


C o n t e n t s a t a G l a n c e

I Getting Started with VBA
1 Creating and Running Recorded Macros . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Writing Your Own Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Understanding Program Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4 Building VBA Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5 Working with Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
6 Controlling Your VBA Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

II Putting VBA to Work
7 Programming Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8 Programming Excel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
9 Programming PowerPoint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

10 Programming Access Databases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
11 Programming Outlook Email  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

III Getting the Most Out of VBA
12 Creating Custom VBA Dialog Boxes  . . . . . . . . . . . . . . . . . . . . . . . . . . 237
13 Customizing the Office 2007 Ribbon  . . . . . . . . . . . . . . . . . . . . . . . . 263
14 VBA Tips and Techniques  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
15 Trapping Program Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
16 Debugging VBA Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

IV Appendixes
A VBA Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
B VBA Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

Paul McFedries

800 E. 96th Street

Indianapolis, Indiana 46240

VBA
for the

2007 Microsoft®

Office System

usiness solutions?



Associate Publisher
Greg Wiegand

Acquisitions Editor
Loretta Yates

Development Editor
Todd Brakke

Managing Editor
Gina Kanouse

Project Editor
Betsy Harris

Copy Editor
Margo Catts

Indexer
Erika Millen

Proofreader
Paula Lowell

Technical Editor
Greg Perry

Publishing Coordinator
Cindy Teeters

Book Designer
Anne Jones

Senior Compositor
Gloria Schurick

VBA for the 2007 Microsoft ® Office System
Copyright © 2007 by Que Publishing
All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, 
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect 
to the use of the information contained herein. Although every precaution has been taken in
the preparation of this book, the publisher and author assume no responsibility for errors 
or omissions. Nor is any liability assumed for damages resulting from the use of the 
information contained herein.
International Standard Book Number: 0-7897-3667-5
Library of Congress Cataloging-in-Publication Data

McFedries, Paul.
VBA for the 2007 Microsoft Office system / Paul McFedries.

p. cm.
ISBN 0-7897-3667-5

1.  Microsoft Office. 2.  Microsoft Visual Basic for applications. 3.  Business—
Computer programs. 4.  Integrated software.  I. Title. 

HF5548.4.M525M395 2007
005.5—dc22

2007004121
Printed in the United States of America
First Printing: April 2007
10 09 08 07 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Que Publishing cannot attest to the accuracy of this infor-
mation. Use of a term in this book should not be regarded as affecting the validity of any
trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis.
The author and the publisher shall have neither liability nor responsibility to any person
or entity with respect to any loss or damages arising from the information contained in
this book.

Bulk Sales
Que Publishing offers excellent discounts on this book when ordered in quantity for
bulk purchases or special sales. For more information, please contact
U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com
For sales outside of the U.S., please contact
International Sales
international@pearsoned.com

http://www.quepublishing.com/safarienabled


Contents
Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xvii

What Is a Macro?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xviii

What Does VBA Have to Do with Macros?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xix

What You Should Know Before Reading This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xix

What’s in the Book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xx

This Book’s Special Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xx

I GETTING STARTED WITH VBA

1 Creating and Running Recorded Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Recording a VBA Macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Recording a Word Macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Recording an Excel Macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

Running a Recorded Macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Using the Macro Name List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Assigning Shortcut Keys to Recorded Word Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Assigning Shortcut Keys to Recorded Excel Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Creating a Quick Access Toolbar Button for a Recorded Macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
From Here  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

2 Writing Your Own Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Activating the Ribbon’s Developer Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Displaying the Visual Basic Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

Touring the Visual Basic Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Creating a New Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Opening an Existing Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

Understanding VBA Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19

Creating a Command Macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Writing a Command Macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Running a Command Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Entering VBA Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

Creating a User-Defined Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Understanding User-Defined Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Writing a User-Defined Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Using a Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26

Taking Advantage of IntelliSense  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
List Properties/Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
List Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28



Parameter Info  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Complete Word  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Shutting Down the Visual Basic Editor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
From Here  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

3 Understanding Program Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Declaring Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

Avoiding Variable Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

Variable Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Changing the Default Data Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Creating User-Defined Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

Using Array Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Dynamic Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Multidimensional Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

Working with Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Using Built-In Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Creating User-Defined Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

Storing User Input in a Variable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Getting Input Using MsgBox  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Getting Input Using InputBox  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
From Here  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51

4 Building VBA Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Understanding Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

Working with VBA Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Arithmetic Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
The Concatenation Operator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Comparison Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Logical Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57

Understanding Operator Precedence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
The Order of Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Controlling the Order of Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58

Working with Numeric Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
VBA’s Math Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
VBA’s Financial Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

Working with String Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Working with Logical Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
The And Operator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
The Or Operator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
The Xor Operator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
The Not Operator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

Working with Date Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
From Here  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70

VBA for the 2007 Microsoft Office Systemiv



5 Working with Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

What Is an Object?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

The Object Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

Working with Object Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Setting the Value of a Property  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Returning the Value of a Property  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

Working with Object Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

Handling Object Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

Working with Object Collections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78

Assigning an Object to a Variable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79

The Is Operator  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

Working with Multiple Properties or Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

Example: The Application Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Displaying a Message in the Status Bar  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Changing the Title Bar Caption  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Working with the Application Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Accessing an Application’s Built-In Dialog Boxes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
Checking Spelling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

Example: The Window Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Specifying a Window Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Opening a New Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Activating a Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
From Here  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89

6 Controlling Your VBA Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Code That Makes Decisions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

Using If...Then to Make True/False Decisions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Using If...Then...Else to Handle a False Result  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

Making Multiple Decisions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
Using the And and Or Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Using Multiple If...Then...Else Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
Using the Select Case Statement  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97

Functions That Make Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
The IIf Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
The Choose Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
The Switch Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Code That Loops  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

Using Do...Loop Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105

Using For...Next Loops  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106

Using For Each...Next Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

vContents



Using Exit For or Exit Do to Exit a Loop  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

Indenting for Readability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111
From Here  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111

II PUTTING VBA TO WORK

7 Programming Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Working with Documents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
Specifying a Document Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
Opening a Document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
The RecentFiles Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116
Creating a New Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Saving a Document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
Closing a Document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
Closing All Open Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
Example: Making Document Backups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122

Working with Text  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124

Working with the Range Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
The Range Method  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
The Range Property  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
Reading and Changing Range Text  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
Formatting Text  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
Inserting Text  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
Deleting Text  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .128

Using the Selection Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
Checking the Selection Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
Moving the Insertion Point  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
Extending the Selection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
Collapsing the Selection  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132

Using the Words Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132

Working with the Sentences Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
Displaying Sentence Word Counts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

Programming the Paragraph Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .136
From Here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138

8 Programming Excel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Excel’s Application Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
Accessing Worksheet Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139
Recalculating Workbooks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
Converting a String into an Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
Pausing a Running Macro  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141
Some Event-Like Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

VBA for the 2007 Microsoft Office Systemvi



Manipulating Workbook Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
Specifying a Workbook Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
Opening a Workbook  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
Creating a New Workbook  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
Specifying the Number of Sheets in a New Workbook  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147
Saving Every Open Workbook  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148
Closing a Workbook  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150

Dealing with Worksheet Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Specifying a Worksheet Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
Creating a New Worksheet  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
Properties of the Worksheet Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151
Methods of the Worksheet Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

Working with Range Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
Returning a Range Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
Selecting a Cell or Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
Defining a Range Name  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
Inserting Data into a Range  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
Returning Data About a Range  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
Resizing a Range  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
From Here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164

9 Programming PowerPoint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

PowerPoint’s Presentation Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
Specifying a Presentation Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
Opening a Presentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
Creating a New Presentation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
Presentation Object Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166
Presentation Object Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167
The Juggling Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168

Working with PowerPoint Slide Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170
Specifying a Slide  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170
Creating a New Slide  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171
Inserting Slides from a File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172
Slide Object Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172
The Juggling Application: Creating the Slides  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173
Slide Object Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174

Dealing with Shape Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
Specifying a Shape  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
Adding Shapes to a Slide  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
Some Shape Object Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178
The Juggling Application: Creating the Title Slide  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180
Some Shape Object Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181
The Juggling Application: Creating the Instructions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .183

viiContents



Operating a Slide Show  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186
Slide Show Transitions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .186
Slide Show Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
Running the Slide Show  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
From Here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188

10 Programming Access Databases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Getting Ready: Two Steps Before You Begin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
Step One: Create a Reference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
Step Two: Create a Data Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191

Working with Database Records: Opening a Recordset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192
Opening a Recordset Using a Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
Opening a Recordset: the Full Open Method Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194
Opening a Recordset Using a SELECT String  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196

Working with a Recordset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198
Getting at the Recordset Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198
Navigating Records  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199
Finding a Record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202
Editing a Record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203
Adding a New Record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205
Deleting a Record  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207

Retrieving Data into Excel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
Retrieving an Individual Field Value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
Retrieving One or More Entire Rows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
Retrieving an Entire Recordset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210
From Here  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212

11 Programming Outlook Email  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Getting Started  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213

Working with Outlook Folders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214
Referencing Default Folders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214
Using the Folders Property  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214
Prompting the User for a Folder  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .216
Some MAPIFolder Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217

Handling Incoming and Outgoing Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217
Incoming: Handling the ItemAdd Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218
Outgoing: Handling the ItemSend Event  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219

Working with Email Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220
MailItem Object Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220
MailItem Object Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .221
Example: Creating Advanced Rules for Incoming Messages  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223
Example: Canning Spam  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224

Sending a Message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225
Creating a New Message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225
Creating a Reply or Forward  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225

VBA for the 2007 Microsoft Office Systemviii



Specifying the Message Recipients  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226
Sending the Message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .226
Example: Supplementing a Reminder with an Email Message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227

Working with Attachments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
Example: Removing Attachments from a Forwarded Message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229
Attaching a File to a Message  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230

Programming Outlook from Other Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231
Setting Up a Reference to Outlook  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231
Getting the NameSpace Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232
Logging On to an Outlook Session  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .232
Logging Off an Outlook Session  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233
From Here  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234

III GETTING THE MOST OUT OF VBA

12 Creating Custom VBA Dialog Boxes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Adding a Form to Your Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238

Changing the Form’s Design-Time Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239
The Appearance Category  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239
The Behavior Category  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239
The Font Category  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240
The Misc Category  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .240
The Picture Category  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241
The Position Category  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241
The Scrolling Category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241

Working with Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242
Inserting Controls on a Form  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242
Selecting Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243
Sizing Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244
Moving Controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244
Copying Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .244
Deleting Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245
Grouping Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245
Setting Control Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246
Common Control Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .246
Setting the Tab Order  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247

Handling Form Events  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248

Types of Form Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
Command Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249
Labels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249
Text Boxes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249
Frames  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250
Option Buttons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250

ixContents



Check Boxes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251
Toggle Buttons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251
List Boxes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251
Scrollbars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253
Spin Buttons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253
Tab Strips and MultiPage Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .254

Using a Form in a Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258
Displaying the Form  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258
Unloading the Form  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .258
Processing the Form Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259
From Here  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .262

13 Customizing the Office 2007 Ribbon  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Understanding Ribbon Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263

Extending the Ribbon: An Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265
Step 1: Create a Macro-Enabled Office Document or Template  . . . . . . . . . . . . . . . . . . . . . . . . . . . .265
Step 2: Create a Text File and Add the Custom XML Markup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267
Step 3: Copy the Custom XML Markup File to the Document Package  . . . . . . . . . . . . . . . . . . .268
Step 4: Rename and Open the Document  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269
More Complexity Means More Power  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270

Hiding the Built-In Ribbon  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270

Creating Custom Tabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271
Creating a New Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271
Customizing an Existing Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272

Creating Custom Groups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273
Creating a New Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274
Customizing an Existing Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274

Creating Custom Controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275
Common Control Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .276
Creating a Button  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277
Creating a Menu  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .278
Creating a Split Button  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .280
Creating a Check Box  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .281
Creating a Toggle Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .282
Creating a Drop-Down List  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284
Creating a Gallery  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285
Creating a Combo Box  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .288
Creating a Dialog Launcher  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289
Working with Ribbon Commands at Runtime  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289
From Here  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .297

14 VBA Tips and Techniques  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Working with Modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299
Renaming a Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299
Exporting a Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300

VBA for the 2007 Microsoft Office Systemx



Importing a Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .300
Removing a Module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301

Configuring Macro Security Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301
Setting Up a Trusted Location  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301
Setting the Macro Security Level  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .302

Digitally Signing a VBA Project  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .304

Saving Application Settings in the Registry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305
Storing Settings in the Registry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306
Reading Settings from the Registry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .306
Deleting Settings from the Registry  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307
Tracking File Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307
Reading All the Section Settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309

Accessing the File System Through VBA  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .309
Returning File and Folder Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .310
Manipulating Files and Folders  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314

Tips for Faster Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319
Turn Off Screen Updating  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319
Hide Your Documents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319
Don’t Select Data Unless You Have To  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319
In Excel, Don’t Recalculate Until You Have To  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .319
Optimize Your Loops  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320
From Here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .321

15 Trapping Program Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

A Basic Error-Trapping Strategy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324
Setting the Trap  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .324
Coding the Error Handler  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325
Resuming Program Execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .327
Disabling the Trap  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330

Working with the Err Object  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330
Err Object Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .330
Err Object Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .332

Trappable VBA Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333
From Here  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .336

16 Debugging VBA Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

A Basic Strategy for Debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338
Syntax Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338
Compile Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338
Runtime Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .338
Logic Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339

Pausing a Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .339
Entering Break Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .340
Exiting Break Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342

xiContents



Stepping Through a Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .342
Stepping into a Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343
Stepping Over a Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343
Stepping Out of a Procedure  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343
Stepping to the Cursor  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .343

Monitoring Procedure Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344
Using the Locals Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344
Adding a Watch Expression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .344
Editing a Watch Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346
Deleting a Watch Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .346
Displaying Data Values Quickly  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .347

Using the Immediate Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348
Printing Data in the Immediate Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .348
Executing Statements in the Immediate Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350

Debugging Tips  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350
Indent Your Code for Readability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .350
Turn on Syntax Checking  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351
Require Variable Declarations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351
Break Down Complex Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351
Enter VBA Keywords in Lowercase  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351
Comment Out Problem Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351
Break Up Long Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .351
Use Excel’s Range Names Whenever Possible  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352
Take Advantage of User-Defined Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352
From Here  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .352

IV APPENDIXES

A VBA Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

B VBA Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371

VBA for the 2007 Microsoft Office Systemxii



About the Author
Paul McFedries is well-known as a teacher of Office, Windows, and programming, partic-
ularly VBA. He is the president of Logophilia Limited, a technical writing company. Paul
started programming when he was a teenager in the mid-1970s and has worked with every-
thing from mainframes to desktops to bar code scanners. He has programmed in many dif-
ferent languages, including Fortran, assembly language, C++, Java, JavaScript, Visual Basic,
and VBScript. He has been writing programs for PCs for more than 25 years, and has been
developing VBA applications since Microsoft first added VBA to the Office suite in 1994.
Now primarily a writer, Paul has written more than 50 books that have sold more than
three million copies worldwide. These books include Access 2007 Forms, Reports, and Queries
(Que, 2007), Formulas and Functions with Excel 2007 (Que, 2007), Tricks of the Office 2007
Gurus (Que, 2007), and Windows Vista Unleashed (Sams, 2006).



Dedication
To Karen and Gypsy.

Acknowledgments
Robert Pirsig, in Zen and the Art of Motorcycle Maintenance, wrote that “a person who sees
Quality and feels it as he works, is a person who cares.” If this book is a quality product
(and I immodestly think that it is), it’s because the people at Que editorial cared enough to
make it so.

So a round of hearty thanks is in order for all the good people who worked on this project.
You’ll find them all listed near the front of the book, but I’d like to extend special kudos to
the folks I worked with directly: Acquisitions Editor Loretta Yates, Development Editor
Todd Brakke, Production Editor Betsy Harris, Copy Editor Margo Catts, and Tech Editor
Greg Perry.



We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what areas
you’d like to see us publish in, and any other words of wisdom you’re willing to pass our
way.

As an associate publisher for Que Publishing, I welcome your comments. You can email or
write me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this book. We do
have a User Services group, however, where I will forward specific technical questions related to the
book.

When you write, please be sure to include this book’s title and author as well as your name,
email address, and phone number. I will carefully review your comments and share them
with the author and editors who worked on the book.

Email: feedback@quepublishing.com

Mail: Greg Wiegand
Associate Publisher 
Que Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services
Visit our website and register this book at www.quepublishing.com/register for convenient
access to any updates, downloads, or errata that might be available for this book.

www.quepublishing.com/register


This page intentionally left blank 



I N  T H I S  I N T R O D U C T I O N

Introduction

What Is a Macro? . . . . . . . . . . . . . . . . . . . . . . .xviii

What Does VBA Have to Do with Macros?  . . .xix

What You Should Know Before Reading 
This Book  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xix

What’s in the Book  . . . . . . . . . . . . . . . . . . . . . . .xx

This Book’s Special Features  . . . . . . . . . . . . . . .xx

Visual Basic for Applications is a mouthful to say
(which is why I’ll use the standard short form—
VBA—from now on), but it also seems like it would
be a real handful to learn. After all, this is a pro-
gramming language we’re talking about, right? 

True, but VBA was designed to be easy to learn and
straightforward to apply. I’ve learned a couple of
dozen programming languages over the past 30
years or so, and I can tell you that VBA is, hands
down, the easiest language I’ve ever worked with.

Okay, but isn’t this stuff just for power users and the
staff of the Information Technology department?

Yes, VBA is a useful tool for hardcore users and
those who need to design major projects. But VBA
can be immensely useful for every user. As a writer,
I use Word constantly, and over the years I’ve
developed dozens of small macros, functions, and
forms that streamline or automate repetitive chores.
Most of these routines consist of only a few lines of
code, and each one saves me only about 30 seconds
to a minute, depending on the task. But I use these
routines 50 or 100 times a day, so I end up saving
myself anywhere from 30 to 90 minutes a day!
That’s pretty remarkable, but the proof is in the
pudding: I can now write far more pages in a day
than I used to. (Don’t tell my editor!)

Whether your concern is ease-of-use or personal
productivity, there’s little doubt VBA can make
working with the Office applications a better expe-
rience. So now all you have to do is learn how to
use it, and that’s where this book comes in. My goal
in writing this book was to give you an introduction
to the VBA language, and to give you plenty of
examples for putting the language to good use.
Even if you’ve never even programmed your VCR,
this book will teach you VBA programming from
the ground up. The first six chapters, in particular,
give you all the know-how you’ll need to be a com-
petent and productive programmer.

I N T R O D U C T I O N



What Is a Macro?
It doesn’t matter in which Office program you’re working—it could be Word, it could be
Excel, it could be PowerPoint. A few times a day you probably find yourself performing
some chore that either you’ve done dozens of times in the past, or that you have to repeat a
number of times in a row. It could be typing and formatting a section of text, running a
series of menu commands, or editing a document in a particular way. If you’re like most
people, when faced with these repetitive chores, you probably find yourself wishing there
was some way to ease the drudgery and reduce the time taken by this mindless but neces-
sary work.

Sure, most of the Office applications have a Repeat button on the Quick Access Toolbar
that lets you repeat your most recent action. That’s handy, but it repeats only a single
action. If you need to repeat two or more actions, this solution doesn’t work.

What’s a person to do about this? Well, what if I told you that it was possible to automate
just about any routine and repetitive task? What if I told you that it was possible to take this
automated task and run it immediately simply by selecting a command or even by just
pressing a key or clicking a button?

It sounds too good to be true, I know, but that’s just what Visual Basic for Applications
(VBA) can do for you. You use VBA to create something called a macro, which is really just
a series of tasks that you want a program to perform. So a macro is not unlike a recipe,
which is a set of instructions that tells you what tasks to perform to cook or bake some-
thing. A macro, too, is a set of instructions, but in this case it tells a program (such as Word
or Excel) what tasks to perform to accomplish some goal.

The big difference, however, is that a macro combines all these instructions into a single
script that you can invoke with a keystroke or just a few mouse clicks. In this sense, then, a
macro isn’t so much like a recipe for, say, how to bake bread, but is more akin to a bread
machine, which, after it has been loaded with ingredients, bakes a loaf with the push of a
button.

This list of instructions is composed mostly of macro statements. Some of these statements
perform specific macro-related tasks, but most correspond to the underlying application’s
commands and dialog box options. For example, in any application, you can close the cur-
rent (active) window by selecting the Office menu’s Close command. In a VBA macro, the
following statement does the same thing:

ActiveWindow.Close

Introduction xviii



xixWhat You Should Know Before Reading This Book

What Does VBA Have to Do with Macros?
VBA is a programming language designed specifically for creating application macros. That
sounds intimidating, I’m sure, but VBA’s biggest advantage is that it’s just plain easier to use
than most programming languages. If you don’t want to do any programming, VBA enables
you to record macros and attach them to buttons either inside a document or on the Quick
Access Toolbar (as you’ll see in Chapter 1). You also can create your own dialog boxes by
“drawing” the appropriate controls onto a document. Other visual tools enable you to cus-
tomize the Ribbon as well, so you have everything you need to create simple scripts without
writing a line of code.

Of course, if you want to truly unleash VBA’s capabilities, you’ll need to augment your
interface with programming code. That sounds pretty fancy, but the VBA language is con-
structed in such a way that it’s fairly easy to get started and to figure things out as you go
along. More than any other programming language, VBA enables you to do productive
things without climbing a huge learning curve.

What You Should Know Before Reading This Book
First and foremost, this book does not assume that you’ve programmed before. VBA begin-
ners are welcome here and will find the text to their liking.

I’ve tried to keep the chapters focused on the topic at hand and unburdened with long-
winded theoretical discussions. For the most part, each chapter gets right down to brass
tacks without much fuss and bother. To keep the chapters uncluttered, I’ve made a few
assumptions about what you know and don’t know:

■ I assume you have knowledge of rudimentary computer concepts such as files and 
folders.

■ I assume you’re familiar with Windows and that you know how to launch applications
and work with tools such as menus, dialog boxes, and the Help system.

■ I assume you can operate peripherals attached to your computer, such as the keyboard,
mouse, printer, and modem.

■ This book’s examples use the Office 2007 applications, although most of them also
work with Office 2000, Office XP, and Office 2003. Therefore, I assume you’ve used
these Office programs for a while and are comfortable working with these programs.



What’s in the Book
This book isn’t meant to be read from cover to cover, although you’re certainly free to do
just that if the mood strikes you. Instead, most of the chapters are set up as self-contained
units that you can dip into at will to extract whatever nuggets of information you need.
However, if you’re a beginning VBA programmer, I recommend working through Chapters
1 to 6 to ensure that you have a thorough grounding in the fundamentals of the VBA editor
and the VBA language.

The book is divided into four main parts. To give you the big picture before diving in,
here’s a summary of what you’ll find in each part:

Part 1, “Getting Started with VBA”—The half dozen chapters in Part 1 give you a
thorough grounding in VBA. You start off easy by learning how to create and run
recorded macros, which doesn’t require any programming (Chapter 1). In Chapters 2
though 6, you learn the basics of the VBA language, which you’ll use in earnest
throughout the rest of the book.

Part 2, “Putting VBA to Work”—The five chapters in Part 2 enable you to put
your VBA programming knowledge to good and practical use by showing you how to
program the five main Office applications: Word (Chapter 7), Excel (Chapter 8),
PowerPoint (Chapter 9), Access (Chapter 10), and Outlook (Chapter 11).

Part 3, “Getting the Most Out of VBA”—The five chapters in Part 3 augment
your VBA toolkit with lots of useful techniques. You learn how to interact with users
(Chapter 12), how to create custom dialog boxes (Chapter 13), how to create custom
Ribbon tabs and buttons (Chapter 14), how to debug your VBA code (Chapter 15),
and how to use VBA to control other applications (Chapter 16).

Appendixes—The book finishes with two appendixes that you can use as a reference.
Appendix A lists all the VBA statements, and Appendix B lists all the VBA functions.

This Book’s Special Features
VBA for the 2007 Microsoft Office System is designed to give you the information you need
without making you wade through ponderous explanations and interminable technical back-
ground. To make your life easier, this book includes various features and conventions that
help you get the most out of the book and VBA itself.

■ Things you type: Whenever I suggest that you type something, what you type appears
in a bold font.

■ Commands: I use the following style for Ribbon commands: View, Macros. This
means that you click the Ribbon’s View tab, and then click the Macros button.

■ Dialog box controls: Dialog box controls have underlined accelerator keys: Close.

Introduction xx



xxiThis Book’s Special Features

■ Visual Basic keywords: Keywords reserved in the VBA language appear in monospace
type.

■ Code-continuation character (➥): When a statement is too long to fit on one line of
this book, I break it at a convenient place, and add the code-continuation character at
the beginning of the next line.

This book also uses the following boxes to draw your attention to important (or merely
interesting) information.

➔ These cross-reference elements point you to related material elsewhere in the book.

The Note box presents asides that give you more information about the topic under discussion.
These tidbits provide extra insights that give you a better understanding of the task at hand.N

O
T

E

The Tip box tells you about VBA methods that are easier, faster, or more efficient than the standard
methods.T

IP

The all-important Caution box tells you about potential accidents waiting to happen.There are
always ways to mess things up when you’re working with computers.These boxes help you avoid at
least some of the pitfalls.

C A U T I O N



This page intentionally left blank 



IN
 T

H
IS

 P
A

R
T

IGetting Started with VBA

1 Creating and Running Recorded Macros  . . . . . . . . . . . . . . . . . . . . . . . . . .3

2 Writing Your Own Macros  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

3 Understanding Program Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

4 Building VBA Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53

5 Working with Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71

6 Controlling Your VBA Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91



This page intentionally left blank 



I N  T H I S  C H A P T E R

Creating and Running
Recorded Macros 1This book is about programming, but for certain

tasks you may not need to do any programming at
all. That’s because VBA in Word and Excel lets you
create a macro automatically by recording a set of
steps you perform in the program. (Unfortunately,
the other programs in the 2007 Office suite don’t
have macro recording capabilities.) This is by far
the easiest way to create a macro. With this
method, you start the macro recording feature and
then run through the operations you want to auto-
mate—which can include selecting text, running
commands from the Ribbon (the Office 2007
replacement for the menus and toolbars in previous
versions of Office), and choosing dialog box
options. The macro recorder takes note of every-
thing you do, translates everything into the appro-
priate VBA programming statements, and stores
them where you can easily rerun the macro later
on. If you’re just starting out with VBA (or pro-
gramming in general), recording macros is a great
way to get your feet wet because you never have to
work with or even see a single line of programming
code.

Recording a VBA Macro  . . . . . . . . . . . . . . . . . . . 5

Running a Recorded Macro  . . . . . . . . . . . . . . . . 8

Even if you’re an experienced programmer and plan only to write
your own VBA code, you should still know how to record macros.
That’s because it’s often easiest to begin a VBA procedure by record-
ing some of the actions you need.This way,VBA does much of the
work for you, and you can then tweak the resulting code by hand.

T
IP



What kinds of things should you record? Just about any operation that’s lengthy—it could
be either a single complex task or multiple, related tasks—or tedious, and that you perform
relatively often. You can probably think of several operations right off the bat. Here are
four common ideas:

■ Multiple find and replace actions—It’s common in business to get a document that
requires a number of adjustments throughout: converting one style to another, remov-
ing formatting, deleting extra line breaks, changing two spaces after each sentence to
one space, and so on. Each of these operations requires a separate Replace command.
That’s fine for one document, but if you have a number of documents or documents
that you receive regularly, the task becomes inefficient and tedious. You can avoid the
drudgery by recording all the Replace operations to a single macro, and then running
that macro each time you receive a document that requires those adjustments.

■ Automate repetitive steps—Working with certain documents, you may find that you
need to run certain steps to fix or adjust text. For example, the paragraphs in a docu-
ment may all be indented by, say, five spaces rather than a First Line Indent marker on
the Ruler. If the document consists of dozens of paragraphs, adjusting them all by hand
is no one’s idea of fun. However, it would be easy to record a macro that moves to the
start of the paragraph, deletes the five spaces, and then applies the first line indent. If
you assign a shortcut key or Quick Access toolbar button to the macro, you can run
through all the paragraphs very quickly.

■ Window adjustments—Unless you run all your documents maximized, you probably
have a certain spot on the screen where you like to work. For example, you might want
your document windows adjusted so that you can see your Outlook window and moni-
tor incoming email while you work. Similarly, you might prefer that your documents
use the most vertical room possible, which means adjusting the size so that the top is
flush with the top of the screen, and the bottom is flush with the Windows taskbar.
These position and size adjustments aren’t difficult, but if you regularly work with
dozens of documents during the day, it can be a pain to be constantly tweaking the
window as you open each document. A better idea is to record the window adjustments
to a macro and then run that macro each time you open a document.

■ Common steps for new documents—It’s quite common to have to run several steps
with some or all of the new documents you create. In Word, for example, when you
create a new document you might always insert a certain cover page, activate the
Document Map, switch to Draft view, and display the Document Properties informa-
tion panel so you can set the document’s Title, Subject, and Keywords. Depending on
the number of tasks you run, all this can take a number of minutes. By recording the
same steps to a macro, however, you can perform them in seconds and with just a few
mouse clicks or a single keystroke.

Recording macros is endlessly useful, and after you get the hang of it, you’ll likely find
yourself recording all kinds of routine operations (and therefore saving yourself tons of
time, to boot).

1

Chapter 1 Creating and Running Recorded Macros4



5Recording a VBA Macro

Recording a VBA Macro
As I mentioned earlier, only Word and Excel come with the Record Macro command,
which is a shame. (In Office 2003, you could record macros in PowerPoint, too.) However,
these two programs are the most suited to recording macros, so it’s not all that surprising
that Microsoft has restricted the Office macro recording capabilities. The next two sections
show you how to record a macro in Word and Excel. 

Recording a Word Macro
Before getting started, make sure that Word is set up so that it’s ready to record. If you
want to perform your actions on a specific document, for example, make sure that docu-
ment is open. Similarly, if you want to record a series of formatting options, select the text
you want to work with. Here are the steps to follow to record a macro in Word:

1. Choose View, pull down the Macros menu, and then choose Record Macro. (You can
also click the Macro Recording button in the status bar. If you don’t see the Macro
Recording button, right-click the status bar and then click Macro Recording.) The
Record Macro dialog box appears, as shown in Figure 1.1.

1

Figure 1.1
Use Word’s version of the
Record Macro dialog box
to name and describe
your macro.

2. Word proposes a name for the macro (such as Macro1), but you should use the Macro
Name text box to change the name to something more meaningful. However, you
must follow a few naming conventions:

• No more than 255 characters. (That sounds like a lot, and it is. Because you may
occasionally have to type macro names, I recommend keeping the names rela-
tively short to save wear and tear on your typing fingers.)

• The first character must be a letter or an underscore (_).

• No spaces or periods are allowed.



3. Use the Store Macro In drop-down list to specify where the macro will reside. I rec-
ommend keeping the default All Documents (Normal.dotm) option. This saves the
macro in the Normal template, which makes it available all the time. (You can also
store the macro in any open template, which makes the macro available to any docu-
ment that uses the template, or in any open document, which makes the macro avail-
able only to that document.) 

4. Enter an optional description of the macro in the Description text box.

5. Click OK. The application returns you to the document and starts the recorder.

6. Perform the tasks you want to include in the macro. Here are some things to bear in
mind during the recording:

• Word gives you two indications that a recording is in progress (see Figure 1.2):
the mouse pointer includes what looks like a cassette tape icon, and the status
bar’s Record Macro button changes to a blue square.

• The mouse works only for selecting Ribbon commands and dialog box options.
If you need to change the document cursor position or select text, you need to
use the keyboard.

• Because the macro recorder takes note of everything you do, be careful not to
perform any extraneous keyboard actions or mouse clicks during the recording.

1

Chapter 1 Creating and Running Recorded Macros6

You’ll see later on that one way to run a recorded macro is to select it from a list of all your recorded
macros. If you create a lot of macros this way, that list will get long in a hurry.Therefore, when nam-
ing your recorded macros, make sure you assign names that will make it easy to differentiate one
macro from another. Names such as Macro1 and Macro2 tell you nothing, but names such as
AdjustWindowSize and NewDocumentTasks are instantly understandable.

N
O

T
E

Figure 1.2
Word indicates that
you’re recording a
macro by changing
the mouse pointer
and Record Macro
button.

Mouse pointerRecord Macro button



7Recording a VBA Macro

7. When you finish the tasks, choose View, pull down the Macros menu, and then choose
Stop Recording (or click the Macro Recording button in the status bar).

Recording an Excel Macro
Before launching your recording in Excel, make sure the program is set up as required. For
example, open the workbook and select the worksheet you want to use during the record-
ing. Here are the steps to follow to record a macro in Excel:

1. Choose View, pull down the Macros menu, and then choose Record Macro. (You can
also click the Macro Recording button in the status bar.) The Record Macro dialog
box appears. Figure 1.3 shows the Excel version.

1

Figure 1.3
Use Excel’s Record Macro
dialog box to name and
describe your macro.

2. Use the Macro Name text box to change the name to something memorable or descrip-
tive. (Follow the same naming conventions as I outlined in the previous section.)

3. In Excel, you can use the Shortcut Key: Ctrl+ text box to assign a shortcut key to the
macro. Note, however, that this is optional because VBA offers other ways to run your
recorded macros (see “Running a Recorded Macro,” later in this chapter).

4. Use the Store Macro In drop-down list to specify where the macro will reside. You can
store the macro in the current workbook, a new workbook, or in the Personal Macro
Workbook. If you use the Personal Macro Workbook, your macros will be available to
all your workbooks.

Excel’s Personal Macro Workbook doesn’t exist until you assign at least one recorded macro to it.
After you do that, the Personal Macro Workbook (its filename is PERSONAL.XLSB) opens automati-
cally every time you start Excel.This is useful because any macros contained in this file will be avail-
able to all your workbooks, which makes them easy to reuse. Note, however, that you don’t see the
Personal Macro Workbook when you start Excel because the file is hidden. If you want to see this
workbook, you have to first unhide it: Choose the View, Unhide command, select Personal in the
Unhide dialog box, and then click OK.

N
O

T
E



5. Enter an optional description of the macro in the Description text box.

6. Click OK. Excel returns you to the workbook and starts recording.

7. Perform the tasks you want to include in the macro. Here are some things to bear in
mind during the recording:

• Excel gives you just one indication that a recording is in progress: The status
bar’s Record Macro button changes to a blue square (see Figure 1.2, earlier).

• Unlike Word, Excel makes the mouse available for all actions.

• Because the macro recorder takes note of everything you do, be careful not to
perform any extraneous keyboard actions or mouse clicks during the recording.

8. When you finish the tasks, choose View, pull down the Macros menu, and then choose
Stop Recording (or click the Macro Recording button in status bar).

Running a Recorded Macro
In almost all cases, you record a macro so that you can run it again in the future, probably a
number of times depending on the tasks you recorded. (The exception would be, as I men-
tioned earlier, if you record a macro to use as a starting point for writing your own code.)
So after you record a macro, how do you get it to run again? There are three main meth-
ods you can use: the Macro Name list, a shortcut key, and a Quick Access toolbar button.

Using the Macro Name List
The Macro Name list is a listing of all your recorded macros. (It also contains macros you
create by hand, as discussed in the next chapter.) This means that all your recorded macros
are as little as four mouse clicks away, as you see in the following steps:

1. Set up the document so that it’s ready to handle the tasks that the recorded macro will
run (for example, open a document, move the cursor into position, or select text).

2. Choose View, Macros (or press Alt+F8). Word displays the Macros dialog box (see
Figure 1.4), although in Excel it’s called the Macro dialog box.

3. (Optional) Use the Macros In list to click the template or document that contains the
macro.

4. In the Macro Name list, click the macro you want to run.

5. Click Run. The program runs the macro.

1

Chapter 1 Creating and Running Recorded Macros8



9Running a Recorded Macro

Assigning Shortcut Keys to Recorded Word Macros
If you have a recorded macro that you’ll be using frequently, even the few mouse clicks
required to run the macro from the Macro Name list can seem excessive. A faster alterna-
tive is to assign a shortcut key to the macro, which means you can run the macro by press-
ing the shortcut key.

To assign a shortcut key in Word, follow these steps:

1. You have two ways to get started:

• If you haven’t recorded the macro yet, choose View, pull down the Macros list,
and then choose Record Macro. Fill in the macro details (name, storage location,
and description) first, and then click Keyboard. Skip to step 4.

• If you’ve already recorded the macro, choose Office, Word Options, click Custom-
ize, and then click the Customize button beside the Keyboard Shortcuts text.

2. In the Customize Keyboard dialog box, use the Categories list to click Macros. Word
displays your macros in the Macros list.

3. In the Macros list, click the macro you want to work with.

4. Click inside the Press New Shortcut Key box and then press the shortcut key you want
to use. One of two things will happen:

• Word displays Currently Assigned To, followed by [unassigned], as shown in
Figure 1.5. This means no other command is using the shortcut key, so proceed
to step 5.

1

Figure 1.4
Use the Macro Name list
to select the macro you
want to run.



• Word displays Currently Assigned To, followed by the name of a command.
This means that another Word command (or macro) is already using the short-
cut key. Repeat step 4 until you find an unassigned shortcut key.

1

Chapter 1 Creating and Running Recorded Macros10

Figure 1.5
Use Word’s
Customize Keyboard
dialog box to assign
a shortcut key to a
macro.

It’s best to avoid overwriting any of Word’s built-in shortcuts because you may use them now or in
the future. By using key combinations that include some or all of the Shift, Ctrl, and Alt keys, you can
almost always find an unassigned shortcut for your macros.

C A U T I O N

5. Click Assign.

6. Click Close.

7. If you opening the Word Options dialog box earlier, click OK.

Assigning Shortcut Keys to Recorded Excel Macros
If you want to assign a shortcut key to a recorded Excel macro, you have two ways to get
started:

■ If you haven’t recorded the macro yet, choose View, pull down the Macros list, and
then choose Record Macro. Fill in the macro details (name, storage location, and
description) first, and then click Keyboard. Skip to step 4.

If you have trouble remembering your keyboard shortcuts, you can get Word to print out a list of
them. Choose Office, Print to open the Print dialog box. In the Print What list, click Key Assignments,
and then click OK.

T
IP



11Running a Recorded Macro

■ If you’ve already recorded the macro, choose View, Macros (or press Alt+F8) to display
the Macro dialog box. Click the macro you want to work with and then click Options
to display the Macro Options dialog box shown in Figure 1.6.

1

Figure 1.6
Use the Macro Options
dialog box to assign a
shortcut key to a macro.

In the Shortcut Key Ctrl+ text box, type the letter you want to use with Ctrl for the key
combination. For example, if you type e, you can run the macro by pressing Ctrl+E. 
Click OK.

Excel shortcut keys are case sensitive, meaning you can create separate shortcuts with uppercase
and lowercase letters. For example, if you type e into the Ctrl+ text box, you have to press Ctrl+E
(or, to be precise, Ctrl+e) to run the macro. However, if you type E into the Ctrl+ text box, you have
to press Ctrl+Shift+E to run the macro.

N
O

T
E

Creating a Quick Access Toolbar Button for a Recorded Macro
The only problem most people have with assigning shortcut keys to macros is remember-
ing which shortcut runs which macro! The more shortcuts you assign, the harder it gets to
remember them all and the more likely it is that you’ll press an incorrect shortcut key by
mistake. What many VBA veterans do is assign just a few shortcut keys to their most fre-
quently used macros, and other macros that they need handy they assign to the Quick

Make sure you don’t specify a shortcut key that conflicts with Excel’s built-in shortcuts (such as
Ctrl+B for Bold or Ctrl+C for Copy). If you use a key that clashes with an Excel shortcut, Excel over-
rides its own shortcut and runs your macro instead (provided that the workbook containing the
macro is open).

There are only four letters not assigned to Excel commands that you can use with your macros: e, j,
m, and q. You can get extra shortcut keys by using uppercase letters. Note, however, that Excel uses
four built-in Ctrl+Shift shortcuts: A, F, O, and P.

C A U T I O N



Access toolbar. This is a great way to run oft-used macros because they’re only a click away
and you can assign different icons to each macro to help you differentiate them.

Follow these steps in either Word or Excel to create a Quick Access toolbar button for a
macro:

1. Click the Customize Quick Access Toolbar button and then choose More Commands.
The application’s Options dialog box appears with the Customize tab displayed.

2. In the Choose Commands From list, click Macros. A list of your macros appears.

3. Click the macro you want to work with and then click Add. The program adds the
macro to the list of Quick Access toolbar buttons.

4. To change the macro button’s icon, click the macro in the list of Quick Access toolbar
buttons and then click Modify. The Modify Button dialog box appears, as shown in
Figure 1.7.

1

Chapter 1 Creating and Running Recorded Macros12

Figure 1.7
Use the Modify
Button dialog box to
assign an icon and
display name to your
macro button.

5. Use the Symbol list to click the icon you want to use for the macro button.

6. Use the Display Name text box to type the name you want to appear when you hover
the mouse pointer over the button.

7. Click OK.

8. Repeat steps 3–7 to assign other macros to buttons.

9. Click OK.

Figure 1.8 shows a macro button added to the Quick Access toolbar.

Macro button

Figure 1.8
A macro button
added to the Quick
Access toolbar.



13Running a Recorded Macro

From Here
■ You’ll learn more about the Visual Basic Editor as well as how to create your own pro-

cedures and enter your own VBA statements in Chapter 2, “Writing Your Own
Macros.”

■ You won’t get too far writing VBA code without learning about variables, and you’ll do
that in Chapter 3, “Understanding Program Variables.”

■ Your procedures will also rely heavily on operators and expressions. Turn to Chapter 4,
“Building VBA Expressions,” to learn more.

■ Objects are one of the most important concepts in VBA. You’ll find out how they work
in Chapter 5, “Working with Objects.” Also, see Part II, “Putting VBA to Work,” to
get the specifics on the objects used in Word, Excel, and other Office applications.

■ VBA, like any programming language worth its salt, contains a number of statements
that control program flow. I discuss these statements in Chapter 6, “Controlling Your
VBA Code.”

1

In its default position above the Ribbon, the Quick Access toolbar can display only so many buttons.
If you want to add lots of buttons for your macros (or other program commands), move the Quick
Access toolbar below the Ribbon. Click the Customize Quick Access Toolbar button and then choose
Show Below the Ribbon.

T
IP



This page intentionally left blank 



I N  T H I S  C H A P T E R

Writing Your Own Macros

2Letting VBA do all the work by recording your
macros is an easy way to automate tasks, and it’s a
technique you’ll use often. However, to get the
most out of VBA you need to do some full-fledged
programming, which means writing your own
macros, either from scratch or by using a recorded
macro as a starting point.

Why go to all that trouble? Here are just a few of
the advantages you gain by doing this:

■ If you make a mistake while recording a macro,
particularly one that requires a large number of
steps, you can make a simple edit to the
macro’s VBA code to fix the mistake rather
than re-record the whole thing from scratch.

■ You get full control over each macro, which
means you ensure that your macros do exactly
what you need them to do.

■ You can take advantage of the hidden power of
VBA to manipulate the Office programs and to
perform some impressive programming feats
that are simply not available via the recording
process.

To help you realize these advantages and many
more, this chapter introduces you to the basics of
writing simple procedures and functions, as well as
how to get around in the Visual Basic Editor, which
is the tool that VBA provides for writing macros by
hand. This sets the stage for the next few chapters,
where I take a closer look at the specifics of the
VBA language.

Activating the Ribbon’s Developer Tab . . . . . . 16

Displaying the Visual Basic Editor . . . . . . . . . . 16

Touring the Visual Basic Editor  . . . . . . . . . . . . 17

Understanding VBA Procedures  . . . . . . . . . . . 19

Creating a Command Macro  . . . . . . . . . . . . . . 19

Creating a User-Defined Function  . . . . . . . . . 23

Taking Advantage of IntelliSense  . . . . . . . . . . 27

Shutting Down the Visual Basic Editor . . . . . . 30



Activating the Ribbon’s Developer Tab
If you’ll be writing VBA code regularly, you can make some coding chores a bit more effi-
cient by displaying the new Developer tab in the Office 2007 Ribbon. This tab gives you
one-click access to many VBA-related features, so it’s worth displaying. Follow these steps:

1. Choose Office, Application Options (where Application is the name of the current Office
program, such as Word or Excel). 

2. In the Popular tab, click to activate the Show Developer Tab in Ribbon check box.

3. Click OK.

Note that displaying the Developer tab in one Office program displays it in all of them.
Figure 2.1 shows the Developer tab displayed in Excel.

2

Chapter 2 Writing Your Own Macros16

Figure 2.1
Display the
Developer tab for
easier access to
some VBA features.

Displaying the Visual Basic Editor
To get the Visual Basic Editor onscreen in any Office program, choose Developer, Visual
Basic. (Note, however, that for simplicity’s sake, I use a single Office application—Excel—
for the examples throughout this chapter.) Figure 2.2 shows the new window that appears
(although bear in mind that the window you see may be slightly different).

You can also get to the Visual Basic Editor by pressing Alt+F11. In fact, this key combination is a tog-
gle that switches you between the Visual Basic Editor and the current Office program.T

IP



17Touring the Visual Basic Editor

Touring the Visual Basic Editor
The idea behind the Visual Basic Editor is simple: It’s a separate program that’s designed to
do nothing else but help you create and edit VBA macros. (In professional programming
circles, the Visual Basic Editor is called an integrated development environment or IDE.)

When you open the Visual Basic Editor for the first time, you don’t see much. The left side
of the editor has two windows labeled Project and Properties. The latter you don’t need to
worry about right now. (I’ll talk about it in Chapter 5, “Working with Objects.”) The
Project window (technically, it’s called the Project Explorer) shows you the contents of the
current VBA project. In simplest terms, a project is an Office file and all its associated VBA
items, including its macros and its user forms. (You learn about user forms in Chapter 12,
“Creating Custom VBA Dialog Boxes.”)

Creating a New Module
You do most of your work in the Visual Basic Editor within one or more modules, which are
windows designed to hold programming code. You may already have an existing module if
you recorded some macros in the previous chapter. Just in case, here are the steps to follow
to create a new module:

1. In the Project Explorer on the left side of the Visual Basic Editor window, click the
project into which you want to insert the new module. Here are some notes to bear in
mind:

• In Word, if you want the new module’s macros to be available all the time, click
the Normal project (this adds the module to the Normal template).

2

Figure 2.2
You use the Visual Basic
Editor to craft and edit
your macros.



• In Excel, if you want the new module’s macros to be available all the time, 
click the PERSONAL.XLSB project (this adds the module to the PERSONAL
workbook).

➔ Remember that you won’t see PERSONAL.XLSB until you store at least one recorded macro in the Personal Macro Workbook;
see “Recording an Excel Macro,” p. 7.

• In any program, if you want the new module’s macros available only when a par-
ticular document is open, click that document or one of its objects.

2. Choose Insert, Module. The Visual Basic Editor creates the new module and opens it,
as shown in Figure 2.3.

3. (Optional) In the Properties window, use the (Name) property to edit the module
name, and then press Enter.

➔ To learn techniques such as renaming, exporting, and deleting modules, see “Working with Modules,” p.299.

2

Chapter 2 Writing Your Own Macros18

The new module appears
in the Modules branch

Use the (Name)
property to rename

the module

The new module window appears

Figure 2.3
A new module
added to a project.

Opening an Existing Module
If you already have an existing module in the Project window, here are the steps to follow
to open it:

1. In the Project window, open a project by clicking the plus sign (+) to its left.



19Creating a Command Macro

2. In the project you just opened, open the Modules branch by clicking the plus sign (+)
to its left.

3. Double-click the name of the module you want to open. The Visual Basic Editor
opens the module window and displays its VBA code.

Understanding VBA Procedures
Before you get to the nitty-gritty of writing your own macros, let’s take a second to under-
stand what exactly you’ll be writing. When you create VBA code by hand (or when you
create a recorded macro, as described in Chapter 1), what you’re creating is something
called a procedure. In VBA, a procedure is, broadly speaking, a collection of related state-
ments that forms a unit and performs some kind of task. (A statement is an instruction that
tells VBA to perform a specific task.) For the purposes in this book, VBA procedures come
in two flavors: command macros and user-defined functions. Here’s a summary of the dif-
ferences:

■ Command macros are the most common types of procedures; they usually contain state-
ments that are the equivalent of Ribbon options and other program commands. The
distinguishing feature of command macros is that, like regular application commands,
they have an effect on their surroundings. (In Word, for example, this means the
macro affects the current document, a section of text, and so on.) Whether it’s opening
a document, formatting some text, or inserting a paragraph, command macros change
things. See “Creating a Command Macro,” next.

■ User-defined functions work just like a program’s built-in functions. Their distinguishing
characteristic is that they accept input values and then manipulate those values and
return a result. See “Creating a User-Defined Function,” later in this chapter.

Creating a Command Macro
As I mentioned at the start of this chapter, recording macros is limiting because there are
plenty of macro features that you can’t access with mouse or keyboard actions or by select-
ing menu options. In Excel, for example, VBA has a couple dozen information macro func-
tions that return data about cells, worksheets, workspaces, and more. Also, the VBA control
functions enable you to add true programming structures such as looping, branching, and
decision-making (see Chapter 6, “Controlling Your VBA Code”).

To access these macro elements, you need to write your own VBA routines from scratch.
This is easier than it sounds because all you really need to do is enter a series of statements
in a module.

2



Writing a Command Macro
With a module window open and active, follow these steps to write your own command
macro:

1. Open the module you want to use for the function.

2. Place the insertion point where you want to start the macro. (Make sure the insertion
point isn’t inside an existing macro.)

3. Choose Insert, Procedure. The Visual Basic Editor displays the Add Procedure dialog
box (see Figure 2.4).

2

Chapter 2 Writing Your Own Macros20

Although this section tells you how to create VBA macros, I realize there’s an inherent paradox here:
How can you write your own macros when you haven’t learned anything about them yet? The goal
of the next four chapters is to familiarize you with VBA’s statements and functions.This section will
get you started, and you can use this knowledge as a base on which to build your VBA skills in the
chapters that follow.

N
O

T
E

Figure 2.4
Use the Add
Procedure dialog box
to name your new
procedure and select
the type of proce-
dure you want to
insert.

4. Use the Name text box to type the name of the macro. Here are some general guide-
lines you need to follow:

• The name must be 255 characters or fewer.

• The first character must be a letter or an underscore (_).

• You cannot use spaces or periods.

5. In the Type group, make sure the Sub option is activated.

6. Click OK. VBA adds the following code to the module (where ProcedureName is the
name you typed in step 3):
Public Sub ProcedureName()

End Sub



21Creating a Command Macro

7. Between the Public Sub and End Sub lines, type the VBA statements you want to
include in the macro. Press Enter after each statement to start a new line.

Figure 2.5 shows a simple example where I’ve added just a single VBA statement:

MsgBox “Hello World!”

In this example, the statement contains VBA’s MsgBox function, which is used to display a
simple dialog box (the name MsgBox is short for “message box”) to the user. (To enhance
readability, I pressed Tab once before typing the statement. I talk about indenting state-
ments in more depth a bit later in this chapter.) 2

The code for the examples used in this chapter can be found on my website at
www.mcfedries.com/Office2007VBA.N

O
T

E

➔ For the MsgBox details, see “Getting Input Using MsgBox,” p.45.

Figure 2.5
The example macro,
ready for execution.

Running a Command Macro
The Office applications offer several methods for running your VBA command macros, but
you’ll use two most often:

■ In a module, click anywhere inside the macro, and then either select Run, Run
Sub/UserForm or press the F5 key.

■ In the Office application, choose Developer, Macros (or press Alt+F8) to display the
Macro dialog box. If necessary, use the Macros In list to choose the document that
contains the macro with which you want to work. Now use the Macro Name list to
click the macro; then click the Run button.

You can also use the Macro dialog box to jump directly to any command macro that you want to
edit using the Visual Basic Editor. In the Macro Name list, click the macro and then click Edit.N

O
T

E

www.mcfedries.com/Office2007VBA


If you try this on the example macro shown in Figure 2.5, you see the dialog box shown in
Figure 2.6. Click OK to close the dialog box.

2

Chapter 2 Writing Your Own Macros22

Figure 2.6
When you run the
macro shown in
Figure 2.5, you see
this dialog box.

Entering VBA Statements
As I mentioned earlier, entering VBA statements is, on the surface, a straightforward mat-
ter: You type the code and then press Enter after each line. I also recommend that when
you’re beginning a command macro, press Tab before starting the first line. This indents
your code, which makes it easier to read. (Don’t do this for the Public Sub and End Sub
lines, just the statements that go between them.) Conveniently, VBA preserves the indenta-
tion on subsequent lines, so you have to indent only the first line.

A comment is a special type of VBA statement that you use to describe something about
your procedure. For example, many people add a few lines of comments before a procedure
to describe what the procedure does. Most programmers (and all good programmers) aug-
ment their code with comments throughout the procedure to describe what statements are
doing, the logical flow of the procedure, and so on. VBA does not execute comments;
instead, you add them for your own or other people’s benefit to clarify or make it possible
to follow what a procedure does. Figure 2.7 shows a simple example of a commented pro-
cedure. The comments are the statements that begin with an apostrophe (').

At this early stage of your VBA programming career, I’d like to impress upon you the advantages to
taking a neat, orderly approach to your programming. Humans can and do thrive in messy environ-
ments, but we’re many times smarter and infinitely more intuitive than any macro. Procedures live
in a world of strict and unyielding logic, and programming is always much easier if you supplement
that logic with a sense of order. Fortunately, there are only two things you need to do to achieve
most of the order you need to be a successful programmer: Indent your code and don’t skimp on the
comments.The latter is particularly important. Any procedure will be much easier to read (especially
if you haven’t looked at the code for a few months) if it’s sprinkled liberally with comments
throughout the code. Also, adding comments as you go is a great way of getting a grip on your own
thoughts and logical leaps as you go.

N
O

T
E



23Creating a User-Defined Function

Each time you press Enter to start a new line, VBA analyzes the line you just entered and
performs three chores:

■ It formats the color of each word in the line: By default, VBA keywords are blue,
comments are green, errors are red, and all other text is black.

■ VBA keywords are converted to their proper case. For example, if you type msgbox
“Hello World!”, VBA converts this to MsgBox “Hello World!” when you press Enter.

■ It checks for syntax errors, which are errors when a word is misspelled, a function is
entered incorrectly, and so on. VBA signifies a syntax error either by displaying a dia-
log box to let you know what the problem is, or by not converting a word to its proper
case or color.

2

Figure 2.7
A VBA procedure with
comments that describe
the procedure and its
code.

If you always enter VBA keywords in lowercase letters, you’ll be able to catch typing errors by 
looking for those keywords that VBA doesn’t recognize (in other words, the ones that remain in 
lowercase).

T
IP

Creating a User-Defined Function
The Office applications come with a large number of built-in functions. Excel, for example,
has hundreds of functions—one of the largest function libraries of any spreadsheet package.
However, even with this vast collection, you’ll still find plenty of situations that are not
covered. For example, you might need to calculate the area of a circle of a given radius, or
the gravitational force between two objects. You could, of course, easily calculate these
things on a worksheet, but if you need such calculations frequently, it makes sense to 
define your own functions that you can use anytime. The next three sections show you how
it’s done.



Understanding User-Defined Functions
As I mentioned earlier, the defining characteristic of user-defined functions is that they
return a result. They can perform any number of calculations on numbers, text, logical val-
ues, or whatever, but they generally don’t affect their surroundings. In a worksheet, for
example, they usually don’t move the active cell, format a range, or change the workspace
settings.

So, what can you put in a user-defined function? Most user-defined functions consist of one
or more expressions. An expression is some combination of values (such as numbers), opera-
tors (such as + and *), variables (see Chapter 3), VBA functions, or application functions
that, together, produce a result. (I discuss expressions in detail in Chapter 4, “Building VBA
Expressions.”)

All user-defined functions have the same basic structure:

Function ProcedureName (argument1, argument2, ...)
[VBA statements]
ProcedureName = returnValue

End Function

Here’s a summary of the various parts of a user-defined function:

■ Function—This keyword identifies the procedure as a user-defined function. The
Function keyword is the reason that user-defined functions also are also known as
function procedures.

■ ProcedureName—This is a unique name for the function.

■ argument1, argument2, …—Just as many application functions accept arguments, so
do user-defined functions. Arguments (or parameters, as they’re sometimes called) are
typically one or more values that the function uses as the raw material for its calcula-
tions. You always enter arguments between parentheses after the function name, and
you separate multiple arguments with commas. (If the function doesn’t require argu-
ments, you still need to include the parentheses after the function name.)

■ VBA statements—This is the code that actually performs the calculations, and it’s usu-
ally a series of VBA statements and expressions that lead toward an overall result for
the function.

■ returnValue—This is the final result calculated by the function.

■ End Function—These keywords indicate the end of the function.

All your user-defined functions will have this basic structure, so you need to keep three
things in mind when designing these kinds of macros:

■ What arguments will the function take?

■ What expressions will you use within the function?

■ What value will be returned?

2

Chapter 2 Writing Your Own Macros24



25Creating a User-Defined Function

Writing a User-Defined Function
When you record a macro, VBA always puts the code inside a command macro.
Unfortunately, there is no way to record a user-defined function; you have to write them
out by hand. Fortunately, the process is very similar to creating a command macro from
scratch. Here are the general steps to follow to write a user-defined function:

1. Open the module you want to use for the function.

2. Place the insertion point where you want to start the function. (Make sure the inser-
tion point isn’t inside an existing macro.)

3. Choose Insert, Procedure to open the Add Procedure dialog box.

4. Use the Name text box to type the function’s name. The guidelines you must follow are
the same as those for a command macro: The name must be 255 characters or fewer; the
first character must be a letter or an underscore (_); and you can’t use spaces or periods.

5. In the Type group, click the Function option.

6. Click OK. VBA adds the following code to the module (where ProcedureName is the
name you typed in step 3):
Public Function ProcedureName()

End Function

7. Between the Public Function and End Function lines, type the VBA statements you
want to include in the function. Press Enter after each statement to start a new line.

8. Be sure to include a statement that defines the return value. That statement should con-
sist of the function name, followed by an equals sign (=), followed by the return value.

Figure 2.8 shows an example user-defined function that calculates and returns a result,
using a single VBA statement:

GrossMargin = (Sales - Expenses) / Sales

Here, Sales and Expenses are the arguments that get passed to the function. The function
subtracts the Expenses value from the Sales value, and then divides by Sales to return the
gross margin.

2

Figure 2.8
The example function,
ready for use in other
procedures.



Using a Function
You can’t “run” a user-defined function in the same way that you run a command macro.
Instead, you use the function either as part of a command macro (or even as part of another
function), or within the application itself.

To use a function in a command macro, you create a separate VBA statement that includes
the function name as well as any arguments it requires. (This is known as calling the func-
tion.) Here’s a simple example:

Public Sub GrossMarginTest1()
MsgBox GrossMargin (100000, 90000)

End Sub

This Sub procedure calls the GrossMargin function and supplies it with the values 100000
and 90000 for the Sales and Expenses arguments, respectively. The MsgBox function dis-
plays the result in a dialog box.

To use a function in an application, you include it as part of some other calculation. This is
most useful in Excel, where you can employ a user-defined function within a worksheet for-
mula.

The easiest way to do this is to enter the function into the cell the same way you would any
of Excel’s built-in functions. In other words, enter the name of the function and then the
necessary arguments enclosed in parentheses. Here’s a sample formula that uses the
GrossMargin function and assumes the Sales and Expenses values are in cells B1 and B2,
respectively (see Figure 2.9):

=GrossMargin(B1, B2)

2

Chapter 2 Writing Your Own Macros26

Figure 2.9
The GrossMargin
function used in an
Excel worksheet 
formula.

You can also use the Function wizard to insert a user-defined function. Here are the steps
to follow:

1. Click the cell into which you want to insert the user-defined function.

2. Choose Formulas, Insert Function to display the Insert Function dialog box.



27Taking Advantage of IntelliSense

3. In the Or Select a Category list, click User Defined. Excel displays a list of your user-
defined functions, as shown in Figure 2.10.

2

Figure 2.10
In the Insert Function
dialog box, choose the
User Defined category to
see a list of your user-
defined functions.

4. Click the function you want to insert and then click OK. The Function Arguments
dialog box appears.

5. Specify values or cell addresses for the function arguments and then click OK. Excel
inserts the function.

Taking Advantage of IntelliSense
VBA’s IntelliSense feature is like a mini version of the VBA Help system. It offers you assis-
tance with VBA syntax, either on the fly or on demand. You should find this an incredibly
useful tool because, as you’ll see as you work through this book, VBA contains dozens of
statements and functions and VBA-enabled programs offer hundreds of objects to work
with. Few people are capable of committing all this to memory, and it’s a pain to be con-
stantly looking up the correct syntax. IntelliSense helps by giving you hints and alternatives
as you type. To see what I mean, let’s look at the four most useful types of IntelliSense help
available.

List Properties/Methods
In Chapter 4, you’ll learn how to work with the objects that each VBA-enabled application
makes available. In particular, you’ll learn about properties and methods which, put simply,
define the characteristics of each object. (In broad terms, properties describe an object’s
appearance or behavior and methods describe what you can do with an object.)

As you’ll see, however, each object can have dozens of properties and methods. To help you
code your procedures correctly, IntelliSense can display a list of the available properties and
methods as you type your VBA statements. To try this out, activate a module in the Visual



Basic Editor and type application followed by a period (.). As shown in Figure 2.11, VBA
displays a pop-up menu. The items on this menu are the properties and methods that are
available for the Application object. Use the following methods to work with this menu:

■ Keep typing to display different items in the list. In Excel, for example, if you type cap,
VBA highlights Caption in the list.

■ Double-click an item to insert it in your code.

■ Highlight an item (by clicking it or by using the up and down arrow keys) and then
press Tab to insert the item and continue working on the same statement.

■ Highlight an item and then press Enter to insert the item and start a new line.

■ Press Esc to remove the menu without inserting an item.

2

Chapter 2 Writing Your Own Macros28

Figure 2.11
IntelliSense displays
the available proper-
ties and methods as
you type.

Note that if you press Esc to remove the pop-up menu, VBA won’t display it again for the
same object. If you would like to display the menu again, choose Edit, List Properties/
Methods (or press Ctrl+J).

List Constants
IntelliSense has a List Constants feature that’s similar to List Properties/Methods. In this
case, you get a pop-up menu that displays a list of the available constants for a property or
method. (A constant is a fixed value that corresponds to a specific state or result. See
Chapter 3 to learn more about them.) For example, type the following in a module:

Application.ActiveWindow.WindowState=

Figure 2.12 shows the pop-up menu that appears in Excel. This is a list of constants that
correspond to the various settings for a window’s WindowState property. For example, you
would use the xlMaximized constant to maximize a window. You work with this list using
the same techniques that I outlined for List Properties/Methods.

If you need to display this list by hand, choose Edit, List Constants (or press Ctrl+Shift+J).



29Taking Advantage of IntelliSense

Parameter Info
You learned earlier that a user-defined function typically takes one or more arguments (or
parameters) to use in its internal calculations. Many of the functions and statements built
into VBA also use parameters, and some have as many as a dozen separate arguments! The
syntax of such statements is obviously very complex, so it’s easy to make mistakes. To help
you out when entering a user-defined function or one of VBA’s built-in functions or state-
ments, IntelliSense provides the Parameter Info feature. As its name implies, this feature
displays information on the parameters that you can utilize in a function. To see an exam-
ple, enter the following text in any Excel module:

activecell.formula=pmt(

As soon as you type the left parenthesis, a banner pops up that tells you the available argu-
ments for (in this case) VBA’s Pmt function (see Figure 2.13). Here are the features of this
banner:

■ The current argument is displayed in boldface. When you enter an argument and then
type a comma, VBA displays the next argument in boldface.

■ Arguments that are optional are surrounded by square brackets ([ ]).

■ The various As statements (for example, As Double) tell you the data type of each argu-
ment. I’ll explain data types in the next chapter but, for now, think of them as defining
what kind of data is associated with each argument (text, numeric, and so on).

■ To remove the banner, press Esc.

As usual, IntelliSense also enables you to display this information by hand by choosing
Edit, Parameter Info (or pressing Ctrl+Shift+I).

2

Figure 2.12
The List Constants feature
in action.



Complete Word
The last of the IntelliSense features that I’ll discuss is Complete Word. You use this feature
to get VBA to complete a keyword that you’ve started typing, and thus save some wear-
and-tear on your typing fingers. To use Complete Word, type in the first few letters of a
keyword and then choose Edit, Complete Word (or press Ctrl+Space).

If the letters you typed are enough to define a unique keyword, IntelliSense fills in the rest
of the word. For example, if you type appl and run Complete Word, IntelliSense changes
your typing to Application. However, if there are multiple keywords that begin with the
letters you typed, IntelliSense displays a pop-up menu that you can use to select the word
you want.

Shutting Down the Visual Basic Editor
When you’ve completed your VBA chores, you can shut down the Visual Basic Editor by
using either of the following techniques:

■ Pull down the File menu and select the Close and Return to Application command,
where Application is the name of the program you’re running (such as Microsoft Excel).

■ Press Alt+Q.

From Here
■ To learn about using variables in your VBA code, see Chapter 3, “Understanding

Program Variables,” p. 33.

■ For a complete look at the MsgBox function, see “Getting Input Using MsgBox,” p. 45.

■ To get the details on expressions, see Chapter 4, “Building VBA Expressions,” p. 53.

2

Chapter 2 Writing Your Own Macros30

Figure 2.13
The Parameter Info
feature shows you
the defined argu-
ments for the cur-
rent function or
statement.



31Shutting Down the Visual Basic Editor

■ For information on object properties, see “Working with Object Properties,” p. 73.

■ For information on object methods, see “Working with Object Methods,” p. 75.

■ To learn techniques such as renaming, exporting, and deleting modules, see “Working
with Modules,” p. 299.

2



This page intentionally left blank 



I N  T H I S  C H A P T E R

Understanding Program
Variables 3Your VBA procedures often need to store tempo-

rary values for use in statements and calculations
that come later in the code. For example, you might
want to store values for total sales and total
expenses to use later in a gross margin calculation.
Although you probably could get away with using
the underlying application to store these values (in,
say, a cell in an Excel worksheet), this almost always
isn’t very practical. Instead, VBA (like all program-
ming languages) lets you store temporary values in
special memory locations called variables. This
chapter explains this important topic and shows you
how to use variables in your VBA procedures.

Declaring Variables
Declaring a variable tells VBA the name of the vari-
able you’re going to use. (It also serves to specify
the data type of the variable, which I’ll explain later
in this chapter.) Note that at this point you’re not
assigning a value to the variable. That comes later.
All you’re doing now is telling VBA that the vari-
able exists. You declare variables by including Dim
statements (Dim is short for dimension) at the begin-
ning of each Sub or Function procedure.

Declaring Variables  . . . . . . . . . . . . . . . . . . . . . .33

Avoiding Variable Errors  . . . . . . . . . . . . . . . . . .35

Variable Data Types  . . . . . . . . . . . . . . . . . . . . . .36

Using Array Variables . . . . . . . . . . . . . . . . . . . . .40

Working with Constants  . . . . . . . . . . . . . . . . . .44

Storing User Input in a Variable . . . . . . . . . . . .45

Technically, you can put variable declarations anywhere you like
within a procedure and VBA won’t complain.The only real restriction
is that the Dim statement must precede the first use of the variable
in a procedure. Having said all that, however, it’s not only traditional,
but also clearer, to list all your Dim statements together at the top
of a procedure.

N
O

T
E



In its simplest form, a Dim statement has the following syntax:

Dim variableName

Here, variableName is the name of the variable. You make up these names yourself, but you
need to bear a few restrictions in mind:

■ The name must begin with a letter.

■ The name can’t be longer than 255 characters.

■ The name can’t be a VBA keyword (such as Dim or Sub or End).

■ The name can’t contain a space or any of the following characters: . ! # $ % & @.

For example, the following statement declares a variable named totalSales:

Dim totalSales

3

Chapter 3 Understanding Program Variables34

To avoid confusing variable names with the names of things that are built into the VBA language,
many programmers begin their variable names with a lowercase letter. If the name contains multi-
ple “words,” then each subsequent word should use an uppercase first letter (for example,
totalSales or newFileName).This is the style I use in this book. (Programming types call it
camel style, thanks to the “humps” created by the uppercase letters.)

Also, note that VBA preserves the case of your variable names throughout a procedure. For example,
if you declare a variable named totalSales and you later enter this variable name as, say,
totalsales,VBA will convert the name to totalSales automatically as part of its syntax
checking.This means two things:

■ If you want to change the case used in a variable, change the first instance of the variable 
(usually the Dim statement).

■ After you’ve declared a variable, you should enter all subsequent references to the variable
entirely in lowercase. Not only is this easier to type, but you’ll immediately know whether
you’ve misspelled the variable name if you see that VBA doesn’t change the case of the 
variable name after you enter the line.

N
O

T
E

Most programmers set up a declaration section at the beginning of each procedure and use
it to hold all their Dim statements. Then, after the variables have been declared, you can use
them throughout the procedure. Listing 3.1 shows a Function procedure that declares two
variables—totalSales and totalExpenses—and then uses Excel’s Sum function to store a
range sum in each variable. Finally, the GrossMargin calculation uses each variable to return
the function result.

The code for the examples used in this chapter can be found on my website at
www.mcfedries.com/Office2007VBA.T

IP

www.mcfedries.com/Office2007VBA


35Avoiding Variable Errors

Listing 3.1 A Function That Uses Variables to Store the Intermediate Values of a Calculation

Function GrossMargin()
‘
‘ Declarations
‘
Dim totalSales
Dim totalExpenses
‘
‘ Code
‘
totalSales = Application.Sum(Range(“Sales”))
totalExpenses = Application.Sum(Range(“Expenses”))
GrossMargin = (totalSales - totalExpenses) / totalSales

End Function

In the GrossMargin function, notice that you store a value in a variable with a simple assign-
ment statement of the following form:

variableName = value
3

To conserve space, you can declare multiple variables on a single line. In the GrossMargin func-
tion, for example, you could declare totalSales and totalExpenses using the following
statement:
Dim totalSales, totalExpenses

T
IP

➔ Listing 3.1 gets its values from the Excel worksheet by using the Range method. For the details, see “Using the Range Method,”
p. 153.

Avoiding Variable Errors
One of the most common errors in VBA procedures is to declare a variable and then later
misspell the name. For example, suppose I had entered the following statement in the
GrossMargin procedure from Listing 3.1:

totlExpenses = Application.Sum(Range(“Expenses”))

Here, totlExpenses is a misspelling of the variable named totalExpenses. VBA supports
implicit declarations, which means that if it sees a name it doesn’t recognize, it assumes that
the name belongs to a new variable. In this case, VBA would assume that totlExpenses is a
new variable, proceed normally, and calculate the wrong answer for the function.

To avoid this problem, you can tell VBA to generate an error whenever it comes across
a name that hasn’t been declared explicitly with a Dim statement. There are two ways to
do this:



■ For an individual module, enter the following statement at the top of the module:
Option Explicit

■ To force VBA to add this statement automatically to all your modules, in the Visual
Basic Editor select Tools, Options, display the Editor tab in the Options dialog box
that appears, and activate the Require Variable Declaration check box.

3

Chapter 3 Understanding Program Variables36

Activating the Require Variable Declaration check box forces VBA to add the Option Explicit
statement at the beginning of each new module. However, it doesn’t add this statement to any
existing modules; you need to do that by hand.

N
O

T
E

Variable Data Types
The data type of a variable determines the kind of data the variable can hold. You specify a
data type by including the As keyword in a Dim statement. Here is the general syntax:

Dim variableName As DataType

variableName is the name of the variable and DataType is one of the data types. Here’s a
rundown of the most useful VBA data types:

■ String—This type holds strings, which are simple text values. Here’s a sample declara-
tion and assignment statement (note the use of quotation marks in the assignment
statement value; this tells VBA that the value is a string):
Dim newFileName As String
newFileName = “Budget Notes.doc”

■ Date—This type holds date values, which refers to dates and/or times. Here are a few
examples (note the use of the # character around the values; this tells VBA that the val-
ues are dates and/or times):
Dim myBirthDate As Date
Dim myBirthTime As Date
Dim anotherDate As Date
myBirthDate = #8/23/59#
myBirthTime = #3:02 AM#
anotherDate = #4/27/07 16:05#

■ Object—You use this type to hold generic objects, which I discuss in detail in Chapter 5,
“Working with Objects.”

■ Byte—This rarely used type holds small, positive integer values (from 0 to 255).

■ Integer—This type holds integer values, which VBA defines as whole numbers
between –32,768 and 32,767. Here’s an example:
Dim paragraphNumber As Integer
paragraphNumber = 1



37Variable Data Types

■ Long—This type holds long integer values, which VBA defines as whole numbers
between –2,147,483,648 and 2,147,483,647. Here’s an example (note that you don’t
include commas—or periods, if you’re in Europe—in numbers that would normally
use one or more thousands separators):
Dim wordCount As Long
wordCount = 100000

■ Boolean—This type holds Boolean values, which take one of two values: True or False.
Here’s an example:
Dim documentSaved As Boolean
documentSaved = False

■ Currency—This type holds monetary values. The value range is from
–922,337,203,685,477.5808 to 922,337,203,685,477.5807.

■ Single—This type holds single-precision floating point values, which are numbers that
have a decimal component. Here’s an example:
Dim averageUnitSales As Single
averageUnitSales = 50.3

■ Double—This type holds double-precision floating point values, which can accommodate
much larger or smaller numbers than the Single type. Note, however, that the range
available with the Single type should be more than enough for your VBA macros, so
you’ll probably never use the Double type. Here’s an example:
Dim atomsInTheUniverse As Double
atomsInTheUniverse = 2.0E+79

3

Double values often use exponential notation, such as the value 2.0E+79 used in the Double
example. A positive number, say X, after the E symbol means that you move the decimal point X
positions to the right to get the actual number. So, for example, 2.0E+3 is the same thing as 2000. A
negative number, say –X, after the E means that you move the decimal point X positions to the left.
So 3.14E-4 is the equivalent of 0.000314.

N
O

T
E

Here are a few notes to keep in mind when using data types:

■ If you don’t include a data type when declaring a variable, VBA assigns the Variant
data type. This enables you to store any kind of data in the variable. However, this isn’t
a good idea because Variant variables use more memory and are much slower than the
other data types. Therefore, always give your variables a specific data type. Note, how-
ever, that you may on occasion need a variable that can assume different data types. In
that case, you should declare the variable using the Variant type.

➔ For an example of a situation in which declaring a variable as a Variant is a good idea, see “Getting Input Using InputBox,”
p. 50.



■ If you declare a variable to be one data type and then try to store a value of a different
data type in the variable, VBA often displays an error. For example, if you declare a
variable using the Single type and you try to assign a value that’s outside the Single
type’s allowable range, VBA displays an “Overflow” error message when you attempt
to run the procedure.

■ To specify the data type of a procedure argument, use the As keyword in the argument
list. For example, the following Function statement declares variables Sales and
Expenses to be Currency:
Function GrossMargin(Sales As Currency, Expenses As Currency)

■ To specify the data type of the return value for a Function procedure, use the As key-
word at the end of the Function statement:
Function GrossMargin(Sales, Expenses) As Single

3

Chapter 3 Understanding Program Variables38

Many programmers remind themselves of each variable’s data type by applying data type prefixes to
the variable names. For example, the data type prefix for a String variable is str, so the declara-
tion for such a variable might look like this:
Dim strName As String

This helps you avoid programming errors because you’re less likely to try and store, say, an
Integer value in a String variable if that variable’s name begins with str. Here are some other
common data type prefixes:

Data Type Prefix

String str or s

Date dte or dtm

Object obj

Byte byt

Integer int or i

Long lng

Boolean bln or b

Currency cur

Single sgl or sng

Double dbl

Variant vnt

T
IP



39Variable Data Types

Changing the Default Data Type
I mentioned in the preceding section that VBA assigns the Variant type to a variable if you
don’t specify a data type. However, VBA supports a number of DefType statements that let
you redefine the default data type. These statements all use the following syntax:

DefType letter1[-letter2]

Here, Type is a three- or four-letter code that specifies the data type, and letter1 and
letter2 define a range of letters. Note that this is a module-level statement, so you must
place it at the top of a module, before any procedures or functions.

The idea is that any variable (or function argument or function result) that begins with one
of these letters will be assigned the specified data type by default. For example, the DefInt
keyword is used to set the default data type to Integer. If you want VBA to assign, say, the
Integer data type to any variables that begin with the letters X through Z, you would add
the following statement at the module level:

DefInt X-Z

Table 3.1 lists the various DefType keywords and the data types they represent.

Table 3.1. VBA’s DefType keywords.

DefType Data Type

DefBool Boolean

DefByte Byte

DefInt Integer

DefLng Long

DefCur Currency

DefSng Single

DefDbl Double

DefDate Date

DefStr String

DefObj Object

DefVar Variant

Creating User-Defined Data Types
VBA’s built-in data types cover a lot of ground and should be sufficient to meet most of
your needs. However, VBA also lets you set up user-defined data types. These are handy for
storing similar types of data in a single structure. For example, suppose your program is

3



working with car makes and models. In this case, you might need to work with values for
the manufacturer, the model, the year the car was made, and the purchase price. One way
to go about this would be to set up variables for each item of data, like so:

Dim carMake As String
Dim carModel As String
Dim yearMade As Integer
Dim carPrice As Currency

This approach works, but what if you need to work with the data from multiple cars at
once? You could set up new variables for each car, but that seems too inefficient. A better
way is to define a “CarInfo” data type that holds all the required information. Here’s how
you would do it:

Type CarInfo
make As String
model As String
made As Integer
price As Currency

End Type

The Type keyword tells VBA that you’re creating a user-defined data type. In this example,
the new data type is named CarInfo. The statements between Type and End Type define the
various elements within the new data type. Note that you need to place this definition at
the module level; VBA doesn’t let you define new data types within a procedure.

Now you use the data type as you would any other. For example, the following statement
declares a new variable named myCar to be of type CarInfo:

Dim myCar As CarInfo

From here, you refer to the various elements within the data type by separating the variable
name and the element name with a period (.), like so:

myCar.make = “Porsche”
myCar.model = “911 Turbo”
myCar.made = 2007
myCar.price = 122000

Using Array Variables
In VBA, an array is a group of variables of the same data type. Why would you need to use
an array? Well, suppose you wanted to store twenty employee names in variables to use in a
procedure. One way to do this would be to create 20 variables named, say, employee1,
employee2, and so on. However, it’s much more efficient to create a single employees array
variable that can hold up to 20 names. VBA creates a single variable with 20 different
“slots” into which you can add data (such as employee names). Such an array variable is
akin to an Excel range that consists of 20 cells in a row or column: the range is a single
entity, but it contains 20 slots (cells) into which you can insert data. The major difference is

3

Chapter 3 Understanding Program Variables40



41Using Array Variables

that you almost always use an array variable to hold data of a single type, such as String.
When you declare an array variable you specify the data type, as shown here:

Dim employees(19) As String

As you can see, this declaration is very similar to one you would use for a regular variable.
The difference is the 19 enclosed in parentheses. The parentheses tell VBA that you’re
declaring an array, and the number tells VBA how many elements you’ll need in the array.
Why 19 instead of 20? Well, each element in the array is assigned a subscript, where the first
element’s subscript is 0, the second is 1, and so on up to, in this case, 19. Therefore, the
total number of elements in this array is 20.

You use a subscript to refer to any element simply by enclosing its index number in the
parentheses, like so:

employees(0) = “Ponsonby”

By default, the subscripts of VBA arrays start at 0 (this is called the lower bound of the array)
and run up to the number you specify in the Dim statement (this is called the upper bound of
the array). If you would prefer your array index numbers to start at 1, include the following
statement at the top of the module (in other words, before declaring your first array and
before your first procedure):

Option Base 1

Note, too, that after resetting the lower bound in this way, if you want to declare an array
with the same number of elements, then you need to adjust the upper bound in the Dim
statement accordingly. For example, with the lower bound set to 1, if you want to declare
an array variable named employees and you want it to hold up to 20 names, then you need
to declare it like so:

Dim employees(20) As String

Dynamic Arrays
What do you do if you’re not sure how many subscripts you’ll need in an array? You could
guess at the correct number, but that will almost always leave you with one of the following
problems:

■ If you guess too low and try to access a subscript higher than the array’s upper bound,
VBA will generate an error message.

■ If you guess too high, VBA will still allocate memory to the unused portions of the
array, so you’ll waste precious system resources.

