

C++

T h i r d E d i t i o n

Nell Dale
University of Texas, Austin

PlusData
Structures

Copyright © 2003 by Jones and Bartlett Publishers, Inc.

Cover image © Douglas E. Walker / Masterfile

All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized
in any form, electronic or mechanical, including photocopying, recording, or any information storage or
retrieval system, without written permission from the copyright owner.

Chief Executive Officer: Clayton Jones
Chief Operating Officer: Don W. Jones, Jr.
Executive V.P. and Publisher: Robert Holland
V.P., Design and Production: Anne Spencer
V.P., Manufacturing and Inventory Control: Therese Bräuer
Editor-in-Chief, College: J. Michael Stranz
Production Manager: Amy Rose
Marketing Manager: Nathan Schultz
Associate Production Editor: Karen Ferreira
Editorial Assistant: Theresa DiDonato
Production Assistant: Jenny McIsaac
Cover Design: Night & Day Design
Composition: Northeast Compositors, Inc.
Text Design: Anne Spencer
Printing and Binding: Courier Westford
Cover Printing: Lehigh Press

Library of Congress Cataloging-in-Publication Data

Dale, Nell B.
C++ plus data structures / Nell Dale.—3rd ed.

p. cm.
ISBN 0-7637-0481-4
1. C++ (Computer program language) 2. Data structures (Computer science) I. Title.

QA76.73.C153 D334 2003
005.7’3—dc21

2002034168

This book was typeset in Quark 4.1 on a Macintosh G4. The font families used were Rotis Sans Serif, Rotis
Serif, and Prestige Elite. The first printing was printed on 45# Highland Book.

Printed in the United States of America
06 05 04 03 02 10 9 8 7 6 5 4 3 2 1

World Headquarters
Jones and Bartlett Publishers
40 Tall Pine Drive
Sudbury, MA 01776
978-443-5000
info@jbpub.com
www.jbpub.com

Jones and Bartlett Publishers
Canada

2406 Nikanna Road
Mississauga, ON L5C 2W6
CANADA

Jones and Bartlett Publishers
International

Barb House, Barb Mews
London W6 7PA
UK

To Al, my husband and best friend, to our children and our
children's children, and to our dogs Maggie and Chrissie,
who round out our family.

N.D.

Historically, a course on data structures has been a mainstay of most computer
science departments. Over the last 18 years, however, the focus of this course
has broadened considerably. The topic of data structures has now been sub-

sumed under the broader topic of abstract data types (ADTs)—the study of classes of
objects whose logical behavior is defined by a set of values and a set of operations.

The term abstract data type describes a comprehensive collection of data values
and operations; the term data structures refers to the study of data and how to repre-
sent data objects within a program; that is, the implementation of structured rela-
tionships. The shift in emphasis is representative of the move towards more
abstraction in computer science education. We now are interested in the study of the
abstract properties of classes of data objects in addition to how the objects might be
represented in a program. Johannes J. Martin put it succinctly: “. . . depending on
the point of view, a data object is characterized by its type (for the user) or by its
structure (for the implementor).”1

Three Levels of Abstraction

The focus of this book is on abstract data types as viewed from three different per-
spectives: their specification, their application, and their implementation. The speci-
fication perspective describes the logical or abstract level of data types, and is
concerned with what the operations do. The application level, sometimes called the
user level, is concerned with how the data type might be used to solve a problem,
and is focused on why the operations do what they do. The implementation level is
where the operations are actually coded. This level is concerned with the how ques-
tions.

Within this focus, we stress computer science theory and software engineering
principles, including modularization, data encapsulation, information hiding, data

1Johannes J. Martin, Data Types and Data Structures, Prentice-Hall International Series in Computer Science,
C. A. R. Hoare, Series Editor, Prentice-Hall International, (UK), LTD, 1986, p. 1.

abstraction, object-oriented decomposition, functional decomposition, the analysis of
algorithms, and life-cycle software verification methods. We feel strongly that these
principles should be introduced to computer science students early in their education so
that they learn to practice good software techniques from the beginning.

An understanding of theoretical concepts helps students put the new ideas they
encounter into place, and practical advice allows them to apply what they have learned.
To teach these concepts to students who may not have completed many college-level
mathematics courses, we consistently use intuitive explanations, even for topics that
have a basis in mathematics, like the analysis of algorithms. In all cases, our highest
goal has been to make our explanations as readable and as easily understandable as
possible.

Prerequisite Assumptions

In this book, we assume that students are familiar with the following C++ constructs:

• Built-in simple data types
• Stream I/O as provided in <iostream>
• Stream I/O as provided in <fstream>
• Control structures while, do-while, for, if, and switch
• User-defined functions with value and reference parameters
• Built-in array types
• Class construct

We have included sidebars within the text to refresh students’ memory concerning
some of the details of these topics.

Changes in the Third Edition

The third edition incorporates the following changes:

Object-oriented constructs moved forward: In the last five years, object-oriented pro-
gramming has become part of the first-year curriculum, as demonstrated by its inclu-
sion in all variations of the first year outlined in the Computing Curricula 2001
developed by the Joint Task Force of the IEEE Computer Society and the Association for
Computing Machinery. Accordingly, the class concept has moved into the first semes-
ter. Because of this, we assume that students have had experience using classes, and we
therefore moved much of the discussion of how to define and access classes to a side-
bar. We have kept a small discussion in the main text. Many students have already
seen inheritance and polymorphism, but the concepts are too important to move to a
sidebar, so we have moved them from Chapter 6 to Chapter 2.

More emphasis on object-oriented design: Object-oriented design is a hard topic for
most students, because people usually think procedurally in their lives. Because of this,
we introduce a methodology with four phases: brainstorming, during which the possible

vi | Preface

objects in a problem are isolated; filtering, during which the set of possible objects are
reexamined to look for duplicates and/or missing objects; scenarios, during which hand
simulations of the processing take place asking “what if ” questions and assigning
responsibilities to classes; and responsibility algorithms, during which the algorithms for
the classes are designed. We use CRC cards to capture the results of the four-phase
process. The output from the scenarios phase is a CRC card for each class. The CRC
card lists the responsibilities of the class and any other classes with which the class
must collaborate, hence the name CRC: class, responsibility, collaboration.

More practical emphasis on testing: The concept of a multipurpose test driver is intro-
duced in Chapter 1. After a test plan has been designed, it is implemented as input to
the test driver. Throughout the rest of the book, this technique is used to test the ADTs.
The drivers, the input data, and the output data are available on the book’s web site:
http://computerscience.jbpub.com/cppDataStructures

Reduced use of templates: The concept of generic data types, as implemented in C++
using templates, is very important. Making every ADT a class template after templates
are introduced in Chapter 4, however, inserts an unnecessary complexity into already
complex code. Thus, when introducing a new construct such as a linked list or a binary
search tree, we have chosen to use classes rather than class templates. Subsequent
implementations of a construct are often in the form of class templates, or the student is
asked to transform a class into a class template in the exercises.

Nonlinked binary tree representation covered with binary trees: The nonlinked represen-
tation of a binary tree is an important concept within its own right, not just as an
implementation for a heap. This implementation, therefore, is covered in Chapter 8 with
other tree implementation techniques.

Removal of material on binary expression trees: Although interesting applications of
trees, binary expression trees do not fit into the discussion of abstract data types. Thus,
we have moved this discussion to the web site.

Inclusion of the ADT set: The exclusion of the ADT set has been an omission from pre-
vious editions. Not only is a set an interesting mathematical object, but there are inter-
esting implementation issues. We propose two implementations, one explicit (bit
vector) and one implicit (list-based).

Content and Organization

Chapter 1 outlines the basic goals of high-quality software, and the basic principles of
software engineering for designing and implementing programs to meet these goals.
Abstraction, functional decomposition, and object-oriented design are discussed. This
chapter also addresses what we see as a critical need in software education: the ability
to design and implement correct programs and to verify that they are actually correct.
Topics covered include the concept of “life-cycle” verification; designing for correctness
using preconditions and postconditions; the use of deskchecking and design/code walk-
throughs and inspections to identify errors before testing; debugging techniques, data
coverage (black-box), and code coverage (clear- or white-box) approaches; test plans,

Preface | vii

unit testing, and structured integration testing using stubs and drivers. The concept of a
generalized test driver is presented and executed in a Case Study that develops the ADT
Fraction.

Chapter 2 presents data abstraction and encapsulation, the software engineering
concepts that relate to the design of the data structures used in programs. Three per-
spectives of data are discussed: abstraction, implementation, and application. These
perspectives are illustrated using a real-world example, and then are applied to built-in
data structures that C++ supports: structs and arrays. The C++ class type is presented as
the way to represent the abstract data types we examine in subsequent chapters. The
principles of object-oriented programming—encapsulation, inheritance, and polymor-
phism—are introduced here along with the accompanying C++ implementation con-
structs. The Case Study at the end of this chapter reinforces the ideas of data abstraction
and encapsulation in designing and implementing a user-defined data type for general-
ized string input and output. This class is tested using a version of the generalized test
driver.

Chapter 2 ends with a discussion of two C++ constructs that help users write better
software: namespace and exception handling using the try/catch statement. Various
approaches to error handling are demonstrated in subsequent chapters.

We would like to think that the material in Chapters 1 and 2 is a review for most
students. The concepts in these two chapters, however, are so crucial to the future of
any and all students that we feel that we cannot rely on the assumption that they have
seen the material before.

Chapter 3 introduces the most fundamental abstract data type of all: the list. The
chapter begins with a general discussion of operations on abstract data types and then
presents the framework with which all of the other data types are examined: a presenta-
tion and discussion of the specification, a brief application using the operations, and the
design and coding of the operations. Both the unsorted and the sorted lists are pre-
sented with an array-based implementation. Overloading the relational operators is pre-
sented as a way to make the implementations more generic. The binary search is
introduced as a way to improve the performance of the search operation in the sorted
list. Because there is more than one way to solve a problem, we discuss how competing
solutions can be compared through the analysis of algorithms, using Big-O notation.
This notation is then used to compare the operations in the unsorted list and the sorted
list. The four-phase object-oriented methodology is presented and demonstrated in the
Case Study by using a simple real estate database.

Chapter 4 introduces the stack and the queue data types. Each data type is first
considered from its abstract perspective, and the idea of recording the logical abstrac-
tion in an ADT specification is stressed. Then the set of operations is implemented in
C++ using an array-based implementation. The concept of dynamic allocation is intro-
duced, along with the syntax for using C++ pointer variables, and then used to demon-
strate how arrays can be dynamically allocated to give the user more flexibility. With
the introduction of dynamic storage, the destructor must be introduced. Templates are
introduced as a way of implementing generic classes. A Case Study using stacks (post-
fix expression evaluator) and one using queues (simulation) are presented.

viii | Preface

Chapter 5 reimplements the ADTs from Chapters 3 and 4 as linked structures. The
technique used to link the elements in dynamically allocated storage is described in
detail and illustrated with figures. The array-based implementations and the linked
implementations are then compared using Big-O notation.

Chapter 6 is a collection of advanced concepts and techniques. Circular linked lists
and doubly linked lists are discussed. The insertion, deletion, and list traversal algo-
rithms are developed and implemented for each variation. An alternative representation
of a linked structure, using static allocation (an array of structs), is designed. Class copy
constructors, assignment overloading, and dynamic binding are covered in detail. The
Case Study uses doubly linked lists to implement large integers.

Chapter 7 discusses recursion, giving the student an intuitive understanding of the
concept, and then shows how recursion can be used to solve programming problems.
Guidelines for writing recursive functions are illustrated with many examples. After
demonstrating that a by-hand simulation of a recursive routine can be very tedious, a
simple three-question technique is introduced for verifying the correctness of recursive
functions. Because many students are wary of recursion, the introduction to this mate-
rial is deliberately intuitive and nonmathematical. A more detailed discussion of how
recursion works leads to an understanding of how recursion can be replaced with itera-
tion and stacks. The Case Study develops and implements the Quick-Sort algorithm.

Chapter 8 introduces binary search trees as a way to arrange data, giving the flexi-
bility of a linked structure with O(log2N) insertion and deletion time. In order to build
on the previous chapter and exploit the inherent recursive nature of binary trees, the
algorithms first are presented recursively. After all the operations have been imple-
mented recursively, we code the insertion and deletion operations iteratively to show
the flexibility of binary search trees. A nonlinked array-based binary tree implementa-
tion is described. The Case Study discusses the process of building an index for a man-
uscript and implements the first phase.

Chapter 9 presents a collection of other branching structures: priority queues
(implemented with both lists and heaps), graphs, and sets. The graph algorithms make
use of stacks, queues, and priority queues, thus both reinforcing earlier material and
demonstrating how general these structures are. Two set implementations are discussed:
the bit-vector representation, in which each item in the base set is assigned a
present/absent flag and the operations are the built-in logic operations, and a list-based
representation, in which each item in a set is represented in a list of set items. If the
item is not in the list, it is not in the set.

Chapter 10 presents a number of sorting and searching algorithms and asks the
question: Which are better? The sorting algorithms that are illustrated, implemented,
and compared include straight selection sort, two versions of bubble sort, quick sort,
heap sort, and merge sort. The sorting algorithms are compared using Big-O nota-
tion. The discussion of algorithm analysis continues in the context of searching. Pre-
viously presented searching algorithms are reviewed and new ones are described.
Hashing techniques are discussed in some detail. Finally, radix sort is presented and
analyzed.

Preface | ix

Additional Features

Chapter Goals A set of goals presented at the beginning of each chapter helps the
students assess what they will learn. These goals are tested in the exercises at the end
of each chapter.

Chapter Exercises Most chapters have more than 35 exercises. They vary in levels of
difficulty, including short programming problems, the analysis of algorithms, and
problems to test the student’s understanding of concepts. Approximately one-third of
the exercises are answered in the back of the book. The answer key for the remaining
exercises is in the Instructor’s Guide.

Case Studies There are seven case studies. Each includes a problem description, an
analysis of the problem input and required output, and a discussion of the appropriate
data types to use. Several of the case studies are completely coded and tested. Others
are left at various stages in their development, requiring the student to complete and
test the final version.

Program Disk The specification and implementation of each class representing an ADT
is available on a program disk that can be downloaded, free of charge, from the Jones
and Bartlett Student Diskette Page on the World Wide Web (www.jbpub.com/disks).
The source code for the completed case studies and the partial source code for the
others is also available.

Instructor Support Material Instructor teaching tools and resources are available on
the web at http://computerscience.jbpub.com/cppDataStructures. On this site you will
find:

• Goals
• Outlines
• Teaching Notes: suggestions for how to teach the material covered in each chap-

ter
• Workouts: suggestions for in-class activities, discussion questions, and short

exercises
• Exercise Key: answers to those questions that are not solved in the back of the

book
• Programming Assignments: a collection of a wide range of assignments carefully

chosen to illustrate the techniques described in the text
• Electronic TestBank: this computerized TestBank allows you to create cus-

tomized exams or quizzes from a collection of pre-made questions sorted by
chapter. Updated for this edition, the TestBank questions can be edited and
supplemented, and answers are provided for all pre-made questions. Each test
is developed using Brownstone Diploma Software and is available on the
book’s web site.

• PowerPoint Presentations: new PowerPoint slides developed specifically for the
third edition provide an excellent visual accompaniment to lectures. The Power-

x | Preface

Point presentations for each chapter are designed to coordinate with the material
in the textbook, and can be downloaded from the book’s web site.

Acknowledgments

We would like to thank the following people who took the time to review the first edi-
tion of this manuscript: Donald Bagert, Texas Tech University; Susan Gauch, University
of Kansas; Pamela Lawhead, University of Mississippi; Pat Nettnin, Finger Lakes Com-
munity College; Bobbie Othmer, Westminster College of Salt Lake City; Suzanne
Pawlan-Levy, Allan Hancock College; Carol Roberts, University of Maine; and Robert
Strader, Stephen F. Austin State University. Thanks also to all of you who took the time
to answer our electronic survey concerning this third edition.

A special thanks to John McCormick, University of Northern Iowa, Mark Heading-
ton, University of Wisconsin—LaCrosse, and Dan Joyce. John and Dan graciously
allowed us to use some of their analogies from Ada Plus Data Structures and Object-
Oriented Data Structures Using Java, respectively. Mark’s ideas, suggestions, and sharp
eyes were invaluable. Thanks also to the students at Uppsala University in Sweden who
used the final draft of the manuscript of the second edition in a course in the fall of
1997. Because non-English readers see what is written, not what they expect to see,
their comments were invaluable in cleaning up ambiguous wording.

Thanks to my husband Al, our children and grandchildren too numerous to name,
and our dogs, Maggie, who keeps my feet warm, and Chrissie, whose role in life is to
keep the house in turmoil and mud.

A virtual bouquet of roses to the people who have worked on this book: Mike and
Sigrid Wile, along with our Jones and Bartlett family. Theresa DiDonato, a jack-of-all-
trades who helped with the survey; Jenny McIsaac, who jumped directly into the frying
pan on her first day; Nathan Schultz, whose “can do” attitude is a joy to work with; and
Michael Stranz and Amy Rose, whose team effort sustains all of us. Amy, thank heav-
ens this production schedule was a little more leisurely than the last—but not by much!

N. D.

Preface | xi

Preface v

1 Software Engineering Principles 1

1.1 The Software Process 2
1.2 Program Design 9
1.3 Verification of Software Correctness 19

Case Study: Fraction Class 50
Summary 58
Exercises 60

2 Data Design and Implementation 63
2.1 Different Views of Data 64
2.2 Abstraction and Built-In Types 72
2.3 Higher-Level Abstraction and the C++ Class Type 85
2.4 Object-Oriented Programming 91
2.5 Constructs for Program Verification 95

Case Study: User-Defined String I/O Class 100
Summary 116
Exercises 117

3 ADTs Unsorted List and Sorted List 123
3.1 Lists 124
3.2 Abstract Data Type Unsorted List 125
3.3 Abstract Data Type Sorted List 146
3.4 Comparison of Algorithms 157
3.5 Comparison of Unsorted and Sorted List ADT Algorithms 164
3.6 Overloading Operators 167
3.7 Object-Oriented Design Methodology 170

Case Study: Real Estate Listings: An Object-Oriented Design 173
Summary 188
Exercises 189

4 ADTs Stack and Queue 195
4.1 Stacks 196
4.2 More about Generics: C++ Templates 210
4.3 Pointer Types 214
4.4 Dynamically Allocated Arrays 222

Case Study: Simulation 245
Summary 261
Exercises 262

5 Linked Structures 279
5.1 Implementing a Stack as a Linked Structure 280
5.2 Implementing a Queue as a Linked Structure 296
5.3 Implementing the Unsorted List as a Linked Structure 307
5.4 Implementing the Sorted List as a Linked Structure 318

Summary 327
Exercises 327

6 Lists Plus 333
6.1 Circular Linked Lists 334
6.2 Doubly Linked Lists 344
6.3 Linked Lists with Headers and Trailers 348
6.4 Copy Structures 350

xiv | Contents

6.5 A Linked List as an Array of Records 358
6.6 Polymorphism with Virtual Functions 368
6.7 A Specialized List ADT 373

Case Study: Implementing a Large Integer ADT 379
Summary 392
Exercises 392

7 Programming with Recursion 399
7.1 What is Recursion? 400
7.2 The Classic Example of Recursion 401
7.3 Programming Recursively 404
7.4 Verifying Recursive Functions 407
7.5 Writing Recursive Functions 408
7.6 Using Recursion to Simplify Solutions 411
7.7 Recursive Linked List Processing 412
7.8 A Recursive Version of Binary Search 416
7.9 Recursive Versions of InsertItem and DeleteItem 418
7.10 How Recursion Works 420
7.11 Tracing the Execution of Recursive Function Insert 429
7.12 Debugging Recursive Routines 432
7.13 Removing Recursion 432
7.14 Deciding Whether to Use a Recursive Solution 436

Case Study: QuickSort 438
Summary 446
Exercises 447

8 Binary Search Trees 455
8.1 Trees 456
8.2 Logical Level 460
8.3 Application Level 463
8.4 Implementation Level 463
8.5 Recursive Binary Search Tree Operations 464
8.6 Iterative Insertion and Deletion 496
8.7 Comparing Binary Search Trees and Linear Lists 504
8.8 A Nonlinked Representation of Binary Trees 506

Case Study: Building an Index 510

Contents | xv

Summary 517
Exercises 517

9 Priority Queues, Heaps, Graphs, and Sets 529
9.1 ADT Priority Queue 530
9.2 Heaps 533
9.3 Graphs 546
9.4 Sets 571

Summary 579
Exercises 579

10 Sorting and Searching Algorithms 588
10.1 Sorting 588
10.2 Searching 619
10.3 Hashing 622
10.4 Radix Sort 637

Summary 642
Exercises 644

Answer to Selected Exercises 653
Appendix A Reserved Words 713
Appendix B Operator Precedents 713
Appendix C A Selection of Standard Library Routines 715
Appendix D Character Sets 724
Appendix E The Standard Template Library 726
Glossary 771
Index 789

xvi | Contents

After studying this chapter, you should be able to

Describe the general activities in the software life cycle

Describe the goals for “quality” software

Explain the following terms: software requirements, software specifica-
tions, algorithm, information hiding, abstraction, stepwise refinement

Explain and apply the fundamental ideas of top-down design

Explain and apply the fundamental ideas of object-oriented design

Identify several sources of program errors

Describe strategies to avoid software errors

Specify the preconditions and postconditions of a program segment or function

Show how deskchecking, code walk-throughs, and design and code inspections
can improve software quality and reduce the software development effort

Explain the following terms: acceptance tests, regression testing, verification,
validation, functional domain, black-box testing, white-box testing

State several testing goals and indicate when each would be appropriate

Describe several integration-testing strategies and indicate when each would
be appropriate

Explain how program verification techniques can be applied throughout the
software development process

Create a C++ test driver program to test a simple class

G
oals

Software Engineering
Principles

2 | Chapter 1: Software Engineering Principles

At this point in your computing career, you have completed at least one semester of
computer science course work. You can take a problem of medium complexity, write an
algorithm to solve the problem, code the algorithm in C++, and demonstrate the correct-
ness of your solution. At least, that’s what the syllabus for your introductory class said
you should be able to do when you complete the course. Now that you are starting your
second (or third?) semester, it is time to stop and review those principles that, if adhered
to, guarantee that you can indeed do what your previous syllabus claimed.

In this chapter, we review the software design process and the verification of soft-
ware correctness. In Chapter 2, we review data design and implementation.

1.1 The Software Process

When we consider computer programming, we immediately think of writing a program
for a computer to execute—the generation of code in some computer language. As a
beginning student of computer science, you wrote programs that solved relatively sim-
ple problems. Much of your initial effort went into learning the syntax of a program-
ming language such as C++: the language’s reserved words, its data types, its constructs
for selection (if-else and switch) and looping (while, do while, and for), and its
input/output mechanisms (cin and cout).

You may have learned a programming methodology that took you from the problem
description that your instructor handed out all the way through the delivery of a good
software solution. Programmers have created many design techniques, coding standards,
and testing methods to help develop high-quality software. But why bother with all that
methodology? Why not just sit down at a computer and write programs? Aren’t we
wasting a lot of time and effort, when we could just get started on the “real” job?

If the degree of our programming sophistication never had to rise above the level of
trivial programs (like summing a list of prices or averaging grades), we might get away
with such a code-first technique (or, rather, lack of technique). Some new programmers
work this way, hacking away at the code until the program works more or less cor-
rectly—usually less.

As your programs grow larger and more complex, however, you must pay attention
to other software issues in addition to coding. If you become a software professional,
someday you may work as part of a team that develops a system containing tens of
thousands, or even millions, of lines of code. The activities involved in such a software
project’s whole “life cycle” clearly go beyond just sitting down at a computer and writ-
ing programs. These activities include

• Problem analysis Understanding the nature of the problem to be solved
• Requirements elicitation Determining exactly what the program must do
• Requirements definition Specifying what the program must do (functional

requirements) and any constraints on the solution approach (nonfunctional
requirements such as what language to use)

• High- and low-level design Recording how the program meets the requirements,
from the “big picture” overview to the detailed design

1.1 The Software Process | 3

• Implementation of the design Coding a program in a computer language
• Testing and verification Detecting and fixing errors and demonstrating the cor-

rectness of the program
• Delivery Turning over the tested program to the customer or user (or instructor!)
• Operation Actually using the program
• Maintenance Making changes to fix operational errors and to add or modify

the program’s function

Software development is not simply a matter of going through these steps sequen-
tially. Rather, many activities take place concurrently. We may code one part of the
solution while we design another part, or define requirements for a new version of a
program while we continue testing the current version. Often a number of people may
work on different parts of the same program simultaneously. Keeping track of all these
activities is not an easy task.

We use the term software engineering to
refer to the discipline concerned with all
aspects of the development of high quality
software systems. It encompasses all varia-
tions of techniques used during the software
life cycle plus supporting activities such as
documentation and teamwork. A software
process is a specific set of interrelated soft-
ware engineering techniques, used by a per-
son or organization to create a system.

What makes our jobs as programmers or
software engineers challenging is the ten-
dency of software to grow in size and complexity and to change at every stage of its
development. A good software process uses tools to manage this size and complexity
effectively. Usually a programmer takes advantage of several toolboxes, each containing
tools that help to build and shape a software product.

Hardware One toolbox contains the hardware itself: the computers and their
peripheral devices (such as monitors, terminals, storage devices, and printers), on which
and for which we develop software.

Software A second toolbox contains various software tools: operating systems to
control the computer’s resources, text editors to help us enter programs, compilers to
translate high-level languages like C++ into something that the computer can execute,
interactive debugging programs, test-data generators, and so on. You’ve used some of
these tools already.

Ideaware A third toolbox is filled with the shared body of knowledge that
programmers have collected over time. This box contains the algorithms that we use to
solve common programming problems as well as data structures for modeling the

Software engineering The discipline devoted to the
design, production, and maintenance of computer pro-
grams that are developed on time and within cost esti-
mates, using tools that help to manage the size and
complexity of the resulting software products

Software process A standard, integrated set of software
engineering tools and techniques used on a project or by
an organization

4 | Chapter 1: Software Engineering Principles

information processed by our programs. Recall that an
algorithm is a step-by-step description of the solution
to a problem. How we choose between two algorithms
that carry out the same task often depends on the
requirements of a particular application. If no relevant
requirements exist, the choice may be based on the

programmer’s own style.
Ideaware contains programming methodologies such as top-down and object-ori-

ented design and software concepts, including information hiding, data encapsulation,
and abstraction. It includes aids for creating designs such as CRC (Classes, Responsibili-
ties, and Collaborations) cards and methods for describing designs such as the UML
(Unified Modeling Language). It also contains some tools for measuring, evaluating, and
proving the correctness of our programs. We devote most this book to exploring the
contents of this third toolbox.

Some might argue that using these tools takes the creativity out of programming,
but we don’t believe that to be true. Artists and composers are creative, yet their inno-
vations are grounded in the basic principles of their crafts. Similarly, the most creative
programmers build high-quality software through the disciplined use of basic program-
ming tools.

Goals of Quality Software

Quality software entails much more than a program that somehow accomplishes the
task at hand. A good program achieves the following goals:

1. It works.

2. It can be modified without excessive time and effort.

3. It is reusable.

4. It is completed on time and within budget.

It’s not easy to meet these goals, but they are all important.

Goal 1: Quality Software Works The program must do the task it was designed to
perform, and it must do it correctly and completely. Thus the first step in

the development process is to determine exactly
what the program is required to do. To write a
program that works, you first need to have a
definition of the program’s requirements. For students,
the requirements often are included in the instruc-
tor’s problem description: “Write a program that
calculates. . . .” For programmers working on a govern-
ment contract, the requirements document may be
hundreds of pages long.

We develop programs that meet the user’s requirements using software specifica-
tions. The specifications indicate the format of the input and the expected output,

Algorithm A logical sequence of discrete steps that
describes a complete solution to a given problem, com-
putable in a finite amount of time

Requirements A statement of what is to be provided by
a computer system or software product

Software specification A detailed description of the
function, inputs, processing, outputs, and special require-
ments of a software product; it provides the information
needed to design and implement the program

1.1 The Software Process | 5

details about processing, performance measures (how fast? how big? how accurate?),
what to do in case of errors, and so on. The specifications tell exactly what the program
does, but not how it is done. Sometimes your instructor will provide detailed specifica-
tions; other times you may have to write them yourself, based on the requirements defi-
nition, conversations with your instructor, or guesswork. (We discuss this issue in more
detail later in this chapter.)

How do you know when the program is right? A program must be complete (it
should “do everything” specified) and correct (it should “do it right”) to meet its require-
ments. In addition, it should be usable. For instance, if the program needs to receive
data from a person sitting at a terminal, it must indicate when it expects input. The pro-
gram’s outputs should be readable and understandable to users. Indeed, creating a good
user interface is an important subject in software engineering today.

Finally, Goal 1 means that the program should be as efficient as it needs to be. We
would never deliberately write programs that waste time or space in memory, but not all
programs demand great efficiency. When they do, however, we must meet these
demands or else the programs will not satisfy the requirements. A space-launch control
program, for instance, must execute in “real time”; that is, the software must process
commands, perform calculations, and display results in coordination with the activities
it is supposed to control. Closer to home, if a desktop-publishing program cannot
update the screen as rapidly as the user can type, the program is not as efficient as it
needs to be. In such a case, if the software isn’t efficient enough, it doesn’t meet its
requirements; thus, according to our definition, it doesn’t work correctly.

Goal 2: Quality Software Can Be Modified When does software need to be modified?
Changes occur in every phase of its existence.

Software gets changed in the design phase. When your instructor or employer gives
you a programming assignment, you begin to think of how to solve the problem. The
next time you meet, however, you may be notified of a small change in the program
description.

Software gets changed in the coding phase. You make changes in your program as
a result of compilation errors. Sometimes you suddenly see a better solution to a part of
the problem after the program has been coded, so you make changes.

Software gets changed in the testing phase. If the program crashes or yields wrong
results, you must make corrections.

In an academic environment, the life of the software typically ends when a cor-
rected program is turned in to be graded. When software is developed for real-world
use, however, most of the changes take place during the “maintenance” phase. Someone
may discover an error that wasn’t uncovered in testing, someone else may want to
include additional functions, a third party may want to change the input format, and a
fourth person may want to run the program on another system.

As you see, software changes often and in all phases of its life cycle. Knowing this
fact, software engineers try to develop programs that are modified easily. If you think it
is a simple matter to change a program, try to make a “small change” in the last pro-
gram you wrote. It’s difficult to remember all the details of a program after some time
has passed, isn’t it? Modifications to programs often are not even made by the original

6 | Chapter 1: Software Engineering Principles

authors but rather by subsequent maintenance programmers. (Someday you may be the
one making the modifications to someone else’s program.)

What makes a program easy to modify? First, it should be readable and understand-
able to humans. Before it can be changed, it must be understood. A well-designed,
clearly written, well-documented program is certainly easier for human readers to
understand. The number of pages of documentation required for “real-world” programs
usually exceeds the number of pages of code. Almost every organization has its own
policy for documentation. Reading a well-written program can teach you techniques
that help you write good programs. In fact, it’s difficult to imagine how anyone could
become a good programmer without reading good programs.

Second, the program should readily be able to withstand small changes. The key
idea is to partition your programs into manageable pieces that work together to solve
the problem, yet remain relatively independent. The design methodologies reviewed
later in this chapter should help you write programs that meet this goal.

Goal 3: Quality Software Is Reusable It takes time and effort to create quality software.
Therefore, it is important to realize as much value from the software as possible.

One way to save time and effort when building a software solution is to reuse pro-
grams, classes, functions, and other components from previous projects. By using previ-
ously designed and tested code, you arrive at your solution sooner and with less effort.
Alternatively, when you create software to solve a problem, it is sometimes possible to
structure that software so it can help solve future, related problems. By doing so, you
gain more value from the software created.

Creating reusable software does not happen automatically. It requires extra effort
during the specification and design phases. To be reusable, software must be well docu-
mented and easy to read, so that a programmer can quickly determine whether it can be
used for a new project. It usually has a simple interface so that it can easily be plugged
into another system. It is also modifiable (Goal 2), in case a small change is needed to
adapt it to the new system.

When creating software to fulfill a narrow, specific function, you can sometimes
make the software more generally usable with a minimal amount of extra effort. In this
way, you increase the chances that you can reuse the software later. For example, if
you are creating a routine that sorts a list of integers into increasing order, you might
generalize the routine so that it can also sort other types of data. Furthermore, you
could design the routine to accept the desired sort order, increasing or decreasing, as a
parameter.

Goal 4: Quality Software Is Completed on Time and Within Budget You know what
happens in school when you turn in your program late. You probably have grieved over an
otherwise perfect program that received only half credit—or no credit at all—because you
turned it in one day late. “But the network was down five hours last night!” you protest.

Although the consequences of tardiness may seem arbitrary in the academic world,
they are significant in the business world. The software for controlling a space launch

1.1 The Software Process | 7

must be developed and tested before the launch can take place. A patient database sys-
tem for a new hospital must be installed before the hospital can open. In such cases, the
program doesn’t meet its requirements if it isn’t ready when needed.

“Time is money” may sound trite but failure to meet deadlines is expensive. A com-
pany generally budgets a certain amount of time and money for the development of a
piece of software. As a programmer, you are paid a salary or an hourly wage. If your
part of the project is only 80% complete when the deadline arrives, the company must
pay you—or another programmer—to finish the work. The extra expenditure in salary is
not the only cost, however. Other workers may be waiting to integrate your part of the
program into the system for testing. If the program is part of a contract with a cus-
tomer, monetary penalties may be assessed for missed deadlines. If it is being developed
for commercial sales, the company may be beaten to the market by a competitor and
eventually forced out of business.

Once you have identified your goals, what can you do to meet them? Where should
you start? Software engineers use many tools and techniques. In the next few sections
of this chapter, we review some of these techniques to help you understand, design, and
code programs.

Specification: Understanding the Problem

No matter which programming design technique you use, the first steps are always the
same. Imagine the following all-too-familiar situation. On the third day of class, you are
given a 12-page description of Programming Assignment 1, which must be running per-
fectly and turned in by noon, one week from yesterday. You read the assignment and
realize that this program is three times larger than any program you have ever written.
What is your first step?

The responses listed here are typical of those given by a class of computer science
students in such a situation:

1. Panic 39%
2. Sit down at the computer and begin typing 30%
3. Drop the course 27%
4. Stop and think 4%

Response 1 is a predictable reaction from students who have not learned good pro-
gramming techniques. Students who adopt Response 3 will find their education pro-
gressing rather slowly. Response 2 may seem to be a good idea, especially considering
the deadline looming ahead. Resist the temptation, though—the first step is to think.
Before you can come up with a program solution, you must understand the problem.
Read the assignment, and then read it again. Ask questions of your instructor (or man-
ager, or client). Starting early affords you many opportunities to ask questions; starting
the night before the program is due leaves you no opportunity at all.

The problem with writing first is that it tends to lock you into the first solution you
think of, which may not be the best approach. We have a natural tendency to believe

8 | Chapter 1: Software Engineering Principles

that once we’ve put something in writing, we have invested too much in the idea to toss
it out and start over.

On the other hand, don’t agonize about all the possibilities until the day before your
deadline. (Chances are that a disk drive, network, or printer will fail that day!) When
you think you understand the problem, you should begin writing your design.

Writing Detailed Specifications

Many writers experience a moment of terror when faced with a blank piece of paper—
where to begin? As a programmer, however, you don’t have to wonder about where to
begin. Using the assignment description (your “requirements”), first write a complete
definition of the problem, including the details of the expected inputs and outputs, the
necessary processing and error handling, and all assumptions about the problem. When
you finish this task, you have a detailed specification—a formal definition of the prob-
lem your program must solve, which tells you exactly what the program should do. In
addition, the process of writing the specifications brings to light any holes in the
requirements. For instance, are embedded blanks in the input significant or can they be
ignored? Do you need to check for errors in the input? On which computer system(s)
will your program run? If you get the answers to these questions at this stage, you can
design and code your program correctly from the start.

Many software engineers work with user/operational scenarios to understand the
requirements. In software design, a scenario is a sequence of events for one execution of
the program. For example, a designer might consider the following scenario when
developing the software for a bank’s automated teller machine (ATM):

1. The customer inserts a bank card.

2. The ATM reads the account number on the card.

3. The ATM requests a PIN (personal identification number) from the customer.

4. The customer enters 5683.

5. The ATM successfully verifies the account number PIN combination.

6. The ATM asks the customer to select a transaction type (deposit, show balance,
withdrawal, or quit).

7. The customer selects the show balance option.

8. The ATM obtains the current account balance ($1,204.35) and displays it.

9. The ATM asks the customer to select a transaction type (deposit, show balance,
withdrawal, or quit).

10. The customer selects quit.

11. The ATM returns the customer’s bank card.

Scenarios allow us to get a feel for the behavior expected from the system. Of
course, a single scenario cannot show all possible behaviors. For this reason, software

1.2 Program Design | 9

engineers typically prepare many different scenarios to gain a full understanding of the
system’s requirements.

You must know some details to write and run the program. Other details, if not
explicitly stated in the program’s requirements, may be handled according to the pro-
grammer’s preference. Assumptions about unstated or ambiguous specifications should
always be written explicitly in the program’s documentation.

The detailed specification clarifies the problem to be solved. But it does more than
that: It also serves as an important piece of written documentation about the program.
There are many ways in which specifications may be expressed and a number of differ-
ent sections that may be included, depending on the nature of the problem. Our recom-
mended program specification includes the following sections:

• Processing requirements
• Sample inputs with expected outputs
• Assumptions

If special processing is needed for unusual or error conditions, it should be specified
as well. Sometimes it is helpful to include a section containing definitions of terms used.
Likewise, it may prove useful to list any testing requirements so that verifying the pro-
gram is considered early in the development process.

1.2 Program Design

Remember, the specification of the program tells what the program must do, but not
how it does it. Once you have fully clarified the goals of the program, you can begin to
develop and record a strategy for meeting them; in other words, you can begin the
design phase of the software life cycle.

Tools

In this section, we review some ideaware tools that are used for software design, includ-
ing abstraction, information hiding, stepwise refinement, and visual tools.

Abstraction The universe is filled with complex systems. We learn about such systems
through models. A model may be mathematical, like equations describing the motion of
satellites around the earth. A physical object such as a model airplane used in wind-
tunnel tests is another form of model. In this approach to understanding complex
systems, the important concept is that we consider only the essential characteristics of
the system; we ignore minor or irrelevant details. For example, although the earth is an
oblate ellipsoid, globes (models of the earth) are spheres. The small difference between
the earth’s equatorial diameter and polar diameter is not important to us in studying the
political divisions and physical landmarks on the earth. Similarly, the model airplanes
used to study aerodynamics do not include in-flight movies.

10 | Chapter 1: Software Engineering Principles

Figure 1.1 An abstraction includes the essential details relative to the perspective of the viewer.

f=ma

An abstraction is a model of a complex system
that includes only the essential details. Abstractions
are the fundamental way that we manage complexity.
Different viewers use different abstractions of a partic-
ular system. Thus, while we may see a car as a means
to transport us and our friends, the automotive brake
engineer may see it as a large mass with a small con-
tact area between it and the road (Figure 1.1).

What does abstraction have to do with software
development? The programs we write are abstractions. A spreadsheet program that is
used by an accountant models the books used to record debits and credits. An educa-
tional computer game about wildlife models an ecosystem. Writing software is difficult
because both the systems we model and the processes we use to develop the software
are complex. One of our major goals is to convince you to use abstractions to manage
the complexity of developing software. In nearly every chapter, we make use of abstrac-
tion to simplify our work.

Information Hiding Many design methods are based on decomposing a problem’s
solution into modules. A module is a cohesive system subunit that performs a share of
the work. Decomposing a system into modules helps us manage complexity. Additionally,
the modules can form the basis of assignments for different programming teams working
separately on a large system. One important feature of any design method is that the
details that are specified in lower levels of the program design remain hidden from the
higher levels. The programmer sees only the details that are relevant at a particular level

Abstraction A model of a complex system that includes
only the details essential to the perspective of the viewer
of the system

Module A cohesive system subunit that performs a
share of the work

1.2 Program Design | 11

of the design. This information hiding makes
certain details inaccessible to the programmer
at higher levels.

Modules act as an abstraction tool.
Because the complexity of its internal struc-
ture can be hidden from the rest of the sys-
tem, the details involved in implementing a module remain isolated from the details of
the rest of the system.

Why is hiding the details desirable? Shouldn’t the programmer know everything?
No! In this situation, a certain amount of ignorance truly is advantageous. Information
hiding prevents the higher levels of the design from becoming dependent on low-level
design details that are more likely to be changed. For example, you can stop a car with-
out knowing whether it has disc brakes or drum brakes. You don’t need to know these
lower-level details of the car’s brake subsystem to stop it.

Furthermore, you don’t want to require a complete understanding of the complicated
details of low-level routines for the design of higher-level routines. Such a requirement
would introduce a greater risk of confusion and error throughout the whole program. For
example, it would be disastrous if every time we wanted to stop our car, we had to think,
“The brake pedal is a lever with a mechanical advantage of 10.6 coupled to a hydraulic
system with a mechanical advantage of 7.3 that presses a semi-metallic pad against a steel
disc. The coefficient of friction of the pad/disc contact is. . . .”

Information hiding is not limited to driving cars and programming computers. Try to
list all the operations and information required to make a peanut butter and jelly sand-
wich. We normally don’t consider the details of planting, growing, and harvesting peanuts,
grapes, and wheat as part of making a sandwich. Information hiding lets us deal with only
those operations and information needed at a particular level in the solution of a problem.

The concepts of abstraction and information hiding are fundamental principles of soft-
ware engineering. We will come back to them again and again throughout this book.
Besides helping us manage the complexity of a large system, abstraction and information
hiding support our quality-related goals of modifiability and reusability. In a well-designed
system, most modifications can be localized to just a few modules. Such changes are much
easier to make than changes that permeate the entire system. Additionally, a good system
design results in the creation of generic modules that can be used in other systems.

To achieve these goals, modules should be good abstractions with strong cohesion;
that is, each module should have a single purpose or identity and the module should
stick together well. A cohesive module can usually be described by a simple sentence. If
you have to use several sentences or one very convoluted sentence to describe your
module, it is probably not cohesive. Each module should also exhibit information hiding
so that changes within it do not result in changes in the modules that use it. This inde-
pendent quality of modules is known as loose coupling. If your module depends on the
internal details of other modules, it is not loosely coupled.

Stepwise Refinement In addition to concepts such as abstraction and information
hiding, software developers need practical approaches to conquer complexity. Stepwise

Information hiding The practice of hiding the details of
a function or data structure with the goal of controlling
access to the details of a module or structure

12 | Chapter 1: Software Engineering Principles

1Grady Booch, Object Oriented Design with Applications (Benjamin Cummings, 1991).

refinement is a widely applicable approach. Many variations of it exist, such as top-
down, bottom-up, functional decomposition, and even “round-trip gestalt design.”
Undoubtedly you have learned a variation of stepwise refinement in your studies, as it
is a standard method for organizing and writing essays, term papers, and books. For
example, to write a book an author first determines the main theme and the major
subthemes. Next, the chapter topics can be identified, followed by section and
subsection topics. Outlines can be produced and further refined for each subsection. At
some point the author is ready to add detail—to actually begin writing sentences.

In general, with stepwise refinement, a problem is approached in stages. Similar
steps are followed during each stage, with the only difference reflecting the level of
detail involved. The completion of each stage brings us closer to solving our problem.
Let’s look at some variations of stepwise refinement:

• Top-down With this approach, the problem is first broken into several large
parts. Each of these parts is, in turn, divided into sections, the sections are subdi-
vided, and so on. The important feature is that details are deferred as long as
possible as we move from a general to a specific solution. The outline approach
to writing a book involves a form of top-down stepwise refinement.

• Bottom-up As you might guess, with this approach the details come first. Bot-
tom-up development is the opposite of the top-down approach. After the detailed
components are identified and designed, they are brought together into increas-
ingly higher-level components. This technique could be used, for example, by the
author of a cookbook who first writes all the recipes and then decides how to
organize them into sections and chapters.

• Functional decomposition This program design approach encourages program-
ming in logical action units, called functions. The main module of the design
becomes the main program (also called the main function), and subsections
develop into functions. This hierarchy of tasks forms the basis for functional
decomposition, with the main program or function controlling the processing.
The general function of the method is continually divided into subfunctions until
the level of detail is considered fine enough to code. Functional decomposition is
top-down stepwise refinement with an emphasis on functionality.

• Round-trip gestalt design This confusing term is used to define the stepwise
refinement approach to object-oriented design suggested by Grady Booch,1 one
of the leaders of the “object” movement. First, the tangible items and events in
the problem domain are identified and assigned to candidate classes and objects.
Next, the external properties and relationships of these classes and objects are
defined. Finally, the internal details are addressed; unless these are trivial, the
designer must return to the first step for another round of design. This approach
entails top-down stepwise refinement with an emphasis on objects and data.

Good software designers typically use a combination of the stepwise refinement
techniques described here.

1.2 Program Design | 13

2K. B. Beck and W. Cunningham, http://c2.com/doc/oopsla89/paper.html.

Visual Tools Abstraction, information hiding, and stepwise refinement are interrelated
methods for controlling complexity during the design of a system. We now look at
some tools that can help us visualize our designs. Diagrams are used in many
professions. For example, architects use blueprints, investors use market trend graphs,
and truck drivers use maps.

Software engineers use different types of diagrams and tables, such as the Unified Mod-
eling Language (UML) and Class, Responsibility, and Collaboration (CRC) cards. The
UML is used to specify, visualize, construct, and document the components of a soft-
ware system. It combines the best practices that have evolved over the past several
decades for modeling systems, and it is particularly well suited to modeling object-ori-
ented designs. UML diagrams represent another form of abstraction. They hide imple-
mentation details and allow systems designers to concentrate on only the major design
components. UML includes a large variety of interrelated diagram types, each with its
own set of icons and connectors. A very powerful development and modeling tool, it is
helpful for modeling designs after they have been developed.

In contrast, CRC cards help us determine our initial designs. CRC cards were first
described by Beck and Cunningham,2 in 1989, as a means to allow object-oriented pro-
grammers to identify a set of cooperating classes to solve a problem.

A programmer uses a physical 4� � 6� index card to represent each class that had
been identified as part of a problem solution. Figure 1.2 shows a blank CRC card. It con-
tains room for the following information about a class:

1. Class name

2. Responsibilities of the class—usually represented by verbs and implemented by pub-
lic functions (called methods in object-oriented terminology)

3. Collaborations—other classes or objects that are used in fulfilling the responsibilities

14 | Chapter 1: Software Engineering Principles

Figure 1.2 A blank CRC card

Class Name: Superclass: Subclasses:

Responsibilities Collaborations

CRC cards are great tools for refining an object-oriented design, especially in a
team programming environment. They provide a physical manifestation of the building
blocks of a system that allows programmers to walk through user scenarios, identifying
and assigning responsibilities and collaborations. We discuss a problem-solving
methodology using CRC cards in Chapter 3.

UML is beyond the scope of this text, but we will use CRC cards throughout.

Design Approaches

We have defined the concept of a module, described the characteristics of a good mod-
ule, and presented the concept of stepwise refinement as a strategy for defining mod-
ules. But what should these modules be? How do we define them? One approach is to
break the problem into functional subproblems (do this, then do this, then do that).
Another approach is to divide the problem into the “things” or objects that interact to
solve the problem. We explore both of these approaches in this section.

Top-Down Design One method for designing software is based on the functional
decomposition and top-down strategies. You may have learned this method in your
introductory class. First the problem is broken into several large tasks. Each of these
tasks is, in turn, divided into sections, the sections are subdivided, and so on. As we
said previously, the key feature is that details are deferred as long as possible as we
move from a general to a specific solution.

1.2 Program Design | 15

Make Cake
Get ingredients
Mix cake ingredients
Bake
Cool
Apply icing

To develop a computer program by this method, we begin with a “big picture”
solution to the problem defined in the specification. We then devise a general strat-
egy for solving the problem by dividing it into manageable functional modules.
Next, each of the large functional modules is subdivided into several tasks. We do
not need to write the top level of the functional design in source code (such as C++);
rather, we can write it in English or “pseudocode.” (Some software development proj-
ects even use special design languages that can be compiled.) This divide-and-con-
quer activity continues until we reach a level that can be easily translated into lines
of code.

Once it has been divided into modules, the problem is simpler to code into a well-
structured program. The functional decomposition approach encourages programming
in logical units, using functions. The main module of the design becomes the main pro-
gram (also called the main function), and subsections develop into functions. This hier-
archy of tasks forms the basis for functional decomposition, with the main program or
function controlling the processing.

As an example, let’s start the functional design for making a cake.

The problem now is divided into five logical units, each of which might be further
decomposed into more detailed functional modules. Figure 1.3 illustrates the hierarchy
of such a functional decomposition.

Object-Oriented Design Another approach to designing programs is called object-
oriented design (OOD). This methodology originated with the development of programs
to simulate physical objects and processes in the real world. For example, to simulate an
electronic circuit, you could develop a module for simulating each type of component in
the circuit and then “wire up” the simulation by having the modules pass information
among themselves along the same pattern in which wires connect the electronic
components.

In a simulation, the top-down decomposition of the problem has already taken
place. An engineer has designed a circuit or a mechanical device, a physicist has devel-
oped a model of a physical system, a biologist has developed an experimental model, an

16 | Chapter 1: Software Engineering Principles

Figure 1.3 A portion of a functional design for baking a cake

Make cake

Get
ingredients

Mix cake
ingredients Bake Cool Apply

icing

Mix liquid
ingredients

Mix dry
ingredients

Combine
liquid and dry
ingredients

.

.

.

.
.
.

.

.

economist has designed an economic model, and so on. As a programmer, your job is to
take this problem decomposition and implement it.

In object-oriented design, the first steps are to identify the simplest and most widely
used objects and processes in the decomposition and to implement them faithfully. Once
you have completed this stage, you often can reuse these objects and processes to
implement more complex objects and processes. This hierarchy of objects forms the
basis for object-oriented design.

Object-oriented design, like top-down design, takes a divide-and-conquer approach.
However, instead of decomposing the problem into functional modules, we divide it into
entities or things that make sense in the context of the problem being solved. These
entities, called objects, collaborate and interact to solve the problem. The code that
allows these objects to interact is called a driver program.

Let’s list some of the objects in our baking problem. There are, of course, all of the
various ingredients: eggs, milk, flour, butter, and so on. We also need certain pieces of
equipment, such as pans, bowls, measuring spoons, and an oven. The baker is another

important entity. All of these entities must collaborate
to create a cake. For example, a spoon measures indi-
vidual ingredients and a bowl holds a mixture of
ingredients.

Groups of objects with similar properties and
behaviors are described by an object class (usually

Object class (class) The description of a group of
objects with similar properties and behaviors; a pattern
for creating individual objects

1.2 Program Design | 17

shortened to class). Each oven in the world is a unique object. We cannot hope to
describe every oven, but we can group oven objects together into a class called oven
that has certain properties and behaviors.

An object class is similar to a C++ class (see the sidebar on page 18 on class syntax
and the discussion in Chapter 2). C++ types are templates for variables; classes are tem-
plates for objects. Like types, object classes have attributes and operations associated with
them. For example, an oven class might have an attribute to specify whether it is gas or
electric and operations to turn it on or off and to set it to maintain a desired temperature.

With object-oriented design, we determine the classes from the things in the prob-
lem as described in the problem statement. We record each object class using a CRC
card. From this work, we determine a set of properties (attributes) and a set of responsi-
bilities (operations) to associate with each class. With object-oriented design, the func-
tionality of the program is distributed among a set of collaborating objects. Table 1.1
illustrates some of the object classes that participate in baking a cake.

Once we have defined an oven class, we can reuse it in other cooking problems,
such as roasting a turkey. Reuse of classes is an important aspect of modern software
development. One major goal of this text is to introduce you to a number of classes that
are particularly important in the development of software—abstract data types. We dis-
cuss the concept of an abstract data type in detail in Chapter 2. Throughout the book,
we fully develop many abstract data types, and we describe others leaving you to
develop them yourself. As these classes are fundamental to computer science, we can
often obtain the C++ code for them from a public or private repository or purchase it
from vendors who market C++ components. In fact, the new C++ language standard
includes components in the Standard Template Library (STL). You may wonder why, if
they are already available, we spend so much time on their development. Our goal is to
teach you how to develop software. As with any skill, you need to practice the funda-
mentals before you can become a virtuoso.

To summarize, top-down design methods focus on the process of transforming the
input into the output, resulting in a hierarchy of tasks. Object-oriented design focuses
on the data objects that are to be transformed, resulting in a hierarchy of objects. Grady

Table 1.1 Example of object classes that participate in baking a cake

Class Attributes Responsibilities (Operations)

Oven Energy source Turn on
Size Turn off
Temperature Set desired temperature
Number of racks

Bowl Capacity Add to
Current amount Dump

Egg Size Crack
Separate (white from yolk)

18 | Chapter 1: Software Engineering Principles

Booch puts it this way: “Read the specification of the software you want to build.
Underline the verbs if you are after procedural code, the nouns if you aim for an object-
oriented program.”3

We propose that you circle the nouns and underline the verbs. The nouns become
objects; the verbs become operations. In a functional design, the verbs are the primary
focus; in an object-oriented design, the nouns are the primary focus.

3Grady Booch, “What Is and Isn’t Object Oriented Design.” American Programmer, special issue on object ori-
entation, vol. 2, no. 7–8, Summer 1989.

Class Syntax

A C++ class contains both data and functions that operate on the data. A class is declared in two
parts: the specification of the class and the implementation of the class functions.

class MoneyType
{
public:
void Initialize(long, long);
// Initializes dollars and cents.
long DollarsAre() const;
// Returns dollars.
long CentsAre() const;
// Returns cents.

private:
long dollars;
long cents;

};

A member function is defined like any function with one exception: The name of the class type
within which the member is declared precedes the member function name with a double colon in
between (::). The double colon operator is called the scope resolution operator.

void MoneyType::Initialize(long newDollars, long newCents)
// Post: dollars is set to newDollars; cents is set to
// newCents.
{
dollars = newDollars;
cents = newCents;

}

C++

1.3 Verification of Software Correctness | 19

long MoneyType::DollarsAre() const
// Post: Class member dollars is returned.
{
return dollars;

}

long MoneyType::CentsAre() const
// Post: Class member cents is returned.
{
return cents;

}

If money is a variable of type MoneyType, the following statement prints the data fields of money:

cout << "$" << money.DollarsAre()
<< "." << money.CentsAre();

1.3 Verification of Software Correctness

At the beginning of this chapter, we discussed some characteristics of good programs.
The first of these was that a good program works—it accomplishes its intended function.
How do you know when your program meets that goal? The simple answer is, test it.

Let’s look at testing as it relates to the rest
of the software development process. As pro-
grammers, we first make sure that we under-
stand the requirements. We then come up with
a general solution. Next, we design the solu-
tion in terms of a computer program, using
good design principles. Finally, we implement
the solution, using good structured coding,
with classes, functions, self-documenting code,
and so on.

Once we have the program coded, we compile it repeatedly until no syntax errors
appear. Then we run the program, using carefully selected test data. If the program
doesn’t work, we say that it has a “bug” in it. We try to pinpoint the error and fix it, a
process called debugging. Notice the distinction between testing and debugging. Testing
is running the program with data sets designed to discover any errors; debugging is
removing errors once they are discovered.

When the debugging is completed, the software is put into use. Before final deliv-
ery, software is sometimes installed on one or more customer sites so that it can be
tested in a real environment with real data. After passing this acceptance test phase, the

Testing The process of executing a program with data
sets designed to discover errors

Debugging The process of removing known errors

Acceptance test The process of testing the system in its
real environment with real data

20 | Chapter 1: Software Engineering Principles

4B. W. Boehm, Software Engineering Economics (Englewood Cliffs, N.J.: Prentice-Hall, 1981).

software can be installed at all customer sites. Is the verification process now finished?
Hardly! More than half of the total life-cycle costs and effort generally occur after the
program becomes operational, in the maintenance phase. Some changes correct errors in
the original program; other changes add new capabilities to the software system. In

either case, testing must occur after any program
modification. This phase is called regression testing.

Testing is useful in revealing the presence of bugs
in a program, but it doesn’t prove their absence. We
can only say for sure that the program worked cor-
rectly for the cases we tested. This approach seems
somewhat haphazard. How do we know which tests or
how many of them to run? Debugging a whole pro-
gram at once isn’t easy. Also, fixing the errors found
during such testing can sometimes be a messy task.
Too bad we couldn’t have detected the errors earlier—
while we were designing the program, for instance.

They would have been much easier to fix then.
We know how program design can be improved by using a good design methodol-

ogy. Can we use something similar to improve our program verification activities? Yes,
we can. Program verification activities don’t need to start when the program is com-
pletely coded; they can be incorporated into the entire software development process,
from the requirements phase on. Program verification is more than just testing.

In addition to program verification, which involves fulfilling the requirement speci-
fications, the software engineer has another important task—making sure the specified
requirements actually solve the underlying problem. Countless times a programmer has
finished a large project and delivered the verified software, only to be told, “Well, that’s
what I asked for but it’s not what I need.”

The process of determining that software accomplishes its intended task is called
program validation. Program verification asks, “Are we doing the job right?”; program
validation asks, “Are we doing the right job?”4

Can we really “debug” a program before it has ever been run—or even before it has
been written? In this section we review a number of topics related to satisfying the cri-
terion “quality software works.” The topics include

• Designing for correctness
• Performing code and design walk-throughs and inspections
• Using debugging methods
• Choosing test goals and data
• Writing test plans
• Structured integration testing

Regression testing Reexecution of program tests after
modifications have been made to ensure that the program
still works correctly

Program verification The process of determining the
degree to which a software product fulfills its specifica-
tions

Program validation The process of determining the
degree to which software fulfills its intended purpose

1.3 Verification of Software Correctness | 21

Origin of Bugs

When Sherlock Holmes goes off to solve a case, he doesn’t start from scratch every
time; he knows from experience all kinds of things that help him find solutions. Sup-
pose Holmes finds a victim in a muddy field. He immediately looks for footprints in the
mud, for he can tell from a footprint what kind of shoe made it. The first print he finds
matches the shoes of the victim, so he keeps looking. Now he finds another print, and
from his vast knowledge of footprints he can tell that it was made by a certain type of
boot. He deduces that such a boot would be worn by a particular type of laborer, and
from the size and depth of the print he guesses the suspect’s height and weight. Now,
knowing something about the habits of laborers in this town, he guesses that at 6:30
P.M. the suspect might be found in Clancy’s Pub.

In software verification we are often expected to play detective. Given certain clues,
we have to find the bugs in programs. If we know what kinds of situations produce pro-
gram errors, we are more likely to be able to detect and correct problems. We may even
be able to step in and prevent many errors entirely, just as Sherlock Holmes sometimes
intervenes in time to prevent a crime from taking place.

Let’s look at some types of software errors that show up at various points in pro-
gram development and testing and see how they might be avoided.

Specifications and Design Errors What would happen if, shortly before you were
supposed to turn in a major class assignment, you discovered that some details in the
professor’s program description were incorrect? To make matters worse, you also found
out that the corrections were discussed at the beginning of class on the day you got
there late, and somehow you never knew about the problem until your tests of the class
data set came up with the wrong answers. What do you do now?

Writing a program to the wrong specifications is probably the worst kind of soft-
ware error. How bad can it be? Let’s look at a true story. Some time ago, a computer
company contracted to replace a government agency’s obsolete system with new hard-

22 | Chapter 1: Software Engineering Principles

ware and software. A large and complicated program was written, based on specifica-
tions and algorithms provided by the customer. The new system was checked out at
every point in its development to ensure that its functions matched the requirements in
the specifications document. When the system was complete and the new software was
executed, users discovered that the results of its calculations did not match those of the
old system. A careful comparison of the two systems showed that the specifications of
the new software were erroneous because they were based on algorithms taken from the
old system’s inaccurate documentation. The new program was “correct” in that it
accomplished its specified functions, but the program was useless to the customer
because it didn’t accomplish its intended functions—it didn’t work. The cost of correct-
ing the errors measured in the millions of dollars.

How could correcting the error be so expensive? First, much of the conceptual and
design effort, as well as the coding, was wasted. It took a great deal of time to pinpoint
which parts of the specification were in error and then to correct this document before
the program could be redesigned. Then much of the software development activity
(design, coding, and testing) had to be repeated. This case is an extreme one, but it illus-
trates how critical specifications are to the software process. In general, programmers
are more expert in software development techniques than in the “application” areas of
their programs, such as banking, city planning, satellite control, or medical research.
Thus correct program specifications are crucial to the success of program development.

Most studies indicate that it costs 100 times as much to correct an error discovered
after software delivery than it does if the problem is discovered early in the software life
cycle. Figure 1.4 shows how fast the costs rise in subsequent phases of software devel-
opment. The vertical axis represents the relative cost of fixing an error; this cost might
be measured in units of hours, hundreds of dollars, or “programmer months” (the
amount of work one programmer can do in one month). The horizontal axis represents
the stages in the development of a software product. As you can see, an error that
would have taken one unit to fix when you first started designing might take 100 units
to correct when the product is actually in operation!

Good communication between the programmers (you) and the party who originated
the problem (the professor, manager, or customer) can prevent many specification
errors. In general, it pays to ask questions when you don’t understand something in the
program specifications. And the earlier you ask, the better.

A number of questions should come to mind as you first read a programming assign-
ment. What error checking is necessary? What algorithm or data structure should be used
in the solution? What assumptions are reasonable? If you obtain answers to these ques-
tions when you first begin working on an assignment, you can incorporate them into your
design and implementation of the program. Later in the program’s development, unex-
pected answers to these questions can cost you time and effort. In short, to write a pro-
gram that is correct, you must understand precisely what your program is supposed to do.

Sometimes specifications change during the design or implementation of a pro-
gram. In such cases, a good design helps you to pinpoint which sections of the program
must be redone. For instance, if a program defines and uses type StringType to imple-
ment strings, changing the implementation of StringType does not require rewriting
the entire program. We should be able to see from the design—either functional or

1.3 Verification of Software Correctness | 23

Figure 1.4 This graph demonstrates the importance of early detection of software errors.

Preliminary
design

Detailed
design

Code/
Debug

Integrate Validate Operation

Phase in which error is detected

100

50

20

10

5

2

1

Re
la

tiv
e

co
st

 t
o

co
rr

ec
t

er
ro

r
Sources

• IBM
• TRW
• GTE
• Bell Labs

object-oriented—that the offending code is restricted to the module where StringType
is defined. The parts of the program that require changes can usually be located more
easily from the design than from the code itself.

Compile-Time Errors In the process of learning your first programming language, you
probably made a number of syntax errors. These mistakes resulted in error messages
(for example, “TYPE MISMATCH,” “ILLEGAL ASSIGNMENT,” “SEMICOLON
EXPECTED,” and so on) when you tried to compile the program. Now that you are more
familiar with the programming language, you can save your debugging skills for
tracking down really important logical errors. Try to get the syntax right the first time.
Having your program compile cleanly on the first attempt is not an unreasonable goal.
A syntax error wastes computing time and money, as well as programmer time, and it
is preventable. Some programmers argue that looking for syntax errors is a waste of
their time, that it is faster to let the compiler catch all the typos and syntax errors.
Don’t believe them! Sometimes a coding error turns out to be a legal statement,

24 | Chapter 1: Software Engineering Principles

syntactically correct but semantically wrong. This situation may cause very obscure,
hard-to-locate errors.

As you progress in your college career or move into a professional computing job,
learning a new programming language is often the easiest part of a new software assign-
ment. This does not mean, however, that the language is the least important part. In this
book we discuss abstract data types and algorithms that we believe are language inde-
pendent. That is, they can be implemented in almost any general-purpose programming
language. In reality, the success of the implementation depends on a thorough under-
standing of the features of the programming language. What is considered acceptable
programming practice in one language may be inadequate in another, and similar syntac-
tic constructs may be just different enough to cause serious trouble.

For this reason, it is worthwhile to develop an expert knowledge of both the control
and data structures and the syntax of the language in which you are programming. In
general, if you have a good knowledge of your programming language—and are care-
ful—you can avoid syntax errors. The ones you might miss are relatively easy to locate
and correct. Most are flagged by the compiler with an error message. Once you have a
“clean” compilation, you can execute your program.

Run-Time Errors Errors that occur during the execution of a program are usually more
difficult to detect than syntax errors. Some run-time errors stop execution of the
program. When this situation happens, we say that the program “crashed” or
“terminated abnormally.”

Run-time errors often occur when the programmer makes too many assumptions.
For instance,

result = dividend / divisor;

is a legitimate assignment statement, if we can assume that divisor is never zero. If
divisor is zero, however, a run-time error results.

Sometimes run-time errors occur because the programmer does not fully under-
stand the programming language. For example, in C++ the assignment operator is =,
and the equality test operator is ==. Because they look so much alike, they often are
miskeyed one for the other. You might think that this would be a syntax error that the
compiler would catch, but it is actually a logic error. Technically, an assignment in
C++ consists of an expression with two parts: The expression on the right of the
assignment operator (=) is evaluated and the result is returned and stored in the place
named on the left. The key word here is returned; the result of evaluating the right-
hand side is the result of the expression. Therefore, if the assignment operator is
miskeyed for the equality test operator, or vice versa, the code executes with surprising
results.

Let’s look at an example. Consider the following two statements:

count == count + 1;
if (count = 10)
.
.
.

1.3 Verification of Software Correctness | 25

The first statement returns false; count can never be equal to count + 1. The semi-
colon ends the statement, so nothing happens to the value returned; count has not
changed. In the next statement, the expression (count = 10) is evaluated, and 10 is
returned and stored in count. Because a nonzero value (10) is returned, the if expres-
sion always evaluates to true.

Run-time errors also occur because of unanticipated user errors. For instance, if
newValue is declared to be of type int, the statement

cin >> newValue;

causes a stream failure if the user inputs a nonnumeric character. An invalid file-
name can cause a stream failure. In some languages, the system reports a run-time
error and halts. In C++, the program doesn't halt; the program simply continues with
erroneous data. Well-written programs should not stop unexpectedly (crash) or con-
tinue with bad data. They should catch such errors and stay in control until the user
is ready to quit.

Stream Input and Output

In C++, input and output are considered streams of characters. The keyboard input stream is cin;
the screen output stream is cout. Important declarations relating to these streams are supplied in
the library file <iostream>. If you plan to use the standard input and output streams, you must
include this file in your program. You must also provide for access to the namespace with the using
directive,

#include <iostream>
int main()
{
using namespace std;

int intValue;
float realValue;

cout << "Enter an integer number followed by return."
<< endl;

cin >> intValue;
cout << "Enter a real number followed by return."

<< endl;
cin >> realValue;
cout << "You entered " << intValue << " and "

<< realValue << endl;
return 0;

}

C++

26 | Chapter 1: Software Engineering Principles

<< is called the insertion operator: The expressions on the right describe what is inserted into
the output stream. >> is called the extraction operator: Values are extracted from the input stream
and stored in the places named on the right. endl is a special language feature called a
manipulator; it terminates the current output line.

If you are reading or writing to a file, you include <fstream>. You then have access to the data
types ifstream (for input) and ofstream (for output). Declare variables of these types, use the
open function to associate each with the external file name, and use the variable names in place of
cin and cout, respectively.

#include <fstream>
int main()
{
using namespace std;

int intValue;
float realValue;
ifstream inData;
ofstream outData;

inData.open("input.dat");
outData.open("output.dat");

inData >> intValue;
inData >> realValue;
outData << "The input values are "

<< intValue << " and "
<< realValue << endl;

return 0;
}

On input, whether from the keyboard or from a file, the >> operator skips leading whitespace
characters (blank, tab, line feed, form feed, carriage return) before extracting the input value. To
avoid skipping whitespace characters, you can use the get function. You invoke it by giving the
name of the input stream, a dot, and then the function name and parameter list:

cin.get(inputChar);

The get function inputs the next character waiting in the input stream, even if it is a white-
space character.

Stream Failure

The key to reading data in correctly (from either the keyboard or a file) is to ensure that the order
and the form in which the data are keyed are consistent with the order and type of the identifiers on

1.3 Verification of Software Correctness | 27

the input statement. If an error occurs while accessing an I/O stream, the stream enters the fail state,
and any further references to the stream will be ignored. For example, if you misspell the name of
the file that is the parameter to the function open (In.dat instead of Data.In, for example), the
file input stream will enter the fail state. Alternatively, if you try to input a value when the stream is
at the end of the file, the stream will enter the fail state. Your program may continue to execute
while the stream remains in the fail state, but all further references to the stream will be ignored.

C++ gives you a way to test the state of a stream: The stream name used in an expression
returns a value that is converted to true if the state is good and to false if the stream is in the fail
state. For example, the following code segment prints an error message and halts execution if the
proper input file is not found:

#include <fstream>
#include <iostream>

int main()
{
using namespace std;
ifstream inData;

inData.open("myData.dat");
if (!inData)
{
cout << "File myData.dat was not found." << endl;
return 1;

}
.
.
.
return 0;

}

By convention, the main function returns an exit status of 0 if execution completed normally,
whereas it returns a nonzero value (above, we used 1) otherwise.

The ability of a program to recover
when an error occurs is called robustness. If
a commercial program is not robust, people
do not buy it. Who wants a word processor
that crashes if the user says “SAVE” when
there is no disk in the drive? We want the

Robustness The ability of a program to recover follow-
ing an error; the ability of a program to continue to oper-
ate within its environment

28 | Chapter 1: Software Engineering Principles

program to tell us, “Put your disk in the drive, and press Enter.” For some types of
software, robustness is a critical requirement. An airplane’s automatic pilot system or
an intensive care unit’s patient-monitoring program cannot afford to just crash. In
such situations, a defensive posture produces good results.

In general, you should actively check for error-creating conditions rather than let
them abort your program. For instance, it is generally unwise to make too many
assumptions about the correctness of input, especially “interactive” input from a key-
board. A better approach is to check explicitly for the correct type and bounds of such
input. The programmer can then decide how to handle an error (request new input, print
a message, or go on to the next data) rather than leave the decision to the system. Even
the decision to quit should be made by a program that controls its own execution. If
worse comes to worst, let your program die gracefully.

Of course, not everything that the program inputs must be checked for errors.
Sometimes inputs are known to be correct—for instance, input from a file that has been
verified. The decision to include error checking must be based upon the requirements of
the program.

Some run-time errors do not stop execution but do produce the wrong results.
You may have incorrectly implemented an algorithm or used a variable before it was
assigned a value. You may have inadvertently swapped two parameters of the same
type on a function call or forgotten to designate a function’s output data as a refer-
ence parameter. (See the Parameter Passing sidebar, page 74.) These “logical” errors
are often the hardest to prevent and locate. Later we will talk about debugging tech-
niques to help pinpoint run-time errors. We will also discuss structured testing meth-
ods that isolate the part of the program being tested. But knowing that the earlier we
find an error, the easier it is to fix, we turn now to ways of catching run-time errors
before run time.

Designing for Correctness

It would be nice if there were some tool that would locate the errors in our design or
code without our even having to run the program. That sounds unlikely, but consider an
analogy from geometry. We wouldn’t try to prove the Pythagorean Theorem by proving
that it worked on every triangle; that result would merely demonstrate that the theorem
works for every triangle we tried. We prove theorems in geometry mathematically. Why
can’t we do the same for computer programs?

The verification of program correctness, independent of data testing, is an impor-
tant area of theoretical computer science research. Such research seeks to establish a
method for proving programs that is analogous to the method for proving theorems
in geometry. The necessary techniques exist, but the proofs are often more compli-
cated than the programs themselves. Therefore a major focus of verification research
is the attempt to build automated program provers—verifiable programs that verify

1.3 Verification of Software Correctness | 29

5We do not go into this subject in detail here. For students who are interested in this topic, see David Gries,
The Science of Programming (New York: Springer-Verlag, 1981).

other programs. In the meantime, the formal verification techniques can be carried
out by hand.5

Assertions An assertion is a logical pro-
position that can be true or false. We can
make assertions about the state of the
program. For instance, with the assignment
statement

sum = part + 1 ; // sum and part are integers.

we might assert the following: “The value of sum is greater than the value of part.”
That assertion might not be very useful or interesting by itself, but let’s see what we can
do with it. We can demonstrate that the assertion is true by making a logical argument:
No matter what value part has (negative, zero, or positive), when it is increased by 1,
the result is a larger value. Now note what we didn’t do. We didn’t have to run a pro-
gram containing this assignment statement to verify that the assertion was correct.

The general concept behind formal program verification is that we can make asser-
tions about what the program is intended to do, based on its specifications, and then
prove through a logical argument (rather than through execution of the program) that a
design or implementation satisfies the assertions. Thus the process can be broken down
into two steps:

1. Correctly assert the intended function of the part of the program to be verified.

2. Prove that the actual design or implementation does what is asserted.

The first step, making assertions, sounds as if it might be useful to us in the process
of designing correct programs. After all, we already know that we cannot write correct
programs unless we know what they are supposed to do.

Preconditions and Postconditions Let’s take the idea of making assertions down a level
in the design process. Suppose we want to design a module (a logical chunk of the
program) to perform a specific operation. To ensure that this module fits into the
program as a whole, we must clarify what happens at its boundaries—that is, what must
be true when we enter the module and what must be true when we exit.

To make the task more concrete, picture the design module as it is eventually coded,
as a function that is called within a program. To call the function, we must know its

Assertion A logical proposition that can be true or false

30 | Chapter 1: Software Engineering Principles

exact interface: the name and the parameter list,
which indicates its inputs and outputs. But this infor-
mation isn’t enough: We must also know any assump-
tions that must be true for the operation to function
correctly. We call the assertions that must be true on
entry into the function preconditions. The precondi-
tions act like a product disclaimer:

For instance, when we said that following the execution of

sum = part + 1;

we can assert that sum is greater than part, we made
an assumption—a precondition—that part is not
INT_MAX. If this precondition were violated, our asser-
tion would not be true.

We must also know what conditions are true
when the operation is complete. The postconditions
are assertions that describe the results of the opera-

tion. The postconditions do not tell us how these results are accomplished; rather, they
merely tell us what the results should be.

Let’s consider the preconditions and postconditions for a simple operation, one that
deletes the last element from a list and returns its value as an output. (We are using
“list” in an intuitive sense here; we formally define it in Chapter 3.) The specification for
GetLast is as follows:

GetLast(ListType list, ValueType lastValue)

Function: Remove the last element in the list and return its
value in lastValue.

Precondition: The list is not empty.
Postconditions: lastValue is the value of the last element in the

list, the last element has been removed, and the
list length has been decremented.

WARNING
If you try to execute this operation

when the preconditions are not true,
the results are not guaranteed.

Preconditions Assertions that must be true on entry
into an operation or function for the postconditions to be
guaranteed

Postconditions Assertions that state what results are
expected at the exit of an operation or function, assuming
that the preconditions are true

1.3 Verification of Software Correctness | 31

What do these preconditions and postconditions have to do with program verifica-
tion? By making explicit assertions about what is expected at the interfaces between
modules, we can avoid making logical errors based on misunderstandings. For instance,
from the precondition we know that we must check outside of this operation for the
empty condition; this module assumes that at least one element is present in the list.
The postcondition tells us that when the value of the last list element is retrieved, that
element is deleted from the list. This fact is an important one for the list user to know. If
we just want to take a peek at the last value without affecting the list, we cannot use
GetLast.

Experienced software developers know that misunderstandings about interfaces to
someone else’s modules are one of the main sources of program problems. We use pre-
conditions and postconditions at the module or function level in this book, because the
information they provide helps us to design programs in a truly modular fashion. We
can then use the modules we’ve designed in our programs, confident that we are not
introducing errors by making mistakes about assumptions and about what the modules
actually do.

Design Review Activities When an individual programmer is designing and
implementing a program, he or she can find many software errors with pencil and
paper. Deskchecking the design solution is a
very common method of manually verifying
a program. The programmer writes down
essential data (variables, input values,
parameters of subprograms, and so on) and
walks through the design, marking changes
in the data on the paper. Known trouble
spots in the design or code should be
double-checked. A checklist of typical errors
(such as loops that do not terminate,
variables that are used before they are
initialized, and incorrect order of parameters on function calls) can be used to make
the deskcheck more effective. A sample checklist for deskchecking a C++ program
appears in Figure 1.5.

Have you ever been really stuck trying to debug a program and showed it to a
classmate or colleague who detected the bug right away? It is generally acknowledged
that someone else can detect errors in a program better than the original author can. In
an extension of deskchecking, two programmers can trade code listings and check each
other’s programs. Universities, however, frequently discourage students from examining
each other’s programs for fear that this exchange will lead to cheating. Thus many stu-
dents become experienced in writing programs but don’t have much opportunity to
practice reading them.

Teams of programmers develop most sizable computer programs. Two extensions of
deskchecking that are effectively used by programming teams are design or code walk-
throughs and inspections. The intention of these formal team activities is to move the
responsibility for uncovering bugs from the individual programmer to the group.

Deskchecking Tracing an execution of a design or pro-
gram on paper

Walk-through A verification method in which a team
performs a manual simulation of the program or design

Inspection A verification method in which one member
of a team reads the program or design line by line and the
other members point out errors

32 | Chapter 1: Software Engineering Principles

The Design

1. Does each module in the design have a clear function or purpose?

2. Can large modules be broken down into smaller pieces? (A common rule of thumb is that a C++
function should fit on one page.)

3. Are all the assumptions valid? Are they well documented?

4. Are the preconditions and postconditions accurate assertions about what should be happening in
the module they specify?

5. Is the design correct and complete as measured against the program specification? Are there any
missing cases? Is there faulty logic?

6. Is the program designed well for understandability and maintainability?

The Code

7. Has the design been clearly and correctly implemented in the programming language? Are fea-
tures of the programming language used appropriately?

8. Are all output parameters of functions assigned values?

9. Are parameters that return values marked as reference parameters (have & to the right of the type
if the parameter is not an array)?

10. Are functions coded to be consistent with the interfaces shown in the design?

11. Are the actual parameters on function calls consistent with the parameters declared in the func-
tion prototype and definition?

12. Is each data object to be initialized set correctly at the proper time? Is each data object set before
its value is used?

13. Do all loops terminate?

14. Is the design free of “magic” numbers? (A “magic” number is one whose meaning is not immedi-
ately evident to the reader.)

15. Does each constant, type, variable, and function have a meaningful name? Are comments
included with the declarations to clarify the use of the data objects?

Figure 1.5 Checklist for deskchecking a C++ program

Because testing is time consuming and errors cost more the later they are discovered,
the goal is to identify errors before testing begins.

In a walk-through, the team performs a manual simulation of the design or program
with sample test inputs, keeping track of the program’s data by hand on paper or on a
blackboard. Unlike thorough program testing, the walk-through is not intended to simu-
late all possible test cases. Instead, its purpose is to stimulate discussion about the way
the programmer chose to design or implement the program’s requirements.

At an inspection, a reader (not the program’s author) goes through the design or
code line by line. Inspection participants point out errors, which are recorded on an

1.3 Verification of Software Correctness | 33

inspection report. Some errors are uncovered just by the process of reading aloud. Oth-
ers may have been noted by team members during their preinspection preparation. As
with the walk-through, the chief benefit of the team meeting is the discussion that takes
place among team members. This interaction among programmers, testers, and other
team members can uncover many program errors long before the testing stage begins.

At the high-level design stage, the design should be compared to the program
requirements to make sure that all required functions have been included and that this
program or module correctly “interfaces” with other software in the system. At the low-
level design stage, when the design has been filled out with more details, it should be
reinspected before it is implemented. When the coding has been completed, the com-
piled listings should be inspected again. This inspection (or walk-through) ensures that
the implementation is consistent with both the requirements and the design. Successful
completion of this inspection means that testing of the program can begin.

For the last 20 years, the Software Engineering Institute at Carnegie Mellon Univer-
sity has played a major role in supporting research into formalizing the inspection
process in large software projects, including sponsoring workshops and conferences. A
paper presented at the SEI Software Engineering Process Group (SEPG) Conference
reported on a project that was able to reduce the number of product defects by 86.6%
by using a two-tiered inspection process of group walk-throughs and formal inspec-
tions. The process was applied to packets of requirements, design, or code at every stage
of the life cycle. Table 1.2 shows the defects per 1,000 source lines of code (KSLOC) that
were found in the various phases of the software life cycle in a maintenance project.
This project added 40,000 lines of source code to a software program of half a million
lines of code. The formal inspection process was used in all of the phases except testing
activities.

Looking back at Figure 1.4, you can see that the cost of fixing an error is relatively
cheap until you reach the coding phase. After that stage, the cost of fixing an error
increases dramatically. Using the formal inspection process clearly benefited this project.

These design-review activities should be carried out in as nonthreatening a manner
as possible. The goal is not to criticize the design or the designer, but rather to remove
defects in the product. Sometimes it is difficult to eliminate the natural human emotion
of pride from this process, but the best teams adopt a policy of egoless programming.

Table 1.2 Defects Found in Different Phases*

Stage KSLOC

System Design 2
Software Requirements 8
Design 12
Code Inspection 34
Testing Activities 3

*Dennis Beeson, Manager, Naval Air Warfare Center, Weapons Division, F-18 Software Development Team.

34 | Chapter 1: Software Engineering Principles

Exceptions At the design stage, you should plan how
to handle exceptions in your program. Exceptions are
just what the name implies: exceptional situations.
When these situations occur, the flow of control of the
program must be altered, usually resulting in a
premature end to program execution. Working with

exceptions begins at the design phase: What are the unusual situations that the program
should recognize? Where in the program can the situations be detected? How should the
situations be handled if they arise?

Where—indeed, whether—an exception is detected depends on the language, the
software package design, the design of the libraries being used, and the platform (that
is, the operating system and hardware). Where an exception should be detected depends
on the type of exception, the software package design, and the platform. Where an
exception is detected should be well documented in the relevant code segments.

An exception may be handled in any place in the software hierarchy—from the
place in the program module where the exception is first detected through the top level
of the program. In C++, as in most programming languages, unhandled built-in excep-
tions carry the penalty of program termination. Where in an application an exception
should be handled is a design decision; however, exceptions should be handled at a
level that knows what they mean.

An exception need not be fatal. In nonfatal exceptions, the thread of execution may
continue. Although the thread of execution may be picked up at any point in the pro-
gram, the execution should continue from the lowest level that can recover from the
exception. When an error occurs, the program may fail unexpectedly. Some of the fail-
ure conditions may possibly be anticipated; some may not. All such errors must be
detected and managed.

Exceptions can be written in any language. Some languages (such as C++ and Java)
provide built-in mechanisms to manage exceptions. All exception mechanisms have
three parts:

• Defining the exception
• Generating (raising) the exception
• Handling the exception

C++ gives you a clean way of implementing these three phases: the try-catch and
throw statements. We cover these statements at the end of Chapter 2 after we have
introduced some additional C++ constructs.

Program Testing

Eventually, after all the design verification, deskchecking, and inspections have been
completed, it is time to execute the code. At last, we are ready to start testing with the
intention of finding any errors that may still remain.

The testing process is made up of a set of test cases that, taken together, allow us to
assert that a program works correctly. We say “assert” rather than “prove” because test-
ing does not generally provide a proof of program correctness.

Exception An unusual, generally unpredictable event,
detectable by software or hardware, that requires special
processing; the event may or may not be erroneous

1.3 Verification of Software Correctness | 35

The goal of each test case is to verify a particular program feature. For instance, we
may design several test cases to demonstrate that the program correctly handles various
classes of input errors. Alternatively, we may design cases to check the processing when
a data structure (such as an array) is empty, or when it contains the maximum number
of elements.

Within each test case, we perform a series of component tasks:

• We determine inputs that demonstrate the goal of the test case.
• We determine the expected behavior of the program for the given input. (This

task is often the most difficult one. For a math function, we might use a chart of
values or a calculator to figure out the expected result. For a function with com-
plex processing, we might use a deskcheck type of simulation or an alternative
solution to the same problem.)

• We run the program and observe the resulting behavior.
• We compare the expected behavior and the actual behavior of the program. If

they match, the test case is successful. If not, an error exists. In the latter case,
we begin debugging.

For now we are talking about test cases at a module, or function, level. It’s much
easier to test and debug modules of a program
one at a time, rather than trying to get the
whole program solution to work all at once.
Testing at this level is called unit testing.

How do we know what kinds of unit test
cases are appropriate, and how many are
needed? Determining the set of test cases that is sufficient to validate a unit of a program
is in itself a difficult task. Two approaches to specifying test cases exist: cases based on
testing possible data inputs and cases based on testing aspects of the code itself.

Data Coverage In those limited cases where the set of valid inputs, or the functional
domain, is extremely small, we can verify a subprogram by testing it against every
possible input element. This approach, known as “exhaustive” testing, can prove
conclusively that the software meets its specifications. For instance, the functional
domain of the following function consists of the values true and false:

void PrintBoolean(bool error)
// Prints the Boolean value on the screen.
{
if (error)
cout << "true";

else
cout << "false";

cout << endl;
}

Unit testing Testing a module or function by itself

Functional domain The set of valid input data for a pro-
gram or function

36 | Chapter 1: Software Engineering Principles

It makes sense to apply exhaustive testing to this function, because there are only two
possible input values. In most cases, however, the functional domain is very large, so
exhaustive testing is almost always impractical or impossible. What is the functional
domain of the following function?

void PrintInteger(int intValue)
// Prints the integer value intValue on the screen.
{
cout << intValue;

}

It is not practical to test this function by running it with every possible data input; the
number of elements in the set of int values is clearly too large. In such cases we do not
attempt exhaustive testing. Instead, we pick some other measurement as a testing goal.

You can attempt program testing in a haphazard way, entering data randomly until
you cause the program to fail. Guessing doesn’t hurt (except possibly by wasting time),
but it may not help much either. This approach is likely to uncover some bugs in a pro-
gram, but it is very unlikely to find all of them. Fortunately, strategies for detecting
errors in a systematic way have been developed.

One goal-oriented approach is to cover general classes of data. You should test at
least one example of each category of inputs, as well as boundaries and other special
cases. For instance, in the function PrintInteger there are three basic classes of int
data: negative values, zero, and positive values. You should plan three test cases, one
for each class. You could try more than three, of course. For example, you might want
to try INT_MAX and INT_MIN; because the program simply prints the value of its input,
however, the additional test cases don’t accomplish much.

Other data coverage approaches exist as well. For example, if the input consists of
commands, you must test each command. If the input is a fixed-sized array containing

a variable number of values, you should test the max-
imum number of values—that is, the boundary condi-
tion. It is also a good idea to try an array in which no
values have been stored or one that contains a single
element. Testing based on data coverage is called
black-box testing. The tester must know the external
interface to the module—its inputs and expected out-
puts—but does not need to consider what is happening
inside the module (the inside of the black box). (See
Figure 1.6.)

Code Coverage A number of testing strategies are
based on the concept of code coverage, the execution of statements or groups of
statements in the program. This testing approach is called clear- (or white-) box testing.
The tester must look inside the module (through the clear box) to see the code that is
being tested.

One approach, called statement coverage, requires that every statement in the pro-
gram be executed at least once. Another approach requires that the test cases cause

Black-box testing Testing a program or function based
on the possible input values, treating the code as a “black
box”

Clear- (white-) box testing Testing a program or func-
tion based on covering all the statements, branches, or
paths of the code

Statement coverage Every statement in the program is
executed at least once

1.3 Verification of Software Correctness | 37

Figure 1.6 Testing approaches

Outputs

Pull out rabbit.

Clear box testing
How does the trick work?

Black box testing
Does the trick work?

Put in two
magic coins
Tap with
magic wand

Inputs

every branch, or code section, in the program
to be executed. A single test case can achieve
statement coverage of an if-then statement,
but it takes two test cases to test both
branches of the statement.

A similar type of code-coverage goal is to
test program paths. A path is a combination
of branches that might be traveled when the
program is executed. In path testing, we try
to execute all possible program paths in dif-
ferent test cases.

The code-coverage approaches are analogous to the ways forest rangers might
check out the trails through the woods before the hiking season opens. If the rangers
wanted to make sure that all trails were clearly marked and not blocked by fallen trees,
they would check each branch of the trails (see Figure 1.7a). Alternatively, if they
wanted to classify each of the various trails (which may be interwoven) according to its
length and difficulty from start to finish, they would use path testing (see Figure 1.7b).

To create test cases based on code-coverage goals, we select inputs that drive the
execution into the various program paths. How can we tell whether a branch or a path
is executed? One way to trace execution is to put debugging output statements at the
beginning of every branch, indicating that this particular branch was entered. Software
projects often use tools that help programmers track program execution automatically.

Branch A code segment that is not always executed; for
example, a switch statement has as many branches as
there are case labels

Path A combination of branches that might be traversed
when a program or function is executed

Path testing A testing technique whereby the tester
tries to execute all possible paths in a program or
function

38 | Chapter 1: Software Engineering Principles

RANGER
STATION

ALL
TRAILS
START
HERE

LOOKOUT
POINT

GRIZZLY
BEAR'S

DEN

CAMPFIRE
CIRCLE

STATION RANGER
STATION

ALL
TRAILS
START
HERE

LOOKOUT
POINT

GRIZZLY
BEAR'S

DEN

CAMPFIRE
CIRCLE

STATION
CAMPFIRE

TRAIL
1.6 mi

GRIZZLY
TRAIL
2.4 mi

SOUTH CAMPFIRE
TRAIL
3.5 mi

UPPER
GRIZZLY

TRAIL
3 mi

LOOKOUT
TRAIL
1.2 mi

Figure 1.7a Checking out all the branches Figure 1.7b Checking out all the trails

These strategies lend themselves to measurements of the testing process. We can
count the number of paths in a program, for example, and keep track of how many
paths have been covered in our test cases. The numbers provide statistics about the cur-
rent status of testing; for instance, we could say that 75% of the branches of a program
have been executed or that 50% of the paths have been tested. When a single program-
mer is writing a single program, such numbers may be superfluous. In a software devel-
opment environment with many programmers, however, such statistics are very useful
for tracking the progress of testing.

These measurements can also indicate when a certain level of testing has been com-
pleted. Achieving 100% path coverage is often not a feasible goal. A software project
might have a lower standard (say, 80% branch coverage) that the programmer who
writes the module is required to reach before turning the module over to the project’s

testing team. Testing in which goals are based on cer-
tain measurable factors is called metric-based testing.

Test Plans Deciding on the goal of the test
approach—data coverage, code coverage, or (most
often) a mixture of the two—precedes the development
of a test plan. Some test plans are very informal—the
goal and a list of test cases, written by hand on a
piece of paper. Even this type of test plan may be
more than you have ever been required to write for a
class programming project. Other test plans

(particularly those submitted to management or to a customer for approval) are very
formal, containing the details of each test case in a standardized format.

Implementing a test plan involves running the program with the input values listed
in the plan and observing the results. If the answers are incorrect, the program is

Metric-based testing Testing based on measurable
factors

Test plan A document showing the test cases planned
for a program or module, their purposes, inputs, expected
outputs, and criteria for success
Implementing a test plan Running the program with
the test cases listed in the test plan

1.3 Verification of Software Correctness | 39

debugged and rerun until the observed output always matches the expected output. The
process is complete when all test cases listed in the plan give the desired output.

Let’s develop a test plan for a function called Divide, which was coded from the
following specifications:

Divide(int dividend, int divisor, bool& error, float& result)

Function: Divides one number by another and tests for a
divisor of zero.

Preconditions: None.
Postconditions: error is true if divisor is 0.

result is dividend / divisor, if error is false.
result is undefined, if error is true.

Should we use code coverage or data coverage for this test plan? Because the code
is so short and straightforward, let’s begin with code coverage. A code-coverage test
plan is based on an examination of the code itself. Here is the code to be tested:

void Divide(int dividend, int divisor, bool& error, float& result)
// Set error to indicate if divisor is zero.
// If no error, set result to dividend / divisor.
{
if (divisor = 0)
error = true;

else
result = float(dividend) / float(divisor);

}

The code consists of one if statement with two branches; therefore, we can do com-
plete path testing. There is a case where divisor is zero and the true branch is taken
and a case where divisor is nonzero and the else branch is taken.

Reason for Test Case Input Values Expected Output

divisor is zero

(dividend can be anything) divisor is 0 error is true

dividend is 8 result is undefined

divisor is nonzero

(dividend can be anything) divisor is 2 error is false

dividend is 8 result is 4.0

40 | Chapter 1: Software Engineering Principles

To implement this test plan, we run the program
with the listed input values and compare the results
with the expected output. The function is called from
a test driver, a program that sets up the parameter val-
ues and calls the functions to be tested. A simple test
driver is listed below. It is designed to execute both

test cases: It assigns the parameter values for Test 1, calls Divide, and prints the
results; then it repeats the process with new test inputs for Test 2. We run the test and
compare the values output from the test driver with the expected values.

#include <iostream>

void Divide(int, int, bool&, float&);
// Function to be tested.

void Print(int, int, bool, float);
// Prints results of test case.

int main()
{
using namespace std;

bool error;
float result;
int dividend = 8; // Test 1
int divisor = 0;

Divide(dividend, divisor, error, result);
cout << "Test 1: " << endl;
Print(dividend, divisor, error, result);
divisor = 2; // Test 2
Divide(dividend, divisor, error, result);
cout << "Test 2: " << endl;
Print(dividend, divisor, error, result);
return 0;

}

For Test 1, the expected value for error is true, and the expected value for
result is undefined, but the division is carried out anyway! How can that be when
divisor is zero? If the result of an if statement is not what you expect, the first thing
to check is the relational operator: Did we use a single = rather than ==? Yes, we did.
After fixing this mistake, we run the program again.

For Test 2, the expected value for error is false, yet the value printed is true!
Our testing has uncovered another error, so we begin debugging. We discover that the
value of error, set to true in Test 1, was never reset to false in Test 2. We leave
development of the final correct version of this function as an exercise.

Test driver A program that sets up the testing environ-
ment by declaring and assigning initial values to variables,
then calls the subprogram to be tested

1.3 Verification of Software Correctness | 41

Now let’s design a data-coverage test plan for the same function. In a data-cover-
age plan, we know nothing about the internal working of the function; we know only
the interface that is represented in the documentation of the function heading.

void Divide(int dividend, int divisor, bool& error, float& result)
// Set error to indicate if divisor is zero.
// If no error, set result to dividend / divisor.

There are two input parameters, both of type int. A complete data-coverage plan
would require that we call the function with all possible values of type int for each
parameter—clearly overkill. The interface tells us that one thing happens if divisor is
zero and another thing happens if divisor is nonzero. Clearly, we must have at least
two test cases: one where divisor is zero and one where divisor is nonzero. When
divisor is zero, error is set to true and nothing else happens, so one test case should
verify this result. When divisor is nonzero, a division takes place. How many test
cases does it take to verify that the division is correct? What are the end cases? There
are five possibilities:

• divisor and dividend are both positive
• divisor and dividend are both negative
• divisor is positive and dividend is negative
• divisor is negative and dividend is positive
• dividend is zero

The complete test plan is shown below.

Reason for Test Case Input Values Expected Output

divisor is zero

(dividend can be anything) divisor is 0 error is true

dividend is 8 result is undefined

divisor is nonzero

(dividend can be anything) divisor is 2 error is false

combined with dividend is 8 result is 4.0

divisor is positive

dividend is positive

divisor is nonzero

divisor is negative divisor is �2 error is false

dividend is negative dividend is �8 result is 4.0

(continued)

42 | Chapter 1: Software Engineering Principles

In this case the data-coverage test plan is more complex than the code-coverage
plan: There are seven cases (two of which are combined) rather than just two. One case
covers a zero divisor, and the other six cases check whether the division is working cor-
rectly with a nonzero divisor and alternating signs. If we knew that the function uses
the built-in division operator, we would not need to check these cases—but we don’t.
With a data-coverage plan, we cannot see the body of the function.

For program testing to be effective, it must be planned. You must design your test-
ing in an organized way, and you must put your design in writing. You should deter-
mine the required or desired level of testing, and plan your general strategy and test
cases before testing begins. In fact, you should start planning for testing before writing
a single line of code.

Planning for Debugging In the previous section we discussed checking the output from
our test and debugging when errors were detected. We can debug “on the fly” by
adding output statements in suspected trouble spots when problems arise. But in an
effort to predict and prevent problems as early as possible, can we also plan our
debugging before we ever run the program?

By now you should know that the answer will be yes. When you write your design,
you should identify potential trouble spots. You can then insert temporary debugging
output statements into your code in places where errors are likely to occur. For example,
to trace the program’s execution through a complicated sequence of function calls, you
might add output statements that indicate when you are entering and leaving each
function. The debugging output is even more useful if it also indicates the values of key

Reason for Test Case Input Values Expected Output

divisor is nonzero

divisor is positive divisor is 2 error is false

dividend is negative dividend is �8 result is �4.0

divisor is nonzero

divisor is negative divisor is �2 error is false

dividend is positive dividend is 8 result is �4.0

dividend is zero

(divisor can be anything) divisor is 2 error is false

dividend is 0 result is 0.0

1.3 Verification of Software Correctness | 43

variables, especially parameters of the function. The following example shows a series
of debugging statements that execute at the beginning and end of the function Divide:

void Divide(int dividend, int divisor, bool& error, float& result)
// Set error to indicate if divisor is zero.
// If no error, set result to dividend / divisor.
{
using namespace std;
// For debugging
cout << "Function Divide entered." << endl;
cout << "Dividend = " << dividend << endl;
cout << "Divisor = " << divisor << endl;
//*************************
// Rest of code goes here.
//*************************
// For debugging
if (error)
cout << "Error = true ";

else
cout << "Error = false ";

cout << "and Result = " << result << endl;
cout << "Function Divide terminated." << endl;

}

If hand testing doesn’t reveal all the bugs before you run the program, well-placed
debugging lines can at least help you locate the rest of the bugs during execution. Note
that this output is intended only for debugging; these output lines are meant to be seen
only by the tester, not by the user of the program. Of course, it’s annoying for debug-
ging output to show up mixed with your application’s real output, and it’s difficult to
debug when the debugging output isn’t collected in one place. One way to separate the
debugging output from the “real” program output is to declare a separate file to receive
these debugging lines, as shown in the following example:

#include <fstream>

std::ofstream debugFile;

debugFile << "This is the debug output from Test 1." << endl;

Usually the debugging output statements are removed from the program, or “com-
mented out,” before the program is delivered to the customer or turned in to the profes-
sor. (To “comment out” means to turn the statements into comments by preceding them
with // or enclosing them between /* and */.) An advantage of turning the debugging
statements into comments is that you can easily and selectively turn them back on for
later tests. A disadvantage of this technique is that editing is required throughout the
program to change from the testing mode (with debugging) to the operational mode
(without debugging).

44 | Chapter 1: Software Engineering Principles

Another popular technique is to make the debugging output statements dependent
on a Boolean flag, which can be turned on or off as desired. For instance, a section of
code known to be error-prone may be flagged in various spots for trace output by using
the Boolean value debugFlag:

// Set debugFlag to control debugging mode.
const bool debugFlag = true;
.
.
.
if (debugFlag)
debugFile << "Function Divide entered." << endl;

This flag may be turned on or off by assignment, depending on the programmer’s
needs. Changing to an operational mode (without debugging output) involves merely
redefining debugFlag as false and then recompiling the program. If a flag is used, the
debugging statements can be left in the program; only the if checks are executed in an
operational run of the program. The disadvantage of this technique is that the code for
the debugging is always there, making the compiled program larger. If a lot of debug-
ging statements are present, they may waste needed space in a large program. The
debugging statements can also clutter up the program, making it more difficult to read.
(This situation illustrates another tradeoff we face in developing software.)

Some systems have online debugging programs that provide trace outputs, making
the debugging process much simpler. If the system at your school or workplace has a
run-time debugger, use it! Any tool that makes the task easier should be welcome, but
remember that no tool replaces thinking.

A warning about debugging: Beware the quick fix! Program bugs often travel in
swarms, so when you find a bug, don’t be too quick to fix it and run your program again.
Often as not, fixing one bug generates another. A superficial guess about the cause of a
program error usually does not produce a complete solution. In general, time devoted to
considering all the ramifications of the changes you are making is time well spent.

If you constantly need to debug, your design process has flaws. Time devoted to
considering all the ramifications of the design you are making is time spent best of all.

Integration Testing In the last two sections we discussed unit testing and planned
debugging. In this section we explore many concepts and tools that can help you put

your test cases for individual units together for
structured testing of your whole program. The goal of
this type of testing is to integrate the separately tested
pieces, so it is called integration testing.

You can test a large, complicated program in a
structured way by using a method very similar to the

top-down approach to program design. The central idea is one of divide and conquer:
test pieces of the program independently and then use the parts that have been verified

Integration testing Testing performed to integrate pro-
gram modules that have already been independently unit
tested

1.3 Verification of Software Correctness | 45

as the basis for the next test. The testing can use either a top-down or a bottom-up
approach, or a combination of the two.

With a top-down approach, we begin testing at the top levels. The purpose of the
test is to ensure that the overall logical design works and that the interfaces between
modules are correct. At each level of testing, the top-down approach is based on the
assumption that the lower-levels work correctly. We implement this assumption by
replacing the lower-level subprograms with
“placeholder” modules called stubs. A stub
may consist of a single trace output state-
ment, indicating that we have reached the
function, or a group of debug output state-
ments, showing the current values of the
parameters. It may also assign values to output parameters if values are needed by the
calling function (the one being tested).

An alternative testing approach is to test from the bottom up. With this approach,
we unit test the lowest-level subprograms first. A bottom-up approach can be useful in
testing and debugging a critical module, one in which an error would have significant
effects on other modules. “Utility” subprograms, such as mathematical functions, can
also be tested with test drivers, independently of the programs that eventually call them.
In addition, a bottom-up integration testing approach can prove effective in a group-
programming environment, where each programmer writes and tests separate modules.
The smaller, tested pieces of the program are later verified together in tests of the whole
program.

Testing C++ Data Structures

The major topic of this textbook is data structures: what they are, how we use them, and
how we implement them using C++. This chapter has provided an overview of software
engineering; in Chapter 2 we begin to focus on data and ways to structure it. It seems
appropriate to end this section about verification with a look at how we test the data
structures we implement in C++.

Throughout this book we implement data structures using C++ classes, so that
many different application programs can use the resulting structures. When we first
create a class that models a data structure, we do not necessarily have any applica-
tion programs ready to use it. We need to test the class by itself first, before creating
the applications. For this reason, we use a bottom-up testing approach utilizing test
drivers.

Every data structure that we implement supports a set of operations. For each struc-
ture, we would like to create a test driver that allows us to test the operations in a vari-
ety of sequences. How can we write a single test driver that allows us to test numerous
operation sequences? The solution is to separate the specific set of operations that we
want to test from the test driver program itself. We list the operations, and the necessary
parameters, in a text file. The test driver program reads the operations from the text file
one line at a time, performs the specified operation by invoking the member function of

Stub A special function that can be used in top-down
testing to stand in for a lower-level function

46 | Chapter 1: Software Engineering Principles

Figure 1.8 Model of test architecture

Test
Output 1

Test
Output 2

Test
Output N

Test
Input 1

Data Structure

Test
Input 2

Test
Input N

Test Driver

User/Tester

Progress

Test input/output
file names

the data structure being tested, and reports the results to an output file. The test pro-
gram also reports its general results on the screen.

The testing approach described here allows us easily to change our test cases—we
just change the contents of the input file. Testing would be even easier if we could
dynamically change the name of the input file, whenever we run the program. We
could then run another test case or rerun a previous test case whenever we needed.
Therefore, we construct our test driver to read the name of the input file from the
console; we do the same for the output file. Figure 1.8 shows a model of our test
architecture.

Our test drivers all follow the same basic algorithm. First, we prompt for and read
the file names and prepare the files for input and output. Next, the name of the function

1.3 Verification of Software Correctness | 47

Declare an instance of the class being tested
Prompt for, read the input file name, and open the file
Prompt for, read the output file name, and open the file
Prompt for and read the label for the output file
Write the label on the output file
Read the next command from the input file
Set numCommands to 0
While the command read is not ”quit”

Execute the command by invoking the member function of the same name
Print the results to the output file
Increment numCommands by 1
Print “Command number“ numCommands “completed” to the screen
Read the next command from the input file

Close the input and output files
Print “Testing completed” to the screen

to be executed is read from the input file. Because the name of the function drives the
flow of control, let’s call it command. As long as command is not “quit,” we execute the
function with that name, print the results, and read the next function name. We then
close the files and quit. Did we forget anything? The output file should have some sort
of a label. Let’s prompt the user to enter a label for the output file. We should also let
the user know what is going on by keeping track of the number of commands and
printing a closing message. Here, then, is the algorithm for our test driver program:

This algorithm provides us with maximum flexibility for minimum extra work when
we are testing our data structures. Once we implement the algorithm by creating a test
driver for a specific data structure, we can easily create a test driver for a different data
structure by changing only the first two steps in the loop. Here is the code for the test
driver with the data structure-specific code left to be filled in. We demonstrate how this
code can be written in the case study. The statements that must be filled in are shaded.

// Test driver
#include <iostream>
#include <fstream>
#include <string>
// #include file containing class to be tested
int main()
{
using namespace std;
ifstream inFile; // File containing operations

48 | Chapter 1: Software Engineering Principles

ofstream outFile; // File containing output
string inFileName; // Input file external name
string outFileName; // Output file external name
string outputLabel;
string command; // Operation to be executed
int numCommands;

// Declare a variable of the type being tested
// Prompt for file names, read file names, and prepare files
cout << "Enter name of input file; press return." << endl;
cin >> inFileName;
inFile.open(inFileName.c_str());

cout << "Enter name of output file; press return." << endl;
cin >> outFileName;
outFile.open(outFileName.c_str());

cout << "Enter name of test run; press return." << endl;
cin >> outputLabel;
outFile << outputLabel << endl;

inFile >> command;
numCommands = 0;
while (command != "Quit")
{

// The following should be specific to the structure being tested
// Execute the command by invoking the member function of the
// same name
// Print the results to the output file

numCommands++;
cout << "Command number " << numCommands << " completed."

<< endl:
inFile >> command;

}

cout << "Testing completed." << endl;
inFile.close();
outFile.close();
return 0;

}

Note that the test driver gets the test data and calls the member functions to be
tested. It also provides written output about the effects of the member function calls, so
that the tester can visually check the results. Sometimes test drivers are used to test

1.3 Verification of Software Correctness | 49

hundreds or thousands of test cases. In such situations, the test driver should automati-
cally verify whether the test cases were handled successfully. We leave the expansion of
this test driver to include automatic test case verification as a programming assignment.

This test driver does not do any error checking to confirm that the inputs are valid.
For instance, it doesn’t verify that the input command code is really a legal command.
Remember that the goal of the test driver is to act as a skeleton of the real program, not
to be the real program. Therefore, the test driver does not need to be as robust as the
program it simulates.

By now you are probably protesting that these testing approaches are a lot of trou-
ble and that you barely have time to write your programs, let alone “throwaway code”
like stubs and drivers. Structured testing methods do require extra work. Test drivers
and stubs are software items; they must be written and debugged themselves, even
though they are seldom turned in to a professor or delivered to a customer. These pro-
grams are part of a class of software development tools that take time to create but are
invaluable in simplifying the testing effort.

Such programs are analogous to the scaffolding that a contractor erects around a
building. It takes time and money to build the scaffolding, which is not part of the final
product; without it, however, the building could not be constructed. In a large program,
where verification plays a major role in the software development process, creating
these extra tools may be the only way to test the program.

Reading in File Names

The following code segment causes a compile-time error:

ifstream inFile;
string fileName;

cout << "Enter the name of the input file" << endl;
cin >> fileName;
inFile.open(fileName);

Why does the error arise? Because C++ recognizes two types of strings. One is a variable of the
string data type; the other is a limited form of string inherited from the C language. The open
function expects its argument to be a so-called C string. The code segment shown above passes a
string variable. Thus it generates a type conflict. To solve this problem, the string data type pro-
vides a value-returning function named c_str that can be applied to a string variable to convert
it to a C string. Here is the corrected code segment:

ifstream inFile;
string fileName;

cout << "Enter the name of the input file" << endl;
cin >> fileName;
inFile.open(fileName.c_str());

C++

50 | Chapter 1: Software Engineering Principles

Practical Considerations

It is obvious from this chapter that program verification techniques are time consuming
and, in a job environment, expensive. It would take a long time to do all of the things
discussed in this chapter, and a programmer has only so much time to work on any par-
ticular program. Certainly not every program is worthy of such cost and effort. How can
you tell how much and what kind of verification effort is necessary?

A program’s requirements may provide an indication of the level of verification
needed. In the classroom, your professor may specify the verification requirements as
part of a programming assignment. For instance, you may be required to turn in a
written, implemented test plan. Part of your grade may be determined by the com-
pleteness of your plan. In the work environment, the verification requirements are
often specified by a customer in the contract for a particular programming job. For
instance, a contract with a military customer may specify that formal reviews or
inspections of the software product be held at various times during the development
process.

A higher level of verification effort may be indicated for sections of a program that
are particularly complicated or error-prone. In these cases, it is wise to start the verifica-
tion process in the early stages of program development so as to avoid costly errors in
the design.

A program whose correct execution is critical to human life is obviously a candi-
date for a high level of verification. For instance, a program that controls the return of
astronauts from a space mission would require a higher level of verification than would
a program that generates a grocery list. As a more down-to-earth example, consider the
potential for disaster if a hospital’s patient database system had a bug that caused it to
lose information about patients’ allergies to medications. A similar error in a database
program that manages a Christmas card mailing list, however, would have much less
severe consequences.

Case Study
Fraction Class

Problem Write and test a C++ class that represents a fraction.

Discussion A fraction is made up of a numerator and a denominator, so our fraction class
must have data members for each of these. What operations do we normally apply to
fractions? First we must initialize a fraction by storing values into the numerator and the
denominator, and we need member functions that return the numerator and the denominator.
Another operation would reduce the fraction to its lowest terms. We should also be able to
test whether the fraction is equal to zero or greater than 1. If the fraction is greater than or
equal to 1 (not a proper fraction), we should have an operation that converts the fraction to a
whole number and a fraction. There are binary operations on fractions, but we are asked only
to write and test a class that represents a fraction. Binary operations could be added later.

Let’s summarize what we have said so far using a CRC card. A CRC card is a 4� � 6� or a
5� � 8� card on which we record the name of the class, the responsibilities, and the classes

Case Study: Fraction Class | 51

with which the class collaborates. CRC cards are used frequently in object-oriented design, and
we discuss them in more detail in later chapters. Here we use one to record what we have
decided our fraction class must do. We call the actions that the class must perform the
responsibilities of the class. We use a handwriting font to indicate that CRC cards are a pencil
and paper tool. We change to a monospaced font for the operations when we are talking
about their implementation.

Before we translate this CRC card into a class definition in C++, let’s examine each opera-
tion again. Let’s change the expressions for the responsibilities into function names. The Ini-
tialize operation takes two integer values and stores them into the data members of the
class. Let’s call these data members num and denom. NumeratorIs and DenominatorIs
return the values of the data members.

Reduce checks whether the numerator and the denominator have a common factor and,
if they do, divides both by the common factor. On second thought, should making sure that the
fraction is in reduced form be left to the user of the fraction class? If a fraction is not reduced
to its lowest terms, binary arithmetic operations could cause overflow problems; the sizes of
the numerator and denominator could become quite large. Let’s remove this operation as a
member function and make it a precondition for instances of our fraction class. If binary oper-
ations are added to the class, it becomes the responsibility of these operations to reduce the
resulting fraction to its reduced form.

IsZero tests whether the fraction is zero. How do we represent zero as a fraction? The
numerator is zero and the denominator is 1, so IsZero tests whether the numerator is zero.
IsGreaterThanOrEqualToOne is too long an identifier. Let’s call the operation that tests
to see if the numerator is greater than or equal to the denominator IsNotProper. Convert-
ToProper returns the whole-number part and leaves the remaining part in the fraction.

We are now ready to write the class definition. We know what each operation should do.
What about the preconditions for the operations? All fractions involved must be initialized

FractionType

Responsibilities Collaborations

Initialize (numerator, denominator) Integers

Integers

Integers

Return numerator value

Return denominator value

Reduce to lowest terms

Is the fraction zero?

Is it greater than one?

Convert to proper fraction

Class Name: Superclass: Subclasses:

.

.

.

52 | Chapter 1: Software Engineering Principles

before the member functions are called and must be in reduced form. ConvertToProper
should be called only if the fraction is improper.

class FractionType
{
public:
void Initialize(int numerator, int denominator);
// Function: Initialize the fraction
// Pre: Numerator and denominator are in reduced form
// Post: Fraction is initialized
int NumeratorIs();
// Function: Returns the value of the numerator
// Pre: Fraction has been initialized
// Post: Numerator is returned
int DenominatorIs();
// Function: Returns the value of the denominator
// Pre: Fraction has been initialized
// Post: Denominator is returned
bool IsZero();
// Function: Determines if fraction is zero
// Pre: Fraction has been initialized
// Post: Returns true if numerator is zero, false otherwise
bool IsNotProper();
// Function: Determines if fraction is a proper fraction
// Pre: Fraction has been initialized
// Post: Returns true if fraction is greater than or equal to 1; false
// otherwise
int ConvertToProper();
// Function: Converts the fraction to a whole number and a
// fractional part
// Pre: Fraction has been initialized, is in reduced form, and
// is not a proper fraction
// Post: Returns whole number
// Remaining fraction is original fraction minus the
// whole number; fraction is in reduced form

private:
int num;
int denom;

};

Test Driver

At this stage, before we write any code for the member functions, we can write our test driver
using the algorithm shown in the last section. Let’s call the instance of the FractionType
fraction. Here is the portion of the algorithm that we must write:

Case Study: Fraction Class | 53

We have six member functions to test. We can set up an if-then-else statement compar-
ing the input operation to the member function names. When the name matches, the function
is called and the result is written to the output file.

The file containing the specification of class FractionType is in file “frac.h”. Here
are the pieces that must be added to the generalized test driver to test this class:

#include "frac.h" // File containing the class to be tested

FractionType fraction; // Declaration of FractionType object

if (command is "Initialize”)
Read numerator
Read denominator
fraction.Initialize(numerator, denominator)
Write on outFile "Numerator: ”, fraction.Numeratorls()

“Denominator: ", fraction.Denominatorls()
else if (command is "Numeratorls")

Write on outFile "Numerator: ”, fraction.Numeratorls()
else if (command is "DenominatorIs")

Write on outFile ”Denominator: ", fraction.Denominatorls()
else if (command is ”IsZero")

if (fraction.IsZero)
Write on outFile "Fraction is zero”

else
Write on outFile “Fraction is not zero”

else if (command is "IsNotProper")
if (fraction.IsNotProper())

Write on outFile "Fraction is improper"
else

Write on outFile "Fraction is proper”
else

Write on outFile " Whole number is ", (fraction.ConvertToProper())
Write on outFile "Numerator: ", fraction.Numeratorls()
"Denominator:", fraction.Denominatorls()

while . . .
Execute the command by invoking the member function of the same name
Print the results to the output file

. . .

54 | Chapter 1: Software Engineering Principles

while (command != "Quit")
{
if (command == "Initialize")
{
int numerator, denominator;
inFile >> numerator;
inFile >> denominator;
fraction.Initialize(numerator, denominator);
outFile << "Numerator: " << fraction.NumeratorIs()
<< " Denominator: " << fraction.DenominatorIs()
<< endl;

}
else if (command == "NumeratorIs")
outFile << "Numerator: " << fraction.NumeratorIs()
<< endl;

else if (command == "DenominatorIs")
outFile << "Denominator: " << fraction.DenominatorIs()
<< endl;

else if (command == "IsZero")
if (fraction.IsZero())
outFile << "Fraction is zero " << endl;

else
outFile << "Fraction is not zero " << endl;

else if (command == "IsNotProper")
if (fraction.IsNotProper())
outFile << "Fraction is improper " << endl;

else
outFile << "Fraction is proper " << endl;

else
{
outFile << "Whole number is " << fraction.ConvertToProper()
<< endl;

outFile << "Numerator: " << fraction.NumeratorIs()
<< " Denominator: " << fraction.DenominatorIs()
<< endl;

}

:
}

Case Study: Fraction Class | 55

Function Definitions

We have the test driver and the specification file containing the class. Now we must write the
code for the function definitions and write and implement the test plan. The algorithms for the
first five functions are so straightforward that they can be written with no further comment.
The fifth function, ConvertToProper, must return the whole-number integer. It is extracted
by taking the integer result of dividing the denominator into the numerator. The integer
remainder becomes the numerator of the remaining fraction, and the denominator remains the
same. If the numerator of the remaining fraction is zero, we must set the denominator to 1 to
be consistent with the definition of a zero fraction.

// Implementation file for class FractionType
#include "frac.h"
void FractionType::Initialize(int numerator, int denominator)
// Function: Initialize the fraction
// Pre: numerator and denominator are in reduced form
// Post: numerator is stored in num; denominator is stored in
// denom
{
num = numerator;
denom = denominator;

}
int FractionType::NumeratorIs()
// Function: Returns the value of the numerator
// Pre: Fraction has been initialized
// Post: numerator is returned
{
return num;

}
int FractionType::DenominatorIs()
// Function: Returns the value of the denominator
// Pre: Fraction has been initialized
// Post: denominator is returned
{
return denom;

}

bool FractionType::IsZero()
// Function: Determines if fraction is zero
// Pre: Fraction has been initialized
// Post: Returns true if numerator is zero; false otherwise
{
return (num == 0);

}

bool FractionType::IsNotProper()
// Function: Determines if fraction is a proper fraction

56 | Chapter 1: Software Engineering Principles

// Pre: Fraction has been initialized
// Post: Returns true if num is greater than or equal to denom; false
// otherwise
{
return (num >= denom);

}

int FractionType::ConvertToProper()
// Function: Converts the fraction to a whole number and a
// fractional part
// Pre: Fraction has been initialized, is in reduced form, and
// is not a proper fraction
// Post: Returns num divided by denom
// num is original num % denom; denom is not changed
{
int result;
result = num / denom;
num = num % denom;
if (num == 0)
denom = 1;

return result;
}

Test Plan

We have six member functions to test. Two of the six are Boolean functions, so we need two
test cases for each. Here, then, is a test plan that has eight cases. Note that we have to initial-
ize the fraction three times: once for a proper fraction, once for an improper fraction, and once
for zero.

Operation to Be Tested and
Description of Action Input Values Expected Output

Initialize 3, 4 Numerator: 3

Denominator: 4

IsZero Fraction is not zero

IsNotProper Fraction is proper

NumeratorIs Numerator: 3

DenominatorIs Denominator: 4

Initialize 4, 3 Numerator: 4

Denominator: 3

(continued)

Case Study: Fraction Class | 57

Here are the input file, the output file, and a screen shot from the run:

Input File Output File

Initialize Test_Run_for_FractionType

3 Numerator: 3 Denominator: 4

4 Fraction is not zero

IsZero Fraction is proper

IsNotProper Numerator: 3

NumeratorIs Denominator: 4

DenominatorIs Numerator: 4 Denominator: 3

Initialize Fraction is improper

4 Whole number is 1

3 Numerator: 1 Denominator: 3

IsNotProper Numerator: 0 Denominator: 1

ConvertToProper Fraction is zero

Initialize

0

1

IsZero

Quit

Operation to Be Tested and
Description of Action Input Values Expected Output

IsNotProper Fraction is improper

ConvertToProper Whole number is 1

Numerator: 1

Denominator: 3

Initialize 0, 1 Numerator: 0

Denominator: 1

IsZero Fraction is zero

58 | Chapter 1: Software Engineering Principles

Summary
How are our quality software goals met by the strategies of abstraction and information
hiding? When details are hidden at each level, the code becomes simpler and more
readable, which makes the program easier to write and modify. Both functional decom-
position and object-oriented design processes produce modular units that are also easier
to test, debug, and maintain.

One positive side effect of modular design is that modifications tend to be localized
in a small set of modules, so the cost of modifications is reduced. Remember that when-
ever a module is modified, it must be retested to make sure that it still works correctly
in the program. By localizing the modules affected by changes to the program, we limit
the extent of retesting needed.

We increase reliability by making the design conform to our logical picture and dele-
gating confusing details to lower levels of abstraction. An understanding of the wide
range of activities involved in software development—from requirements analysis
through maintenance of the resulting program—leads to an appreciation of a disciplined
software engineering approach. Everyone knows some programming wizard who can sit
down and hack out a program in an evening, working alone, coding without a formal
design. But we cannot depend on wizardry to control the design, implementation, verifi-
cation, and maintenance of large, complex software projects that involve the efforts of
many programmers. As computers grow larger and more powerful, the problems that
people want to solve on them also become larger and more complex. Some people refer
to this situation as a software crisis. We’d like you to think of it as a software challenge.

It should be obvious by now that program verification is not something you begin
the night before your program is due. Design verification and program testing go on
throughout the software life cycle.

Summary | 59

Figure 1.9 Life-cycle verification activities

Analysis

Specification

Design

Code

Test

Delivery

Maintenance

Make sure that specifications are completely understood.
Understand testing requirements.

Verify the identified requirements.
Perform requirements inspections with your client.

Design for correctness (using assertions such as preconditions
and postconditions).
Perform design inspections.
Plan the testing approach.

Understand the programming language well.
Perform code inspections.
Add debugging output statements to the program.
Write the test plan.
Construct test drivers and/or stubs.

Unit test according to the test plan.
Debug as necessary.
Integrate tested modules.
Retest after corrections.

Execute acceptance tests of the completed product.

Execute regression test whenever the delivered product is changed
to add new functionality or to correct detected problems.

Verification activities begin when the software specifications are developed. At this
point, the overall testing approach and goals are formulated. Then, as program design
work begins, these goals are applied. Formal verification techniques may be used for
parts of the program, design inspections are conducted, and test cases are planned. Dur-
ing the implementation phase, the test cases are developed and test data to support them
are generated. Code inspections give the programmer extra support in debugging the
program before it is ever run. When the code has been compiled and is ready to be run,
unit (module-level) testing is done, with stubs and drivers used for support. After these
units have been completely tested, they are put together in integration tests. Once errors
have been found and corrected, some of the earlier tests are rerun to make sure that the
corrections have not introduced any new problems. Finally, acceptance tests of the
whole system are performed. Figure 1.9 shows how the various types of verification
activities fit into the software development life cycle. Throughout the life cycle, one
thing remains constant: The earlier in this cycle program errors are detected, the easier
(and less costly in time, effort, and money) they are to remove. Program verification is a
serious subject; a program that doesn’t work isn’t worth the disk it’s stored on.

60 | Chapter 1: Software Engineering Principles

Exercises
1. Explain what we mean by “software engineering.”

2. Which of these statements is always true?

a. All of the program requirements must be completely defined before design
begins.

b. All of the program design must be complete before any coding begins.

c. All of the coding must be complete before any testing can begin.

d. Different development activities often take place concurrently, overlapping in
the software life cycle.

3. Name three computer hardware tools that you have used.

4. Name two software tools that you have used in developing computer programs.

5. Explain what we mean by “ideaware.”

6. Explain why software might need to be modified

a. in the design phase.

b. in the coding phase.

c. in the testing phase.

d. in the maintenance phase.

7. Goal 4 says, “Quality software is completed on time and within budget.”

a. Explain some of the consequences of not meeting this goal for a student
preparing a class programming assignment.

b. Explain some of the consequences of not meeting this goal for a team devel-
oping a highly competitive new software product.

c. Explain some of the consequences of not meeting this goal for a programmer
who is developing the user interface (the screen input/output) for a spacecraft
launch system.

8. For each of the following, describe at least two different abstractions for differ-
ent viewers (see Figure 1.1).

a. A dress

b. An aspirin

c. A carrot

d. A key

e. A saxophone

f. A piece of wood

9. Functional decomposition is based on a hierarchy of ____________________, and
object-oriented design is based on a hierarchy of ____________________.

10. What is the difference between an object and an object class? Give some examples.

11. Make a list of potential objects from the description of the automated teller
machine scenario given in this chapter.

Exercises | 61

12. Have you ever written a programming assignment with an error in the specifica-
tions? If so, at what point did you catch the error? How damaging was the error
to your design and code?

13. Explain why the cost of fixing an error is higher the later in the software cycle
that the error is detected.

14. Explain how an expert understanding of your programming language can reduce
the amount of time you spend debugging.

15. Give an example of a run-time error that might occur as the result of a program-
mer’s making too many assumptions.

16. Define “robustness.” How can programmers make their programs more robust by
taking a defensive approach?

17. The following program has three separate errors, each of which would cause an
infinite loop. As a member of the inspection team, you could save the programmer
a lot of testing time by finding the errors during the inspection. Can you help?

void Increment(int);
int main()
{
int count = 1;
while(count < 10)
cout << " The number after " << count; /* Function Increment
Increment(count); adds 1 to count */
cout << " is " << count << endl;
return 0;

}
void Increment (int nextNumber)
// Increment the parameter by 1.
{
nextNumber++;

}

18. Is there any way a single programmer (for example, a student working alone on
a programming assignment) can benefit from some of the ideas behind the
inspection process?

19. When is it appropriate to start planning a program’s testing?

a. During design or even earlier

b. While coding

c. As soon as the coding is complete

20. Differentiate between unit testing and integration testing.

21. Explain the advantages and disadvantages of the following debugging techniques:

a. Inserting output statements that may be turned off by commenting them out

b. Using a Boolean flag to turn debugging output statements on or off

c. Using a system debugger

62 | Chapter 1: Software Engineering Principles

22. Describe a realistic goal-oriented approach to data-coverage testing of the func-
tion specified below:

FindElement(list, targetItem, index, found)

Function: Search list for targetItem.
Preconditions: Elements of list are in no particular

order; list may be empty.
Postconditions: found is true if targetItem is in list;

otherwise, found is false.
index is the position of targetItem if
found is true.

23. A program is to read in a numeric score (0 to 100) and display an appropriate
letter grade (A, B, C, D, or F).

a. What is the functional domain of this program?

b. Is exhaustive data coverage possible for this program?

c. Devise a test plan for this program.

24. Explain how paths and branches relate to code coverage in testing. Can we
attempt 100% path coverage?

25. Differentiate between “top-down” and “bottom-up” integration testing.

26. Explain the phrase “life-cycle verification.”

27. Write the corrected version of the function Divide.

28. Why did we type cast dividend and divisor in the function Divide?

29. The solution to the Case Study did not consider negative fractions.

a. How should a negative fraction be represented?

b. Which of the member functions would have to be changed to represent nega-
tive fractions? What changes would be involved?

c. Rewrite the test plan to test for negative fractions.

30. One of the member functions in the Case Study needed an additional test. Which
function is it and what should the data be?

After studying this chapter, you should be able to

Describe an ADT from three perspectives: the logical level, the application
level, and the implementation level

Explain how a specification can be used to record an abstract data type

Describe the component selector at the logical level, and describe appropri-
ate applications for the C++ built-in types: structs, classes, one-dimen-
sional arrays, and two-dimensional arrays

Declare a class object

Implement the member functions of a class

Manipulate instances of a class (objects)

Define the three ingredients of an object-oriented programming language:
encapsulation, inheritance, and polymorphism

Distinguish between containment and inheritance

Use inheritance to derive one class from another class

Use the C++ exception-handling mechanism

Access identifiers within a namespace

Define input/output operations for the abstract data type String from three
perspectives: logical, application, and implementation

Data Design and
Implementation

G
oals

64 | Chapter 2: Data Design and Implementation

In Chapter 1, we looked at an overview of the design process and reviewed the software
engineering principles that, if followed, lead to quality software. The role of testing at
all phases of the software life cycle was stressed.

In this chapter, we lay out the logical framework from which we examine data
structures. We look at data structures from three points of view: how they are specified,
how they are implemented, and how they can be used. In addition, the object-oriented
view of data objects is presented. Finally, we examine C++ constructs that can be used
to ensure the data structures we construct are correct.

2.1 Different Views of Data

What Do We Mean by Data?

When we talk about the function of a program, we use words such as “add,” “read,”
“multiply,” “write,” “do,” and so on. The function of a program describes what it does in
terms of the verbs in the programming language.

The data are the nouns of the programming world: the objects that are manipulated,
the information that is processed by a computer program. In a sense, this information is
just a collection of bits that can be turned on or off. The computer itself needs to have
data in this form. Humans, however, tend to think of information in terms of somewhat

larger units such as numbers and lists, so we want at
least the human-readable portions of our programs to
refer to data in a way that makes sense to us. To sepa-
rate the computer’s view of data from our own view,
we use data abstraction to create other views. Whether
we use functional decomposition to produce a hierar-

chy of tasks or object-oriented design to produce a hierarchy of cooperating objects,
data abstraction is essential.

Data Abstraction

Many people feel more comfortable with things that they perceive as real than with
things that they think of as abstract. As a consequence, “data abstraction” may seem
more forbidding than a more concrete entity such as an “integer.” But let’s take a closer
look at that very concrete—and very abstract—integer you’ve been using since you wrote
your earliest programs.

Just what is an integer? Integers are physically represented in different ways on dif-
ferent computers. In the memory of one machine, an integer may be a binary-coded
decimal. In a second machine, it may be a sign-and-magnitude binary. And in a third
one, it may be represented in one’s complement or two’s complement notation.
Although you may not know what any of these terms mean, that lack of knowledge
hasn’t stopped you from using integers. (You learn about these terms in an assembly
language course, so we do not explain them here.) Figure 2.1 shows several representa-
tions of an integer number.

The way that integers are physically represented determines how the computer
manipulates them. As a C++ programmer, you rarely get involved at this level; instead,

Data abstraction The separation of a data type’s logical
properties from its implementation

2.1 Different Views of Data | 65

Figure 2.1 The decimal equivalents of an 8-bit binary number

153

Unsigned

–25

Sign and
magnitude

–102

One’s
complement

–103

Two’s
complement

99

Binary-
coded

decimal

Decimal:

Representation:

10011001Binary

you simply use integers. All you need to know is how to declare an int type variable
and what operations are allowed on integers: assignment, addition, subtraction, multi-
plication, division, and modulo arithmetic.

Consider the statement

distance = rate * time;

It’s easy to understand the concept behind this statement. The concept of multiplication
doesn’t depend on whether the operands are, say, integers or real numbers, despite the
fact that integer multiplication and floating-point multiplication may be implemented
in very different ways on the same computer. Computers would not be so popular if
every time we wanted to multiply two numbers we had to get down to the machine-rep-
resentation level. But that isn’t necessary: C++ has surrounded the int data type with a
nice, neat package and has given you just the information you need to create and
manipulate data of this type.

Another word for “surround” is “encapsulate.” Think of the capsules surrounding the
medicine you get from the pharmacist when you’re sick. You don’t have to know any-
thing about the chemical composition of the medicine inside to recognize the big blue-
and-white capsule as your antibiotic or the
little yellow capsule as your decongestant.
Data encapsulation means that the physical
representation of a program’s data is sur-
rounded. The user of the data doesn’t see the
implementation, but deals with the data only
in terms of its logical picture—its abstraction.

If the data are encapsulated, how can the user get to them? Operations must be pro-
vided to allow the user to create, access, and change data. Let’s look at the operations
C++ provides for the encapsulated data type int. First, you can create (“construct”)
variables of type int using declarations in your program. Then you can assign values to
these integer variables by using the assignment operator or by reading values into them
and perform arithmetic operations using +, -, *, /, and %. Figure 2.2 shows how C++
has encapsulated the type int in a tidy package.

The point of this discussion is that you have been dealing with a logical data
abstraction of “integer” since the very beginning. The advantages of doing so are clear:
You can think of the data and the operations in a logical sense and can consider their
use without having to worry about implementation details. The lower levels are still
there—they’re just hidden from you.

Data encapsulation The separation of the representa-
tion of data from the applications that use the data at a
logical level; a programming language feature that
enforces information hiding

66 | Chapter 2: Data Design and Implementation

Figure 2.2 A black box representing an integer

T ype

int

Value range: INT_MIN . . INT_MAX

Operations
identity
negation
addition
subtraction
multiplication
division
remainder (modulo)
comparisons

+ prefix
- prefix
+ infix
- infix
* infix
/ infix
% infix

Relational Operators infix

(inside)

Representation of

int

(for example, 32 bits
two's complement)

plus

Implementations of
Operations

Remember that the goal in design is to reduce complexity through abstraction. We
can extend this goal further: to protect our data
abstraction through encapsulation. We refer to the set
of all possible values (the domain) of an encapsulated
data “object,” plus the specifications of the operations
that are provided to create and manipulate the data,
as an abstract data type (ADT for short).

Data Structures

A single integer can be very useful if we need a counter, a sum, or an index in a pro-
gram, but generally we must also deal with data that have lots of parts, such as a list.

We describe the logical properties of such a collection
of data as an abstract data type; we call the concrete
implementation of the data a data structure. When a
program’s information is made up of component
parts, we must consider an appropriate data structure.

Data structures have a few features worth noting.
First, they can be “decomposed” into their component
elements. Second, the arrangement of the elements is a

feature of the structure that affects how each element is accessed. Third, both the
arrangement of the elements and the way they are accessed can be encapsulated.

Let’s look at a real-life example: a library. A library can be decomposed into its
component elements—books. The collection of individual books can be arranged in a
number of ways, as shown in Figure 2.3. Obviously, the way the books are physically
arranged on the shelves determines how one would go about looking for a specific

Abstract data type (ADT) A data type whose properties
(domain and operations) are specified independently of
any particular implementation

Data structure A collection of data elements whose
organization is characterized by accessing operations that
are used to store and retrieve the individual data ele-
ments; the implementation of the composite data mem-
bers in an abstract data type

2.1 Different Views of Data | 67

volume. The particular library with which we’re concerned doesn’t let its patrons get
their own books, however; if you want a book, you must give your request to the librar-
ian, who retrieves the book for you.

Figure 2.3 A collection of books ordered in different ways

Adventures in Algebra

Le
av

es
 o

f
Gr

as
s Programming in C++

Biology Today

C++ Plus
INTRODUCTION TO

CALCULUS

Gone w
ith the W

ind

HUMAN ANATOMY

Adventures in Algebra

SIMPLY STATISTICS

Rom
eo and Juliet

Biology Today

C
++ Plus

Gone w
ith the W

ind

HUM
AN ANATOM

Y

IN
TRO

DUCTIO
N

 TO
CALCULUS

Leaves of Grass

C
++ Plus

Program
m

ing in C ++

Program
m

ing in C ++

Softw
are Engineering in ADA

Program
m

ing Proverbs

Programming Proverbs

Relational Databases

Relational Databases

Relational Databases

Rom
eo and Juliet

SIM
PLY STATISTICS

Softw
are Engineering in ADA

Softw
are Engineering in ADA

Program
m

ing Proverbs

SIM
PLY STATISTICS

IN
TRO

DUCTIO
N

 TO
CALCULUS

Adventures in Algebra

Biology Today

HUM
AN ANATOM

Y

Rom
eo and Juliet

Leaves of Grass

Gone w
ith the W

ind

All over the place (Unordered)

Alphebetical order by title

Ordered by subject

Computer Science Math Biology Literature

68 | Chapter 2: Data Design and Implementation

The library “data structure” is composed of elements (books) in a particular physical
arrangement; for instance, it might be ordered on the basis of the Dewey decimal sys-
tem. Accessing a particular book requires knowledge of the arrangement of the books.
The library user doesn’t have to know about the structure, however, because it has been
encapsulated: Users access books only through the librarian. The physical structure and
the abstract picture of the books in the library are not the same. The card catalog pro-
vides logical views of the library—ordered by subject, author, or title—that differ from its
physical arrangement.

We use the same approach to data structures in our programs. A data structure is
defined by (1) the logical arrangement of data elements, combined with (2) the set of
operations we need to access the elements.

Notice the difference between an abstract data type and a data structure. The former
is a high-level description: the logical picture of the data and the operations that manip-
ulate them. The latter is concrete: a collection of data elements and the operations that
store and retrieve individual elements. An abstract data type is implementation inde-
pendent, whereas a data structure is implementation dependent. A data structure is how
we implement the data in an abstract data type whose values have component parts. The
operations on an abstract data type are translated into algorithms on the data structure.

Another view of data focuses on how they are used in a program to solve a particu-
lar problem—that is, their application. If we were writing a program to keep track of stu-
dent grades, we would need a list of students and a way to record the grades for each
student. We might take a by-hand grade book and model it in our program. The opera-
tions on the grade book might include adding a name, adding a grade, averaging a stu-
dent’s grades, and so on. Once we have written a specification for our grade book data
type, we must choose an appropriate data structure to implement it and design the algo-
rithms to implement the operations on the structure.

In modeling data in a program, we wear many hats. That is, we must determine the
logical picture of the data, choose the representation of the data, and develop the opera-
tions that encapsulate this arrangement. During this process, we consider data from
three different perspectives, or levels:

1. Application (or user) level: A way of modeling real-life data in a specific context;
also called the problem domain

2. Logical (or abstract) level: An abstract view of the data values (the domain) and the
set of operations to manipulate them

3. Implementation level: A specific representation of the structure to hold the data
items, and the coding of the operations in a programming language (if the opera-
tions are not already provided by the language)

In our discussion, we refer to the second perspective as the “abstract data type.”
Because an abstract data type can be a simple type such as an integer or character, as
well as a structure that contains component elements, we also use the term “composite
data type” to refer to abstract data types that may contain component elements. The
third level describes how we actually represent and manipulate the data in memory: the
data structure and the algorithms for the operations that manipulate the items on the
structure.

2.1 Different Views of Data | 69

Let’s see what these different viewpoints mean in terms of our library analogy. At
the application level, we focus on entities such as the Library of Congress, the Dimsdale
Collection of Rare Books, and the Austin City Library.

At the logical level, we deal with the “what” questions. What is a library? What
services (operations) can a library perform? The library may be seen abstractly as “a col-
lection of books” for which the following operations are specified:

• Check out a book
• Check in a book
• Reserve a book that is currently checked out
• Pay a fine for an overdue book
• Pay for a lost book

How the books are organized on the shelves is not important at the logical level,
because the patrons don’t have direct access to the books. The abstract viewer of library
services is not concerned with how the librarian actually organizes the books in the
library. Instead, the library user needs to know only the correct way to invoke the
desired operation. For instance, here is the user’s view of the operation to check in a
book: Present the book at the check-in window of the library from which the book was
checked out, and receive a fine slip if the book is overdue.

At the implementation level, we deal with the “how” questions. How are the books
cataloged? How are they organized on the shelf? How does the librarian process a book
when it is checked in? For instance, the implementation information includes the fact
that the books are cataloged according to the Dewey decimal system and arranged in
four levels of stacks, with 14 rows of shelves on each level. The librarian needs such
knowledge to be able to locate a book. This information also includes the details of what
happens when each operation takes place. For example, when a book is checked back in,
the librarian may use the following algorithm to implement the check-in operation:

CheckInBook
Examine due date to see whether the book is late.
if book is late

Calculate fine.
Issue fine slip.

Update library records to show that the book has been returned.
Check reserve list to see if someone is waiting for the book.
if book is on reserve list

Put book on the reserve shelf.
else

Replace book on the proper shelf, according to the library’s shelf arrangement scheme.

70 | Chapter 2: Data Design and Implementation

Figure 2.4 Communication between the application level and implementation level

Reserved Shelf

To
Stacks
1–6
To
Stacks
7–13

Application

The user perspective

The implementation perspective

ImplementationData
Abstraction

Application
Programmer

Utility
Programmer

FineSlip

C++
Plus

Check in BooksHere

SPECIFICATIONS

All of this activity, of course, is invisible to the library user. The goal of our design
approach is to hide the implementation level from the user.

Picture a wall separating the application level from the implementation level, as
shown in Figure 2.4. Imagine yourself on one side and another programmer on the
other side. How do the two of you, with your separate views of the data, communicate
across this wall? Similarly, how do the library user’s view and the librarian’s view of the
library come together? The library user and the librarian communicate through the data

2.1 Different Views of Data | 71

1In some of the literature, operations that create new instances are called primitive constructors, and trans-
formers are called nonprimitive constructors.

abstraction. The abstract view provides the specification of the accessing operations
without telling how the operations work. It tells what but not how. For instance, the
abstract view of checking in a book can be summarized in the following specification:

CheckInBook (library, book, fineSlip)

Function: Check in a book
Preconditions: book was checked out of this library; book is

presented at the check-in desk
Postconditions: fineSlip is issued if book is overdue; contents of

library is the original contents + book

The only communication from the user into the implementation level occurs in
terms of input specifications and allowable assumptions—the preconditions of the
accessing routines. The only output from the implementation level back to the user is
the transformed data structure described by the output specifications, or postconditions,
of the routines. The abstract view hides the data structure, but provides windows into it
through the specified accessing operations.

When you write a program as a class assignment, you often deal with data at all
three levels. In a job situation, however, you may not. Sometimes you may program an
application that uses a data type that has been implemented by another programmer.
Other times you may develop “utilities” that are called by other programs. In this book
we ask you to move back and forth between these levels.

Abstract Data Type Operator Categories

In general, the basic operations that are performed on an abstract data type are classi-
fied into four categories: constructors, transformers (also called mutators), observers, and
iterators.

A constructor is an operation that creates a new instance (object) of an abstract
data type. It is almost always invoked at the language level by some sort of declaration.
Transformers are operations that change the state of one or more of the data values,
such as inserting an item into an object, deleting an item from an object, or making an
object empty. An operation that takes two objects and merges them into a third object is
a binary transformer.1

An observer is an operation that allows us to observe the state of one or more of
the data values without changing them. Observers come in several forms: predicates
that ask if a certain property is true, accessor or selector functions that return a copy of
an item in the object, and summary functions that return information about the object

72 | Chapter 2: Data Design and Implementation

as a whole. A Boolean function that returns true if an object is empty and false if it
contains any components is an example of a predicate. A function that returns a copy
of the last item put into the structure is an example of an accessor function. A function
that returns the number of items in the structure is a summary function.

An iterator is an operation that allows us to process all components in a data struc-
ture sequentially. Operations that print the items in a list or return successive list items
are iterators. Iterators are only defined on structured data types.

In later chapters, we use these ideas to define and implement some useful data types
that may be new to you. First, however, let’s explore the built-in composite data
types C++ provides for us.

2.2 Abstraction and Built-In Types

In the last section, we suggested that a built-in simple type such as int or float could
be viewed as an abstraction whose underlying implementation is defined in terms of

machine-level operations. The same perspective
applies to built-in composite data types provided in
programming languages to build data objects. A com-
posite data type is one in which a name is given to a
collection of data items. Composite data types come in

two forms: unstructured and structured. An unstructured composite type is a collection
of components that are not organized with respect to one another. A structured data
type is an organized collection of components in which the organization determines the
method used to access individual data components.

For instance, C++ provides the following composite types: records (structs), classes,
and arrays of various dimensions. Classes and structs can have member functions as
well as data, but it is the organization of the data we are considering here. Classes and
structs are logically unstructured; arrays are structured.

Let’s look at each of these types from our three perspectives. First, we examine the
abstract view of the structure—how we construct variables of that type and how we
access individual components in our programs. Next, from an application perspective,
we discuss what kinds of things can be modeled using each structure. These two points
of view are important to you as a C++ programmer. Finally, we look at how some of the
structures may be implemented—how the “logical” accessing function is turned into a
location in memory. For built-in constructs, the abstract view is the syntax of the con-
struct itself, and the implementation level remains hidden within the compiler. So long
as you know the syntax, you as a programmer do not need to understand the imple-
mentation view of predefined composite data types. As you read through the implemen-
tation sections and see the formulas needed to access an element of a composite type,
you should appreciate why information hiding and encapsulation are necessary.

Records

The record is not available in all programming languages. FORTRAN, for instance, does
not support records; conversely, COBOL, a business-oriented language, uses records

Composite data type A data type that allows a collec-
tion of values to be associated with an object of that type

2.2 Abstraction and Built-in Types | 73

J A G U A R \0

1998

40998.33

myCar

.year

.maker

.price

Figure 2.5 Record myCar

extensively. In C++, records are implemented by structs. C++ classes are another imple-
mentation of a record. For the purposes of the following discussion, we use the generic
term “record,” but both structs and classes behave as records.

Logical Level A record is a composite data type made up of a finite collection of not
necessarily homogeneous elements called members or fields. Accessing is done directly
through a set of named member or field selectors.

We illustrate the syntax and semantics of the component selector within the con-
text of the following struct declaration:

struct CarType
{
int year;
char maker[10];
float price;

};
CarType myCar;

The record variable myCar is made up of three components. The first, year, is of
type int. The second, maker, is an array of characters. The third, price, is a float
number. The names of the components make up the set of member selectors. A picture
of myCar appears in Figure 2.5.

The syntax of the component selector is the record variable name, followed by a
period, followed by the member selector for the component in which you are interested:

If this expression appears on the right-hand side of an assignment statement, a
value is being extracted from that place (for example, pricePaid = myCar.price). If
it appears on the left-hand side, a value is being stored in that member of the struct (for
example, myCar.price = 20009.33).

myCar.price

member
selector

periodstruct
variable

74 | Chapter 2: Data Design and Implementation

Here myCar.maker is an array whose elements are of type char. You can access
that array member as a whole (for example, myCar.maker), or you can access individ-
ual characters by using an index.

In C++, a struct may be passed as a parameter to a function (either by value or by
reference), one struct may be assigned to another struct of the same type, and a struct
may be a function return value.

myCar.maker[2]

member
selector

periodstruct
variable

3rd character
in the array

Parameter Passing

C++ supports two types of formal parameters: value parameters and reference parameters. A value
parameter is a formal parameter that receives a copy of the contents of the corresponding actual
parameter (also called argument). Because the formal parameter holds a copy of the actual parame-
ter, the actual parameter cannot be changed by the function to which it is a parameter. On the other
hand, a reference parameter is a formal parameter that receives the location (memory address) of the
corresponding actual parameter. Because the formal parameter holds the memory address of the
actual parameter, the function can change the contents of the actual parameter. By default in C++,
arrays are passed by reference, and nonarray parameters are passed by value.

To specify that a formal nonarray parameter is a reference parameter, append an ampersand
(&) to the right of the type name on the formal parameter list. Look at the following examples:

void AdjustForInflation(CarType& car, float perCent)
// Increases price by the amount specified in perCent.
{
car.price = car.price * perCent + car.price;

}

bool LateModel(CarType car, int date)
// Returns true if the car's model year is later than or
// equal to date; returns false otherwise.
{
return car.year >= date;

}

C++

2.2 Abstraction and Built-in Types | 75

The function AdjustForInflation changes the price data member of the formal
parameter car, so car must be a reference parameter. Within the body of the function,
car.price is the price member of the actual parameter. The function LateModel examines
car without changing it, so car should be a value parameter. Within the function, car.year is
a copy of the caller’s actual parameter.

Application Level Records (structs) are very useful for modeling objects that have a
number of characteristics. This data type allows us to collect various types of data about
an object and to refer to the whole object by a single name. We also can refer to the
different members of the object by name. You probably have seen many examples of
records used in this way to represent objects.

Records are also useful for defining other data structures, allowing programmers to
combine information about the structure with the storage of the elements. We make
extensive use of records in this way when we develop representations of our own pro-
grammer-defined data structures.

Implementation Level Two things must be done to implement a built-in composite data
type: (1) memory cells must be reserved for the data, and (2) the accessing function must
be determined. An accessing function is a rule that tells the compiler and run-time
system where an individual element is located within the data structure. Before we
examine a concrete example, let’s look at memory. The unit of memory that is assigned
to hold a value is machine dependent. Figure 2.6 shows several different memory
configurations. In practice, memory configuration is a consideration for the compiler
writer. To be as general as possible, we will use the generic term cell to represent a
location in memory rather than “word” or “byte.” In the examples that follow, we assume
that an integer or character is stored in one cell and a floating-point number in two cells.
(This assumption is not accurate in C++, but we use it here to simplify the discussion.)

Byte Byte Byte Byte Byte Byte Byte Byte

Half word Half word Half word Half word

Word Word

Double word

IBM 370 Architecture

Word

CDC59

7 07 07 07 07 07 07 07 0

Word

Word

15 0

7 0

16-Bit
Machine

8-Bit
Machine

0

Figure 2.6 Memory configurations

76 | Chapter 2: Data Design and Implementation

Member

year
maker
price

Address

8500
8501
8502

8509
8510
8511
8512

Length

1
10
2

Offset

0
1
11

year member (length=1)

maker member (length=10)
 •
 •
 •

price member (length=2)

•
•
•

Figure 2.7 Implementation-level view of CarType

2In some machines this statement may not be exactly true, because boundary alignment (full- or half-word)
may require that some space in memory be skipped so that the next member starts on an address that is divis-
ible by 2 or 4. See Figure 2.6.

The declaration statements in a program tell the compiler how many cells are
needed to represent the record. The name of the record then is associated with the char-
acteristics of the record. These characteristics include the following:

• The location in memory of the first cell in the record, called the base address of
the record

• A table containing the number of memory locations needed for each member of
the record

A record occupies a block of consecutive cells in memory.2 The record’s accessing func-
tion calculates the location of a particular cell from a named member selector. The basic
question is, Which cell (or cells) in this consecutive block do you want?

