
http://ofwgkta.co.uk/?utm_source=tpbpdf?utm_campaign=pdfbanners?utm_term=Embedded Microprocessor Systems, Third Edition: Real World Design
http://www.facebook.com/pages/Library-of-Alexandria/442946042399707
http://eepurl.com/mvcwH
home
Text Box
Rest in Peace to Aaron Swartz beloved friend of the internet, defender for freedom of speech and information,
May your struggle not be in vain, the earth is 4.5 billion years, mankind has been around 160,000 yrs and the average span of an individual is just 70, but the idea of free universal knowledge can never die.

http://lessig.tumblr.com/post/40347463044/prosecutor-as-bully

Embedded Microprocessor Systems
Real World Design

Embedded Microprocessor Systems
Real World Design

Third Edition

Stuart R. BaII

Newnes
An imprint of Bulteterwoh-He~nernonn

An imprint of Elsevier Science

Amsterdam Boston London New York Oxford Paris San Diego
San Francisco Singapore Sydney Tokyo

Newnes is an imprint of Elsevier Science.

Copyright 0 2002, Elsevier Science (USA). All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Recognizing the importance of preserving what has been written, Elsevier Science
@ prints i, books on acid-free paper whenever possible.

Library of Congress Catalogingin-Publication Data
Ball, Stuart R., 1956-

Embedded microprocessor systems : real world design / Stuart R. Ball.-3rd ed.

ISBN 0-7506-75349 (pbk. : alk. paper)
1. Embedded computer systems-Design and construction.

p. cm.

2. Microprocessors.
I. Title.
TK7895.E42 B35 2002
621.39’16-dc21 2002071917

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

The publisher offers special discounts on bulk orders of this book.
For information, please contact:

Manager of Special Sales
Elsevier Science
200 Wheeler Road
Burlington, MA 01803
Tel: 781-3134700
Fax: 781-3134880

For information on all Newnes publications available, contact our World Wide Web
home page at: http://www.newnespress.com

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

Confenfs

Introduction xi
Special Introduction to the Third Edition xiv

1 System Design
Requirements Definition 3
Processor Selection 5
Development Environment 17
Development Costs 19
Hardware and Software Requirements 20
Hardware/Software Partitioning 22
Distributed Processor Systems 24
Specifications Summary 25
A Requirements Document Outline 26
Communication 28

1

2 Hardware Design 1
Single-Chip Designs 29
Multichip Designs 3 1
Wait States 35
Memory 38
Types of PROM 39
RAM 45
I/O 54
Peripheral ICs 58
Data Bus Loading 68
Nonvolatile Memory 70
Microwire 73
DMA 74

29

V

Watchdog Timers 81
In-Circuit Programming 83
Internal Peripherals 85
Cesign Shortcuts 85
EMC Considerations 86
Microprocessor Clocks 90
Hardware Checklist 92

3 Hardware Design 2

Dynamic Bus Sizing 95
Fast Cycle Termination 95
Bus Sizing at Reset 96
Clock-Synchronized Buses 97
Built-in Dynamic Ram Interface 99
Combination ICs 100
Digital-to-Analog Converters 101
Analog-to-Digital Converters 103
SPI/Microwire in Multichip Designs 106
Timer Basics 107
Example System 115
Hardware Specifications Outline 115

95

4 Software Design

Data Flow Diagram 120
State Diagram 121
Flowcharts 123
Pseudocode 123
Partitioning the Code 125
Software Architecture 129
The Development Language 131
Microprocessor Hardware 135
Hard Deadlines Versus Soft Deadlines
Dangerous Independence 138
Software Specifications 140
Software Specifications Outline 14 1

138

119

5 Interrupts in Embedded Systems
Interrupt Basics 143
Interrupt Vectors 144
Edge- and Level-Sensitive Interrupts 146

143

vi

Interrupt Priority 146
Interrupt Hardware 146
Interrupt Bus Cycles 148
Daisy-Chained Interrupts 148
Other Types of Interrupts 149
Using Interrupt Hardware 150
Interrupt Software 155
Interrupt Service Mechanics 155
Nested Interrupts 157
Passing Data to or from the ISR
Some Real World Dos and Don’ts
Minimizing Low-Priority Interrupt Service Time
When to Use Interrupts 168

158
159

166

6 Adding Debug Hardware and Software
Action Codes 172
Hardware Output 173
Write to ROM 175
Read from ROM 176
Software Timing 177
Software Throughput 177
Circular Trace Buffers 178
Monitor Programs 179
Logic Analyzer Breakpoints 180
Memory Dumps 181
Serial Condition Monitor 182

171

7 System Integration and Debug
Hardware Testing 190
Software Debug 191
Debugging in RAM 193
Functional Test Plan 194
Stress Testing 196
Problem Log 197
A Real- World Example 198
Emulators/Debuggers 20 1

189

8 Multiprocessor Systems
Communication Between Processors 205
Dual-Port RAM (DPRAM) 212

203

Contats vii

9 Real-Time Operating Systems
Multitasking 238
Keeping Track of Tasks 242
Communication Between Tasks 243
Memory Management 244
Resource Management 245
RTOS and Interrupts 247
Typical RTOS Communication 247
Preemption Considerations 248
Applicability of RTOS 250
Debuggers 253

235

10 Industry-Standard Embedded Platforms
255

258
260

Advantages of Using a PC Platform
Drawbacks of Using a PC Platform
Some Solutions to These Problems
/SA- and PCI-Based Embedded Boards
Other Platforms for Embedded Systems
Example Real-Time PC Application 267

261
262

255

11 Advanced Microprocessor Concepts 271
Pipeline (Prefetch) Queue 271
Interleaving 272
DRAM Burst Mode 273
SDRAM 274
High-speed, High-Integration Processors and Multiple Buses
Cache Memory 278
Processors with Multiple Clock Inputs and Phase-Locked Loops
Multiple-Instruction Fetch and Decode 280
Microcontroller/FPGA Combinations 28 1
On-Chip Debug 282
Memory Management Hardware 284
Application-Specific Microcontrollers 286

277

279

Appendix A: Example System Specifications
System Description 287
User Interface 287
Setting Time 288

287

...
vlll Contents

WaterLow 288
Example System Hardware Specifications 288
Example System Software Description 290
Example System Software Pseudocode 292

Appendix 6: Number Systems 303

Number Bases 303
Converting Numbers Between Bases 306
Math with Binary and Hex Numbers
Negative Numbers and Computer Representation of Numbers
Number Suffixes 370
Floating Point 31 1

307
308

Appendix C: Digital Logic Review
Basic Logic Functions 3 16
Registers and Latches 320

315

Appendix D: Basic Microprocessor Concepts
A Simple Microprocessor 325
A More Complex Microprocessor 333
Addressing Modes 337
Code Formats 340

325

Appendix E: Embedded Web Sites
Organizations and Literature 343
Manufacturers 343
Software, Operating Systems, and Emulators 344

343

Glossary 345

Index 350

Contents ix

lntroduction

Imagine this scene: You get into your car and turn the key on. You take a 3.5” floppy
disk from the glove compartment, insert it into a slot in the dashboard, and drum
your fingers on the steering wheel until the operating system prompt appears on
the dashboard liquid crystal display (LCD). Using the cursor keys on the center
console, you select the program for the electronic ignition, then turn the key and
start the engine. On the way to work you want to listen to some music, so you insert
the program compact disc (CD) into the player, wait for the green light to flash
indicating that the digital signal processor (DSP) in the player is ready, then put in
your music CD.

You get to work and go to the cafeteria for a pastry. Someone has borrowed
the mouse from the microwave but has not unplugged the microwave itself, so the
operating system is still up. You can heat your breakfast before starting work.

What is the point of this inconvenient scenario? This is how the world would
work if we used microprocessor technology without having embedded microprocessors.
Every microprocessor-based appliance would need a disk drive, some kind of input
device, and some kind of display.

Embedded microprocessors are all around us. Since the original Intel 8080 was
pioneered in the 1970s, engineers have been embedding microprocessors in their
designs. They even are embedded in general-purpose computers; if you own a vari-
ation of the IBM PC/AT, there is an embedded microprocessor in the keyboard.
Virtually all printers have at least one microprocessor in them, and no car on the
market is without at least one under the hood. Embedded microprocessors may
control the automatic processing equipment that cans your soup or the controls of
your microwave oven. Basically, we can define an embedded microprocessor as
having the following characteristics:

Dedicated to controlling a specific real-time device or function.
Self-starting, not requiring human intervention to begin. The user cannot tell if

Self-contained, with the operating program in some kind of nonvolatile memorv.
the system is controlled by a microprocessor or by dedicated hardware.

xi

Of course, there are exceptions to this general description, which we will get to
eventually, but this definition will serve us for now.

An embedded microprocessor system usually contains the following com-
ponents:

A microprocessor
RAM (random access memory)
Nonvolatile storage: erasable programmable read-only memory (EPROM), read-

1/0 (some means to monitor or control the real world)
only memory (ROM), flash memory, battery-backed RAM, and so on

If you have seen textbooks describing general computer systems, this description
fits those as well. The difference is in the details. A general-purpose computer, such
as the one this book was written on, may have many megabytes of RAM, whereas
an embedded system may have less than 256 bytes (that is bytes, not megabytes) of
RAM. Your PC at home or at the office may have a lOGB IDE hard drive with DOS,
Windows, and several other applications.

An embedded system usually contains its entire program in a few thousand bytes
of EPROM. The most important difference between the two is the application. Your
home personal computer (PC) runs a word processor, then you switch over to the
money management program to balance your checkbook, then to the spreadsheet
to work on the family budget, then back to the word processor. The embedded
system does just a limited number of tasks, such as making sure your toast does not
burn or timing the cook cycle in your microwave.

Why would anyone want to use a microprocessor? The main reasons are:

Cost. The cost of developing firmware for an embedded system can be very high,
but it is a nonrecurring expense, only spent once to develop the product. The actual
cost of the finished product can be very low. On the other hand, the product cost
of a system such as a microwave oven controller, if implemented in discrete hard-
ware, can be very high by comparison.
Flexibility. Say a typical microwave oven manufacturer gets a contract from a very
large discount store for microwave ovens, but the contract specifies certain
changes in the way the user controls the device. In a hardware-based system, the
control electronics would need to be redesigned. In a microprocessor-based
system, the only change may be a few lines of code.
Programmability. You may want to program a robotic arm to paint car doors
one day and trunk lids the next. An embedded microcontroller permits you to
have the same hardware perform different tasks. Of course, this also could be
implemented in discrete hardware but at much higher cost.
Adaptability. A system may need to adapt to its environment or to a user’s needs.
A typical example of this is an automobile’s “smart” automatic transmission,
which remembers your driving patterns and adjusts its shift points for optimum

xii Introductim

comfort, economy, or even reliability. You could implement this sort of feature
with dedicated hardware, but a microprocessor makes the job much easier.

This book will take you step by step through the procedures involved in designing
an embedded control system. Many of the tricks I have learned in my 20 years in
the field will be passed on, as well as some pitfalls to avoid. Along the way, we will
use as an example of a simple embedded control system, a swimming pool pump
timer, to illustrate these concepts.

The book is aimed primarily at students, new graduates who will be moving into
the embedded processor field, and engineers working in another field who want
to switch to embedded microprocessors. It assumes that the reader has a basic
knowledge of software concepts, binary and hexadecimal number systems, and a
basic understanding of digital logic. A review of this material is included in the
appendixes at the end.

Introduction ...
Xlll

Special Introduction to the
Third Edition

Since the first edition of this book was published, the embedded microprocessor
world has changed. Entire families of microprocessors have become obsolete, along
with their associated peripheral devices. This march of technology has the dis-
advantage of making examples using those devices obsolete as well. In some cases,
I have kept examples that used some of these older parts because they provide a
clearer means of communicating a concept than examples using newer, more
complex devices. In general I have tried to use parts that are still in production for
the examples, although some of these parts may be nearing their end of life and
not as common as newer parts.

In addition to using some older devices in examples, the text still refers to older
logic devices as well. These latches, gates, and registers provide a well-understood
means of illustrating an interface mechanism that tends to become overly complex
if all the component parts must be explained in detail before the desired concept
can be covered. In most modern circuits, these functions have been taken over by
programmable logic or custom ICs. The concepts, however, are still valid even if
the implementation technology has changed.

Owing to these advances in technology, I have added some new examples, using
updated parts, to the book. Readers of the first and second editions of the book
will note that some original examples have been replaced with examples that use
these newer parts. Of course, there is no guarantee that any current production
part will still be in production by the time you read this, but that is the nature of
the electronics industry!

xiv

System Design I

It has been said that if you do not know where you are going, you will not know
when you get there. Success experts tell us that the first step in achieving anything
is to establish a goal-to be debt free in one year or to pay off the car in six months.

Like most things in life, the process of designing an embedded microprocessor
system begins with a goal-the definition of the product. The product definition
describes what the product is to be and do. The product definition is the first
element in a process that is key to any successful electronics system design: docu-
mentation. The documentation describes what you are going to build and how you
are going to build it. It tells marketing people what product they will have to sell,
and it tells the engineering team how to implement that product. Since this book
is about embedded systems, it will focus on documenting embedded systems. The
development documents that I have found useful in designing embedded systems
are as follows:

Product Requirements: Describe what the product is.
Functional Requirements: Describe what the product must do.
Engineering Specification: Describes how the design will be implemented and

Hardware Specifications: Describe how specific hardware is designed.
Firmware Specifications: Describe how the firmware for specific processors will

Test Specifications: Describe what must be tested and how to verify that the

how the requirements will be met.

be designed.

system operates correctly.

Figure 1.1 shows how each of the documents relates to the overall design. The
embedded design process generally follows these steps:

Product requirements definition
Functional requirements definition

Processor selection

Hardware/software specifications

1

PRODUCT REQUIREMENTS i FUNCTIONAL REQUIREMENTS

May be merged into a
single Product Specifkaton
document.

ENGINEERING SPECIFICATION

and (Immare will be
one does and how t

HARDWARE SPECIFICATIONS

FIRMWARE SPECIFICATIONS One ,or each ~iuopmcBss(y or each - V
functional pisca ot f i m Desmtas how
the n w m IS i m p m e d .

TEST SPEC'F'CAT'oNS Derdbes how system will be tested. Test S p e c M k n s
may also be required at the board or subassembly level.

Figure 1.1
Design Documentation.

System evaluation

Hardware design
Firmware design

Integration

Verification (test)

These steps are not necessarily serial. For example, if there are separate hardware
and software teams, the hardware and firmware design can proceed in parallel. The
process is not always linear-system evaluation may reveal a problem with the
selected processor, which means that step must be repeated. Last, the process is not
always this well divided. The requirements definition and functionality description,
for example, may be merged into a product specification or other customer-
required documents.

Many companies require such product specifications early in the design process.
I will not dwell on that here, as the requirements for this type of document are
specific to the company or the customer for whom the product is intended. Com-
mercial customers, to pick one example, have considerably different requirements
than the Department of Defense. The design and documentation process begins
with the next level of documentation below the product specification: the require-
ments definition.

2 Embedded Mim@rocessm Systems

Requirements Definition

The requirements definition (which, again, may actually be part of the product
specifications), describes what the product is to do. In a very large company, the
marketing department or a major customer may define the requirements. In a
smaller company, the hardware and software engineers may sketch out the require-
ments definition. For a small, oneengineer project, the requirements may be the
result of a momentary inspiration.

The requirements definition can take the form of a book-defining every inter-
action, interface, and error condition in the system-or a single-page list of what
the finished product must do. In either case, the requirements definition must
describe:

What the system is to do
What the real world 1 / 0 consists of
What the operator interface is (if any)

In a small embedded control system, defining the requirements is crucial, as it
prevents problems later when you find out that there is insufficient RAM or that
the microprocessor you have chosen is too slow for the job. A simple example of
this is the following system definition for a swimming pool pump timer. (Appendix
A contains the complete requirements definition and specifications.)

System description: A swimming pool timer that cycles the alternating current
(AC) pump motor on a swimming pool.

Power input: 9 to 12V DC from a wall-mount transformer.

Pump is a 1/2-hp, single-phase, AC motor, controlled by mechanical relay.

Provision is to be made for a switch closure input that inhibits pump
operation if the water level is low.

User can set the length of time the pump is on and off. An override is
available to permit turning off the pump when it is on for maintenance and
turning on the pump when it is off so that chemicals can be added.

On/off/override time is to be adjustable in 30-minute increments from 1/2
hour to 23 hours.

A display will indicate the on/off condition of the pump, the time remaining,
and whether the pump is in override mode. The display also will indicate the
condition of the water-low monitor.
Minimum switches and knobs.

In addition to a list of requirements and functions like this, a system that is
intended to be a commercial product might also include requirements for EMI/

System Design 3

EMC (electromagnetic interference/electromagnetic compatibility) certification,
safety agency approval (UL/IEC) , and environmental specifications (temperature,
humidity, salt spray, and so on).

Although we’ll discuss this further in Chapter 7 , one problem with specifylng
requirements is verlfylng them. It is easy to determine whether the product meets
the EMI/EMC requirements-you can run tests to prove it. But how do you prove
you’ve met the requirement for “minimum switches and knobs”? Thus, keep in
mind the problem of verification when specifylng requirements.

A complex system may have another level of documentation, which I usually
refer to as the Engineering Specijication. This document describes the approach that
will be used to implement the design, including which boards will be included and
how the functions are partitioned onto those boards. I will return to this informa-
tion later, in Chapter 8. For now, assume that we have a simple product, which
makes this intermediate document unnecessary.

After the requirements are defined, the next step is to determine whether
a microprocessor is the best choice. For the pool timer, it is fairly obvious that a
microprocessor is the easiest way to do the job. Some other systems are not so
obvious. The following questions can help determine whether a microprocessor is
justified:

At what speed must the inputs and outputs be processed or updated? Although
the clock rates are ever increasing, there is a practical upper limit to the speed
at which a microprocessor can read an input or update an output and still do
any real work. At the time of this writing, an update rate of a few hundred kHz
is a practical upper limit for a simple microprocessor system with few processing
demands and running on a fast processor or digital signal processor (DSP). If
the system must do significant processing, buffer manipulation, or other com-
puting, the potential update rate will decrease.
Is there a single integrated circuit (IC) or a programmable logic device (PLD)
that will do the job? If so, a microprocessor is probably not justified.
Does the system have a lot of user I/O, such as switches or displays? If so, a micro-
processor usually makes the job much easier.
What are the interfaces to other external systems? If your system must talk to
something else using Synchronous Data Link Control (SDLC) or some other
complex communication protocol, a microprocessor may be the only practical
choice.
How complex is the computational burden on the system? Modern electronic
ignition systems, for example, have so many inputs (air sensors, engine rpm, and
so on) with complex relationships that few choices other than a microprocessor
are suitable.
Will the design need to be changed once it is finished, or will the requirements
be changing as the design progresses? Is there a need for customization of the

4 Embedded Microprocessor Systems

product or for special versions? Any of these requirements makes a micro-
processor attractive due to the flexibility of implementing functionality in
firmware.

Fortunately, the job of the system designer is becoming easier. Microprocessor
costs are coming down as speed and performance rise. Even simple microproces-
sors are capable of handling tasks that were limited to dedicated hardware just a
few years ago. When you include very fast processors (such as low-cost DSPs) , the
range of potential applications that can be performed with a microprocessor is
wider than ever.

Processor Selection

Suppose you decide to use a microprocessor for your new widget. What steps do
you take to select the processor to be used? Fortunately, for all but a very few appli-
cations, more than one right solution is possible because several microprocessors
can meet the requirements. As with most real-world engineering decisions, the
selection consists of a series of tradeoffs between cost and functionality. The spe-
cific selection process will depend on the complexity of the finished product, but
the following items must be taken into consideration:

Number of 1/0 pins required
Interfaces required
Memory requirements
Number of interrupts required
Real-time considerations
Development environment
Processing speed required
ROMability
Memory architecture
Power requirements
Environmental requirements
Life cycle costs
Operator training/competence
The “real” requirements

Number of UO Pins

In a minimumcost system, component count is a major factor in the final product
cost. These systems generally use a singlechip microprocessor with internal
ROM and RAM. There is a convention to identify these parts as microcontrollers, to

System Design 5

separate them from the more general-purpose embedded processors. Since the
microcontroller does not need to generate signals to external memory, the device
pins are available for I/O. These pins are grouped as ports, and each pin may be
an input or an output. In our example system, one pin might turn on the pool
pump relay. Another pin might allow the processor to monitor the water level
sensor.

Most microprocessor manufacturers make a controller with internal memory
and external pins for controlling 1 / 0 devices. While it is impossible to list all the
variations and subtleties of these devices here, a brief list of typical devices follows:

Manufacturer Processor I/O Pins

Intel and others
Microchip
Motorola
Zilog
Signetics/Philips
Atmel

8031/8051 family
PIC17C42
68HC05 family
28 (Z86E40)
836751
AT9OS8515

32
33
varies
32
19
32

This list cannot describe all the tradeoffs among the various parts. Some of these
parts include a bidirectional serial interface, for example, but you must give up two
port pins to use it. Some have internal timers that use a port pin for certain func-
tions. Some have highcurrent and opendrain outputs that are ideal for driving
relay or solenoid coils with no additional driver hardware. The specific IC that is
ideal for your application depends on the application.

When counting 1/0 pins, make sure that you take into account the use of inter-
nal functions, such as serial ports and timers, that restrict the use of certain pins.
Although we’ll discuss this in more detail in Chapter 2, keep in mind that some of
these parts support external RAM or ROM, but using that capability takes anywhere
from 8 to 19 1 / 0 pins to access the external memory.

Interfaces Required

The entire point of an embedded processor is to interact with some piece of real-
world hardware. Not only must the hardware be in place to handle the interface,
the processor must be fast enough to perform whatever processing must be done
on the data. In a singlechip system, processor selection may be highly dependent
on the interface requirements. For example, the Microchip PIC17C42 has two
pulse-width modulation (PWh4) outputs that simplify design of such things as
antilock braking systems and motor servos. One caveat: Study the data sheets care-
fully. Many processors have limitations that are not immediately obvious. You might
find, say, that the serial port is specified as being able to operate at a certain

6 Embedded MicroproGessor Systems

maximum baud rate, but careful examination of the data sheet may reveal that not
all modes of operation are available at the maximum rate.

Determining whether a particular processor can keep up with the interface
requirements is not always easy. Unfortunately, there is no magic formula to deter-
mine this. I have frequently resorted to writing part of the code for an interface
just to be sure that the processor has enough capacity.

Memory Requirements

Determining the memory requirements is an essential part of embedded system
design. If you overestimate the memory required, you may select an unnecessarily
expensive solution. If you underestimate it, you risk project delays while the system
is redesigned. Since memory comes only in sizes that are addressable with digital
bits, such as 8K x 8, 32K x 8, and so on, you need not estimate memory require-
ments down to the last byte. You do need to ensure that you have enough memory,
however.

RAM RAM is fairly straightforward to estimate. The number of variables plus the
sum of all internal buffers, FIFOs (first in, first out), and stacks is the amount of
RAM required. Many singlechip microcontroller ICs are limited to less than 1024
bytes (lK, or 1 kilobyte) of internal memory. If the memory goes beyond what is
internally available, then external RAM must be added. However, this requires the
use of 1/0 pins to address the added memory and often defeats the purpose of
using a single-chip controller.

One caution is important: Some microcontrollers have restrictions on RAM
usage, such as the need to use part of the internal RAM for banks of internal reg-
isters. For a couple of examples, look at the 8031, which has 128 bytes of internal
RAM. The 8031 has four register banks that use 32 bytes of that, leaving 96 usable
bytes of RAM. If your application needs only one or two register banks, the rest is
available for general use. The 8052 processor has 256 bytes of general-purpose
RAM, but the upper 128 bytes are accessible only by using indirect addressing. The
Atmel AVR90S8515 has 32 general-purpose registers, but only 16 can be used with
the immediate data instructions.

The amount of RAM required also will vary with the development language used.
Some inefficient compilers use enormous amounts of RAM.

ROM The amount of ROM required for a system is the sum of the program code
and any ROM-based tables required. Examples of ROM tables are step motor ramp
tables, data translation lookup tables, and indirect branch tables. The tables usually
are straightforward to estimate. The difficult part is estimating the code size. Esti-
mates of code size become more accurate with increasing experience, usually
gained by being wrong. However, it is important to remember that being precise is

System Design 7

not as important as knowing the upper limit on code size. One rule of thumb is
that if the ROM is more than 80 percent full, it is too full. Unless you can guaran-
tee that the system requirements will never change, leave some margin. In many
cases, it is worthwhile to write portions of the code just to see how big they will get.
In microcontroller-based systems with internal ROM, you are limited to whatever
program memory the part contains.

Like RAM usage, code size depends somewhat on the development (program-
ming) language selected. A program written in assembler takes less space than one
written in Pascal, for example. Again, this depends on the language and even on
the specific brand of software.

It is not a good idea to let the language drive the design, at least in low-cost
systems. The languages easiest to use, debug, and maintain are often those that
require the most memory and processing speed. Choosing the wrong language
can turn a simple, inexpensive, single-chip design into something that requires
an embedded 64bit powerhouse with megabytes of RAM. However, sometimes
company policy or a customer contract specifies the use of a high-level language.
In these cases, you just have to live with the increased cost and complexity that this
implies.

A real-life example will illustrate the potential problems you can run into here.
An embedded system was to be controlled by an x86family processor. We had
settled on an off-the-shelf CPU board, based on a 386SX. Then one of the software
people noticed that the 386SX has no floating-point coprocessor (FPU) . The soft-
ware engineers were from the PC world, where everything ran in Windows 95/98,
on a 400MHz Pentium. They couldn’t conceive of not having hardware for
floating-point calculations. The only way to get a hardware floating point was to go
up to a 486DX or Pentium processor, which doubled the cost of the CPU board.
This was an embedded application, with no keyboard, display, or hard drive attached.
The CPU was reading sensors, controlling motors, and communicating with a PC
host. There was no reason to believe that floating-point calculations would ever be
needed. But, because C makes it easy to define floating-point variables, they were
expected to be available in hardware. In fact, the code wasn’t designed or written
yet, so we didn’t know whether any floating-point calculations would actually be
required.

This same design had some embedded microcontrollers for very low-level func-
tions. What if a software engineer had decided that those needed hardware float-
ing point and a deep stack for recursion? We’d have turned a requirement for a
cheap 8-bit microcontroller into Pentium-class overkill.

Number of Interrupts Required

We’ll cover this subject in more detail in Chapter 5; however, a few comments are
worth mentioning here.

8 Embedded Microprocessor System

Many designers overuse interrupts. An interrupt does just that-it interrupts
program execution. Interrupts are best used for those things that cannot wait for
the processor to get to them. In some cases, an interrupt can be used just to reduce
the hardware complexity (and the associated costs), but almost always it is at the
expense of increased debug time and higher potential for hard-to-find intermittent
errors. In those cases where interrupts are required, it is important to know how
many really are needed. Interrupts are used to n o t 3 the processor of special events
such as a timer that timed out or a piece of hardware that needs attention. Count-
ing the events that need interrupts is straightforward, but be sure to take into
account internal interrupt sources as well. Some tricks can be played to reduce the
number of interrupt signals required when there are more interrupt smrces than
the processor has interrupt inputs. Again, we’ll discuss these in Chapter 5.

Real- Time Considerations

This subject covers a lot of territory and is closely connected to the issue of pro-
cessing speed. Real-time events are what embedded microprocessors generally are
intended to handle. However, some specific events deserve special consideration.
For example, you might have a subsystem that controls a motor using pulse-width
modulation. In this scheme, the motor current is controlled by switching the
current at a very high rate and using the duty cycle to control the motor speed.
The motor, being a relatively slow mechanical device, responds to the time-
average of the current (see Figure 1.2). Lowerduty cycles result in lower average
current and slower rotation. (This is a very high-level description; entire books
have been written about PWM and motor control. Read one of those for all the
details.)

In our hypothetical motorcontrol system, say that the microprocessor cannot
keep up with the motor on a real-time basis. That is, the choppingrate, the rate at
which the motor current is switched on and off, is faster than the microprocessor
can handle. But the other required tasks, such as communicating with whatever is
controlling the motor-processor subsystem, are no problem for our processor. It

V v - ~

During this interval. the device is on half the time and off
haif the tkne It responds ea ifn w m being drlven wlth

a DC w#aQe of hall ofthe Supply voltage

During this interval. the device is on 75% d tha thm and olf
25% ofthe t h e ll responds (u1 Ifk w m teina drlven wilh

a DC vdlaoe equal lo 75% of the suppb voilqte

Figure 1.2
PWM Operation.

System Design 9

seems that we must go to a much faster, more expensive processor to keep up with
the motor, thus raising the cost of the system.

There is another solution, however. Many microprocessors have PWM outputs
or timers that can be configured to operate as PWM outputs. Typical examples are
the Microchip PIC 16C/17C family, the Atmel ATSOS family, and the Intel 80C196
series. Using the internal PWM controller relieves the microprocessor of the
burden of generating every motor current change. Instead, the processorjust sends
changes in the duty cycle (or frequency) to the PWM controller.

This is just one example of how picking the right processor can solve a real-time
problem. Other examples include selecting a processor with a built-in, high-speed
serial port for interprocessor communications; selecting a processor with an on-
chip direct memory access (DMA) controller (more about that in a later chapter);
or selecting a processor with special memory manipulation registers that will speed
things up. Sometimes you can find a microcontroller that has exactly the right inter-
face for your application, such as an onchip LCD controller.

Development Environment

The development environment often is a key consideration. New development tools
require a learning curve, and with a tight development schedule there often is no
time to research, acquire, and become proficient with a new set of tools. If the
company has several tens of thousands of dollars (a not unrealistic figure) invested
in emulators for a specific processor, and if all the software engineers are com-
fortable with those tools, someone usually objects to changing processors just so an
enthusiastic engineer can tinker with the latest chip. That is not much fun for the
frustrated engineer, but it is an economic fact of life. This is why some companies
(or subsidiaries within very large companies) expend a great deal of effort to pick
a processor family they can live with for a long time.

Even if a design starts with a blank slate, however, the development tools can be
a major consideration. For example, selecting a widely used processor, such as the
8031, allows you to select from a wide array of tools from a number of vendors. The
capability of these tools (such as emulators) can be matched to whatever budget
you have. On the other hand, the tools for some specialized processors are avail-
able only from the manufacturer, and the cost can be prohibitive.

Tools can be a major factor. If the processor choice gets down to just two,
researching the cost of tools may make the decision obvious. In any event, be sure
you know the cost of these tools, especially emulators from the IC manufacturer,
before you make the final selection.

If you’re planning to use an RTOS (real-time operating system), the choice of
which one to use also may drive your processor selection. RTOSs come in various
flavors, with some charging a onetime fee and others charging a license fee or

10 Embedded Microprocessor Systems

royalty for every unit you build. Some have a flat royalty; some charge a little for
every module you include. I worked on a system once where one engineer wanted
to embed an RTOS in four of the processors. We’d have spent around $800 per
system just in RTOS license fees. Make sure you choose a processor for which a suit-
able RTOS is available and that the RTOS costs are compatible with your product
cost.

Processing Speed Required

This is another area that is easier to get right after you have some experience with
it, but a few guidelines can help:

Add up the interrupt latencies. The processor must be fast enough that a worst-
case stackup of interrupts (it will happen) can be handled without anything bad
occurring. We’ll return to this in the chapter on interrupts.
The length of the polling loop (more about this in a later chapter) must be short
enough to never miss a byte of serial data or a byte from any other interface. In
an interrupt-driven system, the same considerations apply to the length of any
polling loop plus the worst-case interrupt latencies.
Note that in some cases, going to higher speeds gains nothing if wait states must
be inserted to meet the memory access time requirements. We’ll look at wait
states in Chapter 2.

Common pitfalls about processor speed are as follows:

Confusing clock rate with processor speed. A standard 8031, for example, can
accommodate an input clock of 12MHz. So it’s a 12MHz processor, right?
Wrong. The clock circuitry divides the clock by 12 because the internal logic
needs several phases, or clock edges, per instruction. This yields a processor
rate of 1 MHz. Many processors, such as the 80186/80188, divide the external
clock by 2. The PIGfamily processors divide the clock by 4, whereas the Atmel
ATSOS series parts do not. So, at least in raw execution speed, an 8MHz
ATSOS part (8MHz clock, 8MHz execution rate) is faster than a 20MHz PIC
part (20MHz clock, 5MHz execution rate). None of these characteristics is
bad unless you do not know them or do not take them into account.

Not evaluating the instruction set. The Atmel ATSOS and Microchip PIC
16C/17C series parts have a fairly high execution speed. However, the reduced
instruction set computer (RISC) architecture can be a real trap. For example,
these parts lack sophisticated indirect (lookup table) branch capability. An
indirect branch function can be constructed, but that takes some instructions.
Similarly, the parts only have one branch instruction (GOTO). Conditional
branches require two or more instructions to construct. Consequently, the
potential execution rate is reduced by the extra code involved in manipulating

System Design 11

the hardware. A RISC microcontroller can execute instructions very fast, but
in a given application it may not be as fast as a CISC (complex instruction set
computer) with an instruction set that can perform complex operations. For
example, multiplying two 16-bit numbers may take one instruction and only a
few clock cycles on a CISC processor or a single cycle on a DSP with multiplier
hardware. On a RISC processor that has no multiply instruction or multiply
hardware, this operation must be implemented in some kind of loop that uses
several instructions and a large number of clock cycles. On the other hand, an
application that does a lot of bit flipping and sensor reading, with little or no
complex math, may get better performance from a RISC processor.

Not evaluating the architecture. The ADSP-2100 family parts from Analog
Devices are DSPs that lend themselves well to embedded applications. These
parts are optimized for signal processing, which means that they have some
powerful data manipulation capabilities such as hardware multiply and barrel
shifters. However, they also have some limitations. Some operations require an
extra instruction to move a value from RAM to a register before it can be
used, whereas other, slower processors allow the value in RAM to be
manipulated or tested directly.

These are typical and by no means unique. Every processor has its quirks, and
these are not dark secrets. You just must understand the data sheets on the part
before you use it. Take the data book or CD-ROM home. Read it. Study the timing
diagrams, especially the worstcase numbers. Understand how everything in your
system will connect to and be controlled by this processor. If you do not understand
something, you are not ready to start the design.

ROMability

This consideration applies only to those devices that execute their programs from
internal ROM. These devices usually are chosen for an application where cost,
rather than being no object, is a key factor. If the finished design is going to be a
very high-volume (thousands per year) product, it may be worthwhile to select a
processor that has a ROM version.

Most engineering projects use EPROM or flash memory for their development
phases. These erasable and reprogrammable memories allow a part to be reused
instead of thrown away. When the part goes to production, the EPROM parts can
be replaced with one-time programmable (OTP) devices. These usually are just
EPROM-based parts in a plastic package with no erasure window. Since the expen-
sive ceramic package and quartz window are not required, the OTP parts are
cheaper than the EPROM parts to manufacture, thus reducing product costs.

If the production volume is high enough, the EPROM part can be replaced with
a mask ROM version. The designer supplies the finished program to the IC man-

12 Embedded Microprocessor System

ufacturer, who creates a mask for the version of the IC that has an internal ROM.
This provides the lowest production cost. However, the following caveats exist:

There is a mask charge to produce the ROM. This charge is usually several
thousand dollars and is usually tied to a minimum purchase requirement. If
the product volumes are less than expected or (get your risumi ready) a bug
is discovered in the program after the ROM is created, the mask charge is not
recoverable. A new NRE (nonrecurring expense) is required for a new mask,
and all the old parts must be scrapped because the ROM program cannot be
changed.
Some manufacturers are so swamped with mask order requests that they have
stopped accepting them. This can be disastrous if your entire product pricing
strategy is based on the availability of mask ROM parts. A list of these manufac-
turers, even assuming I knew who they all were this week, would be useless by
the time this book reaches print. Check into this before deciding to use a ROM
part.

Even though the production costs are low, the high upfront costs prevent many
designers from using mask ROM parts. If your volume is too low or you know the
design will change before the end of product life, then mask ROMs usually are a
poor choice.

One additional consideration is that not all devices are available in all flavors.
For example, the Motorola 68HC05 series parts are designed for extremely high-
volume applications. Not all parts in the series (and there seem to be more every
month) are available in the EPROM version. Some parts are available only in the
ROM version. Development is done on a similar part for which an EPROM version
is available. The catch is, if you cannot justify the ROM costs, you cannot select
these ROManly devices, and the nearest equivalent EPROM part may be too costly
for your use.

Another example is the 8031 family parts, which are available in EPROM, OTP,
and ROM versions. As of this writing, the cost of the EPROM version is about 10
times the cost of the ROM version, and the OTP is about 60 percent of the EPROM
version, depending, of course, on your volume and where you buy the parts. The
basic ROM 8031 may be the cheapest choice, but if you will not have the volume
to use it, the OTP version of a different processor may be cheaper than the OTP
8031. The device with the lowest cost in a ROM version may not be the cheapest
in the OTP. In addition, for some devices, the OTP is not available. Your choices
are EPROM or ROM, which can make these parts a real cost problem in low-volume
applications. Be sure to research which varieties of a part are available based on
your volume and other product requirements.

Finally, remember that once a design is committed to mask ROM, it has the same
inflexibility as a non-microprocessor-based hardware design. Once you go to ROM,

System Design 13

you give up the flexibility and programmability of having the design in firmware,
at least as far as hardware costs go.

ln-Circuit Programming

This is not a consideration for every design, but you sometimes need the capabil-
ity to program the parts in-circuit-to perform field upgrades of the firmware, for
instance. This can be a powerful feature, but the capability (or the lack of it) can
affect which processor you choose. To use in-circuit programming, you must have
a processor with the program stored in flash memory. You need a way to erase and
program the memory without removing the device from the board.

I once developed a system that needed incircuit programming. The microcon-
troller I wanted to use was available in an EPROM version, which must be erased
using UV light. I needed to program the parts without taking them off the boards.
There was a flash version of the microcontroller that could be erased and repro-
grammed incircuit, but it ran at only half the speed of the part I wanted to use.
Another version was available with flash memory and was capable of running at the
right speed, but it had additional, unneeded features that tripled the cost of the
part. I had to compromise on cost or performance or give up incircuit program-
ming. Check this carefully if you need that capability.

Nonvolatile Storage

Sometimes your application requires internal nonvolatile storage. If you are build-
ing a television, you might want to remember what channel the set was on last, even
if power is removed. For this, you will need some kind of nonvolatile storage that
can be written and read by the processor. Many microcontrollers, such as the PIC
and Atmel ATSOS series, include a small amount of EEPROM on-chip.

Memory Architecture

Microprocessor memory architectures are divided into two broad camps: von
Neumann and Harvard. The von Neumann architecture permits data and code to
be intermixed. You can put a data table in PROM with the code, and you can move
code to RAM and execute it there. If the code is in RAM, it can modify itself by
writing to the code area of RAM.

The Harvard architecture has separate code and data areas. Code executes from
PROM (usually), data comes from a separate RAM, and you cannot get data from
the code space. Most microprocessors that use the Harvard architecture actually
use a modified Harvard architecture in which the code and data areas are separate,
but a limited ability exists to get data from the code area. This allows tables or other
information to be compiled into the code for use at runtime. This usually is

14 Embedded Micr@rocessw Systems

von Neumann Architecture Harvard Architecture

Single memory space

1E(iingle path for both code and data
limits performance but permits
intermixing code and data.

Sepamte &e and data
spaces aHow both to be

accessed simunanaously
bul require two address

and data paths.

Figure 1.3
Von Neumann versus Harvard Architecture.

implemented with a small number of pointers that can retrieve data from the code
space and with the inclusion of immediate instructions where a byte (or word) of
data is included in the instruction itself. Many singlechip microcontrollers use
the Harvard architecture, among them the 8031, Microchip PIC series, and Atmel
AVR9OS series. Figure 1.3 shows the relative characteristics of the von Neumann
and Harvard architectures.

The advantage of the Harvard architecture is that there are two separate memory
areas and often two separate data paths, so code and data can be fetched simulta-
neously, increasing the throughput of the processor. From an embedded system
point of view, the difference between the architectures is important if compiled
data tables are needed. For example, a stepper motor controller may have a number
of ramp tables embedded in the code space.

If you choose a processor with a modified Harvard architecture, be sure the table
lookup features of the instruction set will not bog down the code. If you are con-
sidering an 8031 for this application, you will find that it has several registers that
can be used as pointers into the data RAM but only one register (DPTR) that can
be used as a pointer into the code PROM. An application that must simultaneously
use two tables in PROM constantly switches DPTR between the two pointers. One
solution to this is to move one or both tables into RAM, but then you must make
sure enough additional RAM is available to hold the tables.

Power Requirements

In some designs, power is not an issue-you just put in whatever power supply you
need to run whatever the electronics requires. There are two areas in which power
is normally an issue. The first is designs that have a power restriction, such as the
need to operate from a wall-mounted power supply as found in many consumer

System Design 15

applications. In most of these cases, the cost requirements of the design will keep
you away from high-current solutions anyway.

The second area in which power is a consideration is in battery-operated equip
ment. In some cases, you must choose a microprocessor with a specific maximum
current to match the battery. In other cases, you must pick a microprocessor with
a reasonable current requirement and then pick a battery to match. In either case,
you need to know the total operational current.

A related issue is sleep current. Many microprocessors have a low-power mode
of operation in which the CPU goes to “sleep,” turning off internal peripherals to
conserve power. Some microcontrollers have very low current in this mode; on
others it saves so little power that I’ve wondered why the manufacturer bothered
with it. Either way, you need to get an estimate on the amount of time the system
will spend in this mode to have a good handle on battery life.

Environmental Requirements

For the purpose of choosing a microprocessor, environmental requirements typi-
cally translate into temperature. If your design must operate over an extended tem-
perature range, such as designs for military or automotive purposes, your choices
of available parts are more limited than if you have normal industrial temperature
requirements. Note that extended temperature devices are nearly always more
expensive, so don’t base your cost estimates on the industrial parts if you really need
high-temperature parts.

Life Cycle Costs

Are you making a VCR or a piece of industrial equipment? If you are making a
VCR, you probably don’t need to consider the need to reprogram the unit in the
field or worry about long-term availability of replacement parts. VCRs are throw-
away consumer items. On the other hand, if you are building some kind of indus-
trial equipment that costs thousands of dollars and will be operating for many years,
you have a different set of considerations. You must pick a processor and/or
memory architecture that can be upgraded. You probably also want to design in
some excess program memory so you will have room for upgrades, and you might
make long-term availability of the microprocessor more important than cost.

Life cycle costs are also a factor on the front end of a design. The more widgets
you will produce, the more upfront development cost you can stand. If you are
selling VCRs, you might pick a very cheap microcontroller and spend a lot of money
developing the software, making the software do everything to save on hardware
costs. If you are building an expensive piece of industrial equipment, you may sell
only a few thousand over the life of the product. In that case, you want to minimize
the development cost. In addition, your product cost is not likely to be as sensitive
to the electronics cost. In that case, you would probably pick a processor that has

16 Embedded Microprocessor Systems

good development tools and other features that will minimize engineering time
required to develop the product.

Operator Training/Competence

Operator training/competence has an impact on processor selection because it
affects the user interface. If you have a product with a fairly complex set of features
and poorly trained operators (such as consumers using VCRs) , then you may need
a more sophisticated user interface. In some cases, you may need an LCD display
and touch screen. This implies more processor horsepower and memory to store
the screens and messages.

If the operators of your instrument are well trained, you may be able to use a
less sophisticated interface. For example, an electrical engineer using an oscillo-
scope probably knows what horizontal and vertical resolution knobs are for and
doesn’t need an explanation for them. If the same instrument has a sophisticated
math function with non-obvious controls, you may need the capability to display a
menu or even a help screen for the user.

The “Real” Requirements

Sometimes you must look past the request for a specific feature to get at the real
requirement. Some years ago, I worked on a product that was going to be designed
as a replacement for a current product. In looking at the requirements for the new
product, we found some users requesting easier access to change certain chemicals
stored in the machine. Looking deeper, we found that the real problem was the
capacity of the chemical storage. The only reason that users were requesting easier
access was because they had to replace the chemicals too often. Providing addi-
tional capacity solved the real problem.

~~

Development Environment

To develop applications on a microprocessor, some basic tools are essential:

A development system or crosscompiler
A PROM programmer
Debug hardware

In the prehistoric days of embedded systems (before the IBM PC), the standard
development system consisted of a computer from the company that sold the micro-
processor ICs and a PROM programmer. The development systems were expensive,
slow, and limited to developing software only for that manufacturer’s parts. Some
third-party companies had development systems as well. These also were expensive

System Design 17

and slow but could often be upgraded (at a huge cost) with hardware that would
permit software development for more than one manufacturer’s parts. If you can
find one of those old development systems today, it probably will be in use as a
doorstop or boat anchor.

It is unarguable that the standardization of the business world around the IBM
PC and its derivatives has been a real advantage to the embedded systems devel-
oper. Most manufacturers of microprocessor ICs now provide development software
instead of systems for their parts. These cross-compilers run on a PC to compile or
assemble code for the manufacturer’s microprocessor. (Technically, a cross-
assembler is a special case of a crosscompiler, and in this book the term cross-
compilerwill refer to both types of software.) Some manufacturers even give away
some sort of development tools (usually an assembler) to potential customers on
the premise that they are in the IC business, not the software business. It is un-
known how many microprocessor selections have been made based on the avail-
ability of these free tools, but the number must be large.

Many IC manufacturers still provide complete development systems for their
parts. These are usually PCs with the manufacturer’s software included, and they
constitute a complete development environment. But buy carefully-these PCs can
be a bad deal from a cost perspective.

Some will argue that the PROM programmer no longer is an essential develop
ment tool, and they are right. If the project is to be developed in RAM or on an
embedded PC or on a flash-based, downloadable processor, a PROM programmer
is not needed. As more and more microcontrollers move to a flash-based architec-
ture, the need for PROM programmers in the engineering lab will decline further.
However, some projects still are developed in an environment in which parts have
to be erased and programmed every time the code changes; for those developers,
a PROM programmer is needed.

When the development system consists of a crosscompiler and a PROM pro-
grammer and little else, debugging is simple, although often tedious. The code is
run, the operation of the system is observed, and the code is examined to see why
things do not work. This process is repeated until all bugs are found. For some
systems, especially at small companies, this stare-at-thecode method is still used and
works well. This method becomes less and less attractive as system complexity grows
and development schedules shrink.

The next level of debug is a monitorpog-am, sometimes called a debuggm. This
simple program resides in the embedded system and provides commands to
examine and alter memory, download code, and insert breakpoints into the code.
A breakpoint is an unconditional branch instruction that takes the code back to
the monitor program, where the registers and memory may be examined. Monitor
programs require some kind of terminal, and the monitor program itself takes
up considerable memory, so they typically are not used with very simple
microprocessors.

18 Embedded Microprocessor Systems

As microprocessors become more complex, debugging the completed system
becomes more difficult. Many designers, especially at large companies, use an
emulator for system debugging. The emulator has a probe that replaces the micro-
processor IC in the system (the target) and is supposed to run exactly the same as
the target part. However, the emulator allows the engineer to insert breakpoints
into the code so that the microprocessor’s operation can be stopped. While
stopped, the memory, internal registers, and other information about the micro-
processor can be examined, the same as with a monitor program. In a simple emu-
lator, the breakpoint is typically a specific address-for example at the instruction
in the pool timer that turns on the motor relay. More sophisticated emulators have
additional hardware that allows breakpoints when specific values are written or read
to or from memory, when a specific sequence of instructions is executed, or for
many other causes.

One drawback to emulators is their cost. Ranging from a few hundred dollars
for a simple microprocessor (such as the Intel 8031 family) to several thousand
dollars for a more complicated IC, the cost is often prohibitive. As I mentioned
earlier, many companies base several products on a single microprocessor type due
to the cost of buying new emulator equipment.

As microprocessors have grown even faster, their speed has outpaced the emu-
lator industry’s ability to keep up. In addition, the use of more powerful proces-
sors for applications often means some CPU horsepower is left over after the
application is developed. Many developers have moved away from emulators and
back to the monitor or debugger programs. These now more-sophisticated pro-
grams take advantage of leftover CPU capacity to provide event tracing, through-
put measurement, code histograms that show how much time the CPU spends in
each section of code, and other powerful debugging information. In addition,
many processors now include debugging resources onchip. We’ll examine this in
more detail in a later chapter.

Development Costs

In most companies, someone must produce an estimate of the development costs
for a major product. As for any project, these costs include labor and materials.
Estimating these costs is a matter of experience, which is why it usually is left to the
more senior engineers. However, some additional costs must not be forgotten when
developing embedded microcontrollers:

Development systems and development software
PROM or other device programmers
ROM mask charges and other NREs
RTOS licensing fees

System Design 19

On a large project, these costs usually are minimal. On a small project, they can
drive development costs above what the product will produce in sales.

Hardware and Software Requirements

If the product specifications or requirements definition is the goal for the product,
the hardware and software requirements are the goal for the detailed design. These
requirements start with definition of the user interface and system functionality. In
the example system, the complete system definition (see Appendix A) specifies what
must be done and how the user operates the device.

From the system definition, a hardware interface is defined. The most produc-
tive method of defining the hardware is to start with the requirements-what the
hardware must have. This is tied to the system specifications because the hardware
must support whatever functionality the system has. In the example system, the time
must be displayed. Given the constraints of the system (the timer will not be con-
nected to a PC, for example, so a CRT display is out), it came down to two choices:
light-emitting diode (LED) and liquid crystal display (LCD). Even though an LCD
would be more readable, I chose the LED display because the timer will be exposed
to the weather all year, and the LCD displays available at the time had problems
with cold temperature.

Some people consider each set of specifications to be a fixed, immutable docu-
ment. I prefer that the hardware specifications be a record of the design decisions.
The first section of the hardware specifications is the requirements. This is given
to the hardware engineer and becomes the basis for what he or she does. The
requirements should spell out just that-the requirements. How the requirements
are met is up to the engineer. Anything that cannot be left to the engineer’s
discretion should be in the requirements document. Of course, what you leave to
the engineer’s discretion may be different for a new college graduate than for an
engineer with 10 years of experience.

When working as a project engineer on a large project, I like to put a list of the
requirements for each microprocessor-based board in the engineering specifica-
tions. This single document then becomes the foundation for the individual board
specifications.

After the requirements document is completed and while the design is pro-
gressing, the hardware specifications are updated to include the specific informa-
tion that another engineer needs to understand the design and that the software
engineer needs to program around the hardware. So, when the board specifica-
tions are completed, a preface is added that describes the original requirements
(and any updates that occurred as the design progressed) and a description of how

20 Embedded Microprocessor Systems

the design was implemented, with all the information the software engineers need
to control the hardware. This includes the following:

Memory and 1 / 0 port addresses (including memory maps if appropriate)
Amount of memory available
The definition of each bit in each status register
The use of each bit on each port pin
An explanation of how peripheral devices are driven (such as the clock frequency

Anything else the software engineer needs to know about the design
input to a timer IC)

On a complex board, I have often had two separate sections in the hardware
specifications. The first section describes the hardware and how it works. The
second section contains the information the software engineers need to do their
job. In a similar fashion, a software requirements document is created that defines
what the software must do. In a simple design like the pool timer, this may consist
of the system requirements document, which describes the user interface, and the
hardware specification, which describes how the hardware works.

A detailed software specification that describes the completed design is less
common than the equivalent hardware specification. This occurs for four reasons:

1. The hardware specification is passed to the software engineers so they will know
how to manipulate the hardware. Usually, no corresponding “customer” needs
to know the technical details of the software, so the need for documentation is
not as great.

2. Software is easy to change, so it changes frequently, often whenever someone in
marketing thinks up a new feature to add. In some situations, software specifi-
cations can be very hard to keep up to date, especially if the software engineers
have other, higher priorities.

3. Software usually is the last part of a project to be finished and often not enough
time is left at the end of a project to document it. That said, company or cus-
tomer policy sometimes requires detailed software specifications. For example,
defense projects usually require extensive documentation detailing every func-
tion that the software performs.

4. The mechanical and electrical requirements are typically testable. Stresses
and tolerance stickups and power dissipations can be mathematically tested.
With software, it is more difficult to prove that the requirements are correct and
that the flowcharts really will produce code that does what was intended. The
more complex and detailed the software requirements are, the less likely it is
that you can prove the requirements to be correct. For this reason, the software
requirements document is likely to be less detailed or even to be omitted entirely
from the design process.

System Design 21

In a simple design, the software definition, like the hardware definition, may
describe the software for a single board. In a more complex design, where differ-
ent software engineers work on different parts of the code for a single board, there
may be a software definition for each individual engineer’s code. In a complex
multiprocessor system, there may be an overall software document, which I con-
sider to be part of the system engineering specification. The software specifications
should include the following:

A statement of the requirements, including the requirements definition, engi-
neering specifications, and hardware definition, as appropriate.
The communication protocol to any other software, whether to another pro-
cessor or to another piece of the software for this processor. This should include
descriptions of buffer interface mechanisms, command/response protocols, sem-
aphore definitions, and, in short, anything to which the complementing code
needs to talk.
A description of how the design was implemented, using flowcharts, pseudocode,
or other methods. (Chapter 3 describes these in more detail.)

Because software can be broken down more flexibly than hardware, it is difficult
to pin down a single software definition format that works for everybody all the
time. The key is to define any interfaces that other engineers need to know about
and i d e n w the design details that engineers in the future might need to know.

This discussion assumes that the hardware and software are fairly independent.
In a simple system like the pool timer, that is a good model. The hardware is
designed, the software is.mitten around that hardware, and that is that. While the
actual design implementations may proceed in parallel, the software engineer
basically writes code around the available hardware. In a more complex system, the
process may be iterative. For example, the software and hardware engineers may
have a meeting at which they jointly decide what hardware is required to perform
the function. Large amounts of memory may be required for data buffers, or the
software group may request a specific peripheral IC because an interface library
already has been developed for it. There are tradeoffs in this game between ease
of software development and cost or complexity of hardware.

HardwardSoftware Partitioning

Once, while having lunch with a group of engineers, I jokingly made the statement
that my design philosophy was to put everything under software control. That way,
bugs in the design were by definition the fault of the software engineer.

This flippant conversation touches on a real problem in any embedded system:
Which functions should be performed in hardware and which should be performed

22 Embedded Micrqtwocessor Systems

in software? An example of this can be found in the pool timer. As we will see in
the next chapter, the pool timer displays time information on four seven-segment
LED displays. There are display decoder ICs that accept a four-bit input and
produce the signals necessary to drive the display. This design takes a different
approach and drives the display segments directly from a register, which is under
software control. When the software wants to display a number, it must convert the
number to the seven-segment pattern and write that pattern to a register. The
savings was a single IC in the design. This approach also allows the code to display
nonnumeric symbols on the display (A, C, H, J, L, P, U), which I used for debug-
ging the system.

While this decision saved an IC, it had three costs: ROM space was needed for
the lookup table, extra code had to be included for the hex to seven segment con-
version, and the software needed extra time to perform the translation. Given the
simplicity of this function, none of these was a serious problem. The table was 16
bytes long, so the code took a few more bytes and needed only a few microseconds
to execute. But the principle described is at the heart of the software/hardware
tradeoff: The more functions that can be pushed into software, the lower will be
the product cost, up to the point where a faster processor or more memory is
required to implement the added functionality. The pool timer demonstrates
another example of this kind of tradeoff, which we’ll discuss in Chapter 4.

As the saying goes, there is no such thing as a free lunch. Pushing functionality
into the software increases software complexity, development time, and debug
time. This is an NRE, just like the mask ROM charges described earlier. However,
given the increasing speed and power of microprocessors, I expect to see an
ever-increasing trend toward including as much functionality in the software as
possible.

In a more complex system, these tradeoffs can create heated discussion. Should
the software handle regular timer interrupts at a high rate and count them to time
low-rate events, or should an external timer be added that can be programmed to
interrupt the software when it times out? Should the software drive the stepper
motor directly, or should an external stepper controller be used? If the software
drives the motor, should protection logic be included to prevent damage to the
motor drive transistors if the software turns on the wrong pair? And if the proces-
sor runs out of throughput halfway though the project, did the design place too
much of a burden on the software, or did the software engineer write inefficient
code? The answers to these questions depend on your design. If you stay in this
field very long, be prepared to get into one of these discussions.

While doing everything in software increases development costs, moving
functionality to the hardware increases product cost, and these costs are incurred
with every unit built. In a low-cost design, addition of any extra hardware can have
a significant effect on product cost, so the software/hardware tradeoff can be
extremely important. In an extremely cost-sensitive design, such as a low-cost

System Design 23

consumer product, functions that cannot be performed in software may simply be
left out.

Distributed Processor Systems

We’ll cover multiprocessor systems in more detail in Chapter 8. Here, we summa-
rize the tradeoffs involved in choosing a multiprocessor architecture. A distributed
processor system might have a single CPU that communicates with a host computer
and distributes commands and data to lower-level processors that control motors,
collect data from sensors, or perform some other, simpler task. Distributed proces-
sor systems have the following advantages:

The actual processing hardware can be located near the device being controlled
or monitored. In large equipment, this may be a real advantage.
If some of the functionality is optional, the cost of the processor that controls
the option can be added or removed with the option.
In a distributed processor system, each of the distributed CPUs usually can be
a lower-performance (cheaper) part than would be required for one central
CPU.
A distributed system can be designed with a better match between the CPU and
the task it must perform. In a single-CPU system, the CPU must be fast enough
and have enough memory and so forth to perform all the tasks, whether they
are simple or complex.
The code for any given CPU in a distributed system usually is simpler.
It is easier to determine whether the CPU power is adequate in a distributed
system because fewer tasks are being swapped in and out and there is less inter-
action among the various processing that must be performed. For example, you
need not worry about how the motor control function affects the serial interface
throughput if the tasks are handled by separate processors.
Debug of distributed systems can be simpler since each processor performs a
limited set of tasks.

The advantages of a single-CPU system are:

Synchronization, when needed, is easier. For instance, it is easier for a single-CPU
system to synchronize motor startup to limit current surge simply by communi-
cation between tasks or by scheduling. In a distributed system, such synchro-
nization must be performed by CPU-t&PU communication or back through a
common control CPU.
All the data is in the same place, making communication with a host or other
systems easier. Fewer communication protocols are required to pass data around.

24 Embedded Microprocessor System

Since there are fewer oscillators, there usually will be less EMI. On the other
hand, a faster processor may be required, operating at a higher frequency and
generating a lot of EMI.
If the design changes so that intertask communication must be added, such as
for motor synchronization, a distributed design may require that interfaces be
added to each distributed CPU. In a single-CPU design, such a change is likely
to be only to the software.
It is easier to download or update code in a single-CPU system.
Debug of a single-CPU system may be easier since all the functions are in a single
place and all the interactions can be examined. Of course, these interactions as
well as the task switching and general complexity of the code can complicate
debug as well.
Fewer development tools are needed since there is only one processor. In a dis-
tributed system, the same thing can be achieved by using only one type of CPU;
however, this defeats the ability to match the CPU to the task.
If an RTOS is used, there will be fewer license fees in a single-CPU system.
However, a more complex, more expensive RTOS may be required.

With increasing processor power at decreasing cost, I think more single-CPU
designs are to be expected. Some designs will take advantage of increased CPU
horsepower to add new functions, such as real-time signal processing. But motors
and other electromechanical devices are getting no faster, so systems that interact
with these devices probably will use fewer, more powerful processors. Complex
systems that use a single Pentiumclass CPU and a few 8-bit microcontrollers as
smart sensors would not be surprising.

Specifications Summary

Let’s summarize the contents of the design documents described in this chapter
before we look at the actual design in the rest of the book.

The requirements document describes:

What the design or system is to do
The user interface, if any
Any external interfaces to other systems
What the real world I /O consists of

Hardware specifications (one per board or subsystem) describe:

The requirements, restated from engineering or requirements documents
How the hardware implements the functionality
The software interfaces to the hardware

System Design 25

Software specifications describe:

The requirements
Interfaces to other software
How the software implements the requirements

A Requirements Document Outline

The following is an outline for a requirements document that will fit most
products. This document describes the product as a “black box”-that is, what the
product does, not how it is done.

Overview. A brief description of the document, such as “This document
describes the requirements for the ABC corporation swimming pool timer.”

Related/reference documents. Related internal documents, such as product
specifications, environmental specifications, and the like. Related industry
specifications such as ANSI or IEEE specifications.

Specifications. These could include the following:

Agenq approvals. List agency approvals that the product must meet, such as
FDA requirements, IEC 950, UL 1950, shock/vibration specifications, and
so forth.

Requiremerzts. List system requirements. The following items are typical of the
sort of thing that might be listed, and obviously all of these items will not
apply to all products. This section is the core of the document and may
run to dozens of pages.

MTBF (mean time between failure)
MTTR (mean time to repair, usually applies to products that are serviced

by a field service organization)
Speed (How many things per minute/hour/day must be done?)
Operator interface (LCD? touch panel? barcode readers? mouse/

keypad?)
External interfaces (interfaces to other systems, to a controlling host

system, or to a slave subsystem? Ethernet? RS232? Proprietary?)
Available options (may be lengthy if several need to be described)
Input power (list input voltages, frequencies, and current; include

Export restrictions and requirements (applies if using controlled
international requirements)

technology; also, requirements for the product to be marketed in
certain countries may limit technology that can be used)

26 Embedded Microprocessor Systems

Input requirements (What size bottles does it use? What sizes of paper
can it handle? How big or how small can the block of steel be that
goes into the input hopper?)

Capacity (How many blocks of steel or bottles or pieces of paper can it
handle at a time?)

Error handling (What happens if the operator puts in too many bottles
or a block of steel that is too heavy? What happens if power goes off
halfway through the process?)

Weight (usually applies only to large or portable products)
Size (Does it have to fit through a standard door or on a standard

elevator? In a standard briefcase?)
Safety requirements (Does it have to operate in standing water with

no danger of electrocution? Does it need a safety mat to stop the
robotic arm when a person steps inside the fence? Are there
rotating mechanisms that must be covered or stopped when a
door is opened? Must the operator be protected from high
temperatures?)

Ethernet interface to a computer network or an IRDA interface to
transfer data to and from a PC)

External interfaces (interfaces to external systems, like a 100 base-T

Note that there may be other requirements as well, such as media requirements,
customer versus field engineer maintenance items, and the like. However, since we
are concentrating on embedded systems, these requirements are outside the scope
of this outline.

Finally, there is an additional type of requirement that deserves mention but that
is outside the scope of this book. These requirements may be called “business
requirements.” These include such things as the requirement that the product have
all the features of competitor’s product X or that certain features be left off so the
product won’t compete with sister product Y. Like all requirements, these are some-
times hard to q u a n q , but they do filter down to the design requirements at some
point.

In a complex design, it is often useful to include, with each requirement, a
description of what drives that requirement. A requirement for an RS232 serial
interface may be needed because the product must interface to product XYZ. If
product XYZ becomes obsolete, or if another interface is used instead, that require-
ment can be deleted. Similarly, if someone suggests that the I2S232 be removed,
the original requirement to include it can be traced back to its source, and you can
determine whether the requirement is still valid. The connection between require-
ments and their source can be documented in an appendix. As mentioned earlier,
this can be beneficial in finding the real requirements.

System Design 27

Communication

Specifications are important to any system design. I have often used the criteria
that an ideal specification can be handed to an engineer with no other documen-
tation, and then that engineer can design the system/circuit/software. That is an
ideal target, rarely realized in practice. However, even if your system specifications
are that good, you cannot eliminate the need for face-to-face communication on
any design that involves more than one person. These conversations and meetings
are crucial to eliminating the little “gotchas” that extend the development time by
keeping the pieces from working together.

28 Embedded Microprocessor System

Hardware Design I 2

Once the system is designed and the hardware requirements are established, the
next step is to design the actual hardware. Of course, you will document the design
to make life easy for the software engineers, right?

Embedded microprocessors fall into two broad categories: Single-chip embed-
ded solutions with onchip memory like the 8031 and embedded systems using a
microprocessor with external memory and I/O. Examples of these are a 68000-,
80186, or 386EX-based embedded system.

Figure 2.1 shows the simplest single-chip microprocessor designs and multichip
designs. Note that they are basically the same except that the single-chip design has
everything inside the chip (inside the dashed line) and the multichip design has
everything except the processor itself outside.

Single-Chip Designs

Single-chip microprocessors (or microcontrollers) usually provide erasable pro-
grammable read-only memory (EPROM; or ROM or flash memory), random access
memory (RAM), and 1 / 0 ports. Most also have internal timers, serial interfaces,
or other peripherals. The 1/0 ports are flexible, permitting each bit to be assigned
as input or output.

The actual design of single integrated circuit (IC) systems is straightforward.
Before starting the design, you already know (or should know) that there are suf-
ficient 1/0 port pins, enough internal memory, and sufficient processor speed to
do the job.

A single-IC design often requires an external timebase. This can be a clock from
some master source (such as a higher-level control processor), a crystal, a ceramic
resonator, or even a resistor/capacitor timing circuit on some processors. What you
use depends on your cost requirements and how accurate the timebase needs to
be. If you are using a crystal or resonator, connect it according to the manufac-

29

SINGLE IC

I - CRYSTAL MICROPROCESSOR
U CORE I

MULTIPLE IC

I/O TO EXTERNAL
FORTS DEVICES

DASHED LINES INDICATE FUNCTIONALIM
CONTAINED IN MICROPROCESSOR IC.

Figure 2.1
Single and Multiple IC Microprocessor Circuits.

turer's data sheets. If you are using an external clock source, such as a packaged
oscillator, make sure it meets the voltage and capacitance drive specifications of the
processor.

Some microcontrollers, such as the Atmel ATTiny series, have internal R-C oscil-
lators and do not need any external clock. However, the R-C oscillators are not as
stable or as accurate as a crystal or ceramic resonator. Some microcontrollers with
internal oscillators improve clock accuracy by providing a means to calibrate the
frequency, but the result is still not as stable as a crystal.

30 Embedded Miwo$n-ocessm System

Multichip Designs

While the similarity between singlechip and multichip designs shown in Figure 2.1
is correct, it is somewhat misleading. The architectures are similar, but in the real
world, a multichip design usually is more complex. There usually is more memory
and generally more (or more complicated) 1 / 0 ports. A singlechip micro-
controller may not be suitable for a design for many reasons: insufficient 1 / 0 pins,
insufficient RAM or ROM, or any of the other considerations detailed in Chapter
1. However, once a decision has been made to go to a multichip implementation,
you take a quantum step in complexity.

A multichip design usually has most or all of the following as separate
components:

Microprocessor
Random access memory (RAM)
Programmable read-only memory (PROM)
Peripherals (I/O devices)

The following table illustrates typical memory configurations for various micro-
processors. The Atmel part is an &bit microcontroller, the NEC part is a 32-bit
microcontroller, the 8OC188 is a midrange microprocessor, and the Pentium is a
high-end microprocessor.

Processor PROM/ROM RAM

Atmel AT9OS8515 (internal RAM/ROM)
NEC V853 (internal RAM/ROM)
Intel 80C188
Intel Pentium

8K
128K
512K

4MB

51 2 bytes
4K

51 2K
4MB

Compared to a single-chip design, a multichip design costs more, takes more PC
board real estate, and is more complicated. The benefits are more flexibility, more
expandability, and (usually) more processing power.

In a multichip design, external peripherals (timers, 1/0 ports, analog-tu-digital
converters [ADC] , and so on) must be connected to the microprocessor using the
data and address buses. There are several types of microprocessor bus cycles, but
all do the same basic things: The microprocessor generates an address, which is
decoded to select a peripheral (memory or I/O) device. If the cycle is a read cycle,
the processor supplies a signal to tell the peripheral to drive its data onto the tri-
state data bus for the processor to capture. If the cycle is a write cycle, the proces-
sor drives the write data onto the data bus and generates a signal indicating that
the peripheral should capture the data.

Hardware Design 1 31

INTEL TIMING

MICROCHIP
TIMING

ZILOG 28
FAMILY
TIMING

MOTOROLA
BBDM)
FAMILY
TIMING

HlTACHl
HE FAMILY
TIMING

ALE

DATA

-RD OR -WR

ALE

DATA

-WR

DATA

-RD

-AS

DATA

-DS

-AS

ADDRESSBUS

DATA BUS

-DS

-AS

ADDRESS BUS

DATA BUS

-RD

DATA BUS

-WR

n

I

n
X A x D * WRITE CYCLE

1 I

! I
X A M D

READ CYCLE

}

1

I

READ CYCLE

*) WRITE CYCLE - - J

Figure 2.2
Typical Microprocessor Bus Timing.

Figure 2.2 shows typical timing diagrams for five families of processors: Intel,
Microchip, Zilog, Motorola, and Hitachi. The speed of the signals varies greatly
from one processor to the next, but the basic waveform is the same for processors
within a given family.

The Intel timing diagram applies to Intel processors from the 8085 to the
80188/80186. It also includes the Intel microcontroller 8x3x/8x5x family of parts
when those devices are used with external memory. Other manufacturers, such as
Philips, also make variations on the 8x31 family that use Intel-type timing to access
external memory. The NEC pPD7840xx microcontroller family uses Intel timing,

32 Embedded Microprocessm Systems

as does the Siemens/Infineon C167 family when accessing external memory in a
multiplexed mode.

In the Intel scheme, the data bus is multiplexed with the address bus. In a proces-
sor with an &bit data bus, the 8 data bits are multiplexed with the 8 lower address
bits. If the data bus is 16 bits, then all 16 data bits are multiplexed with the lower
16 address bits. Multiplexing is a common means to access external memory
because it saves pins-without multiplexing, accessing 64 kilobytes (K) of memory
with an &bit bus would require 24 pins just for the address and data lines. A mul-
tiplexed scheme requires only 16 pins for address and data.

During the first part of the machine cycle (labeled A on the diagram), the
microprocessor places the address on the data bus; it must be captured by an exter-
nal latch such as a 74AC373. The ALE (Address Latch Enable) signal is used to
capture the address in the external latch. After ALE goes inactive, the processor
stops driving the address onto the multiplexed address/data bus and generates a
read or write strobe (-RD or -WR) to transfer data to or from the external memory
or 1 / 0 device. For a read cycle, -RD is driven low, indicating to the peripheral
device that it should drive read data onto the bus, which the processor will leave
in the tristated condition. For a write cycle, -WR indicates that write data is avail-
able for the peripheral, and the processor will drive the data onto the data bus.
This basic waveform is used whether the external device is an EPROM, RAM, or
peripheral.

The second waveform in Figure 2.2 shows the timing for external memory
access by a Microchip PIC17Cxx part. The basic waveform is nearly identical to the
Intel, with one significant difference: During a write cycle, the Microchip part
places write data on the data bus prior to the leading (falling) edge of the -WR
strobe. With the Intel timing, write data is guaranteed to be stable only prior to
the trailing (rising) edge of the -WR strobe. Other devices that use this same
basic timing include the Atmel AT9OS85 15 microcontroller, when accessing
external RAM.

The third waveform in Figure 2.2 shows the timing used by the parts in the Zilog
28 family. The data bus is still multiplexed with the address, but the address strobe
(-AS) is true when low instead of when high. There are no separate strobes for
read and write. Instead, there is a single data strobe (-DS) and another signal
(R/W) that determines whether the cycle is a read or write cycle.

The fourth waveform in Figure 2.2 shows timing for processors such as the
Motorola 68000 family. These parts have separate address and data buses. The
address strobe is not used to latch the address but to indicate that a valid address
is present on the bus. Similarly, the data strobe is used to indicate that valid write
data is present on the data bus (write cycle) or that the peripheral should place
read data on the bus (read cycle). The 68000 family parts also use a -DTACK (data
transfer acknowledge) signal from the addressed device to indicate the end of the

Hardware Design I 33

data transfer cycle. The processor will leave the data, address, and control signals
active until a -DTACK is received from the peripheral device.

The last timing diagram in Figure 2.2 is for the Hitachi H8 family of parts. These
parts use an address strobe (-AS) to indicate a valid address but do not need an
ALE signal, as there are separate pins for address and data. The H8 family produces
separate -RD and -WR signals for read and write cycles. The diagram in Figure 2.2
shows single -RD and -WR signals; the actual microprocessor IC produces two
-RD and two -WR signals since it performs 16-bit accesses. We’ll cover 16-bit buses
and the need for separate signals later in the chapter.

The timing sequences shown in Figure 2.2 cover the majority of microproces
sors and microcontrollers that can access external memory. Some other memory
access schemes exist. The Siemens/Infineon C167 family, mentioned earlier, has a
multiplexed mode that follows the Intel timing. The C167 parts also have a demul-
tiplexed mode that eliminates the external address latch. Since the address is
demultiplexed inside the chip, this mode requires an additional 16 pins for the
address signals. The ALE signal is still generated to indicate a valid address, but
external address latches are not required.

The Zilog 2180 and 2380 microprocessors, not shown in Figure 2.2, use timing
similar to the Intel timing, with separate read and write strobes. However, these
parts do not multiplex the address lines with the data lines, so there is no need for
an ALE signal to latch the address. There are dedicated address pins on the part,
and the address is stable throughout the bus cycle. A separate -1ORQ or -MREQ
line goes active to indicate whether the bus cycle is a memory or 1/0 operation.
The 2380 also provides an indication, similar to the ALE signal, when a bus cycle
starts for designs requiring that information.

Some ARM-7 processors use a nonmultiplexed version of the Intel timing. Figure
2.2 does not show synchronized buses; these will be covered in a later section.

Figure 2.3 shows how a 74AC373 latch would be used to capture the multiplexed
address on one of the processors that uses a multiplexed address/data bus. The
address is latched so that when the multiplexed bus switches to data, the address is
still available for the peripherals to use. The circuit shown in Figure 2.3 is typical
of a processor with an 8-bit external interface. When using a processor with a 16-
bit data bus (such as the Intel SOlSS), both bytes of the bus are used for data trans-
fer, so two &bit latches are required to capture the full 16-bit address bus.

The output enable signal to the 74AC373 is shown grounded. This enables the
outputs, and therefore the address bus, all the time. There are some circumstances
in which this will not be the case; we’ll discuss these later.

The latching circuit need not be a duplicate of the one shown in Figure 2.3. It
could be implemented in a programmable logic device (PLD) or other logic.

One final note: So far, we have discussed only 16-bit address buses, which allow
access to 64K of memory. Many processors can address more than this. In some of
these parts, including the 80188/186 family, an additional latch (or latches) is

34 Embedded Microprocessor Systems

DATA Bus
TO PERIPHERALS
AND MEMORY

MICROPROCESSOR

LOW-ORDER
B BITS OF
ADDRESS BUS

USE CONNECTION ' A FOR INTEL AND OTHER
PROCESSORS WITH HlOKTRUE ADDRESS STROeE
USE CONNECT ON 'I FOR PROCESSORS WITH
LOW-TRUE ADDRESS STROBE

Figure 2.3
Address Bus Demultiplexing.

required to capture the upper bits of the address if it is needed, since the address
is multiplexed with some status signals.

Wait States

In many cases, a fast microprocessor must interface with a much slower peripheral.
In this case, the normal timing of the microprocessor read, write, or data strobes
is much too fast for the peripheral. For example, the processor may generate an
-RD signal that is 20011s in length, but the peripheral has a 30011s output enable
time. In these cases, the usual solution is to add wait stales to the bus cycles when
the CPU accesses that peripheral. A wait state extends the microprocessor read or
write cycle by an integral number of processor clock cycles.

Hardware Design 1 35

Not all microprocessors support wait states; for example, most single-chip proces-
sors (such as 8051, PIC17C4x) do not have a provision for wait states. However,
most processors designed for multichip applications support wait states.

Internal Wait States

Some processors have internal logic that can insert wait states. These wait states
are programmed in software to extend processor cycles when accessing specific
memory or 1/0 addresses. The 80186 has several outputs that can be programmed
to generate chip selects at specific address ranges. These can be used to select
EPROM, RAM, or 1/0 devices. For each output, an internal wait state generator
can be programmed to automatically insert up to three wait states. They can also
be programmed to either accept or ignore wait requests from the external wait
signals.

Wait State Timing

When the processor starts a bus cycle and detects that the wait line is active, it will
extend the cycle, leaving the -RD, -WR, or -DS signal active and sampling the wait
line once per clock. Once the wait signal has gone inactive, indicating that the
peripheral is ready, the processor will complete the bus cycle. The wait input is con-
ceptually straightforward, but the details can cause problems. The most common
problem is timing assertion of the wait state, which requires study of the data sheets.
Figure 2.4 shows a (simplified) diagram of the 80186/80188 processor timing. The
SRDY (Synchronous ReaDY) input of the 80186 must be asserted before the second
falling clock edge after the ALE goes inactive. However, SRDY must be externally
synchronized by the user, so the peripheral actually must assert the wait request
right after the -RD or -WR signal. If the wait logic is delayed too much, the request
will occur too late and the processor will ignore it. Other processors have different
quirks that must be taken into account.

Some peripheral ICs include integral wait-state generators. If you use one of
these, be sure that the timing will work with the processor. Some peripheral ICs
assert the wait request too late in the cycle for some processors to recognize it.

Bus Types and Their Relationship to Wait States

Processors like the Intel x86 family use a normally-ready bus. They do not use a
bus-acknowledge signal and they default to no wait states. In other words, the input
(usually READY) that causes wait states to be inserted in the cycle normally is pulled
to the ready (no wait state) condition. If the external logic does not drive the input
to generate wait states, the processor generates the access cycle and continues on,
regardless of whether the peripheral was really ready.

36 Embedded Microprocessor Systems

PERIPHERAL MUS1
REQUEST A WAIT
STATE HERE ...

FORTHEPROCESSORTO
RECOGNIZE IT HERE. 1 1

CLOCK I \ I I \ I \ I
ALE \
WAIT REQUEST
FROM PERIPHERAL I
SRDY TO I86 I
-RD OR -WR

f
IF A WAIT STATE WERE NOT USED, d D WOULD
TERMINATE HERE, AS INDICATED BY THE
DASHED LINE. THE WAIT STATE EXTENDS -RD
BYONECLOCKCYCLE

SRDY TO 186
WAIT REQUEST

FROM PERIPHERAL

186 CLOCK

Figure 2.4
801 86/80188 Wait State Timing.

Processors like the Motorola 68000 family use a normally-not-ready bus. In this
scheme, each peripheral must return an ACK signal to indicate that it has com-
pleted the data transfer (accepted the write data or generated the read data).
Normally-not-ready timing means that the default operation of the processor is to
wait until the peripheral responds, which may be forever if the peripheral does not
acknowledge the transfer. In theory, access to nonexistent memory or a nonre-
sponding peripheral will cause a permanent wait state. In practical systems, a
timeout circuit usually generates an ACK (or more specifically, an error signal) if
the peripheral does not.

In a normally-ready transfer, a peripheral needing wait states must detect when
it is being accessed and drive the processor’s ready input to the inactive (not ready)
state until the peripheral has had time to complete the read or write operation.
The ready input is then driven active, permitting the processor to complete
the cycle.

Hardware Design I 37

In normally-not-ready systems, the peripheral must generate an ACK to indicate
that the transfer is complete. In actual systems, the peripheral itself usually does
not introduce the wait states. This is normally done by the logic that controls access
to the peripheral device, which times wait or ACK assertions and makes sure that
they are asserted only when the correct peripheral is accessed. Some peripherals
(particularly those designed for the 68000 family) generate ACK internally and
need no external logic for this function.

Memory

Processors with multiplexed buses need to capture the address in a latch because
EPROMs, RAM, and most other peripheral devices need a stable address input
during the external bus cycle. Figure 2.5 shows an EPROM connected to a micro-
processor with a multiplexed address bus. This example shows an &bit EPROM
connected to a microprocessor with an &bit data bus. If the microprocessor had
16 data bits, the upper 8 address bits would come from a latch as well, instead of

ADDRESS
DECODING

LOGIC

MICROPROCESSOR
IC

MULTIPLEXED
ADDRESWDATA

BUS
8 BITS

-RC

....
I

ADDRESS
LATCH -

ADDR 0:7
I

DEMULTIPLEXED
ADDRESS

DATA BUS
TO OTHER MEMORY
AND PERIPHERALS

EPROM ADDRESS
TIMING
DIAGRAM CHIP SELECT

I

OUTPUT ENABLE I 7 I
I

DATA
(FROM EPROM) P I

R c c E s s
TIME

Figure 2.5
EPROM Connected to a Microprocessor with a Multiplexed Address/Data Bus.

38 Embedded Microprocessor Systems

directly from the microprocessor. Of course, a l6bit EPROM would connect to all
16 bits of the data bus.

Types of PROM

Three types of memory ordinarily are used as PROMs in embedded systems. The
first of these is the EPROM. An EPROM consists of an array of transistors that can
be programmed. The code to be executed is programmed into the device, and it
is read out by the microprocessor. EPROMs have a quartz window in the top
through which the IC die can be seen. This allows the EPROM to be erased using
ultraviolet light and then reprogrammed.

One special case of EPROMs is OTP (one-time programmable) PROMs. As men-
tioned in Chapter 1, these are EPROMs in a plastic package with the quartz window
missing. They can be programmed once, but because there is no erasure window,
they cannot be erased and reprogrammed. EPROMs and OTP PROMs are p r e
grammed using a tool called a PROM programmer. EPROMs and OTP PROMs can
be either part of a singlechip microcontroller IC or general-purpose parts for use
with any multichip microprocessor design.

Another type of memory is flash memory. Flash memory is similar to the EPROM
in that a transistor array is programmed. However, flash memory can be erased
electrically, which means it can be reprogrammed without taking it out of the
microprocessor circuit. Flash memory often is used when the product requires that
the firmware be upgraded in the field. Early flash memories were expensive com-
pared to EPROM, but the pricing is such that nearly all new designs are flash based.

The advantage of flash memory is that it can be programmed incircuit, usually
by the microprocessor that uses it. The programming procedure requires that the
memory first be erased. This can present a problem-if the code to program the
flash memory resides in the flash memory itself, how do you reprogram it? This
was often a real problem for designers using early flash memories. One way to fix
the problem is to move the programming code into RAM and execute it from there.
Another approach is to use a newer block type of flash memory. These devices do
not require that the entire memory be erased, instead permitting the memory to
be erased in blocks. So the programming code can reside in a section of memory
that is not erased, while the operating code resides in another part of memory that
is erased and reprogrammed as needed.

The Atmel AT49FO80 is a 1MB x 8 flash memory with a 16Kboot block. Two versions
are available, one with the boot block at the bottom of the memory (starting at 00000)
and one with the boot block at the top of memory (starting at FCOOO) . Normally, you
would put your initialization code and flash erase/programming code in the boot
block. This allows you to reprogram the rest of the memory to update the firmware.

Hardware Design 1 39

Programming flash memories typically requires a specified sequence of writes to
specific locations. The Atmel AT49F080 uses the following sequence to initiate the
erase cycle:

Ad& Data
5555 AA
2AAA 55
5555 80
5555 AA
2AAA 55
5555 10

Once erase is started, the memorywill complete the operation itself, timing it inter-
nally. Similar command sequences are used to protect and unprotect the boot block,
to request the manufacturer’s ID fiom the device, and to program a byte in the memory.

Most flash devices use -DATA polling when programming. This allows the
processor to poll the device by attempting to read the location just programmed.
The flash memory returns the complement of the data that was written until the
internally timed programming cycle is complete.

Not all block-organized flash memories have a single small boot block and a
larger main block. Some have multiple boot blocks, and some divide the memory
into a few large blocks.

Most modern flash devices can be programmed using only the normal supply
voltage (5V, 2.7V, or 3V). Internal charge pumps generate the higher voltage
needed for programming (typically 12V). Flash devices also can be programmed
in a PROM programmer, which usually allows the boot block erase lockout to be
overridden. Some microcontrollers with internal flash memory require an exter-
nal programming voltage.

While programming flash memory is different from programming an EPROM,
reading a flash memory is exactly like reading an EPROM. The flash memory will
have an additional input that controls writing of the memory array and which is
inactive during reading.

Flash memory devices also have a means to read the device manufacturer and
ID code. This is useful for device programmers, but it also is often needed for
in-circuit programming. Different manufacturers have different algorithms for
erasing and programming flash memory. If you want to have multiple sources
for the flash memory in your design, your software will need to read the flash to
determine which device is installed so it can determine which programming algo-
rithm to use. You also will need to retain multiple programming algorithms in
memory, one for each type of device you can substitute into the system. This was
no problem with EPROM-all 27256 EPROMs work the same when reading. Pro-
gramming differences were taken care of by the device programmer. On the other
hand, EPROMs cannot be reprogrammed in-circuit.

40 Embedded Microprocessor Systems

Flash memory is a type of electrically erasable PROM (EEPROM). For general
use in program storage, devices designated as EEPROM mostly have been replaced
by flash memory. However, in some applications, specialized EEPROMs are very
common. We’ll address these later.