To avoid both of these problems, you can declare a dynamic array by leaving the parentheses
blank in the Dim statement:

Dim myArray() As Double

3



Then, when you know the number of elements you need, you can use a ReDim statement to
allocate the correct number of subscripts (notice that you don’t specify a data type in the
ReDim statement):

ReDim myArray(52)

The following is a partial listing of a procedure named PerformCalculations. The proce-
dure declares calcValues as a dynamic array and totalValues as an integer. Later in the
procedure, totalValues is set to the result of a function procedure named GetTotalValues.
The ReDim statement then uses totalValues to allocate the appropriate number of sub-
scripts to the calcValues array.

Sub PerformCalculations()
Dim calcValues() As Double, totalValues as Integer

.

.

.
totalValues = GetTotalValues()
ReDim calcValues(totalValues)

.

.

.
End Sub

3

Chapter 3 Understanding Program Variables42

The ReDim statement reinitializes the array so that any values stored in the array are lost. If you
want to preserve an array’s existing values, use ReDim with the Preserve option, as follows:
ReDim Preserve myArray(52)

N
O

T
E

Listing 3.2 presents a more concrete example. (Note that this procedure uses lots of VBA
code that you haven’t seen yet, so don’t be discouraged if you don’t fully understand what’s
happening here.)

Listing 3.2 A Procedure That Stores the Names of the Worksheets in a Dynamic Array

Sub StoreWorksheetNames()
Dim sheetNames() As String
Dim totalSheets As Integer
Dim sheet As Worksheet
Dim i As Integer
Dim strMessage As String
‘
‘ Store the total number of worksheets
‘ that are in the current workbook
‘
totalSheets = ActiveWorkbook.Worksheets.Count
‘
‘ Now redimension the dynamic array
‘
ReDim sheetNames(totalSheets)
‘
‘ Loop through the worksheets to store the names in the array
‘



43Using Array Variables

For i = 1 To totalSheets
sheetNames(i - 1) = ActiveWorkbook.Worksheets(i).Name

Next ‘i
‘
‘ Loop through the array to add the names to a string
‘
strMessage = “Here are the worksheet names:” & vbCrLf
For i = 0 To totalSheets - 1

strMessage = strMessage & sheetNames(i) & vbCrLf
Next ‘i
‘
‘ Display the worksheet names
‘
MsgBox strMessage

End Sub

This procedure begins by declaring sheetNames as a dynamic array. It then uses the
totalSheets variable to store the total number of worksheets that are in the current work-
book. The procedure then sets the size of the array based on the totalSheets value:

ReDim sheetNames(totalSheets)

The procedure then uses one loop (see Chapter 6, “Controlling Your VBA Code”) to store
the worksheet names in the array and a second loop to add the worksheet names to the
strMessage variable, which is a String value. Finally, the procedure uses the MsgBox func-
tion to display the string, as shown in Figure 3.1.

3

Figure 3.1
The results of the
dynamic array procedure
in Listing 3.2.

If your program needs to know the lower bound and the upper bound of an array,VBA provides a
couple of functions that can do the job:

LBound(arrayName) Returns the lower bound of the array given by arrayName.

UBound(arrayName) Returns the upper bound of the array given by arrayName.

N
O

T
E



Multidimensional Arrays
If you enter a single number between the parentheses in an array’s Dim statement, VBA cre-
ates a one-dimensional array. But you also can create arrays with two or more dimensions (60
is the maximum). For example, suppose you wanted to store both a first name and a last
name in your employee array. To store two sets of data with each element, you would
declare a two-dimensional array, like so:

Dim employees(19,1) As String

The subscripts for the second number work like the subscripts you’ve seen already. In other
words, they begin at 0 and run up to the number you specify. So this Dim statement sets up
a “table” (or a matrix, as it’s usually called) with 20 “rows” (one for each employee) and two
“columns” (one for the first name and one for the last name). So if a one-dimensional array
is like an Excel range consisting of cells in a single row or column, a multidimensional array
is like an Excel range consisting of cells in multiple rows or columns.

Here are two statements that initialize the data for the first employee:

employees(0,0) = “Biff”
employees(0,1) = “Ponsonby”

Working with Constants
Constants are values that don’t change. They can be numbers, strings, or other values, but,
unlike variables, they keep their value throughout your code. VBA recognizes two types of
constants: built-in and user-defined.

Using Built-In Constants
Many properties and methods have their own predefined constants. For Excel objects, these
constants begin with the letters xl. For Word objects, the constants begin with wd. For
VBA objects, the constants begin with vb.

For example, Excel’s Window object has a WindowState property that recognizes three built-
in constants: xlNormal (to set a window in its normal state), xlMaximized (to maximize a
window), and xlMinimized (to minimize a window). To maximize the active window, for
example, you would use the following statement:

ActiveWindow.WindowState = xlMaximized

3

Chapter 3 Understanding Program Variables44

If you want to see a list of all the built-in constants for an application, open the Visual Basic Editor,
choose View, Object Browser (or click F2), use the Project/Library list to click the application name
(such as Word or Excel), and then click <globals> at the top of the Classes list. Scroll down the
Members list until you get to the items that begin with the application’s constant prefix (xl for
Excel,wd for Word,pp for PowerPoint, and ac for Access).

N
O

T
E



45Storing User Input in a Variable

Creating User-Defined Constants
To create your own constants, use the Const statement:

Const CONSTANTNAME [As type] = expression

■ CONSTANTNAME—The name of the constant. Most programmers use all-uppercase names
for constants, which helps distinguish them from your regular variables as well as the
VBA keywords.

■ As type—Use this optional expression to assign a data type to the constant.

■ expression—The value (or a formula that returns a value) that you want to use for the
constant. You must use either a literal value or an expression that combines literal val-
ues and one or more other constants (as long as those constants have been declared
before the current constant).

For example, the following statement creates a constant named DISCOUNT and assigns it the
value 0.4:

Const DISCOUNT As Single = 0.4

Storing User Input in a Variable
Your VBA programs will usually be self-contained and run just fine on their own. However,
you’ll likely come across situations where you’ll require some kind of custom input. For exam-
ple, you might have a procedure that adjusts various aspects of a Word document. You could
insert the name and location of a Word document into the procedure (this is called hard-coding
the data), but that’s not very flexible if your procedure is capable of working with different doc-
uments. A better idea is to have your procedure prompt for the name and location of a docu-
ment. Your procedure could then take that data and use it to work on the specified document.

Whatever type of input you ask for, the result needs to be stored in a variable so that the
rest of your procedure can access it. The next couple of sections take you through some
VBA techniques that enable you to prompt for data and then store that data in a variable.

Getting Input Using MsgBox
You’ve seen a couple of times already in this book that you can display information by using
the MsgBox function. This is a very useful function, so let’s take a closer look at it. Here is
the full syntax of this function:

MsgBox(Prompt[, Buttons][, Title][, HelpFile][, Context])

Prompt The message you want to display in the dialog box.
(You can enter a string up to 1,024 characters long.)

Buttons A number or constant that specifies, among other
things, the command buttons that appear in the 
dialog box. (See the next section.) The default
value is 0.

3



Title The text that appears in the dialog box title bar. If
you omit the title, VBA uses the name of the current
program (for example, Microsoft Excel).

HelpFile The text that specifies the Help file that contains the
custom help topic. (I don’t discuss custom help top-
ics in this book.) If you enter HelpFile, you also have
to include Context. If you include HelpFile, a Help
button appears in the dialog box.

Context A number that identifies the help topic in HelpFile.

3

Chapter 3 Understanding Program Variables46

There are a number of tutorials online that show you how to create a Help file.Type “creating help
files” into your favorite search engine.N

O
T

E

For example, the following statement displays the message dialog box shown in Figure 3.2:

MsgBox “You must enter a number between 1 and 100!”,,”Warning”

Figure 3.2
A simple message
dialog box produced
by the MsgBox
function.

Setting the Style of the Message
The default message dialog box displays only an OK button. You can include other buttons
and icons in the dialog box by using different values for the Buttons parameter. Table 3.2
lists the available options.

The MsgBox function, like all VBA functions, needs parentheses around its arguments only when
you use the function’s return value. See the section later in this chapter called “Getting Return
Values from the Message Dialog Box” to learn about the return values produced by the MsgBox
function.

N
O

T
E

For long prompts,VBA wraps the text inside the dialog box. If you’d prefer to create your own line
breaks, use VBA’s vbCrLf constant to insert a carriage-return and line-feed between each line:

MsgBox “First line” & vbCrLf & “Second line”

T
IP



47Storing User Input in a Variable

Table 3.2 The MsgBox Buttons Parameter Options

Constant Value Description

Buttons
vbOKOnly 0 Displays only an OK button. (This is the default.)

vbOKCancel 1 Displays the OK and Cancel buttons.

vbAbortRetryIgnore 2 Displays the Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Displays the Yes, No, and Cancel buttons.

vbYesNo 4 Displays the Yes and No buttons.

vbRetryCancel 5 Displays the Retry and Cancel buttons.

Icons
vbCritical 16 Displays the Critical Message icon.

vbQuestion 32 Displays the Warning Query icon.

vbExclamation 48 Displays the Warning Message icon.

vbInformation 64 Displays the Information Message icon.

Default Button
vbDefaultButton1 0 The first button is the default (that is, the button selected

when the user presses Enter).

vbDefaultButton2 256 The second button is the default.

vbDefaultButton3 512 The third button is the default.

Modality

vbApplicationModal 0 The user must respond to the message box before 
continuing work in the current application.

vbSystemModal 4096 All applications are suspended until the user responds to
the message box.

You derive the Buttons argument in one of two ways:

■ By adding up the values for each option. For example, if you want the OK and Cancel
buttons (value 1) and the Warning Message icon (value 48), then you specify the 
value 49.

■ By using the VBA constants separated by plus signs (+). This is the better way to go
because it makes your code much easier to read.

3



For example, Listing 3.3 shows a procedure named ButtonTest, and Figure 3.3 shows the
resulting dialog box. Here, three variables—msgPrompt, msgButtons, and msgTitle—store
the values for the MsgBox function’s Prompt, Buttons, and Title arguments, respectively. In
particular, the following statement derives the Buttons argument:

msgButtons = vbYesNo + vbQuestion + vbDefaultButton2

You also could derive the Buttons argument by adding up the values that these constants
represent (4, 32, and 256, respectively), but the procedure becomes less readable that way.

Listing 3.3 A Procedure That Creates a Message Dialog Box

Sub ButtonTest()

Dim msgPrompt As String, msgTitle As String
Dim msgButtons As Integer, msgResult As Integer

msgPrompt = “Are you sure you want to display “ & vbCrLf & _
“the worksheet names?”

msgButtons = vbYesNo + vbQuestion + vbDefaultButton2
msgTitle = “Display Worksheet Names”

msgResult = MsgBox(msgPrompt, msgButtons, msgTitle)

End Sub

3

Chapter 3 Understanding Program Variables48

Figure 3.3
The dialog box that’s
displayed when you
run the code in
Listing 3.3.

Getting Return Values from the Message Dialog Box
A message dialog box that displays only an OK button is straightforward. The user either
clicks OK or presses Enter to remove the dialog from the screen. The multibutton styles
are a little different, however; the user has a choice of buttons to select, and your proce-
dure should have a way to find out which button the user chose.

You do this by storing the MsgBox function’s return value in a variable. Table 3.3 lists the
seven possible return values.



49Storing User Input in a Variable

Table 3.3 The MsgBox Function’s Return Values

Constant Value Button Selected

vbOK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No

To process the return value, you test the value in the variable and have your procedure take
appropriate action. You learn how to do this in Chapter 6. Listing 3.4 shows a revised ver-
sion of ButtonTest that uses an If statement to see whether the msgResult value equals
vbYes. If so, it means the user clicked Yes in the dialog box, so the procedure runs the
StoreWorksheetNames procedure (see Listing 3.4); otherwise, it does nothing.

➔ To learn about the If statement, see “Using If...Then to Make True/False Decisions,” p. 92.

➔ For MsgBox functions that use three buttons, you need to use the Select Case statement to process the result; see “Using the
Select Case Statement,” p. 97.

Listing 3.4 A Procedure that Handles the Return Value of the MsgBox Function

Sub ButtonTest2()

Dim msgPrompt As String, msgTitle As String
Dim msgButtons As Integer, msgResult As Integer

msgPrompt = “Are you sure you want to display “ & vbCrLf & _
“the worksheet names?”

msgButtons = vbYesNo + vbQuestion + vbDefaultButton2
msgTitle = “Display Worksheet Names”

msgResult = MsgBox(msgPrompt, msgButtons, msgTitle)

If msgResult = vbYes Then
StoreWorksheetNames

End If

End Sub

3



Getting Input Using InputBox
As you’ve seen, the MsgBox function lets your procedures interact with the user and get
some feedback. Unfortunately, this method limits you to simple command-button
responses. For more varied user input, you need to use a more sophisticated technique.
The rest of this chapter shows you just such a method: prompting the user for input using
the InputBox function.

The InputBox function displays a dialog box with a message that prompts the user to enter
data, and it provides a text box for the data itself. Here’s the syntax for this function:

InputBox(Prompt[, Title][, Default][, Xpos][, Ypos][, HelpFile][, Context])

Prompt The message you want to display in the dialog box
(1,024-character maximum).

Title The text that appears in the dialog box title bar. The
default value is the null string (nothing).

Default The default value displayed in the text box. If you
omit Default, the text box is displayed empty.

Xpos The horizontal position of the dialog box from the
left edge of the screen. The value is measured in
points (there are 72 points in an inch). If you omit
Xpos, the dialog box is centered horizontally.

Ypos The vertical position, in points, from the top of the
screen. If you omit Ypos, the dialog is centered verti-
cally in the current window.

HelpFile The text specifying the Help file that contains the
custom help topic. (Again, I don’t cover Help files in
this book.) If you enter HelpFile, you also have to
include Context. If you include HelpFile, a Help
button appears in the dialog box.

Context A number that identifies the help topic in HelpFile.

For example, Listing 3.5 shows a procedure called InputBoxText that uses the InputBox
method to prompt the user for data. Figure 3.4 shows the dialog box that appears. The
result is stored in the inputData variable. If the user didn’t enter data, the function returns
nothing, which is represented in VBA by the string value “” (this is called the null string).
The procedure uses the If statement to check whether the value stored in inputData is “”
and, if it’s not, it runs MsgBox to display the entered data.

3

Chapter 3 Understanding Program Variables50



51Storing User Input in a Variable

Listing 3.5 A Procedure That Prompts the User for Input and Then Displays the Data

Sub InputBoxTest()
Dim inputData As String
‘
‘ Get the data
‘
inputData = InputBox(“Enter some text:”, “Input Box Text”)
‘
‘ Check to see if any data was entered
‘
If inputData <> “” Then

‘
‘ If so, display it
‘
MsgBox inputData

End If
End Sub

3

The InputBox function returns a string (the null string) if you click Cancel.What do you do, how-
ever, if you want to use InputBox to get, say, a numeric value? This means that the result stored in
your variable could be either a string or a number.The solution here is to declare your variable with
the Variant type.That way,VBA will store the result—whatever it is—without generating an
error.

C A U T I O N

Figure 3.4
A dialog box generated
by the InputBox func-
tion in Listing 3.5.

From Here
■ You often use operators and expressions to assign values to variables. I discuss this in

detail in Chapter 4, “Building VBA Expressions.”

■ Objects have a separate variable type. I talk about it, as well as about assigning objects
to variables, in Chapter 5, “Working with Objects.”

■ To learn about the If statement for processing MsgBox and InputBox results, see
“Using If...Then to Make True/False Decisions,” p. 92.

■ For MsgBox functions that use three buttons, you need to use the Select Case
statement to process the result; see “Using the Select Case Statement,” p. 97.



This page intentionally left blank 



I N  T H I S  C H A P T E R

Building VBA Expressions

4The VBA variables you learned about in the
Chapter 3, “Understanding Program Variables,”
don’t amount to a hill of beans unless you do some-
thing with them. In other words, a procedure or
function is merely a lifeless collection of Dim state-
ments until you define some kind of relationship
among the variables and your program objects. 
(I’ll talk about the latter in Chapter 5, “Working
with Objects.”)

To establish these relationships, you need to create
expressions that perform calculations and produce
results. This chapter takes you through some
expression basics and shows you a number of tech-
niques for building powerful expressions using not
only variables, but also VBA’s built-in functions.

Understanding Expressions
You can think of an expression as being like a com-
pact version of a user-defined function. In other
words, in the same way that a function takes one or
more arguments, combines them in various ways,
and returns a value, so too does an expression take
one or more inputs (called operands) combines them
with special symbols (called operators) and produces
a result. The main difference, though, is that an
expression must do all its dirty work in a single
VBA statement.

For example, consider the following statement:

frequency = “Monthly”

Here, the left side of the equation is a variable
named frequency. The right side of the equation 
is the simplest of all expressions: a text string. So, 
in other words, a string value is being stored in a
variable.

Understanding Expressions  . . . . . . . . . . . . . . .53

Working with VBA Operators  . . . . . . . . . . . . . .54

Understanding Operator Precedence  . . . . . . .57

Working with Numeric Expressions . . . . . . . . .60

Working with String Expressions . . . . . . . . . . .63

Working with Logical Expressions  . . . . . . . . . .66

Working with Date Expressions  . . . . . . . . . . . .68



Here’s a slightly more complex example:

energy = mass * (speedOfLight ^ 2)

Again, the left side of the equation is a variable (named energy) and the right side of the
equation is an expression. For the latter, a variable named speedOfLight is squared, and
then this result is multiplied by another variable named mass. In this example, you see the
two main components of any expression:

■ Operands—These are the “input values” used by the expression. They can be con-
stants, variables, object properties, function results, or literals. (A literal is a specific
value, such as a number or text string. In the first expression example, “Monthly” is a
string literal.)

■ Operators—These are symbols that combine the operands to produce a result.
Common operators are the familiar + (addition) and - (subtraction). In the example 
just shown, the * symbol represents multiplication and the ^ symbol represents 
exponentiation.

Combining operands and operators produces a result that conforms to one of the variable
data types outlined in the previous chapter: String, Date, Boolean, or one of the numeric
data types (Integer, Long, Currency, Single, or Double). When building your expressions,
the main point to keep in mind is that you must maintain data type consistency throughout
the expression. This means you must watch for three things:

■ The operands must use compatible data types. Although it’s okay to combine, say, an
Integer operand with a Long operand (because they’re both numeric data types), it
wouldn’t make sense to use, say, a Double operand and a String operand.

■ The operators you use must match the data types of the operands. For example, you
wouldn’t want to multiply two strings together.

■ If you’re storing the expression result in a variable, make sure the variable’s data type is
consistent with the type of result produced by the expression. For example, don’t use a
Boolean variable to store the result of a string expression.

VBA divides expressions into four groups: numeric, string, date, and logical. I discuss each
type of expression later in this chapter, but let’s first run through all the available VBA
operators.

Working with VBA Operators
You’ve already seen the first of VBA’s operators: the assignment operator, which is just the
humble equals sign (=). You use the assignment operator to assign the result of an expres-
sion to a variable (or, as you’ll see in Chapter 5, to an object property).

Bear in mind that VBA always derives the result of the right side of the equation (that is,
the expression) before it modifies the value of the left side of the equation. This seems like
obvious behavior, but it’s the source of a handy trick that you’ll use quite often. In other

4

Chapter 4 Building VBA Expressions54



55Working with VBA Operators

words, you can use the current value of whatever is on the left side of the equation as part of
the expression on the right side. For example, consider the following code fragment:

currentYear = 2007
currentYear = currentYear + 1

The first statement assigns the value 2007 to the currentYear variable. The second state-
ment also changes the value stored in the currentYear, but it uses the expression
currentYear + 1 to do it. This looks weird until you remember that VBA always evaluates
the expression first. In other words, it takes the current value of currentYear, which is
2007, and adds 1 to it. The result is 2008 and that is what’s stored in currentYear when all
is said and done.

VBA has a number of different operators that you use to combine functions, variables, and
values in a VBA expression. These operators work much like the operators—such as addi-
tion (+) and multiplication (*)—that you use to build formulas in Excel worksheets and
Word tables. VBA operators fall into five general categories: arithmetic, concatenation,
comparison, logical, and miscellaneous.

Arithmetic Operators
VBA’s arithmetic operators are similar to those you use to build Excel formulas. Table 4.1
lists each of the arithmetic operators you can use in your VBA statements.

Table 4.1 The VBA Arithmetic Operators

Operator Name Example Result

+ Addition 10+5 15

- Subtraction 10-5 5

- Negation -10 -10

* Multiplication 10*5 50

/ Division 10/5 2

\ Integer division 11\5 2

^ Exponentiation 10^5 100000

Mod Modulus (remainder) 10 Mod 5 0

The Mod operator works like Excel’s MOD() worksheet function. In other words, it divides
one number by another and returns the remainder. Here’s the general form to use:

result = dividend Mod divisor

Here, dividend is the number being divided; divisor is the number being divided into 
dividend; and result is the remainder of the division. For example, 16 Mod 5 returns 1
because 5 goes into 16 three times with a remainder of 1.

4



The Concatenation Operator
You use the concatenation operator (&) to combine text strings within an expression. One
way to use the concatenation operator is to combine string literals. For example, consider
the following expression:

“soft” & “ware”

The result of this expression is the following string:

software

Here’s a less trivial example:

Dim strFirst As String
Dim strLast As String
strFirst = “Paul”
strLast = “McFedries”
MsgBox strFirst & “ “ & strLast

This code declares two String variables names strFirst and strLast, and then assigns
them the string literals “Paul” and “McFedries”, respectively. A MsgBox function uses & to
combine the two strings with a space in between. Figure 4.1 shows the result.

4

Chapter 4 Building VBA Expressions56

Figure 4.1
The result of a
MsgBox function
that uses & to com-
bine two text strings
with a space
between them.

You can also use & to combine not just String operands, but also numeric and Date
operands, too. Just remember that the result will always be of the String data type. For
more information on the concatenation operator, check out the section “Working with
String Expressions” later in this chapter.

Comparison Operators
You use the comparison operators in an expression that compares two or more numbers,
text strings, variables, or function results. If the statement is true, the result of the formula
is given the logical value True (which is equivalent to any nonzero value). If the statement 
is false, the formula returns the logical value False (which is equivalent to 0). Table 4.2
summarizes VBA’s comparison operators.



57Understanding Operator Precedence

Table 4.2 The VBA Comparison Operators

Operator Name Example Result

= Equal to 10=5 False

> Greater than 10>5 True

< Less than 10<5 False

>= Greater than or equal to “a”>=“b” False

<= Less than or equal to “a”<=“b” True

<> Not equal to “a”<>“b” True

Logical Operators
You use the logical operators to combine or modify true/false expressions. Table 4.3 sum-
marizes VBA’s logical operators. I provide more detail about each operator later in this
chapter (see “Working with Logical Expressions”).

Table 4.3 The VBA Logical Operators

Operator General Form What It Returns

And Expr1 And Expr2 True if both Expr1 and Expr2 are true; False
otherwise.

Or Expr1 Or Expr2 True if at least one of Expr1 and Expr2 are
true; False otherwise.

Xor Expr1 Xor Expr2 False if both Expr1 and Expr2 are true or if
both Expr1 and Expr2 are false; True otherwise.

Not Not Expr True if Expr is false; False if Expr is true.

Understanding Operator Precedence
You’ll often use simple expressions that contain just two values and a single operator. In
practice, however, many expressions you use will have a number of values and operators. In
these more complex expressions, the order in which the calculations are performed
becomes crucial. For example, consider the expression 3+5^2. If you calculate from left to
right, the answer you get is 64 (3+5 equals 8 and 8^2 equals 64). However, if you perform
the exponentiation first and then the addition, the result is 28 (5^2 equals 25 and 3+25
equals 28). As this example shows, a single expression can produce multiple answers
depending on the order in which you perform the calculations.

4



To control this problem, VBA evaluates an expression according to a predefined order of
precedence. This order of precedence lets VBA calculate an expression unambiguously by
determining which part of the expression it calculates first, which part second, and so on.

The Order of Precedence
The order of precedence that VBA uses is determined by the various expression operators I
outlined in the preceding section. Table 4.4 summarizes the complete order of precedence
used by VBA.

Table 4.4 The VBA Order of Precedence

Operator Operation Order of Precedence

^ Exponentiation First

— Negation Second

* and / Multiplication and division Third

\ Integer division Fourth

Mod Modulus Fifth

+ and — Addition and subtraction Sixth

& Concatenation Seventh

= < > <= >= <> Comparison Eighth

And Eqv Imp Or Xor Not Logical Ninth

From this table, you can see that VBA performs exponentiation before addition. Therefore,
the correct answer for the expression 3+5^2 (just discussed) is 28.

Notice, as well, that some operators in Table 4.4 have the same order of precedence (for
example, multiplication and division). This means that it doesn’t matter in which order these
operators are evaluated. For example, consider the expression 5*10/2. If you perform the
multiplication first, the answer you get is 25 (5*10 equals 50, and 50/2 equals 25). If you per-
form the division first, you also get an answer of 25 (10/2 equals 5, and 5*5 equals 25). By
convention, VBA evaluates operators with the same order of precedence from left to right.

Controlling the Order of Precedence
Sometimes you want to override the order of precedence. For example, suppose you want
to create an expression that calculates the pre-tax cost of an item. If you bought something
for $10.65, including 7 percent sales tax, and you wanted to find the cost of the item less
the tax, you’d use the expression 10.65/1.07, which gives you the correct answer of $9.95.
In general, the expression to use is given by the formula shown in Figure 4.2.

4

Chapter 4 Building VBA Expressions58



59Understanding Operator Precedence

Listing 4.1 shows a function that attempts to implement this formula.

Listing 4.1 A First Attempt at Calculating the Pre-Tax Cost

Function PreTaxCost(totalCost As Currency, taxRate As Single) As Currency
PreTaxCost = totalCost / 1 + taxRate

End Function

Figure 4.3 shows an Excel worksheet that uses this function. The value in cell B4 is passed
to the totalCost argument and the value in cell B1 is passed to the taxRate argument.

4

Figure 4.2
A formula for calculating
the pre-tax cost of an
item.

Figure 4.3
A function that attempts
to calculate the pre-tax
cost of an item.

As you can see, the result is incorrect. What happened? Well, according to the rules of
precedence, VBA performs division before addition, so the totalCost value first is divided
by 1 and then is added to the taxRate value, which isn’t the correct order.

To get the correct answer, you have to override the order of precedence so the addition 1 +
taxRate is performed first. You do this by surrounding that part of the expression with
parentheses, as in Listing 4.2. Using this revised function, you get the correct answer, as
shown in Figure 4.4.

Listing 4.2 The Correct Way to Calculate the Pre-Tax Cost

Function PreTaxCost2(totalCost As Currency, taxRate As Single) As Currency
PreTaxCost2 = totalCost / (1 + taxRate)

End Function

Figure 4.4
The revised function cal-
culates the pre-tax cost
correctly.



In general, you can use parentheses to control the order that VBA uses to calculate expres-
sions. Terms inside parentheses are always calculated first; terms outside parentheses are
calculated sequentially (according to the order of precedence). To gain even more control
over your expressions, you can place parentheses inside one another; this is called nesting
parentheses, and VBA always evaluates the innermost set of parentheses first. Here are a
few sample expressions:

Expression First Step Second Step Third Step Result

3^(15/5)*2–5 3^3*2–5 27*2–5 54–5 49

3^((15/5)*2–5) 3^(3*2–5) 3^(6–5) 3^1 3

3^(15/(5*2–5)) 3^(15/(10–5)) 3^(15/5) 3^3 27

Notice that the order of precedence rules also hold within parentheses. For example, in the
expression (5*2–5), the term 5*2 is calculated before 5 is subtracted.

Using parentheses to determine the order of calculations gives you full control over VBA
expressions. This way, you can make sure that the answer given by an expression is the one
you want.

4

Chapter 4 Building VBA Expressions60

One of the most common mistakes when using parentheses in expressions is to forget to close a
parenthetic term with a right parenthesis. If you do this,VBA displays an Expected: ) message.
To make sure you’ve closed each parenthetic term, count all the left parentheses and count all the
right parentheses. If these totals don’t match, you know you’ve either left out a parenthesis or
included too many.

C A U T I O N

Working with Numeric Expressions
Numeric expressions are what I normally think of when I use the generic term “expres-
sion.” Whether it’s calculating gross margin, figuring out commissions, or determining the
monthly payment on a loan, many expressions perform some kind of number crunching.
You saw VBA’s arithmetic operators earlier in this chapter. This section adds to that by 
giving you a quick look at VBA’s built-in math and financial functions.

VBA’s Math Functions
The operands you use in your numeric expressions are usually numeric literals or variables
declared as one of VBA’s numeric data types. However, VBA also boasts quite a few built-in
math functions that your expressions can use as operands. These functions are outlined in
Table 4.5.



61Working with Numeric Expressions

Table 4.5 VBA’s Math Functions

Function What It Returns

Abs(number) The absolute value of number.

Atn(number) The arctangent of number.

Cos(number) The cosine of number.

Exp(number) e (the base of the natural logarithm) raised to the power of number.

Fix(number) The integer portion of number. If number is negative, Fix returns

the first negative integer greater than (that is, closer to 0) or equal
to number.

Hex(number) The hexadecimal value, as a Variant, of number.

Hex$(number) The hexadecimal value, as a String, of number.

Int(number) The integer portion of number. If number is negative, Int returns
the first negative integer less than (that is, further from 0) or equal
to number.

Log(number) The natural logarithm of number.

Oct(number) The octal value, as a Variant, of number.

Oct$(number) The octal value, as a String, of number.

Rnd(number) A random number between 0 and 1, as a Single. You use the
optional number as a “seed” value, as follows:
number What It Generates
Less than 0 The same number every time (varies with

number).
Equal to 0 The most recently generated number.
Greater than 0 The next random number in the sequence.

Sgn(number) The sign of number.

Sin(number) The sine of number.

Sqr(number) The square root of number.

Tan(number) The tangent of number.

4

The random numbers generated by Rnd are only pseudo-random. In other words, if you use the
same seed value, you get the same sequence of numbers. If you need truly random numbers, run
the Randomize statement just before using Rnd.This initializes the random number generator
with the current system time. Here’s an example:
Randomize
myRandomNumber = Rnd()

N
O

T
E



The need for random numbers comes up quite a bit in programming. However, instead of
random numbers between 0 and 1, you might need to generate numbers within a larger
range. Here’s the general formula to use to get Rnd to generate a random number between a
lower bound and an upper bound:

Int((upper - lower) * Rnd + lower)

For example, here’s some code that generates a random 8-digit integer:

Randomize
fileName = Int((99999999 - 10000000) * Rnd + 10000000)

VBA’s Financial Functions
VBA has quite a few financial functions that offer you powerful tools for building applica-
tions that manage both business and personal finances. You can use these functions to cal-
culate such things as the monthly payment for a loan, the future value of an annuity, or the
yearly depreciation of an asset.

Although VBA has a baker’s dozen financial functions that use many different arguments,
the following list covers the arguments you’ll use most frequently:

■ rate—The fixed rate of interest over the term of the loan or investment.

■ nper—The number of payments or deposit periods over the term of the loan or 
investment.

■ pmt—The periodic payment or deposit.

■ pv—The present value of the loan (the principal) or the initial deposit in an 
investment.

■ fv—The future value of the loan or investment.

■ type—The type of payment or deposit. Use 0 (the default) for end-of-period payments
or deposits and 1 for beginning-of-period payments or deposits.

For most financial functions, the following rules apply:

■ The underlying unit of both the interest rate and the period must be the same. For
example, if the rate is the annual interest rate, you must express nper in years.
Similarly, if you have a monthly interest rate, you must express nper in months.

■ You enter money you receive as a positive quantity, and you enter money you pay as a
negative quantity. For example, you always enter the loan principal as a positive num-
ber because it’s money you receive from the bank.

■ The nper argument should always be a positive integer quantity.

Table 4.6 lists all VBA’s financial functions.

4

Chapter 4 Building VBA Expressions62



63Working with String Expressions

Table 4.6 The Built-In Financial Functions in VBA

Function What It Returns

DDB(cost,salvage,life,period,factor) The depreciation of an asset over a specified 
period, using the double-declining balance
method.

FV(rate,nper,pmt,pv,type) The future value of an investment or loan.

IPmt(rate,per,nper,pv,fv,type) The interest payment for a specified period
of a loan.

IRR(values,guess) The internal rate of return for a series of
cash flows.

MIRR(values,finance_rate,reinvest_rate) The modified internal rate of return for a
series of periodic cash flows.

NPer(rate,pmt,pv,fv,type) The number of periods for an investment 
or loan.

NPV(rate,value1,value2...) The net present value of an investment 
based on a series of cash flows and a
discount rate.

Pmt(rate,nper,pv,fv,type) The periodic payment for a loan or 
investment.

PPmt(rate,per,nper,pv,fv,type) The principal payment for a specified
period of a loan.

PV(rate,nper,pmt,fv,type) The present value of an investment.

Rate(nper,pmt,pv,fv,type,guess) The periodic interest rate for a loan or
investment.

SLN(cost,salvage,life) The straight-line depreciation of an asset
over one period.

SYD(cost,salvage,life,period) Sum-of-years’ digits depreciation of an asset
over a specified period.

Working with String Expressions
A string expression is an expression that returns a value that has a String data type. String
expressions can use as operands string literals (one or more characters enclosed in double
quotation marks), variables declared as String, or any of VBA’s built-in functions that
return a String value. Table 4.7 summarizes most of the VBA functions that deal with
strings.

4



Table 4.7 VBA’s String Functions

Function What It Returns

Asc(string) The ANSI character code of the first letter in string.

Chr(charcode) The character, as a Variant, that corresponds to the
ANSI code given by charcode.

Chr$(charcode) The character, as a String, that corresponds to the
ANSI code given by charcode.

CStr(expression) Converts expression to a String value.

Format(expression, format) The expression, as a Variant, in the specified
format.

Format$(expression, format) The expression, as a String, in the specified 
format.

FormatCurrency(expression) The expression formatted as currency.

FormatDateTime(expression) The expression formatted as a date or time.

FormatPercent(expression) The expression formatted as a percentage.

FormatCurrency(expression) The expression formatted as currency.

InStr(start,string1,string2) The character position of the first occurrence of 
string2 in string1, starting at start.

InStrRev(string1,string2, start) The character position of the final occurrence of
string2 in string1, starting at start.

LCase(string) string converted to lowercase, as a Variant.

LCase$(string) string converted to lowercase, as a String.

Left(string,length) The leftmost length characters from string, as
a Variant.

Left$(string,length) The leftmost length characters from string, as a
String.

Len(string) The number of characters in string.

LTrim(string) A string, as a Variant, without the leading spaces in
string.

LTrim$(string) A string, as a String, without the leading spaces
in string.

Mid(string,start,length) length characters, as a Variant, from string
beginning at start.

Mid$(string,start,length) length characters, as a String, from string
beginning at start.

Replace(expression,find,replace) The expression with every instance of find
replaced by replace.

4

Chapter 4 Building VBA Expressions64



65Working with String Expressions

Function What It Returns

Right(string) The rightmost length characters from string,
as a Variant.

Right$(string) The rightmost length characters from string,
as a String.

RTrim(string) A string, as a Variant, without the trailing spaces
in string.

RTrim$(string) A string, as a String, without the trailing spaces
in string.

Trim(string) A string, as a Variant, without the leading and
trailing spaces in string.

Trim$(string) A string, as a String, without the leading and trailing
spaces in string.

Space(number) A string, as a Variant, with number spaces.

Space$(number) A string, as a String, with number spaces.

Str(number) The string representation, as a Variant, of number.

Str$(number) The string representation, as a String, of number.

StrComp(string2,string2,compare) A value indicating the result of comparing string1
and string2.

StrConv(string, conversion) The string converted into another format, as speci-
fied by conversion (such as vbUpperCase,
vbLowerCase, and vbProperCase).

String(number,character) character, as a Variant, repeated number times.

String$(number,character) character, as a String, repeated number times.

UCase(string) string converted to uppercase, as a Variant.

UCase$(string) string converted to uppercase, as a String.

Val(string) All the numbers contained in string, up to the first
nonnumeric character.

Listing 4.3 shows a procedure that uses some of these string functions.

Listing 4.3 A Procedure That Uses a Few String Functions

Function ExtractLastName(fullName As String) As String
Dim spacePos As Integer
spacePos = InStr(fullName, “ “)
ExtractLastName = Mid$(fullName, _

spacePos + 1, _
Len(fullName) - spacePos)

End Function

4

continues



Listing 4.3 Continued

Sub TestIt()
MsgBox ExtractLastName(“Millicent Peeved”)

End Sub

4

Chapter 4 Building VBA Expressions66

Note the use of the underscore (_) in Listing 4.3.This is VBA’s code continuation character—it’s use-
ful for breaking up long statements into multiple lines for easier reading. One caveat, though: Make
sure you add a space before the underscore or VBA will generate an error.

N
O

T
E

The purpose of this procedure is to take a name (first and last, separated by a space, as
shown in the TestIt procedure) and extract the last name. The full name is brought into
the function as the fullName argument. After declaring an Integer variable named
spacePos, the procedure uses the InStr function to check fullName and find out the posi-
tion of the space that separates the first and last names. The result is stored in spacePos:

spacePos = InStr(fullName, “ “)

The real meat of the function is provided by the Mid$ string function, which uses the fol-
lowing syntax to extract a substring from a larger string:

Mid$(string,start,length)

string The string from which you want to extract the characters. In the
ExtractLastName function, this parameter is the fullName variable.

start The starting point of the string you want to extract. In
ExtractLastName, this parameter is the position of the space, plus 1 (in
other words, spacePos + 1).

length The length of the string you want to extract. In the ExtractLastName
function, this is the length of the full string—Len(fullName)—minus
the position of the space.

Working with Logical Expressions
A logical expression is an expression that returns a Boolean result. A Boolean value is
almost always either True or False, but VBA also recognizes some Boolean equivalents:

■ A False result can be used in an expression as though it were 0. Similarly, you can use
0 in a logical expression as though it were False.

■ A True result can be used in an expression as though it were –1. However, any nonzero
value can be used in a logical expression as though it were True.



67Working with Logical Expressions

In Chapter 6, “Controlling Your VBA Code,” I’ll show you various VBA statements that let
your procedures make decisions and loop through sections of code. In most cases, the
mechanism that controls these statements will be a logical expression. For example, if x is a
logical expression, you can tell VBA to run one set of statements if x returns True and a dif-
ferent set of statements if x returns False.

You’ll see that these are powerful constructs, and they’ll prove invaluable in all your VBA
projects. To help you prepare, let’s take a closer look at VBA’s logical operators.

The And Operator
You use the And operator when you want to test two Boolean operands to see whether
they’re both true. For example, consider the following generic expression (where Expr1 and
Expr2 are Boolean values):

Expr1 And Expr2

■ If both Expr1 and Expr2 are true, this expression returns True.

■ If either or both Expr1 and Expr2 are false, the expression returns False.

The Or Operator
You use the Or operator when you want to test two Boolean operands to see whether one of
them is true:

Expr1 Or Expr2

■ If either or both Expr1 and Expr2 are true, this expression returns True.

■ If both Expr1 and Expr2 are false, the expression returns False.

The Xor Operator
Xor is the exclusive Or operator. It’s useful when you need to know whether two operands
have the opposite value:

Expr1 Xor Expr2

■ If one of the values is true and the other is false, the expression returns True.

■ If Expr1 and Expr2 are both true or are both false, the expression returns False.

The Not Operator
The Not operator is the logical equivalent of the negation operator. In this case, Not returns
the opposite value of an operand. For example, if Expr is true, Not Expr returns False.

4



Working with Date Expressions
A date expression is an expression that returns a Date value. For operands in date expressions,
you can use either a variable declared as Date or a date literal. For the latter, you enclose
the date in pound signs, like so:

dateVar = #8/23/2007#

When working with dates, it helps to remember that VBA works with dates internally as
serial numbers. Specifically, VBA uses December 31, 1899 as an arbitrary starting point and
then represents subsequent dates as the number of days that have passed since then. So, for
example, the date serial number for January 1, 1900 is 1, January 2, 1900 is 2, and so on.
Table 4.8 displays some sample date serial numbers.

Table 4.8 Examples of Date Serial Numbers

Serial Number Date

366 December 31, 1900

16229 June 6, 1944

39317 August 23, 2007

Similarly, VBA also uses serial numbers to represent times internally. In this case, though,
VBA expresses time as a fraction of the 24-hour day to get a number between 0 and 1. The
starting point, midnight, is given the value 0, noon is 0.5, and so on. Table 4.9 displays
some sample time serial numbers.

Table 4.9 Examples of Time Serial Numbers

Serial Number Time

0.25 6:00:00 AM

0.375 9:00:00 AM

0.70833 5:00:00 PM

.99999 11:59:59 PM

You can combine the two types of serial numbers. For example, 39317.5 represents 12 noon
on August 23, 2007.

The advantage of using serial numbers in this way is that it makes calculations involving
dates and times very easy. Because a date or time is really just a number, any mathematical
operation you can perform on a number can also be performed on a date. This is invaluable
for procedures that track delivery times, monitor accounts receivable or accounts payable
aging, calculate invoice discount dates, and so on.

VBA also comes equipped with quite a few date and time functions. Table 4.10 summarizes
them all.

4

Chapter 4 Building VBA Expressions68



69Working with Date Expressions

Table 4.10 VBA’s Date and Time Functions

Function Returns

CDate(expression) Converts expression into a Date value.

Date The current system date, as a Variant.

Date$() The current system date, as a String.

DateAdd(interval,number,date) A Date value derived by adding the specified number
of intervals (days, months, years, and so on)
to date.

DateDiff(interval,date1,date2) A numeric value that represents the number of 
intervals (days, months, years, and so on) between
date1 and date2. 

DatePart(interval,date) A numeric value that corresponds to the part of 
date specified by interval (the day, month, year,
and so on).

DateSerial(year,month,day) A Date value for the specified year, month, and day.

DateValue(date) A Date value for the date string.

Day(date) The day of the month given by date.

Hour(time) The hour component of time.

Minute(time) The minute component of time.

Month(date) The month component of date.

MonthName(month) The name of the month.

Now The current system date and time.

Second(time) The second component of time.

Time The current system time, as a Variant.

Time$ The current system time, as a String.

Timer The number of seconds since midnight.

TimeSerial(hour,minute,second) A Date value for the specified hour, minute, 
and second.

TimeValue(time) A Date value for the time string.

Weekday(date) The day of the week, as a number, given by date.

WeekdayName(weekday) The name of the weekday.

Year(date) The year component of date.

Listing 4.4 shows a couple of procedures that take advantage of a few of these date 
functions.

4



Listing 4.4 A Function Procedure That Uses Various Date Functions to Calculate a Person’s Age

Function CalculateAge(birthDate As Date) As Byte
Dim birthdayNotPassed As Boolean
birthdayNotPassed = CDate(Month(birthDate) & “/” & _

Day(birthDate) & “/” & _
Year(Now)) > Now

CalculateAge = Year(Now) - Year(birthDate) + birthdayNotPassed
End Function
‘
‘ Use this procedure to test CalculateAge.
‘
Sub TestIt2()

MsgBox CalculateAge(#8/23/59#)
End Sub

The purpose of the CalculateAge function is to figure out a person’s age given the date of
birth (as passed to CalculateAge through the Date variable named birthDate). You might
think the following formula would do the job:

Year(Now) - Year(birthDate)

This works, but only if the person’s birthday has already passed this year. If the person
hasn’t had his or her birthday yet, this formula reports the person’s age as being one year
greater than it really is.

To solve this problem, you need to take into account whether or not the person’s birthday
has occurred. To do this, CalculateAge first declares a Boolean variable birthdayNotPassed
and then uses the following expression to test whether or not the person has celebrated his
or her birthday this year:
CDate(Month(birthDate) & “/” & Day(birthDate) & “/” & Year(Now)) > Now

This expression uses the Month, Day, and Year functions to construct the date of the person’s
birthday this year, and uses the CDate function to convert this string into a date. The
expression then checks to see whether this date is greater than today’s date (as given by the
Now function). If it is, the person hasn’t celebrated his or her birthday, so birthdayNotPassed
is set to True; otherwise, birthdayNotPassed is set to False.

The key is that to VBA a True value is equivalent to -1, and a False value is equivalent to 0.
Therefore, to calculate the person’s correct age, you need only add the value of
birthdayNotPassed to the expression Year(Now) - Year(birthDate).

From Here
■ Objects will play a big part in your expressions. For example, you’ll use expressions to

set the values of object properties. See Chapter 5, “Working with Objects,” p. 71.

■ To put your newfound knowledge of logical expressions to good use, see “Code That
Makes Decisions,” p. 91.

■ For a complete list of VBA functions, see “VBA Functions,” p. 361.

4

Chapter 4 Building VBA Expressions70



I N  T H I S  C H A P T E R

Working with Objects

5Many of your VBA procedures will perform calcu-
lations using simple combinations of numbers,
operators, and the host application’s built-in func-
tions. You’ll probably find, however, that most of
your code manipulates the application environment
in some way, whether it’s formatting document text,
entering data in a worksheet range, or setting appli-
cation options. Each of these items—the document,
the range, the application—is called an object in
VBA. Objects are perhaps the most crucial concept
in VBA programming, and I’ll explain them in
detail in this chapter.

What Is an Object?
The dictionary definition of an object is “anything
perceptible by one or more of the senses, especially
something that can be seen and felt.” Now, of
course, you can’t feel anything in an Office applica-
tion, but you can see all kinds of things. To VBA, an
object is anything in an application that you can see
and manipulate in some way.

For example, a paragraph in a Word document is
something you can see, and you can manipulate it
by inserting text, changing the style, setting the
font, and so on. A paragraph, therefore, is an object.

What isn’t an object? The Office programs are so
customizable that most things you can see qualify as
objects, but not everything does. For example, the
Maximize and Minimize buttons in document win-
dows aren’t objects. Yes, you can operate them, but
you can’t change them. Instead, the window itself is
the object, and you manipulate it so that it’s maxi-
mized or minimized.

What Is an Object?  . . . . . . . . . . . . . . . . . . . . . . .71

The Object Hierarchy  . . . . . . . . . . . . . . . . . . . . .73

Working with Object Properties  . . . . . . . . . . .73

Working with Object Methods  . . . . . . . . . . . . .75

Handling Object Events . . . . . . . . . . . . . . . . . . .77

Working with Object Collections  . . . . . . . . . . .78

Assigning an Object to a Variable  . . . . . . . . . .79

The Is Operator . . . . . . . . . . . . . . . . . . . . . . . . .80

Working with Multiple Properties or 
Methods  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

Example: The Application Object  . . . . . . .81

Example: The Window Object  . . . . . . . . . . . . .88



You can manipulate objects in VBA in any of the following three ways:

■ You can make changes to the object’s properties.

■ You can make the object perform a task by activating a method associated with the
object.

■ You can define a procedure that runs whenever a particular event happens to the object.

To help you understand properties, methods, events, and objects, I’ll put things in real-
world terms. First, let’s consider a simple analogy using a car. A car is an object, to be sure,
but what does it mean to say that it has its own “properties, methods, and events”? 
Let’s see:

■ The car’s “properties” would be its physical characteristics: its model, color, engine
size, and so on.

■ The car’s “methods” define what you can do with the car: accelerate, brake, turn, and
so on.

■ The car’s “events” are the actions that happen to the car that generate an automatic
response from the car. For example, on most modern cars, if you exit the vehicle with
the key still in the ignition (the event), a warning bell will sound (the response).

Let’s run through a more detailed example. Specifically, let’s look at your computer as
though it were an object. For starters, you can think of your computer in one of two ways:
as a single object or as a collection of objects (such as the monitor, the keyboard, the system
unit, and so on).

If you wanted to describe your computer as a whole, you would mention things such as the
name of the manufacturer, the price, the color, and so on. Each of these items is a property
of the computer. You also can use your computer to perform tasks, such as writing letters,
crunching numbers, and playing games. These are the methods associated with your com-
puter. There are also a number of things that happen to the computer that cause it to
respond in predefined ways. For example, when you press the On button, the computer
runs through its Power On Self-Test, initializes its components, and so on. The actions to
which the computer responds automatically are its events.

The sum total of all these properties, methods, and events gives you an overall description
of your computer.

But your computer is also a collection of objects, each with its own properties, methods,
and events. The DVD drive, for example, has various properties, including its speed and
data rate. Its methods would be actions such as inserting and ejecting a disc. A DVD drive
event might be the insertion of a disc that contains a file that causes the disc’s program to
run automatically.

5

Chapter 5 Working with Objects72



73Working with Object Properties

In the end, you have a complete description of the computer: what its distinguishing fea-
tures are (its properties), how you interact with it (its methods), and to what actions it
responds (its events).

The Object Hierarchy
As you’ve seen, your computer’s objects are arranged in a hierarchy with the most general
object (the computer as a whole) at the top. Lower levels progress through more specific
objects (such as the system unit, the motherboard, and the processor).

Each Office application’s objects are arranged in a hierarchy also. The most general
object—the Application object—refers to the program itself. In Word, for example, the
Application object contains more than 30 objects, including the Documents object (the col-
lection of all open documents, each one being a Document object), the Options object (the
settings available in the Options dialog box), and the RecentFiles object (the names of the
files that have been used most recently).

Many of these objects have objects beneath them in the hierarchy. A Document object, for
example, contains objects that represent the document’s characters, words, sentences, para-
graphs, bookmarks, and much more. Similarly, a Paragraph object contains objects for the
paragraph format and the tab stops.

To specify an object in the hierarchy, you usually start with the uppermost object and add
the lower objects, separated by periods. For example, here’s one way you could refer to the
first word in the second paragraph in a document named Memo.doc:

Application.Documents(“Memo.doc”).Paragraphs(2).Range.Words(1)

As you’ll see, there are ways to shorten such long-winded “hierarchical paths.”

Working with Object Properties
Every object has a defining set of characteristics. These characteristics are called the
object’s properties, and they control the appearance and position of the object. For example,
each Window object has a WindowState property you can use to display a window as maxi-
mized, minimized, or normal. Similarly, a Word Document object has a Name property to
hold the filename, a Saved property that tells you whether or not the document has
changed since the last save, a Type property to hold the document type (regular or tem-
plate), and many more.

When you refer to a property, you use the following syntax:

Object.Property

For example, the following expression refers to the ActiveWindow property of the
Application object:

Application.ActiveWindow

5



One of the most confusing aspects of objects and properties is that some properties do 
double-duty as objects. Figure 5.1 uses an Excel example to illustrate this. The Application
object has an ActiveWindow property that tells you the name of the active window.
However, ActiveWindow is also a Window object. Similarly, the Window object has an
ActiveCell property that specifies the active cell, but ActiveCell is also a Range object.
Finally, a Range object has a Font property, but a font is also an object with its own proper-
ties (Italic, Name, Size, and so on).

5

Chapter 5 Working with Objects74

You’ll come across the word “active” quite often in your VBA travels, so let’s make sure you know
what it means. In the VBA world, active describes the item with which you’re currently working. In
Word, for example, the document you’re currently using is the active document. Similarly, in Excel
the worksheet cell that you’re editing or formatting is the active cell. In programming lingo, the
active item is said to have the focus.

N
O

T
E

Figure 5.1
Some Excel proper-
ties also can be
objects.

In other words, lower-level objects in the object hierarchy are really just properties of their
parent objects. This idea will often help you to reduce the length of a hierarchical path
(and thus reduce the abuse your typing fingers must bear). For example, consider the fol-
lowing object path:

Application.ActiveWindow.ActiveCell.Font.Italic

Here, an object such as ActiveCell implicitly refers to the ActiveWindow and Application
objects, so you can knock the path down to size, as follows:

ActiveCell.Font.Italic



75Working with Object Methods

Setting the Value of a Property
To set a property to a certain value, you use the following syntax:

Object.Property=value

Here, value is an expression that returns the value to which you want to set the property.
As such, it can be any of VBA’s recognized data types, including the following:

■ A numeric value—For example, the following statement sets the size of the font in
the active cell to 14:
ActiveCell.Font.Size = 14

■ A string value—The following example sets the font name in the active cell to Times
New Roman:
ActiveCell.Font.Name = “Times New Roman”

■ A logical value (in other words, True or False)—The following statement turns on the
Italic property in the active cell:

ActiveCell.Font.Italic = True

Returning the Value of a Property
Sometimes you need to know a property’s current setting before changing the property or
performing some other action. You can find out a property’s current value by using the fol-
lowing syntax:

variable = Object.Property

Here, variable is a variable or another property. For example, the following statement
stores the contents of the active cell in a variable named cellContents:

cellContents = ActiveCell.Value

Working with Object Methods
An object’s properties describe what the object is, whereas its methods describe what you can
do with the object. For example, in Word you can spell check a Document object by using
the CheckSpelling method. Similarly, you can sort a Table object by using the Sort

method.

How you refer to a method depends on whether or not the method uses any arguments. If
it doesn’t, the syntax is similar to that of properties:

Object.Method

For example, the following statement saves the active document:

ActiveDocument.Save

If the method requires arguments, you use the following syntax:

Object.Method (argument1, argument2, ...)

5



For example, Word’s Document object has a Close method that you can use to close a docu-
ment programmatically. Here’s the syntax:

Object.Close(SaveChanges, OriginalFormat, RouteDocument)

Object The Document object you want to work with.

SaveChanges A constant that specifies whether or not the file is saved
before closing.

OriginalFormat A constant that specifies whether or not the file is saved in its
original format.

RouteDocument A True or False value that specifies whether or not the docu-
ment is routed to the next recipient.

For example, the following statement prompts the user to save changes, saves the changes
(if applicable) in the original file format, and routes the document to the next recipient:

ActiveDocument.Close wdPromptToSaveChanges, wdOriginalFormat, True

5

Chapter 5 Working with Objects76

Technically, the parentheses around the argument list are necessary only if you’ll be storing the
result of the method in a variable or object property:

variable = Object.Method (argument1, argument2, ...)
N

O
T

E

For many VBA methods, not all the arguments are required. For the Close method, for example,
only the SaveChanges argument is required.Throughout this book, I differentiate between
required and optional arguments by displaying the required arguments in bold type.

To skip a non-required argument (and thus use its default value), leave it blank, although you still
need to enter all the commas that separate the arguments. For example, to exclude the
OriginalFormat argument in the Close method, you use a statement like this:

ActiveDocument.Close wdPromptToSaveChanges, , True

N
O

T
E

To make your methods clearer to read, you can use VBA’s predefined named arguments. For
example, the syntax of the Close method has three named arguments: SaveChanges,
OriginalFormat, and RouteDocument. Here’s how you would use them in the preceding
example:

ActiveDocument.Close SaveChanges:=wdPromptToSaveChanges, _
OrignalFormat:=wdOriginalFormat, _
RouteDocument:=True

Notice how the := operator assigns values to the named arguments.



77Handling Object Events

Named arguments make your code easier read, but they also bring two other advantages to
the table:

■ You can enter the arguments in any order you like.

■ You can ignore any arguments you don’t need (except arguments that are required by
the method, of course).

5

Handling Object Events
In simplest terms, an event is something that happens to an object. For example, the open-
ing of an Excel workbook would be an event for that workbook. Don’t confuse a method
with an event, however. Yes, Word has an Open method that you can use to open a docu-
ment, but this method only initiates the procedure; the actual process of the file being
opened is the event. Note, too, that events can happen either programmatically (if the
appropriate method is included in your code, such as Documents.Open) or by user interven-
tion (if a command is selected, such as Office, Open).

In VBA, the event itself isn’t as important as how your procedures respond to the event. In
other words, you can write special procedures called event handlers that run every time a
particular event occurs. In a Word document, for example, you can specify event handlers
for both opening the file and closing the file. (Excel’s Workbook object has an even larger list
of events, including not just opening the file, but also activating the workbook window, sav-
ing the file, inserting a new worksheet, closing the file, and much more.)

For example, Figure 5.2 shows a module window for a document. (Specifically, it’s the
module window for the project’s ThisDocument object.) Notice that the module window has
two drop-down lists just below the title bar:

■ Object list—This is the list on the left and it tells you what kind of object you’re
working with. If you select (General) in this list, you can use the module window to
enter standard VBA procedures and functions. If you select an object from this list,
however, you can enter event handlers for the object.

■ Procedure list—This is the list on the right and it tells you which procedure is active
in the module. If you select (General) in the Object list, the Procedure list contains all
the standard VBA procedures and functions in the module. If you select an object in
the Object list, however, the Procedure list changes to show all the events recognized
by the object.

How did I know to use the constants wdPromptToSaveChanges and wdOriginalFormat in
the Close method example? They’re all listed in the VBA Help system.To see them, type the
method name in a module and then press F1.The Visual Basic Editor launches the Help system and
displays the Help topic for the method.

T
IP



In Figure 5.2, I’ve selected Document in the Object list, so the Procedure list contains all
the events recognized by the Document object. For the Open event, I’ve inserted a MsgBox
statement into the Document_Open event handler. This statement will display a message each
time the document is opened.

➔ To learn how the MsgBox function works, see “Getting Input Using MsgBox,” p. 45.

Working with Object Collections
A collection is a set of similar objects. For example, Word’s Documents collection is the set of
all the open Document objects. Similarly, the Paragraphs collection is the set of all Paragraph
objects in a document. Collections are objects, too, so they have their own properties and
methods, and you can use these properties and methods to manipulate one or more objects
in the collection.

The members of a collection are called the elements of the collection. You can refer to indi-
vidual elements by either the object’s name or an index. For example, the following state-
ment closes a document named Budget.doc:

Documents(“Budget.doc”).Close

On the other hand, if the Budget.doc document was the first document opened in the cur-
rent Word session, then you could also use its index value in the following statement to
close the document:

Documents(1).Close

If you don’t specify an element, VBA assumes you want to work with the entire collection.

5

Chapter 5 Working with Objects78

Procedure listObject list

Figure 5.2
An example of an
event procedure.
Here, this procedure
runs each time the
document is opened.

It’s important to understand that you often can’t refer to objects by themselves. Instead, you must
refer to the object as an element in a collection. For example, when referring to the Budget.doc
document, you can’t just use Budget.doc.You have to use Documents(“Budget.doc”) or
Documents(1) (or whatever the correct index is) so that VBA knows you’re talking about a cur-
rently open document.

N
O

T
E



79Assigning an Object to a Variable

Assigning an Object to a Variable
As I mentioned at the end of Chapter 3, “Understanding Program Variables,” objects have
their own data types. You can declare a variable as an object by using the following form of
the Dim statement:

Dim variableName As ObjectType

Here, ObjectType is the data type of the object you want to work with. For example, if you
want to work with a Document object, you’d use a Dim statement similar to this:

Dim currentDocument As Document

It’s a good idea to use object variables whenever you can because it enables you to use the
Visual Basic Editor’s handy IntelliSense features that I described in detail in Chapter 1 (see
“Taking Advantage of IntelliSense”). Using the preceding example, if I type
currentDocument and then a period (.), VBA displays a list of all the properties and methods
associated with that object, as shown in Figure 5.3.

5

In the list, the items that have the green blocks with motion lines are the methods, whereas the
items that have the rectangles with a pointing finger are the properties.N

O
T

E

After you’ve set up your object variable, you can assign an object to it by using the Set
statement. Set has the following syntax:

Set variableName = ObjectName

variableName The name of the variable.

ObjectName The object you want to assign to the variable.

For example, the following statements declare a variable named budgetSheet to be a
Worksheet object and then assign it to the 2008 Budget worksheet in the Budget.xls work-
book:

Dim budgetSheet As Worksheet
Set budgetSheet = Workbooks(“Budget.xls”).Worksheets(“2008 Budget”)

Figure 5.3
Using specific object
variable types saves you
time because VBA dis-
plays a list of the avail-
able properties and
methods for the object.



The Is Operator
When you looked at comparison operators in the last chapter, the operands you used were
simple numbers and strings. Indeed, most of the comparison operators don’t make sense in the
context of objects (for example, it’s absurd to think of one object being “greater than” another).
However, VBA does have a comparison operator specifically for objects—the Is operator:

result = Object1 Is Object2

Here, Object1 and Object2 are objects or Object variables. If they’re the same object,
result takes the value True; otherwise, result is False.

Working with Multiple Properties or Methods
Because most objects have many different properties and methods, you’ll often need to per-
form multiple actions on a single object. This is accomplished easily with multiple state-
ments that set the appropriate properties or run the necessary methods. However, this can
be a pain if you have a long object name.

For example, take a look at the FormatParagraph procedure shown in Listing 5.1. This pro-
cedure uses six statements to format a paragraph. Note that the Paragraph object name—
ThisDocument.Paragraphs(1)—is quite long and is repeated in all six statements.

Listing 5.1 A Procedure That Formats a Range

Sub FormatParagraph()
ThisDocument.Paragraphs(1).Style = “Heading 1”
ThisDocument.Paragraphs(1).Alignment = wdAlignParagraphCenter
ThisDocument.Paragraphs(1).Range.Font.Size = 16
ThisDocument.Paragraphs(1).Range.Font.Bold = True
ThisDocument.Paragraphs(1).Range.Font.Color = RGB(255, 0, 0) ‘ Red
ThisDocument.Paragraphs(1).Range.Font.Name = “Times New Roman”

End Sub

5

Chapter 5 Working with Objects80

Object variables take up memory. For optimum code performance, you can reclaim the memory
used by unneeded object variables by setting the variable equal to Nothing, like so:

Set budgetSheet = Nothing
N

O
T

E

When you want to specify colors in VBA, use the RGB function:
RGB(red, green, blue)

red An integer value between 0 and 255 that represents the red component of the color.

green An integer value between 0 and 255 that represents the green component of the color.

blue An integer value between 0 and 255 that represents the blue component of the color.

N
O

T
E



81Example:The Application Object

To shorten this procedure, VBA provides the With statement. Here’s the syntax:

With object
[statements]

End With

object The name of the object.

statements The statements you want to execute on object.

The idea is that you strip out the common object and place it on the With line. Then all the
statements between With and End With need only reference a specific method or property
of that object. In the FormatParagraph procedure, the common object in all six statements is
ThisDocument.Paragraphs(1). Listing 5.2 shows the FormatParagraph2 procedure, which
uses the With statement to strip out this common object and make the previous macro more
efficient.

Listing 5.2 A More Efficient Version of FormatParagraph()

Sub FormatParagraph2()
With ThisDocument.Paragraphs(1)

.Style = “Heading 1”

.Alignment = wdAlignParagraphCenter

.Range.Font.Size = 16

.Range.Font.Bold = True

.Range.Font.Color = RGB(255, 0, 0) ‘ Red

.Range.Font.Name = “Times New Roman”
End With

End Sub

5

You can make the FormatParagraph2 procedure even more efficient when you realize that the
Font object also is repeated several times. In this case, you can nest another With statement
inside the original one.The new With statement would look like this:

With .Range.Font

.Size = 16

.Bold = True

.Color = RGB(255, 0, 0)

.Name = “Times New Roman”
End With

N
O

T
E

Example: The Application Object
You’ll be seeing plenty of objects when you turn your attention to the Microsoft Office
programs in Part 2, “Putting VBA to Work.” For now, though, let’s take a look at an object
that is common to all programs: the Application object. The Application object refers to
the application as a whole; therefore, it acts as a container for all the program’s objects.
However, the Application object does have a few useful properties and methods of its own,
and many of these members are applicable to all the Office applications.



The next few sections take you through examples of some of the most useful Application
object properties and methods.

Displaying a Message in the Status Bar
Most applications have a status bar at the bottom of the screen that’s used for displaying
messages and indicating the progress of the current operation. For Word and Excel, you
can use the Application object’s StatusBar property to display text messages in the status
bar at the bottom of the screen. This gives you an easy way to keep the user informed
about what a procedure is doing or how much is left to process.

Listing 5.3 demonstrates the StatusBar property 

Listing 5.3 A Procedure That Displays a Message in the Status Bar

Sub StatusBarProperty()
ActiveDocument.Save
Application.StatusBar = ActiveDocument.Name & “ was saved.”

End Sub

This procedure saves the active document and then uses the StatusBar property to display
a message telling the user that the document (specified with the Name property) was saved.

5

Chapter 5 Working with Objects82

To clear any messages from the status bar, set the StatusBar property to the null string (“”):
Application.StatusBar = “”T

IP

Changing the Title Bar Caption
The Application object’s Caption property returns or sets the name that appears in the title
bar of the main application window. In Excel, for example, to change the title bar caption
from “Microsoft Excel” to “ACME Coyote Supplies,” you would use the following statement:

Application.Caption = “ACME Coyote Supplies”

To reset the title bar to the default application name, set the Caption property to the null 
string (“”):

Application.Caption = “”

T
IP

Working with the Application Window
The application’s window contains the interface elements such as the Ribbon and the status
bar, as well as an area for displaying a document. In Word, PowerPoint, and Access the
application window can have multiple instances (one for each open document, presenta-
tion, or database), whereas in Excel there is always just one application window (possibly
with multiple open workbooks). You can wield seven Application object properties to con-
trol the application window:



83Example:The Application Object

■ Application.Height—Returns or sets the height, in points, of the application window.

■ Application.Left—Returns or sets the distance, in points, of the left edge of the appli-
cation window from the left edge of the screen.

■ Application.Top—Returns or sets the distance, in points, of the top of the application
window from the top of the screen.

■ Application.UsableHeight—The maximum height, in points, that a window can
occupy within the application’s window. In other words, this is the height of the appli-
cation window less the vertical space taken up by the title bar, menu bar, toolbars, sta-
tus bar, and so on.

■ Application.UsableWidth—The maximum width, in points, that a window can occupy
within the application’s window. This is the width of the application window less the
horizontal space taken up by items such as the vertical scroll bar.

■ Application.Width—Returns or sets the width, in points, of the application window.

■ Application.WindowState—Returns or sets the state of the main application window.
This property is controlled via three built-in constants that vary between applications:

Window State Excel Word PowerPoint

Maximized xlMaximized wdWindowStateMaximize ppWindowMaximized

Minimized xlMinimized wdWindowStateMinimize ppWindowMinimized

Normal xlNormal wdWindowStateNormal ppWindowNormal

Accessing an Application’s Built-In Dialog Boxes
Many VBA methods are known as dialog box equivalents because they let you select the same
options that are available in an application’s built-in dialog boxes. Using dialog box equiva-
lents works fine if your procedure knows which options to select, but there are times when
you might want the user to specify some of the dialog box options.

For example, if your procedure prints a document (using the Application object’s PrintOut
method), you might need to know how many copies the user wants or how many pages to
print. You could use the InputBox method to get this data, but it’s usually easier to just dis-
play the Print dialog box.

The Application object has a Dialogs property, which represents the collection of all the
built-in dialog boxes, each of which is a Dialog object. Note that these objects are imple-
mented only in Word and Excel.

To reference a particular dialog box, use one of the predefined application constants. Table
5.1 lists a few of the more common ones from Word and Excel.

5



Table 5.1 Some Word and Excel Built-in Dialog Box Constants

Word Constant Excel Constant Dialog Box

wdDialogFormatFont xlDialogFont Font

wdDialogFileNew xlDialogNew New

wdDialogFileOpen xlDialogOpen Open

wdDialogFilePageSetup xlDialogPageSetup Page Setup

wdDialogEditPasteSpecial xlDialogPasteSpecial Paste Special

wdDialogFilePrint xlDialogPrint Print

wdDialogFilePrintSetup xlDialogPrinterSetup Printer Setup

wdDialogFileSaveAs xlDialogSaveAs Save As

wdDialogInsertObject xlDialogObject Object

wdDialogFormatStyle xlDialogStyle Style

wdDialogTableSort xlDialogSort Sort

5

Chapter 5 Working with Objects84

To see a complete list of constants for Word and Excel’s built-in dialog boxes, first open the Object
Browser by selecting View, Object Browser (or by pressing F2). In the list of libraries, select the
application (such as Excel or Word), and highlight <globals> in the Classes list. In the Member list,
look for the xxDialog constants, where xx varies between applications:wdDialog for Word and
xlDialog for Excel.

N
O

T
E

The Object Browser is a handy tool that shows you the objects available for your procedures as well
as the properties, methods, and events for each object.To display the Object Browser in the Visual
Basic Editor, select View, Object Browser (you can also press F2). In the Object Browser dialog box
that appears, use the Classes list to select the object you want to see and its properties, methods,
and events appear in the Members list on the right.

N
O

T
E

To display any of these dialog boxes, use the Dialog object’s Show method. For example, the
following statement displays Excel’s Print dialog box:

Application.Dialogs(xlDialogPrint).Show



85Example:The Application Object

If the user clicks Cancel to exit the dialog box, the Show method returns False. This means
that you can use Show inside an If statement to determine what the user did:

➔ To get the details on the If statement, see “Using If...Then to Make True/False Decisions,” p. 92.

If Not Application.Dialogs(xlDialogPrint).Show Then
MsgBox “File was not printed”

End If

Note, too, that the Show method can take arguments. For example, Word’s Show method
uses the following syntax:

Dialog.Show(Timeout)

Dialog The Dialog object you want to show.

Timeout The time, in thousandths of a second, after which the dialog box is
dismissed. (Changes made by the user are accepted.)

For example, the following statement shows the Font dialog box, and then dismisses it after
approximately 10 seconds:

Application.Dialogs(wdDialogFormatFont).Show 10000

Here’s the syntax for Excel’s Show method:

Dialog.Show(Arg1, Arg2....)

Dialog The Dialog object you want to show.

Arg1, Arg2,… These arguments represent specific controls in the dialog box, and
they enable you to set the value of the controls in advance.

For example, here’s the syntax for Excel’s Font dialog box:

Application.Dialogs(xlDialogFont).Show name_text, size_num

Here, name_text and size_num represent the Face and Size controls, respectively, in the
Font dialog box. The following statement shows Excel’s Font dialog box, and it sets the
Face list to Garamond and the Size list to 16:

Application.Dialogs(xlDialogFont).Show “Garamond”, 16

To do the same thing in Word, you use the predefined argument names as though they
were properties of the specified Dialog object. For example, you use Font to return or set
the Font control value in the Font dialog box:

With Dialogs(wdDialogFormatFont)
.Font = “Garamond”
.Show

End With

5



Word’s Dialog object is much more flexible and powerful than Excel’s in that it supports
extra properties and methods. For example, the DefaultTab property enables you to specify
which dialog box tab has the focus when you display a dialog box. Here’s an example that
displays the Layout tab in the Page Layout dialog box:

With Application.Dialogs(wdDialogFilePageSetup)
.DefaultTab = wdDialogFilePageSetupTabLayout
.Show

End With

Word’s Dialog object also has a Display method that uses a syntax similar to that of the
Show method:

Dialog.Display(Timeout)

Dialog The Dialog object you want to show.

Timeout The time, in thousandths of a second, after which the dialog box is
dismissed.

The difference is that if you specify a Timeout value, Word does not accept the user’s
changes when the dialog box is dismissed after the specified time.

Another useful Dialog object method is Execute, which runs the dialog box without show-
ing it to the user. Listing 5.4 shows an example.

Listing 5.4 A Function Procedure That Uses Word’s Word Count Dialog Box to Get the Total 
Number of Words in the Active Document

Function CountDocumentWords() As Long
With Dialogs(wdDialogToolsWordCount)

.Execute
CountDocumentWords = .Words

End With
End Function

Sub DisplayWordCount()
MsgBox “This document contains “ & CountDocumentWords & “ words.”

End Sub

5

Chapter 5 Working with Objects86

To see a complete list of the control arguments used by Word and Excel, see the following Microsoft
websites:

Word:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbawd11/html/wohowDialog
Arguments1_HV05210109.asp

Excel:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbaxl11/html/ xlmscDialog
ArgLists1_HV05199604.asp

N
O

T
E

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbawd11/html/wohowDialogArguments1_HV05210109.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbawd11/html/wohowDialogArguments1_HV05210109.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbaxl11/html/xlmscDialogArgLists1_HV05199604.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbaxl11/html/xlmscDialogArgLists1_HV05199604.asp


87Example:The Application Object

This procedure uses Execute to run the Word Count dialog box, and then uses the Words argu-
ment to return the number of words in the document. (Note, however, that if you have text
selected before running this procedure, it will return the number of words in the selection.)

Checking Spelling
When used with the Word or Excel Application object, the CheckSpelling method checks
the spelling of a single word using the following syntax (note that Word’s method has a few
extra arguments):

Application.CheckSpelling(word,customDictionary,ignoreUppercase)

word The word you want to check.

customDictionary The filename of a custom dictionary that the application can
search if word wasn’t found in the main dictionary.

ignoreUppercase Set to True to tell the application to ignore words entirely in
uppercase.

For example, the code shown in Listing 5.5 gets a word from the user, checks the spelling,
and tells the user whether or not the word is spelled correctly. (You also can use this prop-
erty with a Document, Worksheet, or Range object, as described in Chapter 7, “Programming
Word,” and 8, “Programming Excel.”)

➔ To learn about the InputBox function, see “Getting Input Using InputBox,” p. 50.

Listing 5.5 A Procedure That Checks the Spelling of an Entered Word

Sub SpellCheckTest()
‘
‘ Get the word from the user
‘
word2Check = InputBox(“Enter a word:”)
‘
‘ Spell-check it
‘
result = Application.CheckSpelling(word2Check)
‘
‘ Display the result to the user
‘
If result = True Then

MsgBox “‘“ & word2Check & “‘ is spelled correctly!”
Else

MsgBox “Oops! ‘“ & word2Check & “‘ is spelled incorrectly.”
End If

End Sub

5



Example: The Window Object
Another object that’s common to almost all applications is the Window object, which repre-
sents an open window in an application. Note that this isn’t the same as an open document.
Rather, the Window object is just a container for a document, so the associated properties
and methods have no effect on the document data. You can use VBA to change the window
state (maximized or minimized), size and move windows, navigate open windows, and much
more. In the next three sections you learn how to specify a Window object in your code, how
to open a new window, and how to activate a window.

Specifying a Window Object
If you need to perform some action on a window or change a window’s properties, you
need to tell the application which window you want to use. VBA gives you two ways to do
this:

■ Use the Windows object—The Windows object is the collection of all the open windows
in the application. To specify a window, either use its index number (as given by the
numbers beside the windows on the application’s Windows menu) or enclose the win-
dow caption (in other words, the text that appears in the window’s title bar) in quota-
tion marks. For example, if the Budget.doc window is listed first in the Window menu,
the following two statements would be equivalent:
Windows(1)
Windows(“Budget.doc”)

■ Use the ActiveWindow object—The ActiveWindow object represents the window that
currently has the focus. For example, the following statement uses the WindowState
property (common to all Window objects) to maximize the active Word window:

ActiveWindow.WindowState = wdWindowStateMaximize

Opening a New Window
If you need to create a new window, use the Window object’s NewWindow method:

Window.NewWindow

Window The Window object from which you want to create the new window.

Note that this argument is optional in some applications. In Word, for example, if you omit
Window, the active window is used.

Activating a Window
If your code needs to switch from one window to another, you need to activate the other
window. You do that by running the Window object’s Activate method, which activates the
specified open window. For example, the following statement activates the Finances.xls
window:

Windows(“Finances.xls”).Activate

5

Chapter 5 Working with Objects88



89Example:The Window Object

From Here
■ To learn how the MsgBox function works, see “Getting Input Using MsgBox,” p. 45.

■ To learn about the InputBox function, see “Getting Input Using InputBox,” p. 50.

■ To get the details on the If statement, see “Using If...Then to Make True/False
Decisions,” p. 92.

■ You use a For Each...Next loop to run through all the objects in a collection; see
“Using For Each...Next Loops,” p. 109.

■ Part 2, “Putting VBA to Work,” is a veritable “object fest” as I examine the object
hierarchies in the main Office applications.

5



This page intentionally left blank 



I N  T H I S  C H A P T E R

Controlling Your VBA Code

6One of the advantages of writing your own VBA
procedures instead of simply recording them is that
you end up with much more control over what your
code does and how it performs its tasks. In particu-
lar, you can create procedures that make decisions
based on certain conditions and that can perform
loops—the running of several statements repeat-
edly. The statements that handle this kind of 
processing—control structures—are the subject of
this chapter.

Code That Makes Decisions
A smart procedure performs tests on its environ-
ment and then decides what to do next based on the
results of each test. For example, suppose you’ve
written a Function procedure that uses one of its
arguments as a divisor in a formula. You should test
the argument before using it in the formula to make
sure that it isn’t 0 (to avoid producing a “Division
by zero” error). If it is, you could then display a
message that alerts the user of the illegal argument.

Similarly, a well-designed application will interact
with the user and ask for feedback in the form of
extra information or a confirmation of a requested
action. The program can then take this feedback
and redirect itself accordingly.

Code That Makes Decisions  . . . . . . . . . . . . . . . .91

Using If...Then to Make True/False 
Decisions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92

Using If...Then...Else to Handle a 
False Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93

Making Multiple Decisions  . . . . . . . . . . . . . . . .94

Functions That Make Decisions  . . . . . . . . . . .101

Code That Loops  . . . . . . . . . . . . . . . . . . . . . . . .104

Using Do...Loop Structures  . . . . . . . . . . .105

Using For...Next Loops  . . . . . . . . . . . . . .106

Using For Each...Next Loops . . . . . . . .109

Using Exit For or Exit Do to 
Exit a Loop  . . . . . . . . . . . . . . . . . . . . . . . . . . . .110

Indenting for Readability  . . . . . . . . . . . . . . . .111



Using If...Then to Make True/False Decisions
The most basic form of decision is the simple true/false decision (which could also be seen
as a yes/no or an on/off decision). In this case, your program looks at a certain condition,
determines whether it is currently true or false, and acts accordingly. As you might expect
from the discussion of expressions in Chapter 4, “Building VBA Expressions,” logical
expressions (which, you’ll recall, always return a True or False result) play a big part here.

In VBA, simple true/false decisions are handled by the If...Then statement. You can use
either the single-line syntax:

If condition Then statement

or the block syntax:

If condition Then
[statements]

End If

condition You can use either a logical expression that returns True or
False, or you can use any expression that returns a numeric
value. In the latter case, a return value of zero is functionally
equivalent to False, and any nonzero value is equivalent 
to True.

statement(s) The VBA statement or statements to run if condition
returns True. If condition returns False, VBA skips over 
the statements.

Whether you use the single-line or block syntax depends on the statements you want to run
if the condition returns a True result. If you have only one statement, you can use either
syntax. If you have multiple statements, you must use the block syntax.

Listing 6.1 shows a revised version of the GrossMargin procedure from Chapter 3,
“Understanding Program Variables” (see Listing 3.1). This version—called GrossMargin2—
uses If...Then to check the totalSales variable. The procedure calculates the gross margin
only if the value of totalSales isn’t zero.

Listing 6.1 An If...Then Example

Function GrossMargin2()
Dim totalSales
Dim totalExpenses
totalSales = Application.Sum(Range(“Sales”))
totalExpenses = Application.Sum(Range(“Expenses”))
If totalSales <> 0 Then

GrossMargin2 = (totalSales - totalExpenses) / totalSales
End If

End Function

6

Chapter 6 Controlling Your VBA Code92



93Using If...Then...Else to Handle a False Result

Using If...Then...Else to Handle a False Result
Using the If...Then statement to make decisions adds a powerful new weapon to your
VBA arsenal. However, this technique suffers from an important drawback: A False result
only bypasses one or more statements; it doesn’t execute any of its own. This is fine in
many cases, but there will be times when you need to run one group of statements if the
condition returns True and a different group if the result is False. To handle this, you need
to use an If...Then...Else statement:

If condition Then
[TrueStatements]

Else
[FalseStatements]

End If

condition The logical expression that returns True or False.

TrueStatements The statements to run if condition returns True.

FalseStatements The statements to run if condition returns False.

If the condition returns True, VBA runs the group of statements between If...Then and
Else. If it returns False, VBA runs the group of statements between Else and End If.

Let’s look at an example. Suppose you want to calculate the future value of a series of regu-
lar deposits, but you want to differentiate between monthly deposits and quarterly deposits.
Listing 6.2 shows a Function procedure called FutureValue that does the job.