The base address of the record is the address of the first member in the record. To
access any member, we need to know how much of the record to skip to get to the
desired member. A reference to a record member causes the compiler to examine the
characteristics table to determine the member’s offset from the beginning of the record.
The compiler then can generate the member’s address by adding the offset to the base.
Figure 2.7 shows such a table for CarType. If the base address of myCar were 8500, the
fields or members of this record would be found at the following addresses:

Address of myCar.year = 8500 + 0 = 8500
Address of myCar.maker = 8500 + 1 = 8501
Address of myCar.price = 8500 + 11 = 8511

We said that the record is a nonstructured data type, yet the component selector
depends on the relative positions of the members of the record. This is true: A record is

2.2 Abstraction and Built-in Types | 77

a structured data type if viewed from the implementation perspective. However, from
the user’s view, it is unstructured. The user accesses the members by name, not by posi-
tion. For example, if we had defined CarType as

struct CarType
{
char make[10];
float price;
int year;

};

the code that manipulates instances of CarType would not change.

One-Dimensional Arrays

Logical Level A one-dimensional array is a structured composite data type made up of
a finite, fixed-size collection of ordered homogeneous elements to which direct access is
available. Finite indicates that a last element is identifiable. Fixed size means that the
size of the array must be known in advance; it doesn’t mean that all slots in the array
must contain meaningful values. Ordered means that there is a first element, a second
element, and so on. (The relative position of the elements is ordered, not necessarily the
values stored there.) Because the elements in an array must all be of the same type, they
are physically homogeneous; that is, they are all of the same data type. In general, it is
desirable for the array elements to be logically homogeneous as well—that is, for all the
elements to have the same purpose. (If we kept a list of numbers in an array of integers,
with the length of the list—an integer—kept in the first array slot, the array elements
would be physically, but not logically, homogeneous.)

The component selection mechanism of an array is direct access, which means we
can access any element directly, without first accessing the preceding elements. The
desired element is specified using an index, which gives its relative position in the col-
lection. Later we discuss how C++ uses the index and some characteristics of the array
to figure out exactly where in memory to find the element. That’s part of the implemen-
tation view, and the application programmer using an array doesn’t need to be con-
cerned with it. (It’s encapsulated.)

Which operations are defined for the array? If the language we were using lacked
predefined arrays and we were defining arrays ourselves, we would want to specify at
least three operations (shown here as C++ function calls):

CreateArray(anArray, numberOfSlots);
// Create array anArray with numberOfSlots locations.

Store(anArray, value, index);
// Store value into anArray at position index.

Retrieve(anArray, value, index);
// Retrieve into value the array element found at position index.

78 | Chapter 2: Data Design and Implementation

Because arrays are predefined data types, the C++ programming language supplies a
special way to perform each of these operations. C++’s syntax provides a primitive con-
structor for creating arrays in memory, with indexes used as a way to directly access an
element of an array.

In C++, the declaration of an array serves as a primitive constructor operation. For
example, a one-dimensional array can be declared with this statement:

int numbers[10];

The type of the elements in the array comes first, followed by the name of the array
with the number of elements (the array size) in brackets to the right of the name. This
declaration defines a linearly ordered collection of 10 integer items. Abstractly, we can
picture numbers as follows:

Each element of numbers can be accessed directly by its relative position in the
array. The syntax of the component selector is described as follows:

array-name[index-expression]

The index expression must be of an integral type (char, short, int, long, or an enu-
meration type). The expression may be as simple as a constant or a variable name, or as
complex as a combination of variables, operators, and function calls. Whatever the form
of the expression, it must result in an integer value.

In C++, the index range is always 0 through the array size minus 1; in the case of
numbers, the value must be between 0 and 9. In some other languages, the user may
explicitly give the index range.

The semantics (meaning) of the component selector is “Locate the element associ-
ated with the index expression in the collection of elements identified by array-name.”
The component selector can be used in two ways:

1. To specify a place into which a value is to be copied:

numbers[2] = 5;

or

cin >> numbers[2];

First element

Second element

Third element

•
•
•

•
•
•

Last element

numbers

[0]

[1]

[2]

[9]

2.2 Abstraction and Built-in Types | 79

2. To specify a place from which a value is to be retrieved:

value = numbers[4];

or

cout << numbers[4];

If the component selector appears on the left-hand side of the assignment state-
ment, it is being used as a transformer: The data structure is changing. If the component
selector appears on the right-hand side of the assignment statement, it is being used as
an observer: It returns the value stored in a place in the array without changing it.
Declaring an array and accessing individual array elements are operations predefined in
nearly all high-level programming languages.

In C++, arrays may be passed as parameters (by reference only), but cannot be
assigned to one another or serve as the return value type of a function.

One-Dimensional Arrays as Parameters

In C++, arrays can only be reference parameters; it is not possible to pass an array by value.
Therefore, the ampersand (&) to the right of the type is omitted. When an array is the formal
parameter, the base address of the array (the memory address of the first slot in the array) is
actually passed to a function. This is true whether the array has one or more dimensions. When
declaring a one-dimensional array parameter, the compiler needs to know only that the parame-
ter is an array; it does not need to know its size. If the size of the formal parameter is listed, the
compiler ignores it. The code in the function that processes the array is responsible for ensuring
that only legitimate array slots are referenced. Therefore, a separate parameter often is passed to
the function to specify how many array slots will be processed.

int SumValues(int values[], int numberOfValues)
// Returns the sum of values[0] through values[numberOfValues–1].
{
int sum = 0;

for (int index = 0; index < numberOfValues; index++)
sum = sum + values[index];

return sum;
}

If arrays are always passed as reference parameters, how can we protect the actual parame-
ter from inadvertent changes? For example, in SumValues the parameter values is only to be
inspected but not modified. How can we protect it from being changed? We can declare it to be a
const parameter as follows:

int SumValues(const int values[], int numberOfValues)

Within the function body, trying to change the contents of values now causes a syntax error.

C++

80 | Chapter 2: Data Design and Implementation

data money letters

Number 10 6 26

Base unknown unknown unknown

SizeOfElement 1 2 1

Application Level A one-dimensional array is the natural structure for the storage of
lists of like data elements. Examples include grocery lists, price lists, lists of phone
numbers, lists of student records, and lists of characters (a string). You have probably
used one-dimensional arrays in similar ways in some of your programs.

Implementation Level Of course, when you use an array in a C++ program you do not
have to be concerned with all of the implementation details. You have been dealing
with an abstraction of the array from the time the construct was introduced, and you
will never have to consider all the messy details described in this section.

An array declaration statement tells the compiler how many cells are needed to rep-
resent that array. The name of the array then is associated with the characteristics of the
array. These characteristics include the following:

• The number of elements (Number)
• The location in memory of the first cell in the array, called the base address of

the array (Base)
• The number of memory locations needed for each element in the array (Size-

OfElement)

The information about the array characteristics is often stored in a table called an array
descriptor or dope vector. When the compiler encounters a reference to an array ele-
ment, it uses this information to generate code that calculates the element’s location in
memory at run time.

How are the array characteristics used to calculate the number of cells needed and
to develop the accessing functions for the following arrays? As before, we assume for
simplicity that an integer or character is stored in one cell and a floating-point number
is stored in two cells.

int data[10];
float money[6];
char letters[26];

These arrays have the following characteristics:

Let’s assume that the C++ compiler assigns memory cells to variables in sequential
order. If, when the preceding declarations are encountered, the next memory cell avail-

2.2 Abstraction and Built-in Types | 81

able to be assigned is, say, 100, the memory assignments are as follows. (We have used
100 to make the arithmetic easier.)

Now we have determined the base address of each array: data is 100, money is 110,
and letters is 122. The arrangement of these arrays in memory gives us the following
relationships:

In C++ the accessing function that gives us the position of an element in a one-
dimensional array associated with the expression Index is

Address(Index) = Base + Offset of the element at position Index

How do we calculate the offset? The general formula is

Offset = Index * SizeOfElement

The whole accessing function becomes

Address(Index) = Base + Index * SizeOfElement

Let’s apply this formula and see if we do get what we claimed we should.

Given The program must access

data[0] 100
data[8] 108
letters[1] 123
letters[25] 147
money[0] 110
money[3] 116

[0]

[1]

•

•

•

•

•

•

[9]

[0]

[1]

•

•

•

•

•

•

[5]

[0]

[1]

•

•

•

•

•

•

[25]

100

101

109

110

112

120

122

123

147

Address Address Addressdata money letters

82 | Chapter 2: Data Design and Implementation

The calculation of an array element address in C++ is much simpler than it is in
many other languages because C++ assumes that the index range is from 0 through the
maximum size minus 1. Languages such as Pascal and Ada allow the user to specify the
lower and upper bounds on the index range rather than giving the size. This extra flexi-
bility complicates the indexing process considerably but leaves the abstraction cleaner.

Earlier, we noted that an array is a structured data type. Unlike with a record,
whose logical view is unstructured but whose implementation view is structured, both
views of an array are structured. The structure is inherent in the logical component
selector.

As we mentioned at the beginning of this section, when you use an array in a C++
program you do not have to be concerned with all of these implementation details. The
advantages of this approach are very clear: You can think of the data and the opera-
tions in a logical sense and can consider their use without having to worry about imple-
mentation details. The lower levels are still there—they just remain hidden from you. We
strive for this same sort of separation of the abstract and implementation views in the
programmer-defined classes discussed in the remainder of this book.

Two-Dimensional Arrays

Logical Level Most of what we have said about the abstract view of a one-dimensional
array applies as well to arrays of more than one dimension. A two-dimensional array is
a composite data type made up of a finite, fixed-size collection of homogeneous
elements ordered in two dimensions. Its component selector is direct access: a pair of
indexes specifies the desired element by giving its relative position in each dimension.

A two-dimensional array is a natural way to represent data that is logically viewed
as a table with columns and rows. The following example illustrates the syntax for
declaring a two-dimensional array in C++.

int table[10][6];

The abstract picture of this structure is a grid with rows and columns.

Base + Index * SizeOfElement Address

data[0] 100 + (0 * 1) = 100

data[8] 100 + (8 * 1) = 108

letters[1] 122 + (1 * 1) = 123

letters[25] 122 + (25 * 1) = 147

money[0] 110 + (0 * 2) = 110

money[3] 110 + (3 * 2) = 116

2.2 Abstraction and Built-in Types | 83

The component selector for the two-dimensional array is as follows:

table[row][col]

specifies which column
(second dimension)

specifies which row
(first dimension)

[0] [1] • • • [5]

[0]

[1]

[9]

•

•

•

Columns

Rows

• • •

Two-Dimensional Arrays as Parameters

Two-dimensional arrays are stored in row order in C++. That is, all of the elements in one row are
stored together, followed by all of the elements in the next row. To access any row other than the
first, the compiler must be able to calculate where each row begins; this calculation depends on
how many elements are present in each row. The second row begins at the base address plus the
number of elements in each row, and each succeeding row begins at the address of the previous
row plus the number of elements in each row. The second dimension—the number of columns—
tells us how many elements are in each row; therefore the size of the second dimension must be
included in the declaration of the formal parameter for a two-dimensional array.

int ProcessValues(int values[][5])
{
.
.
.
}

ProcessValues works for an array with any number of rows as long as it has exactly five
columns. That is, the size of the second dimension of both the actual and formal array parameters
must be identical. To ensure that formal and actual two-dimensional array parameters have the

C++

84 | Chapter 2: Data Design and Implementation

same size, use the typedef statement to define a two-dimensional array type and then declare
both the actual and the formal parameters to be of that type. For example,

const int NUM_ROWS = 5;
const int NUM_COLS = 4;
typedef float TableType[NUM_ROWS][NUM_COLS];

int ProcessValues(TableType table);

TableType mine;
TableType yours;

The typedef statement associates a two-dimensional float array with five rows and four
columns with the type name TableType; mine and yours are two such arrays. Any actual
parameter for ProcessValues should be of type TableType. By setting up the types this way,
no possible mismatch can occur.

Application Level As mentioned in the previous section, a two-dimensional array is
the ideal data structure for modeling data that are logically structured as a table with
rows and columns. The first dimension represents rows, and the second dimen-
sion represents columns. Each element in the array contains a value, and each
dimension represents a relationship. For example, we usually represent a map as a
two-dimensional array.

As with the one-dimensional array, the operations available for a two-dimensional
array object are so limited (only creation and direct access) that the major application is
the implementation of higher-level objects.

Implementation Level The implementation of two-dimensional arrays involves the
mapping of two indexes to a particular memory cell. The mapping functions are more
complicated than those for one-dimensional arrays. We do not give them here, as you

A B C D E F G H

1

2

3

4

5

6

7

Allentown

2.3 Higher-Level Abstraction and the C++ Class Type | 85

will learn to write these accessing functions in later courses. Our goal is not to teach
you to be a compiler writer but rather to give you an appreciation of the value of
information hiding and encapsulation.

2.3 Higher-Level Abstraction and the C++ Class Type

In the last section, we examined C++’s built-in data types from the logical view, the
application view, and the implementation view. Now we shift our focus to data types
that are needed in a program but not pro-
vided by the programming language.

The class type is a construct in which the
members of the class can be both functions
and data; that is, the data members and the
code that manipulates them are bound
together within the class itself. Because the
data are bound together with the operations,
we can use one object to build another object;
in other words, a data member of an object
can be another object.

When we design an abstract data type, we want to bind the operations of the data
type with the data that are being manipulated. The class is the perfect mechanism to
implement an abstract data type because it enforces encapsulation. The class acts like
the case around a watch that prevents us from accessing the works. The case is provided
by the watchmaker, who can easily open it when repairs become necessary.

Classes are written in two parts, the specification and the implementation. The spec-
ification, which defines the interface to the class, is like the face and knobs on a watch.
The specification describes the resources that the class can supply to the program.
Resources supplied by a watch might include the value of the current time and opera-
tions to set the current time. In a class, the resources include data and operations on the
data. The implementation section provides the implementation of the resources defined
in the specification; it is like the inside of the watch.

Significant advantages are derived from separating the specification from its imple-
mentation. A clear interface is important, particularly when a class is used by other
members of a programming team or is part of a software library. Any ambiguity in an
interface may result in problems. By separating the specification from its implementa-
tion, we are given the opportunity to concentrate our efforts on the design of a class
without needing to worry about implementation details.

Another advantage of this separation is that we can change the implementation at
any time without affecting the programs that use the class (clients of the class). We can
make changes when a better algorithm is discovered or the environment in which the
program is run changes. For example, suppose we need to control how text is displayed
on screen. Text control operations might include moving the cursor to a particular
location and setting text characteristics such as bold, blink, and underline. The algo-
rithms required for controlling these characteristics usually differ from one computer
system to another. By defining an interface and encapsulating the algorithms as

Class An unstructured type that encapsulates a fixed
number of data components with the functions that
manipulate them; the predefined operations on an
instance of a class are whole assignment and component
access

Client Software that declares and manipulates objects
(instances) of a particular class

86 | Chapter 2: Data Design and Implementation

3Your system may use extensions different from .h and .cpp for these files—for example, .hpp or .hxx (or no
extension at all) for header files and .cxx, .c, or .C for implementation files.

member functions, we can easily move our program to a different system simply by
rewriting the implementation. We do not have to change the rest of the program.

Because the class is such an important construct, we review its syntax and seman-
tics in the next section. Most of you will be familiar with this material. Indeed, we used
a class in Chapter 1.

Class Specification

Although the class specification and implementation can reside in the same file, the two
parts of a class are usually separated into two files: The specification goes into a header
file (.h extension), and the implementation goes into a file with the same name but a
.cpp extension. This physical separation of the two parts of a class reinforces the logi-
cal separation.3

We describe the syntax and semantics of the class type within the context of defin-
ing an abstract data type Date.

// Declare a class to represent the Date ADT.
// This is file DateType.h.

class DateType
{
public:
void Initialize(int newMonth, int newDay, int newYear);
int YearIs() const; // Returns year
int MonthIs() const; // Returns month
int DayIs() const; // Returns day

private:
int year;
int month;
int day;

};

The data members of the class are year, month, and day. The scope of a class
includes the parameters on the member functions, so we must use names other than
month, year, and day for our formal parameters. The data members are marked pri-
vate, which means that although they are visible to the human user, they cannot be
accessed by client code. Private members can be accessed only by the code in the imple-
mentation file.

2.3 Higher-Level Abstraction and the C++ Class Type | 87

The member functions of the class are Initialize, YearIs, MonthIs, and DayIs.
They are marked public, which means that client code can access these functions.
Initialize is a constructor operation; it takes values for the year, month, and day and
stores these values into the appropriate data members of an object (an instance of the
class).4 YearIs, MonthIs, and DayIs are accessor functions; they are member functions
that access the data members of the class. The const beside the accessor function
names guarantees that these functions do not change any of the data members of the
objects to which they are applied.

Scope Rules in C++

The rules of C++ that govern who knows what, where, and when are called scope rules. Three main
categories of scope exist for an identifier in C++: class scope, local scope, and global scope. Class
scope refers to identifiers declared within a class declaration. Local scope is the scope of an identi-
fier declared within a block (statements enclosed within {}). Global scope is the scope of an iden-
tifier declared outside all functions and classes.

• All identifiers declared within a class are local to the class (class scope).
• The scope of a formal parameter is the same as the scope of a local variable declared in the

outermost block of the function body (local scope).
• The scope of a local identifier includes all statements following the declaration of the identifier

to the end of the block in which it is declared; it includes any nested blocks unless a local
identifier of the same name is declared in a nested block (local scope).

• The name of a function that is not a member of a class has global scope. Once a global func-
tion name has been declared, any subsequent function can call it (global scope).

• When a function declares a local identifier with the same name as a global identifier, the local
identifier takes precedence (local scope).

• The scope of a global variable or constant extends from its declaration to the end of the file in
which it is declared, subject to the condition in the last rule (global scope).

• The scope of an identifier does not include any nested block that contains a locally declared
identifier with the same name (local identifiers have name precedence).

4At the implementation level from here on, we use the word object to refer to a class object, an instance of a
class type.

Class Implementation

Only the member functions of the class DateType can access the data members, so we
must associate the class name with the function definitions. We do so by inserting the
class name before the function name, separated by the scope resolution operator (::).
The implementation of the member functions goes into the file DateType.cpp. To
access the specifications, we must insert the file DateType.h by using an #include
directive.

C++

88 | Chapter 2: Data Design and Implementation

// Define member functions of class DateType.
// This is file DateType.cpp.

#include "DateType.h" // Gain access to specification of class

void DateType::Initialize
(int newMonth, int newDay, int newYear)

// Post: year is set to newYear.
// month is set to newMonth.
// day is set to newDay.
{
year = newYear;
month = newMonth;
day = newDay;

}

int DateType::MonthIs() const
// Accessor function for data member month.
{
return month;

}

int DateType::YearIs() const
// Accessor function for data member year.
{
return year;

}

int DateType::DayIs() const
// Accessor function for data member day.
{
return day;

}

A client of the class DateType must have an #include "DateType.h" directive
for the specification (header) file of the class. Note that system-supplied header files are
enclosed in angle brackets (<iostream>), whereas user-defined header files are
enclosed in double quotes. The client then declares a variable of type DateType just as
it would any other variable.

#include "DateType.h"
DateType today;
DateType anotherDay;

2.3 Higher-Level Abstraction and the C++ Class Type | 89

Member functions of a class are invoked in the same way that data members of a
struct are accessed—with the dot notation. The following code segment initializes two
objects of type DateType and then prints the dates on the screen:

today.Initialize(9, 24, 2003);
anotherDay.Initialize(9, 25, 2003);
cout << " Today is " << today.MonthIs() << "/" << today.DayIs()

<< "/" << today.YearIs() << endl;
cout << " Another date is " << anotherDay.MonthIs() << "/"

<< anotherDay.DayIs() << "/" << anotherDay.YearIs() << endl;

Member Functions with Object Parameters

A member function applied to a class object uses the dot notation. What if we want a
member function to operate on more than one object—for example, a function that com-
pares the data members of two instances of the class? The following code compares two
instances of the class DateType:

enum RelationType {LESS, EQUAL, GREATER};
// Prototype of member function in the specification file.
RelationType ComparedTo(DateType someDate);
// Compares self with someDate.

// Implementation of member function in the implementation file.

RelationType DateType::ComparedTo(DateType aDate)
// Pre: Self and aDate have been initialized.
// Post: Function value = LESS, if self comes before aDate.
// = EQUAL, if self is the same as aDate.
// = GREATER, if self comes after aDate.
{
if (year < aDate.year)
return LESS;

else if (year > aDate.year)
return GREATER;

else if (month < aDate.month)
return LESS;

else if (month > aDate.month)
return GREATER;

else if (day < aDate.day)
return LESS;

else if (day > aDate.day)
return GREATER;

else return EQUAL;
}

90 | Chapter 2: Data Design and Implementation

In this code, year refers to the year data member
of the object to which the function is applied;
aDate.year refers to the data member of the object
passed as a parameter. The object to which a member

function is applied is called self. In the function definition, the data members of self are
referenced directly without using dot notation. If an object is passed as a parameter, the
parameter name must be attached to the data member being accessed using dot notation.
As an example, look at the following client code:

switch (today.ComparedTo(anotherDay))
{
case LESS :

cout << "today comes before anotherDay";
break;

case GREATER :
cout << "today comes after anotherDay";
break;

case EQUAL :
cout << "today and anotherDay are the same";
break;

}

Now look back at the ComparedTo function definition. In that code, year in the
function refers to the year member of today, and aDate.year in the function refers to
the year member of anotherDay, the actual parameter to the function.

Why do we use LESS, GREATER, and EQUAL when COMES_BEFORE, COMES_AFTER,
and SAME would be more meaningful in the context of dates? We use the more general
words here, because in other places we use functions of type RelationType when com-
paring numbers and strings.

Difference Between Classes and Structs

In C++, the technical difference between classes and structs is that, without the use of the
reserved words public and private, member functions and data are private by default
in classes and public by default in structs. In practice, structs and classes are often used
differently. Because the data in a struct is public by default, we can think of a struct as a
passive data structure. The operations that are performed on a struct are usually global
functions to which the struct is passed as a parameter. Although a struct may have mem-
ber functions, they are seldom defined. In contrast, a class is an active data structure
where the operations defined on the data members are member functions of the class.

In object-oriented programming, an object is viewed as an active structure with
control residing in the object through the use of member functions. For this reason, the
C++ class type is used to represent the concept of an object.

Self The object to which a member function is applied

2.4 Object-Oriented Programming | 91

2.4 Object-Oriented Programming

In Chapter 1, we said that functional design results in a hierarchy of tasks and that
object-oriented design results in a hierarchy of objects. Structured programming is the
implementation of a functional design, and object-oriented programming (OOP) is the
implementation of an object-oriented design. However, these approaches are not
entirely distinct: The implementation of an operation on an object often requires a func-
tional design of the algorithm. In this section, we examine object-oriented programming
in more depth.

Concepts

The vocabulary of object-oriented programming has its roots in the programming lan-
guages Simula and Smalltalk. It can be very bewildering. Such terms and phrases as
“sending a message to,” “methods,” and “instance variables” are sprinkled throughout
the OOP literature. Although this vocabulary can seem daunting, don’t panic. There is a
straightforward translation between these terms and familiar C++ constructs.

An object is a class object or class instance—that is, an instance of a class type. A
method is a public member function, and an instance variable is a private data member.
Sending a message means calling a public member function. In the rest of this book, we
tend to mix object-oriented terms with their C++ counterparts.

Inheritance Inheritance is a mechanism
whereby a hierarchy of classes is constructed
such that each descendant class inherits the
properties (data and operations) of its
ancestor class. In the world at large, it is
often possible to arrange concepts into an
inheritance hierarchy—a hierarchy in which
each concept inherits the properties of the
concept immediately above it in the
hierarchy. For example, we might classify different kinds of vehicles according to the
inheritance hierarchy in Figure 2.8. Moving down the hierarchy, each kind of vehicle is
both more specialized than its parent (and all of its ancestors) and more general than its
children (and all of its descendants). A wheeled vehicle inherits properties common to
all vehicles (it holds one or more people and carries them from place to place) but has
an additional property that makes it more specialized (it has wheels). A car inherits
properties common to all wheeled vehicles, but has additional, more specialized
properties (four wheels, an engine, a body, and so forth). The inheritance relationship
can be viewed as an is-a relationship. In this relationship, the objects become more
specialized the lower in the hierarchy you go.

Object-oriented languages provide a way for creating inheritance relationships
among classes. You can take an existing class (called the base class) and create a new

Inheritance A mechanism used with a hierarchy of
classes in which each descendant class inherits the prop-
erties (data and operations) of its ancestor class

Base class The class being inherited from

92 | Chapter 2: Data Design and Implementation

class from it (called the derived class). The derived
class inherits all the properties of its base class. In par-
ticular, the data and operations defined for the base
class are now defined for the derived class. Note the
is-a relationship—every object of a derived class is
also an object of the base class.

Polymorphism Polymorphism is the ability to
determine either statically or dynamically which of
several methods with the same name (within the class
hierarchy) should be invoked. Overloading means
giving the same name to several different functions
(or using the same operator symbol for different
operations). You have already worked with overloaded
operators in C++. The arithmetic operators are
overloaded because they can be applied to integral
values or floating-point values, and the compiler

selects the correct operation based on the operand types. The time at which a function
name or symbol is associated with code is called binding time (the name is bound to the
code). With overloading, the determination of which particular implementation to use
occurs statically (at compile time). Determining which implementation to use at compile
time is called static binding.

Dynamic binding, on the other hand, is the ability to postpone the decision of
which operation is appropriate until run time. Many programming languages support
overloading; only a few, including C++, support dynamic binding. Polymorphism
involves a combination of both static and dynamic binding.

Encapsulation, inheritance, and polymorphism are the three necessary constructs in
an object-oriented programming language.

Derived class The class that inherits

Polymorphism The ability to determine which of several
operations with the same name is appropriate; a combi-
nation of static and dynamic binding

Overloading Giving the same name to more than one
function or using the same operator symbol for more than
one operation; usually associated with static binding

Binding time The time at which a name or symbol is
bound to the appropriate code

Static binding The compile-time determination of
which implementation of an operation is appropriate

Dynamic binding The run-time determination of which
implementation of an operation is appropriate

Vehicle

Wheeled
Vehicle

Figure 2.8 Inheritance hierarchy

2.4 Object-Oriented Programming | 93

C++ Constructs for OOP

In an object-oriented design of a program, classes typically exhibit one of the following
relationships: They are independent of one another, they are related by composition, or
they are related by inheritance.

Composition Composition (or containment)
is the relationship in which a class contains a
data member that is an object of another
class type. C++ does not need any special
language notation for composition. You
simply declare a data member of one class to
be of another class type.

For example, we can define a class PersonType that has a data member birth-
date of class DateType.

#include <string>
class PersonType
{
public:
void Initialize(string, DateType);
string NameIs() const;
DateType BirthdateIs() const;

private:
string name;
DateType birthdate;

};

Deriving One Class from Another Let’s use the class MoneyType introduced in a
sidebar in Chapter 1 as the base class and derive a class that has a field that contains
the name of the currency.

#include <string>
class MoneyType
{
public:
void Initialize(long, long);
long DollarsAre() const;
long CentsAre() const;

private:
long dollars;
long cents;

};

class ExtMoneyType : public MoneyType
{

Composition (containment) A mechanism by which an
internal data member of one class is defined to be an
object of another class type

94 | Chapter 2: Data Design and Implementation

public:
string CurrencyIs() const;
void Initialize(long, long, string);

private:
string currency;

};

ExtMoneyType extMoney;

The colon followed by the words public and MoneyType (a class identifier) says
that the new class being defined (ExtMoneyType) inherits the members of the class
MoneyType. MoneyType is called the base class or superclass and ExtMoneyType is
called the derived class or subclass.

extMoney has three member variables: one of its own (currency) and two that it
inherits from MoneyType (dollars and cents). extMoney has five member functions:
two of its own (Initialize and CurrencyIs) and three that it inherits from Money-
Type (Initialize, DollarsAre, and CentsAre). Although extMoney inherits the pri-
vate member variables from its base class, it does not have direct access to them.
extMoney must use the public member functions of MoneyType to access its inherited
member variables.

void ExtMoneyType::Initialize
(long newDollars, long newCents, string newCurrency)

{
currency = newCurrency;
MoneyType::Initialize(newDollars, newCents);

}

string ExtMoneyType::CurrencyIs() const
{
return currency;

}

Notice that the scope resolution operator (::) appears between the type MoneyType
and the member function Initialize in the definition of the member function.
Because two member functions named Initialize now exist, you must indicate the
class in which the one you mean is defined. (That’s why it’s called the scope resolution
operator.) If you fail to do so explicitly, the compiler assumes you mean the most
recently defined one.

The C++ rule for passing parameters is that the actual parameter and its correspon-
ding formal parameter must be of an identical type. With inheritance, however, C++
relaxes this rule somewhat. That is, the type of the actual parameter may be an object of
a derived class of the formal parameter.

2.5 Constructs for Program Verification | 95

Note that inheritance is a logical issue, not an implementation one. A class inherits
the behavior of another class and enhances it in some way. Inheritance does not mean
inheriting access to another class’s private variables. Although some languages do allow
access to the base class’s private members, such access often defeats the concepts of
encapsulation and information hiding. With C++, access to the private data members of
the base class is not allowed. Neither external client code nor derived class code can
directly access the private members of the base class.

Virtual Functions In the previous section we defined two member functions with the
same name, Initialize. The statements

money.Initialize(20, 66);
extMoney.Initialize(20, 66, "francs");

are not ambiguous, because the compiler can determine which Initialize to use by
examining the type of the object to which it is applied. Sometimes, however, the com-
piler cannot determine which member function is intended, so that the decision must be
made at run time. If the decision is left until run time, the word virtual must precede the
member function heading in the base class definition. We will have more to say about
how C++ implements polymorphism when we use this mechanism later in the book.

2.5 Constructs for Program Verification

Chapter 1 described methods for verifying software correctness in general. In this sec-
tion we look at two constructs provided in C++ to help ensure quality software (if we
use them!). The first is the exception mechanism, mentioned briefly in Chapter 1. The
second is the namespace mechanism, which helps handle the problem of duplicate
names appearing in large programs.

Exceptions

Most programs, and student programs in particular, are written under the most opti-
mistic of assumptions: They will compile the first time and execute properly. Such an
assumption is far too optimistic for almost any program beyond “Hello world.” Pro-
grams must deal with all sorts of error conditions and exceptional situations—some
caused by hardware problems, some caused by bad input, and some caused by undis-
covered bugs.

Aborting the program in the wake of such errors is not an option, as the user would
lose all work performed since the last save. At a minimum, a program must warn the
user, allow saving, and exit gracefully. In each situation, even if the exception manage-
ment technique calls for terminating the program, the code detecting the error cannot

96 | Chapter 2: Data Design and Implementation

know how to shut down the program, let alone shut it down gracefully. Transfer of the
thread of control and information to a handler that knows how to manage the error sit-
uation is essential.

As we said in Chapter 1, working with exceptions begins at the design phase,
where the unusual situations and possible error conditions are specified and decisions
are made about handling each one. Now let’s look at the try-catch and throw state-
ments, which allow us to alert the system to an exception (throw the exception), to
detect an exception (try code with a possible exception), and to handle an exception
(catch the exception).

try-catch and throw Statements The code segment in which an exception might occur
is enclosed within the try clause of a try-catch statement. If the exception occurs, the
reserved word throw is used to alert the system that control should pass to the
exception handler. The exception handler is the code segment in the catch clause of the
associated try-catch statement, which takes care of the situation.

The code that may throw an exception is placed in a try block followed immediately
by one or more catch blocks. A catch block consists of the keyword catch followed by
an exception declaration, which is in turn followed by a block of code. If an exception
is thrown, execution immediately transfers from the try block to the catch block whose
type matches the type of the thrown exception. The exception variable receives the
exception of the type that is thrown in the try block. In this way, the thrown exception
communicates information about the event to the handler.

try
{
// Code that may raise an exception and/or set some condition
if (condition)
throw exception_name; // frequently a string

}
catch (typename variable)
{
// Code that handles the exception
// It may call a cleanup routine and exit if the
// program must be terminated

}
// Code to continue processing
// This will be executed unless the catch block
// stops the processing.

Let’s look at a concrete example. You are reading and summing positive values
from a file. An exception occurs if a negative value is encountered. If this event hap-
pens, you want to write a message to the screen and stop the program.

2.5 Constructs for Program Verification | 97

try
{
infile >> value;
do
{
if (value < 0)
throw string("Negative value"); // Exception is a string

sum = sum + value;
} while (infile);

}
catch (string message)
// Parameter of the catch is type string
{
// Code that handles the exception
cout << message << " found in file. Program aborted."
return 1;

}
// Code to continue processing if exception not thrown
cout << "Sum of values on the file: " << sum;

If value is less than zero, a string is thrown; catch has a string as a parameter. The
system recognizes the appropriate handler by the type of the exception and the type of
the catch parameter. We will deal with exceptions throughout the rest of the book. As
we do, we will show more complex uses of the try-catch statement.

Here are the rules we follow in using exceptions within the context of the ADTs we
develop:

• The preconditions/postconditions on the functions represent a contract between
the client and the ADT that defines the exception(s) and specifies who (client or
ADT) is responsible for detecting the exception(s).

• The client is always responsible for handling the exception.
• The ADT code does not check the preconditions.

When we design an ADT, the software that uses it is called the client of the class. In
our discussion, we use the terms client and user interchangeably, thinking of them as
the people writing the software that uses the class, rather than the software itself.

Standard Library Exceptions In C++, the run-time environment (for example, a divide-
by-zero error) may implicitly generate exceptions in addition to those being thrown
explicitly by the program. The standard C++ libraries provide a predefined hierarchy of
error classes in the standard header file, stdexcept, including

• logic_error
• domain_error
• invalid_argument
• length_error
• out_of_range

98 | Chapter 2: Data Design and Implementation

In addition, the class runtime_error provides the following error classes:

• range_error
• overflow_error
• underflow_error

Namespaces

Different code authors tend to use many of the same identifier names (name, for exam-
ple). Because library authors often have the same tendency, some of these names may
appear in the library object code. If these libraries are used simultaneously, name
clashes may occur, as C++ has a “one definition rule,” which specifies that each name in
a C++ program should be defined exactly once. The effect of dumping many names into
the namespace is called namespace pollution.

The solution to namespace pollution involves the use of the namespace mechanism.
A namespace is a C++ language technique for grouping a collection of names that logi-
cally belong together. This facility allows the enclosing of names in a scope that is simi-
lar to a class scope; unlike class scope, however, a namespace can extend over several
files and be broken into pieces in a particular file.

Creating a Namespace A namespace is declared with the keyword namespace before
the block that encloses all of the names to be declared within the space. To access
variables and functions within a namespace, place the scope resolution operator (::)
between the namespace name and the variable or function name. For example, if we
define two namespaces with the same function,

namespace myNames
{
void getData(int&);

};

namespace yourNames
{
void getData(int&);

};

you can access the functions as follows:

myNames::getData(int& dataValue); // getData from myNames
yourNames::getData(int& dataValue); // getData from yourNames

This mechanism allows identical names to coexist in the same program.

Access to Identifiers in a Namespace Access to names declared in a namespace may
always be obtained by explicitly qualifying the name with the name of the namespace
with the scope resolution operator (::), as shown in the last example. Explicit

2.5 Constructs for Program Verification | 99

qualification of names is sufficient to use these names. However, if many names will be
used from a particular namespace or if one name is used frequently, then repeated
qualification can be awkward. A using declaration avoids this repetition for a particular
identifier. The using declaration creates a local alias for the qualified name within the
block in which it is declared, making qualification unnecessary.

For example, by putting the following declaration in the program,

using myNames::getData;

the function getData can be used subsequently without qualification. To access getData
in the namespace yourNames, it would have to be qualified: yourNames::getData.

One other method of access should be familiar: a using directive. For example,

using namespace myNames;

provides access to all identifiers within the namespace myNames. You undoubtedly have
employed a using directive in your program to access cout and cin defined in the
namespace std without having to qualify them.

A using directive does not bring the names into a given scope; rather, it causes the
name-lookup mechanism to consider the additional namespace specified by the direc-
tive. The using directive is easier to use, but it makes a large number of names visible in
this scope and can lead to name clashes.

Rules for Using the Namespace std Here are the rules that we follow in the balance of
the text in terms of qualifying identifiers from the namespace std:

• In function prototypes and/or function definitions, we qualify the identifier in
the heading.

• In a function block, if a name is used once, it is qualified. If a name is used more
than once, we use a using declaration with the name.

• If two or more names are used from a namespace, we use a using directive.
• A using directive is never used outside a class or a function block.

The goal is to never pollute the global namespace more than is necessary.

Character and String Library Functions

C++ provides many character and string-handling facilities in its standard library. Operations
available through <cctype> include testing to see whether a character is a letter, number, con-
trol character, uppercase, or lowercase. Operations available through <cstring> include con-
catenating two strings, comparing two strings, and copying one string into another. See Appendix
C for more details.

C++

100 | Chapter 2: Data Design and Implementation

Case Study
User-Defined String I/O Class

Strings are lists of characters; they represent text in a program. Strings are used extensively in
all kinds of programs. They label output, they are read from a file and sent to an output stream,
or they can be the data that a program processes. Many languages have strings as a built-in
data type. The C++ standard library provides a string class, whose declarations are available
in the header file <string>. The operations given in the string class include concatenation
of two strings using the + operator, searching a string for a substring, determining the number
of characters in a string, and some input/output operations. C++ also inherits a primitive string
type from C, which is simply an array of type char, with the null character (\0) used to signal
the end of the string. C++ also inherits from C a set of string-handling functions in
<cstring> and input/output functions in <iostream> and <fstream>. The input/output
functions are the same in both cases and are rather restrictive.

Let’s create our own abstract data type String that has general-purpose input and output
functions and encapsulate it into a class. We will call our class StrType so as not to confuse
it with the library class string.

Logical Level

At the logical level, a string is a finite sequence of alphanumeric characters, characterized by a
property called length. The length is the number of characters in the string.

What operations do we want defined on strings? At a minimum we need a primitive con-
structor that creates a string by initializing it to the empty state, a transformer that reads val-
ues from a file or the keyboard into a string, and an observer that sends a copy of the string to
the output stream or a file.

If a string has the property of length, we can define initializing a string as setting the
length of the string to zero. Reading values into a string is more difficult. We must decide
what we mean by a string in an input stream or a file. Do we mean the characters from the
current point in the stream until the next whitespace character is encountered (blank, tab,
newline, and so forth)? Until the next end-of-line is encountered? Until a special character is
encountered? What do we do if the character at the current position of a stream is a white-
space character?

Let’s examine the operations for string handling available in <iostream> before we make
our decision. We assume that string in the following examples is an array of characters.

cin >> string: Whitespace is skipped and characters are collected and stored in string
until whitespace is encountered. The stream is left positioned at the first whitespace character
encountered. Using the extraction operator (>>) is not appropriate if the string you are trying
to enter contains blanks (which are whitespace).

cin.getline(string, max): Whitespace is not skipped; the characters from the current
position of the stream up to end-of-line are read and stored into string; the newline charac-
ter is read but not stored in string. If max–1 characters are read and stored before encoun-
tering the newline character, the processing stops with the stream positioned at the next
character.

Case Study: User-Defined String I/O Class | 101

Intermingling these two methods of inputting strings can cause serious problems. The >>
operator leaves the stream positioned at whitespace. If that whitespace character is the new-
line character and the next operation is cin.getline(string, max), no characters are
input because the newline character stops the reading. Therefore, string is the empty
string. We want our string-input operation to avoid this problem and to work consistently in
all situations.

Let’s allow the user of our string class to decide what is meant by an input string by pro-
viding two parameters: a Boolean flag that determines if inappropriate characters should be
skipped before inputting the string and a parameter that specifies which characters are legal in
the string (anything else ends the input process). If no appropriate characters are found, the
string should be set to the empty string.

The only question concerning output is whether the user wants the output to begin on a
new line. We can provide a parameter for the user that indicates which format is desired.

Let’s summarize our observations in a CRC card before we write a formal specification for
our ADT.

Before we present our first ADT specification, a word about notation is in order. Because
we want the specification to be as programming language independent as possible, we use the
general word “Boolean” for the type name of Boolean variables rather than the C++ word
bool. On the other hand, there is no general word for input and output file types, so we use
the C++ terms ifstream and ofstream, respectively. We also use the C++ symbol amper-
sand (&) to indicate reference parameters.

Recall that to distinguish between the logical level and the implementation level, we put
logical-level identifiers in handwriting font and implementation-level identifiers in mono-
spaced font. In an ADT specification we use regular paragraph font throughout. In the specifi-
cations we also convert the phrases used in the CRC card to operation identifiers.

StrType

CollaborationsResponsibilities

Class Name: Superclass: Subclasses:

MakeEmpty()

Print to the screen (newLine)

Print to a file (newLine, outFile)

LengthIs () returns int

Copy the string (newString)

Get a string from the file (skip, charsAllowed,

inFile)

Get string from console (skip, charsAllowed)

ofstream

cstring

ifstream, char

char

.

.

.

102 | Chapter 2: Data Design and Implementation

String ADT Specification

Structure: A sequence of alphanumeric characters.
Operations:

MakeEmpty
Function: Initializes string to empty.
Precondition: None.
Postcondition: String is empty.

GetStringFile(Boolean skip, InType charsAllowed, ifstream& inFile)
Function: Gets a string from the file InFile.
Assumptions: (1) InType is a data type consisting of the fol-

lowing constants:
ALPHA: Only alphabetic characters are

stored.
ALPHA_NUM: Only alphanumeric characters

are stored.
NON_WHITE: All nonwhitespace characters

are stored.
NOT_NEW: All characters excluding the

newline character are stored.
(2) If skip is true, characters not allowed are
skipped until the first allowed character is
found. Reading and storing begins with this
character and continues until a character not
allowed is encountered. That character is read
but not stored. If skip is false, reading and
storing begins with the current character in
the stream.

Precondition: inFile has been opened.
Postconditions: If no allowable characters are found, the

empty string is returned; else, a string has
been input according to the skip and charsAl-
lowed parameters. inFile is left positioned fol-
lowing the last character read.

GetString(Boolean skip, InType charsAllowed)
Function: Gets a string from the standard input stream.
Assumptions: Same as those for GetStringFile.
Precondition: None.
Postconditions: String has been input according to the skip

and charsAllowed parameters. Input stream is
left positioned following the last character
read, which is a nonallowed character.

Case Study: User-Defined String I/O Class | 103

PrintToScreen(Boolean newLine)
Function: Prints an end-of-line character if needed

before printing the string to the screen.
Precondition: String has been initialized.
Postcondition: If newLine is true, string has been printed on

the screen starting on a new line; otherwise,
string has been printed on the current line.

PrintToFile(Boolean newLine, ofstream& outFile)
Function: Prints an end-of-line character if needed before

printing the string to outFile.
Preconditions: String has been initialized.

outFile has been opened.
Postconditions: If newLine is true, string has been printed on

outFile starting on a new line; otherwise,
string has been printed on the current line of
outFile. outFile is left positioned after the last
character written.

int LengthIs()
Function: Returns the number of characters in the string.
Precondition: String has been initialized.
Postcondition: Function value = number of characters in the

string.

CopyString(StrType& newString)
Function: Copies self into newString.
Precondition: Self has been initialized.
Postcondition: Self has been copied into newString.

Application Level

Let’s use this very simple set of operations to read words from a file, store them into an array, and
print them on the screen, one per line. The input is ordinary text; only alphanumeric characters
are allowed in the string. Thus, any nonalphanumeric character acts as a word (string) delimiter.

#include <fstream>
#include "StrType.h"
#include <iostream>
const int MAX_WORDS = 10;

104 | Chapter 2: Data Design and Implementation

int main()
{
using namespace std;
StrType word;
ifstream inFile;
StrType words[MAX_WORDS];
int numWords = 0;
inFile.open("words.in");

word.MakeEmpty();
word.GetStringFile(true, ALPHA_NUM, inFile);
while (inFile && numWords < MAX_WORDS)
{
word.CopyString(words[numWords]);
numWords++;
word.GetStringFile(true, ALPHA_NUM, inFile);

}
if (inFile)
cout << "First " << MAX_WORDS << " words on the file: ";

else
cout << " Words on the file: ";

for (int index = 0; index < numWords; index++)
words[index].PrintToScreen(true);

return 0;
}

A slight change in the parameters allows us to consider only alphabetic characters to be mak-
ing up a word and all other characters to be acting as delimiters: word.GetStringFile(true,
ALPHA, inFile). We could add a function that would check whether word was present in the
words array and add it only if it were absent, giving us a list of unique words.

Case Study: User-Defined String I/O Class | 105

5In the interest of brevity, we do not repeat the preconditions and postconditions on the member function pro-
totypes unless they have changed from those listed in the specification of the ADT. The code available on the
Web is completely documented.

We use the String ADT (class StrType) as defined by the previous specification many
times throughout the rest of this book.

Implementation Level

Now we must determine how we will represent our strings. Recall that C++ implements strings
as one-dimensional char arrays with the null character (\0) signaling the end of the string.
Another way of implementing a string would be a struct or a class with two data members: an
array of type char and an integer variable representing the length. The string characters
would be located between position 0 and position length – 1 in the array.

Which approach shall we use? The amount of storage required for both array-based
designs is nearly the same, and the amount of processing is approximately the same although
the algorithms differ somewhat. Let’s use the null-terminated method here. To accommodate
the null character, we must remember to allocate one more position than the maximum num-
ber of characters expected. The maximum number of characters—where does this number
come from? Nothing in the specification hints at a limit on the number of characters allowed
in a string, but our array-based implementation requires us to specify an array size.

Let’s arbitrarily choose a reasonably large number—say, 100—for the maximum string length.
In the specification file, StrType.h, we define a constant MAX_CHARS to be 100, letting the user
know that it is the maximum length allowed. In Chapter 4, we look at a more flexible technique
that lets us specify an array size dynamically (at run time) rather than statically (at compile time).

Should the client be responsible for making sure that the string is within the allowable
length, or should the code of GetString and GetStringFile check for this problem and dis-
card any characters that cannot be stored? Both approaches have merit. We choose the latter and
do the checking within StrType. The specifications need to be changed to reflect this decision.

The specification for the class StrType is contained in the following header file. Note
that the postconditions for GetString and GetStringFile have been expanded to
describe what happens if the number of characters is too large. Here is file StrType.h.5

// Header file for class StrType, a specification for the
// String ADT

#include <fstream>
#include <iostream>
const int MAX_CHARS = 100;
enum InType {ALPHA_NUM, ALPHA, NON_WHITE, NOT_NEW};

106 | Chapter 2: Data Design and Implementation

class StrType
{
public:
// Assumptions:
// InType is a data type consisting of the following constants:
// ALPHA: only alphabetic characters are stored;
// ALPHA_NUM: only alphanumeric characters are stored;
// NON_WHITE: all nonwhitespace characters are stored;
// NOT_NEW: all characters excluding the newline character
// are stored.
// If skip is true, characters not allowed are skipped until the
// first allowed character is found. Reading and storing
// begins with this character and continues until a character
// not allowed is encountered. This character is read but not
// stored. If skip is false, reading and storing begins with
// the current character in the stream.

void MakeEmpty();
void GetString(bool skip, InType charsAllowed);
// Post: If the number of allowable characters exceeds
// MAX_CHARS, the remaining allowable characters have
// been read and discarded.

void GetStringFile(bool skip, InType charsAllowed,
std::ifstream& inFile);

// Post: If the number of allowable characters exceeds
// MAX_CHARS, the remaining allowable characters have been
// read and discarded.

void PrintToScreen(bool newLine);
void PrintToFile(bool newLine, std::ofstream& outFile);
int LengthIs();
void CopyString(StrType& newString);

private:
char letters[MAX_CHARS + 1];

};

Now we must design the algorithms for our member functions and code them. In Chapter
1, we discussed the testing process and suggested that planning for testing should occur in
parallel with the design. Let’s practice what we preach, and consider testing as we code the
member functions. Our strategy is clear-box testing, because we are planning our testing as
we design and code the algorithms.

Case Study: User-Defined String I/O Class | 107

MakeEmpty When called prior to any other processing, MakeEmpty serves as a primitive
constructor that takes the storage structure assigned to a variable of the class type and
initializes any data members as necessary. We also can use MakeEmpty to return a structure
to the empty state after it has been used. In the case of the null-terminated implementation,
storing '\0' in letters[0] changes the instance of StrType from undefined to the empty
string. To test this function, we must take a variable of type StrType, apply the function to it,
and determine whether the string is empty.

void StrType::MakeEmpty()
// Post: letters is empty string.
{
letters[0] = '\0';

}

GetStringFile If skip is true, then characters are read and discarded until one is
encountered that is found in the set of allowed characters. This character becomes the first
character in the data member letters. Characters are read and stored in letters until a
character is read that is not allowed. That character is then discarded. If MAX_CHARS
characters are read and stored before a character not allowed is encountered, characters are
read and discarded until such a character is encountered or end-of-file is encountered. The
last step is to store the null-terminator following the last character stored in letters.

If skip is false, no characters are skipped before reading and storing characters.
How do we determine what to skip and what to store? The constants of InType tell us.

We use them as labels on a switch statement.

GetStringFile(Boolean skip, InType charsAllowed, ifstream& inFile)

We can use the functions available in <cctype> to control our reading in each of the
functions. If charsAllowed is ALPHA_NUM, we skip characters until the function isalnum
returns true, and store them until isalnum returns false or inFile goes into the fail state. If
charsAllowed is ALPHA, we skip characters until the function isalpha returns true, and
store them until isalpha returns false or inFile goes into the fail state. If charsAllowed
is NON_WHITE, we skip characters until the function isspace returns false, and store them
until isspace returns true or inFile goes into the fail state. If charsAllowed is
NOT_NEW, we skip characters until the character is not '\n', and store them until the character
is '\n' or inFile goes into the fail state.

switch (charsAllowed)
case ALPHA_NUM : GetAlphaNum(skip, letters)
case ALPHA : GetAlpha(skip, letters)
case NON_WHITE : GetNonWhite(skip, letters)
case NOT_NEW : GetTilNew(skip, letters)

108 | Chapter 2: Data Design and Implementation

Each of the four cases has a Boolean parameter that controls processing. Our test driver
must call each case with skip set to true and with skip set to false. In addition, each alter-
native must be examined to determine what characters should appear within the test data to
test that alternative. We must be sure that each behaves properly when encountering end-of-
file within the skip phase, and we must be sure that our test data include words that are
longer than the maximum length MAX_CHARS.

We code GetAlphaNum and GetTilNew here, leaving GetAlpha and GetNonWhite as
exercises.

#include <cctype>
// Prototypes of auxiliary functions.
// Note: If skip is true, nonallowable leading characters are
// skipped. If end-of-file is encountered while skipping
// characters, the empty string is returned. If the number
// of allowable characters exceeds MAX_CHARS, the rest are
// read and discarded.

void GetAlphaNum(bool skip, char letters[], std::ifstream& inFile);
// Post: letters array contains only alphanumeric characters.

void GetAlpha(bool skip, char letters[], std::ifstream& inFile);
// Post: letters array contains only alphabetic characters.

void GetNonWhite(bool skip, char letters[], std::ifstream& inFile);
// Post: letters array contains only nonwhitespace characters.

void GetTilNew(bool skip, char letters[], std::ifstream& inFile);
// Post: letters array contains everything up to newline character.

void StrType::GetStringFile(bool skip, InType charsAllowed,
std::ifstream& inFile)

{
switch (charsAllowed)
{
case ALPHA_NUM : GetAlphaNum(skip, letters, inFile);

break;
case ALPHA : GetAlpha(skip, letters, inFile);

break;
case NON_WHITE : GetNonWhite(skip, letters, inFile);

break;
case NOT_NEW : GetTilNew(skip, letters, inFile);

break;
}

}

Case Study: User-Defined String I/O Class | 109

void GetAlphaNum(bool skip, char letters[], std::ifstream& inFile)
// Post: If skip is true, non-alphanumeric letters are skipped.
// Alphanumeric characters are read and stored until a
// non-alphanumeric character is read or MAX_CHARS characters
// have been stored. If the stream is not in the fail state,
// the last character read was a non-alphanumeric character.
{
using namespace std;
char letter;
int count = 0;

if (skip)
{// Skip non-alphanumeric characters.
inFile.get(letter);
while (!isalnum(letter) && inFile)
inFile.get(letter);

}
else
inFile.get(letter);

if (!inFile || !isalnum(letter))
// No legal character found; empty string returned.
letters[0] = '\0';

else
{// Read and collect characters.
do
{
letters[count] = letter;
count++;
inFile.get(letter);

} while (isalnum(letter) && inFile && (count < MAX_CHARS));

letters[count] = '\0';
// Skip extra characters if necessary.
if (count == MAX_CHARS && isalnum(letter))
do
{
inFile.get(letter);

} while (isalnum(letter) && inFile);
}

}

void GetTilNew(bool skip, char letters[], std::ifstream& inFile)
// Post: If skip is true, newline characters are skipped.
// All characters are read and stored until a newline

110 | Chapter 2: Data Design and Implementation

// character is read or MAX_CHARS characters have been
// stored. If the stream is not in the fail state, the
// last character read was a newline character.
{
using namespace std;
char letter;
int count = 0;
if (skip)
{// Skip newlines.
inFile.get(letter);
while ((letter == '\n') &&inFile)
inFile.get(letter);

}
else
inFile.get(letter);

if (!inFile || letter == '\n')
letters[0] = '\0';

else
{// Read and collect characters.
do
{
letters[count] = letter;
count++;
inFile.get(letter);

} while ((letter != '\n') && inFile && (count < MAX_CHARS));

letters[count] = '\0';
// Skip extra characters if necessary.
if (count == MAX_CHARS && letter != '\n')
do
{
inFile.get(letter);

} while ((letter != '\n') && inFile);
}

}

GetString This operation is nearly identical to GetStringFile, with inFile changed to
cin. We must write new auxiliary functions like those for GetStringFile, but replacing
inFile with cin and removing the file name as a parameter. The same test cases shown
later apply to this operation as to GetStringFile. We leave the coding of this function for
you.

PrintToScreen and PrintToFile Because we have implemented our string using the
same technique employed by C++, we can use cout to print to the screen. If newLine is true,

Case Study: User-Defined String I/O Class | 111

we print a newline character before printing letters. We must test this function with
newLine both true and false.

void StrType::PrintToScreen(bool newLine)
// Post: letters has been sent to the output stream.
{
using namespace std;
if (newLine)
cout << endl;

cout << letters;
}

PrintToFile is nearly identical to PrintToScreen, with cout replaced with
outFile.

LengthIs and CopyString Because our implementation of a string is the same as that
found in C++, we can use the strcpy and strlen functions provided by the standard library
for these operations. Alternatively, we could write loops to count characters until the null
terminator is found for LengthIs and to copy characters from self to newString until the
null terminator has been copied for CopyString. We use strcpy here and leave the other
implementation as an exercise.

#include <cstring>
void StrType::CopyString(StrType& newString)
// Post: letters has been copied into newString.letters.
{
std::strcpy(newString.letters, letters);

}

int StrType::LengthIs()
// Post: Function value = length of letters string
{
return std::strlen(letters);

}

Test Plan

To test the String ADT, we create a test driver program similar to the one we created at the
end of Chapter 1 to test the class FractionType. That test driver accepted a sequence of
instructions from an input file that indicated which member function of FractionType to
invoke next. The test input also included any parameter values required by the FractionType
functions. Results of the function invocations were printed to an output file. Meanwhile, a
final count of the number of test cases was indicated in an output window.

Thanks to our planning when we created that test driver, it is not difficult to transform it
into a test driver for a different class. To use it to test StrType, we simply change the decla-
rations of the variables to appropriate ones for testing StrType, and rewrite the sequence of
if-else statements to invoke and report on the string functions instead of the fraction func-

112 | Chapter 2: Data Design and Implementation

Expected Output
Member Function/Reason (one word per line)
for Test Case (parameters) Input Values (| stands for newline)

MakeEmpty none empty string

PrintToFile none blank line

GetStringFile now is al,a3## ABCE now|is|a1|a3|ABCE
true, ALPHA_NUM

GetStringFile now is a1,a3## ABCE ||now|is|a1|a3|||ABCE
false, ALPHA_NUM ||

GetStringFile now is the now is the
true, NOT_NEW time a1,a3 time a1,a3

##, ##,

ABCE, ABCE,

GetStringFile now is the now is the
false, NOT_NEW time a1,a3 time a1,a3

##, ##,

ABCE, ABCE,

CopyString ABCE, ABCE,

LengthIs ABCE, 5

GetStringFile empty file empty string

GetStringFile string longer than string with first

MAX_CHARS MAX_CHARS characters

tions. Because the member functions to be tested involve reading from a file, we use the name
of the data file as input to the test driver as well as the name of the input file with the opera-
tion names and the output file. Creating the test driver is easy; the difficult part is designing
the test cases to use as input data to the test driver.

We must unit test each member function in the class representing the String ADT. We
need to go back through our design and collect the tests outlined during the design process.
Following is a portion of the test plan that covers the parts of the ADT that we have imple-
mented in this chapter: MakeEmpty, PrintToFile, LengthIs, CopyString, and Get-
StringFile with ALPHA_NUM and NOT_NEW.

Here is a copy of the test driver and the input file. These files and the output files (str-
Type.out and strTest.screen) are available on the Web site.

// Test driver
#include <iostream>

Case Study: User-Defined String I/O Class | 113

#include <fstream>
#include <string>
#include <cctype>
#include <cstring>
#include "StrType.h"
InType Allowed(std::string& inString);
bool Skip(std::string& inString);
int main()
{
using namespace std;
ifstream inFile; // File containing operations
ifstream inData; // Input data file
ofstream outFile; // File containing output
string inFileName; // Input file external name
string outFileName; // Output file external name
string inDataName;
string outputLabel;
string command; // Operation to be executed
string skip;
string allowed;
StrType inputString;
int numCommands;

// Prompt for file names, read file names, and prepare files
cout << "Enter name of input command file; press return." << endl;
cin >> inFileName;
inFile.open(inFileName.c_str());

cout << "Enter name of output file; press return." << endl;
cin >> outFileName;
outFile.open(outFileName.c_str());

cout << "Enter name of input data file; press return." << endl;
cin >> inDataName;
inData.open(inDataName.c_str());

cout << "Enter name of test run; press return." << endl;
cin >> outputLabel;
outFile << outputLabel << endl;

inFile >> command;
numCommands = 0;
while (command != "Quit")

114 | Chapter 2: Data Design and Implementation

{
if (command == "GetString")
{
inFile >> skip >> allowed;
inputString.GetStringFile(Skip(skip),
Allowed(allowed), inData);

}
else if (command == "MakeEmpty")
inputString.MakeEmpty();

else if (command == "PrintToFile")
inputString.PrintToFile(true, outFile);

else if (command == "PrintToScreen")
inputString.PrintToScreen(true);

else if (command == "CopyString")
{
StrType secondString;
inputString.CopyString(secondString);
outFile << "String to copy: ";
inputString.PrintToFile(false, outFile);
outFile << " Copy of string: ";
secondString.PrintToFile(false, outFile);

}
else
{
outFile << endl << "length of string " ;
inputString.PrintToFile(false, outFile);
outFile << " is " << inputString.LengthIs() << endl;

}
numCommands++;
cout << " Command number " << numCommands << " completed."

<< endl;
inFile >> command;

}

cout << "Testing completed." << endl;
return 0;

}

InType Allowed(std::string& inString)
{
if (inString == "ALPHA_NUM")
return ALPHA_NUM;

else if (inString == "ALPHA")
return ALPHA;

else if (inString == "NON_WHITE")
return NON_WHITE;

Case Study: User-Defined String I/O Class | 115

else return NOT_NEW;
}

bool Skip(std::string& inString)
{
if (inString == "true")
return true;

else return false;
}

MakeEmpty
PrintToFile
GetString true ALPHA_NUM
PrintToFile
GetString true ALPHA_NUM
PrintToFile
GetString true ALPHA_NUM
PrintToFile
GetString true ALPHA_NUM
PrintToFile
GetString true ALPHA_NUM
PrintToFile
GetString false ALPHA_NUM
PrintToFile
GetString false ALPHA_NUM
PrintToFile
GetString false ALPHA_NUM
PrintToFile
GetString false ALPHA_NUM
PrintToFile
GetString false ALPHA_NUM
PrintToFile
GetString false ALPHA_NUM
PrintToFile
GetString false ALPHA_NUM
PrintToFile
GetString false ALPHA_NUM
PrintToFile
GetString false ALPHA_NUM
PrintToFile
GetString true NOT_NEW
PrintToFile
GetString true NOT_NEW
PrintToFile
GetString true NOT_NEW
PrintToFile

116 | Chapter 2: Data Design and Implementation

GetString true NOT_NEW
PrintToFile
GetString false NOT_NEW
PrintToFile
GetString false NOT_NEW
PrintToFile
GetString false NOT_NEW
PrintToFile
GetString false NOT_NEW
PrintToFile
LengthIs
CopyString
PrintToScreen
Quit

Summary
We have discussed how data can be viewed from multiple perspectives, and we have
seen how C++ encapsulates the implementations of its predefined types and allows us to
encapsulate our own class implementations.

As we create data structures, using built-in data types such as arrays, structs, and
classes to implement them, we see that there are actually many levels of data abstrac-
tion. The abstract view of an array might be viewed as the implementation level of the
programmer-defined data type List, which uses an array to hold its elements. At the logi-
cal level, we do not access the elements of List through their array indexes but rather
through a set of accessing operations defined especially for objects of the List type. A
data type that is designed to hold other objects is called a container or collection type.
Moving up a level, we might see the abstract view of List as the implementation level of
another programmer-defined data type, ProductInventory, and so on.

Application
or user view

Logical or
abstract view

Implementation
view

Product
Inventory

List

Array

List

Array

Row major
access

function

Array

Row major
access

function

32-Bit
words on

IBM
Power PC

Perspectives on Data

Exercises | 117

What do we gain by separating these views of the data? First, we reduce complexity
at the higher levels of the design, making the program easier to understand. Second, we
make the program more easily modifiable: The implementation can be completely
changed without affecting the program that uses the data structure. We take advantage
of this ability in this text, developing various implementations of the same objects in
different chapters. Third, we develop software that is reusable: The structure and its
accessing operations can be used by other programs, for completely different applica-
tions, as long as the correct interfaces are maintained. You saw in Chapter 1 that the
design, implementation, and verification of high-quality computer software is a very
laborious process. Being able to reuse pieces that are already designed, coded, and tested
cuts down on the amount of work required.

In the chapters that follow, we extend these ideas to build other container classes that
C++ does not provide: lists, stacks, queues, priority queues, trees, graphs, and sets. We
consider these data structures from the logical view: What is our abstract picture of the
data, and what accessing operations can we use to create, assign, and manipulate ele-
ments in the data structure? We express our logical view as an abstract data type (ADT)
and record its description in a data specification.

Next, we take the application view of the data, using an instance of the data type in
a short example.

Finally, we change hats and turn to the implementation view of the data type. We
consider the C++ type declarations that represent the data structure as well as the
design of the functions that implement the specifications of the abstract view. Data
structures can be implemented in more than one way, so we often look at alternative
representations and methods for comparing them. In some of the chapters, we
include a longer Case Study in which instances of the data type are used to solve a
problem.

Exercises
1. Explain what we mean by “data abstraction.”

2. What is data encapsulation? Explain the programming goal “to protect our data
abstraction through encapsulation.”

3. Name three perspectives from which we can view data. Using the logical data
structure “a list of student academic records,” give examples of what each per-
spective might tell us about the data.

4. Consider the abstract data type GroceryStore.

a. At the application level, describe GroceryStore.

b. At the logical level, what grocery store operations might be defined for the
customer?

c. Specify (at the logical level) the operation CheckOut.

d. Write an algorithm (at the implementation level) for the operation CheckOut.

e. Explain how parts (c) and (d) represent information hiding.

118 | Chapter 2: Data Design and Implementation

5. What composite types are predefined in the C++ language?

6. Describe the component selectors for structs and classes at the logical level.

7. Describe the accessing functions for structs and classes at the implementation
level.

8. Describe the component selectors for one-dimensional arrays at the logical level.

9. Describe the accessing functions for one-dimensional arrays at the implementa-
tion level.

10. a. Declare a one-dimensional array, name, that contains 20 characters.

b. If each character occupies one “cell” in memory, and the base address of
name is 1000, what is the address of the cell referenced in the following
statement?

name[9] = 'A';

Use the following declarations for Exercises 11 and 12:

enum MonthType {JAN, FEB, MAR, APR, MAY, JUN, JUL, AUG, SEP,
OCT, NOV, DEC};

struct WeatherType
{
int avgHiTemp;
int avgLoTemp;
float actualRain;
float recordRain;

};

Assume that an int requires one cell in memory, that a float number requires
two cells, and that the struct members are found in contiguous memory loca-
tions with no gaps.

11. a. Declare a one-dimensional array type, weatherListType, of WeatherType
components, to be indexed by values of type MonthType. Declare a variable,
yearlyWeather, of weatherListType.

b. Assign the value 1.05 to the actual rainfall member of the July record in year-
lyWeather.

c. If the base address of yearlyWeather is 200, what is the address of the
member that you assigned in part (b)?

12. a. Declare a two-dimensional array, decadeWeather, of WeatherType compo-
nents, to be indexed by values of type MonthType in the first dimension.

b. Draw a picture of decadeWeather.

c. Assign the value 26 to the avgLoTemp member of the March 1989 entry.

13. a. Define a three-dimensional array at the logical level.

b. Suggest some applications for three-dimensional arrays.

Exercises | 119

Use the following declarations for Exercises 14–16.

typedef char String[10];
struct StudentRecord
{
String firstName;
String lastName;
int id;
float gpa;
int currentHours;
int totalHours;

};
StudentRecord student;
StudentRecord students[100];

Assume that an int requires one cell in memory, that a float number requires
two cells, and that the struct members are found in contiguous memory loca-
tions with no gaps.

14. Construct a member-length-offset table for StudentRecord.

15. If the base address of student is 100, what address does the compiler generate
as the target of the following assignment statement?

student.gpa = 3.87;

16. How much space does the compiler set aside for students?

17. Indicate which predefined C++ types would most appropriately model each of
the following (more than one may be appropriate for each):

a. a chessboard

b. information about a single product in an inventory-control program

c. a list of famous quotations

d. the casualty figures (number of deaths per year) for highway accidents in
Texas from 1954 to 1974

e. the casualty figures for highway accidents in each of the states from 1954 to
1974

f. the casualty figures for highway accidents in each of the states from 1954 to
1974, subdivided by month

g. an electronic address book (name, address, and phone information for all
your friends)

h. a collection of hourly temperatures for a 24-hour period

18. What C++ construct is used to represent abstract data types?

19. Explain the difference between a C++ struct and class.

20. How is the client prevented from directly accessing the details of an instance of
a class?

120 | Chapter 2: Data Design and Implementation

21. a. The details of a private member can be seen by the user of a class. (True or
False?)

b. The details of a private member may be accessed by a client program. (True or
False?)

22. Why is it good practice to put a class declaration in one file and the implemen-
tation in another?

23. Name three ways that classes can relate to each other.

24. Distinguish between composition and inheritance.

25. Dintinguish between a base class and a derived class.

26. Does a derived class have access to the private data members of the base class?

27. Does a derived class have access to the public member functions of the base class?

28. a. Write the specification for an ADT SquareMatrix. (A square matrix can be rep-
resented by a two-dimensional array with N rows and N columns.) You may
assume a maximum size of 50 rows and columns. Include the following opera-
tions:

MakeEmpty(n), which sets the first n rows and columns to zero

StoreValue(i, j, value), which stores value into the [i, j] position

Add, which adds two matrices together

Subtract, which subtracts one matrix from another

Copy, which copies one matrix into another

b. Convert your specification to a C++ class declaration.

c. Implement the member functions.

d. Write a test plan for your class.

29. Enhance StrType by adding a ComparedTo function with the following specifi-
cation:

RelationType ComparedTo(StrType& otherString)

Function: Compare self to otherString in terms of
alphabetic order.

Precondition: Self and otherString have been initialized.
Postcondition: Function value = LESS if self comes before

otherString
= GREATER if self comes

after otherString
= EQUAL if self and other-

String are equal

Exercises | 121

a. Write the member function ComparedTo using strcmp in <cstring>.

b. Rewrite the member function ComparedTo in the class StrType without
using the strcmp library function.

30. Rewrite the member function CopyString in the class StrType without using
the strcpy library function.

31. Rewrite the specification for the String ADT to include the changes that were
made during the implementation phase.

32. Complete the member functions GetAlpha and GetNonWhite in the class Str-
Type.

After studying this chapter, you should be able to

Use the list operations to implement utility routines to do the following
application-level tasks:

Print the list of elements

Create a list of elements from a file

Implement list operations for both unsorted lists and sorted lists:

Create and destroy a list

Determine whether the list is full

Insert an element

Retrieve an element

Delete an element

Explain the use of Big-O notation to describe the amount of work done by an
algorithm

Compare the unsorted list operations and the sorted list operations in terms of
Big-O approximations

Define class constructors

Overload the relational operators less than (<) and equality (==)

Identify and apply the phases of an object-oriented methodology

ADTs Unsorted List
and Sorted List

G
oals

124 | Chapter 3: ADTs Unsorted List and Sorted List

In Chapter 2, we defined an abstract data type and showed how all data can be viewed
from three perspectives: from the logical perspective, the implementation perspective,
and the application perspective. The logical perspective is the abstract view of what the
ADT does. The implementation perspective offers a picture of how the logical operations
are carried out. The application perspective shows why the ADT behaves as it does—that
is, how the behavior can be useful in a real-world problem.

In this chapter, we look at an ADT that should be familiar to all of us: the list. We
all know intuitively what a “list” is; in our everyday lives we use lists constantly—gro-
cery lists, lists of things to do, lists of addresses, lists of party guests. Lists are places
where we write down things that we want to remember.

3.1 Lists

In computer programs, lists are very useful abstract data types. They are members of a
general category of abstract data types called containers, whose purpose is to hold other
objects. In some languages, the list is a built-in structure. In Lisp, for example, the list is
the main data structure provided in the language. In C++, while lists are provided in the
Standard Template Library, the techniques for building lists and other abstract data
types are so important that we show you how to design and write your own.

From a theoretical point of view, a list is a homo-
geneous collection of elements, with a linear relation-
ship between elements. Linear means that, at the
logical level, each element in the list except the first
one has a unique predecessor, and each element
except the last one has a unique successor. (At the
implementation level, a relationship also exists
between the elements, but the physical relationship
may not be the same as the logical one.) The number
of items in the list, which we call the length of the list,
is a property of a list. That is, every list has a length.

Lists can be unsorted—their elements may be
placed into the list in no particular order—or they can
be sorted in a variety of ways. For instance, a list of
numbers can be sorted by value, a list of strings can
be sorted alphabetically, and a list of grades can be
sorted numerically. When the elements in a sorted list

are of composite types, their logical (and often physical) order is determined by one of
the members of the structure, called the key member. For example, a list of students on
the honor roll can be sorted alphabetically by name or numerically by student identifi-
cation number. In the first case, the name is the key; in the second case, the identifica-
tion number is the key. Such sorted lists are also called key-sorted lists.

If a list cannot contain items with duplicate keys, it is said to have unique keys.
This chapter deals with both unsorted lists and lists of elements with unique keys, sorted
from smallest to largest key value.

Linear relationship Each element except the first has a
unique predecessor, and each element except the last has
a unique successor

Length The number of items in a list; the length can
vary over time

Unsorted list A list in which data items are placed in no
particular order; the only relationships between data ele-
ments are the list predecessor and successor relationships

Sorted list A list that is sorted by the value in the key; a
semantic relationship exists among the keys of the items
in the list

Key A member of a record (struct or class) whose value
is used to determine the logical and/or physical order of
the items in a list

3.2 Abstract Data Type Unsorted List | 125

3.2 Abstract Data Type Unsorted List

Logical Level

Programmers can provide many different operations for lists. For different applications
we can imagine all kinds of things users might need to do to a list of elements. In this
chapter we formally define a list and develop a set of general-purpose operations for
creating and manipulating lists. By doing so, we build an abstract data type.

In the next section we design the specifications for a List ADT where the items in
the list are unsorted; that is, no semantic relationship exists between an item and its
predecessor or successor. Items simply appear next to one another in the list.

Abstract Data Type Operations

The first step in designing any abstract data type is to stand back and consider what a
user of the data type would want it to provide. Recall that there are four kinds of opera-
tions: constructors, transformers, observers, and iterators. We begin by reviewing each
type and consider each kind of operation with respect to the List ADT. We use a hand-
writing font for operation names at the logical level and change to a monospaced font
when we refer to specific implementation.

Constructors A constructor creates an instance of the data type. It is usually
implemented with a language-level declaration.

Transformers Transformers are operations that change the structure in some way:
They may make the structure empty, put an item into the structure, or remove a specific
item from the structure. For our Unsorted List ADT, let’s call these transformers
MakeEmpty, InsertItem, and DeleteItem.

MakeEmpty needs only the list, no other parameters. As we implement our opera-
tions as member functions, the list is the object to which the function is applied.
InsertItem and DeleteItem need an additional parameter: the item to be inserted or
removed. For this Unsorted List ADT, let’s assume that the item to be inserted is not cur-
rently in the list and the item to be deleted is in the list.

A transformer that takes two sorted lists and merges them into one sorted list or
appends one list to another would be a binary transformer. The specification for such an
operation is given in the exercises, where you are asked to implement it.

Observers Observers come in several forms. They ask true/false questions about the
data type (Is the structure empty?), select or access a particular item (Give me a copy of
the last item.), or return a property of the structure (How many items are in the
structure?). The Unsorted List ADT needs at least two observers: IsFull and LengthIs.
IsFull returns true if the list is full; LengthIs tells us how many items appear in the
list. Another useful observer searches the list for an item with a particular key and
returns a copy of the associated information if it is found; let’s call it RetrieveItem.

126 | Chapter 3: ADTs Unsorted List and Sorted List

If an abstract data type places limits on the component type, we could define other
observers. For example, if we know that our abstract data type is a list of numerical val-
ues, we could define statistical observers such as Minimum, Maximum, and Average.
Here, we are interested in generality; we know nothing about the type of the items on
the list, so we use only general observers in our ADT.

In most of our discussions of error checking to date, we have put the responsibility
of checking for error conditions on the user through the use of preconditions that pro-
hibit the operation’s call if these error conditions exist. In making the client responsible
for checking for error conditions, however, we must make sure that the ADT gives the
user the tools with which to check for the conditions. In another approach, we could
keep an error variable in our list, have each operation record whether an error occurs,
and provide operations that test this variable. The operations that check whether an
error has occurred would be observers. However, in the Unsorted List ADT we are speci-
fying, let’s have the user prevent error conditions by obeying the preconditions of the
ADT operations.

Iterators Iterators are used with composite types to allow the user to process an entire
structure, component by component. To give the user access to each item in sequence,
we provide two operations: one to initialize the iteration process (analogous to Reset or
Open with a file) and one to return a copy of the “next component” each time it is
called. The user can then set up a loop that processes each component. Let’s call these
operations ResetList and GetNextItem. Note that ResetList is not an iterator itself, but
rather an auxiliary operation that supports the iteration. Another type of iterator takes
an operation and applies it to every element in the list.

Declarations and Definitions

In general programming terminology, a declaration associates an identifier with a data object, an action
(such as a function), or a data type. C++ terminology distinguishes between a declaration and a defini-
tion. A declaration becomes a definition when it binds storage to the identifier. Hence, all definitions
are declarations, but not all declarations are definitions. For example, a function prototype is a declara-
tion, but a function heading with a body is a function definition. On the other hand, declarations such
as typedef can never be definitions, because they are not bound to storage. Because of the way that
C++ treats classes, their specification is also a definition. Because the ISO/ANSI C++ standard uses the
term “definition” rather than “declaration” when referring to a class, we do the same here.

Generic Data Types

A generic data type is one for which the operations are defined but the types of the
items being manipulated are not. Some programming
languages have a built-in mechanism for defining
generic data types; others lack this feature. Although
C++ does have such a mechanism (called a template),
we postpone its description until the next chapter.
Here we present a simple, general-purpose way of

Generic data type A type for which the operations are
defined but the types of the items being manipulated are
not

C++

3.2 Abstract Data Type Unsorted List | 127

simulating generics that works in any programming language. We let the user define the
type of the items on the list in a class named ItemType and have our Unsorted List ADT
include the class definition.

Two of the list operations (DeleteItem and RetrieveItem) will involve the comparison
of the keys of two list components (as does InsertItem if the list is sorted by key value).
We could require the user to name the key data member “key” and compare the key
data members using the C++ relational operators. However, this approach isn’t a very
satisfactory solution for two reasons: “key” is not always a meaningful identifier in an
application program, and the keys would be limited to values of simple types. C++ does
have a way to change the meaning of the relational operators (called overloading
them), but for now we present a general solution rather than a language-dependent
one.

We let the user define a member function ComparedTo in the class ItemType. This
function compares two items and returns LESS, GREATER, or EQUAL depending on
whether the key of one item comes before the key of the other item, the first key comes
after it, or the keys of the two items are equal, respectively. If the keys are of a simple
type such as an identification number, ComparedTo would be implemented using the
relational operators. If the keys are strings, function ComparedTo would use the string-
comparison operators supplied in <string>. If the keys are people’s names, both the
last name and the first name would be compared. Therefore, our specification assumes
that ComparedTo is a member of ItemType.

Our ADT needs one more piece of information from the client: the maximum num-
ber of items on the list. As this information varies from application to application, it is
logical for the client to provide it.

Let’s summarize our observations in two CRC cards: one for ItemType and the other
for UnsortedType. Note that UnsortedType collaborates with ItemType.

ItemType

Responsibilities Collaborations

Provide

ComparedTo (item) returns RelationType

.

.

.

Class Name: Superclass: Subclasses:

MAX_ITEMS

enum RelationType (LESS, GREATER,

EQUAL)

128 | Chapter 3: ADTs Unsorted List and Sorted List

Now we can formalize the specification for the Unsorted List ADT.

Unsorted List ADT Specification

Structure:
The list elements are of ItemType. The list has a special prop-
erty called the current position—the position of the last element
accessed by GetNextItem during an iteration through the list.
Only ResetList and GetNextItem affect the current position.

Definitions and Operation (provided by user):
MAX_ITEMS: A constant specifying the maximum number

of items on the list
ItemType: Class encapsulating the type of the items in the

list
RelationType: An enumeration type that consists of LESS,

GREATER, EQUAL
Member function of ItemType that must be included:

RelationType ComparedTo(ItemType item)
Function: Determines the ordering of two ItemType

objects based on their keys.

UnsortedType

Responsibilities Collaborations

MakeEmpty()

IsFull returns Boolean

LengthIs returns integer

RetrieveItem (item, found)

InsertItem (item)

DeleteItem (item)

ResetList

GetNextItem (item)

ItemType

ItemType

ItemType

ItemType

.

.

.

Class Name: Superclass: Subclasses:

3.2 Abstract Data Type Unsorted List | 129

Precondition: Self and item have their key members initial-
ized.

Postcondition:
Function value = LESS if the key of self is less than the key

of item.
= GREATER if the key of self is greater than

the key of item.
= EQUAL if the keys are equal.

Operations (provided by Unsorted List ADT):
MakeEmpty

Function: Initializes list to empty state.
Preconditions: None.
Postcondition: List is empty.

Boolean IsFull
Function: Determines whether list is full.
Precondition: List has been initialized.
Postcondition: Function value = (list is full).

int LengthIs
Function: Determines the number of elements in list.
Precondition: List has been initialized.
Postcondition: Function value = number of elements in list

RetrieveItem (ItemType& item, Boolean& found)
Function: Retrieves list element whose key matches

item’s key (if present).
Preconditions: List has been initialized.

Key member of item is initialized.
Postconditions: If there is an element someItem whose key

matches item’s key, then found = true and
item is a copy of someItem; otherwise found =
false and item is unchanged.
List is unchanged.

InsertItem (ItemType item)
Function: Adds item to list.
Preconditions: List has been initialized.

List is not full.
item is not in list.

Postcondition: item is in list.

130 | Chapter 3: ADTs Unsorted List and Sorted List

DeleteItem (ItemType item)
Function: Deletes the element whose key matches item’s

key.
Preconditions: List has been initialized.

Key member of item is initialized.
One and only one element in list has a key
matching item’s key.

Postcondition: No element in list has a key matching item’s
key.

ResetList
Function: Initializes current position for an iteration

through the list.
Precondition: List has been initialized.
Postcondition: Current position is prior to first element in list.

GetNextItem (ItemType& item)
Function: Gets the next element in list.
Preconditions: List has been initialized.

Current position is defined.
Element at current position is not last in list.

Postconditions: Current position is updated to next position.
item is a copy of element at current position.

Because we do not know the makeup of the key member in the ItemType, we must
pass an entire object of ItemType as the parameter to both RetrieveItem and
DeleteItem. Notice that the preconditions for both operations state that the key mem-
ber of the parameter item is initialized. RetrieveItem fills in the rest of the members
of item if a list component with the same key is found, and DeleteItem removes from
the list the component whose key matches that of item.

The specifications of the operations are somewhat arbitrary. For instance, we speci-
fied in the preconditions of DeleteItem that the element to delete must exist in the list
and must be unique. We could also specify an operation that does not require the ele-
ment to be in the list and leaves the list unchanged if the item is not present. This deci-
sion is a design choice. If we were designing a specification for a specific application,
then the design choice would be based on the requirements of the problem. In this case,
we made an arbitrary decision. In the exercises, you are asked to examine the effects of
different design choices.

The operations defined in this specification are a sufficient set to create and main-
tain an unsorted list of elements. Notice that no operation depends on the type of the
items in the structure. This data independence makes the Unsorted List ADT truly
abstract. Each program that uses the Unsorted List ADT defines ItemType within the

3.2 Abstract Data Type Unsorted List | 131

context of the application and provides a comparison member function defined on two
items of type ItemType.

Application Level

The set of operations provided for the Unsorted List ADT may seem rather small and
primitive. In fact, this set of operations gives you the tools to create other special-pur-
pose routines that require a knowledge of ItemType. For instance, we have not
included a print operation. Why? Because to write a print routine, we must know what
the data members look like. The user (who does know what the data members look like)
can use the LengthIs, ResetList, and GetNextItem operations to iterate through the
list, printing each data member in turn. In the code that follows, we assume that the
user has defined a member function for ItemType that prints the data members of one
item. We also assume that the Unsorted List ADT is itself implemented as a class with
the operations as member functions.

void PrintList(std::ofstream& dataFile, UnsortedType list)
// Pre: list has been initialized.
// dataFile is open for writing.
// Post: Each component in list has been written to dataFile.
// dataFile is still open.
{
int length;
ItemType item;

list.ResetList();
length = list.LengthIs();
for (int counter = 1; counter <= length; counter++)
{
list.GetNextItem(item);
item.Print(dataFile);

}
}

Note that we defined a local variable length, stored the result of
list.LengthIs() in it, and used the local variable in the loop. We did so for efficiency
reasons: The function is called only once, saving the overhead of extra function calls.

Another operation that depends on the application reads data (of type ItemType)
from a file and creates a list containing these elements. Without knowing how the list is
implemented, the user can write a function CreateListFromFile, using the operations
specified in the Unsorted List ADT. We assume a function GetData, which accesses the
individual data members from the file and returns them in item.

void CreateListFromFile(std::ifstream& dataFile, UnsortedType& list)
// Pre: dataFile exists and is open.
// Post: list contains items from dataFile.

132 | Chapter 3: ADTs Unsorted List and Sorted List

// dataFile is in the fail state due to end-of-file.
// Items read after the list becomes full are discarded.
{
ItemType item;

list.MakeEmpty();
GetData(dataFile, item); // Reads one item from dataFile.
while (dataFile)
{
if (!list.IsFull())
list.InsertItem(item);

GetData(dataFile, item);
}

}

In these two functions we have made calls to the list operations specified for the
UnsortedList ADT, creating and printing a list without knowing how the list is imple-
mented. At an application level, these tasks are logical operations on a list. At a lower
level, these operations are implemented as C++ functions that manipulate an array or
other data-storing medium holding the list’s elements. Multiple functionally correct
ways are available to implement an abstract data type. Between the user picture and the
eventual representation in the computer’s memory, intermediate levels of abstraction
and design decisions are possible. For instance, how is the logical order of the list ele-
ments reflected in their physical ordering? We address questions like this as we now
turn to the implementation level of our ADT.

Implementation Level

The logical order of the list elements may or may not mirror the way that we actually
store the data. If we implement a list in an array, the components are arranged so that
the predecessor and the successor of a component are physically before and after it,
respectively. In Chapter 5, we introduce a way of implementing a list in which the com-
ponents are sorted logically rather than physically. However, the way that the list ele-
ments are physically arranged certainly affects the way that we access the elements of
the list. This arrangement may have implications for the efficiency of the list operations.
For instance, nothing in the specification of the Unsorted List ADT requires us to imple-
ment the list with the elements stored in random order. If we stored the elements in an
array, completely sorted, we could still implement all of the Unsorted List operations.
Does it make a difference if the items are stored unsorted or sorted? At the end of this
chapter, we introduce Big-O notation as a way of comparing the efficiency of algo-
rithms, and we answer this question then.

There are two ways to implement a list that preserves the order of the list items—
that is, that stores the elements physically in such a way that, from one list element, we
can access its logical successor directly. We look at a sequential array-based list repre-
sentation in this chapter. The distinguishing feature of this implementation is that the

3.2 Abstract Data Type Unsorted List | 133

elements are stored sequentially, in adjacent slots in an array. The order of the elements
is implicit in their placement in the array.

The second approach, which we introduce in Chapter 5, is a linked-list representa-
tion. In a linked implementation, the data elements are not constrained to be stored in
physically contiguous, sequential order; rather, the individual elements are stored
“somewhere in memory,” and explicit links between them maintain their order.

Before we go on, let’s establish a design terminology that we can use in our algo-
rithms, independent of the eventual list implementation.

List Design Terminology Assuming that location “accesses” a particular list element,

Node(location) refers to all data at location, including implementation-specific data.
Info(location) refers to the user’s data at location.
Info(last) refers to the user’s data at the last location in the list.
Next(location) gives the location of the node following Node(location).

What, then, is location? For an array-based implementation, location is an index,
because we access array slots through their indexes. For example, the design statement

Print element Info(location)

means “Print the user’s data in the array slot at index location”; eventually it might
be coded in C++ as

list.info[location].Print(dataFile);

When we look at a linked implementation in a later chapter, the translation is quite dif-
ferent but the algorithms remain the same. That is, our code implementing the opera-
tions changes, but the algorithms do not. Thus, using this design notation, we define
implementation-independent algorithms for our List ADT.

But what does Next(location) mean in an array-based sequential implementation?
To answer this question, consider how we access the next list element stored in an
array: We increment the location, which is the index. The design statement

Set location to Next(location)

might, therefore, be coded in C++ as

location++; // location is an array index.

We have not introduced this list design terminology just to force you to learn the
syntax of another computer “language.” Rather, we want to encourage you to think of
the list, and the parts of the list elements, as abstractions. We have intentionally made
the design notation similar to the syntax of function calls to emphasize that, at the
design stage, the implementation details can be hidden. A lower level of detail is encap-
sulated in the “functions” Node, Info, and Next. Using this design terminology, we hope
to record algorithms that can be coded for both array-based and linked implementations.

134 | Chapter 3: ADTs Unsorted List and Sorted List

length
info

currentPos

[MAX_ITEMS–1]

[length–1]

[0]
[1]
[2]
[3]

•

•

•

•

•

•

class UnsortedType

Logical List
items stored in
an array

Figure 3.1 Data members of class UnsortedType

Data Structure In our implementation, the elements of a list are stored in an array of
class objects.

ItemType info[MAX_ITEMS];

We need a length data member to keep track of both the number of items we have
stored in the array and the location where the last item was stored. Because the list
items are unsorted, we place the first item put into the list into the first slot, the second
item into the second slot, and so forth. Because our language is C++, we must remember
that the first slot is indexed by 0, the second slot by 1, and the last slot by MAX_ITEMS
– 1. Now we know where the list begins—in the first array slot. Where does the list end?
The array ends at the slot with index MAX_ITEMS – 1, but the list ends in the slot with
index length – 1.

Is there any other information about the list that we must include? Both operations
ResetList and GetNextItem refer to a “current position.” What is this current posi-
tion? It is the index of the last element accessed in an iteration through the list. Let’s
call it currentPos. ResetList initializes currentPos to �1. GetNextItem incre-
ments currentPos and returns the value in info[currentPos]. The ADT specification
states that only ResetList and GetNextItem affect the current position. Figure 3.1
illustrates the data members of our class UnsortedType.

3.2 Abstract Data Type Unsorted List | 135

#include "ItemType.h"
// File ItemType.h must be provided by the user of this class.
// ItemType.h must contain the following definitions:
// MAX_ITEMS: the maximum number of items on the list
// ItemType: the definition of the objects on the list
// RelationType: {LESS, GREATER, EQUAL}
// Member function ComparedTo(ItemType item), which returns
// LESS, if self "comes before" item
// GREATER, if self "comes after" item
// EQUAL, if self and item are the same

class UnsortedType
{
public:
UnsortedType();
bool IsFull() const;
int LengthIs() const;
void RetrieveItem(ItemType& item, bool& found);
void InsertItem(ItemType item);
void DeleteItem(ItemType item);
void ResetList();
void GetNextItem(ItemType& item);

private:
int length;
ItemType info[MAX_ITEMS];
int currentPos;

};

Now let’s look at the operations that we have specified for the Unsorted List ADT.

Constructor Operations MakeEmpty is an
initialization, or constructor, operation. We
said earlier that such an operation is often
a language-level operation. C++ provides a
language-level construct called a class
constructor that performs this initialization automatically when a variable of the class is
declared. A class constructor is a member function having the same name as the class
but no return type. A constructor initializes class members and, if necessary, allocates
resources (usually memory) for the object being constructed. Like any other member
function, a constructor has access to all members, public and private, both data
members and function members. Also like all other member functions, class
constructors can have an empty parameter list (called a default constructor) or have one
or more parameters.

Class constructor A special member function of a class
that is implicitly invoked when a class object is defined

136 | Chapter 3: ADTs Unsorted List and Sorted List

If we are implementing the MakeEmpty operation with the class constructor, what
must the UnsortedType class constructor do? The postcondition states that the list is
empty. Any array cannot be “empty”; after all, the slots still exist. A list, however, con-
sists of only those values that we have stored in the array, that is, from location zero
through location length – 1. An empty list, then, is one where the length is 0.

UnsortedType::UnsortedType()
{
length = 0;

}

Notice that we do not have to do anything to the array that holds the list items to
make a list empty. If length is zero, the list is empty. If length is not zero, we must
have stored items in the array through the length – 1 position, covering up what was
there. What is present in the array from the length position to the end is of no interest
to us. This distinction is very important: The list is between positions 0 and length –
1; the array is between positions 0 and MAX_ITEMS – 1.

Rules for Using Class Constructors

C++ has intricate rules governing the use of constructors. The following guidelines are especially
pertinent:

1. A constructor cannot return a function value, so the function is declared without a return
value type. Although not necessary, return statements with no expressions are allowed at the
end of a constructor. Thus return; is legal in a constructor, but return 0; is not.

2. Like any other member function, a constructor may be overloaded. Hence, a class may pro-
vide several constructors. When a class object is declared, the compiler chooses the appro-
priate constructor based on the number and data types of the parameters to the constructor,
just as in any other call to overloaded functions.

3. Arguments to a constructor are passed by placing the argument list immediately after the
name of the class object being declared:

SomeType myObject(argument1, argument2);

4. If a class object is declared without a parameter list, as in the statement

SomeType myObject;

then the effect depends on the constructors (if any) provided by the class. If the class has no
constructors, the compiler generates a default constructor that does nothing. If the class
does have constructors, then the default (parameterless) constructor is invoked if there is
one. If the class has constructors but no default constructor, a syntax error occurs.

C++

3.2 Abstract Data Type Unsorted List | 137

5. If a class has at least one constructor, and an array of class objects is declared as in the
statement

SomeType myObject[5];

then one of the constructors must be the default (parameterless) constructor. This construc-
tor is invoked for each element in the array.

Observer Operations The observer function IsFull checks whether length is equal to
MAX_ITEMS.

bool UnsortedType::IsFull() const
{
return (length == MAX_ITEMS);

}

The body of the observer member function LengthIs is also just one statement.

int UnsortedType::LengthIs() const
{
return length;

}

So far we have not used our special design terminology. The algorithms have all
been one (obvious) statement long. The next operation, RetrieveItem, is more com-
plex. The RetrieveItem operation allows the list user to access the list item with a
specified key, if that element exists in the list. item (with the key initialized) is input to
this operation; item and a flag (found) are returned. If the key of item matches a key
in the list, then found is true and item is set equal to the element with the same key.
Otherwise, found is false and item remains unchanged. Notice that item is used for
both input to and output from the function. Conceptually, the key member is input; the
other data members are output because the function fills them in.

To retrieve an element, we must first find it. Because the items are unsorted, we
must use a linear search. We begin at the first component in the list and loop until
either we find an item with the same key or there are no more items to examine. Recog-
nizing a match is easy: item.ComparedTo(info[location]) returns EQUAL. But how
do we know when to stop searching? If we have examined the last element, we can stop.
Thus, in our design terminology, we continue looking as long as we have not examined
Info(last). Our looping statement is a while statement with the expression (moreToSearch
AND NOT found). The body of the loop is a switch statement based on the results of

138 | Chapter 3: ADTs Unsorted List and Sorted List

RetrieveItem
Initialize location to position of first item
Set found to false
Set moreToSearch to (have not examined Info(last))
while moreToSearch AND NOT found

switch (item.ComparedTo(Info(location)))
case LESS :
case GREATER : Set location to Next(location)

Set moreToSearch to (have not examined Info(last))
case EQUAL : Set found to true

Set item to Info(location)

length
info

[MAX_ITEMS–1]

[0]
[1]
[2]
[3]

•

•

•

•

•

•

moreToSearch: true
found : true
location : 3

logical
garbage

4

Bobby
Judy
June
Sarah

length
info

[MAX_ITEMS–1]

[0]
[1]
[2]
[3]

•

•

•

•

•

•

moreToSearch: false
found : false
location : 4

logical
garbage

4

Bobby
Judy
June
Sarah

(a) Retrieve Sarah (b) Retrieve Susan

Figure 3.2 Retrieving an item in an unsorted list

Before we code this algorithm, let’s look at the cases where we find the item in the
list and where we examine Info(last) without finding it. We represent these cases in Fig-
ure 3.2 in an honor roll list. First, we retrieve Sarah. Sarah is in the list, so more-
ToSearch is true, found is true, and location is 3. That’s as it should be (see Figure

function ComparedTo. We summarize these observations in the following algorithm:

3.2 Abstract Data Type Unsorted List | 139

3.2a). Next, we retrieve Susan. Susan is not in the list, so moreToSearch is false,
found is false, and location is equal to length (see Figure 3.2b).

Now we are ready to code the algorithm, replacing the general design notation with
the equivalent array notation. The substitutions are straightforward except for initializ-
ing location and determining whether we have examined Info(last). To initialize
location in an array-based implementation in C++, we set it to 0. We know we have
not examined Info(last) as long as location is less than length. Be careful: Because
C++ indexes arrays starting with 0, the last item in the list is found at index length –
1. Here is the coded algorithm:

void UnsortedType::RetrieveItem(ItemType& item, bool& found)
// Pre: Key member(s) of item is initialized.
// Post: If found, item's key matches an element's key in the
// list and a copy of that element has been stored in item;
// otherwise, item is unchanged.
{
bool moreToSearch;
int location = 0;
found = false;

moreToSearch = (location < length);

while (moreToSearch && !found)
{
switch (item.ComparedTo(info[location]))
{
case LESS :
case GREATER : location++;

moreToSearch = (location < length);
break;

case EQUAL : found = true;
item = info[location];
break;

}
}

}

Note that a copy of the list element is returned. The caller cannot access directly
any data in the list.

Transformer Operations Where do we insert a new item? Because the list elements are
unsorted by key value, we can put the new item anywhere. A straightforward strategy is
to place the item in the length position and then to increment length.

140 | Chapter 3: ADTs Unsorted List and Sorted List

InsertItem
Set Info(length) to item
Increment length

This algorithm is translated easily into C++.

void UnsortedType::InsertItem(ItemType item)
// Post: item is in the list.
{
info[length] = item;
length++;

}

The DeleteItem function takes an item with the key member indicating which
item to delete. This operation clearly has two parts: finding the item to delete and
removing it. We can use the RetrieveItem algorithm to search the list: When Com-
paredTo returns GREATER or LESS, we increment location; when it returns EQUAL, we
exit the loop and remove the element.

How do we “remove the element from the list”? Let’s look at the example in Figure
3.3. Removing Sarah from the list is easy, for hers is the last element in the list (see Fig-
ures 3.3a and 3.3b). If Bobby is deleted from the list, however, we need to move up all
the elements that follow to fill in the space—or do we? If the list is sorted by value, we
would have to move all elements up, as shown in Figure 3.3(c). Because the list is
unsorted, however, we can just swap the item in the length – 1 position with the item
being deleted (see Figure 3.3d). In an array-based implementation, we do not actually
remove the element; instead, we cover it up with the element that previously followed it
(if the list is sorted) or the element in the last position (if the list is unsorted). Finally, we
decrement length.

Because the preconditions for DeleteItem state that an item with the same key is
definitely present in the list, we do not need to test for the end of the list. This choice
simplifies the algorithm so much that we give the code with no further discussion.

void UnsortedType::DeleteItem(ItemType item)
// Pre: item's key has been initialized.
// An element in the list has a key that matches item's.
// Post: No element in the list has a key that matches item's.
{
int location = 0;

3.2 Abstract Data Type Unsorted List | 141

length
info

[MAX_ITEMS–1]

[0]
[1]
[2]
[3]

logical
garbage

4

Bobby
Judy
June
Sarah

length
info

[MAX_ITEMS–1]

[0]
[1]
[2]
[3]

logical
garbage

3

Bobby
Judy
June
Sarah

(a) Original list (b) Deleting Sarah

length
info

[MAX_ITEMS–1]

[0]
[1]
[2]
[3]

logical
garbage

3

Judy
June
Sarah
Sarah

length
info

[MAX_ITEMS–1]

[0]
[1]
[2]
[3]

logical
garbage

3

Sarah
Judy
June
Sarah

(c) Deleting Bobby (move up) (d) Deleting Bobby (swap)

Figure 3.3 Deleting an item in an unsorted list

142 | Chapter 3: ADTs Unsorted List and Sorted List

ResetList
Initialize currentPos

GetNextItem
Set currentPos to Next(currentPos)
Set item to Info(currentPos)

while (item.ComparedTo(info[location]) != EQUAL)
location++;

info[location] = info[length – 1];
length--;

}

Iterator Operations The ResetList function is analogous to the open operation for a
file in which the file pointer is positioned at the beginning of the file so that the first
input operation accesses the first component of the file. Each successive call to an input
operation gets the next item in the file. As a consequence, ResetList must initialize
currentPos to point to the predecessor of the first item in the list.

The GetNextItem operation is analogous to an input operation; it accesses the
next item by incrementing currentPos and returning Info(currentPos).

currentPos remains undefined until ResetList initializes it. After the first call to
GetNextItem, currentPos is the location of the last item accessed by GetNextItem.
Therefore, to implement this algorithm in an array-based list in C++, currentPos must
be initialized to �1. These operations are coded as follows:

void UnsortedType::ResetList()
// Post: currentPos has been initialized.
{
currentPos = –1;

}

What would happen if a transformer operation is executed between calls to GetNext-
Item? The iteration would be invalid. We should add a precondition to prevent this
from happening.

void UnsortedType::GetNextItem(ItemType& item)
// Pre: No transformer has been executed since last call
// Post: item is current item.
// Current position has been updated.

3.2 Abstract Data Type Unsorted List | 143

{
currentPos++;
item = info[currentPos];

}

ResetList and GetNextItem are designed to be used in a loop in the client pro-
gram that iterates through all items in the list. The precondition in the specifications for
GetNextItem protects against trying to access an array element that is not present in
the list. This precondition requires that, before a call to GetNextItem, the element at
the current position not be the last item in the list. Notice that this precondition places
the responsibility for accessing only defined items on the client rather than on GetNext-
Item.

Notes on the Array-Based List Implementation In several of our list operations, we
have declared the local variable location, which contains the array index of the list
item being processed. The values of array indexes are never revealed outside of the list
operations; this information remains internal to the implementation of the Unsorted List
ADT. If the list user wants an item in the list, the RetrieveItem operation does not
give the user the index of the item; instead, it returns a copy of the item. If the user
wants to change the values of data members in an item, those changes are not reflected
in the list unless the user deletes the original values and inserts the modified version.
The list user can never see or manipulate the physical structure in which the list is
stored. These details of the list implementation are encapsulated by the ADT.

Test Plan The class UnsortedType has a constructor and seven other member
functions: InsertItem and DeleteItem (transformers); IsFull, LengthIs, and
RetrieveItem (observers); and ResetList and GetNextItem (iterators). Because our
operations are independent of the type of the objects on the list, we can define
ItemType to be int and know that if our operations work with these data, they work
with any other ItemType. Here, then, is the definition of ItemType that we use in our
test plan. We set the maximum number of items to 5. We include a member function to
print an item of the class ItemType to an ofstream object (a file). We need this
function in the driver program to see the value in a list item.

// The following declarations and definitions go into file ItemType.h.
#include <fstream>

const int MAX_ITEMS = 5;
enum RelationType {LESS, GREATER, EQUAL};

class ItemType
{
public:
ItemType();

144 | Chapter 3: ADTs Unsorted List and Sorted List

RelationType ComparedTo(ItemType) const;
void Print(std::ofstream&) const;
void Initialize(int number);

private:
int value;

};

// The following definitions go into file ItemType.cpp.
#include <fstream>
#include “ItemType.h”
ItemType::ItemType()
{
value = 0;

}

RelationType ItemType::ComparedTo(ItemType otherItem) const
{
if (value < otherItem.value)
return LESS;

else if (value > otherItem.value)
return GREATER;

else return EQUAL;
}

void ItemType::Initialize(int number)
{
value = number;

}

void ItemType::Print(std::ofstream& out) const
// Pre: out has been opened.
// Post: value has been sent to the stream out.
{
out << value << " ";

}

The preconditions and postconditions in our specification determine the tests neces-
sary for a black-box testing strategy. The code of the functions determines a clear-box
testing strategy. To test the ADT Unsorted List implementation, we use a combination of
the two strategies. Because a precondition on all other operations is that the list has
been initialized, we test the constructor by checking whether the list is empty initially (a
call to LengthIs returns 0).

LengthIs, InsertItem, and DeleteItem must be tested together. That is, we
insert several items and check the length; we delete several items and check the

3.2 Abstract Data Type Unsorted List | 145

Operation to Be Tested and
Description of Action Input Values Expected Output

Constructor
print LengthIs 0

InsertItem

Insert four items and print 5, 7, 6, 9 5 7 6 9

Insert item and print 1 5 7 6 9 1

RetrieveItem

Retrieve 4 and print whether found Item is not found

Retrieve 5 and print whether found Item is found

Retrieve 9 and print whether found Item is found

Retrieve 10 and print whether found Item is not found

IsFull

Invoke (list is full) List is full

Delete 5 and invoke List is not full

DeleteItem

Delete 1 and print 7 6 9

Delete 6 and print 7 9

length. How do we know that InsertItem and DeleteItem work correctly? We
write an auxiliary function PrintList that uses LengthIs, ResetList, and Get-
NextItem to iterate through the list, printing out the values. We call PrintList to
check the status of the list after a series of insertions and deletions. To test the
IsFull operation, we insert four items and print the result of the test, and then insert
the fifth item and print the result of the test. To test RetrieveItem, we search for
items that we know are present in the list and for items that we know are not found
in the list.

How do we choose the values used in our test plan? We look at the end cases. What
are the end cases in a list? The item is in the first position in the list, the item is in the
last position in the list, and the item is the only one in the list. We must be sure that
DeleteItem can correctly delete items in these positions. We must also confirm that
RetrieveItem can find items in these same positions and correctly determine that val-
ues that are less than the one in the first position or greater than the one in the last
position are not found. Notice that this test plan involves a black-box strategy. That is,
we look at the list as described in the interface, not the code.

These observations are summarized in the following test plan. The tests are shown
in the order in which they should be performed.

146 | Chapter 3: ADTs Unsorted List and Sorted List

What about testing LengthIs, ResetList, and GetNextItem? They do not appear
explicitly in the test plan, but they are tested each time we call the auxiliary function
PrintList to print the contents of the list.

On the Web, the file listType.in contains the input to listDr.cpp (the test driver)
that reflects this test plan; listType.out and listTest.screen contain the output.

3.3 Abstract Data Type Sorted List

At the beginning of this chapter, we said that a list is a linear sequence of items; from
any item (except the last) you can access the next item. We looked at the specifications
and implementation for the operations that manipulate a list and guarantee this property.

Now we want to add another property: the key member of any item (except the
first) comes before the key member of the next one. We call a list with this property a
sorted list.

Logical Level

When we defined the specification for the Unsorted List ADT, we commented that noth-
ing in the specification prevented the list from being stored and maintained in sorted
order. Now, we must change the specification to guarantee that the list is sorted. We
must add preconditions to those operations for which order is relevant. The observer
functions do not change the state of the list, so we do not have to change them. Like-
wise, the algorithm for RetrieveItem can be improved but works on a sorted list. The
algorithms for ResetList and GetNextItem are not changed by the additional property.
What, then, must be changed? InsertItem and DeleteItem.

Sorted List ADT Specification (Partial)

InsertItem (ItemType item)
Function: Adds item to list.
Preconditions: List has been initialized.

List is not full.
item is not in list.
List is sorted by key member using the func-
tion ComparedTo.

Postconditions: item is in list.
List is still sorted.

DeleteItem (ItemType item)
Function: Deletes the element whose key matches item’s

key.

3.3 Abstract Data Type Sorted List | 147

Preconditions: List has been initialized.
Key member of item is initialized.
List is sorted by key member using the func-
tion ComparedTo.
One and only one element in list has a key
matching item’s key.

Postconditions: No element in list has a key matching item’s
key.
List is still sorted.

Application Level

The application level for the Sorted List ADT is the same as that for the Unsorted List
ADT. As far as the user is concerned, the interfaces are the same. The only difference is
that when GetNextItem is called in the Sorted List ADT, the element returned is the
next one in order by key. If the user wants that property, the client code includes the
file containing the class SortedType rather than UnsortedType.

Implementation Level

InsertItem Operation To add an element to a sorted list, we must first find the place
where the new element belongs, which depends on the value of its key. Let’s use an
example to illustrate the insertion operation. Suppose that Becca has made the honor
roll. To add the element Becca to the sorted list pictured in Figure 3.4(a) while
maintaining the alphabetic ordering, we must accomplish three tasks:

1. Find the place where the new element belongs.

2. Create space for the new element.

3. Put the new element in the list.

The first task involves traversing the list and comparing the new item to each item in
the list until we find an item where the new item is less (in this case, Becca). We set more-
ToSearch to false when we reach a point where item.ComparedTo(Info(location)) is
LESS. At this point, location indicates where the new item should go (see Figure 3.4b).
If we don’t find a place where item.ComparedTo(Info(location)) is LESS, then the item
should be put at the end of the list. In this case, location equals length.

Now that we know where the element belongs, we need to create space for it.
Because the list is sorted, Becca must be put into the list at Info(location). Of course, this
position may already be occupied. To “create space for the new element,” we must move
down all list elements that follow it, from location through length – 1. Then, we
just assign item to Info(location) and increment length. Figure 3.4(c) shows the result-
ing list.

148 | Chapter 3: ADTs Unsorted List and Sorted List

length
info

[MAX_ITEMS–1]

[0]
[1]
[2]
[3]

logical
garbage

4

Anne
Bobby
Chris
Sarah

length
info

[MAX_ITEMS–1]

[0]
[1]
[2]
[3]

logical
garbage

4

Anne
Bobby
Chris
Sarah

(a) Original list (b) Insert Becca

length
info

[MAX_ITEMS–1]

[0]
[1]
[2]
[3]

logical
garbage

5

Anne
Becca
Bobby
Chris
Sarah

(c) Result

moreToSearch: false
location : 1

[4]
moved down

Figure 3.4 Inserting into a sorted list

3.3 Abstract Data Type Sorted List | 149

InsertItem
Initialize location to position of first item
Set moreToSearch to (have not examined Info(last))
while moreToSearch

switch (item.ComparedTo(Info(location)))
case LESS : Set moreToSearch to false
case EQUAL : // Cannot happen because item is not in list.
case GREATER : Set location to Next(location)

Set moreToSearch to (have not examined Info(last))
for index going from length DOWNTO location + 1

Set Info(index) to Info(index – 1)
Set Info(location) to item
Increment length

Let’s summarize these observations in algorithm form before we write the code:

Recall that the preconditions on InsertItem state that the item is not already pres-
ent in the list, so we do not need to have EQUAL as a label in the switch statement.
Translating the list notation into the array-based implementation gives us the follow-
ing function:

void SortedType::InsertItem(ItemType item)
{
bool moreToSearch;
int location = 0;

moreToSearch = (location < length);
while (moreToSearch)
{
switch (item.ComparedTo(info[location]))
{
case LESS : moreToSearch = false;

break;
case GREATER : location++;

moreToSearch = (location < length);
break;

}
}
for (int index = length; index > location; index--)
info[index] = info[index – 1];

150 | Chapter 3: ADTs Unsorted List and Sorted List

Initialize location to position of first item
Set found to false
while NOT found

switch (item.ComparedTo(Info(location)))
case GREATER : Set location to Next(location)
case LESS : // Cannot happen because list is sorted.
case EQUAL : Set found to true

for index going from location + 1 TO length – 1
Set Info(index – 1) to Info(index)

Decrement length

info[location] = item;
length++;

}

Does this function work if the new element belongs at the beginning or the end of
the list? Draw a picture to confirm for yourself how the function works in each case.

DeleteItem Operation When discussing the function DeleteItem for the Unsorted
List ADT, we commented that if the list was sorted, we would have to move the
elements up one position to cover the one being removed. Moving the elements up one
position is the mirror image of moving the elements down one position. The loop
control for finding the item to delete is the same as for the unsorted version.

Examine this algorithm carefully and convince yourself that it is correct. Try cases
where you are deleting the first item and the last one.

void SortedType::DeleteItem(ItemType item)
{
int location = 0;

while (item.ComparedTo(info[location]) != EQUAL)
location++;

for (int index = location + 1; index < length; index++)
info[index – 1] = info[index];

length--;
}

Improving the RetrieveItem Operation If the list is not sorted, the only way to
search for a value is to start at the beginning and look at each item in the list,

3.3 Abstract Data Type Sorted List | 151

length
info

[MAX_ITEMS–1]

[0]
[1]
[2]
[3]

moreToSearch: true
found : false
location : 1

logical
garbage

4

Bobby
Judy
June
Sarah

length
info

[MAX_ITEMS–1]

[0]
[1]
[2]
[3]

moreToSearch: false
found : false
location : 4

logical
garbage

4

Bobby
Judy
June
Sarah

(a) Retrieve Chris (b) Retrieve Susy

Figure 3.5 Retrieving in a sorted list

comparing the key member of the item for which we are searching to the key member
of each item in the list in turn. We used this algorithm in the RetrieveItem operation
in the Unsorted List ADT.

If the list is sorted by key value, there are two ways to improve the searching algo-
rithm. The first way is to stop when we pass the place where the item would be found if
it were present. Look at Figure 3.5(a). If you are searching for Chris, a comparison with
Judy would show that Chris is LESS. Thus you have passed the place where Chris would
be found if it were present. At this point you can stop and return found as false. Fig-
ure 3.5(b) shows what happens when you are searching for Susy: location is equal to
4, moreToSearch is false, and found is false.

If the item we are seeking appears in the list, the search is the same for both the
unsorted list and the sorted list. When the item is not there, however, the new algorithm
is better. We do not have to search all of the items to confirm that the one we want is
not present. When the list is sorted, however, we can improve the algorithm even more.

Binary Search Algorithm Think of how you might go about finding a name in a phone
book, and you can get an idea of a faster way to search. Let’s look for the name
“David.” We open the phone book to the middle and see that the names there begin
with M. M is larger than D, so we search the first half of the phone book, the section
that contains A to M. We turn to the middle of the first half and see that the names
there begin with G. G is larger than D, so we search the first half of this section, from A
to G. We turn to the middle page of this section, and find that the names there begin

152 | Chapter 3: ADTs Unsorted List and Sorted List

Figure 3.6 A binary search of the phone book

L M

G G

C C D D

PHONE
BOOK

A–Z

(A–M)

(A–G)

(A–C) (D–G)

David

with C. C is smaller than D, so we search the second half of this section—that is, from D
to G—and so on, until we reach the single page that contains “David.” Figure 3.6
illustrates this algorithm.

We begin our search with the whole list to examine; that is, our current search area
goes from info[0] through info[length – 1]. In each iteration, we split the current
search area in half at the midpoint; if the item is not found there, we search the appro-
priate half. The part of the list being searched at any time is the current search area. For
instance, in the first iteration of the loop, if a comparison shows that the item comes
before the element at the midpoint, the new current search area goes from index 0
through the midpoint – 1. If the item comes after the element at the midpoint, the new
current search area goes from the midpoint + 1 through index length – 1. Either way,
the current search area has been split in half. We can keep track of the boundaries of
the current search area with a pair of indexes, first and last. In each iteration of the
loop, if an element with the same key as item is not found, one of these indexes is reset
to shrink the size of the current search area.

How do we know when to quit searching? Two terminating conditions are possible:
item is not in the list and item has been found. The first terminating condition occurs

3.3 Abstract Data Type Sorted List | 153

Set first to 0
Set last to length – 1
Set found to false
Set moreToSearch to (first <= last)
while moreToSearch AND NOT found

Set midPoint to (first + last) / 2
switch (item.ComparedTo(Info[midPoint]))

case LESS : Set last to midPoint – 1
Set moreToSearch to (first <= last)

case GREATER : Set first to midPoint + 1
Set moreToSearch to (first <= last)

case EQUAL : Set found to true

when there’s no more to search in the current search area. The second terminating con-
dition occurs when item has been found.

Notice that when we look in the lower half or upper half of the search area, we can
ignore the midpoint because we know it is not there. Therefore, last is set to midPoint
– 1, or first is set to midPoint + 1. The coded version of our algorithm follows:

void SortedType::RetrieveItem(ItemType& item, bool& found)
{
int midPoint;
int first = 0;
int last = length – 1;

bool moreToSearch = first <= last;
found = false;
while (moreToSearch && !found)
{
midPoint = (first + last) / 2;
switch (item.ComparedTo(info[midPoint]))
{
case LESS : last = midPoint – 1;

moreToSearch = first <= last;
break;

case GREATER : first = midPoint + 1;
moreToSearch = first <= last;
break;

154 | Chapter 3: ADTs Unsorted List and Sorted List

case EQUAL : found = true;
item = info[midPoint];
break;

}
}

}

Let’s do a walk-through of the binary search algorithm. We are searching for the item
“bat.” Figure 3.7(a) shows the values of first, last, and midPoint during the first itera-
tion. In this iteration, “bat” is compared with “dog,” the value in info[midpoint]. Because
“bat” is less than (comes before) “dog,” last becomes midPoint – 1 and first stays the
same. Figure 3.7(b) shows the situation during the second iteration. This time, “bat” is com-
pared with “chicken,” the value in info[midpoint]. Because “bat” is less than (comes
before) “chicken,” last becomes midPoint – 1 and first again stays the same.

In the third iteration (Figure 3.7c), midPoint and first are both 0. The item “bat”
is compared with “ant,” the item in info[midpoint]. Because “bat” is greater than
(comes after) “ant,” first becomes midPoint + 1. In the fourth iteration (Figure 3.7d),
first, last, and midPoint are all the same. Again, “bat” is compared with the item in

Figure 3.7 Trace of the binary search algorithm

ant

cat

chicken

cow

deer

dog

fish

goat

horse

rat

snake

first

midPoint

last

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

First iteration
bat < dog

(a)

ant

cat

chicken

cow

deer

dog

fish

goat

horse

rat

snake

first

midPoint

last

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Second iteration
bat < chicken

(b)

bat cannot be
in this part
of the list�

ant

cat

chicken

cow

deer

dog

fish

goat

horse

rat

snake

first and midPoint

last

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Third iteration
bat > ant

(c)

ant

cat

chicken

cow

deer

dog

fish

goat

horse

rat

snake

first, last,
and midPoint

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Fourth iteration
bat < cat

(d)

� bat cannot be
in this part
of the list � bat cannot be

in this part
of the list

3.3 Abstract Data Type Sorted List | 155

Table 3.1 Iteration Trace of the Binary Search Algorithm

Terminating
Iteration first last midPoint info[midPoint] Condition

item: fish
First 0 10 5 dog
Second 6 10 8 horse
Third 6 7 6 fish found is true

item: snake
First 0 10 5 dog
Second 6 10 8 horse
Third 9 10 9 rat
Fourth 10 10 10 snake found is true

item: zebra
First 0 10 5 dog
Second 6 10 8 horse
Third 9 10 9 rat
Fourth 10 10 10 snake
Fifth 11 10 last < first

Table 3.2 Comparison of Linear and Binary Search

Average Number of Iterations

Length Linear Search Binary Search

10 5.5 2.9

100 50.5 5.8

1,000 500.5 9.0

10,000 5000.5 12.4

info[middle]. Because “bat” is less than “cat,” last becomes midPoint – 1. Now
that last is less than first, the process stops; found is false.

The binary search is the most complex algorithm that we have examined so far.
Table 3.1 shows first, last, midPoint, and info[midpoint] for searches of the
items “fish,” “snake,” and “zebra,” using the same data as in the previous example.
Examine the results in Table 3.1 carefully.

Notice that the loop never executes more than four times. It never executes more
than four times in a list of 11 components because the list is cut in half each time
through the loop. Table 3.2 compares a linear search and a binary search in terms of the
average number of iterations needed to find an item.

156 | Chapter 3: ADTs Unsorted List and Sorted List

If the binary search is so much faster, why not use it all the time? It is certainly
faster in terms of the number of times through the loop, but more computations are
executed within the binary search loop than in the other search algorithms. If the num-
ber of components in the list is small (say, less than 20), the linear search algorithms are
faster because they perform less work at each iteration. As the number of components in
the list increases, however, the binary search algorithm becomes relatively more effi-
cient. Always remember that the binary search requires the list to be sorted and sorting
takes time.

Test Plan We can use the same test plan that we employed with the unsorted list with
the expected outputs changed to reflect the ordering. We need to modify the items to be
deleted to reflect where the items fall in the list; that is, we need to delete one from
each end as well as from in the middle.

On the Web, the file SlistType.in contains the input to listDr.cpp (the test driver)
that reflects this test plan; SlistType.out and SlistTest.screen contain the output.

Operation to Be Tested and
Description of Action Input Values Expected Output

Constructor
print LengthIs 0

InsertItem

Insert four items and print 5, 7, 6, 9 5 6 7 9

Insert item and print 1 1 5 6 7 9

RetrieveItem

Retrieve 4 and print whether found Item is not found

Retrieve 1 and print whether found Item is found

Retrieve 9 and print whether found Item is found

Retrieve 10 and print whether found Item is not found

IsFull

Invoke (list is full) List is full

Delete 5 and invoke List is not full

DeleteItem

Delete 1 and print 7 6 9

Delete 6 and print 7 9

Delete 9 and print 7

3.4 Comparison of Algorithms | 157

DINER

Joe's
Diner

Junk
Yard

HONEYSUCKLE LODGE

Fields of
Flowers

Pine
Forest

Billboard Forest

You are
here

Wind

in
g

Co
un

tr
y

Ro
ad

Big Highway

To Houston

Y'ALL COME INN

USED
CARS

Lazy Creek

EAT
atJOE'S

DALE'SICECREAM

DAVID'SBEER

Bank atDALLY

Figure 3.8 Map to Joe’s Diner

3.4 Comparison of Algorithms

As noted in this chapter, there is more than one way to solve most problems. If you
were asked for directions to Joe’s Diner (see Figure 3.8), you could give either of two
equally correct answers:

1. ”Go east on the big highway to the Y’all Come Inn, and turn left.”

2. ”Take the winding country road to Honeysuckle Lodge, and turn right.”

The two answers are not the same, but following either route gets the traveler to Joe’s
Diner. Thus both answers are functionally correct.

If the request for directions contained special requirements, one solution might be
preferable to the other. For instance, “I’m late for dinner. What’s the quickest route to
Joe’s Diner?” calls for the first answer, whereas “Is there a pretty road that I can take to
get to Joe’s Diner?” suggests the second. If no special requirements are known, the
choice is a matter of personal preference—which road do you like better?

In this chapter, we have presented many algorithms. How we choose between two
algorithms that perform the same task often depends on the requirements of a particular
application. If no relevant requirements exist, the choice may be based on the program-
mer’s own style.

158 | Chapter 3: ADTs Unsorted List and Sorted List

Often the choice between algorithms comes down to a question of efficiency. Which
one takes the least amount of computing time? Which one does the job with the least
amount of work? We are talking here of the amount of work that the computer does.
Later we also compare algorithms in terms of how much work the programmer does.
(One is often minimized at the expense of the other.)

To compare the work done by competing algorithms, we must first define a set of
objective measures that can be applied to each algorithm. The analysis of algorithms is
an important area of theoretical computer science; in advanced courses, students
undoubtedly see extensive work in this area. In this book, you learn about a small part
of this topic, enough to let you determine which of two algorithms requires less work to
accomplish a particular task.

How do programmers measure the work performed by two algorithms? The first
solution that comes to mind is simply to code the algorithms and then compare the exe-
cution times for running the two programs. The one with the shorter execution time is
clearly the better algorithm. Or is it? Using this technique, we can determine only that
program A is more efficient than program B on a particular computer. Execution times
are specific to a particular machine. Of course, we could test the algorithms on all possi-
ble computers, but we want a more general measure.

A second possibility is to count the number of instructions or statements executed.
This measure, however, varies with the programming language used as well as with
the individual programmer’s style. To standardize this measure somewhat, we could
count the number of passes through a critical loop in the algorithm. If each iteration
involves a constant amount of work, this measure gives us a meaningful yardstick of
efficiency.

Another idea is to isolate a particular operation fundamental to the algorithm and
count the number of times that this operation is performed. Suppose, for example, that
we are summing the elements in an integer list. To measure the amount of work
required, we could count the integer addition operations. For a list of 100 elements,
there are 99 addition operations. Note, however, that we do not actually have to count
the number of addition operations; it is some function of the number of elements (N) in
the list. Therefore, we can express the number of addition operations in terms of N: For
a list of N elements, N – 1 addition operations are carried out. Now we can compare the
algorithms for the general case, not just for a specific list size.

If we wanted to compare algorithms for multiplying two real matrices together, we
could use a measure that combines the real multiplication and addition operations
required for matrix multiplication. This example brings up an interesting consideration:
Sometimes an operation so dominates the algorithm that the other operations fade into
the background “noise.” If we want to buy elephants and goldfish, for example, and we
are considering two pet suppliers, we need to compare only the prices of elephants; the
cost of the goldfish is trivial in comparison. Similarly, on many computers floating-
point multiplication is so much more expensive than addition in terms of computer time
that the addition operation is a trivial factor in the efficiency of the whole matrix multi-
plication algorithm; we might as well count only the multiplication operations and
ignore the addition. In analyzing algorithms, we often can find one operation that dom-
inates the algorithm, effectively relegating the others to the “noise” level.

3.4 Comparison of Algorithms | 159

Big-O

We have talked about work as a function of the size of the input to the operation (for
instance, the number of elements in the list to be summed). We can express an approxi-
mation of this function using a mathematical
notation called order of magnitude, or Big-O
notation. (This is the letter O, not a zero.) The
order of magnitude of a function is identified
with the term in the function that increases
fastest relative to the size of the problem. For
instance, if

f(N) = N4 + 100N2 + 10N + 50

then f(N) is of order N 4—or, in Big-O notation, O(N 4). That is, for large values of N,
some multiple of N 4 dominates the function for sufficiently large values of N.

Why can we just drop the low-order terms? Remember the elephants and goldfish
that we discussed earlier? The price of the elephants was so much greater that we could
just ignore the price of the goldfish. Similarly, for large values of N, N 4 is so much
larger than 50, 10N, or even 100N2 that we can ignore these other terms. This doesn’t
mean that the other terms do not contribute to the computing time, but rather that they
are not significant in our approximation when N is “large.”

What is this value N? N represents the size of the problem. Most of the rest of the
problems in this book involve data structures—lists, stacks, queues, and trees. Each
structure is composed of elements. We develop algorithms to add an element to the
structure and to modify or delete an element from the structure. We can describe the
work done by these operations in terms of N, where N is the number of elements in the

Big-O notation (order of magnitude) A notation that
expresses computing time (complexity) as the term in a
function that increases most rapidly relative to the size of
a problem

160 | Chapter 3: ADTs Unsorted List and Sorted List

Open the file
while more elements in list do

Write the next element

structure. Yes, we know. We have called the number of elements on a list the length of
the list. However, mathematicians talk in terms of N, so we use N for the length when
we are comparing algorithms using Big-O notation.

Suppose that we want to write all the elements in a list into a file. How much
work is involved? The answer depends on how many elements are in the list. Our algo-
rithm is

If N is the number of elements in the list, the “time” required to do this task is

(N * time-to-write-one-element) + time-to-open-the-file

This algorithm is O(N) because the time required to perform the task is proportional to
the number of elements (N)—plus a little time to open the file. How can we ignore the
open time in determining the Big-O approximation? Assuming that the time necessary
to open a file is constant, this part of the algorithm is our goldfish. If the list has only a
few elements, the time needed to open the file may seem significant. For large values of
N, however, writing the elements is an elephant in comparison with opening the file.

The order of magnitude of an algorithm does not tell you how long in microseconds
the solution takes to run on your computer. Sometimes we need that kind of informa-
tion. For instance, a word processor’s requirements may state that the program must be
able to spell-check a 50-page document (on a particular computer) in less than 120 sec-
onds. For such information, we do not use Big-O analysis; we use other measurements.
We can compare different implementations of a data structure by coding them and then
running a test, recording the time on the computer’s clock before and after the test. This
kind of “benchmark” test tells us how long the operations take on a particular computer,
using a particular compiler. The Big-O analysis, however, allows us to compare algo-
rithms without reference to these factors.

Common Orders of Magnitude

O(1) is called bounded time. The amount of work is bounded by a constant and does not
depend on the size of the problem. Assigning a value to the ith element in an array of N
elements is O(l), because an element in an array can be accessed directly through its
index. Although bounded time is often called constant time, the amount of work is not
necessarily constant. Rather, it is bounded by a constant.

3.4 Comparison of Algorithms | 161

O(log2N) is called logarithmic time. The amount of work depends on the log of the
size of the problem. Algorithms that successively cut the amount of data to be processed
in half at each step typically fall into this category. Finding a value in a list of ordered
elements using the binary search algorithm is O(log2N).

O(N) is called linear time. The amount of work is some constant times the size of
the problem. Printing all the elements in a list of N elements is O(N). Searching for a
particular value in a list of unordered elements is also O(N), because you (potentially)
must search every element in the list to find it.

O(N log2N) is called (for lack of a better term) N log2N time. Algorithms of this type
typically involve applying a logarithmic algorithm N times. The better sorting algo-
rithms, such as Quicksort, Heapsort, and Mergesort discussed in Chapter 10, have N
log2N complexity. That is, these algorithms can transform an unordered list into a
sorted list in O(N log2N) time.

O(N 2) is called quadratic time. Algorithms of this type typically involve applying a
linear algorithm N times. Most simple sorting algorithms are O(N 2) algorithms. (See
Chapter 10.)

O(N 3) is called cubic time. An example of an O(N 3) algorithm is a routine that incre-
ments every element in a three-dimensional table of integers.

O(2N) is called exponential time. These algorithms are costly. As you can see in
Table 3.3, exponential times increase dramatically in relation to the size of N. (Note that

Table 3.3 Comparison of Rates of Growth

N log2N N log2N N2 N3 2N

1 0 1 1 1 2

2 1 2 4 8 4

4 2 8 16 64 16

8 3 24 64 512 256

16 4 64 256 4,096 65,536

32 5 160 1,024 32,768 4,294,967,296

64 6 384 4,096 262,114 About one month’s worth of

instructions on a super-computer

128 7 896 16,384 2,097,152 About 1012 times greater

than the age of the universe

in nanoseconds (for a 6-

billion-year estimate)

256 8 2,048 65,536 16,777,216 Don’t ask!

162 | Chapter 3: ADTs Unsorted List and Sorted List

the values in the last column grow so quickly that the computation time required for
problems of this order may exceed the estimated life span of the universe!)

Throughout this discussion we have been talking about the amount of work the
computer must do to execute an algorithm. This determination does not necessarily
relate to the size of the algorithm, say, in lines of code. Consider the following two
algorithms to initialize to zero every element in an N-element array:

Algorithm Init1 Algorithm Init2

items[0] = 0; for (index = 0; index < N; index++)

items[1] = 0; items[index] = 0;

items[2] = 0;

items[3] = 0;

�

items[N – 1] = 0;

Both algorithms are O(N), even though they greatly differ in the number of lines of code.
Now let’s look at two different algorithms that calculate the sum of the integers

from 1 to N. Algorithm Suml is a simple for loop that adds successive integers to keep a
running total:

Algorithm Sum1
sum = 0;
for (count = 1; count <= n; count++)

sum = sum + count;

That seems simple enough. The second algorithm calculates the sum by using a formula.
To understand the formula, consider the following calculation when N = 9:

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9
+ 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1

10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 + 10 = 10 * 9 = 90

We pair up each number from 1 to N with another, such that each pair adds up to N
+ 1. There are N such pairs, giving us a total of (N + 1) * N. Now, because each number
is included twice, we divide the product by 2. Using this formula, we can solve the
problem: ((9 + 1) * 9)/2 = 45. Now we have a second algorithm:

Algorithm Sum2
sum = ((n + 1) * n) / 2;

Both of the algorithms are short pieces of code. Let’s compare them using Big-O nota-
tion. The work done by Sum1 is a function of the magnitude of N; as N gets larger, the
amount of work grows proportionally. If N is 50, Sum1 works 10 times as hard as when
N is 5. Algorithm Sum1, therefore, is O(N).

3.4 Comparison of Algorithms | 163

To analyze Sum2, consider the cases when N = 5 and N = 50. They should take the
same amount of time. In fact, whatever value we assign to N, the algorithm does the
same amount of work to solve the problem. Algorithm Sum2, therefore, is O(1).

Is Sum2 always faster? Is it always a better choice than Sum1? That depends. Sum2
might seem to do more “work,” because the formula involves multiplication and divi-
sion, whereas Sum1 calculates a simple running total. In fact, for very small values of
N, Sum2 actually might do more work than Suml. (Of course, for very large values of N,
Suml does a proportionally larger amount of work, whereas Sum2 stays the same.) So
the choice between the algorithms depends in part on how they are used, for small or
large values of N.

Another issue is the fact that Sum2 is not as obvious as Suml, and thus it is more
difficult for the programmer (a human) to understand. Sometimes a more efficient solu-
tion to a problem is more complicated; we may save computer time at the expense of
the programmer’s time.

What’s the verdict? As usual in the design of computer programs, there are trade-
offs. We must look at our program’s requirements and then decide which solution is
better. Throughout this text we examine different choices of algorithms and data struc-
tures. We compare them using Big-O, but we also examine the program’s requirements
and the “elegance” of the competing solutions. As programmers, we design software
solutions with many factors in mind.

Family Laundry: An Analogy
How long does it take to do a family’s weekly laundry? We might describe the answer to this
question with the function

f(N) = c * N

where N represents the number of family members and c is the average number of minutes that
each person’s laundry takes. We say that this function is O(N) because the total laundry time
depends on the number of people in the family. The “constant” c may vary a little for different
families—depending on the size of their washing machine and how fast the family members can
fold clothes, for instance. That is, the time to do the laundry for two different families might be
represented with these functions:

f(N) = 100 * N
g(N) = 90 * N

Overall, however, we describe both functions as O(N).
Now what happens if Grandma and Grandpa come to visit the family for a week or two? The

laundry time function becomes

f(N) = 100 * (N + 2)

164 | Chapter 3: ADTs Unsorted List and Sorted List

We still say that the function is O(N). How can that be? Doesn’t the laundry for two extra people
take any time to wash, dry, and fold? Of course it does! If N is small (the family consists of
Mother, Father, and Baby), the extra laundry for two people is significant. But as N grows large
(the family consists of Mother, Father, 12 kids, and a live-in baby-sitter), the extra laundry for two
people doesn’t make much difference. (The family’s laundry is the elephant; the guest’s laundry is
the goldfish.) Remember: When we compare algorithms using Big-O notation, we are concerned
with what happens when N is “large.”

If we are asking the question, “Can we finish the laundry in time to make the 7:05 train?”, we
want a precise answer. The Big-O analysis doesn’t give us this information. Instead, it gives us an
approximation. So, if 100 * N, 90 * N, and 100 * (N + 2) are all O(N), how can we say which is
“better”? We can’t—in Big-O terms, they are all roughly equivalent for large values of N. Can we
find with a better algorithm for getting the laundry done? If the family wins the state lottery,
they can drop all their dirty clothes at a professional laundry 15 minutes’ drive from their house
(30 minutes round trip). Now the function is

f(N) = 30

This function is O(1). The answer is not dependent on the number of people in the family. If the
family switches to a laundry 5 minutes from their house, the function becomes

f(N) = 10

This function is also O(1). In Big-O terms, the two professional-laundry solutions are equivalent:
No matter how many family members or house guests you have, it takes a constant amount of
the family’s time to do the laundry. (We aren’t concerned with the professional laundry’s time.)

3.5 Comparison of Unsorted and Sorted List ADT Algorithms

To determine the Big-O notation for the complexity of these functions, we must first
determine the size factor. Here we are considering algorithms to manipulate items in a
list, so the size factor is the number of items on the list: length.

Many of our algorithms are identical for the Unsorted List ADT and the Sorted List
ADT. Let’s examine these algorithms first. MakeEmpty (the class constructor) contains
one line: length is set to 0. LengthIs and IsFull each contain only one statement:
return length and return (length == MAX_ITEMS). As none of these functions
depends on the number of items in the list, each has O(1) complexity. ResetList con-
tains one assignment statement and GetNextItem contains two assignment statements.
Neither of these functions depends on the number of items in the list, so each has O(1)
complexity.

The other functions differ for the two implementations.

3.5 Comparison of Unsorted and Sorted List ADT Algorithms | 165

Unsorted List ADT

The algorithm for RetrieveItem requires that the list be searched until an item is
found or the end of the list is reached. We might find the item in any position in the
list, or we might not find it at all. How many places must we examine? At best only
one, at worst length. If we took the best case as our measure of complexity, then all of
the operations would have O(1) complexity. This is a rare case, however. What we want
is the average case or worst case, which in this instance are the same: O(length). True,
the average case would be O(length/2), but when we use order notation, O(length)
and O(length/2) are equivalent. In some cases that we discuss later, the average and
the worst cases are not the same.

InsertItem has two parts: (1) find the place to insert the item and (2) insert the
item. In the unsorted list, the item is put in the length position and length is incre-
mented. Neither of these operations depends on the number of items in the list, so the
complexity is O(1).

DeleteItem also has two parts: (1) find the item to delete and (2) delete the item.
Finding the item uses the same algorithm as RetrieveItem, so the complexity of that
part is O(length). To delete the item, we put the value in the length – 1 position into
the location of the item to be deleted and decrement length. These store and decrement
tasks are not dependent on the number of items in the list, so this part of the operation
has complexity O(1). The entire delete algorithm has complexity O(length) because
O(length) plus O(1) is O(length). (Remember that O(1) is the goldfish.)

Sorted List ADT

Earlier, we considered three different algorithms for RetrieveItem. We said that the
Unsorted List ADT algorithm would work for a sorted list but that two more efficient
algorithms existed: a linear search in the sorted list that exits when it passes the place
where the item would be and a binary search.

A linear search in a sorted list is faster than such a search in an unsorted list when
we are seeking an item that is not in the list, but is the same when we are searching for
an item that is in the list. Therefore, the complexity of the linear search in a sorted list
is the same as the complexity in an unsorted list: O(length). Does that mean that we
shouldn’t bother taking advantage of the ordering in our search? No, it just means that
the Big-O complexity measures are the same.

What about the binary search algorithm? Table 3.2 compared the number of items
searched in a linear search versus a binary search for certain sizes of lists. How do we
describe this algorithm using Big-O notation? To figure this problem out, let’s see how
many times we can split a list of N items in half. Assuming that we don’t find the item
we are seeking at one of the earlier midpoints, we have to divide the list log2N times at
the most, before we run out of elements to split. In case you aren’t familiar with logs,

2log2N = N

That is, if N = 1,024, log2N = 10 (210 = 1024). How does that information apply to our
searching algorithms? The sequential search is O(N); in the worst case, we would have

166 | Chapter 3: ADTs Unsorted List and Sorted List

Linear
search O(N)

Binary search
O(log2N)

N (Number of elements)

N
um

be
r o

f c
om

pa
ris

on
s

Figure 3.9 Comparison of linear and binary searches

to search all 1,024 elements of the list. The binary search is O(log2N); in the worst case,
we would have to make log2N + 1, or 11, search comparisons. A heuristic (a rule of
thumb) tells us that a problem that is solved by successively splitting it in half is an
O(log2N) algorithm. Figure 3.9 illustrates the relative growth of the sequential and
binary searches, measured in number of comparisons.

InsertItem still has the same two parts: (1) finding the place to insert the item and
(2) inserting the item. Because the list must remain sorted, we must search for the posi-
tion in which to place the new item. Our algorithm used a linear search to find the
appropriate location: O(length). Inserting requires that we move all those elements
from the insertion point down one place in the array. How many items must we move?
At most length, giving us O(length). O(length) plus O(length) is O(length) because
we disregard the constant 2. Note, however, that the constant 2 does not actually occur
here. In reality, we access each item in the list only once except for the item at the inser-
tion point: We access those items to the place of insertion, and we move those items
stored from length – 1 through that place. Therefore, only the element in the insertion
location is accessed twice—once to find the insertion point and once to move it.

DeleteItem also still has the same two parts: (1) finding the item to delete and (2)
deleting the item. The algorithm for finding the item is the mirror image of that for
finding the insertion point: O(length). Deleting the item in a sorted list requires that all
the elements from the deletion location to the end of the list be moved forward one
position. This shifting algorithm is the reverse of the shifting algorithm in the insertion
and, therefore, has the same complexity: O(length). Hence the complexity of the inser-
tion and deletion algorithms is the same in the Sorted List ADT.

Table 3.4 summarizes these complexities. We have replaced length with N, the
generic name for the size factor.

In the deletion operation, we could improve our efficiency by using the binary
search algorithm to find the item to delete. Would this choice change the complexity?
No, it would not. The find operation would be O(log2N), but the removal would still be
O(N) because O(log2N) combined with O(N) is O(N). (Recall that the term with the
largest power of N dominates.) Does this point mean that we should not use the binary

3.6 Overloading Operators | 167

search algorithm? No, it just means that as the length of the list grows, the cost of the
removal dominates the cost of the find operation.

Think of the common orders of complexity as being bins into which we sort algo-
rithms (Figure 3.10). For small values of the size factor, an algorithm in one bin may
actually be faster than the equivalent algorithm in the next-more-efficient bin. As the
size factor increases, the differences among algorithms in the different bins grows ever
larger. When choosing between algorithms within the same bin, you should look at the
constants to determine which to use.

3.6 Overloading Operators

In this chapter, we have looked at a general implementation of two abstract data types
that represent what we normally think of as lists. We have used a sequential array-
based implementation where the user is responsible for providing the description of the
items on the list. We required the user to provide a comparison operation called Com-
paredTo for comparing items on the list. The technique presented here works in most
programming languages. In this section, however, we cover a C++ construct that makes
comparisons simpler and more robust. C++ allows us to redefine the meaning of the

Table 3.4 Comparison of List Operations

Operation Unsorted List Sorted List

MakeEmpty O(1) O(1)

LengthIs O(1) O(1)

IsFull O(1) O(1)

ResetList O(1) O(1)

GetNextItem O(1) O(1)

RetrieveItem O(N) Linear search: O(N)

Binary search: O(log2N)

InsertItem

Find O(1) O(N)

Put O(1) O(N)

Combined O(1) O(N)

DeleteItem

Find O(N) O(N)

Remove O(1) O(N)

Combined O(N) O(N)

168 | Chapter 3: ADTs Unsorted List and Sorted List

• • •

0(1) 0(log2N) 0(N) 0(Nlog2N) 0(N*N)

Figure 3.10 Complexity bins

relational operators in terms of the data members of a class. This redefining of an oper-
ator symbol is called overloading the operator.

Let’s describe the mechanism in terms of the StrType class we defined in Chapter
2. As an exercise, you were asked to add a comparison operation to this class. We also
need this operation in our Case Study. The expanded definition of the class StrType is
shown here:

enum InType {ALPHA_NUM, ALPHA, NON_WHITE, NOT_NEW};
const int MAX = 200;

class StrType
{
public:
StrType();
void GetString(bool skip, InType inString);
void GetStringFile(bool skip, InType inString,
std::ifstream& inFile);

void PrintToScreen(bool newLine);
void PrintToFile(bool newLine, std::ofstream& outFile);
bool operator<(StrType otherString) const;
bool operator==(StrType otherString) const;

private:
char letters[MAX+1];

};

The syntax for overloading a symbol is the reserved word operator followed by
the symbol to be overloaded. These member functions are known in C++ as operator

3.6 Overloading Operators | 169

functions. Because we store the characters in the same way that C++ does, we can use
the string functions provided in <cstring> to implement these operator functions.

bool StrType::operator<(StrType otherString) const
{
int result;

result = std::strcmp(letters, otherString.letters);
if (result < 0)
return true;

else
return false;

}

bool StrType::operator==(StrType otherString) const
{
int result;

result = std::strcmp(letters, otherString.letters);
if (result == 0)
return true;

else
return false;

}

When the client code includes

if (myString < yourString)

or

if (myString == yourString)

the respective member functions from StrType are invoked.
For our Unsorted ADT and Sorted ADT, we required ItemType to be a class with a

member function ComparedTo. Now that we know how to overload the relational oper-
ators, we could overload “<” and “==” in the ItemType class and then rewrite the code
for InsertItem, RetrieveItem, and DeleteItem using the relational operators. We
could—but should we? We cannot use the relational operators as labels on a switch
statement, so the code would have to be a series of if-else clauses. Some programmers
find switch statements more self-documenting, whereas others like to use the relational
operators. The choice is a matter of personal style.

170 | Chapter 3: ADTs Unsorted List and Sorted List

1Webster’s New Collegiate Dictionary.
2D. Belin and S. S. Simone, The CRC Card Book (Reading, MA: Addison-Wesley, 1997).

3.7 Object-Oriented Design Methodology

The object-oriented design that we present here involves four stages. Brainstorming is
the stage in which we make a first pass at determining the classes in the problem. Filter-
ing is the stage in which we go back over the proposed classes determined in the brain-
storming stage to see whether any can be combined, any are not needed, or any are
missing. Each class that survives the filtering stage is recorded on a CRC card.

Scenarios is the stage in which we determine the behavior of each class. Because
each class is responsible for its own behavior, we call the behaviors responsibilities. In
this stage, we explore “what if ” questions to ensure that all situations are examined.
When we have determined all of the responsibilities of each class, we record them on
the class’s CRC card, along with the names of any other classes with which that class
must collaborate (interact) to complete its responsibility.

In Responsibility Algorithms, the last stage, we write the algorithms for each of the
responsibilities outlined on the CRC cards. Now you can see the source of the term CRC:
Class, Responsibility, and Collaboration.

Although these techniques are designed to be applied in groups, we can apply them
to our own individual thought processes as well, so let’s look at each of these stages in a
little more detail.

Brainstorming

Exactly what is brainstorming? The dictionary defines it as a group problem-solving
technique that involves the spontaneous contribution of ideas from all members of the
group.1 Brainstorming brings to mind a movie or TV show where a group of bright
young people toss around ideas about an advertising slogan for the latest revolutionary
product. This picture seems at odds with the traditional picture of a computer analyst
working alone in a closed, windowless office for days who finally jumps up shouting
“Ah ha!” As computers have become more powerful, the problems that can be solved
have grown ever more complex, and the picture of the genius locked in a windowless
room has become obsolete. Solutions to complex problems need new and innovative
solutions based on collective “Ah ha!”s.

Belin and Simone list four principles of successful brainstorming.2 First and fore-
most, all ideas are potential good ideas. It is imperative that the members of the group
not censor their own ideas or make judgments out of hand on other’s ideas. The second
principle relates to pace: Think fast and furiously first, and ponder later. The faster the
initial pace, the better the creative juices will flow. Third, give every voice a turn. To
slow down those predisposed to hog the conversation and spur those reluctant to talk,
use a rotation. Continue this pattern until team members are truly forced to “pass”
because they are out of ideas. Fourth, a little humor can be a powerful force. Humor
helps convert a random group into a cohesive team.

3.7 Object-Oriented Design Methodology | 171

In the context of object-oriented problem solving, brainstorming is a group activity
designed to produce a list of candidate classes to be used to solve a particular problem.
As Belin and Simone point out, although each project is different and each team has a
different personality, following the four steps described next is a good general
approach.

Step 1 is to review brainstorming principles at the beginning of the meeting to
remind everyone that the exercise is a group activity and that personal style should
therefore be put aside. Step 2 is to state specific session objectives such as “Today we
want to come up with a list of candidate classes for the student project” or “Today we
want to determine the classes that are active during the registration phase.” Step 3 is
to use a round-robin technique to allow the group to proceed at an even tempo but
give people enough time to think. Each person should contribute a possible object
class to the list. A facilitator should keep the discussion on target, and a scribe should
take notes. The brainstorming stops when each person in the group has to “pass”
because he or she cannot think of another class to suggest. Step 4 of Belin and
Simone’s process is to discuss the classes and select the final list of classes. We prefer
to think of this stage as separate from brainstorming and so discuss it in the section
on filtering.

Just as the people brainstorming for an advertising slogan know something about
the product before the session begins, brainstorming for classes requires that the partici-
pants know something about the problem at hand. Each participant should be familiar
with the requirements document and any correspondence relating to the technical
aspects of the project. If ambiguities are identified, participants should conduct inter-
views to clarify these points before the brainstorming sessions commence. Each team
member should enter the brainstorming sessions with a clear understanding of the prob-
lem to be solved. During the preparation, each team member will almost certainly have
generated his or her own preliminary list of classes.

Filtering

As noted previously, the brainstorming session produces a tentative list of classes. In the
filtering phase, the group takes the tentative list of classes and determines which should
serve as the core classes in the problem solution. The list may contain two classes that
are actually the same thing. These duplicate classes usually arise because people work-
ing in different parts of an organization use different names for the same concept or
entity. Perhaps two classes in the list share many attributes and behaviors. The common
parts should be gathered together into a superclass in which the two classes derive the
common properties and add the properties that are different.

Some classes may not really belong in the problem solution. For example, if we are
simulating a calculator, we might list the user as a possible class. In fact, the user is not
a class within the simulation; the user is an entity outside the problem who provides
input to the simulation. Another possible class might be the on button. A little thought
shows that the on button is not really part of the simulation; it simply starts the simula-
tion program running.

172 | Chapter 3: ADTs Unsorted List and Sorted List

As the filtering is completed, CRC cards should be written for each class that has
survived to this stage.

Scenarios

In this phase, we assign responsibilities to each class. What are responsibilities? They
are the tasks that each class must perform. Responsibilities are eventually implemented
as subprograms. At this stage we are interested only in what the tasks are, not in how
they might be carried out.

Two types of responsibilities exist: what a class must know about itself (knowledge)
and what a class must be able to do (behavior). A class encapsulates its data (knowledge);
objects in one class cannot directly access data in another class. Encapsulation is a key
to abstraction. However, each class has the responsibility of making data (knowledge)
available to other classes that need it. Therefore, each class has the responsibility for
knowing the things about itself that others need to know. For example, a student class
should “know” its name and address. The responsibilities for this knowledge might be
called know name and know address. Whether the address is kept in the student class or
whether the student class must ask some other class to access the address is irrelevant at
this stage. The important fact is that the student class knows its own address.