When an EPROM needs to be erased and reprogrammed, you just pull it out of
the socket and take it to a PROM eraser and then to a programmer. As flash mem-
ories have grown in density, this becomes impractical since they no longer fit in a
dual inline package (DIP). Early flash parts were available in PLCC (plastic leaded
chip carrier) packages, which could be socketed, but many newer parts are only
available in packages such as TSOP (thin small outline package) or BGA (Ball grid
array) that are difficult or impossible to put in a socket. The parts are soldered on
the board. The result is that in many designs, the only way to program the flash
memory is in-circuit, using the microprocessor itself. This is fine if you want to
program a flash memory to update an existing program. But how does the program
get into the memory in the first place?

Flash memories still can be programmed by a programmer, using a special
socket, before they are installed on the board. But what happens if the vendor (or
your own manufacturing department) inadvertently skips the programming step?
Or what if you get a batch of boards with the wrong program in the flash? Do you
scrap the entire lot?

Some designs are intended to have the flash memory programmed by an in-
circuit programmer when the boards are tested. This is common in high-volume
designs. In a design that does not use this technique, it is a good idea to provide
a means to program the flash using an external fixture. To do this, the micro-
processor must tristate its address and data lines so the external circuit can get to
the flash. If the microprocessor supports DMA (see the DMA section later in this
chapter), it can be put in a hold state. Many processors will tristate their buses if
they are held in reset. If buffers or latches are used for the signals, or if the signals
pass through a PLD before they reach the flash, they can be tristated there.

Once the processor has released the bus, some means must be provided to access
the flash memory. This can be accomplished with a connector that brings out the
addreddata buses and control signals. If there is no room for that, a matrix of
pads on the PCB, accessed with spring-loaded test pins, can be used instead.

Finally, an alternative to directly programming the flash is to provide a means,
such as a header, to install a daughterboard containing a small flash memory
that replaces the system flash. By mapping part of the system flash to a different
location in memory when the daughterboard is installed, the boot portion of
the system flash can be reprogrammed. Such remapping can be accomplished
with a jumper on the main board, or it could be automatically activated when the
daughterboard is installed. The boot portion of the system flash, of course, would
be programmed with code that permits the remaining flash memory to be
programmed.

Hardware Design 1 41

The last type of memory is ROM. As mentioned in Chapter 1, this is memory
programmed by the IC manufacturer using a mask. It cannot be reprogrammed
and usually is used in singlechip microcontrollers, although mask ROM versions
of some EPROMs are available. ROM normally is used only in very high-volume
applications where the code is not expected to change over the life of the product.

EPROlWFIash Interfacing

When reading a flash memory, you’ll note that it has the same characteristics as an
EPROM, so the interfacing techniques for an EPROM and flash are identical in
that respect. Typical EPROMs have three inputs: The address inputs, which can be
up to 18 bits; a chip select; and an output enable. The only outputs are the 8 or 16
data bits back to the microprocessor. Figure 2.5 illustrates the EPROM timing
diagram. The address is presented to the EPROM and the chip select is driven low.
Until the access time has elapsed, the output data is undefined. After the access
time has elapsed, the output data for the addressed location is available. The output
enable signal turns on the tristate EPROM outputs, driving the data onto the micro-
processor data bus.

The chip select signal comes from the address decoding logic connected to the
microprocessor data bus. Some processors, such as the 80188/80186 family, have
internal, programmable chip select logic. The chip select signal in those cases can
come directly from the microprocessor itself.

Note that the address must be stable for the entire EPROM access cycle. If the
address changes during the cycle, the outputs also change as the EPROM attempts
to access the data at the new address. This is why the address must be latched when
using a microprocessor with a multiplexed address/data bus.

The access time of the EPROM is a critical factor and is often overlooked in
embedded designs. EPROM access times are specified as a maximum. For example,
an EPROM with a specified maximum access time of 12011s requires no more than
120ns from the time the address is stable and chip select is low to generate a valid
output. Most of these EPROMs will be faster than the maximum time specified,
which gets a lot of designers into trouble. If you do not take into account the worst-
case numbers, the design will work until the purchasing department buys a batch
of EPROMs that happen to be a little slower than the ones you used in engineer-
ing debug. Worse yet, the problem may show up only when the temperature is above
90°F or when a certain brand of microprocessor is used.

Calculating EPROM Access Time

To calculate the required EPROM access time, you must start with the micro-
processor data sheets. The procedure is as follows:

Calculate the time from when the microprocessor provides a stable address
until it requires stable data.

42 Ernbedded Micropfoocesso7 Systnns

ANY DELAYS IN THE ADDRESS PATH
(SUCH AS ME M M l E s S LATCH)
WILL PUSH THIS LINE TO THE
R l W BY THE AMOUNT OF THE
DELAY.

TMSlSMEACCESSllMETHE I
MVtCE MUST HAM To MEET

I ACCESSTIME. I

THIS IS TM MICROPROCESSOR
ACCESS TIME.

ANY DELAYS IN THE DATA PATH
(SUCH AS DATA EUS BUFFER)
WILL PVSH TMS LINE To TM
LEFT BY THE AUWNT OF THE
DELAY.

CLOCK
I I I

I

ALE
I I I
I I I

I > DATA BUS ADDR
. .

I I
I I
I I

, I

-RD

I I
I I

Y T N 4 ~ T W
I I

ADDRESS TO D M C E ADDR
AFTER ADDRESS
LATCH

Figure 2.6
Typical Microprocessor Timing.

Subtract any delays, such as the address latch propagation delay.

The result is the required EPROM access time. Any EPROM with an access
time at least as fast as the calculated number will work.

Figure 2.6 shows a simplified, typical timing diagram for a processor with a mul-
tiplexed data bus. There are three clock cycles from when the microprocessor
outputs the address until it requires stable data. However, due to internal delays in
the microprocessor IC itself, the address is not available until some time (Tad on
the diagram) after the first clock edge. Then, the processor needs the EPROM data
stable some time before the clock edge that captures the data because the internal
data latch has a finite setup time. This is time Tsu on the diagram. The address
must propagate through the address latch before reaching the EPROM, so the latch
propagation delay time must be added to the EPROM access time. The required
EPROM access time then is:

3 x clock period - Tad - Tsu - latch propagation delay

Some microprocessor data sheets make this easier by referencing everything to the
control signals (ALE, -RD, and so on) themselves.

Figure 2.6 shows the delay that the address latch causes in the address signals
as well as the delay that would be introduced by a data buffer between the EPROM
and the microprocessor. You can see that the effect of any propagation delay in
the address or data path is to shorten the available access time by the sum of all
the delays.

Hardware Design I 43

A processor with a nonmultiplexed data bus will have different timing from
that shown in Figure 2.6, but the basic concepts are the same. The processor will
assert the address some delay after a clock edge, a control strobe will generate some
delay after another clock edge, and the processor will want data to be stable on the
rising edge of the control strobe or on the clock edge preceding it. The EPROM
must be fast enough to produce data in the time from when the address is
stable to when the processor needs the data, minus any delays in the data or ad-
dress paths.

For most EPROMs, the access time from chip select is the same, or nearly the
same, as the access time from the address. Referring again to Figure 2.6, the
EPROM chip select is generated by address decoding logic. The procedure for cal-
culating the chip select access time is the same as for the address access time except
that the delay through the address decode logic must be subtracted from the total
time available. If the upper address bits are latched and then decoded to generate
the chip select, both the latch delay and the decoder delay must be subtracted from
the total time. After the address and chip select access times are calculated, the
EPROM speed required is the smaller of the two numbers.

The next EPROM parameter is the output enable time. This is the time from
when the microprocessor asserts the -RD strobe (or the equivalent signal) to when
it needs stable data available. In most cases, an EPROM selected to meet the
address/chip select access time will not cause a problem with the output enable
time. However, it should be checked. Calculating the output enable time is similar
to calculating the access time:

Calculate the time from when the microprocessor asserts the -RD signal until
it requires stable data.

Subtract any delays, such as the data bus transceivers.

The result is the required EPROM output enable, which can be expressed in
equation form like this:

Toee = Toem - Td

where Toee is the required output enable time of the EPROM; Toem is the
time from when the microprocessor asserts -RD until it needs stable data; and
Td is the sum of any circuit delays, such as gating logic in the -RD signal or
data bus buffers.

The last parameter is the EPROM data hold time. This is the time from when
the output enable (OE) signal goes high until the EPROM actually stops driving
(tristating) its pins, sometimes called the datu bus reZeuse tim. This time is impor-
tant because if the EPROM is still driving the data bus when the processor starts
the next cycle, there will be bus contention and the wrong address can be latched.
In most cases, selecting an EPROM that is fast enough for the processor also results

44 Embedded Micrwocessar Systems

in the data hold time being fast enough. However, when a very fast processor is
interfaced to a slow EPROM, the hold time can be a problem. If the calculated hold
time is a problem, the solution is to use a data buffer (more about that later) or
go to a faster EPROM.

Calculating the timing for flash memories is the same as for EPROMs except that
you also must take into account the write timing. In this respect, flash memory
timing is similar to a RAM, which we will discuss next.

RAM

Two general types of RAM are used in embedded systems. The first and most
common is static RAM (SRAM). Static means that the memory cells do not change
unless they are rewritten or the power is removed. A static RAM consists of an array
of flip-flops that are selected by a decoding array inside the chip. Static RAM usually
comes in x8 configurations, but there are some x16 devices.

A special case of static RAM is nonvolatile RAM (NVRAM). This consists of a
special low-power RAM chip packaged with a battery (usually lithium). The com-
bination also includes power-switching circuitry that operates the RAM from system
power when available and from the battery when system power is removed. The
switching logic also protects the RAM from inadvertent writes when the power
is below a certain threshold, usually when the system power is coming on or
going off.

The other type of RAM is dynamic RAM (DRAM). Dynamic RAM is used in per-
sonal computers (PCs). It stores information as charge on a tiny capacitor, one per
data bit. Because the capacitor charge bleeds off, the data must be refreshed
periodically. DRAM multiplexes the address pins into row and column addresses.
The row address is latched in with a signal called RAS (row address strobe), and
the column address is latched in with a signal called CAS (column address strobe).

The need to multiplex the addresses, generate the strobes, and refresh the
part make DRAM more difficult to design with. Dynamic RAM can be made smaller
than static RAM, so a single DRAM chip will be denser than a corresponding static
RAM chip.

Calculating RAM Access Time

Figure 2.7 shows an SRAM IC connected to a microprocessor with a multiplexed
addreddata bus. Note that the connections are identical to those for an EPROM
with the exception of the added write enable signal, which is connected to the
microprocessor -WR signal. Although not shown, some RAM ICs have multiple chip
select inputs.

Hardware Design I 45

ADDRESS
DECODING

LOGIC

I
ADDR 835

-
>

MICROPROCESSOR
IC ADDRESS

LATCH

ADDR 0:7 MULTIPLEXED

BUS
8 BITS

ADDRESSDATA <
DEHULTIPLWD - ADDRESS

BUS

:ELECT

ADDRESS
INPUTS I c

OUTPUT
ENABLE

DATA BUS
’ TO OTHER MEMORY
’ AND PERIPHERALS

-RD

-WR

Figure 2.7
RAM Connected to a Microprocessor with a Multiplexed Address/Data Bus.

- * WRITE r ENABLE

For static RAM and during a read cycle, RAM timing is calculated the same as
EPROM timing. For a write cycle, additional factors must be considered. First, the
data and control setup and hold times must be calculated. Figure 2.8 shows a static
RAM write cycle. Several additional timing parameters must be taken into consid-
eration with a RAM:

Address setup time. Unlike an EPROM, the contents of a RAM can be
changed. The RAM requires that the address be stable before the write strobe
(-WR) is asserted. If the minimum setup time is not met, the address
decoding logic inside the RAM still may be changing when -WR is asserted,
and the wrong address or multiple addresses may be changed. Note that the
address setup time applies to the leading edge of the -WR strobe.

Data setup time. To guarantee that the correct data are written to the selected
location, the data must be stable before the trailing edge of the -WR signal.
This provides time for the data to get through the RAM’s internal delays.

Data/address hold times. The data and address must each be held for some
specific time after the trailing edge of -WR. This guarantees that the negation
of the -WR signal has time to propagate through the RAM’s internal delays
before the address and data change.

The price for not meeting these parameters is intermittent RAM problems-
locations that seem to change at random or data that are incorrectly written. Like
EPROM access time problems, the symptoms may occur only with specific brands
of parts or only when the temperature reaches a certain point.

46 Embedded Macr@rocessm Systems

ADDRESS
. . HOLD TIME

ADDRESS AND CHIP SELECT
I I
I I

-WR I 1 I I
I I I

DATA I(1
1 I ! I . .

ADDRESS
SETLIPTIME I

IF THIS TIMING IS VIOLATED.
THE ADDRESS MAY NOT
HAVE TIME TO PROPAGATE
THROUGH THE RAM'S
INTERNAL DECODING LOGIC
BEFORE THE -WR SIGNAL IS
ASSERTEDANDTHE
WRONG LOCATION MAY BE
CHANGED.

I I I

SETUPTIME I
I

DATA k-
I

IF THIS TIMING IS
VlOLAlED THE DATA
MAY NOT HAVE TIME
TO PROPAGATE
THROUGH M E RAM'S
INTERNAL BUFFERS
AND THE WRONG
DATA MAY BE
WRITEN.

Figure 2.8
Static RAM Write Cycle Timing.

Calculating the address setup time is as follows: Using the microprocessor data
sheets, calculate the time that the address is stable before assertion of the -WR
signal (remember: leuding edge). Subtract address latch propagation delays. The
result must be greater than the address setup time specified for the RAM chip to
be used. If it is not, you must either select a faster RAM or delay the assertion of
-WR using external logic. The formula for this is:

Tasr = Tasm - Td

where Tasr is the address setup time required for the RAM; Tasm is the address
setup time provided by the microprocessor; and Td is any delays in the data path,
such as a data bus buffer.

Note that delays in the -WR path do not affect address setup time. In fact, a
delay in the -WR path impoves address setup time because it gives the address more
time to stabilize at the RAM before the -WR signal arrives. However, this is not a
free lunch-delays in the -wR signal path can cause a data hold time problem,
which we'll look at later.

Data setup time is calculated in much the same way as address setup time.
Calculate the time from when the microprocessor asserts the data until the trailing
edge of the -WR signal. Subtract any data bus buffer delays. Your RAM must have
a data setup time that is less than the calculated value:

Hardware Design 1 47

Tdsr = Tdsm - Td

where Tdsr is the data setup time required by your RAM; Tdsm is the data setup
time, before the trailing edge of -WR, provided by the microprocessor; and Td
represents any delays in the data path, such as a data bus buffer.

Data and address hold time are calculated by determining how long the micro-
processor holds the address and data after the trailing edge of -WR. If you use
address latches for all address lines, address hold time usually will not be a problem
since the address will remain stable until the start of the next cycle. If you have data
bus buffers, add the minimum propagation delay, if known, to the microprocessor
data hold time. If the minimum is not known, do not add the buffer delay. If there
are delays in the -WR path, subtract those, as they delay removal of -WR from the
RAM. The RAM must have a smaller hold time requirement than the calcu-
lated result:

Tholdr = Tholdm + Td

where Tholdr is the data hold time required for RAM; Tholdm is the data hold
time provided by microprocessor; and Td is the minimum data bus propagation
delay (if known) plus delays in the -WR path (if any).

The preceding information is based on the assumption that your microproces-
sor generates separate -RD and -WR signals. For microprocessors, such as the 28
family, that generate a data strobe and an R/W signal, there are two options: First,
the -0E pin on the RAM is grounded and the -WE signal is connected to R/W.
One of the chip select signals is connected to the data strobe from the processor.
The -WE signal on a static RAM overrides the -0E signal, permitting a write cycle
to occur even if the -0E signal is low. The disadvantage to this is that the output
enable time becomes the chip select access time, which may require that a faster
device be used.

The second option for these processors is to generate the read and write strobes
from the microprocessor data strobe and direction signals. Figure 2.9 shows a
typical circuit for doing this.

Nonvolatile RAM

As mentioned earlier, NVRAM usually is an SRAM with a battery and power switch-
ing logic added. It has the same timing parameters as SRAM and is interfaced in
the same way.

Dynamic RAM

Dynamic RAM, as mentioned earlier, stores information as a charge on a capacitor.
DRAM is less common in embedded designs than is static RAM and typically is used
where a lot of memory is needed. Because a DRAM memory cell consists of a capac-

48 Embedded Microprocessor Systems

READ STROBE
(O=ACTIM)

DATA STROBE
(O=ACTIM)

WRITE STROBE
(O=ACTIM)

DIRECTION
(5WRITE)

DATA STROBE I
DIRECTION

READSTROBE -
WRITE STROBE 1 /

Figure 2.9
Generating Independent Read and Write Strobes from a Microprocessor That Produces
Data Strobe and Direction Signals.

itor and a transistor, whereas an SRAM cell requires a flip-flop, DRAM density
for a given level of technology will be higher than SRAM. At this time, common
DRAM density is about 8 times common SRAM density. The disadvantages of
DRAMS are that interfacing is more difficult and that the parts must be refreshed
periodically.

A typical DRAM has half as many address lines as are needed to access the entire
memory array. The lines are multiplexed with the row address presented first
and the column address presented on the same pins. A 4MB RAM has 4,194,304
locations and requires 22 address inputs. The actual DRAM would have 11 ad-
dress lines.

DRAM timing is less forgiving than SRAM timing. A DRAM has several impor-
tant parameters:

Row address setup time. The time that the row address must be stable on the
address inputs before -RAS is driven low.

Row address hold time. The time that the row address must be stable after the
falling edge of -RAS.

Column address setup time. The time that the column address must be stable
on the address inputs before -CAS is driven low.

Column address hold time. The time that the column address must be stable
after the falling edge of -CAS.
RAS access time. The maximum time from the falling edge of -RAS to output
data available.
CAS access time. The maximum time from the falling edge of -CAS to output
data available.

Hardware Design I 49

RAS hold time. The minimum time that -RAS must remain low after the
falling edge of -CAS.
RAS/CAS precharge time. The times that -RAS and -CAS must remain high
before the next cycle can start.

Looking at a DRAM data sheet reveals many more timing parameters than those
listed here, but these are the key ones. Note that two access times are listed: RAS
and CAS. The actual access time is determined by the circuit. In a fast circuit, CAS
may enable the output buffer before the logic in the DRAM has decoded the row
address, and the RAS time becomes the actual access time. In a slower circuit, where
the row address will be internally decoded by the time CAS occurs, the access time
will be governed by when CAS falls. To put it another way, data will not be avail-
able from the DRAM any sooner than the RAS time after the falling edge of RAS,
even if the address multiplexing and CAS timing are very fast.

Figure 2.10 shows a hypothetical 256K x 8 DRAM connected to a microproces-
sor with a Motorola-type bus. Actual DRAMS may be 1, 4,8, or 16 bits wide. A 1-bit
wide DRAM requires 16 ICs for a 16-bit word width. This example is x8 for sim-
plicity. Also, the data transfer acknowledge (DTACK) timing does not appear on
this figure for the same reason.

MULTIPLEXER

nMiffi CAS
RAS DATA k LOGIC

MICROPROCESSOR

AOA17

R i a

-DS

MICROPROCESSOR SIGNALS

AOA17

-DS

DRAM SIGNALS

AOA8

-RAS

-CAS

DATA

SEL
TIMING

Figure 2.10
DRAM Interface to a Motorola-Type Bus.

50 Embedded Microprocessor System

The address is presented to the DRAM through a multiplexer. At the start of the
cycle (see Figure 2.10), the low-order address bits (A0 through A8) are passed
through to the DRAM and -RAS is pulsed, latching the row address into the DRAM.
After the address hold time is met, the SEL line to the multiplexer is toggled,
causing the high-order address (A9 through A17) to be presented to the DRAM.
After the column address setup time is met, -CAS is pulsed, latching the column
address. Data from the DRAM is available after the CAS access time.

The direction signal (R/W) is passed directly to the DRAM. If the WE pin on
the DRAM is low when -CAS goes low, the DRAM will start a write cycle. If WE goes
low ufte-CAS goes low, the DRAM will do a read cycle, driving read data onto the
data bus, followed by a write cycle. This is called a read dzh Wzte (rmw) cycle. Write
data is latched on the leading edge of -WE or -CAS, whichever is later. Few embed-
ded processors execute rmw cycles. The reason this timing is important is because
you need to avoid bus contention for processors where the write signal may be later
than -CAS. Note, however, that the data is latched and must be stable before -WE
or -CAS, whichever occurs later.

Figure 2.11 shows a method of implementing the timing logic for Figure 2.10.
The address setup time from the processor, prior to the leading edge of -DS, meets
the DRAM row address setup time, so -RAS can go active with -DS.

After Delay 1, which is the row address hold time, the select signal to the multi-
plexer changes states, which switches the DRAM address inputs from the row to the
column address. After Delay 2, which is the column address setup time, -CAS is
driven low. -RAS goes back high after Delay 3, which is the row address hold time.
-RAS could be held active throughout the entire memory cycle, but removing
-RAS after -CAS is asserted makes it easier to meet the -RAS precharge time.

SELECT TO ADDRESS MULTIREXER

.CAS TO DRAM

-OS * -RAS TO DRAM

-DS /
-RAS 1 /

SELECT /
-CAS /

DELAY 1 -I
DELAY 2

DELAY 3

Figure 2.11
Typical DRAM Timing Logic.

Hardware Design 1 51

When -DS goes inactive, -CAS is removed immediately. The DRAM drives the
data bus as long as -CAS is active, so allowing the -CAS inactive state to propagate
through the delays could cause bus contention. The delays in Figure 2.11 may be
implemented with delay lines or synchronous logic. In either case, you must make
sure that the inactive state of -DS has propagated through all delays before the
next cycle starts. This circuit is simplified since it does not include a provision for
separate refresh, but it shows the timing principles involved.

Because DRAM has two address setup/hold times and two address strobes in one
cycle, it is slower than equivalent SRAM parts. The example in Figure 2.11 did not
start the DRAM cycle until the data strobe from the processor occurred. This may
require the addition of wait states, depending on processor and DRAM speed. In
some designs, you can start the cycle early. On Intel-type processors, the -W signal
can be generated when ALE goes active. With a Motorola-type bus, the address
strobe can be used to start the cycle. In both cases, the address decoding must be
fast enough to ensure that the RAM is not falsely selected. Also, the address multi-
plexer adds an additional level of delay that must be taken into account; the row
address must be stable prior to the leading edge of -RAS.

Refresh Dynamic RAM must be refreshed. The storage capacitor loses its charge
fairly quickly, typically in 15 milliseconds (ms) or less. Refresh is accomplished by
accessing each row in the DRAM. Internal logic in the DRAM restores the charge
on the capacitor. Note that accessing any row refreshes all columns in that row. For
example, a 256K DRAM typically has 256 rows and 1024 columns. Any read or write
cycle refreshes the entire row, but the catch is that allrows (that is, all row addresses)
must be refreshed within the refresh interval.

Unless refresh was accomplished with an actual data read, early DRAMS required
that the user generate a refresh address and a -RAS signal every 15 microseconds
(ps) or so. On a 256K DRAM, this refreshes all 256 rows in about 4ms. This scheme
required an external counter and a way to multiplex the count onto the address
lines. The timing logic had to recognize a refresh request and generate a refresh
cycle, arbitrating it with processor cycles. Newer DRAMS can still use this -RASonly
refresh, but they make refresh easier by also supplying an internal refresh address
counter. Each time the DRAM is refreshed using a special refresh cycle, the counter
increments to the next address.

The internal refresh cycle is started by reversing the order of -CAS and -RAS.
-CAS is driven low first, followed by -W. The DRAM recognizes this condition
and refreshes the internal row, then increments the refresh counter. The data bus
is not driven during the refresh cycle.

While an external counter is not required for the internal refresh cycle, refresh
still poses some problems. First, an external timer must generate a request for
refresh at regular intervals. Second, the interface logic must interleave the refresh
cycles with the processor access cycles. What happens if the DRAM is in the middle

52 Embe&d Microprocessor Systems

of refreshing and the processor wants to start a read cycle? There are several ways
to handle the conflict between processor and refresh cycles:

Use wait states. If the processor wants to use the DRAM, it must wait until the
current refresh cycle is completed. This probably is the most common method
of handling refresh.

Synchronize refresh to the processor. Allow refresh to occur only for cycles
that do not use the DRAM. This can be dangerous if the processor is
executing code from the DRAM, which may never permit refresh to occur.
However, if the DRAM will be used only for data, this approach may be
feasible. A slow processor may permit the entire refresh cycle to be performed
without affecting normal operation, such as during the ALE time.

Use the direct memory access (DMA) capability of the processor. DMA can
be used for refresh by allowing the refresh logic to request a hold and do
the refresh cycle when the processor acknowledges the hold request. The
disadvantage of this is that it usually takes a few clocks for the processor to get
in and out of hold.

Use built-in refresh. Many microprocessors, such as some versions of the
80C186, have built-in refresh logic. This consists of an internal timer that
generates refresh requests at regular intervals. Processors that generate refresh
requests internally also provide the refresh row address, so that -RASonly
refresh cycles may be performed.

If the internal refresh capability of the DRAM is to be used, the DRAM timing
logic must detect the refresh condition and generate the Wbefore-RAS cycle.
DRAM timing logic may be implemented using discrete logic or programmable
logic devices (PLDs) . The required delays may be generated using delay lines or a
clock. Either way, all the DRAM timing constraints must be met. Probably the most
common mistakes in DRAM design are failing to meet the setup/hold times and
failing to meet the precharge times, especially when switching between refresh and
processor access to the part.

Some memory ICs, such as the Toshiba TC59LM814, have a self-refresh capa-
bility. This function handles all the timing, addressing, and control necessary to
refresh the memory. The only drawback is that the CPU cannot access the memory
while refreshing, and the CPU must command the self-refresh to begin. The
TC59LM814 has two control bits that select self-refresh and other modes of
operation.

DRAM Controller ICs If you do not want to roll your own timing logic, a number
of controller ICs simpl@ the task of interfacing to and controlling DRAMS. Typical
examples are the DP8421 and DP8422 from National Semiconductor. Some pro-
grammable logic vendors also have FPGA-based designs for DRAM controllers.

Hardware Design 1 53

However, the decision to use DRAM implies a considerable increase in the cost and
complexity of a design; you should consider it carefully to determine whether it is
necessary.

This section has been a lengthy discussion of connecting memory to a micro-
processor and calculating the worst-case timings, but it is important because the
timing of all other peripherals is calculated in the same way. The foregoing
information is based on the assumption that the designer will use worst-case
numbers. Some manufacturers provide a table or other information that in-
dicates the memory speed needed for a specific clock rate. However, if it is not
specified in that way, assume the worst-case timing scenario eventually will
happen.

One last note about timing calculations: They are straightforward to do with a
calculator, but a number of timing analysis programs for PCs will do the calcula-
tions, display the resulting waveform on the screen, and even highlight problem
areas in red. An example is Timing Diagrammer Pro from Synapticad. These pro-
grams typically include libraries of microprocessors and other parts, including the
timing parameters, so you need not even look up the worst-case parameters on the
data sheets. The program does all the calculations for you and you can print out
a timing diagram that can be included in the board specifications or other
documentation.

The entire point of an embedded microprocessor is to monitor or control some
real-world event. To do this, the microprocessor must have 1/0 capability. Like a
desktop computer without a monitor, printer, or keyboard, an embedded micro-
processor without 1/0 is just a paperweight.

The 1/0 from an embedded control system falls into two broad categories:
digital and analog. However, at the microprocessor level, all I/O is digital. (Some
microprocessor ICs have built-in ADCs, but the processor itself still works with
digital values.) The simplest form of 1/0 is a register that the microprocessor can
write to or a buffer that it can read. Figure 2.12 illustrates these two implementa-
tions. When the microprocessor performs a read to the address of the 74AC244,
the decoding logic produces a read strobe, and the 74AC244 outputs are enabled
onto the microprocessor data bus. Similarly, a write to the address of the 74AC374
generates a write strobe that clocks the data bus value into the 74AC374. The input
bits to the 74AC244 could be switch contacts, a temperature sensor, comparator
outputs, or any other digital information. The 74AC374 outputs could drive LEDs,
a relay, or other logic. The decoding logic to generate the strobe signal can be
implemented with PLDs, discrete logic, or demultiplexers such as the 74AC138/

54 Embedded Microprocessor Systems

MICROPROCESSOR

/-

READ STROBE

WPVT BITS
TO OTHER DEUCES

, WRITE STROBE

DATA
FROM MICROPROCESSOR

WRITE TIMING

Figure 2.12
Simple Input and Output Ports.

139. The decoding logic should produce output strobes that follow the micro-
processor -RD and -WR signals.

Figure 2.13 illustrates three decoding circuits. The first, an &input NAND gate,
decodes address lines A8 through A15, the upper eight lines on a 16bit address
bus. When the microprocessor accesses any location in the (hex) range FFOO to
FFFF, A8 through A15 will all be high, producing a low at the NAND gate output.
Of course, a wider address bus or a need to decode to greater resolution will require
a wider NAND circuit.

The second circuit in Figure 2.13 is a 74AC138. This circuit produces output
strobes that follow the data strobe from the microprocessor and are suitable for
clocking data into a register or for enabling a buffer. The select inputs (A, B, and
C) are connected to the microprocessor address bus, bits A1 through A2. One
enable is connected to a range decode (such as the NAND gate later in Figure
2.14), and a second enable is connected to the microprocessor data strobe. The
unused enable is pulled up. As indicated in Figure 2.13, the eight outputs of this
circuit each go active at a different offset from the start of the range decode. For
example, if the range decode was active from addresses FFFO to FFF7, the outputs
of the 74AC138 would go active at addresses FFFO, FFF2, FFF4, and so on. One
drawback to this circuit is that each strobe goes active for either a read or a write.
To get independent read/write strobes, two 74AC138 circuits are used. Instead of
the data strobe input, one 74AC138 is enabled with -RD and the other with -WR.

Hardware Design 1 55

h [
b

9
P

ADDRESS MAY BE UNSTABLE WHILE CHANGING

/ \
-RD OR -WR

ADDRESS ONLY DECODE

DATA

CONTROL DECODE

CHIP SELECTS FOR MEMORY AND OTHER DEVICES
WITH -0E AND -WE INWTS ONLY NEED TO DECODE
THE ADDRESS. CHIP SELECT SIGNAL MAY SWITCH
SEMRAL TIMES WHILE ADDRESSES ARE CHANGING.

A10
A9
A8

RANGE DECODE OU7

8-INPUT NAND GATE DECODES UPPER 8
LINES OF A 16LINE ADDRESS BUS TO
PRODUCE AN OUTPUT WHEN MICROPROCESSOR
ACCESSES LOCATIONS FFGU THROUGH FFFF

PULLUP
74AC 138

+M)
+02
+04
+06
+MI
+OA
+0C
W E

A1
A2
A3

WRITE STROBES FOR REGISTERS AND OTHER
DEWCES WITHOUT SEPARATE -CE AND -RD OR -WR
SIGNALS NEED TO DECODE THE ADDRESS AND
-RD/-WR. THIS INSURES THAT THERE WILL BE
ONLY ONE TRANSITION ON THE CONTROL STROBE,
AND THAT IT WILL OCCUR WHILE THE ADDRESS
IS STABLE.

- R ~ ~ [~ ~ ~ $ ~

74ACT/LSS139 PRODUCES EIGHT OUTPUT
STROBES FROM HIGHER-ORDER DECODER.

22VlO
-RD

-READ STROBE 2 (4004)
-READ STROBE 1 (4000)
-WRITE STROBE 3 (4002)
-WRITE STROBE 2 (401)

A10 -WRITE STROBE 1 (4OOO)
-PERIPH CS (3OOO-3FFF)
-RAM CS (OOOOlFFF)
-ROM CS (8-FFFF)

E--E A9

A2
A1
A0

22V10 PLD PRODUCES SEMRAL ADDRESS
DECODES AND 110 STROBES.

Figure 2.13
Address Decoding Circuits.

It is necessary to gate the I/O strobes with the -RD or -WR signals because
the address typically is held longer than the data for a write. If a write strobe was
just an address decode (not gated with -WR), the register would not get a clock
until the after data were gone. If the read strobe were not gated with -RD, an out-
put buffer would be enabled too long, and there may be bus contention at the
end of the bus cycle when the next one starts and the microprocessor tries to drive
the data bus. A second reason for gating the strobes is that while the address
is changing at the start of a bus cycle, the address lines may not all change at the
same time. Consequently, the wrong address may momentarily appear on the
address lines, and the wrong device could be selected. The decoding logic could
produce a short pulse on a write strobe signal, clocking garbage data into a regis-
ter. Gating read and write strobes with the control signals makes sure the strobes
go active only when address and data signals are stable. Figure 2.13 shows this
timing.

The last circuit in Figure 2.13 shows how a 22V10 (or other PLD) can be used
to generate address decodes and read/write strobes fi-om a single IC. This example
decodes a 16-bit (64K) address space, producing a 32K EPROM chip select from
addresses 8000 through m, an 8K RAM chip select from 0000 through lFFI?,
and a peripheral chip select from 3000 through 3 m . Read strobes are generated
at 4000 and 4004, and write strobes are generated at 4000, 4001, and 4002. Since
the EPROM, RAM, and our hypothetical peripheral IC have their own -WE
and -0E inputs, the chip selects for these parts will not be gated with the -RD
and -WR signals from the microprocessor. The read/write strobes will be gated
with the control signals, however, because they are intended for clocking data
into a latch or for enabling a buffer. The following equations implement this
PLD in CUPL/AE%EL format (& is the logical AND function, # is the logical OR
function, a ! prefix indicates a low-true signal, and a double slash [/ / I precedes
comments).

IEPROMCS = A15; / / 8000-FFF'F
!RAMCS = lA15 Be 1814 Be 1A13; / I 0000-1FF'F
!PERIPRCS = 1A15 & !A14 & A13 & A12; // 3000-3F'FF
!WSTBl = 1A15 & A14 & IA13 & !A12 Be l A l l & lAlO &
!A9 & 1A2 & IAl Be !A0 Be IWR; / / 4000
IWS"B2 = !A15 & A14 & lA13 & IA12 & l A l l & lAlO &
IAQ Be lA2 Be 1Al & A0 & IWR; / / 4001

IA9 Be !A2 & A1 & IAO & !WR; / / 4002
!RsTBl = lA15 & A14 & IA13 Be 1A12 & l A l l & !A10 &
!A9 & lA2 8e !A1 & !A0 & ID; / / 4000

IAQ & A2 Be 1Al Be IAO & IRD; / / 4004

lWS"B3 = 1A15 Be A14 & 1A13 & IA12 Be l A l l & lAlO &

IRsTB2 = 1A15 Be A14 Be 1A13 Be IA12 & l A l l Be lAlO &

Hardware Design 1 57

Peripheral UO Integrated Circuits

The advantage of using discrete latches and buffers for 1/0 is simplicity. The
disadvantages are:

Unidirectional operation. The latch outputs cannot be read to determine
whether a particular bit is set.

Not programmable. The inputs are always inputs; the outputs are always
outputs. If you need nine inputs instead of eight, but only seven outputs, you
cannot use a latch output as an input-you must add another 74AC244 buffer.

PC board real estate. Each new set of eight inputs or outputs requires another
IC and another output from the decoding logic.

Interface. The requirement for discrete read/write strobes to each device
complicates interface with 68000- or Z8type processors that generate a
common data strobe and direction signal.

In addition to these, another problem is that this type of discrete 1/0 is limited
to just that-digital 1/0 bits. A design often requires other functions, such as a
timer, serial interface, or ADC, which cannot be implemented with simple latches.

Peripheral ICs

Most microprocessors intended for multichip designs have peripheral ICs as part
of the product family. These include timer/counters, serial interface chips, and
port expansion. A few examples are described here.

Timers

A timer peripheral consists of a counter that decrements or increments at some
clock rate. The processor can read the count, and the timer may generate an inter-
rupt or pulse an output pin when the count rolls over to zero. Some timer ICs allow
one timer to be cascaded from another for long delays. The timer output varies
with the particular IC used; many have outputs that can be programmed for a
square wave, single pulse on output, or variable duty cycle. In addition to the count,
the processor can control timer start/stop and modes of operation. Typical uses
for a timer IC are to generate a delay, usually for scheduling some real-time event,
controlling motors (DC PWM or stepper), and generating a regular timekeeping
interrupt. We’ll cover timers in more detail in Chapter 3.

UO Ports

These ICs provide a multichip design with the same programmable 1/0 port capa-
bility as a microcontroller. A typical 1/0 port IC may provide three or four &bit

58 Embedded Microprocessor Systems

ports. Some port ICs include hardware handshaking that permits a port to be used
for interprocessor communication in multiprocessor systems. The processor can
control the direction of each port (sometimes to the bit level, depending on the
part) and all modes of operation. 1 / 0 port ICs are also called pmt expanders.

Interface ICs

These provide standard interfaces, such as SCSI, IEEE-488, asynchronous serial
I/O, Ethernet, or “Firewire.” Many of these parts handle more than one interface.
Some UARTs (universal asynchronous receiver/transmitters) , for example, can
handle multiple serial protocols, relieving the processor from the burden of
handling each received byte.

Interrupt Controllers

Interrupt controllers simplify adding interrupts to processors. We’ll discuss this in
more detail in Chapter 5.

IC Functions

In many cases, an IC may combine two or more functions. Table 2.1 is a brief list
of typical peripheral ICs designed for microprocessor I/O.

There are fewer peripheral ICs on the market now than there were a few years
ago. This is the result of several factors. First, shrinking die sizes and power dissi-
pation allow more features to be integrated onto the CPU chip itself. Second, the
increasing complexity and decreasing cost of programmable logic devices such
as CPLDs and FPGAs make it more attractive to put peripheral functions on
those parts.

Table 2.1
Typical Peripheral I/O ICs.

Part

Intel 82C54
Intel 8259
Intel
Zilog Z84C20
Zilog 28530
Zilog 28536
Motorola 68230
Philips SCN68681
National LM628

Function Family

Three timers
Interrupt controller
8255 Four I/O ports

All Intel processors
Intel processors
Intel processors

Two 8-bit ports Zilog processors
Serial communications Non-Zilog processors
Three I/O ports, timers Non-Zilog processors
Parallel I/O ports 68000 family
Dual UART 68000 family
DC motor controller Intel processors

Hardware Design 1 59

Finally, the increasing power of microcontrollers makes them attractive where
simple 1/0 is needed. A typical design a few years ago might include an 80186 CPU,
memory, some kind of parallel I/O, and perhaps an ADC. Timer, interrupt control,
and serial interface could reside on the CPU chip (depending on which model) or
as external peripheral ICs. The same design today, with the same performance,
might use a microcontroller with everything embedded on<hip.

Although peripheral ICs are fewer now than in past years, they still exist and are
still useful in many designs. Most parts that are designed for a specific family of
processors can interface fairly painlessly to parts in that family. However, sometimes
the designer needs a function that is performed by a peripheral part from another
family. For example, you might want an interface between a Motorola peripheral
and an Intel processor. Although showing every possible combination of periph-
erals and microprocessors is impractical, some representative examples are illus-
trated here.

Intel 80188 to Motorola 68230 Figure 2.14 shows a simplified timing diagram
for the Intel 80188 and the Motorola 68230. On a read cycle (the address multi-
plexing does not appear in the figure for simplicity), the 80188 generates a -RD
strobe and the peripheral is expected to have data available at the trailing edge of
-RD (actually at the clock edge that precedes the end of -RD). For a write cycle,
the 80188 produces a -WR strobe and the write data is stable some time before the
trailing edge of -WR.

The 68230 has five register select inputs that are used to address internal regis-
ters. These are connected to the microprocessor address lines. The 68230 expects
a -CS signal, which is a logical AND of the address decode and data strobe. The
register select (address) inputs, the R/W signal, and the write data (for a write

CLOCK
l4TEL 80188
TIMING ALE I

I READ CYCLE

1 I > 3 WRITE CYCLE

-RO

OATAIN 7
-WR

DATAOUT -<

-CS I
MOTOROLA
88230 TIMING < >

-0TACK J
DATAWRITEI >
DATA (READ) >

Figure 2.14
Intel 801 88 Versus Motorola 68230 Timing.

60 Embedded MicroprocRFsor Systems

ADDRESS

.DTACK

m

68230

-DS

RSl-RSS

DATA

Figure 2.15
Connecting a 68230 to an 801 88.

cycle) all must be stable prior to the leading (falling) edge of -CS. The 68020 also
expects the processor to hold -CS active until it returns -DTACK. While the 80188
has stable address and read/write status at the leading edge of the -RD or -WR
signals, the write data is not stable at the leading edge of -WR. Also, the 80188 does
not use a -DTACK signal to terminate the bus cycle.

Connecting a 68230 to an 80188 requires the following changes: The -RD and
-WR signals must be converted to a single -DS data strobe. For a write cycle, the
synthesized -DS signal must be delayed until the data on the bus is stable. The
80188 must be forced to hold the bus signals active until the 68230 returns

Figure 2.15 shows how this conversion can be performed. One of the internal
80188 chip selects (PCSO through PCS5) generates the range decode and 80188
address lines A0 through A4 drive 68230 RS1 through RS4. The -RD and -WR
signals from the 80188 are gated together to produce a single -DS to the 68230.
The -WR signal is delayed by one half clock cycle to ensure stable data at the
leading edge of -DS. The 80188 DT/R signal is inverted to drive the 68230 R/W
input. Finally, the -DTACK signal is returned as a -WAIT signal to the 80188 ARDY
input. ARDYis driven low (not ready) as long as the 68230 is selected and -DTACK
is false.

-DTACK.

Intel to Z h g The 28536 and 28530 peripherals are popular parts. Interfacing
these to an Intel processor is simpler than interfacing to 68000 family peripherals.

Hardware Design 1 61

..

28530
80180 PULLUP

CLKOW

-WR , h I -WR

WAC14

-RD , -RD

ADDRESS
UTCH

A1 , D E
A0 N j

DATA

Figure 2.1 6
Connecting a Z85xx to an 80188.

The Z853x parts have separate -RD and -WR inputs but, like the 68000 family parts,
the write data must be stable at the leading edge of -WR.

Figure 2.16 shows the circuitry necessary to connect a 28530 or 28536 to an
80188 or other Intel processor. Like the 68230 interface, the Z853x interface uses
a PCS (Peripheral Chip Select) line for the range decode and delays the -WR signal
until write data are stable. One important addition is the AND gates between the
-RD and -WR signals from the 80188 and the corresponding inputs to the Z853x.
This is added because the Z853x parts interpret assertion of both -RD and -WR as
a reset condition. The AND gates drive both inputs to the Z853x low when the
RESET output from the 80188 goes active.

The circuitry in Figure 2.16 could be used with a PIC17C4x processor as well,
except that the -WR delay is not required. The -WR signal connects directly to the
-WR AND gate, like the -RD.

lntel Peripheral to Motorola CPU This is less common than the other examples,
but Figure 2.17 shows how it is done. The -DS signal firom the Motorola processor
is split into separate -RD and -WR signals using the R/W signal. A data strobe with
R/W high produces a -RD to the peripheral, and a data strobe with R/W low pro-
duces a -WR. The 68000 family parts require a -DTACK to terminate the cycle; this
is generated with a pair of 74AC74 flip-flops. The -DTACK is returned when -RD
or -WR occurs with -CE, indicating an access to the peripheral. Two 74AC74 gates

62 Embedded Microprocessor Systems

-DTACK A
TO 88ooO

OPENCOLLECTOR
BUFFER PULLUP

FROM ADDRESS
RANGE DECODE

LOGIC

CLOCK

FROM WOW

Figure 2.17
Connecting an Intel Peripheral to a Motorola Processor.

are shown; the actual delay required to guarantee proper operation depends
on the relative speeds of the processor and peripheral. Of course, like any of the
examples in this chapter, this circuitry could be embedded in a PLD.

Data SetupAioId Time Problems

Wait states, which were covered earlier, will extend a read or write cycle enough to
allow a fast microprocessor (such as a 20MHz 80Cl86) to interface with a slower
peripheral (such as a 6MHz 28530). But wait states alone will not solve all mismatch
problems. Some peripherals require longer setup or hold times for address or data
than the processor provides. Addition of wait states does not affect these timings
because wait states extend only the processor cycle without affecting the timing of
asserting and removing the control strobes. If there is a mismatch in this area, addi-
tional logic must ensure that all parameters required by the peripheral and the
processor are met. This can be determined only by examining the published timing
information for the processor and the peripheral. In most cases, setup and hold-
time problems can be fixed by a combination of wait states and manipulation of
-RD and -WR or -DS before the signals reach the peripheral, either by delaying
them or terminating them early. The following example will illustrate this.

Hardware Design 1 63

Extended Data Hold Time

Occasionally you run into a peripheral IC that requires write data to be held for
some time after the WRITE strobe goes away. A typical example is the LM628 motor
controller IC from National Semiconductor. Most microprocessors do not guaran-
tee a data hold time long enough for parts that need an extended data hold time.
There are two ways to implement an interface to parts like this. The first method
is to latch the data and leave the buffer enabled to the peripheral device (see Figure
2.18). This provides the fastest transfer speed since the processor timing is unaf-
fected. However, it requires that you implement a bidirectional latching data buffer
for the peripheral part. Also, the data latch works only if the processor cannot do
another write quickly enough to change the latch contents too soon and violate the

ADDR. -CS ' - X p)

DATA * X X - '

-WR 1
DATA HOLD TIME
NEEDED BY PERIPHERAL

ADDR. -CS =-x-'
PROCESSOR DATA X X -

LATCHED PERIPHERAL DATA X X -

-WR -
f

DATABUFFER
LATCHES ON
RISING EDGE
OF WRITE STROBE

ADDR, -CS

PROCESSOR DATA

PROCESSOR -WR

PERIPHERAL -WR

-WAIT

DATA HOLD TIMING FIX USING
BIDIRECTIONAL DATA LATCH
TO HOLD DATA

DATA HOLD TIMING FIX USING
WAIT STATES TO EXTEND
PROCESSOR WRITE CYCLE

4 &- Wa% state exlends processor
I I -WR signal by this amount

GATING LOGIC FOR -WR SIGNAL

-WR TO PERIPHERAL
PROCESSOR -WR

-WAIT

Figure 2.18
Extended Data Hold Time.

64 Embedded Micr@rocessm Systems

timing requirements. You might see this if the peripheral with extended hold
requirements is memory-mapped and the processor performs a word write as a pair
of back-to-back byte writes.

The second, and simpler, method for extending the data hold time also is shown
in Figure 2.18. Here, a wait state is used to extend the processor write cycle. The
-WR pulse to the peripheral device does not connect directly to the processor
-WR signal but instead goes through some intermediate logic. This logic termi-
nates the -WR signal to the peripheral early in the cycle when the wait request is
removed. Since the processor will extend the cycle one clock past this point, the
data will be held on the bus for the peripheral device. This ensures that the data
hold-time requirement is met. It also guarantees that the processor will not perform
a second write that violates the chip timing.

8- Versus 16-Bit interfaces

Some processors are available with both 8- and 16-bit external interfaces. For
example, the 80188 uses the same microprocessor core as the 80186. However, the
external interface to memory and 1 /0 is only 8 bits wide on the 80188, versus 16
bits on the 80186. Similarly, the 68008 microprocessor (now obsolete) had a 16-bit
68000 CPU core but interfaced to external memory and 1/0 devices via an &bit
bus. The 68001 has a selectable 8- or 16-bit bus. The SiemendInfineon C167 can
be programmed for either €4- or 16-bit external memory operations.

The drawback to using an 8-bit bus is performance. While the internal CPU is
the same as the 16-bit sibling, external access is slower. A processor with an &bit
external interface requires two memory cycles to get a 16-bit word, whereas the 16-
bit bus can get a word in one cycle.

So why would anyone want to use a processor with an &bit bus? Cost. Using a
16-bit bus requires two of everything. EPROMs and RAM must be 16 bits wide. Your
program may require only 1K of code space and 256 bytes of RAM, but you still
need a 16-bit interface to the processor, which means two (or more) RAM and
EPROM chips.

Some RAM and ROM ICs feature 16-bit data buses, but they typically are more
expensive than their &bit counterparts. In addition, many peripheral ICs only have
an 8-bit bus, which gives the 16-bit processor less of an edge. On the other hand,
some peripherals require 16-bit interfaces, which precludes using an &bit proces
sor. An &bit processor could be used, but only with data latches and external logic
to turn two &bit cycles into a single 16-bit cycle at the peripheral.

The 16-/8-bit concept also applies to other bus widths. The Intel 8OC960SA is a
l6bit multiplexed-bus version of the 32-bit 80C960. The 386EX is a l6bit bus
version of the 386 processor, optimized for embedded applications. Both the
80C960 and the 386EX use the same processor core as the larger parts they are
derived from; only the external bus is narrower.

Hardware Design 1 65

16-Bit Considerations

The interface examples shown so far have been for 8-bit processors. Interfacing
to 16-bit processors is similar except for the wider bus width. However, some 16-bit
and wider processors require somewhat more complex interfacing since they can
execute both 8- and 16-bit cycles.

The 80186 has a 16-bit bus, but if a word-wide (16-bit) memory access is per-
formed to an odd address, the processor will perform two back-to-back &bit cycles
to access the word. This is important because the processor expects to operate on
only 8 bits at a time; the remaining 8 bits are unused. Say that memory location
0006 contains the value 1B2C. The CPU may access this as a 16-bit value or it may
access either the high (1B) or low (2C) bytes. The CPU can write the lower byte to
3D, leaving the result 1B3D.

Two signals (A0 and BHE) on the 80186 control which byte of memory or 1 / 0
is accessed (low, high, or both). If the odd-address example happens to be a write
and the memory design assumes that all accesses will be 16 bits wide, each of the
two 8-bit writes will write invalid data to 1 byte of the memory word. The memory
logic must decode the BHE and A0 signals to determine whether just 1 byte is being
written. In the example just given, if the logic does not properly decode the A0 and
BHE signals, writing 3D to the least significant byte of the word will result in xx3D
instead of 1B3D. The xx is an unknown value-the most significant byte will be
whatever data is on the bus when the write occurs.

Other processors have similar characteristics. The 386EX is a 32-bit processor
with a 16-bit external bus, but it also can perform 8-bit cycles. When designing with
a processor that has 16 (or more) bits and can perform byte-oriented cycles, be
sure the memory design handles these operations correctly. If you are using 2-byte-
wide ICs to implement a 16-bit-wide memory, you can gate the write signal to each
memory IC with the appropriate byte select signal. On the 80186, BHE would be
used to gate the most significant byte, and A0 would be used to gate the least sig-
nificant byte. Figure 2.19 shows the gating needed to control the -RD and -WR
lines when two SRAMs are connected to an 80186 processor.

In Figure 2.19, the chip selects for both RAM ICs come from the 80186 -LCS
output, and both chip selects are connected together. The logic enables the low
RAM IC when A0 is low and the high RAM IC when BHE is low. When both signals
are low, both devices are enabled. Note that the address inputs to the RAM ICs get
address lines A1 through A15. This is a typical usage of the address lines on proces-
sors that have 16-bit or wider data buses. When interfacing to the 8-bit bus of the
80188, the RAM and ROM ICs will get all the address lines, including AO. On
the 16-bit 80186, A0 is used as a byte selector. Note that both processors can access
the same amount of memory (1 MB), but the 186 can access 16 bits at a time.

Microprocessors that can access memory in cycles that have fewer bits than the
bus width (16-bit CPU doing &bit cycles, 32-bit CPU doing 16-bit cycles) will have

66 Embedded Microprocessor Systems

-RD

-WR

-BHE
A0

BHE

0
0
1

I) DATA 0
0

0 -cs
-0E

A0

0 BOTHBYTESENABLED
1 UPPERBYTEENABLED
0 LOWER BYTE ENABLED

I 1

Figure 2.19
Bus High/Low Gating Logic.

I 4 - W R

status bits that tell the memory decoding logic what size the access is. A 16-bit CPU
that can perform &bit accesses needs 2 bits (high byte, low byte, both bytes) to
determine what portion of the bus is used. As mentioned, on the x86, these are
BHE and AO.

A 32-bit processor that can access 8,16, or 32 bits would typically have seven pos
sible states (byte 0, 1, 2, or 3, low word or high word, 32 bit access), so three status
signals would be needed. Other combinations theoretically exist, such as a lGbit
word composed of bytes 0 and 2, but they are not used.

The decoding logic must decode the status lines and route the correct data to
the data bus. This is especially important when writing to memory. Just like the
earlier example of writing a single byte of a lGbit word, the CPU may want to write
to only 1 byte of a 32-bit-wide memory device. It is important not to corrupt the
other 3 bytes during that write cycle. In many cases, a 16-, 32-, or 64bit processor
will interface to an &bit device. An example of this is the 16550 UART, which is
common in the PC world. To simplify the design, the hardware normally is designed

Hardware Design 1 67

to support only &bit access to the device, using 8 bits of the data bus. If the soft-
ware attempts to perform a word write or a byte write to the wrong address, the
result is undefined. Interfaces like this normally do not attempt to cover all the
cases, since the software can be written to avoid invalid accesses.

Data Bus Loading

A microprocessor is specified to drive a particular DC loading (sourcing or sinking
current) and a particular capacitance loading. A common mistake is to ignore these
parameters and assume that the processor will drive the bus. This is a dangerous
practice, especially if a failure is likely to result in the engineer having to fix it in
an unsavory place, like an oil field or a country where you should not drink
the water. Bus loading problems can result in much the same sort of symptoms
as setup/hold-time violations. In fact, bus loading problems can cause setup and
hold-time problems because they change processor timing. A microprocessor is
specified to meet its performance characteristics with maximum DC sink and
source currents and with a maximum load capacitance. AMD’s version of the
80C188, for example, specifies a sink current of 2 mA and a capacitance drive capa-
bility of 1OOpF. If you exceed these numbers, the performance of the part starts
to degrade.

When the standard interface logic was LSTTL or FITL, I would usually find that
loading problems in designs I reviewed revolved around DC loading issues. Now
that the world has shifted primarily to CMOS, I see more problems with capaci-
tance. I think designers look at the extremely low leakage of CMOS inputs and just
forget that those inputs have capacitance. Some parts, such as the 8OC188, have a
derating chart for capacitance, which shows how much the outputs are slowed by
added capacitance beyond the specified value. However, in all cases, regardless of
whether it is specified, excessive loading can cause problems.

To calculate DC loading, add the maximum sink and source currents required
by all inputs and compare them to all the outputs (including bidirectional devices).
The sum of the input currents must not exceed the capability of the device with
the smallest output drive capability. On CMOS devices, check not only the output
current capability but what sink current does to the output voltage. The output
current of some CMOS devices is specified at TTL level voltages. If one of those
devices is driving an IC that requires CMOSlevel input voltages, there may be a
problem. If the total DC loading pulls the output of the first device down, the
second part may not see the correct value. Capacitance loading is similar. Add up
the input capacitance (sometimes specified as 1/0 capacitance for bidirectional
devices) and compare it to the drive capability for each device that must drive the
bus. The total capacitance should be less than what the device with the lowest drive

68 Embedded Microp-ocessor Systems

specification can tolerate. If derating curves are provided, they can be used to deter-
mine whether access times are degraded enough to be a problem.

If a loading problem is discovered, the simplest fix is to add a buffer to the data
or address buses. This isolates the processor bus from the peripherals that load it.
The problem with a buffer is that it adds delay to the system. If timing is marginal,
a faster EPROM, for example, may be required.

Note that adding a buffer may just move the problem around. All the periph-
erals have DC and capacitance loading specifications, too, and adding a buffer may
prevent a processor problem but leave a peripheral IC with a problem.

In the case in which a buffer fixes a problem with the processor but leaves a
peripheral with a problem, the bus may need to be split. This means that two or
more separate data buses are needed, each with a separate buffer. One simple way
to split the bus is to have output-only drivers. This technique is useful if there are
a large number of discrete output registers. All the registers are tied to one common
bus, which is buffered from the processor bus with a unidirectional buffer. The
processor sees only the load of the buffer, and the buffer is selected to be able to
drive the register bank. The advantage to this method is that the buffer can be
enabled all the time, eliminating the control logc.

Figure 2.20 shows a multichip design that uses a split bus and a unidirectional
buffer. For fastest access, the EPROM and RAM are connected directly to the
processor data and address buses. Lowdrive peripherals are grouped with the
EPROM and RAM on the processor bus. A second group of peripherals is con-
nected to a second bus through a bidirectional buffer. A bank of registers is driven
from a unidirectional buffer.

Regardless of what kind of buffers are used, the following rules must be obeyed:

Adding buffers requires additional control logic to enable the buffers and control
the direction of data flow. Be sure that the logic, especially if it’s in a PLD, has
all the inputs needed to determine when to turn a buffer on and change the
direction.
Whether using one buffer or multiple buffers, be sure that the control logic
allows each buffer to drive the bus only when the peripherals it controls are
accessed. Simultaneously enabling two buffers causes bus contention, which can
cause intermittent operation and even failure of the buffer ICs.
Bus contention also can be caused if a buffer is enabled while the processor or
a peripheral is driving the data bus. On a processor with a multiplexed data bus,
driving the bus with a buffer while the processor is trying to latch a PROM address
can be disastrous. Avoid that condition. Check the logic that enables the buffers
to be sure they are not enabled at the wrong time, and check buffer output
turnoff time to ensure that it is not too slow for the processor.
The data bus must propagate through the buffer, so add the propagation delay
of the buffer to EPROM, RAM, and peripheral access time calculations. When

Hardware Design 1 69

* DATA BUS

UNBUFFERED
PROCESSOR

Figure 2.20
Buffering a Microprocessor Data Bus.

DATA BUS HIGH
D R I M

PERIPHERAL

using a buffer between the processor and a peripheral that requires write data
to be stable at the leading edge of the write strobe, make sure that propagation
delay through the buffer does not delay data far enough to cause problems.

Although usually fewer devices are tied directly to the processor address bus
(especially with a multiplexed bus), the same considerations apply. Use buffers if
the load exceeds the processor’s capacity. One simplifylng factor in these cases is
that the address bus usually needs only unidirectional buffers.

DATA BUS
BIDIRECTIONAL

Nonvolatile Memory

HIGH -

In many designs, it is necessary for the processor to remember certain parameters
when the power is removed. Typical examples are the calibration parameters for
some kinds of sensors, the enable/disable code for a burglar alarm, and the last
channel selected on a television. In a multichip design, this can be accomplished
by either nonvolatile memory, described earlier, or with an EEPROM. The

70 Embedded Microprocessor Systems

I'C TIMING

SCL -1
START

SDA

DATABIT SCL
CLOCKINO

SDA - % X -

MICROWIRE TIMING

SI(

DIIDO --X->

- c s 7

Figure 2.21
1% and Microwire Timing.

EEPROM can be written by the processor but acts like a PROM in that it remem-
bers its contents when power is removed. Some singlechip microcontrollers have
built-in EEPROM just for these applications. However, general-purpose singlechip
designs are at a disadvantage when nonvolatile storage-or any external peripheral
for that matter-is required. Accessing conventional external memory uses up the
1/0 pins that are the primary reason for using a microcontroller in the first place.
Some standard interfaces make not only nonvolatile memory but a number of other
peripherals accessible to the designer using a microcontroller. Figure 2.21 shows
two of these interfaces: the Inter IC (IIC or 1%) and Microwire.

1% Bus

The 1% bus is well suited to microcontroller applications. It uses two pins: SCL
(SCLock) and SDA (SDAta). SCL is generated by the processor to clock data into
and out of the peripheral device. SDA is a bidirectional line that serially transmits
all data into and out of the peripheral. A microcontroller needs to supply only these
two signals to communicate with any 1% peripheral. Several peripherals can share
the same twewire bus.

Since everything is communicated over two wires, the interface has every state
and transition very well defined. For data transfers, the SDA signal is allowed to
change only while SCL is in the low state. Transitions on the SDA line while SCL
is high are interpreted as start and stop conditions. If SDA goes low while SCL is
high, all peripherals on the bus will interpret this as a START condition. SDA going
high while SCL is high is a STOP or END condition.

Figure 2.21 illustrates a typical data transfer. The processor initiates the START
condition, then sends ADDR 1. This is the peripheral address, which is 7 bits long
and tells the devices on the bus which one is to be selected. Most 12C devices have

Hardware Design 1 71

address pins that are used to set part of the peripheral address. Next comes a single
bit to select a read or write operation (1 for read, 0 for write).

After the read/write bit is sent, the processor programs the 1/0 pin connected
to the SDA bit to be an input and clocks in an acknowledge bit. The selected periph-
eral will drive the SDA line low to indicate that it has received the address and
read/write information.

After the acknowledge, the processor sends ADDR 2, which is the internal
address within the peripheral that the processor wants to access. The length of this
field varies with the peripheral. After ADDR 2 is another acknowledge, then the
data bits are sent. For a write operation, the processor clocks out 8 data bits; for a
read operation, the processor treats the SDA pin as an input and clocks in 8 bits.
After the data comes another acknowledge. Some peripherals permit multiple bytes
to be read or written in one transfer. The processor repeats the data/acknowledge
sequence until all the bytes are transferred.

A number of manufacturers, including Xicor and Philips, make EEPROM
devices for the I'C bus. They have application notes that describe I'C solutions.
Most microcontroller manufacturers have application notes that show how to inter-
face 1% to their processors, including code. In addition to EEPROMs, Philips makes
other 1% peripherals, including 8-bit port expanders and LED drivers.

EEPROMs, whether serial or conventional, have a limitation on the maximum
number of write cycles that can be performed on the device. Early parts typically
had a 10,000 writecycle limit. Newer parts allow around 1 million write cycles.
However, even without this limitation, EEPROM write times are too slow for use as
general-purpose RAM. If you need EEPROM, it will have to be in addition to, not
in place of, general-purpose RAM. In using the serial EEPROMs, the simplest
approach is to set aside a portion of RAM, load the EEPROM contents into it at
power-up, and store data back to the EEPROM only if something changes.

One additional advantage of the serial EEPROMs is expandability. If you find
sometime in the development cycle that more EEPROM is needed than was origi-
nally planned for, just plug in a larger device. The pinouts are the same. However,
don't get extravagant. Typical serial EEPROM densities are 256 x 8, 1K x 8,
and so on.

One drawback to the I'C bus is speed-the clock rate is limited to about
1OOkHz. That limitation is not a severe speed penalty for a microcontroller that
is toggling the lines in software, but faster interfaces are available. Philips, which
originally developed the 1% bus concept, also released a fastmode 1% bus that
operates to 400Kbits/sec. In 1999, Philips announced a high-speed mode with oper-
ation to 3.4 Mbits/sec. High-speed and fast-mode devices are capable of operating
in older systems as well, although older peripherals are not useable in a higher-
speed system.

High-speed and fast-mode 1% also support a 10-bit address field, so up to 1024
addresses can be supported. Of course, to use the high-speed mode, you cannot

72 Embedded Mimopfocessm Systems

control the interface using software; you need a processor that has a built-in 1%
interface. Since the total capacitance on the bus can reach 400pF, high-speed 1%
requires active pull-ups; fast-mode requires active pull-ups if the total capacitance
exceeds 200 pF.

1% also supports a multimaster mode that we’ll discuss in Chapter 8.

Micro wire

Microwire is a three-wire serial interface used by National Semiconductor in its
COPS processor family. The three signals are SI (serial input), SO (serial output),
and SK (serial clock). SI and SO are input to and output from the processor, respec-
tively. The processor clocks data to the peripheral on SO and receives data on SI.
Data in both directions is captured on the rising clock edge. Peripheral devices that
transfer data in only one direction (such as display drivers that are only written,
never read) may implement only one data line, SO or SI.

Unlike I%, the Microwire protocol has no device addressing built into the serial
bit stream. Microwire peripherals require a separate chip select input, one per
device. This allows data to be transferred more quickly since address information
is not needed. It requires more port bits, however, since one chip select, using one
port bit, is needed per peripheral.

Each Microwire peripheral has a unique protocol based on the application. The
number of bits and the meaning of each bit varies. National’s Microwire EEPROMs,
for example, have a 4bit command followed by an address (7 to 12 bits, depend-
ing on memory size), followed by data (8 or 16 bits). The commands are erase,
read, program, enable programming, and so on.

Microwire can transfer data faster than the original I%, typically at MHz rates.
The SPI bus, used by Motorola on its 68HC11 family, is similar to Microwire, and
many peripheral ICs are specified as being compatible with either.

Both SPI and Microwire are implemented in their respective processors with
hardware, which simplifies programming. However, peripherals using these buses
can be interfaced to any general-purpose microcontroller using software-controlled
I/O. Generally, the same types of peripherals available with the 1% interface also
are available with SPI or Microwire. A summary comparison between SPI/
Microwire and 1% is shown in Table 2.2.

Note that many Microwire devices have both data-in and data-out pins. In some
cases, clocking data into a Microwire device will also clock data out of the output
pin. On those devices, you must read the output bit after each bit is clocked into
the device; otherwise, the output bit will be lost. The Maxim MAX3100 UART is a
typical example.

Hardware Design 1 7 3

Table 2.2
Summary Comparison Between SPI/Microwire and I'C.

SPNMicro wire I'C

Maximum bit rate Into the MHz range

Interface pins required

Number of devices
sharing a bus

Three plus one chip select per
peripheral

As many as there are chip
selects available, as long as
maximum loading is not
exceeded

can be implemented in
software

Interface method Usually dedicated hardware,

About 100 kHz (standard),
400 kHz (fast mode),
3.4MHz (high-speed mode)

Two, regardless of number
of peripherals

Bus can address up to 127
peripherals

Software, but hardware ICs
are available

Also note that many SPI/Microwire devices perform operations, such as latch-
ing previously written data, on the rising edge of -CS. Consequently, the -CS signal
must remain stable throughout the access cycle.

Other Serial Interfaces

Some manufacturers sell peripherals with a proprietary serial interface. Analog
Devices, for example, has several ADC and DAC parts with simple serial data/clock
schemes. These devices require three or more signals and can be interfaced to any
general-purpose microcontroller.

DMA

DMA (direct memory access) is a means of having two or more processors share
the same bus. When a secondary processor (or other DMA device) wants control
of the bus, it notifies the first processor, which gives up the bus. The second proces-
sor then drives the address, data, and control lines and accesses the memory and
peripherals just like the first processor. Typical examples of DMA uses are to permit
two processors to communicate through a common memory, to refresh dynamic
RAM, or to transfer data from an 1/0 device (such as a serial port) directly to
processor RAM. Figure 2.22 illustrates a typical DMA transfer.

74 Embedded Micr@-rocessor S y s t m

DMA REQUEST

DMA ACKNOWLEDGE

ADDRESSIDATA BUSES cw)-----(REQUESTER >-< C W

ANOTHER CPU OR
A DMA CONTROLLER f.
REQUESTS THE BUS
BY ASSERTING
A DMA REQUEST

CPU 1 TRISTATES ITS
DATA, ADDRESS, AND
CONTROL SIGNALS IN
PREPARATION FOR
RELEASING THE BUS
TO THE DMA REQUESTOR.

BUSES, ACCESSING

THE SAME AS THE
C W WOULD.

CPU TAKES ADDRESS.
DATA, AND CONTROL
BUSES OUT OF TRISTATE
AND RESUMES NORMAL
OPERATION LL CPU REMOVES DMA

ACKNOWLEDGE

- REQUESTER REMOVES
DMA REQUEST

C W 1 ASSERTS DMA REQUESTER COMPLETES
ACKNOWLEDGE TO WHATEVER BUS CYCLES
INDICATE THAT IT HAS IT NEEDED TO PERFORM
RELEASED CONTROL AND TRISTATES THE
TO THE REQUESTER BUSES IN PREPARATION

FOR TERMINATING THE
DMA.

Figure 2.22
DMA Operation.

Processors that support DMA provide one or more inputs that the bus requester
can assert to gain control of the bus and one or more outputs that the processor
asserts to indicate it has relinquished the bus. When designing with DMA, address
buffers must be disabled during DMA so the bus requester can drive them without
bus contention. This means the design must use buffers with tristate outputs. On
the 80188, for example, the HLDA (HOLD Acknowledge) signal indicates that
the processor is acknowledging a DMA request. It can be connected to the address
latch output enable pins, which will tristate the outputs when the processor is in
a hold state. If data bus buffers are used, a similar mechanism is needed to dis-
able them.

Figure 2.23 shows an 80188 CPU using HLDA to disable external address bus
buffers so a DMA can drive them. Note that the lower 8 bits of the address bus are
driven from an address latch that captures the lower 8 address bits from the mul-
tiplexed address/data bus of the CPU. The latch has tristate outputs, which are

Hardware Design I 75

ADDRESS BUFFER
FOR DMA DEVlCE

l&WT ADDRESS
FROM DMA DEVICE

A2
A I

DMA 6€ -
Wlss CPU

I

A12
A l l
A10

A8

MULTIPLEXED
ADDRESSIDATA

BUS

{g
ADO
ALE

HLDA

A3

AI

HIGH ON HLDA DISABLES
ADDRESS BUS SO DMA
DEVlCE CAN D R l M IT.

TO AWID BUS CONTENTION. DMA
ASSERTED AFTER HLDA GOES HIGH AND
REMOVED BEFORE HLDA GOES BACK LOW.

MUST BE

- BUFFERED MICROPROCESSOR
ADDRESS BUS DRIVES ALL
PERIPHERALS

PUUUP RES STORS PREVENT
SPURIOUS S GNUS ON
-RD AND -WR SIGNALS WHILE
BOTH CPU AND DMA *M
M E LINES TRiSTATED

-WR TO ALL PERIPHERALS

-RD TO ALL PERIPHERALS

-WR FROM DMA CONTROLLER

-RD FROM DMA CONTROLLER -

Figure 2.23
Driving Address Bus During DMA.

disabled (driven to the high-impedance state) by driving - 0 E high. The upper 8
address bits are driven with an unlatched tristate data buffer. In both cases, the
HLDA signal asserted by the CPU disables the buffer outputs.

To avoid bus contention, the bus buffer used by the DMA device must not drive
the address bus until after the HLDA signal has disabled the CPU buffers, and it
must stop driving the bus before the CPU drives HLDA back low. The diagram also
shows pullup resistors on the -RD and -WR signals after the buffers. These prevent
the signals from going to an invalid state and possibly affecting memory during the
brief interval when neither the CPU nor the DMA controller is driving the signals.
Most systems that use DMA will need some type of pullup or termination on control
lines such as -RD, -WR, -DS, and so on.

This example is specific to the 80188 and shows only 16 address bits for sim-
plicity. An application using a wider address bus would, of course, require addi-
tional buffers for the extra bits. The external buffers shown in the example may
not be required if you don’t need the external address latches and if both the CPU
and DMA device have sufficient drive capability for everything on the bus.

Other CPUs that support external DMA have similar arrangements to disable
external buffers. The Intel 80C960 family uses a HOLD/HLDA scheme that is
nearly identical to the 80188, although the clocks are considerably faster. In all
cases, it is up to the designer to make sure that the DMA device does not drive the
address and data buses until the CPU has tristated its drivers.

DMA Controllers

In a DMA scheme, the second processor may not be a processor but instead a ded-
icated DMA controller. This peripheral device takes control of the bus but does no
actual processing of instructions. Instead, the DMA controller performs memory
and 1/0 read and write cycles to move data between another peripheral device and
the microprocessor’s memory. A DMA controller contains counters that automati-
cally increment to the next address after each transfer so blocks of memory can be
moved. An example DMA controller would be the one in your PC that moves data
from the hard disk controller into memory. DMA controllers permit the micro-
processor to be performing some other operation while a data transfer happens
in the background. The microprocessor just sets up the DMA and processes the
entire block of data when the transfer is complete. A DMA controller is typically
configured to generate an interrupt when the DMA transfer is complete. Figure
2.24 shows how a DMA controller could be used to transfer data to and from a
peripheral device such as a UART.

In Figure 2.24, the UART generates a DMA request when a byte of data is
received. The DMA controller requests the bus and, when the bus is granted, it per-
forms a read from the UART address, followed by a write to memory. The counter

Hardware Design 1 77

- INTERRUPT To cpu
DMA CONTROLLER WRITES BLOCK OF

LOCATIONS IN MEMORY
4 DATATO SUCCESSIVE m

............ INCOMING SERIAL DATA

CONTROLLER

DMA CONTROLLER READS
DATA FROM SUCCESSIM RY

............

OUTGOING SERIAL DATA

DMA TRANSFER FROM UART DMA REQUEST
FROM UART I

HOLD

Bus cpu DMA CONTROLLER DMA CONTROLLER cW
(READING MEMORY) (WRITING UART)

OMA TRANSFER TO UART 3
B
% HLDA

Figure 2.24
DMA Transfer Example.

that addresses memory is incremented at the end of the cycle, so the next byte
received will be placed into the next memory location. Transferring data from
memory to the UART transmitter works the same way except that the memory read
cycle occurs first.

In this example, the DMA controller performs a read and a write cycle during
one DMA HOLD/HLDA cycle. You can also design the system so that the DMA
controller performs one HOLD/HLDA cycle for each read and write.

Another technique is called a “flyby” transfer; it is used by the DMA controller
in desktop PCs. This method works only if the CPU and 1/0 bus support a sepa-
rate 1/0 space with separate -RD and -WR signals for 1/0 transfers. On the orig-
inal PC, for example, the memory read and write signals were -MEMR and
-MEW. The 1/0 read and write cycles were -1ORD and -1OWR. To perform a
flyby transfer, the DMA controller will generate the -1ORD signal to the peripheral
and then perform a memory write cycle (-MEW low) while the -1ORD signal is
still active. This permits the entire DMA transfer to be performed in one cycle, but
it requires that the 1/0 devices recognize a DMA cycle and respond appropriately.
Since the address presented to the bus during a flyby cycle is the memory address,
the I/O peripheral must ignore the address and rely only on the DMA acknowl-
edge and the control signals to drive data onto the bus.

Whether the DMA device is a DMA controller or another CPU, the DMA device
must generate the address, data, and control signals just like the CPU does in order
to transfer data to and from memory. This may have an impact on system design.
For example, you might design a peripheral circuit that uses ALE in some way. In
that case, the DMA device must also generate an ALE signal or the circuit will not
work as intended. If you implement DMA with a controller that does not generate
ALE (or generates it with significantly different timing), you must synthesize the
ALE signal using timing logic. Similarly, read and write strobes must have timing
sufficiently similar to the timing produced by the CPU that the memory and periph-
erals will respond correctly.

DMA Timing Issues

One common mistake in designing with DMA is illustrated by the following
scenario:

Processor 2 requests bus from Processor 1.
Processor 1 gives up bus.
Processor 2 does whatever DMA operation it wants to do.
Processor 2 notifies Processor 1 that DMA is done.
Processor 2 requests bus from Processor 1 again. Sees bus acknowledge still

Processor 1, still coming out of first DMA acknowledge state, takes the bus.
Bus contention or garbage data transfer results.

asserted, takes bus.

Hardware Design 1 79

THE PROBLEM:

DMA REQUEST

DMA ACKNOWLEDGE I I
ADDRESUDATA BUSES CPU R E Q U E S T E R < cw AND R E Q U E ~ R

REQUESTERREQUESTS 4 ~~ 1 '
BUS

L

CPU GIVES UP BUS

WITH REQUESTERPROCEEDS DMA CYCLE J
REQUESTER GIVES UP
BUS

I I
REQUESTER REQUESTS I
BUS AGAIN
AND SEES ACKNOWLEDGE
STILL ACTIM. TAKES BUS.

AT THE SAME TIME CPU
COMES OUT OF HOLD
STATE AND TAKES BUS
BACK. RESULT IS
BUS CONTENTION AS BOTH
CPU AND REQUESTER
ATTEMPT TO DRIVE THE
BUS

THE SOLUTION:

REQUESTER WANTS BUS HERE

BUTDOESNOTASSERTREQUEST
UNTIL CPU HAS REMOVED ACKNOWLEDGE.

DMA REQUEST

DMA ACKNOWLEDGE

ADDRESWDATA BUSES \ , C W CPU

REQUESTER MUST NOT
ASSERT DMA REQUEST
UNLESS DMA
ACKNOWLEDGE IS
INACTIM.

Figure 2.25
DMA Timing Problem.

Figure 2.25 illustrates this scenario, which can be avoided by not allowing the
bus requester to request the bus a second time until the other processor has reac-
quired the bus after the first request.

Internal DMA Controllers

Some processors, such as the 80186 and 386EX, have internal DMA controllers.
These include address counters and logic to handle the DMA request inside the
processor. On the 186 and 386EX, two pins are provided for peripherals to request

80 Embedded Microprocessor Systems

a DMA transfer. The DMA controller requests the bus, does the transfer, and gives
the bus back to the processor. The DMA controllers are programmable and can
transfer data from memory to memory, from memory to I/O, from 1 /0 to memory,
and from 1/0 to I/O. Most importantly, all the arbitration is handled inside the
microprocessor, which saves on hardware and ensures that all the timing is correct.
In addition, an internal DMA controller can usually transfer data to and from inter-
nal RAM (internal to the CPU IC), which an external DMA controller cannot do.

DMA requests can come from a source that needs to send data (such as a UART
that has received a byte and needs to transfer it to memory) or from a destination
device that needs to receive data (the same UART may have just transmitted a byte
and needs a new one). In some systems, it does not matter whether the DMA
requester is a source or destination device. In other cases it does.

The 80186/80188 DMA controllers support either source or destination
requests, which are referred to on the datasheet as source or destination synchro-
nization. In practice, either device can be the requester since source/destination
synchronization is programmed into the DMA controller by the firmware. However,
the choice of source versus destination synchronization affects the timing. Source
synchronization permits faster transfers but requires that the DMA request be
removed before the end of the DMA write cycle. Destination synchronization is
slower but has more relaxed timing for removal of the DMA request.

The Motorola MCF5407 ColdFire processor provides an internal four-channel
DMA controller. Two channels support DMA requests from external devices and
two permit the internal UARTs to transfer data to memory.

As mentioned earlier, DMA can be used for dynamic memory refresh. This is
accomplished by using a timer to request a periodic DMA cycle at the memory
refresh rate. The DMA controller is programmed to read the memory and write
the contents to a nonexistent memory or 1 /0 location. The result is a periodic
read from memory that refreshes memory contents.

Watchdog Timers

A microprocessor executes instructions from memory. If a nearby electrical dis-
charge occurs, the processor data bus may be momentarily upset, and the proces-
sor can get a bad byte from the PROM. Or a software bug can result in a stack
overflow, and the processor gets garbage when it tries to return from a subroutine.
In either case, the processor will usually go “into the weeds,” which is a shorthand
way of saying that it will begin executing code in some unpredictable way, usually
resulting in a system crash.

If this happens to the keyboard controller in your PC, you can just turn the power
off and back on, and everything will be fine. If it happens to the processor that

Hardware Design 1 81

controls the rudder on a passenger jet, the results can be disastrous. To prevent
this scenario, many embedded systems use a watchdog timer (WDT). The WDT is
a circuit that must be triggered by the microprocessor on a regular basis. If that
does not happen, the WDT resets the microprocessor. In most cases, if motors or
other potentially dangerous equipment are connected, these are turned off at the
same time.

The simplest WDT is a retriggerable monostable multivibrator, or one-shot. This
flip-flop is latched by a trigger and stays in the latched state until some time has
elapsed (determined by external timing components); the output then goes inac-
tive. As long as the trigger keeps occurring before the circuit times out, the output
stays active.

While many designers still design their own WDT circuits, several manufactur-
ers make ICs that contain a WDT circuit. These parts also frequently contain other
logic, such as power-on resets. Maxim, for example, makes a number of these parts.
Many WDT circuits include circuitry that will generate a reset on power-up or if the
logic voltage goes too low.

Watchdog timers are straightforward to use. The time constant is usually around
0.5 to 2 seconds. The WDT can be triggered by a port pin or a write to a particu-
lar address. The time constant can be a resistorcapacitor combination (on ordi-
nary one-shots) or a digital delay from a constant clock.

One danger in using a WDT involves making sure the processor is actually
running correctly. For example, a software bug may leave the processor executing
a very tight loop, doing nothing but still servicing interrupts. If the WDT trigger is
put in an interrupt routine, it does not generate a reset even though the proces-
sor essentially is locked up. If the WDT trigger is put in the polling loop, a software
bug could disable interrupts, but the processor continues to go through the polling
loop and still there is no WDT timeout.

In systems where safety or reliability concerns make it essential that the WDT
reset the system any time a fault occurs, a more sophisticated WDT is needed. One
method to make sure that both interrupts and the polling loop are running is to
have one process set a flag location in memory each time that it executes (say, each
time the interrupt occurs). The other routine (in our case, the polling loop) does
not trigger the WDT unless the flag is set. Each time it does trigger the WDT, it resets
the flag.

In systems where even this is not enough, a more sophisticated WDT can be
designed in which each key process must write a particular value to the hardware
before the WDT will trigger.

Some microcontrollers, such as the PIC17Cxx series, have a built-in WDT. On
some other processors, you can wire a timer to generate a reset when it times out.
The processor, instead of toggling a port or an 1 /0 strobe, resets the timer count
periodically.

82 Embedded Micropromsor Systems

WATCHDOG TIMER

f-7
WRITE STROBE FROM MICROPROCESSOR 7 TRIG 07-9 RESET TO MICROPROCESSOR

WRITE STROBE FROM MICROPROCESSOR I I I I I I I
I

ONESHOT OUTPUT I 1 k 7 - q I

THIS IS THE WATCHDOG TIMEOUT PERIOD.
IF M E TIME BETWEEN MICROPROCESSOR
WRITES TO THE WATCHDOG EXCEEDS THIS
TIME, THE WATCHDOG WILL RESET THE
MICROPROCESSOR.

Figure 2.26
Watchdog Timing.

Figure 2.26 shows the basic operation of a WDT. Note that the write strobes from
the microprocessor need not be evenly spaced as long as they are always shorter
than the timeout period. The WDT in Figure 2.26 is shown as a simple block; it
could be implemented as a one-shot IC, a digital divider, or as part of an off-the-
shelf IC that includes other supervisory functions, such as a power-up reset. What-
ever method is used, the WDT needs to remove the reset output once the processor
has been reset, or else the processor will be held in reset forever.

In-Circuit Programming

As mentioned in Chapter 1, sometimes the ability to reprogram the memory in-
circuit is a useful feature. If you are using flash memory external to the micro-
processor, incircuit programming is fairly straightforward. You can treat the flash
like a slow RAM. Usually, a sequence of data writes is required to enable program-
ming. You usually want to use a memory device with block erase so you can leave
the programming code in one portion of the memory while reprogramming the
rest of the device.

If you are using a microcontroller with internal flash memory, some extra con-
siderations are required. The device pins needed for programming typically are
shared with other functions. As an example, look at the Microchip PIC 16F84. The
16F84 has 1K of internal flash memory. To program the device, data are loaded

Hardware Design I 83

and read serially using two of the port pins, RB6 and RB7. The MCLR pin is used
to provide the +12V programming voltage.

The problem with this approach is that the 16F84 has only 18 pins; in many
designs you would need -6 and RB7 for some other function. Thus, you must
make these pins do double duty, functioning as normal 1/0 pins and also as in-
circuit programming pins. This is complicated by the fact that RB7 is bidirectional
in programming mode.

Figure 2.27 shows one way to implement incircuit programming with the 16F84.
The two programming pins are driven with open-collector buffers. When not prc-
gramming, the inputs to the opencollector buffers are high, making the outputs
float. The pins then can be driven by (or drive) external circuitry. For program-
ming, the external logic must be turned off and the programming buffers drive
the pins. The external device doing the programming must have separate data-in
and data-out pins to make this work.

In Figure 2.27, RB6 is an input in normal operation; RB7 is an output. Of course,
you must be sure that the external logic does not get confused when programming
data is applied to the device pins.

An alternative way to do this is to connect RB6 and RB7 through a PLD and
switch the programming function on and off with a control input. The +12V for
programming comes from an external supply that can be switched off or switched
between +12V and +5V.

This example is specific to the PIC processors, but you find similar situations
with other processors that have flash memory and in-circuit programming capa-
bility. For example, the NEC pPD78F9026A processor allows you to use either the

*5v

WLLUP RESISTORS
KfEP INRlTS HIGH
WWEW MI CONNECTED

moow.uu CLOCK

WLLUP RESISTORS

+J OPEN CMLECTOR

Figure 2.27
In-Circuit Programming of a PIC16F84.

84 Embedded Mieropocessm Systems

asynchronous serial input or a three-wire synchronous serial interface for in-circuit
programming. Either way, you must do something similar to the PIC arrangement
if these functions are used on the board in normal operation.

Internal Peripherals

A number of processors and microcontrollers have built-in peripherals. These
usually are the peripherals commonly used in many embedded designs. Nearly
every processor intended specifically for embedded systems includes at least one
timer. Other common peripherals include serial ports, DMA controllers, watchdog
timers, and interrupt control functions. Be sure you take into account specific
restrictions of the peripheral device in the microprocessor you are using.