6

The code for this chapter is available on my website at the following address:

http://www.mcfedries.com/Office2007VBA/Chapter06.xlsmN
O

T
E

You can make the If...Then statement in the GrossMargin2 procedure slightly more efficient
by taking advantage of the fact that in the condition, zero is equivalent to False and any other
number is equivalent to True.This means you don’t have to explicitly test the totalSales vari-
able to see whether it’s zero. Instead, you can use the following statements:

If totalSales Then

GrossMargin = (totalSales-totalExpenses)/totalSales

End If

On the other hand, many programmers feel that including the explicit test for a nonzero value
(totalSales <> 0) makes the procedure easier to read and more intuitive. Because, in this case,
the efficiency gained is only minor, you’re probably better off leaving in the full expression.

T
IP

http://www.mcfedries.com/Office2007VBA/Chapter06.xlsm


Listing 6.2 A Procedure That Uses If...Then...Else

Function FutureValue(Rate As Single, Nper As Integer, Pmt As Currency, 
➥Frequency As String) As Currency

If Frequency = “Monthly” Then
FutureValue = FV(Rate / 12, Nper * 12, Pmt / 12)

Else
FutureValue = FV(Rate / 4, Nper * 4, Pmt / 4)

End If
End Function

The first three arguments—Rate, Nper, and Pmt—are, respectively, the annual interest rate,
the number of years in the term of the investment, and the total deposit available annually.
The fourth argument—Frequency—is either “Monthly” or “Quarterly.” The idea is to
adjust the first three arguments based on Frequency. To do that, the If...Then...Else
statement runs a test on the Frequency argument:

If Frequency = “Monthly” Then

If the logical expression Frequency = “Monthly” returns True, the procedure runs the fol-
lowing statement:

FutureValue = FV(Rate / 12, Nper * 12, Pmt / 12)

This statement divides the interest rate by 12, multiplies the term by 12, and divides the
annual deposit by 12. Otherwise, if the logical expression returns False, then a quarterly
calculation is assumed and the procedure executes the following statement:

FutureValue = FV(Rate / 4, Nper * 4, Pmt / 4)

This statement divides the interest rate by 4, multiplies the term by 4, and divides the
annual deposit by 4. In both cases, VBA’s FV function (see Chapter 4) is used to return the
future value.

6

Chapter 6 Controlling Your VBA Code94

If...Then...Else statements are much easier to read when you indent the expressions
between If...Then,Else, and End If, as I’ve done in Listing 6.2.This lets you easily identify
which group of statements will be run if there is a True result and which group will be run if the
result is False. Pressing the Tab key once at the beginning of the first line in the block does the
job. See also “Indenting for Readability,” later in this chapter.

T
IP

Making Multiple Decisions
The problem with If...Then...Else is that normally you can make only a single decision.
The statement calculates a single logical result and performs one of two actions. However,
plenty of situations require multiple decisions before you can decide which action to take.

For example, the FutureValue procedure discussed in the preceding section probably
should test the Frequency argument to make sure it’s either Monthly or Quarterly and not
something else. The next few sections show you three solutions to this problem.



95Making Multiple Decisions

Using the And and Or Operators
One solution to the multiple-decision problem is to combine multiple logical expressions in
a single If...Then statement. From Chapter 4, you’ll recall that you can combine logical
expressions by using VBA’s And and Or operators. In the example, we want to calculate the
future value only if the Frequency argument is either Monthly or Quarterly. The following
If...Then statement uses the Or operator to test this:

If Frequency = “Monthly” Or Frequency = “Quarterly” Then

As shown in Listing 6.3, if Frequency equals either of these values, the entire condition
returns True and the procedure runs the calculation in the usual way; otherwise, if
Frequency doesn’t equal either value, then the procedure returns a message to the user.

Listing 6.3 A Procedure That Uses the Or Operator to Perform Multiple Logical Tests

Function FutureValue2(Rate As Single, Nper As Integer, Pmt As Currency, 
➥Frequency As String) As Currency

If Frequency = “Monthly” Or Frequency = “Quarterly” Then
If Frequency = “Monthly” Then

FutureValue2 = FV(Rate / 12, Nper * 12, Pmt / 12)
Else

FutureValue2 = FV(Rate / 4, Nper * 4, Pmt / 4)
End If

Else        
MsgBox “The Frequency argument must be either “ & _

“””Monthly”” or “”Quarterly””!”
End If

End Function

Note that this procedure isn’t particularly efficient because you end up testing the
Frequency argument in two places. However, that just means that this example isn’t the best
use of the And and Or operators. The overall principle of using these operators to perform
multiple logical tests is a useful one, however, and you should keep it in mind when con-
structing your decision-making code.

6
In Listing 6.3, if Frequency equals either Monthly or Quarterly, the result of the first
If...Then...Else is true and the procedure then executes a second If...Then...Else
structure.This is called nesting one control structure within another.This is very common in VBA
procedures, but it can also get very confusing very quickly.To help you keep things straight, not only
indent the statements within the first If...Then...Else, but double-indent the statements
within the second If...Then...Else (refer to Listing 6.3 for an example).

T
IP

Using Multiple If...Then...Else Statements
There is a third syntax for the If...Then...Else statement that lets you string together as
many logical tests as you need:



If condition1 Then
[condition1 TrueStatements]

ElseIf condition2 Then
[condition2 TrueStatements]

<etc.>
Else

[FalseStatements]
End If

condition1 A logical expression.

condition1 TrueStatements The statements to run if condition1 returns True.

condition2 A different logical expression.

condition1 TrueStatements The statements to run if condition2 returns True.

FalseStatements The statements to run if both condition1 and 
condition2 return False.

VBA first tests condition1. If this returns True, VBA runs the group of statements between
If...Then and ElseIf...Then. If it returns False, VBA then tests condition2. If this test is
True, VBA runs the group of statements between ElseIf...Then and Else. Otherwise, VBA
runs the statements between Else and End If. Here are two things you should note about
this structure:

■ You can have as many ElseIf conditions as you need.

■ You don’t have to use the Else part if you don’t need it.

Listing 6.4 shows FutureValue3, a revised version of FutureValue that makes allowances for
an improper Frequency argument.

Listing 6.4 A Procedure That Uses Multiple If...Then...Else Statements

Function FutureValue3(Rate As Single, Nper As Integer, Pmt As Currency, 
➥Frequency As String) As Currency

If Frequency = “Monthly” Then
FutureValue3 = FV(Rate / 12, Nper * 12, Pmt / 12)

ElseIf Frequency = “Quarterly” Then
FutureValue3 = FV(Rate / 4, Nper * 4, Pmt / 4)

Else
MsgBox “The Frequency argument must be either “ & _

“””Monthly”” or “”Quarterly””!”
End If

End Function

As before, the If...Then statement checks to see whether Frequency equals Monthly and, if
it does, calculates the future value accordingly. If it doesn’t, the ElseIf...Then statement
checks to see whether Frequency equals Quarterly and calculates the future value if the
expression returns True. If it returns False, the user entered the Frequency argument incor-
rectly, so a warning message is displayed.

6

Chapter 6 Controlling Your VBA Code96



97Making Multiple Decisions

Using the Select Case Statement
Performing multiple tests with If...ElseIf is a handy technique—it’s a VBA tool you’ll
reach for quite often. However, it quickly becomes unwieldy as the number of tests you
need to make gets larger. It’s okay for two or three tests, but any more than that makes the
logic harder to follow.

For these situations, VBA’s Select Case statement is a better choice. The idea is that you
provide a logical expression at the beginning and then list a series of possible results. For
each possible result—called a case—you provide one or more VBA statements to execute
should the case prove to be true. Here’s the syntax:

Select Case TestExpression
Case FirstCaseList

[FirstStatements]
Case SecondCaseList

[SecondStatements]
<etc>
Case Else

[ElseStatements]
End Select

TestExpression This expression is evaluated at the beginning of the structure.
It must return a value (logical, numeric, string, and so on).

CaseList A list of one or more possible results for TestExpression.
These results are values or expressions separated by commas.
VBA examines each element in the list to see whether one
matches the TestExpression. The expressions can take any
one of the following forms:
Expression

Expression To Expression

Is LogicalOperator Expression

The To keyword defines a range of values (for example, 1 To
10). The Is keyword defines an open-ended range of values
(for example, Is >= 100).

Statements These are the statements VBA runs if any part of the associ-
ated CaseList matches the TestExpression. VBA runs the
optional ElseStatements if no CaseList contains a match for
the TestExpression.

6

If more than one CaseList contains an element that matches the TestExpression,VBA runs
only the statements associated with the CaseList that appears first in the Select Case
structure.

N
O

T
E



Listing 6.5 shows how you would use Select Case to handle the Frequency argument 
problem.

Listing 6.5 A Procedure That Uses Select Case to Test Multiple Values

Function FutureValue4(Rate As Single, Nper As Integer, Pmt As Currency, 
➥Frequency As String) As Currency

Select Case Frequency
Case “Monthly”

FutureValue4 = FV(Rate / 12, Nper * 12, Pmt / 12)
Case “Quarterly”

FutureValue4 = FV(Rate / 4, Nper * 4, Pmt / 4)
Case Else

MsgBox “The Frequency argument must be either “ & _
“””Monthly”” or “”Quarterly””!”

End Select
End Function

A Select Case Example: Converting Test Scores to Letter Grades
To help you get a better feel for the Select Case statement, let’s take a look at another
example that better showcases the unique talents of this powerful structure. Suppose you
want to write a procedure that converts a raw test score into a letter grade according to the
following table:

Raw Score Letter Grade

90 and over A

Between 80 and 89 B

Between 70 and 79 C

Between 60 and 69 D

Less than 60 F

Listing 6.6 shows the LetterGrade procedure, which uses a Select Case statement to make
the conversion.

Listing 6.6 A Procedure That Uses Select Case to Convert a Raw Test Score into a Letter 
Grade

Function LetterGrade(rawScore As Integer) As String
Select Case rawScore

Case Is < 0
LetterGrade = “ERROR! Score less than 0!”

Case Is < 60
LetterGrade = “F”

Case Is < 70
LetterGrade = “D”

Case Is < 80
LetterGrade = “C”

6

Chapter 6 Controlling Your VBA Code98



99Making Multiple Decisions

Case Is < 90
LetterGrade = “B”

Case Is <= 100
LetterGrade = “A”

Case Else
LetterGrade = “ERROR! Score greater than 100!”

End Select
End Function

The rawScore argument is an integer value between 0 and 100. The Select Case structure
first checks to see whether rawScore is negative and, if so, the function returns an error
message. The next Case statement checks to see whether the score is less than 60, and the
function returns the letter grade “F” if it is. The next Case statement looks for a score that
is less than 70. If we get this far, we already know (thanks to the preceding Case statement)
that the score is at least 60. Therefore, this case is really checking to see whether the score
is between 60 and 70 (including 60, but not including 70). If so, the letter grade “D” is
returned. The rest of the Case statements proceed in the same manner. The Case Else
checks for a score greater than 100 and returns another error message if it is.

Another Example: Taming the RGB Function
In Chapter 5, “Working with Objects,” I mentioned briefly that you can use the RGB
(red,green,blue) VBA function anytime you need to specify a color for a property. Each of
the three named arguments (red, green, and blue) are integers between 0 and 255 that deter-
mine how much of each component color is mixed into the final color. In the red compo-
nent, for example, 0 means no red is present and 255 means that pure red is present. If all
three values are the same, you get a shade of gray.

Here are some sample values for each component that produce common colors:

Red Green Blue Result

0 0 0 Black

0 0 255 Blue

0 255 0 Green

0 255 255 Cyan

255 0 0 Red

255 0 255 Magenta

255 255 0 Yellow

255 255 255 White

However, rather than memorize these combinations, let’s put VBA and Select Case to
work to make choosing colors easier. Listing 6.7 shows the VBAColor function, which lets
you use names (for example, “red” or “blue”) rather than cryptic number combinations to
set 16 of the most common colors.

6



Listing 6.7 A Function That Accepts a Color Name as a String and Returns the Corresponding 
RGB Value

Function VBAColor(colorName As String) As Long

Select Case LCase(Trim(colorName))
Case “black”

VBAColor = RGB(0, 0, 0)
Case “white”

VBAColor = RGB(255, 255, 255)
Case “gray”

VBAColor = RGB(192, 192, 192)
Case “dark gray”

VBAColor = RGB(128, 128, 128)
Case “red”

VBAColor = RGB(255, 0, 0)
Case “dark red”

VBAColor = RGB(128, 0, 0)
Case “green”

VBAColor = RGB(0, 255, 0)
Case “dark green”

VBAColor = RGB(0, 128, 0)
Case “blue”

VBAColor = RGB(0, 0, 255)
Case “dark blue”

VBAColor = RGB(0, 0, 128)
Case “yellow”

VBAColor = RGB(255, 255, 0)
Case “dark yellow”

VBAColor = RGB(128, 128, 0)
Case “magenta”

VBAColor = RGB(255, 0, 255)
Case “dark magenta”

VBAColor = RGB(128, 0, 128)
Case “cyan”

VBAColor = RGB(0, 255, 255)
Case “dark cyan”

VBAColor = RGB(0, 128, 128)
End Select

End Function

Sub ColorTester()
ActiveCell.Font.Color = VBAColor(“red”)

End Sub

VBAColor takes a single argument, colorName, which is the name of the color you want to
work with. Notice how the Select Case statement massages the argument to prevent
errors:

Select Case LCase(Trim(colorName))

The Trim function removes any extraneous spaces at the beginning and end of the argu-
ment, and the LCase function converts colorName to lowercase. This ensures that the func-
tion is not case sensitive, which means it doesn’t matter whether you send black, BLACK, or
Black: The function will still work.

6

Chapter 6 Controlling Your VBA Code100



101Functions That Make Decisions

The rest of the function uses Case statements to check for the various color names and
return the appropriate RGB value. You can use the ColorTester procedure to give VBAColor
a whirl. This procedure just formats the font color of the currently selected worksheet cell.

6

VBA also defines eight color constants that you can use when you just need the basic colors:
vbBlack,vbBlue,vbCyan,vbGreen,vbMagenta,vbRed,vbWhite, and vbYellow.N

O
T

E

Functions That Make Decisions
Much of what we’re talking about in this chapter involves ways to make your procedures
cleaner and more efficient. These are laudable goals for a whole host of reasons, but the
following are the main ones:

■ Your code will execute faster.

■ You’ll have less code to type.

■ Your code will be easier to read and maintain.

This section looks at three powerful VBA functions that can increase the efficiency of your
procedures.

The IIf Function
You’ve seen how the decision-making prowess of the If...Then...Else structure lets you
create “intelligent” procedures that can respond appropriately to different situations.
However, sometimes If...Then...Else just isn’t efficient. For example, suppose you’re
writing a document that can’t be longer than 1,000 words and you want to devise a test that
will alert you when the document’s word count exceeds that number. Here’s a code frag-
ment that includes an If...Then...Else structure that performs this test:

Dim DocTooLong As Boolean
If ActiveDocument.Range.Words.Count > 1000 Then

DocTooLong = True
Else

DocTooLong = False
End If

In Word, the ActiveDocument.Range.Words.Count property tells you the total number of
words in the active document. As it stands, there’s nothing wrong with this code. However,
it seems like a lot of work to go through just to assign a value to a variable. For these types
of situations, VBA has an IIf function that’s more efficient. IIf, which stands for “inline
If,” performs a simple If test on a single line:

IIf (condition, TrueResult, FalseResult)

condition A logical expression that returns True or False.

TrueResult The value returned by the function if condition is True.

FalseResult The value returned by the function if condition is False.



Listing 6.8 shows a function procedure that checks the word count by using IIf to replace
the If...Then...Else statement shown earlier.

Listing 6.8 A Function That Uses IIf to Test a Document’s Word Count

Function DocTooLong() As Boolean
DocTooLong = IIf(ActiveDocument.Range.Words.Count > 1000, True, False)

End Function

If the number of words exceeds 1000, IIf returns True; otherwise, the function returns
False.

The Choose Function
In the previous section, I showed you how the IIf function is an efficient replacement for
If...Then...Else when all you need to do is assign a value to a variable based on the results
of the test. Suppose now you have a similar situation with the Select Case structure. In
other words, you want to test a number of possible values and assign the result to a variable.

For example, you saw in Chapter 4 that VBA’s Weekday function returns the current day of
the week as a number. Here’s a procedure fragment that takes the day number and uses a
Select Case structure to assign the name of the deity associated with that day to the
dayDeity variable:

Dim dayDeity As String
Select Case Weekday(Now)

Case 1
dayDeity = “Sun”

Case 2
dayDeity = “Moon”

Case 3
dayDeity = “Tiw”

Case 4
dayDeity = “Woden”

Case 5
dayDeity = “Thor”

Case 6
dayDeity = “Freya”

Case 7
dayDeity = “Saturn”

End Select

Again, this seems like way too much effort for a simple variable assignment. And, in fact, it
is too much work thanks to VBA’s Choose function. Choose encapsulates the essence of the
preceding Select Case structure—the test value and the various possible results—into a
single statement. Here’s the syntax:

Choose(index, value1, value2,...)

6

Chapter 6 Controlling Your VBA Code102



103Functions That Make Decisions

index A numeric expression that determines which of the values in
the list is returned. If index is 1, value1 is returned. If index
is 2, value2 is returned (and so on). Note that if index is less
than 1 or greater than the number of values in the list, the
function returns Null.

value1, value2… A list of values from which Choose selects the return value.
The values can be any valid VBA expression.

Listing 6.9 shows a function called DayDeity that returns the name of a day’s deity by using
Choose to replace the Select Case structure shown earlier.

Listing 6.9 A Function That Uses the Choose Function to Select from a List of Values

Function DayDeity(weekdayNum As Integer) As String
DayDeity = Choose(weekdayNum, “Sun”, “Moon”, _

“Tiw”, “Woden”, “Thor”, “Freya”, “Saturn”)
End Function

The Switch Function
Choose is a welcome addition to the VBA function library, but its use is limited because of
two constraints:

■ You can use Choose only when the index argument is a number or a numeric expression.

■ Choose can’t handle logical expressions.

To illustrate why the last point is important, consider the Select Case structure used ear-
lier in this chapter to convert a test score into a letter grade:

Select Case rawScore
Case Is < 0

LetterGrade = “ERROR! Score less than 0!”
Case Is < 60

LetterGrade = “F”
Case Is < 70

LetterGrade = “D”
Case Is < 80

LetterGrade = “C”
Case Is < 90

LetterGrade = “B”
Case Is <= 100

LetterGrade = “A”
Case Else

LetterGrade = “ERROR! Score greater than 100!”
End Select

At first blush, this structure seems to satisfy the same inefficiency criteria that I mentioned
earlier for If...Then...Else and Select Case. In other words, each Case runs only a single
statement and that statement serves only to assign a value to a variable. The difference,
though, is that the Case statements use logical expressions, so we can’t use Choose to make
this code more efficient.

6



However, you can use VBA’s Switch function to do the job:

Switch(expr1, value1, expr2, value2,...)

expr1, expr2… These are logical expressions that determine which of the val-
ues in the list is returned. If expr1 is True, value1 is returned.
If expr2 is True, value2 is returned (and so on).

value1, value2… A list of values from which Switch selects the return value.
The values can be any valid VBA expression.

Switch trudges through the logical expressions from left to right. When it comes across the
first True expression, it returns the value that appears immediately after the expression. Listing
6.10 puts Switch to work to create a more efficient version of the LetterGrade function.

Listing 6.10 A Procedure That Uses the Switch Function to Convert a Test Score into a 
Letter Grade

Function LetterGrade2(rawScore As Integer) As String
LetterGrade2 = Switch( _

rawScore < 0, “ERROR! Score less than 0!”, _
rawScore < 60, “F”, _
rawScore < 70, “D”, _
rawScore < 80, “C”, _
rawScore < 90, “B”, _
rawScore <= 100, “A”, _
rawScore > 100, “ERROR! Score greater than 100!”)

End Function

Code That Loops
You’ve seen in this chapter and in previous chapters that it makes sense to divide up your VBA
chores and place them in separate procedures or functions. That way, you need to write the
code only once and then call it any time you need it. This is known in the trade as modular 
programming, and it saves time and effort by helping you avoid reinventing too many wheels.

There are also wheels to avoid reinventing within your procedures and functions. For
example, consider the following code fragment:

MsgBox “The time is now “ & Time
Application.Wait Now + TimeValue(“00:00:05”)
MsgBox “The time is now “ & Time
Application.Wait Now + TimeValue(“00:00:05”)
MsgBox “The time is now “ & Time
Application.Wait Now + TimeValue(“00:00:05”)

6

Chapter 6 Controlling Your VBA Code104

This code fragment uses the Excel Application object’s Wait method to produce a delay.The argu-
ment Now + TimeValue(“00:00:05”) pauses the procedure for about five seconds before
continuing.

N
O

T
E



105Using Do...Loop Structures

This code does nothing more than display the time, delay for five seconds, and repeat this
two more times. Besides being decidedly useless, this code just reeks of inefficiency. It’s
clear that a far better approach would be to take just the first two statements and somehow
get VBA to repeat them as many times as necessary.

The good news is that not only is it possible to do this, but VBA also gives you a number of
different methods to perform this so-called looping. I spend the rest of this chapter investi-
gating each of these methods.

Using Do...Loop Structures
What do you do when you need to loop but you don’t know in advance how many times to
repeat the loop? This could happen if, for example, you want to loop only until a certain
condition is met, such as encountering a blank cell in an Excel worksheet. The solution is
to use a Do...Loop.

The Do...Loop has four different syntaxes:

Do While condition Checks condition before entering the loop. Executes 
[statements] the statements only while condition is True.
Loop

Do Checks condition after running through the loop once. 
[statements] Executes the statements only while condition is True. 
Loop While condition Use this form when you want the loop to be processed at 

least once.

Do Until condition Checks condition before entering the loop. Executes the 
[statements] statements only while condition is False.
Loop

Do Checks condition after running through the loop once. 
[statements] Executes the statements only while condition is False. 
Loop Until condition Again, use this form when you want the loop to be processed at 

least once.

Listing 6.11 shows a procedure called BigNumbers that runs down a worksheet column and
changes the font color to magenta whenever a cell contains a number greater than or equal
to 1,000.

Listing 6.11 A Procedure That Uses a Do...Loop to Process Cells Until It Encounters a 
Blank Cell

Sub BigNumbers()
Dim rowNum As Integer, colNum As Integer, currCell As Range
‘
‘ Initialize the row and column numbers
‘

6

continues



rowNum = ActiveCell.Row
colNum = ActiveCell.Column
‘
‘ Get the first cell
‘
Set currCell = ActiveSheet.Cells(rowNum, colNum)
‘
‘ Loop while the current cell isn’t empty
‘
Do While currCell.Value <> “”

‘
‘ Is it a number?
‘
If IsNumeric(currCell.Value) Then

‘
‘ Is it a big number?
‘
If currCell.Value >= 1000 Then

‘
‘ If so, color it magenta
‘
currCell.Font.Color = VBAColor(“magenta”)

End If
End If
‘
‘ Increment the row number and get the next cell
‘
rowNum = rowNum + 1
Set currCell = ActiveSheet.Cells(rowNum, colNum)

Loop
End Sub

The idea is to loop until the procedure encounters a blank cell. This is controlled by the
following Do While statement:

Do While currCell.Value <> “”

currCell is an object variable that is set using the Cells method (which I describe in
Chapter 8, “Programming Excel”). Next, the first If...Then uses the IsNumeric function to
check whether the cell contains a number, and the second If...Then checks whether the
number is greater than or equal to 1,000. If both conditions are True, the font color is set
to magenta by the VBAColor function described earlier in this chapter.

Using For...Next Loops
The most common type of loop is the For...Next loop. Use this loop when you know
exactly how many times you want to repeat a group of statements. The structure of a
For...Next loop looks like this:

6

Chapter 6 Controlling Your VBA Code106

Listing 6.11 Continued



107Using For...Next Loops

For counter = start To end [Step increment]
[statements]

Next [counter]

counter A numeric variable used as a loop counter. The loop counter is a 
number that counts how many times the procedure has gone through
the loop.

start The initial value of counter. This is usually 1, but you can enter any
value or you can use a variable.

end The final value of counter. You can also use a variable here, if it’s
appropriate.

increment This optional value defines an increment for the loop counter. If you
leave this out, the default value is 1. Use a negative value to decrement
counter.

statements The statements to execute each time through the loop.

The basic idea is simple. When VBA encounters the For...Next statement, it follows this
five-step process:

1. Set counter equal to start.

2. Test counter. If it’s greater than end, exit the loop (that is, process the first statement
after the Next statement). Otherwise, continue. If increment is negative, VBA checks to
see whether counter is less than end.

3. Execute each statement between the For and Next statements.

4. Add increment to counter. Add 1 to counter if increment isn’t specified.

5. Repeat steps 2 through 4 until done.

Listing 6.12 shows a simple Sub procedure—LoopTest—that uses a For...Next statement.
Each time through the loop, the procedure uses the Application object’s StatusBar prop-
erty to display the value of counter (the loop counter) in the status bar. When you run this
procedure, counter gets incremented by 1 each time through the loop, and the new value
gets displayed in the status bar.

Listing 6.12 A Simple For...Next Loop

Sub LoopTest()
Dim counter
For counter = 1 To 10

‘
‘Display the message
‘
Application.StatusBar = “Counter value: “ & counter
‘
‘ Wait for 1 second
‘

6

continues



Application.Wait Now + TimeValue(“00:00:01”)
Next counter
Application.StatusBar = False

End Sub

6

Chapter 6 Controlling Your VBA Code108

The LoopTest procedure works fine in Excel, but it will fail in the other Office applications because
they don’t implement the Wait method. If you need to get your code to delay for a short while,
here’s a simple procedure that does the trick:

Sub VBAWait(delay As Integer)
Dim startTime As Long
startTime = Timer
Do While Timer - startTime < delay

DoEvents
Loop

End Sub

Note the use of the DoEvents function inside the Do While...Loop structure.This function
yields execution to the operating system so that events such as keystrokes and application mes-
sages are processed while the procedure delays.

N
O

T
E

Here are some notes on For...Next loops:

■ If you use a positive number for increment (or if you omit increment), end must be
greater than or equal to start. If you use a negative number for increment, end must
be less than or equal to start.

■ If start equals end, the loop will execute once.

■ As with If...Then...Else structures, indent the statements inside a For...Next loop
for increased readability.

■ To keep the number of variables defined in a procedure to a minimum, always try to
use the same name for all your For...Next loop counters. The letters i through n tra-
ditionally are used for counters in programming. For greater clarity, you might want to
use names such as “counter.”

■ For the fastest loops, don’t use the counter name after the Next statement. If you’d like
to keep the counter name for clarity (which I recommend), precede the name with an
apostrophe (‘) to comment out the name, like this:
For counter = 1 To 10

[statements]
Next ‘counter

■ If you need to break out of a For...Next loop before the defined number of repetitions
is completed, use the Exit For statement, described in the section “Using Exit For or
Exit Do to Exit a Loop.”

Listing 6.12 Continued



109Using For Each...Next Loops

Using For Each...Next Loops
A useful variation of the For...Next loop is the For Each...Next loop, which operates on a
collection of objects. You don’t need a loop counter because VBA just loops through the
individual elements in the collection and performs on each element whatever operations are
inside the loop. Here’s the structure of the basic For Each...Next loop:

For Each element In collection
[statements]

Next [element]

element A variable used to hold the name of each element in the collection.

collection The name of the collection.

statements The statements to be executed for each element in the collection.

As an example, let’s create a command procedure that converts a range of text into proper
case (that is, the first letter of each word is capitalized). This function can come in handy if
you import mainframe text into your worksheets because mainframe reports usually appear
entirely in uppercase. This process involves three steps:

1. Loop through the selected range with For Each...Next.

2. Convert each cell’s text to proper case. Use Excel’s Proper() worksheet function to
handle this:
WorksheetFunction(Proper(text))

text The text to convert to proper case.

3. Enter the converted text into the selected cell. This is the job of the Range object’s
Formula method:
object.Formula = expression

object The Range object in which you want to enter expression.

expression The data you want to enter into object.

Listing 6.13 shows the resulting procedure, ConvertToProper. Note that this procedure uses
the Selection object to represent the currently selected range.

Listing 6.13 A Sub Procedure That Uses For Each...Next to Loop Through a Selection and 
Convert Each Cell to Proper Text

Sub ConvertToProper()
Dim cellObject As Range
For Each cellObject In Selection

cellObject.Formula = WorksheetFunction(Proper(cellObject.Formula))
Next

End Sub

How would you use this procedure in practice? You’d highlight the cells you want to 
convert and then choose the Developer, Macros command to find and run the
ConvertToProper procedure.

6



Using Exit For or Exit Do to Exit a Loop
Most loops run their natural course and then the procedure moves on. There might be
times, however, when you want to exit a loop prematurely. For example, you might come
across a certain type of cell, or an error might occur, or the user might enter an unexpected
value. To exit a For...Next loop or a For Each...Next loop, use the Exit For statement. To
exit a Do...Loop, use the Exit Do statement.

Listing 6.14 shows a revised version of the BigNumbers procedure, which exits the
Do...Loop if it comes across a cell that isn’t a number.

Listing 6.14 Version of the BigNumbers Procedure That Terminates with the Exit Do
Statement If the Current Cell Isn’t a Number

Sub BigNumbers2()
Dim rowNum As Integer, colNum As Integer, currCell As Range
‘
‘ Initialize the row and column numbers
‘
rowNum = ActiveCell.Row
colNum = ActiveCell.Column
‘
‘ Get the first cell
‘
Set currCell = ActiveSheet.Cells(rowNum, colNum)
‘
‘ Loop while the current cell isn’t empty
‘
Do While currCell.Value <> “”

‘
‘ Is it a number?
‘
If IsNumeric(currCell.Value) Then

‘
‘ Is it a big number?
‘
If currCell.Value >= 1000 Then

‘
‘ If so, color it magenta
‘
currCell.Font.Color = VBAColor(“magenta”)

End If
‘
‘ Otherwise, exit the loop
‘
Else

Exit Do
End If
‘
‘ Increment the row number and get the next cell
‘
rowNum = rowNum + 1
Set currCell = ActiveSheet.Cells(rowNum, colNum)

Loop
End Sub

6

Chapter 6 Controlling Your VBA Code110



111Indenting for Readability

Indenting for Readability
For beginning programmers, one of the most common causes of confusion when using
these control structures is keeping track of which statements belong to which If...Then
test or Do...While loop. This is particularly true if you end up with control structures
nested within other control structures (see, for example, Listings 6.3, 6.11, and 6.14). I’ve
stressed indenting your code throughout this book, and I want to underline this program-
ming principle once again here:

■ In the main test or loop, indent the statements once (press Tab at the beginning of the
first statement).

■ In a secondary (that is, nested) test or loop, double-indent the statements (press Tab
again at the beginning of the first statement).

■ In a tertiary (that is, nested within a nested structure) test or loop, triple-indent the
statements (press Tab again at the beginning of the first statement).

Here’s a general example of how this indenting looks:

If MainExpression Then
If SecondaryExpression Then

If TertiaryExpression Then
[TertiaryTrueStatements]

Else
[TeriaryFalseStatements]

End If
Else        

[SecondaryFalseStatements]
EndIf

Else
[MainFalseStatements]

End If

From Here
■ This chapter used a few Word objects as examples. To get the full scoop on other

objects available in Word, see Chapter 7, “Programming Word,” p. 115.

■ For the details on Excel’s objects, see Chapter 8, “Programming Excel,” p. 139.

■ Controlling code often depends on interaction with the user. For example, you might
use If...Then...Else to test the value of a check box, or Select Case to process a
group of option buttons. To find out more about these topics, see Chapter 12,
“Creating Custom VBA Dialog Boxes,” p. 237.

■ A big part of procedure control involves anticipating potential user errors. To learn
more about this topic, see Chapter 16, “Debugging VBA Procedures,” p. 337.

6



This page intentionally left blank 



IN
 T

H
IS

 P
A

R
T

IIPutting VBA to Work

7 Programming Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

8 Programming Excel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .139

9 Programming PowerPoint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165

10 Programming Access Databases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189

11 Programming Outlook Email  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213



This page intentionally left blank 



I N  T H I S  C H A P T E R

Programming Word

7Microsoft Word is a large, complex program, so it
will come as no surprise that its list of objects is
equally big and complicated. Fortunately, just as
most people use only a tiny subset of Word’s fea-
tures, so too will you probably only use just a few of
Word’s objects in your VBA programming. In fact,
with Word there are only really three levels of
objects you’ll need to worry about most of the time:
Word itself, which is represented by the
Application object; Word documents, which are
represented by the Document object; and the text
within those documents, which are represented by
various objects, including Range, Selection,
Sentence, and Paragraph. In this chapter you’ll
focus on programming these basic objects.

Working with Documents
In Word, the Document object appears directly
below the Application object in the object hierar-
chy. As you’ll see in the sections that follow, you
can use VBA to create new documents, open or
delete existing documents, save and close open doc-
uments, and much more.

Specifying a Document Object
If you need to do something with a document, or if
you need to work with an object contained in a spe-
cific document (such as a section of text), you need
to tell Word which document to use. VBA gives
you three ways to do this:

■ Use the Documents object—The Documents
object is the collection of all open document
files. To specify a particular document, either
use its index number (where 1 represents the
first document opened) or enclose the docu-
ment name in quotation marks. For example, 

Working with Documents . . . . . . . . . . . . . . . .115

Working with Text  . . . . . . . . . . . . . . . . . . . . . .124

Working with the Range Object . . . . . . . . . .125

Using the Selection Object  . . . . . . . . . . .129

Using the Words Object . . . . . . . . . . . . . . . . .132

Working with the Sentences Object  . . . .133

Programming the Paragraph Object  . . . .136



if Memo.docx was the first document opened, the following two expressions would be
equivalent:
Documents(“Memo.docx”)
Documents(1)

■ Use the ActiveDocument object—The ActiveDocument object represents the document
that currently has the focus.

■ Use the ThisDocument object—The ThisDocument object represents the document
where the VBA code is executing. If your code deals only with objects residing in the
same document as the code itself, you can use the ActiveDocument object. However, if
your code deals with other documents, use ThisDocument whenever you need to make
sure that the code affects only the document containing the procedure.

Opening a Document
To open a document file, use the Open method of the Documents collection. The Open
method has a dozen arguments you can use to fine-tune your document openings, but only
one of these is mandatory. Here’s the simplified syntax showing the one required argument
(for the rest of the arguments, look up the Open method in the VBA Help system):

Documents.Open(FileName)

FileName The name of the document file, including the drive and folder where
the file is located.

For example, to open a document named Letter.docx in the C:\Users\Paul\Documents
folder, you would use the following statement:

Documents.Open “C:\Users\Paul\Documents\Letter.docx”

7

Chapter 7 Programming Word116

Rather than hard-coding the path to your user profile’s Documents folder in Windows Vista, you can
use the expression Environ(“UserProfile”), which returns the path to your user profile’s
main folder. So, in Vista, you’d use the following expression to return your Documents folder:

Environ(“UserProfile”) & “\Documents”

If you’re using Windows XP, instead, replace Documents with My Documents.The Environ
function (it’s short for environment) returns the value of the Windows built-in environment vari-
ables.To see a list of these variables, choose Start, All Programs, Accessories, Command Prompt, type
set at the command prompt, and then press Enter.

T
IP

The RecentFiles Object
Another way to open Word documents is to use the RecentFiles object, which is the col-
lection of the most recently used files displayed on Word’s Office menu. Each item on this
list is a RecentFile object.



117Working with Documents

Each RecentFile object comes with a Name property that returns the file’s name, as well as a
Path property that returns the file’s path. Here’s some code that uses these two properties
to tell Word to open the most recently used file:

With RecentFiles(1)
Documents.Open .Path & “\” & .Name

End With

That’s useful, but it would be handy to have Word open the most recently used file each
time you start the program. If you want Word to run some code each time it’s started, fol-
low these steps:

1. Open the Normal project in the Visual Basic Editor’s Project Explorer.

2. Create a new module and rename it as AutoExec.

3. In this module, create a Sub procedure named Main.

4. Enter your code in that procedure.

Listing 7.1 shows a sample Main procedure that opens the most recently used file at startup.

Listing 7.1 A Procedure to Open the Most Recently Used Document at Startup

Sub Main()
With RecentFiles(1)

Documents.Open .Path & “\” & .Name
End With

End Sub 7

The maximum value of Index is given by the RecentFiles.Maximum property. Note, too, that
you can set this property. For example, the following statement sets the maximum value to 50 (the
highest Word allows for this value):

RecentFiles.Maximum = 50

T
IP

You specify a RecentFile object by using RecentFiles(Index), where Index is an integer
that specifies the file you want to work with. The most-recently used file is 1, the second
most-recently used file is 2, and so on. 

Be careful you don’t specify an Index value that’s greater than the number of items in the recent
documents list.To check the maximum possible value for Index, use RecentFiles.Count.

C A U T I O N

The code used in this chapter’s listings can be found on my website at the following address:

http://www.mcfedries.com/Office2007VBA/Chapter07.docmN
O

T
E

http://www.mcfedries.com/Office2007VBA/Chapter07.docm


Creating a New Document
If you need to create a new document, use the Documents collection’s Add method:

Documents.Add([Template][, NewTemplate][, DocumentType][, Visible])

Template This optional argument specifies the template file to use as the basis
for the new document. Enter a string that spells out the path and
name of the .DOT file. If you omit this argument, Word creates the
new document based on the Normal template.

NewTemplate If you set this optional argument to True, Word creates a new template
file.

DocumentType This optional argument determines the type of document that’s 
created. Use one of the following constants:

wdNewBlankDocument Creates a new, blank Word 
document (this is the default).

wdNewEmailMessage Creates a new email message.

wdNewFrameset Creates a new web frameset page.

wdNewWebPage Creates a new web page.

wdNewXMLDocument Creates a new XML document.

Visible This is an optional Boolean value that determines whether Word dis-
plays the new document in a visible window. True is the default; use
False to create the document without displaying it in a visible window.

Because all the Add method’s arguments are optional, you can create a basic Word docu-
ment based on the Normal template with the following simple statement:

Documents.Add

7

Chapter 7 Programming Word118

After you create a new document, it automatically becomes the active document in the Word win-
dow, so you can use the ActiveDocument property to work with the new document (for exam-
ple, to save it, as discussed in the next section.

N
O

T
E

Saving a Document
The worst nightmare of any Word user is a power failure or glitch that shuts down Word
or even the computer itself while you have one or more documents open with unsaved
changes. I know people who have lost hours of work when this has happened. We tell our-
selves to save more often, but it’s easy to forget in the heat of battle. Even Word’s
AutoRecover feature doesn’t always work as advertised, so it can’t be relied upon.



119Working with Documents

Using the Save Method
Fortunately, VBA proves very useful in solving this problem because it’s easy to set up a
procedure that takes the guesswork out of saving. Before you get to that, however, let’s look
at a few fundamental properties and methods of Document objects.

First up is the Save method:

Document.Save

Document This is a reference to the document you want to save.

For example, the following statement saves the active document:

ActiveDocument.Save

If you’re dealing with a large document, you might not want to save it unnecessarily
because the save operation may take a while. You can avoid that by first checking the docu-
ment’s Saved property. If this returns False, it means the document has unsaved changes.
Here’s an example:

If ActiveDocument.Saved = False Then
ActiveDocument.Save

End If

The Save method will fail if the document is a new one that has never been saved before.
How can you tell? There are two ways to tell whether a document is new and unsaved:

■ You’ve just created the document using the Add method.

■ Check the document’s Path property. For a document that has been saved, Path returns
the drive and folder in which the document is stored. (Note that the string returned by
the Path property does not have a trailing backslash; for example, “C:\My
Documents”.) However, if the document has never been saved the Path property
returns an empty string (“”).

Here’s a bit of code that checks the Path property before trying to save the active document:

If ActiveDocument.Path <> “” Then
ActiveDocument.Save

End If

Listing 7.2 presents a procedure named SafeSave that combines these two checks so that it
avoids saving new or unchanged documents.

Listing 7.2 A Procedure That Avoids Saving New or Unchanged Documents

Sub SafeSave()
With ActiveDocument

If .Path <> “” And .Saved = False Then
.Save

End If
End With

End Sub

7



Using the SaveAs Method
If the document is new, use the SaveAs method instead.

Document.SaveAs([FileName][, FileFormat])

Document The Document object you want to save to a different file.

FileName (optional) The full name of the new document file, including the drive
and folder where you want the file to reside. If you don’t specify this
value, Word uses the current folder and a default name (such as
Doc1.docx)

FileFormat (optional) The file format to which the document should be saved. 
You can either use a predefined wdSaveFormat constant or an integer
that specifies the format (wdWordDocument is the default):

File Format Constant Integer Value

Word Document wdFormatDocument 0

Document Template wdFormatTemplate 1

Text Only wdFormatText 2

Text Only with Line Breaks wdFormatTextLineBreaks 3

MS-DOS Text wdFormatDOSText 4

MS-DOS Text with Line Breaks wdFormatDOSTextLineBreaks 5

Rich Text Format wdFormatRTF 6

Unicode Text wdFormatUnicodeText 7

Web Page wdFormatHTML 8

Web Archive wdFormatWebArchive 9

XML Document wdFormatXML 12

PDF wdFormatPDF 17

XPS wdFormatXPS 18

7

Chapter 7 Programming Word120

This is the simplified syntax for the SaveAs method.To see all 16 arguments in their full syntax,
look up the SaveAs method in the VBA Help system.N

O
T

E

Both of the following statements are equivalent (that is, they both save the active document
as a web page):

ActiveDocument.SaveAs “index.html”, wdFormatHTML
ActiveDocument.SaveAs “index.html”, 8



121Working with Documents

Closing a Document
When you no longer need a document, you can reduce clutter on the screen and within
Word by using the Close method to close the corresponding Document object:

Document.Close([SaveChanges][, OriginalFormat][, RouteDocument])

Document The Document object you want to close.

SaveChanges (optional) If the document has been modified, this argument
determines whether Word saves those changes:

wdSaveChanges Saves changes before closing.

wdDoNotSaveChanges Doesn’t save changes.

wdPromptToSaveChanges Asks the user whether he or she
wants to save changes (this is the
default).

OriginalFormat Specifies the format to use when saving the document:

wdOriginalFormat Saves the document in its original
format (this is the default).

wdWordDocument Saves the document in Word 
format.

wdPromptUser Asks the user whether he wants to
save the document in its original
format.

RouteDocument If set to True, this argument tells Word to route the docu-
ment to the next recipient.

For example, the following statement closes the active document and saves any changes:

ActiveDocument.Close wdSaveChanges

Closing All Open Documents
Later in this book you’ll learn how to create workspaces—collections of Word documents
that you open as a unit. Before you open a workspace, it’s a good idea to close all your open
documents. You might also want to close all your open documents to get a fresh start with
Word. In previous versions of Word you could do this by holding down the Shift key,
pulling down the File menu, and then selecting the Close All command. Unfortunately,
that trick no longer works in Word 2007. The other alternative is to shut down and restart
Word, but that’s often time-consuming. A faster method is to use the macro in Listing 7.3.

7
The Close All command still exists in Word, but it’s not part of the Ribbon.To add it to the Quick
Access Toolbar, pull down the Customize Quick Access toolbar list and click More Commands. In the
Choose Commands From list, click All Commands, scroll down the list of commands, and click Close
All. Click Add and then click OK.

T
IP



Listing 7.3 A Macro That Closes All Open Documents

Sub CloseAllOpenDocuments()
Dim doc As Document
For Each doc In Documents

doc.Close
Next ‘doc

End Sub

This macro uses a For Each...Next loop to run through all the Document objects in the
Documents collection. For each document, the macro runs the Close method without any
arguments, which means that Word prompts you to save changes.

Example: Making Document Backups
Let’s put the Document object to work by creating a procedure that not only saves a docu-
ment, but also makes a backup copy to another location. Listing 7.4 shows a procedure
named MakeBackup that does all this by using the SaveAs method as well as a few other
methods and properties of the Document object.

Listing 7.4 A Procedure That Creates a Backup Copy of the Active Document on a Floppy Disk

Sub MakeBackup()
Dim currFile As String
Dim backupFile As String
Const BACKUP_FOLDER = “G:\Backups\”
With ActiveDocument

‘
‘ Don’t bother if the document is unchanged or new
‘
If .Saved Or .Path = “” Then Exit Sub
‘
‘ Mark current position in document
‘
.Bookmarks.Add Name:=”LastPosition”
‘
‘ Turn off screen updating
‘
Application.ScreenUpdating = False
‘
‘ Save the file
‘
.Save
‘
‘ Store the current file path, construct the path for the
‘ backup file, and then save it to the backup drive
‘
currFile = .FullName
backupFile = BACKUP_FOLDER & .Name
.SaveAs FileName:=backupFile

End With
‘
‘ Close the backup copy (which is now active)
‘

7

Chapter 7 Programming Word122



123Working with Documents

ActiveDocument.Close
‘
‘ Reopen the current file
‘
Documents.Open FileName:=currFile
‘
‘ Return to the pre-backup position
‘
Selection.GoTo What:=wdGoToBookmark, Name:=”LastPosition”
‘
‘ Turn screen updating back on
‘
Application.ScreenUpdating = True

End Sub

The procedure opens by declaring some variables, including a constant called BACKUP_
FOLDER that stores the folder to which the backup copy will be saved. (If you plan on using
this macro, you’ll almost certainly need to modify the value of this constant.) The proce-
dure then checks to see whether the backup operation is necessary. In other words, if the
document has no unsaved changes (the Saved property returns True) or if it’s a new, unsaved
document (the Path property returns “”), bail out of the procedure (by running Exit Sub).

Otherwise, a new Bookmark object is created to save the current position in the document.
(This ensures that when the procedure re-opens the document after running SaveAs later
on, you’ll be returned to your place in the document.) Bookmarks is a collection that holds
all the defined bookmarks in a specified Document object. Each element of this collection is
a Bookmark object. To add a bookmark, use the Add method, as follows: 

Document.Bookmarks.Add Name:= BookmarkName

Document The Document object with which you want to work.

BookmarkName A string that specifies the name of the bookmark.

Then the following statement turns off screen updating, which means you won’t see the
opening and closing of files that occurs later in the code:

Application.ScreenUpdating = False

Then the Save method is used to save the file. You’re now ready to perform the backup.
First, the currFile variable is used to stored the document’s full pathname (that is, the doc-
ument’s drive, folder, and filename), which is given by the FullName property. Then the
pathname of the backup file is built with the following statement:

backupFile = BACKUP_FOLDER & .Name

This is used to save the file to the folder specified by BACKUP_FOLDER.

The actual backup takes place via the SaveAs method, which saves the document to the
path given by backupFile. From there, the procedure closes the backup file, reopens 
the original file, and uses the GoTo method to return to the original position within the 
document.

7



Automating the Backup Procedure
Rather than running the MakeBackup procedure by hand, it would be better to schedule
backups at specific times or at regular intervals. You can do this by using the Application
object’s OnTime method, which runs a procedure at a specified time, using the following 
syntax:

Application.OnTime(When, Name[, Tolerance])

When The time (and date, if necessary) you want the procedure to run. Enter
a date/time serial number.

Name The name (entered as text) of the procedure to run when the time
given by When arrives.

Tolerance If Word isn’t ready to run the procedure at When, it keeps trying for the
number of seconds specified by Tolerance. If you omit Tolerance,
VBA waits until Word is ready.

The easiest way to enter a time serial number for the When argument is to use the TimeValue
function:

TimeValue(Time)

Time A string representing the time you want to use (such as “5:00PM” or
“17:00”).

For example, the following formula runs the MakeBackup procedure at 5:00 p.m.:

Application.OnTime _
When:=TimeValue(“5:00PM”), _
Name:=”MakeBackup”

That’s fine, but what we really want is the OnTime method to run after a specified time
interval (for example, a half hour from now). To make this happen, use Now +
TimeValue(Time) for When (where Time is the interval you want to use). For example, the
following statement schedules the MakeBackup procedure to run in 5 minutes:

Application.OnTime _
When:=Now + TimeValue(“00:05:00”), _
Name:=”MakeBackup”

Add this code to the end of the MakeBackup procedure, and Word will automatically run the
backup every five minutes.

Working with Text
Although you can add lines, graphics, and other objects to a document, text is what Word is
all about. So it won’t come as any surprise to you that Word has a truckload of objects that
give you numerous ways to work with text. Five of these objects are quite useful: Range,
Selection, Words, Sentences, and Paragraphs. The next few sections take you through each
of these objects.

7

Chapter 7 Programming Word124



125Working with the Range Object

Working with the Range Object
If you’ve used VBA with Excel, you probably know that Excel has no separate object 
to represent a cell. Instead, a cell is considered to be just an instance of the generic 
Range class.

Along similar lines, Word has no separate objects for its most fundamental text units: the
character and the word. Like Excel, Word considers these items to be instances of a generic
class, which is also called the Range object. A Range object is defined as a continuous section
of text in a document: a few characters in a row, a few words in a row, and few paragraphs
in a row, or whatever. A range can be anything from a single character to an entire docu-
ment, as long as the text within the range is continuous.

There are two basic methods for returning a Range object: the Document object’s Range
method and the Range property.

The Range Method
The Document object has a Range method that lets you specify starting and ending points for
a range. Here’s the syntax:

Document.Range(Start,End)

Document The Document object with which you want to work.

Start The starting character position. Note that the first character in a 
document is at position 0.

End The ending character position. Note that this character is not included
in the range.

For example, the following statements use the myRange object variable to store the first 100
characters (0 through 99) in the active document:

Dim myRange As Range
myRange = ActiveDocument.Range(0, 100)

The Range Property
Many Word objects have a Range property that returns a Range object, including the
Paragraph and Selection objects (discussed later). This is important because these objects
lack certain properties and methods that are handy for manipulating text. For example, the
Paragraph object doesn’t have an Italic property. The Range object does, however, so you
format a paragraph’s font as italic programmatically by referring to its Range property, 
like so:

ActiveDocument.Paragraphs(1).Range.Italic = True

This statement formats the first paragraph in the active document with italic text. (I discuss
the Paragraphs collection in a moment.)

7



Reading and Changing Range Text
The Range object has a Text property that returns the text in the specified range. You can
also use the Text property to set the text within the specified range. For example, the fol-
lowing code fragment checks the text in a document called letter.docx to see whether the
first four characters equal the string “Dear”; if so, the text is replaced with “Greetings”: 

With Documents(“letter.docx”).Range.(0,4)
If .Text = “Dear” Then

.Text = “Greetings”
End If

End With

Formatting Text
The Range object’s properties also include many of the standard text formatting commands.
For example, the Bold property returns True if the Range object is formatted entirely as
bold, returns False if no part of the range is bold, and returns wdUndefined if only part of
the range is formatted as bold. You can also set this property by using True (for bolding),
False (to remove bolding), or wdToggle (to toggle the current setting between True and
False).

A similar property is Italic, which returns True if the specified range is formatted entirely
as italic, returns False if no part of the range is italic, and returns wdUndefined if only part
of the range is formatted as italic. You can also set this property by using True (for italics),
False (to remove italics), or wdToggle (to toggle the current setting between True and
False).

Another useful property is Case, which returns or sets the case of the specified range. This
property uses various wdCharacterCase constants, including wdLowerCase, wdTitleSentence,
wdTitleWord, wdToggleCase, and wdUpperCase.

For example, the following code fragment takes the Range object of the active document’s
first paragraph, and then sets Bold to True, Italic to True, and the case to wdTitleWord:

With ActiveDocument.Paragraphs(1).Range
.Bold = True
.Italic = True
.Case = wdTitleWord

End With

If you want maximum control over the character formatting in a range, use the Font prop-
erty, which returns a Font object. From there you can manipulate not only the Bold and
Italic properties, but also the type size (the Size property), the color (Color),
strikethrough (StrikeThrough and DoubleStrikeThrough), small caps (SmallCaps), and much
more. Here’s an example:

With ActiveDocument.Range.Font
.Color = RGB(0, 0, 255)
.Size = 12
.SmallCaps = True

End With    

7

Chapter 7 Programming Word126



127Working with the Range Object

Inserting Text
If you need to insert text into a document, Word offers several Range object methods. In
most cases, you start by inserting a paragraph into the document, which you do by running
the InsertParagraphAfter method. For example, the current cursor position is given by the
Selection object (which I discuss in detail later). To insert a new paragraph after the cur-
rent cursor position, you’d use the following statement:

Selection.InsertParagraphAfter

You can also run the InsertParagraphBefore method to insert a paragraph before the speci-
fied range, or the InsertParagraph method, which inserts a paragraph that replaces the
specified range.

With your new paragraph ready, you can then insert text using the InsertAfter method,
which inserts text after the specified range:

Range.InsertAfter(Text)

Range The Range object after which you want to insert the text.

Text The text to insert.

For example, the following statement inserts the current date at beginning of the active
document:

ActiveDocument.Range(0, 0).InsertAfter Date

Alternatively, you can use the InsertBefore method, which inserts text before the specified
Range:

Range.InsertBefore(Text)

Range The Range object before which you want to insert the text.

Text The text to insert.

One common Word task is to start a new document and then populate it with some kind of
repeated text. For example, when I start a new chapter of a book, I create a separate docu-
ment that holds copies of all the chapter’s figures, which I then annotate as I go along.
Under each image, I add captions such as Figure 7.1, Figure 7.2, and so on. Rather than
insert these numbers by hand, I use a macro that prompts me for the chapter number and
the total number of figures I think I’ll need. The macro then inserts the figure numbers
automatically. Listing 7.5 shows a version of this macro.

Listing 7.5 A Procedure That Inserts Paragraphs and Text

Public Sub InsertParagraphsAndText()
Dim nChapter As Integer
Dim nFigures As Integer
Dim i As Integer
‘
‘ Get the chapter number
‘

7

continues



nChapter = InputBox(“What’s the chapter number?”)
‘
‘ Get the total number of figures
‘
nFigures = InputBox(“How many figures?”)
‘
‘ Insert the figure numbers
‘
For i = 1 To nFigures

Selection.InsertParagraphAfter
Selection.InsertAfter “Figure “ & nChapter & “.” & i

Next ‘i
End Sub

This procedure uses the InputBox function to prompt for the chapter number (stored in the
nChapter variable) and the total number of figures (stored in the nFigures variable). It then
uses a For loop to add the figure numbers, first by inserting a paragraph and then by insert-
ing the figure text. Figure 7.1 shows an example document with some figure numbers
added by this macro.

7

Chapter 7 Programming Word128

Figure 7.1
Figure numbers
inserted into a docu-
ment by the code in
Listing 7.5.

Deleting Text
Range.Delete—If used without arguments, this method deletes the entire Range. However,
you can fine-tune your deletions by using the following syntax:

Range.Delete([Unit][, Count])

Range The Range object containing the text you want to delete.

Unit (optional) A constant that specifies whether you’re deleting characters
(use wdCharacter) or entire words (use wdWord). If you omit this argu-
ment, VBA assumes you’re deleting characters.

Count (optional) The number of units to delete. Use a positive number to delete
forward; use a negative number to delete backward. (The default is 1.)

Listing 7.5 Continued



129Using the Selection Object

For example, the following statement deletes five characters, starting at the current cursor
position:

Selection.Delete Unit:=wdCharacter, Count:=5

Using the Selection Object
The Selection object always references one of two things:

■ The selected text.

■ The position of the insertion point cursor.

Because much of what you do in Word involves one of these two items (formatting text,
inserting text at the insertion point, and so on), the Selection object is one of the most
important in Word. (I’m simplifying things a bit for this discussion because the Selection
object can also refer to a selected shape, inline shape, or block. I’ll deal only with text-
related selections in this section.)

You reference the currently selected text or insertion point by using the Selection property
without an object qualifier. For example, the following statement formats the selected text
as bold:

Selection.Range.Bold = True

To create a Selection object, use the Select method, which is available with a number of
Word objects, including Document, Range, Bookmark, and Table. For example, the following
statement selects the first paragraph in the active document:

ActiveDocument.Paragraphs(1).Range.Select

The Selection object offers many of the same methods as does the Range object, including
Delete, InsertAfter, InsertBefore, InsertParagraphAfter, and InsertParagraphBefore.

Checking the Selection Type
The Selection object has a number of properties, including many that you’ve seen already
with the Document and Range objects. The few properties that are unique to the Selection
object aren’t particularly useful, so I won’t discuss them here. The lone exception is the
Type property, which returns the type of selection:

wdNoSelection Nothing is selected.

wdSelectionColumn A column in a table is selected.

wdSelectionIP The selection is the insertion point.

wdSelectionNormal Some text is selected.

wdSelectionRow A row in a table is selected.

7



Moving the Insertion Point
The insertion point is the simplest form of the Selection object. If your code needs to
move the insertion point, the easiest way to do this is to use the Move method, which col-
lapses the current selection and moves the insertion point by a specified number of units.
You can also use the MoveEnd method to move the insertion point to the end of the specified
unit (such as a paragraph), or the MoveStart method to move the insertion point to the
beginning of the specified unit. (Note that all three methods return the number of units
that the insertion point was moved.) The syntax is the same for each method:

Selection.Move([Unit][, Count])
Selection.MoveEnd([Unit][, Count])
Selection.MoveStart([Unit][, Count])

Unit (optional) Specifies the unit by which the insertion point is moved. 
For regular text, use wdCharacter (this is the default), wdWord, wdLine,
wdSentence, wdParagraph, wdSection, or wdStory. In a table, use
wdCell, wdColumn, wdRow, or wdTable.

Count (optional) The number of units by which the insertion point is moved
(the default is 1).

For example, you probably know that Word offers many keyboard shortcuts for navigating
characters, words, paragraphs, screens, and so on. You can press Ctrl+left arrow or
Ctrl+right arrow to move word by word, Ctrl+up arrow and Ctrl+down arrow to move
paragraph by paragraph, and so on. However, Word does not have a keyboard shortcut for
moving from one sentence to another, which is sorely missed. To implement this useful
shortcut yourself, use the macros in Listing 7.6 to navigate forward and backward one sen-
tence.

Listing 7.6 Macros to Navigate from One Sentence to Another

Sub GoToNextSentence()
Selection.Move wdSentence, 1

End Sub
Sub GoToPreviousSentence()

Selection.Move wdSentence, -1
End Sub

7

Chapter 7 Programming Word130

For maximum convenience, assign shortcut keys to the macros in Listing 7.6. Choose Office,Word
Options, click Customize, and then click the Customize button. In the Categories list, click Macros,
click the procedure name in the Macros list, and then click inside the Press New Shortcut Key box.
Press the shortcut key (for example, Ctrl+Alt+Shift+left arrow for GoToNextSentence and
Ctrl+Alt+Shift+right arrow for GoToPreviousSentence), and then click Assign.

T
IP



131Using the Selection Object

Extending the Selection
When you use the Selection object, it’s important to know how to manipulate the cur-
rently selected text by extending the selection. The simplest way to extend the selection is
with the various Move commands that either move the insertion point or extend the selec-
tion in a particular direction:

Selection.MoveDown([Unit][, Count][, Extend])
Selection.MoveLeft([Unit][, Count][, Extend])
Selection.MoveRight([Unit][, Count][, Extend])
Selection.MoveUp([Unit][, Count][, Extend])

Unit (optional) Specifies the unit by which the insertion point is moved or
the selection is extended. For regular text, use wdCharacter, wdWord,
wdLine (this is the default), wdSentence, wdParagraph, wdSection, or
wdStory. In a table, use wdColumn, or wdRow.

Count (optional) The number of units by which the insertion point is moved
or the selection is extended (the default is 1).

Extend (optional) Specifies what happens to the selection. To extend the 
selection to the end of the specified number of Units, use wdExtend; 
to collapse the selection to the insertion point, use wdMove (this is the
default).

Listing 7.7 offers a procedure that puts a couple of these methods to the text.

Listing 7.7 A Procedure That Uses Selection Extension to Format Different Aspects 
of a Paragraph

Sub FormatFirstParagraph()
‘
‘ Select the first word in the first paragraph
‘
ActiveDocument.Paragraphs(1).Range.Words(1).Select
With Selection

‘
‘ Extend the select to the first three words
‘
.MoveRight wdWord, 2, wdExtend
‘
‘ Convert the selection to uppercase
‘
.Range.Case = wdUpperCase
‘
‘ Extend the selection to the entire paragraph
‘
.MoveDown wdParagraph, 1, wdExtend
‘
‘ Set the paragraph font size to 14
‘
.Range.Font.Size = 14
‘

7

continues



‘ Move the insertion point to the next paragraph
‘
.Move wdParagraph, 1

End With
End Sub

This procedure begins by selecting the first word in the first paragraph. Using the
Selection object, the procedure then applies the MoveRight method to select the next two
words, and then formats those words as uppercase. The procedure then uses the MoveDown
method to extend the selection to the entire paragraph, which is then formatted with a 
14-point font.

Collapsing the Selection
When you no longer want text selected, you can use the Move, MoveEnd, or MoveStart meth-
ods to automatically collapse the selection and move the insertion point. Sometimes, how-
ever, you might prefer to place the insertion point either at the beginning or the end of the
current selection. To so that, use the Collapse method:

Selection.Collapse [Direction]

Direction (optional) Specifies where you want the insertion point to end up. 
Use wdCollapseStart to position the cursor at the beginning of the
Selection (this is the default). Use wdCollapseEnd to position the cur-
sor at the end of the Selection.

For example, in Listing 7.7 (presented in the previous section), the procedure ends by 
using the Move method to move the insertion point to the next paragraph. If you prefer to
leave the insertion point at the end of the selected paragraph, you need to do two things:
extend the selection to the left by one character to remove the paragraph mark from the
selection, and then perform the collapse:

.MoveLeft wdCharacter, 1, wdExtend

.Collapse wdCollapseEnd

Using the Words Object
The Words object is a collection that represents all the words in whatever object is specified.
For example, ActiveDocument.Words is the collection of all the words in the active docu-
ment. Other objects that have the Words property are Paragraph, Range, and Selection.

You refer to individual words by using an index number with the Words collection. As I
mentioned earlier, however, this doesn’t return a “Word” object; there is no such thing in
Microsoft Word’s VBA universe. Instead, individual words are classified as Range objects
(see “Working with the Range Object” earlier in this chapter).

7

Chapter 7 Programming Word132

Listing 7.7 Continued



133Working with the Sentences Object

The following statement formats the first word in the active document as bold:

ActiveDocument.Words(1).Font.Bold = True

To count the number of words in the specified object, use the Count property:

totalWords = Documents(“Article.docx”).Words.Count

Note, however, that the Words object includes the punctuation and paragraph marks inside
the object, which is certainly bizarre behavior, and serves to render the Words.Count prop-
erty more or less useless. If you want to know the number of real words in an object, use
the CountWords function shown in Listing 7.8.

Listing 7.8 A Function That Counts the Number of “Real” Words in an Object, Ignoring 
Punctuation Marks and Paragraph Marks

Function CountWords(countObject As Object) As Long
Dim i As Long, word As Range
i = 0
For Each word In countObject.Words

Select Case Asc(Left(word, 1))
Case 48 To 57, 65 To 90, 97 To 122

i = i + 1
End Select

Next ‘word
CountWords = i

End Function

Sub TestCountWords()
With ActiveDocument

MsgBox “Words.Count reports “ & .Words.Count & Chr(13) & _
“CountWords reports “ & CountWords(.Range)

End With
End Sub

This function takes a generic object as an argument (because the function can work with a
Document, Range, or Selection object). It then uses a For Each loop to run through each
word in the object. With each loop, the ASCII value of the leftmost character is plugged
into a Select Case statement. If that value is between 48 and 90 or between 97 and 122, it
means the character is either a number or a letter. If so, the function counts the word as a
“real” word and increments the counter (the variable named i).

Working with the Sentences Object
The next rung on Word’s text object ladder is the Sentences object. This is a collection of
all the sentences in whatever object you specify, be it a Document, Range, or Selection.

As with Words, you refer to specific members of the Sentences collection by an index num-
ber, and the resulting object is a Range. For example, the following statement stores the
active document’s first sentence in the firstSentence variable:

7



firstSentence = ActiveDocument.Sentences(1)

Again, the Count property can be used to return the total number of sentences in an object.
In the following procedure fragment, the Count property is used to determine the last sen-
tence in a document:

With Documents(“Remarks.docx”)
totalSentences = .Sentences.Count
lastSentence = .Sentences(totalSentences)

End With

Displaying Sentence Word Counts
You can configure Word’s grammar checker to show the average number of words per sen-
tence in a document. That’s useful because you don’t want a document to have many long
sentences. However, in a long document it’s also important to have a variety of sentence
lengths, but the grammar checker can’t help you with this.

7

Chapter 7 Programming Word134

To configure the grammar checker to show the average number of words per sentence, choose
Office,Word Options, click Proofing, and activate the Show Readability Statistics check box.N

O
T

E

To see the lengths of the sentences in a document, use the code in Listing 7.9.

Listing 7.9 A Macro That Displays the Lengths of Sentences in the Active Document

Sub DisplaySentenceLengths()
Dim s As Range
Dim maxWords As Integer
Dim i As Integer
Dim sentenceLengths() As Integer
Dim str As String

With ActiveDocument
‘
‘ Run through all the sentences to find the longest
‘
maxWords = 0
For Each s In .Sentences

If CountWord(s) > maxWords Then
maxWords = CountWord(s)

End If
Next ‘s
‘
‘ Redimension the array of sentence lengths
‘



135Working with the Sentences Object

ReDim sentenceLengths(maxWords)
‘
‘ Run through the sentences again to count
‘ the number of sentences for each length
‘
For Each s In .Sentences

‘
‘ Get the word count for the sentence
‘
j = CountWords(s)
‘
‘ If it’s not empty, add it to the array
‘
If j > 0 Then

sentenceLengths(j - 1) = sentenceLengths(j - 1) + 1
End If

Next ‘s
‘
‘ Construct the string that displays the sentence lengths
‘ and their frequencies
‘
str = “Sentence Length:” & vbTab & “Frequency:” & vbCrLf & vbCrLf
‘
‘ The UBound() function tells you the upper bound of an array.
‘ In this case, it tells you the largest value in sentenceLengths.
‘
For i = 0 To UBound(sentenceLengths) - 1

‘
‘ Build the string
‘
str = str & IIf(i + 1 < 10, “  “, “”) & i + 1 & _

IIf(i = 0, “ word:  “, “ words: “) & _
vbTab & vbTab & sentenceLengths(i) & vbCrLf

Next ‘i
‘
‘ Display the string
‘
MsgBox str

End With
End Sub

Using the ActiveDocument object, the macro makes a first pass through all the sentences to
find the one with the most words. Notice that the procedure uses the CountWords function
from Listing 7.8 to get accurate word counts for each Sentence object. The macro then
uses this maximum word count to redimension the sentenceLengths array, which is used to
hold the number of occurrences of each sentence length within the document. To calculate
these frequencies, the macro then runs through all the sentences again and increments the
array values for each length. The macro finishes by constructing and then displaying a
string that holds the sentence lengths and frequencies. Figure 7.2 shows an example. 7



Programming the Paragraph Object
From characters, words, and sentences, you make the next logical text leap: paragraphs. A
Paragraph object is a member of the Paragraphs collection, which represents all the para-
graphs in the specified Document, Range, or Selection. As with the other text objects, you
use an index number with the Paragraphs object to specify an individual paragraph.

One common scenario is to run through all the paragraphs in a document and either mod-
ify each paragraph in some way or check for some kind of paragraph property. Here’s a
code snippet that shows the general procedure for doing this:

Dim p As Paragraph
For Each p In ActiveDocument.Paragraphs

[VBA statements]
Next ‘p

For example, it’s often useful to add a set of hyperlinks to a document that enable the
reader to jump to a particular heading. Listing 7.10 presents a macro that does just that.

Listing 7.10 A Procedure That Inserts Hyperlinks for a Specified Style of Heading

Sub InsertHyperlinks(heading As String)
Dim b As Bookmark
Dim p As Paragraph
Dim lastParagraph As Paragraph
Dim totalParagraphs As Integer

7

Chapter 7 Programming Word136

Figure 7.2
The Display
Sentence
Lengths macro
displays a message
box such as this 
to show you the 
document’s sentence
lengths and the 
frequency with
which each length
occurs.

To display word count data for each paragraph, replace .Sentences in Listing 7.2 with
.Paragraphs.T

IP



137Programming the Paragraph Object

Dim i As Integer
i = 0
With ActiveDocument

‘
‘ Delete the existing “Anchor” bookmarks
‘
For Each b In .Bookmarks

If InStr(b.Name, “Anchor”) Then b.Delete
Next ‘b
‘
‘ Run through the paragraphs
‘
totalParagraphs = .Paragraphs.Count
For Each p In .Paragraphs

‘
‘ Look for the specified style
‘
If p.Style = heading Then

‘
‘ Create a bookmark (Anchor1, Anchor2, etc.)
‘
i = i + 1
.Bookmarks.Add “Anchor” & i, p.Range

End If
Next ‘p
‘
‘ Run through the bookmarks
‘
For Each b In .Bookmarks

‘
‘ Work only with the “Anchor” bookmarks
‘
If InStr(b.Name, “Anchor”) <> 0 Then

‘
‘ Add a paragraph at the end of the document
‘
Set lastParagraph = .Paragraphs(.Paragraphs.Count)
lastParagraph.Range.InsertParagraphAfter
‘
‘ Turn the last paragraph into a
‘ hyperlink to the bookmarked header
‘
lastParagraph.Range.Hyperlinks.Add _

Anchor:=lastParagraph.Range, _
Address:=””, _
SubAddress:=b.Name, _
ScreenTip:=b.Range.Text, _
TextToDisplay:=b.Range.Text

End If
Next ‘b

End With
End Sub

The idea here is that given a style name represented by the heading variable, the procedure
will look for paragraphs that have that style, and then set up bookmarks for each paragraph,
each of which will have the name Anchorn, where n is an integer (Anchor1, Anchor2, and so

7



on). So the procedure begins by running through all the active document’s bookmarks and
deleting those that have a name that includes Anchor. (This enables you to run this proce-
dure multiple times without generating errors.) Then the procedure runs through every
paragraph in the active document, and looks for those paragraphs that use whatever style is
specified as the heading argument. When it finds such a paragraph, it creates a new
Bookmark object for the paragraph. Then the procedure runs through all the bookmarks
once again, and each time it comes across an Anchor bookmark it inserts a paragraph at the
end of the document and adds a hyperlink that points to the bookmark.

7

Chapter 7 Programming Word138

I don’t discuss programming hyperlinks in this book, but the text in the example file
(Chapter07.docm) contains a tutorial on creating and working with hyperlinks via VBA.N

O
T

E

From Here
■ To learn how to use the InputBox function, see “Getting Input Using InputBox,” 

p. 50.

■ For a general discussion of VBA objects, see Chapter 5, “Working with Objects,” 
p. 71.

■ You use For Each...Next loops quite often when dealing with the Words, Sentences,
and Paragraphs collections; see “Using For Each...Next Loops,” p. 109.



I N  T H I S  C H A P T E R

Programming Excel

8If you’re using VBA in Excel, most of your proce-
dures will eventually do something to the Excel
environment. They might open a workbook,
rename a worksheet, select a cell or range, enter a
formula, or even set some of Excel’s options.
Therefore, knowing how VBA interacts with Excel
is crucial if you ever hope to write useful routines.
This chapter looks closely at that interaction. You
learn how to work with all the most common Excel
objects, including the Workbook, Worksheet, and
Range objects.

Excel’s Application Object
You begin, however, with the Application object.
Recall that in Chapter 5, “Working with Objects,”
you learned a few Application object properties
and methods that are common to all VBA applica-
tions. As you can imagine, though, each application
has its own unique set of properties and methods
for the Application object. Excel is no exception, as
you’ll see in this section.

Accessing Worksheet Functions
VBA has dozens of functions of its own, but its col-
lection is downright meager compared to the hun-
dreds of worksheet functions available with Excel. 
If you need to access one of these worksheet func-
tions, VBA makes them available via a property of
the Application object called WorksheetFunction.
Each function works exactly as it does on a work-
sheet—the only difference being that you have to
append Application. to the name of the function.

Excel’s Application Object  . . . . . . . . . . . . . . . .139

Manipulating Workbook Objects  . . . . . . . .146

Dealing with Worksheet Objects  . . . . . . . .150

Working with Range Objects  . . . . . . . . . . . .153



Recalculating Workbooks
The Application object features a couple of methods that enable you to recalculate the
open workbooks if you’ve turned off automatic recalculation:

■ Calculate—Calculates all the open workbooks. Specifically, this method recalculates
only those formulas with cell precedents that have changed values. (This is equivalent to
pressing F9, or clicking Calculate Now in the Ribbon’s Formulas tab.) Note that you
don’t need to specify the Application object. You can just enter Calculate by itself.

8

Chapter 8 Programming Excel140

For example, to run the SUM() worksheet function on the range named Sales and store the
result in a variable named totalSales, you’d use the following statement:

totalSales = Application.WorksheetFunction.Sum(Range(“Sales”))

The WorksheetFunction object includes only those worksheet functions that don’t duplicate
an existing VBA function. For example,VBA has a UCase function that’s equivalent to Excel’s
UPPER() worksheet function (both convert a string into uppercase). In this case, you must use
VBA’s UCase function in your code. If you try to use Application.WorksheetFunction.
Upper, you’ll receive an error message. For a complete list of VBA functions, see Appendix B,
“VBA Functions.”

C A U T I O N

A precedent is a cell that is directly or indirectly referenced in a formula.

N
O

T
E

■ Application.CalculateFull—Runs a full calculation of all the open workbooks.
Specifically, this method recalculates every formula in each workbook, even those with
cell precedents that haven’t changed values. (This is equivalent to pressing
Ctrl+Alt+F9.) Note that for this method you must specify the Application object.

Converting a String into an Object
Excel’s Application object comes with an Evaluate method that converts a string into an
Excel object, using the following syntax:

Evaluate(Name)

Name A string that specifies a cell address, a range, or a defined name.

For example, Evaluate(“A1”) returns a Range object (that is, a cell or groups of cells; see
“Working with Range Objects,” later in this chapter) that represents cell A1 in the active
worksheet. Listing 8.1 shows a more elaborate example that takes the value in cell A1 (the
value is “A”) and the value in cell B1 (the value is “2”), concatenates them, and then uses
Evaluate to display the value from cell A2.



141Excel’s Application Object

Listing 8.1 A Procedure That Tests the Evaluate Function

Sub EvaluateTest()
Dim columnLetter As String
Dim rowNumber As String
Dim cellAddress As String
‘
‘ Activate the “Test Data” worksheet
‘
Worksheets(“Test Data”).Activate
‘
‘ Get the value in cell A1
‘
columnLetter = [A1].Value
‘
‘ Get the value in cell B1
‘
rowNumber = [B1].Value
‘
‘ Concatenate the two values and then display the message
‘
cellAddress = columnLetter & rowNumber
MsgBox “The value in cell “ & cellAddress & “ is “ & _

Application.Evaluate(cellAddress)
End Sub

8

The code used in this chapter’s examples can be found on my website at the following address:

http://www.mcfedries.com/Office2007VBA/Chapter08.xlsmN
O

T
E

Pausing a Running Macro
The Application object comes with a Wait method that pauses a running macro until a
specified time is reached. Here’s the syntax:

Application.Wait(Time)

Time The time you want to macro to resume running.

For example, if you wanted your procedure to delay for about five seconds, you would use
the following statement:

Application.Wait Now + TimeValue(“00:00:05”)

See “Running a Procedure at a Specific Time,” later in this chapter, to learn more about
the TimeValue function.

Some Event-Like Methods
Excel’s Application object comes with several methods that are “event-like.” In other
words, they respond to outside influences such as the press of a key. This section looks at
four of these methods: OnKey, OnTime, OnRepeat, and OnUndo.

http://www.mcfedries.com/Office2007VBA/Chapter08.xlsm


Running a Procedure when the User Presses a Key
When recording a macro, Excel enables you to assign a Ctrl+key shortcut to a procedure.
However, there are two major drawbacks to this method:

■ Excel uses some Ctrl+key combinations internally, so your choices are limited.

■ It doesn’t help if you would like your procedures to respond to “meaningful” keys such
as Delete and Esc.

To remedy these problems, use the Application object’s OnKey method to run a procedure
when the user presses a specific key or key combination:

Application.OnKey(Key[, Procedure])

Key The key or key combination that runs the procedure. For letters,
numbers, or punctuation marks, enclose the character in quotes (for
example, “a”). For other keys, see Table 8.1.

Procedure The name (entered as text) of the procedure to run when the user
presses a key. If you enter the null string (“”) for Procedure, a key is
disabled. If you omit Procedure, Excel resets the key to its normal
state.

Table 8.1 Key Strings to Use with the OnKey Method

Key What to Use
Backspace “{BACKSPACE}” or “{BS}”

Break “{BREAK}”

Caps Lock “{CAPSLOCK}”

Delete “{DELETE}” or “{DEL}”

Down arrow “{DOWN}”

End “{END}”

Enter (keypad) “{ENTER}”

Enter “~” (tilde)

Esc “{ESCAPE}” or “{ESC}”

Help “{HELP}”

Home “{HOME}”

Insert “{INSERT}”

Left arrow “{LEFT}”

Num Lock “{NUMLOCK}”

Page Down “{PGDN}”

Page Up “{PGUP}”

8

Chapter 8 Programming Excel142



143Excel’s Application Object

Key What to Use
Right arrow “{RIGHT}”

Scroll Lock “{SCROLLLOCK}”

Tab “{TAB}”

Up arrow “{UP}”

F1 through F12 “{F1}” through “{F15}”

You also can combine these keys with the Shift, Ctrl, and Alt keys. You just precede these
codes with one or more of the codes listed in Table 8.2.

Table 8.2 Symbols That Represent Alt, Ctrl, and Shift in OnKey

Key What to Use
Alt % (percent)

Ctrl ^ (caret)

Shift + (plus)

For example, pressing Delete normally wipes out only a cell’s contents. If you would like a
quick way of deleting everything in a cell (contents, formats, comments, and so on), you
could set up (for example) Ctrl+Delete to do the job. Listing 8.2 shows three procedures
that accomplish this:

■ SetKey—This procedure sets up the Ctrl+Delete key combination to run the DeleteAll
procedure. Notice how the Procedure argument includes the name of the workbook
where the DeleteAll procedure is located; therefore, this key combination will operate
in any workbook.

■ DeleteAll—This procedure runs the Clear method on the currently selected cells.

■ ResetKey—This procedure resets Ctrl+Delete to its default behavior.

Listing 8.2 Procedures That Use the OnKey Method to Set and Reset a Key Combination

Sub SetKey()
Application.OnKey _

Key:=”^{Del}”, _
Procedure:=”Chaptr08.xlsm!DeleteAll”

End Sub

Sub DeleteAll()
Selection.Clear

End Sub

Sub ResetKey()
Application.OnKey _

Key:=”^{Del}”
End Sub

8



Running a Procedure at a Specific Time
If you need to run a procedure at a specific time, use the OnTime method:

Application.OnTime(EarliestTime, Procedure[, LatestTime][, Schedule])

EarliestTime The time (and date, if necessary) you want the procedure to
run. Enter a date/time serial number.

Procedure The name (entered as text) of the procedure to run when the
EarliestTime arrives.

LatestTime If Excel isn’t ready to run the procedure at EarliestTime (in
other words, if it’s not in Ready, Cut, Copy, or Find mode), it
will keep trying until LatestTime arrives. If you omit
LatestTime, VBA waits until Excel is ready. Enter a date/time
serial number.

Schedule A logical value that determines whether the procedure runs at
EarliestTime or not. If Schedule is True or omitted, the pro-
cedure runs. Use False to cancel a previous OnTime setting.

The easiest way to enter the time serial numbers for EarliestTime and LatestTime is to use
the TimeValue function:

TimeValue(Time)

Time A string representing the time you want to use (such as
“5:00PM” or “17:00”).

For example, the following formula runs a procedure called Backup at 5:00 p.m.:

Application.OnTime _
EarliestTime:=TimeValue(“5:00PM”), _
Procedure:=”Backup”

8

Chapter 8 Programming Excel144

If you want the OnTime method to run after a specified time interval (for example, an hour from
now), use Now + TimeValue(Time) for EarliestTime (where Time is the interval you
want to use). For example, the following statement schedules a procedure to run in 30 minutes:

Application.OnTime _
EarliestTime:=Now + TimeValue(“00:30”), _
Procedure:=”Backup”

T
IP

Running a Procedure when the User Selects Repeat or Undo
Excel has a couple of event-like methods that run procedures when the user selects the
Undo or Repeat commands.