The responsibilities for behavior look more like the tasks we described in top-down
design. For example, a responsibility for the student class might be to calculate its GPA
(grade point average). In top-down design, we would say that a task is to calculate the
GPA given the data. In object-oriented design, we would say that the student class is
responsible for calculating its own GPA. The distinction here is both subtle and pro-
found. The final code for the calculation may look the same, but it is executed in differ-
ent ways. In an imperative program, the program calls a subprogram that calculates the
GPA, passing the student object as a parameter. In an object-oriented program, a mes-
sage is sent to the object of the class to calculate its GPA. There are no parameters
because the object to which the message is sent knows its own data.

The name for the scenarios phase gives a clue as to how we go about assigning
responsibilities to classes. The team uses play-acting to test different scenarios. Each
member of the team plays the role of one of the classes. Scenarios are “what if” scripts
that allow participants to act out different situations. When a class has been sent a mes-
sage, the actor holds up the CRC card and responds to the message by sending messages
to other parties as needed. As the scripts are acted out, missing responsibilities are
unearthed and unneeded responsibilities are detected. Sometimes the need for new
classes surfaces. Although waving cards in the air when “you” are active may seem a
little embarrassing at first, team members quickly get into the spirit of the action when
they see how effective the technique is. See Figure 3.11.

The output from this phase is a set of CRC cards representing the core classes in the
problem solution. Each card lists the responsibilities for each class, along with the
classes with which a responsibility must collaborate.

Responsibility Algorithms

Eventually, we must write the algorithms for the responsibilities. Because the design
process focuses on data rather than actions in the object-oriented view of design, the

Case Study: Real Estate Listings | 173

Figure 3.11 A scenario walk-through in progress

algorithms for carrying out responsibilities tend to be fairly short. For example, the
knowledge responsibilities usually return the contents of just one of an object’s vari-
ables, or send a message to another object to retrieve it. Action responsibilities are a lit-
tle more complicated, often involving calculations. For this reason, the top-down
method of designing an algorithm is usually appropriate for designing many responsi-
bility algorithms.

A Final Word

To summarize, top-down design methods focus on the process of transforming the input
into the output, resulting in a hierarchy of tasks. Object-oriented design focuses on the
data objects that will be transformed, resulting in a hierarchy of objects. The nouns in
the problem description become objects; the verbs become operations. In a top-down
design, the verbs are the primary focus; in an object-oriented design, the nouns are the
primary focus.

Case Study
Real Estate Listings: An Object-Oriented Design

Problem Write a program to keep track of a real estate company’s residential listings. The
program needs to input and keep track of all listing information, which is currently stored on
3� � 5� cards in a box in the firm’s office.

The real estate salespeople must be able to perform a number of tasks using these data:
add or delete a house listing, print the information about a particular house given the owner’s
name, and print a list of homeowners sorted alphabetically.

Brainstorming We said that nouns in the problem statement represent objects and that
verbs describe actions. Let’s approach this problem by analyzing the problem statement in

174 | Chapter 3: ADTs Unsorted List and Sorted List

Figure 3.12 Problem statement with nouns circled and verbs underlined

Write a program to keep track of a real estate company’s
residential listings. The program needs to input and keep track
of all listing information, which is currently stored on 3" x
5" cards in a box in their office.

The real estate salespeople must be able to perform a number
of tasks using these data: add or delete a house listing, print the
information about a particular house given the owner’s name,
and print a list of homeowners sorted alphabetically.

terms of nouns and verbs. Let’s circle nouns and underline verbs. The relevant nouns in the first
paragraph are listings, information, cards, box, and office: Circle them. The verbs that describe
possible program actions are keep track of, input, and stored: Underline them. In the second
paragraph, the nouns are salespeople, listing, data, information, house, name, list, and
homeowners: Circle them. Possible action verbs are perform, add, delete, and print: Underline
them. Figure 3.12 shows the problem statement with the nouns circled and the verbs
underlined.

We did not circle program or underline write because these instructions apply to the pro-
grammer and are not part of the problem to be solved. Thus our initial list of classes contains
the following: listings, information, cards, box, office, salespeople, data, house, name, and
homeowners. We’ll shorten salespeople to people and homeowners to owners. Now, let’s
examine these nouns and see which actually represent classes in our solution.

Filtering The first paragraph describes the current system: The objects are cards that contain
information. These cards are stored in a box. Therefore, we have two objects in the office to
simulate: 3� � 5� cards and a box to hold them. In the second paragraph, we see what
processing must be done with the cards and the box in which they are stored. Also, we
discover several synonyms for the cards: data, listing, information, and house. We model them
with the same objects that represent the cards. The noun people represents the outside world
interacting with the program, so the rest of the paragraph describes the processing options
that must be provided to the user of the program. In terms of the box of cards, the user must
be able to add a new card, delete a card, print the information on the card given the owner’s
name, and print a list of all owners’ names in the box in alphabetical order.

We can represent the cards by a class whose data members are the information written on
the 3� � 5� cards. Let’s call this class HouseType. How do we represent the box of cards? We
have just written two versions of the abstract data type List. A list is a good candidate to sim-
ulate a box, and the information on the list can be objects of type HouseType.

So far, we have ignored the noun office. A box of cards is stored permanently in the office.
A list is a structure that exists only as long as the program in which it is defined is running.
But how do we keep track of the information between runs of the program? That is, how do we

Case Study: Real Estate Listings | 175

simulate the office in which the box resides? A file is the structure that is used for permanent
storage of information. Hence, there are two representations of the box of cards. When the
program is running, the box is represented as a list. When the program is not running, the box
is represented as a file. The program must move the information on the cards from a file to a
list as the first action, and from a list to a file as the last action.

Now we have three classes outlined: HouseType, a class that holds information about a
house; a class that maintains a list of HouseType objects; and a file that contains the House-
Type objects when the program is not running; and the main program.

Scenarios Before we start assigning responsibilities to these classes, we need to examine the
overall processing a little more. Let’s assume that the information on the 3� � 5� cards
includes the owner’s first and last names and the house’s address, price, number of square
feet, and number of bedrooms. The company never accepts more than one listing per customer,
so no duplicate names appear on the cards. If an agent attempts to insert a duplicate listing,
an error message is printed to the screen. As all processing is by owner’s name, the combined
first and last name should be the object’s key.

Input We must give the user (the real estate agent) a menu of the tasks that can be performed
on the list of houses. After a consultation with the agents, we decide on the following commands:

A Add a house listing.
D Delete a house listing.
P Print all of the information about a house on the screen, given the name of the

owner.
L Print the names of all owners in alphabetical order on the screen.
Q Quit.

The user continues to manipulate the list of houses until he or she enters a Q.
Notice that we have three kinds of input: the file of houses saved from the last run of the

program, the commands, and data entered from the keyboard in conjunction with implement-
ing the commands.

Output There are two kinds of output: the file of houses saved at the end of the run of the
program, and screen output produced by one or more of the commands.

Data Objects In the filtering stage we came up with house objects and two container objects:
the file of house objects retained from one run of the program to the next and the list that stores
the house objects when the program is running. The collection of house listings is called our
database.

Let’s name the physical file in which we retain the house objects as houses.dat. Within our
program, however, we must use two separate file stream objects, one for input and one for output,
even though both refer to the same physical file. Let’s call our input file masterIn (of type
ifstream) and our output file masterOut (of type ofstream). The object masterIn reads
data from the physical file houses.dat, and the object masterOut writes to houses.dat.

176 | Chapter 3: ADTs Unsorted List and Sorted List

•

•

•

•

•

•

•

•

•

•

•

•

Object of
class HouseType

first name
last name
address
price
square feet
bedrooms

Object of
class SortedList

length

info[0]

info[1]

info[length-1]

info[MAX_ITEM–1]

currentPos

Stream object
masterIn

Stream object
masterOut

Physical
file
houses.dat

Figure 3.13 The data objects in the case study

Figures 3.13 and 3.14 show the general flow of the processing and the appearance of the
data objects. Note that we know the internal workings of the List ADT because we wrote the
code earlier in the chapter. Now, however, we write the program using only the interface as
represented in the header file of the class. But which class shall we use? The unsorted version
or the sorted version? Because one of the operations prints the names of the owners in order,
the sorted version is a better choice.

The first time the program is run, houses.dat is empty, but it must exist; that is, we
need to create an empty file and name it houses.dat. The user must build the database (the
list of houses) by entering the information about the houses from the 3� � 5� cards. For exam-
ple, suppose the cards contain the following information:

John Jones
304 Spider Hollow, 78744
$96,000.00
1200 sq. feet, 3 bedrooms

Case Study: Real Estate Listings | 177

houses.dat

Program processes
the menu choices

A
D
P
L
Q

Program processes
the menu choices

A
D
P
L
Q

Figure 3.14 The high-level processing of the case study

Susan Smith
111 Lark Lane, 78712
$105,000.00
1500 sq. feet, 3 bedrooms

Claire Clear
123 Shallow Cove
$160,000
2000 sq. feet, 4 bedrooms

The first task for the user would be to signal that a new house is to be added to the list
(enter A at the prompt). The program would prompt for the information necessary, and the
user would key it from the 3� � 5� cards. Each house would be put into the list of houses as
it is entered. If the user then enters a Q, the information on these three houses would be
written to the file houses.dat. At the next run of the program, houses.dat has three list-
ings that are read in at the beginning of the run. The user is prompted to enter one of the
commands so as to add a new listing, delete a listing, print a particular listing, print all own-
ers, or quit.

178 | Chapter 3: ADTs Unsorted List and Sorted List

Responsibility Algorithms Where do we go from here? Do we determine the responsibilities
(member functions) for HouseType or do we determine the responsibilities for the main
function next? At this stage we do not know exactly what objects of type HouseType must
do, but we do know the general processing required. Let’s assign responsibilities to the main
function first. Although the main function is not a class, let’s use a CRC card to describe its
responsibilities.

Executing commands is clearly the central responsibility. We must first decide on the
interface with which the user will manipulate the database. The operations are to add a house,
delete a house, print information about one house, and print a listing of all owners. Let’s define
an enumeration type with these commands.

Execute Commands

We have called our data file houses.dat. In fact, our program would be more general if
we let the user enter the name of the input file and the output file.

Get a command
while command != Quit

switch (command)
case ADD : AddHouse(houseList)
case DELETE : DeleteHouse(houseList)
case PRINT_ONE : PrintHouse(houseList)
case PRINT_ALL : PrintOwners(houseList)

Get a command

Main

Responsibilities Collaborations

Input data from file to list ifstream

ofstream

Execute commands

Output data from list to file

.

.

.

Class Name: Superclass: Subclasses:

Case Study: Real Estate Listings | 179

FileToList(SortedType& houseList, ifstream& masterIn)

ListToFile(SortedType houseList, ofstream& masterOut)

Here are the second-level algorithms that process a command.

GetCommand(CommandType& command)

Write “Operations are listed below. ”
“Enter the appropriate uppercase letter and press return.”
“A : Add a house to the list of houses.”
“D : Delete a specific owner’s house.”
“P : Print all the information about an owner’s house.”
“L : Print all the names on the screen.”
“Q : Quit processing.”

// Input command.
Get a letter
Set ok to false
while NOT ok

Set ok to true
switch (letter)

case ‘A’ : Set command to ADD
case ‘D’ : Set command to DELETE
case ‘P’ : Set command to PRINT_ONE

Prompt for and get output file name
Open file file masterOut
houseList.ResetList()
Set length to houseList.LengthIs()
for index going from 1 to length

houseList.GetNextItem(item)
item.WriteToFile(masterOut)

Close file masterOut

Prompt for and get input file name
Open file masterIn
item.GetFromFile(masterIn) // Reads one item from masterIn.
while more data

houseList.InsertItem(item)
item.GetFromFile(masterIn)

Close file masterIn

180 | Chapter 3: ADTs Unsorted List and Sorted List

AddHouse(SortedType& houseList)

DeleteHouse(SortedType& houseList)

Note that we have to confirm that the house to be deleted is in the list because the pre-
condition on DeleteItem in the SortedType class is that the item is present. Because the
input/output is interactive, we should write a message to the user if the item is not found.

PrintHouse(SortedType houseList)

item.GetNameFromUser()
houseList.RetrieveItem(item, found)
if (found)

item.PrintHouseToScreen()
else

Write “Owner not in list.”

item.GetNameFromUser()
houseList.RetrieveItem(item, found)
if (found)

houseList.DeleteItem(item)
else

Write “Person not in list.”

item.GetFromUser()
houseList.RetrieveItem(item, found)
if (NOT found)

houseList.InsertItem(item)
else

write “Duplicate name; operation aborted.”

case ‘L’ : Set command to PRINT_ALL
case ‘Q’ : Set command to QUIT
default : Write “Letter entered is not one of the specified ”

“uppercase commands. Reenter and press return.”
Get a letter
Set ok to false

Case Study: Real Estate Listings | 181

PrintOwners(SortedType houseList)

All of the second-level tasks are simple enough to code directly, so we can turn our atten-
tion to HouseType and determine its responsibilities.

Now we must design the data members and the responsibility algorithms. Three of the
data members are strings: last name, first name, and address. We can use StrType, which
was defined in Chapter 2. The other three data members (price, square feet, and bedrooms) are
of simple types. We incorporate these data members into the header file, ItemType.h, along
with the prototypes of the member functions required by the program.

Note that the header file must be named ItemType.h, not HouseType.h, because the
code for our Sorted List ADT uses the directive #include "ItemType.h". Note also the
typedef statement at the bottom of the header file. Because the Sorted List ADT expects the
list items to be of type ItemType, we use typedef to make ItemType an alias for House-
Type. Here is the CRC card from the SortedType class:

HouseType

Responsibilities Collaborations

Get house from file

Write house to file

Get house from user

Print house to screen

Get name from user

Print name to screen

ComparedTo

ifstream

ofstream

ostream

istream

istream

ostream

.

.

.

Class Name: Superclass: Subclasses:

houseList.ResetList()
Set length to houseList.LengthIs()
for count going from 1 TO length

houseList.GetNextItem(item)
item.PrintNameToScreen()

182 | Chapter 3: ADTs Unsorted List and Sorted List

Here is the CRC card for StrType with the changes made in this chapter:

Because all of the responsibilities for HouseType are simply member function calls to the
class StrType, we leave the implementation of HouseType as an exercise. The responsibili-
ties for SortedType and StrType have already been coded and tested. Here, then, is the
client’s program.

StrType

Responsibilities Collaborations

GetStringFile (skip, charsAllowed, inFile)

GetString (skip, charsAllowed)

PrintToScreen (newLine)

PrintToFile (newLine, outFile)

LengthIs () returns Int

CopyString (newString)

Overload equality operator

ifstream, char

char

ofstream

Overload less than operator

.

.

.

Class Name: Superclass: Subclasses:

SortedType

Responsibilities Collaborations

IsFull returns Boolean

LengthIs returns integer

RetrieveItem (item, Boolean)

InsertItem (item)

DeleteItem (item)

ResetList

GetNextItem (item)

ItemType

ItemType

ItemType

ItemType

.

.

.

Class Name: Superclass: Subclasses:

Case Study: Real Estate Listings | 183

// CLIENT PROGRAM
// This program manipulates real estate property listings.
#include <iostream>
#include "SortedType.h" // Gain access to Sorted List ADT.
#include <fstream>
#include <string>

enum CommandType {ADD, DELETE, PRINT_ONE, PRINT_ALL, QUIT};
// Each constant represents a task.
void FileToList(SortedType&, std::ifstream&);
// Moves houses from file to list.
void ListToFile(SortedType, std::ofstream&);
// Moves houses from list to file.
void AddHouse(SortedType&);
// Adds a house to the list.
void DeleteHouse(SortedType&);
// Removes a house from the list.
void PrintHouse(SortedType);
// Prints a specific owner listing.
void PrintOwners(SortedType);
// Prints a sorted list of owners.
void GetCommand(CommandType&);
// Prompts for and gets next command.

int main()
{
using namespace std;
ifstream masterIn; // Master file of houses (input).
ofstream masterOut; // Master file of houses (output).
CommandType command;
SortedType houseList;

FileToList(houseList, masterIn);

GetCommand(command);
// Read and process commands until user enters a quit command.

while (command != QUIT)
{
switch (command)
{
case ADD : AddHouse(houseList);

break;

184 | Chapter 3: ADTs Unsorted List and Sorted List

case DELETE : DeleteHouse(houseList);
break;

case PRINT_ONE : PrintHouse(houseList);
break;

case PRINT_ALL : PrintOwners(houseList);
break;

}
GetCommand(command);

}

ListToFile(houseList, masterOut);
return 0;

}

//***
// **************** Second-Level Functions ********************

void FileToList(SortedType& houseList, std::ifstream& masterIn)
// Pre: masterIn has not been opened.
// Post: houseList contains items from masterIn.
// masterIn has been closed.
{
using namespace std;
ItemType item;
string inFileName;

// Prompt for file name, read file name, and prepare file.
cout << "Enter name of file of houses; press return." << endl;
cin >> inFileName;
masterIn.open(inFileName.c_str());

item.GetFromFile(masterIn); // Reads one item from masterIn.
while (masterIn)
{
houseList.InsertItem(item);
item.GetFromFile(masterIn);

}
masterIn.close();

}

void ListToFile(SortedType houseList, std::ofstream& masterOut)
// Pre: masterOut has not been opened.
// houseList has been initialized.
// Post: houseList has been written on masterOut.
// masterOut has been closed.

Case Study: Real Estate Listings | 185

{
using namespace std;
ItemType item;
int length;
string outFileName;
cout << "Enter name of output file; press return." << endl;
cin >> outFileName;
masterOut.open(outFileName.c_str());

houseList.ResetList();
length = houseList.LengthIs();

for (int count = 1; count <= length; count++)
{
houseList.GetNextItem(item);
item.WriteToFile(masterOut);

}

masterOut.close();
}

void AddHouse(SortedType& houseList)
// Pre: houseList has been initialized.
// Post: A house has been added to the list if the names are
// not duplicated; otherwise, the operation is aborted with
// a message to the user.
{
using namespace std;
bool found; ItemType item;

item.GetFromUser();
houseList.RetrieveItem(item, found);
if (!found)
{
houseList.InsertItem(item);
cout << "Operation completed." << endl;

}
else
cout << "Duplicate name; operation aborted" << endl;

}

void DeleteHouse(SortedType& houseList)
// Pre: houseList has been initialized.
// Post: A house, specified by user input, is no longer in the list.

186 | Chapter 3: ADTs Unsorted List and Sorted List

{
using namespace std;
bool found; ItemType item;

item.GetNameFromUser();
houseList.RetrieveItem(item, found);
if (found)
{

houseList.DeleteItem(item);
cout << "Operation completed." << endl;

}
else
cout << "Person not in list." << endl;

}

void PrintHouse(SortedType houseList)
// Pre: houseList has been initialized.
// Post: If owner, specified by user input, is in houseList,
// house info is printed on the screen.
{
using namespace std;
bool found; ItemType item;

item.GetNameFromUser();
houseList.RetrieveItem(item, found);
if (found)
item.PrintHouseToScreen();

else
cout << "Owner not in list." << endl;

}

void PrintOwners(SortedType houseList)
// Pre: houseList has been initialized.
// Post: Owners' names are printed on the screen.
{
using namespace std;
ItemType item;
int length;

houseList.ResetList();
length = houseList.LengthIs();
for (int count = 1; count <= length; count++)
{

houseList.GetNextItem(item);
item.PrintNameToScreen();

}

Case Study: Real Estate Listings | 187

cout << "Operation completed." << endl;
}

void GetCommand(CommandType& command)
// Pre: None.
// Post: User command has been prompted for and input; a valid
// command has been found.
{
using namespace std;
// Prompt.
cout << "Operations are listed below. "

<< "Enter the appropriate uppercase letter and "
<< "press return." << endl;

cout << "A : Add a house to the list of houses." << endl;
cout << "D : Delete a specific owner's house." << endl;
cout << "P : Print the information about an owner's house."

<< endl;
cout << "L : Print all the names on the screen."

<< endl;
cout << "Q : Quit processing." << endl;
// Input command.
char letter;
cin >> letter;

bool ok = false;
while (!ok)
{
ok = true;
switch (letter)
{
case 'A' : command = ADD;

break;
case 'D' : command = DELETE;

break;
case 'P' : command = PRINT_ONE;

break;
case 'L' : command = PRINT_ALL;

break;
case 'Q' : command = QUIT;

break;
default : cout << "Letter entered is not one of the "

<< "specified uppercase commands. "
<< "Reenter and press return."
<< endl;

188 | Chapter 3: ADTs Unsorted List and Sorted List

cin >> letter;
ok = false; break;

}
}

}

In this extended example, we have walked through the design process from the informal
problem statement through the coding phase. We have not, however, written a formal specifi-
cation. We leave the writing of the formal specification as an exercise.

Test Plan The classes SortedType and StrType have been tested thoroughly. This leaves
the class HouseType and the main function to test. To test HouseType, we would need to
create a test driver program to call the member functions. Recall that these member functions
were determined to be those needed by the main function (or driver). Therefore, we can use
the main function as the test driver to test HouseType. In other words, we can test both
together.

The first task is to create a master file of houses by using the Add command to input sev-
eral houses and then quit. We also need to input a variety of commands to add more houses,
delete houses, print the list of owners, and print the information about a particular owner’s
house. All of the error conditions must be tested thoroughly. The program must be run several
times to test the access and preservation of the database (the file houses.dat). We leave the
final test plan as a programming assignment.

In the discussion of object-oriented design in Chapter 1, we noted that the code responsi-
ble for coordinating the objects is called a driver. Now we can see why. In testing terminology,
a driver program calls various subprograms and observes their behavior. In object-oriented ter-
minology, a program is a collection of collaborating objects. Therefore, the role of the main
function is to invoke operations on certain objects—that is, to get them started collaborating—
so the term driver is appropriate. In subsequent chapters, when we use the term “driver,” the
meaning should be clear from the context.

Summary
In this chapter, we created two abstract data types that represent lists. The Unsorted List
ADT assumes that the list elements are not sorted by key; the Sorted List ADT assumes
that the list elements are sorted by key. We viewed each ADT from three perspectives:
the logical level, the application level, and the implementation level. The extended Case
Study used the Sorted List ADT and the String ADT from Chapter 2 in a problem. Figure
3.15 shows the relationships among the three views of the list data in the Case Study.

To make the software as widely reusable as possible, the specification of each ADT
states that its user must prepare a class that defines the objects included in each con-
tainer class. A member function ComparedTo that compares two objects of this class
must be included in the definition. This function returns one of the constants in Rela-
tionType: LESS, EQUAL, or GREATER. Because the user must provide this information
about the objects on the list, the code of the ADTs is very general. The Unsorted List
and Sorted List ADTs can process items of any kind; they are completely context inde-
pendent. The Case Study demonstrated the value of this independence.

Exercises | 189

Application View

A List of Houses

 Logical View

MakeEmpty
InsertItem
DeleteItem
ResetList
GetNextItem

•

•

•

 Implementation View

class SortedType
{

};

class StrType
{

};

Must guarantee
preconditions
of logical view

All communication
is through the logical
view: the specification

Must guarantee
postconditions
of logical view

Figure 3.15 Relationships among the views of data

We compared the operations on the two ADTs using Big-O notation. Insertion into an
unsorted list has order O(1); insertion into a sorted list has order O(N). Deletions from
both types of lists have order O(N). Searching in the unsorted list has order O(N);
searching in a sorted list has order O(log2N) if we use a binary search.

The relational operators can be overloaded, allowing us to compare values of differ-
ent types using the standard symbols.

This chapter also described a four-stage object-oriented design methodology. Brain-
storming involves coming up with a possible set of object classes for the problem solu-
tion. In filtering, we reexamine the tentative classes, eliminating those that are not
appropriate, combining some classes, and creating additional classes if necessary. With
scenarios, we examine the responsibilities of each proposed class and role play to see
whether all situations are covered. In the responsibility algorithms phase, algorithms are
derived to carry out the responsibilities. CRC cards are used as a visual means of record-
ing classes and their responsibilities. This methodology was applied to the Case Study.

Exercises
1. The Unsorted List ADT is to be extended with a Boolean member function,

IsThere, which takes as a parameter an item of type ItemType and determines
whether there is an element with this key in the list.

a. Write the specification for this function.

b. Write the prototype for this function.

c. Write the function definition.

d. Describe this function in terms of Big-O notation.

190 | Chapter 3: ADTs Unsorted List and Sorted List

2. The Sorted List ADT is to be extended with a Boolean member function,
IsThere, which takes as a parameter an item of type ItemType and determines
whether there is an element with this key in the list.

a. Write the specification for this function.

b. Write the prototype for this function.

c. Write the function definition using the binary search algorithm.

d. Describe this function in terms of Big-O notation.

3. Write a paragraph comparing your answers in Exercises 1 and 2.

4. Rather than enhancing the Unsorted List ADT by adding a member function
IsThere, you decide to write a client function to do the same task.

a. Write the specification for this function.

b. Write the function definition.

c. Describe this function in terms of Big-O notation.

d. Write a paragraph comparing the client function and the member function
(Exercise 1) for the same task.

5. Rather than enhancing the Sorted List ADT by adding a member function
IsThere, you decide to write a client function to do the same task.

a. Write the specification for this function.

b. Write the function definition.

c. Were you able to use the binary search algorithm? Explain your answer.

d. Describe this function in terms of Big-O notation.

e. Write a paragraph comparing the client function and the member function
(Exercise 2) for the same task.

6. Write a client function that merges two instances of the Sorted List ADT using
the following specification:

MergeLists(SortedType list1, SortedType list2, Sorted-
Type& result)

Function: Merge two sorted lists into a third sorted
list.

Preconditions: list1 and list2 have been initialized and
are sorted by key using the function
ComparedTo.
list1 and list2 do not have any keys in
common.

Postconditions: result is a sorted list that contains all of
the items from list1 and list2.

Exercises | 191

a. Write the prototype for MergeLists.

b. Write the code for the function.

c. Describe the algorithm in terms of Big-O notation.

7. Redo your answers to Exercise 6, making MergeLists a member function of the
Sorted List ADT.

8. A List ADT is to be extended by the addition of the function SplitLists, which
has the following specification where ListType is either the class UnsortedType or
the class SortedType:

SplitLists(ListType list, ItemType item, ListType& list1,
ListType& list2)

Function: Divides list into two lists according to
the key of item.

Preconditions: list has been initialized and is not
empty.

Postconditions: list1 contains all the items of list whose
keys are less than or equal to item’s key.
list2 contains all the items of list whose
keys are greater than item’s key.

a. Implement SplitLists as a member function of the Unsorted List ADT.

b. Implement SplitLists as a member function of the Sorted List ADT.

c. Compare the algorithms used in parts (a) and (b).

d. Implement SplitLists as a client function of the Unsorted List ADT.

e. Implement SplitLists as a client function of the Sorted List ADT.

9. The specification for the Unsorted List ADT states that the item to be deleted is
present in the list.

a. Rewrite the specification for DeleteItem so that the list is unchanged if the
item to be deleted is not present in the list.

b. Implement DeleteItem as specified in part (a).

c. Rewrite the specification for DeleteItem so that all copies of the item to be
deleted are removed if they exist.

d. Implement DeleteItem as specified in part (c).

10. The specification for the Sorted List ADT states that the item to be deleted is
present in the list.

a. Rewrite the specification for DeleteItem so that the list is unchanged if the
item to be deleted is not present in the list. (There is at most one such item.)

192 | Chapter 3: ADTs Unsorted List and Sorted List

b. Implement DeleteItem as specified in part (a).

c. Rewrite the specification for DeleteItem so that all copies of the item to be
deleted are removed if they exist.

d. Implement DeleteItem as specified in part (c).

11. Write a formal specification for the problem explored in the Case Study.

12. Give an example of an algorithm (other than the examples discussed in the chap-
ter) that is

a. O(1)

b. O(N)

c. O(N 2)

13. A routine to calculate the sum of the results of applying the int function X to
the values in the array data contains the following code segment:

sumOfX = 0;
for (int index = 0; index < numberOfElements; index++)
sumOfX = sumOfX + X(data[index]);

If the function X is O(N), what is the order of magnitude of the algorithm with
respect to numberOfElements?

14. Algorithm 1 does a particular task in a “time” of N 3, where N is the number of
elements processed. Algorithm 2 does the same task in a “time” of 3N + 1,000.

a. What are the Big-O requirements of each algorithm?

b. Which algorithm is more efficient by Big-O standards?

c. Under what conditions, if any, would the “less efficient” algorithm execute
more quickly than the “more efficient” algorithm?

15. Replace the function ComparedTo in the Unsorted List ADT by assuming that
member functions of ItemType overload the relational operators.

16. Replace the function ComparedTo in the Sorted List ADT by assuming that
member functions of ItemType overload the relational operators.

17. Discuss extending a List ADT by the addition of a member function Head, which
has the following precondition and postcondition:

Precondition: list has been initialized and is not empty.

Postcondition: return value is the last item inserted in the list
and the list is of type

a. UnsortedType

b. SortedType

18. Discuss extending a List ADT by the addition of function Tail, which has the
following precondition and postcondition:

Precondition: list has been initialized and is not empty.

Postcondition: return value is a new list with the last item inserted in the list
removed

Exercises | 193

and the list is of type

a. UnsortedType

b. SortedType

19. DeleteItem does not maintain the order of insertions because the algorithm
swaps the last item into the position of the item being deleted and then decrements
length. Would there be any advantage to having DeleteItem maintain the inser-
tion order? Justify your answer.

20. Give a Big-O estimate of the run time for the functions you wrote in Exercises 9
and 10.

21. a. Change the specification for the Unsorted List ADT so that InsertItem
throws an exception if the list is full.

b. Implement the revised specification in part (a).

22. a. Change the specification for the Sorted List ADT so that InsertItem throws
an exception if the list is full.

b. Implement the revised specification in part (a).

23. The method names used in the class FractionType were not very object ori-
ented. Rewrite the CRC card for this class using more object-oriented terminol-
ogy.

24. Complete coding class HouseType(ItemType).

After studying this chapter, you should be able to

Describe a stack and its operations at a logical level

Demonstrate the effect of stack operations using a particular implementa-
tion of a stack

Implement the Stack ADT in an array-based implementation

Declare variables of pointer types

Access the variables to which pointers point

Create and access dynamically allocated data

Explain the difference between static and dynamic allocation of the space in
which the elements of an abstract data type are stored

Use the C++ template mechanism for defining generic data types

Define and use an array in dynamic storage

Describe the structure of a queue and its operations at a logical level

Demonstrate the effect of queue operations using a particular implementation
of a queue

Implement the Queue ADT using an array-based implementation

Use inheritance to create a Counted Queue ADT

ADTs Stack and Queue

G
oals

196 | Chapter 4: ADTs Stack and Queue

In Chapter 2, we looked at the built-in structures in C++ from the logical view, the
application view, and the implementation view. At the language level, the logical view
is the syntax of the construct itself, and the implementation view remains hidden within
the compiler. In Chapter 3, we defined the ADTs Unsorted List and Sorted List. For these
user-defined ADTs, the logical view is the class definition where the documentation for
the prototypes of the member functions becomes the interface between the client pro-
gram and the ADT. In this chapter, we expand your toolkit of ADTs to include two
important new ADTs: the stack and the queue.

4.1 Stacks

Logical Level

Consider the items pictured in Figure 4.1. Although the objects are all different, each
illustrates the same concept—a stack. At the logical level, a stack is an ordered group of

homogeneous items or elements. The removal of
existing items and the addition of new items can take
place only at the top of the stack. For instance, if your
favorite blue shirt is underneath a faded, old, red one
in a stack of shirts, you must first remove the red shirt
(the top item) from the stack. Only then can you
remove the desired blue shirt, which is now the top

item in the stack. The red shirt may then be replaced on the top of the stack or thrown
away.

The stack may be considered an “ordered” group of items because elements occur in
a particular sequence organized according to how long they’ve been in the stack. The
items that have been present in the stack the longest are at the bottom; the most recent
are at the top. At any time, given any two elements in a stack, one is higher than the
other. (For instance, the red shirt was higher in the stack than the blue shirt.)

A stack of
cafeteria trays

A stack
of pennies

A stack of
shoe boxes

A stack of
neatly folded shirts

Figure 4.1 Real-life stacks

Stack An abstract data type in which elements are
added and removed from only one end; a “last in, first
out” (LIFO) structure

4.1 Stacks | 197

Figure 4.2 The effects of Push and Pop operations

2

3

2

5

3

2

5

StackType stack;

stack.Push(block2);

stack.Push(block3);

stack.Push(block5);

stack.Pop();

(Empty)

3

2

= stack.Top();

Because items are added and removed only from the top of the stack, the last ele-
ment to be added is the first to be removed. A handy mnemonic can help you remember
this rule of stack behavior: A stack is a LIFO (Last In, First Out) structure.

The accessing protocol for a stack is summarized as follows: Both to retrieve ele-
ments and to store new elements, access only the top of the stack.

Operations on Stacks The logical picture of the structure provides only half of the
definition of an abstract data type. The other half consists of a set of operations that
allows the user to access and manipulate the elements stored in the structure. Given the
logical view of a stack, what kinds of operations do we need to use a stack?

The operation that adds an element to the top of a stack is usually called Push, and
the operation that removes the top element from the stack is referred to as Pop.
Because we may need to examine the item at the top of the stack we can have Pop
return the top element or we can use a separate operation Top to return a copy of the
top element without removing it. When we begin using a stack, it should be empty, so
we need an operation that sets the stack to empty: MakeEmpty. We must also be able
to tell whether a stack contains any elements before we pop it, so we need a Boolean
operation IsEmpty. As a logical data structure, a stack is never conceptually “full,” but
for a particular implementation you may need to test whether a stack is full before
pushing. We call this Boolean operation IsFull. Figure 4.2 shows how a stack, envi-
sioned as a stack of building blocks, is modified by several Push and Pop operations.

We now have a logical picture of a stack and are almost ready to use it in a pro-
gram. The part of the program that uses the stack, of course, won’t care how the stack is

198 | Chapter 4: ADTs Stack and Queue

actually implemented—we want the implementation level to be hidden, or encapsulated.
The accessing operations such as Push, Pop, and Top serve as windows into the stack
encapsulation, through which the stack’s data are passed. The interfaces to the access-
ing operations are described in the following specification for the Stack ADT.

Stack ADT Specification

Structure: Elements are added to and removed from the
top of the stack.

Definitions (provided by user):
MAX_ITEMS: Maximum number of items that might be on

the stack.
ItemType: Data type of the items on the stack.

Operations (provided by the ADT):

MakeEmpty
Function: Sets stack to an empty state.
Precondition: None.
Postcondition: Stack is empty.

Boolean IsEmpty
Function: Determines whether the stack is empty.
Precondition: Stack has been initialized.
Postcondition: Function value = (stack is empty).

Boolean IsFull
Function: Determines whether the stack is full.
Precondition: Stack has been initialized.
Postcondition: Function value = (stack is full).

Push(ItemType newItem)
Function: Adds newItem to the top of the stack.
Precondition: Stack has been initialized.
Postconditions: If (stack is full), exception FullStack is thrown,

else newItem is at the top of the stack.

Pop()
Function: Removes top item from the stack.
Precondition: Stack has been initialized.
Postconditions: If (stack is empty), exception EmptyStack is

thrown, else top element has been removed
from stack.

4.1 Stacks | 199

1An overzealous copyeditor once changed parenthesized expressions in a Pascal program from plain parenthe-
ses to alternating parentheses and square brackets. Fortunately, when all of the programs were tested, this
change was caught.

ItemType Top()
Function: Returns a copy of the top item on the stack.
Precondition: Stack has been initialized.
Postconditions: If (stack is empty), exception EmptyStack is

thrown, else a copy of the top element is
returned.

Application Level

Now let’s look at an example of how we might use the stack operations in a program.
Stacks are very useful ADTs that are often used in situations where we must process
nested components.

For example, programming language systems typically use a stack to keep track of
operation calls. The main program calls operation A, which in turn calls operation B, which
in turn calls operation C. When C finishes, control returns to B; when B finishes, control
returns to A; and so on. The call-and-return sequence is essentially a LIFO sequence, so a
stack is the perfect structure for tracking it. When an exception is thrown, this sequence of
operation calls is followed while looking for an appropriate catch statement.

Compilers often use stacks to perform syntax analysis of language statements. The
definition of a programming language usually consists of nested components—for
example, for loops can contain if-then statements that contain while loops that contain
for loops. As a compiler works through such nested constructs, it “saves” information
about what it is currently working on in a stack. When it finishes its work on the inner-
most construct, the compiler can “retrieve” its previous status from the stack, and pick
up where it left off. Similarly, an operating system sometimes saves information about
the currently executing process on a stack, so that it can work on a higher-priority
interrupting process. If that process becomes interrupted by an even higher-priority
process, its information can also be pushed onto the process stack. When the operating
system finishes its work on the highest-priority process, it pops the information about
the most recently stacked process, and continues working on it.

Let’s look at a simpler problem related to nested components—the problem of deter-
mining whether a set of parentheses is “well formed.” For this classic problem, a stack is
an appropriate data structure. The general problem can be stated as follows: Determine
whether a set of paired symbols is used appropriately. The specific problem is: Given a
set of different types of paired symbols, determine whether the opening and closing ver-
sions of each type are paired correctly. For our example, we consider parenthesis pairs
(), [], and {}.1 Any number of other characters may appear in the input, but a closing
parenthesis symbol must match the last unmatched opening parenthesis symbol and all

200 | Chapter 4: ADTs Stack and Queue

Figure 4.3 Well-formed and ill-formed expressions

Well-Formed Expressions Ill-Formed Expressions

(xx (xx ()) xx) (xx (xx ()) xxx) xxx)
[] () { }] [
([] { xxx } xxx () xxx) (xx [xxx) xx]
([{ [(([{ x }]) x)] } x]) ([{ [(([{ x }]) x)] } x })
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxx {

Main Algorithm
Set balanced to true
Set symbol to the first character in current expression
while (there are still more characters AND expression is still balanced)

Process symbol
Set symbol to next character in current expression

if (balanced)
Write “Expression is well formed.”

else
Write “Expression is not well formed.”

parenthesis symbols must be matched when the input is finished. Figure 4.3 shows
examples of both well-formed and ill-formed expressions.

The program reads an expression character by character. For each character, it does
one of three tasks, depending on whether the character is an opening special symbol, a
closing special symbol, or not a special symbol. If the character is not a special symbol,
it is discarded and another character is read. If the character is an opening special sym-
bol, it is saved on the stack. If the character is a closing special symbol, it must be
checked against the last opening special symbol, which is on the top of the stack. If they
match, the character and the last opening special symbol are discarded and the program
processes the next character. If the closing special symbol does not match the top of the
stack or if the stack is empty, then the expression is ill formed. When the program has
processed all of the characters, the stack should be empty—otherwise, extra opening spe-
cial symbols are present.

Now we are ready to write the main algorithm, where stack is an instance of
StackType and symbol is the character being examined.

The algorithm follows this basic pattern:

4.1 Stacks | 201

Get the first piece of information
while not finished processing information

Handle the current information
Get the next piece of information

It uses this processing pattern for both the lines of expressions (if there is more than
one) and the characters within each line. Your programming proficiency will increase as
you recognize such patterns and “reuse” them when appropriate.

The only part of the algorithm that may require expansion before moving on to the
coding stage is the “Process symbol” command. Earlier, we described how to handle
each type of character. Here are those steps in algorithmic form:

Process Symbol
if (symbol is an opening symbol)

Push symbol onto the stack
else if (symbol is a closing symbol)

if the stack is empty
Set balanced to false

else
Set openSymbol to the character at the top of the stack
Pop the stack
Set balanced to (symbol matches openSymbol)

matches
symbol is ‘)’ and openSymbol is ‘(‘ OR
symbol is ‘}’ and openSymbol is ‘{’ OR
symbol is ‘]’ and openSymbol is ‘[’

202 | Chapter 4: ADTs Stack and Queue

We are now ready to code this algorithm as the program Balanced. We make use
of stack of the class StackType. We could code a class SymbolType with member
functions IsOpen, IsClosed, and Matches and one data item of type char. However,
because a symbol is just a built-in data type, a procedural solution is simpler.

#include "StackType.h"
#include <iostream>
bool IsOpen(char symbol);
bool IsClosed(char symbol);
bool Matches(char symbol, char openSymbol);

int main()
{
using namespace std;
char symbol;
StackType stack;
bool balanced = true;
char openSymbol;

cout << "Enter an expression and press return." << endl;
cin.get(symbol);
while (symbol != '\n' && balanced)
{
if (IsOpen(symbol))
stack.Push(symbol);

else if (IsClosed(symbol))
{
if (stack.IsEmpty())
balanced = false;

else
{
openSymbol = stack.Top();
stack.Pop();
balanced = Matches(symbol, openSymbol);

}
}
cin.get(symbol);

}
if (balanced)
cout << "Expression is well formed." << endl;

else
cout << "Expression is not well formed." << endl;

return 0;
}

4.1 Stacks | 203

bool IsOpen(char symbol)
{
if ((symbol == '(') || (symbol == '{') || (symbol == '['))
return true;

else
return false;

}

bool IsClosed(char symbol)
{
if ((symbol == ')') || (symbol == '}') || (symbol == ']'))
return true;

else
return false;

}

bool Matches(char symbol, char openSymbol)
{
return (((openSymbol == '(') && symbol == ')')

|| ((openSymbol == '{') && symbol == '}')
|| ((openSymbol == '[') && symbol == ']'));

}

In this expression checker, we have acted as stack users. We have written an inter-
esting stack application, without even considering how the stack is implemented. The

204 | Chapter 4: ADTs Stack and Queue

stack user doesn’t need to know the implementation! The details of the implementation
remain hidden inside the StackType class. As users, however, we did not adhere to the
specifications carefully. We should have included Push, Pop, and Top with a try/catch
statement. We leave this correction as an exercise.

Implementation Level

Next, we consider the implementation of our Stack ADT. After all, our functions Push,
Pop, and Top are not magically available to the C++ programmer. We need to write
these routines to include them in a program.

Because all elements of a stack are of the same type, an array seems like a reason-
able structure to hold them. We can put elements into sequential slots in the array, plac-
ing the first element pushed into the first array position, the second element pushed into
the second array position, and so on. The floating “high-water” mark is the top element
in the stack. Why, this approach sounds just like our Unsorted List ADT implementation!
Here info[length - 1] is the top of the stack.

Be careful: We are not saying that a stack is an unsorted list. A stack and an
unsorted list are two entirely different abstract data types. We are saying, however, that
we can use the same implementation strategy for both.

Definition of the Stack Class We implement our Stack ADT as a C++ class. Just as we
did for the various versions of the List ADT, we require the user to provide us with a
class called ItemType, which defines the items on the stack. However, we do not need a
comparison function because none of the operations requires comparing two items on
the stack.

Which data members does our Stack ADT need? We need the stack items them-
selves and a variable indicating the top of the stack (which behaves in the same way as
length in the List ADT). What about error conditions? Our specifications leave error
checking to the user (client) by having the ADT throw an exception when a push opera-
tion is attempted but the stack is full or when a pop or top operation is attempted but
the stack is empty. We include two exception classes, FullStack and EmptyStack, in
the following specification file, StackType.h.

#include ItemType.h
// ItemType.h must be provided by the user of this class.
// This file must contain the following definitions:
// MAX_ITEMS: the maximum number of items on the stack.
// ItemType: the definition of the objects on the stack.

class FullStack
// Exception class used by Push when stack is full.
{};

class EmptyStack
// Exception class used by Pop and Top when stack is empty.
{};

4.1 Stacks | 205

class StackType
{
public:
StackType();
bool IsEmpty() const;
bool IsFull() const;
void Push(ItemType item);
void Pop();
ItemType Top() const;

private:
int top;
ItemType items[MAX_ITEMS];

};

Definitions of Stack Operations In the List ADT, length indicated how many items
were present on the list. In the Stack ADT, top indicates which element is on top. Thus
our analogy to the List ADT is off by one. The MakeEmpty operation is implemented
with a class constructor that sets top to �1 rather than 0. IsEmpty should compare
top with �1, and IsFull should compare top with MAX_ITEMS �1.

StackType::StackType()
{
top = -1;

}

bool StackType::IsEmpty() const
{
return (top == -1);

}

bool StackType::IsFull() const
{
return (top == MAX_ITEMS-1);

}

Now we must write the algorithm to Push an item on the top of the stack, Pop an
item from the top of the stack, and return a copy of the top item. Push must increment
top and store the new item into items[top].
If the stack is already full when we invoke
Push, the resulting condition is called stack
overflow. We can handle error checking for
overflow conditions in a number of ways. Our
specification states that overflow causes an
exception to be thrown; thus the client is responsible for handling overflow by enclos-
ing the operation within a try/catch statement. Alternatively, we could pass an error flag
as a parameter, which Push sets to true if overflow occurs.

Stack overflow The condition resulting from trying to
push an element onto a full stack

206 | Chapter 4: ADTs Stack and Queue

Push
if stack is full

throw an exception FullStack
else

Increment top
Set items[top] to newItem

void StackType::Push(ItemType newItem)
{
if (IsFull())
throw FullStack();

top++;
items[top] = newItem;

}

The constructor for the exception class is called in the throw statement, because
C++ requires us to throw an object of an exception type. Because the documentation
states that the functions Push, Pop, and Top can throw exceptions, calls to them must
be enclosed within a try block. The following example shows what the client code might
do with the exception:

try
{
// Code
stack.Push(item);
stack.Pop();
// More code

}
catch (FullStack exceptionObject)
{
cerr << "FullStack exception thrown" << endl;

}
catch (EmptyStack exceptionObject)
{
cerr << "EmptyStack exception thrown" << endl;

}

In this case, the FullStack or EmptyStack object that is thrown is not accessed. If
the exception class has member functions, they could be applied to exceptionObject.

4.1 Stacks | 207

If the exception is so severe that the program should halt, the exit function can be
used.

catch (EmptyStack exceptionObject)
{
cerr << "EmptyStack exception thrown" << endl

<< "Exiting with error code 2" << endl;
exit(2);

}

The Error Stream cerr

You already know about cin and cout, which are defined in the <iostream> header file. A
third stream defined in <iostream>, cerr, is called the error output stream. As its name sug-
gests, cerr is intended specifically for error messages.

Use of exit(n)

Calling exit(n), which is available in <cstdlib>, anywhere in a program cleans up and then
terminates the program. We cannot use return to terminate a program in any function other
than main. Using return in a function returns to the caller, which would not end the program.
In main, exit(n) has the same effect as return n.

Pop is essentially the reverse of Push: We
decrement top. If the stack is empty when we
invoke Pop or Top, a stack underflow results.
As with the Push function, the specifications
for the operations say to throw an exception
in this event.

Here is the code for Pop and Top:

void StackType::Pop()
{
if(IsEmpty())
throw EmptyStack();

top--;
}

ItemType StackType::Top() const
{
if (IsEmpty())

Stack underflow The condition resulting from trying to
pop an empty stack

C++

208 | Chapter 4: ADTs Stack and Queue

throw EmptyStack();
return items[top];

}

Figure 4.4 shows the result of pushing and popping where the stack items are
characters.

Test Plan The test plan for the Stack ADT closely resembles the test plan for the List
ADT. Because we are testing the implementation of an abstract data type that we have
just written, we use a clear-box strategy, checking each operation. Unlike with the List
ADT, however, we do not have an iterator that allows us to cycle through the items and
print them. Instead, we must use a combination of calls to Top and Pop to print what is
in the stack, destroying it in the process.

Because the type of data stored in the stack has no effect on the operations that
manipulate the stack, we can define ItemType to represent int values and set
MAX_ITEMS to 5, knowing that the code will work the same way whether MAX_ITEMS is
5 or 1,000.

Figure 4.4 The effect of a Pop following a series of Pushes

Stack items Logical garbage

[0] [1] [2] [3] • • • [99]

‘B’ ‘O’ ‘Y’

2

stack

.items

.top

Stack items Logical garbage

[0] [1] [2] [3] • • • [99]

‘B’ ‘O’ ‘Y’

1

stack

.items

.top

4.1 Stacks | 209

Operation to Be Tested and Input Values Expected Output
Description of Action or Program Behavior

Class constructor
Apply IsEmpty immediately Stack is empty

Push, Pop, and Top
Push 4 items,

top, pop, and print 5, 7, 6, 9 9, 6, 7, 5

Push with duplicates

and pop, top, and print 2, 3, 3, 4 4, 3, 3, 2

Push, Pop, and Top
interlace operations

Push 5

Pop

Push 3

Push 7

Pop

Top and print 3

IsEmpty

Invoke when empty Stack is empty

Push and invoke Stack is not empty

Pop and invoke Stack is empty

IsFull

Push 4 items and invoke 1, 2, 3, 4 Stack is not full

Push another item and invoke 5 Stack is full

throw FullStack Caught by driver
Push 5 items then 1, 2, 3, 4, 5

Push another item 6

throw EmptyStack Caught by driver
When stack is empty,

Attempt to pop

Attempt to top

210 | Chapter 4: ADTs Stack and Queue

On the Web, the program StackDr.cpp is the test driver, the input file is Stack-
Type.in, and the output files are StackType.out and StackType.screen. Examine
StackDr.cpp to see how the try/catch statement is used.

4.2 More about Generics: C++ Templates

In Chapter 3, we defined a generic data type as a type for which the operations are
defined but the types of the items being manipulated are not. We have demonstrated
how the list and stack types can be generic by defining the type of the items included in
the structure in a separate file, ItemType.h, and then having ListType.h and Stack-

Type.h include that file. This technique works for any
language that allows you to include or access other
files. Some languages, however, have special con-
structs that allow you to define generic data types. In
C++, this construct is called a template. A template
allows you to write a description of a class type with

“blanks” left to be filled in by the client code. Just as variables serve as the parameters
to functions, types serve as the parameters to templates.

Let’s look at how this construct works using the Stack ADT.

template<class ItemType>
class StackType
{
public:
StackType();
bool IsEmpty() const;
bool IsFull() const;
void Push(ItemType item);
void Pop();
ItemType Top() const;

private:
int top;
ItemType items[MAX_ITEMS];

};

This code is known as a class template. The definition of StackType begins with
template<class ItemType>, and ItemType is called the formal parameter to the
template. (You could use any identifier for the formal parameter; we use ItemType in
this example.) The client program uses code like the following to create several stacks
whose components are of different data types:

// Client code
StackType<int> myStack;
StackType<float> yourStack;
StackType<StrType> anotherStack;

Template A C++ language construct that allows the
compiler to generate multiple versions of a class type or a
function by allowing parameterized types

4.2 More about Generics: C++ Templates | 211

myStack.Push(35);
yourStack.Push(584.39);

In the definitions of myStack, yourStack, and anotherStack, the data type name
enclosed in angle brackets is the actual parameter (or argument) to the template. At
compile time, the compiler generates (instantiates) three distinct class types and gives its
own internal name to each type. You might imagine that the definitions are transformed
internally into something like this:

StackType_int myStack;
StackType_flo yourStack;
StackType_str anotherStack;

In C++ terminology, the three new class types are called template classes (as opposed to
the class template from which they were created).

When the compiler instantiates a template, it literally substitutes the actual parame-
ter for the formal parameter throughout the class template, just as you would perform a
search-and-replace operation in a word processor or text editor. For example, when the
compiler encounters StackType<float> in the client code, it generates a new class by
substituting float for every occurrence of ItemType in the class template. The result is
the same as if we had written the following:

class StackType_float
{

�

void Push(float item);
void Pop();
float Top() const;

private:
int top;
float items[MAX_ITEMS];

};

A useful perspective on templates is this: An ordinary class definition is a pattern for
stamping out individual variables or objects, whereas a class template is a pattern
for stamping out individual data types.

There are two things to note about parameters to templates. First, the class template
uses the word class in its formal parameter list: template<class ItemType>. How-
ever, the use of class is simply required syntax and does not mean that the client’s
actual parameter must be the name of a class. The actual parameter can consist of the
name of any data type, built-in or user-defined. In the client code just shown, we used
int, float, and StrType as actual parameters. Second, observe that when the client
passes a parameter to the StackType template (as in StackType<int>), the parameter is
a data type name, not a variable name. This usage seems strange at first, because when we

212 | Chapter 4: ADTs Stack and Queue

pass parameters to functions, we always pass variable names or expressions, not data type
names. Furthermore, note that passing a parameter to a template has an effect at compile
time, whereas passing a parameter to a function has an effect at run time.

Now that we’ve seen how to write the definition of a class template, how do we
handle the definitions of the member functions? We need to write them as function tem-
plates so that the compiler can associate each one with the proper template class. For
example, we code the Push function as the following function template:

template<class ItemType>
void StackType<ItemType>::Push(ItemType newItem)
{
if (IsFull())
throw FullStack();

top++;
items[top] = newItem;

}

Just as with the class template, we begin the function definition with template<class
ItemType>. Next, every occurrence of the word StackType must have <ItemType>
appended to it. If the client has declared a type StackType<float>, the compiler gen-
erates a function definition similar to the following:

void StackType<float>::Push(float newItem)
{
if (IsFull())
throw FullStack();

top++;
items[top] = newItem;

}

Finally, when working with templates, we change the ground rules regarding the
file(s) into which we put the source code. Previously, we placed the class definition into a
header file StackType.h and the member function definitions into StackType.cpp. As a
result, we could compile StackType.cpp into object code independently of any client
code. This strategy won’t work with templates. The compiler cannot instantiate a function
template unless it knows the actual parameter to the template, and this actual parameter
appears in the client code. Different compilers use different mechanisms to solve this
problem. One general solution is to compile the client code and the member functions at
the same time. A popular technique is to place both the class definition and the member
function definitions into the same file: StackType.h. Another technique involves giving
the include directive for the implementation file at the end of the header file. Either way,
when the client code specifies #include "StackType.h", the compiler has all the source
code—both the member functions and the client code—available to it at once. The follow-
ing code lists the contents of both the class definition and the function implementations.
Pay close attention to the required syntax of the member function definitions.

4.2 More about Generics: C++ Templates | 213

// The class definition for StackType using templates.

class FullStack
// Exception class used by Push when stack is full.
{};

class EmptyStack
// Exception class used by Pop and Top when stack is empty.
{};

#include MaxItems.h
// MaxItems.h must be provided by the user of this class.
// This file must contain the definition of MAX_ITEMS,
// the maximum number of items on the stack.

template<class ItemType>
class StackType
{
public:
StackType();
bool IsEmpty() const;
bool IsFull() const;
void Push(ItemType item);
void Pop();
ItemType Top() const;

private:
int top;
ItemType items[MAX_ITEMS];

};

// The function definitions for class StackType.
template<class ItemType>
StackType<ItemType>::StackType()
{
top = -1;

}

template<class ItemType>
bool StackType<ItemType>::IsEmpty() const
{
return (top == -1);

}

template<class ItemType>
bool StackType<ItemType>::IsFull() const
{
return (top == MAX_ITEMS-1);

}

214 | Chapter 4: ADTs Stack and Queue

template<class ItemType>
void StackType<ItemType>::Push(ItemType newItem)
{
if (IsFull())
throw FullStack();

top++;
items[top] = newItem;

}

template<class ItemType>
void StackType<ItemType>::Pop()
{
if(IsEmpty())
throw EmptyStack();

top--;
}

template<class ItemType>
ItemType StackType<ItemType>::Top() const
{
if (IsEmpty())
throw EmptyStack();

return items[top];
}

4.3 Pointer Types

Logical Level

Pointers are simple—not composite—types, but they allow us to create composite types
at run time. We describe the creation process, accessing function, and one use of
pointers in this chapter. In Chapter 5, we discuss another use in detail and use pointers
in alternative implementations of the abstract data types defined in Chapters 3 and 4.

A pointer variable does not contain a data value in the ordinary sense; rather, it
contains the memory address of another variable. To declare a pointer that can point to
an integer value, you use the following syntax:

int* intPointer;

The asterisk (*) as a postfix symbol on the type says that the variable being defined is a
pointer to an object of that type: intPointer can point to a place in memory that can
contain a value of type int. (Alternatively, the asterisk may serve as a prefix symbol on
the variable name.) The contents of intPointer, as with all newly defined variables,

4.3 Pointer Types | 215

are undefined. The following diagram shows memory after this statement has been exe-
cuted. (For illustrative purposes, we assume that the compiler has allocated location 10
to intPointer.)

How do we get intPointer something to point to? One way is to use the prefix &
operator, which is called the address-of operator. Given the declarations

int alpha;
int* intPointer;

the assignment statement

intPointer = α

takes the address of alpha and stores it into intPointer. If alpha is at address 33,
memory looks like this:

Address Memory Variable Name

0010 ? intPointer

.

.

.

.

.

.

.

.

.

216 | Chapter 4: ADTs Stack and Queue

We have a pointer, and we have a place to which the pointer points, but how do we
access that place? An asterisk (*) as a prefix to the pointer name accesses the place to
which the pointer points. The asterisk is called the dereference operator. Let’s store 25
in the place to which intPointer points.

*intPointer = 25;

Address Memory Variable Name

0010

0033

33

?

intPointer

.

.

.

.

.

.

.

.

.

Dereference operator An operator that, when applied to
a pointer variable, denotes the variable to which the
pointer points

4.3 Pointer Types | 217

Memory now looks like this:

Because intPointer points to alpha, the statement

*intPointer = 25;

represents indirect addressing of alpha; the machine first accesses intPointer, then
uses its contents to find alpha. In contrast, the statement

alpha = 10;

involves direct addressing of alpha. Direct addressing is analogous to opening a post
office box (P.O. Box 15, for example) and finding a package, whereas indirect address-
ing is analogous to opening P.O. Box 15 and finding a note telling you that your pack-
age is sitting in P.O. Box 23.

A second method for getting int-
Pointer something to point to is called
dynamic allocation. In the previous example,
the memory space for both intPointer and
alpha was allocated statically (at compile
time). Alternatively, our programs can allo-
cate memory dynamically (at run time).

Address Memory Variable Name

0010

0033

33

25

intPointer

*intPointer contains 25

alpha

.

.

.

.

.

.

.

.

.

Dynamic allocation Allocation of memory space for a
variable at run time (as opposed to static allocation at
compile time)

218 | Chapter 4: ADTs Stack and Queue

To achieve dynamic allocation of a variable, we use the C++ operator new, followed
by the name of a data type:

intPointer = new int;

At run time, the new operator allocates a variable capable of holding an int value
and returns its memory address, which is then stored into intPointer. If the new oper-
ator returns the address 90 as a result of executing the preceding statement, memory
looks like this:

Variables created by new reside on the free store
(or heap), a region of memory set aside for dynamic
allocation. A dynamically allocated variable has no
name and cannot be directly addressed. It must be indi-
rectly addressed through the pointer returned by new.

Sometimes we want a pointer to point to nothing.
By definition in C++, a pointer value of 0 is called the null pointer; it points to nothing.
To help distinguish the null pointer from the integer value 0, <cstddef> contains the
definition of a named constant NULL that we use instead of referring directly to 0. Let’s
look at a few more examples.

bool* truth = NULL;
float* money = NULL;

Address Memory Variable Name

0010

0090

90

?

intPointer

Unnamed Dynamically
Allocated Variable

.

.

.

.

.

.

.

.

.

Free store (heap) A pool of memory locations reserved
for dynamic allocation of data

4.3 Pointer Types | 219

When drawing pictures of pointers , we use a diagonal line from the upper right to the
lower left to indicate that the value is NULL.

Let’s examine memory after a few more pointer manipulations.

truth = new bool;
*truth = true;
money = new float;
*money = 33.46;
float* myMoney = new float;

When drawing pictures of pointers and the objects to which they point, we use
boxes and arrows.

Any operation that can be applied to a constant or a variable of type int can be
applied to *intPointer. Any operation that can be applied to a constant or a variable
of type float can be applied to *money. Any operation that can be applied to a con-
stant or a variable of type bool can be applied to *truth. For example, we can read a
value into *myMoney with the following statement:

std::cin >> *myMoney;

If the current value in the input stream is 99.86, then *myMoney contains 99.86 after the
execution of the preceding statement.

truth *truth

true

money *money

33.46

myMoney

?

truth money

220 | Chapter 4: ADTs Stack and Queue

Pointer variables can be compared for equality and assigned to one another as long
as they point to variables of the same data type. Consider the following two statements:

*myMoney = *money;
myMoney = money;

The first statement copies the value in the place pointed to by money into the place
pointed to by myMoney.

The second statement copies the value in money into myMoney, giving the following
configuration:

At this point, the location that holds the second copy
of 33.46 cannot be accessed; no pointer points to it.
This situation is called a memory leak, and the mem-
ory cells that can no longer be accessed are called
garbage. Some programming languages, such as Java,
provide garbage collection; that is, the run-time sup-
port system periodically goes through memory and
reclaims the memory locations for which no access
path exists.

To avoid memory leaks, C++ provides the operator delete, which returns to the free
store a memory location allocated previously by the new operator. This memory may then
be allocated again if necessary. The following code segment prevents our memory leak:

delete myMoney;
myMoney = money;

money *money

*myMoney

33.46

myMoney

33.46

money *money

*myMoney

33.46

myMoney

33.46

Memory leak The loss of available memory space that
occurs when memory is allocated dynamically but never
deallocated

Garbage Memory locations that can no longer be
accessed

4.3 Pointer Types | 221

The location originally pointed to by myMoney is no longer allocated. Note that delete
does not delete the pointer variable, but rather the variable to which the pointer points.

Notice the difference between assigning one pointer to another (myMoney = money)
and assigning the pointed-to locations (*myMoney = *money). Always be careful to dis-
tinguish between the pointer and the object to which it points!

Application Level

Have you passed an array as a parameter? If so, you have used a pointer constant. The
name of an array without any index brackets is a constant pointer expression—namely,
the base address of the array. Look at the following code segment:

char alpha[20];
char* alphaPtr;
char* letterPtr;
void Process(char[]);
.
.
alphaPtr = alpha;
letterPtr = &alpha[0];
Process(alpha);

Here alphaPtr is assigned the constant pointer expression alpha; letterPtr is
assigned the address of the first position in the array alpha. alphaPtr and letterPtr
both contain the address of the first position in the array alpha. When the prototype
for the function Process says that it takes a char array as a parameter, it means that it
expects a pointer expression (the base address of the array) as an actual parameter. The
calling statement, therefore, sends the name of the array without any index brackets to
the function.

Pointers can be used with other composite types as well.

struct MoneyType
{
int dollars;
int cents;

};

money *money

33.46

myMoney

222 | Chapter 4: ADTs Stack and Queue

MoneyType* moneyPtr = new MoneyType;
moneyPtr->dollars = 3245;
moneyPtr->cents = 33;

The arrow operator (->) provides a shortcut for dereferencing a pointer and access-
ing a struct or class member. That is, moneyPtr->cents is shorthand for (*mon-
eyPtr).cents. (The dereferencing operator has lower precedence than the dot
operator, so the parentheses are necessary.)

In Chapter 5, we will use the idea of a pointer pointing to a variable of a composite
type in which one of the data members is a pointer to another variable of the same
composite type. Using this technique, we can build linked structures. One named pointer
acts as the external pointer to the structure, and the structure is chained together by
having a data member in each variable in the chain act as a pointer to the next one in
the chain. The last variable in the chain has NULL in its pointer member.

Implementation Level

A pointer variable simply contains a memory address. The operating system controls
memory allocation and grants memory to your program on request.

4.4 Dynamically Allocated Arrays

A template is a nice feature: It allows the client program to specify the type of the items
on the structure at the time when an object of the data type is defined. Now, if we could
just find a technique to enable the client to specify the maximum number of items on
the stack at the same time. Then we would not need to use an auxiliary file. Of course,
C++ provides such a technique. We can let the maximum number of items be a parame-
ter to a class constructor. The implementation structure is an array, however. Doesn’t
the compiler need to know the size of an array at compile time? Yes, it does if the array
is in static storage, but memory for the array can be allocated at run time if we let it be
in dynamic storage (the free store or heap). This change requires the following changes
in the class definition:

template<class ItemType>
class StackType
{
public:
StackType(int max); // max is stack size.
StackType(); // Default size is 500.
// Rest of the prototypes go here.

private:
int top;
int maxStack; // Maximum number of stack items.
ItemType* items; // Pointer to dynamically allocated memory.

};

4.4 Dynamically Allocated Arrays | 223

When declaring a class object, the client can specify the maximum number of stack
items by using the parameterized constructor:

StackType<int> myStack(100);
// Integer stack of at most 100 items.

StackType<float> yourStack(50);
// Floating-point stack of at most 50 items.

Alternatively, the client can accept the default size of 500 by using the default constructor:

StackType<char> aStack;

Within the function definition for each constructor, we use the new operator to allo-
cate an array of exactly the desired size. Earlier we saw that the expression new Some-
Type allocates a single variable of type SomeType on the free store and returns a pointer
to it. To allocate an array, you attach to the data type name the array size in brackets:
new AnotherType[size]. In this case, the new operator returns the base address of the
newly allocated array. Here are the implementations of the StackType constructors:

template<class ItemType>
StackType<ItemType>::StackType(int max)
{
maxStack = max;
top = -1;
items = new ItemType[maxStack];

}
template<class ItemType>
StackType<ItemType>::StackType()
{
maxStack = 500;
top = -1;
items = new ItemType[maxStack];

}

Notice that items is now a pointer variable, not an array name. It points to the first ele-
ment of a dynamically allocated array. In C++, however, you can attach an index expres-
sion to any pointer—not only an array name—as long as the pointer points to an array.
Thus items can be indexed exactly as it was when it was defined as an array of type
ItemType (see Figure 4.5). Only one member function then needs to be changed:
IsFull.

224 | Chapter 4: ADTs Stack and Queue

Figure 4.5 A stack in which the array is in dynamic storage

Class object

Free store
Accessed as:

top

maxStack

items

[0]

[1]

[2]

[3]

[4]

–1

5

items[0]

items[1]

•

•

•

items[4]

template<class ItemType>
bool StackType<ItemType>::IsFull() const
{
return (top == maxStack-1);

}

Lifetime of a Variable

The lifetime of a variable is the time during program execution when the variable has storage
assigned to it.

• The lifetime of a global variable is the entire execution of the program.
• The lifetime of a local variable is the execution of the block in which it is declared.*
• The lifetime of a dynamically allocated variable lasts from the time it is allocated until the

time it is deallocated.

*Sometimes it is useful for a local variable to retain its value, so C++ lets the user extend the
lifetime of a local variable to the entire run of the program. To do so, you preface the data type
identifier with the reserved word static when the variable is defined. Otherwise, the default
storage category is automatic, in which storage is allocated on entry and deallocated on exit from
a block.

C++

4.5 Queues | 225

We do, however, need to use a class destructor. If the stack is a local variable (and
not declared as static), the memory allocated to the stack object is deallocated when
the stack goes out of scope. As a consequence, the memory allocated to top, maxStack,
and items is deallocated, but the array to which items points is not. For this reason,
we must include a class destructor. A class destructor is a member function with the
same name as a class constructor except that the destructor has a tilde (~) in front of the
type name. A destructor is implicitly invoked when a class object goes out of scope—for
example, when control leaves the block in which an object is declared. We include the
prototype of the destructor in the public part of the class definition,

~StackType(); // Destructor

and implement the function as follows:

template<class ItemType>
StackType<ItemType>::~StackType()
{
delete [] items;

}

To deallocate an array, you insert brackets between the word delete and the name
of the pointer. See how this class destructor differs from an operation that makes a
stack empty? Setting the top data member to -1 makes the stack empty, but the
allocated space is still there. The class destructor releases the space that was allo-
cated to the array. Making a structure empty is a logical operation defined in an ADT
specification, whereas a class destructor is an implementation-level operation.
Implementations that do not use dynamically allocated space typically do not need
destructors.

Before we leave this StackType implementation, let’s ask whether we need to pro-
vide both a parameterized constructor and a default constructor. Isn’t the parameterized
constructor good enough? In most cases, yes. Sometimes, however, the user may want
to declare an array of stack objects, in which case the parameterized constructor cannot
be used. (Remember the rule: If a class has any constructors and an array of class
objects is declared, one of the constructors must be the default constructor, and it is
invoked for each element in the array.) It’s wisest to include a default constructor in the
StackType class to allow client code like this:

StackType<float> stackGroup[10];
// 10 stacks, each of size 500

4.5 Queues

Logical Level

A stack is an abstract data structure with the special property that elements are always
added to and removed from the top. We know from experience that many collections of

226 | Chapter 4: ADTs Stack and Queue

Figure 4.6 A FIFO queue

Rear of
Queue

Front of
Queue

next...

PAY HERE

data elements operate in the reverse manner: Items are added at one end and removed
from the other. This structure, called a FIFO (First In, First Out) queue, has many uses in
computer programs. We consider the FIFO queue data structure at three levels: logical,
implementation, and application. In the rest of this chapter, “queue” refers to a FIFO
queue. (Chapter 9 discusses another queue-type abstract data type, the priority queue.
The accessing protocol of a priority queue differs from that of a FIFO queue.)

A queue (pronounced like the letter Q) is an
ordered, homogeneous group of elements in which
new elements are added at one end (the “rear”) and
elements are removed from the other end (the “front”).
As an example of a queue, consider a line of students
waiting to pay for their textbooks at a university
bookstore (see Figure 4.6). In theory, if not in practice,

each new student gets in line at the rear. When the cashier is ready to help a new cus-
tomer, the student at the front of the line is served.

To add elements to a queue, we access the rear of the queue; to remove ele-
ments, we access the front of the queue. The middle elements are logically inaccessi-
ble, even if we physically store the queue elements in a random-access structure
such as an array. It is convenient to picture the queue as a linear structure with the
front at one end and the rear at the other end. However, we must stress that the
“ends” of the queue are abstractions; they may or may not correspond to any physi-
cal characteristics of the queue’s implementation. The essential property of the queue
is its FIFO access.

Queue A data structure in which elements are added to
the rear and removed from the front; a “first in, first out”
(FIFO) structure

4.5 Queues | 227

Like a stack, a queue is a holding structure for data that we use later. We put a data
item onto the queue; when we need it later, we remove it from the queue. If we want to
change the value of an element, we must take that element off the queue, change its
value, and then return it to the queue. We do not directly manipulate the values of
items that are currently in the queue.

Operations on Queues The bookstore example suggests two operations that we can
apply to a queue. First, new elements can be added to the rear of the queue, an
operation that we call Enqueue. We can also remove elements from the front of the
queue, an operation that we call Dequeue. Unlike the stack operations Push and Pop, the
adding and removing operations on a queue do not have standard names. Enqueue is
sometimes called Enq, Enqueue, Add, and Insert; Dequeue is also called Deq, Deque,
Remove, and Serve.

Another useful queue operation is checking whether the queue is empty. The
IsEmpty function returns true if the queue is empty and false otherwise. We can apply
Dequeue only when the queue is not empty. Theoretically, we can always apply Enqueue,
because in principle a queue has no limit on its size. We know from our experience with
stacks, however, that certain implementations (an array representation, for instance)
require that we test whether the structure is full before we add another element. This
real-world consideration applies to queues as well, so we define an IsFull operation.
We also need an operation to initialize a queue to an empty state, which we call
MakeEmpty. Figure 4.7 shows how a series of these operations would affect a queue.

We have briefly described a set of accessing operations for a queue. Before we talk
about this structure’s use and implementation, let’s define the specification for the
Queue ADT.

We continue to leave the statements in the specifications defining what the user
must provide. However, as we are using C++, we assume that this information might be
provided when a class object is declared (in the form of a template parameter and a
constructor parameter or an included class).

Queue ADT Specification

Structure: Elements are added to the rear and removed
from the front of the queue.

Definitions (provided by user):
MAX_ITEMS: Maximum number of items that might be on

the queue.
ItemType: Data type of the items on the queue.

Operations (provided by ADT):
MakeEmpty

Function: Initializes the queue to an empty state.
Precondition: None.
Postcondition: Queue is empty.

228 | Chapter 4: ADTs Stack and Queue

Figure 4.7 The effects of queue operations

C

B

Form
Line
Here

Auto
Teller

Form
Line
Here

Auto
Teller

Form
Line
Here

Auto
Teller

Form
Line
Here

Auto
Teller

Form
Line
Here

Auto
Teller

Form
Line
Here

Auto
Teller

Out to
Lunch

A

A

BA

BA

(Front and Rear)

(Front and Rear)(Customer)

(Customer)

(Front) (Rear)

(Front) (Rear)

QueType queue;
queue.IsEmpty()==true

queue.Enqueue(A);
queue.IsEmpty()==false

queue.Enqueue(B);

queue.Dequeue(Customer);

queue.Enqueue(C);

queue.MakeEmpty();
queue.IsEmpty()==true

4.5 Queues | 229

Boolean IsEmpty
Function: Determines whether the queue is empty.
Precondition: Queue has been initialized.
Postcondition: Function value = (queue is empty).

Boolean IsFull
Function: Determines whether the queue is full.
Precondition: Queue has been initialized.
Postcondition: Function value = (queue is full).

Enqueue(ItemType newItem)
Function: Adds newItem to the rear of the queue.
Precondition: Queue has been initialized.
Postconditions: If (queue is full), FullQueue exception is thrown,

else newItem is at rear of queue.

Dequeue(ItemType& item)
Function: Removes front item from the queue and

returns it in item.
Precondition: Queue has been initialized.
Postconditions: If (queue is empty), EmptyQueue exception is

thrown and item is undefined, else front ele-
ment has been removed from queue and item
is a copy of removed element.

Application Level

We have discussed how operating systems and compilers can use stacks. Queues are
often used for system programming purposes. For example, an operating system often
maintains a FIFO list of processes that are ready to execute or that are waiting for a par-
ticular event to occur. The programmer who creates the operating system can use a
Queue ADT to implement these lists.

Computer systems must often provide a “holding area” for messages between two
processes, two programs, or even two systems. This holding area, which is usually called
a “buffer,” is often implemented as a FIFO queue. For example, if a large number of mail
messages arrive at a mail server at about the same time, the messages are held in a
buffer until the mail server can begin processing them. It processes the messages in the
order they arrived—that is, first in, first out order. (Some mail servers may handle the
messages based on a priority system; in such a case, the priority queue described in
Chapter 9 would be a more appropriate ADT.)

230 | Chapter 4: ADTs Stack and Queue

To demonstrate the use of queues, we first look at a simple problem: identifying
palindromes. A palindrome is a string that reads the same forward as backward. While
we are not sure of their general usefulness, identifying these strings provides us with a
good example for the use of both queues and stacks. Besides, palindromes can be enter-
taining. Some famous palindromes are:

• A tribute to Teddy Roosevelt, who orchestrated the creation of the Panama
Canal: “A man, a plan, a canal—Panama!”

• Allegedly muttered by Napoleon Bonaparte upon his exile to the island of Elba
(although this is difficult to believe given that Napoleon mostly spoke French!):
“Able was I ere, I saw Elba.”

• Overheard in a Chinese restaurant: “Won ton? Not now!”
• Possibly the world’s first palindrome: “Madam, I’m Adam.”
• Followed immediately by one of the world’s shortest palindromes: “Eve.”

As you can see, the rules for what constitutes a palindrome are somewhat lenient.
Typically, we do not worry about punctuation, spaces, or matching the case of letters.
Two obvious algorithms exist for determining whether a string is a palindrome. The first
algorithm starts at both ends, moving inward as you compare the characters. Three cases
are possible:

1. There are two characters that do not match.

2. The characters all match, including the two middle characters.

3. The number of characters is odd and the characters on the right and left of the mid-
dle character match.

The second algorithm copies the string in reverse order and matches the two copies
character by character. As we already have a structure that returns a string in reverse
order, let’s use the second algorithm.

The characters are read character by character and stored into a queue and a stack.
When all of the characters in the line have been processed, the program repeatedly pops
a letter from the stack, and dequeues a letter from the queue. As long as these letters
match each other, the entire way through this process, we have a palindrome. Can you
see why? Because the queue is a first in, first out list, the letters are returned from the
queue in the same order they appear in the string. The letters taken from the stack, how-
ever, are returned in the opposite order from how they appear in the string. Thus this
algorithm compares the letters from the forward view of the string to the letters from
the backward view of the string.

Now we are ready to write the main algorithm assuming an instance of a Stack ADT
and an instance of the Queue ADT. The basic flow of the algorithm is to continuously
read and handle characters until we reach the end of the line.

4.5 Queues | 231

Main Algorithm
Set character to the first character in string
while (character != ‘\n’)

Push the character onto the stack
Enqueue the character
Set character to next character

Set palindrome to true
while (palindrome AND ! queue.IsEmpty())

Set stackChar to the top of the stack
Pop the stack
Set queChar to the front of the queue
if (stackChar != queChar)

Set palindrome to false
if (palindrome)

Write “String is a palindrome.”
else

Write “String is not a palindrome.”

All of the statements in the algorithm can be coded immediately, using StackType
and QueType objects. The program is found in the file palindrome.cpp.

#include "QueType.h" // Untemplated queue of char
#include "StackTType.h" // Templated stack
#include <iostream>

int main()
{
using namespace std;
bool palindrome = true;
char character;
StackType<char> stack(40);
QueType queue(40);
char stackChar;
char queChar;
cout << "Enter a string; press return." << endl;
cin.get(character);
while (character != '\n')

232 | Chapter 4: ADTs Stack and Queue

{
stack.Push(character);
queue.Enqueue(character);
cin.get(character);

}

while (palindrome && !queue.IsEmpty())
{
stackChar = stack.Top();
stack.Pop();
queue.Dequeue(queChar);

if (stackChar != queChar)
palindrome = false;

}

if (palindrome)
cout << "String is a palindrome" << endl;

else
cout << "String is not a palindrome" << endl;

return 0;
}

The two screen shots illustrate the correctness and the limitations of this algorithm.
Uppercase and lowercase letters are not considered to be the same. Does this algorithm
have other problems? You are asked to examine this question and improve this algo-
rithm in the exercises.

4.5 Queues | 233

Implementation Level

Now that we’ve had the opportunity to be queue users, let’s look at how we might
implement a queue in C++. Like a stack, a queue can be stored in a static array with its
size fixed at compile time or in a dynamically allocated array with its size determined at
run time. We look at the dynamic implementation here.

Definition of the Queue Class To concentrate on the ADT Queue itself, we implement it
as a queue of char items. You are asked to implement the ADT Queue as a class
template in the exercises. As with the stack class, we do not need a comparison function
because none of the operations requires comparing items on the queue.

Which data members does our Queue ADT need? We need the items themselves,
but at this stage we do not know what else we need. As described in the previous sec-
tion, we allow the user to determine the maximum size by using a parameterized con-
structor. Note also that we implement a MakeEmpty function as well as a class
constructor.

typedef char ItemType;
class QueType
{
public:
QueType(int max); // max is the size of the queue.
QueType(); // Default size of 500.
~QueType();
void MakeEmpty();
bool IsEmpty() const;
bool IsFull() const;
void Enqueue(ItemType item);
void Dequeue(ItemType& item);

private:
ItemType* items;
int maxQue;
// Whatever else we need.

};

Implementations of Queue Operations The first question to consider is how we
order the items in the array. In implementing the stack, we began by inserting an
element into the first array position and then let the top float with subsequent Push
and Pop operations. The bottom of the stack, however, remained fixed at the first
slot in the array. Can we use a similar solution for a queue, keeping the front of the
queue fixed in the first array slot and letting the rear move down as we add new
elements?

Let’s see what happens after a few Enqueue and Dequeue operations if we insert
the first element into the first array position, the second element into the second posi-

234 | Chapter 4: ADTs Stack and Queue

tion, and so on. After four calls to Enqueue with parameters ‘A’, ‘B’, ‘C’, and ‘D’, the
queue would look like this:

Recall that the front of the queue is fixed at the first slot in the array, whereas the
rear of the queue moves down with each Enqueue. Now we Dequeue the front element
in the queue:

This operation deletes the element in the first array slot and leaves a hole. To keep
the front of the queue fixed at the top of the array, we need to move every element in
the queue up one slot:

Let’s summarize the queue operations corresponding to this queue design. The
Enqueue operation would be the same as Push. The Dequeue operation would be more
complicated than Pop, because all remaining elements of the queue would have to be
shifted up in the array, so as to move the new front of the queue up to the first array
slot. The class constructor, MakeEmpty, IsEmpty, and IsFull operations could be the
same as the equivalent stack operations.

Before going any further, we want to stress that this design would work. It may not
be the best design for a queue, but it could be implemented successfully. Multiple func-
tionally correct ways to implement the same abstract data structure exist. One design
may not be as good as another (because it uses more space in memory or takes longer
to execute), yet may still be correct. Although we don’t advocate the use of poor
designs for programs or data structures, the first requirement must always be program
correctness.

Now let’s evaluate this particular design. Its strengths are its simplicity and ease of
coding; it is almost exactly like the stack implementation. Although the queue is
accessed from both ends rather than just one end (as in the stack), we have to keep track
of only the rear, because the front remains fixed. Only the Dequeue operation is more
complicated. What is the weakness of the design? The need to move all of the elements
up every time we remove an element from the queue increases the amount of work
needed to dequeue items.

[0]
B

[1]
C

[2]
D

[3] [4]

[0]
B

[1]
C

[2]
D
[3] [4]

A
[0]

B
[1]

C
[2]

D
[3] [4]

4.5 Queues | 235

Figure 4.8 The effect of Enqueue and Dequeue

A
[0] [1] [2] [3] [4]

A
[0]

B
[1] [2] [3] [4]

A
[0]

B
[1]

C
[2] [3] [4]

[0]

B
[1]

C
[2] [3] [4]

(a) queue.Enqueue('A')

front=0
 rear=0

front=0
 rear=1

front=0
 rear=2

front=1
 rear=2

(b) queue.Enqueue('B')

(c) queue.Enqueue('C')

(d) queue.Dequeue(item)

How serious is this weakness? To make this judgment, we must know something
about how the queue will be used. If this queue is used for storing large numbers of ele-
ments at one time, or if the elements in the queue are large (class objects with many data
members, for instance), the processing required to move up all elements after the front
element has been removed makes this solution a poor one. On the other hand, if the
queue generally contains only a few elements and they are small (integers, for instance),
the data movement may not require much processing. Furthermore, we need to consider
whether performance—how fast the program executes—is important to the application
that uses the queue. Thus the complete evaluation of the design depends on the client
program’s requirements.

In the real programming world, of course, you don’t always know the exact uses
or complete requirements of programs. For instance, you may be working on a very
large project with 100 other programmers. Other programmers may be writing the spe-
cific application programs for the project, while you are producing some utility pro-
grams that are used by all of the different applications. If you don’t know the
requirements of the various users of your package of queue operations, you must
design general-purpose utilities. In this situation, the design described here is not the
best option.

Another Queue Design The need to move the elements in the array arose from our
decision to keep the front of the queue fixed in the first array slot. If we keep track of
the index of the front as well as the rear, we can let both ends of the queue float in
the array.

Figure 4.8 shows how several Enqueue and Dequeue operations would affect the
queue. (For simplicity, the figure shows only the elements in the queue. The other slots

236 | Chapter 4: ADTs Stack and Queue

Figure 4.9 Wrapping the queue elements around

queue.Enqueue('L')

J K

J K

[0] [1] [2] [3] [4]

L
[0] [1] [2] [3] [4]

(a) Rear is at the bottom of the array

front=3
 rear=4

front=3
 rear=0

(b) Using the array as a circular structure, we can wrap the queue
around to the top of the array

contain logical garbage, including dequeued values.) The Enqueue operations have the
same effect as before; they add elements to subsequent slots in the array and increment
the index of the rear indicator. The Dequeue operation is simpler, however. Instead of
moving elements up to the beginning of the array, it merely increments the front indi-
cator to the next slot.

Letting the queue elements float in the array creates a new problem when the rear
indicator reaches the end of the array. In our first design, this situation told us that the
queue was full. Now, however, the rear of the queue might potentially reach the end of
the (physical) array when the (logical) queue is not yet full (Figure 4.9a).

Because space may still be available at the beginning of the array, the obvious solu-
tion is to let the queue elements “wrap around” the end of the array. In other words, we
can treat the array as a circular structure, in which the last slot is followed by the first
slot (Figure 4.9b). To get the next position for the rear indicator, for instance, we can
use an if statement:

if (rear == maxQue - 1)
rear = 0;

else
rear = rear + 1

We can also reset rear by using the remainder (%) operator:

rear = (rear + 1) % maxQue;

This solution leads us to a new problem: How do we know whether a queue is
empty or full? In Figure 4.10, we remove the last element, leaving the queue empty. In
Figure 4.11, we add an element to the last free slot in the queue, leaving the queue full.
The values of front and rear, however, are identical in the two situations. We cannot
distinguish between a full queue and an empty queue.

The first solution that comes to mind is to add another data member to our queue
class, in addition to front and rear—a count of the elements in the queue. When the

4.5 Queues | 237

Figure 4.10 An empty queue

A
[0] [1] [2] [3] [4]

[0] [1] [2] [3] [4]

(a) Initial conditions

front=2
 rear=2

front=3
 rear=2

(b) queue.Dequeue(item)

Figure 4.11 A full queue

C D
[0] [1] [2] [3] [4]

C
[0]

D E A B

A B

[1] [2] [3] [4]

(a) Initial conditions

front=3
 rear=1

front=3
 rear=2

(b) queue.Enqueue('E')

count member is 0, the queue is empty; when the count is equal to the maximum num-
ber of array slots, the queue is full. Note that keeping this count adds work to the
Enqueue and Dequeue routines. If the queue user frequently needed to know the num-
ber of elements in the queue, however, this solution would certainly be a good one. We
leave the development of this solution as an exercise.

Another common, but less intuitive approach is to let front indicate the index of the
array slot preceding the front element in the queue, rather than the index of the front ele-
ment itself. (The reason for this choice may not be clear immediately, but keep reading.) If
rear still indicates the index of the rear element in the queue, the queue is empty when
front is equal to rear. To dequeue an element, we increment front to indicate the true
location of the front queue element, and assign the value in that array slot to item.
(Updating front precedes assigning the value in this design, because front does not
point to the actual front element at the beginning of Dequeue.) After this Dequeue opera-
tion, IsEmpty finds that front is equal to rear, indicating that the queue is empty (see
Figure 4.12).

An additional convention that we must establish to implement this scheme is that
the slot indicated by front (the slot preceding the true front element) is reserved. It
cannot contain a queue element. Thus, if there are 100 array positions, the maximum
size of the queue is 99 elements. To test for a full queue, we check whether the next
space available (after rear) is the special reserved slot indicated by front (see Figure
4.13).

To enqueue an element, we must first increment rear so that it contains the index
of the next free slot in the array. We can then insert the new element into this space.

238 | Chapter 4: ADTs Stack and Queue

Figure 4.12 Testing for an empty queue

[0] [1] [2] [3] [4]

[0]

A

[1] [2] [3] [4]

(a) Initial conditions

front=1
 rear=2

front=2
 rear=2

(b) queue.Dequeue(item)

Figure 4.13 Testing for a full queue

[0] [1] [2] [3] [4]
reserved A BDC front=2

 rear=1

Using this scheme, how do we initialize a queue to its empty state? We want front
to indicate the array index that precedes the front of the queue, so that when we first
call Enqueue the front of the queue is in the first slot of the array. Which position pre-
cedes the first array slot? Because the array is circular, the first slot is preceded by the
last slot. As a consequence, we initialize front to maxQue - 1. Because our test for an
empty queue is checking whether front is equal to rear, we initialize rear to front,
or maxQue - 1.

Now we see that we must add two data members to the QueType class: front and
rear. The header file follows. Through the parameterized constructor, we let the user
determine the maximum size of the queue when a class object is declared. Because our
implementation takes one more array slot, we must increment max (the parameter to the
constructor) before we save it in maxQue. (This implementation is called a circular or
ring queue.)

class FullQueue
{};
class EmptyQueue
{};

typedef char ItemType;
class QueType
{
public:
QueType(int max);
QueType();
~QueType();
void MakeEmpty();

4.5 Queues | 239

bool IsEmpty() const;
bool IsFull() const;
void Enqueue(ItemType newItem);
void Dequeue(ItemType& item);

private:
int front;
int rear;
ItemType* items;
int maxQue;

};
QueType::QueType(int max)
// Parameterized class constructor.
// Post: maxQue, front, and rear have been initialized.
// The array to hold the queue elements has been dynamically
// allocated.
{
maxQue = max + 1;
front = maxQue - 1;
rear = maxQue - 1;
items = new ItemType[maxQue];

}
QueType::QueType() // Default class constructor.
// Post: maxQue, front, and rear have been initialized.
// The array to hold the queue elements has been dynamically
// allocated.
{
maxQue = 501;
front = maxQue - 1;
rear = maxQue - 1;
items = new ItemType[maxQue];

}
QueType::~QueType() // Class destructor.
{
delete [] items;

}
void QueType::MakeEmpty()
// Post: front and rear have been reset to the empty state.
{
front = maxQue - 1;
rear = maxQue - 1;

}

240 | Chapter 4: ADTs Stack and Queue

bool QueType::IsEmpty() const
// Returns true if the queue is empty; false otherwise.
{
return (rear == front);

}

bool QueType::IsFull() const
// Returns true if the queue is full; false otherwise.
{
return ((rear + 1) % maxQue == front);

}

void QueType::Enqueue(ItemType newItem)
// Post: If (queue is not full) newItem is at the rear of the queue;
// otherwise, a FullQueue exception is thrown.
{
if (IsFull())
throw FullQueue();

else
{
rear = (rear +1) % maxQue;
items[rear] = newItem;

}
}

void QueType::Dequeue(ItemType& item)
// Post: If (queue is not empty) the front of the queue has been
// removed and a copy returned in item;
// otherwise, an EmptyQueue exception is thrown.
{
if (IsEmpty())
throw EmptyQueue();

else
{
front = (front + 1) % maxQue;
item = items[front];

}
}

Note that Dequeue, like the stack Pop operation, does not actually remove the value of
the item from the array. The dequeued value still physically exists in the array. It no longer
exists in the queue, however, and cannot be accessed because of the change in front. That
is, the dequeued data element exists in the implementation but not in the abstraction.

Test Plan To make sure that you have tested all the necessary cases, make a test plan,
listing the various queue operations and what tests are needed for each, as we did for

4.5 Queues | 241

stacks. (For example, to test the function IsEmpty, you must call it at least twice—once
when the queue is empty and once when it is not.)

We want to Enqueue elements until the queue is full and then call the functions
IsEmpty and IsFull to see whether they correctly judge the state of the queue. We can
then Dequeue all elements in the queue, printing them out as we go, to confirm that
they are correctly removed. At that point, we can call the queue status functions again
to see whether the empty condition is detected correctly. We also want to test the
“tricky” part of the array-based algorithm: Enqueue until the queue is full, Dequeue an
element, then Enqueue again, forcing the operation to circle back to the beginning of
the array.

On the Web, the test driver is located in QueDr.cpp, the input file is QueType.in,
and the output files are QueType.out and QueType.screen.

Comparing Array Implementations The circular array solution is not nearly as simple
or intuitive as our first queue design. What did we gain by adding some amount of
complexity to our design? By using a more efficient Dequeue algorithm, we achieved
better performance. To find out how much better, let’s analyze the first design. Because
the amount of work needed to move all of the remaining elements is proportional to the
number of elements, this version of Dequeue is an O(N) operation. The second array-
based queue design simply requires Dequeue to change the values of the front indicator
and to put the value into item to be returned. The amount of work never exceeds some
fixed constant, no matter how many elements are in the queue, so the algorithm has
O(1) complexity.

The other operations all have O(1) complexity. No matter how many items are in
the queue, they do (essentially) a constant amount of work.

Counted Queue

Our Queue ADT did not have an operation that determined the number of items on the
queue. Let’s define a new class called CountedQueType that is derived from the class
QueType and has a data member length that records the number of items on the
queue.

typedef char ItemType;
class CountedQueType : public QueType
{
public:
CountedQueType(int max);
void Enqueue(ItemType newItem);
void Dequeue(ItemType& item);
int LengthIs() const;
// Returns the number of items on the queue.

private:
int length;

};
�

242 | Chapter 4: ADTs Stack and Queue

The line

class CountedQueType : public QueType

states that CountedQueType is derived from QueType; that is, CountedQueType is the
derived class and QueType is the base class. The reserved word public declares Que-
Type to be a public base class of CountedQueType. As a result, all public members of
QueType are also public members of CountedQueType. In other words, QueType’s
member functions Enqueue, Dequeue, IsEmpty, and IsFull can also be invoked for
objects of type CountedQueType. The public part of the class CountedQueType further
specializes the base class by redefining the inherited functions Enqueue and Dequeue
and by adding the data member length, an operation that returns the value of length,
and its own class constructor.

Every object of type CountedQueType has an object of type QueType as a subob-
ject. That is, an object of type CountedQueType is an object of type QueType and more.
Figure 4.14 shows a class interface diagram for the CountedQueType class. The public
interface, shown as ovals at the side of the large circles, consists of the operations avail-
able to the client code. The private data items shown in the interior are inaccessible to
clients. A dashed line between ovals indicates that the two operations are the same. For
example, IsEmpty applied to an object of CountedQueType is the IsEmpty member
function defined in type QueType. However, Enqueue applied to an object of type
CountedQueType is not the Enqueue defined in QueType, but rather the one defined in
CountedQueType.

C++ uses the terms base class and derived class; the corresponding terms super-
class and subclass are also used in the literature. The use of “superclass” and “sub-
class” can prove confusing, however, because the prefix sub usually implies
something smaller than the original (for example, a subset of a mathematical set). In
reality, a subclass is often “bigger” than its superclass—that is, it includes more data
and/or functions.

Implementation of the Derived Class The implementation of the CountedQueType
class needs to deal with only the new features that differ from those in QueType.
Specifically, we must write the code to override the Enqueue and Dequeue functions,
and we must write the LengthIs function and the class constructor. The new Enqueue
and Dequeue functions just need to increment or decrement the length data member
and call the QueType functions of the same name. LengthIs simply returns the value
of length. The class constructor sets length to zero and can use the QueType class
constructor to initialize the rest of the class data members. Because Enqueue and
Dequeue can throw exceptions, the calls to them must be enclosed within a try/catch
statement. We just forward the exceptions to the client’s level. Here is the code. A
discussion of the syntactic details follows.

4.5 Queues | 243

Figure 4.14 Class interface diagram for CountedQueType class

LengthIs

IsEmpty

IsFull

CountedQueType

Enqueue

Dequeue

IsEmpty

IsFull

QueType

Enqueue

Dequeue

Private Data:

Private Data:

Front

Rear

length

QueType
subobject

CountedQueType class

#include "CountedQueType.h"

void CountedQueType::Enqueue(ItemType newItem)
{
try
{
QueType::Enqueue(newItem);
length++;

}
catch(FullQueue)
{
throw FullQueue();

}
}

244 | Chapter 4: ADTs Stack and Queue

void CountedQueType::Dequeue(ItemType& item)
{
try
{
QueType::Dequeue(item);
length--;

}
catch(EmptyQueue)
{
throw EmptyQueue();

}
}

int CountedQueType::LengthIs() const
{
return length;

}

CountedQueType::CountedQueType(int max) : QueType(max)
{
length = 0;

}

Note two points of syntax here. For Enqueue to invoke the Enqueue defined in
QueType, the name of the class must precede the function name, with the scope resolu-
tion operator (::) appearing in between the two names. The same is true for Dequeue.
In the class constructor, length is set to zero, but how are front and rear set? The
colon followed by QueType(max) after the parameter list of the derived-class construc-
tor causes the invocation of the base-class constructor. This construct (colon followed
by a call to the base-class constructor) is known as a constructor initializer.

A class such as QueType can be used as-is in many different contexts or can be
adapted to a particular context by using inheritance. Inheritance allows us to create
extensible data abstractions—a derived class typically extends the base class by includ-
ing additional private data or public operations or both.

The items on an instance of a CountedQueType are characters because we
extended the QueType that we examined earlier. QueType could be a class template,
and CountedQueType could extend that version just as easily. In the next section, we
assume that CountedQueType is a class template.

Application of the CountedQueType Class FIFO queues are often used as “waiting
lines.” Such waiting lines are common on multiuser computer systems and networked
systems of workstations. If you use a multiuser or networked computer system, you
probably share a printer with other users. When you request a printout of a file, your

Case Study: Simulation | 245

request is added to a print queue. When your request reaches the front of the print queue,
your file is printed. The print queue ensures that only one person at a time has access to
the printer and that this access is doled out on a first come, first served basis. Similarly,
queues are used to schedule use of other shared resources such as disks and tapes.

Another application area in which queues figure prominently as data structures is
the computer simulation of real-world situations. For instance, consider a bank that
plans to install drive-up teller windows. The bank should hire enough tellers to service
each car within a “reasonable” wait time, but not too many tellers for the number of
customers. It may want to run a computer simulation of typical customer transactions,
using objects to represent real-world physical objects such as tellers, cars, and a clock.
The queue is used to represent the waiting customers.

Queuing simulations usually involve servers (the bank tellers), the items in the
queue (people, cars, or whatever is waiting to be served), and the amount of time each
item in the queue requires. By varying these parameters and keeping track of the aver-
age queue lengths, management can determine how many servers must be employed to
keep the customers happy. Therefore, in simulations using queues, the number of items
in each queue is important information. Of course, the client program can calculate this
information by dequeuing, counting, and enqueuing again, but a derived counted queue
is a better choice.

Inheritance and Accessibility Inheritance is a logical issue, not an implementation
issue. A class inherits the behavior of another class and enhances it in some way.
Inheritance does not mean inheriting access to another class’s private variables.
Although some languages do allow access to the base class’s private members, such
access often defeats the purpose of encapsulation and information hiding. C++ does not
allow access to the private data members of the base class. Neither external client code
nor derived class code can directly access the private members of the base class.

Case Study
Simulation

Problem Write a general-purpose simulation program that determines how long items
(people, jobs, cars, . . .) must wait in line before being served. The simulation must vary the
number of servers and the time between arrivals of the items.

Discussion Before astronauts go up into space, they spend many hours in a spaceship
simulator, a physical model of a space vehicle in which they can experience all the things that
will happen to them in space. The spaceship simulator is a physical model of another object. A
model can be thought of as a series of rules that describe the behavior of a real-world system.
We change the rules and watch the effects of these changes on the behavior we are observing.

246 | Chapter 4: ADTs Stack and Queue

The technique that is used to make the model behave in the same way as the real object is
called simulation. We can use similar techniques to build computer models of objects and
events rather than physical models.

Let’s look at a very useful type of simulation that uses queues as the basic data structure.
In fact, the real-world system is called a queuing system. A queuing system consists of servers
and queues of objects to be served. We deal with queuing systems frequently in our daily lives.
When you stand in line to check out at the grocery store or to cash a check at the bank, you are
dealing with a queuing system. When you submit a batch “job” (such as a compilation) on a
mainframe computer, your job must wait in line until the CPU finishes the jobs scheduled ahead
of it; the operating system is a queuing system. When you make a phone call to reserve an air-
line ticket and get a recording that says, “Thank you for calling Air Busters. Your call will be
answered by the next available operator. Please wait.”—you are dealing with a queuing system.

Please wait. Waiting is the critical element. The objective of a queuing system is to utilize
the servers (the tellers, checkers, CPU, operators, and so on) as fully as possible, while keeping
the wait time within a reasonable limit. These goals usually require a compromise between
cost and customer satisfaction.

To put this situation on a personal level, start with this fact: No one likes to stand in line.
If there were one checkout counter for each customer in a supermarket, the customers would
be delighted. The supermarket, however, would not stay in business very long. Consequently, a
compromise is made: The number of cashiers is kept within the limits set by the store’s budget,
and the average customer is not kept waiting too long.

How does a company determine the optimal compromise between the number of servers
and the wait time? One way is by experience; the company tries out different numbers of
servers and sees how things work out. This approach has two problems: It takes too long and it
is too expensive. Another way of examining this problem is by using a computer simulation. To
simulate a queuing system, we must know four things:

1. The number of events and how they affect the system

2. The number of servers

3. The distribution of arrival times

4. The expected service time

The simulation program uses these parameters to predict the average wait time. The interac-
tions of these parameters constitute the rules of the model. By changing these parameters, we
change the rules. The average wait times are then examined to identify a reasonable compromise.

Before we start designing a simulation program, let’s walk through a simple simulation of a
real-life example. Consider the case of a drive-in bank with one teller. How long does the aver-
age car have to wait? If business gets better and cars start to arrive more frequently, how would
it affect the average wait time? When would the bank need to open a second drive-in window?

This problem has the characteristics of a queuing problem. We have a server (the teller)
and objects being served (customers in cars), and we are interested in observing the average
wait time.

The events in this system are the arrivals and the departures of customers. Suppose that
the number of servers is 1, the average transaction takes 6 minutes, and a new customer
arrives about every 5 minutes. Let’s look at how we can solve this problem as a time-driven

Case Study: Simulation | 247

simulation. In a time-driven simulation, the program maintains a counter that represents a
clock. To simulate the passing of a unit of time (a minute, for example), we increment the
clock. We run the simulation for a predetermined amount of time—say, 100 minutes. (Of
course, simulated time usually passes much more quickly than real time; 100 simulated min-
utes pass in a flash on the computer.)

From a software point of view, the simulation is a big loop that executes a set of rules for
each value of the clock—from 1 to 100, in our example. Here are the rules that are processed in
the loop body:

Rule 1. If a customer arrives, he or she gets in line.
Rule 2. If the teller is free and someone is waiting, the first customer in line leaves the line

and advances to the teller’s window. The service time is set to 6 minutes.
Rule 3. If a customer is at the teller’s window, the time remaining for that customer to be

serviced is decremented.
Rule 4. If there are customers in line, the additional minute that they have remained in the

queue is recorded.

The output from the simulation is the average wait time. We calculate this value using the
following formula:

Average wait time = total wait time for all customers ÷ number of customers

Given this output, the bank can see whether its customers have an unreasonable wait in a
one-teller system. If so, the bank can repeat the simulation with two tellers.

We have described this example in terms of a single teller and a specific arrival rate and
transaction time. In fact, we should vary these simulation parameters to see how the changes
affect the average wait time. These values are read as inputs to the program.

Because so many different applications might use this program—modeling bank queues,
phone call-waiting systems, CPU “job queues,” a doctor’s office waiting room, and so on—we
will write our program as a generic time-driven queuing system simulator. That is, the same
program can be used to simulate many different real-world systems. We refer to the bank
tellers, phone operators, and so on, as servers and the objects to be serviced (customers,
patients, and so on) as jobs. This program simulates a multiple-server/single-queue system.
That is, the jobs waiting to be served are stored in a single queue. (In contrast, grocery stores
are usually multiple-server/multiple-queue systems.) Figure 4.15 lists the specifications of this
program.

248 | Chapter 4: ADTs Stack and Queue

Figure 4.15 Specification for simulation program

Specification: Program Simulation

Function The program simulates a queuing system, using the following simulation parame-
ters: length of simulation, average time between arrivals, number of servers, and average
transaction time.

Input The simulation parameters are entered interactively and include:

1. The length of the simulation

2. The average transaction time

3. The number of servers

4. The distribution of arrival times (average time between job arrivals)

The program must prompt the user for each input, and each input (a positive integer) is
entered on a separate line.

At the end of each simulation, the program asks whether another simulation is desired. If
the user responds positively, the program prompts the user to input a new set of simulation
parameters.

Output The outputs are printed both to the screen and to a report file. The screen output is
the resulting average wait time for the current simulation, properly labeled. Following the
execution of the last simulation, the program prints the following message to the screen:

“Simulation is complete. Summary in file Report.sim.”

The output in the file Report.sim consists of the set of simulation parameters, the
resulting average wait time, and the number of jobs that are still waiting when the simulation
ends. The output for each set of parameters should be printed on a single line, producing a
tabular listing. A header line should be written to the file at the beginning of the program to
label the columns, and a trailer section should be written to the end of the file to describe the
meaning of the columns in the table.

Processing Requirements

1. The program must include processing to guard against range errors in the user’s inputs.
The maximum values allowed for each parameter must be described as constants, so that
they can be “tuned” if necessary. Use the following initial values:

Maximum servers 10

Maximum simulation length 10000

Maximum transaction length 1000

Maximum time between arrivals 1000

Maximum size of the queue 100

(continued)

Case Study: Simulation | 249

2. Real-number output should be specified to two decimal places.

3. If a job arrives when the queue is full, the simulation should abort and send an error mes-
sage to both the screen and the report file.

Assumptions

1. No more than one job arrives per time unit.

2. User inputs can be assumed to be numeric.

Object-Oriented Design In a computer simulation, each physical object in the real-world
system can be represented as a class object. Actions in the real world are represented as
functions that manipulate the data members of these objects. In Chapter 2, we noted that
object-oriented design is ideal for simulation problems. An object-oriented design begins by
looking for potential objects in the problem specification.

Brainstorming, Filtering, and Scenarios

From our discussion of simulation, we know that there must be three objects: jobs, servers, and
waiting lines.

Which characteristics of a job must be recorded? That is, which data members are associ-
ated with job objects? We are interested in the average time that a job spends waiting to be
served, so a job must have a timer that records the number of time units it waits. What opera-
tions must be performed on the job object? We must initialize the timer when a job arrives,
and increment the timer for each clock cycle that the job remains in the queue. If each job
had a different transaction time, we would have to record it as part of the job object. In this
simulation, however, all jobs have the same transaction time. Thus the only information asso-
ciated with a job is the time it waits in line.

What about a server? A server can be free or busy, so we need a data member that keeps
track of whether the server is free or busy. The server must be able to change and report its
status. We also need to determine when the job being served is completed. Therefore, we need
a timer associated with each server that is set to the transaction time when a job arrives and is
decremented at each clock cycle. When this timer reaches zero, the job has been completed
and the server is free.

A review of the last two paragraphs reveals an object that is more fundamental than
either a job or a server: Both objects need a timer object. The job object needs to initialize the
timer to zero and increment it; the server object needs to initialize the timer to a nonzero
value and decrement it. Here are the CRC cards for our three fundamental objects.

250 | Chapter 4: ADTs Stack and Queue

JobType

Responsibilities Collaborations

Initialize Integers

IntegersIncrementWaitTime

WaitTimeIs returns int

.

.

.

Class Name: Superclass: Subclasses:

TimerType

Responsibilities Collaborations

Initialize

SetTime (value)

IncrementTime

DecrementTime

TimeIs returns int

Integers

Integers

.

.

.

Class Name: Superclass: Subclasses:

Case Study: Simulation | 251

class TimerType
{
public:
TimerType(); // Class constructor.
// Sets count to zero.
void SetTimer(int value);
// Sets count to value.
void Increment();
// Increments count.
void Decrement();
// Decrements count.
int TimeIs() const;
// Returns count.

private:
int count;

};

class JobType
{
public:
JobType(); // Class constructor
void IncrementWaitTime();
int WaitTimeIs();
// Returns the value of waitTime.

private:
TimerType waitTime;

};

ServerType

Responsibilities Collaborations

Initialize

SetTime Remaining (value)

IsFree returns Boolean

DecrementTime Remaining

Set Busy

Integers

Integers

.

.

.

Class Name: Superclass: Subclasses:

252 | Chapter 4: ADTs Stack and Queue

enum StatusType {BUSY, FREE};
class ServerType
{
public:
ServerType(); // Class constructor.
// Initializes status to FREE.
bool IsFree() const;
// Returns true if status is FREE; false otherwise.
void SetBusy();
// Sets status to BUSY.
void DecrementTimeRemaining();
// Decrements TimeRemaining.
void SetTimeRemaining(int time);
// Sets timeRemaining to time.

private:
StatusType status;
TimerType timeRemaining;

};

Now, we need to look back at the specification and identify other objects—the objects
that contain our servers and jobs.

Container Objects

From the abstract perspective, we have a list of servers. Can we use either our Unsorted List ADT
or our Sorted List ADT to hold the servers? Let’s look at the operations that must be performed
on the list of servers to answer this question. Reviewing the rules to be processed in the loop
body, we see that we need an operation to determine whether a server is free and one to
engage a free server, thereby changing its status flag (Rule 2). We also need an operation to
decrement the timers of the busy servers. Both List ADTs allow us to iterate through the list
items, but not to change them. Decrementing the timers and changing the status flags require
access to the server objects themselves, not just to copies of the objects. We can make the
items on the list pointers to our server objects, thereby gaining access to the objects themselves,
or we can write a problem-dependent list ourselves. Let’s write a specialized ServerList ADT.

Let’s call the operation to engage a server EngageServer. How do we know which, if
any, server is free? We need another operation GetFreeServerId to tell us which server is
available or to indicate that no server is free. Finally, we need an operation to decrement the
timers of all active servers to indicate that a clock unit has passed (Rule 3). We call this opera-
tion UpdateServers. The ADT can be described with the following specification:

ServerList ADT Specification

Structure: List of server items, each of which has an associated
Server ID and a Timer.

Case Study: Simulation | 253

Operations:

InitServers(int numServers)
Function: Initializes numServers items to “free” status.
Precondition: 1 <= numServers <= maximum number of

servers allowed.
Postcondition: List contains numServers free servers.

GetFreeServerId(int serverId, Boolean& found)
Function: Searches list for a free server; if found, returns

serverId.
Precondition: servers have been initialized.
Postconditions: found = (free server was found).

If found, serverId = ID of free server; other-
wise, serverId is undefined. (Note: This opera-
tion merely identifies a free server; it does not
engage the server.)

EngageServer(int serverID, int transactionTime)
Function: Engages the designated server for transaction-

Time
Preconditions: List has been initialized.

Server with serverID is free.
Postconditions: Timer of server with serverID = transaction-

Time and status is set to Busy.

UpdateServers
Function: Decrements the timer of each server that is

currently engaged.
Precondition: List has been initialized.
Postcondition: Timer of each engaged server = previous timer

value - 1.

At the abstract level, the jobs waiting in line to be processed can be described as a queue
of jobs. Let’s see whether we can use the Queue ADT discussed in this chapter. Rule 1 tells us
that if a job arrives, it should be put in line; this is the Enqueue operation. Rule 2 suggests
two queue operations: We need to know if a job is waiting in line (the IsEmpty operation),
and we need to be able to remove the first job from the queue (the Dequeue operation).
Finally, Rule 4 says that we must increment the wait timers of all jobs still in line to show the
passing of a clock unit. This operation is not supported by the Queue ADT developed in this
chapter, but we can certainly implement it using operations that are supported. Here is the
specification for the client function UpdateQue:

254 | Chapter 4: ADTs Stack and Queue

UpdateQue(waitQue)

Function: Increments the time of every job waiting.
Precondition: waitQue has been initialized.
Postcondition: The timer of each job in the queue has been

incremented.

With the addition of UpdateQueue, we can use the Queue ADT discussed in this chapter.
Just to prove how committed we are to the idea of data encapsulation, we will not discuss the
implementation of the ServerList ADT and UpdateQue until we finish designing the driver pro-
gram for the simulation. We believe that the information in the specification tells us enough
that we can use these modules without knowing anything more. In fact, we give these modules
to another programmer to implement however she wishes, and we write the rest of our pro-
gram without having the implementations in hand. When we finish our design, we get the
implementations of these modules from our friend.

Driver Design Now we’re ready to design the driver program, the code that allows these
objects to interact. The specification tells us that the program must continue to run simulations
and print results with different sets of parameters until the user is ready to quit. This requirement
suggests a loop, each iteration of which invokes the ExecuteSimulation function. Before we
can process the first simulation, we must do some initialization work—opening the report file and
writing the report header. After we finish the last simulation, we must do some termination
processing—writing the report trailer, for example. Here is the top level of the driver design:

Driver

The main work of the program occurs in ExecuteSimulation. It must get the simula-
tion parameters, run the simulation, and print the result to the screen and to the report file.
Here is the design for this important module:

Open reportFile for writing
Write title and headings to reportFile
do

ExecuteSimulation
Write to screen “Enter an S to stop or another letter to continue; press return.”
Read letter
Set finished to (letter = “S” or “s”)

while NOT finished
Write trailer to reportFile

Case Study: Simulation | 255

ExecuteSimulation

This design gives an overall view of a simulation but leaves many questions unanswered.
Clearly, more levels of the design are needed.

The GetParameters function gets all the parameters for this execution of the simula-
tion. Because it returns so many different values, we decide to make it send back a single
parameter, a struct that contains a data member for each simulation parameter.

struct ParametersType
{
int timeLimit;
int numServers;
int transactionTime;
int timeBetween;

};

GetParameters must prompt the user for each parameter value, read the response,
check the response to make sure that it falls within the bounds listed in the program specifica-
tions, and—if the response is not valid—ask for another value. Clearly, this is a lot of work, and
we do not want to become distracted right now. We really want to focus on the main process-
ing of this program, the execution of the simulation using these parameters, so we decide to
postpone the design and coding of this module until we’ve had a chance to test the simulation
processing. But this module returns the simulation parameters. How can we postpone coding
it? We code a stub to stand in its place. The stub simply assigns sample simulation parameters
to the struct.

GetParameters (timeLimit, numServers, transactionTime, timeBetween)
Initialize simulation variables
while more time to run

UpdateClock
UpdateServers
UpdateQue
if JobArrives()

waitQue.Enqueue(job)
servers.GetFreeServerId(serverId, found)
if (found AND !waitQue.IsEmpty())

StartJob
Clean up wait queue
Calculate average wait time
PrintResults

256 | Chapter 4: ADTs Stack and Queue

void GetParameters(ParametersType& parameters)
// Stub used for testing; sets simulation parameters.
{
parameters.timeLimit = 100;
parameters.transactionTime = 5;
parameters.numServers = 2;
parameters.timeBetween = 3;

}

We use this stub until we’re convinced that our main simulation processing works; then we
come back and code this module to get real values from the user. In this way, we code and test
our program incrementally.

Our next job is to initialize the simulation variables. What are these variables? As we saw
in reference to the bank-teller example, we must keep track of two values: (1) the total wait
time for all jobs and (2) the number of jobs served. These values are used to calculate the aver-
age wait time. The last variable to initialize is the clock.

InitializeSimulationVariables

Now we come to activities in the while loop in ExecuteSimulation. Updating the
clock means incrementing clock; UpdateServers and UpdateQue have already been spec-
ified and can be coded directly from the specifications. Our next activity inside the loop is to
determine whether a new job has arrived. How do we know whether a job has arrived in this
particular clock unit? The answer reflects two factors: the simulation parameter timeBe-
tween (the average time between job arrivals) and luck.

Luck? We’re writing a computer program that bases calculations on sheer luck? Well, not
exactly. Let’s express timeBetween another way—as the probability that a job arrives in any
given clock unit. Probabilities range from 0.0 (no chance) to 1.0 (a sure thing). If on the aver-
age a new job arrives every five minutes, then the chance of a customer arriving in any given
minute is 0.2 (1 chance in 5). Therefore, the probability of a new job arriving in this iteration of
the loop body is 1.0 divided by timeBetween. Let’s call this value arrivalProb. Now what
about luck? In computer terms, luck can be represented via use of a random-number
generator. We simulate the arrival of a customer by writing a function JobArrives, which
generates a random number between 0.0 and 1.0 and applies the following rules:

1. If the random number is between 0.0 and arrivalProb (inclusive), a job has arrived and
JobArrives returns true.

2. If the random number is greater than arrivalProb, no job arrived in this clock unit and
JobArrives returns false.

Set totalWait to 0
Set numJobs to 0
Set clock to 0

Case Study: Simulation | 257

Where do we get a random-number generator? You can find the formula in a statistics
book and code it yourself. However, there is an even easier way. C++ compilers provide a ran-
dom-number generator in the standard library—the rand function.

#include <cstdlib>
�

randomInt = rand();

rand returns a random integer in the range of 0 through RAND_MAX, a constant defined in
<cstdlib>. (RAND_MAX is typically the same as INT_MAX.) To convert this number to a value
between 0.0 and 1.0, cast it to a floating-point number and divide it by float(RAND_MAX):

float(rand())/float(RAND_MAX)

bool JobArrives

Finally, we come to the last activity in the ExecuteSimulation loop body: If a server is
free and a job is waiting, start a job. What parameters does StartJob need? To engage the
server, it must have the list of servers, the index of the free server, and the transaction time
(from parameters). If a job starts, two other variables are changed: the number of jobs
served (numJobs) and the total wait time of jobs served (totalWait).

StartJob(servers, waitQue, serverId, parameters, numJobs, totalWait)

When the loop terminates (after the clock hits the timeLimit), this version of the simu-
lation is finished. Now we need to clean up the wait queue, calculate the average wait time,
and print out the results.

CleanUp(waitQue, jobsLeftInQue)

Set jobsLeftInQue to 0
while NOT waitQue.IsEmpty()

waitQue.Dequeue(job)
Increment jobsLeftInQue

waitQue.Dequeue(job)
Increment numJobs
Set totalWait to totalWait + job.WaitTimeIs()
servers.EngageServer(serverId, parameters.transactionTime)

Set value to float (rand())/ float(RAND_MAX)
return (value <= arrivalProb)

258 | Chapter 4: ADTs Stack and Queue

Finally, we are ready to calculate the average wait time—the information that we have
been waiting for:

What happens if no jobs were ever received? If the simulation was run for a short time-
Limit with a relatively large timeBetween parameter, numJobs might be zero. Division by
zero causes the program to crash at run time, so it is better to check for this condition explicitly:

All that is left in the ExecuteSimulation design is to print the results. We can gener-
ate the output that must be printed to the screen with a simple output statement. Printing the
reportFile output, however, requires us to know how the columns in the table were set up.
It reminds us that there are two other file output operations—one to print the report “header”
(the title and column headings) and one to print the report “trailer” (text describing the mean-
ing of the columns).

The work required to print the output with the title centered and the columns straight is
not important to developing and testing the simulator. Like GetParameters, these print
operations can be coded in the second development iteration. Our final program needs these
operations, of course, but we don’t need them now. Straight tabular output is irrelevant to
testing whether the simulation works. As a consequence, we put the coding of these three
operations on hold, and replace them for now with stubs:

void PrintResults(std::ofstream& reportFile,
ParametersType parameters, float averageWait,
int jobsLeftInQue)

{
reportFile << "Average wait time is " << averageWait << std::endl;

}

void PrintReportHeader(std::ofstream& reportFile)
{
reportFile << "Starting Simulation" << std::endl;

}

void PrintReportTrailer(std::ofstream& reportFile)
{
reportFile << "Ending Simulation" << std::endl;

}

if numJobs > 0
Set averageWait to totalWait / numJobs

else
Set averageWait to 0

Set averageWait to totalWait / numJobs

Case Study: Simulation | 259

This step completes the design of the driver for our simulation (except for the input/out-
put functions that we are postponing to the second development iteration).

As promised earlier, we developed the design for the driver of this program without ever
knowing how the ServerList ADT and the UpdateQue function were implemented. Meanwhile,
our friend has been busy developing these modules for us. Let’s see what she came up with.

The Server ADT The list of servers is represented as a class with two data members: the
number of servers (numServers) and an array of ServerType items. Recall that
ServerType objects have a data member timeRemaining of type TimerType that
indicates how much time is left on the current job and a data member status that contains
either BUSY or FREE. Here is the definition for the class ServerList:

class ServerList
{
public:
ServerList(); // Class constructor
~ServerList(); // Class destructor
void GetFreeServerId(int& serverID, bool& found);
void EngageServer(int serverId, int transactionTime);
void UpdateServers();
ServerList(int number);

private:
int numServers;
ServerType* servers;

};

The InitServers operation is implemented as the class constructor for the class
ServerList. It sets numServers to the input parameter number and uses the new operator
to allocate the array of servers. GetFreeServerId searches the array of timers for one that is
free. If one is free, found is set to true and serverID is set to the index of its array slot; oth-
erwise, found is false. EngageServer is the simplest of all: It merely sets the server’s timer
to transactionTime and its status to BUSY. Finally, the UpdateServers operation loops
through the servers, decrementing the timers of the active servers and changing a server’s sta-
tus if the timer is zero.

We have only one client function, UpdateQue, left to discuss. We need to cycle through
the queue incrementing the timer for each job object. Because we do not have access to the
items on the queue, we must dequeue one job at a time, increment the timer, and put the job
back into the queue. How do we know that we have processed each job in the queue? Let’s
enqueue an extra dummy job with the timer set to a negative number. When this job is
dequeued, we have incremented all timers in the queue.

The design is now finished. The completion of the program is left to you as a programming
assignment.

Simulation Results We ran our version of the program, letting it execute four simulations.
The average wait times printed to the screen are 3.21, 0.88, 7.03, and 0.52. How can that be?
The program inputs are currently coming from the GetParameters stub, not from the tester.

260 | Chapter 4: ADTs Stack and Queue

Each time ExecuteSimulation calls GetParameters, it returns the same parameters. So
how can the simulation produce different results for each simulation? The random-number
generator supplies a little “luck,” just as in real life, a bank teller might be really busy one
Thursday morning and bored the next.

Let’s try using a bigger time limit. We change the timeLimit member in the GetPara-
meters stub to 1,000 clock units, recompile, and run the program again. This time, the four
executions of the simulation yield much more similar results: 2.01, 2.92, 2.27, and 4.40.

We start the program again, and let it run four more executions of the simulation with the
same time limit. This time we get exactly the same results as the previous run! How can that be?
Aren’t the random numbers supposed to be random? Much theoretical work has gone into the
development of algorithms to produce random numbers. Given a particular function to produce
random numbers and the current result of the function, however, the next value is completely
predictable—not random at all! Random-number generators use an initial seed value from which
to start the sequence of random numbers. Because the function rand initializes this seed to the
same value each time, each run of the program produces the same sequence of “random” num-
bers. Therefore the numbers from such a function are really pseudo-random. For simulation pur-
poses, however, pseudo-random numbers are sufficient. If a simulation is run for a long enough
period of time, the theory of random numbers says that the wait times converge no matter what
kind of random-number generator you use. As we saw, with a larger timeLimit value, the
results were more alike. Note that the C++ standard library does provide a function srand, which
allows the user to specify an initial seed before the first call to rand. The prototype for srand is

void srand(unsigned int);

How do we know whether the program is working? The results seem more or less “rea-
sonable,” but how do we know they are correct? A good way to see what the program is
doing is to trace its execution using debugging outputs. That is, we add output lines through-
out the program—when we enqueue and dequeue, when we engage a server, and so on. Then
we walk through the debug output, comparing what the program is doing to what we expect
it to do.

Another way to test this program is to run it with different values of input parameters and
to see whether the results change in predictable ways. To perform such a test, however, we
need to code the real GetParameters routine.

Table 4.1 shows the output from the file Report.sim for a sample test of the program.
(Blank lines have been deleted between some output lines to enhance readability.) We want to
answer our original question about the drive-in bank. Is one teller enough? The test demon-
strates cases where the transaction time is five minutes, new jobs arrive every three minutes,
and the number of servers varies from one to four. We have run each set of parameters for
100, 500, 1,000, and 5,000 clock units (minutes in this case), respectively.

When testing most programs, we will have a test plan in which we calculate and record what
the results should be with certain input data values. We run the test data and check the actual
results against the predicted results. As you can see, testing programs involving a random-num-
ber generator is a much more complex endeavor because the results are not easily predicted.

Summary | 261

Table 4.1 Output from one run of simulation program

Simulation

Simulation Number of Average Time Between Average Jobs
Length Servers Transaction Arrivals Wait Left

100 1 5 3 18.0 14
500 1 5 3 106.65 58

1000 1 5 3 202.55 132
5000 1 5 3 1042.11 686

100 2 5 3 2.19 3
500 2 5 3 1.41 1

1000 2 5 3 3.89 0
5000 2 5 3 2.99 2

100 3 5 3 0.09 0
500 3 5 3 0.28 0

1000 3 5 3 0.28 1
5000 3 5 3 0.22 0

100 4 5 3 0.00 0
500 4 5 3 0.03 0

1000 4 5 3 0.01 0
5000 4 5 3 0.01 0

All times are expressed in clock units. Average wait time reflects the wait time of jobs served; it does not reflect the wait time
of jobs that were not yet served. Jobs Left reflects the number of jobs that were waiting to be served when the simulation
time limit was reached.

Summary
We have defined a stack at the logical level as an abstract data type, discussed its use in an
application, and presented an implementation encapsulated in a class. Although our logical
picture of a stack is a linear collection of data elements with the newest element (the top)
at one end and the oldest element at the other end, the physical representation of the stack
class does not have to recreate our mental image. The implementation of the stack class
must support the last in, first out (LIFO) property; how this property is supported, however,
is another matter. For instance, the push operation could “time stamp” the stack elements
and put them into an array in any order. To pop an element, we would have to search the
array, looking for the newest time stamp. This representation is very different from the
stack implementation we developed in this chapter, but to the user of the stack class they
are functionally equivalent. The implementation is transparent to the program that uses the
stack, because the stack is encapsulated by the operations in the class that surrounds it.

262 | Chapter 4: ADTs Stack and Queue

Rather than requiring the user to provide a file containing information about the size
of a structure and the type of the items on the structure, C++ provides a way to supply
this information when a structure is declared in a program. Templates are a C++ construct
that allows the client to specify the type of the items to be on the structure by including it
in angle brackets beside the type name in the declaration statement. Because class con-
structors can be parameterized, the client can pass the size of the structure by placing it in
parentheses beside the variable name in the declaration statement. Additionally, a class
constructor can use the new operator to get an array of the proper size in dynamic storage.

In this chapter, we also examined the definition and operations of a queue. We dis-
cussed some of the design considerations encountered when we use an array to hold the
elements of a queue. Although the array itself is a random-access structure, our logical
view of the queue as a structure limits us to accessing only the elements in the front
and rear positions of the queue stored in the array.

Usually more than one functionally correct design is available for the same data
structure. When multiple correct solutions exist, the requirements and specifications of
the problem may determine which solution is the best design.

In the design of data structures and algorithms, you will often find that tradeoffs are
necessary. A more complex algorithm may result in more efficient execution; a solution
that takes longer to execute may save memory space. As always, we must base our
design decisions on what we know about the problem’s requirements.

Exercises
1. Indicate whether a stack would be a suitable data structure for each of the fol-

lowing applications.

a. A program to evaluate arithmetic expressions according to the specific order
of operators.

b. A bank simulation of its teller operation to see how waiting times would be
affected by adding another teller.

c. A program to receive data that are to be saved and processed in the reverse
order.

d. An address book to be maintained.

e. A word processor to have a PF key that causes the preceding command to be
redisplayed. Every time the user presses the PF key, the program shows the
command that preceded the one currently displayed.

f. A dictionary of words used by a spelling checker to be built and maintained.

g. A program to keep track of patients as they check into a medical clinic,
assigning patients to doctors on a first come, first served basis.

h. A data structure used to keep track of the return addresses for nested func-
tions while a program is running.

2. Describe the accessing protocol of a stack at the abstract level.

Exercises | 263

3. Show what is written by the following segments of code, given that item1,
item2, and item3 are int variables.

a. StackType<int> stack;
item1 = 1;

item2 = 0;

item3 = 4;

stack.Push(item2);

stack.Push(item1);

stack.Push(item1 + item3);

stack.Pop(item2);

stack.Push(item3*item3);

stack.Push(item2);

stack.Push(3);

stack.Pop(item1);

cout << item1 << endl << item2 << endl << item3

<< endl;

while (!stack.IsEmpty())

{

stack.Pop(item1);

cout << item1 << endl;

}

b. StackType<int> stack;
item1 = 4;

item3 = 0;

item2 = item1 + 1;

stack.Push(item2);

stack.Push(item2 + 1);

stack.Push(item1);

stack.Pop(item2);

item1 = item2 + 1;

stack.Push(item1);

stack.Push(item3);

while (!stack.IsEmpty())

264 | Chapter 4: ADTs Stack and Queue

{

stack.Pop(item3);

cout << item3 << endl;

}

cout << item1 << endl << item2 << endl << item3 << endl;

Use the following information for Exercises 4–7. The stack is implemented as a
class containing an array of items, a data member indicating the index of the last
item put on the stack (top), and two Boolean data members, underFlow and
overFlow. The stack items are characters and MAX_ITEM is 5. In each exercise,
show the result of the operation on the stack. Put a T or F for true or false, respec-
tively, in the Boolean data members.

4. stack.Push(letter);

5. stack.Push(letter);

stack.Push(letter);

 letter

stack.top

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

X

4

A B C D

 letter

stack.top

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

E

stack.Push(letter);

 letter

stack.top

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

M

2

H I J K

 letter

stack.top

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

L

Exercises | 265

6. stack.Pop(letter);

7. stack.Pop(letter);

8. Write a segment of code to perform each of the following operations. You may
call any of the member functions of StackType. The details of the stack type are
encapsulated; you may use only the stack operations in the specification to per-
form the operations. (You may declare additional stack objects).

a. Set secondElement to the second element in the stack, leaving the stack
without its original top two elements.

b. Set bottom equal to the bottom element in the stack, leaving the stack
empty.

c. Set bottom equal to the bottom element in the stack, leaving the stack
unchanged.

d. Make a copy of the stack, leaving the stack unchanged.

9. (Multiple choice) The statement

stack.items[0] = stack.items[1];

(setting the top element equal to the second element) in a client program of the
stack class

a. would cause a syntax error at compile time.

stack.Pop(letter);

 letter

stack.top

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

X

4

A B X Y

 letter

stack.top

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

Z

stack.Pop(letter);

 letter

stack.top

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

X

–1

A B C D

 letter

stack.top

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

E

266 | Chapter 4: ADTs Stack and Queue

b. would cause a run-time error.

c. would not be considered an error by the computer, but would violate the
encapsulation of the stack data type.

d. would be a perfectly legal and appropriate way to accomplish the intended task.

10. (Multiple choice) The statements

stack.Push(item1 + 1);
stack.Pop(item1 + 1);

in the client program

a. would cause a syntax error at compile time.

b. would cause a run-time error.

c. would be legal, but would violate the encapsulation of the stack.

d. would be perfectly legal and appropriate.

11. Given the following specification of the Top operation:

ItemType Top

Function: Returns a copy of the last item put onto
the stack.

Precondition: Stack is not empty.
Postconditions: Function value = copy of item at top of

stack.
Stack is not changed.

Assume Top is not a stack operation and Pop returns the item removed. Write
this function as client code, using operations from the nontemplate version
of the StackType class. Remember—the client code has no access to the pri-
vate members of the class.

12. Two stacks of positive integers are needed, one containing elements with values
less than or equal to 1,000 and the other containing elements with values larger
than 1,000. The total number of elements in the small-value stack and the large-
value stack combined are not more than 200 at any time, but we cannot predict
how many are in each stack. (All of the elements could be in the small-value
stack, they could be evenly divided, both stacks could be empty, and so on.) Can
you think of a way to implement both stacks in one array?

a. Draw a diagram of how the stack might look.

b. Write the definitions for such a double-stack structure.

c. Implement the Push operation; it should store the new item into the correct
stack according to its value (compared to 1,000).

Exercises | 267

13. A stack of integer elements is implemented as an array. The index of the top ele-
ment is kept in position 0 in the array, and the stack elements are stored in
stack[1]..stack[stack[0]}.

a. How does this implementation fare when assessed against the idea of an
array as a homogeneous collection of data elements?

b. How would this implementation change the stack specifications? How would
it change the implementations of the functions?

14. Using one or more stacks, write a code segment to read in a string of characters
and determine whether it forms a palindrome. A palindrome is a sequence of
characters that reads the same both forward and backward—for example: ABLE
WAS I ERE I SAW ELBA.

The character ‘.’ ends the string. Write a message indicating whether the string
is a palindrome. You may assume that the data are correct and that the maximum
number of characters is 80.

15. Write the body for a function that replaces each copy of an item in a stack with
another item. Use the following specification. (This function is in the client pro-
gram.)

ReplaceItem(StackType& stack, ItemType oldItem,
ItemType newItem)

Function: Replaces all occurrences of oldItem with
newItem.

Precondition: stack has been initialized.
Postcondition: Each occurrence of oldItem in stack has

been replaced by newItem.

You may use any of the member functions of the nontemplate version of Stack-
Type, but you may not assume any knowledge of the stack’s implementation.

16. In each plastic container of Pez candy, the colors are stored in random order.
Your little brother likes only the yellow ones, so he painstakingly takes out all
the candies, one by one, eats the yellow ones, and keeps the others in order, so
that he can return them to the container in exactly the same order as before—
minus the yellow candies, of course. Write the algorithm to simulate this
process. You may use any of the stack operations defined in the Stack ADT, but
may not assume any knowledge of the stack’s implementation.

17. The specifications for the Stack ADT have been changed. The class representing
the stack must now check for overflow and underflow and sets an error flag (a
parameter) to true if either occurs. (See the discussion on page 206.)

a. Rewrite the specifications incorporating this change.

268 | Chapter 4: ADTs Stack and Queue

b. What new data members must you add to the class?

c. What new member functions must you add to the class?

18. Implement the following specification for a client Boolean function that returns
true if two stacks are identical and false otherwise.

Boolean Identical(StackType stack1, StackType stack2)

Function: Determines if two stacks are identical.
Preconditions: stack1 and stack2 have been initialized.
Postconditions: stack1 and stack2 are unchanged.

Function value = (stack1 and stack2 are
identical)

You may use any of the member functions of StackType, but you may not
assume any knowledge of the stack’s implementation.

The following code segment (used for Exercises 19 and 20) is a count-controlled loop
going from 1 through 5. At each iteration, the loop counter is either printed or put on a
stack depending on the result of the Boolean function RanFun(). (The behavior of
RanFun() is immaterial.) At the end of the loop, the items on the stack are popped and
printed. Because of the logical properties of a stack, this code segment cannot print cer-
tain sequences of the values of the loop counter. You are given an output and asked to
determine whether the code segment could generate the output.

for (count = 1; count <= 5; count++)
if (RanFun())

cout << count;
else
stack.Push(count);

while (!stack.IsEmpty())
{

stack.Pop(number);
cout << number;

}

19. The following output is possible using a stack: 1 3 5 2 4

a. True

b. False

c. Not enough information to determine

20. The following output is possible using a stack: 1 3 5 4 2

a. True

b. False

c. Not enough information to determine

Exercises | 269

21. Based on the following declarations, tell whether each statement below is syn-
tactically legal (yes) or illegal (no).

int* p;
int* q;
int* r;
int a;
int b;
int c;

yes/no yes/no yes/no

a. p = new int; _____ f. r = NULL; _____ k. delete r; _____

b. q* = new int; _____ g. c = *p; _____ l. a = new p; _____

c. a = new int; _____ h. p = *a; _____ m. q* = NULL; _____

d. p = r; _____ i. delete b; _____ n. *p = a; _____

e. q = b; _____ j. q = &c; _____ o. c = NULL; _____

22. The following program has careless errors on several lines. Find and correct the
errors and show the output where requested.

#include <iostream>
int main ()
{
using namespace std;
int* ptr;
int* temp;
int x;

ptr = new int;
*ptr = 4;
*temp = *ptr;
cout << ptr << temp;
x = 9;
*temp = x;
cout << *ptr << *temp;
ptr = new int;
ptr = 5;
cout << *ptr << *temp; // Output:_________________
return 0;

}

23. Describe the accessing protocol of a queue at the abstract level.

270 | Chapter 4: ADTs Stack and Queue

24. Show what is written by the following segments of code, given that item1,
item2, and item3 are int variables.

a.
QueType<int> queue;

item1 = 1;
item2 = 0;
item3 = 4;
queue.Enqueue(item2);
queue.Enqueue(item1);
queue.Enqueue(item1 + item3);
queue.Dequeue(item2);
queue.Enqueue(item3*item3);
queue.Enqueue(item2);
queue.Enqueue(3);
queue.Dequeue(item1);
cout << item1 << endl << item2 << endl << item3

<< endl;
while (!queue.IsEmpty())
{

queue.Dequeue(item1);
cout << item1 << endl;

}

b.
QueType<int> queue;
item1 = 4;
item3 = 0;
item2 = item1 + 1;
queue.Enqueue(item2);
queue.Enqueue(item2 + 1);
queue.Enqueue(item1);
queue.Dequeue(item2);
item1 = item2 + 1;
queue.Enqueue(item1);
queue.Enqueue(item3);
while (!queue.IsEmpty())
{
queue.Dequeue(item3);
cout << item3 << endl;

}
cout << item1 << endl << item2 << endl << item3 << endl;

Exercises | 271

25. The specifications for the Queue ADT have been changed. The class representing
the queue must now check for overflow and underflow and set an error flag (a
parameter) to true if either occurs.

a. Rewrite the specifications incorporating this change.

b. What new data members must you add to the class?

c. What new member functions must you add to the class?

Use the following information for Exercises 26–31. The queue is implemented as a class
containing an array of items, a data member indicating the index of the last item put
on the queue (rear), a data member indicating the index of the location before the first
item put on the queue (front), and two Boolean data members, underFlow and over-
Flow, as discussed in this chapter. The item type is char and maxQue is 5. For each
exercise, show the result of the operation on the queue. Put a T or F for true or false,
respectively, in the Boolean data members.

26. queue.Enqueue(letter);

27. queue.Enqueue(letter);

 letter

queue.front
.rear
.overFlow

.underFlow

.items

 letter

queue.front
.rear

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

K

3

4

V W X Y

[0] [1] [2] [3] [4]

Z

 letter

queue.front

.rear

.overFlow

.underFlow

.items

 letter

queue.front

.rear

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

J

4

3

V W X Y

[0] [1] [2] [3] [4]

Z

272 | Chapter 4: ADTs Stack and Queue

28. queue.Enqueue(letter);

29. queue.Dequeue(letter);

30. queue.Dequeue(letter);

 letter

queue.front

.rear

.overFlow

.underFlow

.items

 letter

queue.front

.rear

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

2

2

V W X Y

[0] [1] [2] [3] [4]

Z

 letter

queue.front

.rear

.overFlow

.underFlow

.items

 letter

queue.front

.rear

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

4

2

V W X Y

[0] [1] [2] [3] [4]

Z

 letter

queue.front

.rear

.overFlow

.underFlow

.items

 letter

queue.front

.rear

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

L

0

3

V W X Y

[0] [1] [2] [3] [4]

Z

Exercises | 273

31. queue.Dequeue(letter);

32. Write a segment of code to perform each of the following operations. You may
call any of the member functions of QueType. The details of the queue are
encapsulated; you may use only the queue operations in the specification to per-
form the operations. (You may declare additional queue objects.)

a. Set secondElement to the second element in the queue, leaving the queue
without its original front two elements.

b. Set last equal to the rear element in the queue, leaving the queue empty.

c. Set last equal to the rear element in the queue, leaving the queue unchanged.

d. Make a copy of the queue, leaving the queue unchanged.

33. (Multiple choice) The statement

queue.items[1] = queue.items[2];

(setting one element equal to the next element) in a client program of the queue
class

a. would cause a syntax error at compile time.

b. would cause a run-time error.

c. would not be considered an error by the computer, but would violate the
encapsulation of the queue data type.

d. would be a perfectly legal and appropriate way to accomplish the intended task.

34. (Multiple choice) The statements

queue.Enqueue(item1 + 1);
queue.Dequeue(item1 + 1);

in the client program

a. would cause a syntax error at compile time.

b. would cause a run-time error.

c. would be legal, but would violate the encapsulation of the queue.

d. would be perfectly legal and appropriate.

 letter

queue.front

.rear

.overFlow

.underFlow

.items

 letter

queue.front

.rear

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

1

0

V W X Y

[0] [1] [2] [3] [4]

Z

274 | Chapter 4: ADTs Stack and Queue

35. Given the following specification of a Front operation:

ItemType Front

Function: Returns a copy of the front item on the
queue.

Precondition: Queue is not empty.
Postconditions: Function value = copy of the front item

on the queue.
Queue is not changed.

a. Write this function as client code, using operations from the QueType class.
(Remember—the client code has no access to the private members of the class.)

b. Write this function as a new member function of the QueType class.

36. Write the body for a function that replaces each copy of an item in a queue with
another item. Use the following specification. (This function is in the client pro-
gram.)

ReplaceItem(QueType<int> queue, int oldItem,
int newItem)

Function: Replaces all occurrences of oldItem with
newItem.

Precondition: queue has been initialized.
Postcondition: Each occurrence of oldItem in queue has

been replaced by newItem.

You may use any of the member functions of QueType, but you may not assume
any knowledge of the queue’s implementation.

37. Indicate whether each of the following applications would be suitable for a queue.

a. An ailing company wants to evaluate employee records so as to lay off some
workers on the basis of service time (the most recently hired employees are
laid off first).

b. A program is to keep track of patients as they check into a clinic, assigning
them to doctors on a first come, first served basis.

c. A program to solve a maze is to backtrack to an earlier position (the last
place where a choice was made) when a dead-end position is reached.

d. An inventory of parts is to be processed by part number.

Exercises | 275

e. An operating system is to process requests for computer resources by allocat-
ing the resources in the order in which they are requested.

f. A grocery chain wants to run a simulation to see how the average customer
wait time would be affected by changing the number of checkout lines in
its stores.

g. A dictionary of words used by a spelling checker is to be initialized.

h. Customers are to take numbers at a bakery and be served in order when their
numbers come up.

i. Gamblers are to take numbers in the lottery and win if their numbers are picked.

38. Implement the following specification for a Boolean function in the client pro-
gram that returns true if two queues are identical and false otherwise.

Boolean Identical(QueType<float> queue1, QueType<float>
queue2)

Function: Determines if two queues are identical.
Precondition: queue1 and queue2 have been initial-

ized.
Postconditions: Queues are unchanged.

Function value = (queue1 and queue2
are identical).

You may use any of the member functions of QueType, but you may not assume
any knowledge of the queue’s implementation.

39. Implement the following specification for an integer function in the client
program that returns the number of items in a queue. The queue is
unchanged.

int Length(QueType<char> queue)

Function: Determines the number of items in the
queue.

Precondition: queue has been initialized.
Postconditions: queue is unchanged.

Function value = number of items in
queue.

276 | Chapter 4: ADTs Stack and Queue

40. One queue implementation discussed in this chapter dedicated an unused cell
before the front of the queue to distinguish between a full queue and an empty
queue. Write another queue implementation that keeps track of the length of the
queue in a data member length.

a. Write the class definition for this implementation.

b. Implement the member functions for this implementation. (Which of the
member functions have to be changed and which do not?)

c. Compare this new implementation with the previous one in terms of Big-O
notation.

41. Write a queue application that determines if two files are the same.

42. Discuss the difference between the MakeEmpty operation in the specification and
a class constructor.

The following code segment (used for Exercises 43 and 44) is a count-controlled loop
going from 1 through 5. At each iteration, the loop counter is either printed or put on a
queue depending on the result of the Boolean function RanFun(). (The behavior of
RanFun() is immaterial.) At the end of the loop, the items on the queue are dequeued
and printed. Because of the logical properties of a queue, this code segment cannot print
certain sequences of the values of the loop counter. You are given an output and asked
to determine whether the code segment could generate the output.

for (count = 1; count <= 5; count++)
if (RanFun())
cout << count;

else
queue.Enqueue(count);

while (!queue.IsEmpty())
{
queue.Dequeue(number);
cout << number;

}

43. The following output is possible using a queue: 1 2 3 4 5

a. True

b. False

c. Not enough information to determine

44. The following output is possible using a queue: 1 3 5 4 2

a. True

b. False

c. Not enough information to determine

Exercises | 277

45. Change the code for the program Balanced so that the calls to Push, Pop, and Top
are embedded within a try clause. The catch clause should print an appropriate error
message and halt.

46. Rewrite QueType as a class template.

47. Define and implement a counted stack, which inherits from StackType.

After studying this chapter, you should be able to

Implement the Stack ADT as a linked data structure

Implement the Queue ADT as a linked data structure

Implement the Unsorted List ADT as a linked data structure

Implement the Sorted List ADT as a linked data structure

Compare alternative implementations of an abstract data type with respect to
performance

Linked Structures

G
oals

280 | Chapter 5: Linked Structures

Push
Allocate space for new item
Put new item into the allocated space
Put the allocated space into the stack

In the last two chapters, we examined array-based implementations of four very useful
ADTs: the Unsorted List, the Sorted List, the Stack, and the Queue. Unfortunately, the
array-based implementation has a serious drawback: The size of a structure must be
determined when an object is declared. When we declare a variable of the class
UnsortedType, SortedType, StackType, or QueType, the maximum number of items
is passed as a parameter to the constructor, and an array of that size is allocated. Most
of these classes in the last 2 chapters used static, not dynamic, allocation of the array. If
we use fewer elements, space is wasted; if we need to store more elements than the
array can hold, we cannot do so. Ideally, we could just get space for elements on these
structures as needed.

Dynamic allocation of each element—one at a time—allows us to do just that.

5.1 Implementing a Stack as a Linked Structure

Let’s see how we might use the concept of dynamic storage allocation to implement the
class StackType.

The Function Push

We can modify the function Push to allocate space for each new element dynamically.

Implementing the first part of this operation is simple. We use the built-in C++
operator new to allocate space dynamically:

// Allocate space for new item.
itemPtr = new ItemType;

The new operator allocates a block of memory large enough to hold a value of type
ItemType (the type of data contained in the stack) and returns the block’s address,
which is copied into the variable itemPtr. Let’s say for the moment that itemPtr has
been declared to be of type ItemType*. Now we can use the dereference operator (*) to
put newItem into the space that was allocated: *itemPtr = newItem. The situation at
this point is pictured in Figure 5.1, with newItem being ‘E’.

The third part of the Push operation is to “put the allocated space into the stack.”
How do we complete this task? Think for a minute about what happens after we have

5.1 Implementing a Stack as a Linked Structure | 281

Figure 5.1 Putting new element into the allocated space

‘E’

itemPtr •

Somewhere in free store

Figure 5.2 After four calls to Push

‘E’

‘L’ ‘D’

‘A’

Somewhere in free store

pushed a few characters. Space is allocated for each new element, and each character is
put into the space. Figure 5.2 shows the results of calling Push to add the characters ‘D’,
‘A’, ‘L’, and ‘E’ to the stack.

Whoops—we see our data in the dynamically allocated space, but it’s not a stack!
There’s no order. Even worse, because we haven’t returned the pointers to the dynami-
cally allocated space from the function Push, we can no longer access any of the ele-
ments. Clearly, the third part of the Push operation needs to do something to fix this
situation. Where can we store the pointers to our data?

One possibility is to declare the stack as an array of pointers and to put the pointer
to each new item into this array, as shown in Figure 5.3. This solution would keep track
of the pointers to all elements in the correct order, but it wouldn’t solve our original
problem: We still need to declare an array of a particular size. Where else could we put
the pointers? It would be nice if we could just chain the elements together somehow, as
shown in Figure 5.4. We call each element in this “linked” stack a node.

This solution looks promising. Let’s see how we might use this idea to implement
the stack. First, we push the character ‘D’. Push uses the operator new to allocate space
for the new node and puts ‘D’ into the space. Now the stack contains one element. We
don’t want to lose the pointer to this element, so we need a data member in our stack
class in which to store the pointer to the top of the stack (topPtr). Figure 5.5 illustrates
the first Push operation.

Next, we call Push to add the character ‘A’ to the stack. Push applies new to allo-
cate space for the new element and puts ‘A’ into the space. Now we want to chain ‘A’ to
‘D’, the existing stack element. We can establish a link between the two elements by let-
ting one element “point” to the next; that is, we can store into each stack element the

282 | Chapter 5: Linked Structures

Figure 5.3 One way to keep track of the pointers

‘E’

‘L’ ‘D’

‘A’

stack

[0]

[1]

[2]

[3]

•
•
•

[99]

•

•

•

•

Figure 5.4 Chaining the stack elements together

‘E’

‘L’

‘D’

‘A’

Figure 5.5 Pushing the first element

‘D’

topPtr •

address of the next element. To do so, we need to modify the stack node type. Let’s
make each node in the stack contain two parts: info and next. The info member con-
tains the stack user’s data—a character, for instance. The next member contains the
address of the next element in the stack. Figure 5.6 pictures a single node.

As you can see in the figure, the next member of each node points to the next
node in the stack. What about the next member of the last node? We cannot leave it
unassigned. The next member of the last node in the stack must contain some special

5.1 Implementing a Stack as a Linked Structure | 283

Figure 5.6 A single node

.info .next

The user’s
data

Pointer to the
next node
in the topPtr

‘D’

Figure 5.7 Node terminology

Info
(location) N

ex
t

(lo
ca

tio
n)

location

Node (location)

topPtr

value that is not a valid address. NULL, a spe-
cial pointer constant available in <cstddef>,
says, “This pointer doesn’t point to anything.”
We can put NULL in the next member of the
last node, thereby marking the end of the
stack. Graphically, we use a slash across the
next member to represent a NULL pointer.

In fact, in Chapter 3 we introduced a list
design terminology that incorporated the
abstraction of a node. Let’s review this termi-
nology that allows us to refer to the parts of a
node in our algorithms (see Figure 5.7).

Set location to address of a new node of type ItemType // Allocate space for new item

Node(location) refers to all the data at location,
including implementation-specific data.

Info(location) refers to the user’s data at location.

Info(last) refers to the user’s data at the last location in
the list.

Next(location) gives the location of the node following
Node(location).

284 | Chapter 5: Linked Structures

Figure 5.8 The second Push operation

‘D’

topPtr

location

‘D’

‘A’

topPtr

location

Set Info(location) to newItem // Put new item into the allocated space

In the array-based implementation, location is an index; in our pointer-based
implementation, it must be a pointer to a record that contains both the user’s informa-
tion and a pointer to the next node on the stack.