As an example, the Atmel AT9OS8515 processor includes an 8-bit and a lGbit
timer. Both timers include a prescaler that can divide the input signal by 8,64,256,
or 1024. Both timers can be clocked from the internal processor clock or an exter-
nal pin. When using the external clock input, the signal is internally synchronized
with the CPU clock. Thus, the maximum frequency you can input to these timers
is about half the CPU clock. If you are using an 8MHz 9088515, the maximum
timer frequency is a little less than 4MHz. If you’re using an 8MHz 90S8515 but
running it at GMHz, the maximum timer input frequency is about 3 MHz.

Contrast that with the Microchip PIC16C62. The PIC16C62 also has timers that
can operate from an external clock. The internal clock on the PIC devices is one
quarter the external input, so it would appear that the PIC clock rate (20 MHz in/
4MHz CPU) limits you to a slower input clock rate than the fastest Atmel AT9OS
clock rate (8 MHz) . If the external clock input is synchronized to the CPU clock,
that is true. However, the PIC devices have a mode in which the timer clock is not
synchronized to the internal CPU clock. In this mode, the clock input frequency
can be as high as 50 MHz. However, in this mode, the timer cannot be used for any
operations that require synchronization, such as PWM or capture/compare.

Most embedded processors include pins that can be used as external edge-
sensitive interrupts. Like the timers, these usually are synchronized to the in-
ternal processor clock, which limits the minimum pulse-width that will be reliably
recognized as an interrupt request.

Design Shortcuts

It is sometimes possible to simplify a design by taking some shortcuts with the hard-
ware. We’ll discuss a few such shortcuts in this section.

Hardware Design 1 85

Partial Address Decoding

Say a microprocessor with a 20-bit address bus (1Mbit space) needs an 8K x 8
EPROM at location FEOOO. Decoding the entire range of addresses would require
that 6 bits (A14 through A19) be decoded. If only A16 through A19 are decoded
using a four-input NAND gate, the EPROM will be addressed anytime the proces-
sor accesses anything in the range FOOOO through FFFFF. This works as long as
nothing else needs to go in that range. The EPROM may be accessed in the address
space starting at F0000, F2000, F4000, and so on.

Linear Address Decoding

Assume that a microprocessor with a l&bit address bus (64K space) needs an 8K
EPROM and a 2K RAM. The EPROM goes at location 0. To decode this, connect
A15 from the processor to the EPROM -CE input. Connect A14 through an inverter
to the RAM -CE input. Now the EPROM is accessed anytime that A15 is 0, which
is anywhere in the lower 32K. The RAM is selected any time that A14 is 1, which
occurs from 4000 to 7FFF and from COOO to FFFF. The first range also enables the
EPROM, causing a bus conflict. However, if the software addresses the EPROM from
0000 to lFFF and the RAM from COOO to C7FF, the EPROM will be deselected and
no bus conflict occurs. This principle can be expanded to as many decodes as there
are available address lines.