145Excel’s Application Object

The OnRepeat method customizes the name of the Repeat command (that is, the text that
appears when you hover the mouse pointer over the Repeat button) and specifies the pro-
cedure that runs when the user clicks Repeat. Set this property at the end of a procedure so
the user can easily repeat the procedure just by clicking Repeat. Here’s the syntax:

Application.OnRepeat(Text, Procedure)

Text The name of the Repeat command.

Procedure The procedure to run when the user clicks Repeat
(this is usually the name of the procedure that con-
tains the OnRepeat statement).

The OnUndo method is similar to OnRepeat, except that it sets the name of the Undo com-
mand and specifies the procedure that runs when the user clicks Undo:

Application.OnUndo(Text, Procedure)

Text The name of the Undo command.

Procedure The procedure to run when the user clicks Undo.

Listing 8.3 shows an example that uses both OnRepeat and OnUndo. The currCell variable
stores the address of the active cell. Notice that it’s declared at the module level—that is, at
the top of the module, above all the procedures— to make it available to all the procedures
in the module. The BoldAndItalic procedure makes the font of the active cell bold and
italic and then sets the OnRepeat property (to run BoldAndItalic again) and the OnUndo
property (to run the procedure named UndoBoldAndItalic).

Listing 8.3 Procedures That Set the OnRepeat and OnUndo Properties

Dim currCell As String  ‘ The module-level variable
Sub BoldAndItalic()

With ActiveCell
.Font.Bold = True
.Font.Italic = True
currCell = .Address

End With
Application.OnRepeat _

Text:=”Repeat Bold and Italic”, _
Procedure:=”BoldAndItalic”

Application.OnUndo _
Text:=”Undo Bold and Italic”, _
Procedure:=”UndoBoldAndItalic”

8

The Repeat command (shortcut key: Ctrl+Y) doesn’t appear in the Ribbon or the Quick Access tool-
bar (which holds the Undo command).To add the Repeat command to the Quick Access toolbar, pull
down the Customize Quick Access Toolbar list and then click More Commands. Make sure Popular
Commands appears in the Choose Commands From list, click Repeat, click Add, and then click OK.

T
IP

continues



End Sub

Sub UndoBoldAndItalic()
With Range(currCell).Font

.Bold = False

.Italic = False
End With

End Sub

Manipulating Workbook Objects
Workbook objects appear directly below the Application object in Excel’s object hierarchy.
You can use VBA to create new workbooks, open or delete existing workbooks, save and
close open workbooks, and much more. The next section takes you through various tech-
niques for specifying workbooks in your VBA code; then you’ll look at some Workbook
object properties and methods.

Specifying a Workbook Object
If you need to perform some action on a workbook, or if you need to work with an object
contained in a specific workbook (such as a worksheet), you need to tell Excel which work-
book you want to use. VBA gives you no fewer than three ways to do this:

■ Use the Workbooks object—The Workbooks object is the collection of all the open
workbook files. To specify a workbook, either use its index number (where 1 represents
the first workbook opened) or enclose the workbook name in quotation marks. For
example, if the Budget.xlsx workbook was the first workbook opened, the following
two statements would be equivalent:
Workbooks(1)
Workbooks(“Budget.xlsx”)

■ Use the ActiveWorkbook object—The ActiveWorkbook object represents the workbook
that currently has the focus.

■ Use the ThisWorkbook object—The ThisWorkbook object represents the workbook
where the VBA code is executing. If your code deals only with objects residing in the
same workbook as the code itself, you can use the ActiveWorkbook object. However, if
your code deals with other workbooks, use ThisWorkbook whenever you need to make
sure that the code affects only the workbook containing the procedure.

Opening a Workbook
To open a workbook file, use the Open method of the Workbooks collection. The Open
method has a dozen arguments you can use to fine-tune your workbook openings, but only
one of these is mandatory. Here’s the simplified syntax showing the one required argument
(for the rest of the arguments, look up the Open method in the VBA Help system):

8

Chapter 8 Programming Excel146

Listing 8.3 Continued



147Manipulating Workbook Objects

Workbooks.Open(FileName)

FileName The full name of the workbook file, including the
drive and folder that contain the file.

For example, to open a workbook named Data.xlsx in your user profile’s Documents
folder, you would use the following statement:

Workbooks.Open Environ(“UserProfile”) & “\Documents\Data.xlsx”

➔ To learn about the Environ function, see the tip in the section “Opening a Document,” p. 116.

Creating a New Workbook
If you need to create a new workbook, use the Workbooks collection’s Add method:

Workbooks.Add(Template)

Template is an optional argument that determines how the workbook is created. If Template
is a string specifying an Excel file, VBA uses the file as a template for the new workbook.
You also can specify one of the following constants:

xlWBATWorksheet Creates a workbook with a single worksheet.

xlWBATChart Creates a workbook with a single chart sheet.

Here’s a sample statement that uses the Add method to open a new workbook based on
Excel’s ExpenseReport.xltx template file:

Workbooks.Add “C:\Program Files\Microsoft Office” & _
“\Templates\1033\ExpenseReport.xltx”

Specifying the Number of Sheets in a New Workbook
When you create a new workbook in Excel, the file comes with three worksheets by
default. Most people just use one worksheet, but leave the other two sheets in the work-
book, just in case. If you use several sheets in many or all of your workbooks, you should
consider increasing the default number of sheets that Excel includes in new workbooks.
Follow these steps:

1. Choose Office, Excel Options to open the Excel Options dialog box.

2. Click Popular.

3. Use the Include This Many Sheets spin box to set the number of sheets you want by
default.

4. Click OK.

That’s fine if you always use lots of sheets, but what if you use lots of sheets only occasion-
ally? In that case, it would be nice to be able to specify the number of sheets you want as
you’re creating a new workbook. The macro in Listing 8.4 enables you to do just that.

8



Listing 8.4 A Procedure That Prompts You to Specify the Number of Sheets You Want in a New 
Workbook

Sub NewWorkbookWithCustomSheets()
Dim currentSheets As Integer
With Application

‘
‘ Save the current value of SheetsInNewWorkbook
‘
currentSheets = .SheetsInNewWorkbook
‘
‘ Ask how many sheets to include in the new workbook
‘ and store the result in SheetsInNewWorkbook
‘
.SheetsInNewWorkbook = InputBox( _

“How many sheets do you want “ & _
“in the new workbook?”, , 3)

‘
‘ Create the new workbook
‘
Workbooks.Add
‘
‘ Restore the original value of SheetsInNewWorkbook
‘
.SheetsInNewWorkbook = currentSheets

End With
End Sub

The value of the Include This Many Sheets setting is given by the Application object’s
SheetsInNewWorkbook property. The macro first stores the current SheetsInNewWorkbook
value in the currentSheets variable. Then the macro runs the InputBox function to get the
number of required sheets (with a default value of 3), and this value is assigned to the
SheetsInNewWorkbook property. Then the Workbooks.Add statement creates a new workbook
(which will have the specified number of sheets) and the SheetsInNewWorkbook property is
returned to its original value.

Saving Every Open Workbook
If you often work with multiple workbooks at once, you may find yourself moving from
one workbook to another, making changes to each one as you go. Unless you remember to
save all along, you probably end up with some or all of your open workbooks with unsaved
changes. Unfortunately, Excel doesn’t tell you which workbooks have unsaved changes, so
you have no choice but to trudge through each open workbook and run the Save command.

You can avoid this drudgery by using the SaveAll macro shown in Listing 8.5.

8

Chapter 8 Programming Excel148



149Manipulating Workbook Objects

Listing 8.5 A Procedure That Saves Every Open Workbook

Sub SaveAll()
Dim wb As Workbook
Dim newFilename As Variant
‘
‘ Run through all the open workbooks
‘
For Each wb In Workbooks

‘
‘ Has the workbook been saved before?
‘
If wb.Path <> “” Then

‘
‘ If so, save it
‘
wb.Save

Else
‘
‘ If not, display the Save As dialog box
‘ to get the workbook’s path & filename
‘
With Application

newFilename = .GetSaveAsFilename( _
FileFilter:=”Microsoft Office “ & _
“Excel Workbook “ & _
“(*.xlsx), *.xlsx”)

End With
‘
‘ Did the user click Cancel?
‘
If newFilename <> False Then

‘
‘ If not, save the workbook using the
‘ specified path and filename
‘
wb.SaveAs fileName:=newFilename

End If
End If

Next ‘wb
End Sub

The main loop in the SaveAll macro uses the Workbooks collection and a For Each...Next
loop to run through all the open workbooks. For each workbook (given by the wb Workbook

variable), the loop first checks the Path property to see whether it returns the null string
(“”). If not, it means the workbook has been saved previously, so the macro runs the Save
method to save the file. If Path does return the null string, it means you’re saving the work-
book for the first time. In this case, the macro runs the GetSaveAsFilename method, which
displays the Save As dialog box so that you can select a save location and filename, which
are stored in the newFilename variable. If this variable’s value is False, it means you clicked
Cancel in the Save As dialog box, so the macro skips the file; otherwise, the macro uses the
SaveAs method to save the workbook, using the specified path and filename.

8



Closing a Workbook
To close a Workbook object, use the Close method, which uses the following syntax:

Workbook.Close([SaveChanges][, FileName][, RouteWorkbook])

Workbook The Workbook object you want to close.

SaveChanges If the workbook has been modified, this argument
determines whether or not Excel saves those changes:

SaveChanges Action

True Saves changes before closing.

False Doesn’t save changes.

Omitted Asks the user whether changes
should be saved.

FileName Save the workbook under this filename.

RouteWorkbook Routes the workbook according to the following 
values:

RouteWorkbook Action

True Sends the workbook to the next
recipient.

False Doesn’t send the workbook.

Omitted Asks the user whether the work-
book should be sent.

Dealing with Worksheet Objects
Worksheet objects contain a number of properties and methods you can exploit in your
code. These include options for activating and hiding worksheets, adding new worksheets
to a workbook, and moving, copying, and deleting worksheets. The next few sections dis-
cuss these and other worksheet operations.

Specifying a Worksheet Object
If you need to deal with a worksheet in some way, or if your code needs to specify an object
contained in a specific worksheet (such as a range of cells), you need to tell Excel which
worksheet you want to use. To do this, use the Worksheets object. Worksheets is the collec-
tion of all the worksheets in a particular workbook. To specify a worksheet, either use its
index number (where 1 represents the first worksheet tab, 2 the second worksheet tab, and
so on) or enclose the worksheet name in quotation marks. For example, if Sheet1 is the first
worksheet, the following two statements would be equivalent:

Worksheets(1)
Worksheets(“Sheet1”)

8

Chapter 8 Programming Excel150



151Dealing with Worksheet Objects

Alternatively, if you want to work with whichever worksheet is currently active in a speci-
fied Workbook object, use the ActiveSheet property, as in this example:

currentWorksheet = Workbooks(“Budget.xlsx”).ActiveSheet

If you need to work with multiple worksheets (say, to set up a 3D range), use VBA’s Array
function with the Worksheets collection. For example, the following statement specifies the
Sheet1 and Sheet2 worksheets:

Worksheets(Array(“Sheet1”,”Sheet2”))

Creating a New Worksheet
The Worksheets collection has an Add method you can use to insert new sheets into the
workbook. Here’s the syntax for this method:

Worksheets.Add([Before][, After][, Count][, Type])

Before The sheet before which the new sheet is added. If you omit
both Before and After, the new worksheet is added before
the active sheet.

After The sheet after which the new sheet is added. Note that you
can’t specify both the Before and After arguments.

Count The number of new worksheets to add. VBA adds one work-
sheet if you omit Count. If you set Count greater than 1, all the
sheets are added in the same location, as specified by either
Before or After.

Type The type of worksheet. You have three choices—xlWorksheet

(the default) and two constants that create Excel 4 macro
sheets (which, therefore, you’ll never use, because Excel 4
macros are long obsolete): xlExcel4MacroSheet and
xlExcel4IntlMacroSheet.

In the following statement, a new worksheet is added to the active workbook before the
Sales sheet:

Worksheets.Add Before:=Worksheets(“Sales”)

Properties of the Worksheet Object
Let’s take a tour through some of the most useful properties associated with Worksheet
objects:

■ Worksheet.Name—Returns or sets the name of the specified Worksheet. For example,
the following statement renames the Sheet1 worksheet to 2007 Budget:

Worksheets(“Sheet1”).Name = “2007 Budget”

■ Worksheet.StandardHeight—Returns the standard height of all the rows in the 
specified Worksheet.

8



■ Worksheet.StandardWidth—Returns the standard width of all the columns in the 
specified Worksheet.

■ UsedRange—Returns a Range object that represents the used range in the specified
Worksheet.

■ Worksheet.Visible—Controls whether or not the user can see the specified Worksheet.
Setting this property to False is equivalent to selecting Format, Sheet, Hide. For
example, to hide a worksheet named Expenses, you would use the following statement:

Worksheets(“Expenses”).Visible = False

To unhide the sheet, set its Visible property to True.

Methods of the Worksheet Object
Here’s a list of some common Worksheet object methods:

■ Worksheet.Activate—Makes the specified Worksheet active (so that it becomes the
ActiveSheet property of the workbook). For example, the following statement activates
the Sales worksheet in the Finance.xlsx workbook:

Workbooks(“Finance.xlsx”).Worksheets(“Sales”).Activate

■ Worksheet.Calculate—Calculates the specified Worksheet. For example, the following
statement recalculates the Budget 2007 worksheet:

Worksheets(“Budget 2007”).Calculate

■ Worksheet.Copy—Copies the specified Worksheet to another location in the same work-
book using the following syntax:

Worksheet.Copy([Before][, After])

Worksheet The worksheet you want to copy.

Before The sheet before which the sheet will be copied. If you omit
both Before and After, VBA creates a new workbook for the
copied sheet.

After The sheet after which the new sheet is added. You can’t spec-
ify both the Before and After arguments.

In the following statement, the Budget 2007 worksheet is copied to a new workbook:

Worksheets(“Budget 2007”).Copy

■ Worksheet.Delete—Deletes the specified Worksheet. For example, the following state-
ment deletes the active worksheet:

ActiveSheet.Delete

■ Worksheet.Move—Moves the specified Worksheet to another location in the same work-
book using the following syntax:

8

Chapter 8 Programming Excel152



153Working with Range Objects

Worksheet.Move([Before][, After])

Worksheet The worksheet you want to move.

Before The sheet before which the sheet will be moved. If you omit
both Before and After, VBA creates a new workbook for the
moved sheet.

After The sheet after which the new sheet is added. You can’t spec-
ify both the Before and After arguments.

In the following statement, the Budget 2007 worksheet is moved before the Budget
2006 worksheet:

Worksheets(“Budget 2007”).Move Before:=Worksheets(“Budget 2006”)

■ Worksheet.Select—Selects the specified Worksheet.

Working with Range Objects
Mastering cell and range references is perhaps the most fundamental skill to learn when work-
ing with spreadsheets. After all, most worksheet chores involve cells, ranges, and range names.
However, this skill takes on added importance when you’re dealing with VBA procedures.
When you’re editing a worksheet directly, you can easily select cells and ranges with the mouse
or the keyboard, or you can paste range names into formulas. In a procedure, though, you
always have to describe—or even calculate—the range with which you want to work.

What you describe is the most common of all Excel VBA objects: the Range object. A Range
object can be a single cell, a row or column, a selection of cells, or a 3D range. The follow-
ing sections look at various techniques that return a Range object, as well as a number of
Range object properties and methods.

Returning a Range Object
Much of your VBA code will concern itself with Range objects of one kind or another.
Therefore, you need to be well versed in the various techniques that are available for
returning range objects, whether they’re single cells, rectangular ranges, or entire rows and
columns. This section takes you through each of these techniques.

Using the Range Method
The Range method is the most straightforward way to identify a cell or range. It has two
syntaxes. The first requires only a single argument:

Worksheet.Range(Name)

Worksheet The Worksheet object to which the Range method applies. If
you omit Worksheet, VBA assumes the method applies to the
ActiveSheet object.

Name A range reference or name entered as text.

8



For example, the following statements enter a date in cell B2 and then create a data series
in the range B2:E10 of the active worksheet:

Range(“B2”).Value = #01/01/2008#
Range(“B2:B13”).DataSeries Type:=xlChronological, Date:=xlMonth

➔ For information on the Value property and DataSeries method, see “Inserting Data into a Range,” p. 162.

The Range method also works with named ranges. For example, the following statement
clears the contents of a range named Criteria in the Data worksheet:

Worksheets(“Data”).Range(“Criteria”).ClearContents

The second syntax for the Range method requires two arguments:

Worksheet.Range(Cell1, Cell2)

Worksheet The Worksheet object to which the Range method applies. If
you omit Worksheet, VBA assumes that the method applies to
the ActiveSheet object.

Cell1, Cell2 The cells that define the upper-left corner (Cell1) and lower-
right corner (Cell2) of the range. Each can be a cell address
as text, a Range object consisting of a single cell, or an entire
column or row.

The advantage of this syntax is that it separates the range corners into individual arguments.
This lets you modify each corner under procedural control. For example, you could set up
variables named upperLeft and lowerRight and then return Range objects of different sizes:

Range(upperLeft,lowerRight)

Using the Cells Method
The Cells method returns a single cell as a Range object. Here’s the syntax:

Object.Cells(RowIndex, ColumnIndex)

Object A Worksheet or Range object. If you omit Object, the method
applies to the ActiveSheet object.

RowIndex The row number of the cell. If Object is a worksheet, a
RowIndex of 1 refers to row 1 on the sheet. If Object is a
range, RowIndex 1 refers to the first row of the range.

ColumnIndex The column of the cell. You can enter a letter as text or a
number. If Object is a worksheet, a ColumnIndex of A or 1
refers to column A on the sheet. If Object is a range,
ColumnIndex A or 1 refers to the first column of the range.

For example, the following procedure fragment loops five times and enters the values
Field1 through Field5 in cells A1 through E1:

For colNumber = 1 To 5
Cells(1, colNumber).Value = “Field” & colNumber

Next colNumber

8

Chapter 8 Programming Excel154



155Working with Range Objects

Returning a Row
If you need to work with entire rows or columns, VBA has several methods and properties
you can use. In each case, the object returned is a Range.

The most common way to refer to a row in VBA is to use the Rows method. This method
uses the following syntax:

Object.Rows([Index])

Object The Worksheet or Range object to which the method applies.
If you omit Object, VBA uses the ActiveSheet object.

Index The row number. If Object is a worksheet, an Index of 1
refers to row 1 on the sheet. If Object is a range, an Index of
1 refers to the first row of the range. If you omit Index, the
method returns a collection of all the rows in Object.

For example, Listing 8.6 shows a procedure named InsertRangeRow. This procedure inserts
a new row before the last row of whatever range is passed as an argument (rangeObject).
This would be a useful subroutine in programs that need to maintain ranges.

Listing 8.6 A Procedure That Uses the Rows Method to Insert a Row Before the Last Row of a 
Range

Sub InsertRangeRow(rangeObject As Range)
Dim totalRows As Integer, lastRow As Integer
With rangeObject

totalRows = .Rows.Count         ‘ Total rows in the range
lastRow = .Rows(totalRows).Row  ‘ Last row number
.Rows(lastRow).Insert           ‘ Insert before last row

End With
End Sub

Sub InsertTest()
InsertRangeRow ThisWorkbook.Worksheets(1).Range(“Test”)

End Sub

After declaring the variables, the first statement uses the Rows method without the Index
argument to return a collection of all the rows in rangeObject and uses the Count property
to get the total number of rangeObject rows:

totalRows = rangeObject.Rows.Count

8

You also can refer to a cell by enclosing an A1-style reference in square brackets ([ ]). For example,
the following statement clears the comments from cell C4 of the active worksheet:

ActiveSheet.[C4].ClearComments
T

IP



The second statement uses the totalRows variable as an argument in the Rows method to
return the last row of rangeObject, and then the Row property returns the row number:

lastRow = rangeObject.Rows(totalRows).Row

Finally, the last statement uses the Insert method to insert a row before lastRow. 

To use InsertRangeRow, you need to pass a Range object to the procedure. For example, the
InsertRange procedure shown at the end of Listing 8.4 inserts a row into a range named
Test.

8

Chapter 8 Programming Excel156

You also can use the EntireRow property to return a row.The syntax Range.EntireRow
returns the entire row or rows that contain the Range object.This is most often used to mimic the
Shift+Spacebar shortcut key that selects the entire row that includes the active cell.To do this, you
use the following statement:

ActiveCell.EntireRow.Select

N
O

T
E

Returning a Column
To return a column, use the Columns method. The syntax for this method is almost identi-
cal to the Rows method:

Object.Columns([Index])

Object The Worksheet or Range object to which the method applies.
If you omit Object, VBA uses the ActiveSheet object.

Index The column number. If Object is a worksheet, an Index of A
or 1 refers to column A on the sheet. If Object is a range,
Index A or 1 refers to the first column of the range. If you
omit Index, the method returns a collection of all the
columns in Object.

For example, the following statement sets the width of column B on the active worksheet
to 20:

Columns(“B”).ColumnWidth = 20

The syntax Range.EntireColumn returns the entire column or columns that contain the speci-
fied Range object.N

O
T

E



157Working with Range Objects

Using the Offset Method
When defining your Range objects, you often won’t know the specific range address to use.
For example, you might need to refer to the cell that’s two rows down and one column to
the right of the active cell. You could find out the address of the active cell and then calcu-
late the address of the other cell, but VBA gives you an easier (and more flexible) way: the
Offset method. Offset returns a Range object that is offset from a specified range by a cer-
tain number of rows and columns. Here is its syntax:

Range.Offset([RowOffset][, ColumnOffset])

Range The original Range object.

RowOffset The number of rows to offset Range. You can use a positive
number (to move down), a negative number (to move up), or
0 (to use the same rows). If you omit RowOffset, VBA uses 0.

ColumnOffset The number of columns to offset Range. Again, you can use a
positive number (to move right), a negative number (to move
left), or 0 (to use the same columns). If you omit
ColumnOffset, VBA uses 0.

For example, the following statement formats the range B2:D6 as bold:

Range(“A1:C5”).Offset(1,1).Font.Bold = True

Listing 8.7 shows a procedure called ConcatenateStrings that concatenates two text strings.
This is handy, for instance, if you have a list with separate first and last name fields and you
want to combine them.

Listing 8.7 A Procedure That Uses the Offset Method to Concatenate Two Text Strings

Sub ConcatenateStrings()
Dim string1 As String, string2 As String
‘
‘ Store the contents of the cell 2 to the left of the active cell
‘
string1 = ActiveCell.Offset(0, -2)
‘
‘ Store the contents of the cell 1 to the left of the active cell
‘
string2 = ActiveCell.Offset(0, -1)
‘
‘ Enter combined strings (separated by a space) into active cell
‘
ActiveCell.Value = string1 & “ “ & string2

End Sub

The procedure begins by declaring String1 and String2. The next statement stores in
String1 the contents of the cell two columns to the left of the active cell by using the
Offset method as follows:

String1 = ActiveCell.Offset(0, -2)

8



Similarly, the next statement stores in String2 the contents of the cell one column to the
left of the active cell. Finally, the last statement combines String1 and String2 (with a
space in between) and stores the new string in the active cell.

Selecting a Cell or Range
VBA lets you access objects directly without having to select them first. This means that
your VBA procedures rarely have to select a range. For example, even if, say, cell A1 is cur-
rently selected, the following statement sets the font in the range B1:B10 without changing
the selected cell:

Range(“B1:B10”).Font.Name = “Times New Roman”

However, there are times when you do need to select a range. For example, you might need
to display a selected range to the user. To select a range, use the Select method:

Range.Select

Range The Range object you want to select.

For example, the following statement selects the range A1:E10 in the Sales worksheet:

Worksheets(“Sales”).Range(“A1:E10”).Select

8

Chapter 8 Programming Excel158

To return a Range object that represents the currently selected range, use the Selection prop-
erty. For example, the following statement applies the Times New Roman font to the currently
selected range:

Selection.Font.Name = “Times New Roman”

T
IP

Selecting A1 on All Worksheets
When you open an Excel file that you’ve worked on before, the cells or ranges that were
selected in each worksheet when the file was last saved remain selected upon opening. This
is handy behavior because it often enables you to resume work where you left off previ-
ously. However, when you’ve completed work on an Excel file, you may prefer to remove
all the selections. For example, you might run through each worksheet and select cell A1 so
that you or anyone else opening the file can start “fresh.”

Selecting all the A1 cells manually is fine if the workbook has only a few sheets, but it can
be a pain in a workbook that contains many sheets. Listing 8.8 presents a macro that selects
cell A1 in all of a workbook’s sheets.

Listing 8.8 A Macro That Selects Cell A1 on All the Sheets in the Active Workbook

Sub SelectA1OnAllSheets()
Dim ws As Worksheet
‘
‘ Run through all the worksheets in the active workbook
‘



159Working with Range Objects

For Each ws In ActiveWorkbook.Worksheets
‘
‘ Activate the worksheet
‘
ws.Activate
‘
‘ Select cell A1
‘
ws.[A1].Select

Next ‘ws
‘
‘ Activate the first worksheet
‘
ActiveWorkbook.Worksheets(1).Activate

End Sub

The macro runs through all the worksheets in the active workbook. In each case, the work-
sheet is first activated (you must activate a sheet before you can select anything on it), and
then the Select method is called to select cell A1. The macro finishes by activating the first
worksheet.

Selecting the “Home Cell” on All Worksheets
Many worksheets have a “natural” starting point, which could be a model’s first data entry
cell or a cell that displays a key result. In such a case, rather than selecting cell A1 on all the
worksheets, you might prefer to select each of these “home cells.”

One way to do this is to add a uniform comment to each home cell. For example, you
could add the comment Home Cell. Having done that, you can then use the macro in
Listing 8.9 to select all these home cells.

Listing 8.9 A Macro That Selects the “Home Cell” on All the Sheets in the Active Workbook

Sub SelectHomeCells()
Dim ws As Worksheet
Dim c As Comment
Dim r As Range
‘
‘ Run through all the worksheets in the active workbook
‘
For Each ws In ActiveWorkbook.Worksheets

‘
‘ Activate the worksheet
‘
ws.Activate
‘
‘ Run through the comments
‘
For Each c In ws.Comments

‘
‘ Look for the “Home Cell” comment
‘

8

continues



If InStr(c.Text, “Home Cell”) <> 0 Then
‘
‘ Store the cell as a Range
‘
Set r = c.Parent
‘
‘ Select the cell
‘
r.Select

End If
Next ‘c

Next ‘ws
‘
‘ Activate the first worksheet
‘
ActiveWorkbook.Worksheets(1).Activate

End Sub

The SelectHomeCells procedure is similar to the SelectA1OnAllSheets procedure from
Listing 8.8. That is, the main loop runs through all the sheets in the active workbook and
activates each worksheet in turn. In this case, however, another loop runs through each
worksheet’s Comments collection. The Text property of each Comment object is checked to see
whether it includes the phrase Home Cell. If so, the cell containing the comment is stored
in the r variable (using the Comment object’s Parent property) and then the cell is selected.

Selecting the Named Range That Contains the Active Cell
It’s often handy to be able to select the name range that contains the current cell (for exam-
ple, to change the range formatting). If you know the name of the range, you need only
select it from the Name box. However, in a large model or a workbook that you’re not
familiar with, it may not be obvious which name to choose. Listing 8.10 shows a function
and procedure that will handle this chore for you.

Listing 8.10 A Function and Procedure That Determine and Select the Named Range 
Containing the Active Cell

Function GetRangeName(r As Range) As String
Dim n As Name
Dim rtr As Range
Dim ir As Range
‘
‘ Run through all the range names in the active workbook
‘
For Each n In ActiveWorkbook.Names

‘
‘ Get the name’s range
‘
Set rtr = n.RefersToRange
‘

8

Chapter 8 Programming Excel160

Listing 8.9 Continued



161Working with Range Objects

‘ See whether the named range and the active cell’s range intersect
‘
Set ir = Application.Intersect(r, rtr)
If Not ir Is Nothing Then

‘
‘ If they intersect, then the active cell is part of a
‘ named range, so get the name and exit the function
‘
GetRangeName = n.Name
Exit Function

End If
Next ‘n
‘
‘ If we get this far, the active cell is not part of a named range,
‘ so return the null string
‘
GetRangeName = “”

End Function

Sub SelectCurrentNamedRange()
Dim r As Range
Dim strName As String
‘
‘ Store the active cell
‘
Set r = ActiveCell
‘
‘ Get the name of the range that contains the cell, if any
‘
strName = GetRangeName(r)
If strName <> “” Then

‘
‘ If the cell is part of a named range, select the range
‘
Range(strName).Select

End If
End Sub

The heart of Listing 8.10 is the GetRangeName function, which takes a range as an argu-
ment. The purpose of this function is to see whether the passed range—r—is part of a
named range and if so, to return the name of that range. The function’s main loop runs
through each item in the active workbook’s Names collection. For each name, the
RefersToRange property returns the associated range, which the function stores in the rtr
variable. The function then uses the Intersect method to see whether the ranges r and rtr
intersect. If they do, it means that r is part of the named range (because, in this case, r is
just a single cell), so GetRangeName returns the range name. If no intersection is found for
any name, the function returns the null string (“”), instead.

The SelectCurrentNamedRange procedure makes use of the GetRangeName function. The
procedure stores the active cell in the r variable and then passes that variable to the
GetRangeName function. If the return value is not the null string, the procedure selects the
returned range name.

8



Defining a Range Name
In Excel VBA, range names are Name objects. To define them, you use the Add method for
the Names collection (which is usually the collection of defined names in a workbook). Here
is an abbreviated syntax for the Names collection’s Add method (this method has eleven argu-
ments; see the VBA Reference in the Help system):

Names.Add(Text, RefersTo)

Text The text you want to use as the range name.

RefersTo The item to which you want the name to refer. You can enter
a constant, a formula as text (such as “=Sales-Expenses”), or a
worksheet reference (such as “Sales!A1:C6”).

For example, the following statement adds the range name SalesRange to the Names collec-
tion of the active workbook:

ActiveWorkbook.Names.Add _
Text:=”SalesRange”, _
RefersTo:=”=Sales!$A$1$C$6”

Inserting Data into a Range
If your VBA procedure needs to add data to a range, VBA offers several properties that can
do this. (Note that all these properties also return the current data that resides in a range.)

If you just want to add a simple value such as a number, string, date, or time to a range, use
the Range object’s Value property. For example, the following statement inserts the current
date and time into cell A1 on the active worksheet:

ActiveSheet.Range(“A1”).Value = Now

Similarly, the following statement fills the range A2:D20 with zeroes:

ActiveSheet.Range(“A2:D20).Value = 0

If you want to add a formula to a range, use the Range object’s Formula property. For exam-
ple, the following statement adds a formula to cell E15:

ActiveWorkbook.Worksheets(“Budget”).Range(“E15”).Formula = “=E5 - E14”

If you need to enter an array formula into a cell, use the Range object’s FormulaArray prop-
erty. Note that you don’t include the braces, as shown in the following example:

ActiveCell.FormulaArray = “=SUM(IF(A2:C5 > 0, 1, 0))”

8

Chapter 8 Programming Excel162

If you’re not sure how to work with those tricky array formulas, I explain them in detail in my book
Formulas and Functions with Microsoft Office Excel 2007 (Que, 2007; ISBN: 0-7897-3668-3).N

O
T

E



163Working with Range Objects

Excel also enables you to enter a data series into a range by using the Range object’s
DataSeries method. The DataSeries method uses the following syntax:

Range.DataSeries(Range[, Rowcol][, Type][, Date][, Step][, Stop][, Trend])

Range The range to use for the data series.

Rowcol Use xlRows to enter the data in rows, or xlColumns to enter
the data in columns. If you omit Rowcol, Excel uses the size
and shape of Range.

Type The type of series. Enter xlLinear (the default), xlGrowth,
xlChronological, or xlAutoFill.

Date The type of date series, if you used xlChronological for the
Type argument. Your choices are xlDay (the default),
xlWeekday, xlMonth, or xlYear.

Step The step value for the series (the default value is 1).

Stop The stop value for the series. If you omit Stop, Excel fills the
range.

Trend Use True to create a linear or growth trend series. Use False
(the default) to create a standard series.

For example, the following statements insert a date into cell B2 and then create a data
series in the range B2:B13:

ActiveSheet.Range(“B2”).Value = #01/01/2008#
ActiveSheet.Range(“B2:B13”).DataSeries Type:=xlChronological, Date:=xlMonth

Returning Data About a Range
Here’s a list of some Range object properties that return data about a range:

■ Range.Address—Returns the address, as text, of the specified Range.

■ Range.Column—Returns the number of the first column in the specified Range.

■ Range.Count—Returns the number of cells in the specified Range.

■ Range.CurrentRegion—Returns a Range object that represents the entire region in
which the specified Range resides. A range’s “region” is the area surrounding the range
that is bounded by at least one empty row above and below, and at least one empty col-
umn to the left and right.

■ Range.Row—Returns the number of the first row in the specified Range.

Resizing a Range
When you need to resize a range, use the Range object’s Resize method. Here’s the syntax
for this method:

8



Range.Resize(RowSize, ColSize)

Range The range to resize.

RowSize The number of rows in the new range.

ColSize The number of columns in the new range.

For example, suppose you use the InsertRangeRow procedure from Listing 8.6 to insert a
row into a named range. In most cases, you’ll want to redefine the range name so that it
includes the extra row you added. Listing 8.11 shows a procedure that calls InsertRangeRow
and then uses the Resize method to adjust the named range.

Listing 8.11 A Procedure That Uses Resize to Adjust a Named Range

Sub InsertAndRedefineName()
With ThisWorkbook.Worksheets(“Test Data”)

InsertRangeRow .Range(“Test”)
With .Range(“Test”)

Names.Add _
Name:=”Test”, _
RefersTo:=.Resize(.Rows.Count + 1)

End With
.Range(“Test”).Select

End Sub

In the Names.Add method, the new range is given by the expression .Resize(.Rows.Count +
1). Here, the Resize method returns a range that has one more row than the Test range.

From Here
■ For a general discussion of VBA objects, see Chapter 5, “Working with Objects,” 

p. 71.

■ Some VBA functions perform the same tasks as some Excel worksheet functions. 
To find out which ones, see Appendix B, “VBA Functions,” p. 361.

8

Chapter 8 Programming Excel164



I N  T H I S  C H A P T E R

Programming PowerPoint

9This chapter shows you how to leverage your VBA
knowledge in the PowerPoint environment by
examining a few PowerPoint objects and their asso-
ciated properties, methods, and events. To illustrate
these items, I’ll build an example presentation
strictly by using VBA code.

PowerPoint’s Presentation Object
In PowerPoint, the Presentation object represents
a presentation file that is open in the PowerPoint
application window. You can use VBA to create new
presentations, open or delete existing presentations,
save and close presentations, and more. The next
section takes you through various techniques for
specifying presentations in your VBA code; then
we’ll look at some Presentation object properties
and methods.

Specifying a Presentation Object
If you need to do something with a presentation, or
if you need to work with an object contained in a
specific presentation (such as a slide), you need to
tell PowerPoint which presentation you want to
use. VBA gives you three ways to do this:

■ Use the Presentations object—The
Presentations object is the collection of all
open presentation files. To specify a particular
presentation, either use its index number
(where 1 represents the first presentation
opened) or enclose the presentation filename in
quotation marks. For example, if
Proposal.pptx were the first presentation
opened, the following two statements would be
equivalent:
Presentations(1)
Presentations(“Proposal.pptx”)

PowerPoint’s Presentation Object . . . . .165

Working with PowerPoint Slide Objects  . . . .170

Dealing with Shape Objects  . . . . . . . . . . . . .174

Operating a Slide Show . . . . . . . . . . . . . . . . . .186



■ Use the ActivePresentation object—The ActivePresentation object represents the
presentation that currently has the focus.

■ Use the Presentation property—Open slide show windows have a Presentation
property that returns the name of the underlying presentation. For example, the fol-
lowing statement uses the currPres variable to store the Presentation object associated
with the first slide show window:
Set currPres = SlideShowWindows(1).Presentation

Opening a Presentation
To open a presentation file, use the Open method of the Presentations collection. The Open
method has several arguments you can use to fine-tune your presentation openings, but
only one of these is mandatory. Here’s the simplified syntax showing the one required argu-
ment (for the rest of the arguments, look up the Open method in the VBA Help system):

Presentations.Open(FileName)

FileName The full name of the presentation file, including the
drive and folder that contain the file.

For example, to open a presentation named Proposal.pptx in the current’s user’s Documents
folder, you would use the following statement:

Presentations.Open Environ(“UserProfile”) & “\Documents\Proposal.pptx”

9

Chapter 9 Programming PowerPoint166

The string expression Environ(“UserProfile”) & “\Documents\” returns the current
user’s Documents folder in Windows Vista. If you’re using Windows XP, use the following string
expression, instead:

Environ(“UserProfile”) & “\My Documents\

N
O

T
E

Creating a New Presentation
If you need to create a new presentation, use the Presentations collection’s Add method:

Presentations.Add(WithWindow)

WithWindow A Boolean value that determines whether or not the
presentation is created in a visible window. Use True
for a visible window (this is the default); use False to
hide the window.

Presentation Object Properties
Here’s a list of a few common properties associated with Presentation objects:

■ Presentation.FullName—Returns the full pathname of the specified Presentation.
The full pathname includes the presentation’s path (the drive and folder in which the
file resides) and the filename.



167PowerPoint’s Presentation Object

■ Presentation.Saved—Determines whether changes have been made to the specified
Presentation since it was last saved.

■ Presentation.SlideMaster—Returns a Master object that represents the slide master
for the specified Presentation.

■ Presentation.Slides—Returns a Slides object that represents the collection of Slide
objects contained in the specified Presentation.

■ Presentation.SlideShowSettings—Returns a SlideShowSettings object that represents
the slide show setup options for the specified Presentation.

Presentation Object Methods
A Presentation object has methods that let you save the presentation, close it, print it, and
more. Here are the methods you’ll use most often:

■ Presentation.ApplyTemplate—Applies a design template to the specified
Presentation. This method uses the following syntax:
Presentation.ApplyTemplate(FileName)

Presentation The Presentation object to which you want to apply
the template.

FileName The full name of the template (.potx, .potm, or
.pot) file.

For example, the following statement applies the Classic Photo Album template to the
active presentation:
ActivePresentation.ApplyTemplate _

Environ(“ProgramFiles”) & “\Microsoft Office\Templates\1033\
➥ClassicPhotoAlbum.potx”

■ Presentation.Close—Closes the specified Presentation. If the file has unsaved
changes, PowerPoint asks the user whether he or she wants to save those changes.

■ Presentation.PrintOut—Prints the specified Presentation, using the following syntax:
Presentation.PrintOut([From][, To][, PrintToFile][, Copies][, Collate])

Presentation The Presentation object you want to print.

From The page number from which to start printing.

To The page number of the last page to print.

9

■ Presentation.Name—Returns the filename of the Presentation.

■ Presentation.Path—Returns the path of the Presentation file.

A new, unsaved presentation’s Path property returns an empty string ("”).
N

O
T

E



PrintToFile The name of a file to which you want the presenta-
tion printed.

Copies The number of copies to print. The default value 
is 1.

Collate If this argument is True and Copies is greater than 1,
VBA collates the copies.

9

Chapter 9 Programming PowerPoint168

By default, the PrintOut method prints only the presentation’s slides. If you want to print other
presentation elements such as handouts, notes pages, or the outline, you need to set the
Presentation object’s PrintOptions.OutputType property to the appropriate constant,
such as ppPrintOutputFourSlideHandouts,ppPrintOutputNotesPages, or
ppPrintOutputOutline. See the VBA Help system for the complete list of constants.

N
O

T
E

■ Presentation.Save—Saves the specified Presentation. If the presentation is new, use
the SaveAs method instead.

■ Presentation.SaveAs—Saves the specified Presentation to a different file. Here’s the
syntax for the SaveAs method:
Presentation.SaveAs(FileName[, FileFormat][, EmbedTrueTypeFonts])

Presentation The Presentation object you want to save to a
different file.

FileName The full name of the new presentation file, includ-
ing the drive and folder where you want the file to
reside.

FileFormat The PowerPoint format to use for the new file. Use
one of the predefined ppSaveAs constants (such as
ppSaveAsPresentation or ppSaveAsHTML).

EmbedTrueTypeFonts If True, PowerPoint embeds the presentation’s
TrueType fonts in the new file.

The Juggling Application
Throughout this chapter, I’ll put the PowerPoint objects, methods, and properties that we
talk about to good use in an application that builds an entire presentation from scratch. (It’s
unlikely in practice that you’ll ever need to use VBA to build a presentation. However, this
code at least shows you how it’s done, which should help you use VBA with PowerPoint,
whatever your needs.) This presentation consists of a series of slides that provide instruc-
tions on how to juggle.

The code for the application consists of six procedures:

■ Main—This procedure ties the entire application together by calling each of the other
procedures in the module.



169PowerPoint’s Presentation Object

■ CreateJugglingPresentation—This procedure creates a new Presentation object and
saves it.

■ CreateJugglingSlides—This procedure adds the slides to the presentation and then
formats them.

■ SetUpFirstSlide—This procedure adds and formats text for the presentation title
slide.

■ SetUpJugglingSlides—This procedure adds and formats a title, picture, and instruc-
tion text for each of the four pages that explain how to juggle.

■ RunJugglingSlideShow—This procedure asks the user whether he or she wants to run
the slide show, and then runs it if Yes is chosen.

To get started, Listing 9.1 shows the Main procedure.

Listing 9.1 This Procedure Ties Everything Together by Calling Each of the Code Listings 
Individually

‘ Global variable
Dim pres As Presentation

Sub Main()
‘
‘ Create the presentation file
‘
CreateJugglingPresentation
‘
‘ Add the slides
‘
AddJugglingSlides
‘
‘ Set up the title slide
‘
SetUpStartSlide
‘
‘ Set up the Juggling slides
‘
SetUpJugglingSlides
‘
‘ Save it and then run it
‘
pres.Save
RunJugglingSlideShow

End Sub

First, the pres variable is declared as a Presentation object. Notice that this variable is
defined at the top of the module, before any of the procedures. When you define a variable
like this, it means that it can be used in all the procedures in the module. Then Main begins
by calling the CreateJugglingPresentation procedure, shown in Listing 9.2. From there,
the other procedures (discussed later in this chapter) are called and the presentation is
saved.

9



Listing 9.2 This Procedure Creates a New Presentation and Then Saves It

Sub CreateJugglingPresentation()
Dim p As Presentation
‘
‘ If the old one is still open, close it without saving
‘
For Each p In Presentations

If p.Name = “Juggling” Then
p.Saved = True
p.Close

End If
Next p
‘
‘ Create a new Presentation object and store it in pres
‘
Set pres = Presentations.Add
pres.SaveAs FileName:=”Juggling.pptx”

End Sub

A For Each...Next loop runs through each open presentation and checks the Name prop-
erty. If it equals Juggling.pptx, you know the file is already open. If it’s open (say, from
running the application previously), the procedure closes it without saving it. The pres
variable is Set and then the presentation is saved by the SaveAs method.

9

Chapter 9 Programming PowerPoint170

The presentation and code used in this chapter’s sample application can be found on my website at
the following address:

http://www.mcfedries.com/Office2007VBA/Chapter09.pptm

N
O

T
E

Working with PowerPoint Slide Objects
PowerPoint presentations consist of a series of slides. In PowerPoint VBA, a slide is a
Slide object that contains a number of properties and methods that you can wield in your
code. These include options for setting the slide’s layout, specifying the transition effect,
and copying and deleting slides. The next few sections discuss these and other slide tech-
niques.

Specifying a Slide
To work with a slide, you need to specify a Slide object. For a single slide, the easiest way
to do this is to use the Slides object. Slides is the collection of all the slides in a particular
presentation. To specify a slide, either use the slide’s index number (where 1 represents the
first slide in the presentation, 2 the second slide, and so on), or enclose the slide name in
quotation marks. For example, if Slide1 is the first slide, the following two statements
would be equivalent:

ActivePresentation.Slides(1)
ActivePresentation.Slides(“Slide1”)

http://www.mcfedries.com/Office2007VBA/Chapter09.pptm


171Working with PowerPoint Slide Objects

If you need to work with multiple slides (say, to apply a particular layout to all the slides),
use the Range method of the Slides object:

Presentation.Slides.Range(Index)

Presentation The Presentation object that contains the slides.

Index An array that specifies the slides.

For the Index argument, use VBA’s Array function with multiple instances of slide index
numbers or slide names. For example, the following statement specifies the slides named
Slide1 and Slide2:

ActivePresentation.Slides.Range(Array(“Slide1”,”Slide2”))

9

To work with every slide in the presentation, use the Range method without an argument, as in
this example:

ActivePresentation.Slides.Range

You can also use the Presentation object’s SlideMaster property to work with the slide
master.This changes the default settings for every slide in the presentation.

T
IP

Creating a New Slide
After you’ve created a presentation, you need to populate it with slides. To insert a new
Slide object into a presentation, use the Add method of the Slides collection:

Presentation.Slides.Add(Index, Layout)

Presentation The Presentation object in which you want to add
the slide.

Index The index number of the new slide within the
Slides object. Use 1 to make this the first slide; use
Slides.Count + 1 to make this the last slide.

Layout A constant that specifies the layout of the new slide.
PowerPoint defines more than two dozen constants,
including ppLayoutText (for a text-only slide),
ppLayoutChart (for a chart slide), and ppLayoutBlank
(for a blank slide). Look up the Add method in the
VBA Help system to see the full list of constants.

The following statements add an organization chart slide to the end of the active 
presentation:

With ActivePresentation.Slides
.Add Index:=.Count + 1, Layout:=ppLayoutOrgchart

End With



Inserting Slides from a File
Rather than create slides from scratch, you might prefer to pilfer one or more slides from
an existing presentation. The InsertFromFile method lets you do this. It uses the following
syntax:

Presentation.Slides.InsertFromFile(FileName, Index[, SlideStart][, SlideEnd])

Presentation The Presentation object in which you want to add
the slides.

FileName The name of the file (including the drive and folder)
that contains the slides you want to insert.

Index The index number of an existing slide in
Presentation. The slides from FileName are inserted
after this slide.

SlideStart The index number of the first slide in FileName that
you want to insert.

SlideEnd The index number of the last slide in FileName that
you want to insert.

For example, the following procedure fragment inserts the first five slides from
Budget.pptx at the end of the active presentation:

With ActivePresentation.Slides
.InsertFromFile _

FileName:=”G:\Presentations\Budget.pptx”, _
Index:=.Count, _
SlideStart:=1, _
SlideEnd:=5

End With

Slide Object Properties
To let you change the look and feel of your slides, PowerPoint VBA offers a number of
Slide object properties. These properties control the slide’s layout, background, color
scheme, name, and more. This section runs through a few of the more useful Slide object
properties.

9

Chapter 9 Programming PowerPoint172

If you specify multiple slides using the Range method described earlier, PowerPoint returns a
SlideRange object that references the slides.This object has the same properties and methods as
a Slide object, so you can work with multiple slides the same way that you work with a single
slide.

N
O

T
E

■ Slide.Background—Returns or sets the background of the specified Slide. Note that
this property actually returns a ShapeRange object. (See “Dealing with Shape Objects”
later in this chapter.)



173Working with PowerPoint Slide Objects

You normally use this property with the slide master to set the background for all the
slides in the presentation. For example, the following statements store the slide master
background in a variable and then use the Shape object’s Fill property to change the
background pattern for all the slides in the active presentation:
Set slideBack = ActivePresentation.SlideMaster.Background
slideBack.Fill.PresetGradient _

Style:=msoGradientHorizontal, _
Variant:=1, _
PresetGradientType:=msoGradientFire

If you just want to change the background for a single slide, you must first set the
slide’s FollowMasterBackground property to False, like so:
With ActivePresentation.Slides(1)

.FollowMasterBackground = False

.Background.Fill.PresetGradient _
Style:=msoGradientHorizontal, _
Variant:=1, _
PresetGradientType:=msoGradientFire

End With

■ Slide.FollowMasterBackground—As mentioned earlier, this property returns or sets
whether or not the specified Slide uses the same Background property as the slide mas-
ter. Set this property to False to set a unique background for an individual slide.

■ Slide.Layout—Returns or sets the layout for the specified Slide. Again, see the VBA
Help system for the full list of layout constants.

■ Slide.Master—Returns the slide master for the specified Slide. The following two
statements are equivalent:
ActivePresentation.SlideMaster
ActivePresentation.Slides(1).Master

■ Slide.Name—Returns or sets the name of the specified Slide.

■ Slide.Shapes—Returns a Shapes collection that represents all the Shape objects on the
specified Slide.

■ Slide.SlideShowTransition—Returns a SlideShowTransition object that represents
the transition special effects used for the specified Slide during a slide show.

The Juggling Application: Creating the Slides
Listing 9.3 shows the AddJugglingSlides procedure, which adds four slides to the Juggling
presentation (represented, remember, by the pres variable) and then uses the SlideMaster
object to set the default background for the slides.

Listing 9.3 A Procedure That Adds the Slides to the Juggling Presentation and Formats Them

Sub AddJugglingSlides()
Dim i As Integer

With pres

9

continues



With .Slides
‘
‘ Add the opening slide
‘
.Add(Index:=1, Layout:=ppLayoutTitle).Name = “Opener”
‘
‘ Now add the slides for each step
‘
For i = 1 To 4

.Add(Index:=i + 1, Layout:=ppLayoutTitle).Name = _
“Juggling” & i

Next i
End With
‘
‘ Set the background for all the slides
‘
.SlideMaster.Background.Fill.PresetGradient _

Style:=msoGradientHorizontal, _
Variant:=1, _
PresetGradientType:=msoGradientNightfall

End With
End Sub

Slide Object Methods
PowerPoint VBA defines a few Slide object methods that let you cut, copy, paste, dupli-
cate, export, select, and delete slides. I don’t expect you’ll use these methods very often, so I
won’t discuss them in detail here. All are straightforward, however, so you should be able to
figure them out from the VBA Help system.

Dealing with Shape Objects
PowerPoint slides are really just a collection of objects: titles, text boxes, pictures, labels,
lines, curves, and so on. In PowerPoint VBA, each of these items is a Shape object.
Therefore, to get full slide control in your VBA procedures, you must know how to add,
edit, format, and otherwise manipulate these objects. That’s the goal of this section.

Specifying a Shape
You have to specify a Shape object before you can work with it. The techniques you use for
this are similar to those I outlined earlier for Slide objects.

For a single shape, use the Shapes object, which is the collection of all Shape objects on a
particular slide. To specify a shape, either use the shape’s index number (where 1 represents
the first shape added to the slide, 2 is the second shape, and so on), or enclose the shape
name in quotation marks. For example, if Rectangle 1 is the first shape, the following two
statements would be equivalent:

9

Chapter 9 Programming PowerPoint174

Listing 9.3 Continued



175Dealing with Shape Objects

ActivePresentation.Shapes(1)
ActivePresentation.Shapes(“Rectangle 1”)

If you need to work with multiple shapes, use the Range method of the Shapes object:

Slide.Shapes.Range(Index)

Slide The Slide object that contains the shapes.

Index An array that specifies the shapes.

As with multiple slides, use VBA’s Array function for the Index argument, like so:

Presentations(1).Slides(1).Shapes.Range(Array(“Oval 1”,”TextBox 2”))
9

To work with every shape in the slide, use the Range method without an argument:
Presentations(1).Slides(1).Shapes.RangeT

IP

Adding Shapes to a Slide
The Slides object has fourteen different methods you can use to insert shapes into a slide.
Many of these methods use similar arguments, so before listing the methods, let’s take a
quick tour of the common arguments:

BeginX For connectors and lines, the distance (in points)
from the shape’s starting point to the left edge of the
slide window.

BeginY For connectors and lines, the distance (in points)
from the shape’s starting point to the top edge of the
slide window.

EndX For connectors and lines, the distance (in points)
from the shape’s ending point to the left edge of the
slide window.

EndY For connectors and lines, the distance (in points)
from the shape’s ending point to the top edge of the
slide window.

FileName The path and name of the file used to create the
shape (such as a picture or an OLE object).

Height The height of the shape (in points).

Left The distance (in points) of the left edge of the shape
from the left edge of the slide window.

Orientation The orientation of text within a label or text box.
For horizontal text use the constant
msoTextOrientationHorizontal; for vertical text use
the constant msoTextOrientationVerticalFarEast.



SafeArrayOfPoints For curves and polylines, this is an array of coordi-
nate pairs that specify the vertices and control points
for the object.

Top The distance (in points) of the top edge of the shape
from the top edge of the slide window.

Width The width of the shape (in points).

Here’s a list of the Shapes object methods and arguments that you can use to create shapes:

■ Slide.Shapes.AddComment—Adds a comment to the specified Slide, using the follow-
ing syntax:
Slide.Shapes.AddComment(Left, Top, Width, Height)

■ Slide.Shapes.AddConnector—Adds a connector to the specified Slide, using the fol-
lowing syntax:
Slide.Shapes.AddConnector(Type, BeginX, BeginY, EndX, EndY)

Type A constant that specifies the connector type:

Type Connector

msoConnectorCurve A curved connector

msoConnectorElbow A connector with an elbow

msoConnectorStraight A straight connector

9

Chapter 9 Programming PowerPoint176

The AddConnector method returns a Shape object that represents the new connector.You use
this object’s ConnectorFormat property to set up the beginning and ending points of the con-
nector. In other words, you use the ConnectorFormat.BeginConnect and
ConnectorFormat.EndConnect methods to specify the shapes attached to the connector.

N
O

T
E

■ Slide.Shapes.AddCurve—Adds a curved line to the specified Slide, using the following
syntax:
Slide.Shapes.AddCurve(SafeArrayOfPoints)

■ Slide.Shapes.AddLabel—Adds a label to the specified Slide, using the following 
syntax:
Slide.Shapes.AddLabel(Orientation, Left, Top, Width, Height)

I’ll show you how to add text to a label and text box when we look at Shape object properties later
in this chapter (see “Some Shape Object Properties”).N

O
T

E

■ Slide.Shapes.AddLine—Adds a straight line to the specified Slide, using the following
syntax:
Slide.Shapes.AddLine(BeginX, BeginY, EndX, EndY)



177Dealing with Shape Objects

■ Slide.Shapes.AddMediaObject—Adds a multimedia file to the specified Slide, using
the following syntax:
Slide.Shapes.AddMediaObject(FileName, Left, Top, Width, Height)

■ Slide.Shapes.AddPicture—Adds a graphic to the specified Slide, using the following
syntax:
Slide.Shapes.AddPicture(FileName, LinkToFile, SaveWithDocument, Left,
➥Top, Width, Height)

Here’s a summary of the extra arguments used in this method:

LinkToFile Set this argument to True to set up a link to the
original file. If this argument is False, an indepen-
dent copy of the picture is stored in the slide.

SaveWithDocument Set this argument to True to save the picture with
the presentation. Note that this argument must be
True if LinkToFile is False.

■ Slide.Shapes.AddPolyline—Adds an open polyline or a closed polygon to the speci-
fied Slide, using the following syntax:
Slide.Shapes.AddPolyline(SafeArrayOfPoints)

■ Slide.Shapes.AddShape—Adds an AutoShape to the specified Slide, using the follow-
ing syntax:
Slide.Shapes.AddShape(Type, Left, Top, Width, Height)

Here, the Type argument is a constant that specifies the AutoShape you want to add.
PowerPoint VBA defines dozens of these constants. To see the full list, look up the
AutoShapeType property in the VBA Help system.

■ Slide.Shapes.AddTextbox—Adds a text box to the specified Slide, using the following
syntax:
Slide.Shapes.AddTextbox(Left, Top, Width, Height)

■ Slide.Shapes.AddTextEffect—Adds a WordArt text effect to the specified Slide, using
the following syntax:
Slide.Shapes.AddTextEffect(PresetTextEffect, Text, FontName,
➥FontSize, FontBold, FontItalic, Left, Top)

Here’s a summary of the extra arguments used in this method:

PresetTextEffect A constant that specifies one of WordArt’s preset text
effects. Look up this method in the VBA Help sys-
tem to see the few dozen constants that are available.

Text The WordArt text.

FontName The font applied to Text.

FontSize The font size applied to Text.

FontBold Set to True to apply bold to Text.

FontItalic Set to True to apply italics to Text.

9



■ Slide.Shapes.AddTitle—Adds a title to the specified Slide. This method takes no
arguments. However, be aware that the AddTitle method raises an error if the slide
already has a title. To check in advance, use the HasTitle property, as shown in the fol-
lowing example:
With ActivePresentation.Slides(1).Shapes

If Not .HasTitle Then
.AddTitle.TextFrame.TextRange.Text = “New Title”

End If
End With

Some Shape Object Properties
PowerPoint VBA comes equipped with more than three dozen Shape object properties that
control characteristics such as the dimensions and position of a shape, whether or not a
shape displays a shadow, and the shape name. Let’s take a quick look at a few of these
properties:

■ Shape.AnimationSettings—This property returns an AnimationSettings object that
represents the animation effects applied to the specified Shape. AnimationSettings
contains various properties that apply special effects to the shape. Here’s a sampler (see
the VBA Help system for the complete list, as well as the numerous constants that
work with these properties):

• AdvanceMode—A constant that determines how the animation advances. There
are two choices: automatically (in other words, after a preset amount of time; use
ppAdvanceOnTime), or when the user clicks the slide (use ppAdvanceOnClick). For
the latter, you can specify the amount of time by using the AdvanceTime property.

• AfterEffect—A constant that determines how the shape appears after the anima-
tion is complete.

• Animate—A Boolean value that turns the shape’s animation on (True) or
off (False).

• AnimateTextInReverse—When this Boolean value is True, PowerPoint builds the
text animation in reverse order. For example, if the shape is a series of bullet
points and this property is True, the animation displays the bullet points from
last to first.

• EntryEffect—A constant that determines the special effect applied initially to
the shape’s animation. For example, you can make the shape fade in by using the
ppEffectFade constant.

• TextLevelEffect—A constant that determines the paragraph level that gets 
animated.

• TextUnitEffect—A constant that determines how PowerPoint animates text: by
paragraph, by word, or by letter.

9

Chapter 9 Programming PowerPoint178



179Dealing with Shape Objects

■ Shape.AutoShapeType—For an AutoShape object, this property returns or sets the
shape type for the specified Shape.

■ Shape.Fill—This property returns a FillFormat object that represents the fill format-
ting for the specified Shape. The FillFormat object defines numerous methods you can
wield to apply a fill to a shape:

• Background—Sets the fill to match the slide’s background.

• OneColorGradient—Sets the fill to a one-color gradient.

• Patterned—Sets the fill to a pattern.

• PresetGradient—A constant that sets the fill to one of PowerPoint’s preset 
gradients.

• PresetTextured—A constant that sets the fill to one of PowerPoint’s preset 
textures.

• Solid—Sets the fill to a solid color. After running this method, use the
Fill.ForeColor property to set the fill color.

9

PowerPoint’s color properties (such as ForeColor) return a ColorFormat object.This object
represents either the color of a one-color object, or the background or foreground color of an object
with a pattern or gradient.To set a color, use the ColorFormat object’s RGB property and VBA’s
RGB function to set a red-green-blue value, as in this example:

Shapes(1).Fill.Solid.ForeColor.RGB = RGB(255,0,0)

N
O

T
E

• TwoColorGradient—Sets the fill to a two-color gradient.

• UserPicture—Sets the fill to a graphics file that you specify.

• UserTexture—Sets the fill to a specified graphics image that gets tiled to cover
the entire shape.

■ Shape.HasTextFrame—A Boolean value that tells you whether the specified Shape has a
text frame (True) or not (False). See the TextFrame property, discussed later.

■ Shape.Height—Returns or sets the height, in points, for the specified Shape.

■ Shape.Left—Returns or sets the distance, in points, between the left edge of the
bounding box of the specified Shape and the left edge of the presentation window.

■ Shape.Name—This property returns or sets the name for the specified Shape.

■ Shape.Shadow—This property returns a ShadowFormat object that represents the
shadow for the specified Shape. The ShadowFormat object contains various properties
that control the look of the shadow. For example, Shadow.ForeColor controls the
shadow color, and Shadow.Visible is a Boolean value that turns the shadow on (True)
or off (False).

■ Shape.TextEffectFormat—For a WordArt object, this property returns a
TextEffectFormat object that represents the text effects of the specified Shape.



■ Shape.TextFrame—This property returns a TextFrame object for the specified Shape. A
text frame is an area within a shape that can hold text. The frame’s text, as a whole, is
represented by the TextRange object, and the actual text is given by the Text property
of the TextRange object. This rather convoluted state of affairs means that you need to
use the following property to a refer to a shape’s text:
Shape.TextFrame.TextRange.Text

For example, the following statements add to the active presentation a new slide that
contains only a title, and then they set the title text to 2008 Budget Proposal:
With ActivePresentation.Slides

With .Add(1, ppLayoutTitleOnly).Shapes(1)
.TextFrame.TextRange.Text = “2008 Budget Proposal”

End With
End With

■ Also note that the TextFrame object has a number of other properties that control the
text margins, orientation, word wrap, and more.

■ Shape.Top—Returns or sets the distance, in points, between the top edge of the bound-
ing box of the specified Shape and the top edge of the presentation window.

■ Shape.Visible—A Boolean value that makes the specified Shape either visible (True) or
invisible (False).

■ Shape.Width—Returns or sets the width, in points, for the specified Shape.

The Juggling Application: Creating the Title Slide
To put some of these properties through their paces, Listing 9.4 shows the Juggling appli-
cation’s SetUpStartPage procedure.

Listing 9.4 A Procedure That Sets Up the Text and Animation Settings for the First Slide of the 
Juggling Presentation

Sub SetUpStartSlide()
Dim shapeTitle As Shape
Dim shapeSubTitle As Shape

With pres.Slides(“Opener”)
Set shapeTitle = .Shapes(1)     ‘ The title
Set shapeSubTitle = .Shapes(2)  ‘ The subtitle
‘
‘ Add the title text
‘
With shapeTitle.TextFrame.TextRange

.Text = “Juggling”
With .Font

.Name = “Arial”

.Size = 44

.Bold = True

.Color.RGB = RGB(255, 255, 255)
End With

End With

9

Chapter 9 Programming PowerPoint180



181Dealing with Shape Objects

‘
‘ Set the title animation
‘
With shapeTitle.AnimationSettings

.Animate = True

.AdvanceMode = ppAdvanceOnTime

.AdvanceTime = 0

.TextUnitEffect = ppAnimateByCharacter

.EntryEffect = ppEffectFlyFromLeft
End With
‘
‘ Add the subtitle text
‘
With shapeSubTitle.TextFrame.TextRange

.Text = “A Step-By-Step Course”
With .Font

.Name = “Arial”

.Size = 36

.Bold = True

.Color.RGB = RGB(255, 255, 255)
End With

End With
‘
‘ Set the subtitle animation
‘
With shapeSubTitle.AnimationSettings

.Animate = True

.AdvanceMode = ppAdvanceOnTime

.AdvanceTime = 0

.TextUnitEffect = ppAnimateByWord

.EntryEffect = ppEffectFlyFromBottom
End With

End With
End Sub

The first slide is named Opener, and this is the object used through most of the procedure.
The shapeTitle variable is Set to the slide’s title—Shapes(1)—and the shapeSubTitle vari-
able is Set to the subtitle text box—Shapes(2).

From there, the title’s TextFrame property is used to add and format the title text. Then its
AnimationSettings property is used to animate the text. A similar sequence of code adds
text, formatting, and animation to the subtitle.

Some Shape Object Methods
The Shape object comes with a number of methods that let you perform standard actions
such as cutting, copying, pasting, and deleting. Here’s a list of some other useful methods:

■ Shape.Apply—This method applies to the specified Shape the formatting that was cap-
tured from another shape using the PickUp method (described later).

■ Shape.Duplicate—This method makes a copy of the specified Shape in the same slide.
The new shape is added to the Shapes object immediately after the specified Shape.
Note, too, that this method returns a Shape object that refers to the new shape.

9



■ Shape.Flip—This method flips the specified Shape around its horizontal or vertical
axis. Here’s the syntax:
Shape.Flip(FlipCmd)

Shape The Shape object you want to flip.

FlipCmd A constant that determines how the shape is flipped.
Use either msoFlipHorizontal or msoFlipVertical.

■ Shape.IncrementLeft—Moves the specified Shape horizontally, using the following
syntax:
Shape.IncrementLeft(Increment)

Shape The Shape object you want to move.

Increment The distance, in points, that you want the shape
moved. Use a positive number to move the shape to
the right; use a negative number to move the shape
to the left.

■ Shape.IncrementRotation—Rotates the specified Shape around its z-axis, using the fol-
lowing syntax:
Shape.IncrementRotation(Increment)

Shape The Shape object you want to move.

Increment The number of degrees you want the shape rotated.
Use a positive number to rotate the shape clockwise;
use a negative number to rotate the shape counter-
clockwise.

■ Shape.IncrementTop—Moves the specified Shape vertically, using the following syntax:
Shape.IncrementTop(Increment)

Shape The Shape object you want to move.

Increment The distance, in points, that you want the shape
moved. Use a positive number to move the shape
down; use a negative number to move the shape up.

■ Shape.PickUp—Copies the formatting of the specified Shape. Use the Apply method
(discussed earlier) to apply the copied formatting to a different object.

■ Shape.Select—This method selects the specified Shape using the following syntax:
Shape.Select(Replace)

Shape The Shape object you want to select.

Replace A Boolean value that either adds the shape to the
current selection (False) or replaces the current
selection (True). True is the default.

9

Chapter 9 Programming PowerPoint182



183Dealing with Shape Objects

The Juggling Application: Creating the Instructions
To continue the Juggling application, the SetUpJugglingSlides procedure, shown in
Listing 9.5, is run. This procedure serves to set up the title, picture, and instruction text for
each of the four instruction slides.

Listing 9.5 A Procedure That Sets Up the Titles, Pictures, and Text Instructions for Each of the 
Juggling Slides

Sub SetUpJugglingSlides()
Dim thisPres As Presentation
Dim slideTitle As Shape
Dim slidePicture As Shape
Dim slideText As Shape
Dim strImagePath As String
Dim i As Integer

For i = 1 To 4
With pres.Slides(“Juggling” & i)

‘
‘ Get the path of the picture for this slide
‘ Assume it’s in the same folder as Chapter09.pptm
‘
Set thisPres = Presentations(“Chapter09.pptm”)
strImagePath = thisPres.Path & “\Juggling” & i & “.jpg”
‘
‘ Adjust the layout and then set the Shape variables
‘
.Layout = ppLayoutObjectOverText
Set slideTitle = .Shapes(1)
Set slidePicture = .Shapes(2)
Set slideText = .Shapes(3)
‘
‘ Add the title text
‘
With slideTitle.TextFrame.TextRange

Select Case i
Case 1

.Text = “Step 1: The Home Position”
Case 2

.Text = “Step 2: The First Throw”
Case 3

.Text = “Step 3: The Second Throw”
Case 4

.Text = “Step 4: The Third Throw”
End Select
With .Font

.Name = “Arial”

.Size = 44

.Bold = True

.Color.RGB = RGB(255, 255, 255)
End With

End With
‘
‘ Set up the picture

9

continues



‘
With slidePicture

‘
‘ Add the picture
‘
.Fill.UserPicture strImagePath
.Width = 542
.Left = 90
‘
‘ Configure the picture animation and shadow
‘
With .AnimationSettings

.Animate = True

.AdvanceMode = ppAdvanceOnTime

.AdvanceTime = 0

.EntryEffect = ppEffectFade
End With
With .Shadow

.ForeColor.RGB = RGB(0, 0, 0)

.OffsetX = 10

.OffsetY = 10

.Visible = True
End With

End With
‘
‘ Add the instruction text
‘
With slideText.TextFrame.TextRange

Select Case i
Case 1
.Text = “Place two balls in your dominant hand, “ & _

“one in front of the other.” & Chr(13) & _
“Hold the third ball in your other hand.” & _
Chr(13) & _
“Let your arms dangle naturally and bring “ & _
“your forearms parallel to the ground (as “ & _
“though you were holding a tray.)” & Chr(13) & _
“Relax your shoulders, arms, and hands.”

Case 2
.Text = “Of the two balls in your dominant hand, “ & _

“toss the front one toward your other hand “ & _
“in a smooth arc.” & Chr(13) & _
“Make sure the ball doesn’t spin too much.” & _
Chr(13) & _
“Make sure the ball goes no higher than “ & _
“about eye level.”

Case 3
.Text = “As soon as the first ball reaches the top of “ & _

“its arc, toss the ball in your other hand.” & _
Chr(13) & _
“Throw the ball toward your dominant hand, “ & _
“making sure it flies UNDER the first ball.” & _
Chr(13) & _
“Again, try not to spin the ball and make “ & _
“sure it goes no higher than eye level.”

9

Chapter 9 Programming PowerPoint184

Listing 9.5 Continued 



185Dealing with Shape Objects

Case 4
.Text = “Now for the tricky part (!). Soon “ & _

“after you release the second ball, the “ & _
“first ball will approach your hand. Go “ & _
“ahead and catch the first ball.” & Chr(13) & _
“When the second ball reaches its apex, “ & _
“throw the third ball (the remaining ball “ & _
“in your dominant hand) under it.” & Chr(13) & _
“At this point, it just becomes a game of “ & _
“catch-and-throw-under, catch-and-throw-” & _
“under. Have fun!”

End Select
With .Font

.Name = “Times New Roman”

.Size = 24

.Bold = False

.Color.RGB = RGB(255, 255, 255)
End With

End With
End With

Next i

End Sub

A For...Next loop runs through each of the four instructional slides. (Recall that earlier the
CreateJugglingSlides procedure gave these slides the names Juggle1 through Juggle4.)
Here’s a summary of the various chores that are run within this loop:

■ The first task is to load the pictures that illustrate each step. These pictures are named
Juggle1.jpg through Juggle4.jpg, and the code assumes they’re in the same folder as
the Chaptr09.pptm file. (The images are also in the file itself.) To get them into the
Juggling presentation, the code first stores the path of the current slide’s image file in
the strImagePath variable.

■ The slide’s Layout property is set to ppLayoutObjectOverText and the three variables
that represent the three shapes on each slide are Set.

■ Next, the title text is added. Here, a Select Case structure is used to add a different
title to each slide, and then the text is formatted.

■ You add the image to the slide by setting the slidePicture object’s Fill.UserPicture
property to the strImagePath value, and then the Width and Left properties adjust the
size and position of the image.

■ The picture is animated, and a shadow is added.

■ The last chunk of code uses another Select Case to add the appropriate instructions
for each slide, and then the instruction text is formatted.

9



Operating a Slide Show
With your presentation created and saved, the slides added and set up, and shapes inserted
and formatted, your file is just about ready to roll. All that remains is to add a few slide
show settings and transition effects. This section shows you how to do that, as well as how
to run your slide show when it’s complete.

Slide Show Transitions
Each Slide object has a SlideShowTransition property that determines how the slide
advances during a slide show. This property is actually a SlideShowTransitions object, and
you set up the transition effect by modifying this object’s properties. Here’s a list of the key
properties:

■ Slide.SlideShowTransition.AdvanceOnClick—For the specified Slide, this property
returns or sets whether or not the slide advances when it’s clicked. Set this property to
True to advance the slide by clicking it.

■ Slide.SlideShowTransition.AdvanceOnTime—For the specified Slide, this property
returns or sets whether or not the slide advances after a period of time has elapsed (as
set by the AdvanceTime property). Set this property to True to advance the slide after a
period of time.

■ Slide.SlideShowTransition.AdvanceTime—This property returns or sets the amount
of time, in seconds, after which the specified Slide advances, assuming the
AdvanceOnTime property is set to True.

9

Chapter 9 Programming PowerPoint186

To allow a slide to advance based on time, you also need to set the SlideShowSettings object’s
AdvanceMode property to ppSlideShowUseSlideTimings.This object is a property of the
Presentation object, and I’ll discuss it in detail in the section “Slide Show Settings.”

N
O

T
E

■ Slide.SlideShowTransition.EntryEffect—A constant that determines the special
effect used in the transition for the specified Slide. Look up this property in the VBA
Help system to see the dozens of available constants.

■ Slide.SlideShowTransition.Hidden—This property returns or sets whether or not the
specified Slide is hidden during the slide show. Use True to hide the slide or False to
make the slide visible.

■ Slide.SlideShowTransition.Speed—This property returns or sets the speed of the
transition for the specified Slide. Use one of the following constants:

• ppTransitionSpeedSlow

• ppTransitionSpeedMedium

• ppTransitionSpeedSlow

• ppTransitionSpeedMixed



187Operating a Slide Show

Slide Show Settings
The Presentation object has a SlideShowSettings property that controls various global
settings for the slide show. This property is actually a SlideShowSettings object and the
settings are the properties of this object. Here’s a rundown of the settings you’ll utilize
most often:

■ Presentation.SlideShowSettings.AdvanceMode—Returns or sets how the slides
advance for the specified Presentation. Use ppSlideShowManualAdvance to advance
slides manually (by clicking) or ppSlideShowUseSlideTimings to advance slides based
on the AdvanceTime property for each slide. You can also use the
ppSlideShowRehearseNewTimings constant to run the slide show in Rehearsal mode
(which lets you set the timings by advancing the slides manually).

■ Presentation.SlideShowSettings.EndingSlide—Returns or sets the index number of
the last slide that is displayed in the slide show for the specified Presentation.

■ Presentation.SlideShowSettings.LoopUntilStopped—Returns or sets whether or not
the slide show for the specified Presentation plays continuously. Set this property to
True to play the slide show in a continuous loop until the user presses Esc; set this
property to False to play the slide show just once.

■ Presentation.SlideShowSettings.ShowType—Returns or sets the slide show type for
the specified Presentation. Use ppShowTypeSpeaker (for the standard, full-screen slide
show), ppShowTypeWindow (to run the slide show in a window), or ppShowTypeKiosk (to
run the slide show in kiosk mode—full screen with a continuous loop).

■ Presentation.SlideShowSettings.ShowWithAnimation—Returns or sets whether or not
the slide show for the specified Presentation uses the animation settings applied to
each slide’s shapes. Set this property to True to enable animation; use False to disable
animation.

■ Presentation.SlideShowSettings.ShowWithNarration—Returns or sets whether or not
the slide show for the specified Presentation uses narration. Set this property to True
to enable narration; use False to disable narration.

■ Presentation.SlideShowSettings.StartingSlide—Returns or sets the index number
of the first slide that is displayed in the slide show for the specified Presentation.

Running the Slide Show
At long last you’re ready to display the presentation’s slide show for all to see. To do so,
simply invoke the Run method of the SlideShowSettings object:

Presentation.SlideShowSettings.Run

For example, Listing 9.6 shows the last of the Juggling application’s procedures. In this
case, the procedure presents a dialog box that asks the user whether he or she wants to run
the slide show. If Yes is clicked, some transition effects are applied to the instruction slides
and then the Run method is invoked.

9



Listing 9.6 This Procedure Asks the User Whether He or She Wants to Run the Presentation’s 
Slide Show

Sub RunJugglingSlideShow
If MsgBox(“Start the slide show?”, vbYesNo, “Juggling”) _

= vbYes Then
With pres

.Slides(“Juggling1”).SlideShowTransition.EntryEffect =
➥ppEffectBlindsHorizontal
.Slides(“Juggling2”).SlideShowTransition.EntryEffect =
➥pEffectCheckerboardAcross
.Slides(“Juggling3”).SlideShowTransition.EntryEffect =
➥ppEffectBoxIn
.Slides(“Juggling4”).SlideShowTransition.EntryEffect =
➥ppEffectStripsLeftDown
.SlideShowSettings.Run

End With
End If

End Sub

From Here
■ For a general discussion of VBA objects, see Chapter 5, “Working with Objects,” 

p. 71. 

■ To learn how to work with For Each...Next, For..Next, and Select Case, see Chapter
6, “Controlling Your VBA Code,” p. 91.

9

Chapter 9 Programming PowerPoint188



I N  T H I S  C H A P T E R

Programming Access
Databases 10In the past few chapters you’ve learned about the

objects, properties, and methods associated with
Word, Excel, and PowerPoint. You’ve seen that it’s
possible to manipulate these objects to automate
routine tasks and gain an unprecedented amount of
control over these programs.

In this chapter, you’ll see that using VBA with
Access is quite a bit different because you won’t
learn anything about Access objects. Yes, Access
does have an Application object and there’s a whole
hierarchy of objects for things such as forms and
reports. However, it’s a rare that a VBA program-
mer ever has to manipulate Access with these
objects. Instead, what Access programmers really
want to get their hands on is the data contained in
Access tables and queries.

The secret to doing this is that you use an entirely
different object hierarchy altogether to access data-
base info. It’s called ActiveX Data Objects (ADO) and
it’s the link between your Access VBA programs
and the databases, tables, and queries with which
you want to work. The amazing thing about all this
is that you can use ADO to work with Access data-
bases from other Office applications. For example,
you could use ADO programming to grab data
from an Access table and insert it in an Excel range.
This chapter takes you through the basics of using
ADO to connect to and work with Access databases.

Getting Ready: Two Steps Before 
You Begin  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190

Working with Database Records: Opening a
Recordset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192

Working with a Recordset  . . . . . . . . . . . . . . .198

Retrieving Data into Excel  . . . . . . . . . . . . . . .208



Getting Ready: Two Steps Before You Begin
When programming Word, Excel, and PowerPoint, you just create or open a module in the
Visual Basic Editor and start typing away. Database programming is different because
there’s a bit of prep work you need to do before you start “slinging code,” as programming
types like to say. The next two sections explain the details.

Step One: Create a Reference
This may sound strange, but the ability to program a database with ADO is not built into
Access VBA by default! As I mentioned at the top of the chapter, Access VBA is set up to
program forms and reports (among other things); it just can’t work with the data that’s in
those forms and reports, not to mention the tables where the data actually resides. It’s
weird, I know. So why did Microsoft set things up this way? In simplest terms, there are
actually several different ways to program data, and Microsoft quite rightly didn’t want to
foist a particular method on VBA programmers. (Dedicated database coders are very partic-
ular about how they access their data; not only that, but Microsoft has developed several
new ways to program databases in recent years, so there are compatibility issues to worry
about: A program written using a old method doesn’t work with any of the new methods.)

10

Chapter 10 Programming Access Databases190

ADO isn’t part of Access 2007 by default, but another database object model is: Data Access Objects
(DAO). Microsoft says that DAO-based macros run faster than ADO scripts with Access databases. So
why teach you ADO? Mostly because ADO is simpler, cleaner, and works well with other database
types, such as SQL Server. So if you expand your database programming, you’ll be better off know-
ing ADO than DAO.

N
O

T
E

So the first thing you need to do is tell Access which method of database programming you
want to use. Technically, you’re choosing the database object model. If you have no idea
which one to choose, don’t worry about it: As a beginning database programmer, your best
bet by far is to choose the most recent object model, which is the Microsoft ActiveX Data
Objects 2.8 Library, a mouthful that I’ll usually just shorten to ADO in the rest of this
chapter. Follow these steps:

1. In the Visual Basic Editor, highlight your project in the Project Explorer. (Access
allows only one project—that is, one database—to be open at a time, so this step isn’t
technically necessary.)

2. Select Tools, References to display the References dialog box.

3. In the Available References list, activate the check box beside the Microsoft ActiveX
Data Objects 2.8 Library item, as shown in Figure 10.1. (Note that there’s also a
Microsoft ActiveX Data Objects 6.0 Library. Microsoft claims this library is “function-
ally equivalent” to the 2.8 library, so it doesn’t matter which one you choose.)

4. Click OK.



191Getting Ready:Two Steps Before You Begin

Note that you although you have to do this only once for a given Access database, you must
repeat these steps for each subsequent Access database that you use.

10

Figure 10.1
Use the References dia-
log box to activate the
Microsoft ActiveX Data
Objects 2.7 Library check
box.

The interesting thing about database programming is that you can do it from programs other than
Access! For example, you could create a VBA program in Excel that works with data in a separate
Access database.The secret to this powerful idea is the References dialog box and the Microsoft
ActiveX Data Objects 2.8 Library. By following the steps in this section in, say, Excel (for Step 1, you’d
highlight the Excel VBA project you want to work with), you can use all the database programming
techniques that you’ll learn in the rest of this chapter.