Now let’s return to our Push algorithm. We have allocated a node to contain the
new element ‘A’ using the operator new (Figure 5.8a). Let’s revert to our design termi-
nology, and call the pointer location.
The new value ‘A’ is put into the node (Figure 5.8b):

Now we are ready to link the new node to the stack. Where should we link it?
Should the new node come before or after the node containing ‘D’? To answer that
question, consider how the stack is accessed: We add elements to the top (Push) and

5.1 Implementing a Stack as a Linked Structure | 285

remove elements from the top (Pop). Last in, first out. Therefore, it would be a good idea
to have the new node come first, so that we can access it directly. Linking the new node
to the (previous) top node in the stack is a two-step process:

Figure 5.9 Be careful when you change pointers

‘D’

‘A’

topPtr

location

Lost in space!

Make Next(location) point to the stack’s top node // (Figure 5.8c)
Make topPtr point to the new node // (Figure 5.8d)

Note that the order of these tasks is critical. If we changed the topPtr pointer
before making Next(location) point to the top of the stack, we would lose access to
the stack nodes! (See Figure 5.9.) This situation is generally true when dealing with a
linked structure: You must be very careful to change the pointers in the correct order, so
that you do not lose access to any of the data.

Before we code this algorithm, let’s see how we declare the stack data. From the
stack user’s point of view, nothing has changed; the prototype for member function
Push is the same as it was for the array-based implementation.

void Push(ItemType newItem);

ItemType is still the type of data that the user wants to put in the stack. The class
StackType, however, needs new definitions. It no longer is a class with a top member
and an array member to hold the items; instead, its only member is topPtr, the pointer
to a single node at the top of the stack. The node to which topPtr points has two parts,
info and next, which suggests a C++ struct or class representation. We choose to make
NodeType a struct rather than a class, because the nodes in the structure are passive.
That is, they are acted upon by the member functions of StackType.

286 | Chapter 5: Linked Structures

To concentrate on the manipulation of the class objects, we implement the stack as
a stack of char, rather than making it a template class, by inserting a typedef statement.

// Header file for Stack ADT.
typedef char ItemType;
struct NodeType;

class StackType
{
public:
StackType();
~StackType();
void Push(ItemType) const;
void Pop();
ItemType Top();
bool IsEmpty() const;
bool IsFull() const;

private:
NodeType* topPtr;

};

NodeType will be a struct containing the user’s data as well as a pointer to the next
node. We alert the compiler that we plan to use a pointer to NodeType data before we
have defined NodeType by using the statement

struct NodeType;

This statement, called a forward declaration, is analogous to a function prototype:
The compiler is told the nature of an identifier before the identifier is fully defined. The
definition of NodeType (shown below) comes later in either the header file or the imple-
mentation file.

struct NodeType
{
ItemType info;
NodeType* next;

};

To summarize, StackType is a class with only one data member, a pointer to the top
node in the stack. We omit the parameterized constructor that allowed the client to
specify a maximum stack size. With our dynamically allocated linked structure, no spe-
cific limit applies to the size of the stack.

Now let’s code the Push algorithm. We use a local variable, location, of type
NodeType*. The first two tasks are simple:

5.1 Implementing a Stack as a Linked Structure | 287

// Allocate space for new item.
location = new NodeType;

// Put new item into the allocated space.
location->info = newItem;

Here location is a pointer to a node containing an info member and a next
member. We reference this node with *location, a struct with two members. Because
*location is a struct, we can access its members in the usual way—by adding a period,
followed by the desired member name. Thus (*location).info refers to the info
member of the struct on the free store pointed to by location. The parentheses are
necessary because the dot operator has higher precedence than the dereferencing opera-
tor (*). As we said in Chapter 4, C++ provides the -> operator, which both dereferences
the pointer and accesses a member. In other words, the expression (*location).info
is equivalent to location->info. The dark shaded area in Figure 5.10(a) corresponds
to location, the dark shaded area in (b) corresponds to *location, and the dark
shaded area in (c) corresponds to location->info.

Because location->info is the same type as the user’s data, we can assign
newItem to it. So far, so good.

Now for the linking task:

Figure 5.10 Pointer dereferencing and member selection

‘A’

‘A’

‘A’

location

location

location

•

•

•

(a) location

(b) *location

(c) location–>info

Make Next(location) point to the stack’s top node // (Figure 5.8c)
Make topPtr point to the new node // (Figure 5.8d)

288 | Chapter 5: Linked Structures

Next(location) is the next member of the node pointed to by location. We can
access it just as we accessed the info member: location->next. What can we put
into this field? It is declared as a pointer, so we can assign another value of the same
pointer type to it. We want to make this member point to the stack’s top node. Because
we have a pointer to the stack’s top node (topPtr), this assignment is simple:

location->next = topPtr;

Finally, we need to complete the linking by making topPtr point to the new node.
Because topPtr is declared as a pointer, we can assign another value of the same
pointer type to it. Because we have a pointer to the new node (the local variable loca-
tion), this assignment can be made:

topPtr = location;

Here is the complete function Push:

void StackType::Push(ItemType newItem)
// Adds newItem to the top of the stack.
// Pre: Stack has been initialized.
// Post: If stack is full, FullStack exception is thrown;
// else, newItem is at the top of the stack.

{
if (IsFull())
throw FullStack();

else
{
NodeType* location;
location = new NodeType;
location->info = newItem;
location->next = topPtr;
topPtr = location;

}
}

You have seen how this code works on a stack that contains at least one value.
What happens if we call this function when the stack is empty? Space is allocated for
the new element and the element is put into the space (Figure 5.11a). Does the function
correctly link the new node to the top of an empty stack? Let’s see. The next member of
the new node is assigned the value of topPtr. What is this value when the stack is
empty? It is NULL, which is exactly what we want to put into the next member of the
last node of a linked stack (Figure 5.11b). Then topPtr is reset to point to the new node
(Figure 5.11c). Thus this function works for an empty stack as well as a stack that con-
tains at least one element.

The coded version of the function Push uses pointer-variable terminology where
our algorithm used our special node terminology. Table 5.1 summarizes the relationship
between the design and code terminology.

5.1 Implementing a Stack as a Linked Structure | 289

Figure 5.11 Pushing onto an empty stack

•location

topPtr

‘A’

‘A’
•

•

location

topPtr

•location

topPtr

‘A’

(a) (b)

(c)

Table 5.1 Comparing Node Design Notation to C++ Code

Design Notation C++ Code

Node(location) *location

Info(location) location->info

Next(location) location->next

Set location to Next(location) location = location->next

Set Info(location) to value location->info = value

The Function Pop

Now let’s look at the Pop operation. The algorithm for Pop follows:

Pop
Unlink the top node from the stack
Deallocate the old top node

290 | Chapter 5: Linked Structures

Figure 5.12 Popping the top element

•
•

•

‘Z’

topPtr ‘Y’

‘X’

•

•

•

‘Z’

topPtr ‘Y’

‘X’To be deallocated

(a)

(b)

Let’s try out this algorithm on the stack depicted in Figure 5.12. How do we
“unlink” the top node from the stack? If we reset topPtr to point to the node following
the top node, the resulting stack should be correct. Now we can free the space occupied
by the old top node by using the C++ delete operation.

Whoops! The problem with this algorithm is that it leaves the former top node inac-
cessible—we no longer have a pointer to this node. Without a pointer, we cannot use the
delete operation to free the space. When we code the function, let’s add a local pointer
variable to save the address of this node before we reset topPtr.

void StackType::Pop()
// Removes top item from stack
// Pre: Stack has been initialized.
// Post: If stack is empty, EmptyStack exception is thrown;
// else, top element has been removed.
{
if (IsEmpty())
throw EmptyStack();

else

5.1 Implementing a Stack as a Linked Structure | 291

{
NodeType* tempPtr;
tempPtr = topPtr;
topPtr = topPtr->next;
delete tempPtr;

}
}

Let’s walk through this function, using the stack depicted in Figure 5.13. We save a
pointer to the first node, so that we can access it later to delete it (Figure 5.13a). Then
the external pointer to the stack is advanced to jump over the first node, making the
second node become the new top item. How do we know the address of the second
node? We get it from the next member of the first node (topPtr->next). This value is
assigned to topPtr to complete the unlinking task (Figure 5.13b). Finally, we free the
space occupied by the old top node by using the delete operator, giving it the address
we saved in tempPtr (Figure 5.13c).

Does this function work if the stack contains only one node when Pop is called?
Let’s see. We unlink the first/last node from the stack. We save a pointer to the node, as
before, and then try to assign topPtr->next to topPtr (Figure 5.14). What is the
value of topPtr->next? Because it is the last node in the list, its next member should
contain NULL. This value is assigned to topPtr, which is exactly what we want, because
a NULL stack pointer means that the stack is empty. Thus the function works for a stack
containing only one element.

What happens if Pop does not check for the empty stack? If topPtr contains NULL,
then the assignment statement

topPtr = topPtr->next;

results in a run-time error. On some systems, you get the message ATTEMPT TO DEREF-
ERENCE NULL POINTER; on other systems, the screen freezes. This result cannot occur,
however, because our code does check for the empty stack before continuing with the
operation.

The Function Top

A glance at any of the previous figures shows that the information in the top of the
stack appears in the info member of the first node.

ItemType StackType::Top() const
// Returns a copy of the top item in the stack.
// Pre: Stack has been initialized.
// Post: If stack is empty, EmptyStack exception is thrown;

292 | Chapter 5: Linked Structures

Figure 5.13 Popping the stack

•

•

•

•

‘Z’

topPtr

tempPtr

‘Y’

‘X’

(a)

•

•

‘Z’

topPtr ‘Y’

‘X’

(b)

• •‘Y’

‘X’

(c)

•

•tempPtr

topPtr •

•delete tempPtr

// else, a copy of the top element is returned.
{
if (IsEmpty())
throw EmptyStack();

else
return topPtr->info;

}

5.1 Implementing a Stack as a Linked Structure | 293

Figure 5.14 Popping the last element on the stack

‘X’
•

•tempPtr

topPtr

•delete tempPtr

topPtr

(a)

(b)

Other Stack Functions

In the explanation of pushing the first element, we noted that an empty stack is indi-
cated by a NULL pointer. This fact has implications for other stack operations. To initial-
ize a stack to the empty state, we merely need to set topPtr to NULL.

StackType::StackType() // Class constructor.
{
topPtr = NULL;

}

That was simple; and the function IsEmpty is correspondingly simple. If we initial-
ize an empty stack by setting topPtr to NULL, then we can detect an empty stack by
checking for a NULL pointer.

bool StackType::IsEmpty() const
// Returns true if there are no elements on the stack and false otherwise.
{
return (topPtr == NULL);

}

What about the function IsFull? Using dynamically allocated nodes rather than
an array, we no longer have an explicit limit on the stack size. We can continue to get

294 | Chapter 5: Linked Structures

more nodes until we run out of memory on the free store. The ISO/ANSI C++ Standard
dictates that the new operator in C++ throw a bad_alloc exception when there is no
more space to allocate. The bad_alloc exception is defined in the <new> header. This
exception needs to be handled because an unhandled exception carries a death sentence
for the program.

bool StackType::IsFull() const
// Returns true if there is no room for another NodeType object
// on the free store and false otherwise.
{
NodeType* location;
try
{
location = new NodeType;
delete location;
return false;

}
catch(std::bad_alloc exception)
{
return true;

}
}

Our class definition also provides a class destructor. Do we need one? Yes, we do. If
the stack is a local variable, the space for the data member topPtr is deallocated when
the stack goes out of scope, but the nodes to which topPtr points do not. The class
destructor must loop through the stack, returning the nodes to the free store with the
delete operator. How do we know when there are “more nodes in the stack”? As long
as topPtr is not NULL, the stack is not empty. Thus the resulting condition on the loop
is while(topPtr != NULL).

StackType::~StackType()
// Post: Stack is empty; all items have been deallocated.
{

NodeType* tempPtr;

while (topPtr != NULL)
{
tempPtr = topPtr;
topPtr = topPtr->next;
delete tempPtr;

}
}

5.1 Implementing a Stack as a Linked Structure | 295

We can test the linked implementation of the Stack ADT by using the same test
plan that we wrote for the array-based version. The test driver and files have the same
names as those in Chapter 4.

Comparing Stack Implementations

We have looked at three different implementations of the Stack ADT. The first two
were similar in that they used an array to store the items; one used a static array
and one used a dynamically allocated array. The third implementation is very differ-
ent, in that it uses dynamic allocation for each item in the stack. We can compare
these implementations in terms of storage requirements and efficiency of the algo-
rithms. An array variable of the maximum stack size takes the same amount of
memory, no matter how many array slots are actually occupied; we need to reserve
space for the maximum number of slots possible. This is true no matter how we
allocate space for the array. The linked implementation using dynamically allocated
storage requires space only for the number of elements actually on the stack at run
time. Note, however, that the elements are larger because we must store the link as
well as the user’s data.

We can compare the relative “efficiency” of the three implementations in terms of
Big-O notation. In all three implementations, the class constructor, IsFull, and
IsEmpty clearly have O(1) complexity. They always take a constant amount of work.
What about Push, Top, and Pop? Does the number of elements in the stack affect the
amount of work done by these operations? No, it does not. In all three implementations,
we directly access the top of the stack, so these operations also take a constant amount
of work. They, too, have O(1) complexity.

The class destructors do differ from one implementation to the other. The array-
based implementation in static storage does not need a destructor, whereas the array-
based implementation in dynamic storage does need one. The destructor for the
dynamically allocated array returns a single block of storage; the size of the block of
cells does not change the amount of work. The complexity is, therefore, O(1). The linked
implementation must process every node in the stack to free the node space. This opera-
tion, therefore, has O(N) complexity, where N is the number of nodes in the stack.

Overall, the three stack implementations are roughly equivalent in terms of the
amount of work they do, differing in only one of the five operations and the class
destructor. Note that if the difference had occurred in the Push, Top, or Pop operation,
rather than the less frequently called destructor, it would be more significant. Table 5.2
summarizes the Big-O comparison of the stack operations. The operation that differs
between the three implementations appears in boldface in the table.

So which approach is better? The answer, as usual, is: It depends. The linked imple-
mentation certainly gives more flexibility, and in applications where the number of
stack items can vary greatly, it wastes less space when the stack is small. In situations
where the stack size is totally unpredictable, the linked implementation is preferable,
because size is largely irrelevant. Why, then, would we ever want to use an array-based
implementation? Because it is short, simple, and efficient. If pushing and popping
occur frequently, the array-based implementation executes more quickly because it does

296 | Chapter 5: Linked Structures

Table 5.2 Big-O Comparison of Stack Operations

Static Array Dynamic Array Linked
Implementation Implementation Implementation

Class constructor O(1) O(1) O(1)

IsFull O(1) O(1) O(1)

IsEmpty O(1) O(1) O(1)

Push O(1) O(1) O(1)

Pop O(1) O(1) O(1)

Top O(1) O(1) O(1)

Destructor NA O(1) O(N)

not incur the run-time overhead of the new and delete operations. When maxStack
(MAX_ITEMS in the ADT specification) is small and we never need to exceed the declared
stack size, the array-based implementation is a good choice. Also, if you are program-
ming in a language that does not support dynamic storage allocation, an array imple-
mentation may be the only good choice.

5.2 Implementing a Queue as a Linked Structure

The major weakness of the array-based implementation of a FIFO queue is identical to
that of a stack: the need to create an array large enough for a structure of the maximum
expected size. This size is set once and cannot change. If a much smaller number of ele-
ments is actually needed, we have wasted a lot of space. If a larger number of elements
is needed unexpectedly, we are in trouble, because we cannot extend the size of the
array. To solve this problem, we would have to allocate a larger array, copy the ele-
ments into it, and deallocate the smaller array.

From our discussion of stacks, we know that we can get around this problem by using
dynamic storage allocation to get space for each queue element only as needed. This
implementation relies on the idea of linking the elements one to the next to form a chain.

The Function Enqueue

In the array-based implementation of a queue, we decided to keep track of two indexes
that pointed to the front and rear boundaries of the data in the queue. In a linked repre-
sentation, we can use two pointers, front and rear, to mark the front and the rear of
the queue. (See Figure 5.15. By now you realize that dynamically allocated nodes in
linked structures exist “somewhere on the free store,” rather than in adjacent locations
like array slots, but we will show the nodes arranged linearly for clarity.)

5.2 Implementing a Queue as a Linked Structure | 297

Figure 5.15 A linked queue representation

• •

• • •• • •

front rear

Figure 5.16 The Enqueue operation

• •

• • • •

front

•

New
node

rear

newNode

Enqueue
Get a node for the new item
Insert the new node at the rear of the queue
Update pointer to the rear of the queue

We can Dequeue elements from the queue using an algorithm similar to our stack
Pop algorithm, with front pointing to the first node in the queue. Because we add new
elements to the queue by inserting after the last node, however, we need a new
Enqueue algorithm (see Figure 5.16).

The first of these tasks is familiar from the stack Push operation. We get the space
using C++’s new operator and then store the new item into the node’s info member.
The new node is inserted at the rear end of the queue, so we also need to set the node’s
next member to NULL.

298 | Chapter 5: Linked Structures

// Get a node for the new item.
Set newNode to the address of a newly allocated node
Set Info(newNode) to newItem
Set Next(newNode) to NULL

// Insert the new node at the rear of the queue.
Set Next(rear) to newNode

// Insert the new node at the rear of the queue.
if the queue is empty

Set front to newNode
else

Set Next(rear) to newNode

The second part of the Enqueue algorithm involves updating the next member of
Node(rear) to make it point to the new node. This task is simple:

What happens if the queue is empty, when we Enqueue the first element? In this
case, no Node(rear) exists; we must set front to point to the new node. We modify the
algorithm to take this condition into account:

The last task in the Enqueue algorithm, updating the rear pointer, simply involves
the assignment rear = newNode. Does this approach work if this node is the first one
in the queue? Yes—we want rear to always point to the rear node following a call to
Enqueue, regardless of how many items are in the queue.

Note the relative positions of front and rear. Had they been reversed (as in Figure
5.17), we could have used our stack Push algorithm for the Enqueue operation. But how

5.2 Implementing a Queue as a Linked Structure | 299

Figure 5.17 A bad queue design

• •

• •

rear

• • • •

front

To enqueue, use the Push algorithm To dequeue, we must be able to reset
front to point to the preceding node.
But we can't get there from here.

Figure 5.18 The Dequeue operation

•

• •

rear

•

front

•

info

item

could we Dequeue? To delete the last node of the linked queue, we need to reset front
to point to the node preceding the deleted node. Because our pointers all go forward, we
can’t get back to the preceding node. To accomplish this task, we would have to either
traverse the whole list (an O(N) solution—very inefficient, especially if the queue is long)
or keep a list with pointers in both directions. This kind of a doubly linked structure is
not necessary if we set up our queue pointers correctly in the first place.

The Function Dequeue

In writing the Enqueue algorithm, we noticed that inserting into an empty queue is a
special case because we need to make front point to the new node. Similarly, in our
Dequeue algorithm, we need to allow for the case of deleting the last node in the queue,
leaving the queue empty. If front is NULL after we delete the front node, we know that
the queue is now empty. In this case, we need to set rear to NULL as well. Figure 5.18
illustrates the algorithm for removing the front element from a linked queue. This algo-
rithm assumes that the test for an empty queue was performed as specified, so we know
that the queue contains at least one node. (We can make this assumption because an
exception is thrown if it isn’t true.) As with Pop, we need to keep a local pointer to the
node being removed, allowing us to access it for the delete operation after the front
pointer change.

300 | Chapter 5: Linked Structures

Dequeue
Set tempPtr to front // Save it for deallocating
Set item to Info(front)
Set front to Next(front)
if queue is now empty

Set rear to NULL
Deallocate Node(tempPtr)

How do we know when the queue is empty? Both front and rear should then be
NULL pointers. This fact makes the class constructor and IsEmpty extremely simple. What
about the function IsFull? We can use the same IsFull we wrote for the Stack ADT.

In the array-based implementation, the operation MakeEmpty merely changed the
front and rear indexes to make the queue appear to be empty. The data slots in the
array were left unchanged; they became logical garbage, inaccessible through the queue
operations. In the linked implementation, MakeEmpty must result in an empty queue,
but this operation involves more than just setting front and rear to NULL. We must
also free the dynamically allocated space in which the queue elements reside, just as we
did for the stack items. In fact, the algorithm for destroying the queue is exactly the
same as the algorithm for destroying the stack.

As in the case of changing the stack implementation to a linked structure, we
change only the declarations and the insides of the queue operations. For a queue-using
program, the interfaces to the operations remain the same. Let’s look at the declarations
first. In our design, we referred to the two queue pointers as front and rear. These
pointers become the data members in our class QueType. Each points to a node in the
linked queue (or is a NULL pointer if the queue is empty). Each queue node has two
members, info (containing the user’s data) and next (containing the pointer to the
next node or, in the case of the last node, NULL). We can implement the FIFO Queue
ADT with the following code. Let’s make this implementation a class template.

// Header file for Queue ADT
class FullQueue
{};

class EmptyQueue
{};

template <class ItemType>
struct NodeType;

template <class ItemType>
class QueType

5.2 Implementing a Queue as a Linked Structure | 301

{
public:
QueType();
~QueType();
void MakeEmpty();
void Enqueue(ItemType);
void Dequeue(ItemType&);
bool IsEmpty() const;
bool IsFull() const;

private:
NodeType<ItemType>* front;
NodeType<ItemType>* rear;

};

#include <cstddef> // For NULL.
#include <new> // For bad_alloc.

template <class ItemType>
struct NodeType
{
ItemType info;
NodeType* next;

};

template <class ItemType>
QueType<ItemType>::QueType() // Class constructor.
// Post: front and rear are set to NULL.
{
front = NULL;
rear = NULL;

}

template <class ItemType>
void QueType<ItemType>::MakeEmpty()
// Post: Queue is empty; all elements have been deallocated.
{
NodeType<ItemType>* tempPtr;

while (front != NULL)
{
tempPtr = front;
front = front->next;
delete tempPtr;

}
rear = NULL;

}

302 | Chapter 5: Linked Structures

template <class ItemType> // Class destructor.
QueType<ItemType>::~QueType()
{
MakeEmpty();

}

template<class ItemType>
bool QueType<ItemType>::IsFull() const
// Returns true if there is no room for another NodeType object
// on the free store and false otherwise.
{
NodeType<ItemType>* location;
try
{
location = new NodeType<ItemType>;
delete location;
return false;

}
catch(std::bad_alloc exception)
{
return true;

}
}

template <class ItemType>
bool QueType<ItemType>::IsEmpty() const
// Returns true if there are no elements on the queue and false otherwise.
{
return (front == NULL);

}

template <class ItemType>
void QueType<ItemType>::Enqueue(ItemType newItem)
// Adds newItem to the rear of the queue.
// Pre: Queue has been initialized.
// Post: If (queue is not full), newItem is at the rear of the queue;
// otherwise, a FullQueue exception is thrown.

{
if (IsFull())
throw FullQueue();

else
{
NodeType<ItemType>* newNode;

newNode = new NodeType<ItemType>;
newNode->info = newItem;
newNode->next = NULL;

5.2 Implementing a Queue as a Linked Structure | 303

if (rear == NULL)
front = newNode;

else
rear->next = newNode;

rear = newNode;
}

}

template <class ItemType>
void QueType<ItemType>::Dequeue(ItemType& item)
// Removes front item from the queue and returns it in item.
// Pre: Queue has been initialized
// Post: If (queue is not empty), the front of the queue has been
// removed and a copy returned in item;
// otherwise, an EmptyQueue exception is thrown.
{
if (IsEmpty())
throw EmptyQueue();

else
{
NodeType<ItemType>* tempPtr;

tempPtr = front;
item = front->info;
front = front->next;
if (front == NULL)
rear = NULL;

delete tempPtr;
}

}

A Circular Linked Queue Design

Our QueType class contains two pointers, one to each end of the queue. This design is
based on the linear structure of the linked queue. Given only a pointer to the front of the
queue, we could follow the pointers to reach the rear, but this tactic turns accessing the
rear (to Enqueue an item) into an O(N) operation. With a pointer to the rear of the queue
only, we could not access the front because the pointers go only from front to rear.

If we made the queue circularly linked, we could access both ends of the queue
from a single pointer. That is, the next member of the rear node would point to the
front node of the queue (see Figure 5.19). Now QueType has only one data member,
rather than two. One interesting thing about this queue implementation is that it differs
from the logical picture of a queue as a linear structure with two ends. This queue is a
circular structure with no ends. What makes it a queue is its support of FIFO access.

To Enqueue an element, we access the “rear” node directly through the pointer
rear. To Dequeue an element, we access the “front” node of the queue. We don’t have

304 | Chapter 5: Linked Structures

Figure 5.19 A circular linked queue

•

•

rear

• •• • •
 Front of

queue
Rear of
queue

a pointer to this node, but we do have a pointer to the node preceding it—rear. The
pointer to the “front” node of the queue is in Next(rear). An empty queue is repre-
sented by rear = NULL. Designing and coding the queue operations using a circular
linked implementation is left as a programming assignment.

We can test both linked implementations of the Queue ADT by using the same test
plan that we wrote for the array-based version.

Comparing Queue Implementations

We have now looked at several different implementations of the Queue ADT. How do
they compare? As when we compared the stack implementations, we look at two differ-
ent factors: the amount of memory required to store the structure and the amount of
“work” required by the solution, as expressed in Big-O notation. Let’s compare the two
implementations that we have coded completely: the array-based implementation and
the dynamically linked implementation.

An array variable of the maximum queue size takes the same amount of memory,
no matter how many array slots are actually used; we need to reserve space for the
maximum possible number of elements. The linked implementation using dynamically
allocated storage space requires space only for the number of elements actually in the
queue at run time. Note, however, that the node elements are larger, because we must
store the link (the next member) as well as the user’s data.

Let’s see how these implementations would compare if the queue contains strings
(each requiring, say, 80 bytes). If the maximum number of queue elements is 100
strings, maxQue must be 101 to account for the reserved space before front. On our
example system, an array index (type int) takes 2 bytes and a pointer takes 4 bytes.
The storage requirements of the array-based implementation are

(80 bytes * 101 array slots) + (2 bytes * 2 indexes) = 8,084 bytes

no matter how many elements are in the queue at any time. The linked queue imple-
mentation requires

80 bytes (the string) + 4 bytes (the “next” pointer) = 84 bytes

per queue node, plus 8 bytes for the two external queue pointers. The storage require-
ments of these queue implementations are graphed in Figure 5.20(a). Note that the
linked implementation does not always take less space than the array; when the number

5.2 Implementing a Queue as a Linked Structure | 305

Figure 5.20 Comparison of storage requirements

9

8

7

6

5

4

3

2

1

0 10 20 30 40 50 60 70 80 90 100

By
te

s
(K

)

Elements in queue

(a) Queue contains 80-byte strings

Array-based queue

Linked queue

600

500

400

300

200

100

0 10 20 30 40 50 60 70 80 90 100

By
te

s

Elements in queue

(b) Queue contains 2-byte integers

Linked queue
Array-based
queue

of elements in the queue exceeds 96, the linked queue requires more memory, due to the
need to store the pointers.

If the queue item type were small, such as a character or an integer, the pointer
member could be larger than the user’s data member. In this case, the space used by the
linked representation exceeds that of the array-based representation much more quickly.
Consider a queue that may contain a maximum of 100 integer elements (2 bytes each).
The storage requirements for the array-based queue are

(2 bytes (per element) * 101 array slots) + (2 bytes * 2 indexes) = 206 bytes

no matter how many elements are in the queue at any time. The linked queue imple-
mentation requires

2 bytes (the info member) + 4 bytes (the next member) = 6 bytes

306 | Chapter 5: Linked Structures

Table 5.3 Big-O Comparison of Queue Operations

Static Array Dynamic Array Linked
Implementation Implementation Implementation

Class constructor O(1) O(1) O(1)

MakeEmpty O(1) O(1) O(N)
IsFull O(1) O(1) O(1)

IsEmpty O(1) O(1) O(1)

Enqueue O(1) O(1) O(1)

Dequeue O(1) O(1) O(1)

Destructor NA O(1) O(N)

per queue node, plus 8 bytes for the two external queue pointers. The storage require-
ments for this queue are graphed in Figure 5.20(b). When the number of elements in this
queue exceeds 33, the linked queue requires more memory, due to the need to store
pointers that are twice as big as the ItemType.

We can also compare the relative “efficiency” of the implementations, in terms of
Big-O notation. The class constructors, IsFull, and IsEmpty operations are clearly
O(1); they always take the same amount of work regardless of how many items are on
the queue. What about Enqueue and Dequeue? Does the number of elements in the
queue affect the amount of work done by these operations? No, it does not; in both
implementations, we can directly access the front and rear of the queue. The amount of
work done by these operations is independent of the queue size, so these operations also
have O(1) complexity.

Only the MakeEmpty operation differs from one implementation to the other. The
static array-based implementation merely sets the front and rear indexes, so it is clearly
an O(1) operation. The dynamic array-based implementation is only one statement, so it
also is O(1). The linked implementation must process every node in the queue to free the
node space. This operation, therefore, has O(N) complexity, where N is the number of
nodes in the queue. The class destructor was not needed in the statically allocated array-
based structure but was required in the dynamically allocated array-based structure. The
class destructor in the array-based implementation in dynamic storage has only one state-
ment, so it has O(1) complexity. The class destructor in the dynamically allocated linked
structure contains a loop that executes as many times as there are items on the queue.
Thus the dynamically linked version has O(N) complexity. As with the array-based and
linked implementations of stacks, these two queue implementations are roughly equivalent
in terms of the amount of work they do, differing only in one of the six operations and in
the class destructor. Table 5.3 summarizes the Big-O comparison of the queue operations.

5.3 Implementing the Unsorted List as a Linked Structure | 307

5.3 Implementing the Unsorted List as a Linked Structure

Just as in the implementations of the Stack and Queue ADTs, each node in a linked
list must have at least two data members. The first contains the user’s data; the sec-
ond acts as a pointer to the next element in the list. To implement the Unsorted List
ADT, we need to record two pieces of information about the structure in addition to
the list of items. The LengthIs operation returns the number of items in the list. In
the array-based implementation, the length member defines the extent of the list
within the array. Therefore, the length member must be present. In a link-based list,
we have a choice: We can keep a length member or we can count the number of
elements each time we call the LengthIs operation. Keeping a length member
requires an addition operation each time InsertItem is called and a subtraction
operation each time DeleteItem is called. Which option is better? We cannot deter-
mine the answer in the abstract; it depends on the relative frequency of use of the
LengthIs, InsertItem, and DeleteItem operations. For our example here, let’s
explicitly keep track of the length of the list by including a length member in the
UnsortedType class.

ResetList and GetNextItem require that we keep track of the current position
during an iteration, so we need a currentPos member. In the array-based implementa-
tion, currentPos is an array index. What is the logical equivalent within a linked list?
A pointer. Figure 5.21 illustrates this structure.

The function headings (prototypes) that complete the specification are identical to
those in the array-based implementation. Recall that the specification of the class is the
interface seen by the user. The interface documentation tells the user what the operations
do, a situation that doesn’t change with the implementation. Because the specification
was given two chapters ago, we include it in the class documentation.

// Header file for Unsorted List ADT.
template <class ItemType>
struct NodeType;

// Assumption: ItemType is a type for which the operators "<"
// and "==" are defined-either an appropriate built-in type or
// a class that overloads these operators.

Figure 5.21 Honor roll list with two items (ResetList has not been called)

•• Lila Becca

2

?

list

.length

.currentPos

.listData

308 | Chapter 5: Linked Structures

template <class ItemType>
class UnsortedType
{
public:
UnsortedType(); // Class constructor.
~UnsortedType(); // Class destructor.

bool IsFull() const;
// Determines whether list is full.
// Post: Function value = (list is full).

int LengthIs() const;
// Determines the number of elements in list.
// Post: Function value = number of elements in list.

void MakeEmpty();
// Initializes list to empty state.
// Post: List is empty.

void RetrieveItem(ItemType& item, bool& found);
// Retrieves list element whose key matches item's key
// (if present).
// Pre: Key member of item is initialized.
// Post: If there is an element someItem whose key matches
// item's key, then found = true and item is a copy
// of someItem; otherwise, found = false and item is
// unchanged.
// List is unchanged.

void InsertItem(ItemType item);
// Adds item to list.
// Pre: List is not full.
// item is not in list.
// Post: item is in list.

void DeleteItem(ItemType item);
// Deletes the element whose key matches item's key.
// Pre: Key member of item is initialized.
// One and only one element in list has a key matching
// item's key.
// Post: No element in list has a key matching item's key.

void ResetList();
// Initializes current position for an iteration through the
// list.
// Post: Current position is prior to first item in list.

5.3 Implementing the Unsorted List as a Linked Structure | 309

void GetNextItem(ItemType& item);
// Gets the next element in list.
// Pre: Current position is defined.
// Element at current position is not last in list.
// Post: Current position is updated to next position.
// item is a copy of element at current position.

private:
NodeType<ItemType>* listData;
int length;
NodeType<ItemType>* currentPos;

};
�

As with the stack and the queue, the UnsortedType class template is preceded by a
forward declaration of the NodeType struct. Now we must give the full definition of
NodeType:

template<class ItemType>
struct NodeType
{
ItemType info;
NodeType* next;

};

From the List ADT implementor’s perspective, the algorithms for the list operations
are very similar to the ones developed for the sequential (array-based) implementation.
To initialize an empty list, we set listData (the external pointer to the linked list) to
NULL and set length to 0. Here is the class constructor to implement this operation:

template <class ItemType>
UnsortedType<ItemType>::UnsortedType() // Class constructor.
{
length = 0;
listData = NULL;

}

The IsFull operation is identical to the ones in the Stack and Queue ADTs. We use
the operator new to get a node within a try block. If more space is available, we deallo-
cate the node and return an indicator that the list is not full. If no more space is avail-
able, an exception is thrown and we return an indicator that there is no more space.

template<class ItemType>
bool UnsortedType<ItemType>::IsFull() const
// Returns true if there is no room for another NodeType object
// on the free store and false otherwise.
{

310 | Chapter 5: Linked Structures

NodeType<ItemType>* location;
try
{
location = new NodeType<ItemType>;
delete location;
return false;

}
catch(std::bad_alloc exception)
{
return true;

}
}

As in the array-based implementation, the LengthIs operation just returns the
length data member.

template <class ItemType>
int UnsortedType<ItemType>::LengthIs() const
// Post: Number of items in the list is returned.
{
return length;

}

The Function MakeEmpty

The MakeEmpty operation for a linked list is more complicated than its sequential list
counterpart, because the dynamically allocated space used by the elements must be
freed, one node at a time. The easiest approach is just to unlink each successive node in
the list and free it. As this approach works exactly like our MakeEmpty functions for the
Stack and the Queue, we just “borrow” the code, changing the references from topPtr
or front to listData. We must also set length to zero.

template <class ItemType>
void UnsortedType<ItemType>::MakeEmpty()
// Post: List is empty; all items have been deallocated.
{
NodeType<ItemType>* tempPtr;

while (listData != NULL)
{
tempPtr = listData;
listData = listData->next;
delete tempPtr;

}
length = 0;

}

5.3 Implementing the Unsorted List as a Linked Structure | 311

Table 5.4 Comparing List Notation to C++ Code

List Notation Index Expression Pointer Expression

Initialize location location = 0 location = listData

Set location to Next(location) location++ location = location->next

Have not examined Info(last) location < length location != NULL

Info(location) info[location] location->info

The body of the class destructor is identical to MakeEmpty, with the exception that
we do not need to set length to 0. When the list object goes out of scope, all members
of the object (including length) are returned to the system to be used again.

The Function RetrieveItem

The algorithm for the linked implementation is the same as the one for the array-based
implementation. Given the parameter item, we traverse the list looking for a location
where item.ComparedTo(Info(location)) returns EQUAL. The difference is in how we
traverse the list and how we access Info(location) to send it as a parameter to Com-
paredTo. Table 5.4 shows the equivalent expressions for our list design notation using
an index and a pointer.

When we coded the array-based function, we directly substituted the index notation
for the list notation. Can we directly substitute the pointer notation for the list notation
in the linked list? Let’s try it and see. The algorithm follows; the substitutions are
marked in boldface for emphasis.

RetrieveItem
Initialize location to listData
Set found to false
Set moreToSearch to (location != NULL)
while moreToSearch AND NOT found

switch (item.ComparedTo(location -> info))
case LESS :
case GREATER : Set location to location -> next

Set moreToSearch to (location != NULL)
case EQUAL : Set found to true

Set item to location -> info

312 | Chapter 5: Linked Structures

Figure 5.22 Retrieving an item in an unsorted linked list

• •• KatelistData •Lila Becca John

• •• KatelistData •Lila Becca John

moreToSearch:
found:
location:

false
false
NULL

•

location

moreToSearch:
found:

true
true

(a) Retrieve Kit

(b) Retrieve Lila

Let’s look at this algorithm and be sure that the substitutions do what we want by
examining the value of location at the end. There are two cases:

1. location = NULL. If we reach the end of the list without finding an item whose
key is equal to item’s key, then the item is not in the list. location correctly has
the null pointer value (see Figure 5.22a).

2. item.ComparedTo(location->info) = EQUAL. In this case, we have found the
element within the list and have copied it into item (see Figure 5.22b).

We can now code this algorithm, being reasonably confident that it is correct. We
have a choice: We can write a ComparedTo function that uses “<” and “==”, or we can
replace the switch statement in the algorithm with an if statement. Because the code
within each case is very simple, let’s use the relational operators.

template <class ItemType>
void UnsortedType<ItemType>::RetrieveItem(ItemType& item,

bool& found)
// Pre: Key member(s) of item is initialized.
// Post: If found, item's key matches an element's key in the
// list and a copy of that element has been stored in item;
// otherwise, item is unchanged.
{
bool moreToSearch;
NodeType<ItemType>* location;

5.3 Implementing the Unsorted List as a Linked Structure | 313

location = listData;
found = false;
moreToSearch = (location != NULL);

while (moreToSearch && !found)
{
if (item == location->info)
{
found = true;
item = location->info;

}
else
{
location = location->next;
moreToSearch = (location != NULL);

}
}

}

The Function InsertItem

In the array-based implementation, we put the new item at the end because that was the
easiest place to put it. What is the analogous place in the linked implementation? At the
beginning of the list. Because the list is unsorted, we can put the new item wherever we
choose, and we choose the easiest place: at the front of the list. In fact, InsertItem is
nearly identical to Push in the linked stack implementation. Note that we are not saying
that inserting an item into an unsorted list is the same as pushing an item onto a stack.
The unsorted list and the stack are entirely different ADTs. We are saying that the algo-
rithms for the respective operations are the same.

template <class ItemType>
void UnsortedType<ItemType>::InsertItem(ItemType item)
// item is in the list; length has been incremented.
{
NodeType<ItemType>* location;
location = new NodeType<ItemType>;
location->info = item;
location->next = listData;
listData = location;
length++;

}

314 | Chapter 5: Linked Structures

Figure 5.23 Deleting an interior node and deleting the first node

• •• KatelistData •Lila Becca John

• •• KatelistData •Lila Becca John

•

location

•

location

moreToSearch:
found:

true
true

(a) Delete Lila

(b) Delete Kate

The Function DeleteItem

To delete an item, we must first find it. In Figure 5.22(b), we see that location points
to the node that contains the item for which we are searching, the one to be removed.
To remove it, we must change the pointer in the previous node. That is, we must change
the next data member of the previous node to the next data member of the one being
deleted (see Figure 5.23a).

From the specifications, we know that the item to be deleted is present in the list, so
we can change our search algorithm slightly. Rather than compare the item for which
we are searching with the information in Info(location), we compare it with
Info(location->next). When we find a match, we have pointers to both the previous
node (location) and the node containing the item to be deleted (location->next).
Note that removing the first node must be a special case because we must change the
external pointer to the list (listData). Is removing the last node a special case? No.
The next data member of the node being deleted is NULL; it is stored in the next data
member of Node(location), where it belongs.

template <class ItemType>
void UnsortedType<ItemType>::DeleteItem(ItemType item)
// Pre: item's key has been initialized.
// An element in the list has a key that matches item's.
// Post: No element in the list has a key that matches item's.
{
NodeType<ItemType>* location = listData;
NodeType<ItemType>* tempLocation;

5.3 Implementing the Unsorted List as a Linked Structure | 315

// Locate node to be deleted.
if (item == listData->info)
{
tempLocation = location;
listData = listData->next; // Delete first node.

}
else
{
while (!(item==(location->next)->info))
location = location->next;

// Delete node at location->next.
tempLocation = location->next;
location->next = (location->next)->next;

}
delete tempLocation;
length--;

}

The Functions ResetList and GetNextItem

The Unsorted List ADT specification defines the “current position” as the location of the
last item accessed during an iteration through the list. In the array-based implementa-
tion, ResetList initialized currentPos to -1, and GetNextItem incremented cur-
rentPos and returned info[currentPos]. For currentPos, we used the special value
-1 to mean “prior to the first item in the list.” In the linked implementation, what spe-
cial pointer value can we use for “prior to the first item in the list”? The answer: NULL.
Now ResetList sets the currentPos member to NULL, and GetNextItem sets cur-
rentPos either to listData (if currentPos was NULL) or to currentPos->next (if it
was not NULL) before returning currentPos->info.

template <class ItemType>
void UnsortedType<ItemType>::ResetList()
// Post: Current position has been initialized.
{
currentPos = NULL;

}

template <class ItemType>
void UnsortedType<ItemType>::GetNextItem(ItemType& item)
// Pre: List has not been changed since last call.
// Post: A copy of the next item in the list is returned.
// When the end of the list is reached, currentPos
// is reset to begin again.
{
if (currentPos == NULL)

316 | Chapter 5: Linked Structures

currentPos = listData;
else
currentPos = currentPos->next;

item = currentPos->info;
}

Recall from the specifications that the body of GetNextItem is not required to
check for running off the end of the list. That test is the caller’s responsibility. A pre-
condition of GetNextItem is that the item at the current position not be the last in the
list. When working with linked lists, however, an error can cause the program to crash
with no warning. To avoid this problem, we change the postcondition to show that if
the last item has been accessed the list iteration begins again.

We can test the linked implementation of the Unsorted List ADT by using the same
test plan that we wrote for the array-based implementation. The test driver and files
appear on the Web site.

Comparing Unsorted List Implementations

How do the sequential and linked implementations of the List ADT compare? Just as we
did with the Stack and Queue ADT implementations, we look at two factors: the
amount of memory required to store the structure and the amount of work done by the
solution.

An array variable of the maximum list size requires the same amount of memory,
no matter how many array slots are actually used, because we need to reserve space for
the largest list possible. The linked implementation using dynamically allocated storage
space requires only enough space for the number of elements actually contained in the
list at run time. However, as we discussed in detail when evaluating queue implementa-
tions, each node element is larger, because we must store the link (the next member) as
well as the user’s data.

Once again, we use Big-O notation to compare the efficiency of the two implemen-
tations. As mentioned before, most of the operations are nearly identical in the two
implementations. The class constructor, IsFull, Reset, and GetNextItem functions in
both implementations clearly have O(1) complexity. As in the stack and queue opera-
tions, MakeEmpty is an O(1) operation for a sequential list but becomes a O(N) operation
for a linked list in dynamic storage. The sequential implementation merely marks the
list as empty, while the linked implementation must actually access each list element to
free its dynamically allocated space.

We did not introduce the concept of an array in dynamic storage until after we dis-
cussed the statically allocated array-based list. If the list had been implemented using an
array in dynamic storage, a class destructor would have been necessary and would have
O(1) complexity. The class destructor for the dynamically linked version has the same
complexity as MakeEmpty: O(N).

LengthIs is always O(1) in an array-based implementation, but we have a choice
in the linked version. We chose to make it O(1) by keeping a counter of the number of
elements we inserted and deleted. If we had chosen to implement LengthIs by count-

5.3 Implementing the Unsorted List as a Linked Structure | 317

Table 5.5 Big-O Comparison of Unsorted List Operations

Array Implementation Linked Implementation

Class constructor O(1) O(1)

Destructor NA O(N)
MakeEmpty O(1) O(N)
IsFull O(1) O(1)

LengthIs O(1) O(1)

ResetList O(1) O(1)

GetNextItem O(1) O(1)

RetrieveItem

Find O(N) O(N)

Process O(1) O(1)

Combined O(N) O(N)

InsertItem

Find O(1) O(1)

Insert O(1) O(1)

Combined O(1) O(1)

DeleteItem

Find O(N) O(N)

Delete O(1) O(1)

Combined O(N) O(N)

ing the number of elements each time the function is called, the operation would be
O(N). The moral here is that you must know how LengthIs is implemented in a linked
implementation to specify its Big-O measure.

The RetrieveItem operations are virtually identical for the two implementations.
Beginning at the first element, they examine one element after another until the correct
element is found. Because they must potentially search through all elements in a list,
the loops in both implementations are O(N).

Because the list is unsorted, we can choose to put the new item into a directly
accessible place: the last position in the array-based implementation or the front posi-
tion in the linked version. Therefore, the complexity of InsertItem is the same in both
implementations: O(1). In both implementations, DeleteItem has O(N) complexity
because we must search the list to find the item to delete. Table 5.5 summarizes these
observations. For those operations that require an initial search, we break the Big-O
notation into two parts: the search and what happens after the search.

318 | Chapter 5: Linked Structures

RetrieveItem
Set location to listData
Set found to false
Set moreToSearch to (location != NULL)
while moreToSearch AND NOT found

switch (item.ComparedTo(location->info))
case GREATER : Set location to location->next

Set moreToSearch to (location != NULL)
case EQUAL : Set found to true

Set item to location->info
case LESS : Set moreToSearch to false

5.4 Implementing the Sorted List as a Linked Structure

When writing the array-based implementation of the Sorted List ADT, we found that we
had to change only InsertItem and DeleteItem from the Unsorted List versions, but
that RetrieveItem could be made more efficient. Because both InsertItem and
DeleteItem must search the list, let’s look at RetrieveItem first.

The Function RetrieveItem

For the unsorted version, we took the array-based algorithm and changed the array
notation to linked notation. Let’s try that approach again.

Let’s look at this algorithm and be sure that the substitutions do what we want by
examining the value of location at the end. There are three cases here instead of two:

1. location = NULL. If we reach the end of the list without finding an item whose key
is equal to item’s key, then the item is not in the list. location correctly has the
value NULL (see Figure 5.22a, assuming the people’s names are in alphabetical order).

2. item.ComparedTo(location->info) = EQUAL. In this case, we have found the
element within the list and have copied it into item (see Figure 5.22b, assuming the
people’s names are in alphabetical order).

3. item.ComparedTo(location->info) = LESS. In this case, we have passed the
location where the item belongs, so it isn’t in the list (see Figure 5.24).

The first two cases remain the same as for the unsorted list. Figure 5.24 shows the
third case.

5.4 Implementing the Sorted List as a Linked Structure | 319

Figure 5.24 Retrieving an item that is not there

• •• KatelistData • LilaBecca John

•

location

moreToSearch:
found:

false
false

Retrieve Kit

Having looked at all three cases, we can again code this algorithm, being reason-
ably confident that it is correct. We use the relational operators here as well.

template <class ItemType>
void SortedType<ItemType>::RetrieveItem(ItemType& item,

bool& found)
{
bool moreToSearch;
NodeType<ItemType>* location;

location = listData;
found = false;
moreToSearch = (location != NULL);

while (moreToSearch && !found)
{
if (location->info < item)
{
location = location->next;
moreToSearch = (location != NULL);

}
else if (item == location->info)
{
found = true;
item = location->info;

}
else
moreToSearch = false;

}
}

320 | Chapter 5: Linked Structures

InsertItem
Set location to listData
Set moreToSearch to (location != NULL)
while moreToSearch

switch (item.ComparedTo(location->info))
case GREATER : Set location to location->next

Set moreToSearch to (location != NULL)
case LESS : Set moreToSearch to false

�

Figure 5.25 Inserting at the end of the list

•

location

•• KatelistData • LilaBecca John •

moreToSearch: true

Insert Sarah

The Function InsertItem

We only had to substitute the pointer expressions for the corresponding index expres-
sions in RetrieveItem. Does this technique work for InsertItem? Well, we know that
we don’t have to shift any elements as we did in an array, so let’s make the substitu-
tions up to that point and see.

When we exit the loop, location is pointing to the location where item goes.
That’s correct. (See Figure 5.24.) We just need to get a new node, put item into the
info member, put location into the next member, and put the address of the new
node in the next member of the node before it (the node containing Kate). Oops! We
don’t have a pointer to the node before it. We must keep track of the previous pointer as
well as the current pointer. When a similar problem arose with DeleteItem in the
unsorted version, we compared one item ahead ((location->next)->info). Can we
do that here? No. We could use that technique because we knew that the item for which
we were searching was present in the list. Here we know that the item for which we are
searching is not in the list. If the new item was supposed to go at the end of the list,
this algorithm would crash because location->next would be NULL. (See Figure 5.25.)

We could change the way of determining moreToSearch, but an easier method for
handling this situation exists. We use two pointers to search the list, with one pointer
always trailing one node behind. We call the previous pointer predLoc and let it trail
one node behind location. When ComparedTo returns GREATER, we advance both
pointers. As Figure 5.26 shows, the process resembles the movement of an inchworm.

5.4 Implementing the Sorted List as a Linked Structure | 321

predLoc (the tail of the inchworm) catches up with location (the head), and then
location advances. Because no node precedes the first one, we initialize predLoc to
NULL. Now let’s summarize these thoughts in an algorithm:

Figure 5.26 The inchworm effect

• •• KatelistData • LilaBecca John

• •• KatelistData • LilaBecca John
• •• KatelistData • LilaBecca John

(a)

(b) Set predLoc to location

(c) Set location to Next(location)

pre d Loc l o ca t i o

n

pr e d Loc lo c at i o
n

•

pre d Loc l o ca t i o

n

•

•

InsertItem(item)
Set location to listData
Set predLoc to NULL
Set moreToSearch to (location != NULL)
while moreToSearch

switch (item.ComparedTo(location->info))
case GREATER : Set predLoc to location

Set location to location->next
Set moreToSearch to (location != NULL)

case LESS : Set moreToSearch to false
Set newNode to the address of a newly allocated node
Set newNode->info to item
Set newNode->next to location
Set predLoc->next to newNode
Increment length

322 | Chapter 5: Linked Structures

Let’s do an algorithm walk-through before we code it. There are four cases: the
new item goes before the first element, between two other elements, comes after the
last element, or is inserted into an empty list. (See Figure 5.27.) If we insert at the first
element (Figure 5.27a), Alex compared to Becca returns LESS, and we exit the loop.
We store location into newNode->next and newNode into predLoc->next.
Whoops! The program crashes because predLoc is NULL. We must check whether
predLoc is NULL, and if it is, we must store newNode into listData rather than
predLoc->next.

What about the in-between case? Inserting Kit (Figure 5.27b) leaves location point-
ing to the node with Lila and predLoc pointing to the node with Kate. newNode->next
points to the node with Lila; the node with Kate points to the new node. That’s fine.

What about when we insert at the end? Inserting Kate (Figure 5.27c) leaves loca-
tion equal to NULL, and predLoc pointing to the node with Chris. NULL is stored in
newNode->next; newNode is stored in the next member of the node containing Chris.

Does the algorithm work when the list is empty? Let’s see. location and predLoc
are both NULL, but we store newNode in listData when predLoc is NULL, so there
isn’t a problem. (See Figure 5.27d.) Now we can code the function InsertItem.

template <class ItemType>
void SortedType<ItemType>::InsertItem(ItemType item)
{
NodeType<ItemType>* newNode; // Pointer to node being inserted.
NodeType<ItemType>* predLoc; // Trailing pointer.
NodeType<ItemType>* location; // Traveling pointer.
bool moreToSearch;

location = listData;
predLoc = NULL;
moreToSearch = (location != NULL);

// Find insertion point.
while (moreToSearch)
{
if (location->info < item)
{
predLoc = location;
location = location->next;
moreToSearch = (location != NULL);

}
else
moreToSearch = false;

}

// Prepare node for insertion.
newNode = new NodeType<ItemType>;

5.4 Implementing the Sorted List as a Linked Structure | 323

Figure 5.27 Four insertion cases

•

•

location

•

•

Becca

Alex

listData

predLoc

newNode

••• John Kate

•••

•

Alex Chris

Kit

Lila

• •

•

•

•

•

location

listData

predLoc

newNode

listData

listData

predLoc location

predLoc location newNode

newNode

•
(a) Insert Alex (goes at the beginning)

(b) Insert Kit (goes in the middle)

(c) Insert Kate (goes at the end)

(d) Insert John (into an empty list)

Kate

John

324 | Chapter 5: Linked Structures

newNode->info = item;
// Insert node into list.
if (predLoc == NULL) // Insert as first.
{
newNode->next = listData;
listData = newNode;

}
else
{
newNode->next = location;
predLoc->next = newNode;

}
length++;

}

The Function DeleteItem

As in the case of RetrieveItem and InsertItem, the DeleteItem algorithm begins
with a search. Here we exit the searching loop when item.ComparedTo(location->
info) returns EQUAL. Once we have found the item, we delete it. Because our precondi-
tion states that the item to be deleted is present in the list, we have a choice. We can
use the unsorted list algorithm exactly as it is or we can write an algorithm that is the
mirror image of the insertion. We leave the coding of the new algorithm to you as an
exercise. Figure 5.28 illustrates the four cases that occur.

Comparing Sorted List Implementations

We developed three algorithms for RetrieveItem in an array-based list: a sequential
search, a sequential search with an exit when the place is passed where the item would
be if present, and a binary search. The first two have order O(N); the binary search has
order O(log2N). The first two searches can be implemented in a linked list, but a binary
search cannot. (How do you get directly to the middle of a linked list?) Therefore, the
array-based algorithm for searching a list works faster than the linked version if we use
the binary search algorithm.

In both list implementations, the InsertItem function uses a sequential search to find
the insertion position; therefore, the search parts of the algorithms have O(N) complexity.
The array-based list must also move down all elements that follow the insertion position to
make room for the new element. The number of elements to be moved ranges from 0, when
we insert at the end of the list, to length, when we insert at the beginning of the list. Thus
the insertion part of the algorithm also has O(N) complexity for the array-based list.
Because O(N) + O(N) = O(N), the sequential list’s InsertItem operation has O(N) complex-
ity. Even if we used the binary search to find where the item belongs (O(log2N)), the items
would have to be moved to make room for the new one (O(N)). O(log2N) + O(N) is O(N).

The insertion part of the algorithm for the linked list representation simply requires
the reassignment of a couple of pointers. This makes the insertion task O(1) for a linked
list, which is one of the main advantages of linking. However, adding the insertion task

5.4 Implementing the Sorted List as a Linked Structure | 325

Figure 5.28 Deleting from a linked list

••• David Joshua •Leah Miriam

•

David•listData

predLoc location

•

predLoc location

listData

••• David Joshua •Leah Miriam

••

predLoc location

listData

••• David Joshua •Leah Miriam

••

predLoc location

listData

NULL

NULL

(a) Delete only list node (Delete David)

(b) Delete first list node (Delete David)

(c) Delete “middle” node (Delete Leah)

(d) Delete last node (Delete Miriam)

to the search task gives us O(N) + O(1) = O(N)—the same Big-O approximation as for the
sequential list! Doesn’t the linking offer any advantage in efficiency? Perhaps. But
remember that the Big-O evaluations are merely rough approximations of the amount of
work done by an algorithm.

326 | Chapter 5: Linked Structures

Table 5.6 Big-O Comparison of Sorted List Operations

Array Implementation Linked Implementation

Class constructor O(1) O(1)

Destructor NA O(N)
MakeEmpty O(1) O(N)
IsFull O(1) O(1)

LengthIs O(1) O(1)

ResetList O(1) O(1)

GetNextItem O(1) O(1)

RetrieveItem

Find O(N)* O(N)

Process O(1) O(1)

Combined O(N) O(N)

InsertItem

Find O(N)* O(N)

Insert O(N) O(1)
Combined O(N) O(N)

DeleteItem

Find O(N)* O(N)

Delete O(N) O(1)
Combined O(N) O(N)

*O(log2N) if a binary search is used.

The DeleteItem function is similar to InsertItem. In both implementations, the
search task is performed, an O(N) operation. Then the sequential list’s delete operation
“deletes” the element by moving up all subsequent elements in the list, which adds O(N).
The whole function is O(N) + O(N), or O(N). The linked list deletes the element by
unlinking it from the list, which adds O(1) complexity to the search task. The whole
function is O(N) + O(1), or O(N). Thus both DeleteItem operations are O(N); for large
values of N, they are roughly equivalent.

The fact that two operations have the same Big-O measure does not mean that they
take the same amount of time to execute, however. The sequential implementation
requires, on average, a great deal of data movement for both InsertItem and
DeleteItem. Does all this data movement really make any difference? It doesn’t matter
too much in our honor roll example; the list is very small. If the honor roll includes
1,000 students, however, the data movement starts to add up.

Table 5.6 summarizes the Big-O comparison of the sorted list operations for sequen-
tial and linked implementations.

Exercises | 327

Summary
We have seen how stacks, queues, unsorted lists, and sorted lists may be represented in
an array-based or a linked representation. The specification for each ADT didn’t men-
tion any of these design issues, so we were free to implement them in any way we
chose. Nothing in these ADTs’ specifications said that the structures should be array-
based or linked, or that the elements were stored in statically or dynamically allocated
storage.

We could specify a number of other operations for a List ADT. Some operations, such
as finding the preceding node in a list, are easy to implement for an array-based list but
would be difficult to implement using a list that is linked in one direction (like the lists
described in this chapter). This operation would be simpler if the list had links going both
forward and backward. We can think of many variations for representing a linked list to
simplify the kinds of operations that are specified for the list: doubly linked lists, circular
lists, lists that are accessed from both the beginning and the end. We look at some of
these alternative implementation structures in Chapter 6.

The idea of linking the elements in a data structure is not specific to stacks,
queues, and lists. We use this powerful tool to implement many other data structures
in this book.

Exercises
1. Given the following specification of the Top operation:

ItemType Top

Function: Returns a copy of the last item put onto
the stack.

Precondition: Stack is not empty.
Postconditions: Function value = copy of item at top

of stack.
Stack is not changed.

Assume that the Pop operation returns the item and Top is not defined.
Write this function as client code, using operations from the StackType
class. Remember—the client code has no access to the private members of
the class.

2. Implement the following operation as a member function of the StackType class.

ReplaceItem(ItemType oldItem, ItemType newItem)

Function: Replaces all occurrences of oldItem with
newItem.

328 | Chapter 5: Linked Structures

Precondition: Stack has been initialized.
Postcondition: Each occurrence of oldItem in stack has

been changed to item.

3. Implement the following operation as a member function of the StackType class.

Boolean Identical(StackType<ItemType> stack1)

Function: Determines whether stack1 and self are
identical.

Precondition: stack1 and self have been initialized.
Postconditions: stack1 and self are unchanged.

Function value = (self and stack1 are
identical).

4. Given the following specification of a Front operation:

ItemType Front

Function: Returns a copy of the front item on the
queue.

Precondition: Queue is not empty.
Postconditions: Function value = copy of the front item

on the queue.
Queue is not changed.

a. Write this function as client code, using operations from the QueType class.
Remember—the client code has no access to the private members of the class.

b. Write this function as a new member function of the QueType class.

5. Implement the following operation as a member function of the QueType class.

ReplaceItem(ItemType oldItem, ItemType newItem)

Function: Replaces all occurrences of oldItem with
newItem.

Precondition: Queue has been initialized.
Postcondition: Each occurrence of oldItem in queue has

been changed to newItem.

Exercises | 329

6. Implement the following specification for an integer function that returns the
number of items in a queue. This function is a member function of the Que-
Type class.

int Length

Function: Returns the number of items in the queue.
Precondition: Queue has been initialized.
Postconditions: Function value = number of items in

the queue.
Queue is unchanged.

7. Exercise 1 in Chapter 3 asked you to add a member function IsThere to the
Unsorted List ADT. Rewrite the function definitions using a linked structure.
You may assume a templated class where ItemType has the == operator
defined.

8. Exercise 2 in Chapter 3 asked you to add a member function IsThere to the
Sorted List ADT. Rewrite the function definitions using a linked structure. You
may assume a templated class where ItemType has the == and > operators
defined.

9. Write a member function that merges two instances of the Sorted List ADT using
the following specification.

MergeLists(SortedType& list, SortedType& result)

Function: Merges two sorted lists into a third
sorted list.

Preconditions: Self and list are in ascending order by
key.
Self and list do not have any keys in
common; self and list are not empty.

Postconditions: Result is a sorted list that contains all of
the items from self and list.

Assume that SortedType is a templated class and that the relational operators
are defined for ItemType.

a. Write the prototype for MergeLists.

b. Write the code for the function.

c. Describe the algorithm in terms of Big-O notation.

330 | Chapter 5: Linked Structures

10. A list ADT is to be extended by the addition of the member function
SplitLists, which has the following specification:

SplitLists(ListType& list1, ListType& list2, ItemType item)

Function: Divides self into two lists according to
the key of item.

Precondition: Self has been initialized.
Postconditions: list1 contains all the elements of self

whose keys are less than or equal to
item’s.
list2 contains all the elements of self
whose keys are greater than item’s.

You may assume that UnsortedType and SortedType are templated classes
and that the relational operators are defined for ItemType.

a. Implement SplitLists as a member function of the Unsorted List ADT.

b. Implement SplitLists as a member function of the Sorted List ADT.

c. Compare the algorithms used in parts (a) and (b).

11. The specification for the Unsorted List ADT states that the item to be deleted is
present in the list. Assume that UnsortedType is a templated class and that the
relational operators are defined for ItemType.

a. Rewrite the specification for DeleteItem so that the list is unchanged if the
item to be deleted is not present in the list.

b. Implement DeleteItem as specified in part (a).

c. Rewrite the specification for DeleteItem so that all copies of the item to be
deleted are removed if they exist; otherwise, the list is unchanged.

d. Implement DeleteItem as specified in part (c).

12. The specifications for the Sorted List ADT state that the item to be deleted is
present in the list.

a. Rewrite the specification for DeleteItem so that the list is returned
unchanged if the item to be deleted is not present in the list.

b. Implement DeleteItem as specified in part (a).

c. Rewrite the specification for DeleteItem so that all copies of the item to be
deleted are removed if they exist; otherwise, the list is unchanged.

d. Implement DeleteItem as specified in part (c).

13. a. Explain the difference between a sequential and a linked representation of a list.

b. Give an example of a problem for which a sequential list would be the better
solution.

Exercises | 331

c. Give an example of a problem for which a linked list would be the better
solution.

14. True or false? If you answer false, correct the statement.

a. An array is a random-access structure.

b. A sequential list is a random-access structure.

c. A linked list is a random-access structure.

d. A sequential list is always stored in a statically allocated structure.

e. A stack is not a random-access structure.

f. A queue is a random-access structure.

Use the linked list pictured below in Exercises 15–18.

15. Give the values of the following expressions:

a. ptr1->info

b. ptr2->next->info

c. listData->next->next->info

16. Are the following expressions true or false?

a. listdata->next == ptr1

b. ptr1->next->info == 60

c. ptr2->next == NULL

d. listData->info == 25

17. Decide whether the syntax of each of the following statements is valid or invalid.
If it is valid, mark it as such; if it is invalid, explain what is wrong.

a. listData->next = ptr1->next;

b. listData->next = *(ptr2->next);

c. *listData = ptr2;

d. ptr2 = ptr1->next->info;

e. ptr1->info = ptr2->info;

f. ptr2 = ptr2->next->next;

• • • • • •

•

• •

listData

ptr1 ptr2

25 30 45 60 65 80 90

332 | Chapter 5: Linked Structures

18. Write one statement to do each of the following:

a. Make listData point to the node containing 45.

b. Make ptr2 point to the last node in the list.

c. Make listData point to an empty list.

d. Set the info member of the node containing 45 to 60.

If memory locations are allocated as shown in the second column of the following table,
what is printed by the statements in the first column? Fill in the last column in the fol-
lowing table for Exercises 19–24. The exercise number is in the first-column comments.

Statements Memory Allocated What Is Printed?

int value; value is at
location 200

value = 500;

char* charPtr; charPtr is at location 202

char string[10] = "Good luck"; string[0] is at location 300

charPtr = string;

cout << &value; // Exercise 19 & means "the address of"

cout << value; // Exercise 20

cout << &charPtr; // Exercise 21 & means "the address of"

cout << charPtr; // Exercise 22

cout << *charPtr; // Exercise 23

cout << &string[2]; // Exercise 24

After studying this chapter, you should be able to

Implement a circular linked list

Implement a linked list with a header node, a trailer node, or both

Implement a doubly linked list

Distinguish between shallow copying and deep copying

Overload the assignment operator

Implement a linked list as an array of records

Implement dynamic binding with virtual functions

Lists Plus

G
oals

334 | Chapter 6: Lists Plus

This chapter presents both alternative implementations of lists and new theoretical
material accompanied by the C++ implementations of the constructs. It begins with
three new implementations of lists: circular linked lists, doubly linked lists, and lists
with headers and trailers. Next, it introduces the concepts of shallow copying and deep
copying, and demonstrates how to force deep copying by using the class copy construc-
tor and overloading the assignment operation.

The final linked list implementation uses an array of records rather than pointers.
This implementation is widely used in operating system software.

6.1 Circular Linked Lists

The linked list data structures that we implemented in Chapter 5 are characterized by a
linear (line-like) relationship between the elements: Each element (except the first one)
has a unique predecessor, and each element (except the last one) has a unique successor.
Using linear linked lists does present a problem: Given a pointer to a node anywhere in
the list, we can access all the nodes that follow but none of the nodes that precede it.
With a singly linked linear list structure (a list whose pointers all point in the same
direction), we must always have a pointer to the beginning of the list to be able to
access all the nodes in the list.

In addition, the data we want to add to a sorted list may already be in order. Some-
times people manually sort raw data before turning it over to a data entry clerk. Like-
wise, data produced by other programs are often in some order. Given a Sorted List ADT
and sorted input data, we always insert new items at the end of the list. It is ironic that
the work done manually to order the data now results in maximum insertion times.

We can, however, change the linear list slightly,
making the pointer in the next member of the last
node point back to the first node instead of containing
NULL (Figure 6.1). Now our list becomes a circular
linked list rather than a linear linked list. We can start
at any node in the list and traverse the entire list. If we
let our external pointer point to the last item in the list

rather than the first, we have direct access to both the first and the last elements in the
list (Figure 6.2). listData->info references the item in the last node, and listData->
next->info references the item in the first node. We mentioned this type of list structure
in Chapter 5, when we discussed circular linked queues.

We do not need to change any of the declarations in the class SortedType to make
the list circular, rather than linear. After all, the members in the nodes are the same;
only the value of the next member of the last node has changed. How does the circular
nature of the list alter the implementations of the list operations? Because an empty cir-
cular list has a NULL pointer, the IsEmpty operation does not change at all. However,
using a circular list requires an obvious change in the algorithms that traverse the list.
We no longer stop when the traversing pointer becomes NULL. Indeed, unless the list is
empty, the pointer never becomes NULL. Instead, we must look for the external pointer
itself as a stop sign. Let’s examine these changes in the Sorted List ADT.

Circular linked list A list in which every node has a suc-
cessor; the “last” element is succeeded by the “first” ele-
ment

6.1 Circular Linked Lists | 335

Finding a List Item

The RetrieveItem, InsertItem, and DeleteItem operations all require a search of
the list. Rather than rewriting each of these with minor variations, let’s write a general
FindItem routine that takes item as a parameter and returns location, predLoc, and
found. InsertItem and DeleteItem need the location of the predecessor node (pred-
Loc); RetrieveItem can just ignore it.

In the linear list implementation, we searched the list using a pair of pointers,
location and predLoc. (Remember the inchworm?) We modify this approach slightly
for the circular list. In the linear list version, we initialized location to point to the
first node in the list and set predLoc to NULL (Figure 6.3a). For the circular list search,
we initialize location to point to the first node and predLoc to point to its “predeces-
sor”—the last node in the list (Figure 6.3b).

The search loop executes until (1) a key greater than or equal to the item’s key is
encountered, or (2) we reach the “end” of the list. In a linear list, the end of the list is
detected when location equals NULL. Because the external pointer to the list points to
the last element, we know we have processed all of the items and not found a match
when location points to the first element again: location = listData->next.
Because it makes no sense to search an empty list, let’s make it a precondition that the

Figure 6.1 A circular linked list

•• • • •A B C DlistData

Figure 6.2 Circular linked lists with the external pointer pointing to the rear element

• •• • •A B C D
listData

•
•A

listData

listData (empty list)

(a)

(b)

(c)

336 | Chapter 6: Lists Plus

list is not empty. Because we now have overloaded the relational operators “<” and
“==”, we use them in our algorithm.

Figure 6.3 Initializing for FindItem

• •A B C

•

•A B C

• • •
•

location

predLoc

listData

location = listData;
predLoc = NULL;

(a) For a linear linked list

location = listData—>next;
predLoc = listData;

(b) For a circular linked list

• •

location predLoc listData

FindItem
Set location to Next(listData)
Set predLoc to listData
Set found to false
Set moreToSearch to true
while moreToSearch AND NOT found DO

if item < Info(location)
Set moreToSearch to false

else if item == Info(location)
Set found to true

else
Set predLoc to location
Set location to Next(location)
Set moreToSearch to (location != Next(listData))

6.1 Circular Linked Lists | 337

Following the execution of the loop, if a matching key is found, location
points to the list node with that key and predLoc points to its predecessor in the list
(Figure 6.4a). Note that if item’s key is the smallest key in the list, then predLoc

Figure 6.4 The FindItem operation for a circular list

•A B C

•• •

• • •

locationpredLoc listData

D

•A B C

• • •

• • •

location predLoc listData

D

•A B J

•• •

• • •

locationpredLoc listData

K

•A B C

• ••

• • •

location predLoclistData

D

(a) The general case (Find B)

(b) Searching for the smallest item (Find A)

(c) Searching for the item that isn't there (Find C)

(d) Searching for the item bigger than any in the list (Find E)

338 | Chapter 6: Lists Plus

points to its predecessor—the last node in the circular list (Figure 6.4b). If item’s key
is not in the list, then predLoc points to its logical predecessor in the list and loca-
tion points to its logical successor (Figure 6.4c). Notice that predLoc is correct even
if item’s key is greater than any element in the list (Figure 6.4d). Thus predLoc is
set correctly for inserting an element whose key is larger than any currently in the
list.

The following C++ code implements our FindItem algorithm as a function
template. Notice two things in the function heading. First, NodeType was defined
in Chapter 5 as a struct template, so each declaration using NodeType must include
an actual parameter (the name of a data type) in angle brackets. For example,
listData is declared in the code to be of type NodeType<ItemType>* and not
simply NodeType*. Second, observe the syntax for the declarations of location
and predLoc. You see an asterisk (*) and an ampersand (&) next to each other.
Although this syntax may look strange at first, it is consistent with the usual way
we indicate passing-by-reference: Place an & after the data type of the parameter.
Here we place an & after the data type NodeType<ItemType>*, which is a pointer
to a node.

template<class ItemType>
void FindItem(NodeType<ItemType>* listData, ItemType item,

NodeType<ItemType>*& location, NodeType<ItemType>*& predLoc,
bool& found)

// Assumption: ItemType is a type for which the operators "<" and
// "==" are defined—either an appropriate built-in type or a
// class that overloads these operations.
// Pre: List is not empty.
// Post: If there is an element someItem whose key matches item's
// key, then found = true; otherwise, found = false.
// If found, location contains the address of someItem and
// predLoc contains the address of someItem's predecessor;
// otherwise, location contains the address of item's logical
// successor and predLoc contains the address of item's
// logical predecessor.
{
bool moreToSearch = true;

location = listData->next;
predLoc = listData;

6.1 Circular Linked Lists | 339

found = false;
while (moreToSearch && !found)
{
if (item < location->info)
moreToSearch = false;

else if (item == location->info)
found = true;

else
{
predLoc = location;
location = location->next;
moreToSearch = (location != listData->next);

}
}

}

Note that FindItem is not a member function of the class SortedType. It is an
auxiliary or “helper” operation, hidden within the implementation, that is used by
SortedType member functions.

Inserting Items into a Circular List

The algorithm to insert an element into a circular linked list is similar to that for the lin-
ear list insertion.

InsertItem
Set newNode to address of newly allocated node
Set Info(newNode) to item
Find the place where the new element belongs
Put the new element into the list

340 | Chapter 6: Lists Plus

The task of allocating space is the same as that carried out for the linear list. We
allocate space for the node using the new operator and then store item into newNode->
info. The next task is equally simple; we just call FindItem:

FindItem(listData, item, location, predLoc, found);

Of course, we do not find the element because it isn’t there; it is the predLoc pointer
that interests us. The new node is linked into the list immediately after Node(predLoc).
To put the new element into the list, we store predLoc->next into newNode->next
and newNode into predLoc->next.

Figure 6.5(a) illustrates the general case. What are the special cases? First, we have
the case of inserting the first element into an empty list. In this case, we want to make
listData point to the new node, and to make the new node point to itself (Figure
6.5b). In the insertion algorithm for the linear linked list, we also had a special case
when the new element key was smaller than any other key in the list. Because the new
node became the first node in the list, we had to change the external pointer to point to
the new node. The external pointer to a circular list, however, doesn’t point to the first
node in the list—it points to the last node. Therefore, inserting the smallest list element
is not a special case for a circular linked list (Figure 6.5c). However, inserting the largest
list element at the end of the list is a special case. In addition to linking the node to its
predecessor (previously the last list node) and its successor (the first list node), we must
modify the external pointer to point to Node(newNode)—the new last node in the circu-
lar list (Figure 6.5d).

The statements to link the new node to the end of the list are the same as those for
the general case, plus the assignment of the external pointer, listData. Rather than
checking for this special case before the search, we can treat it together with the general
case: Search for the insertion place and link in the new node. Then, if we detect that we
have added the new node to the end of the list, we reassign listData to point to the
new node. To detect this condition, we compare item to listData->info.

The resulting implementation of InsertItem is shown here.

template<class ItemType>
void SortedType<ItemType>::InsertItem(ItemType item)
{
NodeType<ItemType>* newNode;
NodeType<ItemType>* predLoc;
NodeType<ItemType>* location;
bool found;

newNode = new NodeType<ItemType>;
newNode->info = item;
if (listData != NULL)
{
FindItem(listData, item, location, predLoc, found);

6.1 Circular Linked Lists | 341

Figure 6.5 Inserting into a circular linked list

•A

A

B D

•••

•

•

••

•

C •

• •

predLoc

listData

E

•A B D• • •E

newNode

2
1

•A

B C

•

• • •D
2

1

1

2

3

• •

• •

newNode listData

 newNode

predLoc listData

predLoc listData newNode

(a) The general case (Insert C)

(b) Special case: the empty list (Insert A)

(c) Special case (?): inserting to front of list (Insert A)

(d) Special case: inserting to end of list (Insert E)

342 | Chapter 6: Lists Plus

DeleteItem
Find the element in the list
Remove the element from the list
Deallocate the node

newNode->next = predLoc->next;
predLoc->next = newNode;

// If this is last node in list, reassign listData.
if (listData->info < item)
listData = newNode;

}
else // Inserting into an empty list.
{
listData = newNode;
newNode->next = newNode;

}
length++;

}

Deleting Items from a Circular List

To delete an element from the circular linked list, we use the same general algorithm we
developed for the linear list:

For the first task, we use FindItem. After the return from FindItem, location
points to the node we wish to delete, and predLoc points to its predecessor in the list.
To remove Node(location) from the list, we simply reset predLoc->next to jump over
the node we are deleting. That works for the general case, at least (see Figure 6.6a).

What kind of special cases do we have to consider? In the linear list version, we had
to check for deleting the first (or first-and-only) element. From our experience with the
insertion operation, we might surmise that deleting the smallest element (the first node)
of the circular list is not a special case; Figure 6.6(b) shows that guess to be correct. How-
ever, deleting the only node in a circular list is a special case, as we see in Figure 6.6(c).
The external pointer to the list must be set to NULL to indicate that the list is now empty.
We can detect this situation by checking whether predLoc equals location after the
execution of FindItem; if so, the node we are deleting is the only one in the list.

We might also guess that deleting the largest list element (the last node) from a cir-
cular list is a special case. As Figure 6.6(d) illustrates, when we delete the last node, we

6.1 Circular Linked Lists | 343

Figure 6.6 Deleting from a circular linked list

A B

• • •
• • •C

predLoc location listData

predLoc—>next = location—>next;

A B

• • •

• • •C

predLoc

•

predLoc

location listData

predLoc—>next = location—>next;

A B

•• •

• • •C

predLoc locationlistData

predLoc—>next = location—>next;
(the general case PLUS:)

listData = predLoc;

A
•

•

location

•

listData

listData = NULL;

(a) The general case (Delete B)

(b) Special case (?): deleting the smallest item (Delete A)

(c) Special case: deleting the only item (Delete A)

(d) Special case: deleting the largest item (Delete C)

344 | Chapter 6: Lists Plus

first do the general-case processing to unlink Node(location) from the list, then we
reset listData to point to its predecessor, Node(predLoc). We can detect this situation
by checking whether location equals listData after the search.

template<class ItemType>
void SortedType<ItemType>::DeleteItem(ItemType item)
{
NodeType<ItemType>* location;
NodeType<ItemType>* predLoc;
bool found;

FindItem(listData, item, location, predLoc, found);
if (predLoc == location) // Only node in list?
listData = NULL;

else
{
predLoc->next = location->next;
if (location == listData) // Deleting last node in list?
listData = predLoc;

}
delete location;
length--;

}

Having worked through a number of the list operations in detail, we leave the cir-
cular implementation of the other Sorted List ADT operations as a programming assign-
ment. None of the operations we have looked at so far has become shorter or much
simpler when the implementation changed to a circular list. Why, then, might we want
to use a circular, rather than linear, linked list? Circular lists are useful for applications
that require access to both ends of the list. (The circular linked version of the queue in
Chapter 5 is a good example of this scenario.)

6.2 Doubly Linked Lists

As noted previously, we can use circular linked lists to reach any node in the list from
any starting point. Although this structure offers advantages over a simple linear linked
list, it remains too limited for certain types of applications. Suppose we want to delete a
particular node in a list, given only a pointer to that node (location). This task
involves changing the next member of the node preceding Node(location). As we saw
in Chapter 5, however, given only the pointer location, we cannot access its predeces-
sor in the list.

Another task that is difficult to perform on a linear linked list is traversing the list
in reverse. For instance, suppose we have a list of student records, sorted by grade point

6.2 Doubly Linked Lists | 345

Figure 6.7 A linear doubly linked list

•

•

• •

•• •
David Joshua Leah MiriamlistData

average (GPA) from lowest to highest. The
dean of students might want a printout of the
students’ records, sorted from highest to low-
est, to use in preparing the Dean’s List.

In such a case, where we need to access
the node that precedes a given node, a doubly
linked list is useful. In a doubly linked list, the nodes are linked in both directions. Each
node of a doubly linked list contains three parts:

Info: the data stored in the node
Next: the pointer to the following node
Back: the pointer to the preceding node

Figure 6.7 depicts a linear doubly linked list. Note that the back member of the first
node, as well as the next member of the last node, contains a NULL. The following defi-
nition might be used to declare the nodes in such a list:

template<class ItemType>
struct NodeType
{
ItemType info;
NodeType<ItemType>* next;
NodeType<ItemType>* back;

};

Using this definition, let’s write member functions InsertItem and DeleteItem
using the auxiliary function FindItem.

Finding an Item in a Doubly Linked List

In the FindItem function, we no longer need to use the inchworm search; instead, we
can get the predecessor to any node through its back member. We change the Find-
Item interface slightly. That is, because we no longer need predLoc, we return one
pointer, location. If found is true, location points to the node with the same key as
item; otherwise, location points to the node that is the logical successor of item.
(Recall that FindItem is a function template.)

template<class ItemType>
void FindItem(NodeType<ItemType>* listData, ItemType item,

NodeType<ItemType>*& location, bool& found)
// Assumption: ItemType is a type for which the operators "<" and

Doubly linked list A linked list in which each node is
linked to both its successor and its predecessor

346 | Chapter 6: Lists Plus

// "==" are defined—either an appropriate built-in type or a
// class that overloads these operations.
// Pre: List is not empty.
// Post: If there is an element someItem whose key matches item's
// key, then found = true; otherwise, found = false.
// If found, location contains the address of someItem;
// otherwise, location contains the address of the logical
// successor of item.
{
bool moreToSearch = true;

location = listData;
found = false;
while (moreToSearch && !found)
{
if (item < location->info)
moreToSearch = false;

else if (item == location->info)
found = true;

else
{
location = location->next;
moreToSearch = (location != NULL);

}
}

}

Operations on a Doubly Linked List

The algorithms for the insertion and deletion operations on a doubly linked list are
somewhat more complicated than the corresponding operations on a singly linked list.
The reason is clear: There are more pointers to keep track of in a doubly linked list.

As an example, consider the InsertItem operation. To link the new node,
Node(newNode), after a given node, Node(location), in a singly linked list, we need to
change two pointers: newNode->next and location->next (see Figure 6.8a). The
same operation on a doubly linked list requires four pointer changes (see Figure 6.8b).

We allocate space for the new node and call FindItem to find the insertion point:

FindItem(listData, item, location, found);

After the return from FindItem, location points to the node that should follow
the new node. Now we are ready to link Node(newNode) into the list. Because of the
complexity of the operation, you must be careful about the order in which you change
the pointers. For instance, when inserting Node(newNode) before Node(location), if we
change the pointer in location->back first, we lose our pointer to Node(location)’s
predecessor. Figure 6.9 shows the correct order for the pointer changes.

6.2 Doubly Linked Lists | 347

Figure 6.8 Insertions into singly and doubly linked lists

••listData • •

2 1
•

David Joshua Miriam Robert

Leah

(a) Inserting into a singly linked list (Insert Leah)

•

• •

Leah

(b) Inserting into a doubly linked list

newNode

newNode

•

•

• •

•• •
David Joshua Miriam RobertlistData

Set Back(newNode) to Back(location)
Set Next(newNode) to location
Set Next(Back(location)) to newNode
Set Back(location) to newNode

348 | Chapter 6: Lists Plus

Set Next(Back(location)) to Next(location)
Set Back(Next(location)) to Back(location)

Figure 6.9 Linking the new node into the list

•

•

• •

Leah

newNode

Joshua Miriam
•

•

•

•

•

•

1

3 4

2

location

We do have to be careful about inserting an item into an empty list, as it is a spe-
cial case.

One useful feature of a doubly linked list is its elimination of the need for a pointer
to a node’s predecessor to delete the node. Through the back member, we can alter the
next member of the preceding node to make it jump over the unwanted node. Then we
make the back pointer of the succeeding node point to the preceding node.

We do, however, have to be careful about the end cases. If location->back is
NULL, we are deleting the first node; if location->next is NULL, we are deleting the
last node. If both location->back and location->next are NULL, we are deleting
the only node. Figure 6.10 pictures this operation.

We leave the coding of SortedType as a programming assignment.

6.3 Linked Lists with Headers and Trailers

In writing the insertion and deletion algorithms for all implementations of linked lists,
we see that special cases arise when we are dealing with the first node or the last node.

6.3 Linked Lists with Headers and Trailers | 349

Figure 6.10 Deleting from a doubly linked list

•

•

•

•

• •
David Joshua MiriamlistData

location

Delete Joshua

One way to simplify these algorithms is to ensure that we never insert or delete items at
the ends of the list.

How can this goal be accomplished? Recall that the elements in a sorted linked list
are arranged according to the value in some key—for example, numerically by identifi-
cation number or alphabetically by name. If we can determine the range of possible val-
ues for the key, it is often a simple matter to set up dummy nodes with values outside of
this range. We can place a header node, con-
taining a value smaller than any possible list
element key, at the beginning of the list. We
can place a trailer node, containing a value
larger than any legitimate element key, at the
end of the list.

The header and the trailer are regular
nodes of the same type as the real data nodes
in the list. They have a different purpose, however; instead of storing list data, they act
as placeholders.

If a list of students is sorted by last name, for example, we might assume that there
are no students named “AAAAAAAAAA” or “ZZZZZZZZZZ.” We could therefore initial-
ize our linked list to contain header and trailer nodes with these values as the keys. See
Figure 6.11. How can we write a general list algorithm if we must know the minimum
and maximum key values? We can use a parameterized class constructor and let the
user pass as parameters elements containing the dummy keys. Alternatively, we can just
leave the keys undefined and start the search with the second node in the list.

Header node A placeholder node at the beginning of a
list; used to simplify list processing

Trailer node A placeholder node at the end of a list;
used to simplify list processing

Figure 6.11 An “empty” list with a header and a trailer

• •“AAAAAAAAAA” “ZZZZZZZZZZ”

Header
node

Trailer
node

listData

350 | Chapter 6: Lists Plus

6.4 Copy Structures

In this section, we reverse the usual order of presentation. We show an example of a
problem, and then we give the solution to the general problem. Let’s look at an example
where a client of the Stack ADT needs a CopyStack operation.

CopyStack(StackType oldStack, StackType& copy)

Function: Makes a copy of a stack.
Precondition: oldStack has been initialized.
Postconditions: copy is a duplicate of oldStack.

oldStack is unchanged.

The client has access to all public member functions of StackType but cannot
access any of the private data members. To make a copy of a stack, we must take all the
items off oldStack and store them in a temporary stack. We can then copy the tempo-
rary stack back into copy.

template<class ItemType>
void CopyStack(StackType<ItemType> oldStack,

StackType<ItemType>& copy)
{
StackType<ItemType> tempStack;
ItemType item;

while (!oldStack.IsEmpty())
{
item = oldStack.Top();
oldStack.Pop();
tempStack.Push(item);

}

// oldStack is now empty; tempStack is the reverse of oldStack.
while (!tempStack.IsEmpty())
{
item = tempStack.Top();
tempStack.Pop();
copy.Push(item);

}
}

This situation seems quite straightforward. We realize that oldStack is empty
because all of the items have been popped, but because oldStack is a value parameter,

6.4 Copy Structures | 351

the original stack is not affected. Right? Wrong! If the static, array-based implementation
of StackType is used, this function works correctly. The array is physically located within
a class object. The class object is copied into the value parameter oldStack, and the orig-
inal object is protected from change. But what happens if we use the dynamically linked
implementation? The external pointer to the stack is copied into oldStack and is not
changed, but the items to which it points change; they are not protected. See Figure 6.12.

Can’t we solve this problem by copying tempStack back into oldStack? Let’s con-
sider the code for the Push operation and see what happens in the linked implementa-
tion. The first item is pushed onto the stack, and its address is stored into the data
member topPtr of the parameter oldStack. As each successive item is placed on the
stack, its address is stored into data member topPtr. Therefore, the topPtr data mem-
ber of oldStack should contain the address of the last item put onto the stack, which is
what we want. Because the stack is passed by value, however, only the copy of the
external pointer to the stack (data member topPtr of oldStack) is passed to the func-
tion; the original pointer does not change. We have recreated the stack, but its external
pointer is not transmitted back to the calling code.

Two solutions to this problem are possible: We can make the first parameter a refer-
ence parameter and recreate the stack, or we can provide a copy constructor as described
in the next section.

Shallow versus Deep Copies

The problem described in the previous section occurred because when a class object is
passed by value, a shallow copy of the parameter is made. With a shallow copy, only the
data members in the parameter are copied. In
the case of CopyStack, only a copy of the
external pointer to the stack was passed as
the parameter. When pointers are involved,
we need a deep copy, one where the data
members of the parameter and everything to
which the data members point are copied.
Figure 6.13 shows the difference.

Shallow copy An operation that copies one class object
to another without copying any pointed-to data

Deep copy An operation that not only copies one class
object to another but also makes copies of any pointed-to
data

Figure 6.12 Stack is a value parameter

• •

protected not protected
oldStack

topPtr

352 | Chapter 6: Lists Plus

If the calling code passes an actual parameter callerStack to the CopyStack
function, a shallow copy causes the data member callerStack.topPtr to be copied
into oldStack.topPtr. Both pointers now point to the same linked structure (Figure
6.13a). When the CopyStack function removes the items from the stack, it destroys the
caller’s stack! What we want is a deep copy of the stack so that CopyStack works with
an identical but separate copy of the caller’s stack (Figure 6.13b). In this case, the
caller’s stack remains unchanged by any manipulations within the function.

Class Copy Constructors

C++ uses shallow copying in the following cases: passing parameters by value, initializ-
ing a variable in a declaration (StackType myStack
= yourStack;), returning an object as the value of a
function (return thisStack;), and implementing
the assignment operation (stack1 = stack2;).
Again, because of the active stance of a class object,
C++ supports another special class operation called
the copy constructor, which we describe shortly. If

Figure 6.13 Shallow copy versus deep copy of a stack

• •

•

•
• •

•

• •

•

4

Calling
code

9 7

4 9 7

4 9 7

CopyStack
function

(a) A shallow copy

(b) A deep copy

Calling
code

CopyStack
function

callerStack.topPtr

oldStack.topPtr

callerStack.topPtr

oldStack.topPtr

Copy constructor A special member function of a class
that is implicitly invoked when passing parameters by
value, initializing a variable in a declaration, and returning
an object as the value of a function

6.4 Copy Structures | 353

present, the copy constructor is used implicitly when a class object is passed by value,
when a class object is initialized in a declaration, and when an object is a function
return value.

What about the assignment operation? If you want to assign one object to another
using a deep copy, you have to (a) write a member function to perform the deep copy
and explicitly invoke it rather than use the assignment operator, or (b) overload the
assignment operator. We discuss the first alternative in this section and the second
alternative in the next section.

The copy constructor has a special syntax. Like the class constructor and destructor,
it has no return type, just the class name.

template <class ItemType>
class StackType
{
public:
.
.
// Copy constructor.
StackType(const StackType<ItemType>& anotherStack);
.
.

};

The pattern that signals a copy constructor is the single reference parameter of the
class type. The reserved word const protects the parameter from being altered even
though it is passed by reference. Because the copy constructor is a class member func-
tion, the implementation has direct access to the class data. To copy a linked structure,
we must cycle through the structure one node at a time, making a copy of the node’s
content as we go. Therefore we need two running pointers: one pointing to successive
nodes in the structure being copied and one pointing to the last node of the new struc-
ture. Remember, in the deep copy of a linked structure, the info members are the same
but the next members are not. In writing the algorithm, we must be sure to take care of
the case where the stack being copied is empty.

Copy Constructor
if anotherStack.topPtr is NULL

Set topPtr to NULL
else

Set topPtr to the address of a newly allocated node
Set Info(topPtr) to Info(anotherStack.topPtr)
Set ptr1 to Next(anotherStack.topPtr) (continued)

354 | Chapter 6: Lists Plus

Notice that our algorithm avoids using an extra pointer to the new node being
inserted by storing its address directly into the structure where the new node will go. ptr1
points to the node to be copied; ptr2 points to the last node copied. See Figure 6.14.

template <class ItemType>
StackType<ItemType>::StackType(const StackType<ItemType>& anotherStack)
{
NodeType<ItemType>* ptr1;
NodeType<ItemType>* ptr2;

if (anotherStack.topPtr == NULL)
topPtr = NULL;

else

Copy Constructor (continued)
Set ptr2 to topPtr
while ptr1 is not NULL

Set Next(ptr2) to the address of a newly allocated node
Set ptr2 to Next(ptr2)
Set Info(ptr2) to Info(ptr1)
Set ptr1 to Next(ptr1)

Set Next(ptr2) to NULL

Figure 6.14 Relative position of pointers at the beginning of each iteration

• •

•

5 7

•

•

5 7

4

anotherStack.topPtr

topPtr ptr1

ptr2

6.4 Copy Structures | 355

{
topPtr = new NodeType<ItemType>;
topPtr->info = anotherStack.topPtr->info;
ptr1 = anotherStack.topPtr->next;
ptr2 = topPtr;
while (ptr1 != NULL)
{
ptr2->next = new NodeType<ItemType>;
ptr2 = ptr2->next;
ptr2->info = ptr1->info;
ptr1 = ptr1->next;

}
ptr2->next = NULL;

}
}

Copy Function

We saw how the client program could write a function CopyStack to copy one stack
into another, provided a class copy constructor is defined to maintain the integrity of
the original stack passed as a value parameter. Alternatively, could we include a mem-
ber function to copy one stack into another and let the client invoke it explicitly? Sure,
but first we must decide whether we are copying self into another object or another
object into self. That is, member functions are always applied to an object of the class
type. One stack would be the object to which the function is applied, and the other stack
would be a parameter of the function. Given the statement

myStack.Copy(yourStack);

is myStack being copied into yourStack or the other way around? Of course, we can’t
answer this question until we see the function declaration. If yourStack is being copied
into myStack, then the code for Copy would be nearly identical to the class copy con-
structor. The difference is that self already points to a dynamic structure, and we must
deallocate all the nodes of this structure by applying MakeEmpty before the copying
begins. On the other hand, if myStack is being copied into yourStack, then we have to
rethink the algorithm. We leave this change as an exercise.

There is a third way to implement a copy function. Suppose that we’d like to write a
function in which both stacks are parameters to the function.

Copy(myStack, yourStack);

Compared to dot notation, this syntax is more familiar to (and therefore more comfort-
able for) some programmers. But we just said that member functions are applied to an
object of the class type. How can we do this? C++ provides a syntactic device called a

356 | Chapter 6: Lists Plus

friend function that allows this type of construction. A friend function is not a member
of the class, yet it has permission to access private class members directly. Here is how
this friend function would be declared and implemented:

template<class ItemType>
class StackType
{
public:

�

friend void Copy(StackType<ItemType>, StackType<ItemType>&);
�

};

template<class ItemType>
void Copy(StackType<ItemType> original, StackType<ItemType>& copy)
{
if (original.topPtr == NULL)
copy.topPtr = NULL;

else
{
NodeType<ItemType>* ptr1;
NodeType<ItemType>* ptr2;

copy.topPtr = new NodeType<ItemType>;
copy.topPtr->info = original.topPtr->info;
ptr1 = original.topPtr->next;
ptr2 = copy.topPtr;
while (ptr1 != NULL)
{

ptr2->next = new NodeType<ItemType>;
ptr2 = ptr2->next;
ptr2->info = ptr1->info;
ptr1 = ptr1->next;

}
ptr2->next = NULL;

}
}

Notice that we do not preface the name of the function with the class name. Copy is
a friend function, not a member function. Copy does have access to the private data
members of its parameters, but access to them must be qualified by the parameter name
and a dot. There is no implicit self in a friend function. The friend function is declared
within a class definition, but it is not a member function of the class.

6.4 Copy Structures | 357

Overloading the Assignment Operator

In the last section, we pointed out that the assignment operator (=) normally causes
shallow copying. It would be nice if we could write

myStack = yourStack;

Of course, if the stack is implemented as a dynamic linked structure, this code would
result in two pointers pointing to the same stack rather than two distinct stacks. We can
solve the problem of shallow copying with the assignment operator by overloading its
meaning. In Chapter 3, we showed how to overload the relational operators. We can do
the same thing for the assignment operator.

template<class ItemType>
class StackType
{
public:

�

void operator=(StackType<ItemType>);
�

};

The function definition looks like this:

template<class ItemType>
void StackType<ItemType>::operator=

(StackType<ItemType> anotherStack)
{

�

}

The function body is identical to that of the Copy member function that we discussed
(but left as an exercise) earlier. Therefore, if we have already written a Copy member
function, then to overload the assignment operator we make only one small change:
Change the function name from Copy to operator=.

With an operator= function provided by the StackType class, the client code can
use a statement like

myStack = yourStack;

The compiler implicitly translates this statement into the function call

myStack.operator=(yourStack);

358 | Chapter 6: Lists Plus

Thus, the class object to the left of the equals sign in the client code is the object to
which the operator= function is applied, and the object to the right of the equals sign
becomes the parameter to the function.

We can overload the assignment operator for any number of classes. When the
compiler sees an assignment operator, it looks at the types of the operands and uses the
appropriate code. If the operands are objects of a class that has not overloaded the
assignment operator, the default meaning of assignment is used—copying of data mem-
bers only, yielding a shallow copy.

Further Guidelines for Operator Overloading

1. All C++ operators may be overloaded except ::, ., sizeof, and ?:.
2. At least one operand of the overloaded operator must be a class instance.
3. You cannot change the standard order of operator precedence, define new operator symbols,

or change the number of operands of an operator.
4. Overloading unary operators: If data is of type SomeClass, and you want to overload, say,

the unary minus operator (-), then -data is equivalent to data.operator-() if opera-
tor- is a member function and to operator-(data) if operator- is a friend function.

5. Overloading binary operators: If data is of type SomeClass and you want to overload, say,
the addition operator (+), then data + otherData is equivalent to data.operator+
(otherData) if operator+ is a member function and to operator+(data, other-
Data) if operator+ is a friend function.

6. Overloading the ++ and -- operators requires client code to use the preincrement form:
++someObject or --someObject.

7. Operator functions must be member functions when overloading =, (), [], and ->. Other
restrictions apply as well. See a C++ reference book before attempting to overload (), [],
and ->.

8. The stream operators << and >> must be overloaded using a friend function. See a C++ ref-
erence book before attempting to overload << and >>.

9. Many meanings for an operator can coexist as long as the compiler can distinguish among
the data types of the operands.

One final comment before we leave the problems related to classes in which at least
one of the data members is a pointer type: If one of the three—class destructor, copy
constructor, or overloaded assignment operator—is necessary, then most likely all three
are necessary. This is sometimes called the “Rule of the big 3.”

6.5 A Linked List as an Array of Records

We have used both statically allocated arrays and dynamically allocated arrays for our
array-based implementations. We have used dynamic memory allocation to obtain the

C++

6.5 A Linked List as an Array of Records | 359

Figure 6.15 Array-based lists in static and dynamic storage

5
A
B
C
D
E

[0]
[1]
[2]
[3]
[4]

list

list
.length
.info

struct ListType
{
 int length;
 char info[5];
};
ListType list;

5
A
B
C
D
E

[0]
[1]
[2]
[3]
[4]

struct ListType
{
 int length;
 char info[5];
};
ListType* list;
list = new ListType;

•

(a) A sequential list in static storage

(b) A sequential list in dynamic storage

.length

.info

necessary memory for the nodes making up the linked structures developed in this and
previous chapters.

The choice between array-based and linked list representations is not the same as
the choice between static and dynamic storage allocation. They are separate issues. We
typically store arrays in variables that have been declared statically, as illustrated in
Figure 6.15(a), but an array-based implementation does not necessarily use static stor-
age. The entire array could exist in a dynamically allocated area of memory; that is, we
could get space for the whole structure at once using the new operator, as illustrated in
Figure 6.15(b).

We tend to think of linked structures as residing in dynamically allocated storage,
as depicted in Figure 6.16(a), but this is not a requirement. A linked list could be imple-
mented in an array; the elements might be stored in the array in any order and “linked”
by their indexes (see Figure 6.16b). In the following sections, we develop the array-
based linked-list implementation.

360 | Chapter 6: Lists Plus

Figure 6.16 Linked lists in static and dynamic storage

C
B
E
A
D
3

[0]
[1]
[2]
[3]
[4]

.first

struct NodeType
{
 char info;
 NodeType* next;
};

NodeType* list;
list = new NodeType;

(b) A linked list in dynamic storage

struct NodeType
{
 char info;
 int next;
};
struct ListType
{
 NodeType nodes[5];
 int first;
};
ListType list;

(a) A linked list in static storage

.nodes
4
0
–1
1
2

•
•

• •

•

list

A B C

D E

list

Why Use an Array?

Dynamic allocation of list nodes offers many advantages, so why would we even dis-
cuss using an array-of-records implementation instead? We have noted that dynamic
allocation is merely one advantage gained by choosing a linked implementation;
another advantage relates to the efficiency of the insertion and deletion algorithms.
Most of the algorithms that we have discussed for operations on a linked structure can
be used for either an array-based or a dynamic implementation. The main difference
involves the requirement that we manage our own free space in an array-based imple-
mentation. Managing the free space ourselves gives us greater flexibility.

Another reason to use an array of records is the fact that a number of programming
languages do not support dynamic allocation or pointer types. You can still use linked
structures when programming in one of these languages, but you would have to repre-
sent pointer values as array indexes.

6.5 A Linked List as an Array of Records | 361

Using pointer variables presents a problem when we need to save the information in
a data structure between runs of a program. Suppose we want to write all the nodes in a
list to a file and then use this file as input the next time we run the program. If the links
are pointer values—containing memory addresses—they are meaningless on the next run
of the program because the program may be placed somewhere else in memory the next
time. We must save the user data part of each node in the file and then rebuild the
linked structure the next time we run the program. An array index, however, remains
valid on the next run of the program. We can store the entire array, including the next
data member (indexes), and then read it back in the next time we run the program.

Most importantly, sometimes dynamic allocation isn’t possible or feasible, or
dynamic allocation of each node, one at a time, is too costly in terms of time—especially
in system software such as operating system code.

How Is an Array Used?

Let’s return to our discussion of how we can implement a linked list in an array. As
noted earlier, the next member of each node tells us the array index of the succeeding
node. The beginning of the list is accessed through a “pointer” that contains the array
index of the first element in the list. Figure 6.17 shows how a sorted list containing the

Figure 6.17 A sorted list stored in an array of records

David

Miriam

Joshua

Robert

Leah

4

6

7

–1

2

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

0list

nodes .info .next

362 | Chapter 6: Lists Plus

elements David, Joshua, Leah, Miriam, and Robert might be stored in an array of
records called nodes. Do you see how the order of the elements in the list is explicitly
indicated by the chain of next indexes?

What goes in the next member of the last list element? Its “null” value must be an
invalid address for a real list element. Because the nodes array indexes begin at 0, the
value �1 is not a valid index into the array; that is, no nodes[-1] exists. Therefore �1
makes an ideal value to use as a “null” address. Let’s use the constant identifier NUL
rather than NULL to keep the distinction clear. We could use the literal value �1 in our
programs,

while (location != -1)

but it is better programming style to declare a named constant. In fact, we can define
NUL to be �1.

const int NUL = -1;

When using an array-of-records implementation to represent a linked list, the pro-
grammer must write routines to manage the free space available for new list elements.
Where is this free space? Look again at Figure 6.17. All of the array elements that do
not contain values in the list constitute free space. Instead of the built-in allocator new,
which allocates memory dynamically, we must write our own function to allocate nodes
from the free space. We call this function GetNode.

When elements are deleted from the list, we need to free the node space. We can’t
use delete, because it only works for dynamically allocated space. We write our own
function, FreeNode, to return a node to the pool of free space.

This collection of unused array elements can be linked together into a second list, a
linked list of free nodes. Figure 6.18 shows the array nodes with both the list of values
and the list of free space linked through their next members. Here list is the external
pointer to a list that begins at index 0 (containing the value David). Following the links
in the next member, we see that the list continues with the array slots at index 4
(Joshua), 7 (Leah), 2 (Miriam), and 6 (Robert), in that order. The free list begins at free,
at index 1. Following the links in the next member, we see that the free list also
includes the array slots at indexes 5, 3, 8, and 9. Two NUL values appear in the next
column because the nodes array contains two linked lists.

Two approaches to using an array-of-records implementation for linked structures are
possible. The first is to simulate dynamic memory. One array stores many different linked
lists, just as the nodes on the free store can be dynamically allocated for different lists. In
this approach, the external pointers to the lists are not part of the storage structure, but the
external pointer to the list of free nodes is part of the structure. Figure 6.19 shows an array
that contains two different lists. The list indicated by list1 contains the values John, Nell,
Susan, and Susanne, and the list indicated by list2 contains the values Mark, Naomi, and
Robert. The remaining three array slots in Figure 6.19 are linked together in the free list.

The second approach is to have one array of records for each list. In this approach,
the external pointer is part of the storage structure itself (see Figure 6.20). The list con-

6.5 A Linked List as an Array of Records | 363

Figure 6.18 An array with a linked list of values and free space

David

Miriam

Joshua

Robert

Leah

4

5

6

8

7

3

NUL

2

9

NUL

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

0list

free

nodes .info .next

1

structor takes a parameter that specifies the maximum number of items on the list. This
parameter is used to dynamically allocate an array of the appropriate size. Note that the
array itself resides in dynamic storage, but the linked structure uses array indexes as
“pointers.” If the list will be saved between runs of the program, the contents of the
array are saved, and the indexes (links) remain valid.

Let’s implement this second approach. In implementing our class functions, we need
to keep in mind that two distinct processes go on within the array of records: bookkeep-
ing related to the space (such as initializing the array of records, getting a new node,
and freeing a node) and the operations on the list that contains the user’s data. The
bookkeeping operations are transparent to the user. The prototypes of the member func-
tions stay the same, including both a parameterized and a default constructor. The pri-
vate data members, however, change. We need to include the array of records. Let’s call
this array nodes and place it in dynamic storage. MemoryType, then, is a struct con-
taining two items: an integer “pointer” to the first free node and a true pointer to the
dynamically allocated array of nodes.

364 | Chapter 6: Lists Plus

Figure 6.19 An array with three lists (including the free list)

John

Mark

Nell

Naomi

Robert

Susan

Susanne

4

5

3

NUL

8

6

NUL

2

9

NUL

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

0list1

list2

nodes .info .next

1

7free

To simplify the following discussion and code, we assume that the items on the list
are integers rather than using a template class.

struct MemoryType;

class ListType
{
public:
// Member function prototypes go here.

private:
int listData;
int currentPos;
int length;

6.5 A Linked List as an Array of Records | 365

Figure 6.20 List and linked structure are together

David

Miriam

Joshua

Robert

Leah

4

5

6

8

7

3

NUL

2

9

NUL

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

1free

list

nodes .info .next

0

int maxItems;
MemoryType storage;

};

The functions that do the bookkeeping are auxiliary (“helper”) functions, not class
member functions. Member functions are those functions that the user invokes; auxil-
iary functions are those functions that help to implement the member functions. Let’s
look first at these bookkeeping functions. The nodes are all free initially, so they must
be chained together and the index of the first node stored into free. GetNode must
return the index of the next free node and update free. FreeNode must take the node
index received as a parameter and insert it into the list of free nodes. Because the first
item in the list is directly accessible, we have GetNode return the first free item and
FreeNode insert the node being returned at the beginning of the free list. (Yes, we keep
the free list as a stack—not because we need the LIFO property but because the code is
the simplest for what we need.)

366 | Chapter 6: Lists Plus

The following code defines MemoryType and implements these auxiliary functions:

// Prototypes of auxiliary functions.
void GetNode(int& nodeIndex, MemoryType& storage);
// Returns the index of a free node in nodeIndex.
void FreeNode(int nodeIndex, MemoryType& storage);
// Returns nodeIndex to storage.
void InitializeMemory(int maxItems, MemoryType&);
// Initializes all memory to the free list.

// Define end-of-list symbol.
const int NUL = -1;

struct NodeType
{
int info;
int next;

};

struct MemoryType
{
int free;
NodeType* nodes;

};

void InitializeMemory(int maxItems, MemoryType& storage)
{
for (int index = 1; index < maxItems; index++)
storage.nodes[index-1].next = index;

storage.nodes[maxItems-1] = NUL;
storage.free = 0;

}

void GetNode(int& nodeIndex, MemoryType& storage)
{
nodeIndex = storage.free;
storage.free = storage.nodes[free].next;

}

void FreeNode(int nodeIndex, MemoryType& storage)
{
storage.nodes[nodeIndex].next = storage.free;
storage.free = nodeIndex;

}

6.5 A Linked List as an Array of Records | 367

The class constructors for the class ListType must allocate the storage for the
array of records and call InitializeMemory. For the default constructor, we arbitrarily
choose an array size of 500.

ListType::ListType(int max)
{
length = 0;
maxItems = max;
storage.nodes = new NodeType[max];
InitializeMemory(maxItems, storage);
listData = NUL;

}
ListType::ListType()
{
length = 0;
maxItems = 500;
storage.nodes = new NodeType[500];
InitializeMemory(500, storage);
listData = NUL;

}

ListType::~ListType()
{
delete [] storage.nodes;

}

Let’s look at our design notation, the dynamic pointer-based equivalent, and the
array-of-records equivalent. We also need to examine the bookkeeping equivalent of
the dynamic pointer-based operations and the array-of-records version. Once we under-
stand all these relationships, coding the member functions of ListType is quite
straightforward. In fact, it is so straightforward, we leave the code as a programming
assignment.

Design Notation/
Algorithm Dynamic Pointers Array-of-Records “Pointers”

Node(location) *location storage.nodes[location]

Info(location) location->info storage.nodes[location].info

Next(location) location->next storage.nodes[location].next

Set location to Next(location) location = location->next location =
storage.nodes[location].next

Set Info(location) to value location->info = value storage.nodes[location].info = value

Allocate a node nodePtr = new NodeType GetNode(nodePtr)

Deallocate a node delete nodePtr FreeNode(nodePtr)

368 | Chapter 6: Lists Plus

*This relaxation allows dynamic binding to occur.

6.6 Polymorphism with Virtual Functions

In addition to encapsulation and inheritance, the third capability that must be available
in an object-oriented programming language is polymorphism. In Chapter 2, we defined
polymorphism as the ability to determine which function to apply to a particular object.
This determination can be made at compile time (static binding) or at run time (dynamic
binding). For a language to be truly object-oriented, it must support both static and
dynamic binding; that is, it must support polymorphism. C++ uses virtual functions to
implement run-time binding.

The basic C++ rule for passing parameters is that the actual parameter and its corre-
sponding formal parameter must be of an identical type. With inheritance, C++ relaxes
this rule somewhat. The type of the actual parameter may be an object of a derived class
of the formal parameter.* To force the compiler to generate code that guarantees
dynamic binding of a member function to a class object, the reserved word virtual
appears before the function declaration in the declaration of the base class. Virtual
functions work in the following way. If a class object is passed by reference to some
function, and if the body of that function contains a statement

formalParameter.MemberFunction(...);

then

1. If MemberFunction is not a virtual function, the type of the formal parameter
determines which function to call. (Static binding is used.)

2. If MemberFunction is a virtual function, the type of the actual parameter deter-
mines which function to call. (Dynamic binding is used.)

Let’s look at an example. Suppose that ItemType is declared as follows:

class ItemType
{
public:

�

virtual RelationType ComparedTo(ItemType) const;
private:
char lastName[50];
�

};

6.6 Polymorphism with Virtual Functions | 369

RelationType ItemType::ComparedTo(ItemType item) const
{
int result;

result = std::strcmp(lastName, item.lastName);
if (result < 0)
return LESS;

else if (result > 0)
return GREATER;

else return EQUAL;
}

Now let’s derive a class NewItemType that contains two strings as data members.
We want ComparedTo to use both of them in the comparison.

class NewItemType : public ItemType
{
public:

�

RelationType ComparedTo(ItemType) const;
private:
// In addition to the inherited lastName member
char firstName[50];
�

};
RelationType NewItemType::ComparedTo(NewItemType item) const
{
int result;

result = std::strcmp(lastName, item.lastName);
if (result < 0)
return LESS;

else if (result > 0)
return GREATER;

else
{
result = strcmp(firstName, item.firstName);
if (result < 0)
return LESS;

else if (result > 0)
return GREATER;

else
return EQUAL;

}
}

370 | Chapter 6: Lists Plus

The function ComparedTo is marked as virtual in the base class (ItemType);
according to the C++ language, ComparedTo is therefore a virtual function in all
derived classes as well. Whenever an object of type ItemType or NewItemType is
passed by reference to a formal parameter of type ItemType, the determination of
which ComparedTo to use within that function is postponed until run time. Let’s assume
that the client program includes the following function:

void PrintResult(ItemType& first, ItemType& second)
{
using namespace std;
if (first.ComparedTo(second)==LESS)
cout << "First comes before second";

else
cout << "First does not come before second";

}

It then executes the following code:

ItemType item1, item2;
NewItemType item3, item4:

�

PrintResult(item1, item2);
PrintResult(item3, item4);

Because item3 and item4 are objects of a class derived from ItemType, both of
the calls to PrintResult are valid. PrintResult invokes ComparedTo. Which one? Is
it ItemType::ComparedTo or NewItemType::ComparedTo? Because ComparedTo is a
virtual function and the class objects are passed by reference to PrintResult, the type
of the actual parameter—not the formal parameter—determines which version of Com-
paredTo is called. In the first call to PrintResult, ItemType::ComparedTo is
invoked; in the second call, NewItemType::ComparedTo is invoked. This situation is
illustrated in the following diagram:

Execute
ItemType's
ComparedTo

Execute
NewItemType's
ComparedTo

ItemType NewItemType

ifRun-time Execution of PrintResult:
PrintResult(one, two)

Type of one and two?

6.6 Polymorphism with Virtual Functions | 371

This example demonstrates an important benefit of dynamic binding. The client
does not need to have multiple versions of the PrintResult function, one for each
type of parameter that is passed to it. If new classes are derived from ItemType (or even
from NewItemType), objects of those classes can be passed to PrintResult without
any modification of PrintResult.

If you have a pointer defined as a pointer to a base class and dynamically allocate
storage using the base type, the pointer points to a base-class object. If you dynamically
allocate storage using the derived type, the pointer points to a derived-class object.
Take, for example, the following short program with a base class One and a derived
class Two. Here we allocate an object of (base) class One and an object of (derived) class
Two.

#include <iostream>
class One
{
public:
virtual void Print() const;

};

class Two : public One
{
public:
void Print() const;

};

void PrintTest(One*);

int main()
{
using namespace std;
One* onePtr;
onePtr = new One;

cout << "Result of passing an object of class One: ";
PrintTest(onePtr);

onePtr = new Two;

cout << "Result of passing an object of class Two: ";

PrintTest(onePtr);
return 0;

}

372 | Chapter 6: Lists Plus

void PrintTest(One* ptr)
{
ptr->Print();

}

void One::Print() const
{
std::cout << "Print member function of class One" << endl;

}

void Two::Print() const
{
std::cout << "Print member function of class Two " << endl;

}

onePtr points first to an object of class One and then to an object of class Two.
When the parameter to PrintTest points to an object of class One, the class One mem-
ber function is applied. When the parameter points to an object of class Two, the class
Two member function is applied. The fact that the type of the run-time object deter-
mines which member function is executed is verified by the following output:

We must issue one word of caution about passing a parameter of a derived type
to any function whose formal parameter is of the base type. If you pass the parame-
ter by reference, no problem arises. If you pass the parameter by value, however,
only the subobject that is of the base type is actually passed. For example, if the base
type has two data members and the derived type has two additional data members,
only the two data members of the base type are passed to a function if the formal
parameter is of the base type and the actual parameter is of the derived type. This
slicing problem (any additional data members declared by the derived class are
“sliced off”) can also occur if we assign an object of the derived type to an object of
the base type.

Look back at Figure 4.14, which shows the relationship of objects of QueType and
CountedQueType. If a CountedQueType object is passed as a value parameter to a

6.7 A Specialized List ADT | 373

function whose formal parameter is of type QueType, only those data members of Que-
Type are copied; length, a member of CountedQueType, is not. Although this slicing
does not present a problem in this case, be aware of this situation when designing your
hierarchy of classes.

6.7 A Specialized List ADT

We have defined Unsorted and Sorted List ADTs and given several implementations of
each. Our lists can be used for many applications. However, some applications always
need special-purpose lists. Perhaps they require specific list operations that are not
defined by our List ADTs, or perhaps the specific qualities of our lists (unique elements) do
not mesh well with the requirements of the application. In such cases, we may be able to
extend one of our list classes to create a new list that meets the needs of the application.
Alternatively, we might create a new list class customized for the application in question.

In the Case Study later in this chapter, we need lists with a unique set of properties
and operations. The lists must hold elements of the type int; duplicate elements are
allowed. The lists need not support IsFull, RetrieveItem, or DeleteItem. In fact, the only
list operations that we have been using that this new list construct requires are the
LengthIs operation and the iterator operations. For the Case Study, we will need to
process elements from left to right and from right to left, so we need to support two
iterators. In addition, we plan to insert items at the front and at the back of our lists.
The reasons for these requirements are made clear in the Case Study; for now, we just
accept the requirements as stated and consider how to implement the new list.

Let’s summarize these specifications in a CRC card.

SpecializedList

CollaborationsResponsibilities

Class Name: Superclass: Subclasses:

MakeEmpty()

LengthIs() returns int

Reset for forward traversal

Reset for backward traversal

GetNextItem() returns int

GetPriorItem() returns int

Insert at the front of the list

Insert at the rear of the list

.

.

.

374 | Chapter 6: Lists Plus

Figure 6.21 A circular doubly linked list

•

• •

• • •

•• •
list

Given this unique set of requirements, we decide to start from scratch for our new
List ADT. Of course, we can reuse our knowledge of lists and perhaps even reuse (cut
and paste) some of the code from the previous list implementations. Because the new
list construct creates a specialized list for a specific application, we call the list class
SpecializedList. To satisfy the requirement that we be able to iterate through the list
in both directions, instead of our standard “current position” property, lists of the class
SpecializedList have both a “current forward position” and a “current backward
position” and provide iterator operations for traversing the list in either direction. Note
that this statement does not mean that an iteration can change directions—rather, two
separate iterations can be going on at the same time, one forward and one backward.

One advantage of a doubly linked structure is that it supports the ability to traverse
a structure in both directions. When a structure is linked in only one direction, it is not
simple to traverse it in the other direction. Because a doubly linked list is linked in both
directions, traversing the list forward or backward is equally easy. On the other hand, a
circular structure with the external pointer pointing to the last item in the structure
gives direct access to both the front element and the last element. A doubly linked cir-
cular structure would be ideal (see Figure 6.21).

struct NodeType;

class SpecializedList
{
public:
SpecializedList(); // Class constructor.
~SpecializedList(); // Class destructor.
SpecializedList(const SpecializedList& someList);
// Copy constructor.

void ResetForward();
// Initializes current position for an iteration
// through the list from first item to last item.

void GetNextItem(int& item, bool& finished);
// Gets the next item in the structure.
// finished is true if all items have been accessed.

6.7 A Specialized List ADT | 375

// GetNextItem and GetPriorItem are independent; a forward
// iteration and a backward iteration may be in progress
// at the same time.

void ResetBackward();
// Initializes current position for an iteration
// through the list from last item to first item.

void GetPriorItem(int& item, bool& finished);
// Gets the previous item in the structure.
// finished is true if all items have been accessed.

void InsertFront(int item);
// Inserts item as the first item in the structure.

void InsertEnd(int item);
// Inserts item as the last item in the structure.

int LengthIs();
// Returns the number of items in the structure.

private:
NodeType* list;
NodeType* currentNextPos;
NodeType* currentBackPos;
int length;

};
�

struct NodeType
{
NodeType* next;
NodeType* back;
int info;

};

The constructor must set the list pointer to NULL and the length to 0.

SpecializedList::SpecializedList()
{
length = 0;
list = NULL;

}

Although we provide a length operation, we give the user another way of determin-
ing when the last item has been accessed. GetNextItem and GetPriorItem both have

376 | Chapter 6: Lists Plus

an extra parameter, a Boolean flag. This flag is set to true when the last item has been
returned. ResetForward sets currentNextPos to NULL, and GetNextItem returns the
next item in the structure, setting finished to true when currentNextPos equals
list. ResetBackward sets currentBackPos to NULL, and GetPriorItem returns the
previous item in the structure, setting finished to true when currentBackPos
equals list->next.

void SpecializedList::ResetForward()
// Post: currentNextPos has been initialized for a forward
// traversal.
{
currentNextPos = NULL;

}

void SpecializedList::GetNextItem(int& item,
bool& finished)

// Pre: ResetForward has been called before the first call to
// this function.
// Post: item is a copy of the next item in the list.
// finished is true if item is the last item in the list and
// false otherwise.
{
if (currentNextPos == NULL)
currentNextPos = list->next;

else
currentNextPos = currentNextPos->next;

item = currentNextPos->info;
finished = (currentNextPos == list);

}

void SpecializedList::ResetBackward()
// Post: currentBackPos has been initialized for a backward
// traversal.
{
currentBackPos = NULL;

}

void SpecializedList::GetPriorItem(int& item,
bool& finished)

// Post: item is a copy of the previous item in the list.
// finished is true if item is the first item in the list;
// false otherwise.
{
if (currentBackPos == NULL)

6.7 A Specialized List ADT | 377

Figure 6.22 Inserting at the front and at the rear

•

•

•

•

•

•

list

•

•

•

•

•

•

•

list

•

list

•

•

•

•

•

•

•

•

•

•

•

A B C

A B C

A B C

D

D

(a) InsertFront(D)

(b) InsertEnd(D)

currentBackPos = list;
else
currentBackPos = currentBackPos->back;

item = currentBackPos->info;
finished = (currentBackPos == list->next);

}

InsertFront inserts the new item as the first item in the list (see Figure 6.22a).
InsertEnd inserts the new item as the last item in the list (see Figure 6.22b). The results
look quite different in the diagram, but a careful examination reveals that they are
identical except for the external pointer list. Inserting an item at the beginning does
not change list; inserting one at the end does. We can use the same insertion routine
for both, but have InsertEnd move list.

378 | Chapter 6: Lists Plus

void SpecializedList::InsertFront(int item)
// Post: item has been inserted at the front of the list.
{
NodeType* newNode;

newNode = new NodeType;
newNode->info = item;
if (list == NULL)
{ // list is empty.
newNode->back = newNode;
newNode->next = newNode;
list = newNode;

}
else
{
newNode->back = list;
newNode->next = list->next;
list->next->back = newNode;
list->next = newNode;

}
length++;

}

void SpecializedList::InsertEnd(int item)
// Post: item has been inserted at the end of the list.
{
InsertFront(item);
list = list->next;

}

We leave the implementations of the class destructor, copy constructor, and over-
loaded assignment operator plus functions LengthIs and MakeEmpty as a program-
ming assignment.

Test Plan

Items must be inserted at both ends of the list, and traversals must go both forward and
backward. Note that some of the operations have not been implemented. For example,
we can’t test the constructor by printing the length. But how can we test it? Well, if the
other operations work correctly, then the constructor can be assumed to be correct.
Rather than testing all the front insertions and then all the end insertions, let’s change
the pattern somewhat and mix them up.

Case Study: Implementing a Large Integer ADT | 379

We should also test each time GetNextItem and GetPriorItem are called to see
whether we have reached the end of the traversal. On the Web, the file SpecialDr.cpp is
the driver for this class, Special1.in is the input file representing this test plan, and Spe-
cial1.out is the output. The file SpecializedList.h contains the code from this chapter.

Case Study
Implementing a Large Integer ADT

The range of integer values that can be supported varies from one computer to another. In
most C++ environments, file <climits> shows you the limits. For example, long integers
range from -2,147,483,648 to +2,147,483,647 on many machines. However long they may be
on a particular machine, some user is bound to want to represent integers with even larger
values. Let’s design and implement a class LargeInt that allows the user to manipulate inte-
gers where the number of digits is limited only by the size of the free store.

Because we are providing an alternative implementation for a mathematical object, an
integer number, most of the operations are already specified: addition, subtraction, multiplica-
tion, division, assignment, and the relational operators. For this Case Study, we limit our atten-
tion to addition, subtraction, equality, and less than. Enhancing this ADT with the other
operations is left as a programming assignment.

In addition to the standard mathematical operations, we need an operation that con-
structs a number one digit at a time. This operation cannot be a parameterized constructor

Operation to Be Tested and
Description of Action Input Values Expected Output

InsertFront
Insert five items 1, 2, 3, 4, 5

InsertEnd
Insert two items 0, -1

InsertFront
Insert one item 6

InsertEnd
Insert one item -2

ResetForward

GetNextItem
Call nine times, print each time 6, 5, 4, 3, 2, 1, 0, -1, -2

ResetBackward

GetPriorItem
Call nine times, print each time -2, -1, 0, 1, 2, 3, 4, 5, 6

380 | Chapter 6: Lists Plus

because the integer parameter might be too large to represent in the machine—after all, that is
the idea of this ADT. Instead, we need a special member function that can be called within a
loop that inserts the digits one at a time. We also need an operation that writes the integer to
a file, one digit at a time, from most significant digit to least significant digit.

Before we can begin to look at the algorithms for these operations, we need to decide on
our representation. Earlier we were designing the class SpecializedList for use in this Case
Study, so you know that we will use a circular, doubly linked list. Why doubly linked? Because
we need to access the digits from most significant to least significant to write them to a file,
and we need to access the digits from least significant to most significant to manipulate them
arithmetically. Why circular? Because we need to insert digits from most significant to least
significant when constructing an object, and we need to insert digits from least significant to
most significant when constructing an object that is the result of an arithmetic operation.

Figure 6.23 shows several examples of numbers in a singly linked list and an addition. Fig-
ure 6.23(a) and (c) show one digit per node; Figure 6.23(b) shows several digits per node. We
develop the algorithms for a single digit per node. You are asked in the exercises to explore the
necessary changes to include more than one digit in each node.

Here is the first approximation of the class LargeInt:

#include "SpecializedList.h"
#include <fstream>
class LargeInt

Figure 6.23 Representing large integers with linked lists

•• 7 5 2• •3 6• 0 •number

•• 8 3 5• 6 • 3 •num1
•• 752 036number

•• 4 1num2

•• 8 3 5• 7 • 7 •num3

+
+

=
=

(a) number = 752,036

(b) number = 752,036

(c) sum = 83536 + 41

Case Study: Implementing a Large Integer ADT | 381

{
public:
LargeInt();
~LargeInt();
LargeInt(const LargeInt&);
bool operator<(LargeInt second);
bool operator==(LargeInt second);
LargeInt operator+(LargeInt second);
LargeInt operator-(LargeInt second);
void InsertDigit(int);
void Write(std::ofstream&);

private:
SpecializedList number;

};

Earlier we said that classes in a program typically exhibit one of the following relation-
ships: They are independent of each other, they are related by composition, or they are related
by inheritance. The classes LargeInt and SpecializedList are related by composition. As
you see in the private part of the class definition, a LargeInt object is composed of (or con-
tains) a SpecializedList object. Just as inheritance expresses an is a relationship (a
CountedQueType object is a QueType object [and more]), composition expresses a has a
relationship (a LargeInt object has a SpecializedList object inside it).

Addition and Subtraction Let’s look at addition of positive integers first, and then look at
the role of the sign. We begin by adding the two least significant digits (the units position).
Next, we add the digits in the tens position (if present) plus the carry from the sum of the
least significant digits (if any). This process continues until one of three things happens: (1)
the first operand runs out of digits; (2) the second operand runs out of digits; or (3) both run
out of digits simultaneously. Rather than try to determine which operand is self at this stage,
let’s summarize these observations in an algorithm with three parameters of type
SpecializedList: first, second, and result where result = first + second.

Add(first, second, result)

Set carry to 0
Set finished1 to false
Set finished2 to false

first.ResetBackward()
second.ResetBackward()
while (!finished1 AND !finished2)

first.GetPriorItem(digit1, finished1)
second.GetPriorItem(digit2, finished2)
Set temp to digit1 + digit2 + carry

382 | Chapter 6: Lists Plus

Apply the algorithm to the following examples.

322 388 399 999 3 1 988 0
44 108 1 11 44 99 100 0___ ___ ___ ____ __ ___ ____ _

366 496 400 1010 47 100 1088 0

Now let’s examine subtraction in the simplest case: Both integers are positive and the
smaller one (second) is subtracted from the larger one (first). Again, we begin with the
digits in the units position. Let’s call the digit in first digit1 and the digit in second
digit2. If digit2 is less than digit1, we subtract and insert the resulting digit at the front
of the result. If digit2 is greater than digit1, we borrow 10 and subtract. Then we access
the digits in the tens position. If we have borrowed, we subtract 1 from the new digit1 and
proceed as before. Because we have limited our problem to the case where first is larger
than second, they either run out of digits together or first still contains digits when
second has been processed. Note also that this constraint guarantees that borrowing does
not extend beyond the most significant digit of first.

Sub(first, second, result)

Set borrow to false
Set finished1 to false
Set finished2 to false

first.ResetBackward()
second.ResetBackward()
while (!finished1 AND ! finished2)

first.GetPriorItem(digit1, finished1)
if (borrow)

if (digit1 != 0)
Set digit1 to digit1 - 1
Set borrow to false

else
Set digit1 to 9
Set borrow to true

second.GetPriorItem(digit2, finished2)

Set carry to temp / 10
result.InsertFront(temp % 10)

Finish up digits in first, adding carries as necessary
Finish up digits in second, adding carries as necessary
if (carry != 0)

result.InsertFront(carry)

Case Study: Implementing a Large Integer ADT | 383

By now you are wondering about the usefulness of a subtraction algorithm that is so
restricted. With these restricted subtraction and addition algorithms, we can implement addi-
tion and subtraction with all combinations of signs. Here are the rules.

Addition Rules

1. If both operands are positive, use the addition algorithm.

2. If one operand is negative and one operand is positive, subtract the smaller absolute value
from the larger absolute value and give the result the sign of the larger absolute value.

3. If both operands are negative, use the addition algorithm and give the result a minus sign.

Subtraction Rules

Remember how subtraction seemed more difficult than addition when you were first learning
arithmetic? Not anymore. We need to use only one subtraction rule: “Change the sign of the
subtrahend and add.” We do have to be careful about how we change the sign because we do
not want to actually change the sign of the argument passed to subtract, as that would pro-
duce an unwanted side effect. Therefore, we create a new LargeInt object, make it a copy of
the second parameter, invert its sign, and then add.

These rules indicate that the signs should be manipulated separately from the actual addi-
tion or subtraction. Therefore, we must add a sign data member to our LargeInt class. How
shall we represent the sign? Let’s define an enumeration type SignType having two constants
(MINUS and PLUS) and adopt the convention that zero has the sign PLUS. Let’s encode our
simplified addition and subtraction algorithms into the auxiliary functions Add and Sub, which
take three arguments each of type SpecializedList. The code for each overloaded arith-
metic symbol applies the rules for its operation and calls either Add or Sub. Sub should not be
called, however, if the two operands are the same, as the result would be zero. Here are the
algorithms for operator+ and operator-.

if (digit2 <= digit1)
result.InsertFront(digit1 - digit2)

else
Set borrow to true
result.InsertFront(digit1 + 10 - digit2)

while (!finished1)
first.GetPriorItem(digit1, finished1)
if (borrow)

if (digit1 != 0)
Set digit1 to digit1 - 1
Set borrow to false

else
Set digit1 to 9;
Set borrow to true

result.InsertFront(digit1)

384 | Chapter 6: Lists Plus

operator+(LargeInt second)

operator-(LargeInt second)

Relational Operators When comparing strings, we compare the characters in each character
position, one at a time, from left to right. The first characters that do not match determine which
string comes first. When comparing numbers, we simply compare the numbers digit by digit if they
have the same sign and are the same length (have the same number of digits). Here are the rules:

1. A negative number is less than a positive number.

2. If the signs are positive and one number has more digits than the other, then the number
with fewer digits is the smaller value.

3. If the signs are both negative and one number has more digits than the other, then the
number with more digits is the smaller value.

4. If the signs are the same and the number of digits is the same, compare the digits from
left to right. The first unequal pair determines the result.

Look at the following examples carefully and convince yourself that all the cases for “less
than” are represented.

Set copy to a copy of second
Set copy.sign to !second.sign
Add(number, copy.number, result.number)
return result

// self is first operand
if sign = second.sign

Add(number, second.number, result.number)
Set result.sign to sign

else
if |self| < |second|

Sub(second.number, number, result.number)
Set result.sign to second.sign

else if |second| < |self|
Sub(number, second.number, result.number)
Set result.sign to sign

return result

Case Study: Implementing a Large Integer ADT | 385

True False

-1 < 1 1 < -1

5 < 10 10 < 5

-10 < -5 -5 < -10

54 < 55 55 < 54

-55 < -54 -54 < -55

-55 < -55

55 < 55

Let’s summarize these observations for the “less than” operation. Because we have only
one digit per node, the class SpecializedList’s LengthIs function gives us the number of
digits in the number. It is a member function, so the first operand is self and the second
operand is second.

operator<(second)

This algorithm calls the function LengthIs of class SpecializedList eight times. We
should make the number of digits be a data member of the class LargeInt and avoid these
function calls. Thus each operation that defines a new large integer must call LengthIs once
and store this value in the LargeInt object. Let’s call the new data member numDigits. We
now need to specify an operation that compares the digits in two equal-length lists and

if (sign is MINUS AND second.sign is PLUS)
return true

else if (sign is PLUS AND second.sign is MINUS)
return false

else if (sign is PLUS AND number.LengthIs() < second.number.LengthIs())
return true

else if (sign is PLUS AND number.LengthIs() > second.number.LengthIs())
return false

else if (sign is MINUS AND number.LengthIs() > second.number.LengthIs())
return true

else if (sign is MINUS AND number.LengthIs() < second.number.LengthIs())
return false

else // Must compare digit by digit
Set relation to CompareDigits(number, second.number)
if (sign is PLUS AND relation is LESS)

return true
else if (sign is PLUS AND relation is GREATER)

return false
else if (sign is MINUS AND relation is GREATER)

return true
else return false

386 | Chapter 6: Lists Plus

returns LESS, GREATER, or EQUAL depending on the relationship of its two arguments. We
pass the list of digits only, so this function compares the absolute values of its two arguments.

RelationType CompareDigits(operand1, operand2)

The algorithm for operator== is very similar. If the signs are not the same, it returns
false. If the signs are the same, it calls CompareDigits.

operator==(second)

Other Operations We have now examined all of the algorithms for the linked long integer
representation except for Write and InsertDigit and the class constructors and
destructor. Before we look at which implicit operations we need, we should examine the
relationship between the classes LargeInt and SpecializedList. The only data member
in LargeInt that contains dynamic pointers is number, which is of type Specialized-
List. Because SpecializedList has a destructor, we do not need one for LargeInt. For
the same reason, we do not need a class copy constructor. We can delete these constructors
from our preliminary class definition, but we should retain the default class constructor to set
the object to 0. Figure 6.24 shows our final objects and their interactions.

The following code shows the revised class definition, the complete addition operation,
and the “less than” operator. We have implemented the changes that were made in the algo-
rithm discussions. We leave the completion of the other operations as a programming assign-
ment.

if (sign is MINUS AND second.sign is PLUS) OR
(sign is PLUS AND second.sign is MINUS)
return false

else
return (CompareDigits(number, second.number) == EQUAL)

operand1.ResetForward()
operand2.ResetForward()
Set same to true
Set finished to false
while !finished

operand1.GetNextItem(digit1, finished)
operand2.GetNextItem(digit2, finished)
if (digit1 < digit2)

return LESS
else if (digit1 > digit2)

return GREATER
return EQUAL

Case Study: Implementing a Large Integer ADT | 387

#include "SpecializedList.h" // Gain access to SpecializedList
#include <fstream>
enum SignType {PLUS, MINUS};

class LargeInt
{
public:
LargeInt();
bool operator<(LargeInt second);
bool operator==(LargeInt second);
LargeInt operator+(LargeInt second);
LargeInt operator-(LargeInt second);
void InsertDigit(int);
void Write(std::ofstream&);

private:
SpecializedList number;
SignType sign;
int numDigits;

};

Figure 6.24 An instance of class LargeInt

• •

•••

• • •

•••.list.number

.sign

.numDigits

PLUS

5

4 1 2 3 5

Explicit member functions
applicable to value:

operator<
operator==
operator+
operator–
InsertDigit
Write

Explicit member functions
applicable to number:

ResetForward
GetNextItem
ResetBackward
GetPriorItem
InsertFront
InsertEnd
LengthIs

LargeInt value
containing

12354

value

388 | Chapter 6: Lists Plus

void Add(SpecializedList first, SpecializedList second,
SpecializedList& result)

// Post: result = first + second.
{
int carry = 0;
bool finished1 = false;
bool finished2 = false;
int temp;
int digit1;
int digit2;

first.ResetBackward();
second.ResetBackward();

while (!finished1 && !finished2)
{
first.GetPriorItem(digit1, finished1);
second.GetPriorItem(digit2, finished2);
temp = digit1 + digit2 + carry;
carry = temp / 10;
result.InsertFront(temp % 10);

}
while (!finished1)
{// Adds remaining digits (if any) in first to the sum.
first.GetPriorItem(digit1, finished1);
temp = digit1 + carry;
carry = temp / 10;
result.InsertFront(temp % 10);

}
while (!finished2)
{// Adds remaining digits (if any) in second to the sum.
second.GetPriorItem(digit2, finished2);
temp = digit2 + carry;
carry = temp / 10;
result.InsertFront(temp % 10);

}
if (carry != 0) // Adds in carry (if any).
result.InsertFront(carry);

}

LargeInt LargeInt::operator+(LargeInt second)
// self is first operand.
{
SignType selfSign;
SignType secondSign;
LargeInt result;

Case Study: Implementing a Large Integer ADT | 389

if (sign == second.sign)
{
Add(number, second.number, result.number);
result.sign = sign;

}
else
{
selfSign = sign;
secondSign = second.sign;
sign = PLUS;
second.sign = PLUS;
if (*this < second)
{
Sub(second.number, number, result.number);
result.sign = secondSign;

}
else if (second < *this)
{
Sub(number, second.number, result.number);
result.sign = selfSign;

}
sign = selfSign;

}
result.numDigits = result.number.LengthIs();
return result;

}

enum RelationType {LESS, GREATER, EQUAL};
RelationType CompareDigits(SpecializedList first,

SpecializedList second);

bool LargeInt::operator<(LargeInt second)
{
RelationType relation;

if (sign == MINUS && second.sign == PLUS)
return true;

else if (sign == PLUS && second.sign == MINUS)
return false;

else if (sign == PLUS && numDigits < second.numDigits)
return true;

else if (sign == PLUS && numDigits > second.numDigits)
return false;

else if (sign == MINUS && numDigits > second.numDigits)
return true;

390 | Chapter 6: Lists Plus

else if (sign == MINUS && numDigits < second.numDigits)
return false;

else // Must compare digit by digit.
{
relation = CompareDigits(number, second.number);
if (sign == PLUS && relation == LESS)
return true;

else if (sign == PLUS && relation == GREATER)
return false;

else if (sign == MINUS && relation == GREATER)
return true;

else return false;
}

}

RelationType CompareDigits(SpecializedList first,
SpecializedList second)

{
bool same = true;
bool finished = false;
int digit1;
int digit2;

first.ResetForward();
second.ResetForward();
while (!finished)
{
first.GetNextItem(digit1, finished);
second.GetNextItem(digit2, finished);
if (digit1 < digit2)
return LESS;

if (digit1 > digit2)
return GREATER;

}
return EQUAL;

}

Case Study: Implementing a Large Integer ADT | 391

Look at the layers of abstraction represented in this Case Study. The application program-
mer uses the class LargeInt to define and manipulate very large integers in an application
program. The LargeInt programmer uses SpecializedList to define and manipulate
large integers represented as a linked list of digits. The SpecializedList programmer cre-
ates a utility that inserts items of type int into a circular, doubly linked list and traverses the
list in either direction.

Test Plan Each LargeInt operation must be unit tested. The complexity of the code for
each operation is evident in the number of if statements found in the algorithms. The more
complex the code, the more test cases are necessary to test it. A white-box testing strategy
would require going through the code of each operation and identifying data to test at least
all branches. A black-box testing strategy would involve choosing data that test the various
possible inputs. It would require varying combinations of signs and relative relationships

Explicit Reference to Self

The object to which a member function is applied can reference its data members directly. On
some occasions, an object needs to refer to itself as a whole, not just to its data members. An
example occurs in the code for overloading the plus operator. Within this function, we have to
determine whether self is less than the other operand. Here is that segment of the algorithm:

if |self |< |second|
Sub(second.number, number, result.number)
Set result.sign to second.sign

We need to apply the relational operator “less than” to two LargeInt objects from within a
member function. How do we reference self? C++ has a hidden pointer called this. When a class
member function is invoked, this points to the object to which the function is applied. The this
pointer is available for use by the programmer. The algorithm segment shown here can be imple-
mented by substituting *this for self.

secondSign = second.sign;
sign = PLUS;
second.sign = PLUS;
if (*this < second)
{
Sub(second.number, number, result.number);
result.sign = secondSign;

}

C++

392 | Chapter 6: Lists Plus

between operands. In the case of “less than,” addition, and subtraction, the examples used in
the discussion would serve as test data for those operations. Other end cases should be
included as well, such as cases where one or both of the operands are zero.

Of course, this discussion presupposes that SpecializedList has been thoroughly tested!

Summary
This chapter is a collection of theoretical material and implementation techniques. The
idea of linking the elements in a list has been extended to include lists with header and
trailer nodes, circular lists, and doubly linked lists. The idea of linking the elements is a
possibility to consider in the design of many types of data structures. In addition to
using dynamically allocated nodes to implement a linked structure, we looked at a tech-
nique for implementing linked structures in an array of records. In this technique, the
links are not pointers into the free store but rather indexes into the array of records.
Systems software makes extensive use of this type of linking.

While a linked list can be used to implement almost any list application, its real
strength emerges in applications that largely process the list elements in order. This is
not to say that we cannot do “random access” operations on a linked list. Our specifica-
tions include operations that logically access elements in random order—for instance,
the member functions RetrieveItem and DeleteItem manipulate an arbitrary ele-
ment in the list. Nevertheless, at the implementation level the only way to find an ele-
ment is to search the list, beginning at the first element and continuing sequentially by
examining element after element. From Chapter 3, we know that a linear search is O(N),
because the amount of work required is directly proportional to the number of elements
in the list. A particular element in a sequentially sorted list in an array, in contrast, can
be found with a binary search, decreasing the search algorithm to O(log2N). For a large
list, the O(N) sequential search can prove quite time-consuming. One linked structure
does support O(log2N) searches: the binary search tree. We discuss this data structure in
detail in Chapter 8.

We revisited polymorphism in this chapter by examining an example of how to use
the C++ virtual function construct to implement dynamic binding. We also examined
the concept of deep versus shallow copying and assignment operator overloading.

The Case Study designed a Large Integer ADT. The number of digits is bounded only
by the size of memory. Several relational and arithmetic operators were overloaded to
work with objects of this type.

Exercises
1. Dummy nodes are used to simplify list processing by eliminating some “special

case.”

a. What special case is eliminated by a header node in a linear linked list?

b. What special case is eliminated by a trailer node in a linear linked list?

Exercises | 393

• • •

••• •

•

•

•
Node

1
Node

2
Node

3
Node

4
Node

5

A B C

c. Would dummy nodes be useful in implementing a linked stack? That is,
would their use eliminate a special case?

d. Would dummy nodes be useful in implementing a linked queue with a
pointer to both head and rear elements?

e. Would dummy nodes be useful in implementing a circular linked queue?

2. Implement the class constructor, destructor, and copy constructor for the circular
linked list class.

3. If you were going to implement the FIFO Queue ADT as a circular linked list,
with the external pointer accessing the “rear” node of the queue, which member
functions would you need to change?

4. Write a member function PrintReverse that prints the elements on a list in
reverse order. For instance, for the list X Y Z, list.PrintReverse() would
output Z Y X. The list is implemented as a circular list with listData pointing
to the first element in the list. You may assume that the list is not empty.

5. Can you derive a type DLList from the class SpecializedList that has a
member function InsertItem that inserts the item into its proper place in
the list? If so, derive the class and implement the function. If not, explain
why not.

6. If you were to rewrite the implementation of the Sorted List ADT using a doubly
linked list, would you have to change the class definition? If so, how?

7. Outline the changes to the member functions that would be necessary to imple-
ment the Sorted List ADT as a doubly linked list.

8. Write a member function Copy of the Stack ADT, assuming that the stack named
in the parameter list is copied into self.

9. Write a member function Copy of the Stack ADT, assuming that self is copied
into the stack named in the parameter list.

10. Using the circular doubly linked list below, give the expression corresponding to
each of the following descriptions.

(For example, the expression for the info member of Node 1, referenced from
pointer A, would be A->info.)

394 | Chapter 6: Lists Plus

a. The info member of Node 1, referenced from pointer C

b. The info member of Node 2, referenced from pointer B

c. The next member of Node 2, referenced from pointer A

d. The next member of Node 4, referenced from pointer C

e. Node 1, referenced from pointer B

f. The back member of Node 4, referenced from pointer C

g. The back member of Node 1, referenced from pointer A

11. The text edited by a line editor is represented by a doubly linked list of nodes,
each of which contains an 80-column line of text (type LineType). There is one
external pointer (type LineType*) to this list, which points to the “current” line
in the text being edited. The list has a header node, which contains the string
“- – – Top of File – – -” and a trailer node, which contains the string
“- – – Bottom of File – – -”.

a. Draw a sketch of this data structure.

b. Write the type declarations to support this data structure.

c. Write the class constructor, which sets up the header and trailer nodes.

d. Code the following operations:

GoToTop(LineType* linePtr)

Function: Goes to top of the list.
Postcondition: currentLine is set to access the first line

of text.

GoToBottom(LineType* linePtr)

Function: Goes to bottom of the list.
Postcondition: currentLine is set to access the last line

of text.

e. Describe the operations in part (d) in terms of Big-O notation. How could you
change the list to make these operations O(1)?

f. Code the InsertLine operation, using the following specification:

Exercises | 395

InsertLine(LinePtrType linePtr, LineType newLine)

Function: Inserts newLine at the current line.
Postconditions: newLine has been inserted after current-

Line.
currentLine points to newLine

g. What other member functions should be included?

12. Of the three variations of linked lists (circular, with header and trailer nodes, and
doubly linked), which would be most appropriate for each of the following appli-
cations?

a. You want to search a list for a key and return the keys of the two ele-
ments that come before it and the keys of the two elements that come
after it.

b. A text file contains integer elements, one per line, sorted from smallest to
largest. You must read the values from the file and create a sorted linked
list containing the values.

c. A list is short and frequently becomes empty. You want a list that is optimal
for inserting an element into the empty list and deleting the last element
from the list.

13. What is the Big-O measure for initializing the free list in the array-based linked
implementation? For the functions GetNode and FreeNode?

14. Use the linked lists contained in the array pictured in Figure 6.19 to answer the
following questions:

a. What elements are in the list pointed to by list1?

b. What elements are in the list pointed to by list2?

c. What array positions (indexes) are part of the free space list?

d. What would the array look like after the deletion of Nell from the first list?

e. What would the array look like after the insertion of Anne into the second
list? Assume that before the insertion the array is as pictured in Figure
6.19.

15. An array of records (nodes) is used to contain a doubly linked list, with the
next and back members indicating the indexes of the linked nodes in each
direction.

a. Show how the array would look after it was initialized to an empty state,
with all the nodes linked into the free-space list. (The free-space nodes have
to be linked in only one direction.)

396 | Chapter 6: Lists Plus

b. Draw a box-and-arrow picture of a doubly linked list into which the follow-
ing numbers are inserted into their proper places: 17, 4, 25.

c. Fill in the contents of the array on the next page after the following numbers
are inserted into their proper places in the doubly linked list: 17, 4, 25.

.info .next .back

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

free

list

nodes

Exercises | 397

d. Show how the array in part (c) would look after 17 is deleted.

.info .next .back

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

free

list

nodes

398 | Chapter 6: Lists Plus

16. Discuss the changes that would be necessary if more than one digit is stored per
node in the LargeInt class.

17. Distinguish between static and dynamic binding of functions.

.info .next .back

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

free

list

nodes

After studying this chapter, you should be able to

Discuss recursion as another form of repetition

Do the following tasks, given a recursive routine:

Determine whether the routine halts

Determine the base case(s)

Determine the general case(s)

Determine what the routine does

Determine whether the routine is correct and, if it is not, correct it

Do the following tasks, given a simple recursive problem:

Determine the base case(s)

Determine the general case(s)

Design and code the solution as a recursive void or value-returning function

Verify a recursive routine, according to the Three-Question Method

Decide whether a recursive solution is appropriate for a problem

Compare and contrast dynamic storage allocation and static storage allocation
in relation to using recursion

Explain how recursion works internally by showing the contents of the run-
time stack

Replace a recursive solution with iteration and/or the use of a stack

Explain why recursion may or may not be a good choice to implement the solu-
tion of a problem

Programming with
Recursion

G
oals

400 | Chapter 7: Programming with Recursion

This chapter introduces the topic of recursion—a unique problem-solving approach sup-
ported by many computer languages (C++ included). With recursion, you solve a prob-
lem by repeatedly breaking it into smaller versions of the same problem, until you
reduce the subproblems to a trivial size that can be easily solved. You then repeatedly
combine your solutions to the subproblems until you arrive at a solution to the original
problem.

Although recursion may at first appear unwieldy and awkward, when applied prop-
erly it represents an extremely powerful and useful problem-solving tool.