Buffer Always Enabled

When using data bus buffers, it is not always necessary to enable and disable the
buffer’s tristate outputs. Instead, the buffer can be enabled all the time, usually by
grounding the enable pin, and the direction can be controlled. In this scheme, the
processor side of the buffer normally is the input and the peripheral side normally
is the output. The direction is reversed only when the processor reads from the
peripheral. When using this technique, the buffer must switch directions to drive
the processor data bus only when the processor is not driving it and must switch
back only after the peripheral has stopped driving it. Otherwise, you will get bus
contention.

~~~~~~ 

EMC Considerations 

Most embedded systems end up in products that require certification to EMC stan- 
dards. In the United States, the Federal Communications Commission (FCC) has 
limits on how much RF energy a product can emit. The European Community also 
has standards for EMC compatibility, and they include susceptibility to external RF 

86 Embedded Micr@ocessm Systems 



fields and to electrostatic discharge (ESD) . Entire books have been written on the 
subject of designing for EMC, so here we concentrate only on those aspects of EMC 
design that bear directly on embedded systems. 

The first consideration for EMC design is limiting FW emissions. Since micro- 
processors use crystals and those crystals operate at RF frequencies, an embedded 
system radiates at the processor frequency. Embedded systems are digital, so there 
usually are emissions at the odd harmonics of the processor crystal frequency. In 
addition, regular signals such as ALE or address lines can radiate at some frequency 
other than the processor clock frequency. RF energy can be radiated from PC board 
traces and wires that interconnect the system. Multiprocessor systems that have 
more than one processor operating at the same frequency are a particular problem 
because usually at some point in the test the power from the oscillators will sum, 
causing considerable energy to be radiated. 

Controlling EMC Emissions 

The following are a few guidelines for controlling EMC emissions from your system. 

Put a small (50- to 75-ohm) resistor in series with oscillator outputs and signal 
lines with more-or-less regular signals, such as ALE. This both matches the output 
to the PC board, reducing ringing, and dampens the rise time of the waveform, 
reducing the effect of the odd-order harmonics. 
Put board-mounted EMC filters on each I/O line. Of course, if you have a very 
fast interface (such as video or 100MHz Ethernet) you cannot do this, as it will 
affect the signals you want to have. Shield the processor board and all intercon- 
nected electronics. Sandwich clock lines between the power and ground planes. 
In multiprocessor systems, if you have multiple processors on a single board, all 
operating at the same frequency, do not give each processor a separate oscilla- 
tor. Have a single oscillator and distribute it to the various processors. If your 
multiple processors are on different boards (or you cannot distribute a single 
clock for some reason), see if you can stagger the oscillator frequencies slightly. 
For instance, instead of running all the processors at 20MHz, run one at 19.966 
MHz, one at 20MHz, and one at 20.0333 MHz. This will push the third harmonics 
apart by 1OOkHz. 
Pick a processor with lower EMC emissions. To run a Microchip PIC processor 
at 5MHz, you must put in a 20MHz clock since the PIC divides the clock inter- 
nally by four. The third harmonic of a square wave usually contains considerable 
energy, and the third harmonic of 20MHz is 60MHz, right in the worst part of 
the radiated emissions test spectrum. On the other hand, if you use a processor 
in the Atmel AT9OS family, you can run at 5MHz with a 5MHz input-there is 
no internal clock division. This clock rate will have lower radiated emissions in 
the spectrum that is tested for radiated emissions. Of course, you do not want to 

Hardware Design 1 87 



let EMC considerations completely drive the design, but if it matters little oth- 
erwise, you might think about EMC in choosing a processor. 

ESD Protection 

Protecting a system against ESD involves many of the same techniques used for pre- 
venting RF emissions problems. ESD interference often takes the form of RF 
energy, and the same things that keep RF in a box tend to keep it out. 

Shielding. Shield the system and use shielded cables where appropriate. 

Filters. EM1 filters on signal lines will help keep ESD off the processor board. 

Grounding. Make sure ESD energy has a low-impedance path from the 
discharge point (usually on the chassis or other operator-accessible areas) to 
ground. If the lowest-impedance path for ESD is through the ground plane on 
your board, that is where it will go. Avoid having ground loops through your 
board wherever possible. Do not ground the CPU board to the chassis 
through the mounting standoffs. Instead, have a single wire return to the DC 
power supply and have a single point connection to chassis there. 

Interfaces. Unfortunately, the embedded system often must talk to other 
devices. The interfaces often require a ground reference at both ends to 
operate correctly as, for example, RS232. Consequently, you are forced to 
design in ground loops just because of the interface requirements. You may 
need ferrite beads or EMC filters where the interface signals enter and leave 
the board. This will attenuate the high-frequency energy of an ESD pulse. 

Watchdog timer. Add a watchdog timer to your circuit so that, if ESD corrupts 
program execution, the system can recover. 
Isolation. Use optical isolation where it makes sense, especially if you are 
connecting to a system with more severe ESD requirements than your own. 

Other EM1 Considerations 

Ground Loops It is increasingly common for embedded systems to be controlled 
from an external computer. If the external computer is connected to a different 
AC power source than the embedded system (such as a 120V computer connected 
to a 280V, three-phase machine), you may get ground loops between the two 
systems. Be sure the grounds are common. If you cannot make the grounds the 
same (maybe because the customer controls where the computer plugs in), opti- 
cally isolate the interface. 

Differential Interfaces Differential interfaces, like W 8 5  or LVDS, can reduce 
susceptibility to ground noise and other types of electrical noise. However, while 

88 Embedded Micrcpocessm Systems 



differential interfaces are good at noise rejection, they must be built from real parts, 
and those parts usually have a maximum common-mode offset voltage that differ- 
ential receivers can tolerate. An RS485 interface with correct d~fmential voltages 
but with a 20V ground offset between the two systems is not going to work. And 
remember that two grounds that are the same most of the time are not necessarily 
the same all of the time. I have seen interface drivers and receivers actually 
destroyed when an air conditioner switched on, yanking the ground on an embed- 
ded system many volts away from the ground of the system it was communicat- 
ing with. 

RadlaW Susceptibility Interference from external RF sources such as cellular 
telephones and walkie-talkies can affect an embedded system. The interference 
may directly affect the processor circuitry or cause problems through secondary 
effects. 

To minimize the possibility of susceptibility, use small value pullups on unter- 
minated lines. A lOOK pullup on a CMOS input makes the input impedance about 
lOOK and potentially capable of picking up strong RF signals. Use 10K or add an 
R/C terminator to the signal. 

A sensor such as a strain gauge may pick up the RF and produce erroneous 
outputs. Protect against this by performing sanity checks in the software. An input 
that is picking up an external RF signal may go berserk and produce random inter- 
rupts. Protect against these by checking for a continuous string of faster-than- 
normal interrupts. 

Since embedded systems usually control something in the real world, and those 
things often involve motors, be sure you do not build a selfdestroying system. A 
rotating, insulated pulley driving an insulated belt can become a fairly good static- 
electricity generator. I saw a system once with an insulated plastic drum running 
against a Mylar strip that could create a half-inch arc-not good for the micro- 
processor that was controlling everything. 

In a system with DC motors, it is a good idea to have a separate path for the 
motor voltage to return to the power supply. This prevents the startup and braking 
surge currents in the motor from yanking the ground on the electronics boards 
around. 

Finally, in designing for EMC, keep in mind what a certification engineer I know 
used to say, “First it has to work.” In other words, it is not a good idea to make 
changes or design compromises that let the system pass the EMC tests but degrade 
performance in the real application. I have seen so much inductance added to a 
clock line in an attempt to reduce emissions that the circuitry receiving the signal 
could not operate reliably. I have seen video cables in a high-speed imaging system 
with huge ferrite beads added. This fixed the emissions problem but killed the 
video signal. First it has to work. 

Hardware Design I 89 



Microprocessor Clocks 

I mentioned crystals and ceramic resonators earlier in the chapter. The selection 
of a crystal reference for a microprocessor often seems to be a source of mystery, 
so this section will try to clear it up a little. 

Most microcontrollers and many microprocessors have an internal oscillator like 
that shown in Figure 2.28. This usually is a high-gain, inverting amplifier stage. The 
crystal is connected with external capacitors C1 and C2 to make an oscillator. Figure 
2.28 also shows the oscillator circuit with the equivalent circuit of the crystal. At 
resonance, the crystal looks like a series LC circuit with some series resistance 
and some parallel capacitance. A crystal oscillator of this type is called a Pier& osn'l- 
lutur. A Pierce oscillator will always resonate at the fundamental frequency of the 
crystal unless external components are added to force operation at a different 
frequency. 

Load Capacitance 

Capacitors C1 and C2 are needed to allow the oscillator to start. C1 and C2 are typi- 
cally between 20pf and 100pf. Parallel resonant crystals are specified with a par- 
ticular load capacitance. Ideally, the load capacitance of the circuit will match the 
specified load capacitance of the crystal. The circuit load capacitance is given by 
the equation: 

c1 x c 2  
c1+ c 2  

Cload = - + c s  

Cs is the stray capacitance in the circuit, usually around 5pF. Thus, if you have 
a crystal that is specified with a load capacitance of 30pF, C1 and C2 each would 
be about 50pF. However, the optimum values for C1 and C2 are a tradeoff between 
frequency stability and startup time. If C1 and C2 are too large, the oscillator will 
not start. If they are too small, the oscillator theoretically will not start, although 
stray circuit capacitance often is enough to make it work anyway. 

Series Versus Parallel 

Microprocessor crystals come in two basic varieties, series or parallel. A series crystal 
is intended for use in a circuit with no reactive components (no C1 or C2), whereas 
a parallel crystal is intended for use in a circuit with these components. For the 
purposes of embedded applications, the difference is that the resonant frequency 
of a parallel crystal is achieved when the crystal is installed in an inverting circuit, 
like that shown in Figure 2.28. A series crystal is used in a circuit with a nonin- 
verting amplifier. A series crystal can be used in a parallel circuit and vice-versa, but 
the frequency will be off by about 0.02 percent. 

90 Embedded Microprocessor S y s t m  



MICROPROCESSOR 

MICROPROCESSOR 

MICROPROCESSOR WITH CRYSTAL 

MICROPROCESSOR WITH CRYSTAL 
(EQUIVALENT CIRCUIT) 

Figure 2.28 
Crystal Oscillator. 

Hardware Design 1 91 



The stability of a Pierce crystal oscillator usually is in the range of 0.1 percent. 
This is accurate enough for many applications, but if you are designing something 
that must keep track of the time of day, this will not be close enough. A 0.1 percent 
error is a drift of almost 1.5 minutes per day. For applications that are extremely 
sensitive to frequency, you will need a very accurate oscillator design, an external 
oscillator, or a means to adjust the crystal frequency. 

Fundamental Mode 

I got a call from the factory one day. The company had a batch of processor boards 
that worked, but everything worked funny. The response was slow and the machine 
would not function correctly, although all the operator screens looked okay. It 
turned out that the 24MHz crystals installed on the boards were overtone crystals. 
In our circuit, they operated at their fundamental frequency of 8MHz. Make sure 
you spec$ the right crystals and the right circuit around the crystals. This most 
likely is a problem with AT-cut crystals in the 20MHz to 30MHz range, where you 
can get both types. Below 20MHz, most crystals are fundamental; above 30MHz, 
most crystals are overtone. This is because the crystal blank gets very thin when you 
try to make a high-frequency, fundamental-mode crystal. 

Ceramic Resonators 

A ceramic resonator is less expensive than a crystal but less accurate as well. Ceramic 
resonators typically have a frequency accuracy about one tenth that of crystals. 

External Oscillators 

The two considerations for using an external oscillator are the drive level and the 
processor connection. Most modern microprocessors have CMOS technology, so 
an oscillator with CMOS drive levels must be used. Since most microcontrollers 
provide two pins for a crystal, you drive only one when using an external oscilla- 
tor. Make sure you drive the right one and terminate the other as specified by the 
manufacturer. Some processors need the unused pin to be floating, some want it 
tied low, and so on. 

Hardware Checklist 

The following is a summary of the information scattered through the chapter. 

Verify EPROM, RAM, and peripheral access times. Add wait states if necessary. 
V e w  that setup and hold times are met, both to the peripheral device and to 
the microprocessor. 

92 Embedded Microprocessor Systems 



Make sure the crystal type matches the system specifications. If you are using an 
external oscillator, make sure it matches duty cycle and drive-level requirements 
of the microprocessor. 
Verify that bus loading is not exceeded. 
Verify that loading of 1/0 port pins is not exceeded (either sinking or sourcing 
current). 
Venfy that inputs to timers meet frequency and duty-cycle limitations of the part. 
This usually depends on the microprocessor or timer IC clock speed. 
If bus buffers are needed, make sure that each buffer is enabled only when the 
peripherals it is accessing are selected. Watch for bus conflicts from turning the 
buffer on too early or turning it off too late. Account for buffer delays in timing 
calculations. 
Avoid bus contention between peripherals. 
Make sure wait-state timing gets wait requests asserted in time. 
Make sure that the WDT functionality matches system requirements. 
Make sure the internal peripherals are compatible with your requirements. 
Make sure the DMA controller logic can handle back-teback accesses. 
Make sure you take EMC requirements into consideration. 

Chapter 3 will cover additional hardware design topics as well as a hardware 
specification outline. 

Hardware Design 1 93 





Hardware Design 2 3 

Dynamic Bus Sizing 

The previous chapter mentioned %bit versus 16-bit and 32-bit operations and the 
need for hardware to support access to 16-bit or 32-bit data on a byte basis. Some 
microprocessors provide for dynamic hus sizing in which the peripheral or memory 
tells the CPU the bus width. 

A typical device that implements dynamic bus sizing is the Motorola MC68HC16, 
which is a microcontroller with external bus capability. As Figure 3.1 shows, the 
MC68HC16 uses a bus interface similar to the 68000 but with two acknowledge 
signals instead of one. An %bit peripheral or memory asserts -DSACKO to termi- 
nate the cycle, and a 16-bit device asserts -DSACKl. 

To simplify the CPU hardware, the MC68HC16 requires that %bit devices 
connect to data-bus lines 8 through 15, whereas 16-bit devices use all 16 data 
lines. 

Fast Cycle Termination 

Another feature implemented on the MC68HC16 is fast cycle termination. One 
problem with any bus structure that requires an acknowledge for each cycle is that 
for maximum speed, each peripheral must assert the acknowledge in a timely 
fashion. The normally-not-ready structure imposes a speed penalty in integral 
clocks for any peripheral that is slow to generate the acknowledge. Plus, as men- 
tioned in the last chapter, every peripheral must have logic to generate an acknowl- 
edge signal back to the CPU. 

In some designs, you want bus speeds more like the normally-ready bus of 
the Intel processors. The MC68HC16 provides a means for this in its internal 
chip select unit. The chip select unit, in addition to providing chip select signals 
to external devices, can also generate an acknowledge. This internal acknowledge 

95 



-AS 

ADDRESS BUS 

DATA BUS 

-DS 

PERIPHERAL BEING ACCESSED - ASSERTS EITHER DSACKO OR 
DSACKI - NOT BOTH. 

-DSACKO 

-DSACKl 

DSACKO ASSERTED - 8 BIT TRANSFER 
DSACKl ASSERTED - 16 BIT TRANSFER 

Figure 3.1 
Dynamic Bus Sizing. 

can be programmed to add from zero to 13 wait states to the cycle. Programming 
zero wait states is the equivalent of a normally-ready bus, if the peripheral can 
keep up. 

Note that on the MC68HC16 and similar processors, the external acknowledge 
signals are still monitored when the internal acknowledge is enabled. If you 
program 13 wait states and some external device asserts one of the -DSACK signals 
after 6 wait states, the CPU will terminate the cycle early. When designing with a 
normally-not-ready bus and using internal acknowledge generators, be sure no 
other peripherals inadvertently drive the acknowledge signals. 

Bus Sizing at Reset 

The MC68HC16 also allows the external bus to be set to either 8 or 16 bits when 
the processor is reset. By tying two pins (-BERR and DATAl) high, the CPU will 
configure the external data bus as 8 bits wide after a reset. This frees more pins on 
the device for use as 1/0 signals. 

Another Motorola microcontroller with a similar capability is the MC68EZ328. 
This device, one of the Motorola Dragonball family of parts, has a single pin that 
is tied low (8 bit) or high (16 bit) to indicate the external bus width. The CPU 
reads the state of the pin at the trailing edge of the RESET input. On this partic- 
ular device, the software can reprogram the functionality of the internal chip select 
logic so that external accesses corresponding to specific chip select signals can be 
either 8 or 16 bits wide. Like the MC68HC16, 8-bit transfers must use the upper 
eight data bits (D8 through D15). 

This programmable capability of the chip selects allows you to mix low-cost &bit 
peripherals with higher-performance 1 &bit devices in the same design. 

96 Embedded Macropocessar Systems 



Clock-Synchronized Buses 

Figure 3.2A shows a typical microprocessor bus read cycle. This is an Intel type bus, 
such as in the 80186. The CPU generates a stable address, generates ALE to allow 
the external hardware to latch the address, and generates an -RD strobe to direct 
the external peripheral to place data on the data bus. 

All microprocessors use internal logic that is synchronized to the internal clock. 
In Figure 3.2A, -RD, ALE, and the address/status signals are all synchronized to 
the processor clock. The signals may have varying internal delays that make them 
appear unsynchronized if you look at them with an oscilloscope, but they are in 
fact synchronized to the clock. Even though the peripheral enables data onto the 
bus with the -RD strobe, the processor captures data on the clock edge. If this were 
a write cycle instead of a read cycle, the output data from the CPU would also be 
synchronized to the clock. 

NORMAL MICROPROCESSOR BUS WITH COMROL SIGNALS 

M E  A W  -RD C W E  STATES ON 
CLDCKEDQE. EXENTHOUGH 
I H T E W L  DELAYS CAUSE THE 
EXTERNAL SIGNAL TO SWITCH 
LATER. 

CFU READS DATA ON 
FALLING CLOCK EDGE 

I 

A 

B 

C 

CLOCK 

ALE 

ADDRESS 

-RD 

DATA FROM 
PERIWERAL 

CLOCK 

-AS 

CLOCK-SYNCHRONIZED Bus 

I I 
THS CYCLE W S  BEEN CFU CAPTURES DATA 

ON RISING €DOE OF 
CLOCK 4 LOm) I N S T W  OF 2 

7 
ADDRESS. STATUS < X X X 
SIGNAM 

DATA 

CLOCKSYNCHRONIZED BUS - BURST MODE 

CLOCK 

-AS 7 / 
ADDRESS. STATUS < 
S I W S  

DATA 

Figure 3.2 
Clock-Synchronized Bus. 

Hardware Design 2 97 



Knowing this, you can eliminate the -RD and -WR signals (-DS on a 
Motorola-style bus) and just synchronize everything to the processor clock. As long 
as the peripheral knows what clock edge to use and meets the setup and hold-time 
requirements, everything will work the same as if the strobe signals were there. 

Figure 3.2B shows such a clock-synchronized bus. This example is based on the 
timing for the Intel i960 microprocessor. The address and status signals are driven 
onto the bus and the -ADS signal indicates a valid address. The address and status 
signals include all the status signals, including the address lines, DMA indication, 
-LOCK signal, and read/write signal. Essentially, everything the peripheral device 
needs to determine what kind of bus cycle is being started is available while -ADS 
is low. 

The peripheral decodes the address and status signals, capturing them on the 
rising clock edge that occurs while -ADS is low. Before the next rising clock edge 
(-ADS has gone high), the peripheral places data on the data bus and the CPU 
captures it on the rising clock edge. This scheme allows all the decoding logic to 
be synchronous. The catch is that the decoding logic or the peripheral must keep 
track of when the CPU expects data. The last cycle shown in Figure 3.2B illustrates 
a bus cycle that is extended by a wait state. The peripheral (or the decoding logic) 
must keep track of which clock it is on and drive the data lines on the right clock 
edge. 

Processors that support such a clock-based bus often provide a burst mode of 
operation that is ideal for interfacing to burst-mode memories such as DRAM. The 
i960 supports such a burst mode, as shown in Figure 3.2C. The first cycle looks like 
the ones shown in Figure 3.2B, but subsequent cycles can transfer one word from 
memory per clock cycle (assuming appropriate memory speed). Although not 
shown in Figure 3.2C, the i960 has two additional address signals that are cycled 
through when the burst mode is used, allowing up to four words to be accessed in 
this mode. 

The i960 also supports a pipelined mode. In this mode, each data transfer takes 
two clock cycles, like the bus cycles in Figure 3.2B. However, the cycles overlap so 
that while the CPU is reading data for one address, it is placing the address and 
status information for the next bus cycle on the bus. This allows one word to be 
transferred per clock cycle, just as in burst mode. Obviously, the decoding logic 
must detect this condition, capturing the address/status information and enabling 
the right peripheral or memory at the right time. 

Intel is not the only manufacturer whose processors use a clock-synchronized 
bus. The Motorola Power PC uses a bus that has different signal names but timing 
that is very similar to the i960. Many processors have a clock-synchronized bus struc- 
ture of some type. 

Interfacing memory and peripherals to a clock-synchronized microprocessor is 
similar to interfacing to an ordinary microprocessor. The same considerations apply 
for setup, access, and hold timings. The differences are that, first, the times typi- 

98 Embedded Microprocessm Systems 



cally are much shorter due to the higher clock rates. Second, the interface is syn- 
chronous, so normally you will use some type of PLD, FPGA, or ASIC. The inter- 
face logic must keep track of the type of bus cycle (burst, pipelined, and so on) 
and insert wait states for peripherals that need them. 

When interfacing to a synchronized bus, you are likely to find that you need a 
wide variation in bus cycle times. You may use a fast DRAM or SDRAM that matches 
the CPU speed, needing few or no wait states, and a slower peripheral that needs 
three or four wait states. With a synchronized bus, the propagation delays in the 
decoding logic become significant, although that is somewhat alleviated by the syn- 
chronous nature of the design. Finally, to achieve maximum performance, the 
interface logic must recognize and support special features of the bus, such as the 
burst mode. 

You will typically design a single logic block to control timing to the bus. This 
logic block will take the address inputs (or outputs from an address decoder) 
and generate appropriate wait states for all devices. Of course, you may have a dif- 
ferent number of wait states for different memory ranges. When interfacing to a 
1 6  or 32-bit processor, the appropriate byte read/write signals must be asserted 
so that a write to one byte of a memory doesn’t change the other bytes in the 
same word. 

The most likely area for timing problems will be at the beginning and end of 
cycles. Check the timing carefully to ensure that there aren’t any race conditions 
caused by logic delays that will produce a brief pulse on one or more write signals. 
Also check to ensure that bus release time at the end of a cycle, after all the logic 
delays, is adequate to prevent bus contention at the beginning of the next cycle. 

Processors such as the i960 series provide a signal such as -AS to indicate valid 
address and status information. You can use ordinary transparent latches such as 
the 74~x373 to hold this information stable, or you can embed the latches in a PLD 
with the timing logic. In the case of the i960 CPU and a 74~x373 latch, the -AS 
signal would need to be inverted before being applied to the latch. 

Built-in Dynamic Ram Interface 

Some sophisticated microcontrollers have built-in support for dynamic RAM. This 
allows you to take advantage of the higher densities of DRAM without the cost and 
board real estate required for an external DRAM controller. The Motorola 
MC68EZ328 is one microcontroller that provides onchip support for DRAM. Fea- 
tures of this device include: 

Support for CASbefore-RAS refresh cycles and self-refresh mode 
Supports 8- and l6bit DRAM 

Hardware Design 2 99 



Supports fast page and E D 0  modes 
Programmable refresh rate 
Supports two banks of DRAM 
Programmable row and column address size 
Supports 256 K x 8 through 4 M x 16 DRAM 

The device pins used to control the DRAM are, like most other external 
functions on the chip, shared with the 1 /0  ports. If you use the internal DRAM 
controller, you must give up Port A on the device. However, the controller handles 
all functions of interfacing to the DRAM, including address multiplexing and 
refresh. 

All DRAM controller features are programmed by writing to internal registers. 
The MC68EZ328 supports about any DRAM you want to use, and even includes a 
control bit that extends the -RAS precharge time for slower DRAM devices. 

Although an onchip DRAM controller greatly simplifies microprocessor circuit 
design, you still need to keep a few things in mind: 

Choose a DRAM configuration (size x word width) that is supported by the CPU. 
Make sure you can give up the pins needed for the DRAM interface. 
Be sure the CPU supports the speed/setup time/modes of the DRAM you plan 
to use. This includes features such as the extended -RAS precharge time of the 
MC68EZ328. 

Combination ICs 

Most microprocessor designs that use external memory require both ROM/PROM 
and SRAM. Many manufacturers produce ICs that combine both flash ROM and 
SRAM in a single package. The Toshiba TH50VSF0302 is one such part, combin- 
ing 1 M x 8 flash with 128K x 8 SRAM. The Toshiba part is designed for 2.7V to 
3.3V operation, comes in a 48-pin ball grid array (BGA) package, and is available 
with either a top or bottom boot block (see Chapter 2). The SRAM and flash share 
a common data and address bus and the device has an access time of 100ns. 

Toshiba and other manufacturers make other combination parts that include 
bus widths up to 16 bits and memory densities to 2 MB (flash) and 512K (SRAM). 
Interfacing these parts to a microprocessor is identical to interfacing other mem- 
ories. You must keep in mind that the timing parameters for the RAM and flash 
memory may not be the same. The Toshiba TH50VSF3680/3681, which has 8MB 
of flash and 1MB of SRAM, is a typical example. The SRAM in this part has a 
45 ns output enable access time, whereas the flash memory has 40 ns. The address 
access times on the part are identical, 90ns. 

The TH50VSF3680/3681 also has a configurable memory configuration feature. 
Two pins determine the memory size versus bus width: 

100 Embedded Micr@rocessor System 



ClOF ClOS Flash Memory SRAM 

1 1 4MB x 16 500K x 16 
1 0 4MB x 16 1 M B x 8  
0 0 8MB x 8 1 M B x 8  

ST Microelectronics takes the combination chip concept a step further. Its 
PSD8xx/Sxx family of parts interfaces to most &bit processors. The PSD813F con- 
tains 128K of flash ROM, 2K of SRAM (optional, not on all versions), a decode 
PLD, a CPLD, and 27 I/O pins. 

The decode PLD is used to decode the flash ROM, RAM, and other peripher- 
als. It also can generate chip select outputs for other devices in the system. The 
CPLD can be used to implement general-purpose logic, including counters. The 
1 / 0  pins can be used as output ports from the microprocessor, outputs from 
the PLD, or latched address outputs. 
As mentioned, the PSDSxx/Sxx family has multiple parts, including some that 

include an OTP memory, and 256Kbits of EEPROM. 

Digital-to-Analog Converters 

Figure 3.3 shows a simple resistor ladder with three switches. The resistors are 
arranged in an R/2R configuration. The actual values of the resistors are unim- 
portant; R could be 10K or lOOK or almost any other value. 

Each switch, SO through S2, can switch one end of one 2R resistor between 
ground and the reference input voltage, VR. Figure 3.3 shows what happens when 
switch S2 is ON (connected to VR) and S1 and SO are OFF (connected to ground). 
By calculating the resulting series/parallel resistor network, the final output voltage 
(VO) turns out to be .5 x VR. If we similarly calculate VO for all the other switch 
combinations, we get this: 

s2 s1 so vo 

OFF 
OFF 
OFF 
OFF 
ON 
ON 
ON 
ON 

OFF 
OFF 
ON 
ON 
OFF 
OFF 
ON 
ON 

OFF 
ON 
OFF 
ON 
OFF 
ON 
OFF 
ON 

0 
,125 x VR (1/8 x VR) 
.25 x VR (2/8 x VR) 
.375 x VR (3/8 x VR) 
.5 x VR (4/8 x VR) 
.625 x VR (518 x VR) 
.75 x VR (6/8 x VR) 
.875 x VR (7/8 x VR) 

Hardware Design 2 101 



Figure 3.3 
3-Bit Digital-to-Analog Converter. 



If the three switches are treated as a %bit digital word with ON = 1 and 
OFF = 0, the output voltage is an analog representation of a digital input. This 
three-switch digital-teanalog converter (DAC) has eight possible states, and each 
voltage step is VR/8. 

We could add more R/2R pairs and switches for more resolution. Four switches 
would give us 16 steps of VR/16 volts each. Eight switches would give us 256 steps 
of VR/256 volts each. If we replace the mechanical switches in the schematic with 
electronic switches, we have a true DAC. 

Analog-todigital converters (ADCs) do the exact opposite of DACs-they output a 
binary word that is a digital representation of an analog voltage or current. An 
&bit ADC converts an input into 256 steps. A 10-bit ADC produces 1024 steps. 

DACs and ADCs interface to a microprocessor just like other peripheral ICs. 
Parts are available with different bus interface types, including SPI and 1%. While 
the microprocessor side of a DAC or an ADC is the same as other parts, there are 
some special considerations when dealing with these analog devices, which we’ll 
discuss in this section. 

Reference Voltage 

The reference voltage is the maximum value that the ADC or DAC can convert. An 
&bit ADC can convert values from OV to the reference voltage. This voltage range 
is divided into 256 values, or steps. The size of the step is given by the following 
equation: 

Reference Voltage 5V 
256 256 

- -- = .0195V, or 19.5mV 

This is the step size of the converter. It also defines the converter’s resolution. Note 
that no ADC or DAC can be more accurate than its reference. If your reference is 
a zener diode with a 10 percent tolerance, it doesn’t matter how many bits of res- 
olution you have, your product will have a 10 percent variation between units unless 
you perform some kind of calibration as part of production. 

Some microcontrollers have internal ADCs. Many of these permit you to provide 
an external reference, or they let you use the supply voltage as the reference. This 
typically frees the reference pin for use as another analog input. Microchip 16C7xx 
parts have this feature. 

Hardware Design 2 103 



If the supply voltage is used as a reference and the supply voltage is 5V, mea- 
suring a 3V input would produce the following result: 

Digital word = (Vin/Vref) x 255 = (3V/5V) x 255 = 15310 = 9g16 

However, the result depends on the value of the 5V supply. If the supply voltage is 
high by 1 percent, it has a value of 5.05V. Now the value of the A/D conversion will be: 

(3V/5.05V) x 255 = 15110 = 97,, 

So a 1 percent change in the supply voltage causes the conversion result to change 
by two counts. Typical power supplies can vary by 2 or 3 percent, so power supply 
variations can have a significant effect on the results. The power supply output can 
vary with loading, especially if there is any significant drop in the cabling that con- 
nects the power supply to the microprocessor board. Thus, if your design needs all 
the analog inputs and cannot use an external reference, be sure power supply vari- 
ations will not cause accuracy problems. One way to minimize such errors is to 
power the measured signal from the microcontroller supply. 

Resolution 

The resolution of an ADC or DAC is determined by the reference input and by the word 
width. The resolution defines the smallest voltage change that can be converted. As 
mentioned earlier, the resolution is the same as the smallest step size and can be cal- 
culated by dividing the reference voltage by the number of possible conversion values. 

For the example we’ve been using so far, an &bit ADC with a 5V reference, the 
resolution is .0195V (19.5mV). This means that any input voltage below 19.5mV 
will result in an output of zero. Input voltages between 19.5 mV and 39 mVwill result 
in an output of 1. Between 39 mV and 58.6 mV, the output will be 3. 

Resolution can be improved by reducing the reference input. Changing from 
5V to 2.5V gives a resolution of 2.5/256, or 9.7mV. However, the maximum voltage 
that can be measured is now 2.5V instead of 5V. 

The only way to increase resolution without changing the reference is to use an 
ADC with more bits. A 10-bit ADC using a 5V reference has 21°, or 1024 possible 
output codes. Thus, the resolution is 5\3/1024, or 4.88mV. 

The resolution also has implications for system design, especially in the area of 
noise. A O-to-5V, 10-bit ADC with 4.88mV resolution will respond to 4.88mV 
of noise just like it will to a DC input of 4.88mV. If your input signal has lOmV of 
noise, you will not get anything like 10 bits of precision unless you take a number 
of samples and average them. This means you either have to insure a very quiet 
input or allow time for multiple samples. 

Cumulative Accuracy 

The accuracy of your ADC or DAC system is the cumulative accuracy of all the parts. 
This means that the accuracy of your measurements (for an ADC) or output voltage 

104 Embedded Microprocessor Systems 



(for a DAC) will be no better than the cumulative errors of the ADC/DAC, the ref- 
erence, and any analog amplification. Using 5 percent resistors in the front end 
will completely defeat the purpose of having a 10-bit ADC. 

Even though the accuracy of results is limited to accuracy of the components, 
you can sometimes achieve better accuracy by calibrating each system. An ADC 
system might be calibrated by driving the analog input with a known, precise voltage 
and letting the microprocessor store a calibration constant that is used to correct 
all future measurements. This sort of calibration can compensate for part-to-part 
variations, but it won’t compensate for things like aging or temperature drift. And, 
of course, this is an extra and possibly expensive manufacturing step. 

To perform calibration, the system will need: 

A means to input a calibration signal. This must be processed using all the same 
parts that the system will use in normal operation (input amplifiers, filters, and 
so on) to insure an accurate result. 
Nonvolatile memory to store the calibration results. 
Sufficient processing power to perform the required correction in normal 
operation. 
Software for calibration. This can be permanently part of the operating software, 
or it could be special software that is loaded only during the calibration 
operation. 
If field replacement of parts must be supported, there must be a means to cali- 
brate field replacements before they are shipped or a means to calibrate them 
in the field. 

Of course, calibration cannot compensate for temperature drift unless it is 
performed at various temperatures. In addition, calibration cannot compensate 
for EM1 or other noise inputs that cannot be duplicated during the calibration 
step. 

Internal Analog-to-Dlgffal Converters 

Many microprocessors include an internal analog-todigital converter. The 
Microchip PIC16C7x series is a typical example. The parts in this family have an 
internal &bit A/D converter. The parts have from four to eight analog inputs. There 
is only one A/D converter, but an internal analog multiplexer allows the A/D con- 
verter to process any of the inputs, one at a time. Any microprocessor design that 
uses an A/D converter, whether internal or external, must take into account some 
considerations. 

The Microchip A/D converter handles multiple inputs by selecting one at a time 
under software control. Once an input is selected, a settling time must elapse before 
the A/D conversion can start. If the conversion is started immediately, the result 
will be incorrect. The software must take this delay into account. 

Hardware Design 2 105 



SPuMicrowire in Multichip Designs 

D FLIP-FLOP TRISTATE BUFFER 
SPI DEVICE n 

Chapter 2 described the SPI/Microwire bus. Many microcontrollers have a 
Microwire interface implemented in the hardware. In other cases, you can imple- 
ment Microwire using port bits and generating the signals in software. Sometimes 
you need to interface a Microwire device to a microprocessor that does not have a 
built-in interface and for whatever reason you don’t want to use discrete I/O. Figure 
3.4 illustrates a means to interface SPI/Microwire to any processor with the capa- 
bility to access external memory. 

The interface uses a tristate buffer and a “D” flip-flop. The Microwire SCLOCK 
signal is connected to a decoded write strobe, and the enable input of the tristate 
buffer is connected to a decoded read strobe (see Chapter 2). 

The chip select signal comes from a port bit or other digital output. Before 
accessing the Microwire device, the chip select signal is driven low. The width of 
the decoded write strobe must be sufficient to meet the SCLOCK low specification 
of the Microwire peripheral. 

The microprocessor writes data serially to the Microwire device. Each write to 
the device address strobes the data on bit DO into the device and clocks the con- 

MICROPROCESSOR DO , 

‘CHIP SELECT 

DATA IN DATA OUT 

-cs 

SCLK - I  * -  

MICROPROCESSOR READS SECOND BIT 
JICROPROCESSOR WRITES SECOND BIT 

ICROPROCESSOR READS FIRST BIT 

ICROPROCESSOR WRITES FIRST BIT 

Figure 3.4 
Microwire Interface. 

106 Embedded Microprocessor Systems 



tents of Data Out into the “D” flip-flop. Only DO is used to transfer data; the other 
bits are unused. 

After writing a bit to the device, the CPU must read the contents of the flip 
flop to avoid losing that bit. After all the bits are transferred, the chip select signal 
is driven high to terminate the cycle. Note that reading the data bit from the 
flip-flop does not generate a clock to the Microwire device; only write cycles do 
that. 

If you don’t want to read the data after each bit is written, you could replace the 
“D” flip-flop with a shift register and read the entire register when the entire data 
stream has been written. The length of the shift register must be the same as the 
number of bits to be written/read from the device. 

If you are writing to a device that is write-only, you would not need the “D” flip- 
flop or the tristate buffer. Although this approach still requires that the CPU do 
bit-by-bit transfers, it is somewhat faster than requiring the CPU to generate each 
signal transition as would be required in a port-bit implementation. 

Timer Basics 

Timers are a crucial part of many embedded systems. Figure 3.5A shows a simple 
timer like you might find in a microcontroller. This timer consists of a simple, load- 
able %bit counter. You could build this from a couple of 74HC161 counters or 
equivalent PLD logic. 

The microprocessor can write a value to the timer that is transferred to the 
counter outputs. If the counter is an UP counter (as shown), it counts up. A DOWN 
counter counts down. A typical timer embedded in a microcontroller or in a timer 
IC will have some means to start the timer once it is loaded, typically by setting a 
bit in a register. The clock input to the counter may be a derivative of the micro- 
processor clock or it may be a signal applied to one of the external pins. A real 
timer will also provide the outputs of the counter to the microprocessor so it can 
read the count, but for simplicity that has been left off Figure 3.5A. 

If the microprocessor loads this timer with a value of OxFE and then starts the 
timer, it will count from FE to FF on the next clock. On the second clock, it will 
count from FF to 00 and generate an output. The output of the timer may set a 
flip-flop that the microprocessor can read, or it may generate an interrupt to the 
microprocessor, or both. The timer may stop once it has generated an output, or 
it may continue counting from 00 back to FF. The problem with a continuously 
running timer is that it will count from the loaded value the first time it counts up, 
but the second time it will start from 00. 

Hardware Design 2 107 



A - SIMPLE 8-BIT TIMER 
~ ,E,,, UP COUNiER 

5' 

D - 8-BIT PWM 

MICROPROCESSOR 
DATA 

+ CLR 

OUTPUT 
MICROPROCESSOR{ -1 tp 

DATA ROLLOVER 
BUS 

MICROPROCESSOR 

DECODED WRITE STROBE l- 

CLOCK OR EXTERNAL 
CLOCK 

MICROPROCESSOR 
CLOCK OR EXTERNAL 
CLOCK 

B - RELOADING 8-BIT TIMER 

EBlT LATCH 8-BIT UP COUNTER 

MICROPROCESSOR 
DATA 
BUS 

CLOCK 

0- 

FLIP-FLOP 

h PWM OUTPUT 8-611 UPlOOWN 
&BIT LATCH 

U I  - 
DATA - BUS 

MA ,H MICROPROCESSOR I 
HA I 

DECODE0 WRITE STROBE COMPARATOR 

-39 I I  DECODED WRITE STROBE 

MICROPROCESSOR 
CLOCK OR EXTERNAL 
CLOCK 

c 
k 

Figure 3.5 
Timers. 



Reloading Timer 

Figure 3.5B shows a more complex reloading timer. This timer has an &bit latch 
to hold the value written by the microprocessor. When the microprocessor writes 
to the latch, it also loads the counter. An OR gate also loads the timer when it rolls 
over from FF to 00. For this example, we will assume that the logic in the IC gets 
all the polarities and timings of the load signal correct so that there are no glitches 
or race conditions. 

The way this timer works is that the microprocessor writes a value to the latch 
(also loading it into the timer) and then starts the timer. When the timer rolls over 
from FF to 00, it generates an output (again, either a latched bit for the micro- 
processor to read or an interrupt). At the same time that the output is generated, 
the timer is loaded from the latch contents. Since the latch still holds the value 
written by the microprocessor, the counter will start counting again from the same 
point it did before. Now the timer will produce a regular output with the same accu- 
racy as the input clock. This output could be used to generate a regular interrupt, 
to provide a baud rate clock to a UART, or to provide a signal to any device that 
needs a regular pulse. 

A variation of this feature used in some microcontrollers does not load the 
counter with the desired count value but instead loads it into a digital comparator. 
The comparator compares the counter value to the value written by the micro- 
processor. The counter starts at zero and counts up. When the count equals the 
value written by the microprocessor, the counter is reset to zero and the process 
repeats. The effect is the same as the timer just described. 

Input Capture Timer 

Figure 3.5C shows an input capture timer. In this case, the timer counts from zero 
to FF. When a pulse occurs on the capture input pin, the contents of the counter 
are transferred to an &bit latch and the counter is reset. The input pulse also 
generates an interrupt to the microprocessor. The diagram shows the timer clear 
connected directly to the input pin; in an actual circuit, of course, there will 
be some gating and synchronizing logic to make sure all the timing is right. Simi- 
larly, the capture pin will not connect directly to a microprocessor interrupt but 
will be passed through some flip-flops, timing logic, interrupt controller logic, and 
so on. 

This configuration is typically used to measure the time between the leading 
edge of two pulses. The timer is run at a constant clock, usually a derivative of 
the microprocessor clock. Each time an edge occurs on the input capture pin, the 
processor is interrupted and the software reads the capture latch. The value in the 
latch is the number of clocks that occurred since the last pulse. 

Some microcontrollers do not reset the counter on an input capture but let 
the counter free run. In those configurations, the software must remember the 

Hardware Design 2 109 



previous reading and subtract the new reading from it. When the counter rolls over 
from FF to 00, the software must recognize that fact and correct the numbers; if it 
doesn’t, negative values will result. Many microcontrollers that provide a capture- 
type timer also provide a means for the counter to generate an interrupt when it 
rolls over, which can simplify this software task. 

PWM 

Figure 3.5D shows a simple PWM scheme, similar to that implemented on the Atmel 
AT9OS microcontrollers. An 8-bit up/down counter counts from 00 to FF, then back 
down to 00. An &bit comparator compares the value in the 8-bit latch to the counter 
value. When the two values are equal, the comparator clocks the “D” flipflop 
(again, timing logic makes sure everything works correctly). If the counter is count- 
ing up, a “1” is clocked into the “D” flip-flop. If the counter is counting down, 
a “0” is loaded. The flip-flop output is connected to one of the microcontroller 
output pins. 

Say the microprocessor writes a value of W E  into the latch. The counter counts 
from 00 to FE, where the PWM output goes to “1” because the counter bits match 
the latched value. The counter continues to FF, then back down through FE to zero. 
When the counter passes through FE, the PWM output goes to zero. So in this case, 
the PWM output is high for two counts (FE and FF) out of 256, or about .78 percent 
duty cycle. If the microprocessor writes OxFO to the latch, the PWM output will 
be high from FO to FF and back to FO, for a total of 30 counts or 11.7 percent 
duty cycle. 

A more sophisticated PWM timer would include a second latch and comparator 
so the counter can reverse direction at values other than FF. In such a timer, this 
comparator would set the frequency of the PWM signal while the other compara- 
tor would set the duty cycle. 

Some microprocessors provide other means to generate PWM. The 80188 does 
not use an up/down counter but instead provides two comparators. After the first 
count value is reached, the counter is reset and the second comparator is used to 
indicate end-of-count. The output pin indicates which comparator is being used so 
a PWM output can be generated by controlling the ratios of the comparator values. 

Other Counter Features 

Most microcontrollers provide a means to prescale the clock applied to the counter. 
For instance, the 8-bit clock in the Atmel AT9OS8515 can be incremented with the 
CPU clock, or the CPU clock can be divided by 8, 64, 256, or 1024. In addition, 
the clock can be supplied by either the rising or falling edge of the external pin 
on the device. All of these features are software-selectable by writing to registers. 

The 1Gbit timer in the AT9OS8515 can be programmed to control an output pin 
when it times out. The pin can be programmed to toggle each time the timer times 

110 Embedded Microprocessor Systems 



out (rolls over), or it can be set to “1” or “0.” Like the prescaling function, these 
features are software-selectable. 

Most devices that provide an input capture function permit the input capture 
pin to be programmed to capture the timer count on either the rising or falling 
edge of the input signal. Some permit you to select rising, falling, or either edge, 
and some provide an input noise filter to prevent false captures if the input signal 
is noisy. 

Some devices permit you to connect an external crystal instead of providing a 
clock signal. This crystal is independent of the clock source for the microproces- 
sor itself (although it often is internally synchronized to it). A typical application 
for this feature is to implement a real-time clock using an external 32.768kHz 
crystal . 

Some devices have an input that gates the timer on and off. The 80188 micro- 
processors have inputs that can be programmed to run the timer when the input 
is high and stop the counter when the input is low. 

This section has focused on 8-bit timers to keep the figures simple. The same 
concepts apply to larger timers as well, and other timer lengths are provided on 
many microprocessors. The Atmel AT9OS8515, for example, provides a simple &bit 
timer as well as a 16bit timer with input capture and PWh4 capabilities. 

Using Timers 

Time-Based Temperature Measurement An example that illustrates some of 
the important issues you must consider when using timers involves measurement 
of temperature. The Maxim MAX6576 is an IC that measures temperature. As 
shown in Figure 3.6, the MAX6576 has a single wire output and produces a square 
wave with a period that is proportional to temperature in degrees Kelvin. The 
MAX6576 can operate from -40°C to +125”C. By connecting the TSO and TS1 
inputs to ground or Vcc in various combinations, the MAX6576 can be configured 
so that the period varies 10, 40, 160, or 640ps per degree. In the configuration 
shown, the period will vary by 40ps per degree. At 25”C, the period will be: 

(25 + 273.15) x 40 = 11,926 microseconds, or 11.926ms 

Say you connect this to an Atmel AT9OS8515 microprocessor using input capture 
mode. Figure 3.6 shows a block diagram of this configuration. Here we are oper- 
ating the AT9OS8515 with a 4.096MHz crystal and using a prescaler of 256, so the 
timer gets a clock of 4.096MHz/256, or 16,000Hz. The counter increments every 
62.5 ps. For this application, it doesn’t matter whether the input capture occurs on 
the rising or falling edge of the MAX6576 output. 

How accurately can you measure temperature with this arrangement? Since the 
MAX6576 changes 40ps per degree and the clock to the counter is 16,00OHz, each 
increment of the counter corresponds to 62.5/40 or 1.56 degrees. This is the best 

Hardware Design 2 111 



brr, MAX6576 MICROCONTROLLER 

TIMER 
GND 

- 
PERIOD (IN US) = TEMP x 10 

TEMPERATURE IN DEGREES KELVIN 

PERIOD (IN US) = (TEMP + 273.65) x 10 
TEMPERATURE IN DEGREES CELSIUS 

A CLR 

3 AT90S6515 
INTERNAL 
DATA BUS 

A 

Figure 3.6 
MAX6576 Timing Input Example. 

16wO HZ 

resolution you can get. If the temperature of the sensor is 25"C, the captured count 
value will be 11,926/62.5 = 190.8. Since the counter can only capture integral 
values, the actual count will be 190 (the .8 is dropped). For the count to be less 
than 190, the temperature must go to 23.7"C. Any changes between these two values 
cannot be read by the microprocessor. 

If we decide that this is insufficient accuracy for our application, we might 
change the prescaler to 1, making the counter clock the same as the CPU clock, 
4.096MHz. Now the counter increments every 244.1ns, and the resolution is 
244.1ns/40ps, or .0061 degrees per counter increment. This is much better 
accuracy than the sensor itself has. 

What happens in this configuration if the temperature goes from 25°C to 125"C? 
The count value will go from 11,926 to 15,926. This will result in a captured count 

112 Embedded Micropocessor Systems 



of 65,232. The timer is 16 bits wide, so this is not a problem, but it is very close to 
the 65,535 upper limit of the counter. 

What happens at 125°C if we take the accuracy of the sensor itself into account? 
The MAX6576 has a typical accuracy of 35°C at 125"C, but the maximum error is 
+5"C. This means that, at 125"C, the output may actually indicate up to 130°C. At 
130°C, the output period is 16126ms. This corresponds to a count value of 66,052, 
which means the timer we are using would roll over from 65,535 to zero while sam- 
pling. The actual count that would be captured would be 517, indicating a much 
lower temperature than the MAX6576 is actually sensing. 

There are several solutions to this specific problem: The timer prescaler could 
be changed, the configuration of the MAX6576 could be changed, or even the 
microprocessor crystal could be changed. You could leave the hardware as-is and 
handle the error in software by detecting the rollover. The important point is to 
perform this type of analysis when you use timers in microprocessor designs. 

Another issue that arises from this example is that of sampling time. The system 
can only sample the temperature at a rate equal to the period of the output. As the 
temperature goes up, the time between samples also goes up. If several samples 
need to be averaged, the sampling rate goes down proportionally. While a worst- 
case sample time of 16ms is probably not unreasonable for a temperature mea- 
surement system, an analysis of the effects of sample time should be performed in 
cases where the input rate of a signal affects it. 

Motor Control Say you have a DC motor that is part of a microprocessor control 
system. The motor has an encoder that produces 100 pulses per revolution, and 
the microprocessor must control the speed of the motor from 10RPM to 2000RPM. 
Some undefined external source provides a command to the microprocessor to set 
motor speed. 

At lORPM, the microprocessor will get pulses from the motor encoder at the fol- 
lowing frequency: 

Pulses 1 Min Pulses x -- - Rev 
Min Rev 60 Sec Sec 

10- x 100- - 16.6- 

A similar calculation results in a frequency of 3333.33 pulses/sec at 2000RPM. If 
the input capture hardware is configured to generate an interrupt when the input 
pulse occurs, then the processor will get an interrupt every 60ms at lORPM, and 
every 300 ps at 2000 RPM. 

Say we want to calculate motor speed by using a microcontroller with input 
capture capability to measure the time between encoder pulses. If the input capture 
is measured with a 1MHz reference clock, then the input capture registers will 
contain 1 MHz/16.6Hz or 60,024 at 10RPM. Similarly, the registers will contain a 
value of 300 at 2000RPM. 

Hardware Design 2 113 



The lOOcount encoder produces one pulse every 3.6 degrees of rotation 
(360/100). This is true at any motor speed. However, the input capture reference 
clock is fixed, so its accuracy (in degrees of rotation) vanes with the motor speed. 
At lORPM, each reference clock corresponds to: 

Encoder Pulses Deg 1 Seconds 16.66 x 3.6 
Encoder Pulse 1,000,000 Reference Clock 

= 60 x 10” degrees per reference clock 

At 2000RPM, this becomes .012 degrees. While either of these is probably ade- 
quate for a motor control application, the principle is important; at faster RF’M, 
the accuracy of the reference clock with respect to the input signal is less. 

PWM Output Similar considerations apply to timer outputs. If you are using an 
8-bit timer to generate a PWM signal, the output duty cycle can only be changed 
by one timer count, or 1 in 256. This results in a duty cycle resolution of .3 percent. 
Note, though, that this applies only if the timer is allowed to run a full 256 counts. 
If you are using an 8-bit timer but only 100 counts for the PWM period, then one 
step is 1 percent of the total period. In this case, the best resolution you can get is 
I percent. This is sufficient for many applications but is inadequate for others. In 
an application in which you vary the PWM period and duty cycle, you need to be 
sure that the resolution at the fastest period (least number of timer counts per 
cycle) is adequate for the application. 

Count Ambiguity Any time you are using timers to measure a period, you must 
take into account the ambiguity in the result. Say you have a timer with a 1 mil- 
lisecond resolution and you are using input capture to measure the time between 
events. Two events occur, one measuring 51 counts and the other measuring 52 
counts. That means the two events occurred a millisecond apart, right? Well, maybe 
not. As Figure 3.7 shows, the two events could be nearly simultaneous. One occurs 
just before the count rolls over from 51 to 52, and one occurs just after the rollover. 
Any time you measure period with a timer, you can only assume that the value you 
read has an accuracy of plus or minus the timer resolution. 

e 1 MILLISECOND 

COUNTER s o l 5  1 1  52 I 53 I 54 

EVENT 1 OCCURS .rpI 
EVENT 2 OCCURS f 

~ ~~ ~~~ ~~ ~ 

Figure 3.7 
Count Ambiguity. 

114 Embedded MicrOprocessor System 



Timer Design Considerations When working with timers, be sure to consider 
all the following: 

Does the timer have sufficient resolution for the application? 
Does the timer have sufficient range? Will it overflow in the worst-case scenario? 
If the timer can overflow, is there a hardware/software mechanism to handle that 
condition? 
Are the accuracy and drift of the timer clock adequate for the application? 
Can the software keep up with the selected timer period, capture rates, and so 
on? 
If interrupts are used, can the software keep up with the interrupt rate over the 
full range of input/output values? 

Example System 

Appendix A contains the schematic of the pool pump timer system I mentioned in 
the last chapter. An 80C31 microcontroller is used, with external ROM and 1/0 
ports. Because there is only one read and one write port, no address decoding is 
needed. The read buffer (a 74HC244) is directly enabled by -RD, and the write 
register is clocked by -wR. A 74LS123 one-shot provides a watchdog timer (WDT) . 
The user key inputs connect to 52 and are switch closures to ground. Switch inputs 
are debounced in software by the 250Hz interrupt code. The display, not shown, 
consists of four seven-segment displays and three high-intensity LEDs. The display 
is multiplexed in software so only one seven-segment drive register is required. 
Input power and the pump relay coil are connected via a four-terminal barrier 
strip. 

Hardware Specifications Outline 

The following is a generic outline for the hardware specifications. 

Overview. A brief description of what the outline covers. 

Related Documents. ANSI and IEEE specs. May also include a reference to the 
product requirements document. 
Board Description. A brief description of the hardware and what it does. For 
example, The xyz board controls the three-axis robotic motors for the robotic 
arm. This includes the stepper and DC servo control and the related limit 
switches. The xyz board is controlled by a 10MHz 80C188 microprocessor. DC 

Hardware Design 2 115 



servo motion is implemented using the PID algorithms developed by the 
Motion Control Research Group. 

External Connections. Describe what the board connects to or controls: 

X- and Z-axis DC servo motors and encoders, and Y-axis stepper motor. 
-232 interface to system control computer. 
Limit switch inputs (3). 
Common emergency stop switch. 

Circuit Description. This describes the circuitry and what it does: The xyz 
board is implemented with an 80C188 operating at 10MHz (20MHz input). 
DC motors (X- and Zaxis) are controlled by LM629 motion control ICs. The 
Y-axis stepper is controlled with the timer 1 output of the 80C188. Limit 
and emergency stop switches are read via an 8-bit status register. An 8-bit 
command register provides discrete control bits, including stepper direction. 
The RS232 interface to the system controller is implemented with a 16550 
UART. 

Software Interface. This is where you tell the software engineers everything 
they need to know to use the board. 

Mmmy: 
256K flash, selected with 8OC188 UCS signal. 
256K RAM, selected with 8OC188 LCS signal. 
1 K EEPROM, decoded at 3000 h (h = hexadecimal). 

I/O: 
Address: 00 

Read: Status register: 
Bit 0: Emergency stop switch (1 = stop) 
Bit 1: X-axis limit switch (0  = limit reached) 
Bit 2: Y-axis limit switch (0  = limit reached) 
Bit 3: Z-axis limit switch (0  = limit reached) 
Bits 4-7: Unused 

Write: Command register: 
Bit 0: Y-axis stepper direction (1 = forward) 
Bit 1: X-axis brake input to power driver (1 = brake on) 
Bit 2: Z-axis brake input to power driver (1 = brake on) 
Bits 3-7: Unused 

Address 02, 03: X-axis LM629 
Address 04, 05: Z-axis LM629 
Address 06, 07: 16550 UART 
Interrupt usage: Describe how the interrupt inputs are connected: 

INTO: X-axis LM629 interrupt 
INT1: Z-axis LM629 interrupt 

116 Embedded Microprocessor Systems 



INT2: 16550 interrupt 
INT3: Unused 

Port bits: Does not apply to the example used here, but in a microcontroller 
design, you would describe the usage of the port bits: 

RBO:  Interrupt from external pushbutton 
RB1: Turns on diagnostic LED (0 = LED on) 
RB2-Rl37: Unused 
RCO-RC7: Communication FIFO data bus 

This description also would apply to a multichip design that used a PI0 chip 
or had discrete 1/0 ports implemented in a PLD. Similar descriptions are 
needed for other software-controlled functions. If the design includes 
ADCs or DACs, spec@ the range in bits and how it corresponds to what is 
being measured or controlled. For example, an &bit ADC measuring 
pressure might be specified as representing 1OOpsi at full scale. 

Interface Protocol. If the board communicates with an external system, this 
describes the protocol used. 

Appendix. If there are calculations that went into the design, such as required 
motor torque or interface throughput requirements, these are collected into 
an appendix. 

A Note About Electronic Parts 

This chapter and the previous chapter have covered numerous ICs that can be used 
to interface to microprocessors. The electronics world seems to be defined by 
shorter product lives, bigger memories, and faster processors. Although the spe- 
cific techniques described here may be implemented in a CPLD, FPGA, or ASIC 
and access times get ever shorter, the basic design principles still apply. 

Hardware Design 2 117 





Software Design 4 

Some will be surprised that this chapter is shorter than the hardware chapters. 
However, this one chapter cannot be a complete course on software development 
a n y  more than the hardware chapters can be a course on logic design. The goal of 
this chapter is to present some basic software concepts while concentrating on the 
embedded environment. I have tried to leave general software concepts to the 
books written for that purpose, except where those concepts have a unique bearing 
on embedded design. 

As I mentioned in Chapter 1, software for embedded systems has different 
requirements from software running on a PC or workstation. Computer users will 
not even notice if your software takes a few tens of milliseconds to respond when 
they press a key. However, if the electronic ignition in their car delays firing the 
spark plugs by the same amount, they will be very upset as the car stutters to a stop 
alongside the interstate. Embedded systems work in real time. 

Likewise, when users use their microwave, they do not want to see a message 
telling them that thawing the meat requires installation of an additional 32MB of 
memory. Embedded systems are self-contained, with memory and other resource 
limitations. Software for embedded systems must work within these constraints, and 
that is what sets it apart from the software in a PC. 

As I mentioned in Chapter 1, there are a number of ways to document software 
for an embedded system. The one unforgivable crime is to leave undocumented 
code behind you. The level of documentation required depends on the customer 
and the complexity of the system. 

Before going into the various documentation methods, I want to give you some 
background on the pool timer software, which will be used for illustration through- 
out this chapter. The pool timer software has a polling loop and a chunk of code 
that processes the 250Hz timer interrupt. The timer code will be examined more 
closely in the chapter on interrupts. For now, think of it as a “black box” that passes 
certain information to the rest of the code. 

The polling loop exists in some form in nearly all embedded systems (systems 
that use an RTOS are an exception and will be covered in a later chapter). 

119 



Sometimes called an idle loop, superloop, or background loop, the polling loop is where 
the software spends its time when not processing interrupts. The polling loop 
determines how the various tasks are scheduled and executed. While everything in 
an embedded system usually works in real time, the polling loop holds those tasks 
that do not need immediate attention. An example of this in the pool timer is the 
code to handle the push buttons. The timer code tells the polling loop when 
the button is pressed. The polling loop may be slow getting to it, but not slow 
enough for the user to notice. In a completely interruptdriven system, the polling 
loop may be a one-instruction jump to itself. (I did this once with a digital signal 
processor [DSP] design.) But in most systems, the polling code does some actual 
processing. 

The pool timer polling loop continuously checks these processes: 

The motor control code, which handles motor on/off control. 
The powerfail code, which blinks the display after power-up until the user presses 
the SET button. 
The normal timekeeping code, which keeps track of when the time changes from 
ON to OFF and handles on/off/override. 
The time set mode, which allows a new ON or OFF time to be entered. 

The polling loop sequentially checks for each event (timeout, button press, and 
so on) and takes the necessary action. 

Data Flow Diagram 

There are a number of ways to describe the software design, depending on what 
information is to be conveyed. One method is a dataflow diagram. The data flow 
diagram shows each process as a block (or circle). Lines connect the blocks, 
showing what information is passed between the processes. 

Figure 4.1 shows a data flow diagram for the pool timer. The timer interrupt 
tells the motor control code if the water level is low and tells the other three 
processes if the SET button is pressed. The time set code passes updated time back 
to the normal timekeeping code so that time rollovers will result in the correct 
initial time. The other paths can be seen on the diagram. This diagram shows the 
most important data items; a complete diagram could be drawn that shows every 
flag and data byte. 

Data passed to and from the hardware is not shown in this figure. If it did, a box 
would represent the keypad with push-button information going into the interrupt 
code and another box would represent the display accepting time data from the 
interrupt code. Some engineers draw the hardware as just another process; others 
denote it with a special symbol. 

120 Embedded Microprocessor Systems 



OVERRIDE TIME 

WATER LEVEL LOW 

STATUS OF SET 

PE STATUS 

Figure 4.1 
Pool Timer Software Data Flow Diagram. 

State Diagram 

Figure 4.2 shows state diagrams for the pool timer. The state diagram shows each 
possible state for the software and what inputs cause a change to another state. 
Figure 42A is an overall state diagram that shows user inputs. As the figure illus- 
trates, the user only presses the SET button to go back and forth between normal 
and timeset modes. The ON and OFF buttons switch between ON override, OFF 
override, and normal timekeeping mode. Note that there is no way to go from 
override to timeset. This is by design, and the state diagram clearly shows that there 
is no path for that operation. There is also no path between the two override modes 
without going back through normal timekeeping. 

In a more complex system, each input that can cause a state change is shown, 
pointing from the old to the new state. Figure 4.2B shows the states within the time 
set state. When setting on time, pressing the OFF button switches to off time set, 
and vice versa. Pressing SET returns the timer to the normal timekeeping state. 
Although not shown here, you can add comment5 under the state blocks, showing 
what each state does. Many engineers draw states as circles; I like blocks with room 
for text. 

Figure 4.2C shows the states within the normal timekeeping state. The state 
diagram could consist of multiple pages, with the first page showing high-level 
states or processes and subsequent pages showing the state transitions within the 
high-level states. 

The pool timer software is simple enough that the details of the time set and 
normal timekeeping states could be shown as part of the overall state diagram. In 

Software Design 121 



A 
SETPBFUESSEO OVERALL STATE DIAGRAM 

POWERFAIL 
MODE RESET 

SET MODE SET MODE 

PRESSED 

C 
NORMAL TIME MODE STATE DIAGRAM 

WATER LEML OK, 1 OFF TIMING 

FVMP OFF PUMP OFF 

Figure 4.2 
Pool Timer State Diagram. 

a more complex system, each state may require a page or more to describe, and 
several parallel processes can be going on at once, each in a different state. 

One thing not shown by these diagrams is what happens inside the boxes. In 
some systems, you can have independent states. In the pool timer, this is not the 
case. For instance, in ON and OFF override modes, normal timekeeping still 
goes on even though rollovers of normal time do not turn the pump on or off. If 
the user selects an hour of ON override when there are still three minutes of 
OFF time left, the OFF time will expire while the system is in ON override and the 
system will exit ON override to normal timekeeping with the pump ON. In the 
pool timer, the state diagram really shows the functionality of the display and user 
pushbuttons. 

The examples shown here use fairly descriptive terms such as “ON pushbutton 
pressed.” In the actual code, the pushbutton press is indicated by a flag byte. The 
state diagrams could be drawn using the actual variables (“ONFLAG true” instead 
of “ON pushbutton pressed”). This makes the state diagrams less readable but 
makes it easier to connect the diagrams to the code. 

One thing that state diagrams are very good for is showing what variables, user 
inputs, and so on are actually used in each state. One problem with state diagrams 

122 Embedded Microprocessor System 



is the difficulty of showing all the states on a reasonable number of pages, 
especially for a complex system. One way to simplify the state diagram for an 
embedded system is to show the state of the outputs. This provides a consistent way 
to determine what it takes to change the outputs from one state to another, as long 
as the number of possible combinations isn’t too large. In the pool timer, this would 
take the form of describing the state of the discrete LEDs, the information sent to 
the display, and the state of the pump (ON or OFF). 

Flowcharts 

Another form of documentation shown in Appendix A is the flowchart for the pool 
timer. To save space, only the polling loop is shown. Flowcharts seemed (to me, 
anyway) to lose favor for a while, but they are coming back into popularity since 
tools now simplify the process of creating and maintaining them. While flowcharts 
are good at showing a single thread of execution, they don’t show preemption or 
interrupts very well. Still, the flowchart is a good graphical way to show the execu- 
tion of sequential code. 

Flowcharts, state diagrams, and data flow diagrams all have the advantage of 
being visual and relatively easy to follow. This is also one of their drawbacks- 
since these diagrams are not part of the source code, they are less likely to be 
updated when the code is changed. Some software manufacturers offer an inte- 
grated development environment that supports graphical documentation such 
as state diagrams. A typical example is Betterstate from Wind River Systems. 
However, these products are typically available for development on more complex 
processors. Few such tools exist for simpler processors such as 8- and 16-bit 
microcontrollers. 

Pseudocode 

Another method of documenting the software, and one that I prefer, is to use 
pseudocode. Appendix A shows two listings. The first is a high-level functional or 
logical description. This listing describes in concise English exactly what the soft- 
ware is going to do. I like it because it is a good way to see whether I understand 
everything I need to know before coding. 

The next level down is actual pseudocode, also shown in Appendix A. The 
pseudocode is still a description in structured English, but additional text describes 
what flags, variables, and other elements are manipulated to implement the 
described functions. The advantage of this method of documentation is that the 

Software Design 123 



functional description can be written, with details filled in as the design progresses, 
eventually turning into pseudocode. The pseudocode and description then become 
detailed comments for the actual code. 

Functional descriptions and pseudocode are useful for simple systems written by 
a single programmer. If multiple programmers will work on a project, and espe- 
cially if multiple processors will be used, then some means should be implemented 
to fully describe what information is passed between the processes and/or func- 
tions done by each programmer. 

Timing information for real-time functions is crucial. For example, function X 
must be called within Y milliseconds of function Z or the stepper motor will lose 
sync. 

The following pseudocode is a description of the software I implemented in a 
simple protocol converter. The system accepted serial RS232 data from a host 
system, did some processing, buffered the data, and sent it to a second system via 
a different interface. XON/XOFF protocol was used to control the data flow: 

If serial data available, read the data, 
do some proprietary stuff I cannot reveal, then 
store the data in a flrst in, flrst out (FIFO) buffer. 

If the buffer gets too full, and if XOFF was not sent yet, 
send XOFF to the host. 

If there are data in the FIFO buffer, and if the output interface 
is ready, send a byte from the FIFO buffer to the output. 

If the buffer gets close to empty, and if XON was not sent 
yet, send XON to the host. 

The software just went around and around this loop. The actual system did some 
error checking and other tasks that I left out to simplify the description. Note that 
the input and output processes are mostly independent of each other. The input 
stores data in the FIFO buffer without knowing what the output is doing. Similarly, 
the output process sends whatever is in the FIFO buffer if the output device is ready 
for it. If the output is not ready, the code just waits until the next pass through the 
loop and checks again. The only way one process knows what the other is doing is 
by how full the FIFO buffer gets. This is a simple example that illustrates processes 
that are parallel and (mostly) independent. 

The more independent processes are (that is, the less data they share in 
common), the more predictable each piece of code is. If processes are com- 
pletely independent, some unexpected flaw in one process will not cause an un- 
explained failure in another. However, there are exceptions to this, which we 
will look at later. 

One drawback to pseudocode is that it isn’t graphical. To use an example we 
looked at earlier, the state diagram makes it obvious that there is no path from 
override mode to timeset mode without going through the normal timekeep- 

124 Embedded Mimojmocessm S y s t m  



ing mode. This characteristic would not be immediately obvious looking at 
pseudocode. 

Saying that, the primary advantage to pseudocode also is that it isn’t graphical, 
so you can write it with the same text editor you write code with. In addition, you 
can embed the pseudocode-at whatever level it is written-into the final source 
code as comments. This may be important down the road if the graphical charts 
will be lost somewhere along the way but the source code won’t. 

There is no reason you can’t use a combination of techniques to document your 
code. You could use a high-level state diagram, like the ones shown for the pool 
timer code, to provide a clear graphical representation of software states. At some 
lower level, you can switch to pseudocode that eventually becomes part of the 
source code comments. 

In a complex system, it is a good idea to have multiple levels of documentation. 
An overall block diagram shows what data are transferred in and out of the system, 
another diagram shows what is passed between subsystems or boards or the major 
firmware functions, and pseudocode or state diagrams describe how each of the 
functions works. 

Partitioning the Code 

The charts and diagrams shown so far assume that you already know how the code 
will be functionally partitioned. The process for determining this breakdown and 
developing the code is the same as for any software, but with a few additional con- 
siderations for embedded systems: 

In a PC, an operating system controls access to the disk drive, display, and other 
peripherals. While there are real-time operating systems, which we’ll cover in 
Chapter 9, most simple embedded designs have none. In these cases, some mech- 
anism must arbitrate access to peripherals and memory. Two serial transmit 
routines cannot both be filling the same buffer, for example. The simplest way 
to do this is to have each resource (serial I/O, interface buffers, and so on) con- 
trolled by only one piece of code. This seems obvious, but it is easy to cheat when 
sending a byte over the serial interface is as simple as an assembly language move 
instruction. In cases where this rule cannot be followed, usually because of 
throughput, make sure that conflicts do not occur. 
Since the code is stored in programmable read-only memory (PROM), self- 
modlfylng code is out. This is considered bad practice anyway, but it is nearly 
impossible in an embedded system. Self-adapting code, however, is possible if 
nonvolatile storage is available. 
Some software engineers write code for maximum maintainability, some for 
maximum efficiency, and some for minimum space. Some embedded systems can 

Software Design 125 



be written only for speed or they will not work. Many embedded systems cannot 
tolerate a function that just “goes away” for a long time, say, to sort data in a table. 
The definition of a “long time” depends on the system, but may range from 
seconds down to milliseconds (even microseconds in a DSP-based design). 
An embedded system is not a general-purpose computer. There often is no 
display to handle errors. There may be no human within miles, so “Hit Any Key 
to Continue” generally is not an option. Errors must be handled and often 
operation must resume after they occur. 
A real-time system handles asynchronous external events. This means that a 
switch can be closed at any time and an interrupt can occur between any pair of 
instructions. The code must handle all timing combinations without error. (We’ll 
discuss this further in Chapter 5.) 
There is no nanny to be sure the hardware is in a known state. The embedded 
code must initialize everything at power-up. We’ll discuss more about this at the 
end of the chapter. 

Other considerations include the following. 

Safety 

If the code in a PC goes “off into the weeds,” the disk-drive spindle motor cannot 
reach out and grab the user’s tie. In some real-time systems, an unsafe scenario is 
a real possibility. When in doubt, makz it safe. Turn the motors off. Shut down the 
high voltage. 

Another safety issue has to do with limits. There have been numerous accidents 
in which a software-controlled system gave bad information to the operator because 
the software engineer assumed that everything would remain in “normal” condi- 
tions. For example, if you have a sensor that measures temperature in a vat of water, 
you know that the water temperature can’t ever be higher than IOO’C, right? But 
what happens if the water all boils away or someone seals up a pipe and makes the 
vat into a pressure cooker? In any safety-related system, it is always risky to give the 
operator or other subsystems false information. It is safer to either give the opera- 
tor the right temperature or indicate that the temperature reading is suspect. Any 
time that you have a safety-related input to an analog-to-digital converter (ADC) 
and the ADC is saturated at one end or the other, it should be indicated in some 
way. In our temperature example, if a saturated ADC output indicates that the 
temperature is 120°C, don’t just indicate the temperature. Indicate the tempera- 
ture and make it flash or light a light or do something to tell the operator that the 
temperature is not only high, but probably off-scale. 

A common way to eliminate noise on analog inputs is to average several samples. 
This does a good job of eliminating noise, but it can also mask problems. If you 
have a pressure sensor with a normal reading of 100, you might average readings 
of 95, 105, 98, and 102 to get a reasonable result. On the other hand, if the 

126 Embedded Microprocessor Systems 



readings are 50, 150, 48, and 152, you will get the same average. The second set of 
numbers, however, may indicate a dangerous oscillation somewhere that will cause 
something to burst. When you use averaging, be sure it doesn’t cause your software 
to ignore a potential problem. 

Hardware Damage 

This is a less serious version of the safety issue. An example is control of a direct 
current (DC) or stepper motor using an H-bridge. If the software directly controls 
all four transistors in a motor H-bridge, it can turn on the wrong pair and destroy 
the transistors. Situations like this must be dealt with in embedded systems, either 
through hardware protection or careful software design. 

Mechanical Delays 

In a PC, the operating system takes care of the delay between turning on a disk 
spindle motor and waiting for the disk to come up to speed. Similarly, embedded 
system software must take into account the fact that mechanical systems are often 
much slower than the processor. A real-world example involves AC motors 
controlled by two relays. A run relay provides AC for normal operation. For faster 
stopping, a second relay provides a momentary pulse of DC to brake the motors. 
Relays have a delay of many milliseconds from when voltage is applied to the coil 
until the contacts close. There is a similar (usually longer) delay from the time the 
coil voltage is removed until the contacts open. So when switching from running 
to braking, the software must introduce a delay between turning off the run relay 
and turning on the brake relay. Without the delay, the run relay will fail in a quite 
spectacular manner, accompanied by blue sparks and smoke. A second delay is 
required to inhibit run startup after the brake relay is opened. Since the brahng 
relay is a large contactor with an opening time in the tens of milliseconds, the 
second delay must be much longer than the first. 

Recovery Time 

Many peripheral integrated circuits (ICs) have a recovery time. You cannot perform 
a read or write cycle until so many clocks have elapsed since the last cycle. Be sure 
to check for and abide by these. If you do not, the resulting problems can be inter- 
mittent and difficult to find. 

€MI 

Although EM1 considerations normally are considered a hardware design issue, 
there are some areas that software must control. For example, in a system with mul- 
tiple softwarecontrolled motors, it may be possible for the software to self-induce 
EM1 problems. DC motors have a larger current draw at startup, possibly three times 

Software Design 127 



the normal running current. If the software simultaneously starts multiple motors, 
the resulting current surge may disrupt the system electronics or even the proces- 
sor itself. It may be necessary for the software to sequence motor startup and 
braking to prevent these problems. Software also may need to filter sensors that 
are susceptible to radiated interference. In general, it is better to provide such 
protection in hardware, but sometimes the nature of the sensor makes it impossi- 
ble to filter the interference. This might happen if the sensor must sense very low- 
level signals or has to sense over a long cable. In cases like these, the software may 
need to perform some filtering. 

Other similar cases include turning off PWM-controlled devices while making 
sensitive ADC measurements. This includes motors, solenoids, heaters, and so on. 
Even DC devices may need to be turned off. A typical example would be a heater 
that draws enough current to produce a significant DC drop in the wiring, and 
where the heater ground is shared with a temperature sensor such as a thermo- 
couple or thermistor. In a case like this, it may be necessary to turn the heater off 
so an accurate temperature reading can be made. 

Interrupt Protection 

Sometimes the software needs to protect itself against spurious interrupts. One real- 
world case involves a motor with a reflective strip on the shaft (see Figure 4.3). The 
strip is sensed with a reflective optical sensor to count and time motor revolutions. 
In some cases, the motor would stop with the reflective strip right on the edge of 
where the sensor could detect it. Vibration when the machine was running would 
then cause the sensor output to switch at a high rate, flooding the processor with 
interrupts. The problem was complicated by the fact that the resulting error code 
indicated that the processor was running out of time to complete its tasks-which 
it was, since it was spending enormous amounts of time in the interrupt routine. 
A similar case can occur when an operator does not quite close a hood with a sensor 
on it or if a sensor is not securely mounted, leaving it susceptible to vibration. Any 

REFLECTIVE OPTICAL SENSOR 

O\Q MOTOR SHAFT 

REFLECTIVE STRIP 

Figure 4.3 
Unstable Interrupts from an Optical Sensor. 

128 Embedded Microp-ocessor Systems 



time you have moving objects detected by sensors, you run the risk of unstable 
output. 

Bus Width 

Sometimes an 8-bit device is connected to a 1 6 ,  32-, or 64bit processor. As I men- 
tioned in Chapter 2, an example would be a 16550 UART connected to an x86 
processor. In most cases, the hardware is not designed to decode all the possible 
accesses to the device, so the software must not try to perform writes that are wider 
than the device. In some cases, this is no problem, as the unused bits will be dis- 
carded. However, if the hardware is designed so that the other bits write to a control 
register, you can get unexpected results. For instance, if a device is located at 
address 03F0 (hex), and the lower 8 bits are connected to a data register while 
the upper 8 bits are connected to a status register, a word write will change both 
registers. Another case in which this can cause problems is on a read: If you read 
a ltkbit word from the %bit device, the unused bits usually will be undefined 
because those bits are floating. If you do not mask them off in software, the results 
are indeterminate. 

Software Architecture 

There are only so many ways to connect a flash memory to a processor, but there 
are numerous ways to implement almost any software function. However, embed- 
ded software usually is built on only a few architectural frameworks, as described 
in this section. 

Single Polling Loop 

In this method, a single piece of polling code loops continuously, checking for 
input from interrupt routines and external devices (such as a keypad) and 
executing whatever subroutines are necessary to implement the functionality. This 
method of coding assumes that all functions are available all the time. For example, 
it might check all the key switches all the time, even if some switches are not used 
in particular modes. This was the method that I used to implement the protocol 
converter described earlier. That design did not even have any interrupts-every- 
thing was done in the polling loop. 

State Machine 

The software is in one state at a time. Only those functions that pertain to the 
current state are monitored. I designed a burglar alarm this way once. The system 

Software Design 129 



had states that included armed, waiting for arm, triggered, and alarm on. This 
method has the advantage of compartmentalizing the functionality. You need not 
worry about some process getting confused as to what state everything is in because 
every state has its own unique code. And you can change the code for a particular 
state without affecting the code for any other state. The disadvantages to this 
method are that there usually is a lot of duplication. A keypad, for example, must 
be monitored regardless of the state, so the key monitoring code (or at least a 
call to the subroutine) is duplicated in the code for every state that needs it. In 
addition, if a number of parallel processes can be in different states, you need 
a unique state for every combination, which makes the code grow exponentially. 
State machine architecture is best suited for designs that perform a single 
function. 

Multiple State MachinewPolling Loop 

In this variation on the state machine architecture, each process can have unique 
states. A polling loop goes to each process, which then branches to code for the 
particular state it is in. When done, the process code exits to the next process (or 
to the polling loop, which goes to the next process). The pool timer uses this 
method. The polling loop checks the motor state to see whether the motor should 
be on or off, and then checks for timer rollover. What happens after that depends 
on whether the code is in powerfail, time set, or normal timekeeping mode (state). 
For example, if the code is in powerfail mode, the code for the other modes is not 
even executed. 

Incremental State Machine 

Each process executes a few steps of whatever operation it performs in whatever 
state it is in; it then transfers control to the next process. Each process also keeps 
track of where in its internal sequence it is. The next time the process is executed, 
it takes up where it left off and executes a few more steps. This gives all pro- 
cesses the appearance of executing simultaneously, albeit slowly. I once had to find 
a bug in one of these that was written by someone else, and I am not fond of this 
method. 

RTOS 

Real-time operating systems (RTOSs) warrant a dedicated overview in their own 
chapter. Basically, a RTOS allows the code to inanage tasks by starting and stopping 
them based on priority or time. For example, the code to communicate with 
another system might be activated only if there are data to send. 

130 Embedded Microprocessor Systems 



The Development Language 

It has been said that you cannot consider yourself a true embedded programmer 
unless you can code in assembly language. While this may be an exaggeration, it is 
true that many embedded systems have some code written in assembler. Part of this 
is because high-level languages (HLL) often assume that things like the stack are 
initialized. Since function calls in any language need the stack, which usually is in 
RAM, you cannot do a function call to the function that initializes the stack or the 
RAM chip select logic. The other reason is speed. The best code optimizers still are 
not quite as good as a human at generating fast assembly code. 

That said, high-level languages for embedded applications are becoming more 
sophisticated, more efficient, and better able to handle the unique hardware that 
embedded systems must control. The choice of development language, like every 
other engineering tool, is driven by tradeoffs such as cost, ease of use, and utility. 

I know that the following statement will make some software engineers throw 
this book across the room in disgust, but a simple project may be well served with 
just assembly language. Many small projects are not completed any faster by using 
an HLL. Some manufacturers (Microchip and Atmel, for example) provide free 
assemblers on their Web sites. But cost is not necessarily a factor in choosing assem- 
bler over an HLL. Sometimes the issue is speed. Sometimes assembly language is 
the only way to get everything to run fast enough. This is particularly true when 
using a DSP or other hardware-intensive processor. And, if most of the code is 
dedicated to flipping bits on 1/0 ports or loading timers, much of the design effort 
goes into calculating things like the timer values. The actual code may be fairly 
simple. Of course, the drawback to using assembler is that whoever must maintain 
the code in the future must learn the architecture and instruction set of the 
processor. 

I once used assembly for a small microcontroller project because I could 
download the assembler from the manufacturer’s Web site and get the project 
going faster than I could get the paperwork through the purchasing department 
to order a C compiler. 

As the complexity of a project grows and labor becomes a larger part of the soft- 
ware design, assembly language looks less attractive. The time spent debugging the 
code becomes more of a factor, and the ability to write code for more than one 
processor without learning a new language is important. However, some of this 
advantage often is lost on simple microcontrollers. The high-level languages for 
those devices often have limitations, such as lack of floating-point capability, that 
limits code portability. In addition, special instructions are frequently needed for 
controlling device-specific hardware (timers, 1/0 ports, and so on) that will not 
port to another processor. 

Software Design 131 



High-level languages are also important if there is a possibility that a future 
version of the product may use a different microprocessor or if there is a chance 
the processor selection will change during the design process. While many designs 
will use processor-specific functions in whatever language they are written in, a 
complex design is much easier to port to another processor if it is written in an 
HLL. 

I will not attempt to recommend the best HLL for your application. Every 
software engineer has a preference. What I will do is list some things that should 
be considered in the decision. 

Processors Supported 

C has become almost a universal language, available for nearly any microprocessor. 
Ctk is not currently available for small microcontrollers, although it is popular 
for microprocessor-based designs. As processor speeds increase, Java will increase 
in popularity for systems that can afford the CPU performance and memory 
requirements. 

As I already mentioned, be aware that HLL versions for microcontrollers may 
not support the full language. Some things that are normal for an HLL on your 
desktop computer are just not possible with 128 bytes of RAM. Also, be sure that 
the compiler supports the version of the processor you use. An extreme example 
in which this could be a problem is if you are developing code for a Pentium-class 
processor with a compiler that generates only 8086 code. You would be unable to 
take advantage of the added features in the Pentium CPU. 

Emulator Support 

Most current emulators, instead of displaying hex addresses, can display labels from 
the source code (called source-level debug). Instead of single-stepping through one 
machine instruction at a time, you can step through one C (or whatever) instruc- 
tion at a time. You can even step through entire functions as if they were a single 
statement. You can set breakpoints the same way. This can reduce debug time enor- 
mously. However, the emulator software must have a table of addresses versus labels. 
Be sure your language and emulator are compatible. This process is simplified 
somewhat by the emergence of standard file formats for this data, such as UBROF. 
However, the emulator needs to handle whatever file format the compiler produces 
if you want to do source-level debug. Ideally, you want the debugger to display the 
data in the correct format, recognizing &bit character variables, integers, and other 
data types. 

CoddStorage Size 

Some compilers are extremely inefficient in their use of PROM and RAM resources. 
Be sure the compiler will not require enormous increases in hardware cost to 

132 Embedded Micr@ocessor Systems 



support its free-spending ways. The same goes for speed: Some compilers just 
cannot seem to generate fast code. 

Optimization 

Optimizing compilers attempt to produce the most efficient code and can make 
the difference between an application that works and one that does not. An opti- 
mizing compiler works by eliminating unnecessary machine code. For example, if 
the code tests a variable to see whether a bit is set and then tests the variable 
again to check a different bit, a nonoptimizing compiler might read the variable 
twice. An optimizing compiler might read the variable once, store it in a register, 
and knowing that the variable has not been changed, use the value in the register 
when the second check is done. But beware; this can cause problems. If the vari- 
able actually is a hardware register, a change between the first and second checks 
would go undetected in the optimized version. For this reason, most optimizing 
compilers allow optimization to be turned off for sections of code, and they allow 
you to define memory-mapped hardware that is treated differently than ordinary 
RAM. Some compilers, especially for microcontrollers, permit you to optimize for 
speed or size, but there sometimes is a catch: You can optimize only the entire 
program. No compiler directives let you turn optimization on and off. To offset 
that, microcontroller compilers typically have a way to define hardware-specific 
addresses, such as I/O ports, forcing the compiler not to optimize when accessing 
these locations. 

If your application requires floating-point calculations, be sure the floating-point 
libraries are small enough to fit the available space and that they run fast enough. 
If you have a hardware floating-point processor, of course, be sure the compiler can 
take advantage of it. 

Assembly Support 

Many applications still require assembly language for things like initialization, inter- 
rupts, or specialized (fast) I/O. The development compiler should make it fairly 
easy to include assembler files (possibly as inline code) into the software. 

Another assembly-language related issue occurs when using microcontrollers. 
Due to the limited stack size, high-level languages typically do not pass parameters 
to assembly functions using the stack but instead use an area in RAM. This usually 
is an overlay area shared with other functions-the information no longer is needed 
when the function is finished. When writing a function in the HLL, the compiler 
takes care of getting dynamic variables out of the RAM overlay area, initializing 
the variables within the function, and restoring everything when the function is 
finished. If you must link assembler functions into HLL code, you need to take 
care of all these details. Thus, be sure the HLL compiler has a welldefined inter- 
face to the assembler and a welldocumented procedure for defining the functions 

Software Design 133 



in the HLL and then writing the functions in assembler. You can waste a lot of time 
trying to get this to work if the vendor does not document things well. 

Another problem with microcontroller-based compilers is that the compiler 
tends to generate code that is generic-the code produced for a do/while loop 
may not take advantage of instructions that can speed up the code considerably if 
you are ending when a variable reaches zero or something similar. 

An example involves a design I did using a Microchip PIC device. The proces- 
sor functions as a smart sensor, communicating with an external PLD that collects 
time-based data. To make the PLD interface work, the processor needs one loop 
to run very fast. The C compiler I was using simply would not generate any kind 
of loop that terminated with a DECFSZ instruction, which decrements a memory 
location, stores the result, and branches if the result is zero. In addition, a feature 
of the PIC that involves a shift-and-test operation was implemented inefficiently. To 
make matters worse, the assembly language interface for that compiler was poorly 
documented, making the task of linking an assembly module very difficult. 

The original code, prototyped in assembly, took less than a day to write, debug, 
and verify. Attempting to write a C version and then to merge the original assem- 
bly version with the final C program took three days and numerous email exchanges 
with the technical support group at the vendor that supplied the compiler. 

While the language is the tool that actually implements a design, other tools 
document it. Flowcharting tools simplify flowchart generation, with linkages be- 
tween blocks “rubberbanding” as the blocks are moved around on the page. Some 
tools offer a complete development environment, from flowchart to finished code. 

Debugging Tools 

When selecting tools, give some thought to how the design will be debugged. If you 
are developing an embedded system based on the PC architecture, you probably 
will get some kind of debugger with the compiler. However, on a smaller design, 
there are other considerations. The most severe restrictions occur when you are 
dealing with microcontrollers. For example, some debugger software for micro- 
controllers requires using the onchip serial port for communication with a host 
PC. If your design uses the serial port to communicate with other processors in the 
system, you must find another debugger solution. 

Even some emulators require system resources (such as serial ports) that you 
may need for your design. Check into this carefully before you choose your devel- 
opment environment. Make sure you do not paint yourself into a corner. 

Debugging systems on very small microcontrollers presents special challenges. 
The best solution is an emulator. However, sometimes an emulator is not available 
for cost reasons. I have worked on microcontroller-based designs in which an 
emulator simply would not fit in the space available or the controller board was on 
a moving robotic arm and attaching an emulator was out of the question. 

134 Embedded Micrcprocessor Systems 



In cases like this, you must make special concessions. Most small microcon- 
trollers have a simulator available. This is software that runs on a PC and emulates 
the microcontroller. A simulator allows you to develop code and test it right at your 
desk. Of course, simulators have one serious drawback-they cannot predict the 
real world. A simulator can only simulate with the inputs you provide, and if you 
cannot predict all the real-world timings, neither can the simulator software. On 
the other hand, if your microcontroller design is doing something that is 
predictable and not dependent on real-world timing, a simulator may be the only 
debug tool you need. 

The real environment, with moving motors and clicking solenoids, is where most 
embedded designs end up, and this is where the limitations of a simulator are really 
revealed. If a simulator is not adequate and if you cannot get or use an emulator, 
then you must turn to other debugging techniques, such as those we’ll discuss in 
Chapter 6. 

Microprocessor Hardware 

An embedded system has unique hardware constraints that must be accommodated 
by the software. 

The Stack 

The stack, common to nearly all microprocessors, is where the software can 
temporarily store values until they are needed. When a subroutine is called, the 
processor saves the return address on the stack. The stack is a last in, first out 
(LIFO) buffer-the last value placed “on” the stack is the first value removed, much 
like spring-loaded stacks of plates in a restaurant buffet line. 

Most (but not all) microprocessors have PUSH and POP instructions (or some 
equivalent) that can add values to or remove values from the stack. This allows the 
programmer to save registers during an interrupt and restore them later. The stack 
in your PC can hold millions of bytes of information. The stack in an embedded 
design is not always as flexible: 

First, the stack in some microcontrollers is limited. The PIC17C42, for example, 
has a 16-level stack and no PUSH or POP instructions. The stack is used for return 
addresses only. 
In processors that have a hardwired stack (implemented as fixed registers in the 
microprocessor IC), you cannot have several levels of subroutines; the stack will 
overflow. As already mentioned, you cannot pass parameters on the stack (at least, 
not very many) for the same reason. 

SofhUare Design 135 



In processors that do not have a stack limited by hardware, there is still a 
limitation: the size of the system RAM. Make sure that the code cannot make the 
stack grow into the area where variables are stored. This problem can be hard to 
find. 

Getting around a limited stack sometimes requires programming finesse that 
bends the normal rules a bit. The usual practice for a subroutine is to save all the 
registers on the stack; some high-level languages do this automatically. This can be 
impractical if there are several subroutines. 

The simplest workaround is not to save anything. The polling loop just knows 
which registers are used by the subroutine and assumes they will be changed. Values 
can be returned in registers as well. The pool timer code has subroutines that do 
not save registers. 

In cases where registers must be saved, they can be stored in RAM as variables. 
Each subroutine has a block of RAM set aside for storing registers. Each register 
that must be saved is stored in a unique RAM location on entry to the subroutine 
and retrieved on exit. Of course, this method prevents the subroutine from being 
reentrant. 

Some processors make provision for a context switch. The Analog Devices 
ADSPBlOl family, for example, has two complete register sets. Either may be 
selected by a single instruction. The 8051 has four register banks. Two bits in an 
internal register control which register bank is in use. In processors like these, each 
subroutine can have a unique register set. However, there is a drawback as well: The 
Analog Devices parts have only one extra register set, so only one subroutine can 
be handled without saving registers into RAM. The 8051 has four register sets, which 
limits the code to four unique environments. Many compilers can take advantage 
of these features of the CPU. 

Chip Select 

Some processors have internal chip selects that can be programmed. If this hard- 
ware is used, it must be initialized first. As an example, look at the 80188 again. 
This part has a signal, -UCS, which is a chip select to upper memory, intended to 
select an EPROM or flash memory. After a reset, -UCS is programmed to access 
the upper 1 K of memory from FFCOO to FFFFF. If the actual EPROM is 32K X 8, 
the software at the reset vector location (FFFFO) must initialize -UCS to select the 
full 32K before jumping to any location below the upper 1 K. Otherwise, the 
EPROM will not be selected and the processor will go off into the weeds. Staying 
with the 80188 example, the signal -LCS is intended to select RAM from location 
00000 up. Reset turns this signal off, and it must be programmed before it will be 
active . 

The implication of this is that, in a system using -LCS and -UCS, no subroutine 
calls can be made, nor can any interrupts be serviced, until both signals are 

136 Embedded Mim@n-ocessor Systems 



initialized. If the code that initializes -LCS, for example, is a subroutine call, 
an attempt is made to push the return address onto the stack before the RAM 
(where the stack is located) can be accessed. The return at the end of the sub- 
routine ends up with a garbage address and the processor goes off into the weeds. 
The same arguments apply to any programmable chip select that affects PROM or 
RAM. 

RAM 

Most high-level languages allow local variables, which are completely local within a 
subroutine or function. Other processes know nothing of those variables and have 
no access to them. In a PC, memory-management hardware can even tell the oper- 
ating system if an ill-behaved program steps outside its predetermined boundaries. 
In an embedded system, local variables often are an illusion. As already pointed 
out, embedded systems have RAM size constraints. A variable is just one or more 
memory locations. All variables are stored in the same RAM space, often in the 
same RAM IC. Each variable has a unique location, but nothing will prevent a 
berserk piece of code or an incorrect pointer from changing the wrong location 
or even writing all through memory and trashing everything. Assembler program- 
mers are familiar with this concept since variables in assembly language (especially 
with simple assemblers) are often global. Unless there is hardware memory man- 
agement, all variables are potentially global to incorrect code. 

When using languages that support reentrant code and genuine local vari- 
ables saved on the stack, be sure there is enough stack space and initialize all 
variables. In some nonembedded applications, you can initialize variables such as 
tables when the code is loaded. This is not true in an embedded system. Initialize 
everything. 

One last note about RAM and PROM: HLL compilers for embedded use often 
require that you tell the compiler (or, actually, the linker) where the RAM and 
PROM are located, what size they are, and where the stack is to be (if used). This 
information usually is used by the linker, a program that links together various code 
modules and produces a single output file. Some compiler/linkers are capable of 
calculating the required stack size (or at least the worst-case stack size) and 
automatically setting the stack pointer appropriately. 

uo Ports 

Programming hardware 1/0 ports for a microcontroller varies depending on the 
particular part used. Some microcontrollers, such as the PIC17Cxx, have control 
registers that control the direction of each port bit. Others, such as the 8051, make 
every port bit an input at reset and the software makes the port bit an output by 
writing to it. 1/0 ports for LSI 1 / 0  ICs usually have a direction register. 

Sofhoare Design 137 



Switch and Other Contact Closures 

A switch closure such as relay contacts or a push-button switch will “bounce.” Always. 
A switch “bounces” when opening or closing and takes the form of repeated open- 
ings and closings of the contacts. If a switch is not debounced in hardware, it usually 
will need to be debounced in software. Most mechanical switches finish bouncing 
in 10 to 20 milliseconds (ms). The logic to debounce a switch is as follows: 

Switch closure detected: 

Wait 30 ms. 

Check switch again. If open, it was bounce on opening. If still closed, it was a 
valid switch closure. 

Hard Deadlines Versus Soft Deadlines 

An old saying in the embedded world is that the right answer, late, is the wrong 
answer. Nearly all embedded systems have some type of deadline within which 
all tasks must be performed. These deadlines can be broadly divided into two 
categories: hard deadlines and soft deadlines. 

A hard deadline is something that absolutely must occur by a certain time or things 
just won’t work right. Examples include reading a byte from a UART before the 
next byte is received and overwrites it. If the software doesn’t make it in time, the 
first byte will be lost. 

A soft deadline is one that can be missed occasionally, but the average rate must 
keep up with the requirement. An example of this would be a UART that has a 
large FIFO to store incoming bytes. The software doesn’t have to get every byte out 
of the FIFO before the next byte is received. As long as the average read rate is faster 
than the rate at which bytes are received, the system will work correctly. Note that 
the soft deadline can become a hard deadline if things fall behind. Once the UART 
FIFO gets full, at least one byte must be read before the next byte is received or 
data will be lost. 

Another example of a soft deadline is things that can be imprecise without 
affecting system operation. A 30ms switch debounce can vary quite a bit and still 
work. If your software is a few milliseconds late updating a display, the user isn’t 
going to notice. 

Dangerous Independence 