T
IP

Step Two: Create a Data Source
Another strange thing about database programming is that you always have to set up a con-
nection, which is a kind of behind-the-scenes communications link that your code uses to
request and change the data. There are two ways to set up a connection.

The first way is to declare a variable as a Connection type and then use the CurrentProject
object’s Connection property to return the connection:

Dim conn As Connection
Set conn = CurrentProject.Connection

Alternatively, you need to create a data source that specifies the database, and then (as you’ll
see in the next section) you use your program code to connect to that data source. The
good news is that you have to do this only once for each database. Here are the steps to
follow:

1. If the database for which you are creating a data source is open in Access, close it.

2. Open the Windows Control Panel and launch the ODBC Data Sources icon. If you
see just the Control Panel categories, you need to perform some extra steps:



• Windows XP—Click Switch to Classic View, double-click Administrative Tools
and then double-click Data Sources (ODBC).

• Windows Vista—Click Classic View, double-click Administrative Tools, double-
click Data Sources (ODBC), and then enter your User Account Control creden-
tials, if prompted.

3. In the System DSN tab, click Add. The Create New Data Source dialog box appears.

4. Click Microsoft Access Driver (*.mdb, *.accdb) and click Finish. The ODBC Microsoft
Access Setup dialog box appears.

5. Use the Data Source Name text box to enter the name of the new data source. Note
that this is the name you’ll be using in your VBA code. For the code listings in this
chapter, I’m going to use the sample Northwind 2007.accdb database that you can
download from Microsoft Office Online, so enter the name Northwind.

10

Chapter 10 Programming Access Databases192

To download the Northwind 2007 sample database, run Access, select Office, New, click Sample, click
Northwind 2007, and then click Create.N

O
T

E

6. Enter an optional Description.

7. Click Select, use the Select Database dialog box to click the Access database file you
want to use, and click OK. Figure 10.2 shows the completed dialog box.

8. Click OK to return to the ODBC Data Source Administrator.

9. Click OK.

Figure 10.2
Use the ODBC
Microsoft Access
Setup dialog box to
define the data
source.

Working with Database Records: Opening a Recordset
With all those preliminaries out of the way, you can finally get down to the business of data-
base programming. For the purposes of this chapter, database programming consists of manip-
ulating a recordset, which represents either the records in a table from an Access database or the
records that result from a query. In ADO, you use the Recordset object to do all this.



193Working with Database Records: Opening a Recordset

The first thing your procedures will always do is open a recordset. You do that by setting
up a connection to a data source, which then gives you access to whatever database was
specified when you created the data source. From there you specify the table you want to
use, or you set up a query. As you’ll see, ADO handily enables you to do all this with a 
single statement.

Before all that, however, you must declare a variable as a Recordset type, as in this example:

Sub RecordsetOpenTable()
Dim rs As ADODB.Recordset

End Sub

With that done, you then Set the variable equal to a new Recordset object:

Set rs = CreateObject(“ADODB.Recordset”)

Because ADO isn’t “built in” to Access (or any other program), you must create its objects
explicitly by using VBA’s CreateObject method.

Opening a Recordset Using a Table
Now you’re ready to open the Recordset object by invoking its Open method. Here’s a sim-
plified version of the syntax:

Recordset.Open [Source][, Connection]

Recordset The Recordset object you want to open.

Source The source of the recordset, which can be a table name or an
SQL SELECT statement (which I’ll explain a bit later).

Connection The connection to use, which for our purposes is just the
name of the data source that contains the data with which you
want to work.

The easiest way to open a Recordset object is to open a table that already exists within the
data source. For example, the following statement opens the table named Employees in the
Northwind data source:

rs.Open “Employees”, “Northwind”

10

Before you attempt to run any code against the Northwind 2007 database (or whatever database
you’re using), first make sure that database is closed. If it’s open,VBA generates an error message.

C A U T I O N

Listing 10.1 shows a complete procedure demonstrating how to declare, open, and close a
Recordset object.



Listing 10.1 Using a Table to Open a Recordset Object 

Sub RecordsetOpenTable()
Dim rs As ADODB.Recordset
‘
‘ Create the Recordset object
‘
Set rs = CreateObject(“ADODB.Recordset”)
‘
‘ Open it
‘
rs.Open “Employees”, “Northwind”
MsgBox “The “ & rs.Source & “ table is now open!”
‘
‘ Close it
‘
rs.Close
Set rs = Nothing

End Sub
10

Chapter 10 Programming Access Databases194

The code used in this chapter’s examples can be found on my website at the following address:

http://www.mcfedries.com/Office2007VBA/Chaptr10.xlsmN
O

T
E

This example doesn’t do much, although it shows you how to fully handle a Recordset
object. The first few statements declare the Recordset object, create it, and then open it. In
this case, the code opens the Employees table, using the Northwind data source, and then
displays a message that the table is open. (Notice that the Source property returns the
name of the table.) We’re not ready to do anything with the recordset just yet, so the last
two statements close the Recordset and Set the variable to the keyword Nothing, which is a
useful housekeeping chore that saves memory.

Opening a Recordset: the Full Open Method Syntax
Specifying a table is probably the way you’ll open most of your recordsets, but there are
other ways to do it. To use them, you need to know the full syntax of the Open method:

Recordset.Open [Source][, Connection][, CursorType][, LockType][, Options]

Recordset The Recordset object you want to open.

Source The source of the recordset, which can be a table name or a
SQL SELECT statement.

Connection The connection to use, which for our purposes is just the
name of the data source that contains the data you want to
work with.

http://www.mcfedries.com/Office2007VBA/Chaptr10.xlsm


195Working with Database Records: Opening a Recordset

CursorType A constant that specifies how the recordset is opened:

adOpenForwardOnly—This is a read-only, forward-
scrolling cursor. Use this option for faster performance
if you’re making just a single pass through the records.
This is the default.

adOpenDynamic—This is a dynamic cursor that enables
you to insert and update records, and to see changes
made by other users.

adOpenKeyset—This is a keyset cursor that enables you
to insert and update records, and to see all changes
made by other users, except record inserts.

adOpenStatic—This is a static copy of the records. You
can insert and update records, but you can’t see changes
made by other users.

LockEdit A constant that specifies the locking characteristics of the new
recordset:

adLockReadOnly—Prevents users from making changes
to the records. This is the default.

adLockPessimistic—In a multiuser environment, the
current record is locked as soon as you make changes 
to it.

adLockOptimistic—In a multiuser environment, the
current recordset isn’t locked until you run the Update
method.

adLockOptimisticBatch—Implements batch optimistic
updating (batch mode). You use this when you want to
change multiple records and then update them all at
once.

Options A constant that specifies how the provider should interpret
the Source value. See the VBA Help system for the various
adCmd and adAsync constants that are available.

It’s worth noting that you can also open a recordset after first setting the following
Recordset object properties:

■ Recordset.Source—A table name or SQL SELECT statement that sets or returns the
source of the specified Recordset object. 

■ Recordset.ActiveConnection—The connection to use for the specified Recordset
object.

■ Recordset.CursorType—The cursor to use with the specified Recordset object.

■ Recordset.LockType—A constant that specifies the locking characteristics of the speci-
fied Recordset object.

10



After setting these properties, you then run the Open method without specifying any para-
meters, as shown in Listing 10.2.

Listing 10.2 Using Properties to Open a Recordset Object 

Sub RecordsetOpenProperties()
Dim rs As ADODB.Recordset
‘
‘ Create the Recordset object
‘
Set rs = CreateObject(“ADODB.Recordset”)
‘
‘ Open it
‘
With rs

.Source = “Employees”

.ActiveConnection = “Northwind”

.Open
MsgBox “The “ & .Source & “ table is now open!”

End With
‘
‘ Close it
‘
rs.Close
Set rs = Nothing

End Sub

This procedure does the same thing as the one shown earlier in Listing 10.1. This time,
however, the Recordset object’s Source and ActiveConnection properties are set before the
Open method is run.

Opening a Recordset Using a SELECT String
Rather than opening an entire table, you may prefer to open only a subset of a table. The
easiest way to do that is to create a Structured Query Language (SQL) statement. This is
the language that Access uses when you create a query. SQL is a complex bit of business,
but you need only concern yourself with a small portion of it, called the SELECT statement.
The SELECT statement is used to create a recordset based on the table, fields, criteria, and
other clauses specified in the statement. Here’s a simplified syntax of the SELECT statement:

SELECT [DISTINCT] field_names
FROM table_name
WHERE criteria
ORDER BY field_names [DESC];

SELECT The SELECT statement always begins with the SELECT
keyword.

DISTINCT This optional keyword specifies that you want only
unique records (that is, no duplicates).

field_names If you want only certain fields to appear in the
recordset, enter their names here, separated by com-
mas. If you want all the fields, use *, instead.

10

Chapter 10 Programming Access Databases196



197Working with Database Records: Opening a Recordset

FROM table_name This is the name of table that contains the data.

WHERE criteria This filters the data to give you only those records
that match the specified criteria.

ORDER BY field_names [DESC] This sorts the results in ascending order based on
the data in the fields specified by field_names (sepa-
rated by commas, if you have more than one). Use
the optional DESC keyword to sort the records in
descending order.

For example, the following SELECT statement takes all the fields from the Customers table,
restricts the data to those records where the State/Province field equals “CA,” and sorts
the results, using the data in the Company field:

SELECT * FROM Customers WHERE [State/Province]=’CA’ ORDER BY Company;

As another example, the following SELECT statement takes just the Product Name and
Standard Cost fields from the Products table and restricts the data to those records where
the Standard Cost field is less than 20:

SELECT [Product Name], [Standard Cost] FROM Products 
WHERE [Standard Cost] < 20;

10

If you’re new to SELECT statements, there’s an easy way to avoid errors: Use Access to create a tem-
porary Select query in Access.When the resulting data is what you want, select the Design tab, pull
down the View menu, and then choose the SQL View command to display the underlying SELECT
statement.You can then copy this statement to your VBA code and delete the query. (One caution:
change any double quotation marks (“) to single quotes (‘) to avoid errors when using the
SELECT statement within a VBA string variable.)

T
IP

To use a SELECT statement in your VBA database code, either enter the SELECT string
directly into the Recordset object’s Open method as the Source value, or store it in a String
variable and put the variable in the Open method, as shown in Listing 10.3.

Listing 10.3 Opening a Recordset Object Using a SELECT Statement

Sub RecordsetOpenSELECT()
Dim rs As ADODB.Recordset
Dim strSELECT As String
‘
‘ Create the Recordset object
‘
Set rs = CreateObject(“ADODB.Recordset”)
‘
‘ Open it
‘
strSELECT = “SELECT * FROM Customers “ & _ 

continues



“WHERE [State/Province]=’CA’ “ & _ 
“ORDER BY Company;”

rs.Open strSELECT, “Northwind”, adOpenKeyset
MsgBox “The “ & rs.Source & “ table is now open!”
‘
‘ Close it
‘
rs.Close
Set rs = Nothing

End Sub

Working with a Recordset
The examples you’ve seen so far haven’t done very much with the Recordset objects they’ve
opened. To do something useful with the records you need to wield the Recordset object’s
properties and methods. You learn the most useful of these properties and methods in the
next few sections.

Getting at the Recordset Data
In most cases, the point of opening a recordset is to get your hands on the data that’s in a
certain record. More specifically, you’ll most often want to get whatever data is in a certain
field within a record. You do that by invoking the Recordset object’s Fields property:

Recordset.Fields(FieldName)

Recordset The Recordset object with which you want to work.

FieldName A string or String variable containing the name of
the field that contains the data you want.

For example, if you’re working with Northwind’s Customers table, the following statement
stores the data from the current record’s First Name and Last Name fields in a variable
named currentContact:

currentContact = rs.Fields(“First Name”) & “ “ & rs.Fields(“Last Name”)

Note, however, that Fields is the default property for a Recordset object, so you can save
some typing by leaving out the .Fields part. In other words, the following two values are
equivalent:

rs.Fields(“First Name”)
rs(“First Name”)

Listing 10.4 shows another example.

10

Chapter 10 Programming Access Databases198

Listing 10.3 Continued



199Working with a Recordset

Listing 10.4 Getting Recordset Data

Sub RecordsetData()
Dim rs As ADODB.Recordset
Dim strSELECT As String
‘
‘ Create the Recordset object
‘
Set rs = CreateObject(“ADODB.Recordset”)
‘
‘ Open it
‘
strSELECT = “SELECT * FROM Customers “ & _ 

“WHERE [State/Province]=’CA’ “ & _ 
“ORDER BY Company;”

rs.Open strSELECT, “Northwind”, adOpenKeyset
‘
‘ Display the contact name and company name from the first record
‘
MsgBox rs.(“First Name”) & “ “ & rs.(“Last Name”) & _ 

“, “ & rs(“Company”)
‘
‘ Close it
‘
rs.Close
Set rs = Nothing

End Sub

In this procedure, a recordset is opened with a SELECT statement that restricts the cus-
tomers to just those where the State/Province field equals “CA.” Then a MsgBox function
displays the data from the First Name, Last Name, and Company fields for the first record.

10

When using a SELECT statement with a WHERE clause, there’s always the possibility that the
resulting recordset may contain no records. In that case, if your code attempts to access the data in
the “current” record, an error results.To avoid this, open the recordset using either the
adOpenKeyset or adOpenStatic cursor types and then check the Recordset object’s
RecordCount property. If this is greater than 0, it means the recordset has at least one record and
so it’s safe to proceed. Here’s a snippet that modifies part of Listing 10.4 to check for at least one
record before displaying the data:

rs.Open strSELECT, “Northwind”, adOpenKeyset
If rs.RecordCount > 0 Then

MsgBox rs(“ContactName”) & “, “ & rs(“CompanyName”)
End If

C A U T I O N

Navigating Records
As I mentioned in the previous section, the Fields property returns the data from a field in
the current record. When you first open a recordset, the current record is the first record.
To get to another record, you need to navigate to it. There are a number of ways to do
this, but the following four methods are the ones you’ll probably use most often:



■ Recordset.MoveFirst—Moves to the first record in the specified Recordset object.

■ Recordset.MoveLast—Moves to the last record in the specified Recordset object.

■ Recordset.MoveNext—Moves to the next record in the specified Recordset object.

■ Recordset.MovePrevious—Moves to the previous record in the specified Recordset.

10

Chapter 10 Programming Access Databases200

Note that the MoveLast and MovePrevious methods don’t work if you use the
adOpenForwardOnly cursor to open the recordset.

C A U T I O N

With these methods you’re changing a value that points to the current record. This is all
straightforward except in two situations:

■ You’re on the first record and you run the MovePrevious method.

■ You’re on the last record and you run the MoveNext method.

VBA lets you do these things, but in a sense they enable you to move “outside” the record-
set. If you try to access the data, you get an error message that begins Either BOF or EOF
is True. Here, BOF means beginning of file and EOF means end of file. These are properties
of the Recordset object:

■ Recordset.BOF—Returns True if the cursor is before the first record in the specified
Recordset object.

■ Recordset.EOF—Returns True if the cursor is after the first record in the specified
Recordset object.

To avoid the error, you should use test properties in your code. For example, the following
snippet runs the MoveNext method and then checks the EOF property. If it’s True, then the
cursor is moved to the last record:

rs.MoveNext
If rs.EOF Then

rs.MoveLast
End If

Another way to move is to use the Recordset object’s Move method, which moves the cursor
a set number of records from the current record:

Recordset.Move NumRecords[, Start]

Recordset The Recordset object with which you want to work.

NumRecords The number of records you want to move. Use a
positive number to move toward the end of the
recordset; use a negative number to move toward
the beginning of the recordset.

Start Use this optional parameter to specify a starting
record from which to perform the move.



201Working with a Recordset

The Start parameter should be the name of a Variant variable that contains a bookmark,
which is a saved location in a recordset. You set and read bookmarks with the Recordset
object’s Bookmark property. Listing 10.5 provides an example.

Listing 10.5 Using a Bookmark to Navigate a Recordset

Sub RecordsetBookmarkNavigation()
Dim rs As ADODB.Recordset
Dim strSELECT As String
Dim savedRecord As Variant
‘
‘ Create the Recordset object
‘
Set rs = CreateObject(“ADODB.Recordset”)
‘
‘ Open it
‘
strSELECT = “SELECT * FROM Products “ & _ 

“WHERE [Standard Cost] < 20 “ & _ 
“ORDER BY [Product Name];”

rs.Open strSELECT, “Northwind”, adOpenKeyset
‘
‘ Move, save the current record as a Bookmark, and display the data
‘
rs.Move 3
savedRecord = rs.Bookmark
MsgBox rs(“Product Name”) & “ - “ & rs(“Standard Cost”)
‘
‘ Move the current record
‘
rs.Move -2
MsgBox rs(“Product Name”) & “ - “ & rs(“Standard Cost”)
‘
‘ Move relative to the Bookmark
‘
rs.Move 5, savedRecord
MsgBox rs(“Product Name”) & “ - “ & rs(“Standard Cost”)
‘
‘ Move to the bookmark
‘
rs.Bookmark = savedRecord
MsgBox rs(“Product Name”) & “ - “ & rs(“Standard Cost”)
‘
‘ Close it
‘
rs.Close
Set rs = Nothing

End Sub

After the recordset is opened, the Move method is used to move forward three records, and
then the Bookmark property is used to save the current record to the savedRecord variable.
The code moves back two records and then moves forward five records from the book-
mark. Finally the cursor is returned to the saved record by setting the value of the Bookmark
property to savedRecord. Note that the following two statements do the same thing:

10



rs.Bookmark = savedRecord
rs.Move 0, savedRecord

Finding a Record
Another way to navigate a recordset is to search for a specific record, using one or more
criteria. ADO gives you two methods to use—Find and Seek. Find searches some or all of
the recordset directly using criteria, but Seek can only search using an index defined on the
recordset. However, you need to learn how to use only the Find method because it’s simpler
than Seek and works well on all but the largest recordsets.

Here’s the syntax for the Find method:

Recordset.Find Criteria[, SkipRows][, SearchDirection][, Start]

Recordset The Recordset object with which you want to work.

Criteria An expression that specifies the criteria you want to
use to find the record.

SkipRows An optional value that specifies the number of rows
from the current record (or the record specified by
the Start parameter) where the search should begin.
The default value is 0.

SearchDirection An optional constant that specifies which direction
the search should take. Use adSearchForward (the
default value) to search forward through the records;
use adSearchBackward to search backward.

Start An optional bookmark that specifies the starting
record from which to perform the search.

When you run this method, one of two things will happen:

■ A record is found that matches the criteria—In this case, the cursor is moved to
that record.

■ No record is found that matches the criteria—If the SearchDirection parameter is
adSearchForward, the search stops at the end of the recordset (the EOF property returns
True); if the SearchDirection parameter is adSearchBackward, the search stops at the
beginning of the recordset (the BOF property returns True).

This tells you that you can determine whether or not the search was successful by testing
the EOF or BOF property (depending on the search direction) after running the Find method.
Listing 10.6 gives an example.

Listing 10.6 Using the Find Method

Sub SearchRecordsWithFind()
Dim rs As ADODB.Recordset
Dim strCriteria As String

10

Chapter 10 Programming Access Databases202



203Working with a Recordset

‘
‘ Create the Recordset object
‘
Set rs = CreateObject(“ADODB.Recordset”)
‘
‘ Open it
‘
With rs

.Source = “Employees”

.ActiveConnection = “Northwind”

.CursorType = adOpenKeyset

.Open
End With
‘
‘ Run the Find method
‘
strCriteria = “City=’Seattle’”
rs.Find strCriteria
‘
‘ Loop to find other records that meet the criteria
‘
Do While Not rs.EOF

‘
‘ Display the data
‘
MsgBox rs(“First Name”) & “ “ & rs(“Last Name”)
‘
‘ Search again, but skip a row
‘
rs.Find strCriteria, 1

Loop
‘
‘ Close the recordset
‘
rs.Close
Set rs = Nothing

End Sub

After opening the Employees table as the recordset, this code uses the strCriteria variable
to hold the criteria string “City=’Seattle”. Then the Find method locates the first record
that meets this criteria. A Do While...Loop is set up to loop as long as rs.EOF is False.
Inside the loop, the employee’s name is displayed and then the Find method is run again,
although with the SkipRows parameter set to 1 to avoid finding the same record over and
over again.

Editing a Record
After you’ve navigated to or found the record you want, you may want to do more than just
display the data or store the data in a variable or two. Instead, you may want to edit the
data by making changes to one or more fields. Editing the current record is a two-step
process:

10



1. Change the data in one or more fields. Changing the data is straightforward because
you treat each field just like a variable:
rs(“Title”) = “Account Manager”
rs(“UnitPrice”) = 19.95

2. Update the record to write the new data to the table. You do this by running the
Recordset object’s Update method.

Listing 10.7 puts these steps to work.

Listing 10.7 Editing Recordset Data

Sub EditingARecord()
Dim rs As ADODB.Recordset
Dim strCriteria As String
‘
‘ Create the Recordset object
‘
Set rs = CreateObject(“ADODB.Recordset”)
‘
‘ Open it
‘
With rs

.Source = “Employees”

.ActiveConnection = “Northwind”

.CursorType = adOpenKeyset

.LockType = adLockPessimistic

.Open
End With
‘
‘ Run the Find method
‘
strCriteria = “[Job Title]=’Sales Representative’”
rs.Find strCriteria
‘
‘ Loop to find other records that meet the criteria
‘
Do While Not rs.EOF

‘
‘ Display the data
‘
rs(“Job Title”) = “Account Manager”
rs.Update
MsgBox rs(“First Name”) &” “ & rs(“Last Name”) & “, “ & rs(“Job Title”)
‘
‘ Search again, but skip a row
‘
rs.Find strCriteria, 1

Loop
‘
‘ Close the recordset
‘
rs.Close
Set rs = Nothing

End Sub

10

Chapter 10 Programming Access Databases204



205Working with a Recordset

After opening the Employees table, the Find method is used to locate the first record where
the Job Title field equals “Sales Representative.” A Do While...Loop checks the EOF prop-
erty. Inside the loop, the Job Title field is changed to “Account Manager” and the Update
method finalizes the changes for the current record. The Find method is run again to con-
tinue the process.

Adding a New Record
If you have new information to insert into a table, ADO enables you to add a new record
and populate its fields with the new data. This is accomplished with the Recordset object’s
AddNew method.

There are two ways to use AddNew. In the simplest case, you follow a three-step procedure:

1. Run the AddNew method.

2. Add the data to the new record’s fields.

3. Call the Update method to write the new record and data to the table.
10

To successfully add a new record to a table, you need to open the recordset with the LockType
parameter or property set to either adLockOptimistic or adLockPessimistic.

C A U T I O N

Listing 10.8 takes you through an example.

Listing 10.8 Adding a New Record

Sub AddingARecord()
Dim rs As ADODB.Recordset
‘
‘ Create the Recordset object
‘
Set rs = CreateObject(“ADODB.Recordset”)
‘
‘ Open it
‘
With rs

.Source = “Customers”

.ActiveConnection = “Northwind”

.CursorType = adOpenKeyset

.LockType = adLockOptimistic

.Open
End With
‘
‘ Create the new record
‘
rs.AddNew
‘
‘ Enter the data for the new record
‘

continues



Listing 10.8 Continued

rs(“Company”) = “Ayrshire Haggis”
rs(“First Name”) = “Angus”
rs(“Last Name”) = “Dunlop”
rs(“E-mail Address”) = “adunlop@ayrshirehaggis.co.uk”
rs(“Job Title”) = “Owner”
rs(“Address”) = “123 Cathcart St.”
rs(“City”) = “Ayr”
rs(“State/Province”) = “Ayrshire”
rs(“ZIP/Postal Code”) = “KA18 4PN”
rs(“Country/Region”) = “Scotland”
rs(“Business Phone”) = “01290 555555”
rs(“Fax Number”) = “01290 666666”
‘
‘ Write the new record to the table
‘
rs.Update
‘
‘ Close the recordset
‘
rs.Close
Set rs = Nothing

End Sub

This code opens the Customers table (notice that LockType is set to adLockOptimistic).
Then the AddNew method is run and the various fields in the new record are populated with
data. Finally, the Update method writes the new record to the table.

The second way to use the AddNew method combines the first two steps into a single state-
ment:

Recordset.AddNew [FieldList][, Values]

Recordset The Recordset object with which you want to work.

FieldList A field name or an array of field names.

Values A single value or an array of values for the fields in
the new record.

Here’s a statement that creates a new record and populates a single field:

rs.AddNew “Company”, “Ayrshire Haggis”

Here’s another that uses the Array function to populate an entire record in a single state-
ment:

rs.AddNew Array(“Company”, “First Name”, “Last Name”, _ 
“E-mail Address”, “Job Title”, “Address”, _ 
“City”, “State/Province”, “ZIP/Postal Code”, _ 
“Country/Region”, “Business Phone”, “Fax Number”), _

Array(“Ayrshire Haggis”, “Angus”, “Dunlop”, _ 
“adunlop@ayrshirehaggis.co.uk”, “Owner”, “123 Cathcart St.”, _ 
“Ayr”, “Ayrshire”, “KA18 4PN”, _ 
“Scotland”, “01290 555555”, “01290 666666”)

10

Chapter 10 Programming Access Databases206



207Working with a Recordset

Deleting a Record
If a record is obsolete or simply no longer needed for some reason, you should delete it
from the table to reduce clutter and keep the table up to date. This is handled easily by the
Recordset object’s Delete method, which marks the current record for deletion. You then
run the Update method to confirm the deletion.

10

If you run the Delete method and then decide against the deletion, you can back out of it by run-
ning the CancelUpdate method before running the Update method.T

IP

Listing 10.9 puts the Delete method through its paces.

Listing 10.9 Deleting a Record

Sub DeletingARecord()
Dim rs As ADODB.Recordset
Dim strCriteria As String
‘
‘ Create the Recordset object
‘
Set rs = CreateObject(“ADODB.Recordset”)
‘
‘ Open it
‘
With rs

.Source = “Customers”

.ActiveConnection = “Northwind”

.CursorType = adOpenKeyset

.LockType = adLockOptimistic

.Open
End With
‘
‘ Run the Find method
‘
strCriteria = “Company=’Ayrshire Haggis’”
rs.Find strCriteria
‘
‘ Loop to find other records that meet the criteria
‘
If Not rs.EOF Then

rs.Delete
rs.Update
MsgBox “The customer with “ & strCriteria & “ has been deleted.”

Else
MsgBox “The customer with “ & strCriteria & “ was not found!”

End If
‘
‘ Close the recordset
‘
rs.Close
Set rs = Nothing

End Sub



After opening the recordset (again, notice that you need to set LockType to either
adLockOptimistic or adLockPessimistic), the Find method is used to locate the record to
be deleted. If the record was found (that is, the recordset’s EOF property is False), the code
runs the Delete method, followed by the Update method. A message tells the user that the
record has been deleted.

Retrieving Data into Excel
As I mentioned near the top of the chapter, you normally use ADO from a program other
than Access (or in Access when the database you want to work with isn’t the current data-
base). Most people work with table data in Excel because the row-and-column layout of a
worksheet fits well with the record-and-field layout of a table.

To get data from a table into an Excel worksheet, you have three choices:

■ Retrieving an individual field value.

■ Retrieving one or more entire records.

■ Retrieving an entire recordset.

Retrieving an Individual Field Value
For individual field values, move to the record you want to work with and then assign the
value of the field to the worksheet cell. For example, the following statement returns the
value of the current record’s Country field and stores it in cell A1 of the active worksheet:

ActiveSheet.[A1] = rs(“Country”)

Retrieving One or More Entire Rows
To get full records, use the Recordset object’s GetRows method:

Recordset.GetRows [Rows][, Start][, Fields]

Recordset The Recordset object with which you want to work.

Rows The number of records you want to retrieve, starting from the
current record. If you want to retrieve the rest of the records
(that is, all the records from the current records to the end of
the recordset) use the constant value adGetRowsRest.

Start Use this optional parameter to specify a bookmark as the
starting point from which to retrieve the records.

Fields Use this optional parameter to specify the fields that are
retrieved. Use a single field name or an array of field names.

The GetRows method returns the records in a two-dimensional array, where the first sub-
script is a number that represents the field (the first field is 0) and the second subscript rep-
resents the record number (where the first record is 0). Listing 10.10 shows an example.

10

Chapter 10 Programming Access Databases208



209Retrieving Data into Excel

Listing 10.10 Retrieving Entire Records into Excel

Sub RetrievingEntireRecords()
Dim rs As ADODB.Recordset
Dim strCriteria As String
Dim recordArray As Variant
‘
‘ Create the Recordset object
‘
Set rs = CreateObject(“ADODB.Recordset”)
‘
‘ Open it
‘
With rs

.Source = “Customers”

.ActiveConnection = “Northwind”

.CursorType = adOpenKeyset

.Open
End With
‘
‘ Head for Database Records worksheet
‘
Worksheets(“Database Records”).Activate
With Worksheets(“Database Records”).[a1]

‘
‘ Clear the sheet
‘
.CurrentRegion.Clear
‘
‘ Read the data using GetRows
‘
recordArray = rs.GetRows(50)
‘
‘ Run through the array and write the data to the worksheet
‘
For i = 0 To UBound(recordArray, 2)

For j = 0 To UBound(recordArray, 1)
.Offset(i + 1, j) = recordArray(j, i)

Next j
Next i
‘
‘ Enter the field names in the first row and format the cells
‘
For j = 0 To rs.Fields.Count - 1

.Offset(0, j) = rs.Fields(j).Name

.Offset(0, j).Font.Bold = True

.Offset(0, j).EntireColumn.AutoFit
Next j

End With
‘
‘ Close the recordset
‘
rs.Close
Set rs = Nothing

End Sub

10



After opening the Customers table, this procedure performs a few Excel VBA chores,
including activating the “Database Records” worksheet and clearing the sheet to remove
any existing data. Then GetRows is used to retrieve the first 50 rows of the table. A
For...Next loop runs through the two-dimensional array writing the data in the work-
sheet’s rows and columns. Then another For...Next loop writes the column names on the
top row and formats the cells for easier reading.

Retrieving an Entire Recordset
If you need to retrieve an entire recordset into a worksheet, one way to do it would be to
run GetRows(adGetRowsRest) from the first record and then use the technique in Listing
10.10 to write the data to the worksheet. However, Excel offers you an easier method—the
Range object’s CopyFromRecordset method:

Range.CopyFromRecordset(Data[, MaxRows][, MaxColumns])

Range A Range object that specifies the upper-left corner of the des-
tination range.

Data The recordset containing the data you want to retrieve.

MaxRows The maximum number of records to retrieve. If you omit this
optional parameter, Excel copies every record.

MaxColumns The maximum number of fields to retrieve. If you omit this
optional parameter, Excel copies every field.

Here are a few notes to bear in mind when working with CopyFromRecordset:

■ Excel begins the copying from the current record. If you want to retrieve every record,
make sure you run the MoveFirst method to move to the first record.

■ When the CopyFromRecordset method is done, the Recordset object’s EOF property is
True.

■ CopyFromRecordset fails if the Recordset object has a field that contains binary data
(that is, if it’s an OLE object field).

Listing 10.11 shows the RetrieveProducts procedure that uses the CopyFromRecordset
method.

Listing 10.11 Retrieving an Entire Recordset

Sub RetrieveProducts()
Dim rs As ADODB.Recordset
Dim fld As Field
Dim strSELECT As String, i As Integer
‘
‘ Create the Recordset object
‘
Set rs = CreateObject(“ADODB.Recordset”)
‘
‘ Open it

10

Chapter 10 Programming Access Databases210



211Retrieving Data into Excel

‘
With rs

.Source = “Products”

.ActiveConnection = “Northwind”

.CursorType = adOpenKeyset

.Open
End With
‘
‘ The strSELECT variable will hold the SQL SELECT statement
‘ that filters the Recordset to remove binary fields
‘
strSELECT = “SELECT “
‘
‘ Run through the recordset fields
‘
For Each fld In rs.Fields

‘
‘ Check for binary fields
‘
If fld.Type <> adBinary And fld.Type <> adLongVarBinary Then

‘
‘ If it’s not an OLE Object field,
‘ add it to the SELECT statement
‘
strSELECT = strSELECT & “[“ & fld.Name & “],”

End If
Next fld
‘
‘ Remove the trailing comma
‘
strSELECT = Left(strSELECT, Len(strSELECT) - 1)
‘
‘ Add the FROM clause
‘
strSELECT = strSELECT & “ FROM Products”
‘
‘ Open the filtered recordset
‘
With rs

.Close

.Source = strSELECT

.ActiveConnection = “Northwind”

.CursorType = adOpenKeyset

.Open
End With
‘
‘ Activate the Database Records worksheet
‘
Worksheets(“Database Records”).Activate
With Worksheets(“Database Records”).[a1]

‘
‘ Clear the sheet
‘
.CurrentRegion.Clear
‘
‘ Get the entire recordset
‘

10

continues



.Offset(1).CopyFromRecordset rs
‘
‘ Enter the field names and format the cells
‘
For i = 0 To rs.Fields.Count - 1

.Offset(0, i) = rs.Fields(i).Name

.Offset(0, i).Font.Bold = True

.Offset(0, i).EntireColumn.AutoFit
Next i

End With
‘
‘ Close and release the objects
‘
rs.Close
Set rs = Nothing
Set fld = Nothing

End Sub

The RetrieveProducts procedure opens the Products table as the Recordset object. You
want to make sure that you don’t try to copy any OLE Object fields, so the procedure con-
structs a SQL SELECT statement that excludes any fields that contain binary data (OLE
objects). The strSELECT variable holds the SELECT statement, so it’s initialized to SELECT
followed by a space. Then a For...Next loop runs through each field in rs and looks for
OLE Object fields (where the Type property is adBinary or adLongVarBinary). If a field isn’t
an OLE Object type, its name (surrounded by square brackets—[ and ]— and followed by a
comma separator) is appended to the SELECT statement.

Next, the trailing comma is removed and the FROM clause is concatenated to the SELECT
statement. A new recordset is opened based on strSELECT, and then the CopyFromRecordset
method retrieves the records.

From Here
■ I used the MsgBox function a few times in this chapter. See “Getting Input Using

MsgBox,” p. 45.

■ For information on working with Excel’s objects, see Chapter 8, “Programming
Excel,” p. 139.

10

Chapter 10 Programming Access Databases212

Listing 10.11 Continued



I N  T H I S  C H A P T E R

Programming Outlook
Email 11Not many people know it, but Microsoft Outlook

also incorporates VBA, so you can create Outlook-
based VBA macros and applications. Outlook itself
is a big program, so you can imagine that the
Outlook object model is huge, with dozens of
objects and untold numbers of properties, methods,
and events. Space limitations prevent me from
examining this model in detail, so this chapter takes
you through just those objects related to Outlook’s
email features.

Getting Started
Although Outlook has an Application object at the
top of its hierarchy, your Outlook programming
will rarely need to use it. Instead, your programs
will always begin with the NameSpace object. This
oddly named item acts as a top-level object for a
data source, which, as its name implies, is a kind of
container for data. The NameSpace object enables
you to log in to the source, access the data, and
then log out. In Outlook’s case, the only supported
data source is something called MAPI—Mail
Application Programming Interface—which repre-
sents the data in an Outlook personal folders store
(a .pst file).

After you’ve started Outlook, you’ve already logged
in, so your code can simply refer to the current ses-
sion as the namespace. To do that, you use the
default Outlook object, which is called
ThisOutlookSession. Use this object’s Session
property to get the NameSpace object:

Dim ns As NameSpace
Set ns = ThisOutlookSession.Session

Getting Started  . . . . . . . . . . . . . . . . . . . . . . . .213

Working with Outlook Folders  . . . . . . . . . . . .214

Handling Incoming and Outgoing 
Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217

Working with Email Messages  . . . . . . . . . . . .220

Sending a Message  . . . . . . . . . . . . . . . . . . . . .225

Working with Attachments  . . . . . . . . . . . . . .229

Programming Outlook from Other 
Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . .231



Working with Outlook Folders
The NameSpace object stores all the Outlook folders, which means you can use it to return a
reference to a folder and then work with that folder. Note that in the Outlook object
model, folders are MAPIFolder objects.

Referencing Default Folders
One way to return a MAPIFolder object is to use the GetDefaultFolder method, which
returns the default folder for a given type in the current profile. Here’s the syntax:

NameSpace.GetDefaultFolder(FolderType)

NameSpace The NameSpace object.

FolderType A constant that specifies the type of folder. Here are
the defined constants you’ll use most often:
olFolderCalendar, olFolderContacts,
olFolderDeletedItems, olFolderInbox,
olFolderJournal, olFolderJunk, olFolderNotes,
olFolderOutbox, olRssFeeds, olFolderSentMail, and
olFolderTasks.

For example, if you wanted to work with the Inbox folder, your procedure would start with
the following statements:

Dim ns As NameSpace
Dim ib As MAPIFolder
Set ns = ThisOutlookSession.Session
Set ib = ns.GetDefaultFolder(olFolderInbox)

Using the Folders Property
Alternatively, you can use the NameSpace object’s Folders property to return a Folders
object that represents all the MAPIFolder objects in the PST file. To reference a specific
folder, use Folders(Index), where Index is one of the following:

■ An integer value with the first folder being 1, the second folder being 2, and so on.

■ The name of the folder in quotation marks. 

The NameSpace object has only one folder—known as the root—which is usually called
“Personal Folders.” Therefore, the following statements are equivalent (assume ns is a
NameSpace object):

ns.Folders(1)
ns.Folders(“Personal Folders”)

All the other mail folders are subfolders of this root. To get at them, you tack on another
Folders property in the same way. For example, the first subfolder in the root is usually
Deleted Items, so the following are equivalent:

11

Chapter 11 Programming Outlook Email214



215Working with Outlook Folders

ns.Folders(1).Folders(1)
ns.Folders(“Personal Folders”).Folders(“Deleted Items”)

To help give you a feel for how these folders work, Listing 11.1 shows a procedure that
runs through the first- and second-level folders in the namespace. Before you run this code,
however, display the Visual Basic Editor’s Immediate window by activating the View,
Immediate Window command (or by pressing Ctrl+G).

➔ For more information about the Immediate window, see “Using the Immediate Window,” p. 348.

Listing 11.1 A Procedure That Lists the First- and Second-Level Folders in the Outlook 
Namespace

Sub ListFolders()
Dim ns As NameSpace
Dim folder As MAPIFolder
Dim subfolder As MAPIFolder
‘
‘ Set up the namespace
‘
Set ns = ThisOutlookSession.Session
‘
‘ Run through the first-level folders
‘
For Each folder In ns.Folders

Debug.Print folder.Name
‘
‘ Run through the second-level folders, if any
‘
If folder.Folders.Count > 1 Then

For Each subfolder In folder.Folders
Debug.Print “   “ & subfolder.Name

Next ‘subfolder
End If

Next ‘folder
Set ns = Nothing

End Sub

11

For the Outlook procedures in this chapter, I’ve put everything into a text file named
Chapter11.txt, which you’ll find on my website:

http://www.mcfedries.com/Office2007VBA/Chapter11.txt

To use the code, create a module in Outlook’s Visual Basic Editor, copy the code from
Chapter11.txt, and then paste it into the module.

N
O

T
E

After establishing the namespace session, the For Each...Next loop runs through the fold-
ers. The Debug.Print command is used to display the name of each folder (as given by the
Name property) in the Immediate window, as shown in Figure 11.1. If the folder has sub-
folders, another For Each...Next loop runs through the subfolders in the same manner.

http://www.mcfedries.com/Office2007VBA/Chapter11.txt


Prompting the User for a Folder
Another way to get a folder is to use the NameSpace object’s PickFolder method:

NameSpace.PickFolder

NameSpace The NameSpace object.

This method displays the Select Folder dialog box so that the user can choose a folder. The
return value depends on the button the user clicks:

■ If the user clicks OK, the return value is a MAPIFolder object corresponding to the
folder highlighted by the user.

■ If the user clicks Cancel, the return value is Nothing.

Listing 11.2 shows an example that invokes PickFolder and then tests the result.

Listing 11.2 A Procedure to Test the PickFolder Method

Sub PickFolderTest()
Dim ns As NameSpace
Dim folder As MAPIFolder
‘
‘ Set up the namespace
‘
Set ns = ThisOutlookSession.Session
‘
‘ Display the Select Folder dialog box

11

Chapter 11 Programming Outlook Email216

Figure 11.1
When you run the
ListFolders
procedure, the
names of the email
folders and subfold-
ers are printed in the
Immediate window.



217Handling Incoming and Outgoing Messages

‘
Set folder = ns.PickFolder
‘
‘ Test the return value
‘
If Not folder Is Nothing Then 

MsgBox “You picked “ & folder.Name
End If

End Sub

Notice that the code uses the following test for the dialog box result:

If Not folder Is Nothing Then

If this returns True (that is, if the value of the folder variable is not equal to Nothing), then
the name of the folder is displayed.

Some MAPIFolder Methods
Although you probably won’t use them very often, the MAPIFolder object does come with a
few methods:

■ MAPIFolder.CopyTo—Copies the specified MAPIFolder to another folder:
MAPIFolder.CopyTo(DestinationFolder)

MAPIFolder The MAPIFolder object you want to copy.

DestinationFolder The MAPIFolder object to which you want the folder
copied.

■ MAPIFolder.Delete—Deletes the specified MAPIFolder.

■ MAPIFolder.MoveTo—Moves the specified MAPIFolder to another folder:
MAPIFolder.MoveTo(DestinationFolder)

MAPIFolder The MAPIFolder object you want to move.

DestinationFolder The MAPIFolder object to which you want the folder
moved.

Handling Incoming and Outgoing Messages
Much of the VBA work you’ll do in Outlook will be in response to either incoming or out-
going messages. For example, you may want your code to examine incoming messages to
look for a certain subject line or priority, and then process the message accordingly.
Similarly, you might want to configure outgoing messages so that Outlook asks you
whether to store a message in Sent Items.

11



Incoming: Handling the ItemAdd Event
To handle incoming messages, you need to set up the Inbox folder as a programmable
object, which enables you to write code that examines every incoming message and then
performs some action on each message.

To begin, open Outlook’s VBA Editor, open the default project (Project1), and then open
the Microsoft Office Outlook Objects branch. Double-click ThisOutlookSession to open
the module window you’ll use to enter the code. At the top of the module, add the follow-
ing statements to declare two global variables:

Dim ns As NameSpace
Private WithEvents inboxItems As Items

Listing 11.3 shows two event handlers that you also need to add to the module. (An event
handler is procedure that runs when a particular event fires. For example, Outlook’s
Application object has a Startup event that fires each time you launch Outlook.)

Listing 11.3 Event Handlers for Outlook’s Startup and Quit Events

Private Sub Application_Startup()
‘
‘ Set up the namespace
‘
Set ns = ThisOutlookSession.Session
‘
‘ Get the Inbox Items object
‘
Set inboxItems = ns.GetDefaultFolder(olFolderInbox).Items

End Sub

Private Sub Application_Quit()
‘
‘ Clear the objects to save memory
‘
Set inboxItems = Nothing
Set ns = Nothing

End Sub

The Application_Startup event handler runs automatically each time you start Outlook.
The procedure initializes two variables: ns, which stores the NameSpace object that enables
you to work with Outlook folders and items, and inboxItems, which stores the Item objects
(messages) in the Inbox folder. The Application_Quit event handler runs when you shut
down Outlook, and it sets the inboxItems and ns objects to Nothing to save memory.

To work with messages as they come in, you need another event handler, this time to run
when the ItemAdd event fires. Listing 11.4 shows a skeleton of this event handler.

11

Chapter 11 Programming Outlook Email218



219Handling Incoming and Outgoing Messages

Listing 11.4 A Skeleton Event Handler for the ItemAdd Event

Private Sub inboxItems_ItemAdd(ByVal Item As Object)
‘
‘ Code to process the new message goes here
‘

End Sub

This code is the event handler for the Inbox folder’s ItemAdd event, which runs automati-
cally each time a new message is added to the Inbox. The procedure is passed the Item
object, which represents the message added to the Inbox. You’ll see specific examples of this
event handler a bit later.

Outgoing: Handling the ItemSend Event
To process outgoing mail, you need to add code to handle another Application object
event: ItemSend. As with the ItemAdd event that I discussed in the previous section, you set
up the event handler by using the ThisOutlookSession object, which is part of the default
Outlook VBA project. In the Visual Basic Editor, click ThisOutlookSession and then click
Application in the Object list. Outlook adds the following stub to the module:

Private Sub Application_ItemSend(ByVal Item As Object, Cancel As Boolean)

End Sub

In the procedure’s arguments, Item represents the message you’re sending and Cancel is a
Boolean variable that you set to True if you don’t want Outlook to send the message.

For example, as you may know, Outlook is set up by default to always save a copy of each
outgoing message in the Sent Items folder. However, there may be times when you don’t
want a copy of an outgoing message stored in Sent Items. For example, you may not want
to save forwarded messages or messages that contain large attachments. Listing 11.5 shows
an event handler for ItemSend that prompts you to choose whether Outlook should save the
outgoing message in Sent Items.

11

You can toggle the saving of outgoing messages in the Sent Items folder by choosing Tools, Options,
clicking E-mail Options in the Preferences tab, and then clicking the Save Copies of Messages in Sent
Items Folder check box.

T
IP

Listing 11.5 An Event Handler for ItemSend That Prompts You to Save a Copy of an Outgoing 
Message in the Sent Items Folder

Private Sub Application_ItemSend(ByVal Item As Object, Cancel As Boolean)
Dim nResult As Integer
‘
‘ Display the prompt
‘

continues



nResult = MsgBox(“Save this message in Sent Items?”, vbSystemModal + 
➥vbYesNoCancel)
‘
‘ Check the result
‘
If nResult = vbCancel Then

Cancel = True
End If

If nResult = vbNo Then
‘
‘ If the user clicked No, don’t save the message in Sent Items
‘
Item.DeleteAfterSubmit = True

End If
End Sub

A Yes/No/Cancel MsgBox function asks whether you want the message saved in Sent Items,
and the response is stored in the nResult variable. If you click the Cancel button, the pro-
cedure sets Cancel to True, which means Outlook doesn’t send the message. (The message
stays onscreen.) If you click the No button, instead, the procedure sets the message’s
DeleteAfterSubmit property to True, which means Outlook doesn’t store a copy in Sent
Items.

Working with Email Messages
After you have your NameSpace session and have referenced the MAPIFolder object you want
to work with, you’ll probably want to do something with the messages in that folder: dis-
play them, move them, respond to them, and so on. To access the messages, you use the
MAPIFolder object’s Items collection, which contains all the messages in the folder. Each of
these messages is a MailItem object, and it’s to this object that you’ll turn your attention for
most of the rest of this chapter.

MailItem Object Properties
The MailItem object boasts dozens of properties that cover everything from the message
recipients to the assigned sensitivity. Here’s a list of the most useful MailItem properties:

■ MailItem.BCC—Returns the display names (separated by semicolons) of the addresses
listed as blind courtesy (or carbon) copy recipients for the specified MailItem.

■ MailItem.Body—Returns or sets the body text for the specified MailItem.

■ MailItem.BodyFormat—Returns or sets the format of the body text for the specified
MailItem. Possible values are the following constants: olFormatHTML, olFormatPlain,
olFormatRichText, and olFormatUnspecified.

11

Chapter 11 Programming Outlook Email220

Listing 11.5 Continued



221Working with Email Messages

■ MailItem.CC—Returns the display names (separated by semicolons) of the addresses
listed as courtesy (or carbon) copy recipients for the specified MailItem.

■ MailItem.FlagRequest—Returns or sets a string that specifies the action to take for a
flagged MailItem.

■ MailItem.HTMLBody—Returns or sets the HTML body text for the specified MailItem.

■ MailItem.Importance—Returns or sets the importance level for the specified MailItem.
This property can be one of the following constants: olImportanceHigh,
olImportanceLow, or olImportanceNormal.

■ MailItem.ReadReceiptRequested—Returns True if the sender has requested a read
receipt for the specified MailItem; returns False otherwise.

■ MailItem.ReceivedTime—Returns or sets the date and time that the specified MailItem
was received.

■ MailItem.Recipients—Returns a Recipients object—the collection of recipients—for
the specified MailItem. See “Specifying the Message Recipients,” later in this chapter.

■ MailItem.SenderName—Returns the display name of the sender of the specified
MailItem.

■ MailItem.SenderEmailAddress—Returns the email address of the sender of the speci-
fied MailItem.

■ MailItem.Sensitivity—Returns or sets the sensitivity level of the specified MailItem.
This property can be one of the following constants—olConfidential, olNormal,
olPersonal, or olPrivate.

■ MailItem.SentOn—Returns the date and time that the specified MailItem was sent.

■ MailItem.Size—Returns the size of the specified MailItem in bytes.

■ MailItem.Subject—Returns or sets the subject line of the specified MailItem.

■ MailItem.To—Returns the display names (separated by semicolons) of the addresses
listed in the To line of the specified MailItem. To learn how to add recipients, see
“Specifying the Message Recipients,” later in this chapter.

■ MailItem.UnRead—Returns True if the specified MailItem has not been read; returns
False otherwise. You can also set this property.

MailItem Object Methods
With the methods available to the MailItem object, you can send messages, as well as reply
to and forward messages. See “Sending a Message,” later in this chapter, to learn how to
use these methods that send messages. Otherwise, you can also open messages, move them
to another folder, delete them, and more. Here’s a summary of some of these more useful
MailItem object methods:

11



■ MailItem.Close—Closes the window in which the specified MailItem object is 
displayed (see the Display method, later in this list). This method uses the following
syntax:
MailItem.Close(SaveMode)

MailItem The MailItem object you want to close.

SaveMode A constant that determines how the window is closed:

olDiscard Closes the window without saving
changes.

olPromptForSave Prompts the user to save changes.

olSave Saves changes automatically.

■ MailItem.Copy—Creates a copy of the specified MailItem object. This method returns
a MailItem object that represents the copy.

■ MailItem.Delete—Deletes the specified MailItem object (that is, sends the message to
the Deleted Items folder).

■ MailItem.Display—Displays the specified MailItem object in a new window, using the
following syntax:
MailItem.Display([Modal])

MailItem The MailItem object with which you want to work.

Modal (optional) Use True to display the message in a modal window,
which means the user can’t switch back to Outlook until he or
she closes the window; use False for a nonmodal window
(this is the default).

For example, if you have a procedure that runs through all the messages in the Inbox folder
(such as the NewMail event handler shown earlier in Listing 11.3), you could include code
that looks for messages with expired flags. If it finds such a message, it can run the Display
method and then alert you. Here’s a code snippet that does this:

If msg.FlagDueBy < Date Then
msg.Display
MsgBox “The displayed message has an expired flag!”

End If

■ MailItem.Move—Moves the specified MailItem object to a different folder, using the
following syntax:
MailItem.Move(DestinationFolder)

MailItem The MailItem object with which you want to work.

DestinationFolder The MAPIFolder object to which you want to move the 
message.

11

Chapter 11 Programming Outlook Email222



223Working with Email Messages

For example, suppose you have a folder named Confidential and you want all incoming
messages where the sensitivity is set to Confidential moved to that folder. In your NewMail
event handler, you’d include the following code:

If Item.Sensitivity = olConfidential Then
Item.Move ns.Folders(1).Folders(“Confidential”)

End If

Example: Creating Advanced Rules for Incoming Messages
Outlook’s E-mail Rules feature (choose Tools, Rules and Alerts) is a powerful tool for pro-
cessing incoming messages, but it has some unfortunate limitations. Here are two examples:

■ Suppose you create a rule where you specify both an address in the “from people or
distribution list” condition and a word in the “with specific words in the body” condi-
tion. Outlook applies this rule only to a message that satisfies both conditions.
However, what if you want to apply the rule to messages that satisfy either condition?

■ Suppose you create a rule where you enter two words in the “with specific words in the
subject” condition. Outlook applies this rule to any message that contains either word.
However, what if you want to apply the rule only to messages that contain both words
in the subject?

To work around these limitations, you need to add code to the ItemAdd event handler that
examines every incoming message (see Listing 11.4, earlier) and then applies your own
rules. Listing 11.6 shows a procedure that implements a couple of custom rules for han-
dling incoming messages. 

Listing 11.6 An Event Handler for the ItemAdd Event That Implements Custom Rules

Private Sub inboxItems_ItemAdd(ByVal Item As Object)
Dim topFolder As MAPIFolder
Dim ruleFolder As MAPIFolder
‘
‘ Store the Personal Folders folder
‘
Set topFolder = ns.Folders(“Personal Folders”)
‘
‘ Custom Rule #1
‘ Move messages from “president@whitehouse.gov” 
‘ OR with “politics” in the body
‘
If Item.SenderEmailAddress = “president@whitehouse.gov” _ 

Or InStr(Item.Body, “politics”) <> 0 Then
Set ruleFolder = topFolder.Folders(“Politics”)
Item.Move ruleFolder

End If
‘
‘ Custom Rule #2
‘ Flag messages with “Conference” AND “2007” in the subject
‘
If InStr(Item.Subject, “Conference”) <> 0 _ 

11

continues



And InStr(Item.Subject, “2007”) <> 0 Then
Item.FlagStatus = olFlagMarked
Item.FlagRequest = “Review”
Item.FlagIcon = olBlueFlagIcon
Item.FlagDueBy = Now() + 7
Item.Save

End If
End Sub

The procedure begins by storing the Folder object for Personal Folders in the topFolder
variable. Now the code implements two custom rules:

■ Custom Rule #1—This is an example of a rule that looks for messages that satisfy one
condition or another. In this case, the If test checks to see whether the Item object’s
SenderEmailAddress property equals “president@whitehouse.gov” or the Item object’s
Body property (the message body) contains the word “politics.” If either condition is
true, the message is moved to the “Politics” folder.

■ Custom Rule #2—This is an example of a rule that uses two criteria in a single condi-
tion and looks for messages that satisfy both criteria. In this case, the If test checks to
see whether the Item object’s Subject property includes the word “Conference” and
the word “2007.” If both criteria are true, the code applies a blue “Review” flag to the
message and sets the flag to expire seven days from today.

Example: Canning Spam
Outlook 2007 comes with an excellent junk mail filter that catches most spam and herds it
into the Junk E-mail folder. Unfortunately, spammers are becoming increasingly sophisti-
cated at crafting messages that thwart the junk mail filter. One common technique is to put
the body of the message in an image attached to the message. Most of these spams use GIF
images. Outlook’s email rules enable you to look for messages with attachments, but you
can’t specify, say, an image type. So if you want to handle these spam messages, you need to
use VBA. Listing 11.7 shows a procedure that uses the ItemAdd event to look for messages
with specific attachments.

➔ For more details on dealing with message attachments, see “Working with Attachments,” p. 229.

Listing 11.7 An Event Handler for the ItemAdd Event That Moves Junk Email

Private Sub inboxItems_ItemAdd(ByVal Item As Object)
Dim att As Attachment
‘
‘ Does the message have attachments?
‘
If Item.Attachments.Count > 0 Then

‘
‘ If so, loop through them
‘
For Each att In Item.Attachments

11

Chapter 11 Programming Outlook Email224

Listing 11.6 Continued



225Sending a Message

‘
‘ Is it a .gif image?
‘
If InStr(att.FileName, “.gif”) <> 0 Then

‘
‘ If so, move it to the Junk E-mail folder
‘
Debug.Print “Moving message “”” & Item.Subject & “”””
Item.Move ns.GetDefaultFolder(olFolderJunk)

End If
Next ‘att

End If
End Sub

This code examines the message’s Attachments property, which is the collection of files
attached to the message. If the Count is greater than 0, it means the message has at least one
attachment, so the code then uses a For Each...Next loop to run through them. For each
attachment, the code examines the FileName property to see whether it contains the string
.gif. If it does, the Move method moves the message to the Junk E-mail folder.

Sending a Message
In addition to enabling you to simply read messages, Outlook VBA also enables you to send
messages. As you’ll see over the next few sections, Outlook VBA gives you a number of
ways to go about this.

Creating a New Message
To send a new message (that is, one that isn’t a reply or forward), you first need to create a
new MailItem object. You do this by invoking the Application object’s CreateItem method
and specifying the olMailItem constant as the type of item you want to create.

For example, the following statements declare a MailItem object and then create it:

Dim mi as MailItem
Set mi = Application.CreateItem(olMailItem)

Creating a Reply or Forward
Alternatively, you can create a MailItem object by reply to or forwarding an existing mes-
sage. You have three choices:

■ MailItem.Forward—Forwards the specified MailItem object. This method returns a
new MailItem object that represents the message to be forwarded.

■ MailItem.Reply—Replies to the sender of the specified MailItem object. This method
returns a new MailItem object that represents the reply to be sent.

■ MailItem.ReplyAll—Replies to the sender and to all the other recipients of the speci-
fied MailItem object. This method returns a new MailItem object that represents the
reply to be sent.

11



Specifying the Message Recipients
Now that your MailItem object has been created, you may also need to add one or more
recipients. The collection of recipients for a MailItem object is contained in the Recipients
object. To add a recipient, you use the Recipients object’s Add method:

MailItem.Recipients.Add(Name)

MailItem The MailItem object to which you want to add the recipient.

Name The recipient’s email address. If the recipient is in the
Contacts list, you can use just his or her display name.

You can run the Add method as many times as you like for the same MailItem. Outlook sep-
arates each new recipient with a semicolon (;).

Each recipient in a message is a Recipient object and has the following properties (among
others):

■ Recipient.Address—Returns or sets the email address of the specified Recipient.

■ Recipient.Name—Returns or sets the display name of the specified Recipient.

■ Recipient.Type—Determines the address line to which the specified Recipient will be
added (To, Cc, or Bcc). Use olTo for the To line, olCC for the Cc line, or olBCC for the
Bcc line. For example, assuming that msg is an object variable that represents a
MailItem, the following statements add two recipients—one on the To line and one on
the Cc line:
msg.Recipients.Add(“Millicent Peeved”).Type = olTo
msg.Recipients.Add(“bob@weave.com”).Type = olCC

11

Chapter 11 Programming Outlook Email226

If you add a recipient and then later decide to remove that person, use the Recipient.Delete
method, which deletes the specified Recipient.N

O
T

E

Sending the Message
With the recipients determined, you can also tweak other MailItem properties such as
Subject, Body, and Importance (see “MailItem Object Properties,” earlier in this chapter).
With that done, you can then send the message by running the Send method:

MailItem.Send

MailItem The MailItem object you want to send.

Listing 11.8 shows a procedure that creates a new MailItem object, sets up the recipient,
subject, and body, and then sends the message.



227Sending a Message

Listing 11.8 A Procedure That Sends an Email Message

Sub SendAMessage()
Dim ns As NameSpace
Dim msg As MailItem
‘
‘ Set up the namespace
‘
Set ns = ThisOutlookSession.Session
‘
‘ Create the new MailItem
‘
Set msg = Application.CreateItem(olMailItem)
‘
‘ Specify the recipient, subject, and body
‘ and then send the message
‘
With msg

‘
‘ Adjust the following address!
‘
.Recipients.Add “blah@yadda.com”
.Subject = “Just Testing”
.Body = “This is only a test”
.Send

End With
End Sub

Example: Supplementing a Reminder with an Email Message
If you set up an appointment or task with a reminder, or if you set up a message or contact
with a flag that has a due date, Outlook displays a Reminder window that tells you the item
is due. That’s a useful visual cue, unless you’re out of the office or away from your desk, in
which case the reminder becomes far less helpful.

If you have email access when you’re away, one way to work around this problem is to have
Outlook send you an email message when it processes the reminder. The procedure in
Listing 11.9 shows you how to set this up.

Listing 11.9 A Procedure to Send an Email Message When Outlook Processes a Reminder

Private Sub Application_Reminder(ByVal Item As Object)
Dim msg As MailItem
‘
‘ Create a new message
‘
Set msg = Application.CreateItem(olMailItem)
‘
‘ Set up the message with your address and the reminder subject
‘
msg.To = “youraddress@wherever.com”
msg.Subject = Item.Subject
msg.Body = “Reminder!” & vbCrLf & vbCrLf

11

continues



‘
‘ Set up the message body using properties
‘ appropriate to the different reminder types
‘
Select Case Item.Class

Case olAppointment
msg.Body = “Appointment Reminder!” & vbCrLf & vbCrLf & _
“Start: “ & Item.Start & vbCrLf & _
“End: “ & Item.End & vbCrLf & _
“Location: “ & Item.Location & vbCrLf & _
“Appointment Details: “ & vbCrLf & Item.Body

Case olContact
msg.Body = “Contact Reminder!” & vbCrLf & vbCrLf & _
“Contact: “ & Item.FullName & vbCrLf & _
“Company: “ & Item.CompanyName & vbCrLf & _
“Phone: “ & Item.BusinessTelephoneNumber & vbCrLf & _
“E-mail: “ & Item.Email1Address & vbCrLf & _
“Contact Details: “ & vbCrLf & Item.Body

Case olMail
msg.Body = “Message Reminder!” & vbCrLf & vbCrLf & _
“Sender: “ & Item.SenderName & vbCrLf & _
“E-mail: “ & Item.SenderEmailAddress & vbCrLf & _
“Due: “ & Item.FlagDueBy & vbCrLf & _
“Flag: “ & Item.FlagRequest & vbCrLf & _
“Message Body: “ & vbCrLf & Item.Body

Case olTask
msg.Body = “Task Reminder!” & vbCrLf & vbCrLf & _
“Due: “ & Item.DueDate & vbCrLf & _
“Status: “ & Item.Status & vbCrLf & _
“Task Details: “ & vbCrLf & Item.Body

End Select
‘
‘ Send the message
‘
msg.Send
‘
‘ Release the msg object
‘
Set msg = Nothing

End Sub

The Application_Reminder procedure is an event handler that runs whenever Outlook
processes a reminder, and the Item variable that’s passed to the procedure represents the
underlying Outlook item: an appointment, contact, message, or task. You should paste this
procedure into the ThisOutlookSession module in Visual Basic Editor.

The procedure declares a MailItem (message) variable named msg, uses it to store a new
message, and then sets up the message’s To, Subject, and initial Body properties. Then a
Select Case statement processes the four possible Item classes: olAppointment, olContact,
olMail, and olTask. In each case, the message body is extended to include data from the
item. Finally, the message is sent, using the Send method, and the msg variable is released.

11

Chapter 11 Programming Outlook Email228

Listing 11.9 Continued



229Working with Attachments

Working with Attachments
As you saw earlier (see Listing 11.7), if you want to work with files attached to a message,
use the MailItem object’s Attachments property. This returns the collection of Attachment
objects for the message. For each Attachment object, you can manipulate the following
properties and methods:

■ Attachment.DisplayName—Returns the name below the icon for the specified
Attachment.

■ Attachment.Filename—Returns the filename of the specified Attachment.

■ Attachment.Delete—Deletes the specified Attachment.

■ Attachment.SaveAs—Saves the specified Attachment to disk:
Attachment.SaveAs(Path)

Attachment The Attachment object you want to save.

Path The path and filename to which you want to save
the file.

Example: Removing Attachments from a Forwarded Message
Listing 11.10 shows a procedure that creates a forwarded message and removes all the
attachments before sending it.

Listing 11.10 A Procedure That Creates a Forwarded Message and Deletes Any Existing 
Attachments Before Sending the Message

Sub ForwardAndDeleteAttachments()
Dim insp As Inspector
Dim msg As MailItem
Dim att As Attachment
‘
‘ Return the open message window
‘
Set insp = Application.ActiveInspector
‘
‘ Make sure we got one
‘
If insp Is Nothing Then Exit Sub
‘
‘ Create the forwarded message
‘

11

If you want to send the email to multiple recipients, one option is to use the MailItem object’s Cc
or Bcc properties. If you prefer to place multiple addresses in the message’s To field, use the
Recipients.Add method as often as needed, like so:

msg.Recipients.Add “another@domain.com”
N

O
T

E

continues



Set msg = insp.CurrentItem.Forward
With msg

‘
‘ Delete all the attachments
‘
For Each att in .Attachments

att.Delete
Next ‘att
‘
‘ Display it
‘
.Display

End With
End Sub

This code is a bit different from what you’ve seen so far. In particular, the code makes use
of Outlook’s Inspector object, which represents a window in which an item is displayed.
For example, if you double-click a message to open it, the window containing that message
is an Inspector object. If that window currently has the focus, then you can reference it by
using the ActiveInspector object, which is what this procedure does. In other words, for
this procedure to work, you must first open the message that you’re going to forward. (Just
in case you run this procedure without first opening the message, the code checks to see
whether the insp object is Nothing; if it is, the procedure exits.)

Given an Inspector object, the CurrentItem property returns whatever object is open in the
window, and the code uses the Forward method to create a new MailItem object. The pro-
cedure then runs through all the attachments and deletes them. Finally, the forwarded mes-
sage is displayed so you can pick your recipients and send it.

Attaching a File to a Message
To add an attachment to an outgoing message, use the Attachments object’s Add method:

MailItem.Attachments.Add(Source[, Type][, Position][, DisplayName])

MailItem The MailItem object to which you want to add the attach-
ments.

Source The path and filename for the attachment.

Type (optional) A constant that specifies what kind of attachment
you want to send:

olByValue Sends the attachment as is
(this is the default).

olByReference Sends the attachment as a
link to the original file.

olEmbeddedItem Sends the attachment as a
link to an Outlook item.

11

Chapter 11 Programming Outlook Email230

Listing 11.10 Continued



231Programming Outlook from Other Applications

Position (optional) The position of the attachment within the mes-
sage body. Use 1 to place the attachment at the beginning
of the message; use any value n to position the attachment
before the nth character in the message.

DisplayName (optional) The name that appears below the attachment
icon if Type is olByValue.

You can run the Add method as many times as you like for the same MailItem.

Programming Outlook from Other Applications
If you want to interact with Outlook from another application, there are a few things you
need to do differently. I’ll use this section to explain what you need to do.

Setting Up a Reference to Outlook
In the other application’s Visual Basic Editor, follow these steps to set up a reference to
Outlook:

1. In the Project Explorer, select the project you’ll be using for the Outlook program-
ming.

2. Choose Tools, References to display the References dialog box.

3. In the Available References list, activate the check box beside the Microsoft Outlook
12.0 Object Library item, as shown in Figure 11.2.

11

Figure 11.2
Use the References dia-
log box to activate the
Microsoft Outlook 12.0
Object Library check box.

4. Click OK.

Remember that this reference works only for the project you selected. If you want to pro-
gram Outlook from another project (either in the same application or in a different appli-
cation), you have to repeat these steps.



Getting the NameSpace Object
When you work with Outlook from another application, you need to start right at the top
of the object hierarchy, at the Application object. You use this object to return information
about the current Outlook session and to gain access to the rest of the Outlook hierarchy.
To establish a connection with this object, you use the CreateObject function. For example,
the following statements establish a connection to Outlook:

Dim ol As Outlook.Application
Set ol = CreateObject(“Outlook.Application”)

Now you need to get a NameSpace object so you can log on and off, return information
about the current user, and more. To return a NameSpace object, you use the GetNameSpace
method with the “MAPI” argument:

Dim ol As Outlook.Application
Dim ns As NameSpace
Set ol = CreateObject(“Outlook.Application”)
Set ns = ol.GetNameSpace(“MAPI”)

Logging On to an Outlook Session
After you have the NameSpace object, you can log on to establish a MAPI session by invok-
ing the Logon method:

NameSpace.Logon([Profile][, Password][, ShowDialog][, NewSession])

NameSpace The NameSpace object.

Profile (optional) The name of the Outlook profile to use in
the MAPI session. If you omit this value, VBA logs
on to the default profile.

Password (optional) The password used with the profile.

ShowDialog (optional) A Boolean value that determines whether
or not Outlook displays the Logon dialog box. Use
False to bypass the dialog box (this is the default);
use True to display the dialog box.

NewSession (optional) A Boolean value that determines whether
or not Outlook creates a new MAPI session. Set this
argument to True to start a new session (this is the
default); use False to log on to the current session.

In most cases, you’ll use the Logon method without any arguments (assuming that the cur-
rent NameSpace is represented by a variable named ns):

ns.Logon

If you have multiple profiles set up, however, then you need to specify which one you want
to use. For example, the following statement logs on to an Outlook session, using the
“Personal E-Mail” profile:

ns.Logon “Personal E-Mail”

11

Chapter 11 Programming Outlook Email232



233Programming Outlook from Other Applications

Logging Off an Outlook Session
When you’ve completed your labors in an Outlook session, you can log off by running the
NameSpace object’s Logoff method:

NameSpace.Logoff

NameSpace The NameSpace object.

Listing 11.11 shows a procedure that logs on to a MAPI session, runs through the items in
the default Inbox folder, and records the SenderName, SenderEmailAddress, Subject, Size,
ReceivedTime, and the first 100 characters of the Body onto a worksheet.

Listing 11.11 A Procedure That Reads Inbox Data into a Worksheet

Sub ReadInboxData()
Dim ol As Outlook.Application
Dim ns As NameSpace
Dim folder As MAPIFolder
Dim ws As Worksheet
Dim i As Integer
‘
‘ Establish a connection and log on
‘
Set ol = CreateObject(“Outlook.Application”)
Set ns = ol.GetNamespace(“MAPI”)
ns.Logon
‘
‘ Get the default Inbox folder
‘
Set folder = ns.GetDefaultFolder(olFolderInbox)
‘
‘ Set the Receive Mail worksheet
‘
Set ws = Worksheets(“Receive Mail”)
‘
‘ Run through each item in the Inbox
‘
For i = 1 To folder.Items.Count

With folder.Items(i)
‘
‘ Record the sender, subject, size,
‘ received time, and some of the body
‘
ws.[A1].Offset(i, 0) = .SenderName
ws.[A1].Offset(i, 1) = .SenderEmailAddress
ws.[A1].Offset(i, 2) = .Subject
ws.[A1].Offset(i, 3) = .Size
ws.[A1].Offset(i, 4) = .ReceivedTime

11

To add, edit, or delete profiles, open the Windows Control Panel and launch the Mail icon.

N
O

T
E

continues



ws.[A1].Offset(i, 5) = Left(.Body, 100)
End With

Next ‘i
‘
‘ Log off the session
‘
ns.Logoff
Set ol = Nothing

End Sub

11

Chapter 11 Programming Outlook Email234

Listing 11.11 Continued

You’ll find Listing 11.11 in the file named Chapter11.xlsm on my website:

http://www.mcfedries.com/Office2007VBA/Chapter11.xlsmN
O

T
E

When you run this code for the first time, Outlook will likely display a dialog box like the
one shown in Figure 11.3. This is a security feature that prevents viruses and Trojan horse
malware from surreptitiously sending emails through your Outlook account. In this case,
you know the operation is safe, so click Allow.

Figure 11.3
When Use the
References dialog
box to activate the
Microsoft Outlook
12.0 Object Library
check box.

From Here
■ For the details on Excel’s VBA techniques, see Chapter 8, “Programming Excel,” 

p. 139. 

■ For another example of working with data remotely, see Chapter 10, “Programming
Access Databases,” p. 189. 

■ To learn more about the Immediate window, see “Using the Immediate Window,” 
p. 348.

http://www.mcfedries.com/Office2007VBA/Chapter11.xlsm


IN
 T

H
IS

 P
A

R
T

IIIGetting the Most out of VBA

12 Creating Custom VBA Dialog Boxes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .237

13 Customizing the Office 2007 Ribbon  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263

14 VBA Tips and Techniques  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .299

15 Trapping Program Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .323

16 Debugging VBA Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .337



This page intentionally left blank 



I N  T H I S  C H A P T E R

Creating Custom VBA
Dialog Boxes 12VBA procedures are only as useful as they are con-

venient. There isn’t much point in creating a proce-
dure that saves you (or your users) a few keystrokes
if you (or they) have to expend a lot of time and
energy hunting down a routine. Shortcut keys are
true time-savers, but some applications (such as
Excel) have only a limited supply to dole out (and
our brains can memorize only so many Ctrl+key
combinations).

Instead, you need to give some thought to the type
of user interface you want to create for your VBA
application. The interface includes not only the
design of the documents, but also two other factors
that let the user interact with the model: dialog
boxes and Ribbon commands. Although you cer-
tainly can give the user access to the application’s
built-in dialogs and Ribbon interface, you’ll find
that you often need to create your own interface
elements from scratch. This chapter starts you off
by showing you how to use VBA’s Microsoft Forms
feature to create custom dialog boxes and input
forms. Chapter 13, “Customizing the Office 2007
Ribbon,” shows you how to add custom commands
to the Ribbon.

The InputBox function you learn about in Chapter
3, “Understanding Program Variables,” works fine
if you need just a single item of information, but
what if you need four or five? Or, what if you want
the user to choose from a list of items? In some
cases, you can use the application’s built-in dialog
boxes (which I discussed in Chapter 5, “Working
with Objects”), but these might not have the exact
controls you need, or they might have controls to
which you don’t want the user to have access.

➔ For the InputBox function details, see “Getting Input Using InputBox,”
p. 50.

➔ To learn how to use the built-in dialog boxes, see “Accessing an Application’s
Built-In Dialog Boxes,” p. 83.

Adding a Form to Your Project  . . . . . . . . . . . .238

Changing the Form’s Design-Time 
Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .239

Working with Controls  . . . . . . . . . . . . . . . . . .242

Handling Form Events  . . . . . . . . . . . . . . . . . . .248

Types of Form Controls  . . . . . . . . . . . . . . . . . .248

Using a Form in a Procedure  . . . . . . . . . . . . .258



The solution to this problem is to build your own dialog boxes. Using custom dialog boxes
you can add as many controls as you need (including list boxes, option buttons, and check
boxes), and your procedures will have complete access to all the results. Best of all, the
Visual Basic Editor makes constructing even the most sophisticated dialog boxes as easy as
clicking and dragging the mouse pointer. The next few sections show you how to create
dialog boxes and integrate them into your applications.

12

Chapter 12 Creating Custom VBA Dialog Boxes238

In VBA, dialog boxes are called user forms or just forms, for short. (A VBA form is a close cousin to
the form objects that are used for data entry in Microsoft Access.) Because the term “form” is used
in the Visual Basic Editor, I’ll use that term throughout the rest of this chapter. Just remember, how-
ever, that a form is nothing but a dialog box that you create yourself.

N
O

T
E

Adding a Form to Your Project
Forms are separate objects that you add to your VBA projects. To do this, open the Visual
Basic Editor and either choose Insert, UserForm or drop down the Insert toolbar button
(the second from the left) and click UserForm. As you can see in Figure 12.1, VBA per-
forms the following tasks in response to this command:

■ It adds a Forms branch to the project tree in the Project Explorer.

■ It creates a new UserForm object and adds it to the Forms branch.

■ It displays the form in the work area.

■ It displays the Toolbox.

Figure 12.1
Selecting Insert,
UserForm adds a
new form to the
project.



239Changing the Form’s Design-Time Properties

Changing the Form’s Design-Time Properties
Forms (and all the control objects you can add to a form) have an extensive list of proper-
ties that you can manipulate by entering or selecting values in the Properties window.
(Recall that you display the Properties window by activating View, Properties Window or
by pressing F4.)

For a form, there are more than three dozen properties arranged into seven categories (in
the Properties window, activate the Categorized tab to see the properties arranged by cate-
gory, as shown in Figure 12.1), as described in the next few sections.

12

In addition to modifying form properties at design time (that is, before you run the form), you can
also modify many of the properties at runtime by including the appropriate statements in your VBA
procedures. I talk about this in greater detail later in this chapter (see the section “Using a Form in a
Procedure”).

N
O

T
E

The Appearance Category
The properties in the Appearance category control the look of the form:

■ BackColor—Sets the color of the form’s background. For this and all the color proper-
ties, you select a color by first clicking the drop-down arrow to display a color menu.
In this menu, you can either choose a predefined color from the System tab or a built-
in color from the Palette tab.

■ BorderColor—Sets the color of the form’s border. Note that for this property to have
any effect, you have to assign a border to the form by using the BorderStyle property.

■ BorderStyle—Choose fmBorderStylSingle to apply a border around the form. Use
fmBorderStyleNone for no border.

■ Caption—Specifies the text that’s displayed in the form’s title bar.

■ ForeColor—Sets the default color of text used in the form’s controls.

■ SpecialEffect—Controls how the form appears relative to the form window (for
example, raised or sunken).

If you’re running Windows Vista’s Aero color scheme, the transparency effects will apply to your VBA
forms, as well.N

O
T

E

The Behavior Category
The properties in the Behavior category control aspects of how the user interacts with the
form:

■ Cycle—Determines what happens when the user presses Tab while the focus is on the
last control in the form. If this property is set to fmCycleAllForms and the form has



multiple pages (see “Tab Strips and MultiPage Controls,” later in this chapter), focus is
set to the first control on the next page. If this property is set to fmCycleCurrentForm,
focus is set to the first control on the current page.

■ Enabled—Set this property to True to enable the form or False to disable it. The latter
prevents the user from manipulating the form or any of its controls.

12

Chapter 12 Creating Custom VBA Dialog Boxes240

Why would you want to disable a form? This is handy if you want to display the form for a certain
amount of time and then close it automatically.To set this up, first create a procedure that closes the
form:

Public Sub CloseForm()
Unload UserForm1

End Sub

Next, in the form’s initialize event, add the OnTime method and set it up to run the CloseForm
procedure a specified number of seconds or minutes after the form loads. For example, the follow-
ing code runs CloseForm 30 seconds from when the form loads:

Private Sub UserForm_Initialize()
Application.OnTime Now + TimeValue(“00:00:30”), “Close Form”

End Sub

T
IP

■ RightToLeft—When True, this property changes the tab order of the form so that
pressing Tab moves the highlight among the controls from right to left (instead of the
usual left to right).

■ ShowModal—Set this property to True to display the form as modal, which means the
user won’t be able to interact with the underlying application until he or she closes the
form.

The Font Category
The Font property determines the default font used throughout the form. When you acti-
vate this property, click the ellipsis (…) button to display the Font dialog box, from which
you can select the font, style, size, and effects.

The Misc Category
As its name implies, the Misc category contains a collection of eight properties that don’t
fit anywhere else, although almost all these properties are obscure and can be safely
ignored. The one exception is the Name property, which you use to give a name to your
form. (You’ll use this name to refer to the form in your VBA code, so use only alphanu-
meric characters in the name.)



241Changing the Form’s Design-Time Properties

The Picture Category
In the Picture category, use the Picture property to set a background image for the form.
(Again, click the ellipsis button to select a picture file from a dialog box.) The other prop-
erties determine how the picture is displayed:

■ PictureAlignment—Specifies where on the form the picture is displayed. You can align
it in the center of the form, the top left, top right, bottom left, or bottom right.

■ PictureSizeMode—Specifies how the picture is displayed relative to the form:

• fmPictureSizeModeClip—Crops any part of the picture that’s larger than the
form.

• fmPictureSizeModeStretch—Stretches or shrinks the picture so that it fits the
entire form

• fmPictureSizeModeZoom—Enlarges or reduces the picture until it hits the vertical
or horizontal edge of the form.

■ PictureTiling—For small images, set this property to True to fill the background with
multiple copies of the image.

The Position Category
The properties in the Position category specify the dimensions of the form (Height and
Width), and the position of the form within the application window. For the latter, you can
either use the StartUpPosition property to center the form relative to the application win-
dow (CenterOwner) or to the screen (CenterScreen), or you can choose Manual and specify
the Left and Top properties. (The latter two properties set the form’s position in points
from the application window’s left and top edges, respectively.)

The Scrolling Category
The properties in the Scrolling category determine whether the form displays scroll bars
and, if it does, what format the scroll bars have:

■ KeepScrollBarsVisible—Determines which of the form’s scroll bars remain visible
even if they aren’t needed.

■ ScrollBars—Determines which scrollbars are displayed on the form. That is, VBA
only displays a scrollbar if it’s necessary.

12

Although you might be tempted to stick with the default form name supplied by VBA (such as
UserForm1), your code will be easier to read if you give the form a more descriptive name. Indeed,
this advice applies not only to forms, but to all controls. Note that it’s conventional to precede the
form name with the frm prefix (for example,frmBudget).