7.1 What Is Recursion?

You may have seen a set of gaily painted Russian dolls that fit inside one another.
Inside the larger doll is a smaller doll, inside of which is an even smaller doll, inside of
which is yet a smaller doll, and so on. A recursive definition is like such a set of Russian

dolls. It reproduces itself in the form of smaller and
smaller versions of itself until a version is reached that
can no longer be subdivided—that is, until the smallest
doll is reached. The recursive algorithm is imple-
mented by using a function that makes recursive calls
to itself, which is analogous to taking the dolls apart
one by one. The solution often depends on passing

back larger and larger subsolutions from the recursive calls, which is analogous to put-
ting the dolls back together again.

In C++, any function can invoke another func-
tion. A function can even invoke itself! When a func-
tion invokes itself, it makes a recursive call. The word
recursive means “having the characteristic of coming
up again, or repeating.” In this case, a function invo-
cation is repeated by the function itself. This type of
recursion is sometimes called direct recursion, because

the function directly calls itself. All of the examples in this chapter involve direct recur-
sion. Indirect recursion occurs when function A calls function B, and function B calls
function A; the chain of function calls could be even longer, but if it eventually leads
back to function A, then it involves indirect recursion.

Recursive call A function call in which the function
being called is the same as the one making the call

Direct recursion When a function directly calls itself

Indirect recursion When a chain of two or more func-
tion calls returns to the function that originated the chain

7.2 The Classic Example of Recursion | 401

Recursion is a powerful programming technique, but you must be careful when
using it. Recursive solutions can be less efficient than iterative solutions to the same
problem. In fact, some of the examples used in this chapter are better suited to iterative
methods. Nevertheless, many problems lend themselves to simple, elegant, recursive
solutions and are exceedingly cumbersome to solve iteratively. Some programming lan-
guages, such as early versions of FORTRAN, BASIC, and COBOL, do not allow recursion.
Other languages are especially oriented to recursive approaches—LISP, for example. C++
lets us make a choice; we can implement both iterative and recursive algorithms in C++.

7.2 The Classic Example of Recursion

Mathematicians often define concepts in terms of the process used to generate them. For
instance, n! (read “n factorial”) is used to calculate the number of permutations of n ele-
ments. One mathematical description of n! is

Consider the case of 4!. Because n > 0, we use the second part of the definition:

4! = 4 * 3 * 2 * 1 = 24

This description of n! provides a different definition for each value of n, as the three
dots stand in for the intermediate factors. That is, the definition of 2! is 2 * 1, the defini-
tion of 3! is 3 * 2 * 1, and so forth.

We can also express n! with a single definition for any nonnegative value of n:

This definition is a recursive definition,
because we express the factorial function in
terms of itself.

Let’s consider the recursive calculation of
4! intuitively. Because 4 is not equal to 0, we
use the second half of the definition:

4! = 4 * (4 � 1)! = 4 * 3!

Of course, we can’t do the multiplication yet, because we don’t know the value of 3!.
So we call up our good friend Sue Ann, who has a Ph.D. in math, to find the value of 3!.

n
n

n n n
!

,

* !
=

=
−() >

1 0

1 0

if

if

n
n

n n n n
!

,

* * * * ,
=

=
−() −() >

1 0

1 2 1 0

if

if L

Recursive definition A definition in which something is
defined in terms of a smaller version of itself

402 | Chapter 7: Programming with Recursion

Sue Ann has the same formula we have for calculating the factorial function, so she
knows that

3! = 3 * (3 � 1)! = 3 * 2!

She doesn’t know the value of 2!, however, so she puts us on hold and calls up her
friend Max, who has an M.S. in math.

Max has the same formula Sue Ann has, so he quickly calculates that

2! = 2 * (2 � 1)! = 2 * 1!

But Max can’t complete the multiplication because he doesn’t know the value of 1! He
puts Sue Ann on hold and calls up his mother, who has a B.A. in math education.

What is
2! ?

2! = 2 * 1!
By the way,

what are
you doing
tonight?

n=4 n=3
n=2

4! = 4 * 3! 3! = 3 * 2!

What is
3! ? 3! = 3 * 2!

n=4 n=3

4! = 4 * 3!

7.2 The Classic Example of Recursion | 403

Max’s mother has the same formula Max has, so she quickly figures out that

1! = 1 * (1 � 1)! = 1 * 0!

Of course, she can’t perform the multiplication, because she doesn’t have the value of 0!.
So Mom puts Max on hold and calls up her colleague Bernie, who has a B.A. in English
literature.

Bernie doesn’t need to know any math to figure out that 0! = 1 because he can read
that information in the first clause of the formula (n! = 1, if n = 0). He reports the
answer immediately to Max’s mother. She can now complete her calculations:

1! = 1 * 0! = 1 * 1 = 1

She reports back to Max, who now performs the multiplication in his formula and
learns that

2! = 2 * 1! = 2 * 1 = 2

What is 0! ? 0! = 1

n=4 n=3 n=2
n=1

n=0

4! = 4 * 3! 3! = 3 * 2! 2! = 2 * 1! 1! = 1 * 0! 0! = 1

Hey Mom,
what is

1! ?
1! = 1 * 0!

n=4 n=3 n=2
n=1

4! = 4 * 3! 3! = 3 * 2! 2! = 2 * 1!

404 | Chapter 7: Programming with Recursion

He reports back to Sue Ann, who can now finish her calculation:

3! = 3 * 2! = 3 * 2 = 6

Sue Ann calls you with this exciting bit of information. You can now complete your
calculation:

4! = 4 * 3! = 4 * 6 = 24

Notice when the recursive calls stop—when we
reach a case for which we know the answer without
resorting to a recursive definition. In this example,
Bernie knew that 0! = 1 directly from the definition
without having to resort to recursion. The case (or
cases) for which an answer is explicitly known is
called the base case. The case for which the solution is
expressed in terms of a smaller version of itself is
called the recursive or general case. A recursive algo-
rithm expresses the solution in terms of a call to

itself—that is, a recursive call. A recursive algorithm must terminate; that is, it must
have a base case.

7.3 Programming Recursively

Of course, the use of recursion is not limited to mathematicians with telephones. Com-
puter languages such as C++ that support recursion give the programmer a powerful
tool for solving certain kinds of problems by reducing the complexity or hiding the
details of the problem.

So 4! is 24.

n=1

n=0

3! is 6. 2! is 2. 1! is 1. 0! is 1.

n=2n=4 n=3

3! = 3 * 2! =
3 * 2 = 6

4! = 4 * 3! =
4 * 6 = 24

2! = 2 * 1! =
2 * 1 = 2

1! = 1 * 0! =
1 * 1 = 1

0! = 1

Base case The case for which the solution can be stated
nonrecursively

General (recursive) case The case for which the solution
is expressed in terms of a smaller version of itself

Recursive algorithm A solution that is expressed in
terms of (1) smaller instances of itself and (2) a base case

7.3 Programming Recursively | 405

In this chapter, we consider recursive solutions to several simple problems. In our
initial discussion, you may wonder why a recursive solution would ever be preferred to
an iterative, or nonrecursive, one because the iterative solution may seem simpler and
more efficient. Don’t worry. As you will see later, in some situations the use of recursion
produces a much simpler—and more elegant—program.

Coding the Factorial Function

As noted earlier, a recursive function is one that calls itself. In the previous section, Sue
Ann, Max, Max’s mom, and Bernie all had the same formula for solving the factorial
function. When we construct a recursive C++ function Factorial for solving n!, we
know where we can get the value of (n � 1)! that we need in the formula. We already
have a function for doing this calculation: Factorial. Of course, the actual parameter
(number - 1) in the recursive call is different than the parameter in the original call
(number). (The recursive call is the one within the function.) As we see, this difference is
an important and necessary consideration.

int Factorial(int number)
// Pre: number is nonnegative.
// Post: Function value = factorial of number.
{
if (number == 0) // Line 1
return 1; // Line 2

else
return number * Factorial(number-1); // Line 3

}

Notice the use of Factorial in line 3. Factorial involves a recursive call to the func-
tion, with the parameter number - 1.

Let’s walk through the calculation of 4! using the function Factorial. The original
value of number is 4. Table 7.1 shows the steps in the calculation.

For purposes of comparison, let’s look at the recursive and iterative solutions to this
problem side by side:

int Factorial(int number) int Factorial(int number)
{ {
if (number == 0) int fact = 1;
return 1;

else for (int count = 2;
return number * count <= number; count++)
Factorial(number - 1); fact = fact * count;

} return fact;
}

406 | Chapter 7: Programming with Recursion

Table 7.1 Walk-through of Factorial(4)

Recursive Call Line Action

1 4 is not 0, so skip to else clause.

3 return number * Factorial(4 2 1)

First recursive call returns us to the beginning of the function with number = 3.

1 1 3 is not 0, so skip to else clause.

3 return number * Factorial(3 � 1)

Second recursive call returns us to the beginning of the function with number = 2.

2 1 2 is not 0, so skip to else clause.

3 return number * Factorial(2 � 1)

Third recursive call returns us to the beginning of the function with number = 1.

3 1 1 is not 0, so skip to else clause.

3 return number * Factorial(1 � 1)

Fourth recursive call returns us to the beginning of the function with number = 0.

4 1 0 is 0, so go to line 2.

2 return 1

3 3 1 replaces call to Factorial; number is 1.

return 1

2 3 1 replaces call to Factorial; number is 2.

return 2

1 3 2 replaces call to Factorial; number is 3.

return 6

3 6 replaces call to Factorial; number is 4.

return 24

These two versions of Factorial illustrate some of the differences between recursive
and iterative functions. First, an iterative algorithm uses a looping construct such as the
for loop (or while or do . . . while loop) to control the execution. In contrast, the recur-
sive solution uses a branching structure (if or switch statement). The iterative version
needs a couple of local variables, whereas the recursive version uses the parameters of
the function to provide all its information. Sometimes, as we will see later, the recursive
solution needs more parameters than the equivalent iterative one. Data values used in
the iterative solution are usually initialized inside the routine, above the loop. Similar
data values used in a recursive solution are typically initialized by the choice of param-
eter values in the initial call to the routine.

7.4 Verifying Recursive Functions | 407

Let’s summarize the vocabulary of recursive solutions. A recursive definition is a
definition in which something is defined in terms of smaller versions of itself. The defi-
nition of the factorial function certainly fits this description. A recursive call is a call
made to the function from within the function itself. Line 3 in the function Factorial
is an example of a recursive call.

In a recursive algorithm there is always at least one case for which the answer is
known; the solution is not stated in terms of smaller versions of itself. In the case of the
factorial, the answer is known if the number is 0. The case for which the answer is
known is called the base case. The case that is stated recursively is the general or recur-
sive case.

7.4 Verifying Recursive Functions

The kind of walk-through we did in the previous section, to check the validity of a
recursive function, is time-consuming, tedious, and often confusing. Furthermore, simu-
lating the execution of Factorial(4) tells us that the function works when number =
4, but it doesn’t tell us whether the function is valid for all nonnegative values of num-
ber. It would be useful to have a technique that would help us determine inductively
whether a recursive algorithm works.

The Three-Question Method

We use the Three-Question Method to verify recursive functions. To confirm that a
recursive solution works, you must be able to answer yes to all three of the following
questions:

1. The Base-Case Question: Is there a nonrecursive way out of the function, and does
the routine work correctly for this base case?

2. The Smaller-Caller Question: Does each recursive call to the function involve a
smaller case of the original problem, leading inescapably to the base case?

3. The General-Case Question: Assuming that the recursive call(s) works correctly,
does the entire function work correctly?

Let’s apply these three questions to the function Factorial. (We use the mathe-
matical N here rather than the variable number.)

1. The Base-Case Question: The base case occurs when N = 0. Factorial is then
assigned the value of 1, which is the correct value of 0!, and no further (recursive)
calls to Factorial are made. The answer is yes.

2. The Smaller-Caller Question: To answer this question, we must look at the parame-
ters passed in the recursive call. In the function Factorial, the recursive call
passes N � 1. Each subsequent recursive call sends a decremented value of the
parameter, until the value sent is finally 0. At this point, as we verified with the
base-case question, we have reached the smallest case, and no further recursive
calls are made. The answer is yes.

408 | Chapter 7: Programming with Recursion

3. The General-Case Question: In the case of a function like Factorial, we need to
verify that the formula we are using actually results in the correct solution. Assum-
ing that the recursive call Factorial(N - 1) gives us the correct value of (n �
1)!, the return statement computes N * (N � 1)!. This is the definition of a facto-
rial, so we know that the function works for all positive integers. In answering the
first question, we have already ascertained that the function works for N = 0. (The
function is defined only for nonnegative integers.) Thus the answer is yes.

Those of you who are familiar with inductive proofs should recognize what we have
done. Having made the assumption that the function works for some base case (n � 1),
we can now show that applying the function to the next value, (n � 1) + 1, or n, results
in the correct formula for calculating n!.

7.5 Writing Recursive Functions

The questions used for verifying recursive functions can also serve as a guide for writing
recursive functions. You can use the following approach to write any recursive routine:

1. Get an exact definition of the problem to be solved. (This, of course, is the first step
in solving any programming problem.)

2. Determine the size of the problem to be solved on this call to the function. On the
initial call to the function, the size of the whole problem is expressed in the value(s)
of the parameter(s).

3. Identify and solve the base case(s) in which the problem can be expressed nonre-
cursively. This ensures a yes answer to the base-case question.

4. Identify and solve the general case(s) correctly in terms of a smaller case of the
same problem—a recursive call. This ensures yes answers to the smaller-caller and
general-case questions.

In the case of Factorial, the definition of the problem is summarized in the defini-
tion of the factorial function. The size of the problem is the number of values to be mul-
tiplied: N. The base case occurs when N = 0, in which case we take the nonrecursive
path. Finally, the general case occurs when N > 0, resulting in a recursive call to Fac-
torial for a smaller case: Factorial(N - 1).

Writing a Boolean Function

Let’s apply this approach to writing a Boolean function, ValueInList, that searches for
a value in a list of integers and returns true or false to indicate whether the value is
found. The list is declared as follows and is passed as a parameter to ValueInList:

struct ListType
{
int length;

7.5 Writing Recursive Functions | 409

int info[MAX_ITEMS];
};
ListType list;

The recursive solution to this problem is as follows:

Return (value is in the first position?) OR (value is in the rest of the list?)

We can answer the first question just by comparing the value to list.info[0]. But
how do we know whether the value is in the rest of the list? If only we had a function
that would search the rest of the list. But we do have one! The function ValueInList
searches for a value in a list. We simply need to start searching at the first position,
instead of the zeroth position (a smaller case). To do so, we need to pass the search-
starting place to ValueInList as a parameter. We know that the end of the list is at
position list.length - 1, so we can stop searching if the value isn’t there. Thus we
use the following function specification:

bool ValueInList (list, value, startIndex)

Function: Searches list for value between positions startIn-
dex and list.length - 1.

Precondition: list.info[startIndex]..list.info[list.length - 1] con-
tain values to be searched.

Postcondition: Function value = (value exists in list.info[startIn-
dex]..list.info[list.length - 1]).

To search the whole list, we would invoke the function with the statement

if (ValueInList(list, value, 0))

The general case of this algorithm is the part that searches the rest of the list. This case
involves a recursive call to ValueInList, specifying a smaller part of the array to be
searched:

return ValueInList(list, value, startIndex + 1)

By using the expression startIndex + 1 as the parameter, we have effectively dimin-
ished the size of the problem to be solved by the recursive call. That is, searching the list
from startIndex + 1 to list.length - 1 is a smaller task than searching from
startIndex to list.length - 1. Figure 7.1 shows the function ValueInList frozen
in midexecution.

410 | Chapter 7: Programming with Recursion

[0] [1] [startIndex]

Already searched Needs to be searchedCurrent
index

of
lower
limit

[length-1]

• • • • • • • • •

Figure 7.1 Function ValueInList in midexecution

Finally, we need to know when to stop searching. This problem involves two base
cases: (1) the value is found (return true), and (2) we reach the end of the list without
finding the value (return false). In either case, we can stop making recursive calls to
ValueInList.

Let’s summarize what we have discussed and then write the function ValueInList.

Function ValueInList

Definition: Search list for value. Return true if value is
found and return false otherwise.

Size: The number of slots to search in list.info[startIn-
dex]..list.info[list.length - 1].

Base Cases: (1) If list.info[startIndex] equals value, return true.
(2) If startIndex equals list.length - 1 and
list.info[list.length - 1] does not equal value,
return false.

General Case: Search the rest of the list for value. This is a
recursive invocation of ValueInList with the
parameter startIndex + 1 (smaller caller).

The code for function ValueInList follows:

bool ValueInList(ListType list, int value, int startIndex)
{
if (list.info[startIndex] == value)
return true; // Base case 1

else if (startIndex == list.length-1)
return false; // Base case 2

else return ValueInList(list, value, startIndex+1);
}

The parameter startIndex acts as an index through the array; it is initialized in
the original invocation of ValueInList and incremented on each recursive call. The

7.6 Using Recursion to Simplify Solutions | 411

equivalent iterative solution would use a local counter, initialized inside the function
above the loop and incremented inside the loop.

Let’s use the Three-Question Method to verify this function.

1. The Base-Case Question: One base case occurs when this call finds the value and
the function is exited without any further calls to itself. A second base case occurs
when we reach the end of the list without the value being found and the function is
exited without any further recursive calls. The answer is yes.

2. The Smaller-Caller Question: The recursive call in the general case increments the
value of Startlndex, making the part of the list left to be searched smaller. The
answer is yes.

3. The General-Case Question: Let’s assume that the recursive call in the general case
correctly tells us whether the value is found in the second through last elements in
the list. Then Base Case 1 gives us the correct answer (true) if the value is found in
the first element in the list, and Base Case 2 gives us the correct answer (false) if the
value is not in the first element and the first element is the only element in the list.
The only other possible case is that the value exists somewhere in the rest of the
list. Assuming that the general case works correctly, the entire function works, so
the answer to this question is also yes.

7.6 Using Recursion to Simplify Solutions

So far, we have looked at examples that could just as easily (or more easily) have been
written as iterative routines. At the end of the chapter, we talk more about choosing
between iterative and recursive solutions. For many problems, however, for which using
recursion simplifies the solution.

The first problem we consider is a function, Combinations, that tells us how many
combinations of a certain size can be made out of a total group of elements. For
instance, if we have 20 different books to pass out to 4 students, we can easily see that—
to be equitable—we should give each student 5 books. But how many combinations of 5
books can be made out of a group of 20 books?

A mathematical formula can be used for solving this problem. Given that C is the
total number of combinations, group is the total size of the group from which to pick,
members is the size of each subgroup, and group >= members,

Because this definition of C is recursive, it is easy to see how a recursive function could
be used to solve the problem.

Let’s summarize our problem.

C(group, members) =
 group, if members = 1
 1, if members = group
 C (group � 1, members � 1) + C(group � 1, members), if group > members > 1

412 | Chapter 7: Programming with Recursion

Function Combinations

Definition: Calculates how many combinations of members
size can be made from the total group size.

Size: Sizes of group, members.
Base Case: (1) If members = 1, return group.

(2) If members = group, return 1.
General Case: If group > members > 1, return

Combinations(group � 1, members - 1) +
Combinations(group � 1, members)

The resulting recursive function, Combinations, is listed here.

int Combinations(int group, int members)
// Pre: group and members are positive.
// Post: Function value = number of combinations of members size
// that can be constructed from the total group size.
{
if (members == 1)
return group; // Base case 1

else if (members == group)
return 1; // Base case 2

else
return (Combinations(group-1, members-1) +

Combinations(group-1, members));
}

Figure 7.2 shows the processing of this function to calculate the number of combi-
nations of 3 elements that can be made from a set of 4.

Returning to our original problem, we can now find out how many combinations of
5 books can be made from the original set of 20 books with the statement

std::cout << "Number of combinations = " << Combinations(20, 5)
<< std::endl;

Writing a recursive solution to a problem that is characterized by a recursive defini-
tion, like Combinations or Factorial, is fairly straightforward.

7.7 Recursive Linked List Processing

Let’s look next at a different kind of problem—a function that prints out the elements in a
dynamically allocated linked list. The list has been implemented using the following decla-
rations. For this example, ListType is a class rather than a class template. NodeType is a
struct rather than a struct template, and the info member of type NodeType is of type int.

7.7 Recursive Linked List Processing | 413

Combinations(4, 3)

Combinations(3, 2) Combinations(3, 3)

Combinations(2, 1) Combinations(2, 2)�

� �

�

�

�

�

�

4

1

11112

Figure 7.2 Calculating Combinations(4,3)

struct NodeType;
class ListType
{
public:
// Prototypes of member functions

private:
NodeType* listData;

};

By now you are probably protesting that this task is so simple to accomplish itera-
tively (while (ptr != NULL)) that it does not make any sense to write it recursively.
So let’s make the task more fun: Print out the elements in the list in reverse order. This
problem is much more easily and “elegantly” solved recursively.

What is the task to be performed? The algorithm follows and is illustrated in Figure 7.3.

RevPrint
Print out the second through last elements in the list in reverse order
Print the first element in the list

414 | Chapter 7: Programming with Recursion

A B DC ElistData •••••

First, print out this section of the list, backwards.
Then, print
this element.

E D C B A
Result:

Figure 7.3 Recursive RevPrint

The second part of the task is simple. If listPtr points to the first node in the list, we can
print out its contents with the statement cout << listPtr->info. The first part of the
task—printing out all the other nodes in the list in reverse order—is also simple, because we
have a routine that prints out lists in reverse order: We just call the function RevPrint
recursively. Of course, we have to adjust the parameter somewhat, to RevPrint
(listPtr->next). This call says “Print, in reverse order, the linked list pointed to by
listPtr->next.” This task, in turn, is accomplished recursively in two steps:

Of course, the first part of this task is accomplished recursively. Where does it all end?
We need a base case. We can stop calling RevPrint when we have completed its small-
est case: RevPrint-ing a list of one element. Then the value of listPtr->next is
NULL, and we can stop making recursive calls. Let’s summarize the problem.

Function RevPrint

Definition: Print out the list in reverse order.
Size: Number of elements in the list pointed to by

listPtr.
Base Case: If the list is empty, do nothing.
General Case: RevPrint the list pointed to by listPtr->next, then

print listPtr->info.

RevPrint the rest of the list (third through last elements),
Then print the second element in the list.

7.7 Recursive Linked List Processing | 415

The other recursive routines that we have written have been value-returning func-
tions. RevPrint, however, is a void function. Each function call simply performs an
action (printing the contents of a list node) without returning a value to the calling code.

void RevPrint(NodeType* listPtr)
{
if (listPtr != NULL)
{
RevPrint(listPtr->next);
std::cout << listPtr->info << std::endl;

}
}

Given our ListType class, can we make RevPrint become a public member func-
tion of the class? The answer is no, and here is the reason: To print the entire linked list,
the client’s initial call to RevPrint must pass as a parameter the pointer to the first
node in the list. In the ListType class, this pointer (listPtr) is a private member of
the class, so the following client code is not permitted:

list.RevPrint(list.listData); // Not allowed; listData is private

Therefore, we must treat RevPrint as an auxiliary, nonmember function and define a
member function, say, PrintReversed, that calls RevPrint:

void PrintReversed(); // Prototype in ListType class declaration
.
.
.

void ListType::PrintReversed()
{
RevPrint(listData);

}

Given this design, the client can print the entire list with the following function call:

list.PrintReversed();

Let’s verify RevPrint using the Three-Question Method.

1. The Base-Case Question: The base case is implied. When listPtr is equal to NULL,
we return to the statement following the last recursive call to RevPrint, and no
further recursive calls are made. The answer is yes.

2. The Smaller-Caller Question: The recursive call passes the list pointed to by
listPtr->next, which is one node smaller than the list pointed to by listPtr.
The answer is yes.

416 | Chapter 7: Programming with Recursion

BinarySearch
Set first to 0
Set last to length � 1
Set found to false
Set moreToSearch to (first <= last)
while moreToSearch AND NOT found

Set midPoint to (first + last) / 2
switch (item.ComparedTo(info[midPoint]))

case LESS : Set last to midPoint – 1
Set moreToSearch to (first <= last)

case GREATER : Set first to midPoint + 1
Set moreToSearch to (first <= last)

case EQUAL : Set found to true

3. The General-Case Question: We assume that RevPrint (listPtr->next) correctly
prints out the rest of the list in reverse order; this call, followed by the statement
printing the value of the first element, gives us the whole list, printed in reverse
order. The answer is yes.

How would you change the function RevPrint (in addition to changing its name)
to make it print out the list in forward rather than reverse order? We leave this modifi-
cation as an exercise.

7.8 A Recursive Version of Binary Search

In the chapter on array-based lists (Chapter 3), we developed a binary search algo-
rithm for the member function RetrieveItem in our Sorted List ADT. Let’s review the
algorithm:

Although the function that we wrote in Chapter 3 was iterative, this really is a
recursive algorithm. The solution is expressed in smaller versions of the original prob-
lem: If the answer isn’t found in the middle position, perform BinarySearch (a recur-
sive call) to search the appropriate half of the list (a smaller problem). Let’s summarize
the problem in terms of a Boolean function that simply returns true or false to indicate
whether the desired item is found. We assume that it is not a public member function of
the class ListType but rather an auxiliary function of the class that takes the array
info as a parameter.

7.8 A Recursive Version of Binary Search | 417

bool BinarySearch

Definition: Searches the list to see if item is present.
Size: The number of elements in list.info[fromLoca-

tion]..list.info[toLocation].
Base Cases: (1) If fromLocation > toLocation, return false.

(2) If item.ComparedTo(list.info[midPoint]) =
EQUAL, return true.

General Case: If item.ComparedTo(list.info[midPoint]) = LESS,
BinarySearch the first half of the list.
If item.ComparedTo(list.info[midPoint]) =
GREATER, BinarySearch the second half of the
list.

The recursive version of the function follows. Because each branch of the switch
statement includes only one statement, we use the relational operators. Notice that we
had to make fromLocation and toLocation become parameters to the function rather
than local index variables. An initial call to the function would be of the form Binary-
Search(info, item, 0, length - 1).

template<class ItemType>
bool BinarySearch(ItemType info[], ItemType item,

int fromLocation, int toLocation)
{
if (fromLocation > toLocation) // Base case 1
return false;

else
{
int midPoint;
midPoint = (fromLocation + toLocation) / 2;
if (item < info[midPoint])
return
BinarySearch(info, item, fromLocation, midPoint - 1);

else if (item == info[midPoint])
return true;

else // Base case 2
return
BinarySearch(info, item, midPoint + 1, toLocation);

}
}

418 | Chapter 7: Programming with Recursion

7.9 Recursive Versions of InsertItem and DeleteItem

The InsertItem Operation

Inserting an item into a linked implementation of a sorted list requires two pointers: one
pointing to the node being examined and one pointing to the node behind it. We need
this trailing pointer because by the time we discover where to insert a node, we are
beyond the node that needs to be changed. The recursive version is actually simpler
because we let the recursive process take care of the trailing pointer. We develop the
algorithm here; in the next section, we demonstrate why it works.

Let’s begin by looking at an example where the item type is int.

If we insert 11, we begin by comparing 11 to the value in the first node of the list, 7.
Eleven is greater than 7, so we look for the insertion point in the list pointed to by the
next member of the first node. This new list is one node shorter than the original list. We
compare 11 to the value in the first node in this list, 9. Eleven is greater than 9, so we look
for the insertion point in the list pointed to by the next member of the first node. This
new list is one node shorter than the current list. We compare 11 with the value in the
first node of this new list, 13. Eleven is less than 13, so we have found the insertion point.
We insert a new node with 11 as the value of the first node in the list we are examining.

What if the value we are inserting is greater than the value in the last node of the
list? In this case, the list is empty and we insert the value into the empty list. Insert is
not a member function of ListType; it is an auxiliary function called by InsertItem
with the pointer to the list as a parameter. We make it a template function.

Function Insert

Definition: Insert item into a sorted list.
Size: The number of items in the list.
Base Cases: (1) If the list is empty, insert item into the

empty list.
(2) If item < listPtr->info, insert item as the first
node.

General Case: Insert(listPtr->next, item).

The function is coded on the next page. Note that the pointer to the list is a reference
parameter; that is, the function receives the actual address of the pointer to the current
node, not just a copy of the pointer. We show why this must be true in the next sections.

7 9 2013listData ••••

7.9 Recursive Versions of InsertItem and DeleteItem | 419

template<class ItemType>
void Insert(NodeType<ItemType>*& listPtr, ItemType item)
{
if (listPtr == NULL || item < listPtr->info)
{
// Save current pointer.
NodeType<ItemType>* tempPtr = listPtr;
// Get a new node.
listPtr = new NodeType<ItemType>;
listPtr->info = item;
listPtr->next = tempPtr;

}
else Insert(listPtr->next, item);

}

The DeleteItem Operation

The Delete function is a mirror image of the Insert function. In the iterative version,
we find the node to delete only after we have gone past the node containing a pointer
to it. We solved that problem in the recursive Insert by passing the address of the
pointer to the list. Does the same approach work for the deletion operation? Let’s delete
13 from the same list.

The precondition to the operation is that the item is in the list, so we compare 13
with the value in the first node in the list, 7. They are not equal, so we look for 13 in
the list pointed to by the next member of the first node in the list. We compare 13 with
9; they are not equal, so we look for 13 in the list pointed to by the next member of the
first node. We compare 13 with the value in the first node in the list, and they are equal.
We save the pointer to the node containing 13 (to deallocate the node later) and set the
pointer to the list equal to the next member of the first node.

Function Delete

Definition: Deletes item from list.
Size: The number of items in the list.
Base Case: If item = (listPtr->info), delete node pointed to

by listPtr.
General Case: Delete(listPtr->next, item).

7 9 2013listData ••••

420 | Chapter 7: Programming with Recursion

Once again, the function must receive the address in the structure where the pointer
to the current node is stored.

template<class ItemType>
void Delete(NodeType<ItemType>*& listPtr, ItemType item)
{
if (item == listPtr->info)
{
NodeType<ItemType>* tempPtr = listPtr;
listPtr = listPtr->next;
delete tempPtr;

}
else
Delete(listPtr->next, item)

}

7.10 How Recursion Works

To understand how recursion works and why some programming languages allow it but
others do not, we have to take a detour and look at how languages associate places in
memory with variable names. The association of a memory address with a variable
name is called binding. The point in the compile/execute cycle when binding occurs is
called the binding time. We want to stress that binding time refers to a point of time in
a process, not the amount of clock time that it takes to bind a variable.

Static storage allocation associates variable names with memory locations at com-
pile time; dynamic storage allocation associates variable names with memory locations
at execution time. As we look at how static and dynamic storage allocation work, con-
sider the following question: When are the parameters of a function bound to a particu-
lar address in memory? The answer to this question tells us something about whether a
language can support recursion.

Static Storage Allocation

As a program is translated, the compiler creates a symbol table. When a variable is
declared, it is entered into the symbol table, and a memory location—an address—is
assigned to it. As an example, let’s see how the compiler would translate the following
C++ global declarations:

int girlCount, boyCount, totalKids;

To simplify this discussion, we assume that integers take only one memory location.
This statement causes three entries to be made in the symbol table. (The addresses used
are arbitrary.)

7.10 How Recursion Works | 421

Symbol Address

girlCount 0000
boyCount 0001
totalKids 0002

That is, at compile time,

girlCount is bound to address 0000.
boyCount is bound to address 0001.
totalKids is bound to address 0002.

Whenever a variable is used later in the program, the compiler searches the symbol
table for its actual address and substitutes that address for the variable name. After all,
meaningful variable names are intended for the convenience of the human reader;
addresses, however, are meaningful to computers. For example, the assignment statement

totalKids = girlCount + boyCount;

is translated into machine instructions that execute the following actions:

• Get the contents of address 0000.
• Add it to the contents of address 0001.
• Put the result into address 0002.

The object code itself is then stored in a different part of memory. Suppose that the
translated instructions begin at address 1000. At the beginning of execution, control is
transferred to address 1000. The instruction stored there is executed, then the instruc-
tion in address 1001 is executed, and so on.

Where are the parameters of functions stored? With static storage allocation, the
formal parameters of a function are assumed to reside in a particular place; for instance,
the compiler might set aside space for the parameter values immediately preceding the
code for each function. Consider a function with two int parameters, girlCount and
boyCount, as well as a local variable, totalKids. Let’s assume that the function’s code
begins at an address called CountKids. The compiler leaves room for the two formal
parameters and the local variable at addresses CountKids � 1, CountKids � 2, and
CountKids � 3, respectively. Given the function definition

void CountKids(int girlCount, int boyCount)
{
int totalKids;
.
.

}

the statement

totalKids = girlCount + boyCount;

422 | Chapter 7: Programming with Recursion

•
•
•

•
•
•

return address

return address

girlCount

boyCount

totalKids

numKids

PrintTotal code

•
•
•

CountKids code

Main Function

Second Function

void PrintTotal (int numKids)

{ // no local variables
. . .

}

Third Function

void CountKids (int girlCount,
 int boyCount)

int totalKids;
. . .

{

}

Figure 7.4 Static allocation of space for a program with three functions

in the body of the function would generate the following actions:

• Get the contents of address CountKids � 1.
• Add it to the contents of address CountKids � 2.
• Store the result in address CountKids � 3.

Figure 7.4 shows how a program with three functions might be arranged in memory.
This discussion has been simplified somewhat, because the compiler actually sets

aside space not only for the parameters and local variables, but also for the return
address (the location in the calling code of the next instruction to process, following the
completion of the function) and the computer’s current register values. It has, however,
drawn attention to the main point: The function’s formal parameters and local variables
are bound to actual addresses in memory at compile time.

7.10 How Recursion Works | 423

We can compare the static allocation scheme to one way of allocating seats in an
auditorium where a lecture will be held. A finite number of invitations are issued for the
event, and the exact number of chairs needed are set up before the lecture. Each invited
guest has a reserved seat. If anyone brings friends, however, there is nowhere for the
invited guests to sit.

What is the implication of binding variable names to memory locations before the
program executes? Each parameter and local variable has only a single location
assigned to it at compile time. (They are like invited guests with reserved seats.) If each
call to a function is an independent event, then no problem arises. But in the case of
recursion, each recursive call depends on the state of the values in the previous call.
Where is the storage for the multiple versions of the parameters and local variables gen-
erated by recursive calls? Because the intermediate values of the parameters and local
variables must be retained, the recursive call cannot store its arguments (actual parame-
ters) in the fixed number of locations that were set up at compile time. The values from
the previous recursive call would be overwritten and lost. Thus a language that uses
only static storage allocation cannot support recursion.

Dynamic Storage Allocation

The situation we have described is also analogous to a class of students that must share
one copy of a workbook. Joe writes his exercise answers in the space provided in the
workbook, then Mary erases his answers, and writes hers in the same space. This process
continues until each student in the class writes his or her answers into the workbook,
obliterating all the answers that came before. Obviously, this situation is not practical.
What is needed is for each student to read from the single copy of the workbook, then to
write his or her answers on a separate piece of paper. In computer terms, each invocation
of a function needs its own work space. Dynamic storage allocation provides this solution.

With dynamic storage allocation, variable names are not bound to actual addresses
in memory until run time. The compiler references variables not by their actual
addresses, but by relative addresses. Of particular interest to us, the compiler references
the parameters and local variables of a function relative to some address known at run
time, not relative to the location of the function’s code.

Let’s look at a simplified version of how this situation might work in C++. (The
actual implementation depends on the particular machine and compiler.) When a func-
tion is invoked, it needs space to keep its formal parameters, its local variables, and the
return address (the address in the calling code
to which the computer returns when the func-
tion completes its execution). Just like the
students sharing one copy of a workbook,
each invocation of a function needs its own
work space. This work space is called an acti-
vation record or stack frame. A simplified
version of an activation record for function
Factorial might have the following “declarations”:

Activation record (stack frame) A record used at run
time to store information about a function call, including
the parameters, local variables, register values, and return
address

424 | Chapter 7: Programming with Recursion

Table 7.2 Run-time Version of Factorial (Simplified)

What Your Source Code Says What the Run-time System Does

int Factorial(int number) // Function prologue

{ actRec = new ActivationRecordType;

actRec->returnAddr = retAddr;

actRec->number = number;

// actRec->result is undefined

if (number == 0) if (actRec->number == 0)

return 1; actRec->result = 1;

else else

return number * actRec->result =

Factorial(number - 1); actRec->number *

} Factorial(actRec->number-1);

// Function epilogue

returnValue = actRec->result;

retAddr = actRec->returnAddr;

delete actRec;

Jump (goto) retAddr

struct ActivationRecordType
{
AddressType returnAddr; // Return address
int result; // Returned value
int number; // Formal parameter
.
.
.

};

Each call to a function, including recursive calls, generates a new activation record.
Within the function, references to the parameters and local variables use the values in
the activation record. When the function ends, the activation record is released. How
does this happen? Your source code doesn’t need to allocate and free activation records;
instead, the compiler adds a “prologue” to the beginning of each function and an “epi-
logue” to the end of each function. Table 7.2 compares the source code for Factorial
with a simplified version of the “code” executed at run time. (Of course, the code exe-

7.10 How Recursion Works | 425

1The drawings in this chapter that represent the run-time stack have the top of the stack at the bottom of the
picture, because we generally think of memory as being allocated in increasing address order.

cuted at run time is object code, but we are listing the source code “equivalent” so that
it makes sense to the reader.)

What happens to the activation record of one function when a second function is
invoked? Consider a program whose main function calls Proc1, which then calls
Proc2. When the program begins executing, it generates the “main” activation record.
(The main function’s activation record persists for the entire execution of the program.)
At the first function call, an activation record is generated for Proc1:1

When Proc2 is called from within Proc1, its activation record is generated.
Because Proc1 has not finished executing, its activation record still exists; just like the
mathematicians with telephones, one waits “on hold” until the next call is finished:

When Proc2 finishes executing, its activation record is released. But which of the other
two activation records becomes the active one—Proc1’s or main’s? Proc1’s activation
record should now be active, of course. The order of activation follows the last in, first out

main activation record

Proc1 activation record

Proc2 activation record

main activation record

Proc1 activation record

426 | Chapter 7: Programming with Recursion

rule. We know of a structure that supports LIFO access—
the stack—so it should come as no surprise that the
structure that keeps track of the activation records at
run time is called the run-time stack.

When a function is invoked, its activation record
is pushed onto the run-time stack. Each nested level of function calls adds another acti-
vation record to the stack. As each function completes its execution, its activation
record is popped from the stack. Recursive function calls, like calls to any other func-
tions, generate a new activation record. The level of recursive calls in a program deter-
mines how many activation records for this function are pushed onto the run-time stack
at any one time.

Using dynamic allocation might be compared to another way of allocating seats in
an auditorium where a lecture has been scheduled. A finite number of invitations is
issued, but each guest is asked to bring his or her own chair. In addition, each guest can
invite an unlimited number of friends, as long as they all bring their own chairs. Of
course, if the number of extra guests gets out of hand, the space in the auditorium runs
out, and there may not be enough room for any more friends or chairs. Similarly, the
level of recursion in a program must eventually be limited by the amount of memory
available in the run-time stack.

Let’s walk through the function Factorial again, to see how its execution affects
the run-time stack. Here is the function:

int Factorial(int number)
{
if (number == 0)
return 1;

else
return number * Factorial(number - 1);

}

Suppose that the main function is loaded in memory beginning at location 5000,
and that the initial call to Factorial is made in a statement at memory location 5200.
Suppose also that the Factorial function is loaded in memory at location 1000, with
the recursive call made in the statement at location 1010. Figure 7.5 shows a simplified
version of how this example program is loaded in memory. (The location numbers have
been picked arbitrarily, so that we have actual numbers to show in the return address
field of the activation record.)

When Factorial is called the first time from the statement in the main function at
address 5200,

answer = Factorial(4);

an activation record is pushed onto the run-time stack to hold three pieces of data: the
return address (5200), the formal parameter number (4), and the value returned from the
function (result), which has not yet been evaluated. Rather than showing our activa-

Run-time stack A data structure that keeps track of
activation records during the execution of a program

7.10 How Recursion Works | 427

tion records as pictures, let’s show them as a table. Each new activation record consti-
tutes a new row of the table. The activation record in the last row of the table is now on
the top of the run-time stack. We have added a column on the left that identifies which
call it is.

The code is now executed. Is number (the number value in the top activation
record) equal to 0? No, it is 4, so the else branch is taken:

return number * Factorial(number - 1);

This time the function Factorial is called from a different place—recursively from
within the function, from the statement at location 1010. After the value of Factor-
ial(number - 1) is calculated, we want to return to this location to multiply the
result times number. A new activation record is pushed onto the run-time stack:

Call number result returnAddr

1 4 ? 5200

2 3 ? 1010 top

Call number result returnAddr

1 4 ? 5200 top

Figure 7.5 The sample program loaded in memory

0000

5200

5000

1010

1000 Beginning of factorial function

return number * Factorial(number-1);

answer = Factorial(4);

Beginning of main function

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

428 | Chapter 7: Programming with Recursion

The code for the new invocation of Factorial begins executing. Is number (the num-
ber value in the top activation record) equal to 0? No, it is 3, so the else branch is taken:

return number * Factorial(number - 1);

The function Factorial is, therefore, again called recursively from the instruction at
location 1010. This process continues until the situation looks as shown below with the
fifth call.

As the fifth call is executed, we again ask the question: Is number (the number value
in the top activation record) equal to 0? Yes. This time we perform the then clause, stor-
ing the value 1 into result (the instance of result in the top activation record, that is).
The fifth invocation of the function has executed to completion, and the function returns
the value of result in the top activation record. The run-time stack is popped to release
the top activation record, leaving the activation record of the fourth call to Factorial
at the top of the run-time stack. We don’t restart the fourth function call from the begin-
ning, however. As with any function call, we return to the place where the function was
called—namely, the return address (location 1010) stored in the activation record.

Next, the returned value (1) is multiplied by the value of number in the top activa-
tion record (1) and the result (1) is stored into result (the instance of result in the
top activation record, that is). Now the fourth invocation of the function is complete,
and the function returns the value of result in the top activation record. Again, the
run-time stack is popped to release the top activation record, leaving the activation
record of the third call to Factorial at the top of the run-time stack.

We return to the place where we made the recursive call to Factorial.

Call number result returnAddr

1 4 ? 5200

2 3 ? 1010

3 2 2 1010 top

Call number result returnAddr

1 4 ? 5200

2 3 ? 1010

3 2 ? 1010

4 1 ? 1010

5 0 ? 1010 top

7.11 Tracing the Execution of Recursive Function Insert | 429

This process continues until we reach the first call:

At this point, 6 has just been returned as the value of Factorial(number - 1). This
value is multiplied by the value of number in the top activation record (that is, 4) and
the result, 24, is stored into the result field of the top activation record. This assign-
ment completes the execution of the initial call to the function Factorial. The value
of result in the top activation record (24) is returned to the place of the original call
(address 5200), and the activation record is popped. This action leaves the main activa-
tion record at the top of the run-time stack. The final value of result is stored into the
variable answer, and the statement following the original call is executed.

The number of recursive calls constitutes the depth of the recursion. Notice the rela-
tionship between the complexity of the iterative version in terms of Big-O notation and
the depth of recursion for the factorial: Both are based on the parameter number. Is it a
coincidence that the depth of recursion is the same as the complexity of the iterative
version? No. Recursion represents another way of doing repetition, so you would expect
that the depth of recursion would be approximately the same as the number of itera-
tions for the iterative version of the same problem. In addition, both are based on the
size of the problem.

7.11 Tracing the Execution of Recursive Function Insert

Earlier we wrote a recursive Insert function that inserts a new node into a dynami-
cally allocated linked list. To follow the execution of Insert, let’s put addresses on the
nodes in the list. In the following diagram, the number above a node is the base address
of the node. The number beneath the next member is the address of the next data
member only. The external pointer to the list is stored in location 010.

Here is the function template we will trace:

template<class ItemType>
void Insert(NodeType<ItemType>*& listPtr, ItemType item)
{
if (listPtr == NULL || item < listPtr->info)

7 9 2013

012 016 024020

014 018 026022

listData ••••

010

Call number result returnAddr

1 4 ? 5200 top

430 | Chapter 7: Programming with Recursion

{
// Save current pointer.
NodeType<ItemType>* tempPtr = listPtr;
// Get new node.
listPtr = new NodeType<ItemType>;
listPtr->info = item;
listPtr->next = tempPtr;

}
else Insert(listPtr->next, item);

}

Our trace must keep track of listPtr, item, and the return address. The local vari-
able tempPtr also has a place in the activation record. Rather than give a specific
return address, however, we use the convention that R0 is the return address from the
nonrecursive call and R1 is the return address from the recursive call. We trace
Insert(listData, item), where item is 11. Recall that the formal parameter listPtr
is passed by reference and item is passed by value. Here is what the activation record
looks like after the nonrecursive call:

As the code begins its execution, the value stored in the place named in listPtr
(location 010) is examined (because listPtr is a reference parameter). This value is not
NULL, so item is compared with the info data member of the node pointed to by loca-
tion 010. Eleven is greater than 7, so the function is called again recursively.

The value stored in the place named in listPtr (that is, location 014) is not NULL
and 11 is greater than 9, so the function is called again recursively.

Call listPtr item tempPtr

1 010 11 ?

2 014 11 ?

3 018 11 ?

returnAddr

R0

R1

R1 top

Call listPtr item tempPtr

1 010 11 ?

2 014 11 ?

returnAddr

R0

R1 top

Call listPtr item tempPtr

1 010 11 ?

returnAddr

R0 top

7.11 Tracing the Execution of Recursive Function Insert | 431

The value stored in the place named in listPtr is not NULL but 11 is less than 13,
so the then clause is executed and the following steps are performed. The value in the
place named in listPtr is copied into tempPtr. The new operator is executed and the
address of a node of type NodeType is stored into the place named in listPtr. The
stack now looks as follows assuming that the address of the new node is 028:

listPtr has not changed! Didn’t we just store the address 028 there? No, we stored
028 into the place named in listPtr: in location 018, the next member of the previ-
ous node. Our list now looks like this:

The next two statements store item into listPtr->info and tempPtr into listPtr->
next, completing the insertion.

Let’s see what the activation records would look like at this point if we had passed
listPtr as a value parameter:

When the new operator is executed, the address of a node of type NodeType is
stored into listPtr—not the place named in listPtr. Therefore 028 is stored into the

Call listPtr item tempPtr

1 012 11 ?

2 016 11 ?

3 028 11 020

returnAddr

R0

R1

R1 top

7

010

012

014

20

listData

• 9

016

018

028

030

•

•

13

tempPtr

020

022 026

•

024
•

Call listPtr item tempPtr

1 010 11 ?

2 014 11 ?

3 018 11 020

returnAddr

R0

R1

R1 top

432 | Chapter 7: Programming with Recursion

activation record member listPtr, not in the next data member of the preceding
node as is the case when listPtr is a reference parameter. The next data member of
the new node is set properly, but the pointer to the new node is stored in the activa-
tion record that is removed when the function exits. Thus the rest of the list is lost. In
fact, if you use this incorrect version to build the list, the list is empty. (Can you
explain why?)

Our recursive Insert function works properly because the first parameter is the
address in memory of either the external pointer to the list or the next data member of
a node in the list.

7.12 Debugging Recursive Routines

Because of their nested calls to themselves, recursive routines can prove confusing to
debug. The most serious problem relates to the possibility that the routine recurses for-
ever. A typical symptom of this problem is an error message noting that the system has
run out of space in the run-time stack, due to the level of recursive calls. Using the
Three-Question Method to verify recursive functions should help us avoid this problem of
never finishing. If we can answer yes to the base-case and smaller-caller questions, then
we should be able to guarantee that the routine eventually ends—theoretically, at least.

That does not guarantee, however, that the program will not fail due to lack of
space. In the previous section, we saw that a function call requires a certain amount of
overhead to save the parameters, the return address, and the local data. A call to a
recursive function may generate many, many levels of function calls to itself—more
than the system can handle.

One error that programmers often make when they first start writing recursive rou-
tines is to use a looping structure instead of a branching one. Because they tend to think
of the problem in terms of a repetitive action, they inadvertently use a while statement
rather than an if statement. The main body of the recursive routine should always break
down into base and recursive cases. Hence, we use a branching statement, not a looping
statement. It’s a good idea to double-check your recursive functions to make sure that
you used an if or switch statement to achieve a branching effect.

Recursive routines are good places to put debug output statements during testing.
Print out the parameters and local variables, if any, at the beginning and end of the
function. Be sure to print out the values of the parameters on the recursive call(s) to
verify that each call attempts to solve a problem smaller than the previous one.

7.13 Removing Recursion

In cases where a recursive solution is not desired, either because the language doesn’t
support recursion or because the recursive solution is deemed too costly in terms of
space or time, you can implement a recursive algorithm as a nonrecursive function. Two
general techniques are often substituted for recursion: iteration and stacking.

7.13 Removing Recursion | 433

if value = list.info[startIndex]
Set found to true

else
Increment startIndex

Iteration

When the recursive call is the last action executed in a recursive function, an interesting
situation occurs. The recursive call causes an activation record to be put on the run-time
stack to hold the function’s parameters and local variables. When this recursive call fin-
ishes executing, the run-time stack is popped and the previous values of the variables
are restored. But because the recursive call is the last statement in the function, the
function terminates without using these values. Thus the pushing and popping of acti-
vation records is a superfluous activity. All we really need to do is to change the
“smaller-caller” variable(s) on the recursive call’s parameter list and then “jump” back to
the beginning of the function. In other words, we really need a loop.

For instance, as explained later in this chapter, the function ValueInList is a poor
use of recursion. It is a simple matter to remove the recursion from this function. The
last statement executed in the general case is the recursive call to itself, so let’s replace
this recursion with a loop.

The recursive solution has two base cases: (1) we find the value and (2) we reach
the end of the list without finding the value. The base cases solve the problem without
further executions of the function. In the iterative solution, the base cases become the
terminating conditions of the loop:

while (!found && moreToSearch)

When the terminating conditions are met, the problem is solved without further execu-
tions of the loop body.

In the general case of the recursive solution, ValueInList is called to search the
remaining, unsearched part of the list. Each recursive execution of the function
processes a smaller version of the problem. The smaller-caller question is answered
affirmatively because startIndex is incremented, shrinking the unsearched part of the
list on each recursive call. Similarly, in an iterative solution, each subsequent execution
of the loop body processes a smaller version of the problem. The unsearched part of the
list shrinks with each execution of the loop body because startIndex is incremented.

Here is the iterative version of the function:

434 | Chapter 7: Programming with Recursion

bool ValueInList(ListType list, int value, int startIndex)
{
bool found = false;

while (!found && startIndex < list.length)
if (value == list.info[startIndex])
found = true;

else startIndex++;
return found;

}

Cases where the recursive call is the last statement
executed are called tail recursion. Note that the recur-
sive call is not necessarily the last statement in the
function. For instance, the recursive call in the
following version of ValueInList is still tail recur-
sion, even though it is not the last statement in the
function:

bool ValueInList(ListType list, int value, int startIndex)
{
if (list.info[startIndex] == value)
return true;

else if (startIndex != list.length-1)
return ValueInList(list, value, startIndex+1);

else return false;
}

The recursive call is the last statement executed in the general case—thus it involves tail
recursion. To remove recursion from the solution, tail recursion is usually replaced by
iteration. In fact, many compilers catch tail recursion and automatically replace it with
iteration.

Stacking

When the recursive call is not the last action executed in a recursive function, we cannot
simply substitute a loop for the recursion. For instance, in the function RevPrint we make
the recursive call and then print the value in the current node. In such a case, we must
replace the stacking performed by the system with stacking performed by the programmer.

How would we write RevPrint nonrecursively? As we traverse the list, we must
keep track of the pointer to each node, until we reach the end of the list (when our tra-
versing pointer equals NULL). We then print the info data member of the last node.
Next, we back up and print again, back up and print again, and so on, until we have
printed the first list element.

We already know of a data structure in which we can store pointers and retrieve
them in reverse order: the stack. The general task for RevPrint is as follows:

Tail recursion The case in which a function contains
only a single recursive invocation and it is the last state-
ment to be executed in the function

7.13 Removing Recursion | 435

A nonrecursive RevPrint function may be coded as shown below. Note that we now
make RevPrint be a member function of the class ListType instead of a helper func-
tion. Because RevPrint no longer has a parameter, we don’t have to deal with the prob-
lem of having the client pass the (inaccessible) pointer to the beginning of the linked list.

#include "StackType.h"
void ListType::RevPrint()
{
StackType<NodeType*> stack;
NodeType* listPtr;

listPtr = listData;

while (listPtr != NULL) // Put pointers onto the stack.
{
stack.Push(listPtr);
listPtr = listPtr->next;

}
// Retrieve pointers in reverse order and print elements.
while (!stack.IsEmpty())
{
listPtr = stack.Top();
stack.Pop();
std::cout << listPtr->info;

}
}

RevPrint (iterative)
Create an empty stack of pointers.
Set ptr to point to first node in list
while the list is not empty

Push ptr onto the stack
Advance ptr

while the stack is not empty
Pop the stack to get ptr (to previous node)
Print Info(ptr)

436 | Chapter 7: Programming with Recursion

Notice that the nonrecursive version of RevPrint is quite a bit longer than its
recursive counterpart, especially if we add in the code for the stack routines Push, Pop,
Top, and IsEmpty. This verbosity reflects our need to stack and unstack the pointers
explicitly. In the recursive version, we just called RevPrint recursively, and let the run-
time stack keep track of the pointers.

7.14 Deciding Whether to Use a Recursive Solution

You must consider several factors in deciding whether to use a recursive solution to a
problem. The main issues are the clarity and the efficiency of the solution. Let’s focus
on efficiency first.

In general, a recursive solution is more costly in terms of both computer time
and space. (This is not an absolute decree; it really depends on the computer and the
compiler.) A recursive solution usually requires more “overhead” because of the
nested recursive function calls, in terms of both time (the function prologues and epi-
logues must be run for each recursive call) and space (an activation record must be
created). A call to a recursive routine may hide many layers of internal recursive
calls. For instance, the call to an iterative solution to Factorial involves a single
function invocation, causing one activation record to be put on the run-time stack.
Invoking the recursive version of Factorial, however, requires N + 1 function calls
and N + 1 activation records to be pushed onto the run-time stack, where N repre-
sents the formal parameter number. That is, the depth of recursion is O(N). For some
problems, the system may not have enough space in the run-time stack to run a
recursive solution.

As an extreme example, consider the original version of the recursive function
ValueInList. Every time it is invoked, it saves copies of the parameters, including the
entire list that is passed as a value parameter. As we search farther and farther in the list,
nesting more and more levels of recursive calls, the amount of memory needed for the
run-time stack becomes considerable. If the list contains 100 elements and the item we
are seeking is not in the list, we end up saving 100 copies of the 100-element list. Even-
tually we use up so much memory that we may run out of space altogether! This case is
an extreme example of one of the “overhead” problems associated with recursive calls.
In this particular instance, we might make the list be a reference parameter (something
generally not done in value-returning functions) so that every invocation of ValueIn-
List would not generate new copies of the array-based list. (The address of the one and
only copy of list would be passed instead.) Even so, the level of recursion is O(N) and
the iterative solution is about the same length and just as clear. Thus ValueInList is a
poor use of recursion.

Another potential problem is the possibility that a particular recursive solution
might be inherently inefficient. Such inefficiency is not a reflection of how we choose
to implement the algorithm; rather, it is an indictment of the algorithm itself. For
instance, look back at the function Combinations, which we discussed earlier in this
chapter. The example of this function illustrated in Figure 7.2, Combinations(4,3)

7.14 Deciding Whether to Use a Recursive Solution | 437

Combinations(6, 4)

Combinations(5, 3) Combinations(5, 4)

Combinations(4, 2) Combinations(4, 3) Combinations(4, 3) Combinations(4, 4)+

Combinations(3, 1) Combinations(3, 2)+ Combinations(3, 2) Combinations(3, 3)+ Combinations(3, 2) Combinations(3, 3)+ +++

Combinations(2, 1) Combinations(2, 2)++ Combinations(2, 1)+ Combinations(2, 2)+

++=

=

=

= + +

= +

=

+ + + + + + +

Combinations(2, 1) Combinations(2, 2)+ ++ +

1

1 13 1

1 2 1 1 112123

15

Figure 7.6 Calculating Combinations(6,4)

seems straightforward enough. But consider the execution of Combinations(6,4), as
illustrated in Figure 7.6. The inherent problem with this function is that it calculates the
same values over and over. Combinations(4,3) is calculated in two different places,
and Combinations(3,2) is calculated in three places, as are Combinations(2,1)
and Combinations(2,2). It is unlikely that we could solve a combinatorial problem
of any large size using this function. The problem is that the program runs “forever”—
or until it exhausts the capacity of the computer; it is an exponential-time, O(2N) solu-
tion to a linear time, O(N), problem. Although our recursive function is very easy to
understand, it was not a practical solution. In such cases, you should seek an iterative
solution.

The issue of the clarity of the solution remains an important factor, however. For
many problems, a recursive solution is simpler and more natural for the programmer
to write. The total amount of work required to solve a problem can be envisioned as
an iceberg. By using recursive programming, the applications programmer may limit
his or her view to the tip of the iceberg. The system takes care of the great bulk of the
work below the surface. Compare, for example, the recursive and nonrecursive ver-
sions of the function RevPrint. In the recursive version, the system takes care of the
stacking that we had to do explicitly in the nonrecursive function. Thus recursion can

438 | Chapter 7: Programming with Recursion

act as a tool to help reduce the complexity of a program by hiding some of the imple-
mentation details. With the cost of computer time and memory decreasing and the
cost of a programmer’s time rising, it is worthwhile to use recursive solutions to such
problems.

To summarize, it is good to use recursion when:

• The depth of recursive calls is relatively “shallow,” some fraction of the size of
the problem. For instance, the level of recursive calls in the BinarySearch func-
tion is O(log2N); it is a good candidate for recursion. The depth of recursive calls
in the Factorial and ValueInList routines, however, is O(N).

• The recursive version does roughly the same amount of work as the nonrecursive
version. You can compare the Big-O approximations to determine this relation-
ship. For instance, we have determined that the O(2N) recursive version of Com-
binations is a poor use of recursion, compared to an O(N) iterative version.
Both the recursive and iterative versions of BinarySearch, however, are
O(log2N). BinarySearch is a good example of a recursive function.

• The recursive version is shorter and simpler than the nonrecursive solution. By
this rule, Factorial and ValueInList represent poor uses of recursive pro-
gramming. They illustrate how to understand and write recursive functions,
but they could more efficiently be written iteratively—without any loss of
clarity in the solution. RevPrint is a better use of recursion. Its recursive
solution is very simple to understand, and the nonrecursive equivalent is
much less elegant.

Case Study
Quick Sort

In Chapter 3, we presented two versions of the List ADT: one unsorted and one created and
maintained in sorted order by a unique key. In Chapter 10, we look at a variety of sorting algo-
rithms. At the logical level, sorting algorithms take an unsorted list object and convert it into a
sorted list object. At the implementation level, they take an array and reorganize the values in
the array to order them by key.

The quick sort algorithm is based on the idea that it is faster and easier to sort two small
lists than one large list. Its name comes from the fact that, in general, quick sort can sort a list
of data elements quite rapidly. The basic strategy of this sort is to “divide and conquer.”

If you were given a large stack of final exams to sort by name, you might use the follow-
ing approach: Pick a splitting value, say L, and divide the stack of tests into two piles, A–L and
M–Z. (Note that the two piles do not necessarily contain the same number of tests.) Then take
the first pile and subdivide it into two piles, A–F and G–L. The A–F pile can be further broken
down into A–C and D–F. This division process goes on until the piles are small enough to be
easily sorted. The same process is applied to the M–Z pile.

Case Study: QuickSort | 439

Eventually, all the small sorted piles can be stacked one on top of the other to produce a
sorted set of tests. (See Figure 7.7.)

This strategy is based on recursion—on each attempt to sort the stack of tests, the stack is
divided and then the same approach is used to sort each of the smaller stacks (a smaller case).
This process continues until the small stacks do not need to be further divided (the base case).
The parameter list of the QuickSort function reflects the part of the list that is currently
being processed: We pass the array and the first and last indexes that define the part of the
array to be processed on this call. The initial call to QuickSort is

QuickSort(values, 0, numberOfValues-1);

Function QuickSort

Definition: Sorts the items in array values.
Size: values[first]..values[last]
Base Case: If less than 2 items in values[first]..values[last],

do nothing.
General Case: Split the array according to splitting value.

QuickSort the elements <= splitting value.
QuickSort the elements > splitting value.

A . . . L

A . . . Z

M . . . Z

G . . . LA . . . F S . . . ZM . . . R

Figure 7.7 Ordering a list using the quick sort algorithm

440 | Chapter 7: Programming with Recursion

QuickSort

How do we select splitVal? One simple solution is to use the value in
values[first] as the splitting value. (We show a better value later.)

After the call to Split, all items less than or equal to splitVal are on the left side of
the array and all items greater than splitVal are on the right side of the array.

The two “halves” meet at splitPoint, the index of the last item that is less than or
equal to splitVal. Note that we don’t know the value of splitPoint until the splitting
process is complete. We can then swap splitVal with the value at splitPoint.

Our recursive calls to QuickSort use this index (splitPoint) to reduce the size of the
problem in the general case.

QuickSort(values, first, splitPoint - 1) sorts the left “half” of the array.
QuickSort(values, splitPoint + 1, last) sorts the right “half” of the array. (The
“halves” are not necessarily the same size.) splitVal is already in its correct position in
values[splitPoint].

6

[first] [splitPoint]

smaller values larger values

[last]

8 9 10 14 20 60 11

9

[first]

smaller values larger values

[last]

8 6 10 14 20 60 11

9

[first] [last]

splitVal = 9

20 6 10 14 8 60 11

if there is more than one item in values[first]..values[last]
Select splitVal
Split the array so that

values[first]..values[splitPoint–1] <= splitVal
values[splitPoint] = splitVal
values[splitPoint+1]..values[last] > splitVal

QuickSort the left half
QuickSort the right half

Case Study: QuickSort | 441

What is the base case? When the segment being examined has less than two items, we do
not need to continue. So “there is more than one item in values[first]..values[last]”
can be translated into “if (first < last)”. We can now code the function QuickSort.

template<class ItemType>
void QuickSort(ItemType values[], int first, int last)
{
if (first < last)
{
int splitPoint;

Split(values, first, last, splitPoint);
// values[first]..values[splitPoint-1] <= splitVal
// values[splitPoint] = splitVal
// values[splitPoint+1]..values[last] > splitVal

QuickSort(values, first, splitPoint-1);
QuickSort(values, splitPoint+1, last);

}
}

Let’s verify QuickSort using the Three-Question Method.

1. Is there a nonrecursive base case? Yes. When first >= last (the segment contains at
most one element), QuickSort does nothing.

2. Does each recursive call involve a smaller case of the problem? Yes. Split divides the
segment into two not necessarily equal pieces, and each of these smaller pieces is then
quick sorted. Note that even if splitVal is the largest or smallest value in the seg-
ment, the two pieces are still smaller than the original one. If splitVal is smaller
than all other values in the segment, then QuickSort (values, first, splitPoint
- 1) terminates immediately, because first > splitPoint - 1. QuickSort (val-
ues, splitPoint + 1, last) quick sorts a segment one element smaller than the
original.

3. Assuming that the recursive calls succeed, does the entire function work? Yes. We assume that
QuickSort(values, first, splitPoint - 1) actually sorts the first splitPoint - 1
elements, whose values are less than or equal to splitVal. values[splitPoint], which
contains splitVal, is in its correct place. We also assume that QuickSort (values,
splitPoint + 1, last) has correctly sorted the rest of the list, whose values are all
greater than splitVal. In this way, we determine that the whole list is sorted.

In good top-down fashion, we have shown that our algorithm works if the function Split
works. Now we must develop our splitting algorithm. We must find a way to get all elements
equal to or less than splitVal on one side of splitVal and all elements greater than
splitVal on the other side.

442 | Chapter 7: Programming with Recursion

2We assume that the relational operators are defined on values of ItemType.

We achieve this goal by moving the indexes, first and last, toward the middle of the
array, looking for items that are on the wrong side of the split point (Figure 7.8). We make
first and last be value parameters, so we can change their values without affecting the
calling function. We save the original value of first in a local variable, saveFirst. (See Fig-
ure 7.8a.)2

We start by moving first to the right, toward the middle, comparing values[first] to
splitVal. If values[first] is less than or equal to splitVal, we keep incrementing first;
otherwise, we leave first where it is and begin moving last toward the middle. (See Figure 7.8b.)

Now we compare values[last] to splitVal. If it is greater, we continue decrement-
ing last; otherwise, we leave last in place. (See Figure 7.8c.) At this point, it is clear that
values[last] and values[first] are each on the wrong side of the array. Note that the
elements to the left of values[first] and to the right of values[last] are not neces-
sarily sorted; they are just on the correct side with respect to splitVal. To put
values[first] and values[last] into their correct sides, we merely swap them, then
increment first and decrement last. (See Figure 7.8d.)

Now we repeat the whole cycle, incrementing first until we encounter a value that is
greater than splitVal, then decrementing last until we encounter a value that is less than
or equal to splitVal. (See Figure 7.8e.)

When does the process stop? When first and last meet each other, no further swaps
are necessary. They meet at splitPoint, the location where splitVal belongs. We swap
values[saveFirst], which contains splitVal, with the element at values[split-
Point].(See Figure 7.8f.) The index splitPoint is returned from the function, to be used by
QuickSort to set up the next recursive call.

void Split(ItemType values[], int first, int last, int& splitPoint)
{
ItemType splitVal = values[first];
int saveFirst = first;
bool onCorrectSide;

first++;
do
{
onCorrectSide = true;
while (onCorrectSide) // Move first toward last.
if (values[first] > splitVal)
onCorrectSide = false;

else
{
first++;
onCorrectSide = (first <= last);

}

Case Study: QuickSort | 443

9

(a) Initialization

20 6 10 14 8 60 11

[saveFirst] [first] [last]

9

(b) Increment first until values[first]>splitVal

20 6 10 14 8 60 11

[saveFirst] [first] [last]

9

(c) Decrement last until values[last]<= splitVal

20 6 10 14 8 60 11

[saveFirst] [first] [last]

9

(d) Swap values[first]and values[last]; move first and last toward each other

8 6 10 14 20 60 11

[saveFirst] [first] [last]

9

(e) Increment first until values[first]>splitVal or first>last
 Decrement last until values[last]<= splitVal or first>last

8 6 10 14 20 60 11

[saveFirst] [first][last]

6

(f) first>last so no swap occurs within the loop
 Swap values[saveFirst] and values[last]

8 9 10 14 8 60 11

[saveFirst] [last]
[splitPoint]

Figure 7.8 Function split

444 | Chapter 7: Programming with Recursion

onCorrectSide = (first <= last);
while (onCorrectSide) // Move last toward first.
if (values[last] <= splitVal)
onCorrectSide = false;

else
{
last--;
onCorrectSide = (first <= last);

}

if (first < last)
{
Swap(values[first], values[last]);
first++;
last--;

}
} while (first <= last);

splitPoint = last;
Swap(values[saveFirst], values[splitPoint]);

}

What happens if our splitting value is the largest or the smallest value in the segment?
The algorithm still works correctly, but because of the lopsided splits it is not so quick.

Is this situation likely to occur? That depends on our choice of a splitting value and on the
original order of the data in the array. If we use values[first] as the splitting value and
the array is already sorted, then every split is lopsided. One side contains one element, while
the other side contains all except one of the elements. Thus our QuickSort is not a quick
sort. Such a splitting algorithm favors an array in random order.

It is not unusual, however, to want to sort an array that is already in nearly sorted order.
In such a case, a better splitting value would be the middle value,

values[(first + last) / 2]

This value could be swapped with values[first] at the beginning of the function.
Many possible splitting algorithms exist. One that represents a slight variation of the one

we have just developed is given below. It uses the value in the middle of the array as the split-
ting value without moving it to the first slot. As a result, the value in values[splitPoint]
may or may not be in its permanent place.

void Split2(ItemType values[], int first, int last,
int& splitPt1, int& splitPt2)

{
ItemType splitVal = values[(first+last)/2];
bool onCorrectSide;
do

Case Study: QuickSort | 445

{
onCorrectSide = true;
while (onCorrectSide) // Move first toward last.
if (values[first] >= splitVal)
onCorrectSide = false;

else
first++;

onCorrectSide = true;
while (onCorrectSide) // Move last toward first.
if (values[last] <= splitVal)
onCorrectSide = false;

else
last--;

if (first <= last)
{
Swap(values[first], values[last]);
first++;
last--;
}

} while (first <= last);

splitPt1 = first;
splitPt2 = last;

}

If we use this algorithm, QuickSort must be adjusted slightly.

void QuickSort2(ItemType values[], int first, int last)
{
if (first < last)
{
int splitPt1;
int splitPt2;

Split2(values, first, last, splitPt1, splitPt2);
// values[first]..values[splitPt2] <= splitVal
// values[splitPt1+1]..values[last] > splitVal

if (splitPt1 < last)
QuickSort2(values, splitPt1, last);

if (first < splitPt2)
QuickSort2(values, first, splitPt2);

}
}

446 | Chapter 7: Programming with Recursion

Notice that QuickSort2 makes the recursive call only if a segment contains more
than one element. This approach makes the code more efficient. We will analyze the com-
plexity of QuickSort when we analyze the other sorting algorithms in Chapter 10. We
emphasize here merely that the algorithm is very sensitive to the choice of the splitting
value.

Summary
Recursion is a very powerful computing tool. Used appropriately, it can simplify the
solution of a problem, often resulting in shorter, more easily understood source code. As
usual in computing, tradeoffs are necessary: Recursive functions are often less efficient,
in terms of both time and space, due to the overhead associated with many levels of
function calls. How expensive this cost is depends on the computer system and the
compiler.

A recursive solution to a problem must have at least one base case—that is, a case
where the solution is derived nonrecursively. Without a base case, the function will
recurse forever (or at least until the computer runs out of memory). The recursive solu-
tion also has one or more general cases that include recursive calls to the function. The
recursive calls must involve a “smaller caller.” One (or more) of the actual parameter
values must change in each recursive call to redefine the problem to be smaller than it
was on the previous call. Thus each recursive call leads the solution of the problem
toward the base case(s).

A typical implementation of recursion involves the use of a stack. Each call to a func-
tion generates an activation record to contain its return address, parameters, and local
variables. The activation records are accessed in a last in, first out manner. Thus a stack is
the choice of data structure.

Recursion can be supported by systems and languages that use dynamic storage allo-
cation. The function parameters and local variables are not bound to addresses until an
activation record is created at run time. Thus multiple copies of the intermediate values
of recursive calls to the function can be supported, as new activation records are created
for them.

With static storage allocation, in contrast, a single location is reserved at compile
time for each parameter and local variable of a function. No place is provided to store
any intermediate values calculated by repeated nested calls to the same function. There-
fore, systems and languages with only static storage allocation cannot support recursion.

When recursion is not possible or appropriate, a recursive algorithm can be implemented
nonrecursively by using a looping structure and, in some cases, by pushing and popping
relevant values onto a stack. This programmer-controlled stack explicitly replaces the sys-
tem’s run-time stack. While such nonrecursive solutions are often more efficient in terms of
time and space, they usually involve a tradeoff in terms of the elegance of the solution.

Exercises | 447

Exercises
1. Explain what is meant by the following:

a. base case

b. general (or recursive) case

c. run-time stack

d. binding time

e. tail recursion

2. True or false? If false, correct the statement. Recursive functions:

a. often have fewer local variables than the equivalent nonrecursive routines.

b. generally use while or for statements as their main control structure.

c. are possible only in languages with static storage allocation.

d. should be used whenever execution speed is critical.

e. are always shorter and clearer than the equivalent nonrecursive routines.

f. must always contain a path that does not contain a recursive call.

g. are always less “efficient,” in terms of Big-O complexity.

3. Use the Three-Question Method to verify the ValueInList function described in
this chapter.

4. Describe the Three-Question Method of verifying recursive routines in relation to
an inductive proof.

5. Which data structure would you most likely see in a nonrecursive implementa-
tion of a recursive algorithm?

6. Using the recursive function RevPrint as a model, write the recursive function
PrintList, which traverses the elements in the list in forward order. Does one
of these routines constitute a better use of recursion? If so, which one?

Use the following function in answering Exercises 7 and 8:

int Puzzle(int base, int limit)

{

if (base > limit)

return -1;

else

if (base == limit)

return 1;

else

return base*Puzzle(base+1, limit);

}

448 | Chapter 7: Programming with Recursion

7. Identify the following:

a. the base case(s) of the function Puzzle

b. the general case(s) of the function Puzzle

8. Show what would be written by the following calls to the recursive function
Puzzle:

a. cout << Puzzle(14, 10);

b. cout << Puzzle(4, 7);

c. cout << Puzzle(0, 0);

9. Given the following function:

int Func(int num)
{
if (num == 0)
return 0;

else
return num + Fun(num + 1);

}

a. Is there a constraint on the values that can be passed as a parameter for this
function to pass the smaller-caller test?

b. Is Func(7) a good call? If so, what is returned from the function?

c. Is Func(0) a good call? If so, what is returned from the function?

d. Is Func(-5) a good call? If so, what is returned from the function?

10. Put comments on the following routines to identify the base and general cases
and explain what each routine does.

a. int Power(int base, int exponent)
{
if (exponent == 0)
return 1;

else
return base * Power(base, exponent-1);

}

b. int Factorial(int number)
{
if (num > 0)
return num * Factorial(num - 1);

else
if (num == 0)
return 1;

}

Exercises | 449

c. void Sort(int values[], int fromIndex, int toIndex)
{
int maxIndex;

if (fromIndex != toIndex)
{
maxIndex = MaxPosition(values, fromIndex, toIndex);
Swap(values[maxIndex], values[toIndex]);
Sort(values, fromIndex, toIndex - 1);

}
}

11. a. Fill in the blanks to complete the following recursive function:

int Sum(int info[], int fromIndex, int toIndex)
// Computes the sum of the items between fromIndex and toIndex.
{
if (fromIndex __________ toIndex)
return ______________________;

else
return ______________________;

}

b. Which is the base case and which is the general case?

c. Show how you would call this function to sum all the elements in an array
called numbers, which contains elements indexed from 0 to MAX_ITEMS - 1.

d. What run-time problem might you experience with this function as it is now
coded?

12. You must assign the grades for a programming class. The class is studying recur-
sion, and students have been given this simple assignment: Write a recursive
function SumSquares that takes a pointer to a linked list of integer elements and
returns the sum of the squares of the elements.

Example:

SumSquares(listPtr) yields (5 * 5) + (2 * 2) + (3 * 3) + (1 * 1) = 39

Assume that the list is not empty.

You have received quite a variety of solutions. Grade the functions that follow,
marking errors where you see them.

5 2 13listData ••••

450 | Chapter 7: Programming with Recursion

a. int SumSquares(NodeType* list)
{
return 0;
if (list != NULL)
return (list->info*list->info) + SumSquares(list->next));

}

b. int SumSquares(NodeType* list)
{
int sum = 0;
while (list != NULL)
{
sum = list->info + sum;
list = list->next;

}
return sum;

}

c. int SumSquares(NodeType* list)
{
if (list == NULL)
return 0;

else
return list->info*list->info + SumSquares(list->next);

}

d. int SumSquares(NodeType* list)
{
if (list->next == NULL)
return list->info*list->info;

else
return list->info*list->info + SumSquares(list->next);

}

e. int SumSquares(NodeType* list)
{
if (list == NULL)
return 0;

else
return (SumSquares(list->next) * SumSquares(list->next));

}

13. The Fibonacci sequence is the series of integers

0, 1, 1, 2, 3, 5, 8, 21, 34, 55, 89 ...

Exercises | 451

See the pattern? Each element in the series is the sum of the preceding two items.
There is a recursive formula for calculating the nth number of the sequence (the
0th number if Fib(0) = 0):

a. Write a recursive version of the function Fibonacci.

b. Write a nonrecursive version of the function Fibonacci.

c. Write a driver to test the recursive and iterative versions of the function
Fibonacci.

d. Compare the recursive and iterative versions for efficiency. (Use words, not
Big-O notation.)

e. Can you think of a way to make the recursive version more efficient?

14. The following defines a function that calculates an approximation of the square
root of a number, starting with an approximate answer (approx), within the speci-
fied tolerance (tol).

a. What limitations must be made on the values of the parameters if this
method is to work correctly?

b. Write a recursive version of the function SqrRoot.

c. Write a nonrecursive version of the function SqrRoot.

d. Write a driver to test the recursive and iterative versions of the function Sqr-
Root.

15. A sequential search member function of SortedType has the following prototype:

void SortedType::Search(int value, bool& found);

a. Write the function definition as a recursive search, assuming a linked list imple-
mentation.

b. Write the function definition as a recursive search, assuming an array-
based implementation.

16. We want to count the number of possible paths to move from row 1, column 1 to
row N, column N in a two-dimensional grid. Steps are restricted to going up or to
the right, but not diagonally. The illustration that follows shows three of many
paths, if N = 10:

SqrRoot(number, approx, tol)=
 approx, if | approx2 � number | <=tol

 SqrRoot(number, (approx2 + number)/(2*approx), tol), if | approx2 � number | >tol

Fib
if or

Fib Fib if
N

N N
N N N

() =
=

−() + −() >

,

,

0 1

2 1 1

452 | Chapter 7: Programming with Recursion

a. The following function, NumPaths, is supposed to count the number of paths,
but it has some problems. Debug the function.

int NumPaths(int row, int col, int n)
{
if (row == n)
return 1;

else
if (col == n)
return NumPaths + 1;

else
return NumPaths(row + 1, col) * NumPaths(row, col + 1);

}

b. After you have corrected the function, trace the execution of NumPaths with
n = 4 by hand. Why is this algorithm inefficient?

c. You can improve the efficiency of this operation by keeping intermediate
values of NumPaths in a two-dimensional array of integer values. This
approach keeps the function from having to recalculate values that it has
already figured out. Design and code a version of NumPaths that uses this
approach.

d. Show an invocation of the version of NumPaths you developed in part (c),
including any array initialization necessary.

e. How do the two versions of NumPaths compare in terms of time efficiency?
Space efficiency?

1 1098765432

10

9

8

7

6

5

4

3

2

1

Exercises | 453

3One of our reviewers pointed out that the proof of termination of this algorithm is a celebrated
open question in mathematics. See Programming Pearls by Jon Bentley for a discussion and further
references.

17. Given the following function:3

int Ulam(int num)

{

if (num < 2)

return 1;

else

if (num % 2 == 0)

return Ulam(num / 2);

else

return Ulam (3 * num + 1);

}

a. What problems come up in verifying this function?

b. How many recursive calls are made by the following initial calls:

cout << Ulam(7) << endl;

cout << Ulam(8) << endl;

cout << Ulam(15) << endl;

18. Explain the relationship between dynamic storage allocation and recursion.

19. What do we mean by binding time, and what does it have to do with recursion?

20. Given the following values in list:

Show the contents of the run-time stack during the execution of this call to
BinarySearch:

BinarySearch(info, 99, 0, 9);

21. The parameter to the following two recursive routines is a pointer to a singly
linked list of numbers, whose elements are unique (no duplicates) and unsorted.
Each node in the list contains two members, info (a number) and next (a
pointer to the next node).

2

10

6 9 14 23 65 92 96 99 100

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

list

.length

.info

454 | Chapter 7: Programming with Recursion

a. Write a recursive value-returning function, MinLoc, that receives a pointer to
a list of unsorted numbers and returns a pointer to the node that contains the
minimum value in the list.

b. Write a recursive void function, Sort, that receives a pointer to an unsorted
list of numbers and reorders the values in the list from smallest to largest.
This function may call the recursive MinLoc function that you wrote in part
(a). (Hint: It is easier to swap the values in the info part of the nodes than to
reorder the nodes in the list.)

22. True or false? If false, correct the statement. A recursive solution should be used
when:

a. computing time is critical.

b. the nonrecursive solution would be longer and more difficult to write.

c. computing space is critical.

d. your instructor says to use recursion.

After studying this chapter, you should be able to

Define and use the following terminology:

Binary tree Root Descendant Subtree

Binary search tree Parent Level

Ancestor Child Height

Define a binary search tree at the logical level

Show what a binary search tree would look like after a series of insertions and
deletions

Implement the following binary search tree algorithms in C++:

Inserting an element

Deleting an element

Retrieving an element

Modifying an element

Copying a tree

Traversing a tree in preorder, inorder, and postorder

Discuss the Big-O efficiency of a given binary search tree operation

Describe an algorithm for balancing a binary search tree

Show how a binary tree can be represented in an array, with implicit positional
links between the elements

Define the terms full binary tree and complete binary tree

Binary Search Trees

G
oals

456 | Chapter 8: Binary Search Trees

So far, we have discussed some of the advantages of using a linear linked list to store
sorted information. One drawback of using a linear linked list, however, is the time it
takes to search a long list. A sequential or linear search of (possibly) all the nodes in the
entire list is an O(N) operation. In Chapter 3, we saw how a binary search could find an
element in a sorted list stored sequentially in an array; this kind of search is an O(log2N)
operation. It would be nice if we could binary search a linked list, but no practical way
exists to find the midpoint of a linked list of nodes. We can, however, reorganize the list’s
elements into a linked structure that is just perfect for binary searching: the binary search
tree. The binary search tree provides us with a structure that retains the flexibility of a
linked list but allows for quicker O(log2N) access to any node in the list.

This chapter introduces some basic tree vocabulary and then develops the algo-
rithms and implementations of the operations needed to use a binary search tree.

8.1 Trees

A binary search tree is a structure with two properties: a shape property and a property
that relates the keys of the elements in the structure. We look first at the shape property.

Each node in a singly linked list may point to one
other node: the one that follows it. Thus a singly
linked list is a linear structure; each node in the list
(except the last) has a unique successor. In contrast, a
binary tree is a structure in which each node is capable
of having two successor nodes, called children. Each of
the children, being nodes in the binary tree, can also
have two child nodes, and these children can also have
two children, and so on, giving the tree its branching
structure. The “beginning” of the tree is a unique start-
ing node called the root.

Figure 8.1 depicts a binary tree. The root node of this binary tree contains the value
A. Each node in the tree may have 0, 1, or 2 children. The node to the left of a node, if
it exists, is called its left child. For instance, the left child of the root node contains the
value B. The node to the right of a node, if it exists, is its right child. The right child of
the root node contains the value C. The root node is the parent of the nodes containing
B and C. (Earlier textbooks used the terms left son, right son, and father to describe
these relationships.) If a node in the tree has no children, it is called a leaf. For instance,
the nodes containing G, H, E, I, and J are leaf nodes.

In addition to specifying that a node may have as many as two children, the defini-
tion of a binary tree states that a unique path exists from the root to every other node.
Thus every node (except the root) has a unique parent. In the structure pictured at the
top of the next page, the nodes have the correct number of children, but the unique
path rule is violated: Two paths from the root to the node containing D exist. Therefore
this structure is not a tree at all, let alone a binary tree.

Binary tree A structure with a unique starting node (the
root), in which each node is capable of having two child
nodes, and in which a unique path exists from the root to
every other node

Root The top node of a tree structure; a node with no
parent

Leaf node A tree node that has no children

8.1 Trees | 457

In Figure 8.1, each of the root node’s children is itself the root of a smaller binary
tree, or subtree. The root node’s left child, containing B, is the root of its left subtree, and
the right child, containing C, is the root of its right subtree. In fact, any node in the tree
can be considered the root node of a subtree. The subtree whose root node has the value
B also includes the nodes with values D, G, H, and E. These nodes are the descendants of
the node containing B. The descendants of the node containing C are the nodes with the
values F, I, and J. A node is the ancestor of another node if it is the parent of the node,
or the parent of some other ancestor of that node. (Yes, this is a recursive definition.) In
Figure 8.1, the ancestors of the node with the value G are the nodes containing D, B, and
A. Obviously, the root of the tree is the ancestor of every other node in the tree.

A

B

DC

•notTree

Figure 8.1 A binary tree

A

CB

FED

G H I J

•

Level 0

Level 1

Level 2

Level 3

tree

458 | Chapter 8: Binary Search Trees

The level of a node refers to its distance from the root. If we designate the level of the
root as 0 (zero), the nodes containing B and C are Level 1 nodes; the nodes containing D,
E, and F are Level 2 nodes; and the nodes containing G, H, I, and J are Level 3 nodes.

The maximum level in a tree determines its
height. The maximum number of nodes at any level
N is 2N. Often, however, levels do not contain the
maximum number of nodes. For instance, in Figure
8.1, Level 2 could contain four nodes, but because
the node containing C in Level 1 has only one child,
Level 2 contains three nodes. Level 3, which could

contain eight nodes, has only four. We could construct many differently shaped
binary trees out of the ten nodes in this tree. Figure 8.2 illustrates a few variations.
You can readily see that the maximum number of levels in a binary tree with N
nodes is N. What is the minimum number of levels? If we fill the tree by giving every
node in each level two children until we run out of nodes, the tree has log2N + 1 lev-

Level The distance of a node from the root; the root is
level 0

Height The maximum level

Figure 8.2 Binary trees with ten nodes

E A

A

B G

F B C

D I

HC J

D

F

H I

E

G

•

A

E

F

G

H

I

J

B

C

D

••tree

(a) A 4-level tree (b) A 5-level tree (c) A 10-level tree

tree tree

8.1 Trees | 459

els (Figure 8.2a). Demonstrate this fact to yourself by drawing “full” trees with 8
[log2(8) = 3] and 16 [log2(16) = 4] nodes. What if there are 7, 12, or 18 nodes?

The height of a tree is the critical factor in determining how efficiently we can
search for elements. Consider the maximum-height tree in Figure 8.2(c). If we begin
searching at the root node and follow the pointers from one node to the next, accessing
the node with the value J (the farthest from the root) is an O(N) operation—no better
than searching a linear list! On the other hand, given the minimum-height tree depicted
in Figure 8.2(a), to access the node containing J, we have to look at only three other
nodes—the ones containing E, A, and G—before we find J. Thus, if the tree is of mini-
mum height, its structure supports O(log2N) access to any element.

The arrangement of the values in the tree pictured in Figure 8.2(a) does not actually
lend itself to quick searching. Suppose we want to find the value G. We begin searching
at the root of the tree. This node contains E, not G, so we need to keep searching. But
which of its children should we examine next, the right or the left? The nodes are not
organized in any special order, so we have to check both subtrees. We could search the
tree, level by level, until we come across the desired value. That is an O(N) search oper-
ation, which is no better than searching a linked list!

To support O(log2N) searching, we add a special property based on the relationship
among the keys of the items in the tree. We put all the nodes with values smaller than
the value in the root into its left subtree, and all the nodes with values larger than the
value in the root into its right subtree. Figure 8.3 shows the nodes from Figure 8.2(a)

Figure 8.3 A binary search tree

E

C

A

B

D

H

F

G J

I

•tree

(Left
subtree)

(Right
subtree)

(Root node)

All values in the left subtree
are less than the value in the
root node.

All values in the right subtree
are greater than the value in the
root node.

460 | Chapter 8: Binary Search Trees

rearranged to satisfy this property. The root node, which contains E, accesses two sub-
trees. The left subtree contains all values smaller than E and the right subtree contains
all values larger than E.

To search for the value G, we look first in the root node. G is larger than E, so we
know that G must be in the root node’s right subtree. The right child of the root node
contains H. Now what? Do we go to the right or to the left? This subtree is also
arranged according to the binary search property: The nodes with smaller values are
found to the left and the nodes with larger values are found to the right. The value of
this node, H, is greater than G, so we search to its left. The left child of this node con-
tains the value F, which is smaller than G, so we reapply the rule and move to the right.
The node to the right contains G; we have found the node we were seeking.

A binary tree with this special property is called
a binary search tree. Like any binary tree, it achieves
its branching structure by allowing each node to
have a maximum of two child nodes. It achieves its
easy-to-search structure by maintaining the binary
search property: The left child of any node (if one
exists) is the root of the subtree that contains only
values smaller than the node. The right child of any
node (if one exists) is the root of the subtree that

contains only values that are larger than the node.
Four comparisons instead of ten doesn’t sound like such a big deal, but as the num-

ber of elements in the structure increases, the difference becomes more impressive. In
the worst case—searching for the last node in a linear linked list—you must look at every
node in the list; on the average, you must search half the list. If the list contains 1,000
nodes, you must make 1,000 comparisons to find the last node! If the 1,000 nodes were
arranged in a binary search tree of minimum height, you would never make more than
10 (log2(1,000) < 10) comparisons, no matter which node you were seeking!

The definitions that we have given for binary trees can be extended to trees whose
nodes can have any number of child nodes. A tree is a structure with a unique starting
node (the root), in which each node is capable of having many child nodes, and in
which a unique path exists from the root to every other node. In this book we restrict
ourselves to binary search trees and heaps. We cover binary search trees in great depth
in this chapter and cover heaps in Chapter 9.

8.2 Logical Level

We should be old hands at looking at an ADT from the logical level by now. We know
that we need an operation to put an item into the structure (InsertItem). We need to be
able to delete an item from the structure (DeleteItem). We need the usual complement of
observer functions (RetrieveItem, IsEmpty, IsFull, and LengthIs). Let’s also include a
Print operation and a MakeEmpty operation.

Binary search tree A binary tree in which the key value
in any node is greater than the key value in its left child
and any of its children (the nodes in the left subtree) and
less than the key value in its right child and any of its
children (the nodes in the right subtree)

8.2 Logical Level | 461

Traversals are more complicated in a binary search tree. In the List ADTs we have
examined so far, we have traversed the structure in only two ways: from front to back
or from back to front. In all but the SpecializedList class, we have started at the
beginning of the list and continued until we accessed all the items. In fact, there are
many ways to traverse the items in a tree. We let the client determine which way to tra-
verse the tree by passing a traversal name as a parameter to the ResetTree and GetNext-
Item operations. We discuss traversals in much more detail later in the chapter.

Binary Search Tree Specification

Structure: The placement of each element in the binary
tree must satisfy the binary search property: The
value of the key of an element is greater than
the value of the key of any element in its left
subtree, and less than the value of the key of
any element in its right subtree.

Operations (provided by TreeADT):
Assumption: Before any call is made to a tree operation, the

tree has been declared and a constructor has
been applied.

MakeEmpty
Function: Initializes tree to empty state.
Postcondition: Tree exists and is empty.

Boolean IsEmpty
Function: Determines whether tree is empty.
Postcondition: Function value = (tree is empty).

Boolean IsFull
Function: Determines whether tree is full.
Postcondition: Function value = (tree is full).

int LengthIs
Function: Determines the number of elements in tree.
Postcondition: Function value = number of elements in tree.

RetrieveItem(ItemType& item, Boolean& found)
Function: Retrieves item whose key matches item’s key

(if present).
Precondition: Key member of item is initialized.

462 | Chapter 8: Binary Search Trees

Postconditions: If there is an element someItem whose key
matches item’s key, then found = true and
item is a copy of someItem; otherwise, found =
false and item is unchanged. Tree is
unchanged.

InsertItem(ItemType item)
Function: Adds item to tree.
Preconditions: Tree is not full.

item is not in tree.
Postconditions: item is in tree.

Binary search property is maintained.

DeleteItem(ItemType item)
Function: Deletes the element whose key matches item’s

key.
Preconditions: Key member of item is initialized.

One and only one element in tree has a key
matching item’s key.

Postcondition: No element in tree has a key matching item’s
key.

Print(ofstream& outFile)
Function: Prints the values in the tree in ascending key

order on outFile.
Precondition: outFile has been opened for writing.
Postconditions: Items in the tree have been printed in ascend-

ing key order.
outFile is still open.

ResetTree(OrderType order)
Function: Initializes current position for an iteration

through the tree in OrderType order.
Postcondition: Current position is prior to root of tree.

GetNextItem(ItemType& item, OrderType order, Boolean&
finished)

Function: Gets the next element in tree.
Preconditions: Current position is defined.

Element at current position is not last in tree.
Postconditions: Current position is one position beyond cur-

rent position at entry to GetNextItem.
finished = (current position is last in tree).
item is a copy of element at current position.

8.4 Implementation Level | 463

8.3 Application Level

Although our implementation structure is quite different from any we have used before,
we have changed the name of only one list operation: ResetTree has replaced ResetList.
Of course, the algorithms we develop to implement the operations differ from those used
for the list operations.

Replace the list operations with the corresponding tree operations in any of the
applications that we have written for the other List ADTs and you have an application
of the Binary Search Tree ADT. Although binary search trees are interesting mathemati-
cal objects, they are used mainly in computing as implementation structures for lists.

8.4 Implementation Level

We develop the algorithms for the operations specified for the Binary Search Tree ADT
and represent the tree as a linked structure whose nodes are allocated dynamically.
Because the binary search tree is inherently a recursive structure, we first implement the
algorithms using recursive solutions. We then take the InsertItem and DeleteItem
functions and show how they can be implemented iteratively. Here is the first approxi-
mation for the class TreeType. If we need more data members, we can add them at a
later time.

As with our first brush with linked lists, we choose not to make the class generic.
Let’s make this implementation be a tree of char values. You are asked to convert the
class into a template class in the exercises.

#include <iostream>

struct TreeNode;

typedef char ItemType;
// Assumption: ItemType is a type for which the operators "<"
// and "==" are defined--either an appropriate built-in type or
// a class that overloads these operators.

enum OrderType {PRE_ORDER, IN_ORDER, POST_ORDER};

class TreeType
{
public:
TreeType(); // Constructor.
~TreeType(); // Destructor.
TreeType(const TreeType& originalTree); // Copy constructor.
void operator=(TreeType& originalTree);
void MakeEmpty();
bool IsEmpty() const;

464 | Chapter 8: Binary Search Trees

Figure 8.4 Node terminology for a tree node

• •

Left(Node)

Node

Info(Node)

Right(Node)

bool IsFull() const;
int LengthIs() const;
void RetrieveItem(ItemType& item, bool& found) const;
void InsertItem(ItemType item);
void DeleteItem(ItemType item);
void ResetTree(OrderType order);
void GetNextItem(ItemType& item, OrderType order,

bool& finished);
void Print(std::ofstream& outFile) const;

private:
TreeNode* root;

};

Before we go on, we need to decide just what a node in the tree will look like. In
our discussion of trees, we talked about right and left children. These structural pointers
hold the tree together. We also need a place to store the user’s data in the node, which
we’ll continue to call info. Figure 8.4 shows a picture of a node.

Here is the definition of TreeNode that corresponds with the picture in Figure 8.4:

struct TreeNode
{
ItemType info;
TreeNode* left;
TreeNode* right;

};

8.5 Recursive Binary Search Tree Operations

The TreeType class contains the external pointer to the list of nodes as a data member
(root). The recursive implementations of the tree operations should recurse on nodes.
Therefore each member function calls a secondary recursive function that takes root as
a parameter. The names of the secondary functions make it clear which operations they
help to implement. Because we must declare a function before we can use it, we must
list each recursive function before the class function or we must list its prototype.
Because it is easy to forget to place them in what seems like reverse order, it is a good

8.5 Recursive Binary Search Tree Operations | 465

idea to list the prototypes at the beginning of the implementation. We now develop
these recursive functions.

The Functions IsFull and IsEmpty

The observer functions are identical to those used in a linear linked implementation. We
can just borrow the code, using the appropriate variable names.

bool TreeType::IsFull() const
// Returns true if the free store has no room for another node
// and false otherwise.
{
TreeNode* location;
try
{
location = new TreeNode;
delete location;
return false;

}
catch(std::bad_alloc exception)
{
return true;

}
}

bool TreeType::IsEmpty() const
// Returns true if the tree is empty and false otherwise.
{
return root == NULL;

}

The Function LengthIs

In the function Factorial, we could determine the factorial of N if we knew the facto-
rial of N � 1. The analogous statement here is that we can determine the number of
nodes in the tree if we know the number of nodes in the left subtree and the number of
nodes in the right subtree. That is, the number of nodes in a tree is

Number of nodes in left subtree + number of nodes in right subtree + 1

This is easy. Given a function CountNodes and a pointer to a tree node, we know
how to calculate the number of nodes in a subtree; we call CountNodes recursively
with the pointer to the subtree as the argument! Thus we know how to write the general
case. What about the base case? A leaf node has no subtrees, so the number of nodes is
1. How do we determine that a node has no subtrees? The pointers to its children are

466 | Chapter 8: Binary Search Trees

CountNodes Version 1
if (Left(tree) is NULL) AND (Right(tree) is NULL)

return 1
else

return CountNodes(Left(tree)) + CountNodes(Right(tree)) + 1

Figure 8.5 Two binary search trees

M

A Q

•tree

(a)

L

P

•tree

(b)

NULL. Let’s try summarizing these observations into an algorithm, where tree is a
pointer to a node.

Let’s try this algorithm on a couple of examples to be sure that it works (see Figure 8.5).
We call CountNodes with the tree in Figure 8.5(a). The left and right children of the

root node (M) are not NULL, so we call CountNodes with the node containing A as the
root. Because both the left and right children are NULL on this call, we send back the
answer 1. Now we call CountNodes with the tree containing Q as the root. Both of its
children are NULL, so we send back the answer 1. Now we can calculate the number of
nodes in the tree with M in the root:

1 + 1 + 1 = 3

This seems to work correctly.
The tree in Figure 8.5(b) is not balanced; let’s see if this condition poses a problem.

It is not true that both children of the root (L) are NULL, so CountNodes is called with
the left child as the argument. Oops—we do have a problem. The first statement checks

8.5 Recursive Binary Search Tree Operations | 467

CountNodes Version 2
if (Left(tree) is NULL) AND (Right(tree) is NULL)

return 1
else if Left(tree) is NULL

return CountNodes(Right(tree)) + 1
else if Right(tree) is NULL

return CountNodes(Left(tree)) + 1
else return CountNodes(Left(tree)) + CountNodes(Right(tree)) + 1

whether the children of the root are NULL, but the root itself is NULL. The function
crashes when we try to access tree->left when tree is NULL. Well, we can check
whether the left or right child is NULL, and not call CountNodes if it is.

Version 2 works correctly if the function CountNodes has a precondition that the
tree is not empty. However, an initially empty tree causes a crash. We must check
whether the tree is empty as the first statement in the algorithm and, if it is, return zero.

This algorithm certainly looks complicated. There must be a simpler solution—and
there is. We can collapse the two base cases into one. There is no need to turn the leaf
node into a special case. We can simply have one base case: An empty tree returns zero.

CountNodes Version 3
if tree is NULL

return 0
else if (Left(tree) is NULL) AND (Right(tree) is NULL)

return 1
else if Left(tree) is NULL

return CountNodes(Right(tree)) + 1
else if Right(tree) is NULL

return CountNodes(Left(tree)) + 1
else return CountNodes(Left(tree)) + CountNodes(Right(tree)) + 1

468 | Chapter 8: Binary Search Trees

CountNodes Version 4
if tree is NULL

return 0
else

return CountNodes(Left(tree)) + CountNodes(Right(tree)) + 1

Table 8.1 Comparing Node Design Notation to C++ Code

Design Notation C++ Code

Node(location) *location

Info(location) location->info

Right(location) location->right

Left(location) location->left

Set Info(location) to value location->info = value

We have taken the time to work through the versions containing errors because
they illustrate two important points about recursion with trees: (1) always check for the
empty tree first, and (2) leaf nodes do not need to be treated as separate cases. Table 8.1
reviews the design notation and the corresponding C++ code.

Here is the function specification:

Function CountNodes

Definition: Counts the number of nodes in tree.
Size: Number of nodes in tree.
Base Case: If tree is NULL, return 0.
General Case: Return CountNodes(Left(tree)) +

CountNodes(Right(tree)) + 1.

int CountNodes(TreeNode* tree);

int TreeType::LengthIs() const
// Calls the recursive function CountNodes to count the
// nodes in the tree.
{

8.5 Recursive Binary Search Tree Operations | 469

return CountNodes(root);
}

int CountNodes(TreeNode* tree)
// Post: Returns the number of nodes in the tree.
{
if (tree == NULL)
return 0;

else
return CountNodes(tree->left) + CountNodes(tree->right) + 1;

}

The Function RetrieveItem

At the beginning of this chapter, we demonstrated how to search for an element in a
binary search tree. That is, we first check whether the item is in the root. If it is not, we
compare the element with the root and look in either the left or the right subtree. This
statement looks recursive. Let’s apply the general guidelines for determining recursive
solutions.

We have two choices for the size of the problem: the number of nodes in the tree or
the number of nodes in the path from the root to the node for which we are searching
(or until we reach an empty tree). Either is acceptable. The first is easier to say; the sec-
ond is more precise. One base case arises when we find the element with the same key;
another occurs when we determine that an element with the same key is not in the tree.
The general case is either to retrieve the element from the left subtree or to retrieve it
from the right subtree. Because the left or right subtree is at least one node smaller than
the original tree and one level deeper, the size decreases with each call.

Only one question remains: How do we know there is no item with the same key in
the tree? If the tree is empty, then it cannot contain an item with the same key as
item’s key. Let’s summarize these observations. We define a recursive routine
Retrieve, which is invoked by the RetrieveItem member function.

Function Retrieve

Definition: Searches for an element with the same key as
item’s key. If it is found, store it into item.

Size: Number of nodes in tree (or number of nodes in
the path).

Base Cases: (1) If item’s key matches key in Info(tree), item is
set to Info(tree) and found is true.
(2) If tree = NULL, found is false.

General Case: If item’s key is less than key in Info(tree),
Retrieve(Left(tree), item, found);
else Retrieve(Right(tree), item, found).

470 | Chapter 8: Binary Search Trees

void Retrieve(TreeNode* tree,
ItemType& item, bool& found);

void TreeType::RetrieveItem(ItemType& item, bool& found) const
// Calls recursive function Retrieve to search the tree for item.
{
Retrieve(root, item, found);

}

void Retrieve(TreeNode* tree,
ItemType& item, bool& found)

// Recursively searches tree for item.
// Post: If there is an element someItem whose key matches item's,
// found is true and item is set to a copy of someItem;
// otherwise, found is false and item is unchanged.
{
if (tree == NULL)
found = false; // item is not found.

else if (item < tree->info)
Retrieve(tree->left, item, found); // Search left subtree.

else if (item > tree->info)
Retrieve(tree->right, item, found);// Search right subtree.

else
{
item = tree->info; // item is found.
found = true;

}
}

Let’s trace this operation, using the tree in Figure 8.6. We want to find the element
with the key 18, so the nonrecursive call is

Retrieve(root, 18, found)

root is not NULL, and 18 > tree->info, so we issue the first recursive call:

Retrieve(tree->right, 18, found)

tree now points to the node whose key is 20 so 18 < tree->info. The next recur-
sive call is

Retrieve(tree->left, 18, found)

Now tree points to the node with the key 18 so 18 = tree->info. We set found and
item, and the recursion halts.

8.5 Recursive Binary Search Tree Operations | 471

Figure 8.6 Tracing the Retrieve operation

17

9 20

16 18 25

•tree

Next, let’s look at an example where the key is not found in the tree. We want to
find the element with the key 7. The nonrecursive call is

Retrieve(root, 7, found)

tree is not NULL and 7 < tree->info, so the first recursive call is

Retrieve(tree->left, 7, found)

tree points to the node that contains 9. tree is not NULL, and we issue the second
recursive call:

Retrieve(tree->left, 7, found)

Now tree is NULL; we set found to false, and item is unchanged.

The Function InsertItem

To create and maintain the information stored in a binary search tree, we need an oper-
ation that inserts new nodes into the tree. We use the following insertion approach. A
new node is always inserted into its appropriate position in the tree as a leaf. Figure 8.7
shows a series of insertions into a binary tree.

We want to write a function Insert that inserts an item into the tree, given a
pointer to the root of the whole tree:

Insert(tree, item);

Before developing the algorithm, we want to reiterate that every node in a binary
search tree is the root node of a binary search tree. In Figure 8.8(a), we want to insert a
node with the key value 13 into the tree whose root is the node containing 7. Because

472 | Chapter 8: Binary Search Trees

Figure 8.7 Insertions into a binary search tree

5

9

•tree

(a) tree

(b) Insert 5

(e) Insert 3

(h) Insert 6 (i) Insert 4 (j) Insert 20

(f) Insert 8 (g) Insert 12

(c) Insert 9 (d) Insert 7

5•tree

9

5

7

•tree

93

5

7

•tree

9

8

3

5

7

•tree

9

8

3

5

7 12

•tree

9

86

3

5

7 12 4

•tree

9

86

3

5

7 12

•tree

4

9

8 206

3

5

7 12

•tree

13 is greater than 7, we know that the new node belongs in the root node’s right sub-
tree. We have now redefined a smaller version of our original problem: We want to
insert a node with the key value 13 into the tree whose root is tree->right (Figure
8.8b). Of course, we already have a function to insert elements into a binary search tree:
Insert. Insert is called recursively:

Insert(tree->right, item);

8.5 Recursive Binary Search Tree Operations | 473

Figure 8.8 The recursive Insert operation

153

2

7

10 20

•tree

2010

15

•tree

10

•tree

New
node

•tree

(a) The initial call

(b) The first recursive call

(c) The second recursive call

(d) The base case

Insert begins its execution, looking for the place to insert item in the tree whose
root is the node with the key value 15. We compare the key of item (13) to the key
of the root node; 13 is less than 15, so we know that the new item belongs in the
tree’s left subtree. Again, we have redefined a smaller version of the problem: We
want to insert a node with the key value 13 into the tree whose root is tree->left (Fig-
ure 8.8c). We call Insert recursively to perform this task. Remember that in this
(recursive) execution of Insert, tree points to the node whose key is 15, not the
original tree root:

Insert(tree->left, item);

Again, we recursively execute Insert. We compare the key of item to the key of the
(current) root node and then call Insert to insert item into the correct subtree—the left
subtree if item’s key is less than the key of the root node, and the right subtree if
item’s key is greater than the key of the root node.

Where does it all end? There must be a base case, in which space for the new ele-
ment is allocated and the value of item copied into it. This case occurs when tree is

474 | Chapter 8: Binary Search Trees

Figure 8.9 The tree parameter is a pointer within the tree

•tree

(a) The last call to Insert

10

10

Insert(tree->right, item);

tree = new TreeNode;

(b) Within the last execution of Insert

node returned
by new operator

•

(tree)

NULL, when the subtree we wish to insert into is empty. (Remember—we will add item
as a leaf node.) Figure 8.8(d) illustrates the base case. We can create the new node and
link it to the correct member of its logical parent with the following statement:

tree = new TreeNode;

Wait a minute! How does this execution of new link the new node to the existing
tree? To understand this point, we must consider the meaning of tree in a recursive
execution of the function. The last recursive call (Figure 8.9a) is Insert(tree->
right, item). Because tree is a reference parameter, in the final recursive execution
of Insert, tree refers to the right data member of the node containing 10 (the logi-
cal parent of the new node). The statement executing new gets the address of the new
node and stores it into tree, the right data member of the node containing 10,
thereby linking the new node into the tree structure (Figure 8.9b). It is critical that tree

8.5 Recursive Binary Search Tree Operations | 475

be a reference parameter. If it is not, the pointer passed to Insert will be a copy of the
root of the subtree and not the location of the root itself.

This technique should sound familiar. We used it in Chapter 7 when we inserted an
element into a linked implementation of a sorted list recursively. The important point to
remember is that passing a pointer by value allows the function to change what the
caller’s pointer points to; passing a pointer by reference allows the function to change
the caller’s pointer as well as to change what the pointer points to. The recursive func-
tion is summarized as follows:

Function Insert

Definition: Inserts item into binary search tree.
Size: The number of elements in path from root to

insertion place.
Base Case: If tree is NULL, then allocate a new leaf to con-

tain item.
General Cases: (1) If item < Info(tree), then Insert(Left(tree), item).

(2) If item > Info(tree), then Insert(Right(tree),
item).

Here is the code that implements this recursive algorithm:

void Insert(TreeNode*& tree, ItemType item);

void TreeType::InsertItem(ItemType item)
// Calls the recursive function Insert to insert item into tree.
{
Insert(root, item);

}

void Insert(TreeNode*& tree, ItemType item)
// Inserts item into tree.
// Post: item is in tree; search property is maintained.
{
if (tree == NULL)
{// Insertion place found.
tree = new TreeNode;
tree->right = NULL;
tree->left = NULL;
tree->info = item;

}
else if (item < tree->info)

476 | Chapter 8: Binary Search Trees

Figure 8.10 The input order determines the shape of the tree

•tree

(a) Input: D B F A C E G

(b) Input: B A D C G F E

(c) Input: A B C D E F G

F

D

E G

B

A C

•tree

•tree

D

B

C

E

F

G

A

A

B

C

D

E

F

G

Insert(tree->left, item); // Insert in left subtree.
else
Insert(tree->right, item); // Insert in right subtree.

}

Insertion Order and Tree Shape Because we always add nodes as leaves, the order
in which we insert nodes determines the shape of the tree. Figure 8.10 illustrates

8.5 Recursive Binary Search Tree Operations | 477

how the same data, inserted in different orders, produce very differently shaped
trees. If the values are inserted in order (or in reverse order), the tree will be very
skewed. A random mix of the elements produces a shorter, “bushy” tree. Because the
height of the tree determines the maximum number of comparisons in a search, the
tree’s shape has very important implications. Obviously, minimizing the height of
the tree maximizes the efficiency of the search. Some algorithms adjust a tree to
make its shape more desirable; these schemes are subjects for more advanced
courses.

The Function DeleteItem

Delete (the recursive helper function for DeleteItem) receives the external pointer to
a binary search tree and an item, and then finds and deletes the node matching the
item’s key from the tree. According to the specifications of the operation, an item with
the same key exists in the tree. These specifications suggest a two-part operation:

We know how to find the node; we did it in Retrieve. The second part of the
operation—deleting this node from the tree—is more complicated. This task varies
according to the position of the node in the tree. Obviously, it is simpler to delete a leaf
node than to delete the root of the tree. In fact, we can break down the deletion algo-
rithm into three cases, depending on the number of children linked to the node we want
to delete:

1. Deleting a leaf (no children): As shown in Figure 8.11, deleting a leaf is simply a
matter of setting the appropriate link of its parent to NULL and then disposing of
the unnecessary node.

2. Deleting a node with only one child: The simple solution for deleting a leaf does not
suffice for deleting a node with a child, because we don’t want to lose all of its
descendants from the tree. Instead, we want the pointer from the parent to skip over
the deleted node and point to the child of the node we intend to delete. We then
dispose of the unwanted node (see Figure 8.12).

3. Deleting a node with two children: This case is the most complicated because we
cannot make the parent of the deleted node point to both of the deleted node’s chil-
dren. The tree must remain a binary tree, and the search property must remain
intact. We have several ways to accomplish this deletion. The method we use does

Delete
Find the node in the tree
Delete the node from the tree

478 | Chapter 8: Binary Search Trees

Figure 8.11 Deleting a leaf node

•tree

QB

R

Z

L

J

•tree

QB

RL

Z

J

delete

BEFORE AFTER

Delete the node containing Z

Figure 8.12 Deleting a node with one child

•tree

QB

R

Z

L

J

•tree

QB

ZL

RJ

delete

BEFORE AFTER

Delete the node containing R

8.5 Recursive Binary Search Tree Operations | 479

not delete the node but rather replaces its info data member with the info data
member from another node in the tree that maintains the search property. We then
delete this other node.

Which element could we use to replace the deleted item that would maintain the
search property? The elements whose keys immediately precede or follow item’s—that
is, item’s logical predecessor or successor. We replace the info data member of the
node we wish to delete with the info data member of its logical predecessor—the
node whose key is closest in value to, but less than, the key of the node to be deleted.
Look at Figure 8.7(j) and locate the logical predecessor of nodes 5, 9, and 7. Do you
see the pattern? The logical predecessor of 5 is the largest value in 5’s left subtree. The
logical predecessor of 9 is the largest value in 9’s left subtree. The logical predecessor
of 7 is 6, the largest value in 7’s left subtree. This replacement value is found in a
node with either zero or one child. We then delete the node originally containing the
replacement value by changing one of its parent’s pointers (see Figure 8.13). Figure
8.14 shows examples of all of these types of deletions.

Clearly, the delete task involves changing pointers of the parent of the node to be
deleted. If our recursive algorithm passes tree as a reference parameter, then tree
itself is the parent that we must change. Let’s look at the three cases in terms of our
implementation.

If both child pointers are NULL, the node is a leaf, so we just set tree to NULL. If
one child pointer is NULL, we set tree to the other child pointer. If neither child pointer
is NULL, we replace the info data member of tree with the info data member of the

Figure 8.13 Deleting a node with two children

M P

K N Z

L R

•tree

B Q

J

M

K N Z

L R

•tree

B P

J

Q

delete

BEFORE AFTER

Delete the node containing Q

480 | Chapter 8: Binary Search Trees

Figure 8.14 Deletions from a binary search tree

FA J

•tree

(a) The initial tree

C H

D P

L

F

•tree

(c) Delete C

A H

D P

L

•tree

(e) Delete D

F

A P

H •tree

(f) Delete A

F P

H

•tree

(d) Delete L

A F

D P

H

FA

•tree

(b) Delete J

C H

D P

L

DeleteNode
if (Left(tree) is NULL) AND (Right(tree) is NULL)

Set tree to NULL
else if Left(tree) is NULL

Set tree to Right(tree)
else if Right(tree) is NULL

Set tree to Left(tree)
else

Find predecessor
Set Info(tree) to Info(predecessor)
Delete predecessor

node’s logical predecessor and delete the node containing the predecessor. Let’s summa-
rize this algorithm as DeleteNode.

8.5 Recursive Binary Search Tree Operations | 481

Now we can write the recursive definition and code for Delete.

Function Delete

Definition: Removes someItem from tree where item equals
someItem.

Size: The number of nodes in the path from the root
to the node to be deleted.

Base Case: If item’s key matches key in Info(tree), delete
node pointed to by tree.

General Case: If item < Info(tree), Delete(Left(tree), item);
else Delete(Right(tree), item).

void DeleteNode(TreeNode*& tree);

void Delete(TreeNode*& tree, ItemType item);

void TreeType::DeleteItem(ItemType item)
// Calls the recursive function Delete to delete item from tree.
{
Delete(root, item);

}

void Delete(TreeNode*& tree, ItemType item)
// Deletes item from tree.
// Post: item is not in tree.
{
if (item < tree->info)
Delete(tree->left, item); // Look in left subtree.

else if (item > tree->info)
Delete(tree->right, item); // Look in right subtree.

else
DeleteNode(tree); // Node found; call DeleteNode.

}

Before we code DeleteNode, let’s look at it again. We can remove one of the tests
if we notice that the action taken when the left child pointer is NULL also takes care of
the case in which both child pointers are NULL. When the left child pointer is NULL, the
right child pointer is stored into tree. If the right child pointer is also NULL, then NULL
is stored into tree, which is what we want if both are NULL.

In good top-down fashion, let’s now write the code for DeleteNode using GetPre-
decessor as the name of an operation that returns a copy of the info data member of
the predecessor of the node with two children.

482 | Chapter 8: Binary Search Trees

void GetPredecessor(TreeNode* tree, ItemType& data);

void DeleteNode(TreeNode*& tree)
// Deletes the node pointed to by tree.
// Post: The user's data in the node pointed to by tree is no
// longer in the tree. If tree is a leaf node or has only one
// non-NULL child pointer, the node pointed to by tree is
// deleted; otherwise, the user's data is replaced by its
// logical predecessor and the predecessor's node is deleted.
{
ItemType data;
TreeNode* tempPtr;

tempPtr = tree;
if (tree->left == NULL)
{
tree = tree->right;
delete tempPtr;

}
else if (tree->right == NULL)
{
tree = tree->left;
delete tempPtr;

}
else
{
GetPredecessor(tree->left, data);
tree->info = data;
Delete(tree->left, data); // Delete predecessor node.

}
}

Next, we look at the operation for finding the logical predecessor. We know that the
logical predecessor is the maximum value in tree’s left subtree. Where is this node
found? The maximum value in a binary search tree is located in its rightmost node.
Therefore, given tree’s left subtree, we just keep moving right until the right child is
NULL. When this event occurs, we set data to the info member of the node. We have
no reason to look for the predecessor recursively in this case. A simple iteration until
tree->right is NULL suffices.

void GetPredecessor(TreeNode* tree, ItemType& data)
// Sets data to the info member of the rightmost node in tree.
{
while (tree->right != NULL)
tree = tree->right;

8.5 Recursive Binary Search Tree Operations | 483

Figure 8.15 Printing all the nodes in order

•tree

JA

D

M

TQ

R

Prints first Prints last

Prints second

data = tree->info;
}

The Function Print

To traverse a linear linked list, we set a temporary pointer equal to the start of the list
and then follow the links from one node to the other until we reach a node whose
pointer value is NULL. Similarly, to traverse a binary tree, we initialize our pointer to the
root of the tree. But where do we go from there—to the left or to the right? Do we access
the root or the leaves first? The answer is “all of these.” There are only two ways to tra-
verse a list: forward and backward. In contrast, there are many ways to traverse a tree.

An inorder traversal accesses the nodes in such a way that the values in the nodes
are accessed in order from the smallest to the largest. This technique is the one we want
for Print.

First, we print the root’s left subtree—that is, all values in the tree that are smaller
than the value in the root node. Next, we print the value in the root node. Finally, we
print the values in the root’s right subtree—that is, all the values that are larger than the
value in the root node (see Figure 8.15).

Let’s describe this problem again, thinking recursively (and writing a recursive
helper function named Print). We want to print the elements in the binary search tree
rooted at tree in order; that is, first we print the left subtree in order, then we print the
root, and finally we print the right subtree in order. Of course, tree->left points to
the root of the left subtree. Because the left subtree is also a binary search tree, we can
call the function Print to print it, using tree->left as the root parameter. When
Print finishes printing the left subtree, we print the value in the root node. Then we
call Print to print the right subtree with tree->right as the root parameter.

Both calls to the function Print use the same approach to print the subtree: Print
the left subtree with a call to Print, print the root, and then print the right subtree with
another call to Print. What happens if the incoming parameter is NULL on one of the
recursive calls? This event signals that the parameter is the root of an empty tree. In this
case, we just want to exit the function—clearly, there’s no point to printing an empty
subtree.

484 | Chapter 8: Binary Search Trees

Function Print

Definition: Prints the items in the binary search tree in order
from smallest to largest.

Size: The number of nodes in the tree whose root is
tree.

Base Case: If tree = NULL, do nothing.
General Case: Traverse the left subtree in order.

Then print Info(tree).
Then traverse the right subtree in order.

This description can be coded into the following recursive function. For simplicity,
we assume that tree->info can be output directly using the stream insertion operator.
Here is the helper function that does the printing.

void PrintTree(TreeNode* tree, std::ofstream& outFile)
// Prints info member of items in tree in sorted order on outFile.
{
if (tree != NULL)
{
PrintTree(tree->left, outFile); // Print left subtree.
outFile << tree->info;
PrintTree(tree->right, outFile); // Print right subtree.

}
}

This traversal is called an inorder traversal because it accesses each node’s left sub-
tree before it processes (prints) the information in the node itself, and then accesses the
node’s right subtree.

Finally, the Print member function of the TreeType class invokes PrintTree as
follows:

void TreeType::Print(std::ofstream& outFile) const
// Calls recursive function Print to print items in the tree.
{
PrintTree(root, outFile);

}

The Class Constructor and Destructor

The default class constructor simply creates an empty tree by setting root to NULL. As
there is no other logical way of constructing an empty tree, we do not provide a para-
meterized constructor.

8.5 Recursive Binary Search Tree Operations | 485

TreeType::TreeType()
{
root = NULL;

}

In the same way that the class constructor takes care of each class object’s initial-
ization, the class destructor takes care of deallocating dynamic nodes when a class
object goes out of scope. The operation invokes a recursive routine with the pointer to a
binary search tree as a parameter and destroys all the nodes, leaving the tree empty. To
delete the elements, we have to traverse the tree. Instead of printing each element, as we
did in the previous section, we remove the node from the tree. We said that there is
more than one way to traverse a binary tree. Is there a preferred way to destroy the tree?

While any of the traversals would result in the function working correctly, one tra-
versal order is more efficient than the others. Knowing that the DeleteNode operation
does less work to delete a leaf node than a node with children, we want to delete leaves
first. The traversal that allows us to access leaf nodes first is called a postorder traversal:
We access each node’s left subtree and its right subtree before we process the node
itself. If you delete the nodes in postorder, each node is a leaf by the time it is its turn to
be deleted. The code for the destructor follows:

void Destroy(TreeNode*& tree);

TreeType::~TreeType()
// Calls recursive function Destroy to destroy the tree.
{
Destroy(root);

}

void Destroy(TreeNode*& tree)
// Post: tree is empty; nodes have been deallocated.
{
if (tree != NULL)
{
Destroy(tree->left);
Destroy(tree->right);
delete tree;

}
}

The body of the MakeEmpty member function is identical to that of the class
destructor, with one exception: After the call to Destroy, it must set root to NULL.

Copying a Tree

Both the copy constructor and the overloading of the assignment operator involve mak-
ing a copy of a tree. Copying a tree may be the most interesting—and complex—

486 | Chapter 8: Binary Search Trees

algorithm associated with trees. Clearly, it entails a recursive algorithm. We must do
what we did with all the other member functions: Call an auxiliary recursive function
with root as a parameter. Both the copy constructor and the assignment operator must
call this function.

void CopyTree(TreeNode*& copy,
const TreeNode* originalTree);

TreeType::TreeType(const TreeType& originalTree)
// Calls the recursive function CopyTree to copy originalTree
// into root.
{
CopyTree(root, originalTree.root);

}

void TreeType::operator=
(const TreeType& originalTree)

// Calls the recursive function CopyTree to copy originalTree
// into root.
{
{
if (&originalTree == this)
return; // Ignore assigning self to self.

Destroy(root); // Deallocate existing tree nodes.
CopyTree(root, originalTree.root);

}
}

The recursive function CopyTree has two parameters, both pointers to tree nodes.
Let’s call them copy and otherTree. What is the base case? If otherTree is NULL,
then copy is NULL. What is copy if otherTree is not NULL? We get a node for copy to
point to and put otherTree->info into it. We then store a copy of otherTree’s left
subtree into copy’s left child and store a copy of otherTree’s right subtree into copy’s
right child. Where do we get a copy of the subtrees? We use CopyTree recursively, of
course.

void CopyTree(TreeNode*& copy,
const TreeNode* originalTree)

// Post: copy is the root of a tree that is a duplicate
// of originalTree.
{
if (originalTree == NULL)
copy = NULL;

8.5 Recursive Binary Search Tree Operations | 487

Call

1

2

3

copy

external pointer to new tree

left of node allocated in call 1

left of node allocated in call 2

originalTree

→L

→D

NULL

Return

R0

R1

R1

Comment

copy is given a node to point to; L is copied into
the info member; R1 is executed

copy is given a node to point to; D is copied into
the info member; R1 is executed

NULL is copied into copy (i.e., left of node allo-
cated in call 2) and call 3 is completed

else
{
copy = new TreeNode;
copy->info = originalTree->info;
CopyTree(copy->left, originalTree->left);
CopyTree(copy->right, originalTree->right);

}
}

Be sure you understand how this code works before going on to the next section.
Like many recursive algorithms, this short function is elegant but not obvious. In fact,
let’s trace CopyTree on the following tree:

As in Chapter 7, R0 stands for the nonrecursive call, R1 stands for the first recursive
call (copy->left), and R2 stands for the second recursive call (copy->right). In the
trace, an arrow pointing to the contents of a node stands for the pointer to that node. A
Comments column in the table shows the trace.

•
originalTree

M

K

D

L

At this point the third call is finished, and copy looks like this:

488 | Chapter 8: Binary Search Trees

We return to finish the second call. We shade the completed calls to show that the
execution of that call has finished and that activation record is no longer on the stack.

•originalTree

M

K

D

L •copy

D

L

After the completion of the fifth call, control returns to the fourth call. Because the
fifth call came from R1, R2 must be executed.

Call

1

2

3

4

5

copy

external pointer to new tree

left of node allocated in call 1

left of node allocated in call 2

right of node allocated in
call 2

left of node allocated in call 4

originalTree

→L

→D

NULL

→K

NULL

Return

R0

R1

R1

R2

R1

Comment

copy is given a node to point to; L is copied into
the info member; R1 is executed

copy is given a node to point to; D is copied into
the info member; R1 is executed

NULL is copied into copy (i.e., left of node allo-
cated in call 2) and call 3 is completed

copy is given a node to point to; K is copied into
the info member; R1 is executed

NULL is copied into copy (i.e., left of node in call
4) and call 5 is completed

Call

1

2

3

4

5

6

copy

external pointer to new tree

left of node allocated in call 1

left of node allocated in call 2

right of node allocated in
call 2

left of node allocated in call 4

right of node allocated in
call 4

originalTree

→L

→D

NULL

→K

NULL

NULL

Return

R0

R1

R1

R2

R1

R2

Comment

copy is given a node to point to; L is copied into
the info member; R1 is executed

copy is given a node to point to; D is copied into
the info member; R1 is executed

NULL is copied into copy (i.e., left of node allo-
cated in call 2) and call 3 is completed

copy is given a node to point to; K is copied into
the info member; R1 is executed

NULL is copied into copy (i.e., left of node allo-
cated in call 4) and call 5 is completed

NULL is copied into copy (i.e., right of node allo-
cated in call 4) and call 6 is completed

8.5 Recursive Binary Search Tree Operations | 489

Call

1

2

3

4

5

6

7

8

copy

external pointer to new tree

left of node allocated in call 1

left of node allocated in call 2

right of node allocated in
call 2

left of node allocated in call 4

right of node allocated in
call 4

right of node allocated in
call 1

left of node allocated in call 7

originalTree

→L

→D

NULL

→K

NULL

NULL

→M

NULL

Return

R0

R1

R1

R2

R1

R2

R2

R1

Comment

copy is given a node to point to; L is copied into
the info member; R1 is executed

copy is given a node to point to; D is copied into
the info member; R1 is executed

NULL is copied into copy (i.e., left of node allo-
cated in call 2) and call 3 is completed

copy is given a node to point to; K is copied into
the info member; R1 is executed

NULL is copied into copy (i.e., left of node allo-
cated in call 4) and call 5 is completed

NULL is copied into copy (i.e., right of node allo-
cated in call 4) and call 6 is completed

copy is given a node to point to; M is copied
into the info member; R1 is executed

NULL is copied into copy (i.e., left of node allo-
cated in call 7) and call 8 is completed

Because the sixth call came from R2, the fourth call is now finished, and copy
looks like this:

But as the fourth call came from R2, call 4 is also finished, leaving only the activa-
tion record from the original call on the stack. Execution continues with the second
recursive call from call 1.

•originalTree

M

K

D

L •copy

K

D

L

All we have left to do is the second recursive call from call 7.

490 | Chapter 8: Binary Search Trees

Call 9’s completion finishes up call 7, which then finishes up call 1. Because call 1 is
the nonrecursive call, the process is finished. At last, copy is a duplicate of originalTree.

More about Traversals

In the Print function, we conducted an inorder tra-
versal of a binary search tree: The value in a node was
printed in between the printing of the values in its left
subtree and the values in its right subtree. An inorder
traversal prints the values in a binary search tree in
ascending key order. When implementing the destruc-
tor for the binary search tree, we introduced a post-
order traversal: A node was deleted after destroying
its left subtree and its right subtree. One more impor-
tant traversal exists: the preorder traversal. In a pre-
order traversal, the values in a node are visited before
the values in its left subtree and the values in its right
subtree.

Inorder traversal A systematic way of visiting all nodes
in a binary tree that visits the nodes in the left subtree of
a node, then visits the node, and then visits the nodes in
the right subtree of the node

Postorder traversal A systematic way of visiting all
nodes in a binary tree that visits the nodes in the left sub-
tree of a node, then visits the nodes in the right subtree of
the node, and then visits the node

Preorder traversal A systematic way of visiting all nodes
in a binary tree that visits a node, then visits the nodes in
the left subtree of the node, and then visits the nodes in
the right subtree of the node

Call

1

2

3

4

5

6

7

8

9

copy

external pointer to new tree

left of node allocated in call 1

left of node allocated in call 2

right of node allocated in
call 2

left of node allocated in call 4

right of node allocated in
call 4

right of node allocated in
call 1

left of node allocated in call 7

right of node allocated in
call 7

originalTree

→L

→D

NULL

→K

NULL

NULL

→M

NULL

NULL

Return

R0

R1

R1

R2

R1

R2

R2

R1

R2

Comment

copy is given a node to point to; L is copied into
the info member; R1 is executed

copy is given a node to point to; D is copied into
the info member; R1 is executed

NULL is copied into copy (i.e., left of node allo-
cated in call 2) and call 3 is completed

copy is given a node to point to; K is copied into
the info member; R1 is executed

NULL is copied into copy (i.e., left of node allo-
cated in call 4) and call 5 is completed

NULL is copied into copy (i.e., right of node allo-
cated in call 4) and call 6 is completed

copy is given a node to point to; M is copied
into the info member; R1 is executed

NULL is copied into copy (i.e., left of node allo-
cated in call 7) and call 8 is completed

NULL is copied into copy (i.e., right of node allo-
cated in call 7) and call 9 is completed

8.5 Recursive Binary Search Tree Operations | 491

Inorder(tree)
if tree is not NULL

Inorder(Left(tree))
Visit Info(tree)
Inorder(Right(tree))

Postorder(tree)
if tree is not NULL

Postorder(Left(tree))
Postorder(Right(tree))
Visit Info(tree)

Preorder(tree)
if tree is not NULL

Visit Info(tree)
Preorder(Left(tree))
Preorder(Right(tree))

Compare the algorithms for these three traversals to be sure you understand the dif-
ference among them.

When we say “visit,” we mean that the algorithm does whatever it needs to do with
the values in the node—print them, sum certain data members, or delete them, for exam-
ple. Notice that the name given to each traversal specifies where the node itself is
processed in relation to its subtrees.

If you are having trouble visualizing these traversals, try the following exercise.
Visualize each traversal order by drawing a “loop” around a binary tree as in Figure
8.16. Before drawing the loop, extend the nodes of the tree that have fewer than two

492 | Chapter 8: Binary Search Trees

Figure 8.16 Visualizing binary tree traversals

A binary tree

D

B

A C

F

G

D

B

A C

F

G

The extended tree

1

1

1

1

1

2 2

3 3 1
3

3

3

3

2

2

2

2

Preorder:
Inorder:

Postorder:

DBACFG
ABCDFG
ACBGFD

children with short lines so that every node has two “edges.” Then draw the loop from
the root of the tree, down the left subtree, and back up again, hugging the shape of the
tree as you go. Each node of the tree is “touched” three times by the loop (the touches
are numbered in the figure): once on the way down before the left subtree is reached,
once after finishing the left subtree but before starting the right subtree, and once on
the way up, after finishing the right subtree.

To generate a preorder traversal, follow the loop and visit each node the first time it
is touched (before visiting the left subtree). To generate an inorder traversal, follow the
loop and visit each node the second time it is touched (in between visiting the two sub-
trees). To generate a postorder traversal, follow the loop and visit each node the third
time it is touched (after visiting the right subtree). Use this method on the tree in Figure
8.17 and see if you agree with the listed traversal orders.

8.5 Recursive Binary Search Tree Operations | 493

Figure 8.17 Three tree traversals

W

T ZG

B H R Y

•tree

F S

P

Inorder:
Preorder:
Postorder: B

P
B F

F
G

G
B
H

H
H
F

P
G
R

R
S
W

S
R
T

T
Y
Z

W
T
Y

Y
W
S

Z
Z
P

An inorder traversal allows us to print the values in ascending order; a postorder
traversal allows us to destroy a tree more efficiently. Where is a preorder traversal use-
ful? This traversal is not particularly useful when dealing with binary search trees; how-
ever, in other applications of binary trees it is very useful.

The Functions ResetTree and GetNextItem

ResetTree gets the “current position” ready for a traversal; GetNextItem moves the
current position to the next node and returns the value stored there. We have looked at
three kinds of traversals, so what does “next node” mean here? Both ResetTree and
GetNextItem have a parameter of type OrderType that allows the user to specify
which traversal to use.

When traversing a linear structure, moving from one item to the next one is speci-
fied explicitly. Our tree traversals are recursive, so the location of the next item is a
function of the current item and the run-time stack. We could use an auxiliary stack to
implement the traversal, thereby saving the history that we need to find the next item.
However, an even simpler way exists: We let ResetTree generate a queue of node con-
tents in the proper order and let GetNextItem process the node contents from the
queue. Recall that OrderType is specified as follows:

enum OrderType {PRE_ORDER, IN_ORDER, POST_ORDER};

We let ResetTree call one of three recursive functions depending on the value of the
parameter order. Each function implements a recursive traversal storing the node con-
tents onto a queue. Thus we must have three queues declared in the private section of
TreeType.

494 | Chapter 8: Binary Search Trees

enum OrderType {PRE_ORDER, IN_ORDER, POST_ORDER};

class TreeType
{
public:
// Function prototypes go here.

private:
TreeNode* root;
QueType preQue;
QueType inQue;
QueType postQue;

}
// Function prototypes for auxiliary functions.

void PreOrder(TreeNode*, QueType&);
// Enqueues tree items in preorder.

void InOrder(TreeNode*, QueType&);
// Enqueues tree items in inorder.

void PostOrder(TreeNode*, QueType&);
// Enqueues tree items in postorder.

void TreeType::ResetTree(OrderType order)
// Calls a function to create a queue of the tree elements in
// the desired order.
{
switch (order)
{
case PRE_ORDER : PreOrder(root, preQue);

break;
case IN_ORDER : InOrder(root, inQue);

break;
case POST_ORDER: PostOrder(root, postQue);

break;
}

}

void PreOrder(TreeNode* tree,
QueType& preQue)

// Post: preQue contains the tree items in preorder.
{
if (tree != NULL)
{
preQue.Enqueue(tree->info);

8.5 Recursive Binary Search Tree Operations | 495

PreOrder(tree->left, preQue);
PreOrder(tree->right, preQue);

}
}

void InOrder(TreeNode* tree,
QueType& inQue)

// Post: inQue contains the tree items in inorder.
{
if (tree != NULL)
{
InOrder(tree->left, inQue);
inQue.Enqueue(tree->info);
InOrder(tree->right, inQue);

}
}

void PostOrder(TreeNode* tree,
QueType& postQue)

// Post: postQue contains the tree items in postorder.
{
if (tree != NULL)
{
PostOrder(tree->left, postQue);
PostOrder(tree->right, postQue);
postQue.Enqueue(tree->info);

}
}

void TreeType::GetNextItem(ItemType& item,
OrderType order, bool& finished)

// Returns the next item in the desired order.
// Post: For the desired order, item is the next item in the queue.
// If item is the last one in the queue, finished is true;
// otherwise, finished is false.
{
finished = false;
switch (order)
{
case PRE_ORDER : preQue.Dequeue(item);

if (preQue.IsEmpty())
finished = true;

break;
case IN_ORDER : inQue.Dequeue(item);

if (inQue.IsEmpty())

496 | Chapter 8: Binary Search Trees

finished = true;
break;

case POST_ORDER: postQue.Dequeue(item);
if (postQue.IsEmpty())
finished = true;

break;
}

}

8.6 Iterative Insertion and Deletion

Searching a Binary Search Tree

In the recursive versions of the tree operations, we embedded the search task within the
function that needed it. The other alternative is to have a general search function; let’s
take that approach here. The function FindNode receives a pointer to a binary search
tree and an item with the key initialized. It sends back a pointer to the desired node
(nodePtr) and a pointer to the node’s parent (parentPtr) if an item with a matching
key is found.

What do we do if no item has a key that matches item’s, as is the case when we are
inserting a new element? We set nodePtr to NULL. In this case, parentPtr points to
the node into which the new element must be inserted as a right or left child. One other
case arises: What if we find a matching key in the root node? Because no parent node
exists, we set parentPtr to NULL.

Here is the specification for the internal tree function, FindNode:

FindNode(TreeNode* tree, ItemType item, TreeNode*& nodePtr,
TreeNode*& parentPtr)

Function: Searches for a node whose key matches item’s key.
Precondition: tree points to the root of a binary search tree.
Postconditions: If a node is found with the same key as item’s,

then nodePtr points to that node and parentPtr
points to its parent node. If the root node has the
same key as item’s, parentPtr is NULL. If no node
has the same key, then nodePtr is NULL and par-
entPtr points to the node in the tree that is the
logical parent of item.

Let’s look at the search algorithm in detail. We use nodePtr and parentPtr (the
outgoing parameters) to search the tree. Because we access the tree through its root, we
initialize nodePtr to the external pointer, tree. We initialize parentPtr to NULL. We

8.6 Iterative Insertion and Deletion | 497

FindNode
Set nodePtr to tree
Set parentPtr to NULL
Set found to false

while more elements to search AND NOT found
if item < Info(nodePtr)

Set parentPtr to nodePtr
Set nodePtr to Left(nodePtr)

else if item > Info(nodePtr)
Set parentPtr to nodePtr
Set nodePtr to Right(nodePtr)

else
Set found to true

compare item and nodePtr->info. If the keys are equal, we have found the desired
node. If item’s key is less, we look in the left subtree; if item’s key is greater, we look
in the right subtree. This operation is exactly like a recursive search except that we
change pointer values to move left and right rather than making recursive calls.

When does the loop terminate? Two terminating conditions are possible. First, we
stop searching if we find the correct node. In this case, nodePtr points to the node con-
taining the same key as item’s, and parentPtr points to this node’s parent. Second, if
no element in the tree has the same key as item’s, we search until we fall out of the
tree. At this point, nodePtr = NULL, and parentPtr points to the node that would be
the item’s parent—if it existed in the tree. (We use this value of parentPtr when we
insert an item into a tree.) The resulting loop condition is

while (nodePtr != NULL && !found)

The algorithm illustrates that the maximum number of comparisons in a binary
search tree equals the height of the tree. As discussed earlier, this number may range
from log2N to N (where N is the number of tree elements), depending on the shape of
the tree.

The complete function follows.

void FindNode(TreeNode* tree, ItemType item,
TreeNode*& nodePtr, TreeNode*& parentPtr)

// Post: If a node is found with the same key as item's, then

498 | Chapter 8: Binary Search Trees

// nodePtr points to that node and parentPtr points to its
// parent node. If the root node has the same key as item's,
// parentPtr is NULL. If no node has the same key, then
// nodePtr is NULL and parentPtr points to the node in the
// tree that is the logical parent of item.

{
nodePtr = tree;
parentPtr = NULL;
bool found = false;
while (nodePtr != NULL && !found)
{
if (item < nodePtr->info)
{
parentPtr = nodePtr;
nodePtr = nodePtr->left;

}
else if (item > nodePtr->info)
{
parentPtr = nodePtr;
nodePtr = nodePtr->right;

}
else
found = true;

}
}

Let’s trace this function, using the tree in Figure 8.6 on page 471. We want to find the
element with the key 18. nodePtr is initially set to tree, the external pointer. Because
item’s key (18) is greater than nodePtr->info (17), we advance the pointers. Now par-
entPtr points to the root node and we move nodePtr to the right; it then points to the
node with the key 20. Because item’s key (18) is less than this key (20), we advance the
pointers. Now parentPtr points to the node with the key 20, and we move nodePtr to
the left; nodePtr then points to the node with the key 18. Now 18 is equal to nodePtr->
info and found is true, so we stop looping. We exit the function with nodePtr pointing
to the node with the desired key and parentPtr pointing to this node’s parent.

Next, let’s look at an example where the key is not found in the tree. We want to
find the element with the key 7. nodePtr is initially set to tree. Because item’s key (7)
is less than nodePtr->info (17), we move to the left. Now nodePtr points to the node
containing 9 and parentPtr points to the root node. Because item’s key is less than
nodePtr->info, we move again to the left. Now nodePtr = NULL; it has fallen out of
the tree. Because no more is left to search in this subtree, we stop looping. We exit the
function with nodePtr equal to NULL and parentPtr pointing to the node with the

8.6 Iterative Insertion and Deletion | 499

InsertItem
Create a node to contain the new item.
Find the insertion place.
Attach the new node.

key 9. If we were calling FindNode with the intention of subsequently inserting a node
with the key 7, we would now know two things:

1. Because nodePtr = NULL, the tree does not include a node with the key 7.

2. Because parentPtr points to the last node visited before we fell out of the tree, the
new node, with a key value of 7, must be attached to the node at parentPtr. This
information will prove very helpful when we develop the iterative InsertItem
operation.

The Function InsertItem

The algorithm for the iterative InsertItem operation must carry out the same three
tasks that any insert operation performs:

Creating a node works in the same way as in the recursive version. Finding the
insertion point and inserting the node are different, however. Let’s see how the function
FindNode can perform the search for us. We call FindNode, asking it to find the node
with the same key as item’s:

FindNode(tree, item, nodePtr, parentPtr);

Suppose we want to insert an element with the key value 13 into the binary search
tree pictured in Figure 8.18. In the function FindNode, nodePtr is initialized to point
to the root of the tree, and parentPtr is initialized to NULL (Figure 8.18a). Because
item’s key (13) is larger than the key of the root node (7), we move nodePtr to the
right, dragging parentPtr along behind it (Figure 8.18b). Now item’s key is less than
nodePtr->info, so we move nodePtr to the left, with parentPtr following (Figure
8.18c). Because item’s key is greater than nodePtr->info, parentPtr catches up and
nodePtr moves to the right (Figure 8.18d). At this point, nodePtr is NULL, so we exit
FindNode with the pointers positioned as shown in Figure 8.18(d).

Of course, a node with item’s key is not supposed to be found, for we are just
now inserting its node. The good news is that nodePtr has fallen out of the tree just
at the spot where the new node should be inserted. Because parentPtr trails immedi-
ately behind nodePtr, we can simply attach the new node to the node pointed to by
parentPtr (Figure 8.18e).

500 | Chapter 8: Binary Search Trees

Figure 8.18 Using the function FindNode to find the insertion point

•tree(a) •

parentPtr

3

10 20

15

2

7

(b) •tree • parentPtr

• nodePtr3

10 20

15

2

7

(c)

nodePtr

•

•

tree

• parentPtr3

10 20

15

2

7

(d)

nodePtrparentPtr

•

•

tree

3

10 20

15

2

7

(e)

parentPtr

• newNode

•

•

tree

3

10 20

15

2

13

7

nodePtr

8.6 Iterative Insertion and Deletion | 501

AttachNewNode
if item < Info(parentPtr)

Set Left(parentPtr) to newNode
else

Set Right(parentPtr) to newNode

AttachNewNode(revised)
if parentPtr equals NULL

Set tree to newNode
else if item < Info(parentPtr)

Set Left(parentPtr) to newNode
else

Set Right(parentPtr) to newNode

Now we’re ready for the third task: to fix the pointers in the node pointed to by
parentPtr so as to attach the new node. In the general case, we compare the key of the
new element to the key of parentPtr->info. Either parentPtr->left or par-
entPtr->right must be set to point to the new node:

When we are inserting the first node into an empty tree, however, parentPtr still
equals NULL and dereferencing parentPtr is illegal. We need to make inserting the first
node into the tree become a special case. We can test for parentPtr = NULL to deter-
mine whether the tree is empty; if so, we change tree to point to the new node.

Taken together, the pieces of the insertion operation design can be coded as the func-
tion InsertItem, with the interface described in the Binary Search Tree ADT specification.

void TreeType::InsertItem(ItemType item)
// Post: item is in tree.
{
TreeNode* newNode;
TreeNode* nodePtr;
TreeNode* parentPtr;

502 | Chapter 8: Binary Search Trees

newNode = new TreeNode;
newNode->info = item;
newNode->left = NULL;
newNode->right = NULL;

FindNode(root, item, nodePtr, parentPtr);

if (parentPtr == NULL) // Insert as root.
root = newNode;

else if (item < parentPtr->info)
parentPtr->left = newNode;

else parentPtr->right = newNode;
}

The Function DeleteItem

The same three cases exist for the iterative DeleteItem operation that existed for the
recursive Delete: deleting a node with no children, one child, or two children. We can
use FindNode to locate the node (pointed to by nodePtr) to delete and its parent node
(pointed to by parentPtr).

The actual deletion in the recursive version occurs in DeleteNode. Can we use it to
delete the node pointed to by nodePtr? DeleteNode takes only one parameter, the
place in the tree where the pointer to the node to be deleted resides. We can use the
DeleteNode function developed for the recursive version if we can determine the place
in the structure to pass to DeleteNode. That is, given nodePtr and parentPtr, we
must determine whether the node pointed to by nodePtr is the right or left child of the
node pointed to by parentPtr. If the value of nodePtr is the same as the value of
parentPtr->left, then we pass parentPtr->left to DeleteNode; otherwise, we
pass parentPtr->right.

void TreeType::DeleteItem(ItemType item)
// Post: There is no node in the tree whose info member
// matches item.
{
TreeNode* nodePtr;
TreeNode* parentPtr;

FindNode(root, item, nodePtr, parentPtr);

if (nodePtr == root)
DeleteNode(root);

else
if (parentPtr->left == nodePtr)
DeleteNode(parentPtr->left);

else DeleteNode(parentPtr->right);
}

8.6 Iterative Insertion and Deletion | 503

Figure 8.19 Pointers nodePtr and parentPtr are external to the tree

A

KB

•parentPtr

tree

J S

M

•nodePtr

•

Figure 8.20 Pointer parentPtr is external to the tree, but parentPtr->left
is an actual pointer in the tree

B

•parentPtr

parentPtr->left

tree

J S

M •

It is very important to recognize the difference between passing nodePtr to
DeleteNode and passing either parentPtr->right or parentPtr->left. See Figures
8.19 and 8.20.

Test Plan

Because we use the Binary Search Tree ADT to represent items in a list, we can employ
the same strategy that we have used to test the other list ADTs for it. However, testing
the traversals is much more difficult than testing a simple linear traversal. The tree in
Figure 8.17 is a good tree to use as a test because we already have the answers. We need
to insert the items, retrieve items found and not found in the tree, print the tree, reset
the tree for each traversal, use GetNextItem to get each of the items in each traversal,
delete all the items, and call each of the other functions where appropriate.

On the Web, the program TreeDr.cpp contains the driver for the test. The recursive
version of TreeType is located in file TreeType.cpp; the iterative version is found in
file ITreeType.cpp. The input file is TreeType.in and the output files are
TreeType.out and TreeType.screen for the recursive version and ITreeType.out
and ITreeType.screen for the iterative version.

Recursion or Iteration?

Now that we have looked at both the recursive and the iterative versions of inserting
and deleting nodes, can we determine which approach is better? In Chapter 7, we gave

504 | Chapter 8: Binary Search Trees

some guidelines for determining when recursion is appropriate. Let’s apply these guide-
lines to the use of recursion with binary search trees.

Is the depth of recursion relatively shallow?

Yes. The depth of recursion depends on the height of the tree. If the tree is well bal-
anced (relatively short and bushy, not tall and stringy), the depth of recursion is closer
to O(log2N) than to O(N).

Is the recursive solution shorter or clearer than the nonrecursive version?

Yes. The recursive solutions are certainly shorter than the combination of the non-
recursive functions plus the supporting function FindNode. Is it clearer? Once you
accept that in every recursive execution, the parameter tree is actually a pointer mem-
ber within a node of the tree, the recursive version becomes intuitively obvious.

Is the recursive version much less efficient than the nonrecursive version?

No. Both the recursive and the nonrecursive versions of inserting and deleting are
O(log2N) operations, assuming a well-balanced tree. The only efficiency issue of con-
cern relates to space. item is a value parameter; our functions pass a copy of it on each
recursive call. If item is a large struct or class object, these copies may cause an over-
flow of the run-time stack. (It would be better to make item be a const reference
parameter if ItemType is large and the tree has great height.)

We give the recursive versions of the functions an “A”; they represent a good use of
recursion.

8.7 Comparing Binary Search Trees and Linear Lists

A binary search tree is an appropriate structure for many of the same applications dis-
cussed previously in conjunction with other sorted list structures. The special advantage
of using a binary search tree is that it facilitates searching, while conferring the benefits
of linking the elements. It provides the best features of both the sorted array-based list
and the linked list. Like a sorted array-based list, it can be searched quickly, using a
binary search. Like a linked list, it allows insertions and deletions without having to
move data. Thus this structure is particularly suitable for applications in which search
time must be minimized or in which the nodes are not necessarily processed in sequen-
tial order.

As usual, a tradeoff exists. The binary search tree, with its extra pointer in each
node, takes up more memory space than a singly linked list does. In addition, the algo-
rithms for manipulating the tree are somewhat more complicated. If all of the list’s uses
involve sequential rather than random processing of the elements, the tree may not be
as good a choice as a linked list.

8.7 Comparing Binary Search Trees and Linear Lists | 505

Suppose we have 100,000 customer records in a list. If our main activity is to send
out updated monthly statements to the customers and if the order in which the statements
are printed matches the order in which the records appear on the list, a linked list would
be suitable. But suppose we decide to keep a terminal available to give out account infor-
mation to the customers whenever they ask. If the data are kept in a linked list, the first
customer on the list can be given information almost instantly, but the last customer has
to wait while the application examines the other 99,999 records. When direct access to
the records is a requirement, a binary search tree represents a more appropriate structure.