An earlier example showed a protocol converter with parallel, independent 
processes. Independent processes are common in embedded systems, but it is also 

138 Embedded Microprocessor Systems 



ITEMS IN HOPPER. AWAITING FEED 

OMRALL SPACING CONTROLLED TO MEET 
MINIMUM THROUGHPUT REQUIREMENT 

GAP BETWEEN ITEMS HAD TO BE WIDE ENOUGH 
FOR DOWNSTREAM SORTING MECHANISMS 

I 
7 

ITEMS ON TRACK 

DIRECTION OF MOTION -0 FEED MECHANISM 

Figure 4.4 
Conveyor Belt System. 

important to know when the processes should not be independent. A real-world 
example will illustrate this: I worked on a motion control subsystem, developed by 
a contractor, that feeds items into a moving transport system (see Figure 4.4). The 
system has two requirements that are relevant here. 

The first requirement is to meet a particular throughput in items per minute. 
The second requirement is to maintain a minimum spacing between any two suc- 
cessive items. Two independent processes run these two functions. The first process 
controls a terminal motor speed to maintain throughput, and the second process 
performs instantaneous adjustments to the motor speed to maintain minimum 
spacing between individual items. These corrections are small or large, depending 
on the predicted spacing error. The corrections reduce throughput but are 
expected to occur infrequently. After a correction, the motor ramped back up to 
the terminal speed. 

The prototypes of the system worked well, but production units could not meet 
the throughput requirement. It turned out that the spacing process was perform- 
ing a few corrections to fix spacing and this reduced throughput. The throughput 
process, not knowing about corrections, saw that throughput was too low and raised 
the terminal speed. This required even more corrections, which lowered through- 
put even more. The result was that the throughput process walked the speed up to 
the maximum value, while the spacing process corrected more and more items, 
until it was finally correcting (or overcorrecting) nearly every item. The reason this 
showed up only in production was that the mechanical adjustments in the proto- 
type allowed the system to “balance” and run without problems. 

The solution for this problem was fairly simple: If too many corrections were 
performed, terminal speed was lowered instead of raised. The amount of speed 
reduction was weighted by the degree and number of corrections that had 

Software Design 139 



occurred. If a problem with the mechanical components or the condition of the 
items processed caused a lot of corrections, throughput went down until things 
stabilized again. The processes no longer were independent, but that was necessary 
to prevent positive feedback. 

By now, some readers are pointing out that these two software processes were 
not truly independent, and that is true. They were coupled, but only through the 
mechanical characteristics of the system, and that kind of problem can be very 
difficult to isolate. 

Software Specifications 

The software specifications tend to be the one document that is never produced 
or is produced at the end of the project and in a hurry. This is for several reasons: 

1. There is no “customer” for the software specs like there is for the hardware 
specifications. The hardware specs are needed in some form so the software can 
be written, but there often is no corresponding user for equivalent software 
information. 

2. The software often is the last part of the project started, and it often starts late. 
The software engineers may be late because a previous project ran late, and the 
rest of the project may have had changes right up to the very end. Since func- 
tional changes often are implemented in software, it is difficult to finish the code 
while the project is still in a state of flux. 

3. Tools are available that document a software design from flowchart through 
release. If you can describe the actual software as you go, why not just use that 
for documentation? 

Since there often is no downstream “user” for the software specification, what 
are the reasons to create one? Who will read it? The following list presents a number 
of reasons: 

The software specifications serve as an overview of the code for the software 
engineer who must maintain it. This is important if the code is maintained by 
someone other than the person who wrote it. After a year or so, it will also become 
important to the person who wrote the code. 
On a multiprogrammer project, software specifications help coordinate the 
effort. 
Software specifications are useful for design reviews and for checking that the 
software functionality matches up with the hardware capability. 
Software specifications can uncover oversights and conflicts in the preceding 
documents (hardware specs, requirements, and so on). 

140 Embedded Microprocessor Systems 



Software specifications can help clear up confusion regarding actual functional- 
ity, such as how the operator interface works. 

Software Specifications Outline 

The following is a generic outline for software specifications: 

Overview. A brief description of what the specifications cover. 

Related documents. ANSI and IEEE specs. May also include a reference to the 
product requirements document. 

Description. A brief description of the software and what it does. Typical 
sections include: 

Operator interface. A detailed description of operator interaction with the 
system. How a keypad is used, what screens are displayed, what keys are 
locked out in which modes, and so on. 

communication. Proprietary protocols should be spelled out in detail, with 
opcodes defined, checksum/CRC methods defined, sizes of data packets 
specified, and so on. Spell out things like how word-wide data is 
transferred over byte-wide interfaces (LSB first or MSB first?). Standard 
protocols (such as TCP/IP) can just be referenced. 

specifications also cover it. However, the software specifications should 
detail how the hardware will be controlled. Specific algorithms should be 
specified. If the algorithm is very complex, it may be included in an 
appendix and referenced here. Assumptions about the hardware should be 
included, such as the following examples: 

Interfaces to other systems. Includes a description of protocols used for 

Hardware controlkd. This may appear redundant since the hardware 

Does the motor controller have hardware protection against shoot- 
through when the motor changes direction or must this be done in 
software? 

Is a software interlock required to prevent two relays from overlapping? 
How much time does the software allow for the relay to open before 

To what state is the hardware assumed to be initialized? 
How long is the software-generated reset pulse held? 
Will the software need to insure a write recovery time for any hardware 

checking status? 

devices? 
Interrupt/task priodies. Unique requirements for priorities of interrupts or 

tasks should be documented. Nested interrupt requirements should be 
specified. 

Software Design 141 



Interrupt usage. How interrupts are used, which ones are used for what, which 
ones are edge versus level sensitive, and so on. 

Memory usage. How the memory will be organized, how much is required for 
data buffers, how much is needed for storing acquired samples, and so on. 

Tools. What software tools will be used for development. 

Special requirements. For example, if the software will perform a lot of 
floating-point calculations, this should be spelled out. If there is no hardware 
FPU, you will want to prove that the system throughput will still be adequate. 

Appendix. The appendix should include any calculations that go into the 
software design, such as the following: 

Maximum interrupt latency for critical interrupts. How long interrupts can be 

Service time calculations. To verlfy that processing does not fall behind. Things 

Interface speed. Calculations to venfy that, say, the Ethernet can keep up with 

Data movement. If you move a lot of data around, calculations to venfy that 

turned off. 

like processing time for serial data to be sure a byte is not missed. 

the data. 

the PCI bus, for example, has sufficient bandwidth to handle all the data. 

Customer-driven requirements. In some designs, there will be documentation 
requirements provided by the customer. A military customer may want specific 
documents describing how the design will actually be implemented. A medical 
application may require a section addressing revision control. A product to be 
used in a hazardous environment or to control hazardous equipment may 
require a section that addresses safety. 

In Chapter 5,  we'll look at interrupt hardware and software, which is typically 
what makes an embedded system into a real-time system. 

142 Embedded Micr@rocessor Systems 



Interrupts in Embedded Systems 5 

I have deliberately left discussion of interrupts out of the preceding chapters, treat- 
ing interrupt code as a “black box” that produces certain outputs. Part of the reason 
for the brevity of Chapter 4 is that the real-time aspect of an embedded system often 
depends on interrupts; such software is covered here. Interrupts in a real-time 
system require a tight relationship between software and hardware. 

Interrupt Basics 

An interrupt is an input to a microprocessor that temporarily redirects the program 
flow. An interrupt can n o w  the processor when an analog-todigital converter 
(ADC) has new data, when a timer rolls over, when a direct memory access (DMA) 
transfer is complete, when another processor wants to communicate, or when 
almost any asynchronous event happens. The interrupt hardware is initialized and 
programmed by the system software. When an interrupt is acknowledged, that 
process is performed by hardware internal to the processor and the interrupt 
controller integrated circuit (IC) (if any). Figure 5.1 shows the sequence of events 
performed by the hardware and software in response to an interrupt. When an 
interrupt occurs, the on-chip hardware performs the following functions: 

It saves the program counter (the address the processor was executing when the 
interrupt occurred) on the stack. Some processors save other information as well, 
such as register contents. 
It executes an interrupt acknowledge cycle to get a vector from the interrupting 
peripheral, depending on the processor and the specific type of interrupt. 
It branches to a predetermined address specific to that particular interrupt. 

The destination address is the interrupt service routine (ISR, or sometimes ISP for 
interrupt service process). The ISR performs whatever functions are required and 

143 



CPU W C M N G  ISR I1 CPUU(ECMNGBAC K G R ~  

1 INTERRUPT OCCURS HERE 

CPU EXECUTING EACKGROUNO CODE I I 

CPU HARDWARE PERFORMS THE 
FOLLOWING ACTIONS IN RESPONSE 
TO THE INTERRUPT I N P n  

SAVES RETURN ADDRESS ON STACK 

F EXTERML IhTERRJPT CONTROLLER 
45 USED CPJ NOTIFIES CONTROrLtH 
ThAT INTERRLPT S BEING SERWCED 
AND CONTROLLER NOTIFIES CPL 
WHICH INTERRUPT HAS OCCURRED 

ON SOME DEVICES, FURTHER 
IUTERRUPTS ARE DISABLED 

DURING ISR. SOFTWARE MUST. 
S A M  ANY SYSTEM CONTEXT THAT MAY 
BE ALTERED BY THE ISR 

PERFORM ANY FUNCTIONS NECESSARY 
IN RESPONSE TO THE CONDITION OR 
EVENT THAT CAUSED THE INTERRUPT 

IF AN EXTERNAL INTERRUPT 
CONTROLLER IS USED, SOFTWARE 
MAY NEED TO NOTIFY CONTROLLER 
THAT IMERRUPT SERWCE IS COMPLETE 

CPU HARDWARE PERFORMS THE 
FOLLOWING ACTIONS IN RESPONSE 
TO THE ISR RETURN 

IF THE CW HAS AN ISR-SPECIFIC 
RETURN INSTRUCTION, INTERRVmS 
ARE REENABLED. 

POP RETURN ADDRESS FROM STACK 

RETURN CONTROL TO CODE AT 
POPPED RETURN ADDRESS ON SYSTEMS THAT DISABLE ALL 

INTERRUPTS WHEN AN INTERRUPT 
OCCURS, SOFTWARE MUST REENABLE 
INTERRUPTS 

RESTORE ANY SAVED SYSTEM CONTEXT 
THAT WAS STORED AT THE BEGINNING 
OF THE ISR. 

C W  BRANCHES TO ISR AND BEGINS 
EXECUTION THERE. 

RETURN. ON SOME CPUS THE ISR WILL 
USE A SPECIAL RETURN INSTRUCTION 
THAT REENABLES INTERRUPTS 

Figure 5.1 
Interrupt Processing. 

then returns. When the return code is executed, the processor performs the 
following tasks: 

It retrieves the return address and any other saved information from the stack. 
It resumes execution at the return address. 

The return address, in nearly all cases, is the address that would have been 
executed next if the interrupt had not occurred. If the hardware and software 
engineers do everything right, the code that was interrupted will not even know 
that an interrupt occurred. The hardware part of this process occurs at hardware 
speed-microseconds or even tens of nanoseconds for a fast CPU with a high clock 
rate. 

Interrupt input to microprocessors comes in various flavors. Some processors 
have dedicated interrupt input pins that send the processor to a specific address. 
Other processors have only one interrupt pin, and the interrupting device must 
supply an interrupt vector that tells the processor where the ISR is located. Some 
processors have both kinds of input. 

Interrupt Vectors 

All processors require an interrupt vector when an interrupt is acknowledged. The 
interrupt vector tells the processor where to go to service the interrupt. On some 

144 Embedded Microprocessor Svstpm r 



processors, the vector can be an actual instruction that is executed just as if it 
occurred in ordinary code. Other processors expect a number that is translated by 
the processor into an address. 

Figure 5.2 shows the three methods of generating a vector to the processor: from 
an external interrupt controller, from an internal interrupt controller, or from the 
peripheral itself. On some processors that use an internal controller, the internal 
hardware may not produce a separate interrupt cycle with a true vector, but the 
effect is the same. 

EXTERNAL 
INTERRUPT 
CONTROLLER 

INTERRUPT 
REQUESTS 
FROM { 
PERIPHERALS 

PROCESSOR 
INTERRUPT * 
VECTOR 

- INTERRUPT 
REQUESTS 

PERIPHERALS i 
PERIPHERALS 
REQUESTING 
INTERRUPTS 

INTERNAL 
INTERRUPT 
CONTROLLER PROCESSOR 

INTERRUPT 
VECTOR 

--/ 
PROCESSOR 

VECTORS 

I 
Figure 5.2 
Interrupt Vector Generation. 

Interrupts in Embedded Systems 145 



Edge- and Level-Sensitive Interrupts 

An interrupt input can be edge or level sensitive. A level-sensitive interrupt is 
recognized by the processor whenever the interrupt pin is in the active state. An 
edge-sensitive interrupt means that the processor responds to a rising or falling 
edge on the interrupt pin. Some processors and interrupt controllers have inter- 
rupt inputs that can be programmed as either level or edge sensitive. We’ll address 
edge- and level-sensitive interrupts in more detail later in the chapter. 

Interrupt Priority 

Interrupts usually have a priority. The priority determines when an interrupt is 
serviced. A higher-priority interrupt takes precedence over a lower-priority one if 
both are asserted at the same time. Some processors permit nested interrupts. When 
enabled by software, nested interrupts allow an ISR itself to be interrupted by a 
higher-priority device. Interrupts from lower-priority devices are ignored until the 
higher-priority ISR is completed. 

Different types of processors have different priority schemes. The 68000 family 
parts, for example, allow a peripheral requesting an interrupt to assert its own 
priority; it is up to the hardware engineer to make sure there are no conflicts. The 
Intel 8259 interrupt controller has several interrupt input pins, with programma- 
ble priority. The priority of interrupts inside an embedded processor sometimes is 
fixed, sometimes programmable. 

Interrupt Hardware 

Hardware to implement interrupts varies with the processor and the peripheral 
doing the interrupting. We will look at the simplest cases first and work up. 

The simplest interrupt is a single pin on the microprocessor. The 80188, for 
example, has four interrupt inputs: INTO, INTl, INT2, and INTS. (There is a fifth, 
NMI, which we’ll discuss later.) These interrupts may be programmed to be either 
level or edge sensitive. Each pin, when activated, causes the processor to vector to 
a specific address, as shown in Table 5.1. 

The code at the interrupt address is usually a jump to the actual ISR somewhere 
else. The vector, as mentioned earlier, is provided by an interrupt controller inside 
the 80188. 

146 Embedded Microprocessm Systems 



Table 5.1 
801 88 Interrupt Vector Addresses. 

Interrupt Vector Address 

INTO 
INT1 
I NT2 
I NT3 

0003oh 
00034h 
00038h 
0003Ch 

The software may enable any, all, or none of these four interrupts, and it deter- 
mines whether the interrupts are level or edge sensitive. In some processors, such 
as the PIC 17C4x, interrupt pins can be used for functions other than interrupts, 
and this is under software control as well. In general, most processors have the 
ability not only to enable and disable specific interrupts but also to disable all inter- 
rupts at the same time. 

The second type of interrupt is generated by internal peripherals. The 80188 
internal peripherals that can generate interrupts include two DMA controllers 
and three timers. Other processors and other versions of the 80188 have differ- 
ent internal peripherals, such as universal asynchronous receiver/transmitters 
(UARTs) . 

Internal interrupts work much the same way as external interrupts. Some event, 
such as a timer rollover, occurs, and an interrupt is generated to the processor. Like 
the external interrupts, these usually have a predetermined interrupt vector 
address. The software must enable the peripheral device and enable interrupts 
from the device. Like interrupts from the external pins, these interrupts are 
handled and the corresponding vectors produced by the internal interrupt 
controller. 

Sometimes internal interrupts are shared. That is, multiple devices may share a 
single interrupt source and vector. The timers in the 80188 work this way-all three 
timers use the same interrupt. The ISR must read the timer status bits to determine 
which timer (or timers) generated the interrupt. Similarly, the PIC 17C42 has 
several internal peripherals that can generate interrupts but only three interrupt 
vectors, so several peripherals must share an (internal) interrupt signal and vector. 
When a peripheral interrupt occurs on the shared line, the ISR must poll the inter- 
rupt status bits to see which peripherals are requesting service. The PIC 16C6x 
series has only one interrupt vector-all interrupts require polling to determine 
the source unless only one source is enabled. 

The next level of interrupt complexity involves a vector provided by the periph- 
eral. In this scheme, the peripheral interrupts the processor, and the processor 
acknowledges the interrupt. When the acknowledge occurs, the peripheral places 

Interrupts in Embedded System 147 



a vector value on the data bus. In some early processors, such as the 8085 and 280, 
the vector was actually an instruction. These processors include several 1-byte 
instructions that force the processor to a specific address in low memory, and the 
interrupt controller typically would provide one of those instructions in response 
to an interrupt acknowledge. Other processors expect a number, which is used as 
a pointer into a table, usually in low memory, that contains the jump instructions 
to the IS&. (The 280 actually supports both schemes.) The 8086 family, for 
example, reserves the first 1024 bytes of code space, from 00000 to 003FF, for the 
interrupt table. 

Using external vectors on processors that have that capability is the most flexi- 
ble interrupt scheme, but it also requires more hardware than other methods. Each 
peripheral in this scheme must include the hardware to recognize interrupt cycles 
and provide the correct vector. 

Interrupt Bus Cycles 

When using an external vector, most processors perform an interrupt acknowledge 
cycle that is similar to other bus cycles, but with different control or status signals. 
The 8086, for example, performs a bus read cycle but with the interrupt acknowl- 
edge (-INTA) signal replacing -RD and with a different status indication. The 
68000 asserts -DS normally, and only the status bits indicate that the bus cycle is 
an interrupt acknowledge. 

Some designs use an interrupt IC that has several discrete interrupt inputs but 
interfaces to the single processor interrupt line. These ICs produce the interrupt 
request to the processor and, when the interrupt is acknowledged, return the inter- 
rupt vector corresponding to the highest-priority interrupt pin activated. The 8259, 
typical of interrupt controller ICs, has eight interrupt inputs and is designed to 
interface to Intel processors. 

Daisy-Chained Interrupts 

Some designs use daisychained priority interrupts, which are illustrated in Figure 
5.3. The interrupt input in this scheme, usually open collector, is driven by all the 
interrupting peripherals. When any peripheral needs to interrupt the processor, it 
activates the interrupt line. Each peripheral also has a priority in and a priority out. 
The priority in is connected to the next highest peripheral in the daisy chain or 
tied active for the highest-priority device. The priority out is connected to the next 
lowest peripheral. If any particular peripheral is not requesting an interrupt, its 

148 Embedded Micropomsur Systems 



HIGHEST PRIORITY LOWEST PRIORITY 

INTrRRUPT 
REQUEST 

MICROPROCESSOR 

lNTERRWT 
ACKWWLEDGE 

DATA 0US 

Figure 5.3 
Daisychained Priority Interrupts. 

priority out follows priority in. If the peripheral is requesting an interrupt, its pri- 
ority out is blocked, which also forces all lower priority-out pins to be blocked. This 
prevents lower-priority peripherals from generating an interrupt vector. When the 
processor generates an acknowledge, the highest-priority peripheral that is request- 
ing an interrupt returns the vector. 

The advantage of daisy-chained interrupts is that fewer interrupt lines are 
needed-one instead of one per peripheral. The disadvantage is the priority struc- 
ture. In this method, the first device has the first chance at acknowledging the inter- 
rupt, even if it asserted the interrupt after a lower-priority device. 

If several higher-priority devices (that is, higher in the acknowledge chain) assert 
interrupts, it may be some time before the interrupt from a lower-priority device is 
serviced. The priority of each device in a daisychained scheme is fixed by the 
peripheral’s position in the chain-the software cannot change it. 

Other Types of Interrupts 

The 68000 family of processors can support a fairly sophisticated interrupt scheme. 
The processor has three interrupt input signals that are encoded into seven prior- 
ity levels (the eighth level occurs when all the inputs are inactive). Any device can 
request an interrupt by driving these inputs with its priority level. A priority circuit 
inside the processor checks the input priority against the current processor prior- 
ity. If the input priority is higher, the interrupt is acknowledged. The interrupt 
vector may come from the interrupting device or may be generated internally. If 

Interrupts in Embedded Systems 149 



CPU 

INTERRUPT INPUT 

CONTROL SIGNAL 
NMI 

Figure 5.4 
Gating Used to Enable and Disable NMI. 

the interrupt request input is of a lower priority than the current processor prior- 
ity, the interrupt is ignored. 

The interrupt inputs are often driven by opencollector devices so that multiple 
peripherals can share them. Multiple peripherals can share the same priority level, 
but each peripheral can provide a different vector to the CPU. 

In addition to ordinary interrupts, many processors also have a nonmaskable 
interrupt (NMI) input. As its name implies, NMI is not maskable (cannot be 
ignored) by the software and always will be serviced by the processor even if inter- 
rupts are off. It normally is used for things such as pending power shutdown, 
memory parity error, or some fatal error in the system. Many embedded designs 
do not use NMI but terminate it in the inactive state so it can never occur. NMI 
can be used just like any other interrupt, but remember that it cannot be ignored; 
when NMI occurs, the processor always responds. If you are using NMI as a general- 
purpose interrupt, be sure that you know when it can occur or make provisions to 
disable it with external hardware. Make sure the NMI cannot occur before the inter- 
rupt vector and stack are set up. 

Figure 5.4 shows how the NMI can be gated with external hardware using a two- 
input AND gate. One input of the gate goes to the interrupt signal; the other input 
goes to a control signal, which is a port bit or register bit that can be written by the 
CPU. The output of the gate goes to the NMI input on the CPU. To enable the 
interrupt, the CPU sets the control bit to a 1. This allows the interrupt input to 
drive the NMI line. To disable the interrupt, the CPU sets the control line to a 0. 
This example assumes a high true interrupt source and a high true NMI; obviously, 
the logic would be different if the input or NMI were low true. 

Using Interrupt Hardware 

This section describes some guidelines for interfacing to the interrupt hardware. 

150 Embedded Microprocessor Systems 



Level-Sensitive Interrupts 

When using level-sensitive interrupts, remember that the processor will see an 
interrupt when and only when the level-sensitive interrupt pin is in the active state. 
This can be an advantage or a disadvantage. If the interrupt gets stuck in the active 
state, the processor will service the interrupt, exit the ISR, and immediately reenter 
the ISR. On most processors, nothing else will get done, as the processor loops con- 
tinuously in the interrupt code. When using level sensitive interrupts, make sure 
they cannot get stuck. If a level-sensitive interrupt comes from an external device 
or system, be sure that turning off the power to that device will not leave the inter- 
rupt in the active state. 

Devices that generate level-sensitive interrupts usually need some mechanism 
that allows the processor to clear the interrupt request before exiting the ISR. In 
some cases, this may happen automatically, such as when the processor reads a byte 
from the peripheral. In other cases, the software may have to clear the interrupt 
by writing to an address, toggling a port bit, or performing some other operation. 

The reverse of a stuck interrupt also can occur with a level-sensitive interrupt. 
If the interrupt is asserted and removed before the processor services it, the inter- 
rupt (usually) will never be recognized. This can occur if the interrupt is not 
latched and the processor has interrupts disabled or if the processor is busy ser- 
vicing a higher-priority interrupt that takes longer to handle than the active time 
of the missed interrupt. 

Level-sensitive interrupts can be useful if multiple devices share the interrupt. 
The devices can each assert the interrupt when necessary. If two devices assert the 
interrupt at the same time, the processor will service the first one, exit the ISR, 
reenter the ISR, and service the second. Note that in processors that have a single 
interrupt input and an external controller or that use daisy-chained interrupts, the 
single interrupt input is level sensitive. 

Edge-Sensitive Interrupts 

Edge-sensitive interrupts are ideal for counting events. The processor accepts the 
interrupt only on the edge. Some processors have a requirement that the interrupt 
go to the active state and stay in that state until serviced. For these devices, pulsing 
the interrupt to the inactive state generates the interrupt. For example, the 80188 
interrupt inputs, when programmed to be edge sensitive, must go high and remain 
high until serviced by the processor. The interrupting device can leave the line high 
and pulse it low to generate an interrupt. The line can be left high between inter- 
rupts. If you use this technique, be sure that the inactive pulse width meets the 
minimum requirement for the processor or interrupt controller IC. This time 
usually is measured in clock cycles. 

Figure 5.5 illustrates the difference between edge- and level-sensitive interrupts. 

Interrupts in E m b e a d  Systems 151 



An edge-sensitive interrupt is deteded 
on the active edge. Once captured. 
the intempt input can be remved 
and the CPU will still service it. a 

EDGE-SENSITIVE INTERRUPT 
(Rising edge in this example) 

Once serviced. an edge-sensitive 
interrupt can remain in the active 
state forever and the CPU will 
ienore %. Only the edge matters. h 

INTERRUPT SERVICE ROUTINE 0 0 

Edge-Sensitive interrupts 
are usually cleared by 
something the ISR does 
(such as reading e byle 
from a peripheral device). 

If a level-sensitive interrupt is 
too short, the CPU may never i s  see it. 

A leveksensitive interrupt 
must remain in the active 
state until the CPU 
services it. a 

INTERRUPT SERVICE ROUTINE 0 

Figure 5.5 
Edge- Versus Level-Sensitive Interrupts. 

Edge-sensitive interrupts are ideal for applications in which the peripheral needs 
to interrupt the processor without waiting to see whether the interrupt actually is 
acknowledged. In addition, edge-sensitive interrupts have no problem with con- 
tinual interrupts if they get stuck, but they have the opposite problem. If the inter- 
rupt gets stuck in the active state, the processor does not continuously service it 
but instead ignores subsequent interrupts. If two devices share an edge-sensitive 
interrupt and one device generates an interrupt request followed by the second 
device, the second interrupt usually will be missed since the processor (or inter- 
rupt controller) saw only one edge. For this reason, edge-sensitive interrupts are 
rarely shared. Figure 5.6 illustrates this condition. 

If edge-sensitive interrupts must be shared, there are ways around the missed 
interrupt problem. The simplest method is to have a status buffer that can be read 
by the processor to see which devices are requesting an interrupt. Each peripheral 
must set its bit in the status buffer when it requests an interrupt and leave the bit 
set until the interrupt is serviced. The software services the first interrupt, enables 
the interrupt (if disabled), then checks the register. If more interrupt requests are 
pending, the processor services the second interrupt before exiting the ISR. 

152 Embedded Mam@rocessm System 



INTERRUPT 1 I 1 I 
INTERRUPT 2 I I 

I 
SHARED INTERRUPT I 

TO MICROPROCESSOR 7 - 
ISR FOR INTERUPT 1 I 
ISR FOR INTERRUPT 2 

I 0 I 

f 
ISR 2 OCCURS WHILE ISR 1 IS STILL HIGH 
MICROPROCESSOR SEES ONLY Oh€ EDGE 
CAUSED BY ISR 1. AND INTERRUW 2 IS 
NEVER SERWCED 

Figure 5.6 
Shared Edge-Sensitive Interrupts. 

Another method to handle this problem is to arbitrate the interrupt input so 
that no device can request an interrupt while the line is active. Each interrupting 
device must hold the line active by using a resettable flipflop or something similar 
until the processor clears it. The software does not clear the interrupt line until it 
has serviced the interrupt and is ready to accept another. Most edge-sensitive inter- 
rupt circuits permit the internal interrupt to be cleared before another actually is 
enabled, which keeps the ISR from being a reentrant. 

A single device connected to an edge-sensitive interrupt can have the same 
missed interrupt problem as multiple devices if it generates interrupts at a rate 
faster than the processor can service them. 

Many processors, such as the 80188, have timer inputs that can be used as 
interrupts. The timer is programmed to count external edges on the input pin and 
generate an interrupt on rollover. The timer is then loaded with a count that is one 
less than the rollover value. The first edge causes a rollover and generates an inter- 
rupt. The ISR must reload the counter for the next interrupt. If the timer function 
is not needed, the input can function as an interrupt. Even if the extra interrupt 
is not needed because you ran out of interrupt inputs, using a timer input as an 
interrupt can be useful in some applications. If it is essential to know if an inter- 
rupt is missed, this can be determined by looking at the timer in the ISR. If no 
interrupts are missed, the timer will have rolled over to zero. If one or more inter- 
rupts were missed, the timer will keep incrementing them and the value will be 
greater than zero. 

If you have a use for this technique, remember that some timers can be pro- 
grammed either to keep incrementing after a rollover or to roll over and stop. Be 
sure you program the timer to keep going after a rollover. Figure 5.7 shows a timing 
diagram of the use of a timer as an interrupt source. 

Interrupts in Embedded Systems 153 



INTERRUPT INPUT I 1 
FFFF I aoao I FFFF laowl 0001 I FFFF TIMER VALUE 

ISR EXECUTION 0 0 
INTERNAL CPU INTERRUPT I I I 
(GENERATED BY INTERNAL 
INTERRUPT CONTROLLER 
IN RESPONSE TOTIMER 
ROLLOMR) 

I 
f 

IF INTERRUPT IS MISSED. 
TIMER WILL ROLL OMR 
TO OOM) THEN ooO1 AND 
C W  CAN DETECT MISSED 
INTERRUPT. 

f 
C W  RESETS TIMER TO 
FFFF AS PART OF ISR 

Figure 5.7 
Using Timer Input as an Interrupt. 

Externally Vectored Interrupts 

Using externally vectored interrupts, where the interrupting device generates the 
interrupt vector, is fairly straightforward. When using an interrupt controller IC, 
choose one that is compatible with the processor family and program it accord- 
ingly. You must select a version of the interrupt controller IC that matches the speed 
of the processor. Be sure that you know the quirks of the part before using it. Some 
interrupt controller ICs, for example, can have allinterrupt inputs be edge or level 
sensitive, but the individual inputs are not programmable. 

In cases where there is no interrupt controller but the peripheral itself gener- 
ates the vector, the design is a bit more complicated. First, the peripheral device 
must generate a vector that is compatible with the processor. In many peripheral 
ICs, this is programmable, but make sure there are no conflicts with other devices 
that might use the same vector. Also, the timing must be compatible with the proces 
sor-tup time, hold time, and so on. When interfacing a peripheral that gener- 
ates vectored interrupts, be sure that other logic does not mistake an interrupt 
acknowledge cycle for a normal bus cycle. For example, if an address decode gen- 
erates a read strobe to an input buffer, be sure it decodes the processor status lines 
and does not go active when an interrupt cycle is executed. 

If daisy-chained interrupts are used and peripherals are not all from the 
same family, make sure that the priority in/out signals and timing delays are 
compatible. 

When interfacing a peripheral that expects an INTA signal (such as 8086 family 
parts) to a 68000 or similar part that does not generate an INTA, make sure the 
INTA signal is synthesized by decoding the -DS and the processor status bits. Be 
sure that the decoding logic never mistakes a normal processor cycle for an inter- 
rupt cycle. 

154 Ernbedded Mimoprocessar Systems 



Daisychained interrupts have one disadvantage-they cannot be individually 
masked at the processor. If the peripheral logic has no provision to mask the inter- 
rupt, there is no way for the processor to ignore that interrupt when performing 
a high-priority task that cannot be interrupted. Be sure this is not a problem with 
the system design. If it is, some mechanism must be added to allow the processor 
to individually mask the peripheral interrupts. 

The 68000 family parts, as mentioned earlier, have encoded interrupt lines. Most 
peripheral ICs have only one interrupt output. If you are interfacing just one of 
these to a 68000 family processor or other processor with encoded interrupt lines, 
you can wire-OR the lines to get the priority that you want. However, if there is 
more than one peripheral and you need more than one priority level, you must 
drive the lines individually, through buffers. 

Some peripheral ICs (such as the Z853x parts) require that INTA or other signals 
be synchronized to a clock. Be sure you work out this timing and add wait states if 
necessary. 

More than any other single thing, the handling of interrupts is probably what sets 
real-time embedded software apart from other microprocessor-based software. 

If interrupts are used, the software must initialize the hardware. This means 
enabling the interrupts, loading the interrupt vector table into RAM (if required), 
programming vectors (in peripherals with that feature), and selecting any other 
relevant parameters (such as the edge/level mode). It is important that interrupts 
not actually be enabled until everything else is set up. If an interrupt occurs before 
the vector table is loaded into RAM, the results will not be good. 

Interrupt Service Mechanics 

When an interrupt occurs, the ISR is executed. All IS% must perform three actions: 

Service the hardware that generated the interrupt. 
Enable the system to accept further interrupts. 
Return control to the point at which the interrupt occurred. 

The only exceptions to this are terminal interrupts, such as NMI, that can be used 
to signal the processor to stop due to an error. 

Servicing the hardware that generated the interrupt means clearing the inter- 
rupt request, if necessary, and processing whatever caused the request. The pool 

Intm-upts in Embedded System 155 



timer system has one interrupt, a timer interrupt that occurs 250 times per second. 
Servicing that interrupt involves the following sequence (Appendix A lists the full 
pseudocode) : 

Increment the 1/250second time counter. 
If the display should blink, do it at half-second intervals. 
At the 1-second rollover, decrement the current time. 
If the current time rolls over to OO:OO, set a flag to tell the polling loop about it 

Write the next display digit to the display and enable the proper digit. (This scans 

If keys are pressed on the keypad, debounce them and set the appropriate flag 

and load the next (off or on) time. 

the display.) 

for the polling loop. 

On returning from the ISR, enabling the system to accept further interrupts may 
be as simple as executing an interrupt return instruction that is similar to the ordi- 
nary subroutine return but also reenables interrupts. Other processors require a 
separate interrupt enable (reenable) instruction prior to an ordinary subroutine 
return instruction. 

Some interrupt controllers, both those inside and outside the processor IC, need 
to be told when interrupt processing is complete by writing a value to some address. 
In this case, just returning from the ISR is insufficient. Returning to the code that 
was interrupted also means restoring the state of the machine. Any registers that 
were used in the interrupt should have been saved on the stack and restored before 
returning. 

When an interrupt occurs, the processor saves the return address on the 
stack (usually). (The stack was described in Chapter 4.) The usual practice for 
entering an ISR is to save all the processor registers, just like any other subroutine. 
However, as Chapter 4 discussed, limitations on stack size sometimes make this 
impractical. 

An ordinary (non-ISR) subroutine can be called with the knowledge that some 
registers will be changed during execution. An ISR cannot do this, as there is no 
way to know what registers are being used by the polling loop or a higher-priority 
ISR when the interrupt occurs, The ISR must save all registers that it uses unless 
the software engineer can be sure that a particular register is used nowhere else. 
This is a dangerous practice unless you can dedicate certain registers only to the 
ISR. 

In addition to limiting stack size, some processors make it impossible to save reg- 
isters on the stack. The PIC17C42, for example, has a l6level stack and no PUSH 
or POP instructions. The stack is used for return addresses only. Values that must 
be saved, such as register contents, must be stored in discrete RAM locations as 
described for subroutines in Chapter 4. 

156 Embedded Microprocessor Systems 



In processors that have a hardwired stack, you must limit the levels of ISRs or 
the stack will overflow. You cannot pass parameters on the stack (at least not very 
many) for the same reason. 

The context switching registers described in Chapter 4 can be used for inter- 
rupts. For example, the 8051 has four independent register banks. One could be 
used for the polling loop, one for subroutines, and two for interrupts. For proces 
sors that have this capability, remember that common registers must be saved just 
like in a subroutine. Going back to the 8051, for example, there is only one accu- 
mulator register, so the ISRs must push it onto the stack. Of course, any register 
save method that works for a subroutine will work for an ISR. 

Nested Interrupts 

Any time an interrupt occurs, there is a possibility that a second interrupt will occur 
right after the first ISR begins executing. If this happens, the second ISR can- 
not execute until the first ISR finishes executing. Say you have a system with two 
asynchronous, unrelated interrupts. One of the interrupts does nothing but toggle 
a port bit. If you hook an oscilloscope to that port bit, you will find that the edge- 
toedge timing varies by an amount equal to the execution time of the first ISR 
(plus any time that interrupts are disabled for other reasons). 

As I mentioned earlier, some processors allow interrupts to be nested, which 
allows an ISR to itself be interrupted by another interrupt. The simplest method 
of interrupt nesting is to allow any ISR to be interrupted by any other. The other, 
more complex, method is to allow an ISR to be interrupted only by a higher- 
priority interrupt. 

Interrupt nesting normally is used when a high-priority interrupt cannot 
wait. Without nesting, the lowest-priority interrupt becomes the highest while it is 
executing. Many microprocessors and microcontrollers disable all interrupts as 
soon as an ISR is executed. To use nested interrupts, the interrupt routines that 
you want to make interruptible must reenable interrupts as soon as they begin 
execution. 

If your design requires interrupt nesting, there are some special considerations: 

Stack Size. The first consideration is stack size, which becomes important if 
interrupts are nested. If you have an eight-level stack and nine levels of 
interrupts, you have an obvious problem. 

Limited Register Sets. Context switching, as I mentioned earlier, can be a 
problem, depending on how many levels you have. I have designed several 
boards using the ADSP-2101 family parts, and all these designs use the 

Interrupts in Embedded Systems 157 



alternate register set for interrupts. On these designs, I did not need interrupt 
nesting, so I always know that the alternate set is available to an ISR when it is 
executed. By definition, any previous ISRs have completed before the next 
one begins. However, if you need to nest interrupts and you have more 
interrupts than you have alternate register sets, then you must use another 
method to save the context. 
Jitter. Nesting interrupts does not eliminate jitter (variation in interrupt 
response time caused by latency of other interrupts), but it does reduce it. 
Jitter is not completely eliminated because there is still some time required for 
the hardware to execute the interrupt and for the first ISR to save the CPU 
context and then reenable interrupts. In effect, the amount of time that 
interrupts are disabled is not the execution time of the ISR, but the execution 
time of the ISR up to the point that interrupts are reenabled. 
Priority Tradeoff. Suppose you have that two-interrupt system we mentioned a 
few paragraphs back and you decide to make the port bit toggle more stable 
by nesting it with the first interrupt. You reenable interrupts inside the first 
ISR so the port bit ISR gets to execute if its interrupt occurs. You look at the 
port bit on an oscilloscope and see that it is now more stable than before. 
However, what you can’t see is that the first interrupt now has increased 
latency. The first ISR must stop executing if the second interrupt occurs, and 
does not resume until the second ISR is finished. 

Passing Data to or from the ISR 

When it occurs, an interrupt is an asynchronous event. The polling loop can be 
doing anything, executing any instruction, at the time. Unlike a subroutine call, 
the ISR cannot pass information to the polling loop in a register, unless that reg- 
ister is unused by the polling loop and by all other interrupts. The usual method 
of passing information from the ISR is via buffers and semaphores. The pool timer, 
for example, uses the flags shown in Table 5.2 to pass information from the inter- 
rupt to the polling loop. 

The interrupt routine sets these flags and the polling loop resets them after they 
are recognized. The pool timer does not pass specific parameters from the polling 
code to the ISR, but the ISR does use values set by the polling loop: the initial ON 
and OFF times, loaded when time rolls over, for example. 

158 Embedded Microprocessor Systems 



Table 5.2 
Pool Timer Flags 

Flag Function 

ONFLAG 
OFFLAG 
SEFLAG 
FCFLAG 
MTFLAG 
TFLAG 

Set when the ON key is pressed by the user 
Set when the OFF key is pressed by the user 
Set when the SET key is pressed by the user 
Set when the FCN key is pressed by the user 
Set when the water low switch is closed 
Set when time rolls over to 0 : 0 

BACKGROUND STOPS EXECUTING FOR 
THIS LONG 
c 

BACKGROUND I ISR1 I ISR2 I ISR3 I BACKGROUND 
CODE BEING 
EXECUTED 

INTERRUPT 1 OCCURS HERE 

INTERRUPT 2 OCCURS HERE 
AND IS SERVICED HERE 

INTERRUPT 3 OCCURS HERE 
AND IS SERWCED HERE 

Figure 5.8 
Interrupt Stackup. 

Some Real World Dos and Don’ts 

Interrupt Stackup 

Figure 5.8 shows a system with three interrupts and three ISRs. The code is 
executing in the background when interrupt 1 occurs. During execution of ISR 1, 
interrupt 2 occurs. As soon as ISR 1 is finished, ISR 2 will be executed. During ISR 
2, interrupt 3 occurs, so ISR 2 is followed by ISR 3. The background code stops 
execution for the sum of the time it takes ISR 1, ISR 2, and ISR 3 to execute. Note 
that the interrupts do not have to occur simultaneously to stack up and appear simul- 
taneous to the non-ISR code. 

In any system with more than one active interrupt, eventually, the inter- 
rupts will stack up. Count on it. 

Interrupts in Embedded Systems 159 



The only exception is when you know some interrupts are mutually exclusive. 
For example, if you are using a half-duplex serial interface, you know you will not 
have receive and transmit interrupts simultaneously. Similarly, if your system uses 
either an Ethernet or RS232 interface but never both, you can probably assume 
that you don’t have to worry about those interrupts stacking up. 

Stuck interrupts 

As mentioned earlier, a stuck level-sensitive interrupt can cause the processor to 
hang up in the ISR. It is possible to detect a stuck interrupt (say, so you can shut 
off the motors when it occurs). If you know that the interrupt rate is slow enough 
that the polling loop should execute several times between interrupts, set a flag on 
each pass through the polling loop. The ISR checks the flag and if it is not set, the 
interrupt must be stuck. If the interrupt can occur more than once for each pass 
through the polling loop, add a counter to the ISR and increment the count each 
time that the ISR executes when the flag is not set. If the count ever reaches a value 
higher than should occur in normal operation, the interrupt is stuck. With either 
approach, be sure to take into account other ISRs that may delay execution of the 
polling loop. 

The Shared Memory or VO Trap 

Look at the following numbered lines of pseudocode: 

1. Read location xyz. 
2. OR the value 01 with the data from xyz. 
3. Store the result back at xyz. 

Now look at the following interrupt code: 

OR the value 2Oh into location xyz. 
Return. 

If xyz contains, say, 00, and the first code (steps 1 to 3) is executed, followed by 
the interrupt, the result will be 21 in xyz. If, however, the interrupt occurs while 
the processor is between lines 1 and 2 or 2 and 3, the result will be 01 in xyz. The 
operation performed by the interrupt is overwritten by the code. You can see this 
if you rewrite the original pseudocode with the ISR code in the middle: 

1. Read location xyz. (CPU reads 00) 
2. OR the value 01 with the data from xyz. (Data = 01, but not stored in xyz 

yet.) 

-Interrupt occurs here- 
OR the value 20 h into location xyz. (This is ISR code; ISR leaves 20 h in xyz.) 

160 Embedded Micropocessor S y s t m  



3. Store the result back at qz. (CPU now stores 01 in 9%. ISR operation is 
overwritten.) 

This is a contrived example, but I have seen this exact scenario occur with an 
1 / 0  register more than once. Avoid this pitfall. It can be extremely difficult to find, 
as it can be very intermittent. This leads to what I call the first rule of interrupts: 

Wherever possible, avoid having interrupts that write memory or VO 
locations that are also written by the polling loop or by other interrupts. 
Locations written by the polling loop should be read by the ISR and vice 
versa. 

The exception is certain semaphores. The pool timer ISR, for example, sets 
semaphores when a key is pressed. If the polling loop does not clear the semaphore 
(if it is in a mode in which that key is ignored), the ISR resets the semaphore when 
the key is released. This is a “safe” violation of the rule since the key press will never 
be so fast that the polling loop misses it. It is safe to violate this rule on occasion, 
but be sure you know it is really safe. Again, problems in this area can be very hard 
to find. 

In cases where you must violate this rule because of hardware constraints (an 
1 /0  expander IC shared between the polling loop and the interrupt code, for 
example), disable interrupts before the write operation and reenable interrupts 
after the write. This will keep an ISR from altering the contents in the middle of a 
write. The following is the original pseudocode sequence, bracketed by the 
disable/enable: 

Disable interrupts. 

1. Read location qz. 
2. OR the value 01 with the data from qz. 
3. Store the result back at qz. 

Enable interrupts. 

This, by the way, is the reason why common registers such as the 8051 accumula- 
tor must be saved in the ISR. If the polling loop just did an AND operation on the 
accumulator to check a bit and then the ISR changes the accumulator, the polling 
loop would make the wrong decision. 

One way to avoid problems with shared hardware is to have a pair of mask 
bytes. For example, say an %bit register or output port is written by the software. 
The lower 4 bits are connected to status LEDs and the upper 4 bits turn four sole- 
noids on and off. Let us also say that the polling loop controls the LEDs and an 
ISR controls the solenoids. This is an obvious case where a potential conflict can 
occur. 

Intermpts in Embedded Systems 161 



One solution to this is for the polling code to have a mask byte in RAM. The 
polling loop turns bits on and off in the LED mask but never writes to the hard- 
ware register. The ISR writes to the register, ORing the LED mask byte into its own 
solenoid control value. This could be reversed, of course, with the polling loop con- 
trolling the hardware and the ISR having a solenoid mask byte. 

A related problem can occur on many peripheral ICs. The complexity of modern 
peripheral parts often requires them to have a number of internal registers. Rather 
than using a large block of processor address space, these parts sometimes have two 
addresses: register select and data. In operation, the processor writes the number 
of the internal register it wants to read or write to the peripheral’s register select 
address. It then reads or writes the data address to mod+ the selected internal 
register. If a process in the polling loop or in a lower-priority ISR tries to access 
such a peripheral, and an interrupt occurs between register selection and data 
transfer, and if the ISR also uses the peripheral IC, the original process will access 
the wrong register when it regains control. This happens frequently. It is an easy 
problem to overlook, and it is not always possible to avoid having the ISR and 
another task access the same peripheral IC. 

Race Condition 

A software race condition exists when a process tries to use data before the data 
really are ready. Say that a system has a process in the polling loop and a regular 
interrupt ISR. The polling loop process gets data from some external device such 
as an ADC or maybe commands via an RS-232 link to an external controller. The 
polling loop process places the input data in a memory location, DATABYTE. It 
also sets a flag (semaphore) byte, FLAGBYTE, to tell the ISR data are available. 
Each time the ISR executes, if the flag byte is set, it reads the data from DATABYTE 
and does something with that data, then resets the flag byte. Now look at the 
following code description for the polling loop process: 

1. If input data are available, 
2. Set FLAGBYTE, 
3. Store input data at DATABYTE. 

If the interrupt occurs between Steps 2 and 3, the ISR sees the flag set and 
processes the data. However, because the polling loop process has not yet written 
the data, the ISR uses whatever value is in DATABYTE, which probably is the p e -  
vious data value. In addition, the actual data byte is never processed because the 
flag was reset by the ISR. 

The simple fix for this problem is to swap lines 2 and 3 in the code description 
or disable interrupts around those lines of code. Note that an optimizing compiler 
(see Chapter 4) can create a race condition under the right circumstances. 

162 Embedded Microprocessor Systems 



Cumulative lime Errors 

Imagine a system in which a timer generates an interrupt. Inside the ISR, the soft- 
ware reloads the timer for the next interrupt. This might be done because the timer, 
for whatever reason, is incapable of generating a regular output or because the time 
between interrupts needs to vary with external events. Look at the following ISR 
code description: 

ISR entry. 

Save registers on stack. 

Calculate new timer value. 

Store value to timer. 

When the timer interrupt occurs, a varying amount of time will pass before the 
ISR actually is executed, depending on what the CPU is doing. If a higher-priority 
ISR is executing or if interrupts are not nested, then the variation in this delay can 
be quite large. Figure 5.9 illustrates this situation. In the figure, the CPU loads and 
starts the timer at the beginning of each crosshatched area. The timer generates 
an interrupt and stops counting at the end of the crosshatched area. 

Assume that the delay between assertion of the interrupt and execution of 
the instruction in the ISR that loads the counter is 300 microseconds (ps) (area A 
on Figure 5.9) and the next interrupt must occur 10 milliseconds (ms) after the 
current one. Since it takes 300ps to load the counter, the time before the next inter- 
rupt actually will be 10.3ms. This error accumulates; each interrupt interval is 
off by 300ps. More important, since other factors can cause this value to vary, you 
cannot just subtract the error from the timer load value. For example, the delay 
indicated by area B on Figure 5.9 might indicate a case in which the normal delay 

=TIMER RUNNING 

-1 =VARYING INTERRUPT LATENCY 

INTENDED INTERRUPT IMERVALS (REGULAR) 

A B C 

I I I I I I I 
ACTUAL INTERRUPT INTERVALS 

Figure 5.9 
Variation in Interrupt Servicing (Latency). 

Interrupts in Embedded Systems 163 



is increased because the CPU was doing something (such as a DMA transfer) that 
had precedence over the interrupt. The third delay, area C, might be where the 
CPU was executing another ISR when the timer interrupt occurred. 

In this particular case, the best solution is to use a timer that can generate regular 
interrupts. A more likely scenario in which that would not be possible is if the time 
between interrupts must vary. In that case, this particular problem can be fixed by 
using a timer with a holding register that can be loaded with a new count while it 
is running and that starts using the new count when the current count expires. 
When the interrupt is generated, the timer automatically starts the next count 
and the ISR calculates the following count and loads it into the timer’s holding 
register. 

This example concentrated on timers, but the basic principle applies to any 
system in which the software causes a timed value to vary. The basic rule is that, if 
a cumulative error is unacceptable, the timing function (or at least the timebase) 
must be performed in hardware. An example of an area in which cumulative timing 
error does not create a problem is an RS232 interface implemented in software. 
Since the receiver resynchronizes on each byte, a small error in bit-to-bit sample 
timing is acceptable. On the other hand, in a timekeeping application, where time 
of day must be maintained, an error of 1 count in 10,000 results in the time being 
off by a full minute at the end of a week. This is unacceptable in most such 
applications. 

The time accumulation rule does not preclude software operation of functions 
such as a real-time clock. It just means that the timebase, which generates the 
regular timekeeping interrupts, must be maintained in hardware. This latency in 
servicing interrupts limits the precision with which software can perform any timing 
operation and must be taken into account in the design. 

Multiple Reads 

Suppose our polling loop has a piece of code that does this: 

Read location X 
If X = 0, do something 
Read location X again 
If X = 1 ,  do something different 
Read location X again 
If X = 2, do a third thing 
and so on 

The intent is that only one operation will be performed for each pass through 
the loop because X is not expected to change. Then suppose that an interrupt 
occurs between the first and second read and that the ISR changes the value of X 

164 Embedded Micrupocessar System 



The result could be a path through the decision tree that appears impossible when 
you try to debug it. In cases where an ISR can change a memory location, never 
assume it will be the same on two separate reads outside the ISR. If the polling loop 
(or another ISR, if nested interrupts are used) needs to use the value twice, read 
it once, then store it in a register or a temporary memory location for subsequent 
use: 

Read location X 
Store it in location Y 
If Y = 0, do something 
Read location Y again 
If Y = 1, do something different 
Read location Y again 
If Y = 2, do a third thing 
and so on 

Now changes to Xdo not affect what the loop does. This scenario may seem 
unlikely, but remember that some simple microcontrollers have no compare- 
with-immediate-data instruction. On these processors, the only way to test for a 
specific value is to exclusive-OR the variable ( X  in this case) with the desired value 
and check for a zero result. Then X must be read again for the next test. 

HigWLow Pairs 

Sometimes you have a counter that is reset outside the ISR and incremented inside 
the ISR (this violates the rule about having the variable written by both ISR and 
non-ISR code, but sometimes it must happen in this way). Consider the following 
code, which might be used to keep track of the position of a rotating wheel. This 
wheel has a sensor in one spot, which indicates the home position. Wheel position 
is calculated with reference to home. 

Won-ISR code: 
When home sensor detected, 

Reset high byte of position count 
Reset low byte of position count 

ISR code: 
Increment low byte of count 
If low byte rolled over from FT to 00, increment high byte of 

count. 

This is typical of a l6bit  counter implemented on an 8-bit processor, although 
the same principle applies to a 32-bit counter on a 16-bit processor. Suppose the 

Interrupts in Embedded Systems 165 



counter is at OlFF and the interrupt occurs between the two instructions that reset 
the bytes of the count. The high byte gets reset to 00 by the non-ISR code and then 
the interrupt occurs. The low byte is incremented from FF to 00, causing the high 
byte to be incremented to 01. The resulting count is 100 instead of 200 or 0000, 
and the position count is completely off. 

You can solve this problem by protecting the two resets with interrupt 
disable/enable pairs. However, I worked on a system once where this solution intro- 
duced an unacceptable delay in interrupt servicing. The fix in that case was to reset 
the low byte first. Then, if the interrupt occurred between the resets, the low byte 
would increment from 00 to 01, not affecting the high byte when the non-ISR code 
resumed execution. This same principle applies any time you have two values that 
are dependent on each other. Note that some compilers can produce this scenario 
when working with values that are wider than the word width of the machine. You 
can sometimes run into this problem with hardware that is wider than your word 
width, such as a 16-bit timer connected to an &bit processor. 

Another way to fix this specific problem is to have the interrupt code perform 
both the reset and the increment. When the counter is to be reset, the non-ISR 
code sets a flag. When the ISR is executed, it checks the flag. If the flag is not set, 
it increments the count. If the flag is set, the ISR code zeros the count and clears 
the flag. Note that this fix doesn’t work in some situations in which the two values 
are in hardware registers. 

DSP 1 

Minimizing Lo w-Priority Interrupt Service Time 

DSP 2 

Figure 5.10 shows a dualdigital signal processor (DSP) system, implemented using 
a pair of Analog Devices ADSP-2101s. The ADSP-2101 has a high-speed serial inter- 

INTR D IMR 

RX Tx RX Tx 

Figure 5.10 
Dual DSP System with Communication Interrupts. 

166 Embedded Micropfocessm Systems 



face that can be used to communicate between two DSPs. In this system, which 
is a simplified diagram of an actual design, both DSPs had to service a regular, 
high-priority interrupt every few microseconds. DSPl controlled some high-speed 
(proprietary) circuitry. DSP2 processed the output from that circuitry and com- 
municated with a host processor on another board. The two DSPs communicated 
via the serial link, sending 16 bits of data at a time. 

I wanted to use the high-speed serial link for interprocessor communication, but 
processing the regular interrupt could not be delayed more than a few clock cycles. 
Since the ADSP-2101 has only one alternate register set, which I already was using, 
I did not want to use nested interrupts. The normal method of servicing the receive 
interrupt would be to read the word from the input register, check for errors, put 
the received word in a buffer, and then return. I could not afford to delay this long 
before servicing the regular interrupt. 

One detail about the design that made the problem solvable was that the serial 
interface was not receiving or sending a continuous stream of data. Information 
was sent over the serial link intermittently. The solution was to add an edge- 
sensitive acknowledge interrupt from DSPl to DSP2 and vice versa. When a byte is 
received by DSP2 from DSP1, the receive interrupt code just sets a flag and returns. 
The polling loop checks the flag once per pass, and if data are available, it reads 
and processes the received word. 

The acknowledge interrupt is used to prevent data overruns if DSPl wants to 
send more than one word. When DSPl transmits, it clears a semaphore, TXRDY. 
It will not transmit again until TXRDY is set, which happens when DSP2 sends back 
the interrupt. DSP2 does this when it has processed a received byte. If the polling 
loop gets busy processing host data and does not get to the received byte, DSPl just 
waits. If necessary, the FIFO buffer can continue to fill with pending transmit data, 
although this rarely occurred in the actual system. 

Since the acknowledge interrupt and receive interrupt merely set flags, they 
need not save any registers. The ISRs consist of two instructions: one to set the flag 
and an interrupt return. The pseudocode for the polling loop and interrupts 
follows (DSP2 is shown; DSPl is the same without the host processing part): 

start of polling loop: 
If RXRDY is set (Rx serial data available), 

Read data byte 
Send acknowledge interrupt to DSPl 
Process Rx data. 

If host data available, 
Read host data 
Process host data. 

Write data to transmit FIFO buffer. 
If transmit data available for DSPl , 

I n t m p t s  in Embedded Systems 167 



If transmit FIFO has data, 
If TXRDY flag set, 

Reset TXRDY flag 
Transmit a word to other DSF! 

Rx serial data ISR: 
Set RXRDY 
Return. 

Set TXRDY 
Return 

End of polling loop. 

Transmit acknowledge ISR 

When to Use lnterrupts 

This topic almost makes more sense at the beginning of the chapter, but I wanted 
to talk about how interrupts work before discussing why they are not always a good 
idea. 

To begin with, sometimes there is no choice but to use interrupts. The previous 
dual DSP, for example, had to use an interrupt for receiving because there is no 
internal status bit that can be checked by the polling loop to determine whether 
data are available. 

Chapter 1 stated that designers sometimes overuse interrupts. Although it is 
dangerous to lay down universal rules like this, in general, interrupts should be 
used for three reasons: 

1. To generate a regular, repeatable event. A timer interrupt on a regular basis for 
timekeeping is a good example. 

2. When a peripheral absolutely must be serviced immediately or something will 
go wrong (for example, a UART receiving a continuous stream of data that 
will overrun the receiver if each byte is not taken out before the next one is 
received). Be careful, though, about assuming that cases like this require an 
interrupt. The protocol converter described in Chapter 4 used no interrupts. 
The program loop was short enough and fast enough, even with subroutine calls, 
to guarantee that no received bytes were missed. 

3. To save on hardware. For example, a processor might get an interrupt from the 
shaft encoder of a motor. Each time the interrupt occurs, the processor incre- 
ments a position count. This saves adding a hardware counter. The pool timer 
uses an interrupt to multiplex the display, saving the cost of external display 
registers and multiplexing logic. 

Interrupts also are used as a means of scheduling tasks through a real-time 
operating system, which we’ll cover in Chapter 9. 

168 Embedded Microprocessor Systems 



Remember, though, that interrupts make debugging more difficult. When you 
set a breakpoint using a monitor program or emulator, interrupt inputs keep 
coming. You cannot always single-step code when using interrupts because con- 
tinuous interrupts keep the processor hung up in an ISR. And when something 
goes wrong because a high-priority interrupt did not get the priority it needed, the 
source of the problem can be very hard to find. 

The polling loop is sometimes called the background loop because it is the lowest- 
priority task-everything else can interrupt it. The background is executed when 
no interrupts are being serviced. Designers sometimes assume that the polling loop 
therefore is the worst place to put anything that needs priority attention. However, 
keep in mind that a low-priority interrupt may be just as bad as the polling loop. 
If servicing a device such as a UART in the polling loop means that the worstcase 
stackup of interrupt service times will prevent the device from being serviced in 
time, making the device a low-priority interrupt may be no better. Look carefully 
in a case like this to see whether there is a basic throughput problem when inter- 
rupts stack up. 

In some cases, a device such as a UART may have a momentary problem with 
interrupt service time stackup, but you know that this is a temporary and infre- 
quent condition. In those cases, you may be able to solve the problem by using a 
buffer such as a FIFO buffer. Our example UART, with either an internal or exter- 
nal FIFO buffer, may receive several bytes before the polling loop gets to it. If you 
really (really, really) know that the problem is a temporary one, the polling loop 
should be able to process the data before the FIFO buffer fills up. However, remem- 
ber that when the software gets to the UART, it will take longer to process the data 
since there are more bytes. Make sure the throughput problem really is temporary 
and that the polling loop will get through with its delayed processing before the 
next crunch occurs. 

lnterrupts and the Real World 

Chapter 4 briefly mentioned switch debouncing. The algorithm for that was as 
follows: 

Switch closure detected 

Wait 30ms. 

Check switch again. If open, it was bounce on opening. If still closed, it was a 
valid switch closure. 

Someone who is new to embedded systems and who needs to debounce a switch 
might be tempted to just put a 30ms delay into the code. This would produce an 
unacceptable delay in most real-time systems. A more appropriate way to do this, 
now that we have looked at interrupts, is as follows: 

Interrupts in Embedded Systems 169 



Timer ISR code: 

If switch closed and if switch pressed flag not set, increment debounce 
counter. 

If debounce counter = maximum value, set switch closed flag. 

If switch not closed, clear debounce counter and clear switch closed flag. 

For this to work, the timer ISR must be based on a regular, repeating timer event. 
The non-ISR code ignores the state of the switch; it just looks at the state of the 
switchclosed flag, which is a memory location (OF even a bit in a memory loca- 
tion). The way this code works is that when the switch contacts are bouncing (inter- 
mittently making and breaking), the debounce counter will increment a few counts, 
then get reset, then increment a few counts, and so on. Once the contacts have 
settled, the counter will increment to its maximum value and the switchclosed flag 
is set. 

The maximum value of the debounce counter depends on the interrupt rate 
and the required debounce time. If the timer ISR occurs every millisecond, then a 
maximum count value of 30 would produce a 30ms debounce time. 

If you are only debouncing one switch, you can use the counter itself as an 
open/closed flag. If the counter is at maximum value, the switch is closed; other- 
wise, it is open. The ISR code must stop incrementing the counter when the 
maximum count is reached, of course. 

If you need to debounce both switch opening and closing (such as when 
debouncing a door interlock), you can have two debounce counters: One counter 
debounces opening, and one debounces closing. When the switch indicates open, 
the close counter is reset and vice versa. You only change the state of the 
open/closed flag when the appropriate counter reaches maximum value. 

Although this is a lengthy explanation of a simple situation, it illustrates how 
interrupts allow an embedded system to keep up with real-time requirements while 
doing things at human-compatible speeds. Similar techniques can be used for 
things like: 

Blinking status LEDs at a rate people can see them. 
0 Refreshing a display on a regular basis. 

Blinking a character on the same display for emphasis. 
Implementing long delays, such as turning off the illuminated keypad on a cell 
phone after 5 seconds. 
Generating audio alerts. 
Filtering noisy signals such as an optical sensor exposed to ambient light. 

The software, hardware, and interrupt structure are the primary components 
of the embedded system. Chapter 6 explains adding hardware and software to 
s imple the debug process. 

170 Embedded Mamopocessm Systems 



Adding Debug Hardware 
and Software 

6 

In designing the hardware and software for an embedded microprocessor system, 
we typically give most of our attention to the actual application. However, all embed- 
ded systems must be debugged eventually. The addition of selected hardware and 
software can simplify the debug process. 

Almost any embedded system can benefit from the strategic addition of hard- 
ware and software for debugging. Depending on cost and size constraints, the hard- 
ware may not be installed but instead connected to the circuit only when data 
collection actually is required. However, the software must support the functional- 
ity regardless of whether the hardware is installed or not. 

This chapter focuses on adding debug capability that allows operation of the soft- 
ware to be traced to provide a history of what has happened when something goes 
wrong. Developers who cannot use an emulator, for whatever reason, will see the 
obvious utility of the techniques to be presented in this chapter. Users who have 
access to sophisticated emulators may question why additional debug tools should 
be incorporated into the design. There are several reasons: 

Operation in “Live” Environment. The equipment may have a subtle bug that 
shows up only in a customer’s environment where an emulator cannot be 
connected or where use of the emulator would stop critical work. Some types 
of equipment cannot be stopped while the software engineer looks through 
the emulator traces to find what caused a problem. In cases like this, when an 
error occurs, the data are captured and the machine must be restored to 
operating condition immediately. The data must be examined later. Similarly, 
it may be impractical to stop a processor that is controlling a robotic arm or 
other motordriven device where physical damage can occur if the processor 
stops but the object it is controlling doesn’t. 

Macro History. Built-in debug tools give a macro history of system operation. 
Embedded real-time systems often control mechanical devices, which can have 
a significant lag between an error and the event that caused the error. An 
emulator can give very detailed information around the error itself, but its 

171 



trace buffer often is not deep enough to allow operation around the cause of 
the error to be examined. One real-world example of this is a document 
processor that I worked on. This machine moved checks and other paper at a 
rate of over 1600 documents per minute. An 8031-based subsystem (described 
earlier in Chapter 4) was having problems controlling document spacing. The 
error could not be detected until about 150 milliseconds (ms) after the event 
that caused the error. On an 8031, 150ms is about 150,000 instructions, and 
the emulator just could not store that much data. Fortunately, I did not need 
to see every instruction to determine what was wrong. Using a technique 
similar to the ones described in this chapter, I was able to capture just the 
pertinent information on a logic analyzer and locate the actual problem. 

Limited Resources. Some systems have limited resources, such as those found 
in single-chip microcontroller systems. If you have only 2K of program space 
to work with, it may be difficult to fit a full debugger into the chip along with 
the application code. Simple debug tools let you see what is going on inside 
the code when you lack the room for a full development environment. 

Emulator Won’t Work. Occasionally, you run across a problem that won’t show 
up with the emulator connected. This is usually a symptom of a hardware 
problem, but not always. 

Lack of Physical Connection. You may need to add debug tools because you 
cannot physically connect an emulator to your system. If your processor uses a 
BGA (Ball Grid Array) or other surface-mount package, it may be impossible 
to connect an emulator. You can debug your system on a board with a socket 
adapter or other means to connect the emulator, but once you go to 
production, you have no way to make the emulator connection. 

Correlation. Sometimes you need to correlate software execution with 
outside events such as a motor position, sensor output, or analog input 
voltage. 

~ ~~ 

Action Codes 

The key to adding debug tools to an embedded system is determining what to save. 
In general, I like to keep track of the following as a minimum: 

Each entry to an interrupt routine. 
Each exit from an interrupt routine. 
Each time a major function is performed (such as execution of a command from 

Each time a message or command is passed to the outside world. 
a higher-level controller). 

172 Embedded Micropomsar Systenzs 



I call these data outputs action codes. They are useful for debug and as a means 
of correlating software execution with the real world as captured on a logic ana- 
lyzer or digital storage oscilloscope (DSO) . 

There are many ways to capture the action codes. They center around two basic 
techniques: generating the data for hardware that may or may not be connected 
and storing the information in memory for later retrieval. Both techniques have 
advantages and drawbacks. 

~~ 

Hardware Output 

The hardware output technique depends on getting debug data (action codes) to 
the outside world in some simple 8-bit, 16-bit, or even 32-bit format. Ideally, the 
firmware will not check to see whether the debug hardware is connected. This is 
because reliable debug depends on the firmware operating the same, regardless of 
whether the debug hardware is connected. In the 8031 example mentioned earlier, 
the processor used external read-only memory (ROM) and I/O ports. I connected 

-WR 

8051 

ADGAD7 

I/O DECODE 
LOGIC 
2:4 MULTIPLEXER 

-- TO 
0 - OTHER CIRCUITS - 

STROBE ADDRESS 
LATCH 

A0 

NPICAL TRACE RESULT: 

DATA A0 

01 0 DEBUGDATA 
02 0 DEBUGDATA 
05 0 DEBUGDATA 
80 0 DEBUGDATA 
FF 1 MOTOR SPEED PARAMETER 
7C 0 DEBUGDATA 
21 1 MOTOR SPEED PARAMETER 
59 0 DEBUGDATA 
47 0 DEBUGDATA 

(CLOCKS ANALYZER) 

(INDICATES DATA N P E )  

(TRACE DATA) 

Figure 6.1 
Example of 8051 Trace Output Logic. 

Adding Debug Hardware and Softuare 173 



Table 6.1 
Action Code Output Values for a Typical Embedded System. 

Value (hex) Meaning 

01 
02 
03 
04 
40 
80 
81 
82 
83 

Throughput too high-ramping down 
Throughput too low-ramping up 
Document detected at sensor 1 
Document detected at sensor 2 
Document spacing error detected 
Timer interrupt entry 
Timer interrupt exit 
Command interrupt entry 
Command interrupt exit 

an unused 1 / 0  decode to the clock of the analyzer and captured the 8-bit 8031 
data bus as illustrated in Figure 6.1. The firmware was modified to write data to the 
1/0 port when certain events occurred. Using the logic analyzer, the sequence of 
events and the time between them could be examined. A typical table of output 
values for a document processing subsystem like the 8031 system might look like 
Table 6.1. 

This is just a sample of the sort of thing I collected for that problem. The actual 
table of output data was longer, had more interrupt points, and some of the actual 
debug definitions would make little sense here without a lengthy explanation of 
how the code worked. The significant events are indicated by an output to the data 
port. Note that not every instruction or even every subroutine call is captured, just 
major events. 

Interrupt entry and exit are captured so the time spent in the interrupt routine 
can be measured. In Table 6.1, the interrupt routines use data values of 80h and 
above. This is because most logic analyzers can be programmed to ignore data using 
a binary mask. If no mask is used, all the action codes are captured. If you know the 
interrupts are not involved in the problem, you can configure the analyzer to ignore 
any action codes where bit D7 is set. The interrupt entry and exit codes are not 
stored, so there is more room in the buffer to capture all the other codes. In the 
actual situation, I did exactly this-I captured everything until I could verify that 
the interrupts were not a factor, then I ignored the interrupt trace values after that. 

One of the tasks this 8031 performed was to control the speed of a motor. I 
wanted to monitor certain parameters about the motor-speed control algorithms 
as well as capture the debug data. Unfortunately, the data could be any value, so I 
could not mix it with the trace debug data. I would have had no way to tell the dif- 
ference between data and action codes. 

174 Embedded Microprocessor System 



Since the 1 /0  decoding logic used partial address decode (see Chapter 2),  I 
actually sent the action codes to two different port addresses, specifically 3 and 4. 
Address 3 got the action codes as just described and address 4 got the motor-speed 
parameter. Both port addresses activated the 1/0 strobe that generated the capture 
clock, but A0 was different for the two addresses. By connecting A0 as an input to 
the logic analyzer, I was able to tell the data type of each captured byte. 

This lengthy discussion about a specific 8031 system illustrates the kind of trace 
information that can be captured using this type of debug method. Other methods 
can be used to generate the trace information as well. 

Write to ROM 

In the followlng sections, ROM is used as a generic identifier for ROM, 
PROM, or Flash memory. 

In some systems, there are no spare 1/0 decodes. If the processor uses external 
ROM, it often is possible to write debug information to the ROM space. 

Most systems do not enable the ROM when it is written to, so there will be no 
bus conflict, and usually nothing else is in the ROM address space. The circuit in 
Figure 6.2 shows write to ROM circuits for both Intel-type (RD/WR) buses and 
Motorola-type (strobe/direction) buses. A low-going strobe is generated when the 

PROCESSOR WITH SEPARATE R D N R  STROBES 

ROM 

- 
WE 

OUTPUT STROBE 

ROM Cs 
OUTPUT STROBE 

DS wF 
PROCESSOR WITH DATA STROBElDlRECTlON 

~ ~~~~ 

Figure 6.2 
Logic for Write to ROM. 

Adding Debug Hardware and Software 175 



firmware writes anything to the ROM space. This technique is useful when all the 
available 1/0 decodes are used up and trace capability needs to be added after the 
hardware is finalized. The one drawback to this method occurs in systems that have 
flash or other writable memory, where a careless write sequence actually could 
change the data. 

Like the write to an 1/0 port, this method can use different addresses for dif- 
ferent data types. Note that if the Motorola-type bus is used, a DTACKmust be gen- 
erated for the debug write cycle. 

Read from ROM 

Some microcontrollers, such as the 8051, lack the capability of writing to the ROM 
space. However, they do have instructions that can read from ROM to do things 
like table lookups. Figure 6.3 shows a circuit that can be used to generate trace data 
by this method. A low-going strobe is generated when a read is performed from 
any PROM address above 8000 h. When using this circuit, the trace data is captured 
from the low-order address lines, A0 through A7, and the data lines are ignored. 
The circuit shown in Figure 6.3 assumes that the ROM is located in the lower 
32K. If the ROM is larger than 32K, a wider NAND gate can be used to further 
decode the address bits, generating a strobe only for the upper 1K or less. The 
following code shows how this would be implemented on an 8051 family 
microcontroller: 

MOV DPTR,#8000 h ; starting address-upper 32 k 
MOV A,#CONSTANT ; constant is the trace value 
MOV A,@A+DFTR ; output the value. 

This method can use different addresses to iden@ different types of trace data, 
but both addresses must be in the upper 8 bits of the address field, since the lower 

OUTPUT S m  
ROM C s  

OT 

A15 I 
AOA7 *-) TRACEDATA 

Figure 6.3 
Generating Trace Data by Read from ROM. 

176 Embedded Microprocessor Systems 



bits are used for the data. For example, you might use address 8000 for trace 
opcodes and COO0 for data. Of course, this only works if the ROM is external. 

Getting Data Off the Board 

There are several methods to get the action codes out of the hardware. Write-to- 
ROM and read-from-ROM could be picked up with a DIP (Dual Inline Package) 
clip or PLCC (Plastic Leaded Chip Carrier) extender. Since DIP packaging is all 
but obsolete, action codes on a surface mount design will be difficult to connect 
to if the hardware wasn’t designed for it from the beginning. One way to bring 
the action codes off the board is to add a simple pin header. On one design, I 
added a row of pads to the board and connected to them with spring-loaded “pogo” 
pins. 

Software Timing 

Although many emulators can perform this function, action codes can be used for 
software timing. The software returns a trace value at the entry and exit of each 
major subroutine, function call, or whatever level of code is to be analyzed. Using 
a logic analyzer with time-tagging capability, the trace values are captured, and you 
can determine how long the code spends in each routine. I used this technique 
when working with a software engineer on a problem where the software would just 
“go away” for a while. It did not lock up; it just took too long and other things quit 
working because of the delay. We added trace points to the software and discovered 
that the problem occurred in a function that parsed data received from another 
system. When the error occurred, we clearly saw action codes generated from enter- 
ing the routine and the exit from that routine occurring much too late. 

Of course, this technique also can be used to determine how much time the 
software is spending in each routine or how long it spends servicing each interrupt. 
The disadvantage of this technique is that you must change the code any time 
you want to capture something different. An emulator with time-tagging and 
source-level debug capability will let you capture different timing information with 
ease. 

Software Throughput 

Sometimes it is necessary just to have an idea of how busy the processor is while it 
is running to know if there is a problem with throughput. One technique is to set 

Adding Debug Hardware and Software 177 



a port bit each time an interrupt or timecritical task occurs, then have it continu- 
ously reset by the idle loop. If interrupts are nested (see Chapter 5 )  or if one time- 
critical task calls another, the bit will be set twice, which would not affect it. The 
idea is to get the bit to be low only when the code is in the idle loop. The ratio of 
high to low time, as seen on an oscilloscope, gives a fairly good representation of 
the utilization. The changing ratio can be monitored while the system runs. Since 
modern emulators can perform this function very well, I would only recommend 
the port-bit method if an emulator is unavailable or cannot be used for one of the 
reasons mentioned earlier. 

Circular Trace Buffers 

Sometimes it is impractical to add debug hardware or trace in real time. In these 
cases, some trace capability can be implemented with a rotating trace buffer. This 
is an area of memory written by the software with action codes, similar to the hard- 
ware trace function. 

The data area is configured as a circular buffer. When data are written to the 
last location, the pointer wraps around to the first position. The size of the buffer 
depends on how many trace points are needed and how far back the history needs 
to go. Table 6.2 shows a short (16-byte) trace buffer that might be used to debug 
a simple system. The table shows 8-bit hex codes and comments indicating what 
each code is for. 

In this example, the code writes a byte to the table for each trace value, then 
writes OFFh to the next table location. When the last table location (000F) is 
reached, writing wraps back around to location 0000. In this example, location 0004 
contains FF, so the last entry in the table is 01, timer interrupt entry, at location 
0003. The history goes back from there. Note that the timer interrupt occurred 
between the start and end of output processing at locations OOOC through OOOF. 

There usually will be a table pointer in another location, and it also can be used 
to keep track of the end of the table. Either way, the engineer or some software 
must analyze the pointer or table values to find the end of the table. If this tech- 
nique is used, it is best implemented with a single subroutine that writes to the 
buffer and updates the pointer or pointers. When the pointer reaches the end of 
the buffer, it must be wrapped back to the beginning. Using a circular buffer means 
you do not have thk. data captured in a logic analyzer, where it could be correlated 
with real-world events. 

Data can be time tagged in the trace buffer if a clock is available. One way to do 
this is to have a free-running hardware timer and store the count in the trace buffer 
with each action code. Some subtraction will determine relative times. Of course, 
the timer eventually will roll over, so you must take that into account as well. 

178 Embedded Microprocessor Systems 



Table 6.2 
Short Trace Buffer. 

Address (offset into 
start of table) Trace Value Meaning 

0005 
0006 
0007 
0008 
0009 
OOOA 
OOOB 
oooc 
OOOD 
OOOE 
OOOF 
0000 
0001 
0002 
0003 
0004 

01 
02 
04 
05 
09 
07 
OA 
04 
01 
02 
05 
08 
01 
02 
01 
FF 

Timer interrupt entry 
Timer interrupt exit 
Start of output processing 
Output processing done 
Command received from host 
Operator pressed key 
Time rollover 
Start of output processing 
Xmer interrupt entry 
Timer interrupt exit 
Output processing done 
RS-232 byte received 
Timer interrupt entry 
Timer interrupt exit 
Timer interrupt entry 
Table terminator 

This technique is useful if the only access to the outside world is via a serial port, 
which is not fast enough to handle the data rate of sending the action codes in real 
time. One caution though: If a regular time interrupt is used in the system, beware 
of adding it to the trace buffer. If an error occurs and the timer keeps running, it 
can quickly fill the buffer, and the information you need will be lost. 

A last note about trace buffers: Some software debuggers provide an event 
capture function that can be called from the application code. This function typi- 
cally is passed information that is time-tagged and stored in a trace buffer. These 
debuggers, in effect, provide the circular buffer with very little extra work. Of 
course, the debugger software must be resident for this to work. In the final 
product, that can mean additional license fees. 

Monitor Programs 

A software monitor/debugger, mentioned in Chapter 1, is a program that usually 
resides in PROM and allows the user to examine memory, registers, and 1 / 0  ports. 
Many software engineers write their own monitor programs, although this is less 

Adding Debug Hardware and Software 179 



common than it used to be. Most monitor programs have some basic capabilities 
in common: 

The ability to examine and alter memory. 
The ability to read and write 1/0 ports, if any. 
The ability to set breakpoints in the code. 
The ability to download code from a host PC. 
The ability to interrupt code execution from the keyboard. 
The ability to communicate via an FS-232 serial port, Ethernet port, or other 
interface. 

The monitor program generally gets control on power-up. In the early days, the 
user interface was a dumb terminal, but a dedicated PC is used universally today. 
The user generally will download code into the target system RAM and execute it 
there. The reason the code must run out of RAM is so that breakpoints can be set. 
A breakpoint is a branch instruction (usually a one-byte or one-word instruction) 
that replaces the instruction that normally would appear at a particular location. 
The branch returns control to the monitor program. 

To use a monitor program, the user puts a breakpoint at some useful place in 
the code, runs the program, and then examines memory and registers when the 
breakpoint occurs. Breakpoints can be placed in error routines to determine 
whether the error occurs. 

As I mentioned earlier, some modern processors have hardware debug onchip. 
In those parts, you can use a debugger that runs out of ROM or flash memory and 
still have limited breakpoint capability. 

Logic Analyzer Breakpoints 

Since embedded systems are connected to the real world, you often need to know 
what the processor is doing when specific real-world events occur. This may be 
because the event represents an error condition or just because you need to know 
how the software handles it (not how it is supposed to handle it, but how it really 
does). Such events may occur when a sensor changes state, when a waveform passes 
through a particular voltage, or when a rotating shaft reaches a particular position. 
You may be able to capture the event on a logic analyzer or DSO, but how do you 
take a “snapshot” of what the software is doing at that time? In many cases, you can 
take advantage of the trigger output port of your logic analyzer or DSO. This tup 
ically is a BNC connector with a logic level signal that goes high or low, or pulses, 
when the analyzer or DSO triggers it. 

180 Embedded Macrqtn-ocessm Systems 



If you are using an emulator, often there is an external input that you can break- 
point on. By connecting the trigger output of the logic analyzer or DSO to this 
external input, you can force a breakpoint. 

If you are not using an emulator or have no external breakpoint input, you can 
stop the software by using an otherwise unused interrupt, using a timer as an inter- 
rupt (see Chapter 5 ) ,  or even using an NMI. Another possibility is to use the reset 
input, but you need a means to keep the software from reinitializing everything 
after the reset. Using the reset technique will not let you see what the software does 
after the event, but it will let you look at the state of the software just before the 
event. 

Finally, you can use this technique to capture the contents of a rotating trace 
buffer when a real-world event occurs. If you use any of these techniques to connect 
a logic analyzer or DSO trigger to your system, be sure the trigger output is com- 
patible. You may need to invert the polarity or change the pulse width to make 
everything work. 

Memory Dumps 

I once worked with a consultant who was interfacing an add-on to our equipment 
for a third-party reseller. My job was to make sure that nothing we did or failed to 
do would keep him from doing his job. This individual had an interface subsystem 
that consisted of dual microcontrollers communicating via hardware FIFO buffers. 
Every now and then, the entire thing would lock up for no apparent reason. 
He had no tools except a fairly simple logic analyzer and the stare-at-the-code 
method of debug. At that time, no good emulators were available for the pro- 
cessor he was using. The entire project got so far behind schedule that the reseller 
sent out its ace troubleshooter to get things going. The troubleshooter was aggres- 
sively proactive and carried a custom-made wooden briefcase. He even went so far 
as to order, on the company credit card via overnight delivery, an emulator that 
was supposed to be the best there was. That was when we found out nothing was 
suitable. 

The consultant told me that if he could view the internal memory contents, he 
could fix the problem. We went over an inventory of what he had available, which 
was little. The board had no spare output ports but one unused interrupt input. 
We solved the problem by connecting a push-button switch to the interrupt. When 
the button was pressed, generating an interrupt, the processor produced as output 
three sync bytes in a sequence that would never occur in normal operation. Then 
the processor sequentially wrote the entire contents of the internal RAM to an 
external register. The logic analyzer, connected to the register, waited for these 

Adding Debug Hardware and Software 181 



three bytes (FF FF FF, if memory serves) then triggered and captured everything 
that came afterward. The register contents were trashed by this procedure, but 
we had to reset everything after the lockup anyway so it did not matter. The 
analyzer, like most analyzers, numbered the states. Due to the triggering setup, the 
state number was the same as the memory address, so finding a particular byte was 
easy. 

Another way to handle this, if a spare output port bit is available, is to write a 
serial output routine that would transmit the data over the port bit asynchronously 
(implementing a bit-banging transmitter in software). The data could be converted 
to RS-232 and captured on a dumb terminal or a PC. 

Although examining memory may seem like a throwback to the days when main- 
frame computers produced what was known as a cm-e dump, the technique can be 
very useful, In a simple microcontroller design, there usually is not all that much 
memory to examine and only certain locations are important. You can combine 
the memory dump with the logic analyzer breakpoint described earlier and capture 
the contents of memory when an external event occurs. 

Serial Condition Monitor 

Sending data to an external logic analyzer typically requires 8 data bits and a write 
strobe. In a microcontroller design, especially a small one, not enough 1 / 0  pins 
may be left over to collect diagnostic data. However, if one port pin is available, it 
can be used to generate diagnostic information serially. The processor sets the pin 
to 1, then serially sends a 4bit diagnostic word. The diagnostic word typically is a 
byte in memory, with bits set or reset by various routines to indicate the state of the 
code. For example, DO might be set to indicate the state of flow control (ON or 
OFF), D1 might indicate when a servo motor is at the home position, D2 tells when 
a particular buffer has data to send or receive, and so on. 

To use this method, the processor will return the diagnostic once each time it 
goes through the polling loop or once each time a regular timer interrupt is ser- 
viced. The output data are captured on an oscilloscope or logic analyzer. An oscil- 
loscope should be set to trigger on the first sync or start bit. (The start bit is needed 
so you can tell which of the other bits are set.) The variable sweep control can be 
adjusted so that each output bit takes one or two divisions. This method can be 
extended to any number of bits, but trying to do more than about four makes it 
difficult to determine which bits are set. 

Figure 6.4 shows the waveform that would be generated using this method for 
data patterns of 10 (OA hex) and 11 (OB hex). The bits can be captured in a shift 
register by using logic that starts on the sync bit and samples in the middle of each 
bit. 

182 Embedded Microprocessor Systems 



START 
BIT 

l-v 
START 

''? D1 

D3 

D3 

SERIAL STATUS OUTPUT WAVEFORM. 
DATA = 10 (1010 BINARY) 

SERIAL STATUS OUTPUT WAVEFORM, 
DATA= 11 (1011 BINARY) 

SERIAL STATUS USING SELF-CLOCKING 
SCHEME (3 BITS SHOWN) 
DATA = 101 

CLOCK BITS DATA PULSES IF BIT=l 

Figure 6.4 
Serial Condition Monitor for Use with Oscilloscope. 

This method has some limitations. Since the data is sent on a regular basis, it 
cannot be used to determine the relative time between processes or events. 
However, it is useful for getting a running pictorial view of overall system status. 

I have used this technique to send up to 17 bits of status information, although 
it is not useful to display it on a 'scope. Instead, I built an external circuit, using a 
CPLD, which picks up the serial data and captures it in a shift register. When all 17 
(or whatever) bits are finished, the circuit generates a strobe to clock the diagnos- 
tic word into a logic analyzer. 

This technique also works with self-clochng data. In this scheme, each data bit 
starts with a clock bit, and then there is a pulse in the middle of the bit time if the 
bit is a 1, and no pulse if the bit is 0. Figure 6.4 also shows the waveform for this 
technique. This is useful if you cannot turn the interrupts off long enough to send 
an entire diagnostic word. Because each bit is self-clocking, you can turn interrupts 
on momentarily between bits without upsetting the external hardware. 

The asynchronous data can be received with a UMT, either a discrete UART IC 
(if you need only 8 bits of data) or a UART implemented in a CPLD. I usually use 

Adding Debug Hardware and Software 183 



BIT COUNTER 

SERIAL INPUT DATA 

OUTPUT PULSES AFTER STROBE LAST BIT 

IS SHIFTED IMO 
SHIFT REGISTER 

DATA 
SHIFT 
REGISTER 

- : AS MANY OUTPUT 

: TRANSMITS 

a 
a 

BITS AS SOFWARE SERIAL INPUT DATA 

IN - 
REF CLOCK 

I I 
I I 

Figure 6.5 
Circuit to Receive Data from a Self-Clocking Serial Diagnostic Output. 

a CPLD, since I normally send more than 8 bits when I use a circuit like this. If you 
use a UART, you need not run at a standard baud rate-you can give it a clock that 
matches whatever speed the processor is capable of sending. But keep in mind that 
some UARTs cannot be clocked fast enough to keep up with the data if you use a 
fast processor. 

Figure 6.5 shows a block diagram for a circuit that will receive the self-clocking 
serial diagnostic output scheme. I implemented a circuit like this in a CPLD. The 
frequency of the reference clock depends on the type and speed of processor you 
use. The diagram does not show the power-up reset logic. The size of the bit counter 
and the output shift register depend on the number of bits transmitted from the 
processor you are testing. 

Listing 6.1 shows assembly code for a PIC17C4x that generates the serial diag- 
nostic data to Port D, bit 0. Listing 6.2 shows similar code for an 8051 using Port 
0, bit 0. The 8051 version is simpler to implement because it has an instruction that 
allows the ALU carry status bit to be written directly to a port pin. Listing 6.3 shows 
the code to produce a lcbit, self-clocking diagnostic string using a PIC processor, 
sending to Port B, bit 7. 

These code snippets are in assembly, but any of them could be converted to C 
or another language. In most cases, unless the compiler produces exactly the same 
code, the timing will change. 

184 Embedded Micropocessw S y s t m  



Listing 6.1. PIC1 7Cxx Assembly Code for Serial Status Output 

; STATUS OUTPUT TO PORT D BIT 0. 
; PORT D BIT 0 MUST BE CONFIGURED AS OUTPUT. 
; CODE SENDS LEAST SIGNIFICANT FOUR BITS OF 
; BYTE DIAG TO PORT. 
; OUTPUT SEQUENCE IS: 
; SYNC BIT (1) 
; DIAG BIT 0 
; DIAG BIT 1 
; DIAG BIT 2 
; DIAG BIT 3 
; ZERO 
; EACH BIT TAKES ABOUT 1.6 MICROSECONDS ON A PIC 17C43 
; WITH A l2MHZ CRYSTAL. 

MOVLB 1 
BSF PORTD,O ; OUTPUT SYNC BIT (1) 
NOP 
NOP 
BTFSC DJAG,O ; DIAG BIT 0 SET? 
GOTO MSETO ; YES, OUTPUT A 1. 
BCF PORTD,O ; NO, OUTPUT A 0. 
GOTO M1 

MSETO: BSF PORTD,O 
NOP 

M 1 : BTFSC DIAG, 1 ; DUG BIT 1 SET? 
GOTO MSETl ; YES, OUTPUT A 1. 
BCF PORTD,O ; NO, OUTPUT A 0. 
GOTO M2 

MSET1: BSF PORTD,O 
NOP 

M2: BTFSC DIAG,2 ; DIAG BIT 2 SET? 
GOTO MSET2 ; YES, OUTPUT A 1. 
BCF PORTD,O ; NO, OUTPUT A 0. 
GOTO M3 

MSET2: BSF PORTD,O 
NOP 

M3: BTFSC DIAG,3 ; DIAG BIT 3 SET? 
GOTO MSET3 ; YES, OUTPUT A 1. 
BCF PORTD,O ; NO, OUTPUT A 0. 
GOTO MSDON 

Adding Debug Hardware and Software 185 



MSET3: BSF PORTD,O 
MSDON: NOP 
NOP 
BCF PORTD,O ; TERMINATE WITH A 0. 
MOVLB 0 ; END OF DIAGNOSTIC OUTPUT. 

Listing 6.2. 8051/8052 Assembly Code for Serial Status Output 

; THIS CODE FRAGMENT OUTPUTS A FOUR-BIT STATUS 
; VALUE, DIAGNOSTIC, TO PORT 0 BIT 0 OF AN 
; 8051/8052 PROCESSOR. OUTPUT SEQUENCE IS: 
; START BIT (1) 
; DIAGNOSTIC BIT 0 
; DIAGNOSTIC BIT 1 
; DIAGNOSTIC BIT 2 
; DIAGNOSTIC BIT 3 
; ZERO. 
; ON AN 8051 WITH AN 8MHZ CRYSTAL, 
; EACH BIT WILL BE ABOUT 4.4 MICROSECONDS LONG. 

MOV ACC,DIAGNOSTIC 
SETB PO.0 ; 
RRC A 
MOV PO.0,C ; 
RRC A 
MOV PO.0,C ; 
RRC A 
MOV PO.O,C ; 
RRC A 
MOV PO.O,C ; 
NOP 
NOP 
CLR PO.0 ; ALL DONE 

OUTPUT START BIT (1) 

OUTPUT DIAG BIT 0 

OUTPUT DIAG BIT 1 

OUTPUT DIAG BIT 2 

OUTPUT DIAG BIT 3 

Listing 6.3. PIC Assembly Code for Self-clocking Serial Status Output 
. ................................................................................... , 
; Synchronous serial diagnostic output on PIC. 
; Sends 16-bit diagnostic word in DIAGLSB/DIAGMSB, 
; to RB7. LSB of DIAGLSB is sent Arst, MSB of DIAGMSB 
; is sent last. 
; Output is clock bit followed by data clock if bit 
; was a ‘l’ ,  no data clock if bit was a ‘0’ :  

186 Embedded Microprocessor System 



, - -  
; 1: -I \-I \- 

1 - 
; 0:  -1 \ 

7 

; This makes the data self-clocking. 
; Interrupts are momentarily enabled between bits 
; to minimize latency time. 

diagnostic: 
movlw 8 
movwf txbits 

; Transmit LS byte first 

bcf intcon, gie 

; bit count, LS byte 
; store at bit counter 

diaglsblp: 
; disable interrupt during bit 
; output time. 

bsf portb, 7 
rrf diaglsb,f 
bcf portb, 7 
btfsc status,c ; check carry 
bsf portb,? 
noP 
bcf portb, 7 

bsf intcon, $le 

decf sz txbits , f 
goto diaglsblp 

movlw 8 
movwf txbits 

;Transmit MS byte 

; rotate DIAQLSB.0 into cy 
; clock bit falling edge 

; set data clock if bit = 1 

; clear data clock, set or  not. 

; enable interrupts again 

; done? 

; bit count, MS byte 
; store at bit counter 

diagmsblp: 

bcf intcon, gie 

bsf portb, 7 
rrf diagmsb,f 
bcf portb, 7 
btfsc status$ ; check carry 
bsf portb, 7 
nOP 

; clear interrupt during bit 
; output time. 
; clock bit rising edge 
; rotate DIAGMSB.0 into cy 
; clock bit falling edge 

; set data clock if bit = 1 

Adding Debug Hardware and Software 187 



Now that we have all the tools, in Chapter 7 we look at the process of integrat- 
ing the software and hardware to produce a working system. 

188 Embedded Mam~ocessm Systems 



System Integration and Debug 7 

After the hardware PC board or a handwired prototype is built and the software 
compiles with no errors, it is time to plug in everything and watch the system come 
to life. Fifteen minutes after initial power-up and flawless operation, the hardware 
and software engineers knock off early for the day. 

Well, not really. The actual scenario usually goes more like this: If smoke does 
not roll out when power is first applied, the engineers quickly discover that 
absolutely nothing works. After a brief argument in which the hardware engineer 
accuses the software engineer of forgetting to initialize the stack, a logic analyzer 
or emulator is connected. Investigation reveals that the PROM or the RAM or some- 
thing else appears to be completely dead. The software engineer goes to lunch, 
smug in the assurance that it is a hardware problem. 

After the hardware engineer fixes the chip select that had two devices enabled 
at the same time or the wiring error that had the data bus reversed end for end, 
debugging resumes. When the next problem stops all work, it turns out that an 
interrupt vector is in the wrong place or the internal processor peripheral area is 
uninitialized, and the hardware guy leaves early while the software engineer works 
until 8 p.m. to fix it. 

This process repeats for the next four weeks as the project stumbles its way to com- 
pletion. Two weeks after the design team breathes a sigh of relief and hands it off to 
the beta test customer, a bug is reported. The error occurs only under certain con- 
ditions and not every time at that. If the design team is lucky, it can reproduce it in 
the lab and work on it there. Otherwise, another argument ensues as to who has to 
take a midnight flight out to the beta site to fix it-hardware, software, or both? 

While the utopian fantasy I first described is rare, the nightmare scenario need 
not be the only alternative. 

Like the design part of a project, the test and integration part works best if there 
is a goal-a plan. Many large companies have formal test plan requirements that 
detail every test to be performed. These range from functional tests to safety agency 
approval tests to tests involving shock, vibration, and temperature (called by some 
shake and bake). 

189 



The market- or customer-specific tests are outside the scope of this book. This 
chapter concentrates on the functional test side. 

Before product functional testing can begin, the hardware and software must be 
made to work. Integration of the software and hardware in an embedded system is 
different from a completely hardware (logic) or completely software (as an appli- 
cation on a PC) design in two areas: isolating problems and fixing them. 

In isolating problems, it is not always clear in which half of the system the 
problem lies-hardware or software. In a pure software design, the programmer 
knows that hardware problems do not affect the design-they just mean that the 
computer needs to be fixed before work can proceed. 

This may seem obvious, but I have seen software engineers used to writing appli- 
cations for a minicomputer or PC who just walked away when a problem was 
thought to be in the hardware. They were used to working on software-only systems. 
Hardware bugs were a job for the repair technician. In an embedded system, the 
software and hardware engineers usually have to work together far enough into the 
problem to determine what actually is happening. Many times a hardware problem 
that seems completely mysterious will be obvious when the software engineer 
tells the hardware engineer just exactly which status bit the software is having 
problems with. 

Fixing problems in an embedded system has differences, too. For example, some- 
times the fix for a hardware problem is best implemented in software. An example 
might be a mistake in the schematic that places a peripheral at the wrong address. 
The board could be altered, but that requires another layout/fab cycle. It is simpler 
just to change the software. The reverse also is true, although less common. 

Hardware Testing 

Ideally, the software will not be tried until the hardware is completely checked out. 
In the real world though, that often is impractical. A decision must be made as to 
how the hardware will be tested and how far the testing will go before software is 
installed. In a real system in which the software controls real hardware, the hard- 
ware cannot be checked without some software to exercise it. Look at the hardware 
checkout list for the pool timer: 

Test Processor and EPROM: Write code that just loops, toggling a port bit on 
each cycle. 
Test Switches: Write special software to read switch/water low connector and 
echo result to Port 1. Test each switch and corresponding port bit by verifylng 
that correct Port 1 bit goes active when switch is pressed. 
Test Display: Write special software that displays an incrementing number on 
both pairs of display digits. This requires working decimal-to-seven segment code. 

190 Embedded Microproussm Systems 



After the software is completed, the interrupt processing time and overall 
throughput are verified. This is done by setting a spare port bit at the start of inter- 
rupt processing and resetting the bit when interrupt processing was completed. An 
oscilloscope is used to verify the timing. Note that each of the hardware tests 
requires special software. In this case, the software is simple, but that will not always 
be true. At some point, writing special test software becomes less of an effort than 
just plugging in the real software and trying it out. 

If an emulator is used for software debug, it can simpllfy hardware debug as well. 
Checkout of the pool timer hardware can be accomplished by plugging in the emu- 
lator, then verifylng that the correct port bit changes when a key is pressed. The 
motor relay can be checked out by manually setting and resetting the correspond- 
ing port bit. A UART could be checked by wrapping input to output, programming 
the baud rate and other parameters, and checking that characters written to the 
transmit register are echoed in the receive register. 

Deciding what to test and what software is needed can be part of a compre- 
hensive test plan or it can be a list made up by the hardware engineer over lunch 
on a simple design. Most designs have no comprehensive list of what specific 
hardware will be tested unless software engineering support is required for the 
special code. 

Software Debug 

Keeping with the divide-andconquer strategy of debugging, we look at the process 
used to debug the software in the protocol converter described in Chapter 4. 

Connect the serial side to a PC. Send a continuous string of characters when 
activated by grounding a spare port bit. This verifies that the setup code for 
baud rate, parity, and other settings works correctly. 

Add code that handles serial I/O. 
Add special code that echoes serial input to output. Verify, using the PC 
communication program, that echo works correctly for all baud rates and 
parity selections. 

Add proprietary processing code and verify that the echoed data are correct. 

Load special code to send a test string to an output device using the final 
output driver. 

Finally, integrate the setup code, serial 1 /0  code, processing code, and output 
code. Verify correct functionality and XON/XOFF operation. 

This a somewhat extreme breakdown for a simple task, but the final code worked 
the first time. It illustrates the advantage of testing only portions of the code 

System Integration and Debug 191 



wherever practical. When testing unknown code on unknown hardware, minimiz- 
ing the size of the unknown speeds debugging. If using a monitor program or an 
emulator, the key debugging tool usually is the breakpoint. The code is run with a 
breakpoint set in the area where a problem is thought to be. When the breakpoint 
occurs, registers and memory are examined to determine the problem. The catch, 
in a real-time system, is that interrupts keep coming, motors keep turning, and, in 
general, the real world keeps happening while the software engineer is trying to 
figure out what went wrong with the code. If regular edge-sensitive interrupts occur, 
all of them may be stacked up and waiting to execute when the code is resumed. 
While there is no silver bullet for this characteristic of real-time debugging, a few 
tricks can make this part of the task a bit easier: 

If the system will run this way, turn off all interrupts except those absolutely 
necessary to make the problem show up. If the system runs but the bug dis 