T
IP



■ ScrollHeight—Specifies the total height of the form’s scrollable region. For example,
if the form’s Height property is set to 200 and you set the ScrollHeight property to
400, you double the total vertical area available in the form.

■ ScrollLeft—If ScrollWidth is greater than the width of the form, use the ScrollLeft
property to set the initial position of the horizontal scroll bar’s scroll box. For example,
if the ScrollWidth is 200, setting ScrollLeft to 100 starts the horizontal scroll bar at
the halfway position.

■ ScrollTop—If ScrollHeight is greater than the height of the form, use the ScrollTop
property to set the initial position of the vertical scroll bar’s scroll box.

■ ScrollWidth—Specifies the total width of the form’s scrollable region.

Working with Controls
Now that your form is set up with the design-time properties you need, you can get down
to the brass tacks of form design. In other words, you can start adding controls to the form,
adjusting those controls to get the layout you want, and setting the design-time properties
of each control. I discuss the unique characteristics of each type of control later in this
chapter (see the section “Types of Form Controls”). For now, though, I’ll run through a
few techniques that you can apply to any control.

Inserting Controls on a Form
The new form object is an empty shell that doesn’t become a useful member of society
until you populate it with controls. As with the form-building tools in Word and Access,
the idea is that you use this shell to “draw” the controls you need. Later, you can either link
the controls directly to other objects (such as Excel worksheet cells) or create procedures to
handle the selections.

The Toolbox contains buttons for all the controls you can add to a form. Here are the basic
steps to follow to add any control to the form:

1. Click the button you want to use.

2. Move the mouse pointer into the form and position it where you want the top-left cor-
ner of the control to appear.

3. Click and drag the mouse pointer. VBA displays a gray border indicating the outline of
the control.

4. When the control is the size and shape you want, release the mouse button. VBA cre-
ates the control and gives it a default name (such as CheckBoxn, where n signifies that
this is the nth check box you’ve created on this form).

12

Chapter 12 Creating Custom VBA Dialog Boxes242



243Working with Controls

Selecting Controls
Before you can work with a control, you must select it. For a single control, you select it by
clicking it. If you prefer to work with multiple controls, the Visual Basic Editor gives you a
number of techniques:

■ Hold down the Ctrl key and click each control.

■ You also can “lasso” multiple controls by clicking and dragging the mouse. Move the
mouse pointer to an empty part of the form, hold down the left button, and then click
and drag. The VBE displays a box with a dashed outline, and any control that falls
within this box (in whole or in part) will be selected.

■ To select every control, make sure the form is active and then select Edit, Select All.
(For faster service, you can also either press Ctrl+A or right-click an empty part of the
form and choose Select All from the shortcut menu.)

■ To exclude a control from the selection, hold down the Ctrl key and click inside the
control.

After you’ve selected multiple controls, you can set properties for all the controls at once.
Note, however, that the Properties window shows only those properties that are common
to all the controls. (See “Common Control Properties” later in this chapter.) Not only that,
but if you size, move, copy, or delete one of the selected controls (as described in the next
few sections), your action applies to all the controls.

Each control is surrounded by an invisible rectangular frame. When you select a control, the
VBE displays a gray outline that represents the control’s frame and this outline is studded
with white selection handles at the frame’s corners and midpoints, as shown in Figure 12.2.

12

If you want to add multiple instances of the same type of control, double-click the appropriate
Toolbox button.The button will remain pressed, and you can draw as many instances of the control
as you need.When you’re finished, click an empty part of the Toolbox to reset the control.

T
IP

Figure 12.2
A selected control 
displays a frame and var-
ious selection handles.



Sizing Controls
You can resize any control to change its shape or dimensions. The following procedure
outlines the steps to work through:

1. Select the object you want to size.

2. Position the mouse pointer over the selection handle you want to move. The pointer
changes to a two-headed arrow. To change the size horizontally or vertically, use the
appropriate handle on the middle of a side. To change the size in both directions at
once, use the appropriate corner handle.

3. Click and drag the handle to the position you want.

4. Release the mouse button. The Visual Basic Editor redraws the object and adjusts the
frame size.

12

Chapter 12 Creating Custom VBA Dialog Boxes244

To size the form itself, click an empty part of the form and then click and drag the selection handles
that appear around the form.N

O
T

E

Moving Controls
You can move any control to a different part of the form by following these steps:

1. Select the control you want to move.

2. Position the mouse pointer inside the control. (You can also position the pointer over
the control’s frame, although you need to make sure the pointer isn’t over a selection
handle. In this case, the pointer changes to a four-headed arrow.)

3. Click and drag the control to the position you want. As you drag the object, a dashed
outline shows you the new position.

4. Release the mouse button. The VBE redraws the control in the new position.

Copying Controls
If you’ve formatted a control and then decide that you need a similar control, don’t bother
building the new control from scratch. Instead, follow the steps outlined next to make as
many copies of the existing control as you need:

1. Select the control you want to copy.

2. Hold down the Ctrl key, position the mouse pointer inside the control, and press the
left mouse button. The pointer changes to an arrow with a plus sign.

3. Click and drag the pointer to the position you want. As you drag the mouse, a dashed
outline shows you the position of the copied control.

4. Release the mouse button. The VBE copies the control to the new position.



245Working with Controls

You also can use the Clipboard to copy controls. In this case, you click the control, choose
Edit, Copy, and then choose Edit, Paste. The Visual Basic Editor adds a copy of the con-
trol to the form that you can then move to the appropriate position.

12

Deleting Controls
To delete a control, select it and then choose Edit, Delete. The Visual Basic Editor deletes
the control.

You also can right-click the control and click Copy from the control’s shortcut menu.To paste the
control, right-click an empty part of the form, and then click Paste. Alternatively, use Ctrl+C to copy
a selected control and Ctrl+V to paste it.

T
IP

To delete a control quickly, select it and press the Delete key. Alternatively, you can right-click the
control and click Delete in the shortcut menu.T

IP

Grouping Controls
The Visual Basic Editor lets you create control groups. A group is a collection of controls
you can format, size, and move—similar to the way you format, size, and move a single
control. To group two or more controls, select them and use any of the following tech-
niques:

■ Choose the Format, Group command.

■ Right-click inside any one of the selected controls and click Group from the shortcut
menu.

■ Click the UserForm toolbar’s Group button.

The Visual Basic Editor treats a group as a single control with its own frame. To select an
entire group, you need to select just one control from the group.

To ungroup controls, select the group and use one of these methods:

■ Choose Format, Ungroup.

■ Right-click inside any one of the selected controls and click Ungroup from the short-
cut menu.

■ Click the UserForm toolbar’s Ungroup button.

The UserForm toolbar contains many useful one-click shortcuts for working with forms.To display
this toolbar, either choose View, Toolbars, UserForm, or right-click the Standard toolbar and click
UserForm in the shortcut menu.

N
O

T
E



Setting Control Properties
A form control is an object with its own set of properties. A check box, for example, is a
CheckBox object, and it has properties that control the name of the check box, whether it is
initially checked, what its accelerator key is, and more.

You can manipulate control properties during program execution (in other words, at run-
time), either before you display the form or while the form is displayed. (For example, you
might want to disable a control in response to a user’s action.) However, you can also set
some control properties in the Visual Basic Editor (in other words, at design time) by using
the Properties window. To display a particular control’s properties in the Properties win-
dow, you have two choices:

■ Click the control in the form.

■ Select the control from the drop-down list near the top of the Properties window.

Common Control Properties
Later in this chapter I’ll run through each of the default controls and explain their unique
features. However, a few properties are common to many of the controls. Most of these
properties perform the same function as those I outlined for a form earlier in this chapter.
These properties include the following: BackColor, ForeColor, SpecialEffect, Enabled,
Font, Picture, PicturePosition, Height, Width, Left, and Top. (Note that the latter two are
relative to the left and top edges of the form.)

Here’s a list of a few other properties that are common to some or all of the default con-
trols:

■ Accelerator—This property determines the control’s accelerator key. (In other words,
the user can select this control by holding down Alt and pressing the specified key.)
The letter you enter into this property appears underlined in the control’s caption.

12

Chapter 12 Creating Custom VBA Dialog Boxes246

Some controls (such as list boxes and text boxes) don’t have a Caption property. However, you can
still assign an accelerator key to these controls by using a Label control. I’ll show you how this is
done when I discuss labels in the section “Types of Form Controls.”

T
IP

■ AutoSize—If this property is set to True, the control resizes automatically to fit its text
(as given by the Caption property).

■ BackStyle—Determines whether the control’s background is opaque (use
fmBackStyleOpaque) or transparent (use fmBackStyleTransparent).

■ ControlSource—In the Visual Basic Editor for Excel, this property specifies which cell
will be used to hold the control’s data. You can enter either a cell reference or a range
name.



247Working with Controls

■ Caption—Sets the control’s text, which is usually just the name of the feature repre-
sented by the control.

■ ControlTipText—Sets the “control tip” that pops up when the user lets the mouse
pointer linger over the control for a second or two.

■ Locked—Set this property to True to prevent the user from editing the current value of
the control.

■ TabIndex—Determines where the control appears in the tab order (in other words, the
order in which VBA navigates through the controls when the user presses the Tab
key). See the next section, “Setting the Tab Order.”

■ TabStop—Determines whether the user can navigate to the control by pressing Tab. If
this property is set to False, the user can’t select the control by using the Tab key.

■ Visible—Determines whether the user can see the control (True) or not (False). For
example, you might want to hide a control until the user selects a particular option.

Setting the Tab Order
As you know, you can navigate a form by pressing the Tab key. The order in which the
controls are selected is called the tab order. VBA sets the tab order according to the order
you create the controls on the form. You’ll often find that this order isn’t what you want to
end up with, so the Visual Basic Editor lets you control the tab order yourself. The follow-
ing procedure shows you how it’s done:

1. Select View, Tab Order. (You can also right-click an empty part of the form and click
Tab Order in the shortcut menu.) The Visual Basic Editor displays the Tab Order 
dialog box, shown in Figure 12.3.

12

The value of a cell linked to a control changes whenever the value of the control changes, even when
the user clicks Cancel to exit the form. It’s usually better (and safer) to assign a control’s value to a
variable and then, if appropriate, place the value in the cell by using code in your VBA procedure.

C A U T I O N

Figure 12.3
Use the Tab Order dialog
box to set the order in
which the user navigates
the form when pressing
the Tab key.



2. In the Tab Order list, click the control with which you want to work.

3. Click Move Up to move the item up in the tab order, or click Move Down to move the
control down.

4. Repeat steps 2 and 3 for other controls you want to move.

5. Click OK.

Handling Form Events
An event-driven language is one in which code can respond to specific events, such as a user
clicking a command button or selecting an item from a list. The procedure can then take
appropriate action, whether it’s validating the user’s input or asking for confirmation of the
requested action. A form responds to more than 20 separate events, including activating
and deactivating the form, displaying the form, clicking the form, and resizing the form.

For each event associated with an object, VBA has set up mini procedures called event han-
dlers. These procedures are really just Sub and End Sub statements. You process the event by
filling in your own VBA code between these statements. Here are the steps to follow:

1. Click the object for which you want to define an event handler.

2. Either select View, Code or double-click the object. (You can also press F7 or right-
click the object and then click select View Code in the shortcut menu.) VBA displays
the code module for the object, as shown in Figure 12.4.

12

Chapter 12 Creating Custom VBA Dialog Boxes248

Figure 12.4
For each event,VBA
defines a mini pro-
cedure.You define
the procedure by
entering code into
this stub.

3. Use the procedure drop-down list (the one on the right) to select the event with which
you want to work.

4. Enter the rest of the procedure code between the Sub and End Sub statements.

Types of Form Controls
The default Toolbox offers 14 different controls for your custom forms. The next few sec-
tions introduce you to each type of control and show you the various options and proper-
ties associated with each object.



249Types of Form Controls

Command Buttons
Most forms include command buttons to let the user accept the form data (an OK button),
cancel the form (a Cancel button), or carry out some other command at a click of the
mouse.

To create a command button, use the CommandButton tool in the Toolbox. A command
button is a CommandButton object that includes many of the common control properties
mentioned earlier, as well as the following design-time properties (among others):

■ Cancel—If this property is set to True, the button is selected when the user presses
Esc. Note that you can have only one cancel button on a form.

■ Caption—Returns or sets the text that appears on the button face.

■ Default—If this property is set to True, the button is selected when the user presses
Enter. Also, the button is displayed with a thin black border. You can have only one
default button on a form.

Labels
You use labels to add text to the form. To create labels, use the Label button in the Toolbox
to draw the label object, and then edit the Caption property. Although labels are mostly
used to display text, you can also use them to name controls that don’t have their own cap-
tions—such as text boxes, list boxes, scroll bars, and spinners.

It’s even possible to define an accelerator key for the label and have that key select another
control. For example, suppose you want to use a label to describe a text box, but you also
want to define an accelerator key that the user can press to select the text box. The trick is
that you must first create a label and set its Accelerator property. You then create the text
box immediately after. Because the text box follows the label in the tab order, the label’s
accelerator key selects the text box.

12

To assign a label and accelerator key to an existing control, add the label and then adjust the tab
order so that the label comes immediately before the control in the tab order.T

IP

Text Boxes
Text boxes are versatile controls that let the user enter text, numbers, and, in Excel, cell
references and formulas. To create a text box, use the TextBox button in the Toolbox. Here
are a few useful properties of the TextBox object:

■ EnterFieldBehavior—Determines what happens when the user tabs into the text box.
If you select 0 (fmEnterFieldBehaviorSelectAll), the text within the field is selected. If
you select 1 (fmEnterFieldBehaviorRecallSelect), only the text that the user selected
the last time he was in the field is selected; the first time the user enters the field, the
cursor is placed at the end of the text.



■ EnterKeyBehavior—When set to True, this property lets the user start a new line
within the text box by pressing Enter. (Note that this is applicable only if you set
MultiLine to True, as described in a moment.) When this property is False, pressing
Enter moves the user to the next field.

■ MaxLength—This property determines the maximum number of characters that the
user can enter.

■ MultiLine—Set this property to True to let the user enter multiple lines of text. If
you’ve set EnterKeyBehavior to False, the user can start a new line of text by pressing
Ctrl+Enter.

■ PasswordChar—If this property is set to True, the text box displays the user’s entry as
asterisks (which is useful if you’re using the text box to get a password or other sensi-
tive data).

■ Text—Returns or sets the text inside the text box.

■ WordWrap—When this property is True, the text box wraps to a new line when the user’s
typing reaches the right edge of the text box.

Frames
You use frames to create groups of two or more controls. There are three situations in
which frames come in handy:

■ To organize a set of controls into a logical grouping—Let’s say your form contains
controls for setting program options and obtaining user information. You could help
the user make sense of the form by creating two frames: one to hold all the controls for
the program options, and one to hold the controls for the user information.

■ To move a set of controls as a unit—When you draw controls inside a frame, these
controls are considered to be part of the frame object. Therefore, when you move the
frame, the controls move right along with it. This can make it easier to rearrange mul-
tiple controls on a form.

■ To organize option buttons—If you enter multiple option buttons inside a frame (see
the next section), VBA treats them as a group and therefore allows the user to activate
only one of the options.

To create a frame, click the Frame button in the Toolbox and then click and drag a box
inside the form. Note that you use the Frame object’s Caption property to change the cap-
tion that appears at the top of the box.

Option Buttons
Option buttons are controls that usually appear in groups of two or more; the user can
select only one of the options. To create an option button, use the OptionButton tool. You
can determine whether an option button starts off activated or deactivated by setting the
Value property: If it’s True, the option is activated; if it’s False, the option is deactivated.

12

Chapter 12 Creating Custom VBA Dialog Boxes250



251Types of Form Controls

For option buttons to work effectively, you need to group them so that the user can select
only one of the options at a time. VBA gives you three ways to do this:

■ Create a frame and then draw the option buttons inside the frame. For example,
Figure 12.5 shows an example form with three option buttons inside a frame.

12

■ Use the same GroupName property for the options you want to group.

■ If you don’t draw the option buttons inside a frame or use the GroupName property,
VBA treats all the option buttons in a form as one group.

Figure 12.5
One way to group option
buttons and ensure that
the user can select only
one option at a time is to
draw them all inside a
single frame.

Check Boxes
Check boxes let you include options that the user can toggle on or off. To create a check
box, click the CheckBox button in the Toolbox.

As with option buttons, you can control whether a check box is initially activated (checked).
Set its Value property to True to activate the check box, or to False to deactivate it.

Toggle Buttons
A toggle button is a cross between a check box and a command button: Click it once, and
the button stays pressed; click it again, and the button returns to the unpressed state. You
create toggle buttons by using the ToggleButton tool in the Toolbox.

You control whether a toggle button is initially activated (pressed) by setting its Value
property to True to press the button or to False to “unpress” the button.

List Boxes
VBA offers two different list objects you can use to present the user with a list of choices: a
ListBox and a ComboBox.

If you already have one or more “unframed” option buttons on your form, you can still insert them
into a frame. Just select the buttons, cut them to the Clipboard, select the frame, and paste.VBA
then adds the buttons to the frame.

T
IP



The ListBox Object
The ListBox object is a simple list of items from which the user selects an item or items. Use
the ListBox button to create a list box. Here are some ListBox object properties to note:

■ ColumnCount—The number of columns in the list box.

■ ColumnHeads—If this property is True, the list columns are displayed with headings.

■ MultiSelect—Set this property to fmMultiSelectSingle to enable the user to select
only one item in the list; if you set this property to fmMultiSelectMulti, the user may
select multiple items in the list by clicking the items; if you set this property to
fmMultiSelectExtended, the user may select multiple items in the list by holding down
Ctrl and clicking the items. (For the multiple selection options, note that clicking or
Ctrl+clicking are toggles that select and deselect items.)

■ RowSource—Determines the items that appear in the list. In Excel, enter a range or a
range name.

■ Text—Sets or returns the selected item. For example, if the list box contains a list of
months and you want August to be selected at startup, then you’d include the follow-
ing code in the form’s Initialize event:

ListBox1.Text = “August”

The ComboBox Object
The ComboBox object is a control that combines a text box with a list box. The user either
enters an item in the text box or clicks the drop-down arrow to display the list box and then
selects an item from the list. Use the ComboBox button to create this control.

Because the ComboBox is actually two separate controls, the available properties are an amal-
gam of those discussed earlier for a text box and a list box. You can also work with the fol-
lowing properties that are unique to a ComboBox object:

■ ListRows—Determines the number of items that appear when the user drops the list
down.

■ MatchRequired—If this property is True, the user can enter only values from the list. 
If it’s False, the user can enter new values.

■ Style—Determines the type of ComboBox. Use 0 (fmStyleDropDownCombo) for a list that
includes a text box; use 2 (fmStyleDropDownList) for a list only.

List Box Techniques
How do you specify the contents of a list if the RowSource property isn’t applicable (that is,
if you’re not working in Excel or if the data you want in the list isn’t part of an Excel
range)? In this case, you must build the list at runtime. You can use the AddItem method,
described later in this section, or you can set the List property. For the latter, you must
specify an array of values. For example, the following statements use a form’s Initialize
event to populate a list box with the days of the week:

12

Chapter 12 Creating Custom VBA Dialog Boxes252



253Types of Form Controls

Private Sub UserForm_Initialize()
ListBox1.List() = Array(“Monday”, “Tuesday”, “Wednesday”, 

➥”Thursday”,” “Friday”, “Saturday”, “Sunday”)
End Sub

List boxes also have a few useful methods for controlling from your VBA code the items
that appear in a list box:

■ AddItem—Adds an item to the specified list box. Here’s the syntax:

object.AddItem(text,index)

object The name of the ListBox object to which you want to add the item.

text The item’s text.

index The new item’s position in the list. If you omit this argument, VBA
adds the item to the end of the list.

■ Clear—Removes all the items from the specified list box.

■ RemoveItem—Removes an item from the specified list box using the following syntax:

object.RemoveItem(index)

object The ListBox object from which you want to remove the item.

index The index number of the item you want to remove.

Scrollbars
Scrollbars are normally used to navigate windows, but by themselves you can use them to
enter values between a predefined maximum and minimum. Use the ScrollBar button to
create either a vertical or horizontal scrollbar. Here’s a rundown of the ScrollBar object
properties you’ll use most often in your VBA code:

■ LargeChange—Returns or sets the amount that the scrollbar value changes when the
user clicks between the scroll box and one of the scroll arrows.

■ Max—Returns or sets the maximum value of the scrollbar.

■ Min—Returns or sets the minimum value of the scrollbar.

■ SmallChange—Returns or sets the amount that the scrollbar value changes when the
user clicks one of the scroll arrows.

■ Value—Returns or sets the current value of the scrollbar.

Spin Buttons
A spin button is similar to a scrollbar in that the user can click the button’s arrows to incre-
ment or decrement a value. To create a spin button, use the SpinButton tool in the
Toolbox. The properties for a SpinButton object are the same as those for a ScrollBar
(except that there is no LargeChange property).

12



Most spin buttons have a text box control beside them to give the user the choice of enter-
ing the number directly or selecting the number by using the spin button arrows. You have
to use VBA code to make sure that the values in the text box and the spinner stay in sync.
(In other words, if you increment the spinner, the value shown in the text box increments
as well, and vice versa.)

To do this, you have to add event handler code for both controls. For example, suppose you
have a text box named TextBox1 and a spin button named SpinButton1. Listing 12.1 shows
the basic event handler code that keeps the values of these two controls synchronized.

Listing 12.1 Event Handler Code That Keeps a Text Box and a Spin Button in Sync

Private Sub TextBox1_Change()
SpinButton1.Value = TextBox1.Value

End Sub

Private Sub SpinButton1_Change()
TextBox1.Value = SpinButton1.Value

End Sub

12

Chapter 12 Creating Custom VBA Dialog Boxes254

Tab Strips and MultiPage Controls
I mentioned earlier that you can use frames to group related controls visually and help the
user make sense of the form. However, there are two situations in which a frame falls down
on the job.

The first situation is when you need the form to show multiple sets of the same (or similar)
data. For example, suppose you have a form that shows values for sales and expense cate-
gories. You might want the form to be capable of showing separate data for various com-
pany divisions. One solution would be to create separate frames for each division and
populate each frame with the same controls, but this is clearly inefficient. A second solution
would be to use a list or a set of option buttons. This will work, but it might not be obvi-
ous to the user how he is supposed to display different sets of data, and these extra controls
just serve to clutter the frame. A better solution is to create a tabbed form where each tab
represents a different set of data.

The second situation is when you have a lot of controls. In this case, even the judicious use
of frames won’t be enough to keep your form from becoming difficult to navigate and
understand. In situations where you have a large number of controls, you’re better off cre-
ating a tabbed form that spreads the controls over several tabs.

I use Excel as the underlying application for the procedures in this chapter.To get the code for these
procedures, see my website:

http://www.mcfedries.com/Office2007VBA/Chapter12.xlsm

For Listing 12.1, see the code for the form named TestForm.

N
O

T
E

http://www.mcfedries.com/Office2007VBA/Chapter12.xlsm


255Types of Form Controls

In both of these situations, the tabbed form solution acts much like the tabbed dialog boxes
you work with in Windows, Office, and other modern programs. To create tabs in your
forms, VBA offers two controls: TabStrip and MultiPage.

The TabStrip Control
The TabStrip is an ideal way to give the user an intuitive method of displaying multiple
sets of data. The basic idea behind the TabStrip control is that as the user navigates from
tab to tab, the visible controls remain the same, and only the data displayed inside each
control changes. The advantage here is that you need to create only a single set of controls
on the form, and you use code to adjust the contents of these controls.

You create a TabStrip by clicking the TabStrip button in the Toolbox and then clicking and
dragging the mouse until the strip is the size and shape you want. Here are a few points to
keep in mind:

■ The best way to set up a TabStrip is to add it as the first control on the form and then
add the other controls inside the TabStrip.

■ If you already have controls defined on the form, draw the TabStrip over the controls
and then use the Send to Back command on the UserForm toolbar (or press Ctrl+K)
to send the TabStrip to the bottom of the Z-order.

■ You can also display a series of buttons instead of tabs. To use this format, select the
TabStrip and change the Style property to fmTabStyleButtons (or 1).

Figure 12.6 shows a form that contains a TabStrip control and an Excel worksheet that
shows budget data for three different divisions. The goal here is to use the TabStrip to dis-
play budget data for each division as the user selects the tabs.

12
Figure 12.6
Using the form’s
TabStrip to display
budget data from the
three divisions in the
Excel worksheet.



The first order of business is to use code to change the tab captions, add a third tab, and
enter the initial data. Listing 12.2 shows an Initialize event procedure that does just that.

Listing 12.2 An Initialize Event Procedure That Sets Up a TabStrip

Private Sub UserForm_Initialize()
‘
‘ Rename the existing tabs
‘
With TabStrip1

.Tabs(0).Caption = “Division I”

.Tabs(1).Caption = “Division II”
‘
‘ Add a new tab
‘
.Tabs.Add “Division III”

End With
‘
‘ Enter the intial data for Division I
‘
With Worksheets(“2007 Budget”)

txtSales = .[B2]
txtExpenses = .[B12]
txtGrossProfit = .[B13]

End With
End Sub

The code first uses the Tabs collection to change the captions of the two existing tabs. The
Tabs collection represents all the tabs in a TabStrip, and you refer to individual tabs by using
an index number (where the first tab is 0, the second is 1, and so on). Then the Tabs collec-
tion’s Add method is used to add a third tab titled Division III to the TabStrip. Finally, the
three text boxes within the TabStrip (named txtSales, txtExpenses, and txtGrossProfit)
are set to their respective values for Division I in the 2004 Budget worksheet.

Now you must set up a handler for when the user clicks a tab. This fires a Change event for
the TabStrip, so you use this event handler to adjust the values of the text boxes, as shown
in Listing 12.3.

Listing 12.3 A Change Event Procedure That Modifies the Controls Within a Tab Strip 
Whenever the User Selects a Different Tab

Private Sub TabStrip1_Change()
With Worksheets(“2007 Budget”)

Select Case TabStrip1.Value
Case 0
‘
‘ Enter the data for Division I
‘
txtSales = .[B2]
txtExpenses = .[B12]
txtGrossProfit = .[B13]
Case 1
‘

12

Chapter 12 Creating Custom VBA Dialog Boxes256



257Types of Form Controls

‘ Enter the data for Division II
‘
txtSales = .[C2]
txtExpenses = .[C12]
txtGrossProfit = .[C13]
Case 2
‘
‘ Enter the data for Division III
‘
txtSales = .[D2]
txtExpenses = .[D12]
txtGrossProfit = .[D13]

End Select
End With

End Sub

Here, a Select Case checks the Value property of the TabStrip (where the first tab has the
value 0, the second tab has the value 1, and so on). Figure 12.7 shows the form in action.
(See “Displaying the Form” later in this chapter to learn how to run a form.)

12

Figure 12.7
Clicking each tab dis-
plays the data for the
appropriate division.

The MultiPage Control
The MultiPage control is similar to a TabStrip in that it displays a series of tabs along the
top of the form. The major difference, however, is that each tab represents a separate form
(called a page). Therefore, you use a MultiPage control whenever you want to display a dif-
ferent set of controls each time the user clicks a tab.

You add a MultiPage control to your form by clicking the MultiPage button in the Toolbox
and then clicking and dragging the mouse until the control is the size and shape you want.

It’s important to remember that each page in the control is a separate object (a Page
object). So each time you select a page, the values that appear in the Properties window
apply only to the selected page. For example, the Caption property determines the text that
appears in the page’s tab. Also, you set up a page by selecting it and then drawing controls
inside the page. (If you have controls on the form already, you can put them inside a page
by cutting them to the Clipboard, selecting the page, and pasting the controls.)



Working with a MultiPage control in code is very similar to working with a TabStrip:

■ The Pages collection represents all the pages inside a MultiPage control. You refer to
individual pages by their index numbers.

■ Use the Pages.Add method to add more pages to the control.

■ When the user selects a different tab, the MultiPage control’s Change event fires.

Using a Form in a Procedure
After you’ve created your form, the next step is to incorporate your handiwork into some
VBA code. This involves three separate techniques:

■ Displaying the form

■ Handling events while the form is displayed

■ Processing the form results

Displaying the Form
Each UserForm object has a Show method that you use to display the form to the user. For
example, to display a form named UserForm1, you would use the following statement:

UserForm1.Show

Alternatively, you may want to load the form into memory but keep it hidden from the
user. For example, you may need to perform some behind-the-scenes manipulation of the
form before showing it to the user. You can do this by executing the Load statement:

Load Form

Form The name of the form you want to load.

This statement brings the form object into memory and fires the form’s Initialize event.
From there, you can display the form to the user at any time by running the form’s Show
method as discussed earlier.

12

Chapter 12 Creating Custom VBA Dialog Boxes258

Before getting to the code stage, you might want to try out your form to make sure it looks okay.To
do this, activate the form and then select Run, Run Sub/UserForm, or press F5, or click the Run
Sub/UserForm button on the toolbar.

T
IP

Unloading the Form
After the user has filled out the form, you’ll probably want to include on the form a com-
mand button to put whatever values the user entered into effect. Alternatively, the user
could click some sort of Cancel button to dismiss the form without affecting anything.



259Using a Form in a Procedure

However, just clicking a command button doesn’t get rid of the form—even if you’ve set up
a command button with the Default or Cancel property set to True. Instead, you have to
add the following statement to the event handler for the command button:

Unload Me

The Unload command tells VBA to dismiss the form. Note that the Me keyword refers to
the form in which the event handler resides. For example, the following event handler
processes a click on a command button named cmdCancel:

Private Sub cmdCancel_Click()
Dim result as Integer
result = MsgBox(“Are you sure you want to Cancel?”, _

vbYesNo + vbQuestion)
If result = vbYes Then Unload Me

End Sub

You should note, however, that simply unloading a form doesn’t remove the form object
from memory. To ensure proper cleanup (technically, to ensure that the form object class
fires its internal Terminate event), Set the form object to Nothing. For example, the follow-
ing two lines Show the TabStripTest form and then Set it to Nothing to ensure termination:

TabStripTest.Show
Set TabStripTest = Nothing

Processing the Form Results
When the user clicks OK or Cancel (or any other control that includes the Unload Me
statement in its Click event handler), you usually need to examine the form results and
process them in some way.

Obviously, how you proceed depends on whether the user has clicked OK or Cancel
because this almost always determines whether the other form selections should be
accepted or ignored.

■ If OK is clicked, the Click event handler for that button can process the results. In
other words, it can read the Value property for each control (for example, by storing
them in variables for later use in the program).

■ If Cancel is clicked, the code can move on without processing the results. (As shown
earlier, you can include code to ask the user whether he’s sure he wants to cancel.)

Table 12.1 lists all the controls that have a Value property and provides a description of
what kind of data gets returned.

12



Table 12.1 Value Properties for Some Form Controls

Object What It Returns

CheckBox True if the check box is activated; False if it’s deactivated; 
Null otherwise.

ComboBox The position of the selected item in the list (where 1 is the first item).

ListBox The position of the selected item in the list (where 1 is the first item).

MultiPage An integer that represents the active page (where 0 is the first page).

OptionButton True if the option is activated; False if it’s deactivated; Null otherwise.

ScrollBar A number between the scrollbar’s minimum and maximum values.

SpinButton A number between the spinner’s minimum and maximum values.

TabStrip An integer that represents the active tab (where 0 is the first tab).

TextBox The value entered in the box

ToggleButton True if the button is pressed; False otherwise.

12

Chapter 12 Creating Custom VBA Dialog Boxes260

If you’ve set up your list box to accept multiple selections, simply checking the Value property
won’t work. Instead, you need to run through all the items in the list and check each item to see
whether its Selected property is True. If a list item is selected, then you use the corresponding
item in the List array to return the value of the selected item.The following code demonstrates
this technique by using the form’s Terminate event (fired when the form is closed) to store the
selected list values in a worksheet:

Private Sub UserForm_Terminate()
Dim nItem As Integer
Dim nSelected As Integer
nSelected = 0
For nItem = 0 To ListBox1.ListCount - 1

If ListBox1.Selected(nItem) Then
ActiveSheet.Range(“A1”).Offset(nSelected, 0) = 

➥ListBox1.List(nItem)
nSelected = nSelected + 1

End If
Next ‘i

End Sub

T
IP

For example, Figure 12.8 shows the Convert Case form created in the Visual Basic Editor.
The idea behind this form is to convert the selected cells to proper case, uppercase, or low-
ercase, depending on the option chosen.



261Using a Form in a Procedure

To load this form, I created a macro named ConvertCase that contains the two statements
shown earlier:

ConvertCase.Show
Set ConvertCase = Nothing

Here, ConvertCase is the name of the form shown in Figure 12.8. The three option buttons
are named optProper, optUpper, and optLower; the OK button is named cmdOK. Listing 12.4
shows the event handler that runs when the user clicks OK.

Listing 12.4 A Procedure That Processes the ConvertCase Custom Form

Private Sub cmdOK_Click()
Dim c As Range
For Each c In Selection

If optProper.Value = True Then
c.Value = StrConv(c, vbProperCase)

ElseIf optUpper.Value = True Then
c.Value = StrConv(c, vbUpperCase)

ElseIf optLower.Value = True Then
c.Value = StrConv(c, vbLowerCase)

End If
Next ‘c
Unload Me

End Sub

12

Figure 12.8
A custom form that lets
the user change the case
of the selected work-
sheet cells.



The procedure runs through the selected cells, checking to see which option button was
chosen, and then converts the text by using VBA’s StrConv function:

StrConv(String, Conversion)

String The string you want to convert.

Conversion A constant that specifies the case you want:

Conversion Resulting Case

vbProperCase Proper Case

vbUpperCase UPPERCASE

vbLowerCase lowercase

From Here
■ Handling form results often means using loops and control structures (such as

If...Then...Else and Select Case). To learn about these VBA statements, see
Chapter 6, “Controlling Your VBA Code,” p. 91. 

■ The MsgBox function provides simple form capabilities in a single statement. For the
details on this function, see “Getting Input Using MsgBox,” p. 45.

■ You can also use the InputBox function as a basic form; see “Getting Input Using
InputBox,” p. 50.

■ To learn how to use the built-in dialog boxes available in VBA applications, see
“Accessing an Application’s Built-In Dialog Boxes,” p. 83.

■ To complete your look at VBA user-interface design, see Chapter 13, “Customizing
the Office 2007 Ribbon,” p. 263.

12

Chapter 12 Creating Custom VBA Dialog Boxes262



I N  T H I S  C H A P T E R

Customizing the Office
2007 Ribbon 13In Chapter 1, “Creating and Running Recorded

Macros,” and Chapter 2, “Writing Your Own
Macros,” I showed you a number of methods for
running your VBA macros. However, all these
methods assume that you know which task each
macro performs. If you’re constructing procedures
for others to wield, they might not be so familiar
with what each macro name represents. Not only
that, but you might not want novice users scrolling
through a long list of procedures in the Macro dia-
log box or, even worse, having to access the Visual
Basic Editor.

To help you avoid these problems, this chapter pre-
sents some techniques for making your macros
more accessible. To wit, I’ll show you how to enable
your users to use familiar tools—namely, the Office
2007 Ribbon and its tabs, groups, and various but-
tons—to run your macros.

Understanding Ribbon Extensibility
If you’ve used previous versions of Office to cus-
tomize menus and toolbars, you’ll no doubt be dis-
appointed to learn that all your hard-won
customization knowledge must now be discarded.
Most unfortunately, Microsoft offers no direct
method for customizing the Ribbon and its various
tabs, groups, and buttons. Note that this does not
mean that the Ribbon isn’t customizable. It cer-
tainly is, but it’s just that now the process is much
more involved and requires quite a few more steps.

➔ If you just want a quick way to run some of your own macros, the Office
2007 programs enable you to add macros to the Quick Access toolbar;
see “Creating a Quick Access Toolbar Button for a Recorded Macro,” p. 11.

Understanding Ribbon Extensibility  . . . . . . .263

Extending the Ribbon: An Example . . . . . . . .265

Hiding the Built-In Ribbon  . . . . . . . . . . . . . . .270

Creating Custom Tabs  . . . . . . . . . . . . . . . . . . .271

Creating Custom Groups  . . . . . . . . . . . . . . . . .273

Creating Custom Controls  . . . . . . . . . . . . . . . .275



I just told you that the Ribbon is customizable, but to be accurate I should really say that
the Ribbon is extensible. This makes sense (at least a little bit) when you understand that the
Office 2007 applications are built around the Office Open XML Formats, where XML
stands for eXtensible Markup Language. It’s this use of XML throughout Office 2007 that
enables you to extend the Ribbon with your own custom interface elements, including tabs,
groups within tabs, and buttons within groups.

This book is, by design, short on theory and long of practicality. However, before getting
to the nuts and bolts of extending the Ribbon, you need to understand just a bit of back-
ground about the Office XML file formats, not least because they are quite unlike any file
format you’ve probably seen.

The first thing you need to know about the Office XML formats is that a given file (such as
a Word .docx document or an Excel .xlsx workbook) isn’t really a single file at all. Instead,
it’s a container—or package—that contains multiple folders and files. In fact, this package is
actually a file that uses the standard zip (compressed) file format. When, say, a Word docu-
ment uses the .docx extension, it appears to be just a single file that works just like any
other Word document. However, if you rename the file with a .zip extension, it automagi-
cally converts to a valid zip container format. And if you open that container, you see the
folders and files that it contains. For example, I took this chapter’s example file—
Chapter13.docm—added the .zip extension, and then opened it, as shown in Figure 13.1.

13

Chapter 13 Customizing the Office 2007 Ribbon264

As you’ll see, much of the work you perform in this chapter involves changing the extensions of
Office files to .zip and back again.To do this, you must configure Windows to display file exten-
sions. Click Start, Control Panel, and then open the Folder Options icon. (In Vista’s Control Panel, you
might have to first click Appearance and Personalization.) Click the View tab and then click to deac-
tivate the Hide Extensions For Known File Types check box. Click OK.

N
O

T
E

Each of the files in the container is called a part, and the parts are grouped roughly into
three categories:

■ Built-in elements that are shared by all Office applications, including document prop-
erties, comments, hyperlinks, and objects such as charts, SmartArt, and shapes.

Figure 13.1
Rename an Office
2007 file with the
.zip extension and
it becomes a zip
package that con-
tains other folders
and files.



265Extending the Ribbon: An Example

■ Built-in elements that are specific to each Office application, such as Word headers
and footers, Excel worksheets, and PowerPoint slides.

■ User-defined content, including the document text and VBA elements added to the
document project, including macros and user forms.

All this is tied together by a special XML file named .rels in the container’s _rels folder.
This document consists of several <Relationship> elements, each of which has the follow-
ing general form:

<Relationship Id=”ID” Type=”relationshipType” Target=”targetPart” />

ID A string that names the relationship. This name
must be unique within the .rels file.

relationshipType The address of the XML schema that specifies the
type of relationship.

targetPart The path and file name within the package that
points to the part governed by the relationship.

In a Word document, for example, the document text part is in the word/document.xml file
within the container and the schema for this part is located here:

http://schemas.openxmlformats.org/officeDocument/2006/relationships/
➥officeDocument

Here then is the complete <Relationship> element for this part:

<Relationship Id=”rId1” 
Type=”http://schemas.openxmlformats.org/
➥officeDocument/2006/relationships/officeDocument” 
Target=”word/document.xml” />

The key point for the purposes of this chapter is that, just as with any zip file, you can add
files to an Office XML container. In particular, you can add an XML file that specifies your
custom Ribbon configuration. The next time you load that Office document, the program
parses your custom XML document and extends the Ribbon accordingly. The next section
takes you through an example.

Extending the Ribbon: An Example
The rest of this chapter takes you through the specifics of extending the Ribbon with cus-
tom tabs, groups, and controls such as buttons, menus, and galleries. Before we get to that,
let’s run through a specific example that shows you the process of adding to an Office docu-
ment some custom XML content that extends the Ribbon content. The next few sections
take you through the details.

Step 1: Create a Macro-Enabled Office Document or Template
Because you’ll be associating your custom Ribbon controls with macros, you need to begin
with a macro-enabled file. You have several choices:

13



■ If you only want the custom Ribbon interface available for a specific document, create
a macro-enabled document (.docm, .xlsm, or .pptm).

■ If you want the custom Ribbon interface available only for any document based on a
particular template, create a macro-enabled template (.dotm, .xltm, or .potm).

■ If you want the custom Ribbon interface available for any open document in Word,
modify the Normal template.

■ If you want the custom Ribbon interface available for any open document in Excel or
PowerPoint, you need to create an Add-in file (.xlam or .ppam).

13

Chapter 13 Customizing the Office 2007 Ribbon266

If you want to work with an add-in file, remember that you have to first create the file and then
load it.To create the add-in, start a new document or open an existing document (such as one that
has macros you want to include in the add-in). Choose Office, Save As to open the Save As dialog
box, click Save as Type to choose the add-in type (Excel Add-In or PowerPoint Add-In), and then
click Save. Note that you might want to store the file in the AddIns folder:

%UserProfile%\appdata\Roaming\Microsoft\AddIns

To load the add-in in Excel, choose Office, Excel Options and the click Add-Ins. Use the Manage list to
click Excel Add-ins, and then click Go to open the Add-Ins dialog box. If you didn’t save the add-in in
the AddIns folder, click Browse, click the add-in, and then click OK.The procedure for loading
PowerPoint add-ins is similar.

N
O

T
E

You can now add your macros to the document or template. Here’s the general form 
to use:

Sub ProcedureName(ByVal control As iRibbonControl)
[Statements]

End Sub

ProcedureName A unique macro name.

control An iRibbonControl object that represents the Ribbon control
that was clicked to trigger the macro. You’ll see later that 
you sometimes use this object to work with the control (for 
example, to determine which item in a menu was clicked).

Statements The VBA code you want the macro to run.

When you go to save the file, bear in mind that Ribbon customization requires multiple files (as
you’ll soon see). In my experience, the best way to keep your Ribbon customizations organized is to
create a separate folder for each document or template that you want to customize with Ribbon
extensions.That way, you can store all the files you need in the same folder, and it will be easy to
keep everything straight.

T
IP



267Extending the Ribbon: An Example

Here’s an example:

Sub MyButton(ByVal control As iRibbonControl)
MsgBox “Hello Ribbon World!”

End Sub

In the language of custom Office 2007 interfaces, the macro that runs when you click an
interface element is known as a callback.

When you’re finished, save and close the document.

Step 2: Create a Text File and Add the Custom XML Markup
You’re now ready to create the custom XML markup for the Ribbon tabs, groups, and con-
trols you want to display. In the same folder that you’re using to store the macro-enabled
document or template, create a text document named (for example) MyRibbon.xml. Open
the file in Notepad or some other text editor and then begin the XML markup as follows:

13

If you’re working with Word’s Normal template, you can open its folder by pressing Windows
Logo+R, entering the following path in the Run dialog box, and then clicking OK:
%UserProfile%\appdata\Roaming\Microsoft\Templates

N
O

T
E

The XML and VBA code for this chapter’s examples is available on my website at
www.mcfedries.com/Office2007VBA/.N

O
T

E

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon>

<tabs>
</tabs>

</ribbon>
</customUI>

Now add a tab (see “Creating a New Tab,” later in this chapter, for the details):

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon>

<tabs>
<tab id=”CustomTab” label=”My Tab”>
</tab>

</tabs>
</ribbon>

</customUI>

Now add a group (see “Creating a New Group,” later in this chapter):

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon>

<tabs>
<tab id=”CustomTab” label=”My Tab”>

<group id=”CustomGroup” label=”My Group” >

www.mcfedries.com/Office2007VBA/


</group>
</tab>

</tabs>
</ribbon>

</customUI>

Finally, add the markup for a button (see “Creating Custom Controls,” later in this 
chapter):

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon>

<tabs>
<tab id=”CustomTab” label=”My Tab”>

<group id=”CustomGroup” label=”My Group” >
<button id=”CustomButton1” 

imageMso=”HappyFace” 
label=”Hello World!” 
size=”large” 
onAction=”Module1.MyButton” />

</group>
</tab>

</tabs>
</ribbon>

</customUI>

Note, in particular, that the button’s onAction parameter references the callback macro
added to the document earlier (Module1.MyButton).

Step 3: Copy the Custom XML Markup File to the Document Package
You’re now ready to take the custom XML markup file that you created in step 2 and add it
to the document package. Begin by renaming the document or template so that you add
.zip to the end of the filename. When Windows asks you to confirm the extension change,
click Yes. You can now click and drag the custom XML file and then drop it on the zip
container to add it to the document package.

At this point, the custom XML is in the package, but the Office application doesn’t know
what to do with it. You now need to define a relationship that points the Office application
to the new XML part. Open the zip container and then open the _rels folder. You need to
get the .rels file out of the container so that you can edit it, and then return it when
you’re finished. Here’s one method that takes advantage of the fact that you have the docu-
ment package in its own folder:

1. Right-click the .rels file and then click Copy.

2. Return to the folder that contains the document package.

3. Right-click the folder and then click Paste.

4. Right-click the copy of the .rels file and then click Edit to open it in Notepad.

5. Make your edits (as described after these steps), save the file, and then exit Notepad.

6. Right-click the copy of the .rels file and then click Copy.

7. Open the zip container and then open the _rels folder.

13

Chapter 13 Customizing the Office 2007 Ribbon268



269Extending the Ribbon: An Example

8. Right-click the folder and then click Paste.

9. When Windows asks you to confirm, click Copy and Replace (in Vista) or Yes (in XP).

When you have the .rels file open for editing, you need to add a new <Relationship> ele-
ment that points to your custom XML file in the container. Insert this element between the
<Relationships> and </Relationships> elements, but not within any existing
<Relationship> elements. Here’s the general format:

<Relationship
Id=”ID”
Type=”http://schemas.microsoft.com/office/2006/relationships/ui/extensibility”
Target=”CustomXMLFile”/>

ID A string identifier that’s unique in the .rels file.

CustomXMLFile The name of the file that contains the custom XML
markup. 

Here’s an example:

<Relationship
Id=”MyRibbonID”
Type=”http://schemas.microsoft.com/office/2006/relationships/ui/extensibility”
Target=”MyRibbon.xml”/>

Step 4: Rename and Open the Document
Your customization work is done, so close the container and then rename the file to remove
the .zip extension. The next time you open the document, the application parses the cus-
tom XML file and displays the new Ribbon elements.

Figure 13.2 shows Word with the new tab, group, and button specified by the custom XML
file used as an example in step 2 (“Create a Text File and Add the Custom XML Markup”).
Clicking the button runs the associated macro, which displays the dialog box.

13

Figure 13.2
Microsoft Word 2007
with the Ribbon
extended to display a
new tab and group, as
well as a button associ-
ated with a macro.



More Complexity Means More Power
As I mentioned earlier, and as you saw in the preceding steps, extending the Office 2007
Ribbon is a far more involved (some would say convoluted) process than the relatively simple
and straightforward menu and toolbar customizations in earlier versions of Office.
Fortunately, as you’ll soon see, there is an upside to the more difficult Ribbon procedure.
That added complexity also gives you added power. Your previous Office customizations
were restricted to mere buttons that ran macros. With Office 2007, you can extend the
Ribbon not only with buttons, but also with check boxes, drop-down lists, menus, dialog
box launchers, and even galleries. In short, you can create a much richer interface for your
Office applications.

The rest of this chapter takes you through the specifics of what is known as RibbonX, the
XML code that you use to extend the Ribbon with custom tabs, groups, and controls.

Hiding the Built-In Ribbon
Most of the time, your RibbonX customizations will augment the Office program’s built-in
Ribbon interface by adding one or more custom tabs or by adding new groups and controls
to existing tabs. Occasionally, however, your VBA application might require that you hide
the built-in Ribbon and display only your custom interface. You’ll see in the next few sec-
tions that you can hide individual tabs (as well as groups and controls within a tab), but you
don’t have to hide all the program’s tabs individually to hide the built-in Ribbon. Instead, in

13

Chapter 13 Customizing the Office 2007 Ribbon270

The process of creating callbacks, generating custom XML, and adding new interface parts to docu-
ment packages is so time consuming and finicky that I predict there will be a booming market in
Ribbon interface editors. As I write this, there is one editor available via the OpenXML Developer
site: the Microsoft Office 2007 Custom UI Editor.With this nice little utility, you open the macro-
enabled Office document or template, and then use the Custom UI tab (essentially a large edit box)
to add your custom XML code. A Validate button on the toolbar lets you know whether your code is
well formed.When you save the file, the editor adds the XML to the document package and updates
the .rels file. It even comes with a Generate Callbacks button that adds the stub procedures for
the callback macros to your document.You can download the editor here:

http://openxmldeveloper.org/articles/customuieditor.aspx

T
IP

If you do use the Custom UI Editor discussed in the preceding Tip, never open a document in the
Editor and in its Office application at the same time. A bug in the Custom UI Editor (possibly
resolved by the time you read this, but you never know) causes the editor to strip out some or all of
the document’s existing macros.

C A U T I O N

http://openxmldeveloper.org/articles/customuieditor.aspx


271Creating Custom Tabs

your custom XML markup you modify the <ribbon> element to include the
startFromScratch attribute:

<ribbon startFromScratch = “true|false”>

If you set this attribute to true, the Office application hides the built-in Ribbon and dis-
plays just your custom interface. Here’s some bare-bones XML that does that:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon startFromScratch=”true”>
</ribbon>

</customUI>

Figure 13.3 shows the result when you load the document in Word. As you can see, the
Ribbon is completely hidden and the Office menu includes only the New, Open, and Save
commands, as well as the Word Options and Exit Word buttons.

13

Figure 13.3
Word 2007 with the
built-in Ribbon hidden.

Creating Custom Tabs
The Ribbon in each Office application is divided into several tabs, and those tabs contain
the groups and controls that expose the application’s functionality. With RibbonX, you can
create your own custom tabs or you can customize any of the application’s existing tabs.
Either way, your markup must appear between the <tabs> and </tabs> elements, so your
tab-based RibbonX markup always begins like this:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon>

<tabs>
</tabs>

</ribbon>
</customUI>

Creating a New Tab
If you’re building an interface for a number of macros and user forms, you can make it easy
for the user to find the custom tools by placing them within a new tab in the Ribbon. This
gives you plenty of room to add whatever groups and controls you need to build your
interface.



In RibbonX, you create a tab by using the <tab> element. Here’s the basic syntax:

<tab id=”ID” label=”Label” InsertAfterMso=”AfterID” 
➥InsertBeforeMso=”BeforeID” keytip=”KeyTip”>
</tab>

ID A unique string identifier for the tab.

Label The text that appears on the tab.

AfterID The string identifier of the built-in tab after which
you want your tab inserted. See the next section to
learn about built-in tab identifiers.

BeforeID The string identifier of the built-in tab before which
you want your tab inserted.

KeyTip The character or characters that appear when the
user presses Alt. The user can then press the charac-
ter or characters to choose the tab via the keyboard.
Enter up to three alphanumeric characters.

Place your <tab> elements between the <tabs> and </tabs> elements in your XML markup
file. Here’s an example:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon>

<tabs>
<tab id=”CustomTab” label=”My Tab” keytip=”Z”>
</tab>

</tabs>
</ribbon>

</customUI>

Figure 13.4 shows Word with the new tab added to the Ribbon. When you press Alt, as
shown in Figure 13.4, the keytip Z appears over the new tab.

13

Chapter 13 Customizing the Office 2007 Ribbon272

Figure 13.4
The Word 2007
Ribbon with a new
tab added.

Customizing an Existing Tab
If you have just a few macros that require an interface, building a new tab is probably
overkill. Instead, you can add controls for those macros to one of the application’s built-in
tabs. To work with a built-in tab, you again use the <tab> element, but the syntax is slightly
different. Here’s a simplified version:



273Creating Custom Groups

<tab idMso=”ID” visible=”true|false” />

ID The unique string identifier for the built-in tab.

The value of the idMso attribute takes one of the following forms:

■ TabName—This is the most common form and it’s used for most regular built-in tabs.
Here, Name is the name that appears on the tab, with spaces and punctuation marks
(such as dashes) removed. For example, the isMso value for Word’s Insert tab is
TabInsert, and the value for PowerPoint’s Slide Show tab is TabSlideShow.

■ TabContextName—This is the form used for contextual tabs (the tabs that appear only
when you select certain objects, such as pictures or tables). Here, Context is the overall
name of the contextual tabs and Name is the name of the specific contextual tab. For
example, when you click a picture object, you see the Picture Tools tab and the Format
tab. So the isMso value for the Format tab is TabPictureToolsFormat.

■ TabNameApplication—This is the form used for tabs that are common to multiple
applications. Here, Name is the name of the tab and Application is the name of the
application. So the isMso value for Word’s Page Layout tab is TabPageLayoutWord,
whereas the value for Excel’s Page Layout tab is TabPageLayoutExcel.

13

Unfortunately, there are lots of exceptions to the various tab naming conventions. For example, even
though the View tab is common to Word, Excel, and PowerPoint, its idMso value is TabView in all
the programs.The only way to be sure of the correct idMso values is to download Microsoft’s Lists
of Control IDs, a collection of Excel worksheets that provide the idMso values for every interface
element. Go to the following site and search for “lists of control ids”:

http://www.microsoft.com/downloads/

C A U T I O N

You’ll work with built-in tabs in more detail later in this chapter when you learn how to
add groups and controls to existing tabs. For now, you can use the visible attribute to hide
built-in tabs that you don’t want the user to see. For example, the following XML code
hides the Developer tab:

<tab idMso=”TabDeveloper” visible=”false” />

Creating Custom Groups
Within each tab on the Ribbon, related controls are organized into several groups, which
makes it easier for the user to find a specific control. In your VBA application, you can use
RibbonX to create your own custom groups on a new or built-in tab. You can also modify
any of the built-in groups.

Your group-based markup must appear in the custom XML file between a <tab> and
</tab> container.

http://www.microsoft.com/downloads/


Creating a New Group
If you have a lot of controls to add to a custom tab, you should probably organize them
into groups to keep things organized. Even if you think your VBA application doesn’t need
multiple groups, note that you must create at least one group in your custom tab.

In RibbonX, you create a group by using the <group> element. Here’s the basic syntax:

<group id=”ID” label=”Label” InsertAfterMso=”AfterID” 
➥InsertBeforeMso=”BeforeID”>
</tab>

ID A unique string identifier for the group.

Label The text that appears below the group.

AfterID The string identifier of the built-in group after
which you want your group inserted. See the next
section to learn about built-in group identifiers.

BeforeID The string identifier of the built-in group before
which you want your group inserted.

In your XML markup, place your <group> element between the <tab> and </tab> elements
that represent the tab in which you want the group to appear. This can be either a custom
tab or a built-in tab. Here’s an example:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui”>
<ribbon>

<tabs>
<tab id=”CustomTab” label=”My Tab” keytip=”AZ>

<group id=”CustomGroup” label=”My Group” >
</group>

</tab>
</tabs>

</ribbon>
</customUI>

Figure 13.5 shows Word with the new group added to My Tab.

13

Chapter 13 Customizing the Office 2007 Ribbon274

Figure 13.5
A custom group
added to the custom
tab named My Tab.

Customizing an Existing Group
If you have one or two macros that you want to add to the Ribbon and those macros are
related to the controls in a built-in group, you can add controls for those macros to the



275Creating Custom Controls

group. To work with a built-in group, you use the <group> element with the following (sim-
plified) syntax:

<group idMso=”ID” visible=”true|false”/>

ID The unique string identifier for the built-in group.

The value of the idMso attribute takes one of the following forms:

■ GroupName—This is the most common form and it’s used for most regular built-in
groups. Here, Name is the name that appears under the group, with spaces removed.
For example, the isMso value for Word’s Font group (Home tab) is GroupFont, and the
value for Excel’s Function Library group (Formulas tab) is GroupFunctionLibrary.

■ GroupTabName—This form combines the Tab in which the group appears and the Name
of the group. For example, the idMso value for Word’s Text group on the Insert tab is
GroupInsertText.

■ GroupNameApplication—This is the form used for groups that are common to multiple
applications. Here, Name is the name of the group and Application is the name of the
application. So the isMso value for Word’s Themes group (Page Layout tab) is
GroupThemesWord, whereas the value for Excel’s Themes group is GroupThemesExcel.

13

Again, the group names aren’t fully consistent across the Office 2007 applications, so check the Lists
of Control IDs collection mentioned in the previous Caution.

C A U T I O N

You’ll work with built-in tabs in more detail later in this chapter when you learn how to
add controls to existing tabs. For now, you can use the visible attribute to hide built-in
groups that you don’t want the user to see. For example, the following XML code hides the
Macros group (View tab):

<tab idMso=”TabView”>
<group idMso=”GroupMacros” visible=”false” />

</tab>

Creating Custom Controls
With your custom tab added to the Ribbon and populated with at least one custom group,
you’re ready to bring your RibbonX extensions into the realm of the practical by adding
controls that actually perform actions. The rest of this chapter takes you through the three
most common control types supported by the Ribbon interface: buttons, menus, and split
buttons. You’ll learn the RibbonX XML code required to add and configure each control,
as well as the VBA code needed to make a control perform an action.



Common Control Attributes
Before getting to the specific control types, let’s take a second to run through the a few
attributes that are common to all or more of the controls:

id A unique string identifier for a custom control.

idMso A unique string identifier for a built-in control.

13

Chapter 13 Customizing the Office 2007 Ribbon276

To get the name of a built-in control, you can use the Lists of Controls Ids worksheets that I men-
tioned earlier. Alternatively, right-click the Quick Access toolbar and then click Customize Quick
Access Toolbar. Use the Choose Commands From list to display the category of the command that
corresponds to the control you want to work with and then hover the mouse pointer over the com-
mand. In the banner text that pops up, the command name appears in parentheses.

T
IP

label The text that appears on the control.

imageMso A string that represents the name of an icon associated with a
built-in control. This icon appears with your control.

The imageMso attribute refers to the icons you see with all the controls on all the Office 2007
application Ribbons and commands. Office 2007 has hundreds of these icons, and you can use any
of them in your custom interface.The only problem is finding out the name of a particular icon so
that you can use it as the imageMso value.There is no easy way to determine this, but the follow-
ing link takes you to an Excel workbook that contains several galleries that display all the Office
2007 icons:

http://www.sunflowerhead.com/msimages/Office2007IconsGallery.zip

Pull down a gallery and hover the mouse pointer over an icon to see the icon’s name.

T
IP

size The relative size that you want to use for the control. Use
either normal or large.

InsertAfterMso The string identifier of the built-in control after which you
want your control inserted.

InsertBeforeMsoID The string identifier of the built-in control before which you
want your control inserted.

onAction A string that specifies the macro to run when the control is
clicked. Use the form Module.Macro, where Module is the
name of the module that holds the procedure and Macro is the
name of the procedure.

http://www.sunflowerhead.com/msimages/Office2007IconsGallery.zip


277Creating Custom Controls

enabled Set to false to disable the control; set to true to enable the
control.

visible Set to false to hide the control; set to true to display the
control.

screentip The title of the SuperTip banner that appears when the user
hovers the mouse pointer over the control. If SuperTips are
turned off, the user sees just this text.

supertip The text that appears in the SuperTip banner when the user
hovers the mouse pointer over the control. Use this text to
explain what the control does.

keytip The character or characters that appear when the user presses
Alt. The user can then press the character or characters to
choose the control via the keyboard. Enter up to three
alphanumeric characters.

Creating a Button
The most basic control and the control you’ll use most often is the button which, when
clicked, runs a macro that you specify:

<button id=”value” 
label=”value”
imageMso=”value”
size=”normal|large”
InsertAfterMso=”value”
InsertBeforeMso=”value”
onAction=”value”
enabled=”true|false”
visible=”true|false”
screentip=”value”
supertip=”value”
keytip=”value” />

Here’s an example:

<button id=”CustomButton1” 
imageMso=”HappyFace” 
label=”Hello World!” 
size=”large” 
onAction=”Module1.MyButton” 
screentip=”Hello World”
supertip=”Displays the canonical Hello World! message.”
keytip=”M” />

Figure 13.6 shows the button in the custom tab. I’ve hovered the mouse pointer over the
button so that you can see the control’s associated SuperTip banner.

13



Creating a Menu
If you have a small collection of related macros, you can save space in your custom inter-
face by bundling the buttons for all those macros into a menu. You create the menu control
by using the <menu> element:

<menu id=”value” 
label=”value”
imageMso=”value”
itemSize=”normal|large”
InsertAfterMso=”value”
InsertBeforeMso=”value”
onAction=”value”
enabled=”true|false”
visible=”true|false”
screentip=”value”
supertip=”value”
keytip=”value”>

Note that you use itemSize instead of size, and that this attribute affects every item in the
menu.

You populate the menu by adding two or more <button> elements between <menu> and
</menu>. Here’s an example:

<menu id=”menu1” label=”Close Document”>
<button id=”btnSaveChanges” 

label=”Save Changes” 
imageMso=”FileSave” 
onAction=”Module1.btnSaveChanges_OnAction” />

<button id=”btnDoNotSaveChanges” 
label=”Don’t Save Changes” 
imageMso=”SaveAndClose” 
onAction=”Module1.btnDoNotSaveChanges_OnAction” />

<button id=”btnPromptToSaveChanges” 
label=”Prompt to Save Changes” 
imageMso=”WorkflowPending” 
onAction=”Module1.btnPromptToSaveChanges_OnAction” />

</menu>

Figure 13.7 shows the resulting menu.

13

Chapter 13 Customizing the Office 2007 Ribbon278

Figure 13.6
A custom button
added to the
Ribbon.



279Creating Custom Controls

In the preceding example, each menu button calls a different procedure. Here are the asso-
ciated procedures:

Sub SaveChanges_OnAction(ByVal control As IRibbonControl)
ActiveDocument.Close wdSaveChanges

End Sub

Sub DoNotSaveChanges_OnAction(ByVal control As IRibbonControl)
ActiveDocument.Close wdDoNotSaveChanges

End Sub

Sub btnPromptToSaveChanges_OnAction(ByVal control As IRibbonControl)
ActiveDocument.Close wdPromptToSaveChanges

End Sub

In such a case, it probably makes more sense to use a single callback macro that determines
which button was clicked and proceeds accordingly. To determine the button that was
clicked, you use the control object’s ID property, which returns the id attribute of the but-
ton that was clicked. 

First, you need to adjust the RibbonX code so that each <button> uses the same onAction
value:

<menu id=”mnuCloseDocument2” label=”Close Document”>
<button id=”btnSaveChanges2” 

13

Figure 13.7
A custom menu added to
the Ribbon.

If you do even mildly extensive customizations with RibbonX, your new interface will consist of a
fair number of controls, many of which will have several associated callback macros. In other words,
you can easily end up with dozens of interface elements to maintain.To help you keep everything
straight, it’s best to use certain naming conventions. For control names, use prefixes that indicate
the control type:btn (for a button),sb (split button),chk (check box),tb (toggle button),lst
(drop-down list),gal (gallery),cb (combo box),ed (edit box), and dl (dialog launcher). For call-
back macros, use the following format:

control_attribute

Here, replace control with the name of the control, and replace attribute with the attribute
that calls the macro. For example, for the onAction callback macro for a button named
btnSaveChanges, you’d use the following name:

btnSaveChanges_OnAction

T
IP



label=”Save Changes” 
imageMso=”FileSave” 
onAction=”Module1.mnuCloseDocument2_OnAction” />

<button id=”btnDoNotSaveChanges2” 
label=”Don’t Save Changes” 
imageMso=”SaveAndClose” 
onAction=”Module1.mnuCloseDocument2_OnAction” />

<button id=”btnPromptToSaveChanges2” 
label=”Prompt to Save Changes” 
imageMso=”WorkflowPending” 
onAction=”Module1.mnuCloseDocument2_OnAction” />

</menu>

Here’s a callback procedure that uses Select Case to check the ID property and then pro-
ceeds accordingly:

Sub mnuCloseDocument2_OnAction(ByVal control As IRibbonControl)
Select Case control.ID

Case “btnSaveChanges2”
ActiveDocument.Close wdSaveChanges

Case “btnDoNotSaveChanges2”
ActiveDocument.Close wdDoNotSaveChanges

Case “btnPromptToSaveChanges2”
ActiveDocument.Close wdPromptToSaveChanges

End Select
End Sub

Creating a Split Button
A split button is a control that has a regular button control on the top half and a menu con-
trol on the bottom half. The idea here is that the button control represents the default
choice, and if you want some other choice, you pull down the menu to select it. You create
the split button control by using the <splitButton> element:

<splitButton id=”value” 
label=”value”
imageMso=”value”
size=”normal|large”
InsertAfterMso=”value”
InsertBeforeMso=”value”
onAction=”value”
enabled=”true|false”
visible=”true|false”
screentip=”value”
supertip=”value”
keytip=”value”
showLabel=”true|false” />

The only unique attribute here is showLabel. When you set this attribute to true (this is the
default value), the button control’s label appears; if you set it to false, instead, the label
doesn’t appear.

You populate the split button by adding a <button> element and then a <menu> element
between <splitButton> and </splitButton>. Here’s an example:

<splitButton id=”splitButton1” size=”large”>

13

Chapter 13 Customizing the Office 2007 Ribbon280



281Creating Custom Controls

<button id=”btnRecentDocuments” 
label=”Recent Documents” 
imageMso=”InkEraseMode” 
onAction=”Module1.btnClearRecentDocuments_OnAction” />

<menu id=”splitButton3” itemSize=”large”>
<button id=”btnClearRecentDocuments” 

label=”Clear Recent Documents” 
imageMso=”InkEraseMode” 
oAction=”Module1.btnClearRecentDocuments_OnAction” />

<button id=”btnChangeNumberOfRecentDocuments” 
label=”Change Number of Recent Docs” 
imageMso=”ReadingViewShowPrintedPage” 
onAction=”Module1.btnChangeNumberOfRecentDocuments_OnAction” />

<button id=”btnDisableRecentDocuments” 
label=”Disable Recent Documents” 
imageMso=”DeclineInvitation” 
onAction=”Module1.btnDisableRecentDocuments_OnAction” />

</menu>
</splitButton>

Figure 3.8 shows the split button created by this code.

13

Notice in Figure 3.8 that a separator bar appears between some of the controls in my custom tab.
You add a separator bar by using the <separator> element:

<separator id=”value” 
InsertAfterMso=”value”
InsertBeforeMso=”value”
visible=”true|false” />

N
O

T
E

Creating a Check Box
If you have a macro that toggles some setting on or off, then a button or menu element
isn’t a great choice as a front-end for the macro because these elements have no way of
showing the current state of the setting. A much better choice would be a check box:
When it’s checked, the setting is activated; when it’s unchecked, the setting is deactivated.

You create the check box control by using the <checkBox> element:

<checkBox id=”value” 
label=”value”
InsertAfterMso=”value”

Figure 13.8
A split button menu
added to the Ribbon.



InsertBeforeMso=”value”
onAction=”value”
enabled=”true|false”
visible=”true|false”
screentip=”value”
supertip=”value”
keytip=”value”>

For example, the following XML code creates a check box that, when clicked, runs a macro
named chkToggleProofingErrors_OnAction:

<checkbox id=”chkToggleProofingErrors” 
label=”Show Proofing Errors”
onAction=”Module1.chkToggleProofingErrors_OnAction” />

Figure 13.9 shows the resulting check box.

13

Chapter 13 Customizing the Office 2007 Ribbon282

Figure 13.9
A check box added
to the Ribbon.

Here’s the chkToggleProofingErrors_OnAction macro:

Sub chkToggleProofingErrors_OnAction(ByVal control As IRibbonControl, 
➥pressed As Boolean)

With ActiveDocument
.ShowSpellingErrors = pressed
.ShowGrammaticalErrors = pressed

End With
Application.ScreenRefresh

End Sub

Notice that the Sub statement includes not only the IRibbonControl object, but also a
Boolean variable named pressed. This variable passes to the macro the current state of the
check box control: pressed is True when the check box is activated, and it’s False when the
check box is deactivated. In this case, you use the pressed value to toggle the active docu-
ment’s ShowSpellingErrors and ShowGrammaticalErrors properties on and off.

Creating a Toggle Button
A toggle button control is very similar to a check box in that it switches between one of
two states: pressed and not pressed. Therefore, as with a check box, you can use it to run a
macro that toggles some setting on and off. You create a toggle button by using the
<toggleButton> element:



283Creating Custom Controls

<toggleButton id=”value” 
label=”value”
imageMso=”value”
size=”normal|large”
InsertAfterMso=”value”
InsertBeforeMso=”value”
onAction=”value”
enabled=”true|false”
visible=”true|false”
screentip=”value”
supertip=”value”
keytip=”value” />

For example, the following XML code creates a toggle button that, when clicked, runs a
macro named ToggleDeveloperTab:

Here’s an example:

<toggleButton id=”tbToggleDeveloperTab” 
imageMso=”VisualBasic” 
label=”Show Developer Tab” 
size=”large” 
onAction=”Module1.tbToggleDeveloperTab_OnAction” />

Figure 13.10 shows the resulting toggle button.

13

Figure 13.10
A toggle button added to the
Ribbon.

Here’s the tbToggleDeveloperTab_OnAction macro:

Sub tbToggleDeveloperTab_OnAction(ByVal control As IRibbonControl, 
➥pressed As Boolean)

Options.ShowDevTools = pressed
End Sub

➔ When your toggle button (or check box) alters an application setting, the control’s initial state should reflect the current value of the
setting.To learn how to do this, see “Initializing Controls,” p. 290.

As with the <checkBox> element, the Sub statement for the <toggleButton> element
includes a Boolean variable named pressed that passes the current state of the toggle but-
ton. In Figure 13.10, you can see that the toggle button is activated, so pressed is True,
which then becomes the ShowDevTools property value (which means the Developer tab
appears in Figure 13.10).



Creating a Drop-Down List
Check boxes and toggle buttons are fine when your macro toggles a setting on or off or
chooses between two states. However, you’ll often need to provide more choices than that.
For example, in Chapter 7 you saw the InsertHyperlinks function that inserts a hyperlink
for each instance of a specified style, which you passed to the function as a string. As a
front-end for this function, you might want to give the user a choice of styles from which
the hyperlinks are created.

➔ To get the details on the InsertHyperlinks function, see “Programming the Paragraph Object,” p. 136.

In a case such as this where you have more than two choices, you can place those items in a
drop-down list. To set this up in RibbonX, you begin with the <dropdown> element:

<dropDown id=”value” 
label=”value”
imageMso=”value”
size=”normal|large”
InsertAfterMso=”value”
InsertBeforeMso=”value”
onAction=”value”
enabled=”true|false”
visible=”true|false”
screentip=”value”
supertip=”value”
keytip=”value”
showItemImage=”true|false”
showItemLabel=”true|false”
showImage=”true|false”
showLabel=”true|false”>

Here, the showImage attribute determines whether the image specified by the imageMso
attribute is displayed, and the showLabel attribute determines whether the text specified by
the label attribute is displayed.

Here’s an example:

<dropDown id=”lstInsertHyperlinksFor” 
label=”Insert Hyperlinks For” 
onAction=”Module1.lstInsertHyperlinksFor_OnAction”>

</dropDown>

The <dropdown> element creates just an empty drop-down list. To populate the list, you
create multiple <item> elements:

<item id=”value” 
label=”value”
imageMso=”value”
screentip=”value”
supertip=”value” />

In the <dropdown> element, you can use the showItemImage attribute to determine whether
the <item> elements’ images are displayed. You can also use the showItemLabel attribute to
determine whether the <item> elements’ labels are displayed.

13

Chapter 13 Customizing the Office 2007 Ribbon284



285Creating Custom Controls

You insert the <item> elements between the <dropdown> and </dropdown> elements, as in
this example:

<dropDown id=”lstInsertHyperlinksFor” 
label=”Insert Hyperlinks For” 
onAction=”Module1.lstInsertHyperlinksFor_OnAction”>

<item id=”heading1” label=”Heading 1”/>
<item id=”heading2” label=”Heading 2”/>
<item id=”heading3” label=”Heading 3”/>

</dropDown>

Figure 13.11 shows the resulting drop-down list.

➔ By default, no list item is selected when your custom drop-down code first executes; to learn how to select an item at startup, see
“Initializing Controls,” p. 290.

13

Figure 13.11
A drop-down list added
to the Ribbon.

Here’s the lstInsertHyperlinksFor_OnAction macro:

Sub lstInsertHyperlinksFor_OnAction(control As IRibbonControl, id As String, 
➥index As Integer)

Select Case id
Case “heading1”

InsertHyperlinks “Heading 1”
Case “heading2”

InsertHyperlinks “Heading 2”
Case “heading3”

InsertHyperlinks “Heading 3”
End Select

End Sub

Notice that the Sub statement includes not only the usual IRibbonControl object, but also a
String variable named id and an Integer variable named index. The id variable returns
the value of the id attribute of the <item> object that was clicked in the drop-down list; the
index variable returns the index of the clicked <item> object within the list, where the first
item in the list has index 0, the second item has index 1, and so on. The procedure uses
Select Case to process the id value, and then calls the InsertHyperlinks function with the
corresponding style string.

Creating a Gallery
The more choices you have to offer, the less attractive becomes the drop-down list control
because the list just gets too long to navigate efficiently. A better solution for a large num-
ber of options is a gallery control, which displays multiple items in the number of rows and
columns you specify. To create a gallery in RibbonX, begin with the <gallery> element:



<gallery id=”value” 
label=”value”
imageMso=”value”
size=”normal|large”
InsertAfterMso=”value”
InsertBeforeMso=”value”
onAction=”value”
enabled=”true|false”
visible=”true|false”
screentip=”value”
supertip=”value”
keytip=”value”
showItemImage=”true|false”
showItemLabel=”true|false”
showImage=”true|false”
showLabel=”true|false”>
rows=”value”
columns=”value”>

Here’s an example:

<gallery id=”galInsertHyperlinksFor” 
columns=”3” 
size=”large” 
label=”Insert Hyperlinks For” 
imageMso=”HyperlinkInsert”
onAction=”Module1.galInsertHyperlinksFor_OnAction”>

</gallery>

The <gallery> element creates an empty drop-down list. To populate the list, you create
multiple <item> elements, followed by one or more <button> elements, if needed. The basic
idea is that the <item> elements provide the user with several predefined choices, whereas
the <button> elements run code that enable the user to make other choices, change the
configuration, and so on. You use the <gallery> element’s rows and columns attributes to
specify the configuration of the items within the gallery.

You insert the <item> and <button> elements between the <gallery> and </gallery> ele-
ments, with the <item> elements first, as shown in this example:

<gallery id=”gallery1” 
columns=”3” 
size=”large” 
label=”Insert Hyperlinks For” 
imageMso=”HyperlinkInsert”
onAction=”Module1.galInsertHyperlinksFor_OnAction”>

<item id=”galleryheading1” imageMso=”_1” label=”Heading 1” />
<item id=”galleryheading2” imageMso=”_2” label=”Heading 2” />
<item id=”galleryheading3” imageMso=”_3” label=”Heading 3” />
<item id=”galleryheading4” imageMso=”_4” label=”Heading 4” />
<item id=”galleryheading5” imageMso=”_5” label=”Heading 5” />
<item id=”galleryheading6” imageMso=”_6” label=”Heading 6” />
<item id=”galleryheading7” imageMso=”_7” label=”Heading 7” />
<item id=”galleryheading8” imageMso=”_8” label=”Heading 8” />
<item id=”galleryheading9” imageMso=”_9” label=”Heading 9” />
<button id=”btnChooseAnotherStyle” 

label=”Choose Another Style...” 
imageMso=”StylesPane” 

13

Chapter 13 Customizing the Office 2007 Ribbon286



287Creating Custom Controls

onAction=”Module1.btnChooseAnotherStyle_OnAction” />
</gallery>

Figure 13.12 shows the resulting gallery.

13

Figure 13.12
A gallery added to the
Ribbon.

Here are the lstInsertHyperlinksFor_OnAction and btnChooseAnotherStyle_OnAction
macros:

Sub galInsertHyperlinksFor_OnAction(control As IRibbonControl, id As String, 
➥index As Integer)

Select Case id
Case “galleryheading1”

InsertHyperlinks “Heading 1”
Case “galleryheading2”

InsertHyperlinks “Heading 2”
Case “galleryheading3”

InsertHyperlinks “Heading 3”
Case “galleryheading4”

InsertHyperlinks “Heading 4”
Case “galleryheading5”

InsertHyperlinks “Heading 5”
Case “galleryheading6”

InsertHyperlinks “Heading 6”
Case “galleryheading7”

InsertHyperlinks “Heading 7”
Case “galleryheading8”

InsertHyperlinks “Heading 8”
Case “galleryheading9”

InsertHyperlinks “Heading 9”
End Select

End Sub

Sub btnChooseAnotherStyle_OnAction(ByVal control As IRibbonControl)
Dim strStyle As String
strStyle = InputBox(“Type the style you want to use:”)
If strStyle <> “” Then InsertHyperlinks (strStyle)

End Sub

As with the <dropDown> element, the Sub statement for a <gallery> element includes a
String variable named id and an Integer variable named index. The id variable returns
the value of the id attribute of the <item> object that was clicked in the gallery; the index
variable returns the index of the clicked <item> object within the gallery, where the first
item in the gallery has index 0, the second item has index 1, and so on.



Creating a Combo Box
If you want to provide the user with the choice of either selecting an item from a list or
typing a value, you need to create a combo box control. To set this up in RibbonX, you
begin with the <comboBox> element:

<comboBox id=”value” 
label=”value”
imageMso=”value”
size=”normal|large”
InsertAfterMso=”value”
InsertBeforeMso=”value”
enabled=”true|false”
visible=”true|false”
screentip=”value”
supertip=”value”
keytip=”value”
showItemImage=”true|false”
showImage=”true|false”
showLabel=”true|false”>
onChange=”value”
sizeString=”value”
maxLength=”value”>

The first thing to notice here is that instead of the onAction attribute, the <comboBox> ele-
ment uses the onChange attribute. This specifies a macro to run whenever the value of the
combo box changes (when either a new value is entered in the edit box or a new value is
selected in the list).

The other new attributes here are sizeString, a string of characters that determines the
width of the edit box (for example, mmmmmmmmmm), and maxLength, which specifies the maxi-
mum number of characters that the user can enter into the edit box.

Here’s an example:

<comboBox id=”cbWindows” 
label=”Windows”
onChange=”Module1.cbWindows_OnAction”
sizeString=”mmmmmmmmmm”
maxLength=”20”>

The <comboBox> element creates an empty drop-down list. As with the drop-down control,
you populate the list with multiple <item> elements.

See “Working with Ribbon Commands at Runtime,” later in this chapter, for an example of
a combo box control.

13

Chapter 13 Customizing the Office 2007 Ribbon288

If you want to use just a text box in your custom Ribbon, RibbonX offers the <editBox> element.
This control uses most of the same attributes as <comboBox>, including onChange,
sizeString,maxLength, and getText (discussed later in this chapter).

N
O

T
E



289Creating Custom Controls

Creating a Dialog Launcher
You’ve probably seen the small button that appears in the lower-right corner of some
Ribbon groups. In Word’s Home tab, for example, the button appears in the Clipboard,
Font, Paragraph, and Styles groups. In each case, clicking the button opens a dialog box. In
the Font group, for example, clicking the button opens the Font dialog box.

This button is called a dialog box launcher, and you can add them to your custom Ribbon
groups. Your custom dialog box launchers can open any of the application’s built-in dialog
boxes or a custom dialog box that you’ve built in the Visual Basic Editor.

➔ To learn how to open built-in dialog boxes, see “Accessing an Application’s Built-In Dialog Boxes,” p. 83.

➔ To learn how to open custom dialog boxes, see “Displaying the Form,” p. 258.

You begin with an empty <dialogBoxLauncher> element:

<dialogBoxLauncher>
</dialogBoxLauncher>

Between these elements, you add a single <button> element:

<dialogBoxLauncher>
<button id=”dlLaunchInsertHyperlinkDialog” 

onAction=”Module1.dlLaunchInsertHyperlinkDialog_OnAction” />
</dialogBoxLauncher>

In Figure 13.13, I’ve created a new custom group for the Insert Hyperlinks For gallery (see the
previous section), and the dialog box launcher appears in the lower-right corner of the group.

13

Dialog box launcher

Figure 13.13
A dialog box launcher
added to a custom
group.