Big-O Comparisons

Finding the node to process (FindNode), as we would expect in a structure dedicated
to searching, is the most interesting operation to analyze. In the best case—if the order
in which the elements were inserted results in a short, bushy tree—we can find any node
in the tree with at most log2N + 1 comparisons. We would expect to locate a random
element in such a tree much faster than we could find such an element in a sorted
linked list. In the worst case—if the elements were inserted in order from smallest to
largest, or vice versa—the tree won’t really be a tree at all; it is a linear list, linked
through either the left or right data members. This structure is called a “degenerate”
tree. In this case, the tree operations should perform much the same as the operations
on a linked list. Therefore, in a worst-case analysis, the complexity of the tree opera-
tions is identical to the comparable linked-list operations. In the following analysis,
however, we assume that the items are inserted into the tree in random order to pro-
duce a balanced tree.

The InsertItem, DeleteItem, and RetrieveItem operations basically involve
finding the node [O(log2N)] plus tasks that are O(1)—for instance, creating a node, reset-
ting pointers, or copying data. These operations are all described as O(log2N). The
DeleteItem operation consists of finding the node plus DeleteNode. In the worst case
(deleting a node with two children), DeleteNode must find the replacement value, an
O(log2N) operation. (Actually, the two tasks add up to log2N comparisons, because if the
delete node is higher in the tree, fewer comparisons are needed to find it, and more com-
parisons may be needed to find its replacement node.) Otherwise, if the deleted node has
zero or one child, DeleteNode is an O(1) operation. Thus DeleteItem may also be
described as O(log2N).

The observer operations IsFull and IsEmpty have O(1) complexity because the
number of items in the structure does not affect these operations. LengthIs, however, is
different. As we said in Chapter 5, the length data member must be present in array-
based implementations, but is a design choice in linked implementations. In the imple-
mentations in Chapter 5, we chose to keep a length field rather than counting the
number of items when the LengthIs member function is called. In our tree implementa-
tion, we have the same choice; we chose to count the number of items on the list when
LengthIs is called. Therefore, the order of the tree implementation is O(N).

The MakeEmpty, Print, and destructor operations require the tree to be traversed,
processing each element once. Thus they have O(N) complexity. Table 8.2 compares the

506 | Chapter 8: Binary Search Trees

Table 8.2 Big-O Comparison of List Operations

Binary Search Tree Array-Based Linear List Linked List

Class constructor O(1) O(1) O(1)

Destructor O(N) O(1)* O(N)

MakeEmpty O(N) O(1)* O(N)

LengthIs O(N) O(1) O(1)

IsFull O(1) O(1) O(1)

IsEmpty O(1) O(1) O(1)

RetrieveItem

Find O(log2N) O(log2N) O(N)

Process O(1) O(1) O(1)

Total O(log2N) O(log2N) O(N)

InsertItem

Find O(log2N) O(log2N) O(N)

Process O(1) O(N) O(1)

Total O(log2N) O(N) O(N)

DeleteItem

Find O(log2N) O(log2N) O(N)

Process O(1) O(N) O(1)

Total O(log2N) O(N) O(N)

*If the items in the array-based list could possibly contain pointers, the items must be deallocated, making this an O(N) operation.

orders of magnitude for the tree and list operations as we have coded them. The binary
search tree operations are based on a random insertion order of the items; the find oper-
ation in the array-based implementation is based on a binary search.

8.8 A Nonlinked Representation of Binary Trees

Our discussion of the implementation of binary trees has so far remained limited to a
scheme in which the pointers from parent to children are explicit in the data structure.
That is, a member was declared in each node for the pointer to the left child and the
pointer to the right child.

A binary tree can be stored in an array in such a way that the relationships in
the tree are not physically represented by link members, but rather are implicit in

8.8 A Nonlinked Representation of Binary Trees | 507

Figure 8.21 A binary tree and its array representation

[maxElements - 1]

tree.numElements = 10

tree

tree.nodes

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

G

D I

B F H J

A C E

G

D

I

B

F

H

J

A

C

E

the algorithms that manipulate the tree stored in the array. The code is, of course,
much less self-documenting, but we might save memory space because we have no
pointers.

Let’s take a binary tree and store it in an array in such a way that we do not lose
the parent–child relationships. We store the tree elements in the array, level by level,
left to right. If the number of nodes in the tree is numElements, we can package the
array and numElements into a struct as illustrated in Figure 8.21. The tree elements are
stored with the root in tree.nodes[0] and the last node in tree.nodes[num-
Elements - 1].

To implement the algorithms that manipulate the tree, we must be able to find the
left and right child of a node in the tree. Comparing the tree and the array in Figure
8.21, we see that

• tree.nodes[0]’s children are in tree.nodes[1] and tree.nodes[2].
• tree.nodes[1]’s children are in tree.nodes[3] and tree.nodes[4].
• tree.nodes[2]’s children are in tree.nodes[5] and tree.nodes[6].

Do you see the pattern? For any node tree.nodes[index], its left child is in
tree.nodes[index * 2 + 1] and its right child is in tree.nodes[index * 2 + 2]
(provided that these child nodes exist). Notice that the nodes in the array from
tree.nodes[tree.numElements/2] to tree.nodes[tree.numElements - 1] are
leaf nodes.

Not only can we easily calculate the location of a node’s children, but we can also
determine the location of its parent node. This task is not an easy one in a binary tree
linked together with pointers from parent to child nodes, but it is very simple in our

508 | Chapter 8: Binary Search Trees

implicit link implementation: tree.nodes[index]’s parent is in tree.nodes[(index
- 1)/2].

Because integer division truncates any remainder, (index - 1)/2 is the correct
parent index for either a left or a right child. Thus this implementation of a binary tree
is linked in both directions—from parent to child and from child to parent. We take
advantage of this fact later in the next chapter.

This tree representation works well for any
binary tree that is full or complete. A full binary tree
is a binary tree in which all of the leaves are located
on the same level and every nonleaf node has two
children. The basic shape of a full binary tree is tri-
angular:

A complete binary tree is a binary tree that is
either full or full through the next-to-last level, with
the leaves on the last level located as far to the left
as possible. The shape of a complete binary tree is
either triangular (if the tree is full) or something like
the following:

Figure 8.22 shows some examples of binary trees.
The array-based representation is simple to implement for trees that are full or

complete, because the elements occupy contiguous array slots. If a tree is not full or
complete, however, we must account for the gaps created by missing nodes. To use the
array representation, we must store a dummy value in those positions in the array so as
to maintain the proper parent–child relationship. The choice of a dummy value depends
on what information is stored in the tree. For instance, if the elements in the tree are
nonnegative integers, we can store a negative value in the dummy nodes.

Figure 8.23 illustrates a tree that is not complete as well as its corresponding array.
Some of the array slots do not contain actual tree elements, but rather hold dummy val-
ues. The algorithms to manipulate the tree must reflect this situation. For example, to
determine whether the node in tree.nodes[index] has a left child, you must check
whether index * 2 + 1 < tree.numElements, and then check whether the value in
tree.nodes[index * 2 + 1] is the dummy value.

Full binary tree A binary tree in which all of the leaves
are located on the same level and every nonleaf node has
two children

Complete binary tree A binary tree that is either full or
full through the next-to-last level, with the leaves on the
last level located as far to the left as possible

8.8 A Nonlinked Representation of Binary Trees | 509

We have seen how we can use an array to represent a binary tree. We can also
reverse this process, creating a binary tree from the elements in an array. In fact, we
can regard any one-dimensional array as representing the nodes in a tree, although the
data values that happen to be stored in it may not match this structure in a meaning-
ful way. In Chapter 9, we use this binary tree representation to implement a heap, a
new ADT.

Figure 8.22 Examples of binary trees

(a) Full and complete (b) Neither full nor
complete

(e) Neither full nor
complete

(c) Complete

(f) Complete(d) Full and complete

Figure 8.23 A binary search tree stored in an array with dummy values

[maxElements - 1]

tree.numElements = 10

tree

tree.nodes

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

50

40 60

29 45 70

42

50

40

60

29

45

–1

70

–1

–1

42

510 | Chapter 8: Binary Search Trees

Case Study
Building an Index

Problem Our publisher has asked us to produce an index for this book. The first step in this
process is to decide which words should go into the index; the second step is to produce a list
of the pages where each word occurs.

Instead of trying to choose words out of our heads (thin air), we decided to let the com-
puter produce a list of all unique words used in the manuscript and their frequency of occur-
rence. We could then review the list and choose which words to include in the index.

Discussion Clearly, the main object in this problem is a word with associated frequency.
Therefore, the first thing we must do is define a “word.”

Looking back over the preceding paragraphs, what is a tentative definition of word in this
context? How about “something between two blanks”? Or better yet, a “character string
between two blanks”? That definition works for most of the words. However, all words before ‘.’
and ‘,’ would have the ‘.’ and ‘,’ attached. Also, words surrounded by quotes would cause a
problem.

Does the following definition take care of the problem?

A word is a string of alphanumeric characters between markers where markers
are whitespace and all punctuation marks.

Yes, it is a good working definition of the kind of word that would be a candidate for an
index term. In fact, this definition would allow us to use the StrType defined in Chapter 2.
The option ALPHA_NUM in GetString defines a string as containing only alphanumeric char-
acters; any non-alphanumeric character stops the reading. If we skip all unallowed characters
before getting the string, we should have exactly what we want.

This process ignores quotation marks, leaving only contractions as a problem. Let’s exam-
ine a few and see if we can find a solution. The common contractions “let’s,” “couldn’t,”
“can’t,” and “that’s” all have only one letter after the single quote. The algorithm would return
the characters up to the single quote as one word and the character between the single quote
and the double quote as one word. What we really want to do is ignore the characters after
the single quote. By saying that words must be at least three characters long to be considered
for the index, we solve this problem. Ignoring words of fewer than three letters also removes
from consideration such words as “a,” “is,” “to,” “do,” and “by” that do not belong in an index.

Brainstorming As usual, our first step is to list objects that might be useful in solving the
problem. Scanning the problem statement, we identify the following nouns: publisher, index,
text, word, list, pages, heads, computer, manuscript, frequency, and occurrence. Clearly, some
of these nouns set the stage for the problem and are not part of the solution. Removing those
nouns leave us with manuscript, word, list, and frequency.

Scenarios There is really only one scenario for this problem: Read a file (the manuscript),
break it into words, process the words, and output the results. To process each word, we check

Case Study: Building an Index | 511

its length. If it is three characters or longer, we check whether it is a word that we have
processed before. If it is, we increment its frequency; if not, we add it to the list of words with
a frequency of 1. The limit of three characters is rather arbitrary, however. Let’s let the user
enter the minimum number of characters.

Although frequency is a noun, it is a property of a word in this case. Let’s combine word
and frequency into a WordType object. We need a container object (list) in which to store the
items of WordType. We can use any of the list ADTs we have written. To have the output file
list the words in alphabetic order, we should use the Sorted List ADT. Here, then, are the CRC
cards for WordType and ListType:

Class Name: Superclass: Subclasses:

Responsibilities Collaborations

ListType

Initialize

Insert Item (item)

Retrieve Item (item)

Tell a word to increment its frequency

Print its contents in alphabetical order

WordType

WordType

WordType

WordType

Class Name: Superclass: Subclasses:

Responsibilities Collaborations

WordType

Initialize (word)

Increment frequency

Compare itself to another instance using <

returns bool

Compare itself to another instance using

== returning bool

Know its word

Know its frequency

StrType

StrType

StrType

512 | Chapter 8: Binary Search Trees

We are now ready to summarize our discussion in the main driver function.

Driver (Main)

Oops! Our design has a major flaw. Regardless of which list ADT we use,
RetrieveItem returns a copy of the item in the list. Incrementing the returned item simply
increments a copy of the item in the list. Therefore, all the frequencies would end up being 1.
In fact, this problem really doesn’t lend itself to using one of our list ADTs. The processing
would be much more efficient if we write a single function that searches the list for a string
and increments the count if it finds it and inserts a node with the string if it doesn’t. When
the search finds that the string is not there, it is already at the point where the node
belongs.

This discussion brings up a very important point: Sometimes it is not appropriate to use an
off-the-shelf container class. Using library classes—whether one provided by C++ or your own
user-defined class—allows you to write more reliable software in a shorter amount of time.
These classes are already tested and debugged. If they fit the needs of your problem, use them.
If they do not, then write a special-purpose function to do the job. In this case, we need to
write our own. The revised CRC card for the container object follows.

Open input file
Open output file
Get file label
Print file label on output file
Get minimum word length
while more data

string.GetStringFile(TRUE, ALPHA_NUM, input file)
if string.LengthIs() >= minimum word length

Initialize WordType object with string
list.RetrieveItem(wordObject, found)
if found

Increment count of wordObject
else

list.InsertItem(wordObject)
list.Print(output file)

Case Study: Building an Index | 513

Here is a revised main function:

Before going any further, we must decide on an implementation structure for ListType.
No limit has been placed on the number of items in the list, so a linked implementation is
appropriate. For each word, the list must be searched, either to insert a new word or to incre-
ment an already identified word’s frequency. A tree-based list would be the most efficient
because its search has O(logN) complexity.

In our original design, we made WordType be a class with member functions to initialize
itself, compare itself, and increment its frequency. We are using StrType for the words so we
can compare two words using the relational operators. Because the container class is being
designed especially for this problem, let’s make WordType be a struct rather than a class and
let the list be responsible for the processing.

Open input file
Open output file
Get file label
Print file label on output file
Get minimum word length
while more data

string.GetStringFile(TRUE, ALPHA_NUM, inFile)
if string.LengthIs() >= minimum word length

list.InsertOrIncrement(tree, string)
list.Print(output file)

Class Name: Superclass: Subclasses:

Responsibilities Collaborations

ListType

Initialize

InsertOrIncrement

Print its contents in alphabetical order

WordType

StrType

514 | Chapter 8: Binary Search Trees

InsertOrIncrement

Print

We are now ready to code our algorithms.

#include <fstream>
#include "StrType.h"
#include <cstddef>
#include <iostream>
#include <string>

struct WordType
{
public:
StrType word;
int count;

};

struct TreeNode
{
WordType info;

if tree is not NULL
Print(Left(tree), outFile)
word member of Info(tree).PrintToFile(TRUE, outFile)
outFile << “ “ << count
Print(Right(tree), outFile)

if tree is NULL
Get a new node for tree to point to
Set word member of Info(tree) to string
Set count member of Info(tree) to 1
Set Left(tree) to NULL
Set Right(tree) to NULL

else if word member of Info(tree) is equal to the string
Increment count member of Info(tree)

else if string is less than the word member of Info(tree)
InsertOrIncrement(Left(tree), string)

else
InsertOrIncrement(Right(tree), string)

Case Study: Building an Index | 515

TreeNode* left;
TreeNode* right;

};

class ListType
{
public:
ListType();
void InsertOrIncrement(StrType string);
void Print(std::ofstream&) const;

private:
TreeNode* root;

};

int main()
{
using namespace std;
ListType list;
string inFileName;
string outFileName;
string outputLabel;
ifstream inFile;
ofstream outFile;
StrType string;
int minimumLength;

// Prompt for file names, read file names, and prepare files.
cout << "Enter name of input file; press return." << endl;
cin >> inFileName;
inFile.open(inFileName.c_str());

cout << "Enter name of output file; press return." << endl;
cin >> outFileName;
outFile.open(outFileName.c_str());

cout << "Enter name of test run; press return." << endl;
cin >> outputLabel;
outFile << outputLabel << endl;

cout << "Enter the minimum size word to be considered." << endl;
cin >> minimumLength;

string.GetStringFile(true, ALPHA_NUM, inFile);
while (inFile)

516 | Chapter 8: Binary Search Trees

{
if (string.LengthIs() >= minimumLength)
list.InsertOrIncrement(string);

string.GetStringFile(true, ALPHA_NUM, inFile);
}

list.Print(outFile);
outFile.close();
inFile.close();
return 0;

}

ListType::ListType()
{
root = NULL;

}

void Process(TreeNode*& tree, StrType string)
{
if (tree == NULL)
{
tree = new TreeNode;
tree->info.word = string;
tree->info.count = 1;
tree->left = NULL;
tree->right = NULL;

}
else if (tree->info.word == string)
tree->info.count++;

else if (string < tree->info.word)
Process(tree->left, string);

else
Process(tree->right, string);

}

void ListType::InsertOrIncrement(StrType string)
// Increments frequency count if the string is in the tree;
// otherwise, inserts word with a frequency of 1.
{
Process(root, string);

}

Exercises | 517

void Print(TreeNode* tree, std::ofstream& outFile)
{

if (tree != NULL)
{
Print(tree->left, outFile);
tree->info.word.PrintToFile(true, outFile);
outFile << " " << tree->info.count;
Print(tree->right, outFile);

}
}

void ListType::Print(std::ofstream& outFile) const
// Prints the words in the tree and their frequency counts.
{
Print(root, outFile);

}

We leave the rest of the problem of creating the index as a programming assignment.

Testing As a test plan for this program, we can take a text file, manually calculate the words and
frequencies, and run the program to check the answers. On the Web, the file Frequency.out
contains the result of running the program on the file Words.cpp, using the file History.in as
input data.

Summary
In this chapter, we saw how we can use a binary tree to structure sorted information so
as to reduce the search time for any particular element. For applications requiring direct
access to the elements in a sorted structure, the binary search tree is a very useful data
type. If the tree is balanced, we can access any node in the tree with an O(log2N) opera-
tion. The binary search tree combines the advantages of quick random access (like a
binary search on a linear list) with the flexibility of a linked structure.

We also saw that we can implement the tree operations very elegantly and concisely
using recursion. This result makes sense, because a binary tree is itself a “recursive”
structure: Any node in the tree is the root of another binary tree. Each time we move
down a level in the tree, taking either the right or the left path from a node, we cut the
size of the (current) tree in half, a clear case of the smaller-caller. We also saw cases of
iteration that replaced recursion (InsertItem and DeleteItem).

Exercises
1. a. What does the level of a binary search tree mean in relation to its searching

efficiency?

518 | Chapter 8: Binary Search Trees

b. What is the maximum number of levels that a binary search tree with 100
nodes can have?

c. What is the minimum number of levels that a binary search tree with 100
nodes can have?

2. Which of these formulas gives the maximum total number of nodes in a tree that
has N levels? (Remember that the root is Level 0.)

a. N2 � 1 b. 2N c. 2N � 1 d. 2N�1

3. Which of these formulas gives the maximum number of nodes in the Nth level of
a binary tree?

a. N2 b. 2N c. 2N�1 d. 2N � 1

4. How many ancestors does a node in the Nth level of a binary search tree have?

5. a. How many different binary trees can be made from three nodes that contain
the key values 1, 2, and 3?

b. How many different binary search trees can be made from three nodes that
contain the key values 1, 2, and 3?

6. Draw all possible binary trees that have four leaves where all nonleaf nodes have
two children.

7. The TreeType class used a queue as an auxiliary storage structure for iterat-
ing through the elements in the tree. Discuss the relative merits of using a
dynamically allocated array-based queue versus a dynamically allocated
linked queue.

Answer the questions in Exercises 8–10 independently, using the following tree.

8. a. What are the ancestors of node P?

b. What are the descendants of node K?

R Y

B W

N

J P

•tree Q

K T

D M

Exercises | 519

c. What is the maximum possible number of nodes in the tree at the level of
node W?

d. What is the maximum possible number of nodes in the tree at the level of
node N?

e. Insert node O. How many nodes would be in the tree if it were completely full
down to and including the level of node O?

9. Show what the tree would look like after each of the following changes. (Use the
original tree to answer each part.)

a. Add node C.

b. Add node Z.

c. Add node X.

d. Delete node M.

e. Delete node Q.

f. Delete node R.

10. Show the order in which the nodes in the tree are processed by

a. an inorder traversal of the tree.

b. a postorder traversal of the tree.

c. a preorder traversal of the tree.

11. Draw the binary search tree whose elements are inserted in the following order:

50 72 96 94 107 26 12 11 9 2 10 25 51 16 17 95

Exercises 12–16 use the following tree.

12. a. What is the height of the tree?

b. What nodes are on Level 3?

23 30 61 64

59

11 6229

•tree 56

47 69

22 49

520 | Chapter 8: Binary Search Trees

c. Which levels have the maximum number of nodes that they could contain?

d. What is the maximum height of a binary search tree containing these nodes?
Draw such a tree.

e. What is the minimum height of a binary search tree containing these nodes?
Draw such a tree.

13. a. Trace the path that would be followed in searching for a node containing 61.

b. Trace the path that would be followed in searching for a node containing 28.

14. Show the order in which the nodes in the tree are processed by

a. an inorder traversal of the tree.

b. a postorder traversal of the tree.

c. a preorder traversal of the tree.

15. Show how the tree would look after the deletion of 29, 59, and 47.

16. Show how the (original) tree would look after the insertion of nodes containing
63, 77, 76, 48, 9, and 10 (in that order).

17. True or false?

a. Invoking the delete function in this chapter might create a tree with more
levels than the original tree had.

b. A preorder traversal processes the nodes in a tree in the exact reverse order
that a postorder traversal processes them.

c. An inorder traversal always processes the elements of a tree in the same
order, regardless of the order in which the elements were inserted.

d. A preorder traversal always processes the elements of a tree in the same
order, regardless of the order in which the elements were inserted.

18. If you wanted to traverse a tree, writing all the elements to a file, and later (the
next time you ran the program) rebuild the tree by reading and inserting, would
an inorder traversal be appropriate? Why or why not?

19. a. One hundred integer elements are chosen at random and inserted into a
sorted linked list and a binary search tree. Describe the efficiency of search-
ing for an element in each structure, in terms of Big-O notation.

b. One hundred integer elements are inserted in order, from smallest to largest,
into a sorted linked list and a binary search tree. Describe the efficiency of
searching for an element in each structure, in terms of Big-O notation.

20. The key of each node in a binary search tree is a short character string.

a. Show how such a tree would look after the following words were inserted (in
the order indicated):

monkey canary donkey deer zebra yak walrus vulture penguin quail

b. Show how the tree would look if the same words were inserted in this order:

quail walrus donkey deer monkey vulture yak penguin zebra canary

Exercises | 521

c. Show how the tree would look if the same words were inserted in this order:

zebra yak walrus vulture quail penguin monkey donkey deer canary

21. Write a function called PtrToSuccessor that finds a node with the smallest key
value in a tree, unlinks it from the tree, and returns a pointer to the unlinked
node.

22. Modify the DeleteNode function so that it uses the immediate successor (rather
than the predecessor) of the value to be deleted in the case of deleting a node with
two children. You should call the function PtrToSuccessor that you wrote in
Exercise 21.

23. Use the Three-Question Method to verify the recursive function Insert.

24. Use the Three-Question Method to verify the recursive function Delete.

25. Write IsFull and IsEmpty for the iterative version of class TreeType.

26. Add a TreeType member function Ancestors that prints the ancestors of a
given node whose info member contains value. Do not print value.

a. Write the declaration.

b. Write the iterative implementation.

27. Write a recursive version of the function Ancestors described in Exercise 26.

28. Write a recursive version of Ancestors (see Exercise 27) that prints out the
ancestors in reverse order (first the parent, then the grandparent, and so on).

29. Add a Boolean member function IsBST to the class TreeType that determines
whether a binary tree is a binary search tree.

a. Write the declaration of the function IsBST. Include adequate comments.

b. Write a recursive implementation of this function.

30. Extend the Binary Search Tree ADT to include the member function LeafCount
that returns the number of leaf nodes in the tree.

31. Extend the Binary Search Tree ADT to include the member function SinglePar-
entCount that returns the number of nodes in the tree that have only one child.

32. Write a client function that returns a count of the nodes that contain a value less
than the parameter value.

33. Extend the Binary Search Tree ADT to include a Boolean function Simi-
larTrees that receives pointers to two binary trees and determines whether the
shapes of the trees are the same. (The nodes do not have to contain the same
values, but each node must have the same number of children.)

a. Write the declaration of the function SimilarTrees as a TreeType member
function. Include adequate comments.

b. Write the body of the function SimilarTrees.

34. The TreeType member function MirrorImage creates and returns a mirror
image of the tree.

522 | Chapter 8: Binary Search Trees

a. Write the declaration of the function MirrorImage. Include adequate com-
ments.

b. Write the body of the function MirrorImage.

c. Can the binary tree returned from this function be used for binary searching?
If so, how?

35. Write a client function MakeTree that creates a binary search tree from the ele-
ments in a sorted list of integers. You cannot traverse the list inserting the ele-
ments in order, as that would produce a tree that has N levels. You must create a
tree with at most log2N + 1 levels.

36. Write a client Boolean function MatchingItems that determines whether a
binary search tree and a sequential list contain the same values.

Examine the following binary search tree and answer the questions in Exercises 37–40.
The numbers on the nodes are labels so that we can talk about the nodes; they are not
key values within the nodes.

37. If an item is to be inserted whose key value is less than the key value in node 1
but greater than the key value in node 5, where would it be inserted?

38. If node 1 is to be deleted, the value in which node could be used to replace it?

39. 4 2 7 5 1 6 8 3 is a traversal of the tree in which order?

40. 1 2 4 5 7 3 6 8 is a traversal of the tree in which order?

41. In Chapter 6, we discussed how to store a linked list in an array of nodes using
index values as “pointers” and managing our list of free nodes. We can use these
same techniques to store the nodes of a binary search tree in an array, rather
than using dynamic storage allocation. Free space is linked through the left
member.

1

2 3

4 5 6

7 8

Exercises | 523

a. Show how the array would look after these elements had been inserted in this
order:

Q L W F M R N S

Be sure to fill in all the spaces. If you do not know the contents of a space,
use “?”.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

.info

free

nodes

root

.left .right

524 | Chapter 8: Binary Search Trees

b. Show the contents of the array after “B” has been inserted and “R” has been
deleted.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

.info

free

nodes

root

.left .right

Exercises | 525

42. a. Which of the following trees are complete?

b. Which of the following trees are full?

65

27

26

50

42

12 4

(a)

(b)

(c)

(d)

(e)

(f)

19

tree

46

14

916

tree tree

50

46

2

37

35

12 8

19 11

tree

50

48

45

49

44

40 41

46

4342

47

tree

32

5 8

50

40

20

tree

40

20

2

1 3

526 | Chapter 8: Binary Search Trees

43. The elements in a binary tree are to be stored in an array, as described in the
chapter. Each element is a nonnegative int value.

a. What value can you use as the dummy value, if the binary tree is not com-
plete?

b. Show the contents of the array, given the tree illustrated below.

44 60

tree
.numElements
.elements

tree

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

26

14 38

1 33 50

7 35

Exercises | 527

44. The elements in a complete binary tree are to be stored in an array, as described
in the chapter. Each element is a nonnegative int value. Show the contents of
the array, given the tree illustrated below.

tree
.numElements
.elements

tree[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

60

53 3

49 146 2

1648 25 40

528 | Chapter 8: Binary Search Trees

45. Given the array pictured below, draw the binary tree that can be created from its
elements. The elements are arranged in the array as discussed in the chapter.

46. A binary tree is stored in an array called treeNodes, which is indexed from 0 to
99, as described in the chapter. The tree contains 85 elements. Mark each of the
following statements as True or False, and correct any false statements.

a. treeNodes[42] is a leaf node.

b. treeNodes[41] has only one child.

c. The right child of treeNodes[12] is treeNodes[25].

d. The subtree rooted at treeNodes[7] is a full binary tree with four levels.

e. The tree has seven levels that are full, and one additional level that contains
some elements.

47. Implement the Binary Search Tree ADT as a template class.

tree.numElements

tree.elements [0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

9

1

55

59

44

33

58

57

22

11

After studying this chapter, you should be able to

Describe a priority queue at the logical level and implement a priority
queue as a list

Describe the shape and order properties of a heap, and implement a heap in
a nonlinked tree representation in an array

Implement a priority queue as a heap

Compare the implementations of a priority queue using a heap, a linked list,
and a binary search tree

Define the following terms related to graphs:

Directed graph Complete graph

Undirected graph Weighted graph

Vertex Adjacency matrix

Edge Adjacency list

Path

Implement a graph using an adjacency matrix to represent the edges

Explain the difference between a depth-first and a breadth-first search, and imple-
ment these searching strategies using stacks and queues for auxiliary storage

Implement a shortest-path operation, using a priority queue to access the edge
with the minimum weight

Describe a set at the logical level and implement a set both explicitly and
implicitly

Priority Queues,
Heaps, Graphs,
and Sets

G
oals

530 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

We have examined several basic data types in depth, discussing their uses and opera-
tions, and investigating one or more implementations of each. As we have constructed
these programmer-defined data structures out of the built-in types provided by our
high-level language, we have noted variations that adapt them to the needs of different
applications. In Chapter 8, we saw how a tree structure, the binary search tree, facili-
tates searching data stored in a linked structure. In this chapter, we consider how other
branching structures are used to model a variety of applications.

We end the chapter by looking at the Set ADT, an abstract data type that models
the mathematical entity called a set.

9.1 ADT Priority Queue

A priority queue is an abstract data type with an interesting accessing protocol: Only
the highest-priority element can be accessed. “Highest priority” can mean different
things, depending on the application. Consider, for example, a small company with one
secretary. When the other employees leave work on the secretary’s desk, which jobs are
done first? The jobs are processed in order of the employee’s importance in the com-
pany; the secretary completes the president’s work before starting the vice-president’s
job, and does the marketing director’s work before staff programmers’ tasks. The priority
of each job relates to the level of the employee who initiated it.

In a telephone answering system, calls are answered in the order in which they are
received; that is, the highest-priority call is the one that has been waiting the longest.
Thus a FIFO queue can be considered a priority queue whose highest-priority element is
the one that has been queued the longest time.

Logical Level

As you would expect, the Priority Queue ADT has exactly the same operations as a FIFO
queue. The only difference relates to the postcondition of the Dequeue operation. Thus,
we do not need to use a CRC card and can go directly to the specification.

Priority Queue ADT Specification

Structure: The priority queue is arranged to support access
to the highest-priority item.

Operations:
Assumption: Before any call is made to a priority queue

operation, the queue has been declared and a
constructor has been applied.

9.1 ADT Priority Queue | 531

MakeEmpty
Function: Initializes the queue to an empty state.
Postcondition: Queue is empty.

Boolean IsEmpty
Function: Tests whether the queue is empty.
Postcondition: Function value = (queue is empty).

Boolean IsFull
Function: Tests whether the queue is full.
Postcondition: Function value = (queue is full).

Enqueue(ItemType newItem)
Function: Adds newItem to the queue.
Postconditions: If (the priority queue is full), exception FullPQ

is thrown;
else newItem is in the queue.

Dequeue(ItemType& item)
Function: Removes element with highest priority and

returns it in item.
Postconditions: If (the priority queue is empty), exception

EmptyPQ is thrown;
else highest priority element has been removed
from queue.
item is a copy of removed element.

Application Level

In discussing FIFO queue applications in Chapter 4, we said that the operating system of
a multiuser computer system may use job queues to save user requests in the order in
which they are made. Such requests might also be handled according to the importance
of the job request. That is, the head of the company might get higher priority than the
junior programmer. An interactive program might get higher priority than a job to print
out a report that isn’t needed until the next day. To handle these requests efficiently, the
operating system may use a priority queue.

Hospital emergency rooms see patients in priority queue order; the patient with the
most severe injuries sees the doctor first. Graduating seniors go to the head of the wait-
ing list (priority queue) when trying to register for classes that are full. See Figure 9.1.

Priority queues are also useful in sorting. Given a set of elements to sort, we can
enqueue the elements into a priority queue, and then dequeue them in sorted order
(from largest to smallest). We look more closely at how priority queues can be used in
sorting in Chapter 10.

532 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

Figure 9.1 Real-life priority queue

Implementation Level

There are many ways to implement a priority queue. In any implementation, we want to
access the element with the highest priority quickly and easily. Let’s briefly consider
some possible approaches:

Unsorted List Enqueuing an item would be very easy—simply insert it at the end of the
list. Dequeuing would require searching through the entire list to find the item with the
highest priority.

Array-Based Sorted List Dequeuing is very easy with this approach—simply return the
item with the highest priority, which would be in the length - 1 position (provided the
array is kept in increasing order of priority). Thus, dequeuing is an O(1) operation.
Enqueuing, however, would be more expensive. We have to find the place to enqueue
the item—O(log2N) if we use a binary search—and rearrange the elements of the list after
inserting the new item—O(N).

Linked Sorted List Assume that the linked list is kept sorted from largest to smallest.
Dequeuing simply requires removing and returning the first list element, an operation
that requires only a few steps. But enqueuing again is O(N) because we must search the
list one element at a time to find the insertion location.

Binary Search Tree For this approach, the Enqueue operation would be implemented
as a standard binary search tree Insert operation. We know that it requires O(log2N)

9.2 Heaps | 533

steps on average. Assuming we have access to the underlying data structure of the
tree, we can implement the Dequeue operation by returning the rightmost tree
element. We follow the right subtree down, maintaining a trailing pointer as we go,
until we reach a node with an empty right subtree. The trailing reference allows us to
“unlink” the node from the tree. We then return the node. This is also an O(log2N)
operation on average.

9.2 Heaps

Logical Level

Like a binary search tree, a heap is a binary
tree that satisfies two properties, one con-
cerning its shape and the other concerning
the order of its elements. The shape property
is simple: A heap must be a complete binary
tree. The order property says that, for every
node in the heap, the value stored in that node is greater than or equal to the value in
each of its children. (The heap as a data structure is not to be confused with an unre-
lated concept of the same name. Heap is also a synonym for the free store—the area of
memory available for dynamically allocated data.)

Figure 9.2 shows two heaps that contain the letters “A” through “J.” Notice that the
placement of the values differs in the two trees, but the shape remains the same: a com-
plete binary tree of ten elements. Note also that both heaps have the same root node. A
group of values can be stored in a binary tree in many ways and still satisfy the order
property of heaps. Because of the shape property, we know that the shape of all heaps
with a given number of elements is the same. Because of the order property, we know
that the root node always contains the largest value in the heap. This fact gives us a
hint as to how we might use this data structure. The special feature of heaps is that we
always know the location of the maximum value: It is in the root node.

When we refer to a “heap” in this section, we mean the structure defined above. It
might also be called a “maximum heap,” because the root node contains the maximum
value in the structure. We can also create a “minimum heap,” each of whose elements
contains a value that is less than or equal to the value of each of its children.

Suppose we want to remove the element with the largest value from a heap. The
largest element resides in the root node, so we can easily remove it, as illustrated in Fig-
ure 9.3(a) on page 535. Of course, its removal leaves a hole at the root position. Because
the heap’s tree must be complete, we decide to fill the hole with the bottom rightmost
element from the heap; now the structure satisfies the shape property (Figure 9.3b).
However, the replacement value came from the bottom of the tree, where the smaller
values are located; the tree no longer satisfies the order property of heaps.

This situation suggests one of the basic heap operations: Given a complete binary
tree whose elements satisfy the heap order property except in the root position, repair

Heap A complete binary tree, each of whose elements
contains a value that is greater than or equal to the value
of each of its children

534 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

Figure 9.2 Two heaps containing the letters “A” through “J”

heap

J

H I

D G F A

B C E

(a)

heap

J

I G

H F E B

C A D

(b)

the structure so that it again becomes a heap. This operation, called ReheapDown,
involves moving the element down from the root position until it ends up in a position
where the order property is satisfied (see Figure 9.3c). ReheapDown has the following
specification.

9.2 Heaps | 535

Figure 9.3 The ReheapDown operation

(a)

(b)

(c)

heap

Still a heap

Still a heap

Remove J

H I

D G F A

B C E

J

heap

H I

D G F A

B C E

E

heap

H F

D G E A

B C

I

536 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

ReheapDown (root, bottom)

Function: Restores the order property of heaps to the tree
between root and bottom.

Precondition: The order property of heaps may be violated
only by the root node of the tree.

Postcondition: The order property applies to all elements of
the heap.

We have tried to make this operation fairly general, by telling it where to find the root
and the bottom rightmost element of the heap. Letting the root be a parameter, instead of
just assuming that we start at the root of the whole heap, generalizes this routine, allow-
ing us to perform the reheap operation on any subtree as well as on the original heap.

Now suppose we want to add an element to the heap. Where do we put it? The
shape property tells us that the tree must be complete, so we put the new element in the
next bottom rightmost place in the tree, as illustrated in Figure 9.4(a). Now the shape
property is satisfied, but the order property may be violated. This situation illustrates the
need for another basic heap operation: Given a complete binary tree containing N ele-
ments, whose first N � 1 elements satisfy the order property of heaps, repair the struc-
ture so that it again becomes a heap. To fix this structure, we need to float the Nth
element up in the tree until it is in its correct place (see Figure 9.4b). This operation is
called ReheapUp. Here is the specification:

ReheapUp (root, bottom)

Function: Restores the order property to the heap between
root and bottom.

Precondition: The order property is satisfied from the root of
the heap through the next-to-last node; the last
(bottom) node may violate the order property.

Postcondition: The order property applies to all elements of the
heap from root through bottom.

Application Level

Heaps are unusual structures. Like arrays, they are used only as implementation struc-
tures for higher-level classes. The main application for a heap is as an implementation
structure for a priority queue.

Implementation Level

Although we have graphically depicted heaps as binary trees with nodes and links, it
would be very impractical to implement the heap operations using the usual linked-tree

9.2 Heaps | 537

Figure 9.4 The ReheapUp operation

heap

H I

D G F A

B KEC

J

heap

J I

D H F A

B GEC

K

(a) Add K

(b) ReheapUp

representation. The shape property of heaps tells us that the binary tree is complete, so
we know that it never has any holes in it. Thus we can easily store the tree in an array
with implicit links, as discussed in Chapter 8. Figure 9.5 shows how the values in a heap
would be stored in such a representation. If a heap with numElements elements is
implemented this way, the shape property says that the heap elements are stored in
numElements consecutive slots in the array, with the root element placed in the first
slot (index 0) and the last leaf node placed in the slot with index numElements - 1.
The order property says that, for every nonleaf node heap.elements[index],

heap.elements[index] >= heap.elements[index * 2 + 1]

and, if there is a right child,

heap.elements[index] >= heap.elements[index * 2 + 2]

538 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

Figure 9.5 Heap values in an array representation

heap

H I

D G F A

B EC

J

heap.elements

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

J

H

I

D

G

F

A

B

C

E

We use the following declarations to support this heap implementation:

template<class ItemType>
// Assumes ItemType is either a built-in simple type or a class
// with overloaded relational operators.
struct HeapType
{
void ReheapDown(int root, int bottom);
void ReheapUp(int root, int bottom);
ItemType* elements; // Array to be allocated dynamically
int numElements;

};

This declaration is somewhat different from anything we have used so far. We are mak-
ing HeapType be a struct with member functions. Why not make it into a class?
Because heaps are seldom used alone. They are acted upon by other structures rather
than being active. We define the functions that restore the heap property as part of the
struct, but we also allow access to the data members. Our algorithms are very general,
with the positions of both the root and the bottom elements passed as parameters. Addi-
tionally, we have chosen to include the data member numElements to record the num-
ber of elements on the heap, although our example algorithms do not use it.

We’ve specified the utility operations ReheapDown and ReheapUp to fix heaps that
are “broken” at one end or the other. Now let’s look at these operations in more detail.

When ReheapDown is first called, two possibilities arise. If the value in the root
node (heap.elements[0]) is greater than or equal to the values in its children, the
order property remains intact and we don’t have to do anything. Otherwise, we know
that the maximum value of the tree is in either the root node’s left child (heap.ele-
ments[1]) or the right child (heap.elements[2]). We must swap one of these values
with the smaller value in the root. Now the subtree rooted at the node that is swapped is
a heap—except (possibly) for its root node. We apply the same process again, asking

9.2 Heaps | 539

ReheapDown(heap, root, bottom)
if heap.elements[root] is not a leaf

Set maxChild to index of child with larger value
if heap.elements[root] < heap.elements[maxChild]

Swap(heap.elements[root], heap.elements[maxChild])
ReheapDown(heap, maxChild, bottom)

whether the value in this node is greater than or equal to the values in its children. We
continue to test smaller and smaller subtrees of the original heap, moving our original
root node down, until (1) the root of the current subtree is a leaf node or (2) the value in
the root of the current subtree is greater than or equal to the values in both its children.

The algorithm for this function is given here and illustrated with an example in Fig-
ure 9.6. At the start, root is the index of the node that (possibly) violates the heap order
property.

Figure 9.6 The ReheapDown operation

heap E

H I

D G F A

B C

(a)

heap I

H E

D G F A

B C

(b)

heap I

H F

D G E A

B C

(c)

Swapped

Swapped

540 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

This algorithm is recursive. In the general case, we swap the value in the root node with
its larger child, and then repeat the process. On the recursive call, we specify maxChild
as the root of the heap; this shrinks the size of the tree still to be processed, satisfying
the smaller-caller question. Two base cases exist: (1) if heap.elements[root] is a leaf,
and (2) if the heap order property is already intact. In either of these cases, we do noth-
ing. How can we tell if heap.elements[root] is a leaf? If the calculated position of
the left child is greater than bottom, then it is a leaf node. Look back at Figure 9.5. The
node with F is the first leaf node. The index of the node with F is 5, so its left child
would be in index position 11 if it exists. Because 11 is greater than 9 (bottom), F’s left
child is not in the heap, so F is a leaf node.

To determine maxChild, we first check whether the current root node has only a
single child. If so, it is a left child (because the tree is complete), and we set maxChild
to its index. Otherwise, we compare the values in the two child nodes and set maxChild
to the index of the node that has the larger value.

The following code gives the whole function. It uses a utility function, Swap, that
swaps the values of its two parameters. (Because this function is trivial, we do not show
its implementation here.)

template<class ItemType>
void HeapType<ItemType>::ReheapDown(int root, int bottom)
// Post: Heap property is restored.
{
int maxChild;
int rightChild;
int leftChild;

leftChild = root*2+1;
rightChild = root*2+2;
if (leftChild <= bottom)
{
if (leftChild == bottom)
maxChild = leftChild;

else
{
if (elements[leftChild] <= elements[rightChild])
maxChild = rightChild;

else
maxChild = leftChild;

}
if (elements[root] < elements[maxChild])
{
Swap(elements[root], elements[maxChild]);
ReheapDown(maxChild, bottom);

}
}

}

9.2 Heaps | 541

ReheapUp(heap, root, bottom)
if bottom > root

Set parent to index of parent of bottom node
if heap.elements[parent] < heap.elements[bottom]

Swap(heap.elements[parent], heap.elements[bottom])
ReheapUp(heap, root, parent)

The complementary operation, ReheapUp, takes a leaf node that violates the order
property of heaps and moves it up until its correct position is found. We compare the
value in the bottom node with the value in its parent node. If the parent’s value is
smaller, the order property is violated, so we swap the two nodes. Then we examine the
parent, repeating the process until (1) the current node is the root of the heap or (2) the
value in the current node is less than or equal to the value in its parent node. The algo-
rithm for this function is given below and illustrated in Figure 9.7.

Figure 9.7 The ReheapUp operation

heap J

H I

D G F A

B C KE B C GE

(a) Add K

heap J

H I

D K F A

(b)
Swapped

B C GE

heap J

K I

D H F A

(c)

Swapped

B C GE

heap

K

J I

D H F A

(d)

Swapped

542 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

This algorithm is also recursive. In the general case, we swap the (current) “bottom”
node with its parent and reinvoke the function. On the recursive call, we specify parent
as the bottom node; this shrinks the size of the tree still to be processed, so the smaller-
caller question can be answered affirmatively. Two base cases exist: (1) if we have
reached the root node or (2) if the heap order property is satisfied. In either case, we exit
the function without doing anything.

How do we find the parent node? This task is not an easy one in a binary tree
linked together with pointers from parent to child nodes. As we saw earlier, however, it
is very simple in our implicit link implementation:

parent = (index - 1) / 2;

We can now code the whole function:

template<class ItemType>
void HeapType<ItemType>::ReheapUp(int root, int bottom)
// Post: Heap property is restored.
{
int parent;

if (bottom > root)
{
parent = (bottom-1) / 2;
if (elements[parent] < elements[bottom])
{
Swap(elements[parent], elements[bottom]);
ReheapUp(root, parent);

}
}

}

Application Level Revisited

A heap is an excellent way to implement a priority queue. The following code shows
how we declare our PQType class. For brevity, we omit the copy constructor and leave
its coding as an exercise.

class FullPQ()
{};
class EmptyPQ()
{};
template<class ItemType>
class PQType
{
public:
PQType(int);

9.2 Heaps | 543

~PQType();
void MakeEmpty();
bool IsEmpty() const;
bool IsFull() const;
void Enqueue(ItemType newItem);
void Dequeue(ItemType& item);

private:
int length;
HeapType<ItemType> items;
int maxItems;

};

template<class ItemType>
PQType<ItemType>::PQType(int max)
{
maxItems = max;
items.elements = new ItemType[max];
length = 0;

}

template<class ItemType>
void PQType<ItemType>::MakeEmpty()
{
length = 0;

}

template<class ItemType>
PQType<ItemType>::~PQType()
{
delete [] items.elements;

}

We keep the number of elements in a priority queue in the data member length.
Using the heap implementation described earlier, the elements are stored in the first
length slots of the array items.elements. Because of the order property, we know
that the largest element is in the root—that is, in the first array slot (index 0).

Let’s look first at the Dequeue operation. The root element is returned to the caller.
After we remove the root, we are left with two subtrees, each of which satisfies the heap
property. Of course, we cannot leave a hole in the root position, as that would violate
the shape property. Because we have removed an element, length - 1 elements are
now left in the priority queue, stored in array slots 1 through length - 1. If we fill the
hole in the root position with the bottom element, array slots 0 through length - 2
contain the heap elements. The heap shape property is now intact, but the order prop-
erty may be violated. The resulting structure is not a heap, but it is almost a heap—all of
the nodes except the root node satisfy the order property. This problem is an easy one to

544 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

Dequeue
Set item to root element from queue
Move last leaf element into root position
Decrement length
items.ReheapDown(0, length - 1)

Enqueue
Increment length
Put newItem in next available position
items.ReheapUp(0, length - 1)

correct, as we already have a heap operation to perform exactly this task: ReheapDown.
Here is our algorithm for Dequeue:

The Enqueue operation involves adding an element in its “appropriate” place in the
heap. Where is this place? If the new element’s priority is larger than the current root
element’s priority, we know that the new element belongs in the root. But that’s not the
typical case; we want a more general solution. To start, we can put the new element at
the bottom of the heap, in the next available leaf position (review Figure 9.4). Now the
array contains elements in the first length + 1 slots, preserving the heap shape prop-
erty. The resulting structure is probably not a heap, but it’s almost a heap—the order
property is violated in the last leaf position. This problem is easy to solve using the
ReheapUp operation. Here is our algorithm for Enqueue:

template<class ItemType>
void PQType<ItemType>::Dequeue(ItemType& item)
// Post: element with highest priority has been removed
// from the queue; a copy is returned in item.
{
if (length == 0)
throw EmptyPQ();

else
{

9.2 Heaps | 545

item = items.elements[0];
items.elements[0] = items.elements[length-1];
length--;
items.ReheapDown(0, length-1);

}
}

template<class ItemType>
void PQType<ItemType>::Enqueue(ItemType newItem)
// Post: newItem is in the queue.
{
if (length == maxItems)
throw FullPQ();

else
{
length++;
items.elements[length-1] = newItem;
items.ReheapUp(0, length-1);

}
}
template<class ItemType>
bool PQType<ItemType>::IsFull() const
// Post: Returns true if the queue is full and false otherwise.
{
return length == maxItems;

}

template<class ItemType>
bool PQType<ItemType>::IsEmpty() const
// Post: Returns true if the queue is empty and false otherwise.
{
return length == 0;

}

Heaps versus Other Priority Queue Representations

How efficient is the heap implementation of a priority queue? The MakeEmpty,
IsEmpty, and IsFull operations are trivial, so we examine only the operations to add
and remove elements.

Enqueue puts the new element into the next free leaf node in the heap. This array
position can be accessed directly, so this part of the operation has O(1) complexity.
Next, we invoke ReheapUp to correct the order. This operation moves the new element
up the tree, level by level; because a complete tree is of minimum height, at most
log2N levels exist above the new element (N = length). Thus Enqueue is an O(log2N)
operation.

546 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

Dequeue removes the element in the root node and replaces it with the bottom
rightmost leaf node. Both of these elements in the array can be accessed directly, so this
part of the operation has O(1) complexity. Next, we invoke ReheapDown to correct the
order. This operation moves the root element down in the tree, level by level. At most
log2N levels exist below the root, so Dequeue is also an O(log2N) operation.

How does this implementation compare to the others mentioned earlier in this sec-
tion? If we implement the priority queue with a linked list, sorted from largest to small-
est priority, Dequeue merely removes the first node from the list—an O(1) operation.
Enqueue, however, may have to search all the elements in the list to find the appropri-
ate insertion place; it is an O(N) operation.

If we implement the priority queue using a binary search tree, the efficiency of the
operations depends on the shape of the tree. When the tree is bushy, both Dequeue and
Enqueue are O(log2N) operations. In the worst case, if the tree degenerates to a linked
list sorted from smallest to largest priority, both Dequeue and Enqueue have O(N) com-
plexity. Table 9.1 summarizes the efficiency of the various implementations.

Overall, the binary search tree looks good, if it is balanced. It can, however, become
skewed, which reduces the efficiency of the operations. The heap, on the other hand, is
always a tree of minimum height. It is not a good structure for accessing a randomly
selected element, but that is not one of the operations defined for priority queues. The
accessing protocol of a priority queue specifies that only the largest (or highest-priority)
element can be accessed. The linked list is a good choice for this operation (assuming
the list is sorted from largest to smallest), but we may have to search the entire list to
find the place to add a new element. For the operations specified for priority queues,
therefore, the heap represents an excellent choice.

9.3 Graphs

Logical Level

Binary trees provide a very useful way of representing relationships in which a hierar-
chy exists. That is, a node is pointed to by at most one other node (its parent), and each
node points to at most two other nodes (its children). If we remove the restriction that
each node can have at most two children, we have a general tree, as pictured here:

Table 9.1 Comparison of Priority Queue Implementations

Enqueue Dequeue

Heap O(log2N) O(log2N)

Linked list O(N) O(1)

Binary search tree

Balanced O(log2N) O(log2N)

Skewed O(N) O(N)

9.3 Graphs | 547

If we also remove the restriction that
each node may have only one parent node,
we have a data structure called a graph. A
graph is made up of a set of nodes called ver-
tices and a set of lines called edges (or arcs)
that connect the nodes.

The set of edges describes relationships
among the vertices. For instance, if the vertices
are the names of cities, the edges that link the
vertices could represent roads between pairs of
cities. Because the road that runs between
Houston and Austin also runs between Austin
and Houston, the edges in this graph have no direction. This structure is called an undi-
rected graph. However, if the edges that link the vertices represent flights from one city to
another, the direction of each edge is important. The existence of a flight (edge) from Hous-
ton to Austin does not assure the existence of a flight from Austin to Houston. A graph
whose edges are directed from one vertex to another is called a directed graph, or digraph.

From a programmer’s perspective, vertices represent whatever is the subject of our
study: people, houses, cities, courses, and so on. Mathematically, vertices are the unde-
fined concept upon which graph theory rests. In fact, a great deal of formal mathemat-
ics is associated with graphs. In other computing courses, you will probably analyze
graphs and prove theorems about them. This textbook introduces the graph as an
abstract data type, explains some basic terminology, discusses how you might imple-
ment a graph, and describes how algorithms that manipulate graphs make use of stacks,
queues, and priority queues.

Formally, a graph G is defined as follows:

G = (V, E)
where

V(G) is a finite, nonempty set of vertices

E(G) is a set of edges (written as pairs of vertices)

To specify the set of vertices, list them in set notation, within { } braces. The following
set defines the four vertices of the graph pictured in Figure 9.8(a):

V(Graph1) = {A, B, C, D}

Graph A data structure that consists of a set of nodes
and a set of edges that relate the nodes to one another

Vertex A node in a graph

Edge (arc) A pair of vertices representing a connection
between two nodes in a graph

Undirected graph A graph in which the edges have no
direction

Directed graph (digraph) A graph in which each edge is
directed from one vertex to another (or the same) vertex

548 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

Figure 9.8 Some examples of graphs

B

C

1

11 5 7

9

3

DA

(a) Graph1 is an undirected graph.

(b) Graph2 is a directed graph.

(c) Graph3 is a directed graph.

V(Graph1) = {A, B, C, D}
E(Graph1) = {(A, B), (A, D), (B, C), (B, D)}

V(Graph3) = {A, B, C, D, E, F, G, H, I, J}
E(Graph3) = {(G, D), (G, I), (D, B), (D, F), (I, H), (I, J), (B, A), (B, C), (F, E)}

V(Graph2) = {1, 3, 5, 7, 9, 11}
E(Graph2) = {(1, 3), (3, 1), (5, 7), (5, 9), (9, 11), (9, 9), (11, 1)}

A C E

G

D I

B F H J

9.3 Graphs | 549

The set of edges is specified by listing a sequence of edges. To denote each edge, write
the names of the two vertices it connects in parentheses, with a comma between them.
For instance, the vertices in Graph1 in Figure 9.8(a) are connected by the four edges
described below:

E(Graph1) = {(A, B), (A, D), (B, C), (B, D)}

Because Graph1 is an undirected graph, the order of the vertices in each edge is
unimportant. The set of edges in Graph1 can also be described as follows:

E(Graph1) = {(B, A), (D, A), (C, B), (D, B)}

If the graph is a digraph, the direction of the edge is indicated by which vertex is
listed first. For instance, in Figure 9.8(b), the edge (5, 7) represents a link from vertex 5
to vertex 7. However, Graph2 does not contain corresponding edge (7, 5). Note that in
pictures of digraphs, the arrows indicate the direction of the relationship.

If two vertices in a graph are connected
by an edge, they are said to be adjacent. In
Graph1 (Figure 9.8a), vertices A and B are
adjacent, but vertices A and C are not. If the
vertices are connected by a directed edge,
then the first vertex is said to be adjacent to
the second, and the second vertex is said to
be adjacent from the first. For example, in
Graph2 (in Figure 9.8b), vertex 5 is adjacent
to vertices 7 and 9, while vertex 1 is adjacent
from vertices 3 and 11.

Graph3 in Figure 9.8(c) may look famil-
iar; it is the tree we examined earlier in connection with the nonlinked representation of
a binary tree. A tree is a special case of a directed graph, in which each vertex may be
adjacent from only one other vertex (its parent node) and one vertex (the root) is not
adjacent from any other vertex.

A path from one vertex to another consists of a sequence of vertices that connect
them. For a path to exist, an uninterrupted sequence of edges must go from the first
vertex, through any number of vertices, to the second vertex. For example, in Graph2, a
path goes from vertex 5 to vertex 3, but not from vertex 3 to vertex 5. Note that in a
tree, such as Graph3 (Figure 9.8c), a unique path exists from the root to every other
node in the tree.

In a complete graph, every vertex is adjacent to every other vertex. Figure 9.9
shows two complete graphs. If there are N vertices, there will be N * (N � 1) edges in a
complete directed graph and N * (N � 1) / 2 edges in a complete undirected graph.

In a weighted graph, each edge carries a value. Weighted graphs can be used to rep-
resent applications in which the value of the connection between the vertices is impor-
tant, not just the existence of a connection. For instance, in the weighted graph pictured
in Figure 9.10, the vertices represent cities and the edges indicate the Air Busters Air-

Adjacent vertices Two vertices in a graph that are con-
nected by an edge
Path A sequence of vertices that connects two nodes in
a graph

Complete graph A graph in which every vertex is
directly connected to every other vertex

Weighted graph A graph in which each edge carries a
value

550 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

Figure 9.9 Two complete graphs

A B

(a) Complete directed graph. (b) Complete undirected graph.

C D ML

K N

J

Figure 9.10 A weighted graph

200

200
1300

1400

600

600

780
10

00
10

00

160 800
800

90
0

Austin

Dallas

Denver

Chicago
Houston

Atlanta

Washington

lines flights that connect the cities. The weights attached to the edges represent the air
distances between pairs of cities.

To see whether we can get from Denver to Washington, we look for a path between
the two cities. If the total travel distance is determined by the sum of the distances
between each pair of cities along the way, we can calculate the travel distance by
adding the weights attached to the edges that constitute the path between them. Note
that multiple paths may connect two vertices. Later in this chapter, we discuss a way to
find the shortest path between two vertices.

We have described a graph at the abstract level as a set of vertices and a set of
edges that connect some or all of the vertices to one another. What kind of operations
are defined on a graph? In this chapter, we specify and implement a small set of useful
graph operations. Many other operations on graphs can be defined; we have chosen
operations that are useful in the graph applications described later in the chapter. First,
however, we must define the operations necessary to build and process the graph.

9.3 Graphs | 551

We need to add vertices and edges, determine the weight on an edge, and get access
to vertices that are adjacent from a vertex. Let’s collect our observations about creating
a graph into a CRC card:

Here is the specification for the Graph ADT:

Graph ADT Specification

Structure:
The graph consists of a set of vertices and a set of weighted
edges that connect some or all of the vertices to one another.

Operations:
Assumption: Before any call is made to a graph operation,

the graph has been declared and a constructor
has been applied.

MakeEmpty
Function: Initializes the graph to an empty state.
Postcondition: Graph is empty.

Boolean IsEmpty
Function: Tests whether the graph is empty.
Postcondition: Function value = (graph is empty).

GraphType

Responsibilities Collaborations

Initialize

Add edge to graph (vertex, vertex, weight)

Return value weight (vertex, vertex)

Get a queue of two vertices (vertex, queue)

Class Name: Superclass: Subclasses:

IsFull returns Boolean

IsEmpty returns Boolean

Add vertex to graph (vertex)

VertexType, QueType

VertexType

VertexType

552 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

Boolean IsFull
Function: Tests whether the graph is full.
Postcondition: Function value = (graph is full).

AddVertex(VertexType vertex)
Function: Adds vertex to the graph.
Precondition: Graph is not full.
Postcondition: vertex is in V(graph).

AddEdge(VertexType fromVertex, VertexType toVertex,
EdgeValueType weight)
Function: Adds an edge with the specified weight from

fromVertex to toVertex.
Precondition: fromVertex and toVertex are in V(graph).
Postcondition: (fromVertex, toVertex) is in E(graph) with the

specified weight.

EdgeValueType WeightIs(VertexType fromVertex,
VertexType toVertex)
Function: Determines the weight of the edge from

fromVertex to toVertex.
Precondition: fromVertex and toVertex are in V(graph).
Postconditions: Function value = weight of edge from

fromVertex to toVertex, if edge exists. If edge
does not exist, function value = special “null-
edge” value.

GetToVertices(VertexType vertex, QueType& vertexQ)
Function: Returns a queue of the vertices that are adja-

cent from vertex.
Precondition: vertex is in V(graph).
Postcondition: vertexQ contains the names of all vertices that

are adjacent from vertex.

Application Level

Our Graph ADT specification includes only the most basic operations. It provides no
traversal operations. As you might imagine, we can traverse a graph in many differ-
ent orders. As a result, we consider traversal to be a graph application rather than an
innate operation. The basic operations given in our specification allow us to imple-
ment different traversals independently of how the graph itself is implemented.

9.3 Graphs | 553

DepthFirstSearch
Set found to false
stack.Push(startVertex)
do

stack.Pop(vertex)
if vertex = endVertex

Write final vertex
Set found to true

else
Write this vertex
Push all adjacent vertices onto stack

while !stack.IsEmpty() AND !found
if (!found)

Write “Path does not exist”

In Chapter 8, we discussed the postorder tree traversal, which goes to the deepest
level of the tree and works up. This strategy of going down a branch to its deepest point
and moving up is called a depth-first strategy. Another systematic way to visit each
vertex in a tree is to visit each vertex on Level 0 (the root), then each vertex on Level 1,
then each vertex on Level 2, and so on. Visiting each vertex by level in this way is
called a breadth-first strategy. With graphs, both depth-first and breadth-first strategies
are useful. We outline both algorithms within the context of the airline example.

Depth-First Searching One question we can answer with the graph in Figure 9.10 is,
“Can I get from city X to city Y on my favorite airline?” This is equivalent to asking,
“Does a path exist in the graph from vertex X to vertex Y?” Using a depth-first strategy,
let’s develop an algorithm that finds a path from startVertex to endVertex.

We need a systematic way to keep track of the cities as we investigate them. With a
depth-first search, we examine the first vertex that is adjacent from startVertex; if it
is endVertex, the search ends. Otherwise, we examine all vertices that can be reached
in one step (are adjacent from) this vertex. Meanwhile, we need to store the other ver-
tices that are adjacent from startVertex. If a path does not exist from the first vertex,
we come back and try the second vertex, third vertex, and so on. Because we want to
travel as far as we can down one path, backtracking if we do not find the endVertex, a
stack is a good structure for storing the vertices.

Here is the algorithm we use:

Let’s apply this algorithm to the airline-route graph depicted in Figure 9.10. We
want to fly from Austin to Washington. We initialize our search by pushing our starting

554 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

Figure 9.11 Using a stack to store the routes

(a) (b) (c) (d)

Austin

Stack Dallas

Houston

Stack

Dallas

Atlanta

Stack

Dallas

Washington

Stack

Figure 9.12 The depth-first search

Start
here

Dallas

Austin

Chicago

Denver

Houston

Atlanta

Washington

city onto the stack (Figure 9.11a). At the beginning of the loop, we pop the current city,
Austin, from the stack. The places we can reach directly from Austin are Dallas and
Houston; we push both these vertices onto the stack (Figure 9.11b). At the beginning of
the second iteration, we pop the top vertex from the stack—Houston. Houston is not our
destination, so we resume our search from there. There is only one flight out of Hous-
ton, to Atlanta; we push Atlanta onto the stack (Figure 9.11c). Again we pop the top
vertex from the stack. Atlanta is not our destination, so we continue searching from
there. Atlanta has flights to two cities: Houston and Washington.

But we just came from Houston! We don’t want to fly back to cities that we have
already visited; this could cause an infinite loop. Our algorithm must take care of
cycling. That is, we must mark a city as having been visited so that it is not investigated
a second time. Let’s assume that we have marked the cities that have already been tried,
and continue our example. Houston has already been visited, so we ignore it. The sec-
ond adjacent vertex, Washington, has not been visited so we push it onto the stack (Fig-
ure 9.11d). Again we pop the top vertex from the stack. Washington is our destination,
so the search is complete. The path from Austin to Washington, using a depth-first
search, is illustrated in Figure 9.12.

This search is called a depth-first search because we go to the deepest branch, exam-
ining all paths beginning at Houston before we come back to search from Dallas. When

9.3 Graphs | 555

you have to backtrack, you take the branch closest to where you dead-ended. That is, you
go as far as you can down one path before you take alternative choices at earlier branches.

Before we look at the source code of the depth-first search algorithm, let’s talk a lit-
tle more about “marking” vertices on the graph. Before we begin the search, we must
clear any marks in the vertices to indicate they are not yet visited. Let’s call this func-
tion ClearMarks. As we visit each vertex during the search, we mark it. Let’s call this
function MarkVertex. Before we process each vertex, we can ask, “Have we visited this
vertex before?” The answer to this question is returned by the function IsMarked. If we
have already visited this vertex, we ignore it and go on. We must add these three func-
tions to the specifications of the Graph ADT.

Additions to Graph ADT

ClearMarks
Function: Sets marks for all vertices to false.
Postcondition: All marks have been set to false.

MarkVertex(VertexType vertex)
Function: Sets mark for vertex to true.
Precondition: vertex is in V(graph).
Postcondition: IsMarked(vertex) is true.

Boolean IsMarked(VertexType vertex)
Function: Determines if vertex has been marked.
Precondition: vertex is in V(graph)
Postcondition: Function value = (vertex is marked true)

The function DepthFirstSearch receives a graph object, a starting vertex, and a
target vertex. It uses the depth-first strategy to determine whether a path connects the
starting city to the ending city, displaying the names of all cities visited in the search.
Note that nothing in the function depends on the implementation of the graph. The
function is implemented as a graph application; it uses the Graph ADT operations
(including the mark operations) without knowing how the graph is represented.

In the following function, we assume that the header files for StackType and Que-
Type have been included. We also assume that VertexType is a type for which the
“==” and the “<<” operators are defined.

template<class VertexType>
void DepthFirstSearch(GraphType<VertexType> graph,

VertexType startVertex, VertexType endVertex)
// Assumes VertexType is a type for which the "==" and "<<"

556 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

// operators are defined.
{
using namespace std;
StackType<VertexType> stack;
QueType<VertexType> vertexQ;

bool found = false;
VertexType vertex;
VertexType item;

graph.ClearMarks();
stack.Push(startVertex);
do
{
stack.Pop(vertex);
if (vertex == endVertex)
{
cout << vertex;
found = true;

}
else
{
if (!graph.IsMarked(vertex))
{
graph.MarkVertex(vertex);
cout << vertex;
graph.GetToVertices(vertex, vertexQ);

while (!vertexQ.IsEmpty())
{
vertexQ.Dequeue(item);
if (!graph.IsMarked(item))
stack.Push(item);

}
}

}
} while (!stack.IsEmpty() && !found);
if (!found)
cout << "Path not found." << endl;

}

Breadth-First Searching A breadth-first search looks at all possible paths at the same
depth before it goes to a deeper level. In our flight example, a breadth-first search
checks all possible one-stop connections before checking any two-stop connections. For
most travelers, this is the preferred approach for booking flights.

9.3 Graphs | 557

Figure 9.13 Using a queue to store the routes

DallasHouston

HoustonChicagoDenver

ChicagoDenverAtlanta

DenverAtlantaDenver

AtlantaDenverAtlanta

Dallas

Houston

Chicago

Denver

TO
RUNWAYQueue

(Rear of Queue) (Front of Queue)

Dallas
Dequeued

Houston
Dequeued

Chicago
Dequeued

Denver
Dequeued

(a)

(b)

(c)

(d)

(e)

When we come to a dead end in a depth-first search, we back up as little as possi-
ble. We try another route from a recent vertex—the route on top of our stack. In a
breadth-first search, we want to back up as far as possible to find a route originating
from the earliest vertices. The stack is not an appropriate structure for finding an early
route because it keeps track of things in the order opposite of their occurrence—the lat-
est route is on top. To keep track of things in the order in which they happened, we use
a FIFO queue. The route at the front of the queue is a route from an earlier vertex; the
route at the back of the queue is from a later vertex.

To modify the search to use a breadth-first strategy, we change all calls to stack
operations to the analogous FIFO queue operations. Searching for a path from Austin to
Washington, we first enqueue all cities that can be reached directly from Austin: Dallas
and Houston (Figure 9.13a). Then we dequeue the front queue element. Dallas is not the
destination we seek, so we enqueue all adjacent cities that have not yet been visited:
Chicago and Denver (Figure 9.13b). (Austin has been visited already, so it is not
enqueued.) Again we dequeue the front element from the queue. This element is the
other “one-stop” city, Houston. Houston is not the desired destination, so we continue
the search. Only one flight goes out of Houston, to Atlanta. Because we haven’t visited
Atlanta before, it is enqueued (Figure 9.13c).

558 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

Now we know that we cannot reach Washington with one stop, so we start examin-
ing the two-stop connections. We dequeue Chicago; this is not our destination, so we put
its adjacent city, Denver, into the queue (Figure 9.13d). Now an interesting situation
arises: Denver is in the queue twice. Should we mark a city as having been visited when
we put it in the queue or after it has been dequeued, when we are examining its outgoing
flights? If we mark it only after it is dequeued, the queue may include multiple copies of
the same vertex (so we need to check whether a city is marked after it is dequeued).

An alternative approach is to mark the city as having been visited before it is put
into the queue. Which technique is better? It depends on the processing. You may want
to know whether alternative routes exist, in which case you would want to put a city
into the queue more than once.

Back to our example. We have put Denver into the queue in one step and removed
its previous entry at the next step. Denver is not our destination, so we put its adjacent
cities that we haven’t already marked (only Atlanta) into the queue (Figure 9.13e). This
processing continues until Washington is put into the queue (from Atlanta) and finally
dequeued. We have found the desired city, and the search is complete. This search is
illustrated in Figure 9.14.

The source code for the BreadthFirstSearch function is identical to that for the
depth-first search, except for the replacement of the stack with a FIFO queue.

template<class VertexType>
void BreadthFirstSearch(GraphType<VertexType> graph,

VertexType startVertex, VertexType endVertex)
// Assumption: VertexType is a type for which the "==" and
// "<<" operators are defined.
{
using namespace std;
QueType<VertexType> queue;
QueType<VertexType> vertexQ;

Figure 9.14 The breadth-first search

Start
here Austin

Dallas

Washington

Denver

Chicago

Atlanta

Houston

9.3 Graphs | 559

bool found = false;
VertexType vertex;
VertexType item;

graph.ClearMarks();
queue.Enqueue(startVertex);

do
{
queue.Dequeue(vertex);

if (vertex == endVertex)
{
cout << vertex;
found = true;

}
else
{
if (!graph.IsMarked(vertex))
{
graph.MarkVertex(vertex);
cout << vertex;
graph.GetToVertices(vertex, vertexQ);

while (!vertexQ.IsEmpty())
{
vertexQ.Dequeue(item);
if (!graph.IsMarked(item))
queue.Enqueue(item);

}
}

}
} while (!queue.IsEmpty() && !found);
if (!found)
cout << "Path not found." << endl;

}

The Single-Source Shortest-Path Problem We know from the two search operations
just discussed that multiple paths may connect one vertex to another. Suppose that we
want to find the shortest path from Austin to each of the other cities that Air Busters
serves. By “shortest path,” we mean the path whose edge values (weights), when added
together, have the smallest sum. Consider the following two paths from Austin to
Washington:

560 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

Clearly, the first path is preferable, unless you want to collect frequent-flyer miles.
Let’s develop an algorithm that displays the shortest path from a designated starting

city to every other city in the graph—this time we will not search for a path between a
starting city and an ending city. As in the two graph searches described earlier, we need
an auxiliary structure for storing cities that we process later. By retrieving the city that
was most recently put into the structure, the depth-first search tries to keep going “for-
ward.” It tries a one-flight solution, then a two-flight solution, then a three-flight solu-
tion, and so on. It backtracks to a fewer-flight solution only when it reaches a dead end.
In contrast, by retrieving the city that has been in the structure for the longest time, the
breadth-first search tries all one-flight solutions, then all two-flight solutions, and so
on. The breadth-first search finds a path with a minimum number of flights.

But the minimum number of flights does not necessarily mean the minimum total
distance. Unlike the depth-first and breadth-first searches, the shortest-path traversal
must use the number of miles (edge weights) between cities. We want to retrieve the
vertex that is closest to the current vertex—that is, the vertex connected with the mini-
mum edge weight. If we consider minimum distance to be the highest priority, then we
know of a perfect structure—the priority queue. Our algorithm can use a priority queue
whose elements are flights (edges) with the distance from the starting city as the prior-
ity. That is, the items on the priority queue are struct variables with three data members:
fromVertex, toVertex, and distance.

Austin

Houston

Atlanta

Washington

160 miles

800 miles

600 miles

Austin

Dallas

Denver

Atlanta

Washington

Total Miles 2980 miles

200 miles

780 miles

1400 miles

600 miles

Total miles 1560 miles

ShortestPath
graph.ClearMarks()
Set item.fromVertex to startVertex
Set item.toVertex to startVertex
Set item.distance to 0
pq.Enqueue(item)

(continued)

9.3 Graphs | 561

The algorithm for the shortest-path traversal is similar to those we used for the
depth-first and breadth-first searches, albeit with two major differences:

1. We use a priority queue rather than a FIFO queue or a stack.

2. We stop only when there are no more cities to process; we have no destination.

Here is the source code for the shortest-path algorithm. This code assumes that the
header files for QueType and PQType have been included. Notice that ItemType (the
type of the items to be placed into the priority queue) must overload the relational oper-
ators such that a smaller distance indicates a higher priority. As a result, the priority
queue is implemented with a minimum heap. That is, for every item in the heap,
item.distance is less than or equal to the distance member of each of its children.

template<class VertexType>
struct ItemType
{
bool operator<(ItemType otherItem);
// "<" means shorter distance.
bool operator==(ItemType otherItem);
bool operator<=(ItemType otherItem);
VertexType fromVertex;
VertexType toVertex;
int distance;

};

do
pq.Dequeue(item)
if item.toVertex is not marked

Mark item.toVertex
Write item.fromVertex, item.toVertex, item.distance
Set item.fromVertex to item.toVertex
Set minDistance to item.distance
Get queue vertexQ of vertices adjacent from item.fromVertex
while more vertices in vertexQ

Get next vertex from vertexQ
if vertex not marked

Set item.toVertex to vertex
Set item.distance to minDistance + graph.WeightIs(fromVertex, vertex)
pq.Enqueue(item)

while !pq.IsEmpty()

562 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

template<class VertexType>
void ShortestPath(GraphType<VertexType> graph,

VertexType startVertex)
{
using namespace std;
ItemType item;
int minDistance;
PQType<VertexType> pq(10); // Assume at most 10 vertices.
QueType<VertexType> vertexQ;
VertexType vertex;

graph.ClearMarks();
item.fromVertex = startVertex;
item.toVertex = startVertex;
item.distance = 0;
pq.Enqueue(item);
cout << "Last Vertex Destination Distance" << endl;
cout << "-----------------------------------" << endl;

do
{
pq.Dequeue(item);
if (!graph.IsMarked(item.toVertex))
{
graph.MarkVertex(item.toVertex);
cout << item.fromVertex;
cout << " ";
cout << item.toVertex;
cout << " " << item.distance << endl;
item.fromVertex = item.toVertex;
minDistance = item.distance;
graph.GetToVertices(item.fromVertex, vertexQ);

while (!vertexQ.IsEmpty())
{
vertexQ.Dequeue(vertex);
if (!graph.IsMarked(vertex))
{
item.toVertex = vertex;
item.distance = minDistance +

graph.WeightIs(item.fromVertex, vertex);
pq.Enqueue(item);

}
}

}
} while (!pq.IsEmpty());

}

9.3 Graphs | 563

Last Vertex Destination Distance

Washington Washington 0

Washington Atlanta 600

Washington Dallas 1300

Atlanta Houston 1400

Dallas Austin 1500

Dallas Denver 2080

Dallas Chicago 2200

The output from this function is a table of city pairs (edges), showing the total dis-
tance from startVertex to each of the other vertices in the graph, as well as the last
vertex visited before the destination. If graph contains the information shown in Figure
9.10, the function call

ShortestPath(graph, startVertex);

where startVertex corresponds to Washington, would print a table like this:

The shortest-path distance from Washington to each destination appears in the second
and third columns. For example, our flights from Washington to Chicago total 2,200
miles. The first column shows which city immediately preceded the destination in the
traversal.

Let’s figure out the shortest path from Washington to Chicago. We see from the first
column that the next-to-last vertex in the path is Dallas. Now we look up Dallas in the
Destination (second) column: The vertex before Dallas is Washington. The whole path is
Washington–Dallas–Chicago. (We might want to consider another airline for a more
direct route!)

Implementation Level

Array-Based Implementation A simple way to represent V(graph), the vertices in the
graph, is with an array where the elements are of the type of the vertices (VertexType).
For example, if the vertices represent cities,
VertexType would be some representation of
strings. A simple way to represent E(graph),
the edges in a graph, is with an adjacency
matrix, a two-dimensional array of edge
values (weights). Thus a graph consists of a
data member numVertices, a one-
dimensional array vertices, and a two-dimensional array edges. Figure 9.15 depicts
the implementation of the graph of Air Busters flights between seven cities. For

Adjacency matrix For a graph with N nodes, an N by N
table that shows the existence (and weights) of all edges
in the graph

564 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

Figure 9.15 Graph of flight connections between cities

graph
.num Vertices 7
.vertices .edges

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[0] [1] [2] [3] [4]

(Array positions marked '•' are undefined)

[5] [6] [7] [8] [9]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

0

0

0

0

1400

800

600

0

0

0

200

0

0

0

0

0

0

900

1000

0

0

0

200

0

0

0

0

1300

0

0

1000

780

0

0

0

800

160

0

0

0

0

0

600

0

0

0

0

0

0

[7]

[8]

[9]

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

"Atlanta "

"Austin "

"Chicago "

"Dallas "

"Denver "

"Houston "

"Washington"

simplicity, we omit additional Boolean data needed to mark vertices as “visited” during
a traversal. While the city names in Figure 9.15 are in alphabetical order, there is no
requirement that the elements in this array be sorted.

At any time, within this representation of a graph,

• numVertices is the number of vertices in the graph.
• V(graph) is contained in vertices[0] . . vertices[numVertices - 1].
• E(graph) is contained in the square array edges[0][0] . . edges[numVertices

- 1][numVertices - 1].

The names of the cities are contained in graph.vertices. The weight of each edge
in graph.edges represents the air distance between two cities that are connected by a
flight. For example, the value in graph.edges[1][3] tells us that a direct flight goes
between Austin and Dallas, and that the air distance is 200 miles. A NULL_EDGE value
(0) in graph.edges[1][6] tells us that the airline has no direct flights between Austin
and Washington. Because this is a weighted graph with the weights consisting of air
distances, we use the int type for EdgeValueType. If this were not a weighted graph,
EdgeValueType would be bool, and each position in the adjacency matrix would be
true if an edge exists between the pair of vertices and false if no edge exists.

9.3 Graphs | 565

Here is the definition of the class GraphType. For simplicity, we assume that
EdgeValueType is int.

template<class VertexType>
// Assumption: VertexType is a type for which the "=",
// "==", and "<<" operators are defined.
class GraphType
{
public:
GraphType(); // Default is 50 vertices
GraphType(int maxV); // maxV <= 50
~GraphType();
void MakeEmpty();
bool IsEmpty() const;
bool IsFull() const;
void AddVertex(VertexType);
void AddEdge(VertexType, VertexType, int);
int WeightIs(VertexType, VertexType);
void GetToVertices(VertexType, QueType<VertexType>&);
void ClearMarks();
void MarkVertex(VertexType);
bool IsMarked(VertexType);

private:
int numVertices;
int maxVertices;
VertexType* vertices;
int edges[50][50];
bool* marks; // marks[i] is the mark for vertices[i].

};

The class constructors are usually the easiest operations to write, but not for
GraphType. We have to allocate the space for vertices and marks (the Boolean array
indicating whether a vertex has been marked). The default constructor sets up space for
50 vertices and marks. The parameterized constructor lets the user specify the maxi-
mum number of vertices. Why don’t we put edges in dynamic storage? We could, but
allocating storage for a two-dimensional array is rather complex, and we do not wish to
divert our attention from the main issue: the Graph ADT.

template<class VertexType>
GraphType<VertexType>::GraphType()
// Post: Arrays of size 50 are dynamically allocated for
// marks and vertices. numVertices is set to 0;
// maxVertices is set to 50.
{

566 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

numVertices = 0;
maxVertices = 50;
vertices = new VertexType[50];
marks = new bool[50];

}

template<class VertexType>
GraphType<VertexType>::GraphType(int maxV)
// Post: Arrays of size maxV are dynamically allocated for
// marks and vertices.
// numVertices is set to 0; maxVertices is set to maxV.
{
numVertices = 0;
maxVertices = maxV;
vertices = new VertexType[maxV];
marks = new bool[maxV];

}

template<class VertexType>
GraphType<VertexType>::~GraphType()
// Post: Arrays for vertices and marks have been deallocated.
{
delete [] vertices;
delete [] marks;

}

The AddVertex operation puts vertex into the next free space in the array of ver-
tices. Because the new vertex has no edges defined yet, we also initialize the appropriate
row and column of edges to contain NULL_EDGE (0 in this case).

const int NULL_EDGE = 0;

template<class VertexType>
void GraphType<VertexType>::AddVertex(VertexType vertex)
// Post: vertex has been stored in vertices.
// Corresponding row and column of edges have been set
// to NULL_EDGE.
// numVertices has been incremented.
{
vertices[numVertices] = vertex;

for (int index = 0; index < numVertices; index++)
{
edges[numVertices][index] = NULL_EDGE;

9.3 Graphs | 567

AddEdge
Set fromIndex to index of fromVertex in V(graph)
Set toIndex to index of toVertex in V(graph)
Set edges[fromIndex][toIndex] to weight

edges[index][numVertices] = NULL_EDGE;
}
numVertices++;

}

To add an edge to the graph, we must first locate the fromVertex and toVertex
that define the edge we want to add. These parameters to AddEdge are of type Vertex-
Type. To index the correct matrix slot, we need the index in the vertices array that
corresponds to each vertex. Once we know the indexes, it is a simple matter to set the
weight of the edge in the matrix. Here is the algorithm:

To find the index of each vertex, let’s write a search function that receives the name
of a vertex and returns its location (index) in vertices. Because the precondition of
AddEdge states that fromVertex and toVertex are in V(graph), the search function is
very simple. We code it as the helper function IndexIs:

template<class VertexType>
int IndexIs(VertexType* vertices, VertexType vertex)
// Post: Returns the index of vertex in vertices.
{
int index = 0;

while (!(vertex == vertices[index]))
index++;

return index;
}

template<class VertexType>
void GraphType<VertexType>::AddEdge(VertexType fromVertex,

VertexType toVertex, int weight)
// Post: Edge (fromVertex, toVertex) is stored in edges.
{
int row;
int col;

568 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

row = IndexIs(vertices, fromVertex);
col = IndexIs(vertices, toVertex);
edges[row][col] = weight;

}

The WeightIs operation is the mirror image of AddEdge:

template<class VertexType>
int GraphType<VertexType>::WeightIs

(VertexType fromVertex, VertexType toVertex)
// Post: Returns the weight associated with the edge
// (fromVertex, toVertex).
{
int row;
int col;

row = IndexIs(vertices, fromVertex);
col = IndexIs(vertices, toVertex);
return edges[row][col];

}

The last graph operation that we specified is GetToVertices. This function takes a
vertex as a parameter, and returns a queue of vertices that are adjacent from the desig-
nated vertex. That is, it returns a queue of all vertices that you can reach from this ver-
tex in one step. Using an adjacency matrix to represent the edges, it is a simple matter
to determine the nodes to which the vertex is adjacent. We merely loop through the
appropriate row in edges; whenever a value is found that is not NULL_EDGE, we add
another vertex to the queue.

template<class VertexType>
void GraphType<VertexType>::GetToVertices(VertexType vertex,

QueType<VertexType>& adjVertices)
// Post: Returns a queue of vertices adjacent from vertex.
{
int fromIndex;
int toIndex;

fromIndex = IndexIs(vertices, vertex);
for (toIndex = 0; toIndex < numVertices; toIndex++)
if (edges[fromIndex][toIndex] != NULL_EDGE)
adjVertices.Enqueue(vertices[toIndex]);

}

We leave the completion and testing of this implementation as a programming
assignment.

9.3 Graphs | 569

graph

edge nodes

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

"Atlanta "

"Austin "

"Chicago "

"Dallas "

"Denver "

"Houston "

"Washington"

8005

2003

10004

2001

14000

8000

6000

6006

1605

9002 7804

10002

13003

Index of
adjacent vertex

Weight
Pointer
to next

edge node

(a)

Figure 9.16 Adjacency list representation of graphs

Linked Implementation The advantages to representing the edges in a graph with an
adjacency matrix relate to its speed and simplicity. Given the indexes of two vertices,
determining the existence (or the weight) of an edge between them is an O(1) operation.
The problem with adjacency matrices is that their use of space is O(N2), where N is the
maximum number of vertices in the graph. If the maximum number of vertices is large,
adjacency matrices may waste a lot of space.

In the past, we have tried to save space by allocating memory as we need it at run
time, using linked structures. We can use a
similar approach when implementing graphs.
Adjacency lists are linked lists, one list per
vertex, that identify the vertices to which
each vertex is connected. You can implement
adjacency lists in several ways. Figure 9.16
shows two adjacency list representations of
the graph in Figure 9.10.

In Figure 9.16(a), the vertices are stored in an array. Each component of this array
contains a pointer to a linked list of edge nodes. Each node in these linked lists contains
an index number, a weight, and a pointer to the next node in the adjacency list. Let’s

Adjacency list A linked list that identifies all vertices to
which a particular vertex is connected; each vertex has its
own adjacency list

570 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

graph edge nodes

800

200

1000

200

1400

800

600

Pointer to
Houston

node

Pointer to
Dallas
node

Pointer to
Denver
node

Pointer to
Austin
node

Pointer to
Atlanta
node

Pointer to
Atlanta
node

Pointer to
Atlanta
node

Pointer to
vertex node Weight

Pointer
to next

edge node

vertices
(header nodes)

Vertex
info

Pointer
to next

vertex node

Pointer
to first

edge node

"Austin "

"Chicago "

"Dallas "

"Atlanta "

"Denver "

"Houston "

"Washington"

600

160

900

1000

1300

Pointer to
Wash.
node

Pointer to
Houston

node

Pointer to
Chicago

node

Pointer to
Chicago

node

Pointer to
Dallas
node

780
Pointer to

Denver
node

(b)

Figure 9.16 (continued)

look at the adjacency list for Denver. The first node in the list indicates that a 1,400-
mile flight goes from Denver to Atlanta (the vertex whose index is 0) and a 1,000-mile
flight goes from Denver to Chicago (the vertex whose index is 2).

The implementation illustrated in Figure 9.16(b) does not use any arrays. Instead,
the list of vertices is implemented as a linked list. Now each node in the adjacency lists
contains a pointer to the vertex information rather than the index of the vertex.
Because so many of these pointers appear in Figure 9.16(b), we have used text to

9.4 Sets | 571

describe the vertex that each pointer designates rather than draw them as arrows.
We leave the implementation of the GraphType member functions using these

implementations as Programming Assignments 3 and 4, Chapter 9.

9.4 Sets

Graphs and sets differ from the other ADTs that we have studied in that they are mod-
eled on mathematical objects. The operations that are defined on them come from math-
ematics. In fact, we use the concept of a set to define a graph: A graph is a set of nodes
and a set of edges that relate nodes to one another. In this definition, we rely on our
intuitive definition of a set as a collection. In this section, however, we will view a set
as an abstract data type.

Logical Level

In mathematics, a set is a collection or group
of items, each of which can itself be a set or
an item. For our ADT, we define a set as an
unordered collection of distinct values, cho-
sen from the possible values of an atomic
data type or a composite data type called the
component or base type. All of the items in
the set are of the same data type.

Three special types of sets are important:

• The subset, a set contained within
another set

• The universal set, a set that contains
all the values of the base type

• The empty set, which contains no values

We define two transformers for the Set
ADT: Store, which puts an item into a set, and
Delete, which removes an item from the set.
Three mathematical operations are defined on
sets: union, intersection, and difference. Union
takes two sets and creates a third set that con-
tains all the elements in either of the input
sets. Intersection takes two sets and creates a
third set that contains only the elements in
both sets. Difference takes two sets and creates a third set that contains all the items in
the first set that are not in the second set. In set terminology, the number of items in the
set is called the set’s cardinality.

Set An unordered collection of distinct values (items or
components), chosen from the possible values of a single
data type, called the component (base) type

Component (base) type The data type of the compo-
nents or items in a set

Subset A set X is a subset of set Y if each item of X is an
element of Y; if at least one element of Y is not in X, then
X is a proper subset of Y

Universal set The set containing all the values of the
component type

Empty set A set with no members

Union A binary set operation that returns a set made up
of all the items that are in either of the input sets

Intersection A binary set operation that returns a set
made up of all the items that are in both of the input sets

Difference A binary set operation that returns a set
made up of all the items that are in the first set but not
the second set

Cardinality The number of items in a set

572 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

We need observer operations to test whether the set is empty or full, to return the
cardinality, and to make the set empty. Here is the CRC card summarizing our opera-
tions that mirror the mathematical definitions:

Here is the specification for these responsibilities:

Set ADT Specification

Structure: Items are inserted and deleted; there is no
inherent order in the items.

Operations:
Assumptions: Before any call is made to a set operation, the

set has been declared and a constructor has
been applied. The “==” and “<<” operators
apply to values of ItemType.

MakeEmpty
Function: Initializes the set to an empty state.
Postcondition: Set is empty.

SetType

Responsibilities Collaborations

MakeEmpty

Store (item)

Delete (item)

Union (A, B) returns SetType

Difference (A, B) returns SetType

Print set members on outFile

Intersection (A, B) returns SetType

Class Name: Superclass: Subclasses:

IsFull returns Boolean

CardinalityIs returns integer

IsEmpty returns Boolean

ItemType

ItemType

ItemType

ItemType

ItemType

ItemType

9.4 Sets | 573

Boolean IsEmpty
Function: Tests whether the set is empty.
Postcondition: Function value = (set is empty).

Boolean IsFull
Function: Tests whether the set is full.
Postcondition: Function value = (set is full).

int CardinalityIs
Function: Returns the number of items in the set.
Postcondition: Function value = number of items in the set.

Store(ItemType newItem)
Function: Adds newItem to the set.
Postconditions: If (the set is full and newItem is not there),

exception FullSet is thrown; else newItem is in
the set only once.

Delete(ItemType item)
Function: Removes an item from the set if it is there.
Postcondition: The item is not in the set.

SetType Union(SetType A, SetType B)
Function: Takes the union of A and B.
Postcondition: Returns the union of set A and set B.

SetType Intersection(SetType A, SetType B)
Function: Takes the intersection of A and B.
Postcondition: Returns the intersection of set A and set B.

SetType Difference(SetType A, SetType B)
Function: Takes the difference of A and B.
Postcondition: Returns the difference of set A and set B.

Print(ofstream& outFile)
Function: Prints the items in a set.
Postcondition: The items in the set are printed on outFile.

Notice that the definitions for the mathematical set say nothing about the set being
full. However, to implement the Set ADT, we must consider that possibility. Store and
Delete are actually not necessary. We could create an empty set and a set with one item
and perform a union of the two to implement Store. We could create a set containing
the item to be deleted and perform a difference of the set and the set with the one item
to implement Delete. However, having Store and Delete makes processing easier.

574 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

Application Level

A set could be the implementation structure for the vertices and/or edges in a graph.
One property of a set is that putting an item, which is already there, into the set does
not change the set. (Did you realize that is what the specification said?) Also, deleting
an item that is not there does not change the set. These properties can prove useful in
determining whether items occur in a passage of text, for example. All the characters in
the text could be put into a set. When the process is finished, the set contains exactly
one copy of every item that appeared in the text.

Implementation Level

There are two basic ways to implement sets. The first explicitly records the presence or
absence of each item in the base type (ItemType) in the representation of the set vari-
able. The second records only those items that are in a set variable at a particular time.
If an item is not listed as being in the set, it is not in the set. That is, the presence of
each item in the set is explicitly recorded; the absence of an item is implicit.

Explicit Representation The explicit representation of each item in the base type in
each set variable is called a bit vector representation. A one-to-one mapping matches

each item in the base type (ItemType) with a Boolean
flag. If the item is in a set variable, the flag is true; if
the item is not in the set variable, the flag is false.
Languages that have a built-in set data type use this
technique where the Boolean flag is represented by a
bit—hence the name “bit vector.”

We can use an array-based implementation for the bit vector because the cardinality
of the base type gives us the size of the array. Of course, this technique does not work for
infinite base types or even fairly large base types. However, it would work very well for a
limited base type. For example, if we want to implement a set type, with a base type of the
uppercase letters, we could represent each set instance with a Boolean array indexed from
0 through 25. The flag in position 0 represents the presence or absence of the letter “A,”
the flag in position 1 represents the presence or absence of the letter “B,” and so on. The
empty set would be an array of all false values; the universal set would be an array of all
true values. The constructor would create an array and set each position to false. All of
the binary operations could be accomplished using Boolean operators.

Here is the class definition for the explicit implementation. Because the base type
can be anything, we need a function to map the item into an index within the array
size. We leave this mapping function to the user of the set.

#include "map.h"
// File map.h must include a definition of ItemType and a function named
// "map" that maps an item of ItemType into an index between 0 and max - 1
// if the parameterized constructor is used and between 0 and 399 if
// the default constructor is used.
class SetType
{

Bit vector A representation that maps each item in the
component type to a Boolean flag

9.4 Sets | 575

Store(ItemType item)
Set items[map(item)] to true

Delete(ItemType item)
Set items[map(item)] to false

public:
SetType(); // Default constructor: Array size is 400.
SetType(int max); // Paramaterized constructor
~SetType(); // Destructor
SetType(const SetType anotherSet); // Copy constructor
void MakeEmpty();
void Store(ItemType item);
void Delete(ItemType item);
bool IsEmpty();
bool IsFull();
int CardinalityIs();
SetType Union(SetType setB);
SetType Intersection(SetType setB);
SetType Difference(SetType setB);
void Print(std::ofstream& outFile);

private:
int maxItems;
ItemType* items;

};

int Cardinality()
Set count to 0
for counter going from 0 to maxItems - 1

if (items[counter])
count++

return count

576 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

SetType Union(SetType setB)
Set result.maxItems to maxItems
for counter going from 0 to maxItems - 1

Set result.items[counter] to items[counter] OR setB.items[counter]
return result

SetType Intersection(SetType setB)
Set result.maxItems to maxItems
for counter going from 0 to maxItems - 1

Set result.items[counter] to items[counter] AND setB.items[counter]
return result

SetType Difference(SetType setB)
Set result.maxItems to maxItems
for counter going from 0 to maxItems - 1

Set result.items[counter] to items[counter] AND NOT setB.items[counter]
return result

IsFull has no meaning in this implementation, but IsEmpty and MakeEmpty do.
We leave the rest of the algorithms as exercises.

Implicit Representation Set variables implemented as bit vectors (explicit set
representation) use the same amount of space regardless of how many items are in the
set. The space is proportional to the cardinality of the universal set. (Actually, the space
equals the size of the universal set.) This fact can limit the base type to comparatively
small finite sets.

A second approach to implementing sets involves keeping a list of the items in the
set. The empty set is an empty list. If an item is stored in a set, we store the item in the

In the following algorithms, setA is self.

9.4 Sets | 577

list. Implicit set representation requires only space that is proportional to the number of
items in a set at any one time. The limit in this case is the cardinality of the individual
sets rather than the cardinality of the universal set.

With implicit set representation, we implement the set algorithms as list algorithms.
We use ListType in the following definition, because we do not at the moment know
which implementation we should use.

class SetType // Set ItemType using a typedef statement.
{
public:
SetType(); // Default constructor: Array size is 400.
SetType(int max); // Parameterized constructor.
~SetType(); // Destructor.
void MakeEmpty();
void Store(ItemType item);
void Delete(ItemType item);
bool IsEmpty();
bool IsFull();
int CardinalityIs();
SetType Union(SetType setB);
SetType Intersection(SetType setB);
SetType Difference(SetType setB);

private:
ListType items;

};

The SetType constructor calls the ListType constructor. MakeEmpty, IsEmpty,
IsFull, and CardinalityIs just call the corresponding list operations. The constraint
on the Store operation says that only one copy exists. Thus the RetrieveItem list
operation must be called before Store. If the item is in the set, the function returns
without doing anything. If the item is not in the set, InsertItem is called. The con-
straint on Delete says to delete the item if it is in the set. Again RetrieveItem is
called. If the item is in the set, it is deleted; if it is not there, the function returns with-
out doing anything further.

Let’s consider how to implement Intersection, one of the binary operations using
ListType. So far, we have not decided which of the lists we should use. In our algo-
rithm, we say setA, but we are referring to the items member of setA, which is a list.

Recall that the intersection of two sets consists of the set made up of those items
that are found in both of the other sets. If we were doing this operation by hand, one
algorithm might be to take an item from the first set and scan the second set to see if it
is there. If it is, the item goes into the result. We repeat this algorithm for every item in
the first set. That’s easy to express using our list operations.

578 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

The Big-O complexity of this algorithm is O(N * N) or O(NlogN), depending on how
RetrieveItem is implemented. A little thought produces an algorithm that has O(N)
complexity. Assume that the lists are sorted. Rather than looking at one item from the
first list (set) and checking whether it is in the second list, let’s look at the first item
from each list. Three situations can occur:

• The item from setA comes before the item from setB.
• The item from setB comes before the item from setA.
• The items are equal.

If the items are equal, the item from one of the sets goes into the result, and we get a
new item from both setA and setB. If the item from setA comes before the item from
setB, we know that the item from setA cannot be in the result, so we get another item
from setA. If the item from setB comes before the item from setA, we know that the item
from setB cannot be in the result, so we get another item from setB.

Here is the revised algorithm based on the assumption that the items are sorted
within the container:

SetType Intersection(SetType setB)
Reset self
for counter going from 1 to length

GetNextItem(item) from self
setB.RetrieveItem(item, found)
if found

result.Store(item)
return result

SetType Intersection(SetType setB)
Reset self
Reset setB
while NOT (self is empty OR setB.IsEmpty)

GetNextItem(itemA) from self
setB.GetNextItem(itemB)

(continued)

Exercises | 579

if (itemA < itemB)
GetNextIem(itemA) from self

else if itemB < itemA
setB.GetNextItem(itemB)

else
result.Store(itemA)
GetNextItem(itemA) from self
setB.GetNextItem(itemB)

return result

Be very careful: Sets are unordered collections, but the implementation structure that
contains the sets can be ordered—and we can take advantage of that ordering to produce
an O(N) algorithm for the intersection operation. This process of moving down two ordered
lists in parallel is called a merge. This very useful algorithm can be used to implement the
other binary operations in O(N) time. We leave the design of these algorithms as exercises.

Both implementations are left as programming assignments.

Summary
In this chapter, we discussed several branching structures: trees, heaps, and graphs.
Branching structures are very versatile and offer a good way to model many real-world
objects and situations. Because these data structures are appropriate for many different
types of applications, all kinds of variations and generalizations of trees and graphs exist.
These topics are introduced here to highlight the wide variety of applications for which
programmers must select and create appropriate data structures. They are generally cov-
ered in detail in more advanced computer science courses.

We also developed the Set ADT. Two types of implementation structures are possible
for this ADT: explicit, in which each item of the base type is associated with a Boolean
flag, and implicit, in which the items in the set are kept in a list.

Exercises
1. A priority queue containing characters is implemented as a heap stored in an

array. The precondition states that this priority queue cannot contain duplicate
elements. Currently, the priority queue holds 10 elements, as shown on the next
page. What values might be stored in array positions 7–9 so that the properties
of a heap are satisfied?

580 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

2. A minimum heap has the following order property: The value of each element is
less than or equal to the value of each of its children. What changes must be
made in the heap operations given in this chapter?

3. a. Write a nonrecursive version of ReheapDown.

b. Write a nonrecursive version of ReheapUp.

c. Describe the nonrecursive versions of these operations in terms of Big-O
notation.

4. A priority queue is implemented as a heap:

a. Show how the heap would look after this series of operations:

pq.Enqueue(28);

pq.Enqueue(2);

pq 56

27 42

26 315 19

2425 5

pq.items.elements

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Z

F

J

E

B

G

H

?

?

?

Exercises | 581

pq.Enqueue(40);

pq.Dequeue(x);

pq.Dequeue(y);

pq.Dequeue(z);

b. What would the values of x, y, and z be after the series of operations in part (a)?

5. A priority queue is implemented as a linked list, sorted from largest to smallest
element.

a. How would the definition of PQType change?

b. Write the Enqueue operation, using this implementation.

c. Write the Dequeue operation, using this implementation.

d. Compare the Enqueue and Dequeue operations to those for the heap imple-
mentation, in terms of Big-O notation.

6. A priority queue is implemented as a binary search tree.

a. How would the definition of PQType change?

b. Write the Enqueue operation, using this implementation.

c. Write the Dequeue operation, using this implementation.

d. Compare the Enqueue and Dequeue operations to those for the heap imple-
mentation, in terms of Big-O notation. Under what conditions would this
implementation be better or worse than the heap implementation?

7. A priority queue is implemented as a sequential array-based list. The highest-pri-
ority item is in the first array position, the second-highest priority item is in the
second array position, and so on.

a. Write the declarations in the private part of the priority queue class definition
needed for this implementation.

b. Write the Enqueue operation, using this implementation.

c. Write the Dequeue operation, using this implementation.

d. Compare the Enqueue and Dequeue operations to those for the heap imple-
mentation, in terms of Big-O notation. Under what conditions would this
implementation be better or worse than the heap implementation?

8. A stack is implemented using a priority queue. Each element is time-stamped as it
is put into the stack. (The time stamp is a number between 0 and INT_MAX. Each
time an element is pushed onto the stack, it is assigned the next larger number.)

a. What is the highest-priority element?

b. Write the Push and Pop algorithms, using the specifications in Chapter 4.

c. Compare these Push and Pop operations to the ones implemented in Chapter
4, in terms of Big-O notation.

9. A FIFO queue is implemented using a priority queue. Each element is time-
stamped as it is put into the queue. (The time stamp is a number between 0 and

582 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

INT_MAX. Each time an element is enqueued, it is assigned the next larger num-
ber.)

a. What is the highest-priority element?

b. Write the Enqueue and Dequeue operations, using the specifications in
Chapter 4.

c. Compare these Enqueue and Dequeue operations to the ones implemented in
Chapter 4, in terms of Big-O notation.

10. A priority queue of strings is implemented using a heap. The heap contains the
following elements:

a. What feature of these strings is used to determine their priority in the priority
queue?

b. Show how this priority queue is affected by adding the string “interviewing.”

Use the following description of an undirected graph in Exercises 11–14.

EmployeeGraph = (V, E)

V(EmployeeGraph) = {Susan, Darlene, Mike, Fred, John, Sander, Lance,
Jean, Brent, Fran}

E(EmployeeGraph) = {(Susan, Darlene), (Fred, Brent), (Sander, Susan),
(Lance, Fran), (Sander, Fran), (Fran, John), (Lance,
Jean), (Jean, Susan), (Mike, Darlene), (Brent, Lance),
(Susan, John)}

11. Draw a picture of EmployeeGraph.

.numElements

.elements

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

"introspective"

"intelligent"

"intellectual"

"intimate"

"intensive"

"interesting"

"internal"

"into"

"in"

"intro"

10

Exercises | 583

12. Draw EmployeeGraph, implemented as an adjacency matrix. Store the vertex
values in alphabetical order.

13. Using the adjacency matrix for EmployeeGraph from Exercise 12, describe the
path from Susan to Lance

a. using a breadth-first strategy.

b. using a depth-first strategy.

14. Which one of the following phrases best describes the relationship represented
by the edges between the vertices in EmployeeGraph?

a. “works for”

b. “is the supervisor of ”

c. “is senior to”

d. “works with”

Use the following specification of a directed graph in Exercises 15–18.

ZooGraph = (V, E)

V(ZooGraph) = {dog, cat, animal, vertebrate, oyster, shellfish, invertebrate, crab,
poodle, monkey, banana, dalmatian, dachshund}

E(ZooGraph) = {(vertebrate, animal), (invertebrate, animal), (dog, vertebrate),
(cat, vertebrate), (monkey, vertebrate), (shellfish, invertebrate),
(crab, shellfish), (oyster, shellfish), (poodle, dog), (dalmatian,
dog), (dachshund, dog)}

15. Draw a picture of ZooGraph.

16. Draw the adjacency matrix for ZooGraph. Store the vertices in alphabetical order.

17. To tell if one element in ZooGraph has relation X to another element, you look
for a path between them. Show whether the following statements are true, using
the picture or adjacency matrix.

a. dalmatian X dog

b. dalmatian X vertebrate

c. dalmatian X poodle

d. banana X invertebrate

e. oyster X invertebrate

f. monkey X invertebrate

18. Which of the following phrases best describes relation X in Exercise 17?

a. “has a”

b. “is an example of ”

c. “is a generalization of ”

d. “eats”

584 | Chapter 9: Priority Queues, Heaps, Graphs, and Sets

Use the following graph for Exercises 19–21.

19. Describe the graph pictured above, using the formal graph notation.

V(StateGraph) =

E(StateGraph) =

20. a. Is there a path from Oregon to any other state in the graph?

b. Is there a path from Hawaii to every other state in the graph?

c. From which state(s) in the graph is there a path to Hawaii?

21. a. Show the adjacency matrix that would describe the edges in the graph. Store
the vertices in alphabetical order.

b. Show the array-of-pointers adjacency lists that would describe the edges in
the graph.

22. Extend the class GraphType in this chapter to include a Boolean EdgeExists
operation, which determines whether two vertices are connected by an edge.

a. Write the declaration of this function. Include adequate comments.

b. Using the adjacency matrix implementation developed in the chapter and the
declaration from part (a), implement the body of the function.

23. Extend the class GraphType in this chapter to include a DeleteEdge operation,
which deletes a given edge.

a. Write the declaration of this function. Include adequate comments.

Oregon

Alaska

Texas

Hawaii

Vermont New York

California

b. Using the adjacency matrix implementation developed in the chapter and the
declaration from part (a), implement the body of the function.

24. Extend the class GraphType in this chapter to include a DeleteVertex opera-
tion, which deletes a vertex from the graph. Deleting a vertex is more compli-
cated than deleting an edge from the graph. Discuss why.

25. The DepthFirstSearch operation can be implemented without a stack by using
recursion.

a. Name the base case(s). Name the general case(s).

b. Write the algorithm for a recursive depth-first search.

26. Distinguish between set representations that are implicit and those that are
explicit.

27. Finish designing the algorithms for the explicit set representation.

28. Finish designing the algorithms for the implicit set representation.

29. Implement the copy constructor for PQType.

30. Did you notice that we did not include a copy constructor from GraphType? Dis-
cuss the issues involved in implementing this copy constructor.

Exercises | 585

After studying this chapter, you should be able to

Design and implement the following sorting algorithms:

Straight selection sort Merge sort

Bubble sort (two versions) Heap sort

Insertion sort Radix sort

Compare the efficiency of the sorting algorithms, in terms of Big-O
complexity and space requirements

Discuss other efficiency considerations: sorting small numbers of elements,
programmer time, and sorting arrays of large data elements

Sort on several keys

Discuss the performances of the following search algorithms:

Sequential search of an unsorted list

Sequential search of a sorted list

Binary search

Searching a high-probability sorted list

Define the following terms:

Hashing Linear probing

Rehashing Clustering

Collisions

Design and implement an appropriate hashing function for an application

Design and implement a collision-resolution algorithm for a hash table

Discuss the efficiency considerations for the searching and hashing algorithms,
in terms of Big-O notation

Sorting and Searching
Algorithms

G
oals

588 | Chapter 10: Sorting and Searching Algorithms

At many points in this book, we have gone to great trouble to keep lists of elements in
sorted order: student records sorted by ID number, integers sorted from smallest to
largest, words sorted alphabetically. The goal of keeping sorted lists, of course, is to
facilitate searching. Given an appropriate data structure, a particular list element can be
found more quickly if the list is sorted.

In this chapter, we examine strategies for sorting and searching, two tasks that are
fundamental to a variety of computing problems. In fact, we challenge you to look back at
the programs you have written so far. Are there any that do not include a sort or a search?

10.1 Sorting

Putting an unsorted list of data elements into order—sorting—is a very common and use-
ful operation. Entire books have been written about various sorting algorithms and
algorithms for searching a sorted list to find a particular element. The goal is to come
up with better, more efficient sorts. Because sorting a large number of elements can be
extremely time-consuming, a good sorting algorithm is very desirable. This is one area
in which programmers are sometimes encouraged to sacrifice clarity in favor of speed of
execution.

How do we describe efficiency? We pick an operation central to most sorting algo-
rithms: the operation that compares two values to see which is smaller. In our study of
sorting algorithms, we relate the number of comparisons to the number of elements in
the list (N) as a rough measure of the efficiency of each algorithm. The number of swaps
made is another measure of sorting efficiency. In the exercises, we ask you to analyze
the sorting algorithms developed in this chapter in terms of data movements.

Another efficiency consideration is the amount of memory space required. In gen-
eral, memory space is not a very important factor in choosing a sorting algorithm. We
look at only one sort in which space would be a serious consideration. The usual time
versus space tradeoff applies to sorts—more space often means less time, and vice versa.

Because processing time is the factor that applies most often to sorting algorithms,
we consider it in detail here. Of course, as in any application, the programmer must deter-
mine goals and requirements before selecting an algorithm and starting to write code.

We review the straight selection sort and the bubble sort, two simple sorts that stu-
dents often write in their first programming course. Then we review a more complex
sorting algorithm that we examined in Chapter 7 (the quick sort algorithm) and intro-
duce two additional complex sorts: merge sort and heap sort. We assume that the actual
data type that replaces the template parameter ItemType in the rest of the chapter is
either a simple built-in type or a class that overloads the relational operators. For sim-
plicity, we assume that the keys are unique.

As we pointed out in Chapter 7, at the logical level, sorting algorithms take an
unsorted list object and convert it into a sorted list object. At the implementation level,
sorting algorithms take an array and reorganize the values in the array so that they are
in order by key. The number of values to be sorted and the array in which they are
stored are parameters to our sorting algorithms. Note that we are not sorting an object

10.1 Sorting | 589

SelectionSort
Set current to the index of first item in the array
while more items in unsorted part of array

Find the index of the smallest unsorted item
Swap the current item with the smallest unsorted one
Shrink the unsorted part of the array by incrementing current

of type UnsortedType but rather the values stored in an array. We call the array val-
ues, and its elements are of type ItemType.

Straight Selection Sort

If you were handed a list of names and asked to put them in alphabetical order, you
might use this general approach:

1. Find the name that comes first in the alphabet, and write it on a second sheet of paper.

2. Cross the name out on the original list.

3. Continue this cycle until all names on the original list have been crossed out and
written onto the second list, at which point the second list is sorted.

This algorithm is simple to translate into a computer program, but it has one draw-
back: It requires space in memory to store two complete lists. Although we have not
talked a great deal about memory space considerations, this duplication is clearly waste-
ful. A slight adjustment to this manual approach does away with the need to duplicate
space, however. As you cross a name off the original list, a free space opens up. Instead
of writing the minimum value on a second list, you can exchange it with the value cur-
rently in the position where the crossed-off item should go. Our “by-hand list” is repre-
sented in an array.

Let’s look at an example—sorting the five-element array shown in Figure 10.1(a).
Because of this algorithm’s simplicity, it is usually the first sorting method that students
learn. Therefore, we go straight to the algorithm:

Figure 10.1 Example of straight selection sort (sorted elements are shaded)

126

43

26
1

113

[0]

[1]

[2]
[3]

[4]

values

(a)

1

43

26
126

113

[0]

[1]

[2]
[3]

[4]

values

(b)

1

26

43
126

113

[0]

[1]

[2]
[3]

[4]

values

(c)

1

26

43
126

113

[0]

[1]

[2]
[3]

[4]

values

(d)

1

26

43
113

126

[0]

[1]

[2]
[3]

[4]

values

(e)

590 | Chapter 10: Sorting and Searching Algorithms

Figure 10.2 A snapshot of the selection sort algorithm

[0]

values[0]..values[current-1]
are sorted and <= to any values in
values[current]..values[numValues-1]

Sorted part

Unsorted part

[current-1]
[current]

[numValues-1]

values

•
•

•

•
•

•

Although you could immediately begin writing the code, we will use this algorithm
to practice designing correct loops.

We use a variable, current, to mark the beginning of the unsorted part of the
array. We start out by setting current to the index of the first position (index 0). The
unsorted part of the array then goes from the index current to numValues - 1.

The main sort processing occurs in a loop. In each iteration of the loop body, the
smallest value in the unsorted part of the array is swapped with the value in the cur-
rent location. After the swap, current is in the sorted part of the array, so we shrink
the size of the unsorted part by incrementing current. The loop body is now complete.

At the top of the loop body, the unsorted part of the array goes from the (now
incremented) current index to numValues - 1. We know that every value in the
unsorted part is greater than (or equal to, if duplicates are permitted) any value in the
sorted part of the array.

How do we know when “there are more elements in the unsorted part”? As long as
current <= numValues - 1, the unsorted part of the array (values[current] . .
values[numValues - 1]) contains values. In each iteration of the loop body, current
is incremented, shrinking the unsorted part of the array. When current = numValues - 1,
the “unsorted” part contains only one element, and we know that this value must be
greater than (or equal to) any value in the sorted part. Thus the value in values[num-
Values - 1] is in its correct place, and we are done. The condition for the while loop
is current < numValues - 1. Figure 10.2 gives a snapshot of the selection sort algo-
rithm.

Now all we have to do is to locate the smallest value in the unsorted part of the
array. Let’s write a function to perform this task. The function MinIndex receives the
array elements and the first and last indexes of the unsorted part, and returns the index
of the smallest value in this part of the array.

10.1 Sorting | 591

int MinIndex(values, startIndex, endIndex)
Set indexOfMin to startIndex
for index going from startIndex + 1 to endIndex

if values[index] < values[indexOfMin]
Set indexOfMin to index

return indexOfMin

Now that we know where the smallest unsorted element is located, we swap it with
the element at index current. Because swapping data values between two array loca-
tions is common in many sorting algorithms, let’s write a little function, Swap, to
accomplish this task.

template<class ItemType>
inline void Swap(ItemType& item1, ItemType& item2)
// Post: Contents of item1 and item2 have been swapped.
{
ItemType tempItem;

tempItem = item1;
item1 = item2;
item2 = tempItem;

}

The word inline before the function heading is called a specifier. inline suggests
that the compiler insert the code for the function body every time a call is issued rather
than actually making a function call. We “suggest” rather than “tell,” because compilers
are not obliged to implement the inline specifier.

Here are the rest of the function templates for this sorting algorithm:

template<class ItemType>
int MinIndex(ItemType values[], int startIndex, int endIndex)
// Post: Returns the index of the smallest value in
// values[startIndex]..values[endIndex].
{
int indexOfMin = startIndex;
for (int index = startIndex + 1; index <= endIndex; index++)
if (values[index] < values[indexOfMin])
indexOfMin = index;

return indexOfMin;
}

592 | Chapter 10: Sorting and Searching Algorithms

template<class ItemType>
void SelectionSort(ItemType values[], int numValues)
// Post: The elements in the array values are sorted by key.
{
int endIndex = numValues-1;
for (int current = 0; current < endIndex; current++)
Swap(values[current],

values[MinIndex(values, current, endIndex)]);
}

Analyzing the Selection Sort Now let’s try measuring the amount of “work” required
by this algorithm. We describe the number of comparisons as a function of the number
of items in the array. To be concise, in this discussion we refer to numValues as N.

The comparison operation occurs in the function MinIndex. We know from the
loop condition in the SelectionSort function that MinIndex is called N � 1 times.
Within MinIndex, the number of comparisons varies, depending on the values of
startIndex and endIndex:

for (int index = startIndex + 1; index <= endIndex; index++)
if (values[index] < values[indexOfMin])
indexOfMin = index;

In the first call to MinIndex, startIndex is 0 and endIndex is numValues - 1, so N
� 1 comparisons occur; in the next call, N � 2 comparisons occur; and so on. In the
last call, only one comparison takes place. The total number of comparisons is

(N � 1) + (N � 2) + (N � 3) + . . . + 1 = N(N � 1)/2

To accomplish our goal of sorting an array of N elements, the straight selection sort
requires N(N � 1)/2 comparisons. Note that the particular arrangement of values in the
array does not affect the amount of work done. Even if the array is in sorted order
before the call to SelectionSort, the function still makes N(N � 1)/2 comparisons.

Table 10.1 shows the number of comparisons required for arrays of various sizes.
Note that doubling the array size roughly quadruples the number of comparisons.

How do we describe this algorithm in terms of Big-O notation? If we express N(N �
1)/2 as 1

2 N

2 � 1
2 N, it is easy to see. In Big-O notation, we consider only the term 1

2 N

2,
because it increases fastest relative to N. (Remember the elephants and goldfish?) Fur-
ther, we ignore the constant, 1

2 , making this algorithm become O(N2). Thus, for large val-
ues of N, the computation time is approximately proportional to N2. Looking again at
Table 10.1, we see that multiplying the number of elements by 10 increases the number
of comparisons by a factor of more than 100; that is, the number of comparisons is
multiplied by approximately the square of the increase in the number of elements.
Looking at this table makes us appreciate why sorting algorithms are the subject of so

10.1 Sorting | 593

Table 10.1 Number of Comparisons Required to Sort Arrays of Different Sizes Using the
Selection Sort

Number of Items Number of Comparisons

10 45

20 190

100 4,950

1,000 499,500

10,000 49,995,000

much attention: Using SelectionSort to sort an array of 1,000 elements requires
almost one-half million comparisons!

The identifying feature of a selection sort is that, on each pass through the loop,
one element is put into its proper place. In the straight selection sort, each iteration
finds the smallest unsorted element and puts it into its correct place. If we had made the
function find the largest value, instead of the smallest, the algorithm would have sorted
in descending order. We could also have made the loop go down from numValues - 1
to 1, putting the elements into the bottom of the array first. All these algorithms are
variations on the straight selection sort. The variations do not change the basic way that
the minimum (or maximum) element is found.

Bubble Sort

The bubble sort is a selection sort that uses a different scheme for finding the minimum
(or maximum) value. Each iteration puts the smallest unsorted element into its correct
place, but it also changes the locations of the other elements in the array. The first itera-
tion puts the smallest element in the array into the first array position. Starting with the
last array element we compare successive pairs of elements, swapping them whenever
the bottom element of the pair is smaller than the one above it. In this way, the smallest
element “bubbles up” to the top of the array. The next iteration puts the smallest ele-
ment in the unsorted part of the array into the second array position, using the same
technique. As you look at the example in Figure 10.3, note that in addition to putting

Figure 10.3 Example of bubble sort (sorted elements are shaded)

36

24

10
6

12

[0]

[1]

[2]
[3]

[4]

values

(a)

6

36

24
10

12

[0]

[1]

[2]
[3]

[4]

values

(b)

6

10

36
24

12

[0]

[1]

[2]
[3]

[4]

values

(c)

6

10

12
36

24

[0]

[1]

[2]
[3]

[4]

values

(d)

6

10

12
24

36

[0]

[1]

[2]
[3]

[4]

values

(e)

594 | Chapter 10: Sorting and Searching Algorithms

BubbleSort
Set current to the index of first item in the array
while more items in unsorted part of array

“Bubble up” the smallest item in the unsorted part,
causing intermediate swaps as needed

Shrink the unsorted part of the array by incrementing current

BubbleUp(values, startIndex, endIndex)
for index going from endIndex DOWNTO startIndex + 1

if values[index] < values[index - 1]
Swap(values[index], values[index - 1])

one element into its proper place, each iteration produces some intermediate changes in
the array.

The basic algorithm for the bubble sort follows:

The structure of the loop is much like that in the SelectionSort function. The
unsorted part of the array is the area from values[current] to values[numValues -
1]. The value of current begins at 0, and we loop until current reaches numValues
- 1, with current incremented in each iteration. On entrance to each iteration of the
loop body, the first current values are already sorted, and all elements in the unsorted
part of the array are greater than or equal to the sorted elements.

The inside of the loop body is different, however. Each iteration of the loop “bub-
bles up” the smallest value in the unsorted part of the array to the current position.
The algorithm for the bubbling task follows:

Figure 10.4 gives a snapshot of this algorithm. Using the Swap function coded ear-
lier, the code for the function BubbleSort follows.

template<class ItemType>
void BubbleUp(ItemType values[], int startIndex, int endIndex)
// Post: Adjacent pairs that are out of order have been switched
// between values[startIndex]..values[endIndex] beginning at
// values[endIndex].
{

10.1 Sorting | 595

Figure 10.4 Snapshot of bubble sort

[0]

sorted part: values[0]..values[current-1]

In BubbleUp:
Not yet examined: values[current]..values[index-1]

Examined: values[index+1]..values[numValues-1]
are all greater than values[index]

[current-1]
[current]

[index-1]

[index]
[index+1]

[numValues-1]

values

•
•

•
•

•
•

•
•

•

for (int index = endIndex; index > startIndex; index--)
if (values[index] < values[index-1])
Swap(values[index], values[index-1]);

}

template<class ItemType>
void BubbleSort(ItemType values[], int numValues)
// Post: The elements in the array values are sorted by key.
{
int current = 0;

while (current < numValues - 1)
{
BubbleUp(values, current, numValues-1);
current++;

}
}

Analyzing the Bubble Sort It is easy to analyze the work required by BubbleSort—it is
the same as that for the straight selection sort algorithm. The comparisons occur in
BubbleUp, which is called N � 1 times. There are N � 1 comparisons the first time, N � 2

596 | Chapter 10: Sorting and Searching Algorithms

comparisons the second time, and so on. Therefore BubbleSort and SelectionSort
require the same amount of work, in terms of the number of comparisons. BubbleSort
does more than just make comparisons, however: while SelectionSort performs only
one data swap per iteration, BubbleSort may do many additional data swaps.

What purpose do these intermediate data swaps serve? By reversing out-of-order
pairs of data as they are noticed, the function might get the array in order before N � 1
calls to BubbleUp. However, this version of the bubble sort makes no provision for
stopping when the array is completely sorted. Even if the array is already in sorted order
when BubbleSort is called, this function continues to call BubbleUp (which changes
nothing) N � 1 times.

We could quit before the maximum number of iterations if BubbleUp returns a
Boolean flag, sorted, to tell us when the array is sorted. Within BubbleUp, we initially
set sorted to true; then in the loop, if any swaps occur, we reset sorted to false. If no
elements have been swapped, we know that the array is already in order. Now the bub-
ble sort needs to make only one extra call to BubbleUp when the array is in order. This
version of the bubble sort follows:

template<class ItemType>
void BubbleUp2(ItemType values[], int startIndex, int endIndex,

bool& sorted)
// Post: Adjacent pairs that are out of order have been switched
// between values[startIndex]..values[endIndex] beginning at
// values[endIndex].
// sorted is false if a swap was made and true otherwise.
{
sorted = true;
for (int index = endIndex; index > startIndex; index--)
if (values[index] < values[index-1])
{
Swap(values[index], values[index-1]);
sorted = false;

}
}

template<class ItemType>
void ShortBubble(ItemType values[], int numValues)
// Post: The elements in the array values are sorted by key.
// The process stops as soon as values is sorted.
{
int current = 0;
bool sorted = false;
while (current < numValues - 1 && !sorted)
{
BubbleUp2(values, current, numValues-1, sorted);

10.1 Sorting | 597

1For those of you who want to see the algebra:

(N � 1) + (N � 2) + . . . + (N � K)

= KN � (sum of 1 through K)

= KN � [K(K + 1)]

= KN � (K 2 + K)

= (2KN � K 2 � K) / 2

current++;
}

}

The analysis of ShortBubble is more difficult. Clearly, if the array is initially
sorted in order, one call to BubbleUp2 tells us so. In this best-case scenario, Short-
Bubble is O(N); only N � 1 comparisons are required for the sort. What if the original
array was actually sorted in descending order before the call to ShortBubble? This is
the worst possible case: ShortBubble requires as many comparisons as BubbleSort
and SelectionSort, not to mention the “overhead” consisting of the many extra
swaps and setting and resetting of the sorted flag. Can we calculate an average case?
In the first call to BubbleUp2, when current is 0, numValues - 1 comparisons occur;
on the second call, when current is 1, numValues - 2 comparisons occur. The num-
ber of comparisons in any call to BubbleUp2 is numValues - current - 1. If we let
N indicate numValues and K indicate the number of calls to BubbleUp2 executed
before ShortBubble finishes its work, the total number of comparisons required is

A little algebra1 changes this to

(2KN � K2 � K) / 2

In Big-O notation, the term that is increasing the fastest relative to N is 2KN. We
know that K is between 1 and N � 1. On average, over all possible input orders, K is
proportional to N. Therefore, 2KN is proportional to N2; that is, the ShortBubble algo-
rithm is also O(N2).

Why do we even bother to mention the bubble sort algorithm if it is O(N2) and
requires extra data movements? Because ShortBubble is the only sorting algorithm
that recognizes when the array is already sorted and stops. If the original array is
already sorted when the program calls ShortBubble, only one pass is made through
the array. If you plan to sort a file that you know is almost in order, ShortBubble is a
good choice.

(N � 1) + (N � 2) + (N � 3) + . . . + (N � K)
1st call 2nd call 3rd call Kth call

598 | Chapter 10: Sorting and Searching Algorithms

Figure 10.5 Example of the insertion sort algorithm

36

24

10
6

12

[0]

[1]

[2]
[3]

[4]

values

(a)

24

36

10
6

12

[0]

[1]

[2]
[3]

[4]

values

(b)

10

24

36
6

12

[0]

[1]

[2]
[3]

[4]

values

(c)

6

10

24
36

12

[0]

[1]

[2]
[3]

[4]

values

(d)

6

10

12
24

36

[0]

[1]

[2]
[3]

[4]

values

(e)

Figure 10.6 A snapshot of the insertion sort algorithm

[0]

Sorted part
values[0]..values[current–1]

values[current]is inserted into
sorted portion

Nothing is known about
values[current+1]..values[numValues–1]

[current-1]
[current]

[numValues-1]

values

•
•

•
•

•
•

Insertion Sort

In Chapter 3, we created a sorted list by inserting each new element into its appropriate
place in an array. We can use a similar approach for sorting an array. The principle of
the insertion sort is quite simple: Each successive element in the array to be sorted is
inserted into its proper place with respect to the other, already-sorted elements. As with
the previous sorts, we divide our array into a sorted part and an unsorted part. Initially,
the sorted portion contains only one element: the first element in the array. Now we
take the second element in the array and put it into its correct place in the sorted part;
that is, values[0] and values[1] are in order with respect to each other. Now the
value in values[2] is put into its proper place, so values[0] . . values[2] are in
order with respect to each other. This process continues until all the elements have been
sorted. Figure 10.5 illustrates this process, which we describe in the following algorithm,
and Figure 10.6 shows a snapshot of the algorithm.

In Chapter 3, our strategy was to search for the insertion point from the beginning
of the array and shift the elements from the insertion point down one slot to make room
for the new element. We can combine the searching and shifting by beginning at the
end of the sorted part of the array. We compare the item at values[current] to the
one before it. If it is less, we swap the two items. We then compare the item at val-

10.1 Sorting | 599

InsertionSort
for count going from 0 through numValues - 1

InsertItem(values, 0, count)

InsertItem(values, startIndex, endIndex)
Set finished to false
Set current to endIndex
Set moreToSearch to (current does not equal startIndex)
while moreToSearch AND NOT finished

if values[current] < values[current - 1]
Swap(values[current], values[current - 1])
Decrement current
Set moreToSearch to (current does not equal startIndex)

else
Set finished to true

ues[current - 1] to the one before it, and swap them if necessary. The process stops
when the comparison shows that the values are in order or we have swapped into the
first place in the array.

Here are the coded versions of InsertItem and InsertionSort:

template<class ItemType>
void InsertItem(ItemType values[], int startIndex, int endIndex)
// Post: values[0]..values[endIndex] are now sorted.
{
bool finished = false;
int current = endIndex;
bool moreToSearch = (current != startIndex);

while (moreToSearch && !finished)
{

600 | Chapter 10: Sorting and Searching Algorithms

if (values[current] < values[current-1])
{
Swap(values[current], values[current-1]);
current--;
moreToSearch = (current != startIndex);

}
else
finished = true;

}
}

template<class ItemType>
void InsertionSort(ItemType values[], int numValues)
// Post: The elements in the array values are sorted by key.
{
for (int count = 0; count < numValues; count++)
InsertItem(values, 0, count);

}

Analyzing the Insertion Sort The general case for this algorithm mirrors that for the
SelectionSort and the BubbleSort, so the general case is O(N2). Like
ShortBubble, InsertionSort also has a best case: the data are already sorted in
ascending order. When the data are in ascending order, InsertItem is called N
times, but only one comparison is made each time and no swaps occur. The
maximum number of comparisons is made only when the elements in the array are in
reverse order.

If we know nothing about the original order in the data to be sorted,
SelectionSort, ShortBubble, and InsertionSort are all O(N2) sorts and are too
time-consuming for sorting large arrays. Thus we need sorting methods that work better
when N is large.

O(N log2N) Sorts

Considering how rapidly N2 grows as the size of the array increases, can’t we do better?
We note that N2 is a lot larger than (1

2 N)2 + (1
2 N)2. If we could cut the array into two

pieces, sort each segment, and then merge the two pieces again, we should end up sort-
ing the entire array with a lot less work. Figure 10.7 shows an example of this
approach.

The idea of “divide and conquer” has been applied to the sorting problem in differ-
ent ways, resulting in a number of algorithms that can do the job much more efficiently
than O(N2). In fact, an entire category of sorting algorithms are O(Nlog2N). We looked at
one of these in Chapter 7: QuickSort. Here we examine two other sorting algorithms:
MergeSort and HeapSort. As you might guess, the efficiency of these algorithms is

10.1 Sorting | 601

Figure 10.7 Rationale for divide-and-conquer sorts

[0] [99]

data

[0] [49] [50] [99]

Cut list in half.

�� N = 50 �� N = 50
(�� N)2 + (�� N)2 To sort
 + N To merge
= (50)2 + (50)2 + 100
= 5100

N 2 = (100)2 = 10,000

• • • • • •

N = 100

achieved at the expense of the simplicity seen in the straight selection, bubble, and
insertion sorts.

Merge Sort

The merge sort algorithm is taken directly from the idea in the previous section:

Merging the two halves together is an O(N) task: We merely go through the sorted
halves, comparing successive pairs of values (one in each half) and putting the
smaller value into the next slot in the final solution. Even if the sorting algorithm
used for each half is O(N2), we should see some improvement over sorting the whole
array at once.

MergeSort
Cut the array in half
Sort the left half
Sort the right half
Merge the two sorted halves into one sorted array

602 | Chapter 10: Sorting and Searching Algorithms

MergeSort—Recursive
Cut the array in half
MergeSort the left half
MergeSort the right half
Merge the two sorted halves into one sorted array

Actually, because MergeSort is itself a sorting algorithm, we might as well use it
to sort the two halves. That’s right—we can make MergeSort be a recursive function
and let it call itself to sort each of the two subarrays:

This is the general case, of course. What is the base case, which does not involve
any recursive calls to MergeSort? If the “half ” to be sorted doesn’t have more than one
element, we can consider it already sorted and just return.

Let’s summarize MergeSort in the format we used for other recursive algorithms.
The initial function call would be MergeSort(values, 0, numValues - 1).

Function MergeSort(values, first, last)

Definition: Sorts the array items in ascending order.
Size: values[first]..values[last].
Base Case: If fewer than two items in

values[first]..values[last], do nothing.
General Case: Cut the array in half.

MergeSort the left half.
MergeSort the right half.
Merge the sorted halves into one sorted array.

Cutting the array in half is simply a matter of finding the midpoint between the
first and last indexes:

middle = (first + last) / 2;

Then, in the smaller-caller tradition, we can make the recursive calls to MergeSort:

MergeSort(values, first, middle);
MergeSort(values, middle+1, last);

So far this is simple enough. Now we merely have to merge the two halves and we’re done.

Merging the Sorted Halves Obviously, the serious work occurs in the merge step. Let’s
look first at the general algorithm for merging two sorted arrays, and then at the
specific problem of our subarrays.

10.1 Sorting | 603

Figure 10.8 Strategy for merging two sorted arrays

1 3 7 11 12 2 4 6

1 < 2, so move from array1 to finalArray

2 < 3, so move from array2 to finalArray

array2 is empty, so move remainder
of array1 to finalArray

6 < 7, so move from array2 to finalArray

array1

1

2

3

4

6

7

11

12

finalArray

array2

.
.
.

To merge two sorted arrays, we compare successive pairs of elements, one from
each array, moving the smaller of each pair to the “final” array. We can stop when the
shorter array runs out of elements, and then move all remaining elements (if any) from
the other array to the final array. Figure 10.8 illustrates the general algorithm. We use a
similar approach in our specific problem, in which the two “arrays” to be merged are
actually subarrays of the original array (Figure 10.9). Just as in Figure 10.8, where we
merged array1 and array2 into a third array, we need to merge our two subarrays into
some auxiliary data structure. We need this data structure, another array, only tem-
porarily. After the merge step, we can copy the now-sorted elements back into the origi-
nal array. Figure 10.10 shows the entire process.

Let’s specify a function, Merge, to perform this task:

Merge(ItemType values[], int leftFirst, int leftLast, int rightFirst,
int rightLast)

Function: Merges two sorted subarrays into a single sorted
piece of the array.

Preconditions: values[leftFirst]..values[leftLast] are sorted;
values[rightFirst]..values[rightLast] are sorted.

Postcondition: values[leftFirst]..values[rightLast] are sorted.

604 | Chapter 10: Sorting and Searching Algorithms

Figure 10.9 Two subarrays

values

left
First

Left part Right part

left
Last

right
First

right
Last

... ...

[][][][]
1 3 7 11 12 2 4 6

Figure 10.10 Merging sorted halves

left
Last[][]

1 3 7 11 12 2 4 6

values
left
First

right
First

right
Last

... ...

1 2 3 4 6 7 11 12

tempArray

... ...

1 2 3 4 6 7 11 12

values

... ...

[] []

10.1 Sorting | 605

Merge (uses a local array, tempArray)
Set saveFirst to leftFirst // To know where to copy back
Set index to leftFirst
while more items in left half AND more items in right half

if values[leftFirst] < values[rightFirst]
Set tempArray[index] to values[leftFirst]
Increment leftFirst

else
Set tempArray[index] to values[rightFirst]
Increment rightFirst

Increment index
Copy any remaining items from left half to tempArray
Copy any remaining items from right half to tempArray
Copy the sorted elements from tempArray back into values

Here is the algorithm for Merge:

In the coding of the function Merge, we use leftFirst and rightFirst to indi-
cate the “current” position in the left and right halves, respectively. Because they are
not reference parameters, copies of these parameters are passed to Merge. The copies are
changed in the function, but the changed values are not passed out of Merge. Note that
both of the “copy any remaining items . . .” loops are included. During the execution of
this function, one of these loops never executes. Can you explain why?

template<class ItemType>
void Merge(ItemType values[], int leftFirst, int leftLast,

int rightFirst, int rightLast)
// Post: values[leftFirst]..values[leftLast] and
// values[rightFirst]..values[rightLast] have been merged.
// values[leftFirst]..values[rightLast] are now sorted.
{
ItemType tempArray[MAX_ITEMS];
int index = leftFirst;
int saveFirst = leftFirst;

while ((leftFirst <= leftLast) && (rightFirst <= rightLast))
{
if (values[leftFirst] < values[rightFirst])
{

606 | Chapter 10: Sorting and Searching Algorithms

tempArray[index] = values[leftFirst];
leftFirst++;

}
else
{
tempArray[index] = values[rightFirst];
rightFirst++;

}
index++;

}

while (leftFirst <= leftLast)
// Copy remaining items from left half.
{
tempArray[index] = values[leftFirst];
leftFirst++;
index++;

}

while (rightFirst <= rightLast)
// Copy remaining items from right half.
{
tempArray[index] = values[rightFirst];
rightFirst++;
index++;

}

for (index = saveFirst; index <= rightLast; index++)
values[index] = tempArray[index];

}

The MergeSort Function As we said, most of the work takes place in the merge task.
The actual MergeSort function is short and simple:

template<class ItemType>
void MergeSort(ItemType values[], int first, int last)
// Post: The elements in values are sorted by key.
{
if (first < last)
{
int middle = (first + last) / 2;
MergeSort(values, first, middle);
MergeSort(values, middle + 1, last);
Merge(values, first, middle, middle + 1, last);

}
}

10.1 Sorting | 607

Figure 10.11 Analysis of the function MergeSort with N = 16

1 1

2 2

4

8 8

4 4 4

2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1

16

log216 = 4 levels of merging

Analyzing the Merge Sort The MergeSort function splits the original array into two
halves. First it sorts the first half of the array, using the divide-and-conquer approach;
then it sorts the second half of the array using the same approach; finally it merges the
two halves. To sort the first half of the array it follows the same approach, splitting and
merging. During the sorting process, the splitting and merging operations are
intermingled. To simplify the analysis, however, we imagine that all of the splitting
occurs first. We can view the process in this way without affecting the correctness of
the algorithm.

We view the MergeSort algorithm as continually dividing the original array (of
size N) in two, until it has created N one-element subarrays. Figure 10.11 shows this
point of view for an array with an original size of 16. The total work needed to divide
the array in half, over and over again until we reach subarrays of size 1, is O(N). After
all, we end up with N subarrays of size 1.

Each subarray of size 1 is obviously a sorted subarray. The real work of the algo-
rithm comes in merging the smaller sorted subarrays back into the larger sorted sub-
arrays. To merge two sorted subarrays of size X and size Y into a single sorted
subarray using the Merge operation requires O(X + Y) steps. We can see this fact
because each time through the while loops of the Merge function we advance either
the leftFirst index or the rightFirst index by 1. Because we stop processing
when these indexes become greater than their “last” counterparts, we know that we
take a total of (leftLast – leftFirst + 1) + (rightLast – rightFirst +
1) steps. This expression represents the sum of the lengths of the two subarrays being
processed.

How many times is the Merge function called? And what are the sizes of the subar-
rays involved? Let’s work from the bottom up. The original array of size N is eventually

608 | Chapter 10: Sorting and Searching Algorithms

Table 10.2 Comparing N2 and Nlog2 N

N log2N N 2 N log2N

32 5 1,024 160

64 6 4,096 384

128 7 16,384 896

256 8 65,536 2,048

512 9 262,144 4,608

1024 10 1,048,576 10,240

2048 11 4,194,304 22,528

4096 12 16,777,216 49,152

split into N subarrays of size 1. Merging two of those subarrays into a subarray of size 2
requires O(1 + 1) = O(2) steps based on the analysis given in the preceding paragraph.
That is, we must perform this merge operation a total of 1

2 N times (we have N one-ele-
ment subarrays and we are merging them two at a time). Thus the total number of steps
to create all of the sorted two-element subarrays is O(N).

We repeat this process to create four-element subarrays. It takes four steps to merge
two two-element subarrays. We must perform this merge operation a total of 1

4 N times
(we have 1

2 N two-element subarrays and we are merging them two at a time). The total
number of steps to create all of the sorted four-element subarrays is O(N) (4 * 1

4 N = N).
The same reasoning leads us to conclude that each of the other levels of merging

also requires O(N) steps. At each level, the sizes of the subarrays double, but the number
of subarrays is cut in half, balancing out.

We now know that it takes a total of O(N) steps to perform merging at each
“level” of merging. How many levels are there? The number of levels of merging is
equal to the number of times we can split the original array in half. If the original
array is size N, we have log2N levels (this is just like the analysis of the binary search
algorithm). For example, in Figure 10.11 the size of the original array is 16 and the
number of levels of merging is 4. Because we have log2N levels, and we require N
steps at each level, the total cost of the merge operation is O(Nlog2N). Because the
splitting phase was only O(N), we conclude that MergeSort has O(Nlog2N) complexity.
Table 10.2 illustrates that, for large values of N, O(Nlog2N) represents a big improve-
ment over O(N2).

The disadvantage of MergeSort derives from the fact that it requires an auxiliary
array that is as large as the original array to be sorted. If the array is large and space is
a critical factor, this sort may not be an appropriate choice. Next, we discuss two sorts
that move elements within the original array and do not need an auxiliary array.

10.1 Sorting | 609

Quick Sort

We used QuickSort as the Case Study for Chapter 7. Like MergeSort, QuickSort is a
“divide-and-conquer” algorithm, which is inherently recursive. We postponed the analy-
sis of QuickSort until this chapter.

The analysis of QuickSort is very similar to that of MergeSort. On the first call,
every element in the array is compared to the dividing value (the “split value”), so the
work done is O(N). The array is divided into two parts (not necessarily halves), which are
then examined.

Each of these pieces is then divided in two, and so on. If each piece is split approxi-
mately in half, O(log2N) splits occur. At each split, we make O(N) comparisons. Thus
QuickSort is also an O(Nlog2N) algorithm, which is quicker than the O(N2) sorts we
discussed earlier in this chapter.

But QuickSort isn’t always quicker. Note that log2N splits take place if each split
divides the segment of the array approximately in half. As we’ve seen, QuickSort is
sensitive to the order of the data.

What happens if the array is already sorted when we call our first version of
QuickSort? The splits are very lopsided, and the subsequent recursive calls to Quick-
Sort break into a segment of one element and a segment containing all the rest of the
array. This situation produces a sort that is not at all quick. In fact, N � 1 splits occur;
in this case, QuickSort has O(N2) complexity.

Such a situation is very unlikely to arise by chance. By way of analogy, consider
the odds of shuffling a deck of cards and coming up with a sorted deck. On the other
hand, in some applications you may know that the original array is likely to be sorted
or nearly sorted. In such cases, you would want to use either a different splitting algo-
rithm or a different sort—maybe even ShortBubble!

What about space requirements? QuickSort does not require an extra array, as
MergeSort does. Does it have any extra space requirements, besides the few local vari-
ables? Yes—remember that QuickSort uses a recursive approach. Many levels of recur-
sion can be “saved” on the system stack at any time. On average, the algorithm requires
O(log2N) extra space to hold this information and in the worst case requires O(N) extra
space, the same as MergeSort.

Heap Sort

In each iteration of the selection sort, we searched the array for the next-smallest ele-
ment and put it into its correct place in the array. Another way to write a selection sort
is to find the maximum value in the array and swap it with the last array element, then
find the next-to-largest element and put it into its place, and so on. Most of the work in
this sorting algorithm comes from searching the remaining part of the array in each
iteration, looking for the maximum value.

In Chapter 9, we discussed the heap, a data structure with a very special feature: We
always know where to find its greatest element. Because of the order property of heaps,
the maximum value of a heap is located in the root node. We can take advantage of this

610 | Chapter 10: Sorting and Searching Algorithms

Figure 10.12 An unsorted array and its tree

719

2 3 100 1

25

3617

25[0]

17[1]

36[2]

2[3]

3[4]

100[5]

1[6]

19[7]

7[8]

values

situation by using a heap to help us sort. The general approach of the heap sort is as
follows:

1. Take the root (maximum) element off the heap, and put it into its place.

2. Reheap the remaining elements. (This action puts the next-largest element into the
root position.)

3. Repeat until no more elements are left.

The first part of this algorithm sounds a lot like the straight selection sort. What
makes the heap sort fast is the second step: finding the next-largest element. Because
the shape property of heaps guarantees a binary tree of minimum height, we make only
O(log2N) comparisons in each iteration, as compared with O(N) comparisons in each
iteration of the selection sort.

Building a Heap By now you are probably protesting that we are dealing with an
unsorted array of elements, not a heap. Where does the original heap come from?
Before we go on, we must convert the unsorted array, values, into a heap.

Let’s look at how the heap relates to our array of unsorted elements. In Chapter 9,
we saw how heaps can be represented in an array with implicit links. Because of the
shape property, we know that the heap elements take up consecutive positions in the
array. In fact, the unsorted array of data elements already satisfies the shape property of
heaps. Figure 10.12 shows an unsorted array and its equivalent tree.

We also need to make the unsorted array elements satisfy the order property of
heaps. First, let’s see whether any part of the tree already satisfies the order property. All
of the leaf nodes (subtrees with only a single node) are heaps. In Figure 10.13(a), the
subtrees whose roots contain the values 19, 7, 3, 100, and 1 are heaps because they are
root nodes.

Next, let’s look at the first nonleaf node, the one containing the value 2 (Figure
10.13b). The subtree rooted at this node is not a heap, but it is almost a heap—all of the

10.1 Sorting | 611

Figure 10.13 The heap-building process

719

2 3 100 1

25

3617

(b)

719

2 3 100 1

25

3617

(a)

Heaps

72

19 3 36 1

25

10017

(d)

72

19 3 100 1

25

3617

(c)

72

17 3 25 1

100

3619

(f) Tree now represents a heap

72

17 3 36 1

25

10019

(e)

nodes except the root node of this subtree satisfy the order property. We know how to
fix this problem. In Chapter 9, we developed a heap utility function, ReheapDown, that
we can use to correct this exact situation. Given a tree whose elements satisfy the order
property of heaps except (perhaps) at the root node, ReheapDown rearranges the nodes,
leaving the (sub)tree as a heap.

We apply this function to all subtrees on this level, then move up a level in the tree and
continue reheaping until we reach the root node. After ReheapDown has been called for the
root node, the entire tree should satisfy the order property of heaps. Figure 10.13 illustrates
this heap-building process; Figure 10.14 shows the changing contents of the array.

(In Chapter 9, we defined ReheapDown to be a member function of HeapType, a
struct type. There, the function had two parameters: the indexes of the root node and

612 | Chapter 10: Sorting and Searching Algorithms

BuildHeap
for index going from first nonleaf node up to the root node

ReheapDown(values, index, numValues - 1)

Figure 10.14 Changing contents of the array

25

25

25

25

100

Original values

After index = 2

After index = 1

After index = 0

Tree is a heap.

After ReheapDown
index = 3

[0]

36

36

100

100

36

[2]

100

100

36

36

25

[5]

17

17

17

19

19

[1]

2

19

19

17

17

[3]

19

2

2

2

2

[7]

3

3

3

3

3

[4]

1

1

1

1

1

[6]

7

7

7

7

7

[8]

the bottom node. Here, we assume a slight variation: ReheapDown is a global function
that takes a third parameter—an array that is treated as a heap.)

The algorithm for building a heap is summarized here:

We know where the root node is stored in our array representation of heaps—in
values[0]. Where is the first nonleaf node? Because half the nodes of a complete
binary tree are leaves (prove this yourself), the first nonleaf node may be found at posi-
tion numValues/2 - 1.

Sorting Using the Heap Now that we are satisfied that we can turn the unsorted array
of elements into a heap, let’s take another look at the sorting algorithm.

We can easily access the largest element from the original heap—it’s in the root
node. In our array representation of heaps, that location is values[0]. This value
belongs in the last-used array position values[numValues - 1], so we can just swap
the values in these two positions. Because values[numValues - 1] contains the
largest value in the array (its correct sorted value), we want to leave this position alone.
Now we are dealing with a set of elements, from values[0] through values[numVal-
ues - 2], that is almost a heap. We know that all of these elements satisfy the order
property of heaps, except (perhaps) the root node. To correct this condition, we call our
heap utility, ReheapDown.

At this point we know that the next-largest element in the array is located in the
root node of the heap. To put this element in its correct position, we swap it with the
element in values[numValues - 2]. Now the two largest elements are in their final
correct positions, and the elements in values[0] through values[numValues - 3]

10.1 Sorting | 613

Sort Nodes
for index going from last node up to next-to-root node

Swap data in root node with values[index]
ReheapDown(values, 0, index - 1)

are almost a heap. We call ReheapDown again, and now the third-largest element is
placed in the root of the heap.

We repeat this process until all of the elements are in their correct positions—that is,
until the heap contains only a single element, which must be the smallest item in the
array, values[0]. This location is its correct position, so the array is now completely
sorted from the smallest to the largest element. Notice that at each iteration the size of
the unsorted portion (represented as a heap) becomes smaller and the size of the sorted
portion becomes larger. At the end of the algorithm, the size of the sorted portion
matches the size of the original array.

The heap sort algorithm, as we have described it, sounds like a recursive process.
Each time through, we swap and reheap a smaller portion of the total array. Because it
uses tail recursion, we can code the repetition just as clearly using a simple for loop. The
node-sorting algorithm follows:

The function HeapSort first builds the heap and then sorts the nodes, using the
algorithms just discussed. Notice that HeapSort does not actually use the struct Heap-
Type. Rather, it uses the ReheapDown function with the array of values passed as a
parameter.

template<class ItemType>
void HeapSort(ItemType values[], int numValues)
// Assumption: Function ReheapDown is available.
// Post: The elements in the array values are sorted by key.
{
int index;

// Convert the array of values into a heap.
for (index = numValues/2 - 1; index >= 0; index--)
ReheapDown(values, index, numValues-1);

// Sort the array.
for (index = numValues-1; index >=1; index--)
{

614 | Chapter 10: Sorting and Searching Algorithms

Figure 10.15 Effect of HeapSort on the array

100

2

25

1

values

Swap
ReheapDown

ReheapDown

Swap

Swap

[0]

7

100

100

100

[8]

19

19

19

19

[1]

36

25

7

7

[2]

17

17

17

17

[3]

3

3

3

3

[4]

25

7

2

2

[5]

1

1

1

25

[6]

2

36

36

7

36

100

100

19

19

36

25

17

17

3

3

25

7

1

1

2

2

36
19

2

7

1

ReheapDown

Swap
ReheapDown

ReheapDown

Swap

Swap

100

100

100

100

17

3

3

3

7

7

2

2

1

1

1

7

3

17

17

17

2

19

19

19

25

25

25

25

36

36

36

2

17

100

100

17

3

7

7

1

1

3

2

19

19

25

25

36

36

36
3

1

1

ReheapDown

Swap
ReheapDown

ReheapDown

Exit from
sorting loop

Swap

100

100

100

1

2

2

2

3

3

7

7

7

17

17

17

19

19

19

25

25

25

36

36

36

2

2

100

100

1

1

3

3

7

7

17

17

19

19

25

25

36

36

[7]

1 1002 3 7 17 19 25 36

Swap(values[0], values[index]);
ReheapDown(values, 0, index-1);

}
}

Figure 10.15 shows how each iteration of the sorting loop (the second for loop)
would change the heap created in Figure 10.14. Each line represents the array after one
operation. The sorted elements are shaded.