appears, turn the interrupts back on one at a time until the problem comes 
back. 
If a timer interrupt is used, slow it down enough that you can actually see what 
is happening. 
If using debug trace outputs or a circular trace buffer, as described in Chapter 
6, pay careful attention to the trace values when an error occurs, looking for pat- 
terns. You may find that a problem occurs only when a particular interrupt code 
appears in the table twice in a row, indicating a possible problem with reentrancy. 
Or you may find that a particular interrupt always occurs between two polling 
loop trace points, indicating a potential “shared memory or 1 / 0  trap,” as 
described in Chapter 5. 
Ask yourself, “Did it work before the last software change?” I spent a long time 
one day asking a software engineer if‘ she had changed the code since everything 
quit working. She kept telling me that she had not changed the code, then finally 
admitted to making changes, but insisted that the changes were not in the area 
that was not working. I finally convinced her to try the previous version and every- 
thing worked again. She had not realized that the new version required more 
stack space then she had allowed for. 
Determine whether the problem goes away when the emulator is connected. If 
so, this nearly always points to a hardware setup/hold-time problem or a race 
condition-but not always. I once worked on a problem that disappeared every 
time the emulator was connected. The problem turned out to be the “shared 
memory or 1/0 trap,” described in Chapter 5. For some reason, the emulator 
timing kept the interrupt from occurring between the two critical instructions. 
If you can, determine what specific condition causes the software to fail. This may 
be difficult without an emulator. If the exact hardware condition that caused the 
problem can be isolated, a pattern may emerge. Or a logic analyzer may shed 
light on the conditions surrounding the fault. 

192 Embedded MicrOpocessor System 



During initial debug, disable the watchdog timer, disconnect any nonessential 
external systems, and force error sensors to a known state. Minimize the number 
of variables. 

Debugging in RAM 

Chapter 1 described the use of lope analyzers, emulators, and monitor programs 
for debugging. Use of debugging breakpoints requires that the code be executed 
from RAM. A breakpoint replaces an instruction with different code that executes, 
essentially, a software interrupt. Many emulators have internal RAM, and the exter- 
nal ROM is ignored when the internal RAM is enabled. The code is loaded into 
the emulator RAM and executed there. 

Monitor programs must have RAM to set breakpoints. I have worked on systems 
where the system RAM was large enough to handle both the RAM requirements 
and the program code, so the code was just loaded into system RAM for debug- 
ging. In other cases, the PROM was replaced with RAM (the write signal from the 
processor must be wired to it) or a second RAM integrated circuit (IC) was added 
to the system during development. 

ROM emulators contain RAM but plug into a PROM socket. They usually inter- 
face to a PC via a serial port and can be loaded from the PC with the target code. 
Breakpoints can be downloaded as well. Because most ROMs aren’t socketed any 
more, ROM emulators are less popular than they once were. 

As processor speeds go up, emulators get harder to build. An emulator typically 
consists of some kind of pod that plugs into the processor socket, connected via a 
cable to additional emulator hardware, which then connects to a PC that controls 
everything. With processor clock rates exceeding 500MHz, it is difficult to get any- 
thing to work over any kind of cable. In addition, modern high-integration proces- 
sors often come in highdensity surface-mount packages. These parts do not use a 
socket, and there is no way to plug in an emulator. With leads on 0.03- or 0.02-inch 
or smaller centers, it is nearly impossible to clip anything over the package, A BGA 
or PGA package, with the leads underneath the IC, further complicates addition 
of any kind of emulator. 

The bottom line to all this is that, with increasing processor complexity, devel- 
opment tools have regressed from emulators back to software debuggers. Fortu- 
nately, some technology improvements make debugging easier. Many processors 
include on-chip debugging additions. Intel includes debugging registers on x86 
processors from the 386 up. Four registers allow breakpoints to be set for reads, 
writes, or any (read/write) access to a specific location. The regsters also allow 
8-, 16, or 32-bit memory locations to be monitored. So your debugging software 

System Integration and Debug 193 



can get some of the features of an emulator without additional hardware even if 
your application is running out of ROM. 

Motorola also supports onchip debugging on many of its processors, including 
the 68wColdfire family and the 68HCxx microcontrollers. Some Motorola proces- 
sors use a technique called background debugging mode (BDM). BDM uses a connec- 
tion to an external controller (such as a PC) to set breakpoints and examine trace 
information. One advantage of the Motorola scheme is that the processor can con- 
tinue running while memory and registers are examined. This is a useful feature 
when the system is controlling motors or other devices that can cause damage if 
the processor stops. 
As I mentioned in Chapter 4, small microcontrollers often present a special 

challenge. In these devices, the processor, RAM, and program memory are self- 
contained, and all the pins are used for 1/0 functions. Consequently, there is no 
way to see what addresses are being executed and what RAM locations are being 
accessed. Sometimes you can build a special version of the controller that executes 
from external memory. However, if your design uses all the controller’s 1/0 ports, 
that is not an option. Many microcontrollers do not even support external memory. 
Accessing 64K of external memory requires at least 19 data, address, and control 
pins, assuming data is multiplexed with addresses. Microcontrollers such as the 
Atmel AT9OS2313 and many of the Microchip PIC devices come in 18-, 20-, or 
28-pin packages and simply lack enough pins to attach external memory. In a small 
microcontroller design using one of these parts, you have five disadvantages: 

You cannot use external RAM. 
You cannot debug out of RAM (you must reprogram parts every time there is a 

You cannot set internal breakpoints (code is in PROM or flash memory). 
Often, not enough code space is left for a debugger, even if one were available. 
There is no way to see what internal addresses are being executed. 

In a case like this, you are limited to using an emulator or adding debug techniques 
like those described in Chapter 6. Fortunately, the code for most of these designs 
is limited in complexity, if only because of limited code space, so debugging is less 
of a problem than for more complex processors. 

change). 

Functional Test Plan 

Once the software and hardware are thought to be working, a test should be per- 
formed to verify everything. A minimum test plan should describe every function 
to be tested. A minimal test plan for the pool timer might look like this: 

194 Embedded Microprocessor Systems 



Verify timekeeping. 

Verify keypad operation and sensing. 

Verify time rollover and on/off switching. 

Verify override operation. 

Verify water low sensor operation. 

Verify time set. 

Fortunately, if you have a good requirements specification, you also have a good 
start on the functional test requirements. The first thing you must do in functional 
testing is make sure all requirements are met. Some of these are difficult to prove- 
the “minimum switches and knobs” requirement for the pool timer is a good 
example-but the list of requirements is a good starting point for verifying the 
design. You can get software that tracks requirements in a document and you can 
carry the tracking through the test procedure to verify that the requirement was 
satisfied. 

The problem inherent in any minimal test plan like this is that it often omits 
several important steps. When you verify timekeeping, do you verify only that the 
time decrements, or that it decrements at the right rate and rolls over at the right 
time? Do you check at least two cycles to be sure that nothing hangs up? A more 
comprehensive test plan might have the following tasks: 

Vmjj timekeeping: 

Verify that time decrements correctly. 
Verify timekeeping rate (accuracy in a real product would probably be speci- 

fied in the requirements). 

Vmfi keypad operation and sensing: 

Keys are sufficiently debounced. 
All keys except SET are ignored in powerfail mode. 

Vmjj time rollover and on/off switching: 

ON rollover, switch to OFF time. 
OFF rollover, switch to OFF time. 
Verify at least three cycles. 

Vhj j  override operation: 

O N  override in OFF timing. 
OFF override in ON timing. 
O N  override in ON timing. 
OFF override in OFF timing. 

System Integration and Debug 195 



Override terminate in all modes. 
OFF time expiration while in ON and OFF override. 
ON time expiration while in ON and OFF override. 
Correct LED operation in all modes. 
Rollover time from 24:OO to override exit in all modes. 
Override timekeeping in all modes. 

VmB water low sensw operation: 

LED operation (blinking ON LED). 
Motor does not start in normal or override. 
Normal operation resumes when level is OK again. 

VmB time set: 

Time increment and rollover, OFF and ON. 
Time saved correctly when either or both times changed. 
Override disabled for time set. 

A functional test plan should cover not only normal operation of the system but 
abnormal cases as well, What if the operator presses the START button while the 
system is shutting down after someone pressed STOP? If you build enough systems, 
someone, somewhere, will try it. Trust me. 

Sometimes special software can aid in this testing. For example, the pool 
timer software was modified to run the time at 20 times the normal rate so that the 
testing could proceed faster. There is danger here though, depending on how much 
must change. At some point, a test of some kind must be done with the final 
software. 

It often is difficult for the software engineer to come up with all the possible 
scenarios that should be tested. A brainstorming meeting with other members of 
the project team, especially the software engineers, usually will produce a number 
of special conditions to check. If you are the only person on the project, bring in 
engineers from another project and have a code walkthrough/test scenario 
meeting. 

Stress Testing 

A functional verification should include a thorough evaluation of the system under 
stress conditions. It is tempting to just prove that the essential functionality works 
in a controlled test and then go on to the next thing on an already full schedule. 
However, most systems benefit from stress testing, where an operator does things 
they wouldn’t ordinarily do or where some part of the system is changed to simu- 

196 Embedded Microprocessor Systems 



late a failure. You will occasionally hear someone say they have so much confidence 
in their design that such testing is not necessary. My experience is that an unwill- 
ingness to test tends to betray a lack of confidence in the design. 

On some systems, where safety is part of the embedded design, special tests may 
need to be performed to verify that safety systems work. For instance, to prevent a 
hazard, a system may need to shut down a motor if the operator opens a door on 
the instrument. It is not uncommon to have interlocks on such a safety-related part 
of the system to insure that a single point failure (one of the interlocks sticks in the 
“door closed” state) does not cause a safety problem. In this case, you probably 
need to design a verification test to ensure that either interlock will result in a motor 
shutdown. You might want to go a step further and test with one interlock working 
and the other one oscillating to simulate a bad connection in the wiring. In many 
cases, you will use a Failure Mode Effects Analysis (FMEA) or event tree to formalize 
the analysis of such failure effects. Although using these tools is outside the scope 
of this book, the results of such analysis will drive the verification requirements for 
your system. 

Problem Log 

On most projects, the first round of functional testing shakes out some problems. 
I recommend a problem log for any project, especially for large projects. The log 
should list any errors encountered, how they were uncovered (what conditions or 
functionality was being tested), who is responsible for fixing the problem, and when 
it was fixed. An electronic log is sufficient, but a paper log near the test machine 
makes jotting things down easier. Do not try to use a problem log from the first day 
of debug, when the basic design is being debugged. The number and frequency of 
problems will make keeping the log up to date a chore, and it will not get done. 
This is especially true if you are working on multiple projects simultaneously, which, 
of course, you always are. A problem log might seem like overkill for a project with 
one or two engineers, but it keeps minor problems that were put on the back burner 
from being forgotten completely. 

When a problem is fixed, there is a question: How much testing is needed to 
prove the fix and verify that the fix did not introduce new problems? In a high- 
reliability system, it may be necessary to rerun the entire suite of tests. Some other 
systems may require only regression testing to verlfy the area of code or hardware 
that was changed. It is easy to say that only limited regression testing is needed, but 
be careful. A code change that seems innocuous may have far-reaching effects, espe- 
cially if it interacts with other processes. 

Once everything is working, the final step is to test the complete system against 
the original system requirements. This seems obvious, but sometimes a design team 

System Integration and Debug 197 



concentrates on the trees and forgets about the forest. The process of verifjmg 
the design at this level varies with the product, the company, and the customer 
and is beyond the scope of this book. It may include system testing that is several 
levels removed from the embedded control system, and it may involve testing in 
the field. 

A Real- World Example 

This example illustrates some of the issues involved in debugging embedded appli- 
cations. It is based on the document feeding example used in Chapters 4 and 6. 
As described earlier, this system had two requirements: the documents had to be 
fed at a certain rate (the throughput) and the interdocument spacing had to be 
greater than a certain threshold to meet the requirements of downstream sorting 
mechanisms. 

The original problem, described in Chapter 4, involved coupling between the 
throughput and spacing correction code; a feedback loop was added to eliminate 
the spacing errors. Once this code was implemented, the error rate was reduced 
significantly, but there were still too many errors. 

Figure 7.1 shows the mechanical and electrical arrangement of the system. Each 
document was fed into the transport by a feed wheel, driven by a DC motor, which 
was in turn controlled by the microcontroller. The motor had a shaft-mounted 
encoder to provide speed feedback to the motor driver and the microcontroller. 
The microcontroller commanded the motor driver to operate the motor at a par- 
ticular speed and the motor driver hardware had a feedback loop to maintain that 
speed. There were actually three motors in the feed mechanism, but only one was 
involved in the problem. 

Documents leaving the feeder were passed through an intermediate accelerator. 
This accelerator consisted of a spring-loaded wheel, turning at a constant speed, 
that would slip on the document as long as the document was held by the feed 
wheel. As soon as the trailing edge of the document left “pinch” of the feeder, it 
would be accelerated. A sensor was located after the accelerator. This sensor could 
detect the presence or absence of the document and was located so that a docu- 
ment of any width could be detected. 

After the first sensor, another accelerator brought the document up to the final 
speed. After this accelerator, there was another sensor. This sensor was the first 
sensor after the document was at full transport speed and was used by the system 
to detect spacing errors. There was about 23 inches of track between the feeder 
and the second sensor. As mentioned in Chapter 6, a document (or a given point 
on a document) took about 150ms to travel between the feeder and the second 
sensor. 

198 Embedded Microprocessor Systm 



ITEMS IN-HOPPER, AWAITING FEED 

I 

SENSOR 1 ! FEED MECHANISM 

DIRECTION OF MOTION -D 
I 

MOTOR 

0 Q COMMANDS FROM 
HIGHER LEVEL 

EN C 0 DER MICROCONTROLLER CONTROLLER 

START 
STOP 
FEED RATE 

SENSORS 

Figure 7.1 
Document Spacing Example. 

Since the first sensor was after the first accelerator (necessary due to the mechan- 
ical components in the feeder area), any given document was nearly out of the 
feeder by the time the spacing between that document and the preceding docu- 
ment (the one already in the transport) could be measured. The firmware had to 
predict what the final spacing would be after both documents were through the 
second accelerator. This prediction was based on the length of the space at the first 
sensor, the amount of acceleration (a constant), and the current motor speed. 

If the predicted spacing was too short, the feed motor would be ramped down 
enough to “grow” the interdocument spacing enough to prevent an error. By 
slowing the feed motor, the document in the feeder was held back, allowing the 
preceding document to pull away, increasing the interdocument spacing. The 
amount of rampdown was based on the spacing at the first sensor and the current 
motor speed, and was intended to slow the document just enough to produce ade- 
quate spacing after acceleration. 

The spacing prediction and motor rampdown calculations were made using a 
number of lookup tables because many of the calculations were well beyond the 

System Integration and Debug 199 



real-time capacity of the 8031. The tables were calculated by software running on 
a PC, and the resulting tables were incorporated into the 8031 code. 

The spacing errors occurred on every machine produced; it was not limited only 
to certain machines. There were several possibilities for why spacing errors still 
occurred after the original spacing/throughput problem was solved: 

The original fix had a bug (software problem). 
The 8031 was making an incorrect prediction about the size of the post- 
acceleration spacing, and therefore not correcting some documents (software 
problem). 
The 8031 was making an incorrect calculation about the amount of correction 
needed to fix the spacing (software problem). 
The sensor hardware delivered an incorrect signal to the 8031, resulting in an 
incorrect gap measurement (electrical hardware problem). 
The motor or motor driver was not responding correctly to the rampdown/ 
rampup commands (electrical or mechanical hardware problem). 
The first acceleration wheel was not always accelerating the documents correctly 
(mechanical hardware problem). 
The problem only occurred on documents that were physically damaged in some 
way and could not be controlled/sensed properly (media problem; possible spec- 
ification problem if these were not taken into account in the design). 

The first items checked were the media and the acceleration wheels. We found 
that most of the documents with incorrect spacing were not damaged so it was not 
a media problem. The acceleration wheel was more difficult to measure, but it was 
based on an earlier design and appeared to be working correctly. Had the problem 
not turned out to be elsewhere, we would have returned to this and examined it 
in more detail. 

We measured a number of rampup and rampdown cycles and determined that 
the feed motor was working correctly, at least as far as the shaft encoder was con- 
cerned. Spacing measurements were made on a number of documents and it was 
determined that the variation in the output was minimal and insufficient to cause 
the problem. 

With all the possible errors other than code eliminated, a means was needed to 
determine what was happening. Unfortunately, errors were not detected (at the 
second sensor) until 150ms after the spacing corrections had been made at the 
feeder. We did not have an emulator with a trace buffer that deep. This type of 
issue is worse with modern processors, in fact, because newer, faster processors will 
execute more instructions in a given time period, requiring an even deeper trace 
buffer for problems of this type. 

Considerable work was done to verify that the original software fix was correct, 
verifymg the thresholds that determined the feedback characteristics. Eventually, 
as described in Chapter 6, action codes were added to the firmware to indicate mea- 

200 Embedded Microprocasor Systems 



sured gap spacing and motor speed. These were captured on a logic analyzer along 
with lead edge, trail edge, interrupt, and some other information. A number of 
documents were measured and the process used to generate a correction was 
checked when an error occurred. The problem turned out to be that one of the 
tables, used in the middle of the correction calculation, had an incorrect entry in 
the last position. We did not have access to the PC code used to generate the tables, 
but the math calculations were documented in the source code for the firmware, 
so we were able to determine what the correct value should be. Apparently, the 
program that generated that particular table did not calculate the final entry cor- 
rectly. This error would propagate through the calculation process, resulting in an 
incorrect rampdown/rampup profile. 

This example illustrates a number of issues common to many embedded 
problems: 

Two problems produced similar symptoms. The original problem produced both 
spacing and throughput errors. The second problem produced spacing errors 
only. However, the effects of the second error were much smaller and were invis- 
ible until the original problem was solved. 
The problem could potentially have been caused by software, electrical, mechan- 
ical, or even specification errors. A process of elimination was required to isolate 
the actual cause. 
The extreme lag between the creation of the error (in the spacing correction 
code) and detection of the error (at the second sensor), made this problem dif- 
ficult to solve. Many emulators, even today, would not have sufficient trace capa- 
bility to solve this without using action codes or some similar technique. 
The problem actually occurred only for certain combinations of document 
length and motor speed. That is, for a given motor speed, only a certain range 
of document lengths would create the problem. However, since motor speed was 
invisible to the operator, the problem appeared to be random until the actual 
cause was discovered. 
The error in the table did not produce disastrous results. It was not used on all 
documents and even when it was used, it was close enough to the correct value 
that the software did not “blow up” with some obviously incorrect value. In fact, 
on some documents, the incorrect table value resulted in a correction that was 
close enough to actually work. 

Emulators/Debuggers 

Although using action codes and logic analyzers was the only way to solve this 
problem at the time, some emulators could have made this task easier. With the 

System Integration and Debug 201 



right emulator, you don’t need the logic analyzer to trace program flow; you can 
trace things like interrupt entry/exit (to provide timing information), document 
lead/trail edge detection, and the memory locations that keep track of current 
motor speed, document length, and the current interdocument spacing. Since you 
couldn’t be sure that the firmware had good inputs, you might still use the logic 
analyzer to track the actual document lengths (as measured by the sensor) so you 
can compare the actual lengths to the lengths as measured by firmware. 

Not all emulators, especially for smaller microcontrollers, have adequate trace 
capability for this sort of problem. Many emulators cannot trace reads/writes to 
specific addresses, although they might be able to breakpoint on such accesses. 

Some modern debuggers provide additional tools that support system integra- 
tion and debug. The p Vision2 debugger from Keil provides performance analysis 
capabilities for 8051-based designs. This feature monitors how much time the soft- 
ware spends in each routine, allowing you to measure the amount of timing margin 
you have in your design. 

Chapter 8 will look at multiprocessor systems. 

202 Embedded Microprocessor System 



Multiprocessor Systems 8 

The preceding chapters focused on single-processor systems and subsystems. Many 
embedded designs, especially in industrial or commercial systems, use multiple 
processors. The design of multiprocessor systems allows computing power to be 
distributed among different processors for redundancy, speed, modularity, or to 
simpllfy coding. 

This book is about embedded systems, so this chapter does not address 
processor arrays used for high-speed computation nor will it cover multiple pro- 
cessors used in redundant voting or backup schemes. This chapter focuses on 
systems in which multiple processors are used for distributed control of real-time 
events. 

Multiple processors might be used in a project for a number of reasons. One 
reason is modularity. For example, a particular processor-based subsystem needs 
to be installed only if a particular option is installed. Distributed processors may 
simpllfy coding. Instead of one huge, complex, difficult-todebug-and-maintain 
piece of code, the software is broken into much more manageable independent 
functions on different CPUs. 

Although it seems counterintuitive, distributed processors may decrease costs. 
The processing horsepower to operate two tasks independently on separate proces- 
sors may be considerably less than if one processor must do everything. For 
example, a system may have to simultaneously handle high-speed events that 
require little processing but need extremely fast response and message-level inter- 
rupts that occur less often but require extensive processing. An example of a 
high-speed event might be a motor shaft encoder interrupt. An example of a 
message-level interrupt might be a message packet from an E 2 3 2  interface or 
message passing in an RTOS environment. A single processor solution must be fast 
enough that the overhead of the message-level functions does not affect perfor- 
mance of the high-speed events and the repetition rate of the fast events does not 
slow down the more processing-intensive message functions. 

A multiprocessor solution to this problem might involve a singlechip micro- 
controller for the motor control and a more powerful embedded processor for the 

203 



DISPLAY 

HOST SYSTEM 

KEYPAD 

EVENT 
SENSORS 

MOTORS 

Figure 8.1 
Simple Multiprocessor System. 

message-level tasks. This can be less expensive than a single processor powerful 
enough to do both. 

Figure 8.1 illustrates a simple multiprocessor system for some undefined control 
application. CPU 1 handles the operator interface display and keypad. It commu- 
nicates with CPU 2, which communicates with a higher-level host. CPU 2 also talks 
to CPU 3, which controls real-time motors and monitors event sensors. All three 
CPUs have their own PROM, RAM, and I/O. 

In a real application, the display could be a liquid crystal display (LCD), light- 
emitting diode (LED), electroluminescent (EL), cathode-ray tube (CRT), or other 
type of display. CPU 2 communicates with a host. In a sorting application (moving 
plastic sheet, logs, documents, or anything else down a transport), CPU 2 might 
transmit the particulars about each item to a controlling host (data read from a 
document, size of a log, and so on) and receive decisions from the host as to what 
should be done with each item. CPU 3 might control motors that transport the 
items, or motors on an XY table, or the positioning of a tool in a numerically con- 
trolled (NC) machine tool. The event sensors could be position sensors (indicat- 
ing item position), pressure sensors, safety interlock sensors, or sensors of almost 
any event that the system needs to monitor. 

The communication link between CPUs depends on the application. Commu- 
nication between CPU 1 and CPU 2 could be an RS-232 connection since keypad/ 
display data rates usually are not high. Communication between CPU 2 and the 
host could be anything from a slow RS232 link to an Ethernet, SCSI, or Firewire 
connection, depending on the data throughput requirements. Communication 
between CPU 2 and CPU 3 could be a direct connection if both are on the same 
board. 

204 Embedded Microprocessor Systems 



Deciding how many processor subsystems to use and how to distribute the tasks 
among them is usually based on three considerations: 

Interdependence or modularity of the software. 
Processor throughput. 
Physical location. 

Interdependent functions, such as positioning something using a stepper motor 
and reading feedback from the position sensor, are well suited to sharing one 
processor. In general, whatever arrangement minimizes the interprocessor com- 
munication usually is a good distribution of functions. In the previous hypotheti- 
cal example, it makes no sense for CPU 2 to handle communication from the host 
and CPU 3 to handle communication to the host, unless the two information 
streams are independent and unrelated. 

Code complexity is an issue as well. If CPU 3 is eliminated from the example 
and CPU 2 does both jobs, the software could become complex and difficult to 
develop. For example, CPU 2 might need to work at a message level to talk to the 
host, but getting continuous interrupts from sensors and motors makes the inter- 
actions hard to predict. While CPU 2 might be able to handle the average process- 
ing load, momentary peaks in taking care of motors might cause host data to be 
missed or serviced late. 

Physical location may determine the breakdown of tasks. CPU 3 may be located 
remotely, near the motors. Even though CPU 2 is primarily a communication 
processor (as opposed to device control processor), it might handle some minor 
sensor or I/O device located nearby. 

In a system that has optional configurations, a processor might be dedicated to 
each option. The intelligence and cost to control the option (at least the low-level 
control) goes with the option. 

Communication Between Processors 

For multiprocessor systems in which two or more processors are on the same board, 
several methods of interprocessor communication are possible. 

Communication Register 

Figure 8.2 shows probably the simplest mechanism communication between two 
processors on the same board. Data is clocked into an 8-bit register with tristate 
outputs, such as a 74AC374 (or, of course, part of a PLD), using a decoded write 
strobe from CPU 1. CPU 2 reads the data with a decoded read strobe. In this 
scheme, the lower 7 bits in the register (DO through D6) are used to transfer data, 

Multiprocessor Systems 205 



&BIT REGISTER 
TRISTATE OUTPUTS 

CPU 2 DATA BUS 

READ STROBE 

CPU 1 DATA BUS 

WRITE STROBE 

CPU 1 WRITE STROBE 

DATABlTSDO-D6 I 04 I 23 I 77 1 
DATABITD7 1 1  

Figure 8.2 
Register-Based Multiprocessor Communication. 

and D7 is used as a strobe. Each time CPU 1 wants to send data to CPU 2, it writes 
the data to the register, toggling the strobe line. 

You will see in the timing diagram in Figure 8.2 that there actually are two writes 
by CPU 1. This is because there is a very small timing window where CPU 1 could 
be writing the register while CPU 2 is simultaneously reading the register. CPU 2 
can then get bad data while the bits are changing. To prevent this, CPU 1 performs 
two write operations: the first one to change the data bits (DO through D6) and the 
second one to toggle the strobe. In the example shown in Figure 8.2, CPU 1 wants 
to send 23 then 77 to CPU 2. CPU 1 actually writes 23 then A3 then E7 then 77. 
By performing two writes per byte transferred, the low-order 7 bits that contain the 
data are guaranteed to be stable when CPU 2 detects that new data has been written. 
CPU 2 just polls the register, processing the new data every time the strobe bit 
changes state. The drawback to this method is speed; there is no feedback to tell 
CPU 1 that CPU 2 has read the data, CPU 1 cannot send data any faster than the 
slowest speed at which CPU 2 polls the register. Say that CPU 2 is using a polling 
loop and has interrupts. In that case, the fastest CPU 1 can send data is the sum of 
the longest path through the polling loop plus the maximum interrupt stackup 
latency. 

Figure 8.3 shows an addition to the circuit that can speed up communication 
considerably. This method still uses an 8-bit register with tristate outputs, but now 
a flip-flop has been added to the circuit. When CPU 1 writes the register, it sets 
the flip-flop; and when CPU 2 reads the register, it clears the flip-flop. So CPU 1 
writes a byte and monitors the output of the flip-flop (which indicates register full). 
As long as the register remains full, CPU 1 cannot write another byte. CPU 2, 

206 Embedded Microprocessor Systems 



C W  1 DATA BUS 

Figure 8.3 
Register-Based Communication with Status Flip-Flop. 

> D  Q > CW2DATABUS 

on the other hand, monitors the register full output; and when the register is full, 
CPU 2 reads the byte, clearing the register full bit and enabling CPU 1 to write 
another byte. 

The register full bit can be monitored by both CPUs using any input port bit, 
including a tristate status buffer, a port bit if one of the CPUs is a microcontroller, 
or a port bit on an 1/0 expander integrated circuit (IC). This method speeds up 
the overall transfer rate since CPU 1 can send data any time the register is empty. 
Note that the slowest transfer rate is the same as for the simple register/strobe 
arrangement. This is because the longest time CPU 2 may take to read the register 
is unchanged. However, since the average polling rate usually is faster than the 
slowest possible rate, the average throughput will be higher. 

To speed things up even more, the register full bit also can be connected to an 
interrupt input to either or both CPUs. In this case, CPU 2 gets an interrupt when 
the register is full (or when the register goes full if the interrupt is edge sensitive), 
and CPU 1 gets an interrupt when the register is or goes empty. 

Now the average transfer rate can be quite high. The slowest rate is the sum of 
the worstcase interrupt latencies of both processors. However, both processors 
must service one interrupt per byte transferred. CPU 1 does not know what CPU 
2 is doing and may flood it with data at an inopportune time. The software for 
either CPU may need to disable the interrupt when performing timecritical pro- 
cessing. If this is necessary, the decrease in worstcase transfer rate needs to be taken 
into account. 

If you are using processors with built-in DMA, you can use this technique to 
implement a very fast communication scheme. The register full output is connected 
to the DMA request of CPU 2, and the inversion (register empty) is connected to 
the DMA request of CPU 1. CPU 1 puts the data it needs to send into a block of 
memory and programs the DMA controller to send it. CPU 2 programs its DMA 

Multiprocessor Systems 207 



controller to read data from the register and put it in memory. Now the two DMA 
controllers handle the transfer, typically at very high rates. 

The problem with DMA-controlled transfers is this: How does CPU 2 know how 
many bytes to transfer? Three solutions to this problem exist: 

1. The first DMA technique is very simple. All transfers are a specified size, such 
as 256 bytes. If the data to be transferred are shorter than that, it is padded out 
(with zeros or some other constant value) to the block size. 

2. The second technique involves a length byte. The first byte transferred by 
CPU 1 is a length value. CPU 2 sets up its DMA controller to transfer 1 byte and 
generate an interrupt when done. When the length byte is received, CPU 2 ser- 
vices the interrupt and sets up the DMA controller to receive the specified 
number of bytes. This method requires CPU 2 to service two interrupts for every 
transfer. 

3. The third technique requires a second interrupt path between the two proces 
sors. CPU 2 sets up its DMA controller to transfer more than the maximum 
number of bytes in an actual message. If the longest message is 64 bytes, then 
CPU 2 sets up the DMA controller to transfer any value greater than 64 bytes. 
CPU 1 sets up the DMA transfer and, when it is completed, notifies CPU 2 via 
the separate interrupt path, CPU 2 reads the number of bytes transferred from 
its DMA controller and then processes the received data. Note that the CPU 
2 DMA controller will never generate an interrupt since it never transfers 
the number of bytes programmed. You can use the DMA technique even if only 
one processor supports DMA. The non-DMA processor can poll the register to 
see when data are available. The speed is no higher than a polled register 
approach, but whichever processor has DMA is relieved of the need to poll for 
each byte. 

Figure 8.4 illustrates a variation of this DMA method. This was designed for a 
dual430188 application where CPU 1 had both DMA channels used for something 
else. The DMA channels of CPU 2 were used for data transfer. This scheme uses 
two &bit registers for bidirectional communication. Register 1 transfers data from 
CPU 1 to CPU 2, and Register 2 transfers data from CPU 2 to CPU 1. The register 
full bit for Register 1 drives DMA channel 0 on CPU 2 and the register empty bit 
on Register 2 drives DMA channel 1 on CPU 2. 

In addition, there is one interrupt from CPU 1 to CPU 2 and one from CPU 2 
to CPU 1. The CPU 1 to CPU 2 interrupt is set by CPU 1 and cleared by CPU 2. 
The other interrupt is set by CPU 2 and cleared by CPU 1. Both interrupts are avail- 
able as status bits to both CPUs. Interrupt set and clear, of course, are decoded 
read/write strobes. 

The sequence of events for transferring data from the CPU 1 to CPU 2 is as 
follows: 

208 Embedded Microprocessor Systems 



REGISTER 1 

C W  1 DATA BUS > CWZDATABUS 

REGISTER 1 
READ STROBE 
FROM CPU 2 

REGISTER 1 
WRITE STROBE 

FROM CPU 1 

REG FULL 
TO CPU 2 DMA REQUEST 0 

WRITE STROBE 
TO SET EOM 1 INTERRUPT 

FROM C W  1 
EOM 1 INTERRUPT 
TO C W  2 

REGISTER 2 
WRITE STROBE 
FROM CPU 2 

REGISTER 2 
READ STROBE 

FROM C W  1 

REGISTER FULL 
STATUS BIT 

TOCPU 1 
REGISTER 2 EMPTY 
TO CPU 2 
DMA REQUEST 1 I 

STROBE TO SET 
EDM INTERRUPT 2 
FROM CPU 2 

€OM INTERRUPT 2 
TO CPU 1 

STROBE TO CLEAR 
€OM INTERRUPT 2 

FROM CPU 1 

Figure 8.4 
Dual 80188 Communication Using a Single CPU DMA. 

CPU 2 sets up DMA channel 0 to transfer 256 bytes (or any value greater than 
the longest possible message). 

CPU 1 sends the message. CPU 1 must allow sufficient time between successive 
bytes to permit the DMA transfer to complete. 

CPU 1 sets the interrupt after the last byte is transferred. 

CPU 2 services interrupt. This includes terminating the DMA transfer, reading 
the DMA controller to determine how many bytes were transferred, setting up 
the DMA to receive the next package, and determining whether the message 
must be processed immediately or if' it can wait. After interrupt processing i s  

complete and the DMA i s  set up fm the next transfer, CPU 2 resets the interrupt. 
When the interrupt goes inactive, CPU 1 can send the next message. 

Multiprocessor Systems 209 



The sequence of events for transferring data from CPU 2 to CPU 1 is as follows: 

CPU 2 sets up DMA channel 1 to transfer the message from memory to the 
communication register. DMA is set up to interrupt CPU 2 at the end of 
message transmission. 

CPU 1 reads each byte as it is available in the communication register. When 
the complete message is transferred, the DMA controller interrupts CPU 2, 
which then sets interrupt to CPU 1. 
When CPU 1 clears the interrupt, CPU 2 can send the next message. 

The only possible problem here is that CPU 1 must not transfer data too fast 
to CPU 2. One way to prevent this is to have CPU 1 poll the register 1 full bit and 
not transfer if the register is full. However, if CPU 2 is not performing operations 
that prevent the DMA from acquiring the bus or is not considerably slower than 
CPU 1, a minimal software delay should be adequate. 

A problem can occur with any of the register and flip-flop methods if either CPU 
is considerably faster than the other, such as if one is a digital signal processor (DSP) 
and the other is a relatively slow microcontroller. If CPU 1 is faster than CPU 2, 
CPU 1 may detect the register full going inactive and write a new byte while CPU 
2 still has its read strobe active to read the first byte. If CPU 2 is faster, it may detect 
the register full condition and read the byte while CPU 1 still has the write strobe 
active. In either case, the SR flop will end up in the wrong state, causing a byte to 
be missed or read twice. 

Two solutions to this problem are to add a delay between register full/empty 
detection and the next read or write for the faster CPU. Another solution is to use 
a “D”-type register full flip-flop with both asynchronous set/reset and a clock input. 
The slower CPU drives the clock to set or clear the flip-flop. This ensures that the 
flip-flop is set or cleared (depending on which CPU is slower) at the end of the read 
or write cycle. 

Figure 8.5 shows this problem. In Figure 8.5A, CPU 2 is much faster than CPU 
1 and polls the data flip-flop twice during the CPU 1 write. Consequently, CPU 2 
thinks 2 bytes have been written instead of 1 byte. Note that since the data actually 
are not written to the data register until the end of the write cycle, the first byte 
that CPU 2 reads is the previous byte that was written. The diagram shows the data- 
ready flip-flop going low during the CPU 2 read cycles, although real hardware may 
or may not do that, depending on what type of ready flip-flop is used. Figure 8.5B 
shows how using a D-type register, such as a 74ACT74, fixes this problem. Now the 
data ready goes low only after the end of the CPU 1 write cycle, and everything 
works as it should. 

Of course, for two-way communication, these methods can be expanded by 
adding another communication register, written by CPU 2 and read by CPU 1. 
Wider registers can be used with 16- or 32-bit processors. You can mix techniques 

210 Embedded Microprocessor Systems 



DATA READY FLIP-FLOP 

C W  1 WRITE STROBE 

CFU 2 READ STROBE 

CPU 1 WRITE STROBE I 
cw 2 mus FOR DATA I I I I I I 

A C W  2 READ STROBE U U 
DATA READY FLWFLOP I U I  
CONTENTS OF DATA REGISTER 1 NE DATA THAT CPU 1 WANTS 1 SEND 

PULLUP DATA READY FLIP-FLOP 

C W  CPU 1 2 WRITE READ STROBE STROBE SuDATAREADY 
CFU 1 WRITE STROBE 

cw 2 mus FOR DATA I I I I I I 
C W  2 READ STROBE U 
DATA READY FLIP-FLOP I I 
CONTENTS OF DATA REGISTER WHATEVER WAS THERE BEFORE I NEW DATA THAT CPU 1 WANTS TO SEND 

Figure 8.5 
Fast/Slow CPU Communication Timing Problem. 

as well. Say the CPU 1 to CPU 2 path requires a lot of data at high speed, but what 
comes back from CPU 2 to CPU 1 is infrequent single-byte status responses. In this 
case, you might use a DMA scheme to send data from CPU 1 to CPU 2 and a polled 
regmter and flip-flop for the reverse path. 

The communication protocol for using a register of this type depends on the 
data that must be exchanged. If CPU 2 just gets simple commands like “Turn 
on motor 1” and “Turn off motor 2,” each command can be a single byte or even 
a bit in a byte. If the commands need to be more complex, a string of bytes can 
be used where the first byte is an opcode that determines what the operation 
is and how much data follows. One opcode, for example, might be “Move up the 
NC head,” with one or more subsequent bytes to determine how far the move- 
ment should be. In cases where the data length varies, the first byte can state the 
length, or the first byte can be an opcode and the second byte state the length. 
For any multibyte protocol, a checksum byte can be added to detect errors or 
missed bytes. 

FIFO Devices 

A second method for interprocessor communication involves FIFO (first in, first 
out) buffers. Conceptually, this is the same as the register approach except that 

Multiprocessor S y s t m  211 



FIFO buffers replace the register, with one CPU writing the FIFO buffer and the 
other CPU reading the FIFO buffer. The FIFO buffer holds the data, allowing CPU 
2 to read the data in order at its convenience. Most FIFO buffers have a pin that 
tells when the FIFO buffer is empty. This can be monitored to determine when 
data are in the FIFO buffer (not empty = data available). 

A FIFO can reduce the impact of communication on both CPUs. As long as 
messages are only a fraction of the FIFO depth, the sender can just write the 
entire message to the FIFO and go on about its business. The receiver can read the 
entire message or as many bytes as are available when it discovers that the FIFO is 
not empty. 

One drawback to the FIFO is that the sender does not have byte-by-byte indica- 
tion that the receiver has taken the message. If the receiver falls behind or even 
stops, the FIFO may have to get completely full before the sender knows the data 
were read. One way around this is to use a message-level indication: The sender 
sends an entire message at a time but doesn't send another message until the FIFO 
goes empty. 

Dual-Port RAM (DPRAM) 

In cases in which a lot of data must be transferred between two processors, a dual- 
port RAM (DPRAM) is common. DPRAM is shared between two processors. If both 
processors want to access the RAM at the same time, one has to wait until the other 
is finished. 

Some DPRAM ICs handle arbitration internally. These devices have a signal to 
each processor to request a wait state for arbitration, or they use a synchronous dual- 
port memory architecture that permits simultaneous access by both processors. The 
709089 from Integrated Device Technologies (IDT) is a 64K x 8 dual-port RAM. 
The IDT '1052 is a 2K x 8 four-port device that can allow four processors to com- 
municate using a common RAM area. 

One drawback to using synchronous DPRAM ICs is possible data corruption. 
If one processor writes to a location while the other is reading, the write may not 
be completed correctly or the read data may be corrupted. For cost-sensitive 
designs, an inexpensive way to produce a DPRAM is to use the bus hold capability 
of one CPU. 

The block diagram in Figure 8.6 illustrates a means to implement the hold based 
DPRAM. This example uses two Intel-style processors, such as the 80188, but the 
concept can be adapted to any processor that has bushold capability. 

CPU 1 has an address decoder that selects its local RAM, ROM, I/O, and access 
to the other processor. For simplicity, the CPU 1 RAM, ROM, and 1/0 are not 
shown. 

212 Embedded Microprocessor Systems 



ADDRESS 0us 

Cp(I I 

DATA BUS 

-RO 

-wR 
WAIT 

Figure 8.6 
Dual-Port RAM Using a Bus Hold. 

A memory map for CPU 1 might look like the following: 

00000 to lFFFF 
20000 to 27FFF 32K DPRAM 
FOOOO to FFFFF 64K EPROM 

128K local RAM 

When CPU 1 accesses locations 20000 through 27FFF, the address decoder gener- 
ates a select signal (XSEL) to the programmable logic device (PLD) in Figure 8.6. 
The read and write strobes are generated as well. The PLD responds with a wait 
request to CPU 1 and asserts HOLD to CPU 2. CPU 2 releases its bus, tristating 
the address, data, and control lines. When CPU 2 releases its bus, it responds 
with HLDA. The PLD then enables the address and data buffers that connect the 
CPU 1 bus to the CPU 2 bus. After a setup delay, the PLD asserts the read or write 
strobe to the RAM and removes the WAIT request to CPU 1. During all this, CPU 
2 is in a hold state and does not drive the bus. When CPU 1 completes the read or 
write cycle, the PLD tristates the read and write lines and removes HOLD. CPU 2 
then removes HLDA and reacquires its local bus. This example uses a delay line 
for illustrative purposes; the same thing could be accomplished with a synchronous 
design. 

The CPU 2 address decoding logic is not shown on Figure 8.6. This logic must 
recognize accesses from both CPUs and generate the RAM -CE signal. Note that 
the RAM does not need to be in the same place in the CPU 2 address space as it 
is in the CPU 1 space. 

Multiprocessor Systems 213 



The PLD equations for this are as follows: 

// PIN DESCRIPTIONS 
// !XWR,!XRD: EXTERNAL PROCESSOR READ AND WRITE STROBES. 
/ /  !XSEL: ADDR DECODE FROM EXTERNAL PROCESSOR. 
/ /  HLDA: FROM LOCAL 188. 
// DL140: 140 NS OUTPUT OF DELAY LINE 
// DUO: 40 NS OUTPUT OF DELAY LINE 
// DIR: DIRECTION CONTROL FOR ACT245 BUS BUFFER. 
// 0 = READ FROM LOCAL BUS TO EXERNAL BUS. 
/ /  !DEN ENABLE FOR ACT245 BUS BUFFER 
// !AEN: ENABLES ADDRESS BUPF'ERS FROM EXTERNAL ADDR BUS 
// TO LOCAL ADDR BUS. 
/ /  !LRD: READ STROBE TO LOCAL BUS 
// !LWR: WRITE STROBE TO LOCAL BUS 
/ /  HOLD: TO LOCAL 188. 
/ /  !XWAIT: TO EXTERNAL CPU 
// DLD: DELAY LINE DRIVE 
/ /  FF1, 2: MEMORY LATCH 

// THIS PLD WILL  ARBITRATE THE LOCAL BUS FOR EXTERNAL ACCESS. 
/ /  REQUESTS HOLD FROM 188, THEN ALLOW EXTERNAL BUS ACCESS 
// WHEN HLDA IS RETURNED. TO PREVENT PROBLEMS WITH 

/ /  PERMITTED UNTIL THE HOLD ACKNOWLEDGE FROM THE FIRST ACCESS 
// HAS BEEN REMOVED BY THE LOCAL 188. 
XWAIT = XSEL Be IFF2 

// BACK-TO-BACK CYCLES. A SECOND ACCESS WILL NOT BE 

HOLD = XWAIT & XRD & !HLDA 
# XWAIT & XWR & !HLDA 
#HOLD&XRD 
#HOLD&XWR 

// AFTER HOLD AND HLDA BOTH TRUE, TIMING CYCLE STARTS. 
// EXTERNAL ADDRESS IS ENABLED FIRST. AFTER 40 NS SETW, 
/ /  LOCAL FtEAD/WRTTE IS ASSERTED. 100 NS AFTER THAT, 
/ /  XWAIT IS REMOVED TO COMPLETE CYCLE. 
DLD = HOLD & HLDA & XRD & !FFl 

#HOLD Be HLDA Be XWR & IFF1 
FF1 = DL140 

# FF1 & IFF2 

214 Embedded Micropocessm Systems 



AEN = HLDA Be HOLD Be IFF2 
# A E N & L W R  
# A E N & L R D  

DEN = AEN 
D I R = X R D # L R D  

FF2 = FF1 & IDLD & IDL140 
# FF2 & HOLD 

LWR.OE = DEN 
W . O E  = DEN 

LVQR = XWR & DL40 / /  FOLLOWS BUS WRITE 
# LWR & DEN Be XWR 

LRD = XRD & DL40 / /  FOLLOWS BUS READ 
# LRD & DEN & XRD 

The one drawback to using this DPRAM technique is that both processors are 
slowed down by the access. A DPRAM IC or controller IC will place one processor 
in a wait state only if both attempt simultaneous access. In this design, CPU 1 must 
wait while CPU 2 gets into a hold state, so excessive access by CPU 1 can affect 
throughput of both processors. However, this can be a cost-effective design since 
the D P W  can be the CPU 2 local RAM. 

Transferring data between processors in a DPRAM can be accomplished in 
a number of ways. One method is to have one or more sequential buffers with 
semaphores. For example, RAM locations 1000 through 1100 (hex) might be 
configured into four buffers as follows: 

1000: Semaphore, buffer 1 
1001-103F: Buffer 1,63 bytes 
1040: Semaphore, buffer 2 
1041-107F: Buffer 2, 63 bytes 

and so on through buffer 4. 
In operation, CPU 1 puts data in buffer 1 then sets semaphore 1. CPU 2 sees 

semaphore 1 set, processes the data, and clears semaphore 1. 
The next block of data from CPU 1 goes in buffer 2, then buffer 3, then 

buffer 4, and then back to buffer 1. If CPU 1 wants to put data in a particular 
buffer and the semaphore still is set, the buffer is not available and CPU 1 must 
wait. 

Multipocessor Systems 215 



If the messages have variable length, the semaphore may be replaced with a 
length byte (or word). CPU 1 places data in the buffer, then places the length at 
the first byte. CPU 2 clears the length to zero when it has processed the data. This 
makes more efficient use of the RAM since the buffer length is only as long as 
needed for a particular message, and subsequent messages can be strung together 
in memory, the length byte of one message immediately following the last byte of 
the previous message. However, it makes the code less efficient because the CPU 
must search through the buffers using the lengths to find the first unused one. 

The length/semaphore must be set by the sending CPU only after the complete 
message is in the buffer, or the receiving CPU may see the length byte and t ry  to 
read the message before it is completely written. 

I have already mentioned data corruption in synchronous DPRAMs. Any type of 
DPRAM arrangement is susceptible to data corruption if the memory is managed 
poorly. In general, data buffers should be segregated into send and receive buffers. 
One CPU writes to the send buffers while the other CPU reads them, and the 
reverse is true for the other set of buffers. This arrangement is needed because, if 
the buffers are shared, both processors may try to simultaneously grab an empty 
buffer. If it is impossible to segregate the buffers this way, a protocol must be put 
in place to keep both processors from attempting to access the same buffers at the 
same time. 

A n  additional problem can occur when using 8-bit DPRAM with 16-bit proces- 
sors. If the semaphores and buffers are lfbbit words, the processors will have to do 
two &bit memory cycles to access a lfbbit semaphore. It is possible for one proces- 
sor to access a memory location in the middle of the two write cycles from the other 
processor. 

This problem can be avoided if the processors have a LOCK function, which can 
be used to lock out access to the DPRAM by the other processor. However, this will 
not work with a synchronous DPRAM design. In general, it is safest to have critical 
semaphores be 8 bits wide in these applications. Use 8-bit semaphores to control 
access to buffers, and, if necessary, use lfbbit counters and data values. 

Serial Communication 

Chapter 4 describes a method of communicating between a pair of ADSP-2101 
processors using the built-in synchronous serial port. In that example, the serial 
interface sent 16 bits at a time. The low-order byte (DO-D7) was designated as data, 
D8 and D9 indicated the source of the transmission (up to four DSPs were possi- 
ble in the system), D10 and D11 indicated the destination, and D12-Dl5 were an 
opcode that indicated what the data were for. While this scheme required 16 bits 
to be transmitted per byte, most opcodes require only 1 byte, and the mechanism 
allows multiple devices to share the bus. 

216 Embedded MacrOprocessor System 



The Microwire and 1% buses described in Chapter 2 can be used for inter- 
processor communication, albeit somewhat slowly. In this scheme, one processor 
typically controls the bus as a master, and the other responds like a peripheral 
device. However, the I'C specification supports multimaster operation in a fairly 
unique way. 

The problem with any shared multimaster bus is arbitration-which master gets 
the bus when two or more want it at the same time. Some arbitration schemes allow 
multiple masters to transmit, detect the bit errors, and resend the bad transmis 
sion. 1% performs arbitration by allowing any master to send when the bus is idle. 
If two masters attempt to send at the same time, eventually a bit will be in the data 
stream where one master is sending a 1 and the other is sending a 0. Since the 1% 
bus is an opencollector bus, the master sending the 0 will pull the data wire low. 
At this point, the other master is expected to sense that the state of the bus is 
different from what it is sending, and turn off its drivers. 

There are a couple of interesting things about this arbitration method: First, it 
does not cost any time-transmissions proceed as they would in a single-master 
system. Second, no priority is assigned to the bus masters. Which master wins 
control of the bus is completely dependent on the data each is transmitting. Third, 
the point in a transmission where arbitration is decided is completely data depen- 
dent. If two masters attempt to send information to the same address, control of 
the bus may not be decided until well into the transmitted data fields. Figure 8.7 
illustrates 1% bus arbitration between two masters. The 3.4Mbits/sec high-speed 
mode of 1% does not support multimaster transmissions. 

Sending 1% over long distances is somewhat problematic: Both the SCL and SDA 
lines are bidirectional and open collector, so they cannot just be buffered with 
RS-485 buffers unless the bus is completely implemented in software. The usual 

SCL 

DATA MASTER I WANTS TO TRANSMIT I 
0101 1 

DATA MASTER 2 WANTS TO TRANSMIT 
01010 

f 
WHEN THIS! BIT IS TRANSMITED, 
MASTER 1 LOSES ARBITRATION BECAUSE 
IT IS ATTEMPTING TO TRANSMIT A '1' 
AND MASTER 2 IS TRANSMlmNG A 'W 

Figure 8.7 
1% Bus Arbitration. 

Multi#n-ocessor Systems 217 



method of buffering an 1% bus involves a circuit that senses current flow to deter- 
mine whether a device is trying to drive the line and turns on the right buffer to 
send data the right direction. 

Some microcontrollers, such as the 8051, have synchronous serial ports that are 
suitable for interprocessor communication. These generally run at a fairly high s u b  
multiple of the processor clock for fast data transfer. Since they usually are half 
duplex, a handoff protocol must be established for bidirectional communication. 

Processors on Different Boards 

In systems where two processors on separate boards need to communicate, several 
methods are available. A serial -232 link has already been discussed. Some port 
expander ICs, such as the 28536, have a built-in communication mode where 8 data 
bits of one port and 2 or 4 bits of another port can be interconnected between two 
devices to make a byte-wide interface with interlocked handshake. If the commu- 
nication distance warrants, the interface can be made differential or otherwise 
noise immune. 

An asynchronous serial interface can be used without the -232 interface. Some 
high-speed UARTs can operate up to 1 Mbit per second. If an RS-485 differential 
interface is used as illustrated in Figure 8.8, several processors can be connected in 
a high-speed party line arrangement. Note that the -485 party line communica- 
tion bus can be quite long and interconnect subsystems over significant distances. 
Although not covered in detail here, more complex communication schemes 
involve Ethernet, Firewire, or other standard, high-speed interfaces. 

CAN Bus 

The CAN (controller area network) is a serial bus originally developed for use in 
motor vehicles. It is a multimaster bus that supports multiple, equal nodes. The 
nodes have no specific address. Address information is contained in the identifiers 
of the transmitted messages. Nodes may be plugged in and removed while the 
system is operating (“hot swapping”). 

The CAN bus is a 120-ohm differential serial party-line bus. Three bus speed 
ranges are available: 

1. & 2. Low speed (ISO-IS 11519-2) defines a Class A bus with speeds up to IOkbps, 

3. The high-speed specification (ISO-IS 11898) defines a bus with speeds between 
and a Class B bus for speeds from lOkbps to 125kbps. 

125 kbps and 1 Mbps. 

CAN uses NRZ (nonreturn to zero) signaling, with bit-stuffing to allow resyn- 
chronization. The CAN differential lines have two states: In one state, both lines 
are driven to 2.5V and in the other state one line is driven to 1.2V and the other 
to 3.5V. This gives a differential voltage swing between 0 and 2V. 

218 Embedded Microprocessor S y s t m  



RS-485 
TRANSCEIVER 

RS-485 
TRANSCEIVER 

P 
COMMUNICATION BUS 

Figure 8.8 
RS-485 Party Line Multiprocessor Communication. 

CAN messages consist of a start-of-frame bit, followed by an arbitration field 
consisting of 12 bits: The 1 1-bit identifier, which reflects the contents and priority 
of the message, and the remote transmission request bit. The arbitration field is 
used to arbitrate between transmitters. If multiple transmitters attempt to gain 
control of the bus at the same time, the nodes with lower-priority messages will drop 
out during the arbitration field, leaving the node with the highest-priority message 
in control of the bus. 

Next is the control field, consisting of 6 bits. The first bit of this field is called 
the IDE (identifier extension) bit, and the next bit is reserved. The remaining 
4 bits are the data length code (DLC); they spec@ the number of bytes of data 
contained in the message (0 to 8 bytes). 

The data follows the control field and consists of however many bytes were 
defined by the DLC. After the data is a 15-bit CRC (cyclic redundancy check) for 
error checking. Following the CRC is an acknowledge field, where the receiving 
node drives an acknowledge bit onto the bus to n o w  the transmitter that the 
message was correctly received. Last, 7 empty bits complete the frame. 

Multiprocessor Systems 219 



CAN error checking is performed by three methods: 

The CRC (a complex checksum method) is calculated and inserted into the 
message by the transmitter. The receiving node calculates the same CRC and 
compares it against the received CRC to detect transmission errors. If a CRC 
error is detected, an error frame is generated to request retransmission. 
The second error check uses the acknowledge bit; the message is sent from the 
transmitter to the receiver, but the acknowledge bit is sent from the receiver to 
the transmitter. If no acknowledge bit is received, the message is retransmitted. 
Finally, a frame check is performed by the transmitter, in which it looks for an 
incorrect state during the CRC delimiter, acknowledge delimiter, end-of-frame 
and interframe space periods. An incorrect signaling value during these periods 
is an error. 

There are two versions of CAN: Version 2.0A (Standard CAN) supports an 
11-bit identifier field (supports 2047 message types) and version 2.OB (Extended 
CAN) supports an 18-bit identifier extension, for a total 29-bit identifier field. 

CAN interconnects can be up to 40m long at 1 Mbps. Longer cables can be used 
with lower bit rates. Up to 30 nodes may be connected to a single CAN bus. A 
number of manufacturers make microcontrollers that interface directly to CAN 
bus. Examples are the Siemens C167R and Intel 87C196CB. Intel also makes a com- 
munications controller, the 82527, that provides a CAN interface for processors that 
lack embedded CAN capability. Figure 8.9 shows the data sequence and voltage 
levels for CAN. 

CAN PROTOCOL 
ARBlTRATlONtlD FIELD 

DIFFERENTIAL CAN VOLTAGE LEVELS 
WIRE 1 :::L(-' 

ov  WIRE 2 - 
I 0 

Figure 8.9 
CAN Bus. 

220 Embedded Micr@-rocessm Systems 



Open-Collector Serial Interface 

Figure 8.10 shows a simple means to provide interprocessor communication using 
an asynchronous serial port such as the one available on most microcontrollers. All 
the processors drive a common serial line with opencollector drivers. The common 
serial line is pulled up to +12V. Each processor has a comparator, referenced at 
+6V, to receive data. 

With a 6V reference, the noise immunity of this approach is similar to that of 
RS-232, but the opencollector drive allows multiple devices to communicate over 
a single wire. Since the system uses standard asynchronous signaling, any type of 
processor can communicate on the bus. 

To implement this system, one of the processors would be designated as the 
master, and the other processors would transmit only when requested to do so by 
the master. This avoids bus contention. 

Figure 8.11 shows a variation on the open-collector serial communication 
method that allows a slave to request attention from the master. To implement this, 
the common serial line is pulled to +24V instead of +12V. The master has two coni- 
parators, one referenced at 6V for the data and another referenced at +18V and 
driving an interrupt on the processor. The slaves can request attention by pulling 
the common serial line down with a 12V zener diode. When no slave is requesting 
attention, the common line swings between 0 and 24V. When a slave is requesting 
attention, the serial line swings between 0 and 12V. Thus, the master can monitor 
the request input when the serial line is idle to determine whether any slaves are 
requesting attention. The slave devices must be polled by the master to determine 
which ones need service. 

The maximum baud rate for this method usually will be lower than for the 
+12V-only system. At +12V, a 600-ohm resistor dissipates about 0.25W. But at 24V, 
a 2300ohm resistor dissipates the same power. Thus, the 24V system typically will 
use a larger pullup, resulting in a lower maximum data rate. However, this com- 
munication method allows multiple processors to communicate, with an attention 
request capability, over a single wire (plus ground). 

Parallel Port Interface 

Many single-board computers, such as PC/104 systems (see Chapter 10) include a 
parallel printer port, compatible with that found in the IBM PC clone world. In 
many embedded systems, this port is not needed to communicate with a printer. 
The standard printer port provides eight data lines, a strobe signal, four output 
lines, and six input lines. If your hardware already includes a printer port, this can 
be a simple way to implement communication with other processors. 

Two computer boards can be interconnected using their printer ports. There is 
a standard interface for this, called Interlink, used to interconnect PCs. Off-the- 
shelf software and cables are available to implement this interface. Interlink 

Multiprocessor Systems 221 



+12 v 

Open Collector 

Master 

TX 

Rx 

Comparator 

Open Collector 

Tx 

Rx 

Comparator 

- 

Open Collector 

TX 

Rx 

Comparator 

PULLUP 

Common serial 
party line 

Figure 8.10 
Serial, Asynchronous Communication. 

communicates using only four of the data lines because the data lines on the stan- 
dard printer port are unidirectional, output only. You cannot tie the data lines of 
two printer ports together or you will get bus contention. However, many mod- 
ern printer ports support various bidirectional modes of operation. You could use 
this capability to get full 8-bit-wide transfers between two computer boards, but you 

222 E m b e a d  Micropomsor Systents 



+24 V 

Open Collector 

Master 

Comparator 

PORTBIT 4 ~~~~~~N 

Comparator 

Open Collector 

TX . I 
Rx 

Comparator 

Open Collector 

- 
Tx 

Rx 

Comparator c 
Open Collector 

PORT BIT 

PULLUP 

Common serial 
party line 

/ 
, 

12V zener 

Figure 8.11 
Serial, Asynchronous Communication with Attention Request Feature. 

need some additional hardware to isolate them since both boards will come up in 
standard mode with the output drivers enabled. 

A single printer port can be used to communicate between a master CPU and 
numerous slaves. If you implement such an interface, be sure that only one device 
at a time drives the data bus. 

Multiprocessor Systems 223 



Communication Pf'otoCOl Communication between processors can be imple- 
mented with a proprietary mechanism such as those described earlier, or a stan- 
dard protocol can be used. A typical example of a standard protocol is MODBUS. 
MODBUS is a hardware-independent protocol that is used to communicate 
between a master CPU and numerous slaves. A MODBUS data package sent from 
master to slave includes the slave address (0  to 247), a function code, data (if 
needed), and a checksum. The slave responds with a similar data packet to acknowl- 
edge the transmission. MODBUS data can be transmitted as binary data, in which 
case each transmitted data byte takes one byte to send, or as ASCII data, in which 
case each transmitted data byte is sent as two ASCII bytes. 

Since MODBUS is interface independent, you can use it to communicate over 
RS232 or RS485 serial links, opencollector interfaces, or parallel port interfaces. 
Using a standard interface protocol, even on a proprietary hardware interface, 
provides some advantages. These include easier upgrades in the future and less 
confusion during development of the software on the various processors. 

For more complex systems, an Ethernet interface using TCP/IP or UDP (User 
Datagram Protocol) can be used. This obviously requires a considerable step up in 
complexity of both the software and hardware, so it is not well suited to a system 
that must communicate with small microcontrollers. 

Selection Criteria 

When selecting a communication bus and protocol for a multiprocessor system, the 
following factors should be considered: 

Speed. Will the bus be able to keep up with your data rate? Be sure to take into 
account polling in a master/slave architecture (see below). 
Reliability. Do you need two redundant buses for high-reliability applications? 
What about error checking? Can you assume that all commands are received cor- 
rectly, or do you need a checksum on each block of data to prevent problems? 
Does the hardware need protection against the possibility that the field engineer 
will plug the interface cable into the wrong connector? 
Standard/Proprietary. A standard bus, such as Ethernet, lets you buy off-the-shelf 
cabling and use off-the-shelf boards and software, but it may be overly complex 
for a simple system. In some products, the ability to plug a standard device in is 
an advantage. In others, you want to keep your proprietary system proprietary. 
OS Support. If you are using an off-the-shelf operating system, including an 
RTOS, does it support the communication method and hardware you have 
chosen? If not, you will have to write device drivers for it. 
Bidirectional/Unidirectional. Sometimes a simple unidirectional interface is all 
you need. Will you have problems if the requirements change or if system inte- 
gration reveals the need for an interface in the opposite direction? You must be 
sure no reverse path will be needed before choosing a unidirectional interface. 

224 Embedded Microprocessor Systems 



Master/Slave. Will a master/slave protocol be fast enough? Some systems with 
one master and multiple slaves have poor response to attention requests because 
the master must poll each slave until it finds the one that made the request. Will 
the worstcase response time be fast enough for the last slave polled? 
Network/Poht-Point. A network interface is more complex, both in hardware 
and software. A point-to-point interface requires a separate interface circuit for 
each communication path. A PC communicating with eight microcontroller 
slaves using RS-232 requires eight serial interface channels. 
Complexity. If you choose Ethernet for a PC because it is fast and readily avail- 
able, what does that do to the complexity of the microcontrollers that must 
communicate with the PC? Your interface needs to meet the needs of the entire 
system, unless your product cost budget is flexible enough to let the interface 
drive the design. 

Acknowledge Timing 

In many multiprocessor systems, one higher-level controller passes commands to 
lower-level controllers. These commands usually cause the lower-level controller to 
perform some action-a command to “plane the block smooth” would be an 
example in the moving block scenario. One issue in any system of this type is how 
and when to acknowledge the command. There are four basic possibilities: 

1. No acknowledge. In this scheme, the low-level controller does not acknowledge 
the command at all. However, there may be an acknowledge that the data were 
taken, such as the register empty/full bit associated with the communication reg- 
ister. The higher-level controller has no indication of when or how the command 
was carried out. 

2. Acknowledge on error. The low-level controller sends an acknowledge indica- 
tion only if there was an error in communication or in carrying out the 
command. For instance, if the command is to move a robotic arm to a certain 
position, an error would be returned if the arm is stuck. 

3. Acknowledge on receipt of command. The low-level controller acknowledges 
that it has received the command. If the communication protocol includes a 
checksum or other error check, the acknowledge will include an indication if 
there was an error. The higher-level controller still has no indication of when 
the command actually is executed. 

4. Acknowledge on completion of command. The low-level controller acknowl- 
edges when the command has been executed-when the arm has been moved, 
to use the robotic arm example. The higher-level controller now knows that the 
command was received and executed and when the command was complete. 
However, if the communication protocol does not allow multiple commands to 
be sent, then the higher-level controller is inhibited from sending additional 
commands until the previous command was executed and acknowledged. 

Multiprocessor Systems 225 



These protocols can be combined. For instance, every command might be 
acknowledged when received, but an execution acknowledge is sent only if there 
is an error. 

Any scheme that does not force the higher-level controller to wait for acknowl- 
edge of execution before sending additional commands must have a mechanism 
to handle errors. If an execution error occurs in command A, but commands B 
and C have already been sent, how does the higher-level controller know which 
command did not execute? What if command C depends on command A execut- 
ing correctly? For example, our robotic arm might be told to move to a certain 
position (command A), insert a tool in a slot (command B), and turn it (command 
C). If the first command did not execute, then the last one is pointless and may 
even cause damage. So the protocol needs to speciQ what happens in case of an 
error. If commands can be “pipelined” (a new command sent before the old one 
is executed), you need to stipulate how many commands can be allowed to stack 
up so that the buffers do not overflow. 

Design Piifalls 

Multiple Measurements Be careful of having two processors measure one thing. 
Because the “thing,” whatever it is, will be measured with a digital system, there 
always is the possibility that the two processors will get different results. If they are 
measuring time, there will be at least one clock ambiguity in the measurement. If 
they are measuring a voltage, there always will be an ambiguity of at least one count 
in the two ADC output results. This can be a problem if there are fixed thresholds. 
For example, if you are moving wooden blocks down a conveyer system and one 
processor determines that the length of a block is just barely too long, be sure 
another processor will not declare it to be OK The first processer might skip 
sending the block to a planing process, while the second one proceeds with some 
other process that depends on a smooth surface. If there are fixed thresholds 
for what you measure (too short, too long, too heavy, voltage too high, and so on) 
be sure that the first processor that detects an error overrides the measurements 
of all subsequent processors. Or else be sure that a conflict does not cause 
problems later. 

Synchronization Say you have a process controlled by multiple processors, like 
the wooden block example just mentioned. One processor cuts the blocks to size, 
the next one planes them smooth, the third one stamps a logo on the blocks, and 
so on. Say that everything in the system is synchronized to a clock that occurs once 
each time the conveyer system moves 0.1 inch. If data are passed between proces- 
sors as each block moves between the regions controlled by each processor, there 
is a risk of a one-clock ambiguity in the timing. Be sure these cannot add up as 
the blocks move along. Either keep the time increment small enough that the 

226 Embedded Macroprocessor Systems 



cumulative error is not a problem or resynchronize each processor to the leading 
edge of each block. This may require more sensors than otherwise would be 
required for system operation. 

Revisions With a multiprocessor system, it often is possible to change the 
firmware for one processor without changing the others. Be sure this causes no 
problems if some function works differently than before. For instance, a new 
firmware revision might handle error messages from another processor with a 
different priority than the original firmware. Or the maximum buffer size might 
get changed in such a way that it is a problem only if certain errors occur. You may 
need additional regression testing of the combined system when firmware is 
changed. 

It is not a bad idea to have a suite of tests that is run any time firmware changes 
are made to any of the processors in the system. This would need to test all the 
error conditions and all the communication paths, buffers, and types. Of course, 
this type of error can creep into a single-processor system as well, but it is easier to 
overlook in a multiprocessor system due to the isolation of the CPUs. 

Error Handling Be sure all the processors handle errors consistently. In the 
wooden block example, if a problem occurs, do not let one processor try to stop 
everything while another tries to keep the conveyer going so everything falls off 
the end. 

Berserk Processors Where possible, handle the case of a berserk processor that 
writes all through memory or a frozen processor that will not communicate at all. 
Have timeouts on communication operations. You usually cannot operate normally, 
but at least make all the moving/rotating mechanisms safe. In cases where you have 
optional subsystems, the rest of the system may need to operate normally when 
something in the optional part is not working. 

Cumulative Time Errors When sending data or timing signals from one proces 
sor to another, be aware that the clocks of the two processors will almost always drift 
slightly. Over a long period of time, this can accumulate to a significant time error. 
Say that two systems operate with crystals having a specified accuracy of .003 percent 
(a typical value). These two systems both keep track of time in hours, minutes, and 
seconds. If one crystal is exactly correct and the other one is off by the maximum 
amount (.003 percent), the two systems will be different by 2.6 seconds at the end 
of one day. 

If your system depends on two or more processors remaining in synchronization, 
communication between processors should include synchronization information. 
Don’t depend on the clocks staying synchronized well enough that two processors 
counting, say, 1 millisecond interrupt ticks, will stay together. You may have to send 

Multiprocessor Systems 227 



an occasional synchronization message that says something like “processor 1 just 
counted tick number 1024” to keep everything together. Since clock drift is often 
temperature dependent, two processors that are remotely located with respect to 
each other will be more prone to cumulative errors. 

Extreme Isolation In a multiprocessor design, it is tempting to isolate functions 
so that one processor handles all of one function, independent of the other proces- 
sors in the system. This makes for a modular design. However, in a design where 
there is a chance that things might change, make provision for the master control 
CPU (if there is one) to alter parameters. In the wood block example, the planer 
might plane the blocks to a certain smoothness. However, once in production, it 
may be necessary to change that parameter. This might be because a new type of 
wood is encountered or because a sensor went out of production and the new 
sensor isn’t quite identical. 

In a case like this, it is a good idea to make the smoothness parameters (however 
they are measured) modifiable. You might have the system reset to the default pa- 
rameters, but allow the master CPU to change them if necessary. Of course, it is 
difficult to predict what might change, but some effort in this area often pays off. 

This approach is especially helpful in a system in which the master controller is 
a PC with software that can be downloaded or upgraded via CD-ROM, while the 
lower-level controllers are PROM-based microcontrollers. For many companies, 
changing the microcontroller code means sending out a service engineer (which 
is expensive), while the host PC code might be upgraded just by sending the soft- 
ware to the customer. 

For the same reasons, you may want to consider adding hardware that would 
allow the master controller to reprogram the lower-level processors. This implies 
the use of microcontrollers that are capable of incircuit programming, of course. 

Locking Problems I have already mentioned data corruption in DPRAM 
systems, but let’s look at a specific example here. I got a call one day about a 
dual-processor system that had been designed by an outside design house. When 
the firmware was upgraded, an intermittent problem suddenly showed up. It did 
not take long to determine that the problem was corruption in the DPRAM. One 
processor was attempting to perform a read-modifj-write operation on a sema- 
phore. Occasionally, the other processor would attempt to write to the semaphore 
in between the read and write operations of the first processor. This corrupted the 
memory. 

The processors had a lock output that indicated when the CPU was attempting 
an operation that could not be interrupted; the DPRAM controller was supposed 
to lock out the second GPU while the first was accessing the memory. However, 
a design flaw in the controller allowed the second CPU access to the memory 

228 Embedded Microprocessor Systems 



even though the LOCK signal was supposed to prevent it. It was supposed to work 
like this: 

CPU 1 reads the semaphore, asserting the LOCK signal 

CPU 2 requests access to memory and is put in a wait state due to the LOCK 

CPU 1 writes to the semaphore. 
CPU 2 is released from the wait state, reads the semaphore, finds the value 
that CPU 1 wrote. 

It actually did this: 

CPU 1 reads the semaphore, asserting the LOCK signal. 

CPU 2 requests access to memory, gets memory, reads the semaphore, finds it 
is 0. 

CPU 1 writes to the semaphore. 

CPU 2 writes to the semaphore, overwriting the CPU 1 value. 

The problem showed up when it did because the firmware change altered the 
relative timing of the two processors so that they occasionally conflicted in access- 
ing the memory. Although this problem occurred because of a flaw in handling the 
LOCK signal, a similar circumstance can occur any time that two (or more) proces- 
sors try to write to a single RAM location. The following are some guidelines for 
using multiport RAM: 

Wherever possible, do not have two processors that write to one memory loca- 
tion. As mentioned earlier in the chapter, segregate buffers so that one proces- 
sor writes to a buffer and the other one reads. 
Never have a situation in which two processors can simultaneously check a 
memory location (such as a semaphore) and then write to it. This is a sure way 
to get contention. Have one CPU write a flag location to indicate that data are 
in the buffer, have the other CPU write the location only when it has taken the 
data. Then the two CPUs do not contend for the location at the same time. 
If you must have a resource (such as a buffer) that is shared between multiple 
processors, have a two-step arbitration protocol. In this scheme, each CPU writes 
a unique code to a semaphore to indicate it wants the resource (whatever the 
resource is). Then each CPU checks the semaphore (preferably twice) to ensure 
that its own code is written there. If a conflict occurs, whichever CPU’s code is 
left in the semaphore wins. 

The last guideline works like this (in this example, a nonzero value in the flag 
location indicates that the buffer is in use; a zero value indicates that the buffer is 
free) : 

Multipocesso-r Systems 229 



CPU 1 wants the buffer and reads the flag location to see if the buffer is 
free. 

CPU 1 finds that the flag is 00, indicating that the buffer is free. 

CPU 2 wants the buffer and reads the flag location to see if the buffer is 
free. 

CPU 2 finds that the flag is 00, indicating that the buffer is free. 

CPU 1 writes 01 to the flag location, indicating that it is taking the buffer. 

CPU 2 writes 02 to the flag location, indicating that it is taking the buffer. 

Now we have a conflict-each CPU thinks it has control of the buffer. But now 
we will add the second arbitration step: 

CPU 1 checks the flag location again, finds that 02 is there instead of 01, 
knows it has lost the arbitration, and waits. 
CPU 2 checks the flag location again, finds that 02 is there, and knows it has 
the buffer. 

Of course, you must handle the case where CPU 2 is a little slow and writes the 02 
after CPU 1 has performed the second check. This might occur if CPU 2 has a 
slower clock or gets an interrupt between wanting the buffer and asserting control 
of the buffer. One way around this is to have a sufficient delay between writing and 
checking the buffer to ensure that all the writes are finished. 

Another way around the contention issue is to have a three-value flag and inter- 
locked handshake. Each CPU has a flag location for the common resource, and 
each is assigned a priority. 

When one CPU wants the resource, it checks the flags for all the CPUs. Only if 
all the flags are zero can it request the resource, by writing 01 to its own flag loca- 
tion. Then it checks all the flags again. If a higher-priority CPU has requested the 
resource (by writing 01 to its flag location), the lower-priority CPU must wait. It 
indicates this by writing 02 to its flag location. If no higher-priority CPUs have 
requested the resource, it indicates ownership by writing 03 to its flag location. 

If a higher-priority CPU wants the resource, it does the same checks before 
writing 01 to the buffer. If a lower-priority CPU has written 01 at the same time, the 
higher-priority CPU cannot take the resource until the lower-priority CPU writes 
either 02 or 03. If the lower-priority CPU writes 03, the higher-priority CPU was a 
little behind and must wait. If the lower-priority CPU writes 02, then the higher- 
priority CPU can write 03 and take the resource. 

This complicated scheme is needed because there always is a possibility that one 
CPU will write 01 to its flag location after the other CPU has read the flags, found 
them zero, and written 01. The following are four possible contention scenarios 
and how this protocol handles them (CPU 2 has the highest priority in all these 
examples). In Scenario 1: 

230 Embedded Microprocessor System 



CPU 1 checks the flags and finds them all 0. 
CPU 2 checks the flags and finds them all 0. 

CPU 1 writes its flag to 01. 
CPU 2 writes its flag to 01. 
CPU 1 checks the flags again and finds that CPU 2 has set the flag. 
CPU 2 checks the flags, finds that CPU 1 has set the flag, and waits to see what 
CPU 1 will do. 

CPU 1 sets the flag to 02, indicating that it will wait. 
CPU 2, polling the flags, sees CPU 1 indicate that it is waiting. 

CPU 2 sets its flag to 03, indicating that it is taking the resource. 

In Scenario 2: 

CPU 1 checks the flags and finds them all 0. 

CPU 2 checks the flags and finds them all 0. 

CPU 1 writes its flag to 01. 

CPU 1 reads the flags again and finds that its flag is the only one set. 

CPU 2 writes its flag to 01. 

CPU 1 writes 03 to its flag, indicating that it is taking the resource. 
CPU 2 checks the flags again, finds 03 in CPU 2’s flag, and waits. 

In Scenario 3: 

CPU 1 checks the flags and finds them all 0. 

CPU 2 checks the flags and finds them all 0. 

CPU 2 writes its flag to 01. 

CPU 2 checks the flags and finds its flag is the only one set. 

CPU 2 writes 03 to its flag, indicating that it is taking the resource. 

CPU 1 writes its flag to 01 (CPU 1 was slow or delayed). 

CPU 1 checks the flags, finds that CPU 2 has taken the resource, and waits 

In Scenario 4: 

CPU 1 checks the flags and finds them all 0. 
CPU 2 checks the flags and finds them all 0. 

CPU 2 writes its flag to 01. 
CPU 2 checks the flags and finds its flag is the only one set. 
CPU 1 writes its flag to 01. 

CPU 1 checks the flags and finds that both flags are set. 

Multiprocessor Systems 231 



CPU 2 writes 03 to its flag, indicating that it is taking the resource. 

CPU 1 having lower priority, writes 02 to its flag and waits. 
Of course, when a CPU is done with the resource, it must always reset its flag 
to 0 so the other CPUs know the resource is free. 

Engineering Specifications 

As I mentioned briefly in Chapter 1, although not a requirement for most designs, 
the engineering specifications is a document I have found useful for large, usually 
multiprocessor designs. This document can cover the entire system, including 
mechanical design, or just the electrical and software part of the design. The 
engineering specifications should include the following: 

A brief description of the product. 

A description of how the design will be accomplished. This includes what parts 
of the design will be new and what will be reused from old designs. 

Functional breakdown of the software and hardware. This includes what 
boards will be used, which functions they will perform, and what processor 
family will be used. 

Interface definition. Interfaces to the outside world should be defined in 
the requirements document so they need to be only summarized in the 
engineering specifications. The interfaces between processors, both electrical 
and software, should be described in detail, 

Board requirements for each board. 

Software requirements for each processor, where appropriate. 

The goal of the engineering specifications is that, from it, any engineer should 
be able to implement the design. While this level of description rarely is achieved 
in practice, it is a good target to aim at. The table of contents for a generic engi- 
neering specification might look something like this: 

Scope 
Design approach 

Existing components that can be reused 
New designs required 

Electrical system block diagrams 

Subcontract work 
Electrical architecture 

Functional breakdown-board level 
Interboard/interprocessor communication interfaces 

232 Embedded Micropocessm Systems 



Software architecture 

Interprocessor communication interfaces 

HLL to be used 

Board requirements documents 

Software requirements documents 

Since we focus on embedded systems in this book, mechanical design is ignored 
in this example. However, any electromechanical system also would require an 
equivalent section for mechanical design. 

Chapter 9 provides an overview of real-time operating systems. 

Multiprocessor Systems 233 





Real-Time Operating Systems 9 

The theory and use of a real-time operating system (RTOS) can and has taken 
entire books. This chapter provides an overview. 

As embedded systems grow in complexity, they start to look more and more like 
their personal computer (PC) cousins. Software development for an embedded 
system often is complicated by the need to control system resources. In addition, 
some embedded systems need to connect to Ethernet interfaces, harddisk drives, 
and other PC-like peripherals. If all the software is written from scratch, code must 
be written to interact with every device. For many standard interfaces, this is a dupli- 
cation of the effort already expended by some other software engineer. 

In a typical embedded system, each function or process handles its own 
resources, somewhat independent of the others. A process that interfaces to a host 
system over an Ethernet link, for example, has memory allocated for its buffers. A 
similar process may have code and buffers for an RS232 connection. The polling 
loop gives each process control, one at a time, and each checks for data to or from 
its respective interface. But say that, in this example system, the host uses either 
Ethernet or RS-232, never both. In that case, the system really does not need both 
pieces of code and both sets of buffers active at the same time. This system could 
get by with less RAM by managing the memory, allocating whichever buffer is not 
needed to other purposes. 

In addition to memory management, all embedded systems must schedule 
processes in some manner. The polling loop method, sometimes called sequential 
or ruund-robin scheduling, is probably the most common. In the pool timer example, 
each task (motor on/off control, time rollover handling, keypad processing) is 
given control one at a time. When motor control is finished, it passes control to 
the time rollover process, which subsequently hands it off to the keypad (mode 
control) code, which returns to the motor control code. Task scheduling is one 
big loop. 

Although this method works well for simple systems like the pool timer, it has 
some drawbacks. In the pool timer example, each task runs until it is finished. The 
keypad processing code takes as much time as is needed to handle user inputs from 

235 



the keypad. Again, these tasks are very simple, and the longest processing time for 
the most complicated task is still too short to be a problem. 

But imagine a system that is controlling an automated assembly line. There might 
be code that sorts the incoming material, adjusts the temperature of processes, 
regulates the speed of the motors that move objects down the line, and tests the 
finished products, rejecting any that are bad. In such a system, the temperature 
control might have a fairly long delay, so it could take a while to get the tempera- 
ture right. If the temperature routine sets the temperature and then waits to see 
what happens, all the other functions are held up in the meantime. In other words, 
the processing time for one task affects the ability of others to do their jobs. 

A second problem with sequential task ordering is that all tasks have the same 
priority. In the assembly line example just mentioned, imagine that the assembly 
line gets jammed. The code that handles the jam and shuts down the line should 
take priority over everything else. 

Actual sequential scheduling systems, of course, do not really assign tasks that 
way. The temperature process would not keep control of the system but would 
adjust the temperature and check it again the next time it is executed. However, 
the concept is still valid-handling a jam may take priority over the temperature, 
regardless of how far out of tolerance it is. 

A third potential problem with sequential scheduling is the sheer number of 
tasks. If the number of tasks in the system is too large, it may be impossible for the 
system to keep up with processing demands, even if each individual task takes little 
time. Each task in a sequential arrangement requires a certain amount of time to 
execute, even if it is just checking to find out that it has nothing to do. The com- 
munication protocol converter mentioned in Chapter 3 is an example of this. The 
output code checks for buffer not empty. If the buffer is not empty, it proceeds to 
check for interface ready. If the interface is ready, it sends a byte. If it has nothing 
to transmit or if the interface is not ready, the code passes control to the next task. 
But even if the process cannot send because there are no data or because the output 
device is not ready, checking for these conditions takes time. 

That protocol converter had four very simple tasks: receive data processing, 
XOFF processing, output processing, and XON processing. One way to handle task 
scheduling would be to have each task active only when needed. Receive data 
processing might get a byte and put it in the first in, first out (FIFO) buffer. It then 
activates the output task. XON and XOFF are inactive. So the program loop trans 
fers control from receive to output and back, skipping over XON and XOFF and 
their minimal checks. Then suppose that enough receive data are placed in the 
buffer to require an XOFF be sent to the host. The receive process detects this con- 
dition and activates the XOFF process. The XOFF process remains active, waiting 
for the interface to the host system to be ready and then transmitting the XOFF 
byte. The program loop would then be receive-XOFF-output-receive and so on. 
Once XOFF completes its task (sending XOFF), it deactivates itself, and the loop 

236 Embedded Microprocessor Systems 



NO 

Figure 9.1 
Communication System with Scheduling Implemented. 

returns to the receive-output sequence. If the output code empties the FIFO buffer, 
sending the last byte to the output device, the output code deactivates itself until 
more data are available. Figure 9.1 illustrates this process. 

Suppose that the system were more complicated and the return link to the host 
were used to send other data in addition to the XON/XOFF flow control. Since 
sending XOFF is a high priority (failing to do so risks buffer overflow and missed 
data), XOFF may be activated as a higher priority than a n y  other serial output task. 
This ensures that the XOFF code gets the next available transmit slot on the serial 
interface. 

Although this example illustrates the concept of scheduling, the protocol 
converter is much too simple to benefit from such a scheduling system. The code 
to handle scheduling would be longer than the code to do just a sequential loop. 
However, in complex systems, using an RTOS provides just this type of scheduling 
capability. 

Like the operating system in your PC, an RTOS (sometimes called a real-time 
executive or real-time b n e l )  manages the limited resources of an embedded system. 
Your PC does not keep every program on the disk in memory at once. Programs 
are loaded and executed only when you select them. RTOSs have one characteris- 
tic that is key to use in real-time designs: They are deterministic. That is, the 
vendor supplies you with information as to how long it takes to perform specific 

Real-Time Operating Systems 237 



operations, such as activating a task. Knowing this, you can predict the impact the 
RTOS will have on system performance. 

A n  RTOS comes in two basic flavors: kernels and full operating systems. A kernel 
usually implements the basic task and memory management functions. A full 
operating system may have drivers for disk drives, serial ports, and other common 
resources. One common characteristic of RTOSs is that the system hardware must 
generate a regular interrupt (called a timer tick or just a tick), say, at 20Hz (50ms). 
This is used for timekeeping, task scheduling, and other functions. Not all RTOSs 
require a system timer interrupt. Real-time operating systems typically support the 
following functions: 

Multitasking, which includes: 

Activation and deactivation of tasks 
Setting task priorities 
Scheduling tasks 

Communication between tasks 
Memory management 

Multitasking 

This is the process of scheduling tasks or processes so that they all appear to operate 
simultaneously. In the protocol converter example, the receive, XON, output, and 
XOFF processes appear to a human user to run simultaneously because the sequen- 
tial, one-at-a-time operation is so fast. All the functions of task activation/deactiva- 
tion, scheduling, and ranking are part of the multitasking function. In a sequential 
program, none of these operations, which are required for true multitasking, is 
implemented. 

Multitasking also can be implemented by time slicing. In this method, tasks are 
switched every tick. Every time the interrupt occurs, a different task is given control, 
so each task gets to execute for one tick time (50ms for the 20Hz tick example 
given previously). The overall execution speed for a given task depends on the 
number of tasks. Higher-priority tasks can be allowed to execute for more than one 
tick time. A task that needs less than a full tick to execute can terminate early, giving 
the remainder of its time to the next task. 

Sequential scheduling and time slicing are essentially the same except that 
sequentially scheduled tasks run until finished and time-sliced tasks run until their 
time is up. Tasks operating under either scheduling scheme can voluntarily relin- 
quish control before finishing. In that case, they can be restarted where they left 
off instead of starting over. 

238 Embedded Microprocessor Systemr 



SEQUENTIAL SCHEDULING 

SAY THERE ARE THREE TASKS, EACH 
WITH THREE OPERATIONS TO PERFORM 
IN SEQUENTIAL OPERATION. EACH TASK 
RUNS UNTIL FINISHED 

TIME SLICING 

THE SAME THREE TASKS EACH 

TASK 1, OPERATION 1 
OPERATION 2 

OPERATION 3 

IS GIMNSPEC~F~C TIMESLCES 
EACH TASK RUNS ONLY UNTIL ITS 
TIME SLICE IS UP 

ONE TIME SLICE 

-- 4 - 
--f- 

--f - 
TASK 3 IS HIGHER PRIORITY 
GETS TWO TIME SLICES 
EACH TIME IT RUNS 

NOTE: FOR SIMPLICIM, EACH OPERATION IS 
ONE TIME SLICE IN LENGTH. IN AN ACTUAL 
SYSTEM, THE OPERATIONS WOULD BE OF 
VARYING LENGTHS AND WOULD BE HALTED 
IN MID-OPERATION AT THE END OF A 
TIME SLICE 

Figure 9.2 
Sequential Versus Time-Sliced Operation. 

Most RTOSs can support time slicing or sequential scheduling. Sequential 
scheduling also can check for and stop tasks that hog the CPU. In any scheduling 
system, of course, only one task at a time actually has control of the CPU. Figure 
9.2 illustrates the difference between time slicing and sequential operation. 

Preemptive Scheduling 

Preemptive scheduling is the most common method of scheduling tasks when using 
an RTOS, and it is one of the primary advantages of using an RTOS. Under 
preemptive scheduling, a task runs until it is finished or until a task of higher 
priority preempts it. Before going into more detail about preemptive scheduling, 
however, we should look at RTOS’s task handling in general. 

Activation and Deactivation of Tasks 

Tasks under RTOS can be ready or not ready. The RTOS keeps a list of tasks that 
are ready and what their execution priority is. A ready task is added to the task list 
and executed in sequence. When a task becomes not ready, it is removed from the 
list. Going back to the protocol converter example, the output task might go ready 
when there is data in the FIFO buffer and become not ready when the FIFO buffer 
is empty. 

A ready task may be inhibited from running because something blocks further 
execution. For example, the protocol converter output task may be ready because 

Real-Tim Operating Systems 2 39 



the FIFO buffer is not empty but blocked from doing anything because the output 
interface is not ready for the next byte. The RTOSbased system software in this 
case might deem the output task not ready (suspended) and replace it with a task 
that checks for output ready. When the output is ready, the check-for-output-ready 
task removes itself and deems the output task ready. Of course, this makes sense 
only if the output checker task takes less time to execute than the normal output 
task takes to check for output ready or if suspending the output task frees up the 
output interface for another device to use. The output device might be ready for 
one kind of data but not ready for another, so it can be used by another process 
instead of sitting idle. 

Once given control, a task may run until it is finished or until it finds that it 
cannot execute further, like the output task condition just mentioned. In either 
case, the task transfers control back to the RTOS, which then passes control to the 
next task in sequence. In this respect, the RTOSbased system is like any sequential 
execution system, with the added ability to remove tasks from the sequence of 
execution. When a task is activated, the priority may be set at the same time, 
depending on the specific RTOS used. 

Event-Driven Scheduling 

The practice of adding and removing tasks from the task list based on changing 
circumstances is called event-driven scheduling and, with preemptive scheduling, is 
the method used in many, if not most, RTOSbased systems. Preemptive schedul- 
ing more closely models the real world; you might plan to go to work today, but a 
fender bender on the way will change your priorities, at least until the police report 
is finished, Once you get to work, you might have scheduled a project meeting, but 
an emergency staff meeting called by your boss takes priority. 

In a preemptive, event-driven system, an event such as an interrupt or a task may 
determine that some other task needs to be activated. It may do this, for example, 
by setting a semaphore or placing data in a mailbox. The task, which was previously 
set up to be activated by the RTOS when this event occurred, is activated if it has 
a higher priority than the current task. If the protocol converter were preemptively 
scheduled, the priority might look like this: 

Receive processing (highest priority) 
XOFF processing 
XON processing 
Output processing (lowest priority) 

A single interrupt, generated by a byte in the serial input register, might drive 
the system. The receive task might ask to be activated when a particular semaphore 

240 Embedded Microprocessor Systems 



is set. When a byte is received, the receive interrupt service routine (ISR) sets this 
semaphore, and the RTOS activates the receive task. The receive task reads the byte 
from the universal asynchronous receiver/transmitter (UART) register, processes 
the data, and places it in a buffer for the output task. The receive task has the 
highest priority because the system cannot afford to miss a serial input byte. Once 
the receive task has finished processing the received byte, it becomes not ready until 
the next receive interrupt occurs, by asking the RTOS to suspend it until the 
semaphore is set again. 

When the buffer is near full, the XOFF task is activated (becomes ready) by the 
receive processing. XOFF could be “created” by receive processing, where the 
receive processing requests that XOFF processing be activated, or XOFF could have 
previously been set up to be activated by a semaphore like receive processing was. 
XOFF runs until it has successfully sent the XOFJ? signal to the host or until it is 
preempted by the receive task. If receive preempts XOFF, it gets control (from the 
RTOS), processes the receive data, and then control is returned to XOFF. Again, 
the highest-priority ready task is the one executed. 

XON is next in priority. If output processing empties the buffer past a certain 
point, it activates XON. Output processing has the lowest priority, which is possi- 
ble because the XOFF task prevents the buffer from overflowing, so no data ever 
are missed. Of course, if the receive data flow cannot be suspended with XOFF, 
then output processing would have to have a higher priority so the buffer does not 
overflow. 

None of this happens by magic. The RTOS can activate a task, when a sema- 
phore is set or a message is received, only if it was previously told to do so. Also, in 
an RTOSbased system, the interrupt service routines usually get control via the 
RTOS, so an ISR may not need to set a semaphore to start a task. Instead, the RTOS 
can schedule the task upon activation of the ISR itself. 

A final note about scheduling: Both sequential and preemptive sched- 
uling systems allow a task to run until finished. The difference is that, in a 
preemptive system, a task runs until finished or until preempted. Between two 
ready tasks of different priorities, the higher-priority task always preempts the 
lower-priority task and finishes first. If two tasks of equal priority are ready at 
the same time, a sophisticated RTOS usually activates the one that has been idle 
the longest. 

A note about terminology: A task is considered active when it actually is running, 
when it has been given control of the CPU by the RTOS. A ready task is in the list 
of tasks waiting to run. A task can be not ready, such as the receive processing on 
the protocol converter while waiting for the start semaphore. 

The RTOS knows about only those tasks it has been told about (those that have 
been created). The code for other tasks may reside in memory, but they are 
invisible to the RTOS until they are created. 

Real-Time Operating Systems 241 



Keeping Track of Tasks 

The RTOS keeps track of tasks with a tusk control block (TCB). This is where the 
RTOS saves information about tasks. One TCB entry is made for every task 
managed by the RTOS. The TCB must store the following: 

Task ID. This is typically the task number. Depending on the RTOS and the 
processor it is running on, there may be a maximum of 128 tasks, 256 tasks, 
32,768 tasks, and so on. The maximum number of tasks usually is what can be 
identified with a byte/word/doubleword or whatever the word width of the 
processor registers. 
Task State. Ready, blocked, and so on. 
Task Priority. The priority level of the task; a numerical value, usually 0 to 127, 

Task Address. Where in memory the code for the task is located. 
Task Stack Pointer. The microprocessor stack is used to pass variables and store 
the context for subroutine calls and interrupts. Each task needs to be able to 
perform subroutine calls and service interrupts (or at least save the return 
address for an interrupt). For this purpose, each task has its own stack. The TCB 
includes the value of the stack pointer when the task last executed (or the top 
of the task stack the first time the task executes). 

The task stack is stored on the microprocessor stuck. As each task is given control, 
the microprocessor stack pointer is modified to point to the stack for that task. Each 
task must be allocated sufficient stack space to save the processor context, any 
dynamic/temporary variables stored on the stack, and any information stored to 
the maximum depth of subroutine calls. The processor context also may need to 
include things such as the context (registers) of a floating-point coprocessor or 
something similar. When a task stops running for any reason, the RTOS stores the 
stack pointer for the task in the TCB. 

Once a task is ready to run again, the processor context needed to resume 
execution where it left off is stored on the task stack. The RTOS must get the stack 
pointer from the TCB, put that value into the microprocessor stack pointer, and 
return control to the task. 

Depending on the RTOS, the TCB may contain additional information such as 
environment information for dynamically allocated tasks and the like. In addition 
to a stack for each task, the RTOS will have a kernel stack for use by the RTOS 
itself. 

0 to 32,767, and so on. 

242 Embedded Microprocessor Systems 



Communication Between Tasks 

In the protocol converter example, the receive task puts output data in a common 
FIFO buffer. If an RTOS is used, the data normally are passed through the RTOS. 
The RTOS may support semaphores, buffers, queues, and mailboxes. 

An RTOS semaphore is similar to the key-press flags or semaphores used in the 
pool timer. A task asks to set the semaphore, and another task can wait on the 
semaphore or possibly reset it. Setting a semaphore can activate a task. The differ- 
ence in an RTOS system is that all access to the semaphore is passed through the 
RTOS. This is a distinct advantage over non-RTOS scheduling since it prevents 
possible race conditions and other timing problems from two processes trying to 
access the same communication memory locations at the same time. 

An RTOS buffer is just like the FIFO buffer used in the protocol converter except 
that the RTOS manages it. If the protocol converter uses an RTOS, the receive task 
requests a buffer from the RTOS, puts the data to be transmitted in the buffer, arid 
tells the RTOS to pass the data to the output task. The output task typically receives 
pointers to the buffer, telling it where the buffer is in memory and how many bytes 
(or words or whatever) there are. 

A queue is a string of buffers. If the protocol converter worked on a message 
basis, outputting data only when a complete message is received, a queue could be 
used for this. The receive process could place a message in a buffer and pass the 
buffer to the output task. The output device might be busy when the next message 
is ready. Thus, the receive task asks the RTOS to put the next message into a queue, 
where the output task processes the messages in the order they were received once 
the output device becomes ready. 

In a mailbox structure, a task typically receives mail from several other tasks, just 
like you do at home. The RTOS manages the mailboxes, storing messages for a task 
until the task is ready to read them. Like a physical mailbox, once a task sends a 
message, it cannot take it back. Depending on the RTOS, a task may check for mail 
and wait if there is none, like you did when you were a kid expecting a package to 
arrive. An RTOS usually supports multiple mailboxes per task, as if you had a 
mailbox at home and several boxes at the post office. 

Figure 9.3 summarizes RTOS communication. In Figure 9.3A (RTOS buffer), 
Process A transfers data to Process B via a buffer. In Figure 9.3B (RTOS queue), 
Process A filled buffers (queues) 1 and ‘2 and is filling buffer 3. Process B is taking 
data from buffer 1. Figure 9.3C is an RTOS mailbox. Processes A, B, and C are 
placing data in a common mailbox for Process D. Each message from each process 
is stored separately, like physical letters, each in its own envelope. Like when you 
sort through your mail at home, opening important letters first, the RTOS typically 
allows the sending process to assign a priority to the message for the receiv- 
ing task. 

Real-Time Operating Systems 243 



A 
RTOS BWFER - 

BUFFER 

0 
RTOS OLEUE 

BUFFER 1 

FULL 

BUFFER 2 

FULL 

BUFFER 3 

FILLING Ll BUFFER 4 

C 
RTOS MAILBOX 

------ 
MESSAGE 

MESSAGE 

Figure 9.3 
RTOS Communication. 

Scheduling Tasks 

A task may be ready immediately after an event occurs or it may be scheduled to 
start later. As already mentioned, a task may be scheduled to start when a sema- 
phore is set, perhaps as a result of a hardware event. It also may be scheduled to 
start after a number of ticks have elapsed or at a specific time of day in systems that 
