito’s formula 10-12
multiasset geometric Brownian
motion 13-15

two-dimensional 67
Ito’s isometry 26, 32
Ito’s product rule 15, 16
n dimensions 18, 19
Ito’s quotient rule 16-18, 241

K
Knockin options 83
Knockout options 83, 92

L
Late coupon payment 217, 218
Lattice methods
binomial lattice 81, 114-122
backwards iteration 123-125
with BBS and BBSR 131-135
computation of Greeks 125-129
construction and use 120-128
with control variate 129, 130
node asset values 121, 122
terminal node option payoff 122
values of constants 121
multiasset options 185-189
stochastic lattice 172-180
asset prices 173, 174
Monte Carlo estimate 177-180
option prices 174-176
simulation parameters 173
Law of large numbers 303
Lockout periods 118
Lognormal distribution 45, 46, 55-58,
114, 315, 316
Lognormal mean 114
Lognormal variance 115
log transformation
nonuniform grids 162-165
uniform grids 160-163
London Inter Bank Offer Rate
(LIBOR) 213
Low discrepancy sequences 38

M
MacMillan-Barone-Adesi—Whaley
method 102-107, 112-114
see also Black-Scholes equation
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Main currency 214
MarketDataDictionaries 254, 255,
259-262
Market data file 246
Market data, storing/retrieving
254-262
CurrencyTable 255-259
EquityTable and CorrelationTable
259-262
Market observables 233-235
Market rate dictionaries 250
Markov process 6
Martingale measure 6, 59, 60
Maturation 59
Mean 25
Ornstein-Uhlenbeck process 25
unconditional 23
Microsoft Excel
CALCULATE OPTIONS 83
NORMDIST 83
pricing options 82, 83
Moment generating functions 311,
312
Monte Carlo simulation 37, 172
American option 177-180
down and out options 91-95
multiasset options 183-185
with random numbers 40, 41
Multiasset geometric Brownian
motion 13-1§
Multiasset options 181-208
Black-Scholes equation 65-67,
181, 182
four assets 205-208
lattices 185-189
Monte Carlo methods 183-185
three assets 201-205
two assets 190-201
American options 194-200
European exchange options
190-192
European options on maximum
or minimum 192-196
Multivariate distributions 41-46
generation of 47-58

lognormal distribution 435, 46
55-58, 114, 315-316

normal distribution see normal
distribution

Student’s ¢ distribution 46, 317-318

N
Neiderreiter sequence 39, 40
Newton’s method 79, 80, 81, 98
Nonuniform grids 150-159
down and out call option 153, 154
finite-difference approximation
149-155
log transformation 162-165
Normal distribution 11, 21, 42-44,
51-55, 313-315
conditional mean 310, 311
covariance 310, 311
cumulative function 322, 323
mean 314
variance 314, 315
Numeraire 60, 218-222

0]

Obligation 1

Option payoff 122

Option prices 174-176

Option values 143-147

Ornstein—-Uhlenbeck bridge 27-31
relation to Brownian bridge 30, 31

Ornstein—Uhlenbeck process 22-27
mean 25
unconditional mean 23, 25
unconditional variance/covariance

23,24

variance 235, 26

P

Payer equity total return swap 238,
239

Payer interest rate swap 211

Payment timing 216, 217

Payoff 59

Portfolio configuration file 246

Portfolio definition file 246
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Index

broad-investments 250-253, 254
EQ-investments 249, 250, 253, 254
Portfolio driver file 249
Present value 60
Pricing errors 135, 136
Pricing options, Microsoft Excel 82,
83
PricingUtils 262-266
Principal exchange 214
Pseudo-random sequences 38—41
Put call parity 77
continuous dividends 61, 62
discrete dividends 60, 61
Put options
American 179
critical asset values 109-111
MacMillan-Barone-Adesi—
Whaley method 106, 107,
112-114
pricing errors 136
European 59
four assets 208
three assets 202, 204, 205
two assets 197, 198
multiasset
four assets 208
three assets 201, 204
two assets 194, 197, 198

Q

Quantos
equity 240-243
equity quanto forward 242, 243
quanto adjustment factor 241,
242
interest rate 223-227
caplet 223-225
floorlet 226
swaplet 227
Quasirandom_Normal_LogNormal_
Correlated function 53-55
Quasi-random sequences 38-41

R
Radon-Nikodym derivative 12

Random variates 37-58
correlated variates 47-58
independent 41-46
lognormal distribution 45, 46
normal distribution 42-44
Student’s ¢-distribution 46
pseudo-random/quasi-random
sequences 38—41
Random walk see Brownian motion
Rate swap 211-218
amortization 212
basis swap 212-214
coupon payment
early 217
late 217,218
on time 215, 216
floating leg 212
general payment timing 216, 217
payer 211
receiver 211
swap rate 212
vanilla 211
Receiver interest rate swap 211
Return 9
Rho 75
vanilla European options 293
RiskFreeRate 257
Roll-Geske-Whaley approximation
97-101

S
Scaled Brownian motion 22
Siedentopf, Henry §
Simply compounded spot rate 210
Single equity options 267
Single FX option 281-284
Sobol sequences 39, 41, 184, 185
Spot rate
continuously compounded 209
simply compounded 210
Standard deviation, annualized 78
Standard integrals 321
Stochastic integral, expectation of 33
Stochastic lattice 172-180
asset prices 173-174
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Monte Carlo estimate 177-180
option prices 174-176
simulation parameters 173
Stochastic processes 5-35
Brownian bridge 19-21
Brownian model of asset price
movements 9, 10
Brownian motion 5-9
time-transformed 21-24
Girsanov’s theorem 12, 13
Ito’s product
in n dimensions 18, 19
and quotient rules 15-18
Ito’s formula 10-12
multiasset geometric Brownian
motion 13-15
Ornstein—Uhlenbeck bridge 27-31
Ornstein—-Uhlenbeck process 22-27
Strike price 59
Structured deal 239
Student’s ¢-distribution 46, 317, 318
Swaplets 211
quanto 227
Swap rate 212