We entered the HeapSort routine with a simple array of unsorted values and
returned to the caller with an array of the same values sorted in ascending order. Where
did the heap go? The heap in HeapSort is just a temporary structure, internal to the
sorting algorithm. It is created at the beginning of the function, to aid in the sorting
process, and then is methodically diminished element by element as the sorted part of
the array grows. At the end of the function, the sorted part fills the array and the heap
has completely disappeared. When we used heaps to implement priority queues in Chap-
ter 9, the heap structure stayed around for the duration of the use of the queue. The
heap in HeapSort, in contrast, is not a retained data structure. It exists only for a while
inside the HeapSort function.

10.1 Sorting | 615

Analyzing the Heap Sort The code for HeapSort is very short—only a few lines of
new code plus the utility function ReheapDown, which we developed in Chapter 9.
These few lines of code, however, do quite a bit. All of the elements in the original
array are rearranged to satisfy the order property of heaps, moving the largest element
up to the top of the array, only to put it immediately into its place at the bottom. It’s
difficult to believe from a small example such as the one in Figure 10.15 that HeapSort
is really very efficient.

In fact, for small arrays, HeapSort is not very efficient because of its “overhead.” For
large arrays, however, HeapSort is very efficient. Consider the sorting loop. We loop
through N � 1 times, swapping elements and reheaping. The comparisons occur in
ReheapDown. A complete binary tree with N nodes has O(log2(N + 1)) levels. In the worst
case, then, if the root element has to be bumped down to a leaf position, the ReheapDown
function would make O(log2N) comparisons; the function ReheapDown is O(log2N). Multi-
plying this activity by the N � 1 iterations, O(N), shows that the sorting loop is O(Nlog2N).

Combining the original heap build operation, which is O(N), and the sorting loop,
we can see that HeapSort requires O(Nlog2N) comparisons. Note that, unlike Quick-
Sort, HeapSort’s efficiency is not affected by the initial order of the elements. Heap-
Sort is just as efficient in terms of space; it uses only one array to store the data.

Testing

We have examined several sorting algorithms: selection sort, two versions of bubble
sort, insertion sort, merge sort, two versions of quick sort, and heap sort. Before we
examine other issues involved in sorting, we need to verify that our algorithms are cor-
rect. We can use the same pattern that we have used for earlier ADTs. We can take as
input the name of a sorting algorithm, apply that algorithm to an array of values, and
print the results. We need to initialize an array with random numbers, refresh the array
after it has been sorted, and generate an array of new values.

On the Web, the file SortDr.cpp contains the test driver. The file Sorts.in contains
a test plan that generates an array, applies each of the algorithms to it, generates a second
array, and applies one of the algorithms. Sorts.out holds the output from the driver, and
Sorts.screen holds what was written on the screen. Examine these files carefully. Be sure
you understand them. You are asked to design a more involved test plan in the exercises.

Other Efficiency Considerations

When N Is Small Throughout this chapter, we have based our analysis of efficiency on
the number of comparisons made by a sorting algorithm. This number gives us a rough

Unsorted
data in array

Same values
reordered
(sorted)

Same values
rearranged
into a heap
for sorting

Enter HeapSort Exit HeapSort

616 | Chapter 10: Sorting and Searching Algorithms

estimate of the computation time involved. The other activities that accompany the
comparison (swapping, keeping track of Boolean flags, and so forth) contribute to the
“constant of proportionality” of the algorithm.

In comparing Big-O evaluations, we ignored constants and smaller-order terms,
because we wanted to know how the algorithm would perform for large values of N. In
general, an O(N2) sort requires few extra activities in addition to the comparisons, so its
constant of proportionality is fairly small. On the other hand, an O(Nlog2N) sort may be
more complex, with more overhead and thus a larger constant of proportionality. This
situation may cause anomalies in the relative performances of the algorithms when the
value of N is small. In such a case, N2 is not much greater than Nlog2N, and the con-
stants may dominate instead, causing an O(N2) sort to run faster than an O(Nlog2N) sort.

We have discussed sorting algorithms that have a complexity of either O(N2) or
O(Nlog2N). The obvious question is: Are some algorithms better than O(Nlog2N)? No, it
has been proven theoretically that we cannot do better than O(Nlog2N) for sorting algo-
rithms that are based on comparing keys.

Eliminating Calls to Functions At the beginning of this chapter, we mentioned that it
may be desirable, for efficiency reasons, to streamline the code as much as possible,
even at the expense of readability. For instance, we have consistently written

Swap(item1, item2)

instead of the corresponding inline expansion:

tempItem = item1;
item1 = item2;
item2 = temp;

Similarly, in SelectionSort, we coded the operation to find the minimum element
as a function, MinIndex; in BubbleSort, we coded a function BubbleUp. Coding such
operations as functions made the code simpler to write and to understand, avoiding a
more complicated nested loop structure.

Although the function calls are clearer, in the actual coding it may be better to use
the inline expansion. Function calls require extra overhead that you may prefer to avoid
in a sort, where these routines are called within a loop.

The recursive sorting functions, MergeSort and QuickSort, lead to a similar situa-
tion: They require the extra overhead involved in executing recursive calls. You may
want to avoid this overhead by writing nonrecursive versions of these functions.

Programmer Time If the recursive calls are less efficient, why would anyone ever
decide to use a recursive version of a sort? The decision involves a choice between types
of efficiency. Until now, we have been concerned only with minimizing computer time.
While computers are becoming faster and cheaper, however, it is not clear that
computer programmers are following that trend. In some situations, programmer time
may be an important consideration in choosing a sort algorithm and its implemen-

10.1 Sorting | 617

tation. In this respect, the recursive version of QuickSort is more desirable than its
nonrecursive counterpart, which requires the programmer to simulate the recursion
explicitly.

Space Considerations Another efficiency consideration relates to the amount of
memory space required. In general, memory space is not a very important factor in
choosing a sorting algorithm. We looked at only one sort, MergeSort, in which space
would be a major factor. The usual time versus space tradeoff applies to sorts—more
space often means less time, and vice versa.

Because processing time is the factor that applies most often to sorting algorithms,
we have considered it in detail here. Of course, as in any application, the programmer
must determine his or her goals and requirements before selecting an algorithm and
starting to code.

More About Sorting in General

Keys In our descriptions of the various sorts, we showed examples of sorting arrays
using unique keys. A record may also contain secondary keys, which may or may not
be unique. For instance, a student record may contain the following data members:

studentNumber Primary unique key
name

address Secondary keys
major

If the data elements are only single inte-
gers, it doesn’t matter whether you maintain
the original order of duplicate values. However,
preserving the original order of records with
identical key values may be desirable. If a sort
preserves this order, it is said to be stable.

Suppose the items on our array are student records with the following declarations:

struct AddressType
{
.
.
.
StrType city;
long zip;

};

struct NameType
{
StrType firstName;
StrType lastName;

};

}
Stable sort A sorting algorithm that preserves the order
of duplicates

618 | Chapter 10: Sorting and Searching Algorithms

struct PersonType
{
long studentNumber;
NameType name;
AddressType address;

};

The list may normally be sorted by the unique key studentNumber. For some pur-
poses, we might want to see a listing in order by name. In this case, the sort key would
consist of the name data member. To sort by ZIP code, we would sort on the
address.zip data member.

If the sort is stable, we can get a listing by ZIP code, with the names in alphabetical
order within each ZIP code, by sorting twice: the first time by name and the second time
by ZIP code. A stable sort preserves the order of the records when a match on the key is
found. The second sort, by ZIP code, produces many such matches, but preserves the
alphabetical order imposed by the first sort.

To get a listing by city, with the ZIP codes in order within each city and the
names alphabetically sorted within each ZIP code, we would sort three times, on the
following keys:

name
address.zip
address.city

The file would first be put into alphabetical order by name. The output from the
first sort would serve as input to a sort on ZIP code. The output from this sort would
serve as input to a sort on city name. If the sorting algorithms used were stable, the
final sort would give us the desired result.

Of the sorts that we have discussed in this book, only HeapSort is inherently
unstable. The stability of the other sorts depends on how the code manages duplicate
values. In the exercises you are asked to examine the code for the other sorts as we have
coded them and determine whether they are stable.

Sorting with Pointers Sorting large records using some kind of sort that swaps the
contents of two places may require a lot of computer time just to move sections of
memory from one place to another every time we make a swap. We can reduce this
move time by setting up an array of pointers to the records and then rearranging the
pointers instead of the actual records. Figure 10.16 illustrates this scheme. After the
sort, the records are still in the same physical arrangement, but they may be accessed in
order through the rearranged array of pointers.

We may extend this scheme to keep a large array of data sorted on more than one
key. The data can be physically stored according to the primary key, and auxiliary
arrays can contain pointers to the same data but be sorted on secondary keys.

10.2 Searching | 619

Figure 10.16 Sorting arrays with pointers

B

D

A

Z

X

[0]

[1]

[2]

[3]

[4]

(a) Before sorting

B

D

A

Z

X

[0]

[1]

[2]

[3]

[4]

(b) After sorting

10.2 Searching

As discussed in Chapter 2, for each particular structure used to hold data, the functions
that allow access to elements in the structure must be defined. In some cases, access is
limited to the elements in specific positions in the structure, such as the top element in a
stack or the front element in a queue. Often, when data are stored in a list or a table, we
want to be able to access any element in the structure.

Sometimes the retrieval of a specified element can be performed directly. For
instance, the fifth element of the list stored sequentially in an array-based list called
list is found in list.info[4]. Often, however, you want to access an element
according to some key value. For instance, if a list contains student records, you may
want to find the record of the student named Suzy Brown or the record of the student
whose ID number is 203557. In cases such as these, you need some kind of searching
technique to retrieve the desired record.

For each of the techniques we review or introduce, our algorithm must meet the fol-
lowing specifications. Note that we are talking about techniques within the class, not
client code.

FindItem(item, location)

Function: Determines whether an item in the list has a key
that matches item’s.

Preconditions: List has been initialized.
item’s key has been initialized.

Postconditions: location = position of element whose key
matches item’s key, if it exists; otherwise, loca-
tion = NULL.

This specification applies to both array-based and linked lists, where location
would be either an index in an array-based list or a pointer in a linked list, and NULL
would be either �1 in an array-based list or the null pointer in a linked list.

620 | Chapter 10: Sorting and Searching Algorithms

LinearSearch (unsorted data)
Initialize location to position of first item
Set found to false
Set moreToSearch to (have not examined Info(last))
while moreToSearch AND NOT found

if item equals Info(location)
Set found to true

else
Set location to Next(location)
Set moreToSearch to (have not examined Info(last))

if NOT found
Set location to NULL

Linear Searching

We cannot discuss efficient ways to find an element in a list without considering how
the elements were inserted into the list. Therefore, our discussion of search algorithms
must deal with the issue of the list’s InsertItem operation. Suppose that we want to
insert elements as quickly as possible, and we are not equally concerned with how long
it takes to find them. We would put the element into the last slot in an array-based list
and the first slot in a linked list. These are O(1) insertion algorithms. The resulting list is
sorted according to the time of insertion, not according to key value.

To search this list for the element with a given key, we must use a simple linear (or
sequential) search. Beginning with the first element in the list, we search for the desired
element by examining each subsequent item’s key until either the search is successful or
the list is exhausted.

Based on the number of comparisons, it should be obvious that this search is O(N),
where N represents the number of elements. In the worst case, in which we are looking
for the last element in the list or for a nonexistent element, we make N key compar-
isons. On the average, assuming that there is an equal probability of searching for any
item in the list, we make N/2 comparisons for a successful search; that is, we search half
of the list.

High-Probability Ordering

The assumption of equal probability for every element in the list is not always valid.
Sometimes certain list elements are in much greater demand than others. This observa-
tion suggests a way to improve the search: Put the most-often-desired elements at the
beginning of the list. Using this scheme, you are more likely to have a hit in the first
few tries, and rarely do you have to search the whole list.

10.2 Searching | 621

If the elements in the list are not static or if you cannot predict their relative
demand, you need some scheme to keep the most frequently used elements at the front
of the list. One way to accomplish this goal is to move each element accessed to the
front of the list. Of course, this scheme offers no guarantee that this element is later fre-
quently used. If the element is not retrieved again, however, it drifts toward the end of
the list as other elements move to the front. This scheme is easy to implement for linked
lists, requiring only a couple of pointer changes, but it is less desirable for lists kept
sequentially in arrays, because of the need to move all the other elements down to make
room at the front.

A second approach, which causes elements to move toward the front of the list gradu-
ally, is appropriate for either linked or sequential list representations. As an element is
found, it is swapped with the element that precedes it. Over many list retrievals, the most
frequently desired elements tend to be grouped at the front of the list. To implement this
approach, we need to modify only the end of the algorithm to exchange the found ele-
ment with the one before it in the list (unless it is the first element). If the search operation
was implemented as a const function and we made this modification, we would have to
remove the const declaration, as the search operation actually changes the list. This mod-
ification should be documented; it is an unexpected side effect of searching the list.

Keeping the most active elements at the front of the list does not affect the worst
case; if the search value is the last element or is not in the list, the search still takes N
comparisons. It is still an O(N) search. The average performance on successful searches
should improve, however. Both of these algorithms depend on the assumption that some
elements in the list are used much more often than others. If this assumption does not
hold true, a different ordering strategy is needed to improve the efficiency of the search
technique.

Lists in which the relative positions of the elements are changed in an attempt to
improve search efficiency are called self-organizing or self-adjusting lists.

Key Ordering

If a list is sorted according to the key value, we can write more efficient search routines.
To support a sorted list, we must either insert the elements in order or sort the list before
searching it. (Inserting the elements in order is an O(N2) process, as each insertion is
O(N). If we insert each element into the next free slot and then sort the list with a
“good” sort, the process has O(Nlog2N) complexity.)

If the list is sorted, a sequential search no longer needs to search the whole list to
discover that an element does not exist. Rather, it needs to search only until it has
passed the element’s logical place in the list—that is, until it encounters an element with
a larger key value. Versions of the Sorted List ADT in Chapters 3 and 5 implement this
search technique.

The advantage of linear searching of a sorted list is the ability to stop searching before
the list is exhausted if the element does not exist. Again, the search is O(N)—the worst case,
searching for the largest element, still requires N comparisons. The average number of
comparisons for an unsuccessful search is now N/2, however, instead of a guaranteed N.

The advantage of linear searching lies in its simplicity. The disadvantage relates to
its performance: In the worst case, you make N comparisons. If the list is sorted and

622 | Chapter 10: Sorting and Searching Algorithms

stored in an array, however, you can improve the search time to a worst case of O(log2N)
with a binary search. In this instance, efficiency is improved at the expense of simplicity.

Binary Searching

We have seen a way to improve searching efficiency from O(N) to O(log2N). If the data
elements are sorted and stored sequentially in an array, we can use a binary search. The
binary search algorithm improves the search efficiency by limiting the search to the area
where the element might be. It takes a divide-and-conquer approach, continually paring
down the area to be searched until either the element is found or the search area is gone
(the element is not in the list). We developed the BinarySearch function in Chapter 3
and converted it to a recursive function in Chapter 7.

The binary search is not guaranteed to be faster for searching very small lists. Even
though the binary search generally requires fewer comparisons, each comparison
involves more computation. When N is very small, this extra work (the constants and
smaller terms that we ignore in determining the Big-O approximation) may dominate.
Although the algorithm requires fewer comparisons, each involves more processing. For
instance, in one assembly-language program, the linear search required 5 time units per
comparison, whereas the binary search took 35. For a list containing 16 elements, there-
fore, the worst-case linear search would require 5 * 16 = 80 time units. The worst-case
binary search requires only 4 comparisons, but at 35 time units each, the comparisons
take 140 time units. In cases where the list contains a small number of elements, a lin-
ear search is certainly adequate and sometimes faster than a binary search.

As the number of elements increases, however, the disparity between the linear
search and the binary search grows very quickly. Look back at Table 3.1 to compare the
rates of growth for the two algorithms.

The binary search discussed here is appropriate only for list elements stored in a
sequential array-based representation. After all, how can you efficiently find the mid-
point of a linked list? However, you already know of a structure that allows you to per-
form a binary search on a linked data representation, the binary search tree. The
operations used to search a binary tree are discussed in Chapter 8.

10.3 Hashing

So far, we have succeeded in paring down our O(N) search to O(log2N) complexity by
keeping the list sorted sequentially with respect to the key value. That is, the key in the
first element is less than (or equal to) the key in the second element, which is less than
the key in the third element, and so on. Can we do even better? Is it possible to design a
search of O(1)—that is, one that has a constant search time, no matter where the element
is located in the list?

In theory, that goal is not an impossible dream. Let’s look at an example, a list of
employees of a fairly small company. Each of the 100 employees has an ID number in the
range 0 to 99, and we want to access the employee records using the key idNum. If we store
the elements in an array that is indexed from 0 to 99, we can directly access any employee’s
record through the array index. There is a one-to-one correspondence between the element
keys and the array index; in effect, the array index functions as the key of each element.

In practice, however, this perfect relationship between the key value and the loca-
tion of an element is not easy to establish or maintain. Consider a similar small com-
pany that uses its employees’ five-digit ID number as the primary key. Now the range of
key values goes from 00000 to 99999. Obviously, it is impractical to set up an array of
100,000 elements, of which only 100 are needed, just to make sure that each employee’s
element is in a perfectly unique and predictable location.

What if we keep the array size down to the size that we actually need (an array of
100 elements) and use just the last two digits of the key to identify each employee? For
instance, the element of employee 53374 is in employeeList.info[74], and the ele-
ment of employee 81235 is in employeeList.info[35]. Note that the elements are
not sorted according to the value of the key as they were in our earlier discussion; the
position of employee 81235’s record precedes that of employee 53374 in the array, even
though the value of its key is larger. Instead, the elements are sorted with respect to
some function of the key value.

This function is called a hash function,
and the search technique we are using is
called hashing. In the case of the employee
list, the hash function is (Key % 100). The key
(idNum) is divided by 100, and the remainder
is used as an index into the array of employee
elements, as illustrated in Figure 10.17. This
function assumes that the array is indexed
from 0 to 99 (MAX_ITEMS = 100). The func-
tion to perform the conversion of key values to indexes is very simple:

int ItemType::Hash() const
// Post: Returns an integer between 0 and MAX_ITEMS - 1.
{
return (idNum % MAX_ITEMS);

}

Here we assume that Hash is a member function of ItemType, the type of the items in
the list, and that idNum is a data member of ItemType.

This hash function has two uses. First, it is used as a method of accessing the list
element. The result of the hash function tells us where to look for a particular element—
information we need to retrieve, modify, or delete the element. Here, for example, is a
simple version of the function RetrieveItem, which assumes that the element is pres-
ent in the list:

template<class ItemType>
void ListType<ItemType>::RetrieveItem(ItemType& item)
// Post: Returns the element in the array at position
// item.Hash().
{

10.3 Hashing | 623

Hash function A function used to manipulate the key of
an element in a list to identify its location in the list

Hashing The technique used for ordering and accessing
elements in a list in a relatively constant amount of time
by manipulating the key to identify its location in the list

624 | Chapter 10: Sorting and Searching Algorithms

Figure 10.17 Using a hash function to determine the location of the element in an array

[00]

[01]

[02]

[03]

[04]

[99]

employeeList.info

Key = 50704

[4]

Hash function:
Key % 100

•
•

•

•
•

•

int location;

location = item.Hash();
item = info[location];

}

Second, the hash function determines where in the array to store the element. If the
employee list elements were inserted into the list using an insert operation from Chapter
3—into sequential array slots or into slots with their relative order determined by the
key value—we could not use the hash function to retrieve them. We have to create a
version of an insert operation that puts each new element into the correct slot according
to the hash function. Here is a simple version of InsertItem, which assumes that the
array slot at the index returned from the hash function is not in use:

template<class ItemType>
void ListType<ItemType>::InsertItem(ItemType item)
// Post: item is stored in the array at position item.Hash().
{
int location;

location = item.Hash();
info[location] = item;
length++;

}

10.3 Hashing | 625

Figure 10.18 Comparing hashed and sequential lists of identical elements

31300[00]

49001[01]

52202[02]

Empty[03]

12704[04]

Empty[05]

65606[06]

Empty[07]

(a) Hashed

12704[00]

31300[01]

49001[02]

52202[03]

65606[04]

Empty[05]

Empty[06]

Empty[07]

(b) Linear

•
•

•

•
•

•

•
•

•

•
•

•

Figure 10.18(a) shows an array whose elements—records for the employees with the
key values (unique ID numbers) 12704, 31300, 49001, 52202, and 65606—were added
using InsertItem. Note that this function does not fill the array positions sequentially.
Because we have not yet inserted any elements whose keys produce the hash values 3
and 5, the array slots [3] and [5] are logically “empty.” This technique differs from the
approach we used in Chapter 3 to create a sorted list. In Figure 10.18(b), the same
employee records have been inserted into a sorted list using the InsertItem operation
from Chapter 3. Note that, unless the hash function was used to determine where to
insert an element, the hash function is useless for finding the element.

Collisions

By now you are probably objecting to this scheme on the grounds that it does not guar-
antee unique hash locations. For example, ID number 01234 and ID number 91234 both
“hash” to the same location: list.info[34].
The problem of avoiding these collisions rep-
resents the biggest challenge in designing a
good hash function. A good hash function
minimizes collisions by spreading the ele-
ments uniformly throughout the array. We
say “minimizes collisions,” because it is extremely difficult to avoid them completely.

Assuming that some collisions will occur, where do you store the elements that
cause them? We briefly describe several popular collision-handling algorithms in the
next sections. Note that the scheme used to find the place to store an element deter-
mines the method subsequently used to retrieve it.

Linear Probing A simple approach to
resolving collisions is to store the colliding
element in the next available space. This
technique is known as linear probing. In the

Collision The condition resulting when two or more keys
produce the same hash location

Linear probing Resolving a hash collision by sequen-
tially searching a hash table beginning at the location
returned by the hash function

626 | Chapter 10: Sorting and Searching Algorithms

Figure 10.19 Handling collisions with linear probing

First free slot

Add element
with key = 77003

[3]

Hash function:
Key % 100

Empty[00]

Element with key = 14001[01]

Empty[02]

Element with key = 50003[03]

Element with key = 00104[04]

Empty[05]

Element with key = 79606[06]

Empty[07]

Empty[08]

Element with key = 33099[99]

•
•

•

•
•

•

situation depicted in Figure 10.19, we want to add the employee element with the key
ID number 77003. The hash function returns 3. But there is already an element stored in
this array slot, the record for Employee 50003. We increment location to 4 and
examine the next array slot. The list.info[4] entry is also in use, so we increment
location again. This time we find an empty slot, so we store the new element into
list.info[5].

What happens if the key hashes to the last index in the array and that space is in
use? We can consider the array to be a circular structure and continue looking for an
empty slot at the beginning of the array. This situation is similar to the circular array-
based queue we developed in Chapter 4. There we used the % operator when we incre-
mented our index. We can use similar logic here.

How do we know whether an array slot is “empty”? We can initialize the array slot
to contain a special emptyItem value. This value (a parameter to the class constructor)
must be syntactically legal, but semantically illegal. For instance, if all employees have
nonnegative integer idNum keys, we can use -1 as the key value for an “empty” slot.
Now it is easy to tell whether the slot is free: We just compare the value in the position
to emptyItem.

The following version of InsertItem uses linear probing to find a place to store a
new element. It assumes that the array has room for another element; that is, the client
checks for IsFull before calling the function. (We have retained the length member
of ListType. Even though it no longer tells us where to find the end of the list, it is
still useful in determining whether the list is full.)

10.3 Hashing | 627

template<class ItemType>
void ListType<ItemType>::InsertItem(ItemType item)
// Post: item is stored in the array at position item.Hash()
// or the next free spot.
{
int location;

location = item.Hash();
while (info[location] != emptyItem)
location = (location + 1) % MAX_ITEMS;

info[location] = item;
length++;

}

To search for an element using this collision-handling technique, we perform the
hash function on the key, then compare the desired key to the actual key in the element
at the designated location. If the keys do not match, we use linear probing, beginning at
the next slot in the array. Following is a version of the function RetrieveItem that
uses this approach. If the element is not found in the list, the outgoing parameter found
is false, and item is undefined.

template<class ItemType>
void ListType<ItemType>::RetrieveItem(ItemType& item, bool& found)
{
int location;
int startLoc;
bool moreToSearch = true;

startLoc = item.Hash();
location = startLoc;
do
{
if (info[location] == item || info[location] == emptyItem)
moreToSearch = false;

else
location = (location + 1) % MAX_ITEMS;

} while (location != startLoc && moreToSearch);
found = (info[location] == item);
if (found)
item = info[location];

}

628 | Chapter 10: Sorting and Searching Algorithms

Figure 10.20 A hash program with linear probing

Order of Insertion:

Empty[00]

Element with key = 14001[01]

Empty[02]

Element with key = 50003[03]

Element with key = 00104[04]

Element with key = 77003[05]

Element with key = 42504[06]

Empty[07]

Empty[08]

Element with key = 33099[99]

14001

00104

50003

77003

42504

33099

•
•

•

•
•

•

•
•

•

Delete
Set location to item.Hash()
Set info[location] to emptyItem

We have discussed the insertion and retrieval of elements in a hash table, but we
have not yet mentioned how to delete an element from the table. If we did not need to
concern ourselves with collisions, the deletion algorithm would be simple:

Collisions, however, complicate matters. We can find the element using the same
search approach as we used for RetrieveItem. But when we locate the element in the
hash table, we cannot merely replace the item with emptyItem. A review of
RetrieveItem shows the problem. In the loop, the detection of an empty slot ends the
search. If DeleteItem “empties” the slot occupied by a deleted element, we may termi-
nate a subsequent search prematurely.

Let’s look at an example. In Figure 10.20, suppose we delete the element with the
key 77003 by setting the array slot [5] to emptyItem. A subsequent search for the ele-
ment with the key 42504 would begin at the hash location [4]. The record in this slot is
not the one we are looking for, so we increment the hash location to [5]. This slot,
which was formerly occupied by the record that we deleted, is now empty (contains
emptyItem), so we terminate the search. We haven’t really finished searching, how-
ever—the record that we want is found in the next slot.

One solution to this problem is to create a third constant value, deletedItem, to
use in slots that were occupied by deleted records. If a slot contains deletedItem, it
means that this slot is currently free but was previously occupied.

10.3 Hashing | 629

With this change, we must modify both the insertion and the retrieval operations to
process slots correctly. The insertion algorithm treats a slot with deletedItem and
emptyItem in the same way; the search for an available slot for the new element ends.
emptyItem halts the search in the function RetrieveItem, but deletedItem does not.

This solution corrects the search problem, but produces another dilemma: After many
deletions, the search “path” to a record may travel through many array slots with deleted–
Item. This “wandering” may cause the efficiency of retrieving an element to deteriorate.
These problems illustrate that a hash table, in the forms that we have studied thus far, is
not the most effective data structure for implementing lists whose elements may be deleted.

Clustering One problem with linear probing is
that it results in a situation called clustering. A
good hash function produces a uniform
distribution of indexes throughout the array’s
index range. Initially, therefore, records are
inserted throughout the array, with each slot
being equally likely to be filled. Over time, after a number of collisions have been resolved,
the distribution of records in the array becomes less and less uniform. The records tend to
cluster together, as multiple keys begin to compete for a single hash location.

Consider the hash table in Figure 10.20. Only a record whose key produces the hash
value 8 would be inserted into array slot [8]. However, any records with keys that pro-
duce the hash values 3, 4, 5, 6, or 7 would be inserted into array slot [7]. That is, array
slot [7] is five times as likely as array slot [8] to be filled. Clustering results in inconsis-
tent efficiency of insertion and retrieval operations.

Rehashing The technique of linear probing
discussed here is an example of collision
resolution by rehashing. If the hash function
produces a collision, the hash value serves as
the input to a rehash function to compute a
new hash value. In the previous section, we
added 1 to the hash value to create a new
hash value; that is, we used the rehash function:

(HashValue + 1) % 100

For rehashing with linear probing, you can use any function

(HashValue + constant) % array-size

as long as constant and array-size are relatively prime—that is, if the largest number
that divides both of them evenly is 1. For instance, given the 100-slot array in Figure
10.21, we might use the constant 3 in the rehash function:

(HashValue + 3) % 100

Clustering The tendency of elements to become
unevenly distributed in the hash table, with many ele-
ments clustering around a single hash location

Rehashing Resolving a collision by computing a new
hash location from a hash function that manipulates the
original location rather than the element’s key

630 | Chapter 10: Sorting and Searching Algorithms

Figure 10.21 Handling collisions with rehashing

Add element
with key = 14001

[01]

Hash function:
Key % 100

Empty[00]

Element with key = 44001[01]

Empty[02]

Element with key = 50003[03]

Element with key = 42004[04]

Element with key = 77005[05]

Empty[06]

Element with key = 12007[07]

Empty[08]

Element with key = 66009[09]

Empty[10]

Element with key = 33999[99]

•
•

•

•
•

•

(Although 100 is not a prime number, 3 and 100 are relatively prime; they have no
common factor larger than 1.)

Suppose that we want to add a record with the key 14001 to the hash table in Fig-
ure 10.21. The original hash function (Key % 100) returns the hash value 1, but this
array slot is already in use; it contains the record with the key 44001. To determine the
next array slot to try, we apply the rehash function using the results of the first hash
function as input: (1 + 3) % 100 = 4. The array slot at index [4] is also in use, so we
reapply the rehash function until we find an available slot. Each time, we use the value
computed from the previous rehash as input to the rehash function. The second rehash
gives us (4 + 3) % 100 = 7; this slot is in use, too. The third rehash gives us (7 + 3)
% 100 = 10; the array slot at index [10] is empty, so the new element is inserted there.

To understand why the constant and the number of array slots must be relatively
prime, consider the rehash function

(HashValue + 2) % 100

We want to add the record with the key 14001 to the hash table pictured in Figure
10.21. The original hash function, Key % 100, returns the hash value 1. This array slot is
already occupied. We resolve the collision by applying the rehash function above,
examining successive odd-numbered indexes until a free slot is found. What happens if
all of the slots with odd-numbered indexes are already in use? The search would fail—
even though the hash table includes free slots with even-numbered indexes. This rehash
function does not cover the full index range of the array. However, if the constant and
the number of array slots are relatively prime (like 3 and 100), the function produces
successive rehashes that eventually cover every index in the array.

Rehash functions that use linear probing do not eliminate clustering (although the
clusters are not always visually apparent in a figure). For example, in Figure 10.21, any
record with a key that produces the hash value 1, 4, 7, or 10 would be inserted into the
slot at index [10].

10.3 Hashing | 631

In linear probing, we add a constant
(usually 1) in each successive application of
the rehash function. A second approach,
called quadratic probing, makes the result of
rehashing dependent on how many times the
rehash function has been applied. In the Ith
rehash, the function is

(HashValue � I2) % array-size

The first rehash adds 1 to HashValue, the second rehash subtracts 1 from HashValue,
the third rehash adds 4, the fourth subtracts 4, and so on. Quadratic probing reduces
clustering, but it does not necessarily examine every slot in the array. For example, if
array-size is a power of 2 (512 or 1,024, for example), relatively few array slots are
examined. If array-size is a prime number of the form (4 * some-integer + 3), however,
quadratic probing does examine every slot in the array.

A third approach uses a pseudo-random number generator to determine the incre-
ment to HashValue in each application of the rehash function. Random probing is an
excellent technique for eliminating clustering, but it tends to be slower than the other
techniques we have discussed.

Buckets and Chaining Another alternative for handling collisions is to allow multiple
element keys to hash to the same location. One solution is to let each computed hash
location contain slots for multiple elements,
rather than just a single element. Each of
these multi-element locations is called a
bucket. Figure 10.22 shows a hash table with
buckets that can hold three elements each.
Using this approach, we can allow collisions
to produce duplicate entries at the same hash
location, up to a point. When the bucket
becomes full, we must again deal with the problem of handling collisions.

Another solution, which avoids this problem, is to use the hash value not as the
actual location of the element, but rather as the index into an array of pointers. Each
pointer accesses a chain of elements that share the same hash location. Figure 10.23
illustrates this solution to the problem of collisions. Rather than rehashing, we simply
allow both elements to share hash location [3]. The entry in the array at this location
contains a pointer to a linked list that includes both elements.

To search for a given element, you first apply the hash function to the key and then
search the chain for the element. Searching is not eliminated, but it is limited to ele-
ments that actually share a hash location. In contrast, with linear probing you may have
to search through many additional elements if the slots following the hash location are
filled with elements from collisions on other hash locations.

Figure 10.24 compares the chaining and hash-and-search schemes. The elements
were added in the order shown on the next page.

Quadratic probing Resolving a hash collision by
using the rehashing formula (HashValue � I2) %
array-size, where I is the number of times that the
rehash function has been applied

Random probing Resolving a hash collision by generat-
ing pseudo-random hash values in successive applications
of the rehash function

Bucket A collection of elements associated with a par-
ticular hash location

Chain A linked list of elements that share the same hash
location

632 | Chapter 10: Sorting and Searching Algorithms

Figure 10.22 Handling collisions by hashing with buckets

Add element
with key = 77003

[3]

Hash function:
Key % 100

Empty[00]

Element with key = 14001[01]

Empty[02]

Element with key = 50003[03]

Element with key = 00104[04]

Empty[05]

Element with key = 56399[99]

Empty

Element with key = 72101

Empty

Add new element here

Element with key = 30504

Empty

Element with key = 32199

Empty

Empty

Empty

Empty

Element with key = 56004

Empty

Empty

•
•

•

•
•

•

•
•

•

•
•

•

Figure 10.23 Handling collisions by hashing with chaining

Add element
with key = 77003

[3]

Hash function:
Key % 100

[00]

[01]

[02]

[03]

[04]

[05]

[99]

Element with key = 14001

Element with key = 50003

Element with key = 00104

Element with key = 33099

Add element
with key =
77003 here.

•
•

•

•
•

•

45300
20006
50002
40000
25001
13000
65905
30001
95000

Figure 10.24(a) depicts the linear probing approach to collision handling; Figure
10.24(b) shows the result of chaining the colliding elements. Let’s search for the element
with the key 30001.

Using linear probing, we apply the hash function to get the index [1]. Because
list.info[1] does not contain the element with the key 30001, we search sequen-
tially until we find the element in list.info[7].

Using the chaining approach, we apply the hash function to get the index [1].
list.info[1] directs us to a chain of elements whose keys hash to 1. We search this
linked list until we find the element with the desired key.

10.3 Hashing | 633

Another advantage of chaining is that it simplifies the deletion of records from the
hash table. We apply the hash function to obtain the index of the array slot that con-
tains the pointer to the appropriate chain. The node can then be deleted from this chain
using the linked-list algorithm from Chapter 5.

Choosing a Good Hash Function

One way to minimize collisions is to use a data structure that has more space than is actu-
ally needed for the number of elements, so as to increase the range of the hash function. In
practice it is desirable to have the array size somewhat larger than the number of elements
required, thereby reducing the number of collisions.

Selecting the table size involves a space versus time tradeoff. The larger the range
of hash locations, the less likely that two keys will hash to the same location. However,
allocating an array that contains a large number of empty slots wastes space.

More importantly, you can design your hash function to minimize collisions. The
goal is to distribute the elements as uniformly as possible throughout the array. There-
fore you want your hash function to produce unique values as often as possible. Once
you admit collisions, you must introduce some sort of searching, either through array or
chain searching or through rehashing. The access to each element is no longer direct,
and the search is no longer O(1). In fact, if the collisions cause very disproportionate
chains, the worst case may be almost O(N)!2

To avoid such a situation, you need to know something about the statistical distri-
bution of keys. Imagine a company whose employee records are sorted based on a six-
digit company ID. The company has 500 employees, and we decide to use a chained

Figure 10.24 Comparison of linear probing and chaining schemes

[00]

(b) Chaining

[01]

[02]

[03]

[04]

[05]

[06]

[99]

[00]

(a) Linear Probing

[01]

[02]

[03]

[04]

[05]

[06]

[07]

[08]

[99]

Key = 45300 45300

Key = 40000

Key = 50002

Key = 25001

Key = 13000

Key = 65905

Key = 20006

25001

50002

65905

20006
Key = 30001

Key = 95000

40000 13000 95000

30001

•
•

•

•
•

•

•
•

•

•
•

•

2This is O(N) “exclamation point,” not O(N) factorial, as one long-ago student complained when he got the
answer wrong on a quiz.

634 | Chapter 10: Sorting and Searching Algorithms

Figure 10.25 Hash scheme to handle employee records

[00]

(a) The plan

[01]

[02]

[03]

[99]

Average 5 records/chain
5 records � 100 chains = 500 employees
Expected search — 0(5)

376 employees hired in 1987
97 employees hired in 1988
27 employees hired in 1989

[87]

[88]

[89]

376 records

97 records

27 records

[99]

[00]

(b) The reality

No records

No records

[01]

[02]

500 employees
Actual search 0(N)

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

•
•

•

approach to handle collisions. We set up 100 chains (expecting an average of five ele-
ments per chain) and use the hash function

idNum % 100

That is, we use the last two digits of the six-digit ID number as our index. The planned
hash scheme is shown in Figure 10.25(a). Figure 10.25(b) shows what happened when
we implemented the hash scheme. How could the distribution of the elements have

10.3 Hashing | 635

come out so skewed? It turns out that the company’s ID number is a concatenation of
three fields:

The hash scheme depended solely on the year hired to produce hash values.
Because the company was founded in 1987, all the elements were crowded very dispro-
portionately into a small subset of the hash locations. A search for an employee ele-
ment, in this case, is O(N). Although this is an exaggerated example, it illustrates the
need to understand as completely as possible the domain and predicted values of keys
in a hash scheme.

Division Method The most common hash functions use the division method (%) to
compute hash values. We used this type of function in the preceding examples. The
general function is

Key % TableSize

We have already mentioned the idea of making the table somewhat larger than the
number of elements required, so as to increase the range of hash values. In addition, bet-
ter results are produced with the division method when the table size is a prime number.

The advantage of the division hash function is its simplicity. Sometimes, however,
it is necessary to use a more complicated (or even exotic) hash function to get a good
distribution of hash values.

Other Hash Methods How can we use hashing if the element key is a string instead of
an integer? One approach is to use the internal representations of the string’s characters
to create a number that can serve as an index. (Recall that each ASCII character is
represented in memory as an integer in the range 0 through 127.) For instance, the
following simple hash function takes a five-element char array and produces a hash
value in the range 0 through MAX_ITEMS - 1:

int Hash(char letters[])
Post: Returns an integer between 0 and MAX_ITEMS - 1.
{
int sum = 0;

for (int index = 0; index < 5; index++)
sum = sum + int(letters[index]);

return sum % MAX_ITEMS;
}

3 digits,
unique number

(000–999)

1 digit,
dept. number

(0–9)

2 digits,
year hired
(e.g., 89)

X X X X X X

636 | Chapter 10: Sorting and Searching Algorithms

A hash method called folding involves breaking
the key into several pieces and concatenating or
exclusive-OR’ing some of the pieces to form the hash
value. Another method is to square the key and then
use some of the digits (or bits) of the key as a hash
value. A number of other techniques exist, all of

which are intended to make the hash location as unique and random (within the
allowed range) as possible.

Let’s look at an example of folding. Suppose we want to devise a hash function that
results in an index between 0 and 255, and the internal representation of the int key is
a bit string of 32 bits. We know that it takes 8 bits to represent the 256 index values (28

= 256). A folding algorithm to create a hash function might

1. Break the key into four bit strings of 8 bits each,

2. Exclusive-OR the first and last bit strings,

3. Exclusive-OR the two middle bit strings, and

4. Exclusive-OR the results of steps 2 and 3 to produce the 8-bit index into the array.

We illustrate this scheme using the key 618403. The binary representation of this key is

00000000000010010110111110100011

We break this bit string into four 8-bit strings:

00000000 (leftmost 8 bits)
00001001 (next 8 bits)
01101111 (next 8 bits)
10100011 (rightmost 8 bits)

The next step is to exclusive-OR the first and last bit strings. The exclusive OR of
two bits is 0 if the two bits are the same, and 1 if they are different. To exclusive-OR
(denoted as XOR) bit strings, we apply this rule to successive pairs of bits.

00000000
(XOR) 10100011

10100011

Next, we exclusive-OR the middle two bit strings:

00001001
(XOR) 01101111

01100110

Folding A hash method that breaks the key into several
pieces and concatenates or exclusive-ORs some of the
pieces to form the hash value

10.4 Radix Sort | 637

Finally, we exclusive-OR the results of the preceding two steps:

10100011
(XOR) 01100110

11000101

This binary number is equivalent to the decimal number 197, so the key 618403 hashes
into the index 197. We leave the implementation of this hash function as an exercise.

The relationship between the key and the index is not intuitively obvious, but
the indexes produced are likely to be uniformly distributed through the range of pos-
sible values.

When using an exotic hash function, you should keep two considerations in mind.
First, you should consider the efficiency of calculating the function. Even if a hash
function always produces unique values, it is not a good hash function if it takes longer
to calculate the hash value than to search half the list. Second, you should consider pro-
grammer time. An extremely exotic function that somehow produces unique hash val-
ues for all of the known key values may fail if the domain of possible key values
changes in a later modification. The programmer who has to modify the program may
then waste a lot of time trying to find another hash function that is equally clever.

Of course, if you know all of the possible keys ahead of time, it is possible to deter-
mine a perfect hash function. For example, if you needed a list of elements whose keys
were the reserved words in a computer language, you could find a hash function that
hashes each word to a unique location. In general, it takes a great deal of work to dis-
cover a perfect hash function. And usually, we find that its computational complexity is
very high, perhaps comparable to the effort required to execute a binary search.

Complexity

We began the discussion of hashing by trying to find a list implementation where the
insertion and deletion had O(1) complexity. If our hash function never produces dupli-
cates or if the array size is very large compared to the expected number of items in the
list, then we have reached our goal. In general, this will not be the case. Clearly, as the
number of elements approaches the array size, the efficiency of the algorithms deterio-
rates. A precise analysis of the complexity of hashing is beyond the scope of this book.
Informally we can say that the larger the array relative to the expected number of ele-
ments, the more efficient the algorithms.

10.4 Radix Sort

We have placed the radix sort in a section by itself after sorting, searching, and hashing
for two reasons.

First, the radix sort is not a comparison sort; that is, the algorithm does not com-
pare two items in a list. Therefore, we cannot analyze the amount of work done in terms
of comparisons. In fact, the only thing that the radix sort has in common with the other
sorts is that it takes an unsorted list as input and returns a sorted list as output.

638 | Chapter 10: Sorting and Searching Algorithms

Original Array

762

Array After 1st Pass

800

Array After 2nd Pass

800

Array After 3rd Pass

001

124 100 100 100

432 761 001 124

761 001 402 402

800 762 124 432

402 432 432 761

976 402 761 762

100 124 762 800

001 976 976 976

999 999 999 999

Figure 10.26 Array after each pass

Second, the radix sort is to sorting as hashing is to searching. That is, it makes use
of the values in the individual keys to order the items just as hashing makes use of the

values in the individual keys to determine where to
place items. As in the other sorting algorithms, the
number of values to be sorted and the array in which
they are stored serve as parameters.

The idea behind the radix sort is to divide the
values to be sorted into as many subgroups as there

are possible alternatives for each position in the key. For example, if the key is an inte-
ger number, each position is a digit and has ten possibilities: 0 . . 9. If the key is a
string of letters and case is not important, then each position has 26 possibilities: “a” . .
“z”. The number of possibilities is called the radix. After subdividing the values into
radix subgroups, we combine them again into one array and repeat the process. If we
begin with the least-significant position in the key, regroup the values in order, and
repeat the process as many times as there are positions in the key, moving one position
to the left each time, the array will be sorted when we finish.

Let’s illustrate this algorithm by sorting three-digit positive integers. Within a three-
digit number, let’s refer to the ones, tens, and hundreds positions as positions 1, 2, and 3,
respectively. We divide the values into ten subgroups based on the digit in the ones posi-
tion (position 1). Let’s create an array of queues, queues[0]..queues[9], to hold the
groups. All items with 0 in the ones position are enqueued into queues[0]; all items with
a 1 in the ones position are enqueued into queues[1]; and so on. After the first pass
through the array, we collect the subgroups (queues) with the queues[0] subgroup on top
and the queues[9] subgroup on the bottom. We repeat the process using the tens position
and the hundreds position. When we collect the queues the last time, the values in the
array are in order. This algorithm is illustrated in Figures 10.26 and 10.27.

Look at the array after each pass; the digits in the position that corresponds to the
pass number are sorted (Figure 10.26). Likewise, the digits in the pass-number position
are the same as the index of the queue that it is in (Figure 10.27).

Radix The number of possibilities for each position; the
digits in a number system

10.4 Radix Sort | 639

(b) Queues after 2nd pass

800

100

(a) Queues after 1st pass

800

100

001

402

(c) Queues after 3rd pass

001

761

001

100

124

762

432

402

124 432

124

402

432

976

761

762

976

761

762

800

999

999

976

999

[0]

[0]

[0]

[1]

[1]

[1]

[2]

[2]

[2]

[3]

[3]

[3]

[4]

[4]

[4]

[5]

[5]

[5]

[6]

[6]

[6]

[7]

[7]

[7]

[8]

[8]

[8]

[9]

[9]

[9]

Figure 10.27 Queues after each pass

RadixSort(values, numValues)
for position going from 1 to 3

for counter going from 0 to numValues - 1
Set whichQueue to digit at position “position” of values[counter]
queues[whichQueue].Enqueue(values[counter])

Collect queues

Let’s first write the algorithm for the radix sort that matches our example and then
examine ways to make it more general.

In this algorithm, each iteration of the outer loop corresponds to one pass in Figures
10.26 and 10.27. In the first pass, we use the ones digit of an integer item to determine
the appropriate queue for the item. In the second pass, we use the tens digit. In the third
pass, we use the hundreds digit. Next, we need to write the Collect Queues step of the

640 | Chapter 10: Sorting and Searching Algorithms

Collect Queues
Set index to 0
for counter going from 0 to 9

while !queues[counter].IsEmpty()
queues[counter].Dequeue(item)
Set values[index] to item
Increment index

algorithm. Here we collect the items from all of the queues and put them back into the
values array.

Now that we understand the algorithm for three-digit integer keys, let’s look at how
we can make it more general before we code it. When we examined the insertion of an
item into a sorted list in Chapter 3, we required the comparison of two items to be a
member function of ItemType. The corresponding idea here is to make accessing the
correct position in the key become a function. For example, with an integer key, we
must extract the digits using / and %. If the key is a string, then we need access into an
array of characters. The point is that only the user knows, so the user should provide a
member function for ItemType to access successive positions in the key. This function
(SubKey) takes the position number as a parameter.

The radix sort function itself, however, must know the number of positions in the
key (numPositions) and the number of possible values for each position in the key
(radix). We make numPositions and radix be parameters to the function.

template<class ItemType>
void RadixSort(ItemType values[], int numValues,

int numPositions, int radix)
// Post: Elements in values are in order by key.
{
QueType<ItemType> queues[radix];
// With default constructor, each queue size is 500.
int whichQueue;

for (int position = 1; position <= numPositions; position++)
{
for (int counter = 0; counter < length; counter++)
{
whichQueue = values[counter].SubKey(position);

10.4 Radix Sort | 641

queues[whichQueue].Enqueue(values[counter]);
}
CollectQueues(values, queues, radix);

}
}

template<class ItemType>
void CollectQueues(ItemType values[], QueType<ItemType> queues[],

int radix)
// Post: queues are concatenated with queue[0]'s on top and
// queue[9]'s on the bottom and copied into values.
{
int index = 0;
ItemType item;

for (int counter = 0; counter < radix; counter++)
{
while (!queues[counter].IsEmpty())
{
queues[counter].Dequeue(item);
values[index] = item;
index++;

}
}

}

If the keys are integer values, then the function SubKey must take the position
number and extract the digit in that position. Let’s calculate a few positions and look
for a pattern. Assume itemKey is the four-digit integer 8749.

Position is 1: itemKey % 10 = 9
Position is 2: (itemKey / 10) % 10 = 4
Position is 3: (itemKey / 100) % 10 = 7
Position is 4: (itemKey / 1000) % 10 = 8

Notice that as the position number gets larger, the second operand of the / operation
increases. If we rewrite the first calculation as

Position is 1: (itemKey / 1) % 10

the pattern becomes even clearer:

Result = (itemKey / 10 position - 1) % 10

If the key is alphabetic, then SubKey must take each character and convert it to a
number between 0 and 25 (if case does not count) or between 0 and 51 (if case does mat-
ter). The algorithm that you use depends on the character set of the machine you are using.

642 | Chapter 10: Sorting and Searching Algorithms

Analyzing the Radix Sort

The amount of work done by the radix sort is more complicated than any scenario we
have examined so far. Each item in the array is processed numPositions times, mak-
ing the Big-O analysis a function of two variables: N (the number of items to be sorted)
and P (the number of positions in the key). The processing includes extracting a value
from the key, inserting the item into a queue, dequeueing each item, and copying each
item back into the array. We know that each operation is O(1). So an approximation is
O(N * P). However, when N is large, it dominates P. (N is the elephant and P is the
goldfish, to use our familiar analogy.)

In each iteration of the radix sort, the queues are collected, meaning that each item
to be sorted is processed twice on each iteration: once to put it into a queue and once
when the queues are collected. We could streamline the processing in the radix sort
somewhat by using the linked queue implementation and accessing the queues directly
to re-create the intermediate list in linked form. However, this approach would require
copying the final linked version back into the array-based form.

What about space requirements? Our RadixSort function requires space for at
least two copies of each element: one place in the array and one place in the queue. If
the queues are array-based, the amount of space is prohibitive because each queue must
have room for every element. If the queues are linked, additional space for N pointers is
required. We can cut the space requirements if we realize that this algorithm works just
as well if the values to be sorted are in linked form. Nodes can be removed from the
linked structure and moved to the appropriate queue; then the linked structure can be
re-created by concatenating the queues. In this way, only one copy of an item (plus a
pointer) exists: either in the linked structure or in a subgroup (queue).

Hence, both time and space requirements can be improved in the radix sort, if we
use the linked versions of the queue and list.

Summary
We have not attempted in this chapter to describe every known sorting algorithm.
Instead, we have presented a few of the most popular sorts, of which many variations
exist. It should be clear from this discussion that no single sort works best for all appli-
cations. The simpler, generally O(N2) sorts work as well, and sometimes better, for fairly
small values of N. Because they are simple, they require relatively little programmer
time to write and maintain. As you add features to improve sorts, you also add to the
complexity of the algorithms, increasing both the work required by the routines and the
programmer time needed to maintain them.

Another consideration in choosing a sort algorithm is the order of the original data.
If the data are already sorted (or almost sorted), ShortBubble is O(N), whereas some
versions of a QuickSort are O(N2).

As always, the first step in choosing an algorithm is to determine the goals of the
particular application. This step usually narrows down the options considerably. After

Summary | 643

that, knowledge of the strong and weak points of the various algorithms assists you in
making a choice.

Table 10.3 compares the sorts discussed in this chapter, in terms of Big-O.
The radix sort is not shown in Table 10.3 because it is not based on key comparisons.

This sort algorithm uses the values in different key positions to successively divide the
list into sublists, then collects the sublists back together. After this process is repeated as
many times as there are positions in the key, the list is sorted.

Searching, like sorting, is a topic that is closely tied to the goal of efficiency. We
speak of a sequential search as an O(N) search, because it may require as many as N
comparisons to locate an element. (N refers to the number of elements in the list.)
Binary searches are considered to be O(log2N) and are appropriate for arrays only if
they are sorted. A binary search tree may be used to allow binary searches on a linked
structure. The goal of hashing is to produce a search that approaches O(1). Because of
collisions involving hash locations, some searching or rehashing is usually necessary. A
good hash function minimizes collisions and distributes the elements randomly
throughout the table.

To solve a problem, most programmers would rather create a new algorithm than
review someone else’s solution. Why, then, have we devoted an entire chapter to a dis-
cussion of well-known sorting and searching algorithms? First, it is important to be
familiar with the basic sorting and searching techniques. You will use these tools over
and over again in a programming environment, and you need to know which ones are
appropriate solutions to different problems. Second, a review of sorting and searching
techniques gives us another opportunity to examine a measuring tool—the Big-O
approximation—that helps us determine how much work is required by a particular
algorithm. Both building and measuring tools are needed to construct sound program
solutions.

Table 10.3 Comparison of Sorting Algorithms

Order of Magnitude

Sort Best Case Average Case Worst Case

SelectionSort O(N 2) O(N 2) O(N 2)

BubbleSort O(N 2) O(N 2) O(N 2)

ShortBubble O(N) (*) O(N 2) O(N 2)

InsertionSort O(N) (*) O(N 2) O(N 2)

MergeSort O(N log2N) O(N log2N) O(N log2N)

QuickSort O(N log2N) O(N log2N) O(N 2) (depends on split)

HeapSort O(N log2N) O(N log2N) O(N log2N)

*Data almost sorted.

644 | Chapter 10: Sorting and Searching Algorithms

Exercises
1. Show the contents of the array

after the fourth iteration of

a. BubbleSort

b. SelectionSort

c. InsertionSort

2. a. Show how the values in the array in Exercise 1 would have to be rearranged
to satisfy the heap property.

b. Show how the array would look with four values in the sorted portion after
reheaping.

3. Show how the values in the array in Exercise 1 would be arranged immediately
before the execution of the function Merge in the original (nonrecursive) call to
MergeSort.

4. Given the array

tell which sorting algorithm would produce the following results after four itera-
tions:

3

[1]

1

[0]

13

[2]

17

[3]

26

[4]

24

[5]

24

[6]

25

[7]

47

[8]

60

[9]

3

[1]

1

[0]

13

[2]

17

[3]

25

[4]

24

[5]

24

[6]

60

[7]

47

[8]

26

[9]

17

[1]

3

[0]

24

[2]

26

[3]

25

[4]

24

[5]

13

[6]

60

[7]

47

[8]

1

[9]

a.

b.

c.

24

[1]

26

[0]

3

[2]

17

[3]

25

[4]

24

[5]

13

[6]

60

[7]

47

[8]

1

[9]

7

[1]

43

[0]

10

[2]

23

[3]

18

[4]

4

[5]

19

[6]

5

[7]

66

[8]

14

[9]

Exercises | 645

5. How many comparisons would be needed to sort an array containing 100 ele-
ments using ShortBubble.

a. in the worst case?

b. in the best case?

6. A sorting function is called to sort a list of 100 integers that have been read
from a file. If all 100 values are zero, what would the execution requirements (in
terms of Big-O notation) be if the sort used was

a. QuickSort, with the first element used as the split value?

b. ShortBubble?

c. SelectionSort?

d. HeapSort?

e. InsertionSort?

f. MergeSort?

7. How many comparisons would be needed to sort an array containing 100 ele-
ments using SelectionSort if the original array values were already sorted?

a. 10,000

b. 9,900

c. 4,950

d. 99

e. None of the above

8. A merge sort is used to sort an array of 1,000 test scores in descending order.
Which of the following statements is true?

a. The sort is fastest if the original test scores are sorted from smallest to
largest.

b. The sort is fastest if the original test scores are in completely random order.

c. The sort is fastest if the original test scores are sorted from largest to small-
est.

d. The sort is the same, no matter what the order of the original elements.

9. A list is sorted from smallest to largest when a sort algorithm is called. Which
of the following sorts would take the longest time to execute, and which would
take the shortest time?

a. QuickSort, with the first element used as the split value

b. ShortBubble

c. SelectionSort

d. HeapSort

e. InsertionSort

f. MergeSort

646 | Chapter 10: Sorting and Searching Algorithms

10. a. In what case(s), if any, is the bubble sort O(N)?

b. In what case(s), if any, is the selection sort O(log2N)?

c. In what case(s), if any, is quick sort O(N2)?

11. A very large array of elements is to be sorted. The program will be run on a per-
sonal computer with limited memory. Which sort would be a better choice: a
heap sort or a merge sort? Why?

12. Use the Three-Question Method to verify MergeSort.

13. True or false? Correct the false statements.

a. MergeSort requires more space to execute than HeapSort.

b. QuickSort (using the first element as the split value) is better for nearly
sorted data than HeapSort.

c. The efficiency of HeapSort is not affected by the order of the elements on
entrance to the function.

14. Which of the following is true about QuickSort?

a. A recursive version executes faster than a nonrecursive version.

b. A recursive version has fewer lines of code than a nonrecursive version.

c. A nonrecursive version takes more space on the run-time stack than a recur-
sive version.

d. It can be programmed only as a recursive function.

15. What is meant by the statement that “programmer time is an efficiency consid-
eration”? Give an example of a situation in which programmer time is used to
justify the choice of an algorithm, possibly at the expense of other efficiency
considerations.

16. Identify one or more correct answers: Reordering an array of pointers to list ele-
ments, rather than sorting the elements themselves, is a good idea when

a. the number of elements is very large.

b. the individual elements are large in size.

c. the sort is recursive.

d. there are multiple keys on which to sort the elements.

17. Go through the sorting algorithms coded in this chapter and determine which
ones are stable as coded. If there are unstable algorithms (other than HeapSort),
make them stable.

18. Give arguments for and against using functions (such as Swap) to encapsulate
frequently used code in a sorting routine.

19. Write a version of the bubble sort algorithm that sorts a list of integers in descend-
ing order.

20. We said that HeapSort is inherently unstable. Explain why.

21. Sooey County is about to have its annual Big Pig Contest. Because the sheriff’s
son, Wilbur, is majoring in computer science, the county hires him to computer-

Exercises | 647

ize the Big Pig judging. Each pig’s name (string) and weight (integer) are to be
read in from the keyboard. The county expects 500 entries this year.

The output needed is a listing of the ten heaviest pigs, sorted from biggest to
smallest. Because Wilbur has just learned some sorting methods in school, he
feels up to the task of writing this “pork-gram.” He writes a program to read in
all the entries into an array of records, then uses a selection sort to put the entire
array in order based on the pigWeight member. He then prints the ten largest
values from the array.

Can you think of a more efficient way to write this program? If so, write the
algorithm.

22. State University needs a listing of the overall SAT percentiles of the 14,226 stu-
dents it has accepted in the past year. The data are in a text file, with one line
per student. That line contains the student’s ID number, SAT overall percentile,
math score, English score, and high school grade point average. (At least one
blank separates each two fields.) The output needed is a listing of all the per-
centile scores, one per line, sorted from highest to lowest. Duplicates should be
printed. Outline an O(N) algorithm to produce the listing.

23. Which sorting algorithm would you not use under the following conditions?

a. The sort must be stable.

b. Data are in descending order by key.

c. Data are in ascending order by key.

d. Space is very limited.

24. Determine the Big-O measure for SelectionSort based on the number of ele-
ments moved rather than the number of comparisons,

a. for the best case.

b. for the worst case.

25. Determine the Big-O measure for BubbleSort based on the number of elements
moved rather than the number of comparisons,

a. for the best case.

b. for the worst case.

26. Determine the Big-O measure for QuickSort based on the number of elements
moved rather than the number of comparisons,

a. for the best case.

b. for the worst case.

27. Determine the Big-O measure for MergeSort based on the number of elements
moved rather than the number of comparisons,

a. for the best case.

b. for the worst case.

648 | Chapter 10: Sorting and Searching Algorithms

28. Fill in the following table, showing the number of comparisons needed either to
find the value or to determine that the value is not in the array, given the follow-
ing array of values.

For Exercises 29–32, use the following values:

66 47 87 90 126 140 145 153 177 285 393 395 467 566 620 735

29. Store the values into a hash table with 20 positions, using the division method
of hashing and the linear probing method of resolving collisions.

30. Store the values into a hash table with 20 positions, using rehashing as the
method of collision resolution. Use key % tableSize as the hash function, and
(key + 3) % tableSize as the rehash function.

31. Store the values into a hash table with ten buckets, each containing three slots.
If a bucket is full, use the next (sequential) bucket that contains a free slot.

32. Store the values into a hash table that uses the hash function key % 10 to
determine into which of ten chains to put the value.

33. Fill in the following table, showing the number of comparisons needed to find
each value using the hashing representations given in Exercises 29–32.

Binary
Search
sortedValues

15

Values

Search
dataValues
Sequentially

Search
sortedValues
Sequentially

17

14

5

99

100

0

Search
Tree

27

[1]

14

[0]

95

[2]

12

[3]

26

[4]

5

[5]

33

[6]

15

[7]

9

[8]

99

[9]

dataValues

Exercises | 649

34. If you know the index of an element stored in an array of N unsorted elements,
which of the following best describes the order of the algorithm to retrieve the
element?

a. O(1)

b. O(N)

c. O(log2N)

d. O(N 2)

e. O(0.5N)

35. The element being searched for is not in an array of 100 elements. What is the aver-
age number of comparisons needed in a sequential search to determine that the ele-
ment is not present

a. if the elements are completely unsorted?

b. if the elements are sorted from smallest to largest?

c. if the elements are sorted from largest to smallest?

36. The element being searched for is not in an array of 100 elements. What is the
maximum number of comparisons needed in a sequential search to determine
that the element is not present

a. if the elements are completely unsorted?

b. if the elements are sorted from smallest to largest?

c. if the elements are sorted from largest to smallest?

37. The element being searched for is in an array of 100 elements. What is the aver-
age number of comparisons needed in a sequential search to determine the posi-
tion of the element

a. if the elements are completely unsorted?

b. if the elements are sorted from smallest to largest?

c. if the elements are sorted from largest to smallest?

66

Value Exercise 29

467

566

735

285

87

Exercise 30 Exercise 31 Exercise 32

Number of Comparisons

650 | Chapter 10: Sorting and Searching Algorithms

38. Choose the answer that correctly completes the following sentence: The elements
in an array may be sorted by highest probability of being requested so as to reduce

a. the average number of comparisons needed to find an element in the list.

b. the maximum number of comparisons needed to detect that an element is not
in the list.

c. the average number of comparisons needed to detect that an element is not
in the list.

d. the maximum number of comparisons needed to find an element that is in
the list.

39. True or false? Correct any false statements.

a. A binary search of a sorted set of elements in an array is always faster than a
sequential search of the elements.

b. A binary search is an O(Nlog2N) algorithm.

c. A binary search of elements in an array requires that the elements be sorted
from smallest to largest.

d. A high-probability ordering scheme would be a poor choice for arranging an
array of elements that are equally likely to be requested.

e. When a hash function is used to determine the placement of elements in an
array, the order in which the elements are added does not affect the resulting
array.

f. When hashing is used, increasing the size of the array always reduces the
number of collisions.

g. If we use buckets in a hashing scheme, we do not have to worry about col-
lision resolution.

h. If we use chaining in a hashing scheme, we do not have to worry about col-
lision resolution.

i. The functions in this chapter are used only for external searching (i.e., not for
disk searching).

j. The goal of a successful hashing scheme is an O(1) search.

40. Choose the answer that correctly completes the following sentence: The number
of comparisons required to find an element in a hash table with N buckets, of
which M are full,

a. is always 1.

b. is usually only slightly less than N.

c. may be large if M is only slightly less than N.

d. is approximately log2M.

e. is approximately log2N.

41. How might you order the elements in a list of C++’s reserved words to use the
idea of high-probability ordering?

Exercises | 651

42. How would you modify the radix sort algorithm to sort the list in descending
order?

43. The radix sort algorithm uses an array of queues. Would an array of stacks work
just as well?

44. On the Web, the file Sorts.in contains a minimal test plan for the sorting algo-
rithms we have studied. Design a more comprehensive test plan and apply it
using SortDr.cpp.

Answers to Selected
Exercises

Chapter 1

Many of the questions in this chapter’s exercise are “thought questions.” The answers given here
are typical or suggested responses, but they are not the only possible answers.

1. Software engineering is a disciplined approach to the creation and maintenance of com-
puter programs throughout their entire life cycle.

2. (d) is correct. Although there is a general order to the activities, and in some cases it is
desirable to finish one phase completely before beginning another, often the software
phases overlap one another.

6. a. When the program’s requirements change; when a better solution is discovered in the
middle of the design phase; when an error is discovered in the requirements because
of the design effort.

b. When the program is being debugged, because of compilation errors or errors in the
design; when a better solution is found for a part of the program that was already
implemented; or when any of the situations mentioned in part (a) occur.

c. When there are errors that cause the program to crash or to produce wrong answers;
or when any of the situations mentioned in parts (a) and (b) occur.

d. When an error is discovered during the use of the program; when additional functions
are added to an existing software system; when a program is being modified to use on
another computer system; or when any of the situations mentioned in parts (a), (b),
and (c) occur.

11. Customer, bank card, ATM, PIN, account, account number, balance, display.

12. This is a thought question; answers will vary for each student.

13. The correction of errors early in the program’s life cycle involves less rework. The correc-
tion can be incorporated into the program design. If detected late in the life cycle, errors
may necessitate redesign, recoding, and/or retesting. The later the error is detected, the
more rework one is likely to have to do to correct it.

654 | Answers

Operation to Be Tested and
Description of Action Input Values Expected Output

Initialize -3,4 Numerator: -3

Denominator: 4

IsNotProper Fraction is proper

Initialize -13,4 Numerator: -13

Denominator: 4

IsNotProper Fraction is improper

ConvertToProper Whole number is 3

Numerator is -1

Denominator is 4

17. The body of the while loop is not in brackets.

The comments include the call to Increment.

The parameter to Increment is not a reference parameter.

18. A single programmer could use the inspection process as a way to do a structured
“deskcheck” of his or her program and would especially benefit from inspection check-
lists of errors to look for.

19. a. It is appropriate to start planning a program’s testing during the earliest phases of
program development.

20. Unit testing is the testing of a single unit of the program (for instance, a function). Inte-
gration testing is the testing of groups of already-tested units to make sure that they
interact correctly and that the entire program works according to its specification.

25. Top-down integration testing, using stubs, is performed to test the program in pieces,
beginning with the top levels and continuing through the lower levels. Bottom-up inte-
gration testing, using test drivers, is used to test the lower-level program pieces inde-
pendently of the higher levels of the program.

26. Life-cycle verification refers to the idea that program verification activities can be per-
formed throughout the program’s life cycle, not just by testing the program after it is coded.

29. a. num and denom are both just integer values. Each can be either negative or positive. In a
fraction the numerator carries the sign. The denominator should always be positive.

b. IsNotProper needs to be changed to use the absolute value of the numerator. Func-
tion Initialize (or any constructor) should check to be sure the denominator is
strictly positive and throw an exception if this is not the case.

c. The following tests need to be added to the test plan.

Chapter 2 | 655

30. ConvertToProper was not adequately tested. If the input results in a whole number and
no fractional part, the fractional part is set to zero. The function should be tested with
something like 8/4.

Chapter 2

1. Data abstraction refers to the logical picture of the data—what the data represent rather
than how they are represented.

2. Data encapsulation is the separation of the physical representation of data from the
applications that use the data at a logical (abstract) level. When data abstraction is
protected through encapsulation, the data user can deal with the data abstraction but
cannot access its implementation, which is encapsulated. The data user accesses data
that are encapsulated through a set of operations specified to create, access, and
change the data. Data encapsulation is accomplished through a programming language
feature.

3. a. Application level (e.g., College of Engineering’s enrollment information for 2003)

b. Abstract level (e.g., list of student academic records)

c. Implementation level [e.g., array of records that contain the members studentID
(Integer), lastName (a string of characters), firstName (a string of characters),
and so on]

4. a. Applications of type Grocery Store include the Safeway on Main Street, the Piggly
Wiggly on Broadway, and the Kroger’s on First Street.

b. User operations include SelectItem, CheckOut, PayBill, and so on.

c. Specification of CheckOut operation:

CheckOut (Basket, Bill)

Function: Present basket of groceries to cashier to check
out; receive bill.

Precondition: Basket is not empty.
Postconditions: Bill = total charge for all the groceries in Basket.

Basket contains all groceries arranged in paper
sacks.

656 | Answers

CheckOut
InitRegister
Set bill to 0
do

OpenSack
while More objects in Basket AND NOT SackFull

Take object from Basket
Set Bill to Bill + cost of this object
Put object in sack

Put full Sack aside
while more objects in Basket
Put full sacks into Basket

d.

e. The customer does not need to know the procedure that the Grocery Store uses to
check out a basket of groceries and to create a bill. The logical level (c) provides the
correct interface, allowing the customer to check out without knowing the implemen-
tation of the process.

9. Each array has a base address. The index and the base address are used to access the
items in the structure.

10. a. char name[20];

b. 1009

15. student.gpa = 3.87; Base + offset of GPA field = 100 + 21 = 121.

16. Number of slots * cells/slot = 100 * 25 = 2,500 + 1 for Length = 2,501.

19. In a struct, members are public by default and private only when marked. In a class,
members are private by default and public only when marked.

20. The members of a class are private unless specified as public. Client code cannot access
private members.

23. Classes can relate to one another through inheritance, containment (composition), or
not at all.

25. A base class is the class being inherited from; the derived class is the class doing the
inheriting.

26. No; a derived class does not have access to the private data members of the base class.

Chapter 2 | 657

27. All classes have access to public member functions of any class.

28. a.

SquareMatrix ADT Specification

Structure: An N � N square integer matrix.
Operations:

MakeEmpty(int n)
Function: Initializes the size of the matrix to n and sets

the values to zero.
Precondition: n is less than or equal to 50.
Postcondition: Matrix contains all zero values.

StoreValue(int i, int j, int value)
Function: Stores value into the ith, j th position in the

matrix.
Preconditions: Matrix has been initialized; i and j are

between 0 and the size minus 1.
Postcondition: value has been stored into the ith, j th position

of the matrix.

Add(SquareMatrixType one, SquareMatrixType two,
SquareMatrixType result)
Function: Adds matrix one and matrix two and stores

the result in result.
Precondition: one and two have been initialized and are the

same size.
Postcondition: result = one + two.

Subtract(SquareMatrixType one, SquareMatrixType two,
SquareMatrixType result)
Function: Subtracts two from one and stores the result

in result.
Precondition: one and two have been initialized and are the

same size.
Postcondition: result = one - two.

Print(SquareMatrixType one)
Function: Prints the matrix on the screen.
Precondition: Matrix has been initialized.
Postcondition: The values in the matrix have been printed by

row on the screen.

658 | Answers

Copy(SquareMatrixType one, SquareMatrixType two)
Function: Copies two into one.
Precondition: two has been initialized.
Postcondition: one = two.

b. The following declaration contains only additional preconditions and postconditions
required by the implementation.

class SquareMatrixType
{
public:
void MakeEmpty(int n);
// Pre: n is less than or equal to 50.
// Post: n has been stored into size.
void StoreValue(int i, int j, int value);
// Pre: i and j are less than or equal to size – 1.
// Post: matrix[i][j] = value
void Add(SquareMatrixType two, SquareMatrixType result);
// Post: result = self + two.
void Subtract(SquareMatrixType two, SquareMatrixType result);
// Post: result = self - two.
void Print();
// Post: The values in self have been printed by row on
// the screen.
void Copy(SquareMatrixType two);
// Post: self = two

private:
int size; // Dimension of the matrix.
int matrix[50][50];

};

c.
void SquareMatrixType::MakeEmpty(int n)
{
size = n;
for (int row = 0; row < size; row++)
for (int col = 0; col < size; col++)
matrix[row][col] = 0;

}

void SquareMatrixType::StoreValue(int i, int j, int value)
{
matrix[i][i] = value;

}

Chapter 2 | 659

void SquareMatrixType::Add(SquareMatrixType two,
SquareMatrixType result)

{
int row, col;

for (row = 0; row < size; row++)
for (col = 0; col < size; col++)
result.matrix[row][col] = matrix[row][col] +
two.matrix[row][col];

}

void SquareMatrixType::Subtract(SquareMatrixType two,
SquareMatrixType result)

{
int row, col;

for (row = 0; row < size; row++)
for (col = 0; col < size; col++)
result.matrix[row][col] = matrix[row][col] -
two.matrix[row][col];

}

void SquareMatrixType::Print()
{
int row, col;

for (row = 0; row < size; row++)
for (col = 0; col < size; col++)
cout << matrix[row][col];

}

void SquareMatrixType::Copy(SquareMatrixType two)
{
int row, col;
for (row = 0; row < size; row++)
for (col = 0; col < size; col++)
matrix[row][col] = two.matrix[row][col];

}

d. This test plan is a black-box strategy with data values representing the end cases and
a general case. For matrix operations, the end cases represent the size of the matrices,
not the values stored in them. We assume that integer addition and subtraction are
correct.

660 | Answers

Operation to Be Tested and
Description of Action Input Values Expected Output

MakeEmpty

execute and print 2 0 0

0 0

execute and print 0 No output
execute and print 50 50 � 50 matrix of zeros

StoreValue

MakeEmpty(2)

store 1, 1, 2
store 1, 2, 3
store 2, 2, 4
print 2 3

0 4

Add

General case
Create a second matrix 1 2

3 4

Add to first one created and print 3 5

3 8

End case (size 0)
Add two empty matrices and print No output

End case (size 50)
Create a 50 � 50 matrix of ones
Create a 50 � 50 matrix of twos
Add and print 50 � 50 of threes

Subtract

General case
Subtract the first from the second and print -1 -1

3 0

End case (size 0)
Subtract two size-0 matrices and print No output

End case (size 50)
Subtract all ones from all twos 50 � 50 of ones

Copy

Copy first and print 2 3

0 4

Copy a size-0 matrix and print No output
Copy a size-50 matrix of twos and print 50 � 50 of twos

Chapter 2 | 661

29. a.
RelationType StrType::ComparedTo(StrType otherString)
{
int result;

result = strcmp(letters, otherString.letters);
if (result < 0)
return LESS;

else if (result > 0)
return GREATER;

else return EQUAL;
}

b.
RelationType StrType::ComparedTo(StrType otherString) const
{
int count = 0;
bool equal = true;

while (equal && letters[count] != ‘\0’)
if (letters[count] != otherString.letters[count])
equal = false;

else
count++;

if (otherString.letters[count] == ‘\0’ && equal)
return EQUAL;

else if (equal) // More characters in otherString
return LESS;

else if (letters[count] < otherString.letters[count])
return LESS;

else return GREATER;
}

30.
void StrType::CopyString(StrType& newString)
{
int count = 0;

do
{
newString.letters[count] = letters[count];
count++;

}
while (letters[count-1] != ‘\0’);

}

662 | Answers

Chapter 3

1. a.

Boolean IsThere(ItemType item)

Function: Determines whether item is in the list.
Precondition: List has been initialized.
Postcondition: Function value = there exists an item in the list

whose key is the same as item’s.

b. bool IsThere(ItemType item) const;

c. bool UnsortedType::IsThere(ItemType item)
{
bool moreToSearch;
int location = 0;
found = false;

moreToSearch = (location < length);
while (moreToSearch && !found)
{
switch (item.ComparedTo(info[location]))
{
case LESS :
case GREATER : location++;

moreToSearch = (location < length);
break;

case EQUAL : found = true;
break;

}
}
return found;

}

d. O(N), where N is the number of items in the list.

3. The specification and prototype are identical for the unsorted and sorted versions. Only
the algorithm used to implement the search differs. Because the values in the list are
sorted by key in Exercise 2, the binary search can be used to look for item. The binary
search has O(log2N) complexity in contrast to the O(N) linear search that must be used in
an unsorted list.

Chapter 3 | 663

4. a.

Boolean IsThere(ItemType item, UnsortedType list)

Function: Determines whether item is in the list.
Precondition: list has been initialized.
Postcondition: Function value = there exists an item in the list

whose key is the same as item’s.

b. bool IsThere(ItemType item, UnsortedType list)
{
ItemType item2;
int counter = 1;
bool found = false;

list.ResetList();
int length = list.LengthIs();
while (counter <= length && !found)
{
list.GetNextItem(item2);
if (item.ComparedTo(item2) == EQUAL)
found = true;

counter++;
}
return found;

}

or

bool IsThere(ItemType item, UnsortedType list)
{
bool found;

list.RetrieveItem(item, found);
return found;

}

c. Both of these functions are O(N). The first is quite obviously; the second lets
RetrieveItem, which is O(N), do the search.

d. The member function has direct access to the array where the items are stored; the
client has to use the class access functions to retrieve each item in turn or call the
member function RetrieveItem. The order of IsThere is the same in both cases, but
the overhead included with the constant is greater in the client version because of the
extra function calls.

664 | Answers

6. a. void MergeLists(SortedType list1, SortedType list2,
SortedType& result);

b. void MergeLists(SortedType list1, SortedType list2,
SortedType& result)

{
int length1;
int length2;
int counter1 = 1;
int counter2 = 1;
ItemType item1;
ItemType item2;

length1 = list1.LengthIs();
length2 = list2.LengthIs();
list1.ResetList();
list2.ResetList();
list1.GetNextItem(item1);
list2.GetNextItem(item2);
result.MakeEmpty();

while (counter1 <= length1 && counter2 <= length2)
switch (item1.ComparedTo(item2))
{
case LESS : result.InsertItem(item1);

if (counter1 < length1)
list1.GetNextItem(item1);

counter1++;
break;

case GREATER: result.InsertItem(item2);
if (counter2 < length2)
list2.GetNextItem(item2);

counter2++;
break;

}
for (; counter1 <= length1; counter1++)
{
result.InsertItem(item1);
if (counter1 < length1)
list1.GetNextItem(item1);

}
for (; counter2 <= length2; counter2++)

Chapter 3 | 665

{
result.InsertItem(item2);
if (counter2 < length2)
list2.GetNextItem(item2);

}
}

c. Because the lists that are being merged are sorted, the complexity is O(N) times the
complexity of the InsertItem operation.

9. a.

DeleteItem (ItemType item)

Function: Deletes the element whose key matches item’s
key.

Preconditions: list has been initialized.
Key member of item is initialized.
At most one element in list has a key matching
item’s key.

Postcondition: If an element in list had a key matching item’s
key, the item has been removed; otherwise, the
list is unchanged.

b. void UnsortedType::DeleteItem(ItemType item)
{
{
int location = 0;
bool found = false;

while (!found && location < length)
{
if (item.ComparedTo(info[location]) == EQUAL)
found = true;

else
location++;

}
if (found)
{
info[location] = info[length - 1];
length--;

}
}

666 | Answers

c.

DeleteItem (ItemType item)

Function: Deletes the elements whose key matches item’s
key.

Preconditions: list has been initialized.
Key member of item is initialized.

Postcondition: No element in list has a key matching item’s key.

d. void UnsortedType::DeleteItem(ItemType item)
{
int location = 0;

while (location < length)
{
if (item.ComparedTo(info[location]) == EQUAL)
{
info[location] = info[length - 1];
length--;

}
else
location++;

}
}

10. a. Same as Exercise 9(a).

b. void SortedType::DeleteItem(ItemType item)
{
int location = 0;
bool found = false;

while (!found && location < length)
{
if (item.ComparedTo(info[location]) == EQUAL)
found = true;

else
location++;

}
for (int index = location + 1; index < length; index++)
info[index - 1] = info[index];

length--;
}

Chapter 4 | 667

c. Same as Exercise 9(c).

d. void SortedType::DeleteItem(ItemType item)
{
int location = 0;

while (location < length)
{
if (item.ComparedTo(info[location]) == EQUAL)
{
for (int index = location + 1; index < length; index++)
info[index - 1] = info[index];

length--;
}
else
location++;

}
}

17. a. Adding the function Head to the class UnsortedType would be easy because the last
item inserted into the list is immediately accessible: info[length - 1].

b. Adding the function Head to the class SortedType would be almost impossible. A
separate unsorted list would have to be kept to implement this function.

19. The advantage of having DeleteItem maintain the original order is being able to deter-
mine the original order. The specifications for UnsortedType indicate nothing about
order, so adding this requirement defines a different ADT.

20. None of the changes in Exercises 9 and 10 change the Big-O notation from that discussed
in the chapter. Each of the delete operations still has order O(N).

Chapter 4

1. a. Yes

b. No

c. Yes

d. No

e. Yes

f. No

g. No

h. Yes

2. The accessing protocol of a stack is summarized as follows: Both to retrieve elements and
to store new elements, access only the top of the stack. Access occurs through the Pop
and Push member functions.

668 | Answers

3. a. 3 5 4 (on one line)

5 16 1 0 (each on a separate line)

b. 0 5 6 5 (each on a separate line)

5 4 0 (on one line)

8. a. Set secondElement to the second element in the stack, leaving the stack without its
original top two elements.

{
stack.Pop(secondElement);
stack.Pop(secondElement);

}

b. Set bottom equal to the bottom element in the stack, leaving the stack empty.

{
while (!stack.IsEmpty())
stack.Pop(bottom);

}

c. Set bottom equal to the bottom element in the stack, leaving the stack unchanged.

{
StackType tempStack;
ItemType tempItem;

while (!stack.IsEmpty())
{
stack.Pop(tempItem);
tempStack.Push(tempItem);

}
bottom = tempItem;
// Restore stack
while (!tempStack.IsEmpty())
{
tempStack.Pop(tempItem);
stack.Push(tempItem);

}
}

12. a. Draw a diagram of how the stack might look.

smallTop: top for the stack of small values, initialized to �1 and incremented.

largeTop: top for the stack of large values, initialized to 200 and decremented.

Chapter 4 | 669

b. class DStack
{
public:
DStack();
void Push(int item);
void PopLarge(int& item);
void PopSmall(int& item);

private:
int smallTop;
int largeTop;
int items[200];

}

c. void Push(int item)
{
if (item <= 1000)
{
small++;
items[small] = item;

}
else
{
large--;
items[large] = item;

}
}

13. a. Although the items are technically homogeneous (all integers), they are not semanti-
cally homogeneous. The value in the [0] slot has a different meaning from the values
in all other slots.

b. The specifications would not change; all of the implementations would change.

15. void (StackType& stack, ItemType oldItem, ItemType newItem)
{
StackType tempStack;
ItemType tempItem;
while (!stack.IsEmpty())
{

[0] [1] [2] [3] [197] [198]. . . [199]

670 | Answers

// Represent candy container as a stack PezJar.
// Eat yellow candies.
while PezJar is not empty

PezJar.Pop(candy)
if candy != yellow candy

tempJar.Push(candy)

// Restore candy container.
while tempJar is not empty

tempJar.Pop(candy)
PezJar.Push(candy)

stack.Pop(tempItem);
if (tempItem.ComparedTo(oldItem) == EQUAL)
tempStack.Push(newItem);

else
tempStack.Push(tempItem);

}
// Restore stack
while (!stack.IsEmpty())
{
tempStack.Pop(tempItem);
stack.Push(tempItem);

}
}

16.

17. a.

Stack ADT Specification

Structure: Elements are added to and removed from the
top of the stack.

Definitions (provided by user):
MAX_ITEMS: Maximum number of items that might be on

the stack.
ItemType: Data type of the items on the stack.

Chapter 4 | 671

Operations (provided by the ADT):
MakeEmpty

Function: Sets stack to an empty state.
Precondition: None.
Postcondition: Stack is empty.

Boolean IsEmpty
Function: Determines whether the stack is empty.
Precondition: Stack has been initialized.
Postcondition: Function value = (stack is empty).

Boolean IsFull
Function: Determines whether the stack is full.
Precondition: Stack has been initialized.
Postcondition: Function value = (stack is full).

Push(ItemType newItem, Boolean& error)
Function: Adds newItem to the top of the stack.
Precondition: Stack has been initialized.
Postconditions: If the stack is not full, newItem is at the top of

the stack and error is false; otherwise, error is
true and the stack is unchanged.

Pop(Boolean& error)
Function: Removes top item from the stack.
Preconditions: Stack has been initialized.
Postconditions: If the stack is not empty, the top element has

been removed and error is false; otherwise,
error is true and the stack is unchanged.

ItemType Top(Boolean& eror)
Function: Returns a copy of top item in the stack.
Preconditions: Stack has been initialzed.
Postconditions: If the stack is not empty, a copy of the top ele-

ment is returned and error is false; otherwise,
error is true and the stack is unchanged.

b. None.

c. None.

An alternative implementation would add an error data member to the class. This error flag
would be set if underflow or overflow occurred and the operation would not be performed.
A member function would have to be added to the class to allow the user to check the error
flag.

672 | Answers

20. Yes, this sequence is possible.

23. The accessing protocol is summarized as follows: Items are inserted at the rear and removed
from the front. Accessing occurs through the Enqueue and Dequeue member functions.

24. a. 1 0 4

5 16 0 3

b. 6 4 6 0

6 5 5

25. a.

Queue ADT Specification

Structure: Elements are added to the rear and removed
from the front of the queue.

Definitions (provided by user):
MAX_ITEMS: Maximum number of items that might be on

the queue.
ItemType: Data type of the items on the queue.

Operations (provided by ADT):
MakeEmpty

Function: Initializes the queue to an empty state.
Precondition: None.
Postcondition: Queue is empty.

Boolean IsEmpty
Function: Determines whether the queue is empty.
Precondition: Queue has been initialized.
Postcondition: Function value = (queue is empty).

Boolean IsFull
Function: Determines whether the queue is full.
Precondition: Queue has been initialized.
Postcondition: Function value = (queue is full).

Enqueue(ItemType newItem, Boolean& error)
Function: Adds newItem to the rear of the queue.
Precondition: Queue has been initialized.
Postconditions: If the queue is not full, newItem is at rear of

the queue and error is false; otherwise, the
queue is unchanged and error is true.

Dequeue(ItemType& item, Boolean& error))
Function: Removes front item from Queue and returns it

in item.
Precondition: Queue has been initialized.

Chapter 4 | 673

Postconditions: If the queue is not empty, the front element has
been removed from the queue, item is a copy of
the removed element, and error is false; other-
wise, the queue is unchanged and error is true.

b. None.

c. None.

26. queue.Enqueue(letter);

27. queue.Enqueue(letter);

28. queue.Enqueue(letter);

 letter

queue.front
.rear

.overFlow

.underFlow

.items

 letter

queue.front
.rear

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

L

0

3

V W X Y

[0] [1] [2] [3] [4]

Z

L

0
4

F

V W X Y L

 letter

queue.front
.rear

.overFlow

.underFlow

.items

 letter

queue.front

.rear

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

K

3
4

V W X Y

[0] [1] [2] [3] [4]

Z

K

3
0

F

K W X Y Z

 letter

queue.front

.rear

.overFlow

.underFlow

.items

 letter

queue.front

.rear

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

J

4

3

V W X Y

[0] [1] [2] [3] [4]

Z

J

4

3

T

V W X Y Z

674 | Answers

29. queue.Dequeue(letter);

30. queue.Dequeue(letter);

31. queue.Dequeue(letter);

33. The correct answer is (a).

34. The correct answer for the first statement is (d); the correct answer for the second state-
ment is (a).

 letter

queue.front

.rear

.overFlow

.underFlow

.items

 letter

queue.front

.rear

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

1

0

V W X Y

[0] [1] [2] [3] [4]

Z

X

2
0

V W X Y Z

 letter

queue.front

.rear

.overFlow

.underFlow

.items

 letter

queue.front

.rear

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

2

2

V W X Y

[0] [1] [2] [3] [4]

Z

2

2

T

V W X Y Z

 letter

queue.front

.rear

.overFlow

.underFlow

.items

 letter

queue.front

.rear

.overFlow

.underFlow

.items

[0] [1] [2] [3] [4]

4

2

V W X Y

[0] [1] [2] [3] [4]

Z

V

0

2

F

V W X Y Z

Chapter 4 | 675

36. {

QueType<int> tempQ;
int item;

while (!queue.IsEmpty())
{
queue.Dequeue(item);
if (item == oldItem)
tempQ.Enqueue(newItem);

else
tempQ.Enqueue(item);

}
while (!tempQ.IsEmpty())
{
tempQ.Dequeue(item);
queue.Enqueue(item);

}
}

37. a. No

b. Yes

c. No

d. No

e. Yes

f. Yes

g. No

h. Yes

i. No

38. bool Identical(QueType<float> queue1, QueType<float> queue2)
{
QueType<float> tempQ1;
QueType<float> tempQ2;
float item1, item2;
bool same = true;

while (!queue1.IsEmpty() && !queue2.IsEmpty())
{
queue1.Dequeue(item1);
queue2.Dequeue(item2);
tempQ1.Enqueue(item1);
tempQ2.Enqueue(item2);

}
// Check for same size.

676 | Answers

same = queue1.IsEmpty() && queue2.IsEmpty();
if (same) // Check for matching items while copying.
while (!tempQ1.IsEmpty())
{
tempQ1.Dequeue(item1);
tempQ2.Dequeue(item2);
queue1.Enqueue(item1);
queue2.Enqueue(item2);
if (item1 != item2)
same = false;

}
else
{ // Process rest of queue1 and copy back.
while (!queue1.IsEmpty())
{
queue1.Dequeue(item1);
tempQ1.Enqueue(item1);

}
while (!tempQ1.IsEmpty())
{
tempQ1.Dequeue(item1);
queue1.Enqueue(item1);

}
// Process rest of queue2 and copy back.
while (!queue2.IsEmpty())
{
queue2.Dequeue(item2);
tempQ2.Enqueue(item2)

}
while (!tempQ1.IsEmpty())
{
tempQ2.Dequeue(item2);
queue2.Enqueue(item2);

}
}
return same;

}

42. The MakeEmpty operation is a logical operation that sets the structure to empty. A class
constructor is a C++ construct that is implicitly called when an object of the type is
defined. MakeEmpty is under the control of the client program and can be applied any
number of times.

44. No, this sequence is not possible.

45. #include “StackType.h”
#include <iostream>
bool IsOpen(char symbol);

Chapter 4 | 677

bool IsClosed(char symbol);
bool Matches(char symbol, char openSymbol);

int main()
{
using namespace std;
char symbol;
StackType stack;
bool balanced = true;
char openSymbol;
try
{
cout << “Enter an expression and press return.”

<< endl;
cin.get(symbol);
while (symbol != ‘\n’ && balanced)
{
if (IsOpen(symbol))
stack.Push(symbol);

else if (IsClosed(symbol))
{
if (stack.IsEmpty())
balanced = false;

else
{
openSymbol = stack.Top();
stack.Pop();
balanced = Matches(symbol, openSymbol);

}
}
cin.get(symbol);

}
}
catch (FullStack error)
{
cout << “Push called when the stack is full.” << endl;
return 1;

}
catch (EmptyStack error)
{
cout << “Top or Pop called when stack is empty.”
<< endl;

return 1;
}

678 | Answers

if (balanced)
cout << “Expression is well formed.” << endl;
else
cout << “Expression is not well formed.” << endl;
return 0;

}

bool IsOpen(char symbol)
{
if ((symbol == ‘(‘) || (symbol == ‘{’) || (symbol == ‘[’))
return true;

else
return false;

}

bool IsClosed(char symbol)
{
if ((symbol == ‘)’) || (symbol == ‘}’) || (symbol == ‘]’))
return true;

else
return false;

}

bool Matches(char symbol, char openSymbol)
{
return (((openSymbol == ‘(‘) && symbol == ‘)’)
|| ((openSymbol == ‘{’) && symbol == ‘}’)
|| ((openSymbol == ‘[’) && symbol == ‘]’));

}

47. class CountedStackType : public StackType
{
public:
CountedStackType();
void Push(ItemType newItem);
void Pop(ItemType& item);
int LengthIs() const;
// Returns the number of items on the stack.

private:
int length;

};

void CountedStackType::Push(ItemType newItem)
{

Chapter 5 | 679

length++;
StackType::Push(newItem);

}

void CountedStackType::Pop(ItemType& item)
{
length--;
StackType::Pop(item);

}

int CountedStackType::LengthIs() const
{
return length;

}

CountedStackType::CountedStack(int) : StackType()
{
length = 0;

}

Chapter 5

1. a. The client code does not change when the implementation of the class changes. See
answer to Chapter 4, Exercise 11.

3. bool Identical(StackType<ItemType> stack1) const; // Prototype
template<class ItemType)
bool StackType<ItemType>::

Identical(StackType<ItemType> stack1) const
{
NodeType<ItemType>* selfPtr;
NodeType<ItemType>* otherPtr;
bool same = true;G13

selfPtr = topPtr;
otherPtr = stack1.topPtr;
while (same)
{
same = (selfPtr != NULL && otherPtr != NULL

&& selfPtr->info == otherPtr->info);
if (same)

680 | Answers

{
selfPtr = selfPtr->next;
otherPtr = otherPtr->next;

}
}
if (selfPtr == NULL && otherPtr == NULL)
return true;

else
return false;

}

6. int Length(); // Prototype
template<class ItemType>
int QueType<ItemType>::Length()
{
NodeType<ItemType>* location = qFront;
int length = 0;

while (location != NULL)
{
length++;
location = location->next;

}
return length;

}

7. template<class ItemType>
bool UnsortedType<ItemType>::IsThere(ItemType item)
{
NodeType<ItemType>* location = listData;
bool found = false;

while (!found && location != NULL)
{
found = location->info == item;
location = location->next;

}
return found;

}

10. b. void SplitLists(SortedType<ItemType>& list1,
SortedType<ItemType>& list2, ItemType item); // Prototype

template<class ItemType>
void SortedType::SplitLists(SortedType<ItemType>& list1,

SortedType<ItemType>& list2, ItemType item)

Chapter 5 | 681

{
NodeType<ItemType>* listPtr = listData;

list1.MakeEmpty();
list2.MakeEmpty();
while (listPtr != NULL && listPtr->info <= item)
{
list1.InsertItem(listPtr->info);
listPtr = listPtr->next;

}
while (listPtr != NULL)
{
list2.InsertItem(listPtr->info);
listPtr = listPtr->next;

}
}

c. See Chapter 3, Exercise 8.

14. a. True

b. True

c. False. A linked list is not a random-access structure.

d. False. A sequential list may be stored in a statically allocated or a dynamically allo-
cated structure.

e. True

f. False. A queue is not a random-access structure; access is always to the first one stored.

15. a. 30

b. 90

c. 45

16. a. true

b. false

c. false

d. true

17. a. ok

b. You cannot assign a struct to a pointer.

c. You cannot assign a pointer to a struct.

d. You cannot assign an info member to a pointer.

e. ok

f. ok

18. a. listData = ptr1->next;

b. ptr2 = ptr2->next;

682 | Answers

c. listData = NULL

d. ptr1->next->info = 60

Chapter 6

1. a. The special case of changing the external list pointer when a node is added to or
deleted from the beginning of the list.

b. The check for the end of the list is eliminated from the search function.

c. No. Popping and pushing always change the external pointer.

d. Yes. The special cases of adding a new node to an empty queue and removing the last
node from a queue can be eliminated with dummy nodes.

e. The special case of changing the external list pointer when a node is added to an
empty list or when the last node is deleted from the list leaving it empty.

3. The member functions Enqueue and Dequeue would have to be changed.

4. template<class ItemType>
void SortedType<ItemType>::PrintReverse() const
// Pre: List is not empty.
// Post: List is printed in reverse order.
{
NodeType<ItemType>* location = listData;
StackType<ItmType> stack;
ItemType item;

do
{
stack.Push(location->info);
location = location->next;

} while (location != listData);
while (!stack.IsEmpty())
{
stack.Pop(item);
std::cout << item << endl;

}
}

5. The class SpecializedList provides no way to directly access the items within the list,
so a derived class could not insert items into the list. The only accessing mechanisms
provided are insertion at the beginning and insertion at the end.

Chapter 6 | 683

6. No, the class definition would not have to be changed. Only the definition of NodeType
would have to be changed.

9. Write a member function Copy of the Stack ADT, assuming that self is copied into the
stack named in the parameter list.

template <class ItemType>
void StackType<ItemType>::Copy(StackType<ItemType>& anotherStack)
{
NodeType<ItemType>* ptr1;
NodeType<ItemType>* ptr2;

if (topPtr == NULL)
anotherStack.topPtr = NULL;

else
{
anotherStack.topPtr = new NodeType<ItemType>;
anotherStack.topPtr->info = topPtr->info;
ptr1 = topPtr->next;
ptr2 = anotherStack.topPtr;
while (ptr1 != NULL)
{
ptr2->next = new NodeType<ItemType>;
ptr2 = ptr2->next;
ptr2->info = ptr1->info;
ptr1 = ptr1->next;

}
ptr2->next = NULL;

}
}

12. a. Doubly linked

b. Circular

c. List with header and trailer

13. Initialization has O(N) complexity, where N is the size of the array of records; GetNode
and FreeNode have O(1) complexity.

684 | Answers

15. a.

Chapter 7

1. a. The base case is a nonrecursive exit from the recursive routine.

b. The general (or recursive) case is a path that includes a recursive call to the routine, to
solve a smaller version of the original problem.

c. The run-time stack is a structure that keeps track of the activation records at run time,
so as to preserve the values of parameters, return addresses, registers, and so on.

d. Binding time refers to the point in the compile/execution cycle when variable names
are associated with addresses in memory.

e. Tail recursion occurs when the recursive call is the last statement executed in a recur-
sive function.

.info .next .back

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

free

list

nodes

0

NUL

1

2

3

4

5

6

7

8

9

NUL

Chapter 7 | 685

2. a. True

b. False

c. False

d. False

e. False. Recursive routines are often shorter and clearer but not always.

f. True

g. False. Recursive routines are often the same as the nonrecursive solution, in terms of
Big-O notation.

3. 1. Base Case: One base case occurs when the value is found on this call and the function
exits without any further calls to itself. A second base case occurs when the end of
the list is reached without the value being found and the function exits without any
further recursive calls. The answer is yes.

2. Smaller Caller: The recursive call in the general case increments the value of start-
Index, making the part of the list left to be searched smaller. The answer is yes.

3. General Case: Assume that the recursive call in the general case correctly tells us
whether the value is found in the second through last elements in the list. Then base
case 1 gives the correct answer of true if the value is found in the first element in
the list, base case 2 gives the correct answer of false if the value is not in the first
element and the first element is the only element in the list. The only other possible
case is that the value exists somewhere in the rest of the list. Assuming that the gen-
eral case works correctly, the entire function works, so the answer to this question is
also yes.

8. a. -1

b. 120

c. 1

9. a. Yes, num must be zero or a negative number.

b. No.

c. Yes. 0 is returned.

d. Yes. �15 is returned

12. a. This answer is incorrect. The value 0 is returned; the recursive case is never reached.
This solution gets half credit, because it correctly calculates the base case (even if it
doesn’t reach it).

b. This solution correctly calculates the sum of squares but gets no credit because it is
not a recursive solution.

c. This answer is correct and gets full credit.

d. This answer is functionally equivalent to (c); it just avoids the last recursive call (to an
empty list) by returning the sum of the last squares as the base case. This answer runs
into problems if the list is empty, but the specification states that the list is not empty.
This answer gets full credit.

686 | Answers

e. This solution is incorrect. The general case does not correctly calculate the sum of the
squares. Quarter credit is given for using the correct control structure and for getting
the base case correct.

13. a. int Fibonacci(int number)
{

if (number <= 1)

return number;

else

return Fibonacci(number - 2) + Fibonacci(number - 1);

}

b. int Fibonacci(int number)
{

int current;

int previous;

int temp;

if (number <= 1)

return 1;

else

{

previous = 0;

current = 1;

for (int count = 2; count <= number; count++)

{

temp = previous;

previous = current;

current = temp + previous;

}

return current;

}

}

c. #include <iostream>
int Fibonacci(int number);

int main()

{

using namespace std;

Chapter 7 | 687

int number;

cout << “Input the Fibonacci number you wish.” << endl;

<< “Input a negative number to quit.” << endl;

cin >> number;

while (number >= 0)

{

cout << “number: “ << number << endl;

<< “Fibonacci number: “ << Fibonacci(number) << endl;

cout << “Input the Fibonacci number you wish.” << endl;

<< “Input a negative number to quit.” << endl;

cin >> number;

}

return 0;

}

// Put the function version you are testing here.

d. The recursive solution is inefficient because some of the intermediate values are cal-
culated more than once.

e. The following version, which uses an auxiliary recursive function, is more efficient.
The recursive parameters keep track of the current and previous numbers, rather than
recalculating them.

int Fibonacci(int number)
{
return Fib(number, 1, 1);

}
int Fib(int number, int previous, int current)
{
if (number == 0)
return previous;

else
return Fib(number - 1, current, current + previous)

}

17. a. It is difficult to establish that the recursive calls satisfy Question 2, that they are mov-
ing toward the base case.

b. std::cout << Ulam (7) << endl; 16 recursive calls

std::cout << Ulam (8) << endl; 3 recursive calls

std::cout << Ulam (15) << endl; 17 recursive calls

688 | Answers

21. a. NodeType* MinLoc(NodeType* list, NodeType*& minPtr)
{
if (list != NULL
{
if (list->info < minPtr->info)
minPtr = list;

return MinLoc(list->next, minPtr);
}
else
return minPtr;

}

b. void Sort(NodeType* list);
{
NodeType* minPtr;
int temp;

if (list != NULL)
{
minPtr = MinLoc(list, list); // Swap
temp = minPtr->info;
minPtr->info = list->info;
list->info = temp;
Sort(list->next); // Sort rest of list

}
}

22. a. False. Recursive solutions are often less efficient in terms of computing time.

b. True

c. False. Recursive solutions generally require more space in the run-time stack.

d. True. (Don’t you want a good grade in this course?)

Chapter 8

1. a. The level of a binary search tree determines the maximum number of comparisons
that are required to find an element in the tree.

b. 100

c. 7

2. (c) is the correct answer.

6.

Chapter 8 | 689

7. The queue holds the values in the tree so that the user can access them one at a time. A
linked structure would require an extra pointer for each value in the tree. If an array-based
queue of just the right size could be dynamically allocated, it would be much more effi-
cient. The implementation presented here makes the queue a part of the private data of the
tree object, and the number of nodes (data values) is not known at the time of instantiation.

8. a. Q, K, and M

b. B, D, J. M. P, and N

c. 8

d. 16

e. 63

9.

JB P W

•tree

(a)

MD

C N

YR

K T

Q

JB N W

•tree

(d)

PD YR

K T

Q

•tree

•tree

•tree

NW

(b)

YR

(Unchanged) T

Q

•tree

X

W

YR

(Unchanged) T

Q

JB N W

(e)

MD YR

K T

P

(c)

JB P W

(f)

MD

N

Y

K T

Q

690 | Answers

10. a. BDJKMNPQRTWY

b. BJDNPMKRWYTQ

c. QKDBJMPNTRYW

11.

15.

16.
56

47

22 49 59 77

76

61

11 48

9

63

62

6423

29

30

10

69

•tree

56

30

22

11 23

64

49 62

61

69

•tree

50

26

12

11

9 16

2 10 17

96

107

95

25

51

94

72

•tree

Chapter 8 | 691

17. a. False

b. False

c. True

d. False

18. No; an inorder traversal would leave the elements in a sorted order, so that when you
went to rebuild the tree, you would have a stalk instead of a tree.

19. a. Elements inserted in random order:

Linked list: O(N)

Binary search tree: O(log2N)

b. Elements inserted in order:

Linked list: O(N)

Binary search tree: O(N)

20. a.

26. a. void Ancestors(ItemType value); // Prototype
// Pre: A node whose info member is value is in the tree.
// Post: The ancestors of the node whose info member is
// value have been printed.

b. template<class ItemType>
void TreeType<ItemType>::Ancestors(ItemType value)
{
TreeNode<NodeType>* location;

while (location->info != value)
{
std::cout << location->info << endl;
if (location->info < value)

monkey

canary

donkey

deer

zebra

yak

walrus

vulture

penguin

quail

692 | Answers

location = location->right;
else
location = location->left;

}
}

27. template<class ItemType>
void PrintAncestors(TreeNode<NodeType>* tree, ItemType value) const;
// Prototype
template<class ItemType>
void TreeType<ItemType>::Ancestors(ItemType value) const
// Calls recursive function PrintAncestors to print the ancestors.
{
PrintAncestors(root, value);

}

template<class ItemType>
void PrintAncestors(TreeNode<NodeType>* tree, ItemType value) const
{
if (tree->info != value)
{
std::cout << tree->info << endl;
if (tree->info < value)
PrintAncestors(tree->right, value);

else
PrintAncestors(tree->left, value);

}
}

30. int LeafCount(); // Prototype
// Post: Function value = number of leaf nodes in the tree.
template<class ItemType>
int Count(TreeNode<ItemType>* tree); // Prototype

template<class ItemType>
int TreeType<ItemType>::LeafCount()
// Calls recursive function Count to count the number
// of leaf nodes.
{
return Count(root);

}

template<class ItemType>
int Count(TreeNode<ItemType>* tree)
{

Chapter 8 | 693

if (tree == NULL)
return 0;

else if (tree->left == NULL) && (tree->right == NULL)
return 1;

else
return Count(tree->left) + Count(tree->right);

}

31. int SingleParentCount(); // Prototype
// Post: Number of nodes with only one child is returned.
template<class ItemType>
int SingleCount(TreeNode<ItemType>* tree); // Prototype

template<class ItemType>
int TreeType<ItemType>::SingleParentCount()
// Calls recursive function SingleCount to count the number of nodes
// with only one child.
{
return SingleCount(root);

}

template<class ItemType>
int SingleCount(TreeNode<ItemType>* tree)
{
if (tree == NULL)
return 0;

else if (tree->left == NULL && tree->right != NULL)
return 1 + Count(tree->right);

else if (tree->right == NULL && tree->left != NULL)
return 1 + Count(tree->left);

else
return Count(tree->left) + Count(tree->right);

}

32. template<class ItemType>
int Count(TreeType<ItemType> tree, ItemType value)
// Pre: tree has been initialized.
// Post: Function value = the number of nodes in tree that contain
// values that are greater than value.
{
ItemType item;
bool finished = false;
int number = 0; // Sum of number of items < value

if (tree.IsEmpty())

694 | Answers

return 0;
else
{
tree.ResetTree(IN_ORDER);
// By using an inorder traversal, the process can stop when
// a larger value is returned.
while (!finished)
{
tree.GetNextItem(item, finished, IN_ORDER);
if (item < value)
number++;

else
finished = true;

}
return number;

}
}

35. template<class ItemType>
void MakeTree(TreeType<ItemType>& tree, int info[], int length)
// Creates a binary tree from a sorted array.
{
tree.MakeEmpty();
AddElements(tree, info, 0, length-1);

}

template<class ItemType>
void AddElements(TreeType<ItemType>& tree, ItemType info[],

int fromIndex, int toIndex)
{
int midIndex;

if (fromIndex <= toIndex)
{

midIndex = (fromIndex + toIndex) / 2;
tree.InsertItem(info[midIndex]);
AddElements(tree, info, fromIndex, midIndex - 1);
// Complete the left subtree.
AddElements(tree, info, midIndex+1, toIndex);
// Complete the right subtree.

}
}

38. Either the value in node 5 or the value in node 6.

39. Inorder

40. Preorder

Chapter 8 | 695

42. a. b, d, and e

b. b, d, and e

c. d

43. a. Any negative number can be used as a dummy value.

b. Assume that the dummy value is �1.0.

.nodes [0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

tree

.numElements

26

14

38

1

–1

33

50

–1

7

–1

35

44

60

?

?

?

13

696 | Answers

44.

45.

46. a. True. Its smallest child index would be 85, but the tree contains only 85 elements.

b. False. treeNodes[41] has two children: treeNodes[83] and treeNodes[84].

c. False. The left child of treeNodes[12] is treeNodes[25].

d. True.

e. False. The tree contains six full levels (containing 63 elements), with 22 additional
elements on the seventh level.

55

1

3344

1122

59

5758

60
53
3
49
46
1
2
48
16
25
40
?
?
?
?
?

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

.numElement

.nodes

tree

11

Chapter 9 | 697

Chapter 9

3. a. template<class ItemType>
void HeapType<ItemType>::ReheapDown(int root, int bottom)
// Post: Heap property is restored.
{
int maxChild;
int rightChild;
int leftChild;
bool heapOK = false;

while (root*2+1 <= bottom) && !heapOK)
{
leftChild = root*2+1;
rightChild = root*2+2;
if (leftChild == bottom)
maxChild = leftChild;

else
{
if (elements[leftChild] <= elements[rightChild])
maxChild = rightChild;

else
maxChild = leftChild;

}
if (elements[root] < elements[maxChild])
Swap(elements[root], elements[maxChild]);

else
heapOK = true;

}
}

b. template<class ItemType>
void HeapType<ItemType>::ReheapUp(int root, int bottom)
// Post: Heap property is restored.
{
int parent;
bool heapOK = false;

while (bottom > root && !heapOK)
{
parent = (bottom-1) / 2;
if (elements[parent] < elements[bottom])
{
Swap(elements[parent], elements[bottom]);

698 | Answers

bottom = parent;
}
else
heapOK = true;

}
}

c. The nonrecursive versions, like the recursive versions, are O(log2N).

4. a.

28

56

After pq.Enqueue (28)

26

2425

27

155

42

3 19

28

56

After pq.Enqueue (2)

26

2425

27

155

42

3

2

19

28

56

After pq.Enqueue (40)

26

2425

27

155

42

40

32

19

28

42

After pq.Dequeue (x)

26

2425

27

155

40

3

2

19

28

40

After pq.Dequeue (y)

26

2425

27

155

19

3 2

27

28

After pq.Dequeue (z)

26

2425

15

5

19

3 2

Chapter 9 | 699

Push

Assign the next largest time stamp to the new element
Put new element in the stack (position is unimportant)

Pop
Find the element with the largest time stamp
Remove the element

Enqueue
Assign the next largest time stamp to the new element
Put new element in the queue (position is unimportant)

b. x = 56, y = 42, z = 40

8. a. The highest-priority element is the one with the largest time stamp. (This assumes that
the time stamp never reaches INT_MAX.)

b.

c. The Push operation has O(1) complexity, because it doesn’t matter where the item is
stored in the structure. The Pop operation has O(N) complexity, because the item with
the largest time stamp must be searched for. Therefore, Push is the same in both imple-
mentations, but Pop is not. If the priority queue is implemented using a heap with the
largest value having the highest priority, Pop and Push have O(log2N) complexity.

9. a. The highest-priority element is the one with the smallest time stamp.

b.

700 | Answers

Dequeue
Find the element with the smallest time stamp
Assign this element to item (to be returned)
Remove this element from the queue

c. Enqueue, like those operations in Chapter 5, has 0(1) complexity. Dequeue has O(N),
as compared with the 0(1) operations developed in Chapter 5. If the priority queue is
implemented using a heap with the smallest value having the highest priority,
Enqueue has O(1) and Dequeue has O(log2N) complexity.

10. a. The string length attribute is used to determine their priority (longer length is higher
priority).

.nodes [0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

 .numElements

"introspective"

"interviewing"

"intellectual"

"intimate"

"intelligent"

"interesting"

"internal"

"into"

"in"

"intro"

"intensive"

11

Chapter 9 | 701

15.

16.

[0]

[1]

.vertices

 .numVertices

 .vertexList

animal

banana

13

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

cat

crab

dachshund

dalmatian

dog

invertebrate

monkey

oyster

poodle

shellfish

vertebrate

animal

vertebrate

monkey dog cat

invertebrate

shellfish

oyster crab

poodle dalmation dachshund

banana

702 | Answers

17. a. Yes

b. Yes

c. No

d. No

e. Yes

f. No

20. a. No

b. Yes

c. Texas

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

F

F

F

F

F

F

F

T

F

F

F

F

T

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

T

T

F

F

F

F

T

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

T

F

F

F

F

F

T

F

F

F

F

F

T

F

F

F

T

F

T

F

F

F

F

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

.Edges

Chapter 9 | 703

21. a.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

StateGraph

 .vertices

 .numVertices

 .vertexList

 .Edges

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[0] [1] [2] [3] [4] [5] [6]

Alaska

California

Hawaii

New York

Oregon

Texas

Vermont

F

F

T

F

F

F

T

F

F

T

F

F

F

T

F

F

F

F

F

T

F

F

F

T

F

F

F

T

T

F

F

F

F

F

F

F

F

T

F

F

F

F

F

F

F

F

F

T

F

7

704 | Answers

b.

24. Deleting a vertex is more complicated than deleting an edge for two reasons. First, in
addition to removing the vertex from the set of vertices, we must remove the edges to all
its adjacent vertices in the set of edges. Second, we must decide how to handle the now
unused vertex number. The best solution is to keep a list of returned vertex numbers and
assign new numbers from there first.

25. a. Base Cases: (1) If endVertex has been previously found, stop. (2) If startVertex
equals endVertex, found is true; stop. (3) If no more untried vertices are adjacent to
startVertex, found is false; stop.

General Case: If endVertex is not yet found, DepthFirstSearch all the untried adja-
cent vertices.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

 .vertices

 .numVertices

 .vertexList

Alaska

California

Hawaii

New York

Oregon

Texas

Vermont

4

1

2

0

/

3

6

1

/

7

5

3

/

0 /

Chapter 9 | 705

26. Implicit set representations represent those items that are present in an instance of a set
explicitly; those items that are not represented are not in the set. Explicit set representa-
tions associate a place (bit or Boolean flag) with each item in the base type in the instance
of each set. The place for an item is true if the item is in the set and false if the item is not
in the set.

27.

DepthFirstSearch
if !found

if startVertex = endVertex
Write startVertex
Set found to true

else
if startVertex is not yet tried

Mark startVertex as tried
Write startVertex
Get list of adjacent vertices
DepthFirstSearch all untried adjacent vertices

IsEmpty
Set empty to true
Set counter to 0
while counter < maxItems - 1 AND empty

if (items[counter])
count++

else
Set empty to false

return empty

b.

706 | Answers

Chapter 10

4. a. Bubble sort

b. Selection sort

c. Insertion sort

5. a. 4950

b. 99

6. a. O(N2)

b. O(N)

c. O(N2)

d. O(Nlog2N)

e. O(N)

f. O(Nlog2N)

7. The correct answer is (c).

8. The correct answer is (d).

9. QuickSort would take the longest; InsertionSort and ShortBubble would take the
shortest.

10. a. A bubble sort is O(N) if the values are already sorted, and if the algorithm stops pro-
cessing when the sorting is complete (e.g., ShortBubble).

b. None.

c. QuickSort is O(N2) if the values are already sorted and the split algorithm causes the
array to be split into one element and the rest of the array.

13. a. True.

b. False. HeapSort is better for nearly sorted data than QuickSort is.

c. True

14. Only (b) is true.

15. Programmer time refers to the amount of time it takes a programmer to generate a piece
of software, including the time to design, code, and test it. If a programmer needs to fin-
ish a software project quickly, sometimes his or her time is a more critical efficiency con-

MakeEmpty
for counter going from 0 to maxItems - 1

Set items[counter] to false

Chapter 10 | 707

sideration than how fast the resulting program runs on a computer. In this chapter,
recursive sorting algorithms are cited as time-savers for the programmer, possibly at the
expense of computing time.

16. The correct answer is (b).

17. All of the algorithms are stable except HeapSort.

22. Declare an array indexed from 0 through 99. Use the slots in the array as counters for
that percentile score—that is, the slot indexed by 0 is the counter for percentile scores of
0; the slot indexed by 2 is the counter for percentile scores of 2; and so on. To produce
the required output, go through the array from 99 down to 0, printing the loop counter
as many times as values appear in that slot.

23. a. HeapSort

b. QuickSort or InsertionSort

c. QuickSort

d. MergeSort

24. a. For the best case, O(N)

b. For the worst case, O(N)

25. a. For the best case, O(1)

b. For the worst case, O(N2)

708 | Answers

29.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

140

620

145

66

47

87

126

90

285

467

153

393

395

566

177

735

Chapter 10 | 709

30.

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

140

467

620

145

66

47

285

126

87

566

90

395

153

177

735

393

710 | Answers

31.

32.
90[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

140 620

153

145

66

47

393

285

126

87

395

566

735

177 467

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

HashTable

140

393

285

126

87

735

90

153

145

66

47

467

620

395

566

177

Chapter 10 | 711

37. a. 50

b. 50

c. 50

38. The correct answer is (a).

42. To sort the file in descending order, collect the queues from Queues[9] down to
Queues[0].

43. No. Simply substituting the Stack ADT for the Queue ADT would not work. The elements
would be gathered in the wrong order.

Appendix A Reserved Words

The following identifiers are reserved words—identifiers with predefined meanings in the C++ language.
The programmer cannot declare them for other uses (for example, variable names) in a C++ program.

and double not this
and_eq dynamic_cast not_eq throw
asm else operator true
auto enum or try
bitand explicit or_eq typedef
bitor export private typeid
bool extern protected typename
break false public union
case float register unsigned
catch for reinterpret_cast using
char friend return virtual
class goto short void
compl if signed volatile
const inline sizeof wchar_t
const_cast int static while
continue long static_cast xor
default mutable struct xor_eq
delete namespace switch
do new template

Appendix B Operator Precedence

The following table summarizes C++ operator precedence. In the table, the operators are grouped by
precedence level (highest to lowest), and a horizontal line separates each precedence level from the next-
lower level. In general, the binary operators group from left to right; the unary operators, from right to
left; and the ?: operator, from right to left. Exception: The assignment operators group from right to left.

Precedence (highest to lowest)

Operator Associativity Remarks

:: Left to right Scope resolution (binary)
:: Right to left Global access (unary)

() Left to right Function call and function-style cast
[] -> . Left to right
++ -- Right to left ++ and -- as postfix operators
typeid dynamic_cast Right to left
static_cast const_cast Right to left
reinterpret_cast Right to left

++ -- ! Unary + Unary – Right to left ++ and -- as prefix operators
~ Unary * Unary & Right to left
(cast) sizeof new delete Right to left

->* .* Left to right

* / % Left to right

+ – Left to right

<< >> Left to right

< <= > >= Left to right

== != Left to right

& Left to right

^ Left to right

| Left to right

&& Left to right

|| Left to right

?: Right to left

= += –= *= /= %= Right to left
<<= >>= &= |= ^= Right to left

throw Right to left

, Left to right The sequencing operator, not the separator

714 | Appendices

Appendix C A Selection of Standard Library Routines

The C++ standard library provides a wealth of data types, functions, and named constants. This appendix
details only some of the more widely used library facilities. It is a good idea to consult the manual for
your particular system to see what other types, functions, and constants the standard library provides.

This appendix is organized alphabetically according to the header file your program must
#include before accessing the listed items. For example, to use a mathematics routine such as sqrt,
you would #include the header file cmath as follows:

#include <cmath>
using namespace std;

�
y = sqrt(x);

Note that every identifier in the standard library is defined to be in the namespace std. Without the
using directive above, you would write

y = std::sqrt(x);

C.1 The Header File cassert

assert(booleanExpr)
Argument: A logical (Boolean) expression
Effect: If the value of booleanExpr is true, execution of the program sim-

ply continues. If the value of booleanExpr is false, execution ter-
minates immediately with a message stating the Boolean expression,
the name of the file containing the source code, and the line number in
the source code.

Function return value: None (a void function)
Note: If the preprocessor directive #define NDEBUG is placed before the

directive #include <cassert>, all assert statements are ignored.

C.2 The Header File cctype

isalnum(ch)
Argument: A char value ch
Function return value: An int value that is

� nonzero (true), if ch is a letter or a digit character (‘A’–‘Z’, ‘a’–‘z’,
‘0’–‘9’)

� 0 (false), otherwise

Appendix C A Selection of Standard Library Routines | 715

isalpha(ch)
Argument: A char value ch
Function return value: An int value that is

� nonzero (true), if ch is a letter (‘A’–‘Z’, ‘a’–‘z’)
� 0 (false), otherwise

iscntrl(ch)
Argument: A char value ch
Function return value: An int value that is

� nonzero (true), if ch is a control character (in ASCII, a character
with the value 0–31 or 127)

� 0 (false), otherwise

isdigit(ch)
Argument: A char value ch
Function return value: An int value that is

� nonzero (true), if ch is a digit character (‘0’–‘9’)
� 0 (false), otherwise

isgraph(ch)
Argument: A char value ch
Function return value: An int value that is

� nonzero (true), if ch is a nonblank printable character (in ASCII,
‘!’ through ‘~’)

� 0 (false), otherwise

islower(ch)
Argument: A char value ch
Function return value: An int value that is

� nonzero (true), if ch is a lowercase letter (‘a’–‘z’)
� 0 (false), otherwise

isprint(ch)
Argument: A char value ch
Function return value: An int value that is

� nonzero (true), if ch is a printable character, including the blank
(in ASCII, ‘ ’ through ‘~’)

� 0 (false), otherwise

ispunct(ch)
Argument: A char value ch
Function return value: An int value that is

� nonzero (true), if ch is a punctuation character (equivalent to
isgraph(ch) && !isalnum(ch))

� 0 (false), otherwise

716 | Appendices

isspace(ch)
Argument: A char value ch
Function return value: An int value that is

� nonzero (true), if ch is a whitespace character (blank, newline, tab,
carriage return, form feed)

� 0 (false), otherwise

isupper(ch)
Argument: A char value ch
Function return value: An int value that is

� nonzero (true), if ch is an uppercase letter (‘A’–‘Z’)
� 0 (false), otherwise

isxdigit(ch)
Argument: A char value ch
Function return value: An int value that is

� nonzero (true), if ch is a hexadecimal digit (‘0’–‘9’, ‘A’–‘F’, ‘a’–‘f ’)
� 0 (false), otherwise

tolower(ch)
Argument: A char value ch
Function return value: A character that is

� the lowercase equivalent of ch, if ch is an uppercase letter
� ch, otherwise

toupper(ch)
Argument: A char value ch
Function return value: A character that is

� the uppercase equivalent of ch, if ch is a lowercase letter
� ch, otherwise

C.3 The Header File cfloat

This header file supplies named constants that define the characteristics of floating-point numbers on
your particular machine. Among these constants are the following:

FLT_DIG Approximate number of significant digits in a float value on your machine
FLT_MAX Maximum positive float value on your machine
FLT_MIN Minimum positive float value on your machine
DBL_DIG Approximate number of significant digits in a double value on your machine
DBL_MAX Maximum positive double value on your machine
DBL_MIN Minimum positive double value on your machine
LDBL_DIG Approximate number of significant digits in a longdouble value on your machine
LDBL_MAX Maximum positive longdouble value on your machine
LDBL_MIN Minimum positive longdouble value on your machine

Appendix C A Selection of Standard Library Routines | 717

C.4 The Header File climits

This header file supplies named constants that define the limits of integer values on your particular
machine. Among these constants are the following:

CHAR_BITS Number of bits in a byte on your machine (8, for example)
CHAR_MAX Maximum char value on your machine
CHAR_MIN Minimum char value on your machine
SHRT_MAX Maximum short value on your machine
SHRT_MIN Minimum short value on your machine
INT_MAX Maximum int value on your machine
INT_MIN Minimum int value on your machine
LONG_MAX Maximum long value on your machine
LONG_MIN Minimum long value on your machine
UCHAR_MAX Maximum unsignedchar value on your machine
USHRT_MAX Maximum unsignedshort value on your machine
UINT_MAX Maximum unsignedint value on your machine
ULONG_MAX Maximum unsignedlong value on your machine

C.5 The Header File cmath

In the math routines listed below, the following notes apply.

1. Error handling for incalculable or out-of-range results is system dependent.
2. All arguments and function return values are technically of type double (double-precision floating-

point). However, single-precision (float) values may be passed to the functions.

acos(x)
Argument: A floating-point expression x, where –1.0� x � 1.0
Function return value: Arc cosine of x, in the range 0.0 through �

asin(x)
Argument: A floating-point expression x, where –1.0 � x � 1.0
Function return value: Arc sine of x, in the range –�/2 through �/2

atan(x)
Argument: A floating-point expression x
Function return value: Arc tangent of x, in the range –�/2 through �/2

ceil(x)
Argument: A floating-point expression x
Function return value: “Ceiling” of x (the smallest whole number� x)

718 | Appendices

cos(angle)
Argument: A floating-point expression angle, measured in radians
Function return value: Trigonometric cosine of angle

cosh(x)
Argument: A floating-point expression x
Function return value: Hyperbolic cosine of x

exp(x)
Argument: A floating-point expression x
Function return value: The value e (2.718...) raised to the power x

fabs(x)
Argument: A floating-point expression x
Function return value: Absolute value of x

floor(x)
Argument: A floating-point expression x
Function return value: “Floor” of x (the largest whole number� x)

log(x)
Argument: A floating-point expression x, where x > 0.0
Function return value: Natural logarithm (base e) of x

log10(x)
Argument: A floating-point expression x, where x > 0.0
Function return value: Common logarithm (base 10) of x

pow(x, y)
Arguments: Floating-point expressions x and y. If x = 0.0, y must be posi-

tive; if x � 0.0, y must be a whole number
Function return value: x raised to the power y

sin(angle)
Argument: A floating-point expression angle, measured in radians
Function return value: Trigonometric sine of angle

sinh(x)
Argument: A floating-point expression x
Function return value: Hyperbolic sine of x

sqrt(x)
Argument: A floating-point expression x, where x� 0.0
Function return value: Square root of x

Appendix C A Selection of Standard Library Routines | 719

tan(angle)
Argument: A floating-point expression angle, measured in radians
Function return value: Trigonometric tangent of angle

tanh(x)
Argument: A floating-point expression x
Function return value: Hyperbolic tangent of x

C.6 The Header File cstddef

This header file defines a few system-dependent constants and data types. From this header file, the only
item we use in this book is the following symbolic constant:

NULL The null pointer constant 0

C.7 The Header File cstdlib

abs(i)
Argument: An int expression i
Function return value: An int value that is the absolute value of i

atof(str)
Argument: A C string (null-terminated char array) str representing a floating

point number, possibly preceded by whitespace characters and a ‘+’ or ‘–’
Function return value: A double value that is the floating-point equivalent of the charac-

ters in str
Note: Conversion stops at the first character in str that is inappropriate for

a floating-point number. If no appropriate characters were found, the
return value is system dependent.

atoi(str)
Argument: A C string (null-terminated char array) str representing an integer

number, possibly preceded by whitespace characters and a ‘+’ or ‘–’
Function return value: An int value that is the integer equivalent of the characters in str
Note: Conversion stops at the first character in str that is inappropriate for

an integer number. If no appropriate characters were found, the return
value is system dependent.

atol(str)
Argument: A C string (null-terminated char array) str representing a long inte-

ger, possibly preceded by whitespace characters and a ‘+’ or ‘–’
Function return value: A long value that is the long integer equivalent of the characters in str

720 | Appendices

Note: Conversion stops at the first character in str that is inappropriate for
a long integer number. If no appropriate characters were found, the
return value is system dependent.

exit(exitStatus)
Argument: An int expression exitStatus
Effect: Program execution terminates immediately with all files properly closed
Function return value: None (a void function)
Note: By convention, exitStatus is 0 to indicate normal program comple-

tion and is nonzero to indicate an abnormal termination.

labs(i)
Argument: A long expression i
Function return value: A long value that is the absolute value of i

rand()
Argument: None
Function return value: A random int value in the range 0 through RAND_MAX, a constant

defined in cstdlib (RAND_MAX is usually the same as INT_MAX)
Note: See srand below.

srand(seed)
Argument: An int expression seed, where seed ≥ 0
Effect: Using seed, the random number generator is initialized in preparation

for subsequent calls to the rand function.
Function return value: None (a void function)
Note: If srand is not called before the first call to rand, a seed value of 1

is assumed.

system(str)
Argument: A C string (null-terminated char array) str representing an operating

system command, exactly as it would be typed by a user on the oper-
ating system command line

Effect: The operating system command represented by str is executed.
Function return value: An int value that is system dependent
Note: Programmers often ignore the function return value, using the syntax

of a void function call rather than a value-returning function call.

Appendix C A Selection of Standard Library Routines | 721

C.8 The Header File cstring

The header file cstring (not to be confused with the header file named string) supports manipula-
tion of C strings (null-terminated char arrays).

strcat(toStr, fromStr)
Arguments: C strings (null-terminated char arrays) toStr and fromStr, where

toStr must be large enough to hold the result
Effect: fromStr, including the null character ‘\0’, is concatenated (joined) to

the end of toStr.
Function return value: The base address of toStr
Note: Programmers usually ignore the function return value, using the syn-

tax of a void function call rather than a value-returning function call.

strcmp(str1, str2)
Arguments: C strings (null-terminated char arrays) str1 and str2
Function return value: An int value < 0, if str1 < str2 lexicographically

The int value 0, if str1 = str2 lexicographically
An int value > 0, if str1 > str2 lexicographically

strcpy(toStr, fromStr)
Arguments: toStr is a char array and fromStr is a C string (null-terminated

char array), and toStr must be large enough to hold the result
Effect: fromStr, including the null character ‘\0’, is copied to toStr, over-

writing what was there.
Function return value: The base address of toStr
Note: Programmers usually ignore the function return value, using the syn-

tax of a void function call rather than a value-returning function call.

strlen(str)
Argument: A C string (null-terminated char array) str
Function return value: An int value� 0 that is the length of str (excluding the ‘\0’)

C.9 The Header File string

This header file supplies a programmer-defined data type (specifically, a class) named string. Associ-
ated with the string type are a data type, string::size_type, and a named constant,
string::npos, defined as follows:

string::size_type An unsigned integer type related to the number of characters in a string
string::npos The maximum value of type string::size_type

722 | Appendices

There are dozens of functions associated with the string type. Below are several of the most important
ones. In the descriptions, s is assumed to be a variable (an object) of type string.

s.c_str()
Arguments: None
Function return value: The base address of a C string (null-terminated char array) correspon-

ding to the characters stored in s

s.find(arg)
Argument: An expression of type string or char, or a C string (such as a

literal string)
Function return value: A value of type string::size_type that gives the starting posi-

tion in swhere arg was found. If arg was not found, the return value
is string::npos.

Note: Positions of characters within a string are numbered starting at 0.

getline(inStream, s)
Arguments: An input stream inStream (of type istream or ifstream) and a

string object s
Effect: Characters are input from inStream and stored into s until the new-

line character is encountered. (The newline character is consumed but
not stored into s.)

Function return value: Although the function technically returns a value (which we do not
discuss here), programmers usually invoke the function as though it
were a void function.

s.length()
Arguments: None
Function return value: A value of type string::size_type that gives the number of

characters in the string

s.size()
Arguments: None
Function return value: The same as s.length()

s.substr(pos, len)
Arguments: Two unsigned integers, pos and len, representing a position and a

length. The value of pos must be less than s.length().
Function return value: A temporary string object that holds a substring of at most len

characters, starting at position pos of s. If len is too large, it means
“to the end” of the string in s.

Note: Positions of characters within a string are numbered starting at 0.

Appendix C A Selection of Standard Library Routines | 723

Appendix D Character Sets

The following charts show the ordering of characters in two widely used character sets: ASCII (American
Standard Code for Information Interchange) and EBCDIC (Extended Binary Coded Decimal Interchange
Code). The internal representation for each character is shown in decimal. For example, the letter A is
represented internally as the integer 65 in ASCII and as 193 in EBCDIC. The space (blank) character is
denoted by a “ ”.

Right ASCII
Left Digit
Digit(s) 0 1 2 3 4 5 6 7 8 9

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT
1 LF VT FF CR SO SI DLE DC1 DC2 DC3
2 DC4 NAK SYN ETB CAN EM SUB ESC FS GS
3 RS US ! “ # $ % & ´
4 () * + , – . / 0 1
5 2 3 4 5 6 7 8 9 : ;
6 < = > ? @ A B C D E
7 F G H I J K L M N O
8 P Q R S T U V W X Y
9 Z [\] ^ _ ` a b c
10 d e f g h i j k l m
11 n o p q r s t u v w
12 x y z { | } ~ DEL

Codes 00–31 and 127 are the following nonprintable control characters:

NUL Null character VT Vertical tab SYN Synchronous idle
SOH Start of header FF Form feed ETB End of transmitted block
STX Start of text CR Carriage return CAN Cancel
ETX End of text SO Shift out EM End of medium
EOT End of transmission SI Shift in SUB Substitute
ENQ Enquiry DLE Data link escape ESC Escape
ACK Acknowledge DC1 Device control one FS File separator
BEL Bell character (beep) DC2 Device control two GS Group separator
BS Back space DC3 Device control three RS Record separator
HT Horizontal tab DC4 Device control four US Unit separator
LF Line feed NAK Negative acknowledge DEL Delete

724 | Appendices

Right EBCDIC
Left Digit
Digit(s) 0 1 2 3 4 5 6 7 8 9

6
7 ¢ . < (+ |
8 &
9 ! $ *) ; ¬ – /
10 ^ , % _
11 > ?
12 ` : # @ ´ = “ a
13 b c d e f g h i
14 j k l m n
15 o p q r
16 ~ s t u v w x y z
17 \ { }
18 []
19 A B C D E F G
20 H I J
21 K L M N O P Q R
22 S T U V
23 W X Y Z
24 0 1 2 3 4 5 6 7 8 9

In the EBCDIC table, nonprintable control characters—codes 00–63, 250–255, and those for which empty
spaces appear in the chart—are not shown.

Appendix D Character Sets | 725

Appendix E The Standard Template Library

Overview

The Standard Template Library (STL) is a subset of the ISO/ANSI C++ standard library. The STL
provides three kinds of facilities for C++ programmers to use: containers, iterators, and generic
algorithms.

An STL container holds other objects, much like the containers you have studied in this
text: lists, stacks, queues, and so on. Specifically, the STL supplies many useful container classes,
some of which are the following:

list A sequential-access list that can be traversed both forwards and backwards.

vector An abstraction of a one-dimensional array providing, as expected, random
access to the array elements.

stack A stack, with the usual LIFO access.

queue A queue, with the usual FIFO access.

deque A double-ended queue (insertions and deletions can occur at both ends) with
the uncommon additional property of random access.

set An abstraction of a mathematical set.

The container classes are template classes so that, for example, we declare objects of type
list<int>, stack<float>, and so forth.

To introduce the concepts of STL iterator and STL algorithm, we begin with the following
code segment, which inputs several integer values and outputs them in reverse order. The lines of
code are numbered so that we can refer to them in the discussion that follows the code segment.

1 #include <iostream>
2 #include <list> // For list<T> class
3 #include <algorithm> // For reverse() function

�

4 using namespace std;

5 list<int> nums;
6 list<int>::iterator iter;
7 int number;

8 cin >> number;
9 while (number != –9999)
10 {
11 nums.push_back(number);
12 cin >> number;
13 }
14 for (iter = nums.begin(); iter != nums.end(); iter++)
15 cout << *iter << endl;

726 | Appendices

16 reverse(nums.begin(), nums.end());

17 for (iter = nums.begin(); iter != nums.end(); iter++)
18 cout << *iter << endl;

In this code, lines 2 and 3 cause insertion of the header files list and algorithm, allowing
us to use the template class list and the function named reverse. Line 5 creates a list named
nums whose components are of type int. The list is initially empty. Line 6 declares iter to be
of type list<int>::iterator, a data type defined inside the list<int> class. We discuss its
usage in a moment.

Lines 8 through 13 read integer values from the standard input device and insert them into
the list. The push_back function, a member of the list class, takes the value in its argument
list and appends it to the back (rear) of the list. (Note that the verb push, traditionally used only
for insertion into a stack, is used throughout the STL container classes to mean insert.) The loop
continues until the sentinel (trailer) value –9999 is read, after which the nums list contains the
input values in the order in which they were read.

Next, the loop in lines 14 and 15 traverses the nums list from front to back, printing each
list item in turn. The variable iter, which was declared in line 6, is an STL iterator. In one
sense, an STL iterator is similar to the iterator concept you have studied in this text (a class
member function named something like GetNext). Both STL iterators and GetNext operations
enable cycling through a container, one item at a time. On the other hand, an STL iterator is a
lower-level concept than a GetNext operation: It simply represents the location of an item
within a container. Thus, an STL iterator is a generalization of the notion of a pointer. Iterators
allow C++ programs to access a container’s stored items without having to know the internal
structure of the container. The syntax for manipulating an iterator is very nearly the same as for
a pointer. To access an item referred to by an iterator iter, one writes *iter. To step the itera-
tor forward to refer to the next item in the container, one writes iter++. The inner workings of
the iterator, such as the detail of advancing the position in the container, are hidden from the
user and are specific to the container being used. Each STL container class defines one or more
iterator types, such as list<int>::iterator. An iterator may be implemented as an ordinary
pointer or a class object, depending on the particular container.

Now, back to lines 14 and 15. In line 14, the variable iter is initialized to the value
returned by the function call nums.begin(). The function named begin, a member of the list
class, returns the location of the first item in the list. (In the C++ literature—and even in places
within this appendix—the phrase “returns an iterator to the first item” is used. What is really
meant is “returns the location of.” You can even say “returns a pointer to” or “returns the
address of,” although there is no guarantee that a particular iterator is implemented as a C++
pointer variable.) In the heading of the for statement of line 14, the loop condition is iter !=
nums.end(). The function named end, a member of the list class, returns the location of an
imaginary list item that is just beyond the last actual list item. (This position is often called the
past-the-end position.) The third piece of the for statement heading, which is iter++, says to
advance the iterator to point to the next list item. Therefore, each time through the loop, we
obtain the location of the next list item, and we keep looping until we’ve gone past the end of
the list. In each loop iteration, we perform the loop body seen in line 15: We output the value

Appendix E The Standard Template Library | 727

referred to (or “pointed to”) by the iterator iter. Note that the output statement uses the expres-
sion *iter, not iter. That is, we want to print the list item, not its location.

Next, look at line 16 of the program. The reverse function, available through the header
file algorithm, takes as arguments two iterators—a beginning and an ending position in a con-
tainer—and puts into reverse order all the items from the beginning position up to, but not
including, the ending position. So in line 16, all of the items in the nums list are processed
because the second argument, nums.end(), specifies the past-the-end position. Finally, lines 17
and 18 traverse the nums list, printing out the new contents of the list.

The reverse function is an example of an STL algorithm. In computer science terminology,
an algorithm is an abstract procedural concept, a recipe for solving a problem. An algorithm
implemented in a programming language is a program. Every program implements one or more
algorithms. In contrast, the STL defines the term algorithm in a much narrower sense. An STL
algorithm (or simply an algorithm) is a template function that has iterators for its parameter
types. The description of each algorithm specifies the kinds of iterators it requires as its parame-
ters. Later in the appendix, we describe a variety of algorithms supplied by the STL.

Let’s look at another example of an STL container class: vector. A vector object is an
abstraction of a one-dimensional array and can be used in the same manner as a built-in array:

#include <vector> // For vector<T> class
�

vector<float> arr(100); // A 100-element array
�

arr[24] = 9.86; // Random access is allowed through
arr[i+j] = arr[k]; // a subscript (index) expression

However, the vector class is far more versatile than a built-in array. A major limitation of
built-in arrays is that the array size is fixed at compile time and cannot grow or shrink while the
program is running. In contrast, the size of a vector can vary at run time. Suppose we want to
input an unknown number of integer values at run time and store them into an array. With a
built-in array, we have to estimate its size in advance, and our estimate may be too large (a
waste of memory) or too small (our program is in trouble). With a vector, we don’t need to spec-
ify its size and can let it grow as needed:

vector<int> vec; // Initial size is 0
int inputVal;

cin >> inputVal;
while (cin) // Assume 50 numbers are
{ // input before EOF occurs
vec.push_back(inputVal);
cin >> inputVal;

}
cout << vec.size() << endl; // Outputs 50

for (int i = 0; i < vec.size(); i++) // We can still use
cout << vec[i] << endl; // indexing

728 | Appendices

In the preceding code, the size of the vec object keeps increasing as needed, with memory
implicitly being allocated dynamically. Notice also in the code that push_back is a member of
the vector<int> class as well as the list<int> class. In fact, many of the STL container
classes have member functions with the same name (for example, push_back) and the same
semantics. Because of this uniformity, it is incredibly easy to reuse code from one context in
another context. For example, how might we input several integer values into a vector and then
output them in reverse order? The answer: Go back to our first code example with lines num-
bered 1 through 18 and change only lines 2, 5, and 6:

2 #include <vector> // For vector<T> class
5 vector<int> nums;
6 vector<int>::iterator iter;

All of the other lines in the program remain absolutely identical because

• both list and vector have member functions push_back, begin, and end with identi-
cal semantics.

• the reverse algorithm doesn’t care what kind of container it’s processing, as long as it
receives a beginning position in the container and a past-the-end position.

The first time you study the STL in depth, it will likely be hard to know where to start. In the
STL, containers form the heart of the library, but it is difficult to understand containers without
some knowledge of the STL algorithms and the iterator requirements, and vice versa. In the STL,
algorithms extend the functionality of the containers, and the iterators enable containers and
algorithms to work together. In fact, if the user wishes to build his or her own container with
iterators or create algorithms that meet the STL requirements, these structures will interact cor-
rectly with the STL components.

A problem some have when first learning the STL is that some of the terminology used there
(such as iterator and algorithm) is different from common usage in computer science. As in every
new subject in computer science, the new vocabulary must be learned. The STL is well worth
learning, for it is a fast, flexible, and useful library.

The ISO/ANSI C++ Standard requires that the full Standard Template Library be provided by
every compliant compiler. The STL components are nicely designed to work together well. They
are as fast as anything a journeyman programmer can create in the time it takes to learn to use
the library.

We should point out that in the design of the STL, the Standards committee made a deliber-
ate decision to provide speed rather than safety, so most STL components do not throw excep-
tions. Most STL member functions either succeed or do nothing. We do not provide further
discussion of exceptions in the STL containers and algorithms except for the at() member func-
tion supported by the random access containers. We refer you to the 1998 ISO/ANSI C++ Stan-
dard 14882 and to Josuttis’s The C++ Standard Library for further discussion of this topic. (See
the references at the end of this appendix.)

We now examine in more detail the STL components in the following order: iterators, con-
tainers, and algorithms.

Appendix E The Standard Template Library | 729

730 | Appendices

Below, the arrow means “is stronger than”

Random access → Bidirectional → Forward → Input
Output

Figure A.1 Relationships among iterator categories

Iterators

In many data structures and containers, we need some idea of the position or location of an item
in the structure. In C, and in C++ before the STL, the pointer met this need. Pointers have the
advantage of speed but require great care to avoid pitfalls. The STL provides the iterator as a
replacement for pointers that is as efficient as pointers but is much safer. Each STL container
provides one or more iterator types appropriate to the internal structure of the container.

We have seen that iterators are objects that specify position in STL containers and allow STL
algorithms to cycle through the items in a container. This is done through a common interface
through which an iterator is manipulated. Specifically, every iterator type must support at least
the following operations:

Prefix * Dereference (access the item currently pointed to)

++ Increment (point to the next item)

Additional operations are required for different categories of iterators.
An essential point is that behavior defines iterators. Anything that acts like an iterator is an

iterator. It turns out that a variable of type int* (pointer to int) can serve as an iterator for a
built-in int array. This fact enables many of the generic STL algorithms to be used directly with
built-in arrays. In contrast, a pointer cannot serve as an iterator into a list container. If the
list object happens to be implemented with a linked list of dynamically allocated nodes, the
pointer operation p++ almost certainly doesn’t point to the next node in the linked list (because
list nodes are not likely to reside in consecutive memory locations). Therefore, a class like
list<int> supplies a data type list<int>::iterator, which overloads the ++ operator in its
own way to advance the iterator to the next item in the list.

In summary, an iterator can be either an ordinary pointer (if the container is a built-in
array) or an object of a class that defines pointer-like operations that meet the STL requirements.

Iterator Categories

Different STL containers have different properties, so iterators for the various containers also
have different properties. Similarly, different STL algorithms require different properties of the
iterators they use. For example, sorting a container requires random access; otherwise, perform-
ance suffers. Consequently, iterators are classified in increasing “strength” of properties into
input iterators, output iterators, forward iterators, bidirectional iterators, and random access iter-
ators. Figure A.1 displays the relationships among the iterator categories. As we’ll see later, if an

Appendix E The Standard Template Library | 731

Table A.1 Operations on Input Iterators

Below, r and r2 are input iterators.

*r Provides read access to the item at the position denoted by r

r++ Steps r forward one position in the container; returns the old position

++r Steps r forward one position in the container; returns the new position

r == r2 Returns true if r and r2 denote the same position, else returns false

r != r2 Returns true if r and r2 denote different positions, else returns false

STL algorithm requires an iterator of a particular category, then the programmer can use an iter-
ator of that category or of any stronger category, but not of a weaker category.

Some additional types of iterators are reverse iterators, stream iterators, insertion iterators,
and raw storage iterators. Reverse iterators allow iteration through containers from the back to
the front. Stream iterators allow you to read and write files from STL algorithms. Insertion itera-
tors allow adding new items to the container rather than overwriting the position referred to by
the iterator. We are able to discuss only the first of these in the space of this appendix. However,
the references at the end of the appendix allow you to explore the others and more.

Input Iterators

Input iterators can only be stepped forward by one item per step. Furthermore, they may be
dereferenced only to fetch (but not store into) an item from a collection. Table A.1 displays the
allowable operations on an input iterator.

An example of an input iterator is a stream iterator that treats the keyboard input stream as
a “container” and iterates through the stream, fetching one input character after the next. (The
iostream header file provides such iterators.) We do not explore input stream iterators in this
appendix.

Output Iterators

As with input iterators, output iterators can only be stepped forward by one item per step. How-
ever, output iterators may be dereferenced only to store a value at (but not fetch a value from)
the specified location. Table A.2 shows the allowable operations on an output iterator.

At first, it might seem strange that we can modify something but not fetch it, but it begins
to make more sense if you consider that output iterators are often used for sending data to an
output stream such as cout. (The iostream header file provides output stream iterators.) The
idea is to treat an output stream as a “container” of characters and, using an output iterator,
write each new character to the stream, one by one. We do not discuss stream iterators further in
this appendix.

732 | Appendices

Table A.2 Operations on Output Iterators

Below, r is an output iterator.

*r = value Stores value at the position denoted by r

r++ Steps r forward one position in the container; returns the old position

++r Steps r forward one position in the container; returns the new position

Table A.3 Operations on Forward Iterators

Below, r and r2 are forward iterators.

*r Provides read access to the item at the position denoted by r

*r = value Stores value at the position denoted by r

r++ Steps r forward one position in the container; returns the old position

++r Steps r forward one position in the container; returns the new position

r == r2 Returns true if r and r2 denote the same position, else returns false

r != r2 Returns true if r and r2 denote different positions, else returns false

Forward Iterators

We have looked at two categories of iterators that step forward through a container, one permit-
ting only fetching, the other permitting only storing. Often we would like to both fetch and store
a value at a particular position as we step through a container. Forward iterators allow us to do
so. Specifically, the valid operations on a forward iterator are the same as those of an input iter-
ator plus the ability to store into the referenced item (see Table A.3).

The following is a generic algorithm that illustrates the use of forward iterators.

// In any container that supports forward iterators,
// replace every occurrence of an x value by a y value.

template <class ForwardIterator, class T>
void replace(ForwardIterator first, ForwardIterator pastLast,

const T& x, const T& y)
{
while (first != pastLast)
{
if (*first == x)
*first = y;

++first;
}

}

Appendix E The Standard Template Library | 733

Notice that the second parameter, pastLast, must denote a position that is one past that of
the last item to be considered. In other words, the replace function replaces items in the con-
tainer beginning at the position denoted by first and continuing up to but not including the
position denoted by pastLast. Alternatively, we can say it this way: The algorithm processes
items in the range [first, pastLast), a mathematical notation meaning an interval that is
closed on the left (it includes the left endpoint) but open on the right (it does not include the
right endpoint).

A call to the replace function might look like this:

list<int> lst;
�

replace(lst.begin(), lst.end(), 25, 125);

Recall from earlier in this appendix that lst.begin() returns the location of the first list item
and lst.end() returns the past-the-end location.

The STL implements algorithms such as replace with the weakest iterator that is capable of
carrying out the task at hand. In replace, the forward iterator is sufficient. Any stronger itera-
tor may be used where a forward iterator is specified.

Bidirectional Iterators

Bidirectional iterators have all the properties of forward iterators but allow backward as well as
forward movement through a container (see Table A.4).

Adding the decrement operator makes some algorithms easier to implement. We will see that
all the STL containers support either bidirectional iterators or random access iterators. The list
container provides bidirectional iterators. (Hence, some people like to think of list as an
abstraction of a doubly-linked list because it allows efficient traversal in either direction.)

Random Access Iterators

Random access iterators have all the properties of bidirectional iterators but support additional
operations to allow random (direct) access to any item in a container (see Table A.5).

The vector container provides random access iterators, which makes sense because vector
is an abstraction of a one-dimensional array.

Table A.4 Operations on Bidirectional Iterators

To the operations on forward iterators, add the following operations.

r-- Steps r backward one position in the container; returns the old position

--r Steps r backward one position in the container; returns the new position

734 | Appendices

Table A.5 Operations on Random Access Iterators

To the operations on bidirectional iterators, add the following operations.

r[i] Provides indexed read or store access to the item at the position denoted by r

r += i Steps r forward by i positions in the container

r -= i Steps r backward by i positions in the container

r + i Returns an iterator value that is i positions beyond r in the container

r – i Returns an iterator value that is i positions prior to r in the container

r – r2 Returns the number of items that exist between the positions denoted by r and r2

r < r2 Returns true if and only if the position denoted by r is before the position denoted by r2

r > r2 Returns true if and only if the position denoted by r is after the position denoted by r2

r <= r2 Returns true if and only if the position denoted by r is not after the position denoted by r2

r >= r2 Returns true if and only if the position denoted by r is not before the position denoted by r2

We have not yet mentioned reverse iterators, which are of considerable importance. We
delay introducing these iterators until we discuss vector containers, because vector supports
reverse iterators as well as random access iterators.