Here’s the code for the LaunchInsertHyperlinkDialog macro:

Sub dlLaunchInsertHyperlinkDialog_OnAction(ByVal control As IRibbonControl)
Dialogs(wdDialogInsertHyperlink).Show

End Sub

Working with Ribbon Commands at Runtime
The controls you’ve seen so far are all ideally suited to running macros: You click a button or
select a menu item, and the associated callback macro executes. That may be all you’re really
looking for as far as customizing the Ribbon goes. If so, you can cheerfully skip the rest of



this chapter. However, if you also want to set up the Ribbon to produce certain “states” that
your macros can use, then you need to delve further into the RibbonX control toolkit.

What do I mean by “state”? I mean a set of conditions that your macros can examine and
to which they react accordingly. In practice, this means handling the following three tasks
in your code:

■ Initializing controls—This means using code to set up your controls when your VBA
application first loads. This might mean setting the state of a check box or toggle but-
ton, enabling or disabling a button, or populating a gallery element.

■ Resetting controls—This means re-initializing your controls.

■ Getting control values—This means using code to return the current state of some
other control. With a check box control, for example, your macro can do one thing if
the check box is activated, and it can do something else if it’s deactivated.

■ Changing control values—This means using code to modify the current state of a
control. For example, your code might change the state of a toggle button or change
the selected item in a drop-down list.

The next three sections take you through each task in more detail.

Initializing Controls
Your custom RibbonX code might need to set your controls to a particular value or state
when your VBA application first loads. For example, earlier in this chapter you saw toggle
button code that turned the Developer tab on and off. However, regardless of the current
state of the Developer tab, VBA always shows a toggle in its unpressed state at startup. In
this case, the application should get the current state of the Developer tab via the
Options.ShowDevTools property, and then set the state of the toggle button to match.

You do this by specifying an attribute that points to a callback macro, and that macro
returns a value that determines the initial state of the control. The attribute that deter-
mines whether a <toggleButton> element is initially pressed or unpressed is getPressed.
Here’s the <toggleButton> element from earlier in this chapter with the getPressed
attribute added:

<toggleButton id=”tbToggleDeveloperTab” 
imageMso=”VisualBasic” 
label=”Show Developer Tab” 
size=”large” 
getPressed=”Module1.tbToggleDeveloperTab_GetPressed”
onAction=”Module1.tbToggleDeveloperTab_OnAction” />

When the document first loads, the program runs the macro specified by getPressed,
which in this case is tbToggleDeveloperTab_GetPressed:

Sub tbToggleDeveloperTab_GetPressed(ByVal control As IRibbonControl, ByRef 
➥returnVal)

returnVal = Options.ShowDevTools
End Sub

13

Chapter 13 Customizing the Office 2007 Ribbon290



291Creating Custom Controls

The returnVal variable (which can have any name you like) returns to the toggle button
control the value given by Options.ShowDevTools, and this determines whether the toggle
button appears pressed.

You can also initialize other attributes such as enabled, visible, size, label, and more. In
each case, you do this by specifying callback attributes that point to callback macros, and
those macro return values that determine the initial state of the control. Here are some
common callback attributes:

getEnabled Initializes the control’s enabled attribute.

getImageMso Initializes the control’s imageMso attribute.

getKeyTip Initializes the control’s keyTip attribute.

getLabel Initializes the control’s label attribute.

getPressed Initializes the state of a check box (checked or
unchecked) or toggle button (pressed or unpressed).

getScreentip Initializes the control’s screentip attribute.

getSelectedItemID Initializes a drop-down list by specifying the id of
the item that should be selected at first. Use either
this attribute or getSelectedItemIndex, but not
both.

getSelectedItemIndex Initializes a drop-down list by specifying the index
of the item that should be selected at first. Use
either this attribute or getSelectedItemID, but not
both.

getShowLabel Initializes the control’s showLabel attribute.

getSize Initializes the control’s size attribute.

getSupertip Initializes the control’s supertip attribute.

getVisible Initializes the control’s visible attribute.

With a drop-down list, Office doesn’t show a selected item by default at startup, which can
be disconcerting. The getSelectedItemID and getSelectedItemIndex attributes are very
handy for making sure that a drop-down list displays an item at startup. In most cases,
you’ll want the first item in the list selected, and you can accomplish this most easily by
using getSelectedItemIndex:

getSelectedItemIndex=”lstInsertHyperlinksFor_GetSelectedItemIndex”

Here’s the callback macro:

Sub lstInsertHyperlinksFor_GetSelectedItemIndex(ByVal control As 
➥IRibbonControl, ByRef returnVal)

returnVal = 0
End Sub

This works fine for drop-down lists where you’ve defined static <menu> items in your cus-
tom XML code. However, it’s often useful to populate a drop-down list on the fly when

13



you first load the document. You can do this by including three attributes in the <dropDown>
element:

getItemCount Returns the number of items you want to add to the
list.

getItemID Returns the id value of each item you want to add to
the list.

getItemLabel Returns the label value of each item you want to
add to the list.

In each case, you specify a callback macro that returns the list data.

You can also use the attributes to populate the list portion of a <comboBox> element at
startup. To place an initial value in the edit box, you use the getText attribute to specify a
callback macro that returns a string value that appears in the edit box.

To demonstrate how these callbacks work, let’s run through an example that populates a
combo box control with a list of the application’s open windows.

Here’s the XML:

<comboBox id=”cbWindows” 
label=”Windows” 
sizeString=”mmmmmmmmmmm”
getItemCount=”Module1.cbWindows_GetItemCount”
getItemID=”Module1.cbWindows_GetItemID”
getItemLabel=”Module1.cbWindows_GetItemLabel”
getText=”Module1.cbWindows_GetText” />

Here’s the getItemCount attribute’s callback macro:

Sub cbWindows_GetItemCount(ByVal control As IRibbonControl, ByRef returnVal)
returnVal = Windows.Count

End Sub

This procedure just returns the value of the Windows collection’s Count property. When
RibbonX knows the count, it then proceeds to call the getItemID and getItemLabel call-
back macros that number of times. For example, if three documents are open, RibbonX
calls the getItemID macro three times and then it calls the getItemLabel macro three times.
Each time, the macros return the ID and label, respectively, of the next item in the list.

To see how this is done, here’s the code for the getItemID attribute’s callback macro:

Sub cbWindows_GetItemID(ByVal control As IRibbonControl, index As Integer, 
➥ByRef returnVal)

returnVal = “cbWindowsItem” & index
End Sub

Notice that the Sub statement includes an extra argument named index. The list items are
stored internally as an array, so index is the subscript of the next item in the array. The first
time RibbonX calls this procedure, the value of index is 0, the second time index is 1, and
so on. So, in the callback macro, you can create unique id values by appending the current

13

Chapter 13 Customizing the Office 2007 Ribbon292



293Creating Custom Controls

index value to some string. In this case, the item IDs are cbWindowsItem0, cbWindowsItem1,
and so on.

Finally, here’s the code for the getItemLabel attribute’s callback macro:

Sub cbWindows_GetItemLabel(ByVal control As IRibbonControl, 
➥index As Integer, ByRef returnVal)

returnVal = Windows(index + 1)
End Sub

Again, the Sub statement includes the index value. In this case, however, use that value to
return the corresponding member of the Windows collection—Windows(1), Windows(2), and
so on. Each of these returns the name of the window, so those are the names that appear in
the drop-down list.

13

You can use the same procedure to populate a gallery control at startup.The <gallery> element
also supports the getItemCount,getItemID, and getItemLabel attributes.N

O
T

E

With a <comboBox> element, you can also specify the initial edit box value with the getText
attribute. Here’s an example callback macro:

Sub cbWindows_GetItemCount(ByVal control As IRibbonControl, ByRef returnVal)
returnVal = “Select a window...”

End Sub

In this example, you don’t actually want the user to type a value, so the edit box is initially
populated with the Select a window... instruction, as shown in Figure 13.14.

Figure 13.14
A combo box with its list
and edit box initialized
at startup.

Resetting Controls
The attribute callback macros run when RibbonX initializes your custom interface. What hap-
pens, however, if a change of state in your program also requires a change of state in a custom
Ribbon control? For example, in the previous section, you saw an example where I populated a
combo box control with a list of the open windows. What happens if you open another docu-
ment or close an existing document? RibbonX offers no way of recognizing events of any kind,
so it has no way of knowing that the collection of open windows has changed. What you need
is to implement some mechanism that enables you to repopulate the list.



To do this, you have to let VBA know that your Ribbon interface exists. This requires three
things. First, you need to add a module-level variable declared with the IRibbonUI type:

Private myRibbon As IRibbonUI

Second, you include the following procedure to initialize the myRibbon object:

Sub Ribbon_OnLoad(ByVal ribbon As Office.IRibbonUI)
Set myRibbon = ribbon)

End Sub

Finally, you add the onLoad attribute to the <customUI> element and set it equal to the name
of your initialization procedure:

<customUI xmlns=”http://schemas.microsoft.com/office/2006/01/customui” 
➥onLoad=”Ribbon customization_OnLoad”>

The significance of these three steps is that your code can now work with an IRibbonUI
object, which has no properties but does come with two important methods:

ribbon.Invalidate()
ribbon.InvalidateControl(ControlID)

ribbon An IRibbonUI object.

ControlID A string value that specifies the ID of a Ribbon con-
trol in your custom XML.

You use these methods to reinitialize some or all of your custom interface. If you run
InvalidateControl, RibbonX reinitializes the specified control; if you run Invalidate,
instead, RibbonX reinitializes every one of your custom controls.

13

Chapter 13 Customizing the Office 2007 Ribbon294

If you have many controls, or if you have controls with lengthy initialization callbacks, running the
Invalidate method could take a while.Therefore, it’s almost always best to use
InvalidateControl, instead, so that you reinitialize only a specific control.

C A U T I O N

To see how this works, let’s add a button to the same group as the combo box from the pre-
vious section:

<button id=”btnRefreshList”
label=”Refresh List”
imageMso=”Refresh”
onAction=”Module1.btnRefreshList_OnAction” />

Figure 13.15 shows the button added to the Close Windows group.



295Creating Custom Controls

Here’s the btnRefreshList_OnAction macro:

Sub btnRefreshList_OnAction(ByVal control As IRibbonControl)
myRibbon.InvalidateControl “combobox1”

End Sub

This procedure invalidates the btnRefreshList control. This tells RibbonX to run through
all of that control’s callback macros, which in this case serves to repopulate the list with the
current set of open windows, as well as reset the edit box text.

Getting and Changing Control Values
To round out your RibbonX interface, you’ll want at least some of the controls to interact
with each other. For example, when you activate a particular check box, you might want
this to also disable a certain button. Similarly, if the user selects or enters a value in a
combo box, you might want to use that value in a procedure.

The bad news is that when it comes to determining the current state or value of a control,
you’re on your own. That is, RibbonX does not offer any properties or methods by which
you can work with custom Ribbon controls directly. The good news is that it’s not difficult
to provide your code with limited access to the current state or value of a control.

The trick to all this is to establish module-level variables that hold the state or value of your
controls. For a check box or toggle button, use a Boolean variable that you set to True when
the control is checked or pressed, and that you set to False when the control is unchecked
or unpressed. You initialize this variable in the getPressed callback macro, and you update
the variable in the onAction callback macro. Here’s some code that declares a module-level
Boolean variable named booDeveloperTools, and then shows a toggle button’s getPressed
and onAction callback macros, both of which change the value of booDeveloperTools:

Private booDeveloperTools As Boolean
Sub tbToggleDeveloperTools_GetPressed(ByVal control As IRibbonControl, 
➥ByRef returnVal)

returnVal = Options.ShowDevTools
booDeveloperTools = returnVal

End Sub

Sub tbToggleDeveloperTools_OnAction(ByVal control As IRibbonControl, 
➥pressed As Boolean)

Options.ShowDevTools = pressed

13

Figure 13.15
The Refresh button
updates the Windows
list.



booDeveloperTools = pressed
End Sub

For a combo box, use a String variable that stores the value entered or selected by the user.
Use the getText callback macro to initialize the variable, and use the onChange callback
macro to update the variable. In the combo box example, you can declare a module-level
named strSelectedWindow and update the callback macros as follows:

Private strSelectedWindow As String
Sub cbWindows_GetText(ByVal control As IRibbonControl, ByRef returnVal)

returnVal = “Select a window...”
strSelectedWindow = “”

End Sub

Sub cbWindows_OnChange(ByVal control As IRibbonControl, text As String)
strSelectedWindow = text

End Sub

Notice that in this case strSelectedWindow is initially set to the null string because at first
no window is selected.

Because these new variables are module-level, you can them use them in any other proce-
dure in the module. For example, suppose you want to take the currently selected window
in the combo box and close it. One way to accomplish this would be to add a new button to
the Ribbon, and you want to set up that button so that it closes the selected window. Here’s
the XML for the new button:

<button id=”btnCloseWindow” 
label=”Close Window” 
imageMso=”FileClose” 
onAction=”Module1.btnCloseWindow_OnAction” />

Figure 13.16 shows the button added to the Close Windows group.

13

Chapter 13 Customizing the Office 2007 Ribbon296

Figure 13.16
The Close Window but-
ton closes the currently
selected window.

Here’s the btnCloseWindow_OnAction macro:

Sub btnCloseWindow_OnAction(ByVal control As IRibbonControl)
If strSelectedWindow <> “” Then

Windows(strSelectedWindow).Close
myRibbon.InvalidateControl “combobox1”

End If
End Sub



297Creating Custom Controls

The code makes sure that strSelectedWindow isn’t the null string, and then runs the Close
method on the window name stored in strSelectedWindow. Because closing an open win-
dow puts the window list out of date, the code also runs InvalidateControl on the combo
box to reset it.

The btnCloseWindow_OnAction code checks strSelectedWindow to make sure it’s not null.
However, a properly constructed interface would disable the Close Window button while
not window is selected. To handle this, you must first add a getEnabled attribute to the
Close Window button:

<button id=”btnCloseWindow” 
label=”Close Window” 
imageMso=”FileClose” 
getEnabled=”Module1.btnCloseWindow_GetEnabled”
onAction=”Module1.btnCloseWindow_OnAction” />

Here’s the callback macro:

Sub btnCloseWindow_GetEnabled(ByVal control As IRibbonControl, ByRef returnVal)
If strSelectedWindow = “” Then

returnVal = False
Else

returnVal = True
End If

End Sub

If strSelectedWindow is the null string, the macro returns False and the button is disabled;
otherwise it returns True and the button is enabled.

The enabled state of the button also needs to be checked when the combo box changes and
when we refresh the list. Here are the corresponding macros updated to run the
InvalidateControl method on the btnCloseWindow element:

Sub cbWindows_OnChange(ByVal control As IRibbonControl, text As String)
strSelectedWindow = text
myRibbon.InvalidateControl “btnCloseWindow”

End Sub

Sub btnRefreshList_OnAction(ByVal control As IRibbonControl)
myRibbon.InvalidateControl “cbWindows”
myRibbon.InvalidateControl “btnCloseWindow”

End Sub

From Here
■ If you just want a quick way to run some of your own macros, the Office 2007 pro-

grams enable you to add macros to the Quick Access toolbar; see “Creating a Quick
Access Toolbar Button for a Recorded Macro,” p. 11.

■ To learn how to open built-in dialog boxes, see “Accessing an Application’s Built-In
Dialog Boxes,” p. 83.

■ For the details on using VBA with Word, see Chapter 7, “Programming Word,” 
p. 115. 

13



■ To get the details on the InsertHyperlinks function, see “Programming the Paragraph
Object,” p. 136.

■ To learn how to open custom dialog boxes, see “Displaying the Form,” p. 258.

13

Chapter 13 Customizing the Office 2007 Ribbon298



I N  T H I S  C H A P T E R

VBA Tips and Techniques

14Although I’ve labeled this a “Tips and Techniques”
chapter, it’s more like a hodgepodge of miscella-
neous VBA ideas and methods that simply didn’t fit
anywhere else in the book. Although you can write
powerful and useful VBA applications without using
any of the techniques I’ve outlined in this chapter
(with the possible exception of the section “Tips for
Faster Procedures”), they’re indispensable when
you do need them. For example, if you want to run
your own VBA projects without having to enable
the macros every time, you need to digitally sign
each project. Similarly, any time you need to store
user choices or program parameters, the Registry is
the ideal place to do so. And although accessing the
file system via VBA sounds hopelessly arcane, you’ll
be pleasantly surprised at just how often this crucial
skill comes in handy. This chapter covers all these
techniques and much more.

Working with Modules
You’ve seen so far that modules are where most of
the VBA action takes place. True, you’ve also seen
that much VBA work happens within user form
windows and the Properties window, but modules
are really the heart of VBA. Given that, it will help
to have a few module manipulation techniques
under your belt. To that end, the next four sections
show you how to rename, export, import, and
remove modules.

Renaming a Module
When you insert a new module, VBA gives it an
uninspiring name such as Module1. That’s fine if
you’ll just be using the one module in your project,
but if you’ll be working with multiple modules, you
should consider giving meaningful names to each
module to help differentiate them.

Working with Modules  . . . . . . . . . . . . . . . . . .299

Configuring Macro Security Settings  . . . . . .301

Digitally Signing a VBA Project  . . . . . . . . . . .304

Saving Application Settings in the 
Registry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305

Accessing the File System Through VBA  . . . .309

Tips for Faster Procedures . . . . . . . . . . . . . . . .319



To rename a module, follow these steps:

1. Select the module in the Project Explorer.

2. In the Properties window, use the (Name) property to rename the module. Make sure
the name you use begins with a letter, contains no spaces or punctuation marks (under-
scores are acceptable, however), and is no longer than 31 characters.

Exporting a Module
The procedures and functions in a module are usually specific to the application in which
the project was created. For example, procedures in a Word-based module usually reference
Word-specific objects such as bookmarks and paragraphs. However, you might have generic
procedures and functions that can be used in different contexts. How, then, can you share
code between applications?

One way to do it would be to use the Clipboard to copy data from one module and paste it
in a module in a different application. Another way is to export the module to a BAS (.bas)
file. In the next section, I’ll show you how to import BAS files into your VBA projects.

The BAS (Basic) file format is the one used by Visual Basic modules (which means you
could use your VBA code in a Visual Basic project), but it’s really just a simple text file.
Here are the steps to follow to export a module:

1. In the Project Explorer, click the module you want to export.

2. Choose File, Export File, or press Ctrl+E. The Visual Basic Editor displays the Export
File dialog box.

3. Select a location and type a filename for the BAS file.

4. Click Save. The Visual Basic Editor creates the new BAS file.

Importing a Module
If you exported a module to a BAS file, you can import that file as a module in another
application’s VBA project. Also, if you’ve used Visual Basic before, you can leverage your
existing code by importing Visual Basic modules into your project. Here are the steps to
follow:

1. If you have multiple projects open, use the Project Explorer to click any object in the
project you want to use to store the imported file.

2. Choose File, Import File, or press Ctrl+M to display the Import File dialog box.

3. Click the BAS file that you want to import.

4. Click Open. The Visual Basic Editor adds a new module for the BAS file.
14

Chapter 14 VBA Tips and Techniques300



301Configuring Macro Security Settings

Removing a Module
If you no longer need a module, you should remove it from your project to reduce the clut-
ter in the Project Explorer. Use the following technique:

1. Click the module in the Project Explorer.

2. Choose File, Remove Module, where Module is the name of the module.

3. The Visual Basic Editor asks if you want to export the module before removing it:

• If you want to export the module first, click Yes and use the Export File dialog
box to export the module to a BAS file.

• Otherwise, click No to remove the module.

Configuring Macro Security Settings
With macro viruses becoming an increasing threat, working with VBA projects can be diffi-
cult. This is true even if you just want to run your own VBA projects, because Office 2007
disables macros in documents that aren’t in a trusted location. You have three ways to work
around this problem:

■ Store your macro-enabled documents in a trusted location. Office allows those docu-
ments’ macros to run, while disabling macros in every other document.

■ Enable all macros in all documents. This ensures that you can run your own macros,
but it also leaves you open to viruses in third-party documents.

■ Create a personal security certificate and use it to digitally sign your VBA projects.

For the last of these options, see the next section to learn how to create a personal security
certificate. For the first two options, the next two sections show you how to configure the
Office 2007 macro security settings.

Setting Up a Trusted Location
The easiest way to ensure that you can run your own VBA projects without also leaving
yourself open to malware in third-party documents is to set up one or more trusted loca-
tions and use them to store your macro-enabled documents. Office comes with several pre-
defined trusted locations for documents such as templates and add-ins, but none of them
are easy to find. A better idea is to set up a location such as your user profile’s Documents
(or My Documents in Windows XP) folder or one of its subfolders. Here are the steps to
follow to set up a folder as a trusted location:

1. In an Office application, choose Office Application Options, where Application is the
name of the program you’re working with.

2. Click Trust Center.

14



3. Click Trust Center Settings to open the Trust Center dialog box.

4. Click Trusted Locations.

5. Click Add New Location to open the Microsoft Office Trusted Location dialog box.

6. Use the Path text box to type the folder path, or click Browse to use the Browse dialog
box to select the folder.

7. If you want the folder’s subfolders to also be trusted locations, click to activate the
Subfolders of This Location Are Also Trusted check box.

8. Click OK.

9. Repeat steps 5 through 8 to add more trusted locations.

10. Click OK to return to the Options dialog box.

11. Click OK.

12. Repeat steps 1 through 11 for any other Office applications that you use to create VBA
projects.

14

Chapter 14 VBA Tips and Techniques302

After you set up a folder as a trusted location, keep it secure by using it to store only macro-enabled
documents that you know are safe. In most cases, you should use the trusted location to store only
your own VBA projects and macro-enabled documents that you’ve scanned with anti-virus software.

C A U T I O N

With your trusted locations in place, you should now ensure that each Office application is
set up to disable all macros except those in documents that reside in trusted locations. The
next section tells you how to do this.

Setting the Macro Security Level
By default, the Office 2007 applications disable document macros unless they’re in a docu-
ment from a trusted location. When you open a macro-enabled document outside of a
trusted location, you see the Security Warning message bar, which tells you that Macros
have been disabled. Clicking the Options button displays the Microsoft Office Security
Options dialog box, shown in Figure 14.1. If you want to use the document’s macros, you
click the Enable This Content option and then click OK.



303Configuring Macro Security Settings

This default behavior is reasonable and should ensure that you minimize the chances of
unleashing a VBA virus on your system. However, you might want to change the default
macro security level in three situations:

■ You never enable macros from untrusted locations, so you can configure Office to not
display the Security Warning pane.

■ You digitally sign your own macros (as described in the next section), so you can con-
figure Office to only enable macros from digitally signed VBA projects.

■ The only macro-enabled documents you use are those you create yourself or those that
you have scanned with an anti-virus program, so you can configure Office to allow all
macros.

If any of these situations applies to you, follow these steps to change the macro security
level:

1. In an Office application, choose Office Application Options, where Application is the
name of the program you’re working with.

2. Click Trust Center.

3. Click Trust Center Settings to open the Trust Center dialog box.

4. Click Macro Settings.

14

Message bar

Figure 14.1
By default, the Office
2007 applications disable
macros from untrusted
locations.



5. Click to activate one of the following options:

• Disable All Macros Without Notification—Click this option to prevent the
Office application from showing the Security Warning pane when you open a
macro-enabled document.

• Disable All Macros With Notification—This is the default setting. 

• Disable All Macros Except Digitally Signed Macros—Click this option to
enable only VBA projects that have a valid digital signature.

• Enable All Macros—Click this option to enable code in any document that 
contains macros.

6. Click OK to return to the Options dialog box.

7. Click OK.

8. Repeat steps 1 through 7 for any other Office applications that you use to create VBA
projects.

Digitally Signing a VBA Project
The macro virus situation is even worse if you want to distribute your VBA applications,
because many people are loath to accept files that have macros. Even if your reputation is
such that people won’t worry about files that come from you, how can they be sure that the
code they have really was created by you? The Visual Basic Editor enables you to use a cer-
tificate to digitally sign your projects. A certificate is your iron-clad guarantee that you cre-
ated a project. You get a certificate from a certified signing authority, such as VeriSign
(www.verisign.com) or Thawte (www.thawte.com). 

14

Chapter 14 VBA Tips and Techniques304

To see more code signing options, you can also run a web search for “code signing vba.”You can also
check out the list of companies that are members of Microsoft’s Root Certificate Program, found at
the following URL:

http://msdn.microsoft.com/library/en-us/dnsecure/html/rootcertprog.asp

T
IP

What if you just want to sign your own projects? In that case, you don’t need a third-party
certificate. Instead, Office 2007 comes with a tool that enables you “self-certify”—create a
personal digital certificate that you can apply to your own projects. Follow these steps:

1. Choose Start, All Programs, Microsoft Office, Microsoft Office Tools, Digital
Certificate for VBA Projects. The Create Digital Certificate dialog box appears.

2. Use the Your Certificate’s Name text box to type your name (or whatever name you
want to use), and then click OK.

3. When you see the SelfCert success dialog box, click OK.

www.verisign.com
www.thawte.com
http://msdn.microsoft.com/library/en-us/dnsecure/html/rootcertprog.asp


305Saving Application Settings in the Registry

When you have your certificate installed, follow these steps to digitally sign a project:

1. In the Visual Basic Editor, use the Project pane to click any object in the project you
want to sign.

2. Choose Tools, Digital Signature. The Digital Signature dialog box appears.

3. Click Choose to display the Select Certificate dialog box, shown in Figure 14.2.

14

Figure 14.2
Use the Select Certificate
dialog box to choose
your certificate.

4. Click the certificate and then click OK. You’re returned to the Digital Signature dialog
box.

5. Click OK.

Saving Application Settings in the Registry
In a VBA procedure, you use variables to store values you need to use while you’re running
the procedure. When the procedure finishes, the values of those variables are wiped from
memory. What do you do if you have values that you want to preserve from one VBA ses-
sion to another? You could store the values somewhere in the document, but this isn’t a
great idea because those values could be easily changed or even deleted.

A better idea is to use the Registry. Windows uses the Registry to store thousands of set-
tings related to software, hardware, and user options. Not only that, but most applications
make use of the Registry as a place to store setup options, customization values selected by
the user, and much more. VBA doesn’t enable you to access the Registry as a whole.
Instead, it provides you with a special key in which you can add, read, change, and delete
your own keys, settings, and values. VBA also provides a number of statements that enable
you to perform these Registry tasks, and the next few sections show you how to use these
statements.



Storing Settings in the Registry
To store a setting in the Registry, use the SaveSetting statement:

SaveSetting appname, section, key, setting

appname The name you want to use to identify your application in the Registry.

section The section in which to store the value. This will be a subkey of the
appname key.

key The name of the key setting that you want to store.

setting The value to which key is being set.

When you run this statement, VBA creates a new key in the Registry, as follows:

\HKEY_CURRENT_USER\Software\VB and VBA Program Settings\appname\section\

The key setting is added to this subkey, and its value is set to setting. For example, con-
sider the following statement:

SaveSetting “VBA for the 2007 Office System”, “Chapter 14”, “Test”, “OK”

Figure 14.3 shows how the new setting appears in the Registry Editor.

14

Chapter 14 VBA Tips and Techniques306

Figure 14.3
Use the
SaveSetting
statement to store
application settings
in the Registry.

Reading Settings from the Registry
After you’ve stored a value in the Registry, you can read that value by using the GetSetting
statement:

GetSetting(appname, section, key[, default])

appname The name you’re using to identify your application in the Registry.

section The section in which the value is stored.

key The name of the key setting that you want to retrieve.

default (Optional) The value to be returned if key doesn’t exist or isn’t set.



307Saving Application Settings in the Registry

To retrieve the value stored using the SaveSetting example shown earlier, you would use a
statement similar to the following:

str = GetSetting(“VBA for Office 2007”, “Chapter 14”, “Test”)

Deleting Settings from the Registry
If you no longer need to track a particular key setting, use the DeleteSetting statement to
remove the setting from the Registry:

DeleteSetting appname, section[, key]

appname The name you’re using to identify your application in the Registry.

section The section in which the key value is stored.

key (Optional) The name of the key setting that you want to delete. If you
omit key, VBA deletes the entire appname\section subkey.

To delete the Test key setting used in the earlier examples, you would use the following
statement:

DeleteSetting “VBA for Office 2007”, “Chapter 14”, “Test”

Tracking File Usage
Let’s work through a concrete example of these Registry statements. Suppose you’d like to
track the number of times a particular document has been opened, as well as the last date
and time the file was opened. Listing 14.1 shows an event handler for the Open event in the
Chaptr14.xlsm workbook. This procedure creates the following subkey:

14

The VBA code for this chapter’s examples is available on my website at
www.mcfedries.com/Office2007VBA/.N

O
T

E

\HKEY_CURRENT_USER\Software\VB and VBA Program Settings\VBA for Office 2007\
➥Chapter 14\

Within this subkey, three settings are stored:

■ NumberOfAccesses—Holds the number of times that the file has been opened.

■ LastAccessDate—Holds the date that the file was last opened.

■ LastAccessTime—Holds the time that the file was last opened.

This procedure performs the following chores:

■ It first uses GetSetting to return the NumberOfAccess value, with a default of 0.

■ If the returned value is 0, this means that the setting doesn’t exist, so this must be the
first time the user has opened the file. In this case, a welcome message is displayed,
and the numAccesses variable is set to 1.

www.mcfedries.com/Office2007VBA/


■ Otherwise, the LastAccessDate and LastAccessTime settings are retrieved, and a differ-
ent welcome message—showing the Registry settings—is displayed.

■ Three SaveSettings statements update the Registry values.

Note, too, that you can run the RemoveChapter14Settings procedure to clear the Registry
entries.

Listing 14.1 The Event Handler for the Chaptr14.xlsm Workbook’s Open Event

Private Sub Workbook_Open()
Dim numAccesses As Integer
Dim lastAccessDate As Date
Dim lastAccessTime As Date
Dim msg As String
‘
‘ Get the number of accesses from the Registry
‘
numAccesses = GetSetting(“VBA for Office 2007”, “Chapter 14”, _

“NumberOfAccesses”, 0)
If numAccesses = 0 Then

‘
‘ This is the first time this file has been opened
‘
MsgBox “Welcome to the Chapter 14 code listings!” _

& vbCrLf & vbCrLf & _
“This is the first time you have opened this file.” _
& vbCrLf & _
“The Registry settings will now be created.”

numAccesses = 1
Else

‘
‘ File has been opened more than once. Get the last date and time.
‘
lastAccessDate = CDate(GetSetting(“VBA for Office 2007”, “Chapter 14”,
➥”LastAccessDate”))
lastAccessTime = CDate(GetSetting(“VBA for Office 2007”, “Chapter 14”,
➥”LastAccessTime”))
msg = “Welcome to the Chapter 14 code listings!” & _

vbCrLf & vbCrLf & _
“You have opened this file “ & numAccesses & “ times.” & _
vbCrLf & _
“You last opened this file on “ & lastAccessDate & “ at “ &
➥lastAccessTime

MsgBox msg, vbOKOnly + vbInformation, “VBA for Office 2007”
End If
‘
‘ Update the settings
‘
SaveSetting “VBA for Office 2007”, “Chapter 14”, “NumberOfAccesses”, _

numAccesses + 1
SaveSetting “VBA for Office 2007”, “Chapter 14”, “LastAccessDate”, Date
SaveSetting “VBA for Office 2007”, “Chapter 14”, “LastAccessTime”, Time

14

Chapter 14 VBA Tips and Techniques308



309Accessing the File System Through VBA

End Sub
Sub RemoveChapter14Setting()

DeleteSetting “VBA for Office 2007”, “Chapter 14”
End Sub

Reading All the Section Settings
Rather than just reading one setting at a time, VBA lets you retrieve every setting in a
given section by using the GetAllSettings statement:

GetAllSettings(appname, section)

appname The name you’re using to identify your application in the Registry.

section The section in which the values are stored.

In this case, VBA returns a two-dimensional array of values in which the first index is the
name of the key setting and the second index is the current value of the setting. Listing
14.2 shows a procedure that returns all the Chapter 14 subkey settings created in the pre-
ceding section.

Listing 14.2 Using GetAllSettings to Return Every Setting in the Chapter 14 Subkey and 
Then Print the Setting Names and Values

Sub GetAllChapter14Settings()
Dim ch14Settings As Variant
Dim i As Integer
‘
‘ Get the settings
‘
ch14Settings = GetAllSettings(“VBA for Office 2007”, “Chapter 14”)
‘
‘ Run through the key settings, displaying the name and value
‘
For i = 0 To UBound(ch14Settings, 1)

Debug.Print ch14Settings(i, 0); “: “; ch14Settings(i, 1)
Next ‘i

End Sub

Accessing the File System Through VBA
If your applications need to work with the file system, VBA boasts quite a few features that
make it easy. These features include a number of statements that return information about
files and folders, as well as a number of functions with which you can manipulate files and
folders. There are also powerful functions that give you direct access to files. This section
examines all VBA’s file-related statements and functions.

14



Returning File and Folder Information
If you need information about the file system—whether it’s the name of the current direc-
tory, whether or not a particular file exists, or a file’s date and time stamp—VBA has a func-
tion that can do the job. The next few sections look at five VBA functions that return file
system data: CurDir, Dir, FileDateTime, FileLen, and GetAttr.

The CurDir Function
If you need to know the name of the active folder on a specific drive, use either the CurDir
or the CurDir$ function:

CurDir(drive)
CurDir$(drive)

drive The disk drive with which you want to work. If you omit drive, VBA
uses the current drive.

The CurDir function returns the path as a Variant, and the CurDir$ function returns the
path as a String. For example, the following statements display the current folder on drive
D and the letter of the current drive:

MsgBox “Current folder on drive D is “ & CurDir$(“D”)
MsgBox “The current drive is “ & Left(CurDir$, 1)

To change the current drive and folder, see the descriptions of the ChDrive and ChDir state-
ments later in this chapter.

The Dir Function
To return the name of a file or folder, use the Dir function:

Dir(Pathname, Attributes)

Pathname A String value that gives the file or folder specification. Note that you
can use the standard wildcard characters—? for single characters and *
for multiple characters.

Attributes One or more constants that specify the file attributes:

Constant Attribute

vbNormal (or 0) Normal

vbReadOnly (or 1) Read-Only

vbHidden (or 2) Hidden

vbSystem (or 4) System

vbVolume (or 8) Volume label

vbDirectory (or 16) Folder

If Dir is unsuccessful—that is, if no such file or folder exists—it returns the null string (“”).
This is a handy way to check for the existence of a file. Listing 14.3 shows an example.

14

Chapter 14 VBA Tips and Techniques310



311Accessing the File System Through VBA

Listing 14.3 A Procedure That Checks for the Existence of a File Before Opening It

Sub OpenToDoList()
Dim strFile As String
strFile = Environ(“UserProfile”) & “\Documents\To-Do List.txt”
If Dir(strFile) <> “” Then

Shell “Notepad “ & strFile, vbNormalFocus
End If

End Sub

This procedure builds the file path by using the Environ function to return the value of the
%UserProfile% environment variable, to which \Documents\To-Do List.txt is added. The
Dir function then checks to see whether this file exists and, if so, it uses the Shell function
to load the file into Notepad.

If Dir is successful, it returns the first file or folder name that matches the Pathname file specifi-
cation. To return the next file or folder name that matches the specification, you call Dir again,
but this time without any arguments. Listing 14.4 shows a procedure that utilizes this tech-
nique to store the names of all the files from the user profile’s Documents folder in a worksheet.
After a bit of preparation, the procedure runs Dir to return the first file. Then a Do While loop
runs Dir until there are no more filenames to return. Along the way, the filenames are stored
in a worksheet. Then, when all is said and done, the filenames are sorted. At this point, you
could use the sorted list to populate a list box or some other control.

Listing 14.4 A Procedure That Reads All the Filenames from the User Profile’s Documents
Folder, Stores Them in Sheet1, and Sorts Them by Name

Sub GetFilenames()
Dim i As Integer
i = 0
‘
‘ Start at cell A1
‘
With Worksheets(“Sheet1”).[A1]

‘
‘ Clear the current values, if any
‘
.CurrentRegion.Clear
‘
‘ Get the initial file and store it in A1
‘
.Value = UCase(Dir(Environ(“UserProfile”) & “\Documents\”, vbNormal))
‘
‘ Get the rest of the files and store them in Column A
‘
Do While .Offset(i, 0) <> “”

i = i + 1
.Offset(i, 0) = UCase(Dir)

Loop
‘
‘ Sort the filenames
‘

14

continues



.Sort Key1:=Worksheets(“Sheet1”).Columns(“A”)
End With

End Sub

The FileDateTime Function
If you need to know when a file was last modified, use the FileDateTime function:

FileDateTime(Pathanme)

Pathname A string that specifies the file with which you want to work (including,
optionally, the drive and folder where the file resides).

If successful, FileDateTime returns a Variant date expression that holds the date and time
stamp for the specified file.

The FileLen Function
If you need to know the size of a file (to see whether it will fit on a disk, for example), use
the FileLen function:

FileLen(Pathanme)

Pathname A string that specifies the file with which you want to work (including,
optionally, the drive and folder where the file resides).

The FileLen function returns a Long value that tells you the number of bytes in the speci-
fied file. (On the odd chance that the file is already open, FileLen returns the size of the
file when it was last saved.)

To help you try this function, Listing 14.5 presents the GetFolderUsage procedure, which
calculates the total disk space used by the files in a folder. This procedure prompts you for
a folder name and then uses the Dir function to return the filenames in that folder. For
each filename, the FileLen function returns the number of bytes, and a running total is
kept in the totalBytes variable.

Listing 14.5 A Procedure That Combines Dir and FileLen to Determine the Number of Bytes 
Used by the Files in a Folder

Sub GetFolderUsage()
Dim folder As String
Dim filename As String
Dim totalBytes As Long
‘
‘ Get the folder name
‘
folder = InputBox(“Enter the folder name:”, “Bytes Used in Folder”)
‘
‘ Did the user click Cancel?

14

Chapter 14 VBA Tips and Techniques312

Listing 14.4 Continued 



313Accessing the File System Through VBA

If folder <> “” Then
‘
‘ Make sure there’s a backslash at the end
‘
If Right(folder, 1) <> “\” Then

folder = folder & “\”
End If
‘
‘ Get the first filename
‘
filename = Dir(folder, vbNormal)
totalBytes = 0
‘
‘ Loop through the rest of the files
‘
Do While filename <> “”

‘
‘ Update the total number of bytes
‘
totalBytes = totalBytes + FileLen(folder & filename)
‘
‘ Get the next filename
‘
filename = Dir

Loop
‘
‘ Display the total
‘
MsgBox “The folder “ & folder & “ uses “ & totalBytes & “ bytes” & _ 

“ or “ & totalBytes / 1048576 & “ MB.”
End If

End Sub

The GetAttr Function
As you may know, each file and folder has a set of attributes that indicate its status on the 
system (such as read-only or hidden). You can test for these attributes by using the GetAttr
function:

GetAttr(Pathanme)

Pathname A string that specifies the file or folder with which you want to work.

The return value is an integer that represents the sum of one or more of the following con-
stants:

Constant Value Attribute

vbReadOnly 1 Read-only (the object can’t be modified)

vbHidden 2 Hidden (the object isn’t visible in the normal Explorer view)

vbSystem 4 System (the object is a system file)

vbDirectory 16 Directory (the object is a folder)

vbArchive 32 Archive (the object has been modified since it was last 
backed up)

14



To test for any of these attributes, you use the And operator to compare the result of the
GetAttr function with the appropriate constant (this is known in the trade as a bitwise com-
parison). For example, if the following statement returns a nonzero value, the object given
by path is read-only:

GetAttr(path) And vbReadOnly

In Listing 14.6, the GetAttributes procedure prompts you for a filename (using Excel’s
GetOpenFilename method), uses GetAttr to return the file’s attributes, and performs several
bitwise comparisons to determine all the file’s attributes.

Listing 14.6 A Procedure That Prompts for a Filename and then Returns the Attributes of the 
Selected File

Sub GetAttributes()
Dim pathname As String
Dim attr As Integer
Dim msg As String
‘
‘ Get the filename
‘
pathname = Application.GetOpenFilename(“All Files (*.*), *.*”)
‘
‘ Did the user click Cancel?
‘
If pathname <> “” Then

‘
‘ Get the file’s attributes
‘
attr = GetAttr(pathname)
msg = “Attributes for “ & pathname & “:” & vbCrLf
‘
‘ Determine the file’s attributes and display them
‘
If attr And vbReadOnly Then msg = msg & vbCrLf & “Read-Only”
If attr And vbHidden Then msg = msg & vbCrLf & “Hidden”
If attr And vbSystem Then msg = msg & vbCrLf & “System”
If attr And vbDirectory Then msg = msg & vbCrLf & “Directory”
If attr And vbArchive Then msg = msg & vbCrLf & “Archive”
MsgBox msg

End If
End Sub

Manipulating Files and Folders
In addition to just finding out file system information, VBA also lets you manipulate vari-
ous aspects of the file system, including changing the current drive and folder, creating new
folders, and deleting and renaming files and folders. The next few sections take you
through each of VBA’s file system manipulation statements.

14

Chapter 14 VBA Tips and Techniques314



315Accessing the File System Through VBA

The ChDir Statement
Each Office application maintains a default folder setting, which is the folder that appears
initially when you display a folder-based dialog box, such as Open or Save As. To change an
application’s default folder, use the ChDir statement:

ChDir Path

Path A string that specifies the new default folder.

If the Path parameter doesn’t include a drive designator, VBA changes the folder on what-
ever drive is current. If Path does include a drive, VBA changes the default folder on that
drive, but it doesn’t change the current drive. For example, if the current drive is C and you
run ChDir D:\, the default folder is changed on drive D, but drive C remains the current
drive. If you want the folder on D to appear in Open or Save As by default, you must also
change the default drive, as explained in the next section.

The ChDrive Statement
To change the default drive, use the ChDrive statement:

ChDrive Drive

Drive A string that specifies the letter of the new default drive.

For example, the following statement changes the default drive to D:

ChDrive “D”

The FileCopy Statement
If you need to copy a disk file from one location to another, use VBA’s FileCopy statement:

FileCopy(Source, Destination)

Source A String value that specifies the name of the file you want to copy
(including, optionally, the drive and folder in which the file resides).

Destination A String value that specifies the name of the destination file 
(including, optionally, the drive and folder).

The following statements set the Source variable to a filename, set the Destination variable
to a filename on a network drive, and use FileCopy to copy the file:

source = Environ(“User Profile”) & “\Documents\Letter.doc”
destination = “\\Server\pub\users\paul\Letter.doc”
FileCopy source, destination

The Kill Statement
When you need to delete files from the system, use the aptly (if perhaps a bit violently)
named Kill statement:

14



Kill Pathname

Pathname A String value that specifies the name of the file you want to delete
(including, optionally, the drive and folder in which the file resides).

You can use the ? and * wildcard characters in the Pathname argument to delete multiple
files. Note that the Kill statement generates an error if the specified file is open or doesn’t
exist. To avoid the latter error, first use the Dir function to see whether the file exists:

If Dir(“C:\Garbage.txt”) <> “” Then
Kill “C:\Garbage.txt”

End If

The MkDir Statement
If your application requires a new folder in which to store files, you can use the MkDir state-
ment to create the folder:

MkDir Path

Path A string that specifies the new folder. If you don’t include the drive
letter, VBA creates the folder on the current drive.

The following statement creates a new Backup folder on drive E:

MkDir “E:\Backup”

The Name Statement
You can rename a file or folder by running the Name statement:

Name oldpathname As newpathname

oldpathname A String value that specifies the pathname of the folder or file you
want to rename. (Wildcards are not supported.)

newpathname A String value that specifies the new name of the folder or file. If you
change the path but not the name of the file, VBA moves the file to
the new location.

The Name statement generates an error if the specified file is open or doesn’t exist.

The RmDir Statement
To let you delete a folder you no longer need, VBA offers the RmDir statement:

RmDir Path

Path A string that specifies the folder you want to delete. If you don’t
include the drive letter, VBA deletes the folder from the current drive.

Note that RmDir raises an error if the folder you specify still contains files. Your code should
check to see whether a folder contains files and, if it does, it should first use Kill to delete
the files and then use RmDir to delete the folder. Listing 14.7 shows a procedure that does
exactly that. After getting the name of the folder to delete, the procedure uses Dir to loop

14

Chapter 14 VBA Tips and Techniques316



317Accessing the File System Through VBA

through the folder’s files. (You might want to modify this code to check for subfolders as
well.) If the folder contains files, the total is reported to the user, who then has the option
of canceling the deletion. If the user elects to proceed, Kill is used to delete each file, and
then RmDir deletes the folder.

Listing 14.7 This Procedure Deletes a Folder, First Deleting Any Files the Folder Contains

Sub DeleteFolder()
Dim folder As String
Dim filename As String
Dim totalFiles As Integer
‘
‘ Get the folder name
‘
folder = InputBox(“Enter the name of the folder to delete:”)
‘
‘ Did the user click Cancel?
‘
If folder <> “” Then

‘
‘ Make sure there’s a backslash at the end
‘
If Right(folder, 1) <> “\” Then

folder = folder & “\”
End If
‘
‘ Get the first filename
‘
filename = Dir(folder, vbDirectory)
‘
‘ Bail out if the folder doesn’t exist
‘
If filename = “” Then

MsgBox “Folder doesn’t exist!”
Exit Sub

End If
‘
‘ Loop through the rest to get the file total
‘
totalFiles = 0
Do While filename <> “”

‘
‘ Get the next filename
‘
filename = Dir
‘
‘ Ignore the parent (..) and the last Dir
‘
If filename <> “..” And filename <> “” Then

‘
‘ Update the total number of files
‘
totalFiles = totalFiles + 1

End If

14

continues



Loop
‘
‘ Check the total
‘
If totalFiles > 0 Then

‘
‘ If there are files, let the user know
‘
If MsgBox(“The folder “ & folder & _

“ contains “ & totalFiles & _
IIf(totalFiles > 1, “ files.”, “file.”) & _
vbCrLf & _
“Are you sure you want to delete it?”, _
vbOKCancel + vbQuestion) = vbCancel Then

Exit Sub
End If
‘
‘ Get the first filename
‘
filename = Dir(folder, vbNormal)
‘
‘ Loop through and Kill the rest of the files
‘
Do While filename <> “”

Kill folder & filename
‘
‘ Get the next filename
‘
filename = Dir

Loop
End If
‘
‘ Delete the folder
‘
RmDir folder

End If
End Sub

The SetAttr Statement
Earlier you saw how to use the GetAttr function to return the attributes of a file or folder.
However, you can also set these attributes by invoking the SetAttr statement:

SetAttr Pathanme, Attributes

Pathname A string that specifies the file or folder with which you want to work.

Attributes One or more constants that specify the attributes you want to set.

The constants recognized by VBA are the same as those outlined earlier for the GetAttr
function (except that you can set the Directory attribute): vbReadOnly, vbHidden, vbSystem,
and vbArchive. Note that this statement produces an error if you attempt to set the attrib-
utes of an open file.

14

Chapter 14 VBA Tips and Techniques318

Listing 14.7 Continued



319Tips for Faster Procedures

Tips for Faster Procedures
Short procedures usually are over in the blink of an eye. However, the longer your proce-
dures get, and the more they interact with application objects, the more time they take to
complete their tasks. For these more complex routines, you need to start thinking not only
about what the procedure does, but how it does it. The more efficient you can make your
code, the faster the procedure will execute. This section gives you a few tips for writing
efficient code that runs quickly.

Turn Off Screen Updating
One of the biggest drags on procedure performance is the constant screen updating that
occurs. If your procedure uses many statements that format text, enter formulas, or cut and
copy data, the procedure will spend most of its time updating the screen to show the results
of these operations. This not only slows everything down, but it also looks unprofessional.
It’s much nicer when the procedure performs all its chores behind the scenes and then pre-
sents the user with the finished product at the end of the procedure.

You can do this with the Application object’s ScreenUpdating property. Set ScreenUpdating
to False to turn off intermediate screen updates that you don’t want the user to see, and set
it back to True to resume updating.

Hide Your Documents
If your procedure does a lot of switching between documents, you can speed things up by
hiding the documents while you work with them. To do this, set the document’s Visible
property to False. You can work with hidden documents normally, and when your proce-
dure is done, you can set Visible to True to display the results to the user.

14

As soon as you’ve hidden an active document,VBA deactivates it.Therefore, if your procedures refer-
ence the active document, you need to activate the document (using the Activate method) right
after hiding it.

T
IP

Don’t Select Data Unless You Have To
Two of VBA’s slowest methods are Activate and Select, so you should use them sparingly.
In the majority of cases, you can indirectly work with ranges, worksheets, text, and other
data. In Excel, for example, you can work with a Range object by referencing it as an argu-
ment in the Range method (or in any other VBA statement that returns a Range object) and
the Worksheets collection.

In Excel, Don’t Recalculate Until You Have To
As you know, manual calculation mode prevents Excel from recalculating a worksheet until
you say so. This saves you time when you’re using sheets with complicated models—models
in which you don’t necessarily want to see a recalculation every time you change a variable.



You can get the same benefits in your procedures by using the Application object’s
Calculation property. Place Excel in manual calculation mode (as described earlier in this
chapter) and then, when you need to update your formula results, use the Calculate
method.

Optimize Your Loops
One of the cornerstones of efficient programming is loop optimization. Because a proce-
dure might run the code inside a loop hundreds or even thousands of times, a minor
improvement in loop efficiency can result in considerably reduced execution times.

When analyzing your loops, make sure that you’re particularly ruthless about applying the
preceding tips. One Select method is slow; a thousand will drive you crazy. Also, make sure
that you define any counter used in your loops as Integer variables, which use the least
memory of the numeric types.

Also, weed out from your loops any statements that return the same value each time. For
example, consider the following procedure fragment:

For i = 1 To 50000
Application.StatusBar = “Value: “ & Worksheets(“Sheet1”).[A1].Value

Next ‘i

The idea of this somewhat useless code is to loop 50,000 times, each time displaying in the
status bar the contents of cell A1 in the Sheet1 worksheet. The value in cell A1 never
changes, but it takes time for Excel to get the value, slowing the loop considerably. A better
approach would be the following:

currCell = Worksheets(“Sheet1”).[A1].Value
For i = 1 To 50000

Application.StatusBar = “Value: “ & currCell
Next I

Transferring the unchanging currCell calculation outside the loop and assigning it to a
variable means that the procedure has to call the function only once.

To test the difference, Listing 14.8 shows the TimingTest procedure. This procedure uses
the Timer function (which returns the number of seconds since midnight) to time two
For...Next loops. The first loop is unoptimized, and the second is optimized. On my sys-
tem, the unoptimized loop takes about nine seconds, and the optimized loop takes only
three seconds—a third of the time.

Listing 14.8 A Procedure That Tests the Difference Between an Optimized and an Unoptimized 
Loop

Sub TimingTest()
Dim i As Long, currCell As Variant
Dim start1 As Long, finish1 As Long
Dim start2 As Long, finish2 As Long
‘
‘ Start timing the unoptimized loop

14

Chapter 14 VBA Tips and Techniques320



321Tips for Faster Procedures

‘
start1 = Timer
For i = 1 To 50000

Application.StatusBar = “The value is “ & Worksheets(“Sheet1”).[A1].
➥Value

Next i
finish1 = Timer
‘
‘ Start timing the optimized loop
‘
start2 = Timer
currCell = Worksheets(“Sheet1”).[A1].Value
For i = 1 To 50000

Application.StatusBar = “The value is “ & currCell
Next i
finish2 = Timer
MsgBox “The first loop took “ & finish1 - start1 & “ seconds.” & _

vbCrLf & _
“The second loop took “ & finish2 - start2 & “ seconds.”

Application.StatusBar = False
End Sub

From Here
■ For the basics of the Visual Basic Editor, see “Touring the Visual Basic Editor,” 

p. 17.

■ For the details on arrays, see “Using Array Variables,” p. 40.

■ To learn how to use the And operator, see “Working with Logical Expressions,” 
p. 66.

■ For information on the Do...Loop, see “Using Do...Loop Structures,” p. 105.

14



This page intentionally left blank 



I N  T H I S  C H A P T E R

Trapping Program Errors

15In Chapter 6, “Controlling Your VBA Code,” I
showed you how to use If...Then and other con-
trol structures to add “intelligence” to your VBA
programs. You’ll notice, however, that whenever
people write about coding programs for decision-
making and other “smart” things, they always put
words such as “intelligence” and “smart” in quota-
tion marks (as I’m doing now). Why? Well, the
cynics in the crowd (and those who’ve suffered
through a few too many BSODs—blue screens of
death) would say it’s because using the words intelli-
gence and program in the same sentence borders on
the oxymoronic. However, the more common rea-
son is the obvious fact that these techniques don’t
make your procedures truly intelligent; they just
make them seem that way to the user.

In the end, programs are really pretty dumb. After
all, they can only do what you, the programmer, tell
them to do. For example, if you tell a program to
copy a file to a nonexistent disk, the dim brute just
doesn’t have the smarts to pull back from the abyss.

In Chapter 16, “Debugging VBA Procedures,” I’ll
show you quite a few techniques that will prove
invaluable for stomping on program bugs, so you’ll
be more likely to ship problem-free applications.
However, a pervasive paranoia about potential pro-
gram problems should be your alliterative frame of
mind whenever you create an application. In other
words, always assume that something, somewhere,
at some time can and will go wrong (think of this as
a kind of “Murphy’s Law of Coding”). After all, you
might have tested your code thoroughly on your
system, but you never know what strange combina-
tion of hardware and software it’s likely to find out
in the cold, cruel world. Similarly, you don’t have
all that much control over how a user interacts with
your program. For example, the user might supply
an invalid argument for a function or forget to
insert a memory card for a backup operation.

A Basic Error-Trapping Strategy . . . . . . . . . . .324

Working with the Err Object  . . . . . . . . . . . .330

Trappable VBA Errors . . . . . . . . . . . . . . . . . . . .333



Given this heightened (enlightened?) state of paranoia, you must code your applications to
allow for potential errors, no matter how obscure. A properly designed program doesn’t
leave the user out in the cold if an error rears its ugly head. Instead, you need to install
code that traps the error and fixes the problem (if possible), alerts the user to the error so
that he or she can fix it (such as by inserting a card in a memory drive), or reports a mean-
ingful explanation of what went wrong so that the user can give you feedback. To that end,
this chapter takes you through VBA’s error-trapping techniques.

A Basic Error-Trapping Strategy
For many programmers, adding error-trapping code to procedures can usually be found
near the bottoms of their to-do lists (probably just before adding comments!). Error-
trapping code isn’t even remotely glamorous, and the optimistic (some would say foolhardy)
programmer assumes it will never be needed.

That’s a shame, because setting up a bare-bones error trap takes very little time. Even a
more sophisticated trap can be reused in other procedures, so you really have only a one-
time expenditure of energy. To help you get started down this crucial path toward good
program hygiene, this section presents a basic strategy for writing and implementing error-
trapping code. This strategy will unfold in four parts:

■ Setting the error trap

■ Coding the error handler

■ Resuming program execution

■ Disabling the error trap

Setting the Trap
In the simplest error-trapping case, VBA offers what I call the “never mind” statement:

On Error Resume Next

When inserted within a procedure, this statement tells VBA to bypass any line in the pro-
cedure that generates an error and to resume execution with the line that immediately fol-
lows the offending statement. No error message is displayed, so the user remains blissfully
unaware that anything untoward has occurred. There are three things to note about imple-
menting this statement:

■ The trap applies to any executable statement that occurs after the On Error Resume Next

statement.

■ The trap also applies to any executable statement within each procedure that is called
by the procedure containing the On Error Resume Next statement.

■ The trap is disabled when the procedure ends.

Because the On Error Resume Next statement does nothing to resolve whatever caused the
error, and because skipping the offending statement might cause further errors, this error
trap is used only rarely.

15

Chapter 15 Trapping Program Errors324



325A Basic Error-Trapping Strategy

To set a true error trap, use the On Error GoTo statement instead:

On Error GoTo line

Here, line is a line label, which is a statement that’s used to mark a spot within a procedure
(line labels aren’t executable). The idea is that if an error occurs, the procedure containing
the On Error GoTo statement will branch immediately to the first statement after the line
label. This statement should be the beginning of the error handler code that processes the
error in some way (see the next section). Here’s the general structure that sets up a proce-
dure to trap and handle an error:

Sub Whatever()
On Error GoTo ErrorHandler
[regular procedure statements go here]
‘
‘ If no error occurs, bypass the error handler
‘
Exit Sub
‘
‘ If an error occurs, the code will branch here
‘

ErrorHandler:
[error handler code goes here]

End Sub

Here are some notes about this structure:

■ To ensure that all statements are protected, place the On Error GoTo statement at the
top of the procedure.

■ The last statement before the error handler line label should be Exit Sub (or Exit
Function if you’re working with a Function procedure). This ensures that the proce-
dure bypasses the error handler if no error occurs.

■ The line label is a string—without spaces or periods—followed by a colon (:) at the
end to tell VBA that it’s just a label and should not be executed.

Coding the Error Handler
The On Error GoTo statement serves as the mechanism by which errors are trapped, but the
nitty-gritty of the trap is the error handler. The handler is a group of statements designed
to process the error, either by displaying a message to the user or by resolving whatever
problem raised the error.

The simplest error handler just displays a message that tells the user that a problem
occurred. Listings 15.1 and 15.2 provide an example. Listing 15.1 uses a couple of InputBox
functions to get two numbers from the user: a dividend and a divisor. With these values in
hand, the procedure calls the Divide function, as shown in Listing 15.2.

15

You’ll find the example code used in this chapter on my website at www.mcfedries.com/
Office2007VBA.

N
O

T
E

www.mcfedries.com/Office2007VBA
www.mcfedries.com/Office2007VBA


Listing 15.1 GetNumbers Procedure Prompts the User for a Dividend and a Divisor

Sub GetNumbers()
Dim done As Boolean
Dim divisor As Variant
Dim dividend As Variant
‘
‘ Prompt user for dividend and divisor.
‘
done = False
Do While Not done

dividend = InputBox(“Enter the dividend:”, “Divider”)
divisor = InputBox(“Enter the divisor:”, “Divider”)
done = Divide(dividend, divisor)

Loop
End Sub

The purpose of the Divide function, shown in Listing 15.2, is to divide the dividend argu-
ment by the divisor argument. To trap a “division by zero” error, an On Error GoTo state-
ment tells VBA to branch to the DivByZeroHandler label. (Actually, this statement will trap
any error, not just a division by zero error.) The division is performed, and, if all goes well,
a MsgBox displays the result. However, if the divisor value is 0, an error occurs and the
code branches to the DivByZeroHandler label. This error handler displays a message and
asks the user whether he wants to try again. The function’s return value is set according to
the user’s choice.

Listing 15.2 Divide Function Divides the Dividend by the Divisor and Traps “Division by Zero”
Errors

Function Divide(dividend, divisor) As Boolean
Dim msg As String
Dim result As Single
‘
‘ Set the trap
‘
On Error GoTo DivByZeroHandler
‘
‘ Perform the division
‘
result = dividend / divisor
‘
‘ If it went okay, display the result
‘
msg = dividend & _

“ divided by “ & _
divisor & _
“ equals “ & _
result

MsgBox msg
‘
‘ Set the return value and bypass the error handler
‘
Divide = True

15

Chapter 15 Trapping Program Errors326



327A Basic Error-Trapping Strategy

Exit Function
‘
‘ Code branches here if an error occurs
‘

DivByZeroHandler:
‘
‘ Display the error message
‘
result = MsgBox(“You entered 0 as the divisor! Try again?”, _

vbYesNo + vbQuestion, _
“Divider”)

‘
‘ Return the user’s choice
‘
If result = vbYes Then

Divide = False
Else

Divide = True
End If

End Function

In this example, setting up the error handler was no problem because the potential error—
division by zero—was a fairly obvious one. (Also note that in a production application
you’d confirm a nonzero divisor as soon as the user entered the value rather than wait for
the division to occur.) In practice, however, your error handlers will require a more sophis-
ticated approach that tests for multiple error types. For this you need to know about error
numbers. I’ll discuss those later in this chapter, in the section “Err Object Properties.”

Resuming Program Execution
In Listing 15.2, the error message displayed to the user asks whether he or she wants to
input the values again, and an If...Then tests the response and sets the function’s return
value accordingly. This example is a bit contrived because your errors won’t necessarily
occur inside a Function procedure or loop. However, you’ll often still need to give the user
a choice of continuing with the program or bailing out. To do this, you can add one or
more Resume statements to your error handlers. VBA defines three varieties of Resume state-
ment:

■ Resume—Tells VBA to resume program execution at the same statement that caused the
error.

■ Resume Next—Tells VBA to resume program execution at the first executable statement
after the statement that caused the error.

■ Resume line—Tells VBA to resume program execution at the label specified by line.

Listing 15.3 shows an example. The BackUpToDrive procedure is designed to get a drive let-
ter from the user and then save the active workbook to that drive. If a problem occurs (such
as having no disk in the drive), the routine displays an error message and gives the user the
option of trying again or quitting.

15



Listing 15.3 Procedure That Backs Up the Active Workbook to a Drive Specified by the User 
and Traps Any Errors (such as Having No Disk in the Drive)

Sub BackUpToDrive()
Dim backupDrive As String
Dim backupName As String
Dim msg As String
Dim done As Boolean
Dim result As Integer
‘
‘ Define the location of the error handler
‘
On Error GoTo ErrorHandler
‘
‘ Initialize some variables and then loop
‘
Application.DisplayAlerts = False
done = False
backupDrive = “A:”
While Not done

‘
‘ Get the drive to use for the backup
‘
backupDrive = InputBox( _

Prompt:=”Enter the drive letter for the backup:”, _
Title:=”Backup”, _
Default:=backupDrive)

‘
‘ Did the user click OK?
‘
If backupDrive <> “” Then

‘
‘ Make sure the backup drive contains a colon (:)
‘
If InStr(backupDrive, “:”) = 0 Then

backupDrive = Left(backupDrive, 1) & “:”
End If
‘
‘ First, save the file
‘
ActiveWorkbook.Save
‘
‘ Assume the backup will be successful,
‘ so set done to True to exit the loop
‘
done = True
‘
‘ Concatenate drive letter and workbook name
‘
backupName = backupDrive & ActiveWorkbook.Name
‘
‘ Make a copy on the specified drive
‘
ActiveWorkbook.SaveCopyAs FileName:=backupName

15

Chapter 15 Trapping Program Errors328



329A Basic Error-Trapping Strategy

Else
Exit Sub

End If
Wend
‘
‘ Bypass the error handler
‘
Exit Sub
‘
‘ Code branches here if an error occurs
‘

ErrorHandler:
msg = “An error has occurred!” & vbCrLf & vbCrLf & _

“Select Abort to bail out, Retry to re-enter the drive” & _
vbCrLf & “letter, or Ignore to attempt the backup again.”

result = MsgBox(msg, vbExclamation + vbAbortRetryIgnore)
Select Case result

Case vbAbort
done = True

Case vbRetry
done = False
Resume Next

Case vbIgnore
Resume

End Select
End Sub

The bulk of the procedure asks the user for a drive letter, saves the workbook, concatenates
the drive letter and workbook name, and saves a copy of the workbook on the specified drive.

The error routine is set up with the following statement at the top of the procedure:

On Error GoTo ErrorHandler

If an error occurs, the procedure jumps to the ErrorHandler label. The error handler’s
MsgBox function gives the user three choices (see Figure 15.1), which get processed by the
subsequent Select Case structure:

■ Abort—Selecting this option (Case vbAbort) bails out of the While...Wend loop by set-
ting the done variable to True.

■ Retry—A user who selects this option (Case vbRetry) wants to reenter the drive letter.
The done variable is set to False, and then the Resume Next statement is run. If the
error occurs during the SaveCopyAs method, the next statement is Wend, so the 
procedure just loops back (because we set done to False) and runs the InputBox
function again.

■ Ignore—A user who selects this option (Case vbIgnore) wants to attempt the backup
again. For example, if the user forgot to insert a disk in the drive, or if the drive door
wasn’t closed, the user would fix the problem and then select this option. In this 
case, the error handler runs the Resume statement to retry the SaveCopyAs method 
(or whatever).

15



Disabling the Trap
Under normal circumstances, an error trap set by the On Error GoTo statement is disabled
automatically when the procedure containing the statement is finished executing. However,
there might be times when you want to disable an error trap before the end of a procedure.
For example, when you’re testing a procedure, you might want to enable the trap for only
part of the code and let VBA generate its normal runtime errors for the rest of the procedure.

To disable an error trap at any time during a procedure, even within an error handler, use
the following statement:

On Error GoTo 0

Working with the Err Object
The problem with the error traps set so far is a lack of information. For example, the
Divide function (in Listing 15.2) assumes that any error that occurs is a result of an
attempted division by zero. However, there are two other runtime error possibilities:

■ Overflow—This error is raised if both the dividend and divisor are 0.

■ Type mismatch—This error is raised if either value is nonnumeric.

You’re likely to want your error handler to treat these errors differently. For example, a
division by 0 error requires only that the divisor be reentered, but an overflow error
requires that both the dividend and the divisor be reentered.

To handle different errors, VBA provides the Err object, which holds information about
any runtime errors that occur. You can use the properties of this object to get specific error
numbers and descriptions, and you can use the methods of this object to control errors pro-
grammatically.

Err Object Properties
The Err object has a number of properties, but the following three are the ones you’ll use
most often:

■ Err.Description—Returns the error description.

■ Err.Number—Returns the error number.

■ Err.Source—Returns the name of the project in which the error occurred.

15

Chapter 15 Trapping Program Errors330

Figure 15.1
If an error occurs,
the error handler
displays this dialog
box.



331Working with the Err Object

For example, Listing 15.4 shows a procedure that attempts to divide two numbers. The Err
object is used in two places within the error handler:

■ The error message displayed to the user contains both Err.Number and
Err.Description.

■ A Select Case structure examines Err.Number to allow the handler to perform different
actions, depending on the error.

Listing 15.4 Procedure That Divides Two Numbers and Traps Three Specific Errors: Division by 
Zero, Overflow, and Type Mismatch

Sub DivideNumbers()
‘
‘ Set the trap
‘
On Error GoTo DivByZeroHandler
‘
‘ Declare variables
‘
Dim divisor As Variant
Dim dividend As Variant
Dim result As Single
Dim msg As String
‘
‘ Prompt user for the dividend
‘

GetDividendAndDivisor:
dividend = InputBox(“Enter the dividend:”, “Divider”)
If dividend = “” Then Exit Sub
‘
‘ Prompt user for the divisor
‘

GetDivisorOnly:
divisor = InputBox(“Enter the divisor:”, “Divider”)
If divisor = “” Then Exit Sub
‘
‘ Perform the division
‘
result = dividend / divisor
‘
‘ If it went okay, display the result
‘
msg = dividend & _

“ divided by “ & _
divisor & _
“ equals “ & _
result

MsgBox msg
‘
‘ Bypass the error handler
‘
Exit Sub
‘
‘ Code branches here if an error occurs

15

continues



‘
DivByZeroHandler:

‘
‘ Display the error message
‘
msg = “An error occurred!” & vbCrLf & vbCrLf & _

“Error number:  “ & Err.Number & vbCrLf & _
“Error message: “ & Err.Description

MsgBox msg, vbOKOnly + vbCritical
‘
‘ Check the error number
‘
Select Case Err.Number

‘
‘ Division by zero
‘
Case 11

Resume GetDivisorOnly
‘
‘ Overflow
‘
Case 6

Resume GetDividendAndDivisor
‘
‘ Type mismatch
‘
Case 13

If Not IsNumeric(dividend) Then
Resume GetDividendAndDivisor

Else
Resume GetDivisorOnly

End If
‘
‘ Anything else, just quit
‘
Case Else

Exit Sub
End Select

End Sub

Err Object Methods
The Err object also comes equipped with a couple of methods you can use:

■ Err.Clear—This method resets all of the Err object’s properties. (In other words,
numeric properties are set to 0, and string properties are set to the null string.) Note
that this method is invoked automatically whenever your code runs any of the follow-
ing statements:

• Exit Function

• Exit Property

• Exit Sub

15

Chapter 15 Trapping Program Errors332

Listing 15.4 Continued 



333Trappable VBA Errors

• On Error GoTo 0

• On Error GoTo line

• On Error Resume Next

• Resume

• Resume line

• Resume Next

■ Err.Raise—This method generates a runtime error. You normally use this method
during debugging to create an error on purpose and thus check to see that your error
handler is operating correctly. In this case, you need only use the following simplified
syntax:
Err.Raise Number

Number The number of the error you want to raise.

(This method also has a few other parameters that let you define your own errors for
use in, say, a custom class object. See the VBA Help file for details.)

Trappable VBA Errors
VBA has dozens of trappable errors. They’re all described in Table 15.1.

Table 15.1 VBA’s Trappable Errors

Number Description Number Description

15

3 Return without GoSub

5 Invalid procedure call

6 Overflow

7 Out of memory

9 Subscript out of range

10 This array is fixed or temporarily
locked

11 Division by zero

13 Type mismatch

14 Out of string space

16 Expression too complex

17 Can’t perform requested operation

18 User interrupt occurred

20 Resume without error

28 Out of stack space

35 Sub, Function, or Property not 
defined

47 Too many DLL application clients

48 Error in loading DLL

49 Bad DLL calling convention

51 Internal error

52 Bad filename or number

53 File not found

54 Bad file mode

55 File already open

57 Device I/O error

58 File already exists

59 Bad record length
continues



61 Disk full

62 Input past end of file

63 Bad record number

67 Too many files

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Can’t rename with different drive

75 Path/file access error

76 Path not found

91 Object variable or With block 
variable not set

92 For loop not initialized

93 Invalid pattern string

94 Invalid use of Null

97 Can’t call Friend procedure on 
an object that is not an instance 
of the defining class

98 A property or method call cannot
include a reference to a private
object, either as an argument or a
as return value

298 System DLL could not be loaded

320 Can’t use character device names
in specified filenames

321 Invalid file format

322 Can’t create necessary temporary
file

325 Invalid format in resource file

327 Data value named not found

328 Illegal parameter; can’t write 
arrays

335 Could not access system registry

15

Chapter 15 Trapping Program Errors334

Table 15.1 Continued

Number Description Number Description

336 ActiveX component not correctly 
registered

337 ActiveX component not found

338 ActiveX component did not run 
correctly

360 Object already loaded

361 Can’t load or unload this object

363 ActiveX control specified not found

364 Object was unloaded

365 Unable to unload within this context

368 The specified file is out of date. 
This program requires a later 
version.

371 The specified object can’t be used as
an owner form for Show

380 Invalid property value

381 Invalid property-array index

382 Property Set can’t be executed at 
runtime

383 Property Set can’t be used with a
read-only property

385 Need property-array index

387 Property Set not permitted

393 Property Get can’t be executed at 
runtime

394 Property Get can’t be executed on
write-only property

400 Form already displayed; can’t show 
modally

402 Code must close topmost modal
form first

419 Permission to use object denied

422 Property not found

423 Property or method not found



335Trappable VBA Errors

424 Object required

425 Invalid object use

429 ActiveX component can’t create
object or return reference to this
object

430 Class doesn’t support Automation

432 Filename or class name not found
during Automation operation

438 Object doesn’t support this 
property or method

440 Automation error

442 Connection to type library or 
object library for remote process 
has been lost

443 Automation object doesn’t have a
default value

445 Object doesn’t support this action

446 Object doesn’t support named
arguments

447 Object doesn’t support current 
locale setting

448 Named argument not found

449 Argument not optional, or invalid 
property assignment

450 Wrong number of arguments, or
invalid property assignment

451 Object not a collection

452 Invalid ordinal

453 Specified DLL function not found

454 Code resource not found

455 Code resource lock error

457 This key is already associated with
an element of this collection

458 Variable uses a type not supported 
in Visual Basic

15

Number Description Number Description

459 This component doesn’t support
events

460 Invalid Clipboard format

461 Specified format doesn’t match 
format of data

462 The remote server machine does 
not exist or is unavailable

463 Class not registered on local
machine

480 Can’t create AutoRedraw image

481 Invalid picture

482 Printer error

483 Printer driver doesn’t support the
specified property

484 Problem getting printer information 
from the system. Make sure the 
printer is set up correctly.

485 Invalid picture type

486 Can’t print form image to this type 
of printer

520 Can’t empty Clipboard

521 Can’t open Clipboard

735 Can’t save file to TEMP directory

744 Search text not found

746 Replacements too long

31001 Out of memory

31004 No object

31018 Class is not set

31027 Unable to activate object

31032 Unable to create embedded object

31036 Error saving to file

31037 Error loading from file



From Here
■ An important part of trapping errors is letting the user know what’s happening and,

possibly, giving him or her some kind of clue how to fix the problem. See “Storing
User Input in a Variable,” p. 45.

■ You can eliminate many trappable errors by making sure your code is as bug-free as
possible. See Chapter 16, “Debugging VBA Procedures,” p. 337.

15

Chapter 15 Trapping Program Errors336



I N  T H I S  C H A P T E R

Debugging VBA Procedures

16It’s usually easy to get short Sub and Function pro-
cedures up and running. However, as your code
grows larger and more complex, errors inevitably
creep in. Many of these errors—programmers call
them bugs—are simple syntax problems you can fix
easily, but others will be more subtle and harder to
find. For the latter—whether the errors are incor-
rect values being returned by functions or problems
with a procedure’s overall logic—you’ll need to be
able to look “inside” your code to scope out what’s
wrong. The good news is that VBA gives you sev-
eral reasonably sophisticated debugging tools that
can remove some of the burden of program prob-
lem solving. This chapter looks at these tools and
shows you how to use them to help recover from
most programming errors.

A Basic Strategy for Debugging  . . . . . . . . . . .338

Pausing a Procedure  . . . . . . . . . . . . . . . . . . . .339

Stepping Through a Procedure  . . . . . . . . . . .342

Monitoring Procedure Values . . . . . . . . . . . . .344

Using the Immediate Window  . . . . . . . . . . . .348

Debugging Tips  . . . . . . . . . . . . . . . . . . . . . . . .350

There’s a popular and appealing tale of how the word bug came
about. Apparently, an early computer pioneer named Grace Hopper
was working on a machine called the Mark II in 1947.While investi-
gating a glitch, she found a moth among the vacuum tubes, so from
then on glitches were called bugs. Appealing, yes, but true? Not
quite. In fact, engineers had already been referring to mechanical
defects as “bugs” for at least 60 years before Ms. Hopper’s discovery.
As proof, the Oxford English Dictionary offers the following quota-
tion from an 1889 edition of the Pall Mall Gazette:

“Mr. Edison, I was informed, had been up the two previous nights
discovering ‘a bug’ in his phonograph—an expression for solving a
difficulty, and implying that some imaginary insect has secreted
itself inside and is causing all the trouble.”

N
O

T
E



A Basic Strategy for Debugging
Debugging, like most computer skills, involves no great secrets. In fact, all debugging is
usually a matter of taking a good, hard, dispassionate look at your code. Although there are
no set-in-stone techniques for solving programming problems, you can formulate a basic
strategy that will get you started.

When a problem occurs, the first thing you need to determine is what kind of error you’re
dealing with. There are four basic types: syntax errors, compile errors, runtime errors, and
logic errors.

Syntax Errors
These errors arise from misspelled or missing keywords and incorrect punctuation. VBA
catches most (but not all) of these errors when you enter your statements. Note, too, that
the VBA Editor uses a red font to display any statements that contain syntax errors.

Syntax errors are flagged right away by VBA, which means that you just have to read the
error message and then clean up the offending statement. Unfortunately, not all of VBA’s
error messages are helpful. For example, one common syntax error is to forget to include 
a closing quotation mark in a string. When this happens, VBA reports the following
unhelpful message:

Expected: list separator or )

Compile Errors
When you try to run a procedure, VBA takes a quick look at the code to make sure things
look right. If it sees a problem (such as an If...Then statement without a corresponding
End If), it highlights the statement where the problem has occurred and displays an error
message.

Fixing compile errors is also usually straightforward. Read the error message and see where
VBA has highlighted the code. Doing so almost always gives you enough information to fix
the problem.

Runtime Errors
These errors occur during the execution of a procedure. They generally mean that VBA
has stumbled upon a statement that it can’t figure out. It might be a formula attempting to
divide by zero or a property or method that is used with the wrong object.

Runtime errors produce a dialog box such as the one shown in Figure 16.1. These error
messages usually are a little vaguer than the ones you see for syntax and compile errors. It
often helps to see the statement where the offense has occurred. You can do this by clicking
the Debug button. This activates the module and places the insertion point on the line

16

Chapter 16 Debugging VBA Procedures338



339Pausing a Procedure

16

Logic Errors
If your code zigs instead of zags, the cause is usually a flaw in the logic of your procedure.
It might be a loop that never ends or a Select Case that doesn’t select anything.

Logic errors are the toughest to pin down because you don’t get any error messages to give
you clues about what went wrong and where. To help, VBA lets you trace through a proce-
dure one statement at a time. This allows you to watch the flow of the procedure and see
whether the code does what you want it to do. You can also keep an eye on the values of
individual variables and properties to make sure they’re behaving as expected. Again, you’ll
learn how to trace a procedure later in this chapter (see “Stepping Through a Procedure”).

Pausing a Procedure
Pausing a procedure in midstream lets you see certain elements such as the current values
of variables and properties. It also lets you execute program code one statement at a time
so you can monitor a procedure’s flow.

When you pause a procedure, VBA enters break mode, which means it displays the code
window, highlights the current statement (the one that VBA will execute next) in yellow,
and displays a yellow arrow in the margin indicator bar that points to the current state-
ment. See the done = False statement in Figure 16.2.

Figure 16.1
A typical runtime error
message.

where the error has occurred. If you still can’t see the problem, you need to rerun the pro-
cedure and pause at or near the point in which the error occurs. This lets you examine the
state of the program when it tries to execute the statement. These techniques are explained
later in this chapter.



Entering Break Mode
VBA gives you five ways to enter break mode:

■ From a runtime error dialog box.

■ By pressing F8 at the beginning of a procedure.

■ By pressing Esc or Ctrl+Break while a procedure is running.

■ By setting a breakpoint.

■ By using a Stop statement.

Entering Break Mode from an Error Dialog Box
When a runtime error occurs, the dialog box that appears only tells you the error number
and the error description (see Figure 16.1, shown earlier). It doesn’t tell you where the
error occurred. Instead of scouring your code for possible bugs, you should click the Debug
button to enter break mode. This will take you directly to the line that caused the error so
that you can investigate the problem immediately.

Entering Break Mode at the Beginning of a Procedure
If you’re not sure where to look for the cause of an error, you can start the procedure in
break mode. Place the insertion point anywhere inside the procedure and then choose
Debug, Step Into (or press F8). VBA enters break mode and highlights the Sub statement.

16

Chapter 16 Debugging VBA Procedures340

Margin indicator bar

Break mode indicator

VBA will run this statement next

Figure 16.2
A VBA procedure in
break mode.

Many of the menu commands that I discuss in this chapter have button equivalents on the Debug
toolbar. If you don’t see this toolbar onscreen, activate the View, Toolbars, Debug command.T

IP



341Pausing a Procedure

Setting a Breakpoint
If you know approximately where an error or logic flaw is occurring, you can enter break
mode at a specific statement in the procedure. This is called a breakpoint. 

To set breakpoints, follow these steps:

1. Open the module containing the procedure you want to run.

2. Place the insertion point anywhere inside the statement where you want to enter break
mode. VBA will run every line of code up to, but not including, this statement.

3. Choose Debug, Toggle Breakpoint. (Alternatively, press F9 or click beside the state-
ment in the margin indicator bar.) As shown in Figure 16.4, VBA highlights the entire
line in red and adds a breakpoint indicator in the margin indicator bar.

4. Repeat steps 2 and 3 to set breakpoints for any other statements where you want the
procedure to enter break mode (you can set as many as you need).

16

Entering Break Mode by Pressing the Esc Key
If your procedure isn’t producing an error but appears to be behaving strangely, you can
enter break mode by pressing Esc (or by choosing Run, Break) while the procedure is run-
ning. VBA pauses on whatever statement it was about to execute.

Alternatively, you can press Ctrl+Break to display the dialog box shown in Figure 16.3.
Click Debug to put VBA into break mode.

Figure 16.3
This dialog box appears if
you press Ctrl+Break
while a procedure is 
running.