T
Taylor expansion 10, 14, 151
Theta 75, 119, 169
computation of 125, 126
vanilla European options 292, 293
Three asset options 201-205
Time-transformed Brownian motion
21-24
Timing adjustment 218-223
Total return swap
credit 236, 237
equity 237-240
equity leg 237, 238
equity swap 239, 240
floating leg 238
payer equity 238, 239
Trading days 78
Two asset options 190-201
American 197-200
European 190-192

maximum or minimum 192-194
Two-equity option 267-269

8]
Unconditional mean 23
Unconditional variance 23, 24
Uniform grids 136-150
backwards iteration and early
exercise 147-150
boundary conditions 142, 143
finite-difference approximation
138-142
log transformation 156-163
option values 143-147
Up and in call options 86
Up and out call options 83, 88-91
analytic pricing 88-91
derivation of 298-302

A%
Vanilla options
American 97-111
call with cash dividends 97-102
grid methods 135-167
lattice methods 114-135
MacMillan-Barone-Adesi—
Whaley method 102-107
numerical solution of critical asset
values 107-111
binomial lattice 81, 114-122
with BBS and BBSR 131-135
construction and use 120-128
with control variate 129, 130
European 59, 62-84
call 59, 69, 83, 85
Greeks for 289-294
put 59
grid methods 135-167
double knockout call option
166-169
nonuniform grids 148-159
uniform grids 136-150
interest rate swap 211
Variance 25, 26, 305-307
n variables 306, 307
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one variable 305 volatility smile 79
Ornstein-Uhlenbeck process 25, 26
three variables 306 W
two variables 305 Wiener, Norbert 5
unconditional 23, 24 Wiener process see Brownian motion
Vega 76
computation of 126 %
vanilla European options 294 el
Visual Basic 82-84 YieldCurve 257
bs_opt 84
bs_opt_barrier_downout_call 88 Z
Volatility 7 Zero coupon rate 257
historical 78, 79 Zero drift 8

implied 79-81 Zsigmondy, Richard §



Glossary

The notation used is as follows:

GBM

BM

Wi

P

E[x]
Var[X]
Cov[X, Y]
Cov[X]

o

Ni(a)

Na(a, b, p)

Si
Inn
Ap, 02)

Geometric Brownian motion

Brownian motion

Brownian motion at time ¢

the correlation coefficient

the expectation value of X

the variance of X

the covariance between X and Y

the covariance between the variates contained in the vector X

the volatility. Since assets are assumed to follow GBM it is com-
puted as the annualized standard deviation of the n continuously
compounded returns

the univariate cumulative normal distribution function. It gives the
cumulative probability, in a standardized univariate normal distrib-
ution, that the variable x; satisfied x; < a

the bivariate cumulative normal distribution. It gives the cumulative
probability, in a standardized bivariate normal distribution, that the
variables x1 and x satisfy x1 < a and x2 < b when with correlation
coefficient between x1 and x5 is p

the risk free interest rate

the continously compounded dividend yield
the ith asset price at time ¢

the n by n unit matrix

a lognormal distribution with parameters 1 and o2. If y = log(x)
and y ~ N(u, 02) then the distribution for x = e” is x ~ A(u, 02).

We have E[x] = exp(i+ % ) and Var[x] = exp(2u+02)(exp(c:2) — 1)

Continued on back cover
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DF(t, T)

DF(t, T)

F(t,T1, T)
L(T1, 1)

log(x)
N(a, b)
dw;

dz,

11D)
U(a, b)
x|

PDF
XAy
S, T)
A — Bl

the discount factor between times ¢ and T, where T > ¢. The price
of a nondefaultable zero coupon bond which matures at time T
is the expected value of DF(z, T). In this book we assume that in-
terest rates are deterministic and thus DF(¢, T) is the value of a
nondefaultable zero coupon bond maturing at T

the discount factor (including the possibility of default) between
times t and T, where T > r: DF(¢t, T) = S(¢t, T)DF(¢t, T). The price
of a defaultable zero coupon bond which matures at time 7 is the
expected value of DF(zr, T). In this book we assume that interest
rates are deterministic and thus DF(¢, T) is the value of a default-
able zero coupon bond maturing at T

the forward rate at time ¢ between times 71 and 7> where o> > T1
and Ty >t

the simply compounded spot rate between times Ty and T, where
Io>2T

the natural logarithm of x
normal distribution, with mean a and variance b

a normal variate (sampled at time ¢) from the distribution N(0, dr),
where dt a specified time interval e.g. dx = udr + dW;

a normal variate (sampled at time ¢) from the distribution N(0, 1).
Note: The variate dyr = +/dt dZ; has the same distribution as dW;

independently and identically distributed

the uniform distribution, with lower limit a and upper limit b
the absolute value of the variable x

the probability density function of a given distribution

the minimum of x and y, that is min(x, y)

the survival probability between time r and 7, T > ¢

the distance between two matrices with the same dimensions. If A
and B both have n rows and m columns then this distance is:

DO HAij — Bij)?

i=1j=1

where A; ; and B; ; refer to the element in the ith row and jth
column