Containers

The STL provides three kinds of containers: sequence containers, container adapters, and asso-
ciative containers.

In a sequence container, every item in the container has a position, which depends on the
time and place of insertion but not on the item’s value. The sequence containers are vector,
list, and deque. These containers are sometimes referred to as “first class containers.” Each
STL container provides a different set of operations that have different tradeoffs in terms of time
and space complexity. Selection of a container should be made accordingly. The vector pro-
vides random access to its elements, and insertions and deletions at the back (but not in the mid-
dle) are very efficient. The C++ Standard suggests that vector is the sequence type that should
be used by default. If your program requires frequent insertions and deletions in the middle of a
sequence, the list should be used. The deque should be used if frequent insertions and dele-
tions are needed at the beginning and the end of the sequence.

The associative containers are map, multimap, set, and multiset. These containers are
based on the concept of an associative array, a data structure that holds pairs of values: a key
and a value associated with that key. We discuss associative containers later but do not explore
them in detail in this appendix.

The container adapters are queue, stack, and priority_queue. These are called adapters
because they use one of the three sequence containers (vector, list, or deque) to actually hold the
items and simply present a different interface (stack, queue, or priority queue) to the programmer.

Appendix E The Standard Template Library | 735

We begin by looking at the sequence containers vector, list, and deque, along with
another class provided by the standard library: string.

The vector<T> Class

The vector container provides fast random access into sequences of varying length, as well as
fast insertion and deletion at the end of the vector. vector<T> is a template class implemented
with a dynamically allocated array that may be used with any type T that is assignable and
copyable. This means that if T is a class or struct type, both operator= and a copy constructor
must be defined for T.

A vector’s behavior is similar to the C++ array, the main difference being that a built-in
array is of fixed size that must be known at compile time, whereas the vector automatically
expands to accommodate new entries. As with the List ADT from Chapter 3, a vector divides its
storage into an initial segment that contains the inserted items and a final segment of unused
items called the reserve. Unlike the List ADT, when the reserve is exhausted, the vector allocates
new memory space twice of that currently allocated, copies the data to the new memory, then
deallocates the old memory space. This operation is called a resize. There is a member function
that is available to carry out this operation, but most often it occurs implicitly. This process of
allocating more memory is sometimes referred to as reallocation, especially when done implicitly.

We speak of the first position in the vector as the front and the last used position as the
back. The vector container supports insertion and deletion at the back of the container in
amortized time of O(1). The term amortized time to do a task is a weighted average of two
things: the time to do just the primary task (which usually takes a short time and occurs fre-
quently) and the additional time to carry out another associated task (which usually takes con-
siderably longer but occurs infrequently). For the vector, the insertion operation takes a very
short time but has high probability. The additional task is to reallocate memory and copy data
when the reserve is exhausted, which takes a fairly long time but has a very low probability.

The following are some properties of vector containers:

• vectors provide random access, either through an unchecked index ([]) or through a
range-checked at() member function.

• vector iterators are random access iterators. Therefore, the behavior is essentially that of
C++ pointers. The iterators may be indexed, and pointer arithmetic may be applied. An
iterator is of a type defined within class vector<T> and may be declared by writing

vector<T>::iterator vIter;

• Insertion and deletion can be done in O(1) time at the back of a vector and O(N) time
elsewhere.

• Insertion and deletion invalidate any iterators referring to items beyond the deletion position.

There are two sizes associated with a vector v. One, the value returned by v.size(), is the
number of items that have been inserted into the vector. The other, the value returned from
v.capacity(), is the number of items inserted plus the number of places in the reserve. In Fig-
ure A.2, the capacity is 9, and the size is 4.

736 | Appendices

Inserted items Reserve

Iterator
position

begin() end()

Conceptual
position

Front Back

Index 0 1 2 3 4 5 6 7 8

Value 8 2 34 2

Figure A.2 vector memory allocation

Table A.6 vector Constructors and Destructor

vector<T> v; Default constructor. Creates an empty vector object, v

vector<T> vNew(vOld); Copy constructor. Creates a vector, vNew, as a copy of another vector,
vOld, of the same type. All members are copied

vector<T> v(n); Creates a vector of size n, with each element constructed by the
default constructor for type T

vector<T> v(n, value); Creates a vector of size n, with each element initialized to value,
which is of type T

vector<T> v(first, Creates a vector whose elements are copies of a subrange of another
pastLast); container of any type having the same base type T. The subrange is

[first, pastLast)—that is, from the position denoted by the itera-
tor first up to but not including the position denoted by the iterator
pastLast

v.~vector<T>() Destructor. Deallocates storage for v and invokes destructors (if any)
for its elements of type T. Not usually called explicitly; the destructor
is called automatically when v goes out of scope

The function call v.front() returns the first item in the vector, and v.back() returns the
last item. The values stored in the reserve section are inaccessible. The position referred to by
v.begin()is the position of index 0, which is also from where the v.front()function fetches.
The position referred to by v.end()is the one-past-the-end position. It is one beyond the posi-
tion from where the v.back()function fetches.

To describe the member functions of the vector<T> class, we now present a series of tables
along with examples. Please note that we include only a representative sample of the available

Appendix E The Standard Template Library | 737

member functions. For a comprehensive list, you should consult one of the references at the end
of the appendix.

Here is a short program illustrating the uses of several of the constructors.

// Code to illustrate vector constructors using primitive types and a
// user-defined type as base types.

#include <vector> // For vector<T> class
#include <cassert> // For assert() function

struct node
{
node()
{
iValue = 0;
dValue = 0.0;

}

int iValue;
double dValue;

};

int main()
{
using namespace std;

vector<double> doubleVec; // Empty vector of doubles
vector<int> intVec(5, 999); // Vector of 5 int values, each

// initialized to 999
vector<node> nodeVec(100); // Vector of 100 nodes, each

// initialized with default
// constructor node()

assert(doubleVec.size() == 0);
assert(intVec.size() == 5);
assert(intVec[0] == 999);
assert(nodeVec.size() == 100);
assert(nodeVec[9].iValue == 0);
assert(nodeVec[9].dValue == 0.0);

�

}

738 | Appendices

Table A.7 vector Element Access

v[index] Indexed access with no range checking. Index range is 0 through v.size() – 1.
The expression v[index] may return a value or have a value assigned to it

v.at(index) Indexed access with range checking. Index range is 0 through v.size() – 1.
Throws an out_of_range exception if index ≥ v.size(). The expression
v.at(index) may return a value or have a value assigned to it

v.front() Returns the first item in the vector. Same as v[0] or v.at(0)

v.back() Returns the last item in the vector. Same as v[v.size() – 1]

// Illustrates use of vector element access

#include <vector> // For vector<T> class
#include <iostream>

int main ()
{
using namespace std;

const int SIZE = 12;
int array[SIZE] = {1, 2, 3, 5, 8, 13, 21, 25, 16, 9, 4, 1};
vector<int> v(12);

for (int i = 0; i < SIZE; i++)
v[i] = array[i];

cout << v.at(SIZE); // Would generate an exception

for (int i = 0; i < SIZE; i++) // Or use i <= v.size()
cout << v.at(i) << endl;

// Illustrates use of front and back member functions
cout << v.front() << " same as " << v[0] << endl;
cout << v.back () << " same as " << v[SIZE – 1] << endl;

}

Appendix E The Standard Template Library | 739

Table A.8 vector Member Functions for Insertion

v.push_back(item); Inserts item onto the back of the vector. (If needed, resize. Store
into first reserve location, and adjust internal pointers)

v.insert(iter, item); Inserts item into the vector before the position denoted by itera-
tor iter. (Copy last item into reserve, resizing if needed. Succes-
sively copy items until position denoted by iter is reached. Copy
item into position denoted by iter)

v.insert(iter, n, item); Inserts n copies of item, starting at the position denoted by iter

v.swap(vOther); Swaps the contents of vectors v and vOther. The vectors must be
of the same type. This operation is fast, as only internal pointers
are changed

// Illustrates use of vector member functions for insertion

#include <vector> // For vector<T> class
#include <iostream>

int main ()
{
using namespace std;

const int SIZE = 12;
int array[SIZE] = {1, 2, 3, 5, 8, 13, 21, 25, 16, 9, 4, 1};
vector<int> v(12);
vector<int> w(12);

// Give v the items from array using the push_back member
for (int i = 0; i < SIZE; i++)
v.push_back(array[i]);

// Give w the values 0 through SIZE – 1
for (int i = 0; i < SIZE; i++)
w.push_back(i);

// Display v
for (int i = 0; i < SIZE; i++)
cout << v[i] << endl;

// Exchange the identities of v and w
v.swap(w);

740 | Appendices

Table A.9 vector Member Functions for Item Removal

v.pop_back(); Removes the last item from v. (This only changes internal
pointers)

v.erase(iter); Removes the item at the position denoted by iter. (Copies
data from the position following the one denoted by iter to
the position denoted by iter, then copies successively until
the last item is copied. Internal pointers are adjusted)

v.erase(first, pastLast); Removes all items in the range [first, pastLast]

Table A.10 vector Member Functions Related to Size

v.empty() Returns true if v contains no items, else returns false

v.size() Returns the number of items currently in v

v.capacity() Returns number of items in container + number of available
positions in reserve memory

v.reserve(n); Increases container capacity to n

v.resize(n, value); if (n > v.size())
v.insert(v.end(), n – v.size(), value);

else if (n < v.size())
v.erase(v.begin() + n, v.end());

// and display v, then w
for (int i = 0; i < SIZE; i++)
cout << v[i] << endl;

for (int i = 0; i < SIZE; i++)
cout << v[i] << endl;

}

Reallocation invalidates all references, pointers, and iterators into a vector that were set
prior to reallocation, because those iterator values all point into the old (previously allocated)
memory. It is guaranteed that no reallocation takes place for insertions that take place after a
call to reserve()until the vector reaches a size specified in the call to reserve().

Appendix E The Standard Template Library | 741

Table A.11 vector Member Functions Related to Iterators

vector<T>::iterator itr; Creates a random access iterator for a vector<T>

vector<T>::
reverse_iterator itr; Creates a (random access) reverse iterator for a vector<T>

v.begin() Returns a random access iterator value denoting the position
of the first item

v.end() Returns a random access iterator value denoting the position
of the imaginary past-the-end item

v.rbegin() Returns a reverse iterator value denoting the position of the
first item of a reverse iteration (i.e., the last item in the con-
tainer)

v.rend() Returns a reverse iterator value denoting the position of the
imaginary past-the-end item of a reverse iteration (i.e., the
imaginary before-the-first item in the container)

Before we look at the next sequence container, list, we examine the string class, which
is somewhat similar to vector<char> but has member functions and optimizations more appro-
priate to character strings.

The string Class

This section presents the string class from the C++ standard library. Although string is not
part of the STL, it is an integral part of the standard library. A knowledge of the string class is
essential in a programmer’s toolbox.

The standard library defines a class char_traits that defines properties of ordinary char-
acters (type char) and wide characters (type wchar_t, which is the wide [16-bit] character type
in which the Unicode character set is encoded). Although the C++ Standard deals with character
traits, we do not in this appendix. We deal only with the simpler situation in which the character
type is char.

The word string can be a source of confusion in Standard C++. By string, do we mean the
strings that are inherited from the C language—namely, null-terminated char arrays? Or do we
mean Standard C++ string class objects? To help remove some of this ambiguity, we will con-
sistently use string to refer only to the class string. In contrast, we use the term cstring to refer
to the kind of strings that C++ inherits from C (null-terminated char arrays). We do so partly
because the header file that provides functions that manipulate C-style strings is the file
<cstring>, and partly because cstrings are inherited from the C language.

Standard C++ provides two string types, string and wstring. The names are created by
two typedef statements that specialize the template class basic_string:

typedef basic_string<char> string; // Usual string using ASCII
// characters

typedef basic_string<wchar_t> wstring; // Wide character string

742 | Appendices

We mention this fact so that you might better understand compiler error messages that mention
basic_string. Also, you may need to deal with wide character strings (type wstring) at some
time in the future. We do not discuss wstring any further in this appendix.

We begin our discussion of the string class by presenting a program that uses both vec-
tor and string. The program reads a line from standard input, splits the line into words, and
then outputs the words in reverse order from which they appeared in the input. First we present
the program, and then we explain the details.

#include <iostream>
#include <string> // For string class
#include <vector> // For vector<T> class

using std::string;
using std::vector;

void parse(string& line, string& delimiters, vector<string>& strVec)
// Action: Splits line into words using delimiters,
// returns words in strVec
// Pre: line and delimiters have been initialized,
// and strVec is empty
// Post: strVec contains the words
{
using namespace std;
int lineLength = line.length();
int wordPastEnd;
int wordStart = line.find_first_not_of(delimiters, 0);

while (wordStart >= 0 && wordStart < lineLength)
{
wordPastEnd = line.find_first_of(delimiters, wordStart);

if (wordPastEnd < 0 || wordPastEnd > lineLength)
wordPastEnd = lineLength;

strVec.push_back(line.substr(wordStart, wordPastEnd – wordStart));

// Find first character not in the delimiter list after the 2nd arg
wordStart = line.find_first_not_of(delimiters, wordPastEnd + 1);

}
}

int main()
{
using namespace std;

Appendix E The Standard Template Library | 743

string line;
string delimiters(" ,.?!:;");
vector<string> wordVec;

getline(cin, line, '\n');
parse(line, delimiters, wordVec);

vector<string>::iterator itr;

// Output words in the order that the words appear in wordVec
for (itr = wordVec.begin(); itr < wordVec.end(); itr++)
cout << *itr << endl;

// Output words in the reverse order that they appear in wordVec
vector<string>::reverse_iterator revItr;
for (revItr = wordVec.rbegin(); revItr < wordVec.rend(); revItr++)
cout << *revItr << endl;

}

Given the input

Now is the time for

the program produces this output:

Now
is
the
time
for
for
time
the
is
Now

The main function declares the string object line to hold the input from the keyboard, and
the string object delimiters holds the separator characters space, comma, period, question
mark, exclamation mark, colon, and semicolon. The getline stand-alone function, available
through the header file <string>, has prototype

ostream& getline(istream& is, string str, char delim);

744 | Appendices

The effect of getline is to extract characters from the input stream is until one of the follow-
ing occurs: the end of file on the stream is encountered, the delimiter character is extracted from
the input stream, or str.max_size() characters have been extracted. The value
str.max_size() is the size of the largest possible string container. The value is implementa-
tion dependent but is about 4 x 109 for a typical 32-bit C++ implementation.

The function with signature

void parse(string& line, string& delimiters,
vector<string>& strVec);

is called to split line into words separated by characters from the string delimiters. The
parse function uses the string member function find_first_of, which returns an int value
that is the index of the first character in line that matches any character of the delimiter string.
Similarly, find_first_not_of returns the int value that is the index of the first character in
line that is not in the delimiter string. These two numbers are used to locate the start and past-
the-end indexes of successive words. Successive substrings are extracted from line using the
substr member function and are inserted at the end of strVec using the push_back member
function of vector.

Back in the main function, when control returns from the parse function, the argument
wordVec contains the successive substrings of line. The successive strings are extracted first to
last by use of a vector<string> iterator. A vector iterator is declared, then initialized in a for
statement to the location of the front item in wordVec that is returned by the begin() member
function. The iterator’s referent is output, and the iterator is stepped forward with the ++ opera-
tor and compared to the past-the-end value obtained from the end() member function. The
result is to display the substrings from line in front to back order.

Next, the strings in strVec are output last to first. An iterator of type
vector<string>::reverse_iterator is declared and then initialized in a second for state-
ment to a reverse iterator value that refers to the last item in wordVec by means of the rbe-
gin() member function. The iterator’s referent is output. Then the iterator is stepped forward
with the ++ operator. (The operator ++ is overloaded to move the iterator’s position toward the
front of the list.) Then the iterator is compared to an iterator value obtained from the rend()
member function. This value behaves as if it were a “before-the-first” position, enabling the iter-
ation from back to front to terminate. The result is that the substrings from line are displayed
in reverse order.

In this example, we have used the following features of string and vector:

• The use of vector with string as a base type
• The getline function for strings
• The string member functions find_first_of, find_first_not_of, length, and

substr
• The use of the type vector<T>::iterator
• The use of the type vector<T>::reverse_iterator

Now let’s look in more detail at the string class. Figure A.3 depicts a string that contains the
characters in “Bill” and has a size of 4 and a capacity of 9. The string class has members begin()
and end() that return iterator values denoting the front and past-the-end positions of the string. A

Appendix E The Standard Template Library | 745

Figure A.3 string memory allocation

Inserted items Reserve

Iterator
position

begin() end()

Index 0 1 2 3 4 5 6 7 8

Value ‘B’ ‘i’ ‘l’ ‘l’

Table A.12 string Constructors and Destructor

string s; Default constructor. Creates an empty string

string s(str); Copy constructor. Creates a new string s as a copy of another
string, str

string s(str, indx); Creates a new string s from characters starting at index indx of
str

string s(str, indx, Creates a new string s initialized by at most count characters
count); from str, starting at index indx in str

string s(cstr); Creates a new string s initialized with characters from the cstring
cstr

string s(charArray, Creates a new string s initialized with at most count characters
count); from char array charArray

string s(count, ch); Creates a new string s initialized with count instances of char-
acter ch

string s(first, Creates a new string s initialized with characters in the iterator
pastLast); range [first, pastLast) of any char container

s.~string(); Destructor. Frees the memory allocated to string s

difference between vector and string is that the vector members front() and back()are
missing from string. On the other hand, string has several useful search members that, if needed
in a vector, must be imitated by generic “find” and “conditional find” STL algorithms.

As we did with the vector<T> class, we now present a series of tables describing many (but
not all) of the available string member functions, interspersed with remarks.

Here is a short code segment demonstrating some of the string constructors.

std::string s0("string"); // Create string s0 containing
// 's' 't' 'r' 'i' 'n' 'g'

std::string s1; // Create empty string s1
std::string s2(s0); // Create string s2 with characters from s0

746 | Appendices

Table A.13 string Element Access

s[i] Indexed access with no range checking. Character at index i may be fetched or stored

s.at(i) Indexed access with range checking. Character at index i may be fetched or stored.
Throws an out_of_range exception if i ≥ s.size()

s.c_str() Returns a pointer (type const char *) to a cstring representing the data in string s.
The cstring is terminated by a null character ('\0')

s.data() Returns a pointer (type const char *) to s[0]. Warning: The pointed-to sequence
should not be treated as a cstring because it is not guaranteed to be terminated by a
null character ('\0')

Table A.14 string Member Functions Related to Size

s.length() Returns the number of characters currently in s

s.size() Same as s.length()

s.resize(newSize, padChar); Changes the size of s to newSize, filling with repetitions of
the character padChar if necessary

s.empty() Returns true if s is empty, else returns false

s.capacity() Returns the number of characters that s can contain without
having to reallocate (i.e., number of characters in reserve +
size of s)

std::string s3(s0, 3); // Create string s3 with the characters
// starting at index 3 from s0: characters
// 'i', 'n' 'g'

char x[] = "string"; // Create a cstring
std::string s4(x, x+3); // Create s4 as a string with 's’ 't’ 'r’

// x and x + 3 are pointers into cstring x. Pointers behave as
// random access iterators.

Appendix E The Standard Template Library | 747

Table A.15 string Member Functions for Searching and Substrings

s.find(str) Returns the integer index of the first position of the first
occurrence of string str in s

s.find(str, pos) Returns the integer index of the first position of the first
occurrence of string str in s, with the search starting at posi-
tion pos of s

s.find_first_of(delim, pos) Returns the integer index of the first position of the first occur-
rence of any character from the string delim, with the search
starting at position pos of s

s.find_first_not_of(delim, Returns the integer index of the first position of the first occur-
pos) rence of any character not in the string delim, with the search

starting at position pos of s

s.substr(pos, len) Returns a string object that represents a substring of s of at
most len characters, starting at position pos of s. If len is
too large, it means “to the end” of string s. If pos is too large,
an out_of_range exception is thrown

Note: If any version of find fails to find the search value, the function’s return value is the constant string::npos,
which is the largest possible value of type string::size_type, an unsigned integer type defined by the string
class.

Table A.16 string Comparisons

s1 == s2 Returns true if all characters of s1 and s2 are pairwise equal, else returns false

s1 != s2 Returns true if not all characters of s1 and s2 are pairwise equal, else returns
false

s1 < s2 Returns true if s1 comes before s2 lexicographically, else returns false

s1 > s2 Returns true if s1 comes after s2 lexicographically, else returns false

s1 <= s2 Same as !(s1 > s2)

s1 >= s2 Same as !(s1 < s2)

748 | Appendices

Table A.17 string I/O Operations

This table assumes the following declarations:

ostream os;

istream is;

os << str Places characters from string str onto stream os

is >> str Extracts characters from stream is into string str. Leading
whitespace characters are skipped, and input stops at the first
trailing whitespace character

getline(is, str, delimiter) Reads characters from stream is into string str up to end-of-
file or until the character delimiter is extracted. The delim-
iter is removed from is and discarded. Note: getline is not a
member function of the string class. It is a stand-alone,
global function

Lexicographic ordering compares characters at corresponding positions sequentially until a
position i is found where s1[i] ≠ s2[i]. Then the expression s1 < s2 has the same Boolean
value as s1[i] < s2[i].

The list<T> Class

The list is the second of the three STL sequence containers. A list is a sequential access con-
tainer that is optimized for insertions and deletions anywhere in the list. Although the C++ Stan-
dard does not require any particular implementation, the requirements of fast insertion and
deletion and support for bidirectional iterators, together with the lack of a requirement of ran-
dom access, suggest that the implementation be a doubly linked list.

To create an object of type list<T>, the data type T must be assignable and copyable. That
is, if T is a class or struct type, both operator= and a copy constructor must be defined for T.

The following are some properties of list containers:

• lists provide sequential access, so there is no indexed access and no at() member
• Iterators are bidirectional
• Insertion and deletion can be done in O(1) time at any location in the list.
• Insertion and deletion do not invalidate iterators referring to items not involved in the

deletion.
• There are many member functions that do the same task that external STL algorithms do, but

they are faster for lists, because internal pointers are changed instead of data being moved.
• The list provides the best exception safety in that more of its operations either succeed

or have no effect than in other containers

Appendix E The Standard Template Library | 749

Table A.18 list Constructors and Destructor

list<T> lst; Default constructor. Creates lst as an empty list

list<T> lst(oldList); Copy constructor. Creates lst as a copy of oldList

list<T> lst(count); Creates a list of count items, each constructed by the
default constructor for type T

list<T> lst(count, typeTobj); Creates a list of count items, each one a copy of
typeTobj, an object of type T

list<T> lst(first, pastLast); Creates a list initialized with type T objects from the range
[first, pastLast) in another container

lst.~list<T>(); Destructor. Frees the memory allocated to lst

As we have done with vector and string, we now present a series of tables detailing
many (but not all) of the list member functions.

Reminder: The iterator range [first, pastLast) refers to the container position
denoted by first up to but not including the position denoted by pastLast.

A list does not provide random access. In addition to dereferencing iterators, list elements
are accessed through the member functions front() and back().

Table A.20 describes list insertion and deletion operations. Note that class list<T> pro-
vides member functions for deletion, but there is also a generic STL algorithm for this purpose.
However, a member function is preferred to the algorithm because it changes internal pointers
instead of moving data, so it is likely to be faster.

Table A.19 list Element Access

lst.front() Returns the first item in the list

lst.back() Returns the last item in the list

750 | Appendices

Table A.20 list Member Functions for Insertion and Removal

lst.insert(iter, item) Inserts item into the list before the position denoted by iter.
Returns an iterator value that points to the inserted item

lst.insert(iter, count, Inserts count copies of item into the list before the position
item); denoted by iter. The return type is void

lst.push_front(item); Inserts item at the front of the list

lst.push_back(item); Appends item to the back of the list

lst.pop_back(); Removes the item at the back of the list

lst.pop_front(); Removes the item at the front of the list

lst.remove(item); Removes all list elements equal to item

lst.remove_if(pred); Removes all items for which the predicate pred returns true.
The argument pred can be either the name of a Boolean func-
tion or a function object (defined later in this appendix)

lst.erase(iter) Removes the item at the position denoted by iter. Returns an
iterator value that points to the next item

lst.erase(first, pastLast) Removes all items in the range [first, pastLast). Returns an
iterator value that points to the next item

lst.clear(); Removes all items in the list

Table A.21 list Assignment and Swap Operations

lst1 = lst2; After removing all items in lst1, copies all items from list
lst2 to lst1

lst.assign(first, pastLast); After removing all items in lst, copies to lst all items in
the range [first, pastLast) from another container of
type T objects

lst1.swap(lst2); Swaps the contents of lists lst1 and lst2

Appendix E The Standard Template Library | 751

Table A.22 list Member Functions Related to Iterators

list<T>::iterator itr; Creates a bidirectional iterator for a list<T>

list<T>:: Creates a (bidirectional) reverse iterator for a list<T>
reverse_iterator itr;

lst.begin() Returns a bidirectional iterator value denoting the position of
the first item

lst.end() Returns a bidirectional iterator value denoting the past-the-
end position

lst.rbegin() Returns a reverse iterator value denoting the position of the
first item of a reverse iteration (i.e., the last item in the con-
tainer)

lst.rend() Returns a reverse iterator value denoting the past-the-end
position of a reverse iteration (i.e., the before-the-first posi-
tion in the container)

Table A.23 list Member Functions Related to Size and Comparisons

lst.empty() Returns true if lst contains no items. Returns same result as
lst.size() == 0, but lst.empty() might be faster

lst.size() Returns the number of items currently in the list

lst.resize(newSize); If newSize > lst.size(), then append newSize – lst.size()
instances of a default-constructed type T object to the end of the list.

Otherwise, if newSize < lst.size(), erase the last lst.size() –
newSize items from the list, else do nothing.

lst.resize(newSize, If newSize > lst.size(), then append newSize – lst.size()
typeTobj); copies of typeTobj to the end of the list.

Otherwise, if newSize < lst.size(), erase the last lst.size() –
newSize items from the list, else do nothing.

lst1 == lst2 Returns true if the lists have the same number of items and contain
the same items in the same order, else returns false

lst1 < lst2 Comparisons are in lexicographic order. (Successive pairs of items are
lst1 > lst2 compared. The order of the first unequal pair determines which order
lst1 <= lst2 relations return true)
lst1 >= lst2

752 | Appendices

Table A.24 Operations That Modify lists

lst1.splice(iter, lst2); Requirement: &lst1 ≠ &lst2

Effect: Inserts the contents of lst2 into lst1 before the posi-
tion in lst1 denoted by iter, and lst2 becomes empty

lst1.splice(position, Removes the item at the position denoted by iter in lst2 and
lst2, iter); inserts it before the position denoted by position in lst1.

lst1.splice(position, Requirement: If &lst1 = &lst2, position must not be in the
lst2, first, range [first, pastLast)
pastLast);

Effect: Removes all items in the range [first, pastLast) of
lst2 and inserts them before the position denoted by posi-
tion in lst1

lst.sort(); Sorts the list items into ascending order using the < operator to
compare items

lst.sort(cmp); Sorts the list items using the comparison function cmp, which
can be either the name of a Boolean function or a function
object (defined later in this appendix)

lst1.merge(lst2); Requirement: The items in both lists are in sorted order (ordered
by the < operator)

Effect: Removes all items from lst2 and merges them into lst1
so that lst1 is still sorted

lst1.merge(lst2, cmp); Requirement: The items in both lists are in sorted order (ordered
by the cmp function). The comparison function cmp can be either
the name of a Boolean function or a function object (defined
later in this appendix)

Effect: Removes all items from lst2 and merges them into lst1
so that lst1 is still sorted

lst.unique(); Removes all but the first in any sequence of consecutive items
that are equal (satisfy the == relation)

lst.unique(cmp); Removes all but the first in any sequence of consecutive items
that satisfy the comparison function cmp, which can be either
the name of a Boolean function or a function object (defined
later in this appendix)

lst.reverse(); Reverses the order of the items in lst

The deque<T> Class

The third of the three STL sequence containers is the deque. The word deque (pronounced
“deck,” “deek,” or “dee queue”) is short for double-ended queue. The deque container, like the
vector, provides fast random access into sequences of varying length. Unlike the vector, the

Appendix E The Standard Template Library | 753

deque provides fast insertion and deletion at both ends of the collection. This is accomplished by
providing unused reserve not only at the start of the deque, as does the vector, but also at the
end of the container.

The following are the primary differences between the deque and the vector:

• Insertion into a deque is fast (amortized time O(1)) at the front as well as the back. The
vector is fast only at the back.

• Memory allocated to a vector is typically contiguous (that is, a built-in array), so vector
iterators are usually C++ pointers. Memory allocated to a deque is not guaranteed to be
contiguous, so iterators typically are implemented as class objects that mimic pointers.
Therefore, accessing items in a deque tends to be slower than accessing items in a vector.

• Unlike the vector, no member functions are provided in the deque to control reallocation
or capacity, so any insertion or deletion other than at the ends invalidates all iterators to
the deque.

When should you choose a deque over a vector? If you require random access and frequent
insertions at the front and the back, then the deque is the better structure.

Table A.25 displays a representative sample of the deque member functions.

Table A.25 deque Member Functions

Constructors, Assignment, and Swap Operations

deque<T> d; Default constructor. Creates an empty deque object, d

deque<T> d(otherDeque); Copy constructor. Creates a new deque d as a copy of
otherDeque

deque<T> d(count); Creates a deque of count items, each constructed by the default
constructor for type T

deque<T> d(count, Creates a deque of count items, each being a copy of typeTobj,
typeTobj); an object of type T

d = otherDeque; After removing all items from deque d, copies all items from
otherDeque to d

d.swap(otherDeque); Swaps the contents of d and otherDeque

Element Access and Insertion Operations

d[index] Indexed access with no range checking. The element at index
index may be fetched or stored

d.at(index) Indexed access with range checking. Throws an out_of_range
exception if index ≥ d.size()

d.front() Returns the first item in the container. Same as d[0]

(continued)

754 | Appendices

d.back() Returns the last item in the container. Same as
d[d.size() – 1]

d.insert(iter, item); Inserts item before the position denoted by iter. Returns an
iterator value that points to the inserted item

d.insert(iter, first, Inserts before the position denoted by iter all items in the range
pastLast); [first , pastLast) from another container holding objects of

type T

d.push_front(item); Inserts item at the front of the deque

d.push_back(item); Inserts item at the back of the deque

Deletion Operations

d.pop_front(); Removes the item at the front of the deque

d.pop_back(); Removes the item at the back of the deque

d.erase(iter) Removes the item at the position denoted by iter. Returns an
iterator value that points to the next item

d.erase(first, pastLast) Removes all items in the range [first, pastLast). Returns an
iterator value that points to the next item

d.clear(); Removes all items in the deque

Size-Related Operations

d.size() Returns the number of items currently in the deque

d.empty() Returns true if d contains no items. Returns same result as
d.size() == 0, but d.empty() might be faster

d.resize(number); Changes the size to number. If the deque grows, new items are
constructed by the default constructor for type T

Iterator-Related Operations

deque<T>::iterator itr; Creates a random access iterator for a deque<T>

deque<T>:: Creates a (random access) reverse iterator for a deque<T>
reverse_iterator itr;

d.begin() Returns a random access iterator value denoting the position of
the first item

d.end() Returns a random access iterator value denoting the past-the-end
position

d.rbegin() Returns a reverse iterator value denoting the position of the first
item of a reverse iteration (i.e., the last item in the container)

d.rend() Returns a reverse iterator value denoting the past-the-end posi-
tion of a reverse iteration (i.e., the before-the-first position in the
container)

Appendix E The Standard Template Library | 755

The Container Adapters stack, queue, and priority_queue

An adapter does not directly implement the structures that hold the data items. Rather, it pro-
vides a new interface between the user and an existing container. It “adapts” the interface of one
of the sequence containers to provide the operations appropriate for a stack or queue.

The stack Adapter Any sequence container that provides members empty(), size(),
push_back(), pop_back(), and back() is suitable as a container for the stack container
adapter. All three sequence containers—vector<T>, deque<T>, and list<T>—satisfy these
requirements. By default, deque<T> is the container used by the stack<T> adapter.

The stack operations shown in Table A.26 are familiar to anyone who has studied this book.

Table A.26 Some stack Member Functions

stack<int> stck; Default constructor. Uses, by default, a deque<int>
to hold items of type int

stack<float, vector<float> > stck; Default constructor. Uses a vector<float> to hold
items of type float. (Note the required space within
“> >” to distinguish it from the built-in operator >>)

stack<string, list<string> > stck; Default constructor. Uses a list<string> to hold
items of type string

stack<char, vector<char> > Copy constructor. Initializes stck to be a copy of
stck(otherStck); otherStck, another stack of the same type (i.e., type

stack<char, vector<char> >)

stack<char, vector<char> > Copy constructor. Initializes stck to be a copy of
stck(charVec); charVec, an object of the underlying container type

vector<char>

stck.empty() Returns true if stack contains no items. Equivalent
to stck.size() == 0 but may be faster

stck.size() Returns the number of items currently in the con-
tainer

stck.push(item); Pushes a copy of item onto the top of the stack

stck.pop(); Requirement: stck.size() > 0

Effect: Removes and discards the top item from the
stack. The return type is void

stck.top() Requirement: stck.size() > 0

Effect: Returns the top item on the stack without
removing it.

(continued)

756 | Appendices

The queue Adapter Any sequence container that has members back(), front(),
push_back(), pop_front(), empty(), and size() can be used to hold queue<T> items. In
particular, list<T> and deque<T> may be used. By default, deque<T> is the container used by
the queue<T> adapter.

Notice in Table A.27 that the STL uses push() instead of enqueue() and pop() instead of
dequeue(). Regardless of what we call the operation, we are still dealing with a queue—a FIFO
(first-in, first-out) data structure—and push()and pop()mean insert and remove. The structure
still returns the oldest item in the structure, just as a queue should.

Table A.26 (continued)

stck1 < stck2 Two stacks are equal if they have the same size and
stck1 > stck2 all pairs of items are equal. Comparisons are made
stck1 <= stck2 lexicographically. The first pair of elements that are
stck1 >= stck2 unequal determines which relational operator returns
stck1 == stck2 true
stck1 != stck2

Table A.27 Some queue Member Functions

queue<int> q; Default constructor. Uses a deque<int> to hold items of type int. The
queue<T> class supports the same variety of constructors shown in Table A.26 for
the stack<T> class (except that vector<T> cannot be the underlying container)

q.empty() Returns true if the queue is empty

q.size() Returns the number of items in the queue

q.front() Requirement: q.size() > 0

Effect: Returns the first item in the queue

q.back() Requirement: q.size() > 0

Effect: Returns the last item in the queue

q.push(item); Inserts item at the back of the queue

q.pop(); Requirement: q.size() > 0

Effect: Removes and discards the first item from the queue. The return type is
void

q1 < q2 Two queues are equal if they have the same size and all pairs of items are equal.
q1 > q2 Comparisons are made lexicographically. The first pair of items that are unequal
q1 <= q2 determines which relational operator returns true
q1 >= q2
q1 == q2
q1 != q2

Appendix E The Standard Template Library | 757

The following program demonstrates how to declare and use a queue of string objects,
using the default underlying container deque<string> to hold the strings.

// A queue example using the default (deque) underlying container

#include <iostream>
#include <queue> // For queue<T> class
#include <string> // For string class
#include <deque> // For deque<T> class

int main()
{
using namespace std;

deque<string> deq;
string str;

// Build a list of words
cout << "Type some words; 'quit' quits:" << endl << endl;
cin >> str;
while (string("quit") != str)
{
deq.push_back(str);
cin >> str;

}

// Create que1 by copying from an instance of a deque--the
// underlying container
queue<string> que1(deq);

// Create que2 as a copy of que1
queue<string> que2(que1);

cout << "The number of strings entered is " << que1.size() << endl;
cout << "que1.front() yields: " << que1.front() << endl;
cout << "que2.back() yields: " << que2.back() << endl;

cout << "The strings from que1 are: ";
while (!que1.empty())
{
cout << que1.front() << " ";
que1.pop();

}
cout << endl;

758 | Appendices

cout << "The strings from que2 are: ";
while (!que2.empty())
{
cout << que2.front() << " ";
que2.pop();

}
cout << endl;

}

Execution of this program yields

Type some words; 'quit' quits:

now is the time quit

The number of strings entered is 4
que1.front() yields: now
que2.back() yields: time
The strings from que1 are: now is the time
The strings from que2 are: now is the time

The priority_queue Adapter A priority_queue, whose declaration is located in the header
file <queue>, has operations empty(), size(), push(), pop(), and top(). A
priority_queue is like a queue in the sense that push() means enqueue and pop() means
dequeue. However, the enqueued items are ordered by the < operator as follows. Whenever
push() is called to enqueue an item, the item is inserted at the back of the sequence and then
reordering takes place immediately to ensure that the item with the greatest value (the “highest
priority”) is at the front of the queue. Therefore, the top() operation always returns the highest
priority item.

The priority_queue<T> adapter can use any of vector<T>, list<T>, or deque<T> as the
underlying container. The default is vector<T>.

The Associative Containers

Earlier we said that the STL provides three kinds of containers: sequence containers, container
adapters, and associative containers. We have looked at the first two and now give a brief
overview of the third.

The associative containers are based on the concept of an associative array or map, a data
structure that holds ordered pairs of the form (key, value). For each key, there is an associated
value in the map. The keys can be of one data type, and the associated values can be of another.
Here is a code segment that uses the template class map<K,T>, where K means the key type and
T means the value type:

#include <map> // For map<K,T> class
�

map<int,float> m;

Appendix E The Standard Template Library | 759

m[0] = 36.43;
m[1] = –15.9;
m[2] = 0.0;

As you can see, an associative array in which the key values are integers looks very much like
an ordinary one-dimensional array. However, look at the following code:

map<string,int> age;

age["Mary"] = 18;
age["Bill"] = 22;

An associative array can be thought of as an array that allows indexes other than integers. By
default, the contents of a map are ordered by key values using the < operator, and map iterators
step through the container, delivering the items in ascending order of the keys.

The <map> header file declares two container types: map<K,T> and multimap<K,T>. In a
map, the keys must be unique; in a multimap, duplicate keys are allowed.

The STL provides two other associative containers, set and multiset, which are available
through the header file <set>. The set is an abstraction of a mathematical set. In the context of
the STL, it is simply a special case of an associative array in which no value is associated with a
key. Hence, the template class set<K> requires only one template parameter—the data type of its
keys (hence, the data type of the set elements). The difference between the set and multiset
containers is that all elements of a set must be unique (as in a mathematical set), whereas a
multiset allows duplicate elements.

Space limitations prevent us from further exploration of the associative containers. For more
information, see the references at the end of the appendix.

Algorithms

We have said that the Standard Template Library provides containers, iterators, and generic
algorithms. In computer science terminology, an algorithm is a sequence of steps that solves a
problem. In contrast, the term algorithm in the STL context means something much more spe-
cific: a template function that has iterators for its parameter types.

The STL supplies a large set of generic algorithms that operate on containers, whether they
are STL containers or user-defined containers. The algorithms are generic because each algorithm
is templated and the arguments in a function call are iterators, not containers. Therefore, a
generic algorithm may operate on any data structure that provides an iterator type that meets
the iterator requirements of that algorithm. Let’s look at an example.

The STL supplies a sort algorithm with the following signature (the required header file and
the function prototype):

#include <algorithm>
template <class RandomAccessIterator>
void sort(RandomAccessIterator first,

RandomAccessIterator pastLast);

760 | Appendices

Given any container that supports random access iterators, the sort algorithm sorts the con-
tainer elements into ascending order using the < operator. We know that the STL vector con-
tainer supports random access iterators, so we could use sort as follows:

#include <vector> // For vector<T> class
#include <algorithm> // For sort() function

�

vector<int> v;
�

sort(v.begin(), v.end()); // Sort the entire vector

Because sort works on any container whose iterators meet its requirements, we can sort a
built-in array as follows. (Recall that pointers into a built-in array meet the requirements of a
random access iterator.)

int arr[100];
�

sort(&arr[0], &arr[100]); // Or sort(arr, arr+100);

In this code, the call to sort passes as arguments the location of the first array element and the
location of the imaginary past-the-end element (because arr[99] is the last valid array element).

Function Objects

With the STL sort algorithm in mind, what if we want to sort a container into descending
rather than ascending order? The STL provides a second version of sort with the following
signature:

#include <algorithm>
template <class RandomAccessIterator, class Compare>
void sort(RandomAccessIterator first,

RandomAccessIterator pastLast, Compare cmp);

Here, the third argument in a call to sort is a user-supplied comparison operation on which the
sorting is based. This argument can be either the name of a function or a function object. To
demonstrate the first case, we could write a greater_than function as follows:

bool greater_than(int m, int n)
{
return m > n;

}

Appendix E The Standard Template Library | 761

and then use its name as an argument to the sort function so that we can sort a vector<int>
container into descending order:

sort(v.begin(), v.end(), greater_than);

To deal with the second case, we introduce the general concept of a function object. Stated
simply, a function object is a class object that acts like a function. More precisely, a function
object is an object of a class that overloads the function call operator, which is (). Here is an
example:

class Double
{
public:
int operator() (int i)
{
return 2 * i;

}
};

Given class Double, we can create and use a function object f as follows:

Double f;
int n;

n = f(65);

The function call f(65) is equivalent to f.operator()(65) and returns the result 130. Thus,
although f is used as if it were the name of a function, in reality it is the name of a class object.

Now back to our sorting problem. To sort a vector<int> into descending order, we can
first write the following class:

class Greater
{
public:
bool operator() (int m, int n)
{
return m > n;

}
};

and then proceed as follows:

Greater greater_than; // Create a function object
// named greater_than

sort(v.begin(), v.end(), greater_than);

762 | Appendices

Of course, if we wanted to have a Greater-like class that compares float values and
another that compares char values and so on, we’d have to write all these as different classes
with different names. Fortunately, the STL provides a template class greater<T> that lets us
supply the base type as a template parameter and keeps us from having to write our own com-
parison class:

#include <functional> // For greater<T>
�

greater<int> greater_than; // Create a function object
// named greater_than

sort(v.begin(), v.end(), greater_than);

Note that the template parameter in greater<T> must be a type T for which the > operator is
defined.

In addition to greater<T>, the header file <functional> also defines the following tem-
plate classes: less<T>, less_equal<T>, greater_equal<T>, equal_to<T>, and
not_equal_to<T>. In all cases, type T must be a type for which the corresponding operator (<,
<=, and so on) is defined.

Algorithm Classification

Some STL algorithms are read-only (they inspect but don’t modify the items in a container), oth-
ers change the values of the items, and yet others change the order of the items. The C++ Stan-
dard classifies generic algorithms into categories that are distinguished by their use.

• Non-modifying sequence operations
• Mutating sequence operations
• Sorting and related operations
• Merging
• Set operations
• Heap operations
• Numeric operations
• Complex numbers and numeric arrays

In the following sections, we focus on the first three of these categories and present only a small
sample of the available algorithms. In the descriptions of these algorithms, the formal parameter
lists include type names with the following meanings (where T is the type of the items to which
the iterators point):

Predicate A function or function object taking one argument of type T
and returning a bool value

Compare A function or function object taking two arguments of type T
(in order to compare them) and returning a bool value

UnaryOperation A function or function object taking one argument of type T
and returning a value of type T

BinaryOperation A function or function object taking two arguments of type T
and returning a value of type T

Appendix E The Standard Template Library | 763

UnaryFunction A function or function object taking one argument of type T
and returning no value

Note: In the following descriptions, the use of iterator arithmetic to describe positions and ranges
is only for descriptive purposes. We do not intend to imply that the iterator type supports pointer
arithmetic.

Non-Modifying Sequence Operations

Algorithms in this category are called non-modifying because they do not modify the container
elements pointed to by the iterators.

Algorithm: count, count_if

Synopsis: Counts the number of items in a container that match a certain value or that sat-
isfy a predicate.

Signatures:
#include <algorithm>
template<class InputIterator, class T>
typename iterator_traits<InputIterator>::difference_type
count(InputIterator first,

InputIterator pastLast,
const T& value);

#include <algorithm>
template <class InputIterator, class Predicate>
typename iterator_traits<InputIterator>::difference_type
count_if(InputIterator first,

InputIterator pastLast,
Predicate pred);

Remarks on syntax: Conceptually, these two functions return integer values, but the int
type might not be large enough to hold the result. So the return type is defined in terms of
the difference between two iterator values. The keyword typename tells the compiler that
what follows is the name of a type. iterator_traits is a struct that contains typedef
statements for difference_type and other identifiers. The type difference_type is
ultimately typedef’ed to ptrdiff_t, which is the integer type of the difference between
two pointer values.

Requirement: For the count algorithm, T must be a type for which the == operator is
defined.

Description: Each algorithm steps through the iterator range [first, pastLast). The
count algorithm returns the number of items in the range that match the parameter value.
The count_if algorithm returns the number of items in the range that satisfy the predicate
pred.

Complexity: Each algorithm has a run time that is linear in the length of the range and has
constant space complexity.

764 | Appendices

Algorithm: find, find_if
Synopsis: Locates the first item in a subrange of a container that matches a particular value.
The predicate version, find_if, locates the first item that satisfies a predicate passed to the
algorithm.

Signatures:
#include <algorithm>
template <class InputIterator, class T>
InputIterator find(InputIterator first,

InputIterator pastLast,
const T& value);

#include <algorithm>
template <class InputIterator, class Predicate>
InputIterator find_if(InputIterator first,

InputIterator pastLast,
Predicate pred);

Requirement: For the find algorithm, T must be a type for which the == operator is
defined.

Description: find searches the range [first, pastLast) for the first item that matches
value. find_if searches this range for the first item that satisfies the predicate pred. Both
algorithms return an iterator value pointing to the item if it was found. If the item was not
found, they return the value pastLast.

Complexity: Each algorithm has a run time that is linear in the length of the range and
requires constant space.

Algorithm: for_each
Synopsis: Applies a function to every item in a range.

Signature:
#include <algorithm>
template <class InputIterator, class UnaryFunction>
UnaryFunction for_each(InputIterator first,

InputIterator pastLast,
UnaryFunction f);

Description: This algorithm applies the function f to every item in the range [first,
pastLast). The return value of f, if any, is ignored. The return value of the algorithm is the
value of f after it has been applied to each container item. (This return value is useful if f is
a function object that has member data that it keeps track of—for example, how many times
f has been called. If f has no such member data or refers to a function rather than a
function object, the return value is typically ignored by the caller.)

Complexity: The algorithm run time is linear in the length of the iterator range. It has
constant space complexity.

Appendix E The Standard Template Library | 765

Mutating Sequence Operations

Algorithms in this category are described as mutating because they can change the objects
pointed to by the iterators in their argument lists.

Algorithm: copy
Synopsis: Copies items from one range to another.

Signature:
#include <algorithm>
template <class InputIterator, class OutputIterator>
OutputIterator copy(InputIterator first,

InputIterator pastLast,
OutputIterator result);

Requirement: result, the starting point of the destination range, must not be in the range
[first, pastLast). Also, there must be sufficient space at the destination to hold the copied
items.

Description: The algorithm copies items from the range [first, pastLast) into the range
[result, result + (pastLast – first)), starting from first and proceeding to
pastLast. The function returns an iterator value denoting the past-the-last position in the
destination range—that is, the position denoted by (result + (pastLast – first)).

Complexity: The algorithm is linear, performing pastLast – first assignments.

Algorithm: fill
Synopsis: Sets every item in a range to a specified value.

Signature:
#include <algorithm>
template <class ForwardIterator, class T>
void fill (ForwardIterator first,

ForwardIterator pastLast,
const T& value);

Description: fill traverses the range [first, pastLast), assigning value to each item.

Complexity: The algorithm is linear in the length of the range.

Algorithm: replace, replace_if
Synopsis: replace traverses a sequence, replacing each specified value with another value.
replace_if replaces values that satisfy a predicate.

766 | Appendices

Signatures:
#include <algorithm>
template <class ForwardIterator, class T>
void replace(ForwardIterator first,

ForwardIterator pastLast,
const T& old_value,
const T& new_value);

#include <algorithm>
template <class ForwardIterator, class Predicate, class T>
void replace_if(ForwardIterator first,

ForwardIterator pastLast,
Predicate pred,
const T& new_value);

Requirement: For the replace algorithm, T must be a type for which the == operator is
defined.

Description: replace replaces every occurrence of old_value with new_value in the
range [first, pastLast). The algorithm replace_if replaces every item that satisfies
pred with new_value in the range [first, pastLast).

Complexity: These algorithms are linear in the length of the range.

Algorithm: reverse
Synopsis: Reverses in place the relative order of items in a range.

Signature:
#include <algorithm>
template <class BidirectionalIterator>
void reverse(BidirectionalIterator first,

BidirectionalIterator pastLast);

Description: The effect of reverse is to swap the first and last items in the range [first,
pastLast), then the second and next-to-last items, and so on until the middle is detected,
at which point the process stops.

Complexity: reverse processes all items once, so the time complexity is linear in the
length of the range.

Algorithm: transform
Synopsis: Applies an operation to items from one or two ranges, placing the result in
another.

Signatures:
#include <algorithm>
template <class InputIterator, class OutputIterator,

class UnaryOperation>

Appendix E The Standard Template Library | 767

OutputIterator transform(InputIterator first,
InputIterator pastLast,
OutputIterator result,
UnaryOperation op);

#include <algorithm>
template <class InputIterator1, class InputIterator2,

class OutputIterator, class BinaryOperation>
OutputIterator transform (InputIterator1 first1,

InputIterator1 pastLast1,
InputIterator2 first2,
OutputIterator result,
BinaryOperation binary_op);

Requirement: Unary operation op and binary operation binary_op must not have side
effects.

Description: Applies a unary operation op to each item in the range [first, pastLast), or
a binary operation binary_op to pairs of corresponding items in two ranges, [first1,
pastLast1) and [first2, pastLast2), each storing the results in another sequence starting
at the position denoted by result. For each version, the return value is an iterator value
denoting the past-the-last position in the destination range.

Complexity: Each algorithm is linear. Exactly pastLast – first (or, for the second
version, pastLast1 – first1) applications of either op or binary_op are made.

Sorting and Related Operations

Algorithm: max_element
Synopsis: Finds the largest item in a range.

Signatures:
#include <algorithm>
template <class ForwardIterator>
ForwardIterator max_element(ForwardIterator first,

ForwardIterator pastLast);

#include <algorithm>
template <class ForwardIterator, class Compare>
ForwardIterator max_element(ForwardIterator first,

ForwardIterator pastLast,
Compare cmp);

Requirement: For the first version, the items in the container must be of a type for which
the < operator is defined. For the second version, cmp must be a Boolean function or
function object whose semantics are “less than.”

Description: max_element returns an iterator value denoting the position of the largest
item in the range [first, pastLast). If there are several occurrences of the largest item, the

768 | Appendices

position of the first one is returned. If [first, pastLast) is an empty range, the function
returns pastLast.

The first version of max_element compares items using the < operator, and the second
compares items using the function or function object cmp.

Complexity: Each algorithm is linear in the length of the range.

Algorithm: min_element
Synopsis: Finds the smallest item in a range.

Signatures:
#include <algorithm>
template <class ForwardIterator>
ForwardIterator min_element(ForwardIterator first,

ForwardIterator pastLast);

#include <algorithm>
template <class ForwardIterator, class Compare>
ForwardIterator min_element(ForwardIterator first,

ForwardIterator pastLast,
Compare cmp);

Requirement: For the first version, the items in the container must be of a type for which
the < operator is defined. For the second version, cmp must be a Boolean function or
function object whose semantics are “less than.”

Description: min_element returns an iterator value denoting the position of the smallest item
in the range [first, pastLast). If there are several occurrences of the smallest item, the
position of the first one is returned. If [first, pastLast) is an empty range, the function
returns pastLast.

The first version of min_element compares items using the < operator, and the second
compares items using the function or function object cmp.

Complexity: Each algorithm is linear in the length of the range.

Algorithm: sort
Synopsis: Sorts items in a range using the quick sort. One version sorts by using the <
operator, the other by using a user-supplied comparison function.

Signatures:
#include <algorithm>
template <class RandomAccessIterator>
void sort(RandomAccessIterator first,

RandomAccessIterator pastLast);

#include <algorithm>
template <class RandomAccessIterator, class Compare>
void sort(RandomAccessIterator first,

RandomAccessIterator pastLast, Compare cmp);

Requirement: For the first version, the items in the container must be of a type for which
the < operator is defined. For the second version, cmp must be a Boolean function or
function object whose semantics are either “strictly less than” or “strictly greater than.”

Description: Both versions sort the items in the range [first, pastLast) into order using a
recursive quick sort. The first version sorts items into ascending order. The second version
sorts into either ascending or descending order, depending on the comparison function cmp.

Complexity: Average time complexity is O(N*log(N)), and space complexity is O(log(N))
because the routines are recursive. The worst-case time complexity is O(N2). If worst-case
behavior is important, two other STL algorithms named stable_sort and partial_sort
provide better worst-case guarantees, but with somewhat poorer average behavior.

We hope that this appendix has whetted your appetite for the full range of features available in
the Standard Template Library. We encourage you to consult the following references for further
information.

References

1. ISO/ANSI Standard 14882: Programming Languages—C++, American National Standards
Institute, 1998. At the time of this writing, an Adobe Acrobat version (pdf) of the C++ Stan-
dard could be purchased from ANSI on the Web at www.ansi.org/. A copy of the C++ Stan-
dard is also available from the InterNational Committee for Information Technology Standards
at www.incits.org.

2. Niccolai Josuttis, The C++ Standard Library, Addison Wesley Longman, 1999.

3. P.J. Plauger was a principal member of the Standards committee. His company has a Web
site, www.dinkumware.com/refcpp.html, that has substantial resources on the C++ stan-
dard library.

4. The Silicon Graphics Web site www.sgi.com/tech/stl/ (or www.sgi.com/) provides
many resources for information on the Standard Template Library.

5. Finally, there are several Web sites where you can access or download the 1996 Draft C++
Standard. One of these sites is www.itga.com.au/~gnb/wp/cd2/index.html.

Appendix E The Standard Template Library | 769

abstract data type a data type whose properties (domain and operations) are speci-
fied independently of any particular implementation; a class of data objects with
a defined set of properties and a set of operations that process the data objects
while maintaining the properties

abstract step an algorithmic step for which some implementation details remain
unspecified

abstraction a model of a complex system that includes only the details essential to
the perspective of the viewer of the system; the separation of the logical proper-
ties of data or actions from their implementation details

abstraction (in OOD) the essential characteristics of an object from the viewpoint of
the user

acceptance test the process of testing the system in its real environment with real
data

activation record (stack frame) a record used at run time to store information
about a function call, including the parameters, local variables, register values,
and return address

actual parameter a variable, constant, or expression listed in the call to a function
or procedure

adjacency list a linked list that identifies all the vertices to which a particular ver-
tex is connected; each vertex has its own adjacency list

adjacency matrix for a graph with N nodes, an N�N table that shows the exis-
tence (and weights) of all edges in the graph

adjacent nodes two nodes in a graph that are connected by an edge
aggregate operation an operation on a data structure as a whole, as opposed to an

operation on an individual component of the data structure

algorithm a logical sequence of discrete steps that describes a complete solution to a
given problem, computable in a finite amount of time; a step-by-step procedure for
solving a problem in a finite amount of time; a verbal or written description of a
logical sequence of actions

ALU see arithmetic/logic unit
anonymous type a user-defined type that does not have an identifier (a name) associ-

ated with it
arithmetic/logic unit (ALU) the component of the central processing unit that per-

forms arithmetic and logical operations
array data type a collection of components, all of the same type, ordered on N

dimensions (N >= 1); each component is accessed by N indexes, each of which rep-
resents the component’s position within that dimension

assembler a program that translates an assembly language program into machine
code

assembly language a low-level programming language in which a mnemonic repre-
sents each of the machine language instructions for a particular computer

assertion a logical proposition that is either true or false
assignment expression a C++ expression with a value and the side effect of storing

the expression value into a memory location
assignment statement a statement that stores the value of an expression into a vari-

able
atomic data type a data type that allows only a single value to be associated with an

identifier of that type
automatic variable a variable for which memory is allocated and deallocated when

control enters and exits the block in which it is declared
auxiliary storage device a device that stores data in encoded form outside the com-

puter’s memory
base address the memory address of the first element in an array
base case the case for which the solution can be stated nonrecursively
base class the class being inherited from
batch processing a technique for entering data and executing programs without inter-

mediate user interaction with the computer
big-O notation a notation that expresses computing time (complexity) as the term in

a function that increases most rapidly relative to the size of a problem
binary expressed in terms of combinations of the numbers 1 and 0 only
binary search a search algorithm for sorted lists that involves dividing the list in half

and determining, by value comparison, whether the item would be in the upper or
lower half; the process is performed repeatedly until either the item is found or it is
determined that the item is not on the list

binary search tree a binary tree in which the key value in any node is greater than
the key value in its left child and any of its children (the nodes in the left subtree)
and less than the key value in its right child and any of its children (the nodes in
the right subtree)

binary tree a structure with a unique starting node (the root), in which each node is
capable of having two child nodes, and in which a unique path exists from the root
to every other node

772 | Glossary

binding time the time at which a name or symbol is bound to an address or to the
appropriate code

bit short for binary digit; a single 1 or 0
black-box testing testing a program or function based on the possible input values,

treating the code as a “black box”
block in C++, a group of zero or more statements enclosed in braces
body the statement(s) to be repeated within the loop; the executable statement(s)

within a function
Boolean a data type consisting of only two values: true and false; bool in C++
Boolean expression an assertion that is evaluated as either true or false, the only val-

ues of the Boolean data type
Boolean operators operators applied to values of the type Boolean; in C++ these are

the special symbols &&, ||, and !
booting the system the process of starting up a computer by loading the operating

system into its main memory
brainstorming the stage in an object-oriented design in which the first pass is made

to determine the classes in a design
branch a code segment that is not always executed; for example, a switch statement

has as many branches as there are case labels
branching control structure see selection control structure
bucket a collection of elements associated with a particular hash location
byte eight bits
call the point at which the computer begins following the instructions in a subpro-

gram is referred to as the subprogram call
cancellation error a form of representational error that occurs when numbers of

widely differing magnitudes are added or subtracted
central processing unit (CPU) the part of the computer that executes the instructions

(program) stored in memory; consists of the arithmetic/logic unit and the control
unit

chain a linked list of elements that share the same hash location
char a data type whose values consist of one alphanumeric character (letter, digit, or

special symbol)
character set a standard set of alphanumeric characters with a given collating

sequence and binary representation
circular linked list a list in which every node has a successor; the “last” element is

succeeded by the “first” element
class an unstructured type that encapsulates a fixed number of data components

with the functions that manipulate them; the predefined operations on an instance
of a class are “whole assignment” and “component access”

class constructor a special member function of a class that is implicitly invoked when
a class object is defined

class destructor a special member function of a class that is implicitly invoked when a
class object goes out of scope

class member a component of a class; class members may be either data or functions

Glossary | 773

class object (class instance) a variable of a class type
clear- (white-) box testing testing a program or function based on covering all of the

branches or paths of the code
client software that declares and manipulates objects (instances) of a particular class
clustering the tendency of elements to become unevenly distributed in the hash table,

with many elements clustering around a single hash location
code coverage see clear- (white-) box testing
code walk-through a verification process for a program in which each statement is

examined to check that it faithfully implements the corresponding algorithmic step,
and that the preconditions and postconditions of each module are preserved

coding translating an algorithm into a programming language; the process of assign-
ing bit patterns to pieces of information

collating sequence the ordering of the elements of a set or series, such as the charac-
ters (values) in a character set

collision the condition resulting when two or more keys produce the same hash loca-
tion

communication complexity a measure of the quantity of data passing through a mod-
ule’s interface

compiler a program that translates a high-level language (such as C++, Pascal, or
FORTRAN) into machine code

compiler listing a copy of a program into which have been inserted messages from
the compiler (indicating errors in the program that prevent its translation into
machine language if appropriate)

complete binary tree a binary tree that is either full or full through the next-to-last
level, with the leaves on the last level as far to the left as possible

complete graph a graph in which every vertex is directly connected to every other
vertex

complexity a measure of the effort expended by the computer in performing a compu-
tation, relative to the size of the computation

composite type a data type that allows a collection of values to be associated with an
object of that type

composition (containment) a mechanism by which an internal data member of one
class is defined to be an object of another class type

computer a programmable device that can store, retrieve, and process data
computer program a list of instructions to be performed by a computer
computer programming the process of planning a sequence of steps for a computer to

follow
concrete step a step for which the implementation details are fully specified
conditional test the point at which the Boolean expression is evaluated and the deci-

sion is made to either begin a new iteration or skip to the first statement following
the loop

constant an item in a program whose value is fixed at compile time and cannot be
changed during execution

constant time an algorithm whose Big-O work expression is a constant

774 | Glossary

constructor an operation that builds new instances of an abstract data type (such as a
list)

control abstraction the separation of the logical properties of a control structure from
its implementation

control structure a statement used to alter the normally sequential flow of control
control unit the component of the central processing unit that controls the action of

other components so that instructions (the program) are executed in sequence
conversion function a function that converts a value of one type to another type so

that it can be assigned to a variable of the second type; also called transfer function
or type cast

copy constructor a special member function of a class that is implicitly invoked when
passing parameters by value, initializing a variable in a declaration, and returning
an object as the value of a function

count-controlled loop a loop that executes a predetermined number of times
counter a variable whose value is incremented to keep track of the number of times a

process or event occurs
CPU see central processing unit
crash the cessation of a computer’s operations as a result of the failure of one of its

components; cessation of program execution due to an error
CRC card (Class, Responsibility, Collaboration) a visualization technique that uses

4 � 6 cards to represent a class
cursor control keys a special set of keys on a computer keyboard that allow the user

to move the cursor up, down, right, and left to any point on the screen
data information that has been put into a form a computer can use
data abstraction the separation of a data type’s logical properties from its implemen-

tation
data coverage see black-box testing
data encapsulation the separation of the representation of data from the applications

that use the data at a logical level; a programming language feature that enforces
information hiding

data flow the flow of information from the calling code to a function and from the
function back to the calling code

data representation the concrete form of data used to represent the abstract values of
an abstract data type

data structure a collection of data elements whose organization is characterized by
accessing operations that are used to store and retrieve the individual data ele-
ments; the implementation of the composite data members in an abstract data type

data type the general form of a class of data items; a formal description of the set of
values (called the domain) and the basic set of operations that can be applied to it

data validation a test added to a program or a function that checks for errors in the
data

debugging the process of removing known errors
decision see selection control structure
declaration a statement that associates an identifier with a process or object so that

the user can refer to that process or object by name

Glossary | 775

deep copy an operation that not only copies one class object to another but also
makes copies of any pointed-to data

delete a C++ operator that returns the space allocated for a dynamic variable back to
the heap to be used again

delimiter a symbol or keyword that marks the beginning or end of a construct (e.g.,
statement, comment, declaration, and parameter list)

demotion (narrowing) the conversion of a value from a “higher” type to a “lower”
type according to a programming language’s precedence of data types. Demotion
may cause loss of information

dereference operator an operator that when applied to a pointer variable denotes the
variable to which the pointer points

derived class the class that inherits
deskchecking tracing an execution of a design or program on paper
development environment a single package containing all of the software required

for developing a program
directed graph (digraph) a graph in which each edge is directed from one vertex to

another (or the same) vertex
documentation the written text and comments that make a program easier for others

to understand, use, and modify
doubly linked list a linked list in which each node is linked to both its successor and

its predecessor
down a descriptive term applied to a computer when it is not in a usable condition
driver a simple dummy main program that is used to call a function being tested; a

main function in an object-oriented program
dynamic allocation allocation of memory space for a variable at run time (as opposed

to static allocation at compile time)
dynamic binding the run-time determination of which implementation of an opera-

tion is appropriate
dynamic data structure a data structure that can expand and contract during pro-

gram execution
dynamic variable a variable created during execution of a program by the new opera-

tor
echo printing printing the data values input to a program to verify that they are cor-

rect
edge (arc) a pair of vertices representing a connection between two nodes in a graph
editor an interactive program used to create and modify source programs or data
encapsulation (in OOD) the bundling of data and actions in such a way that the logi-

cal properties of the data and actions are separated from the implementation
details; the practice of hiding a module implementation in a separate block with a
formally specified interface

enumeration data type a data type in which the formal description of the set of val-
ues is an ordered list of literal values

enumerator one of the values in the domain of an enumeration type
event counter a variable that is incremented each time a particular event occurs
event-controlled loop a loop that terminates when something happens inside the loop

body to signal that the loop should be exited

776 | Glossary

exception a situation associated with an unusual, usually unpredictable event,
detectable by software or hardware, which requires special processing

exception report a set of messages in a program that explains the actions taken when
an invalid data item is encountered during execution

executing the action of a computer performing as instructed by a given program
execution summary a computer-generated list of all commands processed and any

system messages generated during batch processing
execution trace a testing procedure that involves simulating by hand the computer

executing a program
expression an arrangement of identifiers, literals, and operators that can be evaluated

to compute a value of a given type
expression statement a statement formed by appending a semicolon to an expression
external file a file that is used to communicate with people or programs and is stored

externally to the program
external pointer a named pointer variable that references the first node in a linked

structure
external representation the printable (character) form of a data value
fetch-execute cycle the sequence of steps performed by the central processing unit for

each machine language instruction
field a group of character positions in a line of output
field identifier (member identifier in C++) the name of a component in a record

(struct)
field member selector the expression used to access components of a record variable;

formed by using the record variable name and the field identifier, separated by a
period

field of a record a component of a record data type
file a named area in secondary storage that is used to hold a collection of data; the

collection of data itself
filtering the stage in an object-oriented design in which the classes determined during

brainstorming are reexamined
finite state machine an idealized model of a simple computer consisting of a set of

states, the rules that specify when states are changed, and a set of actions that are
performed when changing states

flag a Boolean variable that is set in one part of the program and tested in another to
control the logical flow of a program

flat implementation the hierarchical structure of a solution written as one long
sequence of steps; also called inline implementation

floating point number the value stored in a type float variable, so called because
part of the memory location holds the exponent and the balance of the location the
mantissa, with the decimal point floating as necessary among the significant digits

flow of control the order of execution of the statements in a program
folding a hash method that breaks the key into several pieces and concatenates or

exclusive-ORs some of them to form the hash value
formal parameter a variable declared in a function heading
formal parameter declaration the code that associates a formal parameter identifier

with a data type and a passing mechanism

Glossary | 777

formatting the planned positioning of statements or declarations and blanks on a line
of a program; the arranging of program output so that it is neatly spaced and
aligned

free store (heap) a pool of memory locations reserved for dynamic allocation of data
full binary tree a binary tree in which all of the leaves are on the same level and

every nonleaf node has two children
function a subprogram in C++
function call an expression or statement in the main program requiring the computer

to execute a function subprogram
function definition a function declaration that includes the body of the function
function prototype a function declaration without the body of the function
function result the value computed by the function and then returned to the main

program; often just called the result
function result type the data type of the result value returned by a function; often

referred to simply as function type
function type see function result type
functional cohesion a property of a module in which all concrete steps are directed

toward solving just one problem, and any significant subproblems are written as
abstract steps

functional domain the set of valid input data for a program or function
functional equivalence a property of a module that performs exactly the same opera-

tion as the abstract step it defines, or when one module performs exactly the same
operation as another module

functional modules in top-down design, the structured tasks and subtasks that are
solved individually to create an effective program

functional problem description a description that clearly states what a program is to
do

garbage memory locations that can no longer be accessed
general (recursive) case the case for which the solution is expressed in terms of a

smaller version of itself
generic data type a type for which the operations are defined but the types of the

items being manipulated are not
global a descriptive term applied to an identifier declared outside any function, so-

called because it is accessible to everything that follows it
graph a data structure that consists of a set of nodes and a set of edges that relate the

nodes to each other
hardware the physical components of a computer
hash function a function used to manipulate the key of an element in a list to identify

its location in the list
hashing the technique used for ordering and accessing elements in a list in a rela-

tively constant amount of time by manipulating the key to identify its location in
the list

header node a placeholder node at the beginning of a list; used to simplify list pro-
cessing

778 | Glossary

heap a complete binary tree, each of whose elements contains a value that is greater
than or equal to the value of each of its children; see also free store

heuristics assorted problem-solving strategies
hierarchical implementation a process in which a modular solution is implemented

by subprograms that duplicate the hierarchical structure of the solution
hierarchical records records in which at least one of the fields is itself a record
hierarchy (in OOD) structuring of abstractions in which a descendant object inherits

the characteristics of its ancestors
high-level programming language any programming language in which a single

statement translates into one or more machine language instructions
homogeneous a descriptive term applied to structures in which all components are of

the same data type (such as an array)
identifier a name associated with a process or object and used to refer to that process

or object
implementation phase the second set of steps in programming a computer: translat-

ing (coding) the algorithm into a programming language; testing the resulting pro-
gram by running it on a computer, checking for accuracy, and making any
necessary corrections; using the program

implementing coding and testing an algorithm
implementing a test plan running the program with the test cases listed in the test

plan
implicit matching see positional matching
in place describes a kind of sorting algorithm in which the components in an array

are sorted without the use of a second array
index a value that selects a component of an array
infinite loop a loop whose termination condition is never reached and which therefore

is never exited without intervention from outside of the program
infinite recursion the situation in which a subprogram calls itself over and over con-

tinuously
information any knowledge that can be communicated
information hiding The practice of hiding the details of a function or data structure

with the goal of controlling access to the details of a module or structure; the pro-
gramming technique of hiding the details of data or actions from other parts of the
program

inheritance a design technique used with a hierarchy of classes by which each
descendant class inherits the properties (data and operations) of its ancestor class;
the language mechanism by which one class acquires the properties—data and oper-
ations—of another class; a mechanism for automatically sharing data and methods
among members of a class and its subclasses

inline implementation see flat implementation
inorder traversal a systematic way of visiting all the nodes in a binary tree that visits

the nodes in the left subtree of a node, then visits the node, and then visits the
nodes in the right subtree of the node

Glossary | 779

input the process of placing values from an outside data set into variables in a pro-
gram; the data may come from either an input device (keyboard) or an auxiliary
storage device (disk or tape)

input prompts messages printed by an interactive program, explaining what data is to
be entered

input transformation an operation that takes input values and converts them to the
abstract data type representation

input/output (I/O) devices the parts of a computer that accept data to be processed
(input) and present the results of that processing (output)

insertion sort a sorting algorithm in which values are placed one at a time into their
proper position within a list that was originally empty

inspection a verification method in which one member of a team reads the program or
design line by line and the others point out errors

integer number a positive or negative whole number made up of a sign and digits
(when the sign is omitted, a positive sign is assumed)

integration testing testing performed to integrate program modules that have already
been independently unit tested

interactive system a system that allows direct communication between the user and
the computer

interface a connecting link (such as a computer terminal) at a shared boundary that
allows independent systems (such as the user and the computer) to meet and act on
or communicate with each other; the formal definition of the behavior of a subpro-
gram and the mechanism for communicating with it

internal file a file that is created but not saved; also called a scratch file
interpreter a program that inputs a program in a high-level language and directs the

computer to perform the actions specified in each statement; unlike a compiler, an
interpreter does not produce a machine language version of the entire program

invoke to call on a subprogram, causing the subprogram to execute before control is
returned to the statement following the call

iteration an individual pass through, or repetition of, the body of a loop
iteration counter a counter variable that is incremented with each iteration of a loop
iterator an operation that allows us to process all the components in an abstract data

type sequentially
leaf node tree node that has no children
length the actual number of values stored in a list or string
lifetime the period of time during program execution when an identifier has memory

allocated to it
linear probing resolving a hash collision by sequentially searching a hash table

beginning at the location returned by the hash function
linear time for an algorithm, when the Big-O work expression can be expressed in

terms of a constant times N, where N is the size of the problem
linked list a list in which the order of the components is determined by an explicit

link field in each node, rather than by the sequential order of the components in
memory

780 | Glossary

listing a copy of a source program, output by a compiler, containing messages to the
programmer

literal value any constant value written in a program
local variable a variable declared within a block; it is not accessible outside of that

block
logarithmic order for an algorithm, when the Big-O work expression can be expressed

in terms of the logarithm of N, where N is the size of the problem
logging off informing a computer—usually through a simple command—that no fur-

ther commands follow
logging on taking the preliminary steps necessary to identify yourself to a computer

so that it accepts your commands
logical order the order in which the programmer wants the statements in the program

to be executed, which may differ from the physical order in which they appear
loop a method of structuring statements so that they are repeated while certain condi-

tions are met
loop control variable (LCV) a variable whose value is used to determine whether the

loop executes another iteration or exits
loop entry the point at which the flow of control first passes to a statement inside a

loop
loop exit the point when the repetition of the loop body ends and control passes to

the first statement following the loop
loop invariant assertions about the characteristics of a loop that must always be true

for a loop to execute properly; the assertions are true on loop entry, at the start of
each loop iteration, and on exit from the loop, but are not necessarily true at each
point in the body of the loop

loop test the point at which the loop expression is evaluated and the decision is made
either to begin a new iteration or skip to the statement immediately following the
loop

machine language the language, made up of binary-coded instructions, that is used
directly by the computer

mainframe a large computing system designed for high-volume processing or for use
by many people at once

maintenance the modification of a program, after it has been completed, in order to
meet changing requirements or to take care of any errors that show up

maintenance phase period during which maintenance occurs
mantissa with respect to floating point representation of real numbers, the digits rep-

resenting a number itself and not its exponent
member selector the expression used to access components of a struct or class

variable; it is formed by using the variable name and the member name, separated
by a dot (period)

memory leak the loss of available memory space that occurs when memory is allo-
cated dynamically but never deallocated

memory unit internal data storage in a computer
metalanguage a language that is used to write the syntax rules for another language

Glossary | 781

method a function declared as a member of a class object
metric based testing testing based on measurable factors
microcomputer see personal computer
minicomputer a computer system larger than a personal computer but smaller than a

mainframe; sometimes called an entry-level mainframe
mixed mode expression an expression that contains operands of different data types
modular programming see top-down design
modularity (in OOD) meaningful packaging of objects
module a self-contained collection of steps that solves a problem or subproblem; can

contain both concrete and abstract steps
module nesting chart a chart that depicts the nesting structure of modules and shows

calls among them
name precedence the priority treatment accorded a local identifier in a block over a

global identifier with the same spelling in any references that the block makes to
that identifier

named constant a location in memory, referenced by an identifier, where a data value
that cannot be changed is stored

named matching see explicit matching
named type a type that has an identifier (a name) associated with it
nested control structure a program structure consisting of one control statement

(selection, iteration, or subprogram) embedded within another control statement
nested if an if statement that is nested within another if statement
nested loop a loop that is within another loop
new a C++ operator that returns the address of new space allocated for a dynamic

variable
nodes the building blocks of dynamic structures, each made up of a component (the

data) and a pointer (the link) to the next node
nonlocal a descriptive term applied to any identifier declared outside of a given block
nonlocal access access to any identifier declared outside of its own block
null statement an empty statement
nybble four bits; half of a byte
object class (class) the description of a group of objects with similar properties and

behaviors; a pattern for creating individual objects
object program the machine-language version of a source program
object-based programming language a programming language that supports abstrac-

tion and encapsulation, but not inheritance
object-oriented design a building-block design technique that incorporates abstrac-

tion, encapsulation, modularity, and hierarchy
object-oriented programming a method of implementation in which programs are

organized as cooperative collections of objects, each of which represents an
instance of some class, and whose classes are all members of a hierarchy of classes
united via inheritance relationships

observer an operation that allows us to observe the state of an instance of an abstract
data type without changing it

782 | Glossary

one-dimensional array a structured collection of components of the same type given
a single name; each component is accessed by an index that indicates its position
within the collection

operating system a set of programs that manages all of the computer’s resources
out-of-bounds array index an index value that, in C++, is either less than zero or

greater than the array size minus one
output transformation an operation that takes an instance of an abstract data type

and converts it to a representation that can be output
overflow the condition that arises when the value of a calculation is too large to be

represented
overloading giving the same name to more than one function or using the same oper-

ator symbol for more than one operation; usually associated with static binding
overriding reimplementing a member function inherited from a parent class
parameter a literal, constant, variable, or expression used for communicating values

to or from a subprogram
parameter list a mechanism by which functions communicate with each other
pass by address a parameter-passing mechanism in which the memory address of the

actual parameter is passed to the formal parameter; also called pass by reference
pass by name a parameter-passing mechanism in which the actual parameter is

passed to a procedure as a literal character string and interpreted by a thunk
pass by reference see pass by address
pass by value a parameter-passing mechanism in which a copy of an actual parame-

ter’s value is passed to the formal parameter
password a unique series of letters assigned to a user (and known only by that user)

by which that user identifies himself or herself to a computer during the logging-on
procedure; a password system protects information stored in a computer from being
tampered with or destroyed

path a combination of branches that might be traversed when a program or function
is executed; a sequence of vertices that connects two nodes in a graph

path testing a testing technique whereby the tester tries to execute all possible paths
in a program or function

PC see personal computer
peripheral device an input, output, or auxiliary storage device attached to a computer
personal computer (PC) a small computer system (usually intended to fit on a desk-

top) that is designed to be used primarily by a single person
pointer a simple data type consisting of an unbounded set of values, each of which

addresses or otherwise indicates the location of a variable of a given type; opera-
tions defined on pointer variables are assignment and test for equality

polymorphic operation an operation that has multiple meanings depending on the
type of the object to which it is bound at run time

polymorphism The ability to determine which of several operations with the same
name is appropriate; a combination of static and dynamic binding

positional matching a method of matching actual and formal parameters by their rel-
ative positions in the two parameter lists; also called relative or implicit matching

Glossary | 783

postconditions assertions that must be true after a module is executed
postfix operator an operator that follows its operand(s)
postorder traversal a systematic way of visiting all the nodes in a binary tree that

visits the nodes in the left subtree of a node, then visits the nodes in the right sub-
tree of the node, and then visits the node

precision a maximum number of significant digits
preconditions assertions that must be true before a module begins execution
prefix operator an operator that precedes its operand(s)
preorder traversal a systematic way of visiting all the nodes in a binary tree that vis-

its a node, then visits all the nodes in the left subtree of the node, and then visits
the nodes in the right subtree of the node

priming read an initial reading of a set of data values before entry into an event-con-
trolled loop, in order to establish values for the variables

problem-solving phase the first set of steps in programming a computer: analyzing
the problem; developing an algorithm; testing the algorithm for accuracy

procedural abstraction the separation of the logical properties of an action from its
implementation

program validation the process of determining the degree to which software fulfills
its intended purpose

program verification the process of determining the degree to which a software prod-
uct fulfills its specifications

programming planning, scheduling, or performing a task or an event; see also com-
puter programming

programming language a set of rules, symbols, and special words used to construct a
program

pseudocode a mixture of English statements and C++-like control structures that can
easily by translated into a programming language

quadratic probing resolving a hash collision by using the rehashing formula (Hash-
Value � I 2) % array-size, where I is the number of times that the rehash function
has been applied

queue a data structure in which elements are added to the rear and removed from the
front; a “first in, first out” (FIFO) structure

radix the number of possibilities for each position; the digits in a number system
random probing resolving a hash collision by generating pseudorandom hash values

in successive applications of the rehash function
range of values the interval within which values must fall, specified in terms of the

largest and smallest allowable values
real number a number that has a whole and a fractional part and no imaginary part
record (struct) data type a composite data type with a fixed number of components

called fields (members); the operations are whole record assignment and selection
of individual fields by name

recursion the situation in which a subprogram calls itself
recursive call a subprogram call in which the subprogram being called is the same as

the one making the call
recursive case see general case

784 | Glossary

recursive definition a definition in which something is defined in terms of a smaller
version of itself

reference parameter a formal parameter that receives the location (memory address)
of the caller’s actual parameter

reference type a simple data type consisting of an unbounded set of values, each of
which is the address of a variable of a given type. The only operation defined on a
reference variable is initialization, after which every appearance of the variable is
implicitly dereferenced

refinement in top-down design, the expansion of a module specification to form a
new module that solves a major step in the computer solution of a problem

regression testing reexecution of program tests after modifications have been made in
order to ensure that the program still works correctly

relational operators operators that state that a relationship exists between two values;
in C++, symbols that cause the computer to perform operations to verify whether
the indicated relationship exists

relative matching see positional matching
representational error arithmetic error caused when the precision of the true result of

arithmetic operations is greater than the precision of the machine
reserved word a word that has special meaning in a programming language; it cannot

be used as an identifier
responsibility algorithms the stage in an object-oriented design in which algorithms

are written for each of the responsibilities outlined on the CRC cards
result see function result
return the point at which the computer comes back from executing a function
right-justified placed as far to the right as possible within a fixed number of charac-

ter positions
robust a descriptive term for a program that can recover from erroneous inputs and

other errors and keep running
robustness the ability of a program to recover following an error; the ability of a pro-

gram to continue to operate within its environment
root the top node of a tree structure; a node with no parent
run-time stack a data structure that keeps track of activation records during the exe-

cution of a program
scenarios the stage in an object-oriented design in which the behavoir of each class is

determined
scope the region of program code where it is legal to reference (use) an identifier
scope rules the rules that determine where in a program a given identifier may be

accessed, given the point at which the identifier is declared
scratch file see internal file
secondary storage device see auxiliary storage device
selection control structure a form of program structure allowing the computer to

select one among possible actions to perform based on given circumstances; also
called a branching control structure

self the instance object (class) used in the invocation of a method
self-documenting code a program containing meaningful identifiers as well as judi-

ciously used clarifying comments

Glossary | 785

semantics the set of rules that gives the meaning of instruction written in a program-
ming language

semihierarchical implementation a modular solution implemented by functions in a
manner that preserves the hierarchical design, except that a function used by multi-
ple modules is implemented once, outside of the hierarchy, and called in each place
it is needed

sentinel a special data value used in certain event-controlled loops as a signal that the
loop should be exited

sequence a structure in which statements are executed one after another
shallow copy an operation that copies one class object to another without copying

any pointed-to data
side effect any effect of one function on another that is not part of the explicitly

defined interface between them
significant digits those digits from the first nonzero digit on the left to the last

nonzero digit on the right (plus any zero digits that are exact)
simulation a problem solution that has been arrived at through the application of an

algorithm designed to model the behavior of physical systems, materials, or
processes

size (of an array) the physical space reserved for an array
software computer programs; the set of all programs available on a computer
software engineering the application of traditional engineering methodologies and

techniques to the development of software
software life cycle the phases in the life of a large software project including require-

ments analysis, specification, design, implementation, testing, and maintenance
software piracy the unauthorized copying of software for either personal use or use

by others
sorting arranging the components of a list in order (for instance, words in alphabeti-

cal order, numbers in ascending or descending order)
source program a program written in a high-level programming language
stable sort a sorting algorithm that preserves the order of duplicates
stack an abstract data type in which elements are added and removed from only one

end; a “last in, first out” (LIFO) structure
stack frame see activation record
stack overflow the condition resulting from trying to push an element onto a full

stack
stack underflow the condition resulting from trying to pop an empty stack
standardized made uniform; most high-level languages are standardized, as official

descriptions of them exist
static binding the compile-time determination of which function to call for a particu-

lar object
static variable a variable for which memory remains allocated throughout the execu-

tion of the entire program
stepwise design see top-down design
stepwise refinement see top-down design

786 | Glossary

string a collection of characters that is interpreted as a single data item; in C++, a
null-terminated sequence of characters stored in a char array

stub a dummy function that assists in testing part of a program; it has the same func-
tion that would actually be called by the part of the program being tested, but is
usually much simpler

style the individual manner in which computer programmers translate algorithms into
a programming language

subprogram see function
supercomputer the most powerful class of computers
switch expression the expression in a switch statement whose value determines which

case label is selected; it cannot be a floating point expression
syntax the formal rules governing how valid instructions (constructs) are written in a

programming language
system software a set of programs—including the compiler, the operating system, and

the editor—that improves the efficiency and convenience of the computer’s process-
ing

tail recursion a recursive algorithm in which no statements are executed after the
return from the recursive call

team programming the use of two or more programmers to design a program that
would take one programmer too long to complete

template a C++ language construct that allows the compiler to generate multiple ver-
sions of a class type or a function by allowing parameterized types

temporary file a file that exists only during the execution of a program
termination condition the condition that causes a loop to be exited
test driver see driver
test plan a document that specifies how a program is to be tested
test plan implementation using the test cases specified in a test plan to verify that a

program outputs the predicted results
testing checking a program’s output by comparing it to hand-calculated results; run-

ning a program with data sets designed to discover any errors
testing the state of a stream the act of using a C++ stream variable in a logical

expression as if it were a Boolean variable; the result is true if the last I/O operation
on that stream succeeded, and false otherwise

text file a file in which each component is a character; each numeric digit is repre-
sented by its code in the collating sequence

top-down design a technique for developing a program in which the problem is
divided into more easily handled subproblems, the solutions of which create a solu-
tion to the overall problem; also called stepwise refinement and modular program-
ming

trailer node a placeholder node at the end of a list; used to simplify list processing
transfer function see conversion function
transformer an operation that builds a new value of an ADT, given one or more pre-

vious values of the type

Glossary | 787

traverse a list to access the components of a list one at a time from the beginning of
the list to the end

two-dimensional array a collection of components, all of the same type, structured in
two dimensions; each component is accessed by a pair of indexes that represent the
component’s position within each dimension

type cast see conversion function
type coercion an automatic conversion of a value of one type to a value of another

type
type definition the association of a type identifier with the definition of a new data

type
unary operator an operator that has just one operand
underflow the condition that arises when the value of a calculation is too small to be

represented
undirected graph a graph in which the edges have no direction
unit testing testing a module or function by itself
unstructured data type a collection consisting of components that are not organized

with respect to one another
user name the name by which a computer recognizes the user, and which must be

entered to log on to a machine
value parameter a formal parameter that receives a copy of the contents of the corre-

sponding actual parameter
value-returning function a function that returns a single value to its caller and is

invoked from within an expression
variable a location in memory, referenced by an identifier, in which a data value that

can be changed is stored
vertex a node in a graph
virtual function a function in which each invocation cannot be matched with the

proper code until run time
virus a computer program that replicates itself, often with the goal of spreading to

other computers without authorization, possibly with the intent of doing harm
visible accessible; a term used in describing a scope of access
void function (procedure) a function that does not return a function value to its caller

and is invoked as a separate statement
walk-through a verification method in which a team performs a manual simulation of

the program or design
weighted graph a graph in which each edge carries a value
word a group of 16, 32, or 64 bits; a group of bits processed by the arithmetic-logic

unit in a single instruction
work a measure of the effort expended by the computer in performing a computation
workstation a minicomputer or powerful microcomputer designed to be used prima-

rily by one person at a time

788 | Glossary

Note: Italicized page locators refer to figures/tables.

Symbols
ampersand (&), 74, 79, 338
angle brackets (<>), 88
arrow operator (->), 222, 287
assignment operator (=), 24, 357-358, 392, 485
asterisk (*), 214, 216, 338
braces ({}), 547
brackets ([]), 225
dereference operator (*), 280, 287
double colon operator (::), 18
equality test operator (==), 24
extraction operator (>>), 26
insertion operator (<<), 26
null character (\0), 100
remainder operator (%), 236, 626
scope resolution operator (::), 87, 94, 98, 244
tilde (~), 225

A
Abstract data types, 17, 24, 66, 85, 117, 261

and data structure, 68
and exceptions, 97
graphs as, 547
and lists, 124
operator categories for, 71-72
sets as, 571

Abstract data type sorted list, 146–156
application level for, 147
implementation level for, 147, 149–156
logical level for, 146
test plan for operations in, 156

Abstract data type unsorted list, 125–146
and abstract data type operations, 125–126
and generic data types, 126–128
logical level for, 125

Abstraction, 4, 9–10, 11, 13, 58, 66, 72-85, 133
Acceptance tests, 19, 59
Accessing function

and built–in composite data types, 75
and one–dimensional arrays, 81

Accessor function, 71, 72
Action responsibilities, 173
Activation record, 423, 424, 425, 426, 427, 428, 430,

433
Active data structure, 90
Actual parameter, 211, 368
Ada, 82
Addition, 65, 381, 383
Add operation, 227
Address of operator, 215
AddVertex operation, 566
Adjacency lists, 569
Adjacency matrices, 563, 569
Adjacent vertices, 549
ADTs. See Abstract data types

ADT Sorted List
test plan for, 156

ADT Unsorted List
test plan for operations in, 145

Airline example
breadth-first strategy in, 556-559
depth–first strategy in, 553-556

Algorithms, 3, 4, 24
AddEdge, 567
analysis of, 158
BinarySearch, 416
binary search, 151–156
BubbleSort, 594
BuildHeap, 612
collision–handling, 625–633
comparison of, 157–164
Copy Constructor, 353–354
CountNodes version 1, 466
CountNodes version 2, 467
CountNodes version 3, 467
CountNodes version 4, 468
Delete, 628
DeleteItem, 314, 342
DeleteNode, 480
DepthFirstSearch, 553
Dequeue, 300, 544
Enqueue, 298, 544
FindItem, 336
FindNode, 497
folding, 636
InsertionSort, 599
InsertItem, 313, 320, 321, 339, 499, 599
MergeSort, 601
and palindromes, 230–232
for Pop, 280
Print function, 484
for Push, 280
RadixSort, 639
recursive, 400, 404, 407, 416, 446
ReheapDown, 539
ReheapUp, 541
responsibility, 170, 172–173, 189
RetrieveItem, 311, 318
RevPrint, 413

SelectionSort, 589
ShortestPath, 560
sorting, 438, 588
SortNodes, 613
splitting, 444
for test driver program, 47
traversals, 491

Algorithm Sum1, 162, 163
Algorithm Sum2, 162, 163
Ampersand (&), 79

and parameter passing, 74
and passing–by–reference, 338

Analysis of algorithms, 158
Ancestors, 91, 457
Angle brackets (<>)

system–supplied header files enclosed in, 88
Application level, 188

for binary search trees, 463
for graphs, 552–563
for heaps, 536, 542–545
for one–dimensional arrays, 80
for pointer types, 221–222
for priority queues, 531
for queues, 229–232
for records, 75
for sets, 574
for Sorted List ADT, 147
for stacks, 199–204
and two–dimensional arrays, 84
for unsorted list ADT, 131–132
for user–defined string I/O class, 103–105

Application (or user) level, 68, 69, 71
Application perspective, 124
Arcs, 547
Arguments to constructors

passing, 136
Arithmetic operations, 65
Array–based implementation

for graphs, 563–568
Array–based list implementation

notes on, 143
Array–based lists

and FindItem, 619
linear searching in, 620

790 | Index

in static and dynamic storage, 359
Array–based sorted lists

and implementing priority queues, 532
Array declaration statement, 80
Array descriptor, 80
Array implementations

Big–O comparison of sorted list operations for,
326

Big–O comparison of unsorted list operations for,
317

comparing, 241
Array indexes, 143, 622
Array–of–records implementation

for linked structures, 362–367
Array representation

heap values in, 538
Arrays, 72, 116

changing contents of, 612
deallocating, 225
dynamically allocated, 222–225
in dynamic storage, 224
effect of HeapSort on, 614
hash function used for locating element in, 624
with linked list of values and free space, 363
merging sorted, 603–606
and radix sorts, 638
SelectionSort and number of comparisons

required for sorting, 593
sorting with pointers, 619
with three lists, 364
use of, 360–367

Array–size
in rehash function, 629

Arrow operator (->), 222
Assertions, 29
Assignment operation, 65
Assignment operation implementation

and shallow copying, 352, 353
Assignment operator (=), 24

overloading, 357–358, 392, 485
Assumptions

in detailed specification, 9
Asterisk (*)

and passing–by–reference, 338

as postfix/prefix symbol, 214, 216
ATM. See Automated teller machine
Atomic data type, 571
AttachNewNode, 501
AttachNewNode(revised), 501
ATTEMPT TO DEREFERENCE NULL POINTER

message, 291
Automated teller machine

software development for, 8
Auxiliary functions, 365, 366
Average, 126

B
bad–alloc exception, 294
Balanced binary search tree, 546
Balanced program, 202
Base address

of array, 79
of record, 76
for two–dimensional arrays, 83

Base case, 404, 407, 405, 414, 441, 446
Base–Case Question, 407

and RevPrint function, 415
and ValueInList function, 411

Base class, 91, 92, 94, 242
BASIC, 401
Beck, K. B., 13
Behavior responsibilities, 172
Big–O notation, 132, 159–160, 189, 438, 504

and comparison of rates of growth, 161
in comparison of Unsorted and Sorted List ADT

algorithms, 164–167
and depth of recursion, 429
and implicit representation, 578
Insertion Sort in terms of, 600
Queue ADT implementations comparisons and,

304–306
radix sorts analyzed in terms of, 642
selection sort algorithm analyzed in terms of,

592
ShortBubble algorithm analyzed in terms of, 597
and sorted list implementations comparisons,

324–326
sorts compared in terms of, 643

Index | 791

Big–O notation (continued)
Stack ADT implementations comparisons and,

295, 296
unsorted list operations comparison and,

316–317
Binary operators

overloading, 358
Binary search, 165, 189, 392

efficiency with, 622, 643
linear search compared with, 155, 166
of phone book, 151–152
rate of growth with linear search and, 622
recursive version of, 416–417

Binary search algorithm, 151–156
and Big–O notation, 165
iteration trace of, 155
trace of, 154

Binary Search Tree ADT, 463, 501
Binary search trees, 392, 456, 460, 517, 622, 643.

See also Recursive binary search tree opera-
tions

application level, 463
Big–O comparison between linear lists and,

505–506
deletions from, 480
and implementing priority queues, 532
insertions into, 472
linear lists compared with, 504–506
location of maximum value in, 482
logical level, 460–462
priority queue implemented with, 546
searching, 496–499
specification for, 461-462
storage of in array with dummy values, 509
traversals in, 461
tree parameter as pointer within, 474
two, 466

Binary transformer, 71, 125
Binary trees, 456, 457, 460, 517, 546, 610

with array representation, 507
examples with, 509
nonlinked representation of, 506–509
with ten nodes, 458
traversing, 483

visualizing traversals, 492
Binding, 420
Binding time, 92, 420
Bit strings

exclusive–ORing of, 636
Bit vector representation, 574
Black–box testing, 36, 145

for ADT Unsorted List implementation, 144
and LargeInt operation, 391

Blueprints, 13
Booch, Grady, 17–18
Boolean flags, 44, 376, 616
Boolean function

writing, 408–410
Boolean operators

and explicit representation, 574
Bottom–up approach

with testing, 45
Bottom–up design, 12
Boundary condition, 36
Bounded time, 160
Braces ({})

in set notation, 547
Brackets ([])

and deallocating arrays, 225
Brainstorming, 170–171, 189

in index building case study, 510
in real estate listings case study, 173–174
in simulation case study, 249

Branches, 37
checking out, 38

Branching statements, 432
Branching structures, 406, 579. See also Graphs;

Heaps; Trees
Breadth–first search, 556, 558, 559
BreadthFirstSearch function

code for, 558–559
Breadth–first strategy, 553
BubbleSort, 600, 616

ode for, 594–595
Bubble sort, 588, 593–597

analyzing, 595–597
snapshot of, 595

BubbleUp function, 595, 596, 597, 616

792 | Index

Buckets
and chaining, 631–633
collisions handled by hashing with, 632

Budget
and software, 6

Buffer, 229
Bugs, 95

origin of, 21
Built–in composite data types

implementing, 75
Built–in types

and abstraction, 72–85

C
C++, 2

calculating array element address in, 82
character and string library functions in, 99
class in, 17
class constructor rules in, 136–137
class syntax in, 18–19
and exceptions, 34
lists in, 124
“one definition rule” in, 98
operator functions in, 168–169
parameter passing in, 74–75, 368
records in, 73
scope rules in, 87
shallow copying in, 352
strings recognized by, 49
templates in, 210-222, 262
this pointer in, 391
two–dimensional arrays stored in, 83
types in, 17

C++ class type
and higher-level abstraction, 85-90

C++ code
list notation compared with, 311
node design notation compared with, 289, 468

Cake baking
example of object classes in, 17
functional design for, 15, 16

Cardinality, 571, 577
Carnegie Mellon University

Software Engineering Institute at, 33

CarType
implementation–level view of, 76

CarType struct, 73
Case studies

building an index, 510–517
fraction class, 50–58
implementing larger integer ADT, 379–392
Quick Sort, 438–446
real estate listings, 173–188
simulation, 245–261
user–defined string I/O class, 100–116

Catch block, 96
catch clause

of try–catch statement, 96
catch keyword, 96
catch statement, 199
cctype, 99
Cells, 75, 76, 80
cerr, 207
Chaining

and buckets, 631–633
collisions handled by hashing with,

632
linear probing compared with, 633

Chains, 631, 634
Children, 91, 456
cin, 2, 25
Circular array–based queues, 626
Circular doubly linked lists, 374
Circular linked lists, 334–344, 335

deleting items from, 342, 343, 344
with external pointer pointing to rear element,

335
finding list item in, 335–339
inserting items into, 339, 341

Circular linked queues, 334
Circular lists, 327, 392

FindItem operation for, 337
inserting items into, 339–344
uses for, 344

Circularly linked queues, 303–304
Circular queues, 238
Class, Responsibility, and Collaboration cards. See

CRC cards

Index | 793

Class constructors, 135
for GraphType, 565
for ListType, 367
rules for use of, 136–137

Class copy constructors, 334, 352–356
Class destructors, 225, 294, 358
Classes, 17, 72, 85, 116

deriving one from another, 93-95
differences between structs and, 90
implementation of, 87-89
as records, 73
reusability of, 17
scope of, 87
specification of, 86-87

Classes, Responsibilities, and Collaborations, 4
Class interface diagram

for CountedQueType class, 242, 243
Class name

on CRC card, 13
Class syntax, 18–19
Class template, 210

for FIFO Queue ADT, 300
Class type, 85
Clear–box strategy

for test plan for Stack ADT, 208
ClearMarks function, 555
Clear–(white–) box testing, 36, 144
Client of class, 97
CLIENT program

in real estate listings case study, 183–187
Closing special symbol, 200
Clustering, 629, 630
COBOL, 72, 401
Code

and checklist for deskchecking C++ program, 32
executing, 34
reusability of, 6
sorting and streamlining of, 616
for test driver, 47–48

Code coverage, 36–38, 39
Code–coverage test plan

for Divide function, 39–40, 42
Coding phase

software changes in, 5

Cohesion, 11
Collaborations

on CRC card, 13
Collection type, 116
Collect Queues, 640
Collisions, 625–633, 643

and buckets and chaining, 631–633
and clustering, 629
defined, 625
handling by hashing with buckets, 632
handling by hashing with chaining, 632
handling with linear probing, 626
hash function choices and minimizing of,

633–635
and linear probing, 625–629
and rehashing, 629–631

Columns
two–dimensional arrays stored in, 83

Combinations function, 436
calculating, 437
and recursion, 411–412

command function, 47
“Commenting out,” 43
ComparedTo function, 127, 169, 369, 370
comparedTo operation, 167
Compilers, 3
Compile time, 212
Compile–time errors, 23–24, 49
Complete binary tree, 508
Complete directed graph, 550
Complete graphs, 549, 550
Completeness, 5
Complete undirected graph, 550
Complexity

of hashing, 637
management of, 10
reducing, 66, 117

Complexity bins, 168
Component (base) type, 571
Component selector

and one–dimensional arrays, 78, 79
and two–dimensional arrays, 83

Composite data types, 68, 72, 73, 82, 571
Composition (containment), 93

794 | Index

Concatenation, 100
Constant

in rehash function, 629
“Constant of proportionality” of algorithm, 616
Constant pointer expression, 221
const reserved word, 353
Constructor initializer, 244
Constructor operations, 125

for Unsorted List ADT, 135–136
Constructors, 71
Constructs

for program verification, 95–99
Container objects

in simulation case study, 252
Containers, 116, 124
Containment, 93
Copy

of parameter, 74
Copy constructor, 351, 352, 353–354, 358
Copy function

implementing, 355–356
Copying

trees, 485–490
Copy member function, 357
CopyStack operation, 350, 355
Copy structures, 350–358

class copy constructors, 352–355
copy function, 355–356
and overloading assignment operator,

357–358
shallow versus deep copies, 351–352

CopyTree function, 486, 487
Correctness, 5, 234

designing for, 28–34
Costs. See also Programming time

of fixing errors, 33
with program verification, 50
and software errors, 22, 23

CountedQueType class, 241–242
application of, 244–245
class interface diagram for, 242, 243
implementation of, 242, 244

CountedQueType object, 373
CountNodes function, 465, 466

CountNodes version 2, 467
CountNodes version 3, 467
CountNodes version 4, 468
cout, 2, 25
Crashes, 24, 27, 258
CRC. See Classes, Responsibilities, and

Collaborations
CRC cards, 13, 170, 189

blank, 14
for fraction class, 51
for GraphType, 551
in index building case study, 511
for ItemType, 127
for objects in simulation case study, 249–251
for SetType class, 572
for specialized list ADT, 373
for StrType class, 101
for UnsortedType, 128

c–str function, 49
C string, 49
cstring, 99
Cubic time, 161
Cunningham, W., 13
currentPos, 142
Current search area, 152
current variable, 590

D
Data

different views of, 64–72
encapsulation of, 65
perspectives on, 116
relationships among views of, 189

Data abstraction, 64–66, 116
Data coverage, 35–36, 38, 39, 41
Data–coverage test plan

for Divide function, 41–42
Data objects, 17

and object–oriented design, 173
in real estate listings case study, 175, 176

Data structures, 64, 66-71
and abstract data types, 68
testing in C++, 45-49
unsorted lists, 134

Index | 795

Data swaps
and bubble sort, 596

Data types, 2
generic, 126–127, 210

Date type, 86
DateType class, 87

comparison of two instances of, 89
DateType type, 89
Deadlines

importance of, 7
debugFlag, 44
Debugging, 19, 20

planning for, 42–44
programs, 3
recursive routines, 432
warning about, 44

Declaration
definition distinguished from, 126

Deep copies, 334, 353, 392
shallow copies versus, 351, 352

Default constructor, 135, 223, 225
Defects

in different phases of software life cycle, 33
Definition

declaration distinguished from, 126
Degenerate tree, 505
Delete, 628
deletedItem value, 628
Delete function, 419, 477, 481
DeleteItem function, 125, 127, 130, 140, 143, 335,

460, 463, 517, 628
in comparison of Unsorted List ADT and Sorted

List ADT, 165, 166
discussion about, 477, 479-483, 502-503
testing, 144, 145
and Sorted List ADT, 324
and Unsorted List ADT, 307, 314-315

DeleteItem operation, 505
algorithm for, 150
recursive version of, 419–420

DeleteNode, 480, 482
delete operator, 220
Deleting items

in circular lists, 342, 343, 344

in sorted lists, 150, 189
in unsorted lists, 141, 189

Delivery, 3
DepthFirstSearch

application of in airline–route graph, 553–556
Depth–first strategy, 553, 554, 555–556
Depth of recursion, 429

and binary search trees, 504
Dequeue function, 242

and Queue ADT as linked structure, 299–303
Dequeue operation, 227, 236, 240, 253, 299, 533,

543, 546
algorithm for, 544
effect of, 235
implementation of, 233, 234

Dereference operator (*), 216, 280
Derived class, 92, 94, 242
Descendants, 91, 457
Design

and checklist for deskchecking C++ program, 32
goal of, 66
implementation of, 3
problem’s requirements and decisions about, 262
review activities for, 31-34
specifications and errors in, 21-23
for testing, 42
verification of, 58

Designing for correctness, 28–34
Design phase

software changes in, 5
Deskchecking, 31

checklist for C++ program, 32
Destructor, 225
Destructor operations, 505
Detailed specifications

writing, 8–9
Diagrams, 13
Difference, 571
Direct access

and arrays, 77
Direct addressing, 217
Directed graphs (digraphs), 547, 548

complete, 550
Direct recursion, 400

796 | Index

Divide–and–conquer approach, 15, 16, 438
with binary searching, 622
and Merge Sort method, 607
with QuickSort, 609
and sorting problems, 600

Divide–and–conquer sorts
rationale for, 601

Divide–by–zero errors, 97
Divide function

and debugging statements, 43
test plan for, 39

Division, 65
Division by zero, 258
Division method (%), 635
Dope vector, 80
Dot notation, 89, 90
Dot operator

precedence over dereferencing operator, 287
Double colon operator (::), 18
Double quotes

user–defined header files enclosed in, 88
Doubly linked lists, 327, 334, 344–348, 392

deleting from, 349
finding items in, 345–346
inserting into, 347
linking new nodes into, 348
operations on, 346, 348

Doubly linked structures, 299
traversing in both directions with, 374

do...while loop, 406
Driver, 188
Driver design

in simulation case study, 254
Driver program, 16, 188
Dummy nodes, 392
Dummy values, 508

binary search tree stored in array with, 509
Dynamic allocation, 217, 218
Dynamically allocated arrays, 222–225, 295, 358
Dynamically allocated variable

lifetime of, 224
Dynamic array implementation

Big–O comparison of queue operations for, 306
in terms of Big–O, 295, 296

Dynamic binding, 92, 368, 371, 392
Dynamic memory allocation, 358
Dynamic storage, 222, 262

array–based lists in, 359
linked lists in, 360
stack in which array is in, 224

Dynamic storage allocation, 280, 296, 420, 423–429,
446

E
Edges (or arcs), 547, 492, 551

adding to graphs, 567
specifying set of, 549

Efficiency, 5, 588
with binary searching, 622
with bubble sort, 595–596
and choice between algorithms, 158
with hash functions, 637
with heap sort, 615
and high–probability ordering, 621
with insertion sort, 600
with linear searching, 622
with merge sort, 615
with O(N log2N) sorts, 600–601
with quick sort, 609
and recursive solutions, 436
with searching, 643
with selection sort, 592
and shape of tree, 546
with sorting algorithms, 615–616

Egoless programming, 33
E(graph), 563, 564
Elements

and order of magnitude, 159
retrieving, 137

Employee records
hash scheme for handling of, 633, 634, 635

Empty circular list
NULL pointer in, 334

emptyItem value, 626, 628, 629
Empty lists, 136

with header and trailer, 349
EmptyQueue class, 300

Index | 797

Empty queues, 236, 237, 299, 300
testing for, 238

Empty sets, 571, 576
EmptyStack, 204
Empty stacks, 225, 294

and NULL pointer, 293
and Pop, 291
pushing onto, 289

Empty trees
constructing, 484

Encapsulation, 4, 66, 72, 95, 116, 245, 368
and class, 85, 172
data, 65
and object-oriented programming language, 92

End cases, 145
end1, 26
EngageServer operation, 252
Enqueue function, 242

and Queue ADT as linked structure, 296–299
Enqueue operation, 227, 236, 238, 253, 297, 532,

545
algorithm for, 544
effect of, 235
implementation of, 233-234

EQUAL, 127, 188, 311
Equality test operator (==), 24
Errors, 5, 19, 95

checking for, 28, 126, 205
correcting, 59
expenses with correction of, 22
fixing, 3, 20

Error stream cerr, 207
Exception handler, 96
Exception mechanisms

parts of, 34
exceptionObject, 206
Exceptions, 95–98

handling, 34
standard library, 97–98
unhandled, 294

Exclusive–OR
of bit strings, 636

ExecuteSimulation function, 254
“Exhaustive” testing, 35, 36
exit function, 207

exit(n), 207
Expenditures

and deadlines, 7
Explicit set representation, 574–576, 579
Exponential time, 161
Extensible data abstractions, 244
External pointer, 222
Extraction operator (>>), 26

F
Factorial

run–time version of (simplified), 424
Factorial function, 438, 465

activation record for, 423–424
coding, 405-407
sample program loaded in memory, 427
Three–Question Method applied to, 407–408
and writing recursive functions, 408

Fail state, 27
false value, 35
Family laundry analogy

and Big–O notation, 163–164
Fields, 73
FIFO. See First In, First Out
FIFO Queue ADT

code for implementing, 300–303
File names

reading in, 49
Files, 175
Filtering, 170, 171–172, 189

in real estate listings case study, 174
in simulation case study, 249

FindItem function, 335, 342, 345, 619
initializing for, 336

FindNode function, 502
code for, 497-498
for finding insertion point, 499, 500
specification for, 496

Finite quality
with one–dimensional arrays, 77

First in, First out (FIFO), 226, 296
and breadth–first searching, 557
and priority queues, 531

Fixed size
with one–dimensional arrays, 77

798 | Index

Floating–point multiplication, 65
Folding, 636
for loop, 199, 406, 612, 614
Formal parameter

and MemberFunction, 368
to the template, 210

FORTRAN, 72, 401
Forward declaration, 286
Four–element subarrays, 608
Fraction class case study, 50–58
Free list, 364
FreeNode function, 362, 365
Free nodes, 362
Free space, 362
Free store (heap), 218, 222, 392, 533
Friend function, 356, 358
fstream, 26
Full binary tree, 508
FullQueue class, 238, 300
Full queues, 236, 237

testing for, 238
FullStack, 204
Functional decomposition, 12, 14, 15, 58, 64
Functional design, 91
Functional domain, 35, 36
Functionality of program

with object–oriented design, 17
Functional modules, 15
Functional requirements, 2
Functional subproblems, 14
Function members

and constructors, 135
Functions

eliminating calls to, 616
Function split, 443
Function templates, 212, 338

G
Garbage, 220
Garbage collection, 220
General–Case Question, 407

and iteration, 433
and RevPrint function, 416
and ValueInList function, 411

General (or recursive) cases, 404, 407

and recursive solution, 446
and writing recursive functions, 408

Generic data types, 126–127, 210
Generic time–driven queuing system simulator,

247
getData function, 99, 131
getFreeServerID operation, 252
get function, 26
GetNextItem function, 126, 134, 142, 143, 145, 493

testing, 146
and Unsorted List ADT, 307, 315

GetNextItem operation, 131, 461
GetNode function, 362, 365
GetParameters function, 255
GetPredecessor operation, 481
GetToVertices function, 568
Global identifier, 87
Global namespace, 99
Global scope, 87
Global variable

lifetime of, 224
Graph ADT, 555

specification for, 551–552
Graphs, 117, 546–571, 579

adjacency list representation of, 569–570
application level, 552–563
edges added to, 567
examples of, 548
of flight connections between cities, 564
implementation level, 563–571
logical level, 546–552
marking vertices on, 555
and sets, 571
undirected, 547

Graph theory, 547
GraphType class, 551

definition of, 565
GREATER, 127, 188, 321
Growth rates

comparison of, 161

H
Hardware, 3
Hashed list

sequential list compared with, 625

Index | 799

Hash functions, 623, 630
choosing, 633–635
good, 633–635, 643
for locating element in array, 624

Hashing, 622–633, 643
Hash program

with linear probing, 628
Hash table, 628, 629, 633
Hash value, 631, 635, 636
Header nodes, 349, 392
Headers

linked lists with, 348–349
Heaps, 218, 222, 460, 509, 533–546, 579, 609

application level, 536, 542–545
building, 610, 611, 612
containing letters “A” through “J,” 534
defined, 533
implementation level, 536–542
logical level, 533–536
other priority queue representations versus,

545–546
sorting with, 612-614

HeapSort, 161, 600, 613
effect of on array, 614
instability with, 618

Heap sort, 588, 609–615
HeapType function, 538, 611
Heap values

in array representation, 538
Height, 458, 459, 477, 504, 610
Hierarchy of objects, 16, 17, 91
Hierarchy of tasks, 15, 91
Higher–level abstraction

and C++ class type, 85–90
High–level design, 2, 33
High–probability ordering, 620–621
Homogeneous quality

with one–dimensional arrays, 77
Honor roll list

with two items, 307
HouseType

testing, 188

I
Ideaware, 3–4

Ideaware tools, 9
abstraction, 9–10
information hiding, 10–11
stepwise refinement, 11–12
visual, 13–14

Identifiers
in namespace, 98–99

if–else, 2
if statement, 236, 406, 432
ifstream, 26
if–then statement, 37
ILLEGAL ASSIGNMENT error message, 23
Ill–formed expressions, 200
Implementation

and classes, 85, 87–89
of design, 3

Implementation level, 68, 69, 70, 188
for binary search trees, 463–464
for graphs, 563–571
for heaps, 536–542
for one–dimensional arrays, 80–82
for pointer types, 222
for priority queues, 532–533
for queues, 233–241
for records, 75–77
for sets, 574–579
for Sorted List ADT, 147–156
for sorting algorithms, 588
for stacks, 204–210
for two–dimensional arrays, 84–85
for unsorted list ADT, 132–135
for user–defined string I/O class, 105

Implementation perspective, 124
Implementing test plan, 38
Implicit link implementation, 537, 542
Implicit links, 610
Implicit positional links

binary trees represented in array with, 506–507
Implicit set representation, 576–579
Inchworm effect, 320, 321, 335
#include “DateType.h” directive, 88
#include directive, 87
Incremental coding and testing, 256
Index building case study, 510–517
Indexes, 392, 611, 637

800 | Index

and arrays, 77, 78
conversion of key values to, 623
and current search area, 152
and one–dimensional arrays, 81, 82
and rehashes, 630
of vertices, 567

IndexIs function, 567
Indirect addressing, 217
Indirect recursion, 400
Inductive proofs, 408
Info(last), 133, 137, 139, 288
Info(location), 133, 147, 288, 311
Info member

of nodes, 282
Information hiding, 4, 10–11, 13, 58, 72, 95, 245
Inheritance, 91, 92, 95, 368

and accessibility, 245
for deriving one class from another, 369–372
and extensible data abstractions, 244
hierarchy, 91, 92

InitializeSimulationVariables, 256
Initializing variable in declaration

and shallow copying, 352, 353
InitServer operation, 259
inline specifier, 591
Inorder traversal, 483, 484, 490, 493

algorithm for, 491
generating, 492

Input
in real estate listings case study, 175

Input files, 46
Inputs/outputs

in detailed specification, 9
Input streams, 25
InsertEnd, 377
InsertFront, 377
Insert function, 418, 429-432, 471, 475
Inserting items

into circular lists, 339–342
into sorted lists, 147, 148, 189
into unsorted lists, 189

InsertionItem operation, 620
Insertion operator (<<), 26
Insertion order

and tree shape, 476–477

Insertion points
FindNode used for finding, 500

InsertionSort
code for, 599, 600

Insertion sort algorithm
analyzing, 600
example of, 598
snapshot of, 598

InsertItem function, 125, 140, 143, 335, 339, 460,
463, 501-502, 517, 600

algorithm for, 149
code for, 322, 324, 599
in comparison of Unsorted List ADT and Sorted

List ADT, 165, 166
discussion about, 471-477
implementation of, 340, 342, 463
and linear probing, 626
simple version of, 624
and Sorted List ADT, 320-324
testing, 144, 145
and Unsorted List ADT, 307, 313

InsertItem operation, 147, 499, 505, 625
recursive version of, 418–419, 473

Insert operation, 227, 532
Inspections, 31, 59
Instance variable, 91
Instantiation, 211
Integer multiplication, 65
Integers, 64–65

black box for representing, 66
Integration testing, 44–45, 59
Interfaces, 85, 117
Interior nodes

deleting, 314
Internal tree function, 496
Intersection, 571
Intersection of sets, 577
Intersection operation, 577
INT–MAX, 36
INT–MIN, 36
int type variable, 65
is–a relationship, 91
IsEmpty function, 227, 460, 465
IsEmpty operation, 197, 234, 253, 334, 505,

545

Index | 801

IsFull function, 125, 137, 143, 460, 465
and Queue ADT, 300
and Stack ADT, 293–294

IsFull operation, 197, 227, 234, 505, 545
testing, 145
and Unsorted List ADT, 309

IsMarked function, 555
ISO/ANSI C++ Standard dictionary, 294
ItemType class, 127, 131, 169, 204, 210, 640

classes derived from, 369, 371
CRC card for, 127
declaring, 368-369
definition of in test plan, 143
and hash function, 623

ItemType type, 588, 589
Iteration, 432, 433–434
Iteration trace

of binary search algorithm, 155
Iterative algorithms, 401
Iterative functions

recursive functions contrasted with, 405, 406
Iterative insertion and deletion, 496–504
Iterative solutions

and recursive functions, 437
Iterator operations, 126, 142-143
Iterators, 71, 72

J
Java

and exceptions, 34
garbage collection in, 220

Jobs, 247, 249, 256
JobType class, 251

K
Key member, 124
Key ordering, 621–622
Keys, 127

primary, 617, 618, 623
and RetrieveItem operation, 137
and sorting, 588, 617–618

Key–sorted lists, 124
Key values

conversion of to indexes, 623

and hash functions, 637
Knowledge responsibilities, 172, 173

L
LargeInt class, 380–381

instance of, 387
Large Integer ADT, 392
Large integers

representing with linked lists, 380
Larger integer ADT implementation case study,

379–392
Last In, First Out (LIFO), 197, 199, 261, 284, 426,

446
Leaf, 471
Leaf node, 456, 465

deleting, 477, 478
Left child, 456, 464
Left subtree, 457, 459, 460, 465, 469, 492
Length

of list, 124
length data member, 505
LengthIs function, 125, 143, 460, 465-469, 505

linked implementation and Big–O measure for,
316, 317

testing, 144, 146
LengthIs operation, 131, 373

and Unsorted List ADT, 307, 310
length member

of ListType, 626
and Unsorted List ADT, 307

Length of list
and Big–O notation, 160

Length property, 100
LESS, 127, 147, 151, 188
Level

of node, 458
Library data structure, 66–68, 69–71
Life–cycle verification activities, 59
Lifetime of variable, 224
LIFO. See Last In, First Out
Linear doubly linked list, 345
Linear linked lists, 334, 456

traversing, 483
traversing in reverse, 344–345

802 | Index

Linear lists
binary search trees compared with, 504–506

Linear probing, 625–629
chaining schemes compared with, 633
collisions handled with, 626
hash program with, 628
rehashing with, 629

Linear relationships, 124
in linked list data structures, 334

LinearSearch, 620
Linear search, 137, 165

binary search compared with, 155, 166
rate of growth with binary search and, 622

Linear searching, 620
advantages/disadvantages with, 621

Linear structures, 456
traversing, 493

Linear time, 161
Linked implementation

Big–O comparison of queue operations for, 306
Big-O comparison of sorted list operations for,

326
Big-O comparison of unsorted list operations for,

317
for graphs, 569–571
in terms of Big–O, 295, 296

Linked–list algorithm, 633
Linked–list representation, 133
Linked lists, 392

as array of records, 358–367
deleting from, 325
design notation, dynamic pointers,

array–of–records “pointers” and, 367
and FindItem, 619
with headers and trailers, 348–349
implementing in array, 361–362
large integers represented with, 380
linear searching in, 620
recursive processing of, 412–416
in static and dynamic storage, 360

Linked queue representation, 297
Linked sorted lists

and implementing priority queues, 532
Linked structures, 222

stacks implemented as, 280–296
LISP, 124, 401
List ADT, 438, 461
List design terminology, 133
List item

finding, 335
List notation

C++ code compared with, 311
List of servers, 252
List operations

Big–O comparison of, 506
comparison of, 164–167

Lists, 117, 124, 159, 188, 327
deleting items from, 140
empty, 136
end cases in, 145
with headers and trailers, 334
inserting items into, 139
and linked structure, 365
traversing, 483

ListType class, 364, 367, 415, 513
ListType constructor, 577
Local identifier, 87
Local scope, 87
Local variable

lifetime of, 224
location

for array–based implementation, 133
and InsertItem operation, 147

Location of parameter, 74
location variable, 140, 143
Logarithmic time, 161
Logical errors, 28, 31
Logical level, 68, 188

for binary search trees, 460–462
for graphs, 546–552
for heaps, 533–536
for one–dimensional arrays, 77–79
for pointer types, 214–221
for priority queues, 530–531
for queues, 225–227
for records, 73–74
for sets, 571–573
for Sorted List ADT, 146

Index | 803

Logical level (continued)
for sorting algorithms, 588
for stacks, 196
for two–dimensional arrays, 82–83
for user–defined string I/O class, 100

Logical perspective, 124
Logical view, 117
Logic errors, 24
Looping, 2
Looping construct, 406
Loops, 433
Loose coupling, 11
Low–level design, 2, 33

M
Mail servers, 229
main function, 27
Maintenance, 3, 58
Maintenance phase, 20

software changes in, 5
MakeEmpty function, 125, 233

and Queue ADT, 300
and Unsorted List ADT, 310–311

MakeEmpty operation, 135, 136, 197, 205, 227, 234,
460, 505, 545

Manipulator, 26
Mapping functions

for two–dimensional arrays, 84
Maps, 13
Market trend graphs, 13
MarkVertex function, 555
Matrix multiplication, 158
Maximum, 126
Maximum heap, 533
Maximum value, 533, 609
MemberFunction, 368
Member functions, 86, 87, 95, 365

definitions of, 18, 94
with object parameters, 89–90
testing, 48

Members, 73
Memory

and arrays, 77
Memory address

of parameter, 74

and pointer variables, 214
Memory assignments

for one–dimensional arrays, 80–81
Memory configurations, 75
Memory leak, 220
Memory location

and static storage allocation, 420, 421, 422, 423
Memory space

and QuickSort, 609
and sorting algorithms, 617
and sorting efficiency, 588
and straight selection sort, 589

MemoryType, 363, 366
Merge, 579
Merge function, 603, 605, 607
Merge sort algorithm, 161, 588, 601-608

analyzing, 607–608
and merging sorted halves, 602–606

MergeSort function, 600, 602, 606, 609, 616
analysis of with N = 16, 607
and space considerations, 608, 617

Method, 91
Metric–based testing, 38
Minimum, 126
Minimum heap, 533, 561
MinIndex function, 590, 592, 616
Models, 9

and simulation, 245, 246
Modifiability, 5, 11, 117
Modular design, 58
Modules, 10, 11, 15, 29, 31, 58
Modulo arithmetic, 65
MoneyType class, 18, 93, 94
Monitors, 3
Multiple–server/multiple–queue systems, 247
Multiple–server/single–queue systems, 247
Multiplication, 65
Mutators, 71
myCar record, 73

N
n! (n factorial), 401
namespace keyword, 98
Namespace pollution, 98
Namespaces, 98–99

804 | Index

access to identifiers in, 98–99
creating, 98

Negative values, 36
N–element array, 162
Nested components

and stacks, 199
NewItemType

deriving from ItemType class, 369, 370
newNode

linking into doubly linked list, 348
new operator, 223, 259, 262

and bad–alloc exception, 294
and space allocation, 280, 281, 283
and Unsorted List ADT, 309

Next(location), 133, 288
next member

of nodes, 282
new header, 294
N log2N time, 161
Node design notation

C++ code compared with, 289, 468
Node(location), 133, 288, 344, 346
Node(newNode)

linking into doubly linked list, 346
Nodes, 281

in binary trees, 458
deleting, 314
deleting those with no children, 502
deleting those with one child, 477, 478, 502
deleting those with two children, 477, 479,

502
level of, 458
linking to stacks, 284
printing in order, 483
single, 283
in singly linked lists, 456
terminology for, 283

NodeType, 286, 309
Nonfunctional requirements, 2
Nonleaf nodes, 611, 612
Nonprimitive constructors, 71n.1
Nonrecursive solutions, 446
Nonstructured data type, 76
Nouns, 18, 64, 173

in real estate listings case study, 173, 174

N 2

N log2 N compared with, 608
NULL, 218, 219, 222, 283, 288

and copying a tree, 486, 487, 488, 489, 490
and empty queues, 299
and empty stacks, 293
and Enqueue, 297
and linear doubly linked list, 345
and searching binary search tree, 496, 498, 499

Null character, 100
NULL–EDGE, 564, 568
NULL pointer

and empty circular list, 334
numPositions, 640

O
Object, 91
Object classes, 16

in baking a cake, 17
Object–oriented design, 4, 15–17, 58, 91

and CRC cards, 14
for simulation problems, 249
top–down design compared with, 172

Object–oriented design methodology, 170–173,
189

brainstorming, 170–171, 189
filtering, 171–172, 189
responsibility algorithms, 172–173
scenarios, 170, 172, 189

Object–oriented programming, 90, 91–95
C++ constructs for, 93–95
concepts in, 91–92

Object parameters
member functions with, 89–90

Objects
hierarchy of, 16

Observer operations, 125–126
for Unsorted List ADT, 137–139

Observers, 71
ofstream, 26
“One definition rule,” 98
One–dimensional arrays, 77–82

application level, 80
declaring, 78, 79
implementation level, 80–82

Index | 805

One–dimensional arrays (continued)
logical level, 77–79
as parameters, 79

Online debugging programs, 44
O(N log2N) sorts, 600–608
OOD. See Object–oriented design
open function, 26, 49
Opening file

Big–O approximation for, 160
Opening special symbol, 200
Operating systems, 3
Operation(s), 3

for arrays, 77
on doubly linked lists, 346, 348
on graphs, 550
on queues, 227
on stacks, 197–199
in strings, 100

Operations for Unsorted List ADT, 135–143
constructor operations, 135–136
iterator operations, 142–143
observer operations, 137–139
transformer operations, 139–140

Operator functions, 168–169
Operator overloading guidelines, 358
operator reserved word, 168
Operators

address of, 215
overloading, 92, 167–169

Ordered quality
with one–dimensional arrays, 77

Order of magnitude, 159, 160-163
Order property

of heaps, 533, 536, 539, 540, 543, 609, 610, 611,
615

Outlines, 12
Output

in real estate listings case study, 175
Output files

and testing, 46
Output streams, 25
Overloading, 92, 167-169

assignment operator, 334, 357–358, 392, 485
relational operator, 127, 189

P
Paired symbols, 199
Palindromes, 230
Parameterized constructor, 223, 225
Parameters

one–dimensional arrays as, 79
passing, 74-75, 368
to templates, 211
two–dimensional arrays as, 83–84

Parentheses
in well–formed and ill–formed expressions, 199,

200
Pascal, 82
Passing by reference, 368
Passing parameters by reference, 372
Passing parameters by value, 352, 353, 372
Passing pointer by reference, 475
Passing pointer by value, 475
Passive data structure, 90
Path, 37, 549, 550
Path testing, 37
Peripheral devices, 3
Per queue node

in linked queue implementations, 305, 306
PersonType class, 93
Pointer constant, 221
Pointer dereferencing

and member selection, 287
Pointers

arrays sorted with, 619
and chains, 631, 633
changing, 285
and circular linked lists, 337, 338
and circularly linked queues, 303
and DeleteItem in circular list, 342
and double linked lists, 346
drawing pictures of, 219
and dynamically allocated arrays, 223
and Enqueue with Queue ADT, 296, 298, 299,

300
and inchworm effect, 320, 321, 335
and InsertItem function in Sorted List ADT, 320
and InsertItem in circular list, 340
and InsertItem operation, 418

806 | Index

and linear linked lists, 334
and objects pointed to, 221
passing by reference, 475
passing by value, 475
and Pop function with Stack ADT, 290, 291
and Push function with Stack ADT, 280, 281,

283, 286, 287
relative position at beginning of iteration, 354
shallow copies, deep copies and, 352, 353
sorting with, 618
in specialized list ADT, 377
and stacking, 434, 436
tracking, 282
and Unsorted List ADT, 307
and using arrays, 360–361, 362, 363

Pointer types, 214–222
application level, 221–222
implementation level, 222
logical level, 214–221

Pointer variables
comparing for equality and assigning to one

another, 220
Polymorphism, 92, 95, 368-373, 392
Pop function, 204

and dynamic storage allocation, 289–291
Pop operation, 198, 207, 240

effects of, 197, 208
Positive values, 36
Postconditions, 29, 30, 31, 97
Postorder traversal, 485, 490, 493, 553

algorithm for, 491
generating, 492

PQType class, 542, 561
Preconditions, 29, 30, 31, 97, 143
Predicates, 71, 72
Preorder traversal, 490, 493

algorithm for, 491
generating, 492

Primary key, 618, 623
Primary unique key, 617
Primitive constructors, 71n.1
Printers, 3
Print function, 490
PrintInteger, 36

PrintList, 145
Print operation, 460, 505
Print queue, 244
PrintResult function, 371
PrintReversed function, 415
Priority queue, 117, 226, 530–533, 547, 614

ADT specification, 530-531
application level, 531
implementation level, 532–533
logical level, 530–531
real-life, 532
and single-source shortest-path problem, 560

Priority queue implementations
comparison of, 546

Private members
accessing, 86
of classes, 415

private reserved word, 90
Probabilities

and simulations, 256
Problem analysis, 2
Processing requirements

in detailed specification, 9
Processing time

and sorting algorithms, 588
Process Symbol, 201
ProcessValues, 83, 84
Program correctness, 234
Program design, 9–18, 59

approaches to, 14–18
tools for, 9–14

Programmers, 434, 616, 617, 643
Programmer time

and hash functions, 637
and sorting algorithms, 642
and sorting efficiency, 616–617

Programs
modifications in, 5–6
right, 5
testing for, 34–45, 58
validation of, 20

Program verification, 20
constructs for, 95–99
and preconditions/postconditions, 29–31

Index | 807

Program verification (continued)
techniques for, 50

Pseudocode, 15
Pseudo–random number generator, 631
Pseudo–random numbers, 260
Public base class, 242
public reserved word, 90
Push algorithm

coding, 286
Pushes

effect of a Pop following series of, 208
Push function, 204, 212

and dynamic storage allocation, 280–289
Push operation, 198, 206, 207, 261

effects of, 197

Q
Quadratic probing, 631
Quadratic time, 161
Quality software

goals of, 4–7
QueType class, 238, 242, 555, 561
QueType object, 373
Queue ADT, 227, 229, 230, 233
Queue ADT as linked data structure

implementing, 296–306
circular linked queue design, 303–304
comparing queue implementations, 304–306
and Dequeue function, 299–303
and Enqueue function, 296–299

Queue class, 233
Queue elements

wrapping, 236
Queue of jobs, 253
Queue operations

Big–O comparison of, 306
implementations of, 233–235

Queues, 117, 159, 225–245, 262, 327, 547
application level, 229–232
bad design for, 299
CountedQueType, 241
defined, 226
effects of operations, 228
implementation level, 233–241

logical level, 225–227
operations on, 227
and radix sorts, 642
for storing airline routes, 557

QueueType object, 231
Queuing simulations, 245
Queuing system, 246
Quick sort algorithm, 161, 588, 642

analysis of, 609
list ordered with, 439

QuickSort case study, 438-446
QuickSort function, 616

parameter list of, 439
code for and verification with Three–Question

Method, 441

R
Radix, 638
radix key, 640
RadixSort

algorithm for, 639
Radix sort, 637–642
Random–number generator, 256, 257, 260
Random probing, 631
Readability, 6
Real estate listings case study, 173–188
Records, 72–77

application level, 75
implementation level, 75–77
logical level, 73–74
myCar, 73

Recursion, 439, 446, 517
with binary search trees, 504
classic example of, 401–404
depth of, 429
description of, 400–401
removing, 432–436
for simplifying solutions, 411–412
workings of, 420–429

Recursive algorithms, 401, 404, 407, 416, 446
Recursive binary search tree operations, 464–496

class constructor and destructor, 484–485
copying a tree, 485–490
DeleteItem function, 477–482

808 | Index

InsertItem function, 471–477
IsFull and IsEmpty functions, 465
LengthIs function, 465–469
Print function, 483–484
traversals, 490–496

Recursive calls, 400, 405, 407, 424, 446, 616
depth of, 438
overhead problems with, 436
to QuickSort, 440, 609
to ValueInList, 409, 410

Recursive definition, 401, 407
Recursive functions, 432, 446, 464

iterative functions contrasted with, 405, 406
MergeSort as, 602
tracing function of, 429–432
writing, 408–411

Recursive functions verification
with Three–Question Method, 407–408

Recursive linked list processing, 412–416
Recursive (or general) case, 404, 407
Recursive programming, 404–407
Recursive routines

debugging, 432
Recursive solutions

base case(s) for, 446
deciding on use of, 436–438

Reference
passing pointers by, 475

Reference parameters, 28, 74, 75, 79
Regression testing, 20
Rehash function, 629
Rehashing, 629–631, 633, 643

collisions handled with, 630
ReheapDown function, 611, 612, 613, 615
ReheapDown operation, 534, 535, 536, 538, 539,

544, 546
ReheapUp operation, 536, 537, 538, 541, 545
Relational operators, 40

and FindItem, 336
in large ADT implementation case study,

384–386
overloading, 127, 189

RelationType, 90, 188
Reliability

increasing, 58
Remainder (%) operator, 236, 626
Remove operation, 227
Requirements, 4
Requirements analysis, 58
Requirements definition, 2
Requirements elicitation, 2
Requirements verification, 50
Reserved words, 2
ResetList function, 126, 134, 142, 143

testing, 146
and Unsorted List ADT, 307, 315

ResetList operation, 131, 463
Reset operation, 461
ResetTree function, 493
ResetTree operation, 463
Resources

and class, 85
Responsibilities, 17, 170, 172, 189
Responsibilities of class

on CRC card, 13
Responsibility algorithms, 170, 172–173, 189

in real estate listings case study, 178–181
Retesting

and module modifications, 58
Retrieve function, 469
RetrieveItem, 125, 127, 130, 143, 335, 460, 628

algorithm for, 138, 139, 140
in comparison of Unsorted List ADT and Sorted

List ADT, 165
testing, 145

RetrieveItem function, 469–471, 623, 629
and Sorted List ADT, 318–319
and Unsorted List ADT, 311–313

RetrieveItem operation, 137, 505, 577
improving, 150–151

Retrieve operation
tracing, 471

Retrieving items
in sorted lists, 151
in unsorted lists, 138

Return n, 207
Return statements, 136
Reusability, 6, 11, 17, 117

Index | 809

RevPrint function, 414
recursive, 414
recursive and nonrecursive versions for, 437-438
verifying with Three–Question Method, 415–416
writing nonrecursively, 434–436

Right child, 456, 464
Right subtree, 457, 459, 460, 465, 469, 492
Ring queue, 238
Robustness, 27–28
Root, 456
Root node, 459, 460

and heap building, 611, 612
maximum value of heap located in, 533, 609
of subtree, 457

“Round–trip gestalt design,” 12
Rows

two–dimensional arrays stored in, 83
“Rule of the big 3,” 358
Run time, 212

and dynamic storage allocation, 423
Run–time binding, 368
Run–time debuggers, 44
runtime–error class, 98
Run–time errors, 24–25, 291
Run–time stacks, 426, 427, 428, 433, 446

S
Scenarios, 8, 170, 172, 189

in index building case study, 510
in real estate listings case study, 175
in simulation case study, 249

Scope resolution operator (::), 18, 87
and definition of member functions, 94
and implementation of derived class, 244
and namespaces, 98

Scope rules, 87
Searching, 619–637, 643

binary, 622
choosing good hash function, 633–637
and complexity of hashing, 637
hashing, 622–633
high–probability ordering, 620–621
key ordering, 621–622
linear, 620

technique, 619
Secondary keys, 617, 618
Seed value, 260
SEI Software Engineering Process Group Conference,

33
Selection sort algorithm

analyzing, 592-593
snapshot of, 590

SelectionSort function, 589, 594, 596, 600
number of comparisons required to sort arrays

with, 593
Selector function, 71
Self, 90

explicit reference to, 391
Self–organizing (or self–adjusting) lists, 621
Semantics

of class type, 86
SEMICOLON EXPECTED error message, 23
Sending a message, 91
Sequential array–based list representation, 132
Sequential implementations

Big–O comparison of sorted list operations for,
326

Sequential lists
hashed list compared with, 625
in static and dynamic storage, 359

Sequential searches, 620,
efficiency with, 643

Serve operation, 227
ServerList ADT specification, 252–253
ServerList class, 259
Servers, 246, 247, 248, 249
ServerType class, 252
Set ADT, 530, 579

specification for, 572–573
Set notation

vertices listed in, 547
Sets, 117, 571–579

application level, 574
implementation level, 574–579
intersection of, 577
logical level, 571–573
special types of, 571

SetType class, 572

810 | Index

SetType constructor, 577
Shallow copies, 358

deep copies versus, 351, 352
Shallow copying, 334, 392

with assignment operator, 357
Shape property

in binary search tree, 456
of heaps, 533, 536, 537, 543, 610

ShortBubble, 600, 642
analysis of, 597

ShortestPath, 560
Shortest–path algorithm

code for, 561–562
Simula, 91
Simulation case study, 245–261

output from one run of program simulation, 261
Simulations

with queues, 245
Simulation variables

initializing, 256
Single–source shortest–path problem, 559–563
Singly linked linear list structure, 334
Singly linked list

inserting into, 347
Size factor

and Big–O notation, 164, 167
Size of problem

and order of magnitude, 159
in writing recursive functions, 408

Skewed binary search tree, 546
Slicing problem, 372, 373
Smaller–Caller Question, 407, 408

and iteration, 433
and RevPrint function, 415
and ValueInList function, 411

Smalltalk, 91
Software

development, 3
process, 2-9
quality, 4–7

Software engineering, 3, 58
Software engineers, 9
Software errors

importance of early detection of, 23

Software life cycle, 58
activities in, 2–3

Software specification, 4
SomeType, 223
Sort algorithms

choosing, 642–643
SortDr.cpp file, 615
Sorted arrays

merging, 603–606
strategy for merging of, 603

Sorted halves
merging, 604

Sorted List ADT, 188, 252, 334, 373, 621
specification (partial) for, 146–147

Sorted List ADT algorithms
comparison of Unsorted List ADT algorithms,

164–167
Sorted List ADT as linked data structure

comparing sorted list implementations, 324–326
and DeleteItem function, 324
implementing, 318–326
and InsertItem function, 320–324
and RetrieveItem function, 318–319

Sorted list implementations
comparing, 324–326

Sorted list operations
Big–O comparison of, 326

Sorted list property, 146
Sorted lists, 124

in array of records, 361
deleting items in, 150
four insertion cases, 323
goal of, 588
inserting at end of, 320
inserting items in, 147, 148, 189
linear searching of, 621
retrieving in, 151
retrieving items that are not there, 319

SortedType class, 147, 348
Sorting/Sorts, 588–618, 642, 643

bubble sort, 593–597
in general, 617–618
with the heap, 612–614
heap sort, 609–615

Index | 811

Sorting/Sorts (continued)
insertion sort, 598–600
with keys, 617–618
O(N log2N) sorts, 600–608
other efficiency considerations, 615–617
with pointers, 618
and priority queues, 531
Quick Sort, 609
radix, 637-642
straight selection sort, 589–593
testing sorting algorithms, 615

Sorting algorithms, 438
comparison of, 643

SortNodes, 613
Sorts.in file, 615
SortsOut, 615
Sorts.screen, 615
Space considerations/requirements

for radix sorts, 642
and sorting algorithms, 608, 617

Specialized list ADT, 373–379
inserting at front and rear, 377
operation to be tested and description of action

for, 379
SpecializedList class, 374, 380, 392, 461
Specifications, 7–8

for binary search tree, 461–462
for class, 85, 86-87
and design errors, 21–23
detailed, 8–9
for Graph ADT, 551–552
for program simulation, 248-249
for Queue ADT, 227, 229
for ServerList ADT, 252–253
for Set ADT, 572–573

Specifier, 591
Splitting algorithms, 444
Split value, 609
Stable sort, 617, 618
Stack ADT, 230

and C++ templates, 210
specification, 198-199
test plan for, 208–210

Stack ADT as linked data structure
implementing, 280–296

comparison of stack implementations, 295–296
and other stack functions, 293–295
and Pop function, 289–291
and Push function, 280–289
and Top function, 291–292

Stack class
definition of, 204–205

Stack elements
chaining, 282

Stack frame, 423
Stacking, 432, 434–436
Stack operations

definitions of, 205–208
Stacks, 117, 159, 196–210, 225, 327, 439, 547

airline routes stored in, 554
application level, 199–204
defined, 196
implementation level, 204–210
implementing as linked structure, 280–296
logical level, 196–197
operations on, 197–199
overflow of, 205
popping, 292
popping first element on, 293
real–life, 196
and recursion, 446
shallow copy versus deep copy of, 352

StackType class, 202, 204, 205, 213, 285–286, 351,
353, 356, 555

default constructor in, 225
dynamic storage allocation for, 280

StackType constructors
implementations of, 223

StackType object, 231
Stack underflow, 207
Standard Template Library, 17, 124
Statement coverage, 36
Static allocation, 217
Statically allocated arrays, 358
Static array implementation

Big–O comparison of queue operations for, 306
in terms of Big–O, 295, 296

Static arrays, 295
Static binding, 92, 368
static reserved word, 224

812 | Index

Static storage
array–based lists in, 359
linked lists in, 360

Static storage allocation, 420–423, 446
for program with three functions, 422

Status flag, 252
stdexcept

hierarchy of error classes in, 97
std namespace

rules for using, 99
Stepwise refinement, 11–12, 13
STL. See Standard Template Library
Storage

devices, 3
requirements for queue implementations, 305

Store operation, 577
Straight selection sort, 588, 589–593

example of, 589
Stream failure, 26–27
Stream input and output, 25–26
Stream insertion operator, 484
Stream operators

overloading, 358
String ADT specification, 102–103
string class, 100
string data type, 49
Strings, 100
StringType, 22, 23
string variable, 49
StrType class, 100, 101

expanded definition of, 168
Structs, 72, 116

application level, 75
differences between classes and, 90
as records, 73

Structured data types, 72, 82
Structured programming, 91
Stubs, 45, 49, 255, 256, 258
Subarrays, 604, 607, 608
Subclass, 94, 242
SubKey function, 640, 641
Sublists, 643
Subprograms, 172
Subset, 571
Subtraction, 65

in large ADT implementation case study, 381,
382–383

Subtrees, 457, 459, 465
and heap building, 610, 611

Summary function, 71, 72
Superclass, 94, 242
Swap function, 540, 591
Swapping/Swaps, 616

and bubble sorts, 593
and sorting algorithms, 591
and sorting efficiency, 588
and sorting with pointers, 618

switch statement, 2, 137, 169, 406, 432
Symbol table, 420, 421
SymbolType class, 202
Syntax, 72

of class, 18–19
of class type, 86
of component selector, 73
for copy constructor, 353
for declaring pointer pointing to integer value,

214
errors in, 23, 79, 136
and one–dimensional arrays, 78
for overloading a symbol, 168
for two–dimensional arrays, 82

T
Tables, 13
Tail recursion, 434, 613
Template classes, 211
Templates, 126

in C++, 210-222, 262
defined, 210

Terminals, 3
Terminating conditions

with searches, 152–153
Test architecture

model of, 46
Test cases, 59

specifying, 35
verification of, 49

Test–data generators, 3
Test driver, 40, 45

code for, 47–48

Index | 813

Test driver (continued)
for fraction class, 52
and test case verification, 49

Test driver program
algorithm for, 47

Testing, 19, 20
C++ data structures, 45–49
ListType class, 517
path, 37
state of stream, 27

Testing and verification, 3
Testing phase

software changes in, 5
Test plans, 38-39

for ADT Sorted List, 156
Binary Search Tree ADT, 503
for Divide function, 39–42
for fraction class, 56
for ItemType, 143-145
for LargeInt operation, 391-392
for queue operations, 240–241
in real estate listings case study, 188
for specialized list ADT, 378
for Stack ADT, 208–210
for user–defined string I/O class, 111–116

Text control operations, 85
Text editors, 3
this pointer, 391
Three–Question Method, 407

and debugging recursive routines, 432
QuickSort verified with, 441
RevPrint verified with, 415–416
ValueInList verified with, 411

throw operation, 206
throw reserved word, 96
throw statement, 34, 96
Tilde (~)

and class destructor, 225
Time–driven simulation, 247
Time limits, 260
Timeliness

and quality software, 6
Timer object, 249

TimerType class, 251
Toolboxes, 3
Top–down approach

with testing, 45
Top–down design, 12, 14, 17
Top–down methodology, 4
Top elements of stack

popping, 290
Top function, 204

and dynamic storage allocation, 291–293
Top operation, 197, 198
Trailer nodes, 349, 392
Trailers

linked lists with, 348–349
Transformer operations, 125
Transformers, 71
Traversals, 505

in binary search tree, 461
of graphs, 552
inorder, 483, 484, 490
postorder, 485, 490, 553
preorder, 490
ResetTree, GetNextItem and, 493–496
shortest–path, 561
specialized list ADT, 374, 378
testing, 503
three, 493
visualizing, 492

Tree node
node terminology for, 464

Trees, 117, 159, 456–460, 579
complete, 508
copying, 485–490
degenerate, 505
as directed graphs, 549
full, 508
general, 547
inorder traversal of, 483, 484, 490
input order and shape of, 476
points about recursion with, 468
postorder traversal of, 485, 490, 553
preorder traversal of, 490
shape of and insertion order, 476-477

814 | Index

and unsorted array, 610
TreeType class, 463, 464
true value, 35
try block, 96, 206
try–catch statement, 34, 96, 97
try clause, 96
Two–dimensional arrays, 82–85

application level, 84
implementation level, 84–85
logical level, 82–83
as parameters, 83–84

Two–element subarrays, 608
Type conflicts, 49
typedef statement, 84, 285
TYPE MISMATCH error message, 23

U
UML. See Unified Modeling Language
Unary operators

overloading, 358
Undirected graph, 547, 548, 549

complete, 550
Unhandled exceptions, 294
Unified Modeling Language, 4, 13
Union, 571
Unique keys, 124
Unit testing, 35, 44
Universal set, 571
Unsorted array

and tree, 610
Unsorted linked list

retrieving an item in, 312
Unsorted List ADT, 146, 188, 252, 373

application level, 131–132
implementation level, 132–135
operations specified for, 135–143
specification for, 128–130

Unsorted List ADT algorithms
comparison of Sorted List ADT algorithms with,

164–167
Unsorted List ADT as linked data structure

implementing, 307–317

comparing unsorted list implementations,
316–317

and DeleteItem function, 314–315
and InsertItem function, 313
and MakeEmpty function, 310–311
and ResetList and GetNextItem functions,

315–316
and RetrieveItem function, 311–313

Unsorted list implementations
comparing, 316–317

Unsorted lists, 124
deleting items in, 141
and implementing priority queues, 532
inserting items in, 189
retrieving items in, 138

UnsortedType class, 143, 147, 309, 589
CRC card for, 128
data members of, 134

Unstructured composite type, 72
UpdateQue function, 253, 254, 259
UpdateServers operation, 252, 259
Usability, 5
User–defined string I/O class case study, 100–116
User errors, 25
using declaration, 99
using directive, 25, 99

V
Value

passing pointers by, 475
ValueInList function, 436, 438

code for, 410
iterative version of, 433
in midexecution, 410
verifying with Three–Question Method, 411
writing, 408-410

Value parameter, 74, 75
Values

splitting, 444, 446
in test plans, 145

Variables
lifetime of, 224

Index | 815

Verbs, 18, 64, 173
in real estate listings case study, 173, 174

Verification
of program correctness, 28
requirements, 50
research, 28
of software correctness, 19–50

VertexType, 555, 563
Vertex (vertices), 547, 550, 551

indexes of, 567
marking on graphs, 555

V(graph), 563, 564, 567
Virtual functions, 95, 368-373, 392
virtual reserved word, 368
Visual tools, 13–14
Void function, 415

W
Waiting lines, 244, 249

Wait time, 246, 259
formula for, 247

Walk–throughs, 31
of binary search algorithm, 154
of factorial(4), 406
of Factorial function, 426–429
scenario, 173

Weighted graph, 549, 550
WeightIs operation, 568
Well–formed expressions, 200
while statement, 137, 432
White–box testing strategy, 391
Whitespace, 26, 100
Writing

detailed specifications, 8–9
recursive functions, 408–411

Z
Zero, 36

division by, 258

816 | Index

	C++ Plus Data Structures (3rd Ed.)
	Copyright
	Preface
	Contents
	Ch1 Software Engineering Principles
	Ch2 Data Design & Implementation
	Ch3 ADTs Unsorted List & Sorted List
	Ch4 ADTs Stack & Queue
	Ch5 Linked Structures
	Ch6 Lists Plus
	Ch7 Programming with Recursion
	Ch8 Binary Search Trees
	Ch9 Priority Queues, Heaps, Graphs & Sets
	Ch10 Sorting & Searching Algorithms
	Answers to Selected Exercises
	AppA Reserved Words
	AppB Operator Precedence
	AppC Selection of Standard Library Routines
	AppD Character Sets
	AppE Standard Template Library
	Glossary
	Index