maintain time of day. 

Memory Management 

As I mentioned in the section about buffers and queues, a process requests memory 
from the RTOS when it needs a buffer. This allows the system to get by on less 
memory than otherwise would be required. 

In the first example mentioned in this chapter, a system used either Ethernet or 
RS232 to communicate with a host PC. Say that receive data needs 256K of memory 
for each interface and transmit needs the same. In a non-RTOS system, the 

244 Embedded Microprocessm Systems 



Ethernet and RS-232 codes might each allocate 512K (25623 receive, 256K 
transmit) for a total memory requirement of 1MB. However, as I already men- 
tioned, only one interface is used at a time. In an RTOSbased system, if each task 
requests only those buffers it actually needs, only one task will ever request buffers, 
making the memory requirement 512K. Furthermore, suppose the system is half- 
duplex, meaning that transmit and receive never occur simultaneously. In that case, 
the receive task allocates a buffer, the data is processed, and the transmit task is 
activated and it allocates a buffer. Because both buffers are never active at the same 
time, only 256K of memory is needed. 

The RTOS typically allocates memory as blocks, or chunks of contiguous 
memory of a minimum size. If the block size is lK, for example, a task that needs 
a l4byte buffer has to request a block and will get 1K allocated to it. Determining 
block size is important in the system design. A task that needs multiple blocks 
usually needs the memory to be contiguous, so the RTOS must find sufficient 
contiguous blocks of memory to meet the request. If blocks are too small, memory 
can become fragmented because blocks are not necessarily released by the task in 
contiguous order. On the other hand, if blocks are made too large, there will be 
too few blocks to meet all the memory requests of all the tasks. Figure 9.4 illustrates 
both problems in graphical form. 

In Figure 9.4, a small memory is shown. In Figure 9.4A, when memory blocks 
are too small, memory becomes fragmented. Task 1 has allocated three blocks and 
then gave two back. Task 2 did the same. Task 3 has four blocks allocated; Task 4 
has two blocks. Now if a fifth task needs three contiguous blocks, there is a problem. 
Blocks 1, 2, 5, 7, 8, 13, and 16 are free, but no three of these are contiguous. Task 
5 cannot get enough memory to run. 

Figure 9.4B shows the opposite problem, when blocks are too large. Tasks 1 
through 4 have each allocated one block, even though each task may need only a 
small portion of the allocated memory. When a fifth task needs a block of memory, 
none is left. 

Resource Management 

Say our protocol converter has two possible types of data for the output device. 
Perhaps, in addition to the normal receive-to-output path, diagnostic messages 
also are sent to the output. In this case, an RTOS might manage the output 
interface resource. If the normal output task needs to send received data, it 
requests access to the output interface from the RTOS. The RTOS grants the 
request, and the output task starts sending data. In the meantime, the diagnostic 
task requests the interface as well. Since the interface already is allocated to the 

Real-Time Operating Systems 245 



A 
BLOCK SIZE TOO SMALL 

B 
BLOCK SIZE TOO LARGE 

MEMORY BEFORE ALLOCATION 

BLOCK 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

FRAGMENTED MEMORY 

BLOCK 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

ALLOCATION 

TASK 1 
TASK 2 

TASK 2 

TASK 3 
TASK 3 
TASK 3 
TASK 3 

TASK 4 
TASK 4 

MEMORY BEFORE ALLOCATION 

ALLOCATION 

TASK 1 

TASK 2 

TASK 3 

TASK 4 

=FREE 

-1 - ALLOCATED (UNAVAILABLE) 

Figure 9.4 
RTOS Memory Allocation Blocks. 

output task, the diagnostic task must wait until the interface is released by the 
output code. 

In the area of timers, the RTOS may provide system timers, implemented in 
software and counting timer ticks, that can be allocated like any other resource. 
These timers, of course, cannot time anything with a resolution less than the timer 
tick interval. 

246 Embedded Micropocessm Systems 



RTOS and Interrupts 

Obviously, an RTOS needs to handle interrupts if it is to manage a real-time 
operating system. When an interrupt occurs, the processor hardware handles the 
interrupt as it normally would, saving the return address and vectoring to the ISR. 
Assuming that a task is running when the interrupt occurs, the return address is 
saved on that task’s stack. An RTOS usually will have special kernel services for 
interrupts. When the ISR gets control, it can use these special services. 

The simplest ISR servicing technique is to set a semaphore, do whatever must 
be done to reset the hardware that generated the interrupt, and then exit. 
Consequently, an RTOS usually will provide at least three kinds of services for ISRs. 
The first service, interrupt entry, allows the ISR to notify the RTOS that the inter- 
rupt occurred. The interrupt entry routine may save the processor context or other 
information and may be a generic routine provided by the RTOS vendor. The 
second ISR service is to request a semaphore set. The third service is an exit service 
call that notifies the RTOS when interrupt servicing is complete. 

Special RTOS services are provided for ISRs because the ISRs cannot use the 
normal RTOS services. The normal RTOS services usually do not allow reentry. If 
an interrupt occurs while the RTOS is executing and the ISR attempts to use the 
RTOS function that was executing, disaster usually will result. 

When the ISR exits (via the RTOS), the RTOS may perform a task switch, giving 
another task higher priority than the one that was interrupted. In the serial 
communication example, the receive interrupt may cause the RTOS to switch to 
the receive task. When the receive task is done, the RTOS can return control to the 
interrupted task. Since the processor context was saved on the task stack, resum- 
ing the task after an interrupt essentially is the same process as resuming a task that 
has become unblocked. 

Typical RTOS Communication 

Every RTOS is different, but the following is a list of RTOS services that would be 
typical (I made up descriptive names): 

Define Task. This defines a task to be executed. The typical parameters passed 
to the RTOS might include the task number, priority, and the task entry address. 
Activate Task. Requests activation of a task. The parameters passed to RTOS 
would include the task number. 
Deactivate Task. Deactivates a task. The parameters would include the task 
number. 

Real-Time Operating Systems 247 



Yield. Tells the RTOS that the task is finished for now and that the next task on 
the list may be executed. 
Define TimeSlice. Defines the number of time-slice intervals that the task will 
be allowed to execute. 
Allocate Memory. Requests a specified number of memory blocks. 
Mailbox In. Receives a mailbox message. The parameters would include the task 
number and the mailbox number. 
Send Mail. Sends mail to a mailbox. The parameters could include the mailbox 
number, destination task number, and priority of the message. 
Wait On. Waits for the queue to fill, the semaphore to be active, or the mailbox 
to receive mail. 

Of course, this is not a comprehensive list of RTOS services, it is just an indication 
of the kind of things an RTOS supports. 

A few pointers if you are thinking about using an RTOS: Make sure that assump 
tions about memory are correct. The Ethernet/RS232 system assumed that 
transmit and receive were halfduplex. If this assumption turns out to be wrong; if 
both buffers are ever needed simultaneously, then there will be a memory alloca- 
tion problem. This may be a minor problem, as a task waits until the memory is 
available. However, it can cause a lockup if the task that has the memory will not 
release it until the task requesting memory can execute. 

Make sure the RTOS does not bog down the system operation. While an RTOS 
is deterministic, it still takes time to do things. Be sure this time is no problem. Also 
make sure that task priorities do not prevent a low-priority but essential task from 
ever executing. 

Preemption Considerations 

Two considerations you must keep in mind when using a preemptive RTOS are that 
the RTOS manages the operation of the software and any RTOS function can 
perform a task switch. The idea is to get maximum use of the CPU, but it means 
you must take things into consideration that otherwise you need not. Say you have 
an analog-todigital converter (ADC) that requires you to read the result within 100 
microseconds (ms) of starting a conversion. Also say you have a solenoid that is 
activated by the software, held for 20ms, and then turned off. The solenoid timing 
is performed by counting interrupts from a 1 ms timer. The polling loop activates 
the solenoid and sets a variable, SOLENOID, to 20. The 1ms ISR decrements 
SOLENOID as long as it is nonzero. When it decrements to zero, the solenoid is 
turned off. After the solenoid is turned off, a pump is started. The way this might 
work in a polled environment is: 

248 Embedded Microprocessor Systems 



Activate solenoid 
Start solenoid timer by setting SOLENOID to 20 
Poll for 19ms, checking to see if SOLENOID went to 0 
Polling loop Ands that it is time to start an ADC conversion. 
Call ADC routine 

Start ADC conversion 
Wait for ADC to complete 

*** Right here, the timer interrupt occurs, so the ISR decrements 
SOLENOID. SOLENOID decrements to 0. 
Read/store ADC result 
Return to polljng loop 

Polling loop checks SOLENOID, fhds it has rolled to 0, turns off 
solenoid. 

Now, in an RTOS environment, it might work like this: 

Solenoid/pump driver task turns on solenoid and suspends for 20ms. 
19ms go by, during which other tasks are executed 
Some event tells RTOS that it is time to start an ADC conversion 
RTOS starts ADC conversion task 

ADC conversion is started 
*** Again, the timer interrupt occurs, and the RTOS finds that 

20ms has gone by. 
RTOS reactivates solenoid/pump driver task 

Solenoid is turned off 
Pump is turned on 
Other processing goes on until solenoid/pump drive task suspends 

again. 
RTOS reactivates ADC task. but now it is too late. ADC result is bad. 

The result here is that, sometimes, the analog-todigital conversion will be bad. 
There are a number of ways to fix this. The ADC task could be given higher 
priority than the solenoid/pump driver task. Or, before starting the conversion, the 
ADC task could tell the RTOS that it is about to begin a noninterruptible function 
(if the RTOS supports that). Or, the ADC task could ask temporarily to have its 
priority set higher than the solenoid task until the conversion is complete (again, 
assuming the RTOS supports it). The point is that, in an RTOS environment, any 
event that results in an RTOS function being executed can result in a task switch. 
An ISR does not necessarily return to the task that was executing when the inter- 
rupt occurred-at least not right away. You must take this into account in the 
software. You do not know when interrupts will occur, so you must assume they will 
occur at the worst possible time. 

ReabTime Operating Systems 249 



Use of an RTOS also can affect the hardware. In the previous example, the 
analog-todigital (AD) conversion was assumed to be polled in some manner by the 
AD conversion routine. In a preemptive RTOS environment, it may make more 
sense to have the ADC cause an interrupt when conversion is complete, allowing 
the ADC read to operate at the (high-priority) ISR level. 

Another consideration to keep in mind is that any RTOS call can potentially 
cause a task switch. In a polling loop like that used in the pool timer, all the inputs 
(potential events) are checked once for each pass through the polling loop. Once 
a “task” gets control, it keeps control until it is finished. In an RTOS environment, 
if the task were to call an RTOS function that passes a semaphore to another task, 
the second task may become higher priority and take control. The first task would 
be suspended until it again becomes the highest-priority task. In this specific 
example, you would probably expect that to happen-passing a semaphore is 
expected to wake up the second task. 

The same thing can happen if an interrupt occurs during execution of a task- 
a higher-priority task may be waiting for that interrupt, and the RTOS may switch 
to the other task. The implications of this must be taken into account when design- 
ing with an RTOS, as code must be written with the assumption that a task may be 
preempted at any time. In addition, assigning priorities to tasks is important for 
the same reason. 

Another possible preemption problem involves saving the context of the system. 
Suppose part of the context includes hardware, such as the state of registers in a 
peripheral IC. A task (call it “Z”) saves the context, then is preempted. After enough 
time passes, the state of the hardware has changed and the original saved context 
is no longer valid. However, when Z again becomes the highest-priority task, it 
finishes whatever it was doing and restores the hardware context to the obsolete 
value. Although this can happen in a polled environment, an RTOS can open 
the window of opportunity due to the fact that a task may remain preempted for 
some time. 

Applicability of RTOS 

An RTOS is not suited to every application. Specifically, an RTOS probably is not 
a good solution if the device must execute very-high-speed interrupts, such as a low- 
level motor controller, or if the system is simple enough to make an RTOS more 
work than a simple sequential or state machine design. This does not preclude the 
use of an RTOS if an occasional interrupt occurs that requires immediate service, 
but the closer the processor is to bit-level control of the hardware, the less sense 
an RTOS usually makes. 

250 Embedded Micrqkocessm Systems 



An RTOS typically is used when the system needs shared resources, needs to 
allocate memory, or when operation is at a sufficiently high level to justify the RTOS 
overhead. In general, if the system is complicated but tasks can be scheduled at the 
resolution of the timer tick, an RTOS may make sense. Even in simple systems, an 
RTOS may be used to structure code execution. An RTOS also makes sense if you 
need standard resources (disk drives, VGA display, and so on) for which you want 
off-the-shelf drivers. 

An RTOS is suitable any time the number of tasks is such that sequential 
scheduling is unable to ensure that the highest-priority jobs are done first. Using 
preemptive scheduling, an RTOS can make sure that the important functions get 
done on time. 

Many RTOSs are configurable-you start with the basic kernel and add whatever 
features you need. If you have disk drives, you might add the RTOS module that 
includes disk drivers. Ethernet support or TCP/IP might be another module. If you 
need features such as TCP/IP support, you might choose to use an RTOS just to 
simplify software development. An RTOS lets you write code that interfaces to the 
TCP/IP stack and to other devices at a higher level. You can avoid writing your own 
device drivers, interface protocol stacks, and so on. In many systems, this alone is 
sufficient reason to justify using an RTOS. 

When you consider an RTOS, look at the cost. Some RTOSs have a one-time 
purchase fee, whereas others charge a license for every copy used. Sometimes you 
pay a sliding license fee, starting with a basic fee for the kernel and increasing as 
you add RTOS modules (such as TCP/IP support). License fees can get quite 
expensive, especially if your system has multiple processors needing an RTOS. 

While the division between an RTOS and a kernel is not a fine line, generally, a 
kernel is smaller than a corresponding RTOS. While not providing all the features 
of the full RTOS, the kernel can provide scheduling and management functions 
suitable for small embedded systems that cannot support or do not need the 
overhead of a full RTOS. 

Using an RTOS often means needing more memory, since each task will have 
its own stack. Some RTOSs are linked into your code, whereas others are like a PC 
operating system: The RTOS loads from a storage device and your program runs 
as an application. Which RTOS you choose can have a big impact on the hardware; 
you need whatever basic resources the RTOS requires to operate. 

Communication standards also are important. Many RTOSs now support 
TCP/IP, for example. If you use a standard interface such as this, you can com- 
municate with any other system that uses the same standard protocol, regardless of 
what operating system it uses. 

Although most RTOSs are available only for high performance CPUs such as 
the Intel Pentium and Motorola PowerPC, there are some exceptions. CMX-RTX 
from CMX Systems is available for many microprocessors and microcontrollcrs, 

Real-Time Operating Systems 251 



including the Atmel AVR microprocessors, Microchip 18Cxxx family, the Motorola 
68HCxxx family, and the 8051. CMX-RTX provides task management and com- 
munication, eventdriven architecture, and nested interrupts. It supports onchip 
queues, semaphores, and onchip UARTs. It includes CMXBug, an interactive 
debugger, and CMXTracker (a tool that tracks and logs RTOS operation). 
CMX-RTX is compatible with C compilers from a number of vendors. 

CMX-RTX is compact; on an AVR microprocessor, the full operating system takes 
less than 6000 bytes of memory and has a context switch time of 188 processor 
cycles. On the Motorola 68HC11, CMX-RTX takes less than 4000 bytes of memory 
and has a context switch time of 115 cycles. CMX Systems also sells CMX-Tiny+, 
a smaller, simpler operating system for smaller microcontrollers. CMX-RTX and 
CMX-Tiny+ are both implemented as callable C modules that are linked into your 
application code. 

Using an RTOS on a microcontroller presents special challenges: The code space 
is limited, the stack pointer may be implemented in hardware (making task stacks 
impossible to implement), and the RAM is very limited. Some features are neces- 
sarily limited on microcontroller implementations; for example, memory manage- 
ment in CMX-RTX is limited to supplying memory blocks to tasks from a pool of 
memory. Without hardware memory management features, it is impossible to 
implement sophisticated protection mechanisms that are found on more sophisti- 
cated processors. 

Because microcontroller memories are so small, task switching using an RTOS 
takes a greater proportion of the memory than it does on a larger device. CMX- 
RTX requires 33 bytes of memory for each task when running on an Atmel AVR 
processor. This can add up fast when you have a lot of tasks. For this reason, man- 
aging the number of tasks in your architecture is more important in a micro- 
controller environment than it is when using something with more memory. 

If you are looking for an RTOS for your application, you will want to know a few 
things about each candidate: 

Does the operating system support preemptive scheduling (assuming you plan 

What is the longest task switch time? 
How long are interrupts disabled? 
How much memory (ROM and RAM) does the RTOS use? 
Does it function as an operating system or as callable routines linked to your 

Does it support hardware memory protection (if the CPU has the hardware)? 
Does it include drivers for the hardware you need to use? (Very important unless 

Does the RTOS vendor or another vendor provide an RTOS-aware debugger for 

to use it)? 

code? 

you don’t mind writing device drivers) 

this RTOS? 

252 Embedded Microprocessor Systems 



6 What is the cost? 
Is there a runtime license fee? 

In some cases, you may not need to know all of these things; if you have relaxed 
real-time requirements and a fast CPU, for example, you may not care that much 
about task switch time or interrupt disable time. 

&buggers 

When debugging your system in an RTOS environment, it is a good idea to have 
an RTOSaware debugger designed to work with the RTOS. It allows you to sepa- 
rate your application code from the RTOS functions, simplifylng the debug process. 
Lauterbach makes a debugger that works with a number of RTOSs, including AMC, 
CMX, Nucleus, and VRTX. The Lauterbach product provides several features that 
can simplify debugging and system analysis, including: 

Display of kernel resources 
Performance monitoring, including maximum/minimum/average time spent in 

Tracing of calls to RTOS 
Task stack usage 

a task, how long a task was interrupted by another task, and so on 

Many RTOS vendors provide a kernel-aware debugger for their operating system. 
EventAnalyzer from Green Hills Software provides debugging and performance 
analysis functions, as well as event analysis. This includes monitoring of: 

6 Semaphores 
Interrupts and exceptions 
Message send/receive 
Userdefined events 

Chapter 10 describes some industry-standard platforms that you can use when 
designing an embedded system. 

Real-Time Operating Systems 253 





Industry-Standard 10 
Embedded Platforms 

As mentioned earlier, one characteristic of an embedded system is that it is self- 
contained, requiring no user input to get started. There are some exceptions to 
that rule, which we’ll look at in this chapter. A problem with developing all parts 
of an embedded system is that all the interfaces-Ethernet, FDDI, and W232- 
must be developed along with the system. You must design an interface circuit (or 
board) and cannot take advantage of off-the-shelf boards and driver software. One 
platform, however, allows you to use existing parts-the personal computer (PC) 
platform, in this case the IBM PC/AT and its derivatives. 

If you design an embedded system around a PC, you can get interface boards, 
disk drive interfaces, A/D and D/A interfaces, and a number of other components 
from existing vendors and often with driver software. 

Advantages of Using a PC Platform 

There are a number of reasons why some developers choose the PC platform for 
development. 

Speed of Development 

An embedded system designed from scratch requires that boards be designed, 
fabricated, and debugged. The software must be tested and debugged on the target 
system. If a PC platform is used, the boards are available and the software can be 
written and debugged in the same environment. In addition, PC hardware with 
high-speed buses like Peripheral Component Interconnect (PCI) takes more design 
effort to get right. If you buy the boards, someone else has done the job of making 
them work. 

255 



Development Cost 

Embedded systems based on a PC platform require no costly board design/ 
fabricatioddebug cycles. PC tools usually are used for software development, elim- 
inating the need to purchase emulators. As product development cycles get shorter, 
there is an incentive to buy proven, off-the-shelf components. Another factor 
driving the use of purchased hardware is increasing clock speeds. As CPU speeds 
pass a GHz, it is increasingly difficult for every company that needs a processor 
board to create its own designs. The tools are prohibitively expensive, partly because 
extensive simulation is required to ensure a good design. 

Specialization 

Some embedded designs still can be accomplished using processors with clock rates 
in the low MHz range. However, as clock rates go up and development costs follow, 
more companies concentrate their efforts on the hardware and software that makes 
their products unique. Off-the-shelf CPUs, Ethernet boards, and similar compo- 
nents are treated as commodity parts, which they are. This is buying the “jellybean” 
parts of the design, leaving the company’s engineers free to do the unique things. 
Since all modern, high-speed CPU boards essentially are the same, you pick a CPU, 
pick a chipset that supports it, and wire it accordingly. Why assign an engineer to 
spend three months developing a board that looks and works like a hundred other 
nearly identical designs? 

Mass Storage 

Disk drives, interface boards, and driver software are standard parts of the PC plat- 
form. Some systems need mass storage to capture data; for example, a system that 
keeps a log of instrument readings from a fluid pipeline. If the system takes a 
reading every second, the storage requirements can add up quickly. Other appli- 
cations where mass storage could be a requirement include storing bitmapped 
images and store-and-forward interface systems. And some real-time operating 
systems (RTOSs) are designed to operate with mass storage. 

Standard Software 

You need not learn the interface to an RTOS with a PGbased system, as DOS, OS/2, 
Linux, and Windows NT are already available. Off-the-shelf software is available for 
communications, graphics display, and many other applications. New features, 
depending on what they are, may be bought instead of designed. If your applica- 
tion needs some kind of database, you can buy a database package instead of writ- 
ing one. 

256 Embedded Microprocessor Systems 



Standard Hardware 

Off-the-shelf interface boards simplify hardware design. Boards that need software 
drivers usually come with them, simplifylng development. 

User Interface 

If the application needs a graphics display or keyboard input from the user, a PC 
already has the pieces in place. 

Development Environment 

Standard debugging software is available. The development language is not limited 
by the hardware. A huge base of development software is available from a number 
of vendors. On the hardware side, the PC ISA (industry standard architecture) bus 
is well defined and easy to interface to. Even the PCI bus is a known standard, 
although more difficult to design for. 

Flexibility 

Adding features or options can be as easy as plugging in a board and adding the 
necessary software. 

Easy Updates 

Software updates involve loading new software from a floppy disk or CD-ROM. 
If a passive-backplane system is used, processor upgrades are simply a matter of 
plugging in a new CPU board (and, maybe, appropriate software). 

Product Cost 

If your product is manufactured in relatively low volumes, it can be expensive to 
build your own CPU boards and other system components. By using off-the-shelf 
parts, you take advantage of the volume advantage that the board vendor has. The 
vendor is selling the same board to numerous other users, so the total production 
volume can be high enough to make the purchased boards cheaper than boards 
built in-house. 

CPU Hardware 

With the PC architecture, you typically get a Pentiumclass or better CPU. This 
brings with it all the Pentium-level hardware advantages, such as protected mode 
programming, hardware memory management, debug registers, and 1 / 0  protec- 
tion. These improvements simplify multitasking and debugging. 

Industry-Standard Embedded Platfornzs 257 



Protected Mode Programming Intel x86 processors, from the 386 on, imple- 
ment protected mode programming. In the 8086/8088 and the 80186/188, the 
only memory model available is the Real mode. The addressing scheme for these 
CPUs permits addressing of 1 MB of memory (20-bit address) , in 16 64K segments. 
The 386 and higher CPUs use a different addressing scheme that permits access to 
4 GB of memory using 32-bit addresses. 

Hardware Memory Management In the Real mode, every task has access to the 
entire 1 MB memory space. Any task can read or write to any address. In the Pro- 
tected mode, the memory partitions may be protected so that a task cannot access 
memory outside its own segment. A segment of memory even can be shared 
between two tasks, so that one task can both write and read to the common area, 
while another task can only read it. Attempts by a task to execute or access memory 
outside its bounds cause the hardware to generate an exception condition that can 
be handled by the operating system. 

Hardware Debug Registers The 386 and higher processors have registers that 
simplify debugging. The four address registers can be set to break on read, write, 
or read/write access. Debuggers can take advantage of these onchip resources to 
simplify debugging. 

PO Control The x86 architecture has a 64KI/O space, separate from the memory 
space, that can be accessed with unique instructions. In the Protected mode, the 
1/0 space can be protected so that only the operating system has access to 1/0 
ports. This forces applications to use the operating system resources to access I/O. 

Drawbacks of Using a PC Platform 

So, if it is this easy to design a PGbased system, why doesn’t every system use a PC? 
This section discusses the few drawbacks to using a PC. 

Product Cost 

This may not be an issue for low-volume applications or for systems in which the 
embedded control components are a small part of a much larger system (such as 
an automated assembly line), but for consumer and other cost-sensitive applica- 
tions it is an issue. Imagine a microwave oven that must be sold with a PC attached. 
Enough said. 

Another thing that drives product costs higher in PC systems is that you must 
pay for everything that comes with the PC architecture. If your application needs 

258 EmbeddQd Microprocessor Systems 



no disk drive or keyboard, you still have those interfaces on the CPU board that 
you buy. CPU board vendors do not carry a large number of CPU boards to fit every 
need. Since silicon is relatively cheap, they carry just a few boards that contain 
nearly everything a user might want. There is little choice about this since these 
boards must be designed using off-the-shelf chipsets (discrete logic would be slow, 
expensive, and consume enormous real estate). Most of the chipsets that inter- 
face to x86 family processors contain standard PC peripheral functions. The idea 
is to shrink the standard functions to the smallest size/cost possible for PC 
motherboards. 

Hardware Development 

For standard interfaces, off-the-shelf boards are available. However, if a proprietary 
interface is required or if some unavailable function is needed, hardware must be 
designed anyway. A distributed system, with low-level motor controllers and inter- 
faces, probably has a PC as a central controller, and everything else is custom-made. 
The more hardware that must be designed, the less leverage an off-the-shelf CPU 
provides. 

Keyboard and Monitor 

The standard PC has a keyboard and monitor attached. They are bulky and some- 
times unnecessary for the specific embedded application, but they must be there. 

Parts Availability 

Try to buy a PC motherboard, and then try to buy the same motherboard a year 
later. This is nearly impossible to do-the designs just change too often. This can 
be a real problem, especially if every iteration of the design requires new EM1 or 
safety agency investigation. 

Not Real Time 

PC operating systems, such as DOS and Linux, do not operate in real time. Some 
PC operating systems are multitasking, but that still does not mean they are real 
time. PC operating systems are not real time because they are not deterministic- 
you do not know how long an operating system function takes to execute. Some 
applications do not care if the operating system goes away for a quarter of a second 
to get something from disk; others do. 

Mass Storage 

This is an advantage if you need it. If you do not, you still need the disk drive from 
which to load your operating system and your programs. 

Industry-Standard Embedded Platj&rms 259 



Design Problems 

Buying an off-the-shelf CPU means someone else has verified the design. However, 
if subtle timing problems turn up in the hardware, you are dependent on the board 
vendor to admit they exist and fix them. You have no schematics, programmable 
logic device (PLD) equations, or the other information necessary to debug the 
design yourself. And you do not want to; that is why you chose to buy instead 
of build. 

Some Solutions to These Problems 

Some of these problems have been addressed and have solutions, but they all make 
the resulting system a little less compatible with the PC: 

BIOS. Kits are available that allow you to write a basic 1/0 system (BIOS) that 
eliminates the keyboard, monitor, and other standard peripherals. 
DOS in ROM. Although obsolete for desktop PCs, DOS and its variants still find 
occasional use in embedded systems. Development kits are available from com- 
panies such as Annasoft that allow DOS and your applications to be placed in 
PROM or flash memory, eliminating the requirement for a disk drive. However, 
not all operating systems can run from ROM or without a disk drive. 
Passive Backplane. The problem of parts availability sometimes can be solved by 
using a passive backplane. Essentially, this consists of the expansion slots from a 
PC motherboard without the motherboard. A CPU board plugs into one of the 
expansion slots; other standard boards can plug into the other slots. While these 
backplane/CPU board combinations typically are more expensive than a clone 
motherboard produced to the tune of 100,000 per month, they solve the problem 
of not being able to buy the same board twice. But these boards are not perfect- 
they still depend on availability of parts, such as PC chip sets, that may go out of 
production. 
RTOS. Real-time (that is, deterministic) operating systems that emulate DOS are 
available. Of course, all of them do not work exact4 like DOS, which can cause 
problems. Some, however, are close enough to DOS that they advertise as being 
able to run Windows (or they did, before Windows 95/98/2000 replaced 
Windows 3.1). One problem with using a non-DOS, non-Windows operating 
system is that you will not always find drivers for every peripheral chipset for every 
RTOS. For instance, you may find that one vendor’s motherboard uses an 
Ethernet chipset for which your RTOS vendor has no driver. Using an RTOS 
in a PC environment means you must make sure there is a match between the 
PC hardware and the RTOS. In addition, if your hardware becomes obsolete, you 

260 Embedded Macrqproc~~sor System 



must be sure the new hardware is compatible, too. Other options for embedded 
operating systems include Windows, the real-time version of Windows NT, and 
real-time operating systems as covered in Chapter 9. 

ISA- and PCI-Based Embedded Boards 

Although ISA is obsolete on the desktop, it is still found in various forms in 
embedded systems. In PCs, ISA has been replaced with PCI. Boards available 
for ISA and PCI buses include digital and analog 1/0 cards, optically isolated 
1/0 cards, and boards with relay closure outputs. Specialty cards include inter- 
faces to charge coupled device (CCD) cameras and specialized communication 
boards. 

This chapter so far has focused on the PC as a platform for embedded systems. 
In addition to the problems already mentioned, a number of other problems with 
using a PC for embedded applications exist. First, as mentioned, ISA is obsolete, 
replaced by PCI, USB, and possibly Firewire or Bluetooth. PCI is much faster than 
ISA but is more difficult to design for. As PCs need ever-faster peripherals, this 
transition makes sense. However, many embedded applications-even those that 
require a very fast CPU-do not need high 1 / 0  speeds. A PC is large and may be 
difficult to mount inside your product. Even the form factor of a PC motherboard 
is fairly large. 

The average PC user will be running some version of Windows instead of an 
RTOS and does not need to know how to write drivers for the chipset and periph- 
erals on the motherboard. The embedded developer, on the other hand, needs this 
information; not being able to get it can make development difficult. Some PCs 
have a Plug-and-Play (PnP) BIOS that makes it hard to control how the interrupts 
and other features will be allocated. 

Implicit in all these characteristics of the PC architecture is complexity. If you 
are building a PGbased product, you are virtually forced into using the BIOS on 
the motherboard and some kind of operating system. This is because the chipsets 
and peripheral functions on the board are complex enough (and sometimes pro- 
prietary enough) that it is impractical to write drivers and initialization code 
for them-unless you have an enormous development budget and a huge soft- 
ware team. 

Finally, PCs are not intended for embedded application, so the only flash 
memory they have is for the BIOS, and you may not be able to find out how to 
program that. To load your code, you are stuck with having a hard disk or floppy 
drive that you otherwise might not need. 

Industry-Standard Embedded Platj i is  261 



Other Platforms for Embedded Systems 
PC/104 Bus 

The PC/104 bus compresses the PC architecture to a form factor better suited to 
small embedded systems. The PC/104 bus is almost electrically identical to the ISA 
bus but on a different form factor. The PC/104, instead of using a backplane to 
interconnect the boards, has a stackthrough connector on each board. The pins on 
the back of one board connect to the socket on the front of the next. Two or more 
boards are stacked into a “sandwich” (see Figure 10.1). PC/104 boards are approx- 
imately 3.5 x 3.75 inches. 

The PC/104 bus comes in three versions: 

1. An &bit bus that closely matches the signals and timing of the original 8-bit IBM 
PC expansion connectors. 

2. A 16-bit version that follows the 16-bit ISA connectors. The PC/104 signals have 
slightly different drive specifications, which correspond to their use in em- 
bedded systems, typically with a limited number of boards. 

3. A PCI-like bus for high-speed transfers-the PC/lO4Plus. 

The primary drawback to the PC/104 form factor is also one of its biggest 
advantages-small size. Little room is left for connectors, and the board spacing 
prevents the use of large heatsinks for power devices. PC/104 CPU boards are 
available with processors ranging from an 80188 to 586- and Pentiumclass 
processors. 

One way that PC/104 CPUs can be used is as a smaller daughterboard on a larger 
1 / 0  board. To drive a lot of motors, for example, you might have a large board 
filled with power ICs and motor drivers and controlled by a PC/104 CPU plugged 
into a connector in one corner. 

Figure 10.1 
PC/104 Board Stacking. 

262 Embedded Microprocessm Systems 



Most PC/104 CPU boards provide a significant amount of flash memory, 
which usually can be configured as a virtual disk drive. This permits you to load an 
application and whatever operating system you use into silicon, with no need for a 
hard drive or floppy to get everything going. Many PC/104 CPU boards include 
an Ethernet connection, and you often can load the software directly from that. If 
your embedded controller is talking to an external PC via Ethernet, you can 
store the code in the PC and download it on power up. This makes it easy to send 
software changes to the field. 

Many manufacturers, such as Ampro, make CPU boards that are larger than 
the PC/104 form factor but retain the PC/104 interface connectors. This 
approach allows more room for components without giving up PC/104 electrical 
compatibility. 

One drawback to using a PC/104 CPU is the same as that for using a PC: You 
may pay for features you don’t use. This occurs for the same reasons it does on a 
PC-standard chipsets. Even if your application does not need VGA display, key- 
board, or IDE interface, you probably get them on the PC/104 CPU anyway. You 
might be able to design a board without those features for less, but remember that 
the PC/104 manufacturer spreads development and production costs over a larger 
volume than you can. Some PC/104 manufacturers sell a depopulated version of 
their boards. If you are not using a VGA controller, for example, they can leave off 
the video memory, making the board less expensive. 

The introduction of the USB bus may help alleviate some of the size constraints 
on PC/104based systems. Current PC/104 CPU boards typically are covered with 
connectors. Implementation of floppy, keyboard, printer, serial, and other inter- 
faces takes real estate on the board. Even though these functions are embedded in 
complex chipsets, IC real estate still is used, and interconnections must be made. 
Connector space is tight enough that some PC/104 CPU boards require a floppy 
drive from a notebook computer (which is expensive) because no room is left on 
the board for the larger, standard floppy connector. 

Although I have yet to see one produced, I can imagine a PC/104 CPU board 
that does awaywith the floppy, keyboard, printer, IDE, and maybe serial connectors, 
using USB instead. Such a board would be targeted at applications that do not need 
those peripherals except during development. During development, a “black box” 
could be used to interface the USB to all these standard peripherals. This black 
box could even be fairly expensive since it would not affect product cost. During 
production, instead of having four to six unused connectors on the board, only the 
USB is unused. The board space preserved by this approach could be used for other 
interfaces or additional CPU functionality. 

The pinout for the PC/104 bus is as shown on the next page. 

Industry-Standard Embedded Platfwm 263 



PIN 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

dl/P1 
(Row A) 

- 
-1OCHCHK 
SD7 
SD6 
SD5 
SD4 
SD3 
SD2 
SD 1 
SDO 
IOCHRDY 
AEN 
SA1 9 
SA18 
SA1 7 
SA16 
SA15 
SA14 
SA13 
SA12 
SA1 1 
SA1 0 
SA9 
SA8 
SA7 
SA6 
SA5 
SA4 
SA3 
SA2 
SA1 
SA0 
GND 

dl/Pl 
(ROW B) 
- 
GND 
RESET 
+5v 
IRQ9 
-5v 
DRQ2 
-12v 
-ENDX.FR 
+12v 
KEY 
-SMEIkTW 
-SMEMR 
-1ow 
-1OR 
-DACK3 
DRQ3 

DRQl 
-REFRESH 
CLK 
IRQ7 
IRQ6 
IRQ5 
IRQ4 
mQ3 

-DACKl 

-DACK2 
TC 
BALE! 
+5v 
osc 
GND 
GND 

J8/P8 
(ROW 0)  

GND 
4 B H E  
LA23 
LA22 
LA2 1 
LA20 
LA19 
LA18 
LA17 
-MEMR 
- M E W  
SD8 
SD9 
SDlO 
SD11 
SD12 
SD13 
SD14 
SD15 
KEY 

-/Pa 
(ROW D) 

GND 
-MEMCS 1 6 
-1OCS 16 
IRQlO 
IRQll 
l R Q l 2  
IRQl5 
IRQ14 

DRQO 

DRQ5 

DRQ6 
-DACK7 
DRQ7 
+5V 
-MASTER 
GND 
GND 

-DACKO 

-DACKS 

-DACK6 

Note that the J2/P2 connector starts numbering the pins with 0. This can cause 
a problem for some PCB layout packages that expect the first pin of a device to be 
pin 1.  

264 Embedded Micropromsor Systemr 



STD Bus 

Much older than the PC/104, the STD bus has been used in a large number of 
embedded systems. Originally based on timing signals from the Zilog 2-80 micro- 
processor, the STD bus is available in 8- and 16-bit versions. The bus is based on a 
56-pin edge connector, which originally supported a 64K (16-bit) address space and 
an %bit data bus, so going to wider buses with more memory addressing capability 
has required multiplexing some of the pins. The eight upper address lines are 
multiplexed with the lower 8 data bits to provide 24 address bits. If a 16-bit data 
bus is used, the upper 8 data bits are multiplexed with the upper eight address 
lines. The STD bus pinout follows: 

Component Side Solder Side 

Pin Signal Pin Signal 

1 vcc 2 vcc 
3 GND 4 GND 
5 Vbbl 6 Vbb2 
7 D3/A 1 9 8 D7lA23 
9 D2/A18 10 D6lA22 

11 DllA17 12 D5IA2 1 
13 DOlA16 14 D4IA20 
15 A7 16 A1 5/01 5 
17 A6 18 A1 4ID14 
19 A5 20 A13ID13 
21 A4 22 A12/D12 
23 A3 24 A1 1 ID 1 1 
25 A2 26 A1 O/D 1 0 
27 A1 28 A9ID9 
29 A0 30 A8ID8 
31 WR* (write strobe) 32 RD+ (read strobe) 
33 IORQ' (110 sel) 34 MEMRW (memory sel) 
35 IOEXP* (110 expansion) 36 MEMEX* (memory exp) 
37 RFSH" (refresh) 38 MCSYNC* 
39 STATUS 1 40 STATUS 2 
41 BUSACK* (bus ack) 42 BUSRQ* (bus request) 
43 I NTAK+ (interrupt ack) 44 INTRW (interrupt req) 
45 WAITRW (wait request) 46 NMIRW (NMI interrupt) 
47 SYSRESET* 48 PBRESET' 
49 CLOCK+ 50 CNTRL* 
51 PCO' (priority chain out) 52 PCI* (priority chain in) 
53 AUX GND 54 AUX GND 
55 AUX + V (+12V) 56 AUX - V (-12V) 

Note: Signal names separated by a slash (/) are multiplexed pins with two functions. 

Industry-Standard Embedded Plat j i i  265 



Figure 10.2 
STD Board Outline. 

An STD bus system consists of a passive backplane with (typically) 4 to 20 slots, 
a plug-in CPU, and peripheral boards. The STD bus originally was used mostly with 
proprietary (non-PC) CPU designs. As the PC architecture became more attractive, 
STD bus boards and systems became available with the same architecture as a PC 
and the ability to run DOS or Windows. The number and type of peripheral boards 
(timers, 1/0 controllers, standard interfaces, data conversion, etc.) available for the 
STD bus is about the same as for the PC/104 bus. 

Figure 10.2 shows the outline of the STD bus boards, which are about 
4% x 6% inches in size. 

There is a newer version of the STD bus, STD-32, which supports 8-, 16, and 
32-bit transfers and a 32-bit address space. STD-32 uses interleaved connectors, and 
a STD-32 backplane will support older STD cards, allowing a mix of 8- and 32-bit 
cards in a system. 

VME Bus 

The VME bus was based on the Motorola 68000 signals. Using 96-pin DIN (a 
European standard) connectors, the backplane may be one to three connectors 
wide and up to 20 or so slots long. The VME bus supports daisy-chained interrupts. 
It normally is associated with larger and costlier systems. 

VME boards come in two sizes: 3U and 6U. Both are approximately 6.3 inches 
(160 mm) deep, although there is a longer version used by some systems. 3U boards 
have a single 96-pin VME connector and are about 3.9 inches (100mm) wide. 6U 
boards have two connectors and are about 9.2 inches (233 mm) wide. A three-panel- 
wide 9U board is used in some systems; the third connector is user defined. 

266 Embedded Microprocessor Systems 



CompactPC/ 

A drawback to the standard ISA bus in a PC (and the similar PC/104 bus) is speed. 
ISA is limited to 16-bit transfers and, for compatibility reasons, limited in speed. 
The PCI bus in a PC overcomes some of these limitations with a high-speed bus 
that supports 64bit transfers and has a more flexible interrupt structure. The 
origmal 33MHz PCI bus supports burst transfer rates of 133MB/sec using a 32-bit 
mode, and 266MB/sec using a 64bit mode. However, the PCI bus, as implemented 
in a PC, still has drawbacks for industrial applications since it uses edge connectors 
and a single-screw holddown mechanism similar to the ISA. 

The CompactPCI adapts the PCI bus to industrial and embedded applications. 
Like VME cards, CompactPCI boards are based on the Eurocard industry standard. 
CompactPCI boards come in 3U and 6U sizes. The connector is a 5 row x 44 pin 
connector, with 2mm pin-to-pin spacing. The cards are held in place by a rail 
attached to the card-cage frame at each end with screws for secure mounting. 

CPU on a Chip 

The AMD Elan SC520 Microcontroller provides a 32-bit, 100MHz, 586 CPU core 
with several integrated peripherals. These include: 

e 

0 

e 

0 

0 

e 

e 

e 

0 

e 

e 

e 

Integrated PCI host bridge 
SDRAM controller 
Programmable interrupt controller 
PGcompatible timer 
PGcompatible DMA controller 
Two 16550compatible UARTs 
Real-time clock with battery backup 
Three general-purpose timers 
Watchdog timer 
Synchronous serial interface 
Programmable address decoding (chip selects) 
32 general-purpose 1/0 pins 

The Elan SC520 is optimized for embedded applications and provides a highly 
integrated solution when a PGcompatible embedded controller is needed. 

Example Real Time PC Application 

When the original IBM PC was introduced, it was not well suited to embedded real- 
time control. With CPU clock rates of 5 or 12MHz and unpredictable operating 
system performance, you just couldn’t be sure things would be done in a timely 

Industry-Standard Embedded Platfolms 267 



OPTICAL SENSORS , D 

LPTPORT D ELECTROMECHANICAL SENSORS 

DATA PACKET 

OUTPUTS a- 
~ 

I I I I 

ETMRNET 
NT 

Figure 10.3 
Real-Time Embedded PC. 

manner. As processor speeds have increased, the use of PGbased control systems 
becomes more feasible. However, the primary drawback to such systems is still the 
lack of repeatable, predictable timing. 

Figure 10.3 shows an embedded system based on the PC architecture. This 
particular system is part of a document imaging application. Documents are imaged 
at a rate of about 24 per second. The microcontroller board interfaces to the trans- 
port electronics. It services a regular interrupt every 266 microseconds. In addi- 
tion, the microcontroller processes optical and electromechanical interrupts that 
indicate document position and the state of the transport. A data packet from the 
transport electronics provides information about each document to be imaged. 
Outputs from the microcontroller include control signals to the lamps and other 
transport subsystems. 

The PC has an interface to the imaging cameras using custom interface boards 
that plug into the PCI bus in the PC. The PC merges the data stream information 
with the document images and sends the resulting data to a host system. 

The PC has sufficient memory and processing capability to buffer and process 
the images while managing the Ethernet connection to the host. The PC is not 
capable of handling the 266-microsecond timing requirements of the lower-level 
hardware, so the microcontroller handles that aspect of the system. 

The microcontroller board contains a FIFO that provides an interface to the PC. 
Data passed to the PC include the document data packet, machine status, and 
timing information used to synchronize everything. Using this architecture, the PC 
only has to service the FIFO every couple of documents, about once every 100ms. 
The FIFO keeps the data packets and other information in the right order. 

The PC does not need to know the specific timing of each event in the FIFO, 
although knowing the sequence of events is important. If timing information had 
been needed, the interface protocol could have been modified to accommodate it. 
For example, each data item in the FIFO could be accompanied by the contents of 
a 16-bit free running counter, or the amount of time between data items could be 
included. 

268 Embedded Micropocessm Systems 



The PC in this application is not capable of controlling the system at the lowest 
timing level, but it does act as a real time controller with hard real-time deadlines. 
These include receiving and processing the images in a timely manner and keeping 
up with the rate of data coming out of the FIFO. The operating system is not deter- 
ministic in that the time to check and read the data from the microcontroller is 
predictable. However, due to the speed of the CPU and the addition of the inter- 
face FIFO, the system is deterministic because it will always be fast enough. In this 
sense, it is truly real time. 

In this design, the PC was chosen for the image-processing function for the 
following reasons: 

Standard operating system and drivers allow use of the standard C t t  develop- 

Any PC can be used by loading the right drivers-application software is 

Easy upgrade to faster CPU/more memory/bigger disk, and so on. No changes 

Standard printer port for interface to microcontroller board makes this interface 

The image interface boards required a standard PCI bus. 

ment system as well as easy interface to Ethernet, video, disk, and so on. 

independent of hardware implementation. 

to application or operating system are required. 

universal. 

Chapter 11 will examine some advanced microprocessor concepts. 

Industry-Standard Embedded Platfwms 269 





Advanced Microprocessor 
Concepts 

This chapter provides an overview of some features that are used to improve 
processor performance or to solve certain design problems. 

Pipeline (Prefetch) Queue 

To speed execution, some processors implement a pipeline, sometimes called a 
prejetch queue. This is because many CPU instructions are fairly complex, taking 
many clock cycles to perform. Multiply and divide instructions are good examples. 
While the processor is executing multipleclock instructions, the bus normally is 
idle. In a processor with a pipeline, the bus logic goes ahead and gets the next few 
instructions in preparation for execution. The Intel 80186/188 implements a 
pipeline by having the execution unit (EU) separate from the bus interface unit 
(BIU). While the EU is executing instructions, the BIU continues to fetch new 
instructions until the queue is full. If the next instruction in the pipeline happens 
to be one that can be executed very quickly, the one following already is in the 
pipeline and need not be fetched from memory. 

A pipeline architecture keeps the CPU execution speed from being bogged 
down by slow memory. While the CPU is executing multipleclock instructions, 
the pipeline uses those clock cycles to fill up with instructions. However, the average 
rate of instruction execution cannot exceed the memory bandwidth, or the 
pipeline will never get ahead of the CPU and so provides no advantage. 

The Motorola Coldfire CPU series takes the pipeline concept further. A draw- 
back to a pipeline architecture is that, if a branch instruction is executed, all the 
prefetched instructions must be discarded and the pipeline refilled from the new 
address. 

The MCF5307 is a 32-bit, Coldfire-family processor that fetches and partially 
decodes the instructions in the pipeline. If the decoding logic detects certain 
branch instructions, the pipeline will begin fetching instructions from the new 

271 



address in anticipation of the branch being taken. If the branch is conditional and 
not taken, then the new instructions are discarded and prefetching resumes from 
the addresses following the branch instruction. Of course, this type of decoding 
has limitations. Suppose that a branch instruction uses an indirect address, con- 
tained in a register, and the register contents depend on an instruction still in the 
pipeline. Obviously, the pipeline logic-for any processor-cannot prefetch data 
because the destination address is not known. 

Interleaving 

Interleaving is used to allow a fast CPU to access slower memory without wait states. 
Figure 11.1 shows a simple timing diagram that illustrates the concept of inter- 
leaving. In this example, an Intel-type bus was chosen because the ALE signal 
provides a reference for the processor cycles. 

Two memories are shown in the figure. Each has an access time longer than the 
bus cycle time. Ordinarily, this would require the insertion of wait states. However, 
if each memory is accessed on every other cycle, the two memories together can 
keep up with the CPU. Each memory access starts in a cycle when the other memory 
is being read. In Figure 11 .l ,  Memory 1 is accessed on every even-numbered address 
and Memory 2 is accessed on odd-numbered addresses. 

Interleaving works only as long as the processor executes sequential address 
cycles. The access time for one memory device starts in the bus cycle for the other 
device; thus, the next address for each device must be predictable. In the example 
shown, the CPU is accessing a hex address of AAOO then AAOl then AA02 (these 
are just arbitrary addresses chosen for this example). After reading location AA02, 
the processor jumps to AA14. This memory access cannot be interleaved because 
the new address could not be predicted, so wait states must be inserted so that the 

-ALE n n n n 

ACCESS TIME 
MEMORY 1 I I I 

ACCESS TIME 
MEMORV? I I I 

CPU 

Figure 11.1 
Interleaving. 

272 



EXTERNAL ANALOG SIGNAL MICROPROCESSOR 

CPU READS CONVERSION I I 1 
C W  STARTS NEW CONVERSION 1 1 I 
ADC CONVERSION TIME 7 E * ’ I  - I 
ADC OWPUT REGISTER VALUE I W P L E N - 2  I a m L E N - 1  I SAMPLEd 

Figure 11.2 
ADC interleaving. 

memory can catch up with the CPU. You can see this in Figure 11.1, where the 
access to AA14 is longer than the preceding bus cycles. 

A form of interleaving is performed in many microprocessor designs when inter- 
facing to slower peripherals. Figure 11.2 shows a microprocessor connected to an 
analog-to-digital converter (ADC) . When the microprocessor wants to read the 
ADC, it could start the AD conversion, then wait until the conversion is complete. 
However, this would waste time while the CPU is polling the ADC. Instead, the CPU 
starts a conversion, then goes away and does other things. At some regular 
interval, the CPU reads the ADC result and starts the next conversion. This 
technique can be applied to a number of different peripheral types. Two ADCs 
could be interleaved in the same way as memory accesses, permitting the conver- 
sions to overlap. 

DRAM Burst Mode 

Many dynamic memories have some form of burst mode of operation that permits 
faster access. Figure 11.3 shows how burst mode operation compares to the normal 
mode of operation in a dynamic RAM (DRAM). In normal operation, each cycle 
is initiated by -RAS, followed by -CAS. The access time of the DRAM is the -RAS 
access time, and the fastest rate the device can be accessed is the random access 
cycle time (a parameter you will find on the DRAM data sheet). 

Figure 11.3 also shows page mode, which is the simplest type of DRAM burst 
operation. In this case, the -RAS signal goes low to latch the row address, but it 
stays low. Subsequent locations are read by strobing -CAS to latch a new column 
address. The -CAS access time is faster than the -RAS access time, so subsequent 

Aduanced Mimoprocessw Concepts 273 



I CYCLETIMEOR I 

NORMAL DRAM TIMING I PRECHARGE I 
I I 

ADDRESS INPUTS R OW X COLUMN X ROW X C O  L U MN 

-RAS 

-CAS 

DATA 

PAGE MODE TIMING 

ADDRESS INPUTS 4 ROW X COLUMN XCOLUMN X COLUMN X ROW X COLUMN > 
-RAS 

-CAS r r 
DATA 

Figure 11.3 
Burst Mode DRAM Access. 

bytes can be read much more quickly than the first location. Any location in the 
selected row can be accessed in this way. 
As soon as the CPU needs information from a different row, the -RAS line must 

be cycled and a new row address loaded. The access time for the first read from 
the new row is the -RAS access time, but subsequent reads from that row can be 
performed using burst mode access. A memory with a lOOns -RAS access time 
typically would have a -CAS burst access time of around 60ns. To take advantage 
of burst mode, the address decoding hardware must detect when the address 
changes to a different row (because the address bits from the CPU that make up 
the row address change). The -RAS signal must be cycled with the new row address. 
The first memory access is governed by the -RAS access time, and so the first bus 
cycle from the new row must be extended with wait states. 

There are other enhancements to the page mode of operation, such as a fast 
page mode and extended data output (EDO) . These all enhance performance by 
changing the burst mode timing, essentially making the -CAS access time shorter 
so that successive burst cycles are faster. 

SDRAM 

Synchronous DRAM (SDRAM) is a new type of DRAM that is optimized for high- 
speed microprocessors such as 586 and Pentium-class CPUs. SDRAM is a DRAM, 
and so it must be refreshed to retain the memory contents. However, synchronous 

274 Embedded Micropocessar Systems 



DRAM operates at higher speeds than traditional DRAM. The most important dif- 
ference is that SDRAM is synchronized to the CPU using a clock signal. 

A typical SDRAM is the Toshiba TC59SM716/08/04. This is a 128MB RAM, 
available as 32MB x 4 bits, 16MB x 8 bits, or 8MB x 16 bits. The TC59SM716 comes 
in a 54pin surface mount (TSOP) package, operates at 3.3V, and is capable of 
transferring up to 133 megawords/sec. The signals on this SDRAM integrated 
circuit (IC) are as follows: 

Data lines (16) 

-CAS 

-RAs 
-WE 
-CS 

Clock 

DQM (data bus select) 
Bank select 

Address signals 

SDRAM ICs have -RAs, -CAS, and -WE signals like normal DRAM ICs. However, 
these signals have a different meaning on SDRAM. In addition, SDRAM has clock, 
a chip select (CS), bank select (BS) signals, and data bus select signals. Finally, the 
address lines on an SDRAM are used both to address the device and to select certain 
parameters. 

Figure 11.4 shows the basic timing of an SDRAM read cycle. Note that all the 
input signals are synchronized to the rising edge of the clock signal. In the wave- 
form shown, the CPU has requested a burst read of multiple words. The command 
is issued on one clock edge, and three clocks later, the data are available at the 
SDRAM outputs. Once the first word has been read, subsequent words are read on 

CLOCK 4 
-cs \ 1 
-RAS 1 
-CAS 

-WE 

ADDR ,-( > 
DATA -( X X x > 

Figure 11.4 
SDRAM Timing. 

Advanced Mieroprocessm Concepts 275 



each clock cycle. Although not shown in the figure, accessing an SDRAM requires 
a -RAS cycle (also synchronous) to load the row address and activate the row. 

Like an ordinary DRAM, the SDRAM uses a burst mode to read subsequent 
locations. In the case of SDRAM, a new location is read on each clock. The burst 
length is set with a Mode Register Set command. When this command is issued, the 
address bits are redefined as command bits. The meaning of the bits is as follows: 

AO-A2: Burst length 
A3: Addressing mode (sequential or interleaved) 

A4A6: -CAS latency 

A9: Write mode 

The -CAS latency tells the DRAM how many clock cycles (two or three) should 
elapse between a command being issued and data being available. This allows the 
DRAM delay to be set so that it matches the CPU clock. A fast CPU would select a 
three clockcycle latency; a slower CPU (with a corresponding slower clock signal 
to the DRAM) would select two clock cycles. 

The -RAS, -CAS, and -WE signals select the command mode. A partial list of 
these commands is as follows: 

-RAS -CAS -WE Command 

0 0 
0 1 
1 0 
1 1 
0 0 
0 1 
1 0 
1 1 

Mode register set 
Auto refreshkelf-refresh entrylexit 
Bank precharge/precharge all 
Bank activate 
Write/write with auto precharge 
Readhead with auto precharge 
Burst stop 
No operation 

As you can see, there is more than one interpretation for each command state. 
Which command is executed depends on the state of an address line and what state 
the SDRAM already is in. An SDRAM IC has 16 data lines. The data can be accessed 
in 8- or l6bit  words; the DQM signals determine which bytes are read. DQM also 
functions as a mask when writing, allowing either or both bytes of the pair to be 
written. This permits a word-wide processor to perform byte-oriented operations 
on the device. Of course, the DQM signals on multiple devices can be manipulated 
so that a 32- or 64bit-wide memory array can be accessed as bytes, l6bit  words, or 
32-bit words. 

An SDRAM data sheet consists of 50 or so pages of timing diagrams and tables. 
Due to the high clock rates (66 to 125 MHz) , SDRAM timing usually is accomplished 

276 Embedded Micrq%-omsm System 



with fast programmable logic or custom ICs. One advantage to SDRAM is the syn- 
chronous nature of the interface. Traditional DRAM requires delay lines or other 
timing devices to get the -RAs and -CAS strobes correct. SDRAM synchronizes 
everything to the clock signal, which is a convenience since the control logic usually 
is synchronous anyway. 

Some microprocessors, such as the AMD ElanSC520 microcontroller, include an 
SDRAM interface on-chip. 

High-speed, High-Integration Processors and Multiple Buses 

Although the interfacing techniques introduced in Chapter 2 apply across all speed 
ranges, some special considerations are in order for interfaces to very fast pro- 
cessors. The AMD Elan SC520 is one example. The SC520 integrates a 586 CPU 
core with a number of peripheral functions. One is a fast interface to external flash 
memory. The 586 flash memory interface can run at 33 MHz, performing one fetch 
from the flash every 30ns. Because most flash memories cannot operate at this 
speed, the CPU needs wait states to access the flash. It might seem reasonable to 
simply run the CPU at a slower clock and avoid wait states. However, the SC520 has 
other integrated interfaces, including an SDRAM interface. Operating the flash 
with wait states allows the SDRAM to run at full speed. In many cases, when using 
a PCcompatible processor like the SC520, the flash is used only when starting the 
system; normal operating code is stored in RAM. 

Figure 11.5 is a block diagram of the Intel i960 VH processor. The i960 is a high- 
performance microprocessor family. The V H  version has two external buses: a local 
memory bus and a peripheral component interconnect (PCI) bus. The PCI bus is 
a standard interface bus in the IBM-PC world. The i960 VH incorporates a PCI con- 

EXTERNAL MEMORY 

f 

Figure 11.5 
Intel i960 VH. 

Advanced Microprocessor Concepts 277 



troller on-chip. The i960 also has a local memory bus for accessing DRAM or flash 
memory. The i960 VH has an internal 32-bit address space; the PCI bus can be 
made part of this address space, or the V H  address space can be independent of 
the PCI bus. Integration of the PCI bus onto the chip provides a very high level of 
performance on a standard interface. 

Although you can use the i960 PCI bus interface to create a PCI card slot into 
which you can plug standard PC peripheral cards, you can also implement a PCI 
bus on a circuit board with no connectors at all. This lets you use ICs designed for 
use on PCI bus cards on your embedded circuit board. 

Cache Memory 

One problem that occurs as processors get faster and faster is the bottleneck of 
accessing memory. On-chip speeds inside the CPU always are faster than the speed 
of external buses. For example, the PGstandard PCI bus at 66MHz usually is driven 
by a CPU with a much faster internal clock. A 100MHz PCI typically is connected 
to a 300MHz or faster CPU. In addition, 100MHz SDRAMs connect to 350 or 
400MHz CPUs. 

The reason for this is that the logic delays inside the CPU are more controllable 
and more repeatable than those going off-chip. Also, signal paths inside the chip 
are only tiny fractions of an inch, versus longer traces on a PC board. This affects 
both the propagation delay and the transmission-line characteristics of the traces. 

The bottom line is that a very fast CPU may be unable to execute instructions 
at full speed because it is starved for data from a memory that cannot keep up. 
One solution to this problem is the addition of cache memory. Cache memory is a 
fast memory located close to the CPU and operating closer to CPU speeds. Cache 
memory usually is implemented with very fast static RAM. 

Cache memory is managed by a cache controller that fetches data from the main 
memory and stores it in the cache. Cache memory works because most micro- 
processor programs are repetitive in nature-the code loops around and around, 
executing the same string of instructions for some time before moving on to some 
other piece of code. When the CPU wants to execute code not in the cache, the 
cache controller gets the code from main memory (DRAM, usually) and moves it 
into the cache. Once in the cache, the code executes very quickly. 

If cache is so fast, why not just make all the memory cache? The first reason 
is cost-building all main memory out of the super-fast cache SRAM would make 
the memory prohibitively expensive. Second, cache SRAM ICs are larger than 
equivalent DRAM due to the larger cell size and added number of pins required. 
Thus, making all main memory out of cache parts would make the memory array 
physically larger, which would limit speed due to trace lengths. 

278 Embedded Micr@rocessor Systems 



Many CPUs, such as Pentium-class processors, go a step further, integrating a 
small cache onto the CPU chip itself. This provides a very fast cache memory, 
capable of keeping up with the CPU at full speed. However, since SRAM takes a 
significant amount of real estate on the CPU die, on-chip cache memory typically 
is smaller than off-chip cache memory. Many designs include both types of cache 
memory for maximum performance. 

CRYSTAL 
OSCILLATOR VARIABLE PHASE FREQ 

Processors with Multiple Clock Inputs and 
Phase-Locked Loops 

DlVlDE 

Many microprocessors need more than one clock input. The AMD SC520 is an 
example of this. The SC520 requires two crystals (or external oscillators). One 
crystal runs at 32.768kHz and provides a signal to the real-time clock and SDRAM 
refresh logic. The SC520 also has a 33MHz input, which provides clocks to the CPU, 
PCI bus, and other internal peripherals. 

As processor speeds exceed 30MHz or so, it is difficult to get crystals to run 
the CPU. Fundamental mode crystals typically are unavailable above 30MHz. The 
SC520, in addition to the clocks mentioned, requires 66MHz for the SDRAM 
logic and 18.432MHz for the UARTs. Clocks like this are often generated by a 
phase-locked loop (PLATA) inside the microprocessor IC. While the complexities of 
PLL theory are beyond the scope of this book, a PLL can be thought of as a 
block of components that multiply a clock by some integer. Figure 11.6 shows a 
simplified block diagram of a PLL and a brief description of how the circuit 
works. 

COMPARATOR BYN - FREQUENCY 4 
OSCILLATOR ADJUST D 

OPERATION. 

PHASE COMPARATOR ADJUSTS M O  FREQUENCY SO THAT OUTPUT OF DIVIDER MATCHES 
CRYSTAL OSCILLATOR. 

FOR DIVIDER O W  TO MATCH OSCILLATOR OUTPUT. VFO FREQUENCY MUST BE OSCILLATOR 
FREQUENCY x THE DIVIDE VALUE (N). 

EFFECT OF PLL IS TO MuLnRY CRYSTAL OSCILLATOR FREQUENCY BY N 

Figure 11.6 
PLL Block Diagram. 

Advanced Micropomsor Concgbts 279 



A microprocessor may contain multiple PLLs to generate more than one fi-e- 
quency. The SC520 has a PLL that generates 1.1882MHz (for the programmable 
timers) and 18.432MHz (for the UARTs) from the 32.768kHz input. Another PLL 
produces 66MHz for the SDRAM interface from the 33MHz input. The CPU core 
has a PLL that multiplies the 33MHz input crystal by three or four to produce a 
100MHz or 133MHz CPU clock. 

Multiple-Instruction Fetch and Decode 

With the addition of onchip cache memory to some microprocessors, a secondary 
performance improvement is possible. It is possible to build a microprocessor 
with a 32-bit interface to external memory, but a 6 4  or 128-bit interface between 
the internal cache memory and the internal CPU core. Figure 11.7 shows this 
arrangement. 

Because the internal bus that interfaces the cache memory to the CPU is wider 
than the CPU word, it is possible to transfer multiple instructions to the CPU at 
once. With parallel hardware, the CPU can decode more than one instruction 
at a time, resulting in a very high level of performance. The Intel i960 does this, 
as does the Motorola Power PC. Of course, this greatly increases CPU complexity, 

32-BIT 
EXTERNAL MEMORY 

1 
I 
I 

I 
I 

I 
I 
I 
I 
I 

128-BIT 
INTERNAL BUS 

I 
I 

INTERNAL CPU CORE 

I 
I 
I 
I 
I 
I 
I 
I 
I 

I I 
I MICROPROCESSOR IC I . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 11.7 
Wide Cache Memory. 

280 Embedded Microprocessor Systems 



as there must be some degree of parallelism and the instructions must be 
synchronized. 

~ ~ 

MicrocontrolledFPGA Combinations 

Many microprocessor designs have a microprocessor and one or more program- 
mable logic devices (PLDs). The PLDs usually function as address decoders, I/O 
peripherals, or even fairly complex state machines connected to the processor. 

The Atmel FPSLIC (Field Programmable System Level Integrated Circuits) com- 
bines an AVR microprocessor core with Atmel’s AT40K field programmable gate 
array (FPGA) architecture on a single chip. The FPSLIC devices are programmed 
at power up from an external memory, allowing you to create sophisticated 
microprocessor-based systems with just two chips. The FPGA part of the device is 
PCI compliant, so you can directly interface the AVR to a PCI bus. 

The AVR microprocessor of the FPSLIC includes the AVR core, two UARTs, three 
timers, a watchdog timer, and a real-time clock. Sixteen 1 / 0  lines are available from 
the AVR, although 1 / 0  can also be implemented in the FPGA. The Atmel AT17 
family EEPROM memories are compatible with the FPSLIC, storing both the AVR 
code and the FPGA configuration. 

The FPGA part of the FPSLIC includes a hardware multiplier for fast DSP-like 
operations and a fast dual-port SRAM for communication with the AVR. The device 
includes 10,000 to 40,000 gates and 864 to 2,880 registers, depending on which 
specific chip you are using. 

The AVR and FPGA are tied together via the dual-port RAM. In addition, four 
memory locations in the AVR are mapped into the FPGA, so you can build custom 
peripherals for the AVR with the FPGA logic. Finally, 16 interrupt signals pass from 
the FPGA to the AVR so the FPGA logic can generate interrupt requests to the 
microprocessor. The FPSLIC is available in packages ranging from an 84pin PLCC 
to a 352-pin BGA. 

Another manufacturer offering microcontroller/FPGA combo chips is Cypres 
MicroSystems. Their CY8C25xxx family of programmable system-on-chip parts 
includes both configurable peripherals and analog blocks, as well as an 8-bit micrc- 
controller. The analog blocks can be configured to create ADCs, digital-to-analog 
converters (DACs), filters, and other functions. 

In addition to FPGAs with embedded microcontrollers, you can also embed a 
microcontroller into a standard FPGA just like you would any other logic block. 
A microcontroller built this way may make less efficient use of chip real estate than 
a dedicated microcontroller IC, but it can simplify the overall system design. Xilinx 
has an application note that describes such a microcontroller. 

Advanced Microprocessm Concepts 281 



On-Chip Debug 

This topic has been mentioned in earlier chapters; it will be addressed in more 
detail here. 

The addition of on-chip cache memory and high-speed processors complicates 
debugging. If instructions are executed from the on-chip cache, there is no 
external indication on the processor pins of what is going on. Prefetching causes 
problems as well; an instruction may be fetched from memory but never executed. 
An incircuit emulator could monitor execution of these instructions, but the high 
clock rates of current processors make such an emulator difficult to build. 

Another problem with emulators for high-performance processors is packaging. 
In the early days of microprocessors, all ICs came in DIP packages that could be 
socketed easily. The microprocessor could be removed from the socket and an 
emulator installed. Today, many microprocessors come in surface-mount packages 
that cannot be socketed. Removing the chip from the board to install an emulator 
is not possible, even if there were a way to attach the emulator to the board. 

To simplify debug of high-performance processors, many manufacturers include 
on-chip debugging resources. As mentioned in Chapter 6, the x86 family of p r e  
cessors, starting with the 386, includes onchip debug registers. Figure 11.8 shows 
the configuration of the x86 debug registers for the Pentium processor. 

The Pentium has eight debug registers, DRO through DR7. All registers are 
32 bits wide. DR4 and DR5 are reserved, so only six registers actually are used. 
DRO through DR3 are linear breakpoint address registers, written with the address 

DR3 DR2 DRI DRO 

r I 7 I 3 
A A A A 

E1 
DR7 
DR6 
DR5 
DR4 
DR3 
DR2 
DR1 
OR0 

TS 2 2 2 2 2 2 2 2 2 I 3 1 1 1 1 1 1 1 1 1 1  

LEN: 00 1 BYTE 
01 ZBYTES 
10 UNDEFINED 
11 FOURBYTES 

RIW: 00 BREAK ON INSTRUCTION WECUllON ONLY 
01 BREAK ON DATA W R I E S  ONLY 
10 BREAK ON 110 READS OR WRITES 
11 BREAD ON DATA READS OR WRITES. BUT NOT 

ON INSTRUCTION FETCHES. 

Figure 11.8 
Intel Pentium Debug Registers. 

282 Embedded Micr@rocessar Systems 



of the breakpoint. This is an unsegmented, 32-bit address (if you do not know 
what unsegmented means, do not worry about it; it is a Eunction of the x86 
architecture). 

Register DR7 controls what type of breakpoint is executed. Each address 
register has two LEN (length) and two R/W bits; the encoding of the LEN and 
R/W bits is shown in Figure 11.8. 

The L&L3 and GO43 bits individually enable the four breakpoints. L&L3 are 
used for local breakpoints (cleared after a task switch) and G O 4 3  are used for 
global breakpoints, which are not cleared after a task switch. This is needed because 
a task switch may put something else in the memory area pointed to by the address 
register, and the breakpoint would be invalid. Debug features such as these permit 
a software debugger to simulate some of the features of an incircuit emulator. 
A breakpoint can be executed if the processor writes to certain 1 /0  addresses, for 
example, or if a particular variable is accessed. 

The x86 family are not the only processors with onchip debug features. Most 
high-performance 32- or 64bit processors include some type of on-chip debug. 
Motorola uses a method called background &buggzng mode (BDM) in some of its 
processors. BDM allows an external host PC (with appropriate software, of course) 
to monitor and control the target CPU. BDM uses three processor pins: a clock, 
data in, and data out. These pins perform more than one function, depending on 
the mode of the BDM interface. When transferring data, the BDM pins function 
similar to an SPI port. The BDM data word transferred to the PC is 17 bits long. 
BDM permits the user to read and write registers, read and write memory, and 
perform other basic debugging functions. Unlike the Intel scheme, BDM does not 
support breakpoints or other emulation-like features. 

The Motorola MC68EZ328 has on-chip debug hardware that includes a single 
execution breakpoint and a single bus-cycle breakpoint. The execution breakpoint 
hardware generates a breakpoint when a specific address is executed. A buscycle 
breakpoint is generated when a read or write is performed to a specific address. 
Using the on-chip debug hardware requires a software monitor (debugger) 
program to communicate with the host and to set up the internal breakpoint 
registers. Having more than one instruction and one bus-cycle breakpoint requires 
external hardware. 

In the past, onchip debugging resources were available only on 16- to 64bit 
microprocessors, not on smaller microcontrollers. For many microcontrollers, the 
on-chip debugging circuitry would be a significant portion of the IC die. However, 
Microchip has started adding in-circuit debugging to the PIC processors. The PIC 
16F877 has added on-chip circuitry that permits a breakpoint to be set and memory 
to be examined. Compared to the resources on a Pentium or Power PC, these may 
seem inadequate. However, it is a big leap from where microcontroller debug was 
in the past. And since microcontrollers often are used in simple applications, exten- 
sive debug support is often not needed. A memory dump feature may be all that 

Advanced Microprocessor Concepts 283 



is required with only 256 bytes of on-chip RAM. The microchip debug capability is 
enabled by programming a bit when the microcontroller EPROM is programmed. 

Many microprocessors implement a joint test action group (JTAG) interface for 
debugging. ThepAG interface is a standardized serial interface that permits auto- 
matic test equipment to serially read and write the contents of internal registers in 
the IC. TheJTAG interface standard (IEEE 1149) is flexible enough that it also can 
support on-chip debugging capabilities. 

The AMD SC520 uses theJTAG interface to provide debug support. An internal 
memory stores trace information about program execution. Of course, with a 
serial interface, there is no way to track every instruction in real time, so the trace 
information is partial. The software in the host PC must do some of the work of 
decoding the debug information from the chip. 

~ 

Memory Management Hardware 

Many advanced microprocessors include hardware for memory management. The 
features provided by memory management include the following. 

Memory Protection 

As mentioned in Chapter 4, there is nothing to prevent a berserk program from 
writing all through memory. In a system with a memory management unit (MMU), 
each program is limited to its own area of memory and cannot corrupt memory 
allocated to other programs. 

Write Protection 

Using an MMU, certain areas of memory can be set aside as read-only, even though 
they are physically implemented as RAM. The MMU detects any attempts to write 
to those memory areas. 

Relocation 

A program may be written with absolute branch addresses and it may access 
absolute memory locations. Such programs cannot be relocated because the 
addresses would all be wrong. The MMU can translate the addresses, allowing 
the programs to be executed Erom any location in memory. 

Supervisor 

Processors that have an MMU also have multiple privilege levels. Supervisor is one 
of these. Among other things, the supervisor level allows the MMU to be pro- 

284 Embedded Mimopfomsm Systems 



grammed. Typically, programs that are not at the supervisor level cannot execute 
certain instructions, such as instructions that disable interrupts or modify the inter- 
rupt vector table. 

As an example, let’s take an overview look at the memory management scheme 
used by Intel for the x86 family. The Intel memory management scheme is an out- 
growth of the original 8086 segmentation architecture. 

Segment Registers Segment registers were introduced with the 8086 to permit 
the l6bit  processor to access up to a megabyte of memory (which requires 20 
address bits). The 1Gbit segment register contents are shifted left four places and 
added to the l6bit  offset to make a 20-bit address. The memory thus is divided 
into 64K segments. If a program wants access to two memory locations that are 
more than 64K apart, two different values must be used in the segment register to 
do so. Similarly, if the program itself is bigger than 64K, the segment register that 
points to the code area must be changed when the program rolls over or jumps 
into a section of code that cannot be reached with the current segment register 
and program counter. For example, if the code segment register contains COO0 and 
the program counter contains FFFF, the current instruction will come from the 
absolute address CFFFF. You would expect the next instruction to come from 
D0000, but that is not what happens. Instead, the PC rolls over to zero while the 
code segment stays the same, so the next instruction comes from COOOO. The code 
segment register must be changed to reach anything above D0000. 

The original 8086 provided four segment registers: code segment, data segment, 
stack segment, and extra segment. With the introduction of the 386 processor, a 
new method was needed. The 386 is a 32-bit machine, with a 32-bit address bus. To 
accommodate this architecture, the segment registers in the 386 (and above) 
processors are 32 bits wide and point to a table of descriptors. When the CPU wants 
to access memory, the segment (now called a selector) register is used to obtain a 
64bit entry from the descriptor table. This entry contains: 

The absolute 32-bit start address of the segment 
The upper limit of the segment 
The status, privilege level, segment type, whether the segment is present, and 
the like 

Thus, a program can be loaded anywhere in memory; accesses to memory 
(including code, data, and stack) are translated into absolute 32-bit addresses using 
the descriptor table. 

Privilege Levels The Intel MMU provides for four privilege levels. Level 0 is the 
highest level and permits access to anything in the system, including the MMU itself 
and all instructions in the instruction set. The operating system kernel will be at 
level 0. 

Advanced Microprocessor Concepts 285 



Levels 1 through 3 have fewer privileges. The essential point is that the MMU 
will not permit any memory access that is off-limits to a program at a given privi- 
lege level. A memory segment can be set so that it is read-only for levels 1 and 
below. A program at privilege level 0 can write to that segment, but a program at 
level 1,2, or 3 can only read it. Other registers in the MMU control things like what 
privilege level is permitted to disable interrupts or to modify the MMU registers. 

Motorola 

The Motorola memory management scheme on the 68060 is different from Intel’s, 
but the result is the same-a table is used to translate a logical address to a physical 
address. The 68060 has seven key MMU registers. One register points to a descrip 
tor table for the supervisor level and one register points to the user descriptor table. 
One register controls various functions like page size (4K or 8K) , and four registers 
provide translation information for code and data (two registers each). 

Exception Handling 

What happens when a program tries to write to read-only memory or disable inter- 
rupts when its privilege level is not high enough? When this happens, an exception 
is generated by the MMU. An exception is similar to an interrupt and handled 
much the same way. Exceptions are not disabled by disabling interrupts, although 
the MMU can be programmed not to generate exceptions. The exception handler, 
part of the operating system, decides what to do if an illegal operation is attempted. 

Application-Specific Microcontrollers 

Traditionally, microcontrollers have been general-purpose devices, with port pins, 
timers, and other features that the designer could program for a specific applica- 
tion. Some newer microcontrollers are targeted at specific markets with specialized 
interfaces or other 1/0 features. A few brief examples follow: 

The Microchip rfPIC12C509AG/509AF is a PIGfamily microcontroller with a 310 
to 480MHz RF transmitter on-chip. 
Most microcontrollers have primarily digital I/O. Some devices provide limited 
analog 1/0 capability with ADCs or onchip comparators, but most of the 1/0 
pins are still digital. The Microchip PIC16C781/’782 microcontrollers turn this 
around; these devices are designed as programmable analog controllers and 
include an %channel, &bit ADC, an &bit DAC, a programmable opamp, two 
programmable analog comparators, and a PWM output module. 
Other microcontrollers include onchip USB interfaces, LCD controllers, and 
in-CAN bus interfaces. All of these devices are intended to provide a low-cost 
solution to a specific class of design problems. 

286 E m W d  Micr@rocessw Systems 



Appendix A 
Example System Specifications 

System Description 

The system is a swimming pool timer that cycles the AC pump motor on a swimming pool. 
The power input is 9 to 12V DC from a wall-mount transformer. 
The pump is a 1/2-hp single-phase AC motor, controlled by mechanical relay. Relay is 

remote from control unit, located in weatherproof box near pool pump motor. 
Provision is to be made for a switch closure input that prohibits pump operation if the 

water level is low. 
The user can set the length of time the pump is on and off. An override is available to 

permit turning off the pump when it is on for maintenance and turning the pump on when 
it is off so that chemicals can be added. 

On/off/override time is to be adjustable in 30-minute increments from one-half hour to 
23 hours. A display will indicate the on/off condition of the pump, the time remaining, and 
whether the pump is in the override mode. The display also will indicate the condition of 
the water low monitor. 

A minimum number of switches/knobs will be used. 

User Interface 

Display. Four seven-segment digits: two digits for hours, two for minutes. Also three LEDs: 
SET, ON, and OVERRIDE. The LEDs are to be high intensity for daylight readability. 

Keypad. There are four keys: SET, ON, OFF, FCN. 

Operation. The display will indicate the time remaining before pump switches on or off. 

After reset, ON time will be set to 8 hours, 30 minutes. Off time will be set to 8 hours, 0 

Display will flash to indicate that power has been removed. 
After power-up, ON and OFF override will not be allowed until SET has been pressed by 

user. Pressing ON will activate ON override. Pump will be turned on for 30 minutes, the 
display will show the override time, and the override and ON LEDs will be lit. Each succes- 
sive push of the button will increment the override time. Normal time will continue to count 

minutes. 

287 



while in the override mode. When the override time expires, time keeping and display will 
revert to normal mode. Pressing OFF will activate the OFF override, with the same charac- 
teristics as the ON override. 

Pressing OFF while in ON override or pressing ON while in OFF override will terminate 
override mode. Time keeping and display revert to normal mode. ON override may be used 
while the pump is on normally to extend the ON time to up to 24 hours. Similarly, the OFF 
override may be used while the pump is off normally. 

Setting Time 

When user presses SET, the timer enters the time set mode. The set LED goes on. Pressing 
ON after SET will light the ON LED and show the current ON time, not the time remain- 
ing. Each press of ON will increment the time by 30 minutes until the time reaches 24 hours; 
the time will then roll over to 30 minutes. Pressing SET terminates the time set mode and 
stores the time, and the SET LED goes off. OFF time setting works in the same way as ON 
time setting. 

While setting ON time, pressing OFF will save the ON time and change to the OFF set 
mode. Similarly, pressing ON while setting OFF time will save the OFF time and switch to 
the ON time set mode. 

Water Low 

E a low-water condition is detected by closure of the water low switch, the pump will turn 
off if it is on. If the pump is already off, it will not be permitted to turn on. Any time that 
the low-water condition is detected and the pump should be on, the ON LED will flash to 
indicate the problem. The water low switch input will be filtered to prevent spurious 
transitions. 

Example System Hardware Specifications 

Initial Hardware Specification (Predesign) 

Display: 

Four seven-segment LED displays (hours, minutes) 
ON LED (high intensity) 
SET LED (high intensity) 
OVERRIDE LED (high intensity) 

Keys: 

SET: Enables time set 
ON: On override, on time set 
OFF: Off override, off time set 
FCN: Undefined 

288 Appendix A 



Other inputs: 

Water low switch closure 
Power: 9 to 12V DC input, using coaxial connector-onboard 5V regulator 
Polarity protected 

outputs: 

Relay on/off/Relay powered by unregulated DC input 

Other outputs: 

Watchdog timer required 

Circuit Description (Postdesign) 

CPU: 8031, 6MHz input clock 

EPROM: 8 K  x 8, external (2764); no internal ROM 

8031 port usage: 

Ports 0,Z: Address/data bus for external memory access 
Port 1: LED/display control 

Bit 0 Zero enables minutes, ones display digit 
Bit 1: Zero enables minutes, tens display digit 
Bit 2: Zero enables hours, ones display digit 
Bit 3: Zero enables hours, tens display digit 
Bit 4: One turns on override LED 
Bit 5 :  Unused 
Bit 6: One turns on set LED 
Bit 7: One turns on ON LED 

Port 3: 
Bit 0: Unused 
Bit 1: One turns on motor relay 
Bit 2: Toggle to trigger watchdog timer 
Bits 3 to 5: Unused 
Bits 6 and 7: External register access (RD/WR) 

External registers: One read buffer, one write register. No address decoding-read from 
any external data memory address will enable the read buffer and any external write will 
clock the write register. 

External read buffer: 

DO, D1: Unused, read as 0 
D2: 0 = FCN key pressed 
D3: 0 = OFF key pressed 
D4: 0 = ON key pressed 
D5: 0 = SET key pressed 
D6: Unused 
D7: 0 =Water Low switch closed 

Appendix A 289 



External write register: LED segments, writing 1 turns on segment 

DO: Segment A 
D1: Segment B 
D2: Segment C 
D3: Segment D 
D4: Segment E 
D5: Segment F 
D6: Segment G 
D7: Decimal point 

LED segment definition 
a 
...._____- 

f 

e l  
d 

LEDs are not decoded-software directly writes LED segments. Numeric to seven-segment 
decoding must be performed in software. 

Software must multiplex (scan) display digits. 

Switch inputs are not debounced. 
Watchdog timer has approximately a half-second timeout. 

Example System Software Description 

Requirements 

Implement functionality as described in system definition. 
Implement additional functionality as described in hardware definition. 

CPU Resource Usage 

Timer 1: 250Hz interrupt 
Timers 0 and 2: Unused 

Ports: As described in hardware definition. 
Bit 3.4 is reserved as diagnostic output for oscilloscope. 

Functional Software Description for Pool Pump Timer 

This is a high-level logical description, one step above pseudocode. 

290 Appendix A 



Reset logic: 

Turn all display digits off. 
Set mode to power up. 
Clear all variables. 
Set ON time to 8:30. 
Set O F F  time to 8:OO. 
Set current time to ON time. (This will turn the pump on.) 
Star t  of background Loop: 

If counting ON time or if in ON override, 
If water level OK, turn pump on. 

If counting OFF time, or if in OFF override 
or if water level low, turn pump off. 
If time rolled over from ON to OFF, 
Switch to oounting ON time. 
Set current time to OFF time. 

Switch to counting ON time. 
Set current time to ON time. 

If set pushbutton pressed, set mode to normal timekeeping. 

If ON pushbutton pressed (ON override) 

If time rolled over from O F F  to ON, 

If mode is powerfail, 

If mode is normal timekeeping, 

If override time = 0 : O  (first button press), 
Set to ON override mode 
Set override time to 0:30. 

If override time was > O:O, 
If in ON override, 
add 30 to override time 
If override time = 24:0, set override time to 0:O.  

Set override time to 0 : O  (exit override). 

If override time = 0 : O  (first button press), 

If in OFF override (ON pressed while in O F F  override), 

If OFF pushbutton pressed (OFF override) 

Set to OFF override mode 
Set override time to 0:30. 

If override time was > O:O, 
If in OFF override, 
add 30 to override time 
If override time = 24:00, set override time to 0:O.  

Set override time to 0 :O (exit override). 
If in ON override (OFF pressed while in ON override), 

If SET pushbutton pressed, 
Set mode to time set 
Display ON time 
Set override time to 0 : O .  

Appendix A 291 



If mode is time set, 
If SET pushbutton pressed, 
Set mode normal timing 
If we were setting ON time, set ON time to displayed time. 
If we were setting OFF time, set OFF time to displayed time. 

If ON button pressed, 
If setting ON time, increment displayed time. 
If setting OFF time, 
set OFF time to displayed time 
display ON time. 

If OFF button pressed 
If setting OFF time, increment displayed time. 
If setting ON time, 
set ON time to displayed time 
display OFF time. 

End of background loop. 

Example System Software Pseudocode 

Reset Processing 

Turn all displays off. 

Set MODE = 0 (power up mode). 
Initialize variables to 0. 

Set ON time to 8:30 (ONHOUR = 8, ONMIN = 30). 

Set OFF time to 8:00 (OFFHOUR = 8, OFFMIN = 30). 
Set current time to ON time (HOUR = ONHOUR, MINUTE = ONMIN, ONOFF = 1). 

Background Loop 

If ONOFF set (ON timing), 
OR if in override mode and VOFLAG set (ON override mode), 

If not ONOFF (Off timing), 
OR if override time > 0 and VOFLAG not set (OFF override), 

If TFLAG (time rolled over), 

If MTFLAG = 0 (water level ok), Turn pump on. 

Turn pump off. 

Clear TFLAG. 
If ONOFF (ON timing, need to change to OFF timing), 
Clear ONOFF 

MINUTE = OFFMIN (current time = O F F  time). 
HOUR = OFFHOUR 

292 Appendix A 



Else (ONOFF was not set, OFF time, change to ON time), 
Set ONOFF 
HOUR = ONHOTJR 
MINUTE = ONMIN (current time = ON time). 

If powerfail occurred, switch to normal timing only if 
SET button pressed. 
If MODE = 0 (powerfail) 

If SEFLAG (SET PB pressed), 
Clear SEFLAG 
Set MODE = 1 (normal timing). 

If O N T U G  set (ON PB pressed), 
If MODE = 1 (normal timing), 

Clear ONFLAG. 
If Override time = 0 : O  (OVMIN = OVHOUR = 0), 
(User has selected ON override) 
Set VOFLAG 
Set OVMIN to 30. 

If VOFLAG (ON pressed in OFF override, cancel override), 

Else (ON pressed while in ON override, increment time), 

Else (Override time > O:O, user has pressed ON while in override), 

Set OVMIN = OVHOUR = 0 : O  (override time = 0 : O )  

Add 30 to override time 
If override time = 24:00, set override time to 0. 

If OFFLAG set (OFF PB pressed), 
Clear OFFLAG. 
If Override time = 0 : O  (OVMIN = OVHOTJR = 01, 
(User has selected OFF override) 
Clear VOFLAG 
Set OVMIN to 30. 

If not VOFLAG (OFF pressed in ON override, cancel override), 

Else (OFF pressed while in O F F  override, increment time), 

Else (Override time > O:O, user has pressed OFF while in override), 

Set OVMIN = OVHOUR = 0 : O  (Override time = 0 : O )  

Add 30 to override time 
If override time = 24:00, set Override time to 0. 

If SEFLAG (SET PB pressed), 
Set MODE = 2 (time set) 
Set OVMIN = OVHOUR = 0 : O  (Override time = 0:O)  
Set PRHOTJR = ONHOTJR 
Set PRMIN = ONMIN (display ON time) 
Set SEMODE = 1 (ON time set). 

If MODE = 2 (time set), 
If SEFLAG (SET PB pressed, exit time set), 
Clear SEFLAG. 
If SEMODE = 1 (ON time set), 

Appendix A 293 



ONHOUR = PRHOUR 
ONMIN = PRMIN (Store displayed time as ON time) 
MODE = 1. 

OFFHOTJR = PRHOTJR 
OFFMIN = PRMIN (OFF time = displayed time) 
Mode = 1. 

Else (SEMODE = 0, O F F  time set), 

If ONFLAG (ON PB pressed while in time set mode), 
Clear ONFLAGt. 
If SEMODE = 1 (ON pressed in ON time set, increment display time), 
Add 30 to displayed time. 
If time = 24:00, set displayed time to 0:30. 

Else (SEMODE = 0, ON pressed in OFF set, save OFF time), 
OFFHOTJR = PRHOTJR 
OFFMIN = PRMIN (OFF time = displayed time) 
SEMODE = 1 
PRHOUR = ONHOUR 
PRMIN = ONMIN (displayed time = ON time). 

If OFTLAG (OFF PB pressed while in time set mode), 
Clear OF'FLAG. 
If SEMODE = 0 (OFF pressed in OFF time set, increment display time), 
Add 30 to displayed time. 
If time = 24:00, set displayed time to 0:30. 

ONHOUR = PRHOUR 
ONMIN = PRMIN (ON time = displayed time) 
SEMODE = 0 
PRHOUR = OFFHOUR 
PRMIN = OF'FMIN (displayed time = O F F  time). 

Else (SEMODE = 1, OFF pressed in ON set, save ON time), 

End of background loop. 

Timer lnterrupt Logic 

Trigger watchdog timer. 
Increment HUND. 
If HUND = 125 (1/2sec rollover), toggle BLFLACf. 
If HCTND = 250 (1 see rollover>, 

H U N D = O  
Increment SECOND. 
If SECOND = 60, 
SECOND = 0. 
DECR time <MINUTE, HOUR) 
If time = O:O, set TFLAcf. 
If override time > O:O, decrement override time. 

294 Appendix A 



(Update display) 
Turn all displays off 
INCR DISPLY. 
If DISPLY = 4, DISPLY = 3 (DISPLY counts 0-3). 
If MODE = 0 (Powerfail), 

If BLFLAG (Time to blink display), 
If DISPLY = 0, convert minutes ones to 7-seg and write to display reg. 
If DISPLY = 1, convert minutes tens to 7-seg and write to display reg. 
If DISPLY = 2, convert hours ones to 7-seg and write to display reg. 
If DISPLY = 3, convert hours tens to 7-seg and write to display reg. 

If MODE = 1 (normal timekeeping), 
If override time = 0 : O  (OVHOUR = OVMIN = 01, 
If DISPLY = 0, convert minutes ones to 7-seg and write to display reg. 
If DISPLY = 1, convert minutes tens to 7-seg and write to display reg. 
If DISPLY = 2, convert hours ones to 7-seg and write to display reg. 
If DISPLY = 3, convert hours tens to 7-seg and write to display reg. 

If DISPLY = 0, convert OVMIN ones to 7-seg and write to display reg. 
If DISPLY = 1, convert OVMIN tens to 7-seg and write to display reg. 
If DISPLY = 2, convert OVHOUR ones to 7-seg and write to display reg. 
If DISPLY = 3, convert OVHOUR tens to 7-seg and write to display reg. 

If DISPLY = 0, convert PRMIN ones to 7-seg and write to display reg. 
If DISPLY = 1, convert PRMIN tens to 7-seg and write to display reg. 
If DISPLY = 2, convert PRHOUR ones to 7-seg and write to display reg. 
If DISPLY = 3, convert PRHOUR tens to 7-seg and write to display reg. 

Else (Override time was > O:O), 

If MODE = 2 (time set), 

(Now update the discrete status LEDs.) 
If MODE = 0 or  1 (Powerfail or  normal timekeeping), 

Turn off SET LED. 
If ONOFF (Timing ON time) 
OR if OVTIME > 0 and VOFLAcf set (ON override), 
If not MTI?L,AG Water level OK), 

Else (MTFLAG set, water level low), 
Turn on ON/OFF LED. 

If BLF’LAG, Turn on ON/OFF LED (Makes LED blink). 
If not ONOFF 
OR if not VOFLAG, turn off ON/OFF LED. 

If MODE = 2 (time set), 
Turn on SET LED. 
If SEMODE = 1, 
If not MTFLAG Water level OK), 

Else (MTFLA(3 set, water level low), 

If SEMODE = 0, turn off ON/OFF LED. 

Turn on QN/OFF LED. 

If BLFLAG, Turn on ON/OW LED (Makes LED blink). 

Appendix A 295 



If PB switches all off, 
Set DBCOUN = 0 
Set ONFLAG = 0 
Set 0F"LAG = 0 
Set FCFLAG = 0 
Set SEFLAG = 0. 

If DBCOUN < 4, 
Else (a PB is pressed), 

Increment DBCOUN. 
If DBCOUN = 4 (debounce done), 
Set flag corresponding to pressed switch. 

If water low switch active, 

Increment MTCOUN 
If MTCOUN = 255 (filter timeout), set MTFLAG. 

If MTCOUN < 258, 

Else (water low switch inactive) clear MTFLAG. 
End of 250Hz timer interrupt code. 

296 Appendix A 



OFF OVERRIDE? 

r 1 

TURN WMP OFF 

I 
TURN PUMP ON 1 

I 
I 

SET CURRENT TIME 
TO OFF TIME. 

SET TO OFF 
TIMING 

SET CURRENT TIME 
TO ON TIME. 

SET TO ON 
TIMING 

Q 
Q 

Figure A.l 
Pool Timer Polling Loop Flowchart. 

Appendix A 297 



J 

IES 

YES 

Figure A.2 
Pool Timer Polling Loop Flowchart. 

298 



Figure A.3 
Pool Timer Polling Loop Flowchart. 

Appendix A 299 



> 
E i - -  

$ 5  

r 

Y) 

300 

L 
B 

Appendix A 



b OLEO 

SLED 

KOVR 

SG 

SF 

SE 

SD 

OVERRIDE LEO 

D hh*ch 
220 

R16 

R17 

R18 
SB AnAn 

220 

R l  9 
S A P  E*nhh 

220 

R20 

R23 Q4 

2N3908 

R22 Q3 

+9 2 m  

Q2 R21 A 
,, 

I--I> +9v Q1 
D RELA\ 

3055 - 

' I  K3 D 

Figures A.5 
Pool Timer Schematic. 





Appendix 6 
Number Systems 

This book assumes knowledge of certain basic concepts. This appendix and the following 
two briefly review some of these concepts. This limited space cannot serve as a thorough 
treatment of these topics, but the essentials are covered. 

Number Bases 

Before looking at computer numbering systems, we will make a quick review of the decimal 
system. If we have a fourdigit number like 1234 we can write it this way: 

(4 x 1) + (3 x 10) + (2 x 100) + (1 x 1000) 

As we move from right to left in a decimal number, each digit is the next power of 10. The 
least significant digit, in the ones position, is 4. This is multiplied by 10' (10' = 1 ) .  The digit 
3 is in the texis position and is multiplied by 10'. The 2 is in the hundreds position, multi- 
plied by 10'. Finally, the 1 is in the thousands position, 10'. As you can see, the exponent of 
10 starts at zero in the rightmost digit and increases by one for every digit you move to the 
left. Ten is the base of the decimal system. 

The digits in any decimal number can range from zero to 9. Since the decimal system is 
base 10, there are 10 possible digits, including zero. This is necessary because any number 
system needs a unique character for every possible value in a single digit. When working 
with different number bases, it is common to use a subscript to indicate what the number 
base is. So 1,234 in decimal would be written 1234,,,. 

Microprocessors use digital, or binary, logic, where everything is a one or a zero. As there 
are two digits in a binary system, the base is 2. A binary number looks like this: 

10011010010 

Each position, or digit, in a binary number is called a bit (binary digit). Just like the decimal 
system, each binary digit is an increasing power as you move from right to left. Only in this 
case, each position represents an increasing power of two instead of ten. The rightmost digit 
is in the ones position (2'), the next digit is the 2's position (2'), the next digit is in the 4's 
position (2')), and so on. We can rewrite the binary number to show what value each bit 
corresponds to as follows: 

303 



Original Number 1 0 0 1  1 0 1 0 0 1 0  

Power of 2 210 29 28 27 26 25 24 23 22 21 20 

Value of Bit 1024 512 256 128 64 32 16 8 4 2 1 

So, our example binary number can be calculated as: 

(0 x 1)+ (1 x 2)+ (0 x 4)+ (0 x 8)+ (1 x 16)+ (0 x 32)+ (1 x 64)+(1 x 128) 
+ (0 x 256)+ (0 x512)+ (1 x 1024) 

Or 2 + 16 + 64 + 128 + 1024, which is 123410. 
Computers typically work with binary values that are 8, 16, 32, or 64 bits in length. Eight 

bits can represent a value from zero to 255 (1 + 2 + 4 + 8 + 16 + 32 + 64 + 128). Sixteen 
bits can represent a value from zero to 65,535. Thirtytwo bits can represent values up to 
4.29 x lo9, and 64 bits can go up to 1.84 x 10”. 

Obviously, writing numbers in binary is inconvenient for the human programmers who 
must use the computer, so computer values are typically written in hexadecimal format. In 
hexadecimal, usually abbreviated hex, the binary word is separated into 4bit groups. Our 
example value looks like this when grouped that way: 

10011010010 = 0100 1101 0010 

The two numbers are the same, but spaces were added to the second number to separate 
it into 4bit groups, like the way commas are sometimes added to decimal numbers. Note 
that an extra zero was appended to the left of the leftmost group to make it a full 4 bits wide. 
Now, remember what the value of each binary bit position was and you can calculate the 
number this way: 

10011010010=010011010010= 
(0 x 1)+ (1 x 2)+(0 x 4)+ (0 x 8) = 2 =2  x 1 

+ ( 1 ~ 1 6 ) + ( 0 ~ 3 2 ) + ( 1 ~ 6 4 ) + ( 1 ~  128) = 8 2 = 1 3 ~ 1 6  
+ (0 x 256)+ (0 x512)+(1 x 1024) = 1024 = 4 x 256 

This is the same as what we had before, except that we’re finding the sum of each 4bit 
group (2,82, and 1024) and then adding those sums together to get the total. So what about 
the factors at the end of each line? Why is it important that 82 = 13 x 16? This is why: 

2 = 2 x 1 = 2 x 16’ 
82 = 13 x 16 = 13 X 16’ 

4 x 256 = 4 x 16‘ 

So the word can be written: (4 x 16’) + (13 x 16l) + (2 x 16’) 
As you can see, when we break the binary word into 4bit groups, each group is an increas- 

ing power of 16 as you move from right to left. Each 4bit group represents a digit of a 
base16 number. The 4bit groups make it base 16 because each 4bit group can represent a 
maximum value of 15 (1 + 2 + 4 + 8). Including zero, this makes 16 possible values for each 
digit. After 15, the number carries over to the next digit, just like decimal digits do when 
you reach 9. 

Now take another look at those 4bit groups. For the moment, we will treat each of these 
4bit groups as individual binary numbers, and calculate them this way: 

304 A@endZx B 



0100 = 4 = (0 x 1) + (0 x 2) + (1 x 4) + (0 x 8) 

0010 = 2 = ( O  x l )  +(1 x2) + ( O  x 4) + ( O  x 8) 
1 1 0 1 = 1 3 = ( 1 ~ 1 ) + ( 0 ~ 2 ) + ( 1 ~ 4 ) + ( 1 ~ 8 )  

Just to clarlfy what we are doing, we will rewrite the original grouped binary number with 
the corresponding values: 

Binary: 0100 1101 0010 
Decimal: 4 13 2 

Notice that these are the same values we multiplied by the powers of 16 when we first broke 
the number into 4bit groups: 

Binary: 0100 1101 0010 
Decimal: 4x256 13x16 2 x 1  

So our original binary number can be written as a Wigit, base-16 number (4, 13, 2). 
The only problem with this is how to write the numbers. We need a single character to 

represent each digit, even those greater than 9. Otherwise we can't tell the difference 
between the digit value 13 and the two digits 1 and 3. Since the decimal system cannot 
represent digits greater than 9, the alphabet characters A-F are used for the extended digits, 
like this: 

Decimal Binary Hex 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

0000 
0001 
001 0 
001 1 
01 00 
01 01 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

We can now write our number in three different bases: 

12341" = 10011010010~ = 4D216 

Because many text editors (especially those from the early days of computers) can't handle 
subscripts, the numbers are often written without subscripts. Instead, a b suffix is used for 
binary, and h for hex, as follows: 

Appendix B 305 



1,234 = lOOllOlOOlOb = 4D2h 

Sometimes a lowercase d suffix is used to indicate decimal numbers, but if this method 
is used, the hex numbers must always use uppercase digits (ABCDEF). Otherwise, you can’t 
tell if the d indicates a decimal number or the hex digit D. 

It is important to remember that microprocessors do not operate with hex numbers; they 
operate in binary. Hexadecimal is just a convenient representation for people to use when 
working with binary numbers. 

In the early days of computers, octal was often used. This was just another representa- 
tion, where the binary numbers were divided into groups of 3 bits. Each group could range 
from zero to 7, and the digits went up by powers of 8 (1, 8, 64, and so on). 123410 = 2322*. 
Octal is rarely used now. 

So why use 4bit groups? Why not create a number system that uses 5-bit groups, where 
the values ranged from zero to 31? You could, and it would let you represent numbers up 
to 1023 with two digits. But you would need 32 unique characters for the digits, and you 
would have to remember the values of all of them. More importantly, microprocessor data 
and (usually) address buses come in increments of 8 bits, so the hexadecimal system is more 
practical for real systems. 

Converting Numbers Between Bases 

We often need to convert numbers between hex, decimal, and binary. The simplest way, of 
course, is to use a calculator that can convert between bases. However, it is important to 
understand the methods. 

Hex to Binary 

Hex to binary conversions are easy. Start with lDEGIG. To convert this to binary, just write 
out the binary values that correspond to each hex digit: 

Hex: 1 D E 6 
Binary: 0001 1101 1110 0110 

If you want, take out the spaces: 0001110111100110 

with 64bit numbers using binary. 
Now you can see why hex is easier to use. This is just a 16bit number. Imagine working 

Binary to Hex 

Separate the binary number into 4bit groups, starting with the rightmost digit. If the right- 
most group doesn’t have 4 bits, append zeros to the left to make 4 bits: 

11101111001 10 becomes 
Append zeros on the left: 

Then convert each 4bit group to a hex digit: 

1 1101 1110 0110 
0001 1101 1110 0110 

306 Appendix B 



Binary: 0001 1101 1110 0110 
Hex 1 D E 6 

Hex to Decimal 

Factor each hex digit by the corresponding power of 16 and sum the results: 

Hex: 1 D E 6 = ( 1 ~ 1 6 ' ) + ( D x 1 6 ~ ) + ( E x 1 6 ' ) + ( 1 ~ 1 6 " )  
=(1~4096)+(13~256)+(14x16)+(6 x1) 
=4096+3328+224+6 
= 7654,,, 

Decimal to Hex 

Divide the number by 16 and write down the remainder. Divide the integer portion of the 
previous result by 16 and write down the remainder. Continue this process until the division 
results in zero. Write the remainders in reverse order for the hex equivalent of the decimal 
number. 

7654/16 = 478 with a remainder of 6 
478/16 = 29 with a remainder of 14 (1410 =E,,,) 

1/16 = 0 with a remainder of 1 
29/16 = 1 with a remainder of 13 = Dlh) 

Write the remainders, in hex, in reverse order: 1DE6 

Math with Binary and Hex Numbers 

Binary numbers (and their hex representations) can be added and subtracted just like 
decimal numbers. Where most people get into difficulty is in the carry process. When you 
add two decimal digits, say 9 and 7, you get 16. However, the process of doing this addition 
involves a carry: 

9 + 7 = 6 with a carry of 1. The 1 carries into the next, or tens, digit. 

Similarly, binary numbers have carry properties: 

0 + 0 = 0, no carry 
0 + 1 = 1, no carry 

1 + 1 = 0, with a carry to the next binary position 

So, if we add 9 and 7 in binary, it looks like this: 

9 = 10Ol2 
+7 = 011l2 

We start by adding the least significant digits: 

1 + 1 = 0, with a carry into the next digit 

Appendix B 307 



Adding the next pair of digits (in the 2’s position): 

0 + 1 + 1 (the carry from the last add) = 0 with a carry 

4’s digit: 0 + 1 + 1 (carry) = 0 with a carry 
8’s digit: 1 + 0 + 1 (carry) = 0 with a carry 

This is illustrated as follows: 

Carry: 1111 
1001 

+0111 

10000 = 16. 
- 

We can add hex numbers the same way: 

9 + 7 = 0 with a carry of 1, or lol6 or 1610 

In hex, a carry occurs when the sum of two digits exceeds F16.The following are a couple 
of examples: 

Carry: 100 
020516 = 51710 

&E0716= 359110 

1OOC16= 410810 

Carry: 111 
267816 = 984810 

+h%416 = 43,69010 
Dl2216 = 53,53810 

Negative Numbers and Computer Representation of Numbers 

In the examples so far, we’ve worked with 4bit values and added digits as needed when a 
result grew beyond that. In a computer, numbers are represented as a multiple of hex d i g i t s  
usually 2,4, or 8 digits. The number of digits is dependent on the word size of the computer 
(Most microprocessors can concatenate words to make bigger values, but that is unimpor- 
tant for this discussion). An &bit machine will use 2 hex digits, a 16-bit machine will use 4 
digits, and a 32-bit machine will use 8 digits. So the value 2 A 1 6  would be represented as 
follows: 

8 bit: 2A 

16 bit: 002A 
32 bit: 0000002A 

This may seem like an insignificant point since all three numbers are the same. The only 
difference between them is the number of leading zeros in front of the significant digits. 
However, the word width is important when dealing with negative numbers. 

308 Appendix B 



Binary and hex numbers can be subtracted in the same way that decimal numbers are. 
However, in computer hardware, subtraction is difficult to accomplish. Negative numbers 
are difficult to store since there is no place for a minus sign. In a computer, subtraction is 
usually performed by adding a negative number. A negative number is indicated by having 
the most significant bit as 1. This is why the word width is important. On an &bit machine, 
8OI6 is not the same as O08Ol6 on a l6bit machine. On the %bit machine, 8016 represents a 
negative value. 

Negative numbers can be represented in one’s c o m p h t  or in two’s complement form. A 
one’s complement number is formed by complementing all the bits in the number: 

0010 0111 1011 0101 = 27B516 
one’s complement = 1101 1000 0100 1010 = D8416 

Note that the most significant bit is set, indicating that this is a negative number. You can 
do math with one’s complement numbers as follows: 

Hex: 3o1Ol6 - 27B!i16 = 3O1Ol6 + D8416 = 1085AI6 = 085AI6 = 2138 
Decimal: 12,304 - 10,165 = 2139 

Two notes about this: When we did the addition, the result was 1085A, but we threw away 
the leading 1, leaving a result of 085A. This is because we’re working with a 16bit (4 
hex digits) value. In a real lfibit computer, any carry beyond 4 digits would be lost. The 
second thing to note is that the actual result we got, 213810, is one less than the right answer, 
2139. 

What happens if we do a subtraction and the result is negative? Let’s use the same 
example, but subtract the larger number from the smaller one: 

27B516 - 301016 = + CFEF16 = F7A416 = -85B16 = -213910 

Note that the result of the addition, F7A4, had the most significant bit set, so we know it 

The rules for one’s complement math are as follows: 

A number to be subtracted is made negative and added. 
To make a number negative, invert each bit in the number. 
Add the two numbers. 
Throw away any carry beyond the number of digits you’re using. 
If the most significant bit (MSB) of the result is set, the result is negative. 
If the MSB of the result wasn’t set, add one to the (positive) result. 

was negative. Taking the one’s complement of the result gives us the answer, 2139. 

Because we had to add 1 to the original result to get the right answer, why not make that 
part of the number we’re subtracting? That is exactly what two’s complement is. To make a 
two’s complement number, invert each bit in the number and add 1. 

Two’s complement: 27B5, inverted = D84A. Add 1, result = D84B. 

Now do that subtraction again in two’s complement: 

Try the version that gives a negative result: 

Appendix B 309 



27B.516 - 301016 = 27B516 + cFFo16 = F7A516 = -85A16 
(Inverting 301016 produces CFEF16 and adding 1 gives cFFO16) 

Notice that the answer, F7A5, is correct since it is the two’s complement of 213910. So with 
two’s complement, we don’t have to add 1 to positive results. The result is always right, no 
matter what. 

What happens if we add two negative numbers? Try this example: 

-101016 - 201016 = EFFO16 + DFFO16 = cFEo16 

CFEO is the two’s complement of 12320, which is the right answer. The rules for two’s 
complement math are: 

To make either number negative, invert all the bits and then add 1. 
Add the two numbers. 
If the MSB is zero, the result is positive and correct. 
If the MSB is 1, the result is negative and correct in two’s complement form. 

Overflow 

As already mentioned, math on a computer is limited to the word width in use. If you t ry  to 
add 60,000 and 60,000, you get 120,000. On a l6bit computer, you’ll get the following: 

6O,OOOlO = EA6010; EA6016 + EA6016 = 1D4C016 = D4C016 

What happened to the 1 in the most significant position? It was dropped because this 
is a 16bit (Migit) system and we can’t represent numbers larger than 65,535. In fact, this 
addition turned the two positive numbers into a negative number. A computer that thinks 
it is working in two’s complement will interpret this result (D4CO) as a negative number, 
specifically -1 1O7Zl0. This is called overflow. 

A 16-bit word can represent values from 0 to 65,535 (FFmI6). However, if the most 
significant bit is used as a sign bit, then the same l6bit word can only represent values from 
-32,768 (8OOOI6) to +32,767 (7FFFI6). There are still 65,536 values, but half of them are 
negative. Note that the most negative value isn’t FFFF16. The most negative value is 8OOOI6. 
FFm16 is negative 1, and it’s what you get if you start with 0000 and subtract 1. Try it. 

When you do math on a computer, the hardware doesn’t necessarily know that you are 
using two’s complement. When the MSB is treated as a sign bit, the number is said to be a 
signed number. When the MSB is part of the number, you can’t have negative values, and the 
number is called an unsigned number. Thus, if you want to add 30,000 and 30,000, you can 
treat the result (EA6OI6) as an unsigned, positive result (60,00010) or as a signed, negative 
number (-553610 in two’s complement). 

Of course, with a wider word (32 or 64 bits), the range of values-both positive and 
negative-is much greater. 

Number Suffixes 

One final word about the hexadecimal number system involves the abbreviation K (for kilo). 
When you see the suffix K attached to a number in electronics or finance, it implies a 

310 Appendix B 



multiplier of 1000. A 1K resistor, for example, is 1000 ohms, and lOOK dollars is $100,000. 
However, in the computer world, K means "multiply by 1024." So a 16bit-wide word can have 
65,536 possible values, or 64K (65,536/1024 = 64). 

A similar rule applies to the term meg, or million. A I-meg resistor is 1,000,000 ohms. In 
computer lingo, a meg is 1024 x 1024, or 1,048,576. 

Floating Point 

A limitation on any integer number scheme, regardless of the number of bits, is the 
difficulty in representing fractional numbers such as 2.54 or 3.3. When we looked at decimal 
numbers at the beginning of this appendix, we saw that they increase in powers of 10 as you 
move from right to left across the digits. As you move to the right of the decimal point, 
decimal numbers increase in negative powers of 10: 

1 o-4 10' 10' 10" . . . lo-' lo-? 1o-'i 

Or 100 10 1 . . . .  1 .01 .001 ,0001 

Binary numbers work the same way: 

2-'3 2-+ 2 2  2' 20 , . . 2-1 2 - 9  

Decimal 4 2 1 . . .  .5 .25 .125 .0625 

And hex numbers as well: 

16' 16' 16" . . . 16-' 1 6-' 1 
Decimal 256 16 1 . . . .0625 .0039 .000244 

So we can write a decimal number, such as 2.54, in binary and hex: 

2 54 = 010.100010100011~ = 2.8A316 

Note that in binary and hex, the number is a repeating value. Just like 1/3 is a repeating 
decimal in base 10 (but not in base 3), some fractional numbers cannot be exactly converted 
between bases. 

We could represent fractional binary numbers in a computer by defining a 16bit number 
as ranging from zero to 4095 instead of zero to 65,535. 4096 values can be represented by 
the upper 12 bits of the l6bit word. This leaves the lower 4 bits available to represent 
fractional values. For instance, the hex value 1002 would be interpreted as 100.2, or 

Such an arrangement makes calculations fairly easy and keeps everything in an integer 
format. However, the resolution of the fractional part of the number is limited, and there is 
a tradeoff between the accuracy of the fractional part and the maximum size of the number. 
The more bits that are allocated to the fractional part, the smaller the maximum number 
can be. The fewer bits allocated to the fractional part, the less precision we have to repre- 
sent numbers with. 

A better means of representing fractional values would emulate the decimal system that 
we are already familiar with. If you have 4 decimal digits, you can write ,0001, 10, or 1000. 
All these numbers use 4 digits, but the decimal point can move, or float, to represent 

+ 2 x 16-', or 256.125 in decimal. 

Appendix B 31 1 



different values. This is the concept behind floating-point numbers. A floating-point number 
is typically represented in a computer in this format (16 bits shown here): 

s eeeeee fffffffff 

where s is a sign bit (0 = positive, 1 = negative) 

eeeeee is the exponent (6 bits) 

fffffffff is the mantissa (9 bits), always positive 

We can represent all the eeeeee bits collectively as E. We can represent all the ffffffa bits 
collectively as F. Then the value of the number is given by: 

-1’ x F x 2E 

Now we can represent any number within the range of the exponent (-31 to +31). Note 
that to represent fractional values, we must be able to use a negative exponent. The expe 
nent is biased so that a value of zero (in this example) represents an exponent of -31. 
An exponent of all ones (111111) represents +31. In effect, you take the binary value of 
the exponent field and subtract 31 from it to get the actual exponent. If we were using a 
7-bit exponent, we could represent values from -63 to +63, and we would have a bias of 
-63. This allows representation of negative exponents without needing to resort to two’s 
complement math. 

For our example, a zero in the exponent field represents an exponent of -31, a value of 
25 represents an exponent of -6 (25 - 31), and a value of 44 represents an exponent of 13. 
Remember, these are exponents of 2, not of 10. 

So using 9 bits for F, we can represent our 2.5410 in fractional binary as: 

10.1000101000112 = 10.1000101 (truncate at 9 bits) 

When working in bases other than decimal, the decimal point is called a radix point. 
We shift the value to the right so we always have a number of the form 1.xxxx and add an 
exponent: 

1.01000100 x 2-1 

We always arrange binary numbers so that they take the form l.xxxx. Because this is the 
case, we can throw away the 1 and gain another bit of precision to the right of the radix 
point: 

.010001010 

This is read as (1 + 2-‘ + 2a)21 or 2.5310. The leading 1 is implied. 
The obvious question is: How can we guarantee that the number can always be repre- 

sented by 1.xxxxx so we can drop that leading l? If you think of scientific notation in decimal, 
you can represent any decimal number as d.ddddd x low, where d stands for any decimal 
digit and yy is an exponent (positive or negative) of 10. Even very small numbers can be 
represented this way by using a large negative exponent. The same rules apply to binary. 
The only difference is that, in decimal, we have no way of knowing what the digit to the left 
of the decimal point is. In binary, we know it has to be 1. What if the entire number is zero? 
We’ll get to that later. 

312 Appendix B 



Now we can create a 16-bit floating-point number from our example value: 

0 100000 010001 010 
sign exponent mantissa, leading 1 implied 

The general steps for converting a decimal number in the form xxx.yyy to floating-point 
format are: 

Convert xxx (digits to the left of the decimal point) to binary (call it aaaa). Convert yyy 
(digits to right of decimal point) to fractional binary, call it bbb. Write as a fractional binary 
number: 

aaa.bbbb 

Shift the number to the right, keeping track of the exponent, until there is a single 1 to 
the left of the radix point: 

a.aabbb (6bit example shown, works for any size number) 
exponent = 2 (because we shifted two positions right) 

Drop the leading 1 and calculate the exponent using the bias of the exponent field. If the 
number is positive, make the sign bit 0. Otherwise the sign bit is 1. 

The IEEE has developed a standard for representation of floating-point numbers. The 
IEEE format defines single and double precision values. The IEEE single-precision format 
uses 1 sign bit, 8 exponent bits, and 23 mantissa bits, for a total of 32 bits. The double 
precision standard uses 64 bits: 1 sign bit, 11 exponent bits, and 52 fractional bits. The single 
precision exponent can range from -127 to +127, and the double precision exponent can 
range from -1023 to +1023. 

Finally, what do we do to indicate zero? Zero can’t be represented by 1.xxxx. The IEEE 
standard defines zero as being represented when the exponent and mantissa are both zero. 
The sign bit can be either. 

The IEEE standard also reserves the maximum exponent value (FF for single precision, 
7FF for double precision) to indicate an overflow condition-numbers that are either too 
small or too large to be represented. 

Appendix B 313 





Appendix C 
Digital Logic Re view 

This appendix reviews digital logic concepts. The review will not be comprehensive but will 
address those portions of the topic that are needed in the book. The concepts presented 
here refer to basic digital logic gates and functions, even though those functions usually are 
implemented in some type of programmable or configurable logic in modern designs. 

The basic concept behind digital logic is ones and zeros. A digital logic signal is either 
one or zero, high or low, on or off. The high/low, on/off state may be defined in different 
ways. For TTL logic, high is anything over about 2.4V, while a low is anything below 0.8V. 
In between is an undefined region where the signal should never be. 

For CMOS logic operating at SV, the high/low cutoff is about 2.5V-anything higher is 
considered “high”; anything lower is considered “low.” An -232 signal, like the ones that 
come from the COM ports on a PC, swing both positive and negative. The high state is 
anything above +3V and the low state is anything below -3V. A current-loop interface, like 
the MIDI signals that connect music synthesizers, defines hzgh as the absence of current flow 
in a pair of wires, and low as the presence of current flow. 

Differential logic is unique in that the high/low state can be defined with only two signals. 
If one is at a higher voltage than the other, the resulting state is “high.” If the two are 
reversed, the result is “low.” If both are the same, the signal state is undefined. 

Sometimes digital signals are described as true or active and false or inactive. In this case, 
the true/active and false/inactive states may be defined as either high or low. When work- 
ing with microprocessors, it is quite common to find signals that are true or active in the 
low state. 

A signal that is high usually is capable of driving (sourcing) some current into whatever 
is connected to it. A signal that is low usually is drawing, or sinking, current from the 
Lonnected device. Typical digital logic circuits cannot sink current when in the high state 
or source current in the low state. In some cases, such as CMOS logic, the impedance of the 
receivers is very high and the amount of current is insignificant except when the signal is 
changing states. However, the sourcing-while-high and sinking-while-low restriction still 
applies to the driving device, even if the receiving devices are neither using nor providing 
current. If two outputs are connected together and one is low while the other is high, the 
output is indeterminate. In real logic, the low output usually wins, but the voltage is not 
guaranteed to be a valid logic state. Whichever output wins, both will have considerable 
current flowing through them, and one or both often is damaged if the condition persists. 

315 



Connecting outputs in this way is not considered a valid design practice. When this condi- 
tion occurs it is called output contention or bus contention. The term output Contention usually 
refers to a single signal, and bus contention refers to a group of signals, such as a micre 
processor data bus. 

Some digital devices can sink current in the low state but do not source current in the 
high state. These usually are the same as their current-sourcing siblings but without the 
transistor in the output stage that sources current. If the logic is a bipolar family, such as 
TTL, these outputs are referred to as open-collector. If the logic family is CMOS, these outputs 
are called opendruin. Open-collector/-drain outputs are designed to be tied together. If one 
output goes low while the other is high, no damage will occur since the high output does 
not source current. Open-collector/drain signals normally are pulled high with a resistor 
so that the signal will be in a valid high state when none of the outputs is driving it low. 

Basic Logic Functions 

Simple Gates 

Figure C.1 shows some simple logic gates. The simplest digital logic gate is the inverter. An 
inverter inverts whatever is applied to the input. If a 1 is applied to the input, a zero appears 
at the output and vice-versa. Note the “bubble” at the output of the inverter. This indicates 
that the signal is inverted. If no bubble were present, this symbol would indicate buffer, not 
an inverter, and the output would follow the input. 

The AND gate is another logic function. It has two or more inputs. If both inputs are 
high, the output is high (A andB).  If eitherinput is low, the output is low. Although the figure 
shows a tweinput gate, the AND gate can have many inputs. However many inputs it has, 
the logic works the same way; all inputs must be high for the output to be high. If any input 
is low, the output is low. 

The OR gate also has two inputs, but the output of an OR gate is high if either input is 
high (A mB). The output is low only if both inputs are low. Like the AND gate, the OR gate 
can have many inputs. As long as one input is high, the output will be high. 

Variations on the AND and OR gates are NAND and NOR gates. The NAND gate is an 
AND gate but with the output inverted. If any input is low, the output is high; if all inputs 
are high, the output is low. The NOR gate is an OR gate with the output inverted. If any 
input is high, the output is low; if all inputs are low, the output is high. Like AND and OR 
gates, NAND and NOR gates can have more than two inputs. 

Don’t Care 

Sometimes in digital logic, the don’t cure state is a valuable designation. The don’t care state, 
usually designated by X indicates that the state of the signal does not matter-it will not 
affect the output. With the AND gate shown in Figure C.1, input B is a don’t care state as 
long as input A is low (see table on page 318): 

316 Appendix C 



n 

INMRTER 

INPUT OUTPUT 

1 0  

AND GATE 

OUTPUT 33- INPUT A 

INPUT B 
A B OUTPUT 
0 0  0 
0 1  0 
1 0  0 
1 1  1 

OR GATE 

OUTPUT =E+ INPUT A 

INPUTB 
A B OUTWT 
0 0  0 
0 1  1 
1 0  1 
1 1  1 

NAND GATE 

OUTPUT =D- INPUT A 

INPUT B 
A B OUTPUT 
0 0  1 
0 1  1 
1 0  1 
1 1  0 

NOR GATE 

INPUT A '-p OUTPUT 
INPUT 8 

A B OUTPUT 
0 0  1 
0 1  0 
1 0  0 
1 1  0 

NEGATIM LOGIC AND GATE om: INPUT A 

INPUT B 
O W U E )  O(TRUE) 
0 (TRUE) 1 (FALSE) 
1 (FALSE) o (TRUE) 
1 (FALSE) 1 (FALSE) 

IS THE SAME AS 

OR GATE 

INPUT A 

INPUT E 
A B OUTPUT 
0 0  0 
0 1  1 
1 0  1 
1 1  1 

NEGATIM LOGIC OR GATE 

INPUT A 

INWT E 

0 (TRUE) 1 (FALSE) 
1 (FALSE) 0 ClRUE) 
1 (FALSE) 1 (FALSE) 

IS THE SAME AS 

AND GATE 

INPUT A 
OUTPUT 

0 0  0 1  0 0 

1 0  0 
1 1  1 

OUTPUT 

1 (FALSE) 
1 (FALSE) 
1 (FALSE) 

o (mw 

OUTPUT 
0 (TRUE) 
0 (TRUE) 
0 (TRUE) 
1 (FALSE) 

MULTIPLEXER 

OUTPUT 3 g--pZ; ENABLE INPUT 

INPUT B 

INPUT A 

INPUTS OUTPUTS 

x x 1  1 1 1 1  
0 0  0 0 1 1 1  
0 1 0 1 0 1 1  
1 0  0 1 1 0 1  
1 1  0 1 1 1 0  

A B ENABLE 0 1 2 3 

Figure C.l 
Basic Logic Gates. 



Logic Table Using 
Normal Logic Table Don’t Care 

A B output A B output 

0 0 0 0 X 0 
0 1 0 X 0 0 
1 0 0 1 1 1 
1 1 1 

X = don’t care 

You can see that the logic table is the same for both cases. As long as A is low, the output 
is low, regardless of what state B is in. Similarly, as long as B is low, the output will be low, 
regardless of A. What this illustrates is an inhibit capability-if input A is a signal that 
constantly switches between high and low, we can control whether the signal appears at the 
output by controlling input B. While B is high, the output follows A. While B is low, the 
output is low. 

A similar don’t care table can be created for the OR gate: 

Logic Table Using 
Normal Logic Table Don’t Care 

A B Output A B OUtpUt 

0 0 0 0 0 0 
0 1 1 X 1 1 
1 0 1 1 X 1 
1 1 1 

X = don’t care 

In this case, holding B high forces the output high, and taking B low allows the output 
to follow A. All we did here was call 0 false and 1 true. These tables are the same as the 
original logic tables for the AND and OR functions. 

Negative Logic 

Logic functions such as AND, NAND, and OR also can be used in an inverting configura- 
tion, where a true is 0 and false is 1. This typically is indicated with inversion bubbles at the 
input and output, as shown in Figure C.l. The logic of the invert-AND gate would be like 
this: 

If A is low AND B is low, the output is low. 

If either A OR B is high, the output is high. 

318 Appendix C 



Note that this is the same as the logic for the original OR gate. Negative logic reverses 
the function of the gates. A low/true AND function is implemented with an OR gate, and 
the low/true OR function is implemented with an AND gate. 

Tristate 

One more basic logic function needs to be described: tristute. In the tristated (sometimes 
called high-impedance) condition, the driver does not drive the signal-it neither sinks nor 
sources current. The voltage floats to some unknown level, or if the signal is pulled up with 
a resistor, the signal will go to a high state. A tristate output has three states: high, low, and 
tristated. 

Tristate is essential to microprocessor designs. A typical microprocessor will have a 
common group of 8, 16, 32, or 64 signals for reading and writing data. When signals are 
grouped this way, they are referred to collectively as a bus. When the processor wants to write 
data, it drives the data bus with the data it wants to write, and all other devices connected 
to the bus are expected to tristate their drivers so there is no conflict. When the micro- 
processor wants to read data from the bus, it tristates its own signals, and the device that it 
wants to read from is expected to drive the bus with the requested data. Tristate signals allow 
many digital outputs to be tied together, but the basic rule still appl iemnly one device at 
a time can drive the signal. 

Tristate devices come in two flavors: unidirectional and bidirectional. A unidirectional 
device can send data in only one direction-to the output. The output can be either high, 
low, or tristated, but it is never an input. The outputs of a bidirectional device can also be 
tristated, but they double as inputs, allowing data back into the device. Again, when the 
outputs of a bidirectional device are tristated, they also act as inputs and can receive signals 
from another device that is driving the shared signal. Microprocessor data buses always 
are bidirectional since they are used for both reading and writing. Most microprocessor 
peripheral integrated circuits (ICs) are bidirectional as well. 

A common use of bidirectional ICs in microprocessor circuits is as bus buffers. A 
microprocessor data bus will be connected to one side of a bidirectional driver IC (called a 
transceiver). Call that side A. Some other device will be connected to the other side of the 
transceiver, side B. When the transceiver is off, it drives neither bus. When side A (connected 
to the microprocessor) is enabled, the signals on side B appear on the microprocessor data 
bus and the microprocessor can read them. When the side B outputs are enabled, data from 
the microprocessor bus is passed to side B. Transceivers typically are available in 8- or 16bit 
widths to accommodate common microprocessor buses. 

True/False Notation 

As already mentioned, we can define the input and output as true and false instead of high 
and low. If we do this with the basic AND and OR gates, we get the following (table on page 
320) : 

Appendix C 319 



AND Gate OR Gate 

A B Output A B output 

False False False False False False 
False True False False True True 
True False False True False True 
True True True True True True 

Multiplexers 

In microprocessor designs, multiplexers are normally used for address decoding. As 
shown in Figure C.l, a multiplexer has multiple outputs, but only one at a time is active. 
Multiplexers normally have low-true outputs like the example in the figure, and they usually 
have an enable line that makes all the outputs false. The multiplexer in Figure C.1 has four 
outputs, selected with two inputs (A and B). Multiplexers are also available with eight outputs 
and three select inputs. Of course, if a multiplexer function is implemented in a program- 
mable logic device (PLD) or other configurable logic device, it may have any number of 
outputs with any polarity (even mixed) and the enable may not be required. 

SetcReset Flip-Flop 

These are stmu@ devices. A flipflop remembers its state. A typical flip-flop will have two 
inputs, set and reset, and an output, Q. When set goes low, Q goes high. Q then stays high 
regardless of which state the set input goes to. Q does not go low until the reset input goes 
low. Q then stays low until set goes low again. Flip-flops can be constructed with high/true 
or low/true inputs and inverted or noninverted outputs. 

Figure C.2 shows the logic symbol and timing diagram for a set/reset flipflop. As 
indicated, this type of flipflop can be built using a pair of NAND gates. Only one output is 
shown in the figure, but the output of the other NAND gate also can be used and will be an 
inverting output. A pair of NOR gates wired the same way as Figure C.2 also will function as 
a flip-flop, but the inputs will be high/true instead of low/true. 

So what happens if both inputs to a NAND flip-flop go low at the same time? If you look 
at the logic, both NAND gates have one input low, so both outputs will go high. However, 
this condition is not latched, and when one input goes back high, the corresponding output 
will go back low. If both of the inputs go high at the same time, the final state of the output 
will be indeterminate. A similar result occurs in a NOR flip-flop; if both inputs are taken 
high, both outputs go low. 

Registers and Latches 

Microprocessor circuits invariably require some kind of registered logic. This often is 
embedded in the peripheral ICs connected to the processor. However, often some form of 

320 Appendix C 



LOGIC SYMBOL 

-SET INPUT OUTPUT * -RESET INPUT 

NAND GATE IMPLEMENTATION 

OUTPUl 
-SET INPUT 

-RESET INPUT 

TIMING 

SET INPUT 

RESET INPUT U 
OUTPUT I 1 

FALLING E 1 GE OF -SET INPUT 
CAUSES OUTPUT TO GO HIGH. 
OUTPUT STAYS HIGH 
REGARDLESS OF CHANGES ON 
-SET INPUT. 

f 
FALLING EDGE OF -RESET INPUT 
CAUSES OUTPUT TO GO LOW. 
OUTPUT STAYS LOW 
REGARDLESS OF CHANGES ON 
-RESET INPUT. 

Figure C.2 
SeVReset Flip-Flop. 

registered logic must be included in a microprocessor circuit to latch an address or function 
as a latched output port. 

Several types of registers and latches exist, but the types most commonly used in micro- 
processor circuits are D-type latches and D-type registers. A D-type device passes the data 
input to the output. The output may be noninverted, in which case the output will follow 
the input, or it may be inverted, in which case the output is the inverse of the input. In either 
case, the device exhibits storage, like a flip-flop. The output will “remember” what state it 
was in, even when the input goes away. Thus, if the input sent the output to a 1, the output 
will stay a 1 even when the input changes state. 

The control over what the output does is performed with a latch or clock input. A D-type 
registered device has a clock input and will transfer the input to the output (called 
capturing) on the rising edge of the clock. When the clock is in any other state (low, high, 
or falling), the output does not change state, regardless of input changes. It is possible to 
build a D-type device that captures on the fulling edge of the clock, but these are not 
commonly used. 

Appendix C 321 



What happens if the input is changing while the clock is rising? This results in a race 
condition, and the output will be indeterminate. Actual devices have a minimum setup time, 
measured in nanoseconds, that the input must be stable at before the clock changes to 
guarantee a valid output. 

A latched device has a latch input (commonly called G), and it will pass the input to the 
output as long as the latch is high. This is called the transparent mode. Any changes on the 
inputs will be reflected at the output while the latch input is high. When the latch goes low, 
the input is captured. The output does not change as long as the latch remains low. Dtype 
latches typically are used to capture the address on a multiplexed microprocessor data bus. 
Like the registered device, the latched device requires that the data be stable for some 

D-TYPE REGISTERED DEVICE 

D INPUT 

CLOCK INPUT 

DINPUT 

CLOCKINPUT n I 
OUTPUT 1 1  I 

OUTPUT ONLY CHANGES 
ON RISING EDGE OF 

CHANGES AT OTHER 
TIMES DO NOT AFFECT 
OUTPUT. 

CLOCK. D-INPUT 

D-TYPE LATCHED DEVICE 

D INPUT 

LATCH INPUT 

DINPUT 

LATCH INPUT I 
OUTPUT n I 

AS LONG AS LATCH STAYS HIGH, 
OUTPUT FOLLOWS INPUT. 
WHEN LATCH GOES LOW, 
OUTPUT STOPS CHANGING. 

Figure C.3 
Registered Devices. 

322 Appendix C 



number of nanoseconds before the latch goes low. If this requirement is not met, the output 
will be indeterminate. 

Figure C.3 shows the timing characteristics of the two types of latches. Registers and 
latches commonly are packaged in 8- or 16-bit versions to match microprocessor data buses. 
When packaged this way, all the latches or registers in the package are clocked to a common 
clock or latch pin. 

Latches and registers also are available with tristate outputs, where a common output 
enable pin enables all the outputs in the package. There are even devices that combine a 
transceiver and latch into a single package, making a bidirectional, latched (or registered) 
transceiver. 

Appendix C 323 





Appendix D 
Basic Microprocessor Concepts 

A microprocessor is a compact computer. Early microprocessors were much simpler than 
the typical minicomputers and mainframes of the day, but many modern microprocessors 
are more complex and powerful than computers of that era. Dozens of different micro- 
processors are available from many manufacturers, and they vary in speed, power, size, and 
capability. Regardless of the complexity, though, the basic architecture at the heart of all 
microprocessors is the same. 

A Simple Mlcroprwessor 

The core of a microprocessor is the arithmetic logic unit (ALU). The ALU takes in two values 
and produces a result. The result can be the sum of the two input values, the difference, a 
logical result (ANDing or ORing all the bits together), or some other operation. Which 
function is performed is determined by control inputs to the ALU. Figure D.l shows a simple 
ALU that operates on two inputs, X and Y, producing a result. The inputs and the output 
can be any number of bits, 1,4,  8, or 16. 

This ALU can perform four functions: addition, negation, logical AND, and logical OR. 
Addition is a simple, binary, mathematical addition. Negation inverts all the bits in the input 
variable, making zeros into ones and ones into zeros. The AND function ANDs the bits of 
the two variables, making any given output bit one only if both corresponding input bits are 
ones and zero otherwise. The OR function performs a bitwise OR, making the output bits 
one if either of the corresponding input bits is one, and zero only if both inputs are 0. These 
operations are illustrated next with 4bit values: 

Variable A 1001 

Variable B: 1100 

A ORed with B: 1101 

A ANDed with B: 1000 

A negated: 01 10 

B negated: 0011 

Where do the numbers come from? Figure D.2 shows an expansion of the ALU concept, 
adding two banks of four registers each. Each of the eight registers has the same number of 

325 



CONTROLINPUTS! A ' B 

A B OUTWT 
0 0 Y + Z  
0 1 NOTY NEGATION 
1 0 Y h Z  LOGICAL'AND' 
1 1 Y # Z  LOGICAL'OR 

Figure D.l 
Simple ALU. 

Y-REGISTER CONTROL INPUTS 

2-REGISTER CONTROL INPUTS 

REGISTER BANK Y 
Y3 
Y2 
Y1 
YO 

REGISTER BANK Z 
23 
22 
21 
20 

f ALU CONTROL INPUTS 

OUTPUT 

Figure D.2 
ALU with Register Banks. 

bits as the inputs and output of the ALU. Now the ALU can get data from four registers on 
each side. It can add register YO to register 23 or AND Y2 with Z1. Two control inputs to 
each bank of registers allow selection of any register in the bank. If we were building this 
with discrete logic, each register would consist of an 8-bit D-type register with tristate outputs. 
All the DO bits would be connected together, all of the D1 bits connected together, and 
so on. To read any of the registers, the output enable would be driven low to place the reg- 
ister contents on the ALU input (but only one register at a time in each bank). However, 
what do we do with the output of the ALU? And how does data get put into the Y and Z 
register banks? 

Figure D.3 shows an additional connection; the output of the ALU is connected to the 
inputs of the register banks. Now the ALU can add the contents of two registers and store 
the result back into one of the registers in either bank. Of course, to make this work, each 
register will need a clock. Figure D.3 shows a timing diagram of how such a system might 
work. As you can see, the register select inputs go to some value to select one register in the 
Y bank and one in the Z bank. The outputs of the selected registers are applied to the inputs 
of the ALU. 

326 Appendix D 



Y-REGISTER L INPUTS ONTR 

REGISTER BANK Y 
Y3 
YZ 

L Y1 “ YO 

f 
REGISTER BANK 2 

23 
22 

L z1 “ 

Y 8 2 REGISTER SELECT +- 
ALU CONTROL INPUTS +-’ 

ALU OUTPUT - 
CLOCK TO ONE REGISTER 1- 
IN BANK Y OR 2. CLOCKS 
RESULT INTO REGISTER 

zo 

Figure D.3 
ALU with Connection to Register Inputs. 

At the same time as the register select signals go active, the ALU control signals go active 
to select which ALU function will be performed. After some propagation delay through the 
ALU, the output reflects the result of the selected operation. Some time after that, a clock 
signal clocks the result into one of the registers in the bank. Only one register at a time gets 
a clock. 

Control Store 

So far, we have left out any discussion of where the control signals come from. Figure D.4 
shows the addition of timing logic and a control store. The control store contains a sequen- 
tial list of “instructions” that our simple computer operates on. In this simple system, the 
control store could have a bit assigned to each function. This would require two bits each 
for the ALU control bits and the register select for each bank. Three additional bits would 
be needed to select into which of the eight registers the result is to be clocked. The control 
store is like the Y and Z register banks in that it contains data and the input determines 
which register contents will be applied to the output. The difference is that the control store 
cannot be written to, only read from. 

Addressable Memory 

The control store is one type of addressable memory. An addressable memory has an input 
and an output. The input is a binary number, and the output is a different binary number. 

Appendix D 327 



Figure D.4 
Addition of a Control Store. 

You can think of addressable memory as being like a row of apartments. Somebody named 
Tom lives in apartment number 1. Frank lives in apartment number 2, and Zoe lives in apart- 
ment number 3. If you stand at the end of the hall and shout for whoever lives in apartment 
1 to come out, Tom will step into the hall. If you shout for the person in apartment 3 to 
come out, you will see Zoe. 

Now suppose that the people in the apartments have numbers instead of names. Tom is 
117, Frank is 145, and Zoe is 4567. Now if you shout for the person in apartment 1 to come 
out, number 117 will appear. Note that our hypothetical apartment complex can have only 
one person living in each apartment. 

The apartment number in this simple example is equivalent to the address that is input 
to an addressable memory. Each location (apartment) in the memory has a number (person) 
stored there. When the address of a location is applied to the input of the memory, the 
number stored in that location appears at the output. 

The numbers in the memory need not be unique. Just as you can have two Toms living 
in the same apartment complex, you can have multiple instances of the same number in 
different locations of an addressable memory. 

One difference between apartment numbers and memory locations is zero-based 
addressing. Apartment and house numbers do not start with zero (although they could), but 
memory locations do. Remember that the input to an addressable memory is a binary 
number, and all zeros is as good a binary number as any other. In a microprocessor system, 
all the addresses are used, including zero. 

The address and output need not be the same number of bits. For example, an address 
able memory may have a 10-bit address (1024 locations) and an &bit output (256 possible 
values). Real addressable memories have other inputs in addition to the address. We’ll look 
at those later. The concept of addressable memory is key to understanding how micro- 
processors work. 

Timing Logic 

The timing logic will not be examined in detail. It just makes sure that things happen at the 
right time, such as waiting until the ALU outputs are stable before clocking them into one 
of the registers. 

328 Appendix D 



Program Counter 
The control store is driven by a progrum counter. This is just a binary counter that counts from 
zero to however large the control store is. If the control store holds four instructions, the 
program counter needs to be 2 bits wide. If the control store holds 1024 instructions, the 
program counter needs to be 10 bits wide. The program counter is incremented each time 
an instruction is executed in order to select the next instruction in the control store. 

Opcodes 

Say that the control store is 9 bits wide and we define the bits like this: 

Bits 0, 1: select ALU function (00 = addition, 01 = negation, 10 = AND, 11 = OR). 

Bits 2, 3: Select Zregister (00 = ZO, 01 = Z1, 10 = 22, 11 = 23) 

Bits 4, 5: Select Y-register (00 =YO, 01 = Y1, 10 = Y2, 11 = Y3) 

Bits 6, 7, 8: Select which register the result will be clocked into: 

000 = zo, 001 = 21,010 = 22,011 = 23, 
100 = YO, 101 = Yl, 110 = Y2,l l l  = Y3 

The different combinations of bits that tell the machine what to do are called opcodes. Now, 
say we want to write a program that will execute the following two operations: 

Add Y1 to 22, putting the result in Y2 

AND Y2 with 23, putting the result in Y3 

The control store would contain the following words, based on the preceding bit 
definitions: 

Location Control Store 
0 11001 1000 
1 1 1110 1110 

The program counter starts at zero (remember, zerebased addressing), and the output 
of the control store causes the first operation to be executed. Then the program counter 
increments to one and the second operation is executed. 

Branching 

Now we can write a program, up to the length of the control store, to do any operation 
that our simple machine is capable of. But what happens when we get to the end of the 
program? To handle this, we can expand our control store from 9 to 20 bits, as shown in 
Figure D.5. 

Of the added 11 bits, 10 wrap back around to the program counter as inputs, and one is 
a branch control bit. When the branch control bit is 0, the program counter increments, 
just as it did before. But when the branch control bit is 1, the program counter is loaded 

Appendix D 329 



OUTPUT 

REGISTER B W K  V 

Y-REGISTER CONTROL I N W S  

2-REGISTER CONTROL lNRlTs f 
M U  CONTROL INFliTS BlTse.18 

BIT 10 

H ADORES 10 BITS 1 
Figure D.5 
ALU with Branching Capability. 

with the 10 branch address bits from the control store. Now we can write a program that 
loops: 

Location Original Control Store Branch Control Bit Branch Address (10 bits) 

0 
1 

11001 1000 0 
111 10 11 10 1 

X 
0 

After the first instruction is executed, the branch control bit is 0, so the program counter 
increments to location 1. However, after the second instruction, the branch control bit is 1, 
so the program counter does not increment. Instead, the branch address value, 0, is loaded 
into the program counter and the next instruction comes from that location. Our simple 
machine now will loop forever, executing these two operations. 

Immediate Data 

Note that when the machine is not branching, the bits in the control store that contain the 
branch address are not used and the value does not matter. If we added more control bits, 
we could have an instruction that did not use the ALU but instead clocked 8 bits of the 
branch address value into one of the registers. Now we have an immediate data instruction 
that can initialize the registers directly from the control store. 

Conditional Branching 

We can expand this concept by adding more branch control bits. Two bits would let us have 
four branch options, such as not branch, branch always, branch if all the ALU outputs are 
zero, or branch if the result of an addition overflowed. Of course, we would need additional 
logic to detect the zero and overflow conditions. 

330 Appendix D 



output 

We are almost finished with this example, but there is one more step. We have a machine 
that can execute up to 1024 instructions (10-bit program counter), but what do we do with 
the results? Figure D.6 shows a final addition to the machine that adds a simple output 
scheme. This change adds a bank of four output registers. If the ALU has &bit inputs and 
outputs, this bank of registers provides 8 x 4 or 32 bits of output. The outputs from the 
timing logic that control clocking into the Y and Z registers are expanded to add clocks 
to the control register. We can control the added outputs by making the %bit field that 
controls which Y or Z register gets the ALU output into a 4bit field. The control store bit 
definition now looks like this: 

Bits 0, 1: Select ALU function (00 = addition, 01 = negation, 10 = AND, 11 = OR) 

Bits 2, 3: Select Z-register (00 = ZO, 01 = 21, 10 = 22, 11 = 23) 

Bits 4, 5: Select Y-register (00 =YO, 01 = Y1, 10 = Y2, 11 = Y3)  

Bits 6, 7, 8, 9: Select which register the result will be clocked into: 

0000 = zo, 0001 = z1,0010 = 22,0011 = 23 
0100 =YO, 0101 = Y1,OllO = Y2,0111= Y3 
1000 = ORO, 1001 = OR1, 1010 = OR2, 1011 = OR3 

Plus the 10 branch address bits and one branch control bit. 
In a similar way, we could expand the bit fields that select the Y or Z inputs to the 

ALU so that we could enable one or more &bit tristate buffers instead of the internal 
registers. This would give the machine the ability to input information from the outside 
world. 

Now we have a complete, although very simple, microprocessor. A real microprocessor 
works much the same way, but it includes the following improvements: 

Much more complex, capable ALU functionality. This typically includes more logic 
functions such as exclusive OR, logical shifts, and other capabilities. 
A larger program counter, 16 to 64 bits wide. (However, some microcontrollers with small 
internal PROMS may only have a 10- or 12-bit program counter, like our example.) 
More complex branching conditions. These might include branching on overflow, branch- 
ing on ALU carry, branching on some input bit being 1 or 0, and so on. 
More complex control store definitions. Our simple machine used a fixed-control-bit 
definition. For example, bits 2 and 3 always define which Z register will be used. A real 
microprocessor might have instructions that do not use some registers. An immediate 
instruction might load data directly from the control store to one of the registers. None 
of the bits that select which register drives the ALU is needed, nor are the ALU control 
bits needed. So, for those instructions, these bit definitions would change. A branch 
instruction might use the Z-register bits to determine what branch condition to test for 
(carry, no carry, zero, nonzero, and so on). We looked at a simple case of this, with the 
possibility of allowing the control store branch address field to double as a data value for 
nonbranching instructions. Making the control bits perform different functions for 
different instructions complicates the timing and control logic but allows the control 
store word to be implemented with fewer bits. 

Appendix D 331 



w w 
Es 

0 

+ 
ADDRESS PROGRAM 

COUNTER 

BITS e18 
BIT 20 

BRANCH ADDRESS, 10 BITS I 
BRANCH CONTROL. - 

I RmNKy I 
YZ 
Y1 

1 Y-REGISTER CONTROL INPUTS 

CLOCKS TO INDlVlDUAL 
REGISTERS IN Y. 2 
AND OurpuT W S  

REGISTER BANK 2 

, I -. I ~ J  
2-REGISTER CONTROL l N R m  

~ ~ 

ALU CONTROL INPUTS I 

Figure D.6 
Simple Microprocessor with Output Capability. 

b 



A microcontroller may have an internal program store, like our example, but many proces- 
sors provide the program counter outputs on an external address bus so the control store 
can be outside of the microprocessor IC. 
In addition to internal registers, a real microprocessor typically has a means to produce 
an address that  allow^ an external register bank, or memory, to be accessed. This address 
bus usually is shared with the program counter address bus. Our simple example could 
simulate this by defining an output register as an address register and another output 
register as a data register. The machine would write a value to the address register, then 
write the desired data to a data register. A data register clock also would have to be pro- 
vided, so the external memory knows when a write has occurred. If the output registers 
are 8 bits wide, this would permit access to an external memory of 256 locations. A real 
microprocessor typically can access a much larger external memory and allows the address 
to be part of the instruction. This is called an immediate address, similar to the immediate 
data field we looked at earlier. In our simple machine, this probably would be the part of 
the control store bits that hold the branch address. Obviously, in this case, a branch instruc- 
tion could not be an immediate instruction and vice versa. It is up to the external memory 
device to decode the &bit address and determine to which specific register (or location) 
to write. 
A real microprocessor often can perform indirect operations, where the address of exter- 
nal memory or the external control store is derived from an internal register. These reg- 
isters often are incremented or decremented automatically as part of the instruction. 
The ability to branch to an address contained in a register. In our simple machine, this 
would require another path from one of the register banks back to the program counter 
inputs. 
The ability to link two registers together for some operations. Two &bit registers may be 
linked to make a 16-bit-wide memory address register. Typically, increment and decrement 
operations operate on the register as a single l6bit value. 

More complex microprocessors have other, more sophisticated features, but this covers 
the basic components that go into a modern microprocessor or microcontroller. 

A More Complex Microprocessor 

Figure D.7 shows a block diagram of another, more complex, microprocessor that incorpo- 
rates some of the preceding features. In this diagram, we have a microprocessor integrated 
circuit (IC) that contains an ALU, register bank, accumulator register, timing logic, instruc- 
tion register, indirect address register, address mux, data mux, and program counter. Outside 
the microprocessor itself we have two devices: an external control store and an external 
memory. 

The ALU is like the ALU in our simple machine. It performs arithmetic and logical 
functions on the values at the inputs. This is a 16-bit machine, with a 16-bit-wide ALU. The 
output of the ALU drives a register bank with four registers. Results of ALU operations can 
be clocked into any register of the bank, and any register in the bank can be used as one of 
the operands in ALU operations. 

Appendix D 333 



EXTERNAL CONTROL STORE 

ADDR 

MICROPROCESSOR IC 

1- INDIRECT ADDRESS REGISTER 

TYPICAL INSTRUCTION CYCLE: 

EXTERNAL ADDRESS 

EXTERNAL DATA 

CONTROL STORE SELECT 

MEMORY SELECT 

/READ 

INSTRUCTION REGISTER 
CONTENTS 

Figure D.7 
A More Complex Microprocessor. 

The other ALU operand always comes from the accumulator register. This is a single 16 
bit-wide register. The accumulator-based model is common in many simple microprocessor 
designs. Typically, other registers are in the microprocessor, but the accumulator will be the 
only one that can be directly tested for zero or parity or some other logical condition. In 
many microprocessors, the accumulator is the only register on which some operations can 
be performed, such as increment and decrement. Other microprocessors allow nearly any 
operation to be performed on almost any register. 

The timing logic gets information from the instruction register and controls the timing 
of the other blocks. This includes loading and reading the registers, incrementing and 
loading the program counter, and selecting the address mux source. 

334 Aj@ndix D 



The instruction register receives information from the external control store and 
memory. Instructions as well as data are stored here. 

The indirect address register was not in the simple processor we looked at earlier. The 
indirect address register is a register that can be loaded with the results of an ALU opera- 
tion. The output of the indirect address register drives one of the address mux inputs. 

The address mux is a device with three 16-bit input buses, one output bus, and control 
inputs. The address mux is controlled by the timing logic and can place the program counter 
contents, the indirect register contents, or the instruction register contents onto the 16-bit 
external address bus. 

The data out register just captures the contents of the ALU result bus to drive the exter- 
nal data bus for external write operations. This allows data to be written to the external 
memory. 

Finally, the program counter is just like the program counter in the simple micro- 
processor, but it has the ability to be loaded from the ALU result bus. 

This microprocessor has three external connections: a 16-bit address bus, a 16-bit data 
bus, and a control bus that consists of select signals for the external control store and the 
external memory. On a typical microprocessor, the individual address lines would be A0 
through A15 and the data lines would be DO through D15. Note that the address bus is 
output only, but the data bus can both send data from the microprocessor and receive data 
from the external devices. 

The external control store is just like the control store in the simple system, but it is 
outside of the microprocessor chip. The external memory is readable and writable. The 
control bus consists of two signals, /READ and /WRITE (the slash, /, indicates that the 
signals are true when low). 

Figure D.7 also shows a timing diagram of how this microprocessor accesses the two exter- 
nal devices. Say that the program counter (PC on the diagram) starts out at location 0001. 
The timing logic, knowing that an instruction needs to be fetched, sets the address mux to 
place the contents of the program counter on the external address bus. After some setup 
time, the /READ signal is driven low, also controlled by the timing logic. 

When the address was placed on the bus, the control store recognized that it was being 
selected. For simplicity, say that the control store recognizes any address from 0000 to 7FFFh, 
and the memory recognizes any address from 8000h to FFFFh. For now, ignore how the two 
devices know to which address to respond. When the /READ signal goes low, the control 
store places the contents of location 0001 onto the external data bus, and the data are 
clocked into the instruction register at the end of the bus cycle. The program counter also 
is incremented so it now contains 0002. 

Say that this instruction opcode tells the processor to get the 16-bit word of memory 
pointed to by the indirect address register (IAR) and load it into one of the registers in the 
register bank. The timing logic decodes the 16-bit value in the instruction register (the one 
loaded from address 0001 in the control store) and initiates this operation. First, the address 
mux is configured to pass the contents of the IAR register onto the external address bus. 
Say this address is A105h. The external memory recognizes this address so when /READ 
goes low, the memory places the contents of A105h onto the data bus. At the end of the bus 
cycle, the data is clocked into the instruction register. Now the next location in the program 
counter is passed to the bus and the contents of that location in the control store are clocked 

Appendix D 335 



into the instruction register. At the same time, the contents of the instruction register, which 
was loaded from memory on the previous bus cycle, are clocked into whatever destination 
register they are supposed to go to. 

This simple example is very similar to a real microprocessor. A few things are worth 
noting: 

First, the external address bus is 16 bits, so it can access 65,536 (64K) locations. In our 
example, the control store uses half and the memory uses half, so each has 32,768 loca- 
tions. However, there is no reason the control store could not be 48K in size and the 
memory 16K or vice versa. 
The control store and the memory are identical except that the memory can be written 
to as well as read from. This means we could use one device to do both functions as long 
as we do not overwrite the area where the instructions are stored. Instead of a 32K control 
store and a 32K memory, we could use a 64K memory with the instructions stored in the 
lower half and data stored in the upper half. In fact, this is what many systems do, includ- 
ing the PC you probably have on your desk. The PC has a small amount of memory that 
can only be read (like our control store) and a huge amount of memory that can be both 
read and written. The read-only memory is used to start everything, and then everything 
the computer needs to run is loaded from the disk drive and stored in the read/write 
memory. 
The external data bus can be either the contents of the IAR register, the contents of the 
program counter, or the contents of the instruction register. This implies that we can 
perform only one operation at a time (get an instruction, get data, write data, and so on). 
It is possible to build a microprocessor with multiple address buses that can perform more 
than one kind of bus cycle at a time to different storage devices. 
Although we did not walk through an example, the program counter can be loaded from 
the ALU output or from the instruction register. Thus, we could add two numbers and 
make the sum the address of the next instruction we execute. Or, we could have an instruc- 
tion that is followed by a data byte, and the data byte is the new starting point for the 
program counter. This gives the microprocessor branching capability like the simpler 
machine we looked at earlier. We even could have an instruction that uses the contents of 
the IAR to get a data value that is the address of the next instruction. This would be an 
indirect branch instruction. 
The contents of the instruction register can be placed on the ALU bus and loaded into 
one of the registers or the program counter. This implies the ability to tristate the outputs 
of the ALU. In a real microprocessor, the tristate function probably would be performed 
by a multiplexer like the address mux, because tristating buses inside the chip requires 
more logic. But the effect is the same. 
The second bus cycle used the contents of the IAR to address the external memory device. 
If the IAR had held a value between OOOOh and 7FFFh, the control store would have been 
selected instead, and we would have read the data from there. So we could dedicate a 
portion of the control store to a table of data. This data could be almost anything that is 
constant, such as a degrees-tmsine conversion table or a table of atmospheric pressure 
versus altitude. 

336 Appendax D 



The timing logic is a complex digital system. It controls the following functions: 

Decoding the opcode in the instruction register. 
Selecting which source will be passed to the external address bus (based on the opcode) . 
Timing the external /READ and /WRITE signals and determining (based on the opcode) 
whether the external bus cycle will be a read or write cycle. 
Remembering whether the contents of the instruction register are an opcode or data that 
need to be put someplace. 
Determining (based on the opcode) which register in the register bank will provide an 
input to the ALU and which register will be clocked with the data on the ALU result bus 
at the end of the instruction (accumulator, register bank, IAR, or PC) . 
Determining (based on the opcode) which ALU operation will be performed. 
Incrementing and loading the program counter. 

Finally, we look at the issue of how the two external devices knew to what addresses to 
respond. Real memories have read and (for writable memories) write inputs. They also have 
a signal that selects the memory. This signal can be generated by logic that decodes the 
address bus. In a simple system like this, the memories could just use the highest address bit 
(A15), as there are only two devices. The control store would respond when A15 is low, and 
the read/write memory would respond when A15 is high. In a more complex system, addi- 
tional gating logic decodes the address bus and generates select signals for all the external 
devices. 

Addressing Modes 

Here we consolidate the various methods used to address memory in a microprocessor 
system, including those we already have looked at. Figure D.8 illustrates these addressing 
modes. For this section, we assume we have a simple microprocessor like the one in Figure 
D.7, with a l6bit data path and 64K memory space. We look at the effects of various address- 
ing and branching modes on the processor program counter (PC in the diagram) and on 
two internal registers, RO and JAR. 

In the example shown in Figure D.8, immediate data follows the instruction opcode in 
memory. Instructions that need no additional data are followed by another opcode. It is up 
to the microprocessor timing logic, which decodes the opcode, to remember that the 
following byte is data and not another opcode. For these examples, we do not worry about 
what the specific opcode values are, just what the opcodes do. 

Direct Addressing 

In direct addressing, the instruction contains the information that will be used. In the 
example, the instruction opcode is followed by a data value that is loaded into the IAR. In 
this example, the opcode (at location 0000) says, “Load the immediate data value (follow- 
ing the opcode) into register IAR.” The data value following the opcode (0010) is loaded 
into the IAR. 

Appendix D 337 



W4S EXAMPLE USES A SIMRE MICROPROCESSOR WITH 
A CONTROL STORE AND TWO REGISTERS (RO AND IAR) 

01 
01 
ot, 

b 

kc:; SINCE THIS IS A DIRECT INSTRUCTION. ITREQUIRES 
A DATA VALUE. WHICH IS STORED IN THE NEXl 

ww 0- LOCATION. 
C6-31 
ow2 
Oom 
ooo4 
ooo5 
wo1 
ow7 
wo1 
oooe 
WOA 
oore 
woc 
OWD 
WOE 
MXF 
WlO 
w 1 1  
WIZ 
0013 
0014 
W15 
001s 

MIS IS AN INDIRECT INSTRUCTION, SO IT IS NOT 
FOLLOWED BY A DATA VALVE. 
TmS DIRECT BRANCH INSTRUCTION CAUSES M E  PROGRAM TO 
BRANCH To THE ADDRESS POINTED TO BY M E  FOLLOWING 
DATA VALUE. 

DmRECT AODDRESSIffi 
SAY THAT RO CONTAINS FFFF AND IAR CONTAINS f FFF 
THL: OPCODE AT LDCATION Oooa IS AN IMMEDIATE 
IkSTRIXTlON THAT MOMS THE DATA VALUE FOCLOWING 
mE OFCODE INTO THE IAR 

INDIRECT ADDRESSING 
ME Nu(T INSTRUCTION EXECUTED (AT LOCATIONWZ) 
CAUSES ROTO BE LOADED WITH THE VALUE WINTED TO 
BY IAR. SINCE THE IAR CONTAINS WID. AND LOCATION 
0010 CONTAINS l ac .  RO IS LOADED wim i a c  

DIRECT BRANCH 
THE INSTRUCTION AT LOCAllON ooo3 IS A DIRECT BRANCH 
W T  CAUSES THE PROCESSOR TO JUMP TO THE LOCATION 
POINTED TO BY M E  FOLLOWING DATA VALUE (IN W). 
AFTER THIS INSTRUCTION EXECUTES. THE PROORAM 
COLJNER IS SET TO WOE AM) THE INSTRUCTION THERE 
IS EXECUTED. RO AND IAR ARE UNCHANGED. 

BEFORE AFTER 
INSTRUCTION INSTRUCTION 

INDIRECT BRANCH: 
AFTER TM DIRECT BRANCH. THE PROCESSOR BEGINS 
EXECUTION AT LOCATION ooo8. THE INSTRUCTION AT 
mo8 IS THE SAME INSTRUCTION AS AT WW (DIRECT LOAD 
OF IARI. BW WITH A DIFFERENT DATA VALUE iOO12I. THE 
OFCodE AT MOA IS AN INDIRECT BRANCH INSklJt%ON 
THAT TELLS M PROCESSOR TO BEGIN OeCUTlNG AT 
THE ADDRESS POINTED TO BY IAR AFTER W S E  TWO 
INSlRUCTONS ARE EXECUTED. THE PROCESSOR 
BEGINS u(ECUTIffi AT LOCATION 0012 

' BEFORE 
INSTRUCTION 
AT mDBMMe 

E r a w B 7  
BEFORE 
INSTRUCTION 
AT axU 

E R  

= r w w  

BEFORE AFTER 
INSTRUCTION INSTRUCTION 
AT WIUa13 AT WlzmO13 

BEFORE AFTER 
INSTRUCTION INSTRUCTION 
AT W14 AT W14 

0- INSTRUCTION AT WOA CAUSES PROCESSSOR 
TO BEGIN EJECIXING AT ADDRESS POINTED 100(141 TOBYIAR 

AFTER 
INSTRUCTION 
AT OmA 

100111 

Figure D.8 
Addressing Modes. 



Indirect Addressing 

Indirect addressing uses a register to point to the data. Continuing with our example, the 
processor executes the instruction at location 0002. This is an indirect instruction that says, 
“Put the value addressed (pointed to) by IAR into register RO.” Since IAR contains 0010 and 
location 0010 contains 12M, we end up with the value 12AF3 in register RO. 

Direct Branching 

Direct branching, like direct addressing, includes the destination address (new PC value) as 
part of the instruction. Our example system continues, executing the instruction at location 
0003. This is a direct branch instruction that says, “Start executing at the location pointed 
to by the data value following the opcode.” Because this data value is 0008, the processor 
loads the PC with 0008 and continues on. 

Indirect Branching 

Again, like indirect addressing, indirect branching takes the destination address from a 
register. In our example, the processor executes the instruction at location 0008, which loads 
the IAR with a new value (0015). The instruction at location OOOA says, “Start executing at 
the location addressed by IAR.” Because IAR contains 0015, the next instruction is fetched 
from there. 

Indexed Addressing 

Indexed addressing uses two values to access a location. In the example, register RO is loaded 
with 0004 by the instruction at address 0012/0013. IAR already contains 0012 from the indi- 
rect branch instruction just executed. The instruction at 0014 is an indexed instruction that 
says, “Load RO with the value addressed by [IAR + RO] .” Since IAR + RO = 0012 + 0004 = 
0016, the value from 0016 (2AC7) is loaded into RO. Note that we loaded the value into one 
of the registers used to calculate the address; we could have loaded it into another register 
in the processor. Some microprocessors support an indexeddirect instruction where one of 
the two index parameters is immediate data in the instruction. 

Indexed Branching 

Although not shown in the example, indexed branching works the same way as indexed 
addressing, where a pair of registers are added to generate the destination address. A special 
case of indexed direct branching commonly is used in microprocessors where a direct data 
value is used as an index from the program counter. The direct data value usually is a signed 
8 or 16bit number, allowing branching of +127 (%bit) or +32K (l6bit) locations. For 
example, if the program counter is 12BC, a branch instruction that contains an %bit value 
of 06 would cause a branch to 12C2 (12BC + 06). On some microprocessors, this is the only 
kind of conditional branch available, and only unconditional branches have the ability to 
reach the entire address range of the CPU. 

Appendix D 339 



The Real World 

Real microprocessors range from fairly simple devices, like this example system, to much 
more complex devices. Further enhancements that you might see on a real processor 
include: 

More registers. Some might have special functions, such as a stack pointer (discussed 
elsewhere in this book). 
Independent bus interface and execution units (the Intel x86 family has this). This permits 
the bus to fetch a new instruction while an old one is executing, improving overall 
performance. 
Internal peripheral devices such as timers. 
Interrupt capability, where an external event can temporarily redirect program execution. 
Capability for another processor to control the bus, allowing multiple processors to share 
a single bus. 

Code Formats 

Getting instructions into the microprocessor means storing them in the control store 
memory in some way. The code (that is, the ones and zeros that get loaded into memory 
for the microprocessor to execute) is called machine co&. Of course, writing programs in 
machine code would be very tedious. Every branch address would have to be calculated by 
hand, and if you needed to insert an instruction between two existing instructions, you would 
have to recalculate all the addresses. 

The next level up from machine code is assembly. Assembly code replaces the machine 
code with simple statements that are translated directly into machine code by assembler 
software. There is one assembly statement per microprocessor instruction. 

The assembler allows branches to be defined with labels (names), and the assembler 
calculates branch addresses. Assembler statements usually are abbreviations of the instruc- 
tion functions. 

A machine instruction that moves data between two registers, R1 and R2, might use an 
assembler statement like this: 

MOV R1, R2 (MOVe R1 to R2) 

A statement that moves an immediate value of 23 into register R1 might look like this: 

MVI R1, 23 (Move Immediate value 23 to R1) 

A branch instruction might look like this: 

JMP label (JUMP to address of label) 

To insert a new line of code, you must edit the sourcejile, which contains the assembly 
statements. The assembler is run and new machine code is produced, which then is 

340 Appendix D 



programmed into the control store. Assemblers always allow you to insert comments into the 
code to explain what you are doing. These may be preceded by a semicolon (;), double slash 
(/ /)  , or other characters. 

Every microprocessor has a unique assembly language, although many manufacturers use 
a common language across a family of processors. The following is an example of assembler 
code and the corresponding machine code for an Atmel AVR series microcontroller: 

Machine Code Assembler Code Comments 

94fa 
ecOc 
bb05 
efOf 

bb04 
98de 
0000 
coo2 

Cli  
ldi accum,$cc 
out portc, accum 
ser accum 

out ddrc, accum 
cbi porta,6 
nOP 
rjmp clk-tach-on 

; CLI disables interrupts 
; Put CC (hex) into accum 
; Output accum to port C 
; Set all the bits in the 
; a c m  register to ones. 
; Set port C to outputs 
; Clear port A bit 6 
; Do nothing (delay) 
; Jump to a label called; clk-tach-on 

Finally, high-level languages provide a simpler means of programming microprocessors. 
A high-level language such as C permits the programmer to write instructions that look like 
this: 

x = y + z; I /  Add two numbers 

The compzhtranslates the instructions into machine code. Unlike assembly, there is not 
one high-level language statement per machine instruction. One high-level line of code may 
generate dozens of machine instructions. The preceding example might produce machine 
code instructions that do the following: 

move memory location y into Register 1 
move memory location z into Register 2 
Add Register 1 to Register 2, leaving the result in Register 1 
Store the contents of Register 1 in memory location x 

This simple C statement produced four lines of machine code. Using a high-level 
language, the software engineer need not worry about the specifics of the machine language 
or assembly language for the microprocessor. High-level languages permit better portability 
of the code across different microprocessors. 

With this overview, you should be ready to tackle the material in the book. 

Appendix D 341 





Appendix E 
Embedded Web Sites 

The following is a list of Web sites for manufacturers and organizations that produce 
embedded products. Although this list is not comprehensive, we have done our best to 
ensure the accuracy of the following URLs at the time of this book’s publication. 

Author’s note: Readers of the second edition will note that some Web sites included in that 
edition are missing from this edition. In some cases, the companies no longer exist. In other 
cases, such as Huntsville Microsystems, they have been acquired by or merged with other 
companies. 

Organizations and Literature 

CompactPC1 systems: http://www.compactpci-systems.com 

Embedded Systems: www.embedded.com 

Embedded Technology: www.embeddedtechnology.com 

PC/104 Consortium: www.pcl04.org 

PC/104 Supplier Page: www.pcl04.com 

PCI Industrial Computer’s Manufacturer’s Group: www.picmg.com 

VME Bus International Trade Association: www.vita.com 

Manufacturers 

AMD: www.amd.com 

Atmel: www.atmel.com 

Cypress Microsystems: www.cypressmicro.com 

Dallas Semiconductor: (see Maxim-Dallas semiconductor was acquired by Maxim) 

Fujitsu: www.fujitsu.com 

Hitachi: www.hitachi.com 

Intel: www.intel.com 

343 



Maxim: www.maxim-ic.com 

Microchip: www.microchip.com 
Mitsubishi: www.mitsubishichips.com 

Motorola Semiconductors: www.mot-sps.com 

SGSThompson: www.st.com 

Sharp Microelectronics: www.sharpmeg.com 

Texas Instruments: www.ti.com 

Toshiba: www.toshiba.com 

Zilog: www.zilog.com 

Software, Operating Systems, and Emulators 

2500 AD Software/Avocet Systems: www.2500ad.com 

Accelerated Technology: http://www.acceleratedtechnology.com 
American Arium: www.arium.com 

Annasoft: www.annatechnology.com 

Applied Microsystems: www.amc.com 

Bytecraft: www.bytecraft.com 

CAD-UL www.cadul.com 

CMX Systems: www.cmx.com 
Green Hills Software: www.ghs.com 

Hi-Tech Software: www.htsoft.com 

Hitex: www.hitex.com 

IAR Systems: www.iar.com 

Kadak www.kadak.com 

Keil Software: www.keil.com 

Microsoft: www.microsoft.com 

Nohau: www.nohau.com 

QNX www.qnx.com 

SMX: www.smxinfo.com 
Synapticad: www.syncad.com 
Wind River: www.windriver.com 

344 AppnZdix E 



Glossary 

ADC (Analog-to-Digital Converter): An integrated circuit or subsystem that translates a 

Assembler: A language that directly describes machine instructions such as move data to a 
register, jump to an address, add two registers, and so on. Each microprocessor has a 
unique machine language and therefore a unique assembler language. 

Cache: A secondary memory used to reduce the bottleneck of memory access to a fast CPU. 
Data are moved from main memory into a faster cache memory and fetched from there. 
When the CPU needs data that is not in the cache, it must be fetched from the main 
memory. 

CAN (Controller Area Network): A multinode network using a single twisted-pair cable and 
capable of operating at speeds from 10 kbps to 1 Mbps. CAN originally was developed for 
the automotive industry. 

CISC (Complex Instruction Set Computer): A computer that includes relatively complex 
instructions in the instruction set. CISC is a relative term. The instruction set of a CISC 
microcontroller may be much simpler and less flexible than that of a high-performance 
RISC CPU. See RISC. 

voltage or other analog value to a digital word. 

Context Switch: The context of a CPU usually refers to all the internal registers, including 
the stack pointer and instruction pointer. A context switch is the process of changing or 
restoring the CPU context to execute a different section of code (such as an interrupt 
service routine) and usually includes saving the current context. 

CPLD (Complex Programmable Logic Device): A large PLD. 
CPU (Central Processing Unit): Technically the computing core of a microprocessor; the 

term is commonly used to refer to the microprocessor itself. 

Cross Compiler/Cross Assembler: A compiler or assembler that runs on one computer but 
generates object code for another family of computers. An assembler that runs on a PC 
and generates code for a microcontroller is an example of cross assembly. 

DAC (Digital-to-Analog Converter): An integrated circuit or subsystem that translates a digital 
word to a voltage. 

Daisy-chainea Interrupts An interrupt prioritizing scheme in which the priority of each 
peripheral is determined by its position in the chain. Lower-priority devices may acknowl- 
edge an interrupt only when no higher-priority devices are requesting an interrupt. 

345 



Debugger: See Monitor. 

Device Driver: Software that provides an interface between the operating system and actual 
hardware, such as video display boards or printers. 

DMA (Direct Memory Access): A mechanism whereby a microprocessor temporarily gives up 
its external bus to another processor (or other controller) and permits the other proces- 
sor to directly access memory. Some microprocessors have built-in DMA controllers. 

DRAM (Dynamic RAM): RAM that stores information as charge on a capacitor. It must be 
periodically refreshed to renew the charge and retain data. 

DSP (Digital Signal Processor): A microprocessor optimized for processing signals such as 
sound, video, or radio frequency. A DSP typically includes hardware such as single-cycle 
multiply hardware, barrel shifters, and other features that are designed to speed signal 
processing. 

Edge-Sensitive Interrupt: An interrupt that is recognized on a rising or falling edge. 

EMC (Electromagnetic Compatibfity): A general term for the measure of a device or system 
to operate in an environment with EMI. Usually used in relation to EMC testing or EMC 
standards. 

EMI (Electromagnetic Interference): A general term for interference caused by electro- 
static discharge, radiated emissions, and magnetic interference. 

ultraviolet light. 

equipment. 

EPROM (Erasable Programmable Read-only-Memory): A PROM that can be erased using 

ESD (Electrostatic Discharge): Static electricity that is discharged to, inside, or around 

Firmware: Software in machine-readable form, embedded in a ROM, PROM, EPROM, flash 
memory, or other nonvolatile storage. 

Flash Memory: A PROM that can be electrically erased and reprogrammed. 

FPGA (Field Programmable Gate Array): A type of CPLD. 

Harvard Architechue: A microprocessor architecture in which the code (instructions) is 
in a separate memory area from the data. A given memory address typically references 
different physical memory locations for code than for data. 

HLL (High-Level Language): Any computer language that permits code to be developed 

ICE (In-Circuit Emulator): A device designed to plug into a circuit and replace the target 
processor. A typical ICE permits the code to be run, breakpoints to be set, and the 
registers and memory of the system to be examined. 

above assembler. C, Pascal, and BASIC are high-level languages. 

Interrupt Controller: An integrated circuit or internal part of a microprocessor that 
prioritizes interrupts and provides a vector to the processor. 

IP (Internet Protocol): The protocol used for transmission of data over the Internet. IP 
transmits a data packet from a source to a destination, and provides for breaking the data 
into smaller blocks for transmission and reassembling them at the destination. IP is 
normally used with TCP, the combination being called TCP/IP. 

346 Glossary 



ISA (Industry-Standard Architecture): The expansion bus and connectors used on the 
original IBM AT computer. 

ISR (Interrupt Service Routine): Code executed when an interrupt occurs; it handles 
interrupt-specific functions. 

Latency (Interrupt): The time from when an interrupt occurs to when it is serviced. 

Level-Sensitive Interrupt: An interrupt that is recognized while in the active state. 

Machine Iauguage: The binary ones and zeros that the microprocessor reads from memory 
and executes. See Assembler. 

Microcontroller: A microprocessor with internal RAM and 1/0 ports, sometimes including 
ROM. 

Microprocessor: An integrated circuit containing, at minimum, a central processing unit and 
a means to access external memory. Microprocessors also may include internal memory, 
1 / 0  ports, or peripherals. 

p (Microsecond): One millionth of a second; 

Modified Harvard Architecture: A variation on the Harvard architecture in which there is 
limited ability to obtain data from the code space. Many single-chip microcontrollers use 
the modified Harvard architecture. 

seconds. 

Monitor: A program that executes on the target system and allows the engineer to examine 
memory and I/O, set breakpoints, and download code. It often supports other features 
as well. The term debugger is nearly synonymous with monitor and usually denotes a more 
sophisticated tool with advanced features. 

ms (Millisecond): One thousandth of a second 

Native Development: Development of microprocessor code on the same family of CPUs as 
the code will be run on. Development of code on a PC to be run on a PC is native mode 
development. 

seconds. 

Nested Interrupts: Where interrupts are structured so that a lower-priority ISR can be 
interrupted by a higher-priority ISR. 

NMI (Nonmaskable Interrupt): An interrupt input, available on many processors, that 
cannot be masked off. If the interrupt occurs, the processor always will service it. 

11s (Nanosecond): One billionth of a second; lo-' seconds. 

NVRAM: A package housing a static RAM integrated circuit and a battery. The battery powers 
the RAM so that it will retain its contents when external power is off. 

Object Code: Code for a target system. It may be in binary or in some ASCII hex represen- 
tation of the data, such as Intel or Motorola hex formats. 

O W  EPROM. Onetime programmable EPROM. An EPROM without the erasure window. 
The OTP EPROM acts like a one-time programmable PROM but has an EPROM 
structure internally. 

Overflow: A condition that occurs when the result of a mathematical operation cannot be 
represented by the number of bits available. 

Glossary 347 



Passive Backplane: A bus board that consists of only connectors, the interconnecting traces, 
and sometimes signal terminators. The CPU in a passive backplane system plugs into the 
backplane. 

PC/104 Bus: A bus architecture using pass-through pin/socket connectors. Electrically 
similar to the ISA bus. 

Pipeline: A method of increasing processor throughput by prefetching instructions and 
storing them for the CPU to execute. Pipelining takes advantage of the time that the CPU 
spends executing instructions to buffer one or more additional instructions. 

PLD (Programmable Logic Device): A programmable integrated circuit used to implement 
logic functions. 

Preemptive Scheduling: A scheduling technique in which each task is given control until it 
finishes or is superceded by a higher-priority task. 

PROM (Programmable Read-only Memory): A ROM that can be programmed, either by a 
PROM programmer or by the target system. Once programmed, acts as a read only 
memory (ROM). 

Protected Mode: A memory-management mode available on some x86 family processors that 
provides hardware memory protection and other features. 

Race Condition: Any condition in which two signals or events that happen simultaneously 
cause timing errors. The timings for hardware race conditions normally are measured in 
nanoseconds or microseconds. For software events, the timing can be any window within 
which the events appear simultaneous to the code. 

RAM (Random Access Memory): Memory that is both readable and writable and in which 
any location may be accessed at any time. Memory locations in RAM do not need to be 
accessed in any specific sequence. 

Real Mode: A memory management mode on x86 family processors that segments memory 
into a maximum of IMB, with 64K segments, and no hardware protection against invalid 
accesses. 

Reentranq The ability of a section of code to be reentered without first finishing. 
Reentrancy requires that variables used in the code to be stored on a stack or with some 
other mechanism that prevents them from being overwritten when the code is reentered. 
Reentrancy is typically needed if a routine can be interrupted and then called by the 
interrupt service routine. 

RISC (Reduced Instruction Set Computer): A computer that executes a simple, limited 
instruction set. The idea is that a simpler instruction set can be executed very fast, making 
up for the limited functionality with extreme speed. RISC is a relative term; a RISC 
microcontroller may be hundreds of times slower than a CISC computer. See CISC. 

ROM (Read-only Memory): A memory device that can be read from but not written to. 

RTOS (Real-Time Operating System): Firmware that provides task scheduling, memory 

Sequential (Round-Robin) Scheduling: A scheduling technique in which tasks are given 

allocation, and other services for a real-time application. 

control one at a time, in sequence, and each runs until finished. 

348 Glossary 



S i l e  Step: A means, in either software or hardware, to cause a program to execute one 
instruction and then stop. Single stepping may be at the machine level, where one CPU 
instruction is executed, or at the level of a HLL, where one HLL statement (possibly many 
CPU instructions) is executed. 

Skew The condition that occurs when grouped signals (such as a microprocessor data bus) 
do not all change at the same time. This term also applies to differences in the logic paths 
inside a device, such as an address decoder. Even if the external signals change at the 
same time, differences in the internal delays may cause the same effect as if the external 
signals changed at different times. Skew usually is measured in nanoseconds. 

readable data. 
Software: Computer instructions. This may refer to the source code or the actual machine- 

SRAM (Static RAM): RAM that is implemented as an array of flip-flops. Information is 
retained until overwritten or until power is removed. 

STD Bus: A bus architecture using a 56-pin edge connector. Originally intended for &bit, 
64K processors, the STD bus has been expanded to include 16bit processors and 
expanded addressing. STD-32 supports 32-bit processors and addressing. 

Target: The system or microprocessor that an emulator is designed to install to or replace 
when debugging. 

TCB (Task Control Block): A memory area where an operating system stores information 
about tasks under its control. 

TCP (‘kansport Control Protocol): A transmission protocol for communication between 
multiple processors. TCP provides full duplex operation and reliable connections by 
venfylng delivery of data packets. TCP/IP is the protocol used for Internet com- 
munication. 

Time Sli- A scheduling technique in which a central scheduler switches tasks at regular 
intervals, giving each task in sequence a specified number of time slices to execute before 
going to the next task. 

UART (Universal Asynchronous Receiver/Tnulsmitter): An integrated circuit or a circuit 
that provides an asynchronous serial interface. 

UDP (User Datagram Protocol): A transmission protocol, similar to TCP, that is used for 
simple, fast transfers. UDP does not include features to guarantee delivery of a data packet 
or to ensure that packets are received in the correct sequence. 

Vector (Interrupt): A number or instruction that is translated into an address, which then is 
executed to service an interrupt. 

VME Bus: A bus architecture based on one to three 96pin DIN connectors. Originally 
designed around the Motorola 68000 processor timing. 

Von Neumann Architecture: A microprocessor architecture in which the code (instructions) 
can share the same memory space as the data. Most microprocessors intended for 
multichip designs use the von Neumann architecture. 

WDT (Watchdog Timer): A timing circuit that resets or otherwise notifies a microprocessor 
if it is not triggered at periodic intervals. 

Glossary 349 



Index 

Page numbers followed by “t” denote tables; those followed by “f‘ denote figures 

Access time 
for EPROM, 4245 
propagation delay considerations, 69-70 
for RAM, 4648 

Acknowledge timing, 225-226 
ACK signal, 37 
Action codes, 172-173 
Activate Task, 247 
A/D converters. see Analog-todigital con- 

Address 
verters 

decoding circuits, 56f 
hold time, 46 
immediate, 333 
setup time, 4648 

Addressable memory, 327-328 
Address bus 

description of, 33 
DMA, 76f, 77 
multiplexing of, 35f 

Address decoding 
linear, 86 
partial, 86 

Addressing 
direct, 337 
indexed, 339 
indirect, 339 

Address latch, 43 
Address latch enable signal, 33 
Allocate Memory, 248 
Analog-to-digital converters 

accuracy of, 104-105 
calibration of, 105 
description of, 103 
interleaving and, 273, 274f 
internal, 105 
Microchip, 105 

reference voltage, 103-104 
resolution of, 104 

AND gate, 316, 317f 
Architecture 

of complex microprocessor, 333-337 
evaluation of, 12 
Harvard, 14-15, 15f 
pipeline, 271-272 
software, 129-130 
state machine, 129-130 
von Neumann, 1415, 15f 

Arithmetic logic unit, 325-327 
Atmel 
AT9OS8515,llO-lll 
FPSLIC, 281 

Background debugging mode, 194,283 
Background loop, 169. see also Polling 

Backplane, passive, 260 
Binary numbers, 306-308 
BIOS, 260 
Branching 

lOOP(S) 

direct, 339 
indexed, 339 
indirect, 339 

for debugging evaluations, 180-181, 192 
definition of, 18 
logic analyzer, 180-181 

circular trace, 178-1 79 
data bus, 47,69-70 
enabled, 86 

for 1% bus, 217-218 
last in, first out, 135 

Breakpoint 

Buffers 

FIFO, 211-212 

350 



RTOS, 243 
tristate, 106 

DRAM, 273-274 
SDRAh4,276 

address, 33, 35f 
CAN, 218-220,220f 
clock-synchronized, 97-99 
data 

Burst mode 

Bus 

buffers, 69-70, 86 
description of, 33 
loading, 68-70 

&bit, 65, 129 
I‘C 

buffering of, 217-218 
characteristics of, 71-72 
development of, 72 
for interprocessor communication in 

multiprocessor systems, 217-218 
Microwire and, comparisons between, 

74t 
schematic representation of, 71f, 71-72 
speed of, 72 

multiple, 2 77-2 78 
normally-not-ready, 36-37 

PCI, 267 
IGbit, 65-68, 129 
sizing at reset, 96 
STD, 265 
timing sequences, 32f, 34 
USB, 263 
W E ,  267 
wait states and, 36-38 
width, 129 

Bus contention, 69, 316 
Bus cycles 

description of, 34 
interrupt, 148 

Bus interface unit, 271 

PC/104,262-264 

C, 132, 341 
Cache memory, 278-279 
CAN bus, 218-220, 220f 
Capacitance loading, 69 
CAS access time, 49 
Ceramic resonators, 92 
Chip select, 136-137 
Chopping rate, 9 
Circular trace buffers, 178-179 
Clock(s). see also Oscillators 

CPU, 110 
load capacitance, 90 

multiple inputs, 279-280 
phase-locked loop and, 279-280 

Clock rate vs. processor speed, 11 
Clock-synchronized bus, 97-99 
CMOS, 92 

Code 
CMX-RTX, 252 

assembly, 339 
formats, 339-340 
machine, 339 
for multiprocessor systems, 205 
partitioning of, 125-129 
self-adapting, 125 
size of, 132-133 

Column address hold time, 49 
Column address setup time, 49 
Communication between processors, in 

asynchronous serial interface, 218 
asynchronous serial port, 221, 222f-223f 
CAN bus, 218-220, 22Of 
description of, 204 
FIFO buffers, 211-212 
message stackup problems, 212 
open-collector serial interface, 221 
parallel port interface, 221-224 
for processors on different boards, 218 
registers 

multiprocessor systems 

with DMA-controlled transfers, 
207-21 1 

fast/slow communication problems, 
210-211,211f 

with flip-flop status, 206207, 207f 
with interrupt input, 207 
principles of use, 205-211 

selection criteria, 224225 
serial communication, 21f3-218 

CompactPCI, 267 
Compiler 

assembly support for, 133-134 
C. 131 
chip select and, 136-137 
emulator support for, 132 
function of, 341 
microcontroller-based, 134 
optimizing, 133, 162 
RAM and, 137 

Contact closure, 138 
Context switching 

description of, 136 
registers, 157 

Controller ICs, 53-54 
Control store, 327 
Core dump, 182 

Index 35 1 



Counters for timers 
count ambiguity considerations, 114 
description of, 109-111 

on a chip, 267 
clock, 110 
on a module, 267 
single, 2425 

Crosscompiler, 18 
Crystals 

CPU 

ceramic resonators and, comparisons 

fundamental mode, 92 
schematic representation of, 91f 
series vs. parallel, 90,92 

Cyclic redundancy check, 219 

Daisychained interrupts, 148-149, 155 
Data bus 

between, 92 

buffers, 69-70,86 
description of, 33 
loading, 68-70 

Data flow diagram 
definition of, 120 
for pool pump timer system, 120f, 122f 

calculations of, 44, 48 
for EPROM, 44 
extended, 64,  64-65 
problems with, 63 

description of, 46 
problems with, 63 

Data strobe, 62 
Deactivate Task, 247 
Deadlines, 138 
Debouncing, 169 
Debugger, 18 
Debugging 

Data hold time 

Data setup time 

action codes, 172-1 73 
background debugging mode, 194,283 
breakpoint for evaluating, 180-181, 192 
circular trace buffers, 178-179 
difficulties associated with, 19 
emulator use, 19, 171-172, 191,192-193, 

201-202 
example of, 198-201 
hardware output for, 173-1 75 
interrupt effects on, 169 
levels of, 18 
logic analyzer breakpoints, 180-181 
memory dumps and, 181-182 
monitor programs, 18, 179-180, 193 
onchip, 282-284 

process of, 18 
in RAM, 193-194 
read from ROM, 1761 77 
real-time operating system, 252 
reasons for, 171-172 
registers, 193-194, 282 
serial condition monitor, 182-188 
simulators for, 135 
software throughput and, 177-178 
software timing and, 177 
source-level, 132 
system integration of 

hardware testing, 190-191 
overview of, 189-190 
problem log, 197-198 
RAM use, 193-194 
software testing, 191-193 
stress testing, 196-197 
test plan, 194-196 

tools for, 134-135 
write to ROM, 175-176 

circuits, 55-57, 56f 
linear, 86 
partial, 86 

Decoding 

Define Task, 247 
Define Timeslice, 248 
Design system 

development of 
costs, 19-20 
environment, 10-11, 17-19 
history, 17-18 

distributed systems. see Distributed 
processor systems 

hardware requirements, 20-22 
hardware/software partitioning, 22-24 
microprocessor selection. see Micro- 

shortcuts, 85-86 
software requirements, 20-22 
steps involved in, 1-2 

Development compiler. see Compiler 
Development language 

processor, selection criteria for 

considerations when selecting 
assembly support, 133-134 
code/storage size, 132-133 
debugging tools, 134-135 
emulator support, 132 
optimization, 133 
processors supported, 132 

description of, 131-132 
high-level, 131-1 32 

Differential interfaces, 88-89 
Digital logic, 315-316 

352 Index 



Digital-teanalog converters 
accuracy of, 104-105 
calibration of, 105 
description of, 101-103 
reference voltage, 103-104 
resolution of, 104 
schematic diagram of, 102f 

Direct memory access. see DMA 
Distributed processor systems. see also Multi- 

processor systems 
advantages of, 24-25 
description of, 24, 203 

address bus, 76f, 77 
for communication in multiprocessor 

systems 
fast/slow communication problems, 

210-211,211f 
principles of, 207-21 1 
problems associated with, 208 
scheme variations, 208, 209f 

DMA 

controllers, 77, 79, 81, 85 
CPUs that support, 77 
definition of, 74 
description of, 10 
designing with, 75 
examples of, 74 
flyby transfer, 79 
schematic representation of, 75f 
timing, 79-80, 80f 
UmT, 77, 78f 

schematic representation of, 2f 
software 

data flow diagram, 120f, 122f 
flowcharts, 123 
pseudocode, 123-125 
state diagram, 121-123 

Documentation 

types of, 1 
Don't care state, 316 
DOS 

real-time operating systems that emulate, 

ROM in, 260 

address setup/hold times, 52 
built-in interface, 99-100 
burst mode, 273-274 
characteristics of, 48-49 
controller ICs, 53-54 
description of, 45 
disadvantages of, 49 
refreshing of, 52-53 
schematic representation of, 50f 

260-261 

DRAM 

SRAM and, comparisons between, 49-50 
synchronous, 274-277 
timing, 49-50 
timing logic, 51f, 53 

-DTACK, 62 
D-type latches, 321 
D-type registers, 321 
Dynamic bus sizing, 95,96f 

Edge-sensitive interrupts 
characteristics of, 151-153 
definition of, 146, 151 
level-sensitive interrupts and, comparison 

shared, 153f 

description of, 41 
flash memory and, 41 
for 1% bus, 72 
serial, 72 
write times for, 72 

between, 151-153, 152f 

EEPROM 

&bit bus, 65, 129 
Electromagnetic interference/electromag- 

EMC;. see EMI/EMC 
EMI/EMC 

certification, 3 4  
design considerations, 86-87 
differential interfaces, 88-89 
emission controls, 87-88 
ground loops, 88 
radiated susceptibility, 89 
software considerations, 127-128 

cost of, 19 
debugging use, 19, 171-172, 191, 

development language and, 132 
drawbacks to, 19 
logic analyzer breakpoints and, 180-181 
packaging for, 282 
ROM, 193 

definition of, 4 
description of, 1 
function of, 4, 232 
for multiprocessor systems, 232-233 

access time calculations, 4245  
benefits of, 12 
components of, 39 
costs of, versus ROM, 13 
data hold time, 44 
description of, 12, 39 

netic compatibility. see EMI/EMC 

Emulators 

192-193, 201-202 

Engineering specifications 

EPROM. see also Flash memory 

Index 353 



electrically erasable. see EEPROM 
erasing process, 41 
inputs for, 4142 
memory, 38-39 
output enable time, 44 
schematic representation of, 38f 

Erasable programmable read-only memory. 

ESD 
seeEPROM 

definition of, 87 
protection methods, 88 

Eventdriven scheduling, 240-241 
Exception 

definition of, 286 
handling of, 286 

Failure mode effects analysis, 197 
Fast cycle termination, 95-96 
Field programmable gate array, 281 
FIFO buffers, 211-212 
Filters, for electrostatic discharge protec- 

tion, 88 
Firmware specifications, 1 
Flash memory. see also EPROM 

access time calculations, 42-45 
advantages of, 39 
block-organized, 40 
device manufacturer identification by, 40 
erasing of, 39-40 
incircuit programming of, 39-40, 83-84 
mechanism of operation, 40 
programming of, 40-41 
properties of, 39 
SRAM and, 100 
wait states and, 277 

“D,” 106-107 
registers with, 206207, 207f 
set/reset, 320 

Flipflop 

Floating-point calculations, 133, 31 1-313 
Flowcharts 

description of, 123 
for pool pump timer system example, 

297f-299f 
Flyby transfer, 79 
FPGA, 281 
Functional requirements, 1 

Gating logic, 67f 
Grounding, for electrostatic discharge pro- 

tection, 88 
Ground loops, 88 

Hard deadlines, 138 

Hardware 
memory management, 284-286 
partitioning determinations, 22-24 
requirements estimations, 20-22 
specifications, 1, 20-22,25, 115-117 

Harvard architecture, 14-15, 15f 
H-bridge, 127 
Hex numbers, 306-308 
High-level language, 131-135, 341 

I‘C bus 
buffering of, 217-218 
characteristics of, 71-72 
development of, 72 
for interprocessor communication in 

multiprocessor systems, 217-218 
Microwire and, comparisons between, 74t 
schematic representation of, 71f, 71-72 
speed of, 72 

combination, 100-101 
controller, 53-54 
description of, 58 
functions, 59-63 
interface, 59 
peripheral. see Peripheral ICs 
RAM, 65 
ROM, 65 
SDRAM, 276 
self-refresh capability, 53 
timer, 58 

Idle loop. see Polling loop (s) 
In-circuit programming 

description of, 14, 83 
of flash memory, 39-40, 83-84 
schematic representation of, 84f 

ICs 

Incremental state machine, 130 
Input capture registers, 113 
Input capture timer, 109-110 
Instruction set, evaluation of, 11-12 
Integrated circuits. see ICs 
Intel 
80186, 65 
80188 

description of, 60-61 
interfaces, 65 

8OC96OSA, 65 
i960 VH processor, 98, 277-278 
timing for, 32-33 

built-in, 99-1 00 
description of, 6 7  
differential, 88-89 

Interfaces 

DRAM, 99-100 

354 Index 



&bit, 65 
electrostatic discharge protection, 88 
I’C bus, 73 
ICs, 59 
JTAG, 284 
microprocessor selection and, 6-7 
Microwire, 73-74, 106f 
16-bit, 65-68 
32-bit, 280 

Interleaving, 272-273, 274f 
Interrupt (s) 

acknowledge, 167 
actions secondary to, 143-144 
bus cycles, 148 
daisy-chained, 148-149, 155 
debugging effects, 169 
definition of, 143 
description of, 9 
edge-sensitive, 146, 151-153 
estimating requirements for, 9 
external, 147 
externally vectored, 154-155 
function of, 9 
hardware, 146-148 
high/low pairs, 165-1 66 
internal, 147 
latencies, 11 
latency, 163f 
level-sensitive, 146, 151 
low-priority, 166-168 
microprocessor selection and, 9 
multiple reads and, 164-165 
nested, 146, 157-158, 178 
nonmasking, 150 
overusage of, 9 
prioritizing of, 146 
protection against, 128-129 
race condition and, 162 
in real-time operating system, 247 
reasons for using, 168 
shared memory and, 160-162 
software for, 155 
stackup, 159, 159f 
stuck, 160 
timer, 147, 153, 154f, 163-164, 178 
when to use, 168 

Interrupt controllers 
description of, 59, 145 
vector response to, 145 

Interrupt service routine 
actions secondary to, 155-156 
data transfer to or from, 158 
description of, 143-144, 147 
mechanism of operation, 155-156 

in real-time operating system, 247 
timer resetting and, 163 

Interrupt vectors 
address, 146 
description of, 144-145 
generation of, 145, 145f, 154 

1/0 (input/output) 
control, 258 
digital, 54, 286 
microprocessor selection criteria and, 

peripheral integrated circuits, 58 
pins, 5-6, 29 
ports, 5-6, 58-59, 137 
schematic representation of, 55f 
simple, 54-55, 55f 
strobes, 55-56 

5-6 

ISR. see Interrupt service routine 

JTAG interface, 284 

Kernel, 237, 251 

Language. see Development language; 

Latches 
High-level language 

D-type, 321 
for extended data hold time, 64-65 
for I/O, 58 
packaging of, 321 

Latch input, 321 
LCD, 20 
LED, 20 
Level-sensitive interrupts 

characteristics of, 151 
definition of, 146, 151 
edge-sensitive interrupts and, compari- 

stuck, 160 
son between, 151-153, 152f 

Light-emitting diode, 20 
Liquid crystal display, 20 
Load capacitance, 90 
Loading 

capacitance, 69 
data bus, 68-70 

breakpoints, 180-181 
description of, 177 

Logic analyzer 

Logic delays, 278 
Logic functions 

don’t care state, 316 
negative logic, 318-319 
set/reset flip-flop, 320 
simple logic gates, 316, 317f 

Index 355 



tristate, 319 
true/false notation, 319 

Logic gates, 316, 317f 

Mailbox In, 248 
Mask bytes, 161 
Maxim MAX6576, 111-113 
Memory 

addressable, 327-328 
allocation blocks, 245, 2461‘ 
cache, 278-279 
dumps, 181-182 
EPROM, 38 
flash. see Flash memory 
management of, 244-245, 284-286 
modes for addressing, 337-340 
nonvolatile, 70-71 
in real-time operating system, 244-245, 

251 
requirements assessment, 7-8 
shared, 160-162 

Message stackup, in FIFO buffer system, 

Microchip, 32f, 105, 286 
Microcontrollers. see also Singlechip micro- 

processors 
application-specific, 286 
description of, 5-6 
digital I/O, 286 
FPGA and, 281 
RAM usage limitations, 7 

categorization of, 29 
clock-synchronized bus, 97-99 
complex, architecture of, 333-337 
core of, 325 
environmental requirements, 16 
floating-point, 8 
internal logic of, 97 
justification assessments, 4-5 
life cycle costs, 16-17 
manufacturers of, 6 
multichip designs. see also Multiprocessor 

systems 

212 

Microprocessor 

bus cycles, 34 
components of, 32-33 
data bus, 69, 70f 
single-chip design and, comparison 

between, 30f, 31-35 
with multiple clock inputs, 279-280 
operator training/competence, 17 
power requirements, 15-16 
programmable logic devices and, 281 
‘‘real’’ requirements, 17 

selection criteria for 
development environment, 11-12 
incircuit programming, 14 
interfaces required, 7-8 
interrupts needed, 9 
1 /0  pins, 5-6 
memory architecture, 14-15. see also 

Architecture 
memory requirements, 7-8 
nonvolatile storage, 14 
overview of, 5 
processing speed, 11-12 
RAM, 7 
real-time requirements, 9-10 
ROM, 7-8 
ROMability, 12-14 

simple, architecture of 
addressable memory, 327-328 
arithmetic logic unit, 325-327 
branching, 329-330 
conditional branching, 330 
control store, 327 
immediate data, 330 
opcodes, 329 
output, 331, 333 
program counter, 329 
timing logic, 328 

designs, 29-30 
elements of, 29-30 
insufficiency of, 31 
interface requirements, 7 
multichip designs and, comparison 

schematic representation of, 30f 
timebase, 29-30 

singlechip 

between, 30f, 31-35 

SRAM connected to, 46f 
stack, 242 
Zilog 280, 265 

description of, 217-218 
multichip designs, 106-107 
schematic diagram of, 71f 

Microwire 

Monitor programs, for debugging, 18, 

Motorola 
179-180, 193 

68230, 60-61 
68HC05,13 
MC68EZ328,96,99 
MC68HC16,95 
memory management scheme, 286 
timing for, 32f 

Multichip designs 
bus cycles, 34 

356 Index 



components of, 32-33 
data bus, 69, 70f 
RF energy, 86-87 
singlechip design and, comparison 

between, 30f, 31-35 
Multiple buses, 277-278 
Multiple-instruction fetch, 280-281 
Multiplexer, 320 
Multiplexing 

address bus, 35f, 41 
description of, 33 
input, 92 

Multiprocessor systems. see also Distributed 
processor systems 

acknowledge timing, 225-226 
code complexity for, 205 
design pitfalls for 

berserk processors, 227 
cumulative time errors, 227-228 
error handling, 227 
isolation, 228 
locking problems, 228-232 
multiple measurements, 226 
revisions, 227 
synchronization, 226 

data corruption, 216, 228 
data transfer methods, 215 
drawbacks to, 215 
guidelines for using, 229-230 
mechanism of operation, 212 
schematic representation of, 213f 
semaphore use, 215-216 

engineering specifications, 232-233 
interprocessor communication methods 

asynchronous serial interface, 218 
asynchronous serial port, 221, 

CAN bus, 218-220, 220f 
FIFO buffers, 211-212 
message stackup problems, 212 
opencollector serial interface, 221 
parallel port interface, 221-224 
for processors on different boards, 218 
registers 

dual-port RAM 

222f-223f 

with DMA-controlled transfers, 

fast/slow communication problems, 

with flip-flop status, 206-207, 207f 
with interrupt input, 207 
principles of use, 205-21 1 

serial communication, 216-218 

207-21 1 

210-211,211f 

overview of, 203-204 

reasons for using, 203 
schematic representation of, 204f, 

204205 
Multitasking 

definition of, 238 
eventdriven scheduling, 240-241 
preemptive scheduling, 239, 241, 251 
tasks activation and deactivation, 239-240 
time slicing and, 238, 239f 

NAND gate, 316, 317f 
Nested interrupts, 146, 157-158, 178 
Noise, 127 
Nonmasking interrupts, 150 
Nonvolatile memory, 70-71 
Nonvolatile storage, 14 
NOR gate, 316, 317f 
Normally-not-ready bus, 36-37 
Number systems 

binary numbers, 306-308 
computer representation of numbers, 

308-310 
converting numbers between bases, 

306-307 
floating point, 311-313 
hex numbers, 306-308 
negative numbers, 308-310 
number bases, 303-306 
suffixes, 310-311 

NVRAM. 45 

On-chip debug, 282-284 
One-time programmable devices, 12, 39 
Opcodes, 329 
Open-collector, 221, 316 
Open drain, 316 
Operator training/competence, for micro- 

Optimizing compiler, 133, 162 
OR gate, 316, 31’7f 
Oscillators. see also Clock(s) 

crystal, 90, 91f 
external, 92 
Pierce, 90, 92 

processor, 17 

Output contention, 316 
Output enable time, 44 

Page mode, of DRAM, 273-274, 274f 
Parallel port interface, for interprocessor 

communication in multiprocessor 
systems, 221-224 

Partitioning 
code, 125-129 
hardware, 22-24 

Index 357 



software, 22-24 
PC/104 bus, 262-264 
PCI-based embedded boards, 261 
PC platforms, for embedded systems 

advantages of, 255-258 
disadvantages of, 258-260 

Peripheral component interconnect, 251 
Peripheral ICs 

data setup/hold time, 63 
functions, 59-63 
interface ICs, 59 
interrupt controllers, 59 
1/0 ports, 58-59 
recovery time, 127 
shared memory problem associated with, 

162 
timers, 58 
280 peripherals, 61-62 

Peripherals, internal 
description of, 85 
DMA controllers, 77, 79, 85 
interrupts generated by, 147 
types of, 85 
watchdog timer. see Watchdog timer 

Phase-locked loop, 279 
Pierce oscillator, 90, 92 
Pins 

1% bus, 71 
I/O, 5-6, 29 

Pipeline queue, 271-272 
Platforms, for embedded systems 

CompactF'CI, 267 
description of, 255 
ISA-based embedded boards, 261 
PC 

advantages of, 255-258 
disadvantages of, 258-260 

PC/104 bus, 262-264 
PCI-based embedded boards, 261 
STD bus, 265 
VME bus, 267 

Polling loop (s) 
-DATA, 40 
description of, 119-120, 235 
function of, 120 
length of, 11 
multiple, 130 
for pool pump timer system example, 

priority of, 169 
registers and, 136 
single, 129 

data flow diagram, 121f, 122f 

297f-299f 

Pool pump timer system 

hardware specifications, 288-290 
interrupts of, 155-156 
pseudocode, 292-301 
software description, 290-292 
state diagram for, 122f 
system description, 287 

Port expanders, 59, 218 
Power, for microprocessor, 15-16 
Prefetch queue, 271-272 
Privilege levels, 285-286 
Processors. see Microprocessor 
Product requirements, 1 
Program counter, 329 
Programmable logic devices, 53, 101, 281 
Programmable read-only memory. see 

Programming, incircuit 
description of, 14, 83 
of flash memory, 3940,83-84 
schematic representation of, 84f 

compiler information regarding, 137 
electrically erasable. see EEPROM 
erasable. see EPROM 
Harvard architecture and, 14 
one-time programmable, 39 
programmer, 18, 39 
ROM. seeROM 

Protocol converter 
description of, 236 
preemptive scheduling of, 241 

advantages of, 123-124 
description of, 123-125 
example of, 124, 160 
for pool pump timer system, 292-301 

Pullups, for reducing RF susceptibility, 89 
Pulse-width modulation 

PROM 

PROM 

Pseudocode 

description of, 6 
outputs, 10 
real-time events and, 9-10 
schematic representation of, 9f 

PWM timer, 110, 114 

Race condition, 162 
RAM 

access time calculations, 4548 
compiler information regarding, 137 
dual-port 

data corruption, 216,228 
data transfer methods, 215 
drawbacks to, 215 
guidelines for using, 229-230 
mechanism of operation, 212 

358 Index 



schematic representation of, 213f 
semaphore use, 215-216 

dynamic. see DRAM 
estimation of, 7 
ICs, 65 
microprocessor selection and, 7 
nonvolatile, 45, 48 
requirements needed, 7 
restrictions on, 137 
static, 45 

usage of, 7 
types of, 45 

RAS access time, 49 
RAS/CAS precharge time, 50 
RAS hold time, 50 
-RD signal, 98 
Read modify write (rmv) cycle, 51 
Real-time events, 9-10 
Real-time operating system 

applicability of, 251 
application using, 267-269 
buffers, 243 
challenges associated with, 251 
characteristics of, 237-238 
communication in, 247-248, 251 
costs of, 251 
debugging, 252 
description of, 130 
DOS emulation, 260-261 
full operating system, 238 
functions supported by, 238 
hardware effects, 250 
interrupts and, 247 
kernel, 237, 251 
memory 

management of, 244-245 
requirements, 251 

microcontrollers, 252 
microprocessors, 10-1 1, 251-252 
multitasking 

definition of, 238 
eventdriven scheduling, 240-241 
preemptive scheduling, 239, 241, 251 
tasks activation and deactivation, 

time slicing and, 238, 239f 
239-240 

overview of, 235-238 
preemption considerations, 248-250 
resource management, 245-246 
scheduling in, 236 
tasks in 

communication between, 243-244 
scheduling of, 244 
tracking of, 242 

timers, 246 
when to use, 251 

Reference voltage, 103-104 
Refresh cycle 

internal, 52 
microprocessor and, conflicts between, 

self-refresh capability, 53 

for communication in multiprocessor 

context switching, 157 
debugging, 193-194, 282 
D-type, 321, 322f 
hardware debug, 258 
input capture, 113 
packaging of, 321 
saved on stack, 156 
segment, 285 
types of, 320-321 

DRAM, 52-53 

53 

Registers 

systems, 205-21 1 

Reloading timer, 108f, 109 
Requirements definition 

description of, 3-5 
example of, 2 6 2 7  

emissions control, 87-88 
radiated susceptibility, 89 
regulations on, 86 

characteristics of, 42 

RF energy 

ROM 

debugging information written to, 
175-1 76 

definition of, 42 
DOS in, 260 
emulators, 193 
estimating requirements for, 7 
ICs, 65 
mask charges for producing, 13 
microprocessor selection and, 7-8 
trace data for debugging read from, 

1 7 6 1  77 
ROM 8031, 13 
ROMability 

definition of, 12 
microprocessor selection and, 12-1 4 

Round-robin scheduling, 235 
Row address hold time, 49 
Row address setup time, 49 
Row address strobe, 45 
RTOS. see Real-time operating system 

Scheduling, in real-time operating system 
eventdriven, 240-241 

Index 359 



preemptive, 239, 241, 251 
sequential 

description of, 236 
time slicing and, 239 

SCL, 71 
SCLOCK, 106 
SDRAM, 274-277 
Segment registers, 285 
Self-adapting code, 125 
Semaphore, 161 
Send Mail, 248 
Sequential scheduling 

description of, 236 
time slicing and, 239 

Serial condition monitor, 182-188 
Serial interfaces 

12C bus. see 12C bus 
Microwire, 73-74 
miscellaneous types of, 80-81 

Set/reset flipflop, 320 
Shielding, for electrostatic discharge pro- 

Simple logic gates, 316, 317f 
Simple microprocessor. see Microprocessor, 

Simulator, 135 
Singlechip microprocessors 

tection, 88 

simple 

designs, 29-30 
elements of, 29-30 
insufficiency of, 3 1 
interface requirements, 7 
multichip designs and, comparison 

between, 30f, 31-35 
schematic representation of, 30f 
timebase, 29-30 

16-bit bus, 65-68, 129 
Sleep current, 16 
Soft deadlines, 138 
Software definition 

definition of, 22 
elements of, 22 

architecture, 129-130 
considerations for, 126-129 
development language, 131-135 
documentation methods 

data flow diagram, 120 
flowcharts, 123 
pseudocode, 123-125 
state diagram, 122f 

Software design 

EM1 issues, 127-128 
hard deadlines, 138 
hardware damage, 127 
independence considerations, 138-140 

interrupt protection provisions, 128-129 
mechanical delays and, 127 
microprocessor hardware, 135-138 
overview of, 119-120 
partitioning determinations, 22-24 
recovery time considerations, 127 
requirements estimations, 20-22 
safety concerns, 126-127 
soft deadlines, 138 
specifications 

description of, 140 
detailed types of, 21-22 
estimating of, 21 
example of, 141-142 
reasons for creating, 140-141 
summary overview of, 26 

timing, 177 
Specifications 

engineering 
definition of, 4 
description of, 1 
function of, 4, 232 
for multiprocessor systems, 232-233 

hardware, 1, 20-22, 25, 115-117 
software 

description of, 140 
detailed types of, 21-22 
estimating of, 21 
example of, 141-142 
reasons for creating, 140-141 
summary overview of, 26 

Speed 
cache memory for improving, 279 
of 12C bus, 72 
of microprocessor 

estimating of, 11-12 
pitfalls regarding, 11-12 

SRAM 
characteristics of, 45 
DRAM and, comparisons between, 

flash ROM and, 100 
microprocessor connection, 46f 
nonvolatile, 45 
write cycle timing, 47f 

definition of, 135 
function of, 135-136 
hardwired, 156 
microprocessor, 242 
registers saved on, 156 

definition of, 121 
for pool timer system, 122f 

49-50 

Stack 

State diagram 

360 Index 



State machine (s) 
description of, 129-130 
incremental, 130 
multiple, 130 

STD bus, 265 
Stress testing of system, 19G-197 
Strobes 

data, 62 
read, 48, 49f, 54 
write, 48, 49f 

Superloop. see Polling loop(s) 
Switch closure, 138 
Switch debouncing, 169 
Synchronization 

of distributed processor systems, 24 
of multiprocessor systems, 226 

Task control block, 242 
Tasks, in real-time operating system. see also 

Multitasking 
communication between, 243-244 
scheduling of, 244 
tracking of, 242 

Task switch, 250 
Test specifications, 1 
Timer 

counters 
count ambiguity considerations, 114 
description of, 109-1 11 

description of, 107 
design considerations for, 115 
ICs, 58 
input capture, 109-110 
interrupts caused by, 147, 153, 154f, 

motor control, 113-1 14 
for pool pump timer system example, 

PWM, 110, 114 
in real-time operating system, 246 
reloading, l08f, 109 
schematic diagram of, 108f 
temperature measurements, 11 1-1 13 
watchdog 

163-164, 178 

300f-301f 

description of, 81 
electrostatic discharge protection sec- 

ondary to, 88 
functions of, 81-82 
mechanism of operation, 82, 83f 
sophisticated types of, 82 

Timer code, 120 
Time slicing 

definition of, 238 
sequential scheduling and, 239 

Timing 
access 

for EPROM, 42 
for RAM, 4548 

acknowledge, 2 25-226 
calculations, 54 
cumulative errors and, 163-164, 227-228 
DMA, 79-80, 80f 
DRAM, 49-50,51f 
interrupt effects, 156 
Microwire, 71f 
schematic representation of, 43f 
SDRAM, 276 
of software, 177 

description of, 328 
functions of, 337 

TC59LM814,53 
TH50VSF0302, 100 

circular trace buffers creating, 178-179 
read from ROM, 176177 
software timing and, 177 

Timing logic 

Toshiba 

Trace data, for debugging 

Transceiver, 320 
Tristate, 106, 319 
True/false notation, 319 

UART (universal asynchronous 
receiver/transmitters) , 59, 67-68, 77, 
78f, 169, 183 

Update rate, 4 

Vector. see Interrupt vectors 
VME bus, 267 
von Neumann architecture, 14-15, 15f 

Wait On, 248 
Wait states 

bus types and, 36-38 
description of, 35-36,63 
dual-port RAM and, 212 
extended data hold time and, 65 
flash memory and, 277 
integral generators, 36 
internal, 36 
peripheral needing, 37 
timing of, 34,  36 

Watchdog timer 
built-in, 82 
description of, 81 
electrostatic discharge protection sec- 

functions of, 81-82 
ondary to, 88 

Index 361 



mechanism of operation, 82, 83f 
sophisticated types of, 82 

Yield, 248 

Websites, 343-344 Z80186,81 
Wide cache memory, 280f Z80188,81 
-WR path, 47 28530, 61-62 
-WR signal, 98 Z8536,61-62 

280 peripherals, 61-62 
Zilog 2-80, 6, 32f, 34, 265 XOFF processing, 236237 

XON processing, 236-237 

362 Index 



Covers general principles that apply to all embedded system chips rather than limiting coverage to specific hardware 
Learn how to cope with "real world problems 
Design embedded systems products that are reliable and work in real applications 

edded Microprocessor Systems: Red World Design is an introduction to the design of embedded microprocessor systems, from the ini- 
tial concept through debugging. Unlike many books on the subject, Embedded Microprocessor Systems is not limited to describing a particular 
microprocessor family, but covers general principles that apply to numerous processors. 

I U  tlnwghwt the book are numerous examples, tips, and pitfalls you can only learn from an experienced designer. You will find out not only 
h a w k  iqbmnt faster and better design processes, but also how to avoid time-consuming and expensive mistakes. Stuart Ball's many years of 
experience in the industry have given him an extremely practical approach to design realities and problems. He describes the entire process of 
designing circuits and the software that controls them, assessing the system requirements, and testing and debugging systems. 

The less-experienced engineer will be able to apply Ball's advice to everyday projects and challenges immediately with amazing results. In this new 
edition, the author has expanded the section on debugging to include avoiding common hardware, software, and interrupt problems. Other new 
features include expanded sections on interrupts, system integration and debug, clock synchronized buses, and industry-standard embedded plat- 
forms. 
New material includes a section about combination microcontroller/PLD devices. 

Reviews: 
"I'm very impressed [Embedded Microprocessor Systems] covers mony ospects of  developing embedded systems thot engineers new to the held moy not consider " 
-Ken Davidson, Editor-in-Chief of Circuit Cellor INK, about the previous edition 

"This book will provide on excellent introduction for someone new to the art o f  embedding microprocessors into systems It is lobeled os on introduction to the design of 
embedded microprocessor systems, ond I think i t  ochieves this better than ony other book I hove seen So con I recommend this book7 k, very much It is uptodate, clear, 
and full of helpful tips " 
-Dr. Alistair Armitage, Meosurement & Control 

"Students ond engineers new to embedded work looking for o generol introduction to embedded system design will benefit from this book It IS suitoble for engineers coming 
from the s o h o r e  or the hordwore side. Highly recommended " 
-Chris Hills, C Vh + r_r 

--I 11-1 I17 1-1 I I I 
I 1 IJ 11-I 1-1 I I 1 

w=w- 
W h W  
Iww 1178707574 

vnmr.nownqms.Com 