Breakpoint indicator

Figure 16.4
When you set a break-
point,VBA highlights the
entire line in red.



Exiting Break Mode
To exit break mode, you can use either of the following methods:

■ Resume normal program execution by choosing Run, Continue (or by pressing F5).

■ End the procedure by selecting Run, Reset.

Stepping Through a Procedure
One of the most common (and most useful) debugging techniques is to step through the
code one statement at a time. This lets you get a feel for the program flow to make sure
that things such as loops and procedure calls are executing properly. You can use three
techniques:

16

Chapter 16 Debugging VBA Procedures342

The command that sets a breakpoint is a toggle, so you can remove a breakpoint by placing the
insertion point on the same line and running the command again.To remove all the breakpoints in
the module, select Debug, Clear All Breakpoints or press Ctrl+Shift+F9.

N
O

T
E

Entering Break Mode by Using a Stop Statement
When developing your projects, you’ll often test the robustness of a procedure by sending
it various test values or by trying it out under different conditions. In many cases, you’ll
want to enter break mode to make sure things look okay. You could set breakpoints at spe-
cific statements, but you lose them if you close the file. For something a little more perma-
nent, you can include a Stop statement in a procedure. VBA automatically enters break
mode whenever it encounters a Stop statement.

Figure 16.5 shows the BackUpToFloppy procedure with a Stop statement inserted just before
the statement that runs the SaveCopyAs method.

Stop statement

Figure 16.5
You can insert Stop
statements to enter
break mode at 
specific procedure
locations.



343Stepping Through a Procedure

■ Stepping into a procedure

■ Stepping over a procedure

■ Stepping to a cursor position

Stepping into a Procedure
Stepping into a procedure means you execute one line at a time (in break mode), starting at
the beginning of the procedure. If you haven’t started a procedure yet, you step into it
using the technique described in the section “Entering Break Mode at the Beginning of a
Procedure.”

Alternatively, you might prefer to run your code until it’s about to call a particular proce-
dure, and then step into that procedure. To do this, set a breakpoint on the statement that
calls the procedure. As soon as your code hits that breakpoint, step into the procedure by
choosing the Debug, Step Into command (or by pressing F8).

When you’re inside the procedure, repeat the Step Into command to execute the procedure
code one line at a time. Keep stepping through until the procedure ends or until you’re
ready to exit break mode and resume normal execution.

Stepping Over a Procedure
Some statements call other procedures. If you’re not interested in stepping through a called
procedure, you can step over it. This means that VBA executes the procedure normally and
then resumes break mode at the next statement after the procedure call. To step over a pro-
cedure, first either step into the procedure until you come to the procedure call you want
to step over, or set a breakpoint on the procedure call and run the project. When you’re in
break mode, you can step over the procedure by choosing Debug, Step Over (or by press-
ing Shift+F8).

Stepping Out of a Procedure
It’s very common (and very frustrating) to accidentally step into a procedure that you
wanted to step over. If the procedure is short, you can just step through it until you’re back
in the original procedure. If it’s long, however, you don’t want to waste time going through
every statement. Instead, invoke the Step Out feature by choosing Debug, Step Out (or by
pressing Ctrl+Shift+F8).

VBA executes the rest of the procedure and then reenters break mode at the first line after
the procedure call.

Stepping to the Cursor
Instead of stepping over an entire procedure, you might need to step over a few statements.
To do this, enter break mode, place the insertion point inside the line where you want to
reenter break mode, and then choose Debug, Run To Cursor (or press Ctrl+F8).

16



Monitoring Procedure Values
Many runtime and logic errors are the result of (or, in some cases, can result in) variables or
properties assuming unexpected values. If your procedure uses or changes these elements in
several places, you need to enter break mode and monitor the values of these elements to
see where things go awry. The Visual Basic Editor offers a number of methods for moni-
toring values, and I discuss them in the next few sections.

Using the Locals Window
Most of the values you’ll want to monitor will be variables. Although watch expressions
(discussed in the next section) are best if you want to keep an eye on only one or two vari-
ables, the Visual Basic Editor gives you an easy method to use if you want to monitor all
the variables in any procedure. This method makes use of a special Visual Basic Editor win-
dow called the Locals window. You can display this window by activating the View, Locals
Window command.

When your procedure enters break mode, the Locals window displays a line for each
declared variable in the current procedure. As you can see in Figure 16.6, each line shows
the variable name, its current value, and its type.

16

Chapter 16 Debugging VBA Procedures344

Adding a Watch Expression
In addition to variable values, VBA also lets you monitor the results of any expression or
the current value of an object property. To do this, you need to set up a watch expression that
defines what you want to monitor. These watch expressions appear in the Watch window,
which you can display by activating the View, Watch Window command.

Figure 16.6
Use the Locals win-
dow to keep track of
the current value of
all your variables.



345Monitoring Procedure Values

To add a watch expression, follow these steps:

1. If the expression exists inside the procedure (for example, an object property), specify
the expression as follows:

• For single-word expressions, place the insertion point anywhere inside the word.

• For more complex expressions, select the entire expression.

2. Choose Debug, Add Watch to display the Add Watch dialog box, shown in Figure
16.7. (Note that in the vast majority of cases you can skip the following steps 3
through 5 and head right to step 6.) 16

3. If the expression you want to monitor isn’t already shown in the Expression text box,
enter the expression. You can enter a variable name, a property, a user-defined function
name, or any other valid VBA expression.

4. Use the Context group to specify the context of the variable (that is, where the variable
is used). You enter the Procedure and the Module.

5. Use the Watch Type group to specify how VBA watches the expression:

• Watch Expression—Displays the expression in the Watch window when you
enter break mode.

• Break When Value Is True—Tells VBA to automatically enter break mode
when the expression value becomes true (or nonzero).

• Break When Value Changes—Automatically enters break mode whenever the
value of the expression changes.

6. Click OK.

After you’ve added a watch expression, you monitor it by entering break mode and examin-
ing the expression in the Watch window, as shown in Figure 16.8.

Figure 16.7
Use the Add Watch 
dialog box to add watch
expressions.



Editing a Watch Expression
You can make changes to a watch expression while in break mode. Follow these steps:

1. In the Watch window, click the watch expression you want to edit.

2. Choose Debug, Edit Watch (or press Ctrl+W; you can also double-click the watch
expression). The Visual Basic Editor displays the Edit Watch dialog box.

3. Make your changes to the watch expression.

4. Click OK to return to the Debug window.

Deleting a Watch Expression
To delete a watch expression you no longer need to monitor, follow these steps:

1. In the Watch window, click the watch expression you want to delete.

2. Choose Debug, Edit Watch (or press Ctrl+W; you can also double-click the watch
expression). The Visual Basic Editor displays the Edit Watch dialog box.

3. Click the Delete button (or click the expression in the Watch window and press the
Delete key). VBA deletes the expression and returns you to the Debug window.

16

Chapter 16 Debugging VBA Procedures346

Figure 16.8
The Watch window
with a few watch
expressions.

The Debug, Add Watch command is available when you’re in break mode, so you can add more
watch expressions if necessary.T

IP



347Monitoring Procedure Values

Displaying Data Values Quickly
Many variables, properties, and expressions are set once, and they don’t change for the rest
of the procedure. To avoid cluttering the Watch window with these expressions, VBA offers
a couple of methods for quickly displaying an expression’s current value: data tips and
Quick Watch.

The data tips feature is one of the handiest of VBA’s debugging tools. When you’re in
break mode, simply move the mouse pointer over the variable or property whose value you
want to know. After a brief pause, VBA displays a banner showing the current value of the
expression, as shown in Figure 16.9. 16

Data tip

Figure 16.9
VBA displays a data tip
banner when you hover
the mouse pointer over
an expression in break
mode.

The Quick Watch feature displays a dialog box that shows the expression, its current con-
text, and its current value. To try this, follow these steps:

1. Enter break mode.

2. Either place the insertion point inside the expression you want to display or select the
expression.

3. Choose Debug, Quick Watch (or press Shift+F9). The Visual Basic Editor displays a
Quick Watch dialog box like the one shown in Figure 16.10.

Figure 16.10
Use the Quick Watch 
dialog box to quickly 
display the value of an
expression.

If you want to add the expression to the Watch window, click the Add button. To return to
break mode without adding the expression, click Cancel.



Using the Immediate Window
The Watch window tells you the current value of an expression, but you’ll often need more
information than this. You also might want to plug in different values for an expression
while in break mode. You can perform these tasks with VBA’s Immediate window, which
you display by activating the View, Immediate Window command.

Printing Data in the Immediate Window
You can use the Print method of the special Debug object to print text and expression values
in the Immediate window. There are two ways to do this:

■ By running the Print method from the procedure

■ By entering the Print method directly into the Immediate window

The Print method uses the following syntax:

Debug.Print OutputList

OutputList An expression or list of expressions to print in the Immediate window.
If you omit OutputList, a blank line is printed.

Here are a few notes to keep in mind when using this method:

■ Use Spc(n) in OutputList to print n space characters.

■ Use Tab(n) in OutputList to print n tab characters.

■ Separate multiple expressions with either a space or a semicolon.

Running the Print Method from a Procedure
If you know that a variable or expression changes at a certain place in your code, enter a
Debug.Print statement at that spot. When you enter break mode, the OutputList expres-
sions appear in the Immediate window. For example, Figure 16.11 shows a procedure in
break mode. The information displayed in the Immediate window was generated by the
following statement:

Debug.Print “The backup filename is “; backupName

16

Chapter 16 Debugging VBA Procedures348



349Using the Immediate Window

Running the Print Method in the Immediate Window
You can also use the Print method directly in the Immediate window to display informa-
tion. Note that when you’re in break mode you don’t need to specify the Debug object.

Figure 16.12 shows a couple of examples. In the first line, I typed print backupdrive and
pressed Enter. The Visual Basic Editor responded with G:\. In the second example, I typed
? backupname (? is the short form of the Print method), and VBA responded with
G:\:Chapter16.xlsm.

16

Debug.Print statementDebug.Print result

Figure 16.11
Use Debug.Print in
your code to display
information in the
Immediate window.

Figure 16.12
You can enter Print
statements directly in
the Immediate window.
Note the use of the ques-
tion mark (?) as a short
form of the Print
method.



Executing Statements in the Immediate Window
Perhaps the most effective use of the Immediate window, however, is to execute statements.
There are many uses for this feature while you’re in break mode:

■ To try some experimental statements to see their effect on the procedure.

■ To change the value of a variable or property. For example, if you see that a variable
with a value of zero is about to be used as a divisor, you could change that variable to a
nonzero value to avoid crashing the procedure.

■ To run other procedures or user-defined functions to see whether they operate prop-
erly under the current conditions.

You enter statements in the Immediate window just as you do in the module itself. For
example, entering the following statement in the Immediate window changes the value of
the backupName variable:

backupName = “H:\Chapter16.xls”

16

Chapter 16 Debugging VBA Procedures350

You can execute multiple statements in the Immediate window by separating each statement with
a colon. For example, you can test a For...Next loop by entering a statement similar to the 
following:

For i=1 To 10:Print i^2:Next

T
IP

Debugging Tips
Debugging your procedures can be a frustrating job, even during the best of times. Here
are a few tips to keep in mind when tracking down programming problems.

Indent Your Code for Readability
VBA code is immeasurably more readable when you indent your control structures.
Readable code is that much easier to trace and decipher, so your debugging efforts have
one less hurdle to negotiate. Indenting code is a simple matter of pressing Tab an appropri-
ate number of times at the beginning of a statement.

It helps if VBA’s automatic indentation feature is enabled. To check this, choose Tools,
Options to display the Options dialog box and, in the Editor tab, activate the Auto Indent
check box.

By default,VBA moves the insertion point four spaces to the right when you press the Tab key.You
can change this default by typing a new value in the Tab Width text box in the Editor tab of the
Options dialog box.

N
O

T
E



351Debugging Tips

Turn on Syntax Checking
VBA’s automatic syntax checking is a real time-saver. To make sure this option is turned on,
activate the Auto Syntax Check check box in the Editor tab of the Options dialog box.

Require Variable Declarations
To avoid errors caused by using variables improperly, you should always declare your pro-
cedure variables. To make VBA display an error if you don’t declare a variable, add the fol-
lowing statement to the top of the module:

Option Explicit
16

To have VBA include the Option Explicit statement in every new module, activate the
Require Variable Declaration check box in the Editor tab of the Options dialog box.T

IP

Break Down Complex Procedures
Don’t try to solve all your problems at once. If you have a large procedure that isn’t work-
ing right, test it in small chunks to try to narrow down the problem. To test a piece of a
procedure, add an Exit Sub statement after the last line of the code you want to test.

Enter VBA Keywords in Lowercase
If you always enter keywords in lowercase letters, you can easily detect a problem when
you see that VBA doesn’t change the word to its normal case when you move the cursor off
the line.

Comment Out Problem Statements
If a particular statement is giving you problems, you can temporarily deactivate it by 
placing an apostrophe at the beginning of the line. This tells VBA to treat the line as a
comment.

Don’t forget that VBA has a handy Comment Block feature that will comment out multiple
statements at once. To use this feature, select the statements you want to work with and
then click the Comment Block button on the Edit toolbar.

Break Up Long Statements
One of the most complicated aspects of procedure debugging is making sense out of long
statements (especially formulas). The Immediate window can help (you can use it to print
parts of the statement), but it’s usually best to keep your statements as short as possible.
After you get things working properly, you can often recombine statements for more effi-
cient code.



Use Excel’s Range Names Whenever Possible
In Excel, procedures are much easier to read and debug if you use range names in place of
cell references. Not only is a name such as Expenses!Summary more comprehensible than
Expenses!A1:F10, it’s safer, too. If you add rows or columns to the Summary range, the
name’s reference changes as well. With cell addresses, you have to adjust the references
yourself.

Take Advantage of User-Defined Constants
If your procedure uses constant values in several different statements, you can give yourself
one less debugging chore by creating a user-defined constant for the value (see Chapter 3,
“Understanding Program Variables”). This gives you three important advantages:

■ It ensures that you don’t enter the wrong value in a statement.

■ It’s easier to change the value because you have to change only the constant 
declaration.

■ It makes your procedures easier to understand.

From Here
■ You can avoid many design-time errors by using the Visual Basic Editor’s IntelliSense

features; see “Taking Advantage of IntelliSense,” p. 27.

■ To learn how to trap any errors that occur while your programs are running, see
Chapter 15, “Trapping Program Errors,” p. 323.

16

Chapter 16 Debugging VBA Procedures352



IN
 T

H
IS

 P
A

R
T

IVAppendixes

A VBA Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .355

B VBA Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .361



This page intentionally left blank 



VBA Statements

AThroughout this book, I’ve introduced you to vari-
ous VBA statements. (It’s worth mentioning here
that a statement is any VBA keyword or construct
that isn’t a function, object, property, or method.)
These statements appeared on an “as-needed” basis
whenever I wanted to explain a particular VBA
topic (such as If...Then...Else and the other con-
trol structures you saw in Chapter 6, “Controlling
Your VBA Code”). Although I covered many VBA
statements in this book, I bypassed quite a few in
the interests of brevity and simplicity.

In an effort to put some finishing touches on our
VBA coverage, this appendix presents a brief, but
complete, look at every VBA statement. I give you
the name of the statement, the arguments it uses (if
any; note, too, that required arguments are shown
in bold type), and a short description. For those
statements that I didn’t cover in this book, you can
get full explanations and examples from the
Statements section of the VBA Help file.



Table A.1 VBA Statements

Statement Description

AppActivate title, wait Activates the running application with the title or task 
ID given by title.

Beep Beeps the computer’s internal speaker.

Call name, argumentlist Calls the name procedure. (Because you can call a 
procedure just by using its name, the Call statement 
is rarely used in VBA programming.)

ChDir path Changes the current directory (folder) to path.

ChDrive drive Changes the current drive to drive.

Close filenumberlist Closes one or more I/O files opened with the Open
statement.

Const CONSTNAME Declares a constant variable named CONSTNAME.

Date = date Changes the system date to date.

Declare name Declares a procedure from a dynamic link library 
(DLL).

DefBool letterrange A module-level statement that sets the default data
type to Boolean for all variables that begin with the
letters in letterrange (for example, DefBool A-F).

DefByte letterrange Sets the default data type to Byte for all variables that 
begin with the letters in letterrange.

DefCur letterrange Sets the default data type to Currency for all variables
that begin with the letters in letterrange.

DefDate letterrange Sets the default data type to Date for all variables that 
begin with the letters in letterrange.

DefDbl letterrange Sets the default data type to Double for all variables
that begin with the letters in letterrange.

DefInt letterrange Sets the default data type to Integer for all variables 
that begin with the letters in letterrange.

DefLng letterrange Sets the default data type to Long for all variables that
begin with the letters in letterrange.

DefObj letterrange Sets the default data type to Object for all variables 
that begin with the letters in letterrange.

DefSng letterrange Sets the default data type to Single for all variables
that begin with the letters in letterrange.

DefStr letterrange Sets the default data type to String for all variables 
that begin with the letters in letterrange.

DefVar letterrange Sets the default data type to Variant for all variables
that begin with the letters in letterrange.

A

Appendix A VBA Statements356



357Table A.1 VBA Statements

Statement Description

DeleteSetting appname,section,key Deletes a section or key from the Registry.

Dim varname Declares a variable named varname.

Do...Loop Loops through one or more statements while a logical 
condition is True.

End keyword Ends a procedure, function, or control structure.

Enum name Module-level statement that declares an enumeration 
variable.

Erase arraylist Frees the memory allocated to a dynamic array or
reinitializes a fixed-size array.

Error errornumber Simulates an error by setting Err to errornumber.

Event procedurename(arglist) Class module-level statement that declares a user-
defined event.

Exit keyword Exits a procedure, function, or control structure.

FileCopy source, destination Copies the source file to destination.

For Each...Next Loops through each member of a collection.

For...Next Loops through one or more statements until a
counter hits a specified value.

Function Declares a user-defined function procedure.

Get #filenumber, varname Reads an I/O file opened by the Open statement into a
variable.

GoSub...Return Branches to and returns from a subroutine within a 
procedure. (However, creating separate procedures 
makes your code more readable.)

GoTo line Sends the code to the line label given by line.

If...Then...Else Runs one of two sections of code based on the result 
of a logical test.

Implements InterfaceName, Class Specifies the name of an interface or a class to be
implemented in a class module.

Input #filenumber, varlist Reads data from an I/O file into variables.

Kill pathname Deletes the file pathname from a disk.

Let varname = expression Sets the variable varname equal to expression. Let
is optional and is almost never used.

Line Input #filenumber, var Reads a line from an I/O file and stores it in var.

Load Loads a user form into memory without displaying it.

Lock #filenumber, recordrange Controls access to an I/O file.

A

continues



LSet stringvar = string Left-aligns a string within a String variable.

LSet var1 = var2 Copies a variable of one user-defined type into
another variable of a different user-defined type.

MkDir path Creates the directory (folder) named path.

Name oldpathname As newpathname Renames a file or directory (folder).

On Error Sets up an error-handling routine.

On...GoSub, On...GoTo Branches to a line based on the result of an 
expression.

Open pathname, etc. Opens an input/output (I/O) file.

Option Base 0|1 Determines (at the module level) the default lower
bound for arrays.

Option Compare Text|Binary Determines (at the module level) the default mode for 
string comparisons.

Option Explicit Forces you to declare all variables used in a module.
Enter this statement at the module level.

Option Private Indicates that the module is private and can’t be 
accessed by other procedures outside the module. 
Enter this statement at the module level.

Print #filenumber Writes data to an I/O file.

Private varname Declares the varname variable to be a private variable 
that can be used only in the module in which it’s 
declared. Enter this statement at the module level.

Property Get Declares a property procedure.

Property Let Assigns a value to a property in a property procedure.

Property Set Sets a reference to an object in a property procedure.

Public varname Makes the varname variable available to all proce
dures in a module.

Put #filenumber, varname Writes data from the variable varname to an I/O file.

RaiseEvent eventname, arguments Fires the event given by eventname.

Randomize number Initializes the random-number generator. Omit 
number to get a different random number each time.

ReDim varname Reallocates memory in a dynamic array.

Rem comment Tells VBA that the following text is a comment. The
apostrophe (‘) is more widely used.

A

Appendix A VBA Statements358

Table A.1 Continued

Statement Description



359Table A.1 VBA Statements

Statement Description

Reset Closes all I/O files that were opened with Open.

Resume After an error, resumes program execution at the line
that caused the error.

RmDir path Deletes a directory (folder).

RSet stringvar = string Right-aligns a string within a String variable.

SaveSetting appname, etc. Creates or saves a setting in the Windows Registry.

Seek #filenumber, position Sets the current position in an I/O file.

Select Case Executes one of several groups of statements based on 
the value of an expression.

SendKeys string, wait Sends the keystrokes given by string to the active
application.

Set objectvar = object Assigns an object to an Object variable named 
objectvar.

SetAttr pathname, attr Assigns the attributes given by attr (for example,
vbReadOnly) to the file given by pathname.

Static varname Declares varname to be a variable that will retain its 
value as long as the code is running.

Stop Places VBA in Pause mode.

Sub Declares a procedure.

Time = time Sets the system time to time.

Type varname Declares a user-defined data type. (Used at the 
module level only.)

Unload Removes a user form from memory.

Unlock #filenumber, recordrange Removes access controls on an I/O file.

While...Wend Loops through a block of code while a condition is
True.

Width #filenumber, width Assigns an output line width to an I/O file.

With...End With Executes a block of statements on a specified object.

Write #filenumber Writes data to an I/O file.

A



This page intentionally left blank 



VBA Functions

BAlthough I discussed quite a few VBA functions in
this book, my coverage was by no means exhaustive.
VBA boasts more than 160 built-in functions that
cover data conversion, dates and times, math,
strings, and much more. This appendix presents a
categorical list of VBA functions and the arguments
they use (required arguments are shown in bold
type). You can get full explanations and examples
for all the functions in the Functions section of the
VBA Help file.



Table B.1 Conversion Functions

Function What It Returns

CBool(expression) An expression converted to a Boolean value.

CByte(expression) An expression converted to a Byte value.

CCur(expression) An expression converted to a Currency value.

CDate(expression) An expression converted to a Date value.

CDbl(expression) An expression converted to a Double value.

CDec(expression) An expression converted to a Decimal value.

CInt(expression) An expression converted to an Integer value.

CLng(expression) An expression converted to a Long value.

CSng(expression) An expression converted to a Single value.

CStr(expression) An expression converted to a String value.

CVar(expression) An expression converted to a Variant value.

CVDate(expression) An expression converted to a Date value. (Provided for backward
compatibility. Use CDate instead.)

CVErr(errornumber) A Variant of subtype Error that contains errornumber.

Table B.2 Date and Time Functions

Function What It Returns

Date The current system date as a Variant.

Date$() The current system date as a String.

DateAdd(interval, number, date) A Date value derived by adding number time 
intervals (months, quarters, and so on) to date.

DateDiff(interval, date1, date2,...) The number of time intervals between date1
and date2.

DatePart(interval, date,...) The interval given by date.

DateSerial(year, month, day) A Date value for the specified year, month, 
and day.

DateValue(date) A Date value for the date string.

Day(date) The day of the month given by date.

Hour(time) The hour component of time.

Minute(time) The minute component of time.

Month(date) The month component of date.

MonthName(month,abbreviate) The name of the month associated with the 
specified month number.

B

Appendix B VBA Functions362



363Table B.4 File and Directory Functions

Function What It Returns

Now The current system date and time.

Second(time) The second component of time.

Time The current system time as a Variant.

Time$ The current system time as a String.

Timer The number of seconds since midnight.

TimeSerial(hour, minute, second) A Date value for the specified hour, minute, 
and second.

TimeValue(time) A Date value for the time string.

Weekday(date) The day of the week, as a number, given by date.

WeekdayName(weekday,abbreviate) The name of the weekday associated with the 
specified weekday number.

Year(date) The year component of date.

Table B.3 Error Functions

Function What It Returns

Error(errornumber) The error message, as a Variant, that corresponds to the 
errornumber.

Error$(errornumber) The error message, as a String, that corresponds to the 
errornumber.

Table B.4 File and Directory Functions

Function What It Returns

CurDir(drive) The current directory as a Variant.

CurDir$(drive) The current directory as a String.

Dir(pathname, attributes) The name, as a Variant, of the file or directory 
(folder) specified by pathname and satisfying the 
optional attributes (for example, vbHidden). 
Returns Null if the file or directory doesn’t exist.

Dir$(pathname, attributes) The name, as a String, of the file or directory
(folder) specified by pathname and satisfying the
optional attributes (for example, vbHidden).
Returns Null if the file or directory doesn’t exist.

EOF(filenumber) True if the end of file specified by filenumber has 
been reached; False otherwise.

B

continues



FileAttr(filenumber, returnType) The file mode (if returnType is 1) or the file handle
(if returnType is 2) of the file given by filenumber.

FileDateTime(pathname) The Date that the file given by pathname was created 
or last modified.

FileLen(pathname) The length, in bytes, of the file given by pathname.

FreeFile(rangenumber) The next available file number available to the Open
statement.

GetAttr(pathname) An integer representing the attributes of the file given
by pathname.

Loc(filenumber) The current read/write position in an open I/O file.

LOF(filenumber) The size, in bytes, of an open I/O file.

Seek(filenumber) The current read/write position, as a Variant, in an 
open I/O file.

Shell(pathname, windowstyle) The task ID of the executed program given by 
pathname.

Table B.5 Financial Functions

Function What It Returns

DDB(cost, salvage, life, period, factor) The depreciation of an asset over a 
specified period, using the double-
declining balance method.

FV(rate, nper, pmt, pv, type) The future value of an investment or loan.

IPmt(rate, per, nper, pv, fv, type) The interest payment for a specified period 
of a loan.

IRR(values, guess) The internal rate of return for a series of
cash flows.

MIRR(values, finance_rate, reinvest_rate) The modified internal rate of return for a 
series of periodic cash flows.

NPer(rate, pmt, pv, fv, type) The number of periods for an investment 
or loan.

NPV(rate, value1, value2...) The net present value of an investment 
based on a series of cash flows and a 
discount rate.

Pmt(rate, nper, pv, fv, type) The periodic payment for a loan or 
investment.

B

Appendix B VBA Functions364

Table B.4 Continued

Function What It Returns



365Table B.6 Math Functions

Function What It Returns

PPmt(rate, per, nper, pv, fv, type) The principal payment for a specified 
period of a loan.

PV(rate, nper, pmt, fv, type) The present value of an investment.

Rate(nper, pmt, pv, fv, type, guess) The periodic interest rate for a loan or 
investment.

SLN(cost, salvage, life) The straight-line depreciation of an asset
over one period.

SYD(cost, salvage, life, period) The sum-of-years digits depreciation of an 
asset over a specified period.

Table B.6 Math Functions

Function What It Returns

Abs(number) The absolute value of number.

Atn(number) The arctangent of number.

Cos(number) The cosine of number.

Exp(number) e (the base of the natural logarithm) raised to
the power of number.

Fix(number) The integer portion of number. If number is 
negative, Fix returns the first negative integer 
greater than or equal to number.

Hex(number) The hexadecimal value, as a Variant, 
of number.

Hex$(number) The hexadecimal value, as a String, 
of number.

Int(number) The integer portion of number. If number is
negative, Int returns the first negative integer
less than or equal to number.

Log(number) The natural logarithm of number.

Oct(number) The octal value, as a Variant, of number.

Oct$(number) The octal value, as a String, of number.

Rnd(number) A random number.

Round(expression, numberdecimalplaces) The numeric expression rounded to a 
specified number of decimal places.

Sgn(number) The sign of number.

Sin(number) The sine of number.

B

continues



Sqr(number) The square root of number.

Tan(number) The tangent of number.

Table B.7 Miscellaneous Functions

Function What It Returns

Array(arglist) A Variant array containing the values in arglist.

CallByName(object,procname, etc.) The value of the procname property of the 
specified object. Also can run the object’s 
procname method.

Choose(index, choice1, etc.) A value from a list of choices.

CreateObject(class) An Automation object of type class.

DoEvents Yields execution to the operating system so that it 
can process pending events from other applications 
(such as keystrokes and mouse clicks).

Environ(envstring|number) A String value that represents the operating sys-
tem environment variable given by envstring or
number.

Format(expression, format) The expression, as a Variant, according to the 
string format.

Format$(expression, format) The expression, as a String, according to the
string format.

FormatCurrency(Expression, etc.) Expression formatted as a currency value.

FormatDateTime(Date, NamedFormat) Date formatted as a date or time value.

FormatNumber(Expression, etc.) Expression formatted as a numeric value.

FormatPercent(Expression, etc.) Expression formatted as a percentage value.

GetAllSettings(appname, section) All the settings in the specified section of the 
Registry.

GetObject(pathname, class) The Automation object given by pathname and
class.

GetSetting(appname, etc.) A setting from the Registry.

IIf(expr, truepart, falsepart) The truepart value if expr is True; returns
falsepart otherwise.

Input(number, #filenumber) number characters, as a Variant, from the I/O file 
given by filenumber.

B

Appendix B VBA Functions366

Table B.6 Continued

Function What It Returns



367Table B.7 Miscellaneous Functions

Function What It Returns

Input$(number, #filenumber) number characters, as a String, from the I/O file
given by filenumber.

InputB(number, #filenumber) number bytes, as a Variant, from the I/O file 
given by filenumber.

InputB$(number, #filenumber) number bytes, as a String, from the I/O file given
by filenumber.

InputBox(prompt, etc.) Prompts the user for information.

IsArray(varname) True if varname is an array.

IsDate(expression) True if expression can be converted into a date.

IsEmpty(expression) True if expression is empty.

IsError(expression) True if expression is an error.

IsMissing(argname) True if the argument specified by argname was
not passed to the procedure.

IsNull(expression) True if expression is the null string (“”).

IsNumeric(expression) True if expression is a number.

IsObject(expression) True if expression is an object.

LBound(arrayname, dimension) The lowest possible subscript for the array given
by arrayname.

MsgBox(prompt, etc.) The button a user selects from the MsgBox dialog 
box.

Partition(number, start, stop,...) A String that indicates where number occurs
within a series of ranges.

QBColor(color) The RGB color code that corresponds to color
(a number between 1 and 15).

RGB(red, green, blue) The color that corresponds to the red, green, and
blue components.

Switch(expr1, value1, etc.) Evaluates the expressions (expr1 and so on) and 
returns the associated value (value1 and so on) for 
the first expression that evaluates to True.

Tab(n) Positions output for the Print # statement or the
Print method.

TypeName(varname) A string that indicates the data type of the 
varname variable.

UBound(arrayname, dimension) The highest possible subscript for the array given
by arrayname.

VarType(varname) A constant that indicates the data type of the 
varname variable.

B



Table B.8 String Functions

Function What It Returns

Asc(string) The ANSI character code of the first letter 
in string.

AscB(string) The byte corresponding to the first letter in
string.

AscW(string) The Unicode character code of the first 
letter in string.

Chr(charcode) The character, as a Variant, that 
corresponds to the ANSI code given by
charcode.

Chr$(charcode) The character, as a String, that 
corresponds to the ANSI code given by 
charcode.

ChrB(charcode) The byte that corresponds to the ANSI
code given by charcode.

ChrW(charcode) The Unicode character that corresponds to 
the ANSI code given by charcode.

Filter(sourcearray,match, etc.) Given an array of strings (sourcearray),
returns a subset of strings (that is, another
array) that match a criteria (match).

InStr(start, string1, string2) The character position of the first 
occurrence of string2 in string1,
beginning at start.

InStrB(start, string1, string2) The byte position of the first occurrence of
string2 in string1, starting at start.

InStrRev(stringcheck,stringmatch,start) The character position (working from the 
end of the string) of the first occurrence of 
stringmatch in stringcheck, beginning 
at start.

Join(sourcearray, delimiter) A string consisting of the concatenated 
values in a string array (sourcearray), 
separated by delimiter.

LCase(string) string converted to lowercase as a 
Variant.

LCase$(string) string converted to lowercase as a String.

Left(string, length) The leftmost length characters from 
string as a Variant.

Left$(string, length) The leftmost length characters from
string as a String.

B

Appendix B VBA Functions368



369Table B.8 String Functions

Function What It Returns

LeftB(string) The leftmost length bytes from string as 
a Variant.

LeftB$(string) The leftmost length bytes from string as
a String.

Len(string) The number of characters in string.

LenB(string) The number of bytes in string.

LTrim(string) A string, as a Variant, without the leading 
spaces in string.

LTrim$(string) A string, as a String, without the leading
spaces in string.

Mid(string, start, length) length characters, as a Variant, from 
string beginning at start.

Mid$(string, start, length) length characters, as a String, from
string beginning at start.

MidB(string, start, length) length bytes, as a Variant, from string
beginning at start.

MidB$(string, start, length) length bytes, as a String, from string
beginning at start.

Replace(expression, find, replace) A string in which one or more instances of a 
specified substring (find) in an expression
have been replaced by another substring 
(replace).

Right(string, length) The rightmost length characters from
string as a Variant.

Right$(string, length) The rightmost length characters from 
string as a String.

RightB(string, length) The rightmost length bytes from string
as a Variant.

RightB$(string, length) The rightmost length bytes from string
as a String.

RTrim(string) A string, as a Variant, without the trailing
spaces in string.

RTrim$(string) A string, as a String, without the trailing 
spaces in string.

Space(number) A string, as a Variant, with number spaces.

Space$(number) A string, as a String, with number spaces.

B

continues



Split(expression, delimiter) An array consisting of substrings from a
string expression in which each substring
is separated by a delimiter.

Str(number) The string representation, as a Variant, of 
number.

Str$(number) The string representation, as a String, of
number.

StrComp(string2, string2, compare) A value indicating the result of comparing 
string1 and string2.

StrReverse(expression) A string consisting of the characters from a
string expression in reverse order.

String(number, character) character, as a Variant, repeated number
times.

String$(number, character) character, as a String, repeated number
times.

Trim(string) A string, as a Variant, without the leading 
and trailing spaces in string.

Trim$(string) A string, as a String, without the leading
and trailing spaces in string.

UCase(string) string converted to uppercase as a 
Variant.

UCase$(string) string converted to uppercase as a String.

Val(string) The number contained in string.
B

Appendix B VBA Functions370

Table B.8 Continued

Function What It Returns



I N D E X

Symbols

+ (addition) operator, 55
= (assignment) operator, 54
& (concatenation) 

operator, 56
/ (division) operator, 55
= (equal to) operator, 57
^ (exponentiation)

operator, 55
>= (greater than or equal

to) operator, 57
> (greater than) 

operator, 57
\ (integer division) 

operator, 55
<= (less than or equal to)

operator, 57
< (less than) operator, 57
* (multiplication) 

operator, 55
- (negation) operator, 55
<> (not equal) operator, 57
. (period), 40
+ (plus sign), 47
- (subtraction) operator, 55
_ (underscore), 66

A

A1 cells, selecting on all
worksheets, 158-159

Abs function, 61, 365
Accelerator property 

(controls), 246, 249
Access databases

connections, opening, 191
data sources, creating,

191-192
object models, choosing,

190-191
overview, 189
records

adding, 205-206
deleting, 207-208
editing, 203-205
finding, 202-203
navigating, 199-201

recordsets
accessing recordset

data, 198-199
exporting from Access

to Excel, 210-212
opening with Open

method, 194-196
opening with SELECT

statement, 196-198
opening with tables,

193-194
overview, 192-193

references, creating, 
190-191

retrieving data into Excel
individual field 

values, 208
recordsets, 210-212
rows, 208-210

accessing recordset data,
198-199

Activate method, 88, 152
activating windows, 88
active items, 74
ActiveConnection property

(Recordset object), 195
ActiveDocument

object, 116
ActivePresentation

object, 166
ActiveWindow object, 88
ActiveWorkbook 

object, 146
ActiveX Data Objects

(ADO), 189-190
Add method

Documents 
collection, 118

Names collection, 162
Presentations 

collection, 166
Recipients object, 226
Slides collection, 171
Workbooks 

collection, 147
Worksheets 

collection, 151



Index Add Procedure dialog box372

Add Procedure dialog 
box, 20

Add Watch command
(Debug menu), 345

Add Watch dialog box, 345
AddComment method, 176
AddConnector

method, 176
AddCurve method, 176
AddingARecord procedure,

205-206
AddItem method, 253
addition operator (+), 55
AddJugglingSlides

procedure, 173-174
AddLabel method, 176
AddLine method, 176
AddMediaObject

method, 177
AddNew method, 205-206
AddPicture method, 177
AddPolyline method, 177
Address property

Range object, 163
Recipient object, 226

AddShape method, 177
AddTextEffect 

method, 177
AddTitle method, 178
ADO (ActiveX Data

Objects), 189-190
AdvanceMode property

(SlideShowSettings
object), 187

AdvanceOnClick property
(SlideShowTransition
object), 186

AdvanceOnTime property
(SlideShowTransition
object), 186

AdvanceTime property
(SlideShowTransition
object), 186

ampersand (&), 56
And operator, 95
AnimationSettings

property (Shape 
object), 178

AppActivate statement, 356
Appearance properties

(forms), 239
Application_ItemSend

procedure, 219
Application object, 73, 

81, 139
methods

Calculate, 140
CalculateFull, 140
CheckSpelling, 87
CreateItem, 225
Evaluate, 140-141
OnKey, 142-143
OnRepeat, 145-146
OnTime, 144
OnUndo, 145-146
Wait, 141

properties
Caption, 82
Dialogs, 83-87
Height, 83
Left, 83
ScreenUpdating, 319
StatusBar, 82
Top, 83
UsableHeight, 83
UsableWidth, 83
Width, 83
WindowState, 83
WorksheetFunction,

139-140
Application_Quit

procedure, 218
Application_Reminder

procedure, 227-228

application settings
deleting from 

Registry, 307
reading from Registry,

306-307
reading section 

settings, 309
storing in Registry, 

305-306
Application_Startup

procedure, 218
application window 

properties, 82-83
Apply method, 181
ApplyTemplate 

method, 167
arguments, named, 76
arithmetic operators, 55
Array function, 366
arrays

Array function, 366
declaring, 41
definition of, 40
dynamic arrays, 41-43
finding lower/upper

bounds of, 41-43
multidimensional 

arrays, 44
one-dimensional 

arrays, 44
As keyword, 38
Asc function, 64, 368
AscB function, 368
AscW function, 368
assigning

objects to variables, 79-80
shortcut keys

to Excel macros, 10-11
to Word macros, 9-10

assignment operator (=), 54
asterisk (*), 55
Atn function, 61, 365



How can we make this index more useful? Email us at indexes@quepublishing.com

373cbWindows_GetItemLabel procedure

Attachment object, 229
attachments (email)

adding to messages, 
230-231

Attachment objects, 229
removing from forwarded

messages, 229-230
Auto Syntax Check, 351
AutoShapeType property

(Shape object), 179
AutoSize property 

(controls), 246

B

BackColor property
(forms), 239

Background property
(Slide object), 172

backing up Word 
documents, 122-124

backslash (\), 55
BackStyle property 

(controls), 246
BackUpToDrive 

procedure, 328-329
BAS (Basic) file 

format, 300
BCC property (MailItem

object), 220
Beep statement, 356
Behavior properties

(forms), 239-240
BigNumbers procedure,

105-106
Body property (MailItem

object), 220
BodyFormat property

(MailItem object), 220
BOF property (Recordset

object), 200

Bold property (Range
object), 126

BoldAndItalic
procedure, 145

bookmarks, navigating
recordsets with, 201

Boolean data type, 37
BorderColor property

(forms), 239
BorderStyle property

(forms), 239
break mode

entering, 340-342
at beginning of 

procedure, 340
from error dialog

boxes, 340
with Esc key, 341
with Stop 

statement, 342
exiting, 342
overview, 339-340

breakpoints, setting, 341
btnChooseAnotherStyle_

OnAction procedure, 287
btnCloseWindow_

GetEnabled
procedure, 297

btnCloseWindow_
OnAction procedure, 296

btnPromptToSave
Changes_OnAction
procedure, 279

btnRefreshList_OnAction
procedure, 295-297

bugs. See debugging
procedures

buttons
command buttons, 249
creating, 277
option buttons, 250-251
split buttons, 280-281
toggle buttons, 282-283

Buttons parameter
(MsgBox function), 46-48

ButtonTest procedure, 48
ButtonTest2 procedure, 49
Byte data type, 36

C

Calculate method, 140, 152
CalculateAge function, 70
CalculateFull method, 140
Call statement, 356
callbacks, 267
CallByName function, 366
calling user-defined 

functions, 26
camel-style naming 

convention, 34
Cancel property

(CommandButton
object), 249

Caption property
Application object, 82
CommandButton 

object, 249
controls, 247
forms, 239

captions of title bars,
changing, 82

caret (^), 55
Case property (Range

object), 126
CBool function, 362
cbWindows_

GetItemCount
procedure, 292-293

cbWindows_GetItemID
procedure, 292

cbWindows_GetItemLabel
procedure, 293



cbWindows_OnChange
procedure, 296-297

CByte function, 362
CC property (MailItem

object), 221
CCur function, 362
CDate function, 69, 362
CDbl function, 362
CDec function, 362
cells (Excel)

returning, 154
selecting

selecting A1 on all
worksheets, 158-159

selecting home cell 
on all worksheets,
159-160

selecting named range
that contains active
cell, 160-161

Cells method, 154
certified signing authori-

ties, 304
changing

control values, 295-297
data types, 39
default drive, 315
default folder, 315

ChDir statement, 315, 356
ChDrive statement, 

315, 356
check boxes

checkBox element (XML),
281-282

CheckBox object, 251
checking spelling, 75, 87
CheckSpelling method, 

75, 87
chkToggleProofingErrors_

OnAction procedure, 282
Choose function, 

102-103, 366

Index cbWindows_OnChange procedure374

Chr function, 64, 368
Chr$ function, 64, 368
ChrB function, 368
ChrW function, 368
CInt function, 362
Clear All Breakpoints 

command (Debug 
menu), 342

Clear method
Err object, 332
ListBox object, 253

CLng function, 362
Close method, 76

Document object, 121
MailItem object, 222
Presentation object, 167
Workbook object, 150

Close statement, 356
CloseAllOpenDocuments

macro, 121-122
closing

Excel workbooks, 150
Word documents, 121-122

Code command (View
menu), 248

code continuation 
character (_), 66

Collapse method, 132
collapsing selection

(Word), 132
collections. See also objects

Documents
Add method, 118
Open method, 116

elements, 78
index values, 78
Names, 162
Presentations, 166
Slides

Add method, 171
InsertFromFile

method, 172

Workbooks
Add method, 147
Open method, 146-147

Worksheets, 151
ColorTester 

procedure, 101
Column property (Range

object), 163
ColumnCount property

(ListBox object), 252
ColumnHeads property

(ListBox object), 252
columns (Excel), 

returning, 156
Columns method, 156
combo boxes

comboBox element
(XML), 288

ComboBox object, 252
command buttons, 249
command macros. 

See macros
CommandButton

object, 249
commands (menu)

Debug menu
Add Watch, 345
Clear All 

Breakpoints, 342
Edit Watch, 346
Quick Watch, 347
Run To Cursor, 343
Step Into, 340, 343
Step Out, 343
Step Over, 343
Toggle Breakpoint, 341

Edit menu
Complete Word, 30
Copy, 245
Delete, 245
List Constants, 28
List Properties/

Methods, 28



Parameter Info, 29
Select All, 243

File menu
Export File, 300
Import File, 300
Remove, 301

Format menu
Group, 245
Ungroup, 245

Formulas menu, Insert
Function, 26

Insert menu, 
Procedure, 20

Macros menu
Record Macro, 5, 7
Stop Recording, 7-8

Tools menu, Digital
Signature, 305

View menu
Code, 248
Immediate 

Window, 348
Tab Order, 247
Watch Window, 344

comments
commenting out 

statements, 351
definition of, 22

comparison operators, 
56-57, 80

compile errors, 338
Complete Word feature

(IntelliSense), 30
ConcatenateStrings

procedure, 157
concatenating strings, 157
concatenation operator

(&), 56
configuring macro security

macro security levels, 
302-304

overview, 301
trusted locations, 301-302

connections (database),
opening, 191

Const statement, 45, 356
constants

built-in constants, 44
creating, 45
definition of, 28, 44
listing, 28-29
user-defined constants, 

45, 352
control structures

If...Then statement
And operator, 95
block syntax, 92
example, 92-93
Or operator, 95
single-line syntax, 92

If...Then...Else statement
example, 93-94
indenting for 

readability, 94
multiple

If...Then...Else 
statements, 95-96

syntax, 93
indenting for 

readability, 111
loops

Do...Loop, 105-106
exiting, 110
For Each...Next, 109
For...Next, 106-108
overview, 104-105

Select Case statement
FutureValue4() 

example, 98
LetterGrade() 

example, 98-99
syntax, 97
VBAColor() 

example, 99-101
controlling order of 

precedence
(operators), 58-60

controls
buttons, 277
check boxes, 251
combo boxes, 252
command buttons, 249
copying, 244-245
deleting, 245
frames, 243, 250
grouping, 245
inserting on forms, 

242-243
labels, 249
list boxes, 252-253
multipage controls, 

257-258
option buttons, 250-251
overview, 242
properties

common properties, 
list of, 246-247

setting, 246
Ribbon controls

check boxes, 281-282
combo boxes, 288
common attributes,

276-277
dialog box 

launchers, 289
drop-down lists, 

284-285
galleries, 285-287
getting and changing

control values, 
295-297

initializing, 290-293
menus, 278-280
resetting, 293-295
split buttons, 280-281
toggle buttons, 

282-283
scrollbars, 253
selecting, 243
selection handles, 243
sizing, 244
spin buttons, 253-254

How can we make this index more useful? Email us at indexes@quepublishing.com

375controls



tab order, 247-248
tab strips, 254-257

initializing, 256
modifying controls in,

256-257
text boxes, 249-250
toggle buttons, 251

ControlSource property
(controls), 246

ControlTipText property
(controls), 247

conversion functions, 362
converting strings into

objects, 140-141
Copy command (Edit

menu), 245
Copy method

MailItem object, 222
Worksheet object, 152

CopyFromRecordset
method, 210

copying
controls, 244-245
files, 315

CopyTo method, 217
Cos function, 61, 365
Count property

Range object, 163
Sentences object, 134

counting words, 133
CountWords function, 133
Create Digital Certificate

dialog box, 304-305
Create New Data Source

dialog box, 192
CreateItem method, 225
CreateJugglingPresentation

procedure, 169-170
CreateObject function, 366
CSng function, 362
CStr function, 64, 362

CurDir function, 310, 363
CurDir$ function, 363
Currency data type, 37
CurrentRegion property

(Range object), 163
cursors, stepping to, 343
CursorType property

(Recordset object), 195
custom dialog boxes. See

forms
custom rules (Outlook),

223-224
Custom UI Editor, 270
Customize Keyboard 

dialog box, 9
customizing Ribbon. See

Ribbon customization
CVar function, 362
CVDate function, 362
CVErr function, 362
Cycle property 

(forms), 239

D

DAO (Data Access
Objects), 190

data sources, creating, 
191-192

data tips feature, 347
data types

Boolean, 37
Byte, 36
changing, 39
consistency in 

expressions, 54
Currency, 37
data type prefixes, 38
Date, 36
definition of, 29

DefType keywords, 39
Double, 37
Integer, 36
Long, 37
Object, 36
Single, 37
specifying, 36-38
String, 36
user-defined data types,

39-40
Variant, 37

databases. See Access
databases

DataSeries method, 163
Date data type, 36
date expressions, 68-70
Date function, 69, 362
Date statement, 356
Date$ function, 69, 362
date/time functions, 69,

362-363
DateAdd function, 69, 362
DateDiff function, 69, 362
DatePart function, 69, 362
DateSerial function, 

69, 362
DateValue function, 

69, 362
Day function, 69, 362
DayDeity function, 103
DDB function, 63, 364
Debug menu commands

Add Watch, 345
Clear All Breakpoints, 342
Edit Watch, 346
Quick Watch, 347
Run To Cursor, 343
Step Into, 340, 343
Step Out, 343
Step Over, 343
Toggle Breakpoint, 341

Index controls376



debugging procedures
break mode

entering, 340-342
exiting, 342
overview, 339-340

breakpoints, setting, 341
compile errors, 338
data tips feature, 347
debugging tips and 

techniques, 350-352
Immediate window

executing statements
in, 350

overview, 348
printing data in, 

348-349
Locals window, 344
logic errors, 339
overview, 337-338
Quick Watch feature, 347
runtime errors, 338-339
stepping into 

procedures, 343
stepping out of 

procedures, 343
stepping over 

procedures, 343
stepping to cursor, 343
syntax errors, 338
watch expressions, 

344-346
Declare statement, 356
declaring

arrays
dynamic arrays, 41-43
multidimensional

arrays, 44
one-dimensional 

arrays, 44
variables, 33-35

explicit declarations,
35-36

implicit 
declarations, 35

default drive, 
changing, 315

default folders 
changing, 315
referencing, 214

Default property
(CommandButton
object), 249

DefBool statement, 356
DefByte statement, 356
DefCur statement, 356
DefDate statement, 356
DefDbl statement, 356
DefInt statement, 356
DefLng statement, 356
DefObj statement, 356
DefSng statement, 356
DefStr statement, 356
DefType keywords, 39
DefVar statement, 356
Delete command (Edit

menu), 245
Delete method

Attachment object, 229
MailItem object, 222
MAPIFolder object, 217
Range object, 128-129
Recordset object, 207
Worksheet object, 152

DeleteAll procedure, 143
DeleteFolder procedure,

317-318
DeleteSetting statement,

307, 357
deleting

application settings from
Registry, 307

controls, 245
files, 315-316
folders, 316-318
records, 207-208

text (Word), 128-129
watch expressions, 346

DeletingARecord
procedure, 207

Description property (Err
object), 330

Developer tab, 
displaying, 16

dialog box launchers
(Ribbon), creating, 289

dialog boxes. See also forms
Add Procedure, 20
Add Watch, 345
Create Digital Certificate,

304-305
Create New Data 

Source, 192
Customize Keyboard, 9
displaying, 83-87
Edit Watch, 346
Export File, 300
Import File, 300
input boxes, 50-51
Insert Function, 26-27
Macro, 8-9, 21-22
Macro Options, 11
Macros, 8-9
message boxes

creating, 45-46
message styles, 46-48
return values, 48-49

Microsoft Office Security
Options, 302

Modify Button, 12
ODBC Microsoft Access

Setup, 192
Quick Watch, 347
Record Macro, 5, 7
Select Certificate, 305
Select Database, 192
Tab Order, 247
Trust Center, 302-303

dialogBoxLauncher
element (XML), 289

How can we make this index more useful? Email us at indexes@quepublishing.com

377dialogBoxLauncher  element (XML)



Dialogs property
(Application object), 
83-87

Digital Signature command
(Tools menu), 305

digital signatures, 304-305
Dim statement, 33-34, 357
Dir function, 310-312, 363
Dir$ function, 363
directories. See folders
disabling error traps, 330
Display method, 86, 222
displaying

Developer tab, 16
dialog boxes, 83-87
forms, 258
status bar messages, 82

DisplayName property
(Attachment object), 229

DisplaySentenceLengths
procedure, 134-135

Divide function, 326-327
dividends, 55
DivideNumbers procedure,

331-332
division operator (/), 55
divisors, 55
dlLaunchInsertHyperlink

Dialog_OnAction
procedure, 289

Do...Loop statement, 
105-106, 357

DocTooLong function, 102
Document object, 73, 115

Close method, 121
Range method, 125
Save method, 119
SaveAs method, 120

documents (Word)
ActiveDocument 

object, 116
backing up, 122-124

closing
Close method, 121
closing all documents,

121-122
creating, 118
Document object, 115
Documents object, 115
hiding, 319
macro-enabled 

documents/templates,
creating, 265-267

opening
with Open 

method, 116
with RecentFiles

object, 116-117
Paragraph object, 136-138
Range object, 125

Bold property, 126
Case property, 126
Delete method, 

128-129
deleting text, 128-129
Font property, 126
formatting text, 126
InsertAfter 

method, 127
InsertBefore 

method, 127
inserting text, 127-128
InsertParagraph

method, 127
InsertParagraphAfter

method, 127
InsertParagraphBefore

method, 127
InsertParagraphsAnd

Text procedure, 
127-128

Italic property, 126
reading and changing

range text, 126
returning with Range

method, 125
returning with Range

property, 125

saving, 118
Save method, 119
SaveAs method, 120

Selection object
Collapse method, 132
collapsing 

selection, 132
creating, 129
extending selection,

131-132
MoveEnd method, 130
MoveStart method, 130
moving insertion 

point, 130
overview, 129
Type property, 129

Sentences object, 133-135
ThisDocument 

object, 116
word count, testing, 102
Words object, 132-133

documents (XML). See also
RibbonX

elements
checkBox, 281
comboBox, 288
dialogBoxLauncher,

289
dropdown, 284
gallery, 285-287
group, 274-275
menu, 278
Relationship, 265, 269
ribbon, 271
splitButton, 280
tab, 272-273
tabs, 271
toggleButton, 282-283

MyRibbon.xml file
adding to document

package, 268-269
creating, 267-268
renaming and 

opening, 269
Documents collection

Add method, 118
Open method, 116

Index Dialogs property (Application object)378



Documents object, 73, 115
DoEvents function, 366
DoNotSaveChanges_

OnAction procedure, 279
Double data type, 37
drives, changing default

drive, 315
drop-down lists (Ribbon),

creating, 284-285
dropdown element 

(XML), 284
Duplicate method, 181
dynamic arrays, 41-43

E

Edit menu commands
Complete Word, 30
Copy, 245
Delete, 245
List Constants, 28
List Properties/

Methods, 28
Parameter Info, 29
Select All, 243

Edit Watch command
(Debug menu), 346

Edit Watch dialog box, 346
editing

range text (Word), 126
records, 203-205
watch expressions, 346

EditingARecord
procedure, 204

editors
Custom UI Editor, 270
Visual Basic Editor

creating modules, 
17-18

displaying, 16
opening modules, 

18-19
shutting down, 30

elements (XML)
checkBox, 281
comboBox, 288
dialogBoxLauncher, 289
dropdown, 284
gallery, 285-287
group, 274-275
menu, 278
Relationship, 265, 269
ribbon, 271
splitButton, 280
tab, 272-273
tabs, 271
toggleButton, 282-283

email (Outlook)
attachments

adding to messages,
230-231

Attachment 
objects, 229

removing from 
forwarded messages,
229-230

custom rules, 223-224
folders

listing all folders, 
214-215

methods, 217
prompting users for,

216-217
referencing default

folders, 214
incoming message 

handling, 217
AddItem event, 

218-219
custom rules, 223-224
spam, 224-225

MailItem object
methods, 221-223
properties, 220-221

messages
creating, 225
forwarding, 225
replying to, 225
sending, 226-227

specifying message
recipients, 226

supplementing
reminders with email
messages, 227-228

NameSpace object, 213
Folders property, 214
Logoff method, 

233-234
Logon method, 232
PickFolder method,

216-217
outgoing message 

handling, 219-220
overview, 213
sessions

logging off, 233-234
logging on, 232

enabled attribute 
(controls), 277

Enabled property 
(forms), 240

End statement, 357
EndingSlide property

(SlideShowSettings
object), 187

EnterFieldBehavior
property (TextBox
object), 249

EnterKeyBehavior
property (TextBox
object), 250

Enum statement, 357
Environ function, 366
EOF function, 363
EOF property (Recordset

object), 200
equals sign (=), 54, 57
Erase statement, 357
Err object

methods, 332-333
overview, 330
properties, 330-332

How can we make this index more useful? Email us at indexes@quepublishing.com

379Err object



Error function, 363
error handlers, 325-327
Error statement, 357
Error$ function, 363
error-trapping

disabling traps, 330
Err object

methods, 332-333
overflow errors, 330
overview, 330
properties, 330-332
type mismatch 

errors, 330
error handlers, 

325-327, 363
On Error GoTo 

statement, 325
On Error Resume Next

statement, 324
overview, 323-324
Resume statement, 

327-329
trappable VBA errors,

table of, 333-335
errors

compile errors, 338
Err object

methods, 332-333
overview, 330
properties, 330-332

error handlers, 325-327
logic errors, 339
overflow, 330
runtime errors, 338-339
syntax errors, 338
trapping

disabling traps, 330
error handlers, 325-327
On Error GoTo 

statement, 325
On Error Resume Next

statement, 324
overview, 323-324

Resume statement,
327-329

trappable VBA errors,
table of, 333-335

type mismatch, 330
variable errors, 

avoiding, 35-36
Esc key, entering break

mode, 341
Evaluate method, 140-141
EvaluateTest 

procedure, 141
event handlers, 77-78, 248
Event statement, 357
events

definition of, 77
event handlers, 77-78, 248
ItemAdd, 218-219
ItemSend, 219-220

Excel
Application object, 139

Calculate method, 140
CalculateFull 

method, 140
Evaluate method, 

140-141
OnKey method, 

142-143
OnRepeat method,

145-146
OnTime method, 144
OnUndo method, 

145-146
Wait method, 141
WorksheetFunction

property, 139-140
cells

returning, 154
selecting, 158-161

columns, returning, 156
importing Access data into

individual field 
values, 208

recordsets, 210-212
rows, 208-210

macros
Personal Macro

Workbook, 7
pausing, 141
recording, 7-8
shortcut keys, 10-11

objects, converting strings
into, 140-141

procedures
assigning keyboard

shortcuts to, 142-143
running at specific

times, 144
running when user

selects Repeat or
Undo, 144-146

Range object, 153
defining range 

names, 162
inserting data into

ranges, 162-163
resizing ranges, 

163-164
returning data about

ranges, 163
returning with Cells

method, 154
returning with

Columns method, 156
returning with Offset

method, 157-158
returning with Range

method, 153-154
returning with Rows

method, 155-156
selecting ranges, 

158-161
rows, returning, 155-156
user-defined functions,

entering, 26-27
workbooks

ActiveWorkbook
objects, 146

closing, 150
creating, 147
opening, 146-147
recalculating, 140

Index Error function380



saving, 148-149
specifying number of

sheets in, 147-148
ThisWorkbook 

objects, 146
Workbook object, 146

Worksheet object, 150
accessing worksheet

functions, 139-140
creating 

worksheets, 151
methods, 152-153
properties, 151-152
specifying, 150-151

Execute method, 86-87
executing statements in

Immediate window, 350
Exit Do statement, 110
Exit For statement, 110
Exit statement, 357
exiting

break mode, 342
loops, 110

Exp function, 61, 365
explicit declarations, 35-36
exponential notation, 37
exponentiation

operator (^), 55
Export File command (File

menu), 300
Export File dialog box, 300
exporting modules, 300
expressions

data type consistency, 54
date expressions, 68-70
definition of, 24, 53
logical expressions, 66-67
numeric expressions

financial functions, 
62-63

math functions, 60-62
overview, 60

operands, 54
operators

arithmetic 
operators, 55

assignment (=), 54
comparison operators,

56-57
concatenation, 56
definition of, 54
logical operators, 

57, 67
order of precedence,

57-60
overview, 53-54
string expressions, 63-66

extending selection
(Word), 131-132

extensibility of Ribbon,
263-265

ExtractLastName
function, 65

F

field values, exporting from
Access to Excel, 208

Fields property (Recordset
object), 198

File menu commands
Export File, 300
Import File, 300
Remove, 301

file system
default drive, 

changing, 315
file/folder information,

returning
CurDir function, 310
Dir function, 310-312
FileDateTime function,

312

FileLen function, 
312-313

GetAttr function, 
313-314

files
copying, 315
deleting, 315-316
file/directory functions,

363-364
renaming, 316
setting attributes 

of, 318
tracking file usage,

307-309
folders

changing default 
folder, 315

creating, 316
deleting, 316-318
renaming, 316
setting attributes 

of, 318
FileAttr function, 364
FileCopy statement, 

315, 357
FileDateTime function,

312, 364
FileLen function, 

312-313, 364
FileName property

(Attachment object), 229
files. See also file system

copying, 315
deleting, 315-316
file/directory functions,

363-364
inserting slides from, 172
MyRibbon.xml file

adding to document
package, 268-269

creating, 267-268
renaming and 

opening, 269

How can we make this index more useful? Email us at indexes@quepublishing.com

381files



renaming, 316
returning file/folder 

information
CurDir function, 310
Dir function, 310-312
FileDateTime 

function, 312
FileLen function, 

312-313
GetAttr function, 

313-314
setting attributes of, 318
tracking file usage, 

307-309
Fill property (Shape

object), 179
Filter function, 368
financial functions, 62-63,

364-365
Find method, 202
finding records, 202-203
Fix function, 61, 365
FlagRequest property

(MailItem object), 221
Flip method, 182
fmPictureSizeModeClip

value (PictureSizeMode
property), 241

fmPictureSizeModeStretch
value (PictureSizeMode
property), 241

fmPictureSizeModeZoom
value (PictureSizeMode
property), 241

focus, 74
folders

changing default 
folder, 315

creating, 316
deleting, 316-318

Outlook folders
listing all folders, 

214-215
methods, 217
prompting users for,

216-217
referencing default

folders, 214
renaming, 316
returning file/folder 

information, 310
CurDir function, 310
Dir function, 310-312
FileDateTime 

function, 312
FileLen function, 

312-313
GetAttr function, 

313-314
setting attributes of, 318

Folders property
(NameSpace object), 214

FollowMasterBackground
property (Slide 
object), 173

Font property
forms, 240
Range object, 126

For Each...Next statement,
109, 357

For...Next statement, 
106-108, 357

ForeColor property
(forms), 239

Format function, 64, 366
Format menu 

commands, 245
Format$ function, 64, 366
FormatCurrency function,

64, 366
FormatDateTime function,

64, 366

FormatFirstParagraph
procedure, 131-132

FormatNumber
function, 366

FormatParagraph
procedure, 80-81

FormatParagraph2
procedure, 81

FormatPercent function,
64, 366

formatting text 
(Word), 126

forms
adding to projects, 238
controls

check boxes, 251
combo boxes, 252
command buttons, 249
copying, 244-245
deleting, 245
frames, 243, 250
grouping, 245
inserting, 242-243
labels, 249
list boxes, 252-253
multipage controls,

257-258
option buttons, 

250-251
overview, 242
properties, 246-247
scrollbars, 253
selecting, 243
selection handles, 243
sizing, 244
spin buttons, 253-254
tab order, 247-248
tab strips, 254-257
text boxes, 249-250
toggle buttons, 251

displaying, 258
event handlers, 248
overview, 237-238
processing, 259-262

Index files382



properties
Appearance 

category, 239
Behavior category, 

239-240
Font category, 240
Misc category, 240-241
Picture category, 241
Position category, 241
Scrolling category, 

241-242
unloading, 258-259

Formulas menu 
commands, Insert
Function, 26

Forward method, 225
ForwardAndDelete

Attachments procedure,
229-230

forwarding email, 225
Frame object, 250
frames, 243, 250
FreeFile function, 364
FullName property

(Presentation object), 166
Function statement, 

38, 357
Function wizard, 26-27
functions. See also

methods; procedures;
statements

Abs, 61, 365
accessing worksheet 

functions, 139-140
Array, 366
Asc, 64, 368
AscB, 368
AscW, 368
Atn, 61, 365
CalculateAge, 70
CallByName, 366
CBool, 362
CByte, 362

CCur, 362
CDate, 69, 362
CDbl, 362
CDec, 362
ChDir, 315, 356
ChDrive, 315, 356
Choose, 102-103, 366
Chr, 64, 368
Chr$, 64, 368
ChrB, 368
ChrW, 368
CInt, 362
CLng, 362
Cos, 61, 365
CountWords, 133
CreateObject, 366
CSng, 362
CStr, 64, 362
CurDir, 310, 363
CurDir$, 363
CVar, 362
CVDate, 362
CVErr, 362
Date, 69, 362
Date$, 69, 362
DateAdd, 69, 362
DateDiff, 69, 362
DatePart, 69, 362
DateSerial, 69, 362
DateValue, 69, 362
Day, 69, 362
DayDeity, 103
DDB, 63, 364
Dir, 310-312, 363
Dir$, 363
Divide, 326-327
DocTooLong, 102
DoEvents, 366
Environ, 366
EOF, 363
Error, 363
Error$, 363
Exp, 61, 365
ExtractLastName, 65
FileAttr, 364
FileDateTime, 312, 364

FileLen, 312-313, 364
Filter, 368
financial functions, 62-63
Fix, 61, 365
Format, 64, 366
Format$, 64, 366
FormatCurrency, 64, 366
FormatDateTime, 64, 366
FormatNumber, 366
FormatPercent, 64, 366
FreeFile, 364
Function wizard, 26-27
FutureValue, 94
FutureValue2, 95
FutureValue3, 96
FutureValue4, 98
fv, 62-63, 364
GetAllSettings, 309, 366
GetAttr, 313-314, 364
GetObject, 366
GetRangeName, 160-161
GetSetting, 306-307, 366
GrossMargin, 26, 35
GrossMargin2, 92
Hex, 61, 365
Hex$, 61, 365
Hour, 69, 362
IIf, 101-102, 366
Input, 366
Input$, 367
InputB, 367
InputB$, 367
InputBox, 50-51, 367
InStr, 64, 368
InStrB, 368
InStrRev, 64, 368
Int, 61, 365
IPmt, 63, 364
IRR, 63, 364
IsArray, 367
IsDate, 367
IsEmpty, 367
IsError, 367
IsMissing, 367
IsNull, 367
IsNumeric, 367

How can we make this index more useful? Email us at indexes@quepublishing.com

383functions



IsObject, 367
Join, 368
LBound, 43, 367
LCase, 64, 100, 368
LCase$, 64, 368
Left, 64, 368
Left$, 64, 368
LeftB, 369
LeftB$, 369
Len, 64, 369
LenB, 369
LetterGrade, 98
LetterGrade2, 104
Loc, 364
LOF, 364
Log, 61, 365
LTrim, 64, 369
LTrim$, 64, 369
math functions, 60-62
Mid, 64, 369
Mid$, 64, 66, 369
MidB, 369
MidB$, 369
Minute, 69, 362
MIRR, 63, 364
Month, 69, 362
MonthName, 69, 362
MsgBox, 21, 329, 367

Buttons parameter, 
46-48
return values, 48-49
syntax, 45-46

Now, 69, 363
nper, 62-63, 364
NPV, 63, 364
Oct, 61, 365
Oct$, 61, 365
Partition, 367
Pmt, 29, 62-63, 364
PPmt, 63, 365
pv, 62-63, 365
QBColor, 367
rate, 62-63, 365
Replace, 64, 369
RGB, 80, 99, 367
Right, 65, 369
Right$, 65, 369

RightB, 369
RightB$, 369
Rnd, 61, 365
Round, 365
RTrim, 65, 369
RTrim$, 65, 369
Second, 69, 363
Seek, 364
Sgn, 61, 365
Shell, 364
Sin, 61, 365
SLN, 63, 365
Space, 65, 369
Space$, 65, 369
Split, 370
Sqr, 61, 366
Str, 65, 370
Str$, 65, 370
StrComp, 65, 370
StrConv, 65
String, 65, 370
String$, 65, 370
StrReverse, 370
Switch, 103-104, 367
SYD, 63, 365
Tab, 367
Tan, 61, 366
Time, 69, 363
Time$, 69, 363
Timer, 69, 363
TimeSerial, 69, 363
TimeValue, 69, 144, 363
Trim, 65, 100, 370
Trim$, 65, 370
type, 62
TypeName, 367
UBound, 43, 367
UCase, 65, 140, 370
UCase$, 65, 370
user-defined functions

calling, 26
definition of, 19, 24
entering into cells, 

26-27
expressions, 24
structure, 24
writing, 25

Val, 65, 370
VarType, 367
VBAColor, 100
Weekday, 69, 363
WeekdayName, 69, 363
Year, 69, 363

FutureValue function, 94
FutureValue2 function, 95
FutureValue3 function, 96
FutureValue4 function, 98
fv function, 62-63, 364

G

galInsertHyperlinksFor_
OnAction procedure, 287

galleries (Ribbon), 
creating, 285-287

gallery element (XML),
285-287

Get statement, 357
GetAllChapter14Settings

procedure, 309
GetAllSettings function,

309, 366
GetAttr function, 

313-314, 364
GetAttributes

procedure, 314
GetDefaultFolder

method, 214
getEnabled callback

attribute, 291
GetFilenames

procedure, 311-312
GetFolderUsage

procedure, 312-313
getImageMso callback

attribute, 291
getKeyTip callback

attribute, 291

Index functions384



getLabel callback 
attribute, 291

GetNumbers
procedure, 326

GetObject function, 366
getPressed callback

attribute, 291
GetRangeName function,

160-161
GetRows method, 208
getScreentip callback

attribute, 291
getSelectedItemID

callback attribute, 291
getSelectedItemIndex

callback attribute, 291
getSelectedItemIndex

method, 291
GetSetting statement, 

306-307, 366
getShowLabel callback

attribute, 291
getSize callback 

attribute, 291
getSupertip callback

attribute, 291
getVisible callback

attribute, 291
GoSub...Return

statement, 357
GoTo statement, 357
GoToNextSentence 

procedure, 130
greater than 

operator (>), 57
greater than or equal to

operator (>=), 57
GrossMargin function, 

26, 35
GrossMargin2 function, 92

Group command (Format
menu), 245

group element (XML),
274-275

grouping controls, 245
groups (Ribbon)

creating, 274
customizing, 274-275

H

hard-coding, 45
HasTextFrame property

(Shape object), 179
Height property

Application object, 83
forms, 241
Shape object, 179

help. See IntelliSense
Hex function, 61, 365
Hex$ function, 61, 365
hiding

built-in Ribbon, 270-271
documents, 319

hierarchy of objects, 73
home cells, selecting, 

159-160
Hopper, Grace, 337
Hour function, 69, 362
HTMLBody property

(MailItem object), 221
hyperlinks, inserting, 

136-137

I

id attribute (controls), 276
IDE (integrated 

development
environment), 17

idMso attribute 
(controls), 276

If...Then statement
And operator, 95
block syntax, 92
example, 92-93
Or operator, 95
single-line syntax, 92

If...Then...Else
statement, 357

example, 93-94
indenting for 

readability, 94
multiple If...Then...Else

statements, 95-96
syntax, 93

IIf function, 101-102, 366
imageMso attribute 

(controls), 276
Immediate window

executing statements 
in, 350

overview, 348
printing data in, 348-349

Immediate Window 
command (View 
menu), 348

Implements statement, 357
implicit declarations, 35
Import File command (File

menu), 300
Import File dialog box, 300
Importance property

(MailItem object), 221
importing modules, 300
inboxItems_ItemAdd

procedure, 219, 223-224
incoming messages, 

handling (Outlook)
AddItem event, 218-219
custom rules, 223-224
spam, 224-225

IncrementLeft
method, 182

How can we make this index more useful? Email us at indexes@quepublishing.com

385IncrementLeft method



IncrementRotation
method, 182

IncrementTop 
method, 182

indenting for readability,
111, 350

index values 
(collections), 78

initializing
controls, 290-293
tab strips, 256

input boxes, 50-51
Input function, 366
Input statement, 357
Input$ function, 367
InputB function, 367
InputB$ function, 367
InputBox function, 

50-51, 367
InputBoxTest 

procedure, 51
Insert Function command

(Formulas menu), 26
Insert Function dialog 

box, 26-27
Insert menu commands,

Procedure, 20
InsertAfter method, 127
InsertAfterMso attribute

(controls), 276
InsertAndRedefineName

procedure, 164
InsertBefore method, 127
InsertBeforeMsoID

attribute (controls), 276
InsertFromFile

method, 172
InsertHyperlinks

procedure, 136-137

inserting
controls on forms, 

242-243
hyperlinks (Word), 

136-137
records, 205-206
text (Word), 127-128

insertion point (Word),
moving, 130

InsertParagraph
method, 127

InsertParagraphAfter
method, 127

InsertParagraphBefore
method, 127

InsertParagraphsAndText
procedure, 127-128

InStr function, 64, 368
InStrB function, 368
InStrRev function, 64, 368
Int function, 61, 365
Integer data type, 36
integer division 

operator (\), 55
integrated development

environment (IDE), 17
IntelliSense

Complete Word 
feature, 30

List Constants feature, 
28-29

List Properties/Methods
feature, 27-28

Parameter Info feature,
29-30

Invalidate method, 294
InvalidateControl

method, 294
IPmt function, 63, 364
IRR function, 63, 364
Is operator, 80

IsArray function, 367
IsDate function, 367
IsEmpty function, 367
IsError function, 367
IsMissing function, 367
IsNull function, 367
IsNumeric function, 367
IsObject function, 367
Italic property (Range

object), 126
ItemAdd event, 218-219
ItemSend event, 219-220

J

Join function, 368
Juggling presentation, 168

AddJugglingSlides 
procedure, 173-174

CreateJuggling
Presentation 
procedure, 169-170

Main procedure, 169
RunJugglingSlideShow

procedure, 187-188
SetUpJugglingSlides 

procedure, 183-185
SetUpStartPage 

procedure, 180-181

K

KeepScrollBarsVisible
property (forms), 241

keyboard shortcuts
assigning to Excel 

macros, 10-11
assigning to 

procedures, 142-143
assigning to Word 

macros, 9-10
keytip attribute 

(controls), 277

Index IncrementRotation method386



keywords. See also
functions; methods; 
procedures; statements

As, 38
entering in lowercase, 351
Type, 40

Kill statement, 
315-316, 357

L

label attribute 
(controls), 276

Label object, 249
LargeChange property

(ScrollBar object), 253
LaunchInsertHyperlink

Dialog macro, 289
Layout property (Slide

object), 173
LBound function, 43, 367
LCase function, 64, 

100, 368
LCase$ function, 64, 368
Left function, 64, 368
Left property

Application object, 83
forms, 241
Shape object, 179

Left$ function, 64, 368
LeftB function, 369
LeftB$ function, 369
Len function, 64, 369
LenB function, 369
less than operator (<), 57
less than or equal to 

operator (<=), 57
Let statement, 357
LetterGrade function, 98
LetterGrade2

function, 104

Line Input statement, 357
list boxes, 252-253
List Constants feature

(IntelliSense), 28-29
List Properties/Methods

feature (IntelliSense), 
27-28

ListBox object, 252-253
ListFolders procedure,

215-216
listing

constants, 28
Outlook folders, 214-215
properties/methods, 27-28

ListRows property
(ComboBox object), 252

lists, Macro Name list, 8
Load statement, 258, 357
Loc function, 364
Locals window, 344
locations, trusted, 301-302
Lock statement, 357
Locked property 

(controls), 247
LockType property

(Recordset object), 195
LOF function, 364
Log function, 61, 365
logging off Outlook 

sessions, 233-234
logging on to Outlook 

sessions, 232
logic errors, 339
logical expressions, 66-67
logical operators

And, 67
Not, 67
Or, 67
table of, 57
Xor, 67

Logoff method, 233-234
Logon method, 232
Long data type, 37
loops

Do...Loop, 105-106, 357
exiting, 110
For Each...Next, 109, 357
For...Next, 106-108, 357
If...Then...Else, 357
optimizing, 320-321
overview, 104-105
While...Wend, 359

LoopTest procedure, 107
LoopUntilStopped

property (SlideShow
Settings object), 187

lower bounds of arrays,
returning, 41-43

LSet statement, 358
lstInsertHyperlinksFor_

GetSelectedItemIndex
procedure, 291

lstInsertHyperlinksFor_
OnAction procedure, 285

LTrim function, 64, 369
LTrim$ function, 64, 369

M

Macro dialog box, 8-9, 
21-22

Macro Name list, 8
Macro Options dialog 

box, 11
macro-enabled

documents/templates,
creating, 265-267

macros. See also procedures
assigning keyboard 

shortcuts to, 142-143
CloseAllOpenDocuments,

121-122

How can we make this index more useful? Email us at indexes@quepublishing.com

387macros



debugging. See debugging
procedures

definition of, xviii, 19
Excel macros

Personal Macro
Workbook, 7

recording, 7-8
shortcut keys, 10-11

LaunchInsertHyperlink
Dialog, 289

Macro Name list, 8
macro statements, xviii
naming, 20
pausing, 141
Quick Access toolbar 

buttons, 11-13
recording

Excel macros, 7-8
overview, 3
Word macros, 5-7

running, 21-22
at specific times, 144
when user selects

Repeat or Undo, 
144-146

security
macro security levels,

302-304
overview, 301
trusted locations, 

301-302
shortcut keys

assigning to Excel
macros, 10-11

assigning to Word
macros, 9-10

when to use, 4
Word macros

recording, 5-7
shortcut keys, 9-10

writing
advantages of, 15
creating modules, 

17-18
Developer tab, 

displaying, 16

entering VBA 
statements, 22-23

example, 20-21
opening modules, 

18-19
Visual Basic Editor,

displaying, 16
Macros dialog box, 8-9
Macros menu commands

Record Macro, 5, 7
Stop Recording, 7-8

MailItem object
methods, 221-223
properties, 220-221

Main procedure (Juggling
presentation), 169

MakeBackup procedure,
122-124

MAPIFolder objects
listing, 214-215
methods, 217
prompting users for, 

216-217
referencing, 214

Master property (Slide
object), 173

MatchRequired property
(ComboBox object), 252

math functions, 60-62,
365-366

matrices, 44
Max property (ScrollBar

object), 253
MaxLength property

(TextBox object), 250
menu element (XML), 278
menus (Ribbon), creating,

278-280
message boxes

creating, 45-48
message styles, 46-48
return values, 48-49

messages (Outlook)
attachments

adding to messages,
230-231

Attachment 
objects, 229

removing from 
forwarded messages,
229-230

creating, 225
forwarding, 225
incoming message 

handling, 217
AddItem event, 

218-219
custom rules, 223-224
spam, 224-225

outgoing message 
handling, 219-220

replying to, 225
sending, 226-227
specifying message 

recipients, 226
supplementing reminders

with email messages,
227-228

methods. See also
functions; procedures;
statements

Activate, 88, 152
Add

Documents 
collection, 118

Names collection, 162
Presentations 

collection, 166
Recipients object, 226
Slides collection, 171
Workbooks 

collection, 147
Worksheets 

collection, 151
AddComment, 176
AddConnector, 176
AddCurve, 176
AddItem, 253

Index macros388



AddLabel, 176
AddLine, 176
AddMediaObject, 177
AddNew, 205-206
AddPicture, 177
AddPolyline, 177
AddShape, 177
AddTextEffect, 177
AddTitle, 178
Apply, 181
ApplyTemplate, 167
Calculate, 140, 152
CalculateFull, 140
Cells, 154
CheckSpelling, 75, 87
Clear

Err object, 332
ListBox object, 253

Close, 76
Document object, 121
MailItem object, 222
Presentation 

object, 167
Workbook object, 150

Collapse, 132
Columns, 156
Copy

MailItem object, 222
Worksheet object, 152

CopyFromRecordset, 210
CopyTo, 217
CreateItem, 225
DataSeries, 163
Delete

Attachment object, 229
MailItem object, 222
MAPIFolder 

object, 217
Range object, 128-129
Recordset object, 207
Worksheet object, 152

Display, 86, 222
Duplicate, 181
Evaluate, 140-141
Execute, 86-87
Find, 202

Flip, 182
Forward, 225
GetDefaultFolder, 214
GetRows, 208
getSelectedItemIndex, 291
IncrementLeft, 182
IncrementRotation, 182
IncrementTop, 182
InsertAfter, 127
InsertBefore, 127
InsertFromFile, 172
InsertParagraph, 127
InsertParagraphAfter, 127
InsertParagraph

Before, 127
Invalidate, 294
InvalidateControl, 294
listing, 27-28
Logoff, 233-234
Logon, 232
Move

MailItem object, 222
Recordset object, 200
Worksheet object, 152

MoveEnd, 130
MoveFirst, 200
MoveLast, 200
MoveNext, 200
MovePrevious, 200
MoveStart, 130
MoveTo, 217
multiple methods, 80-81
named arguments, 76
NewWindow, 88
Offset, 157-158
OnKey, 142-143
OnRepeat, 145-146
OnTime, 144
OnUndo, 145-146
Open

Documents 
collection, 116

Presentations 
collection, 166

properties, 195

Recordset object, 
193-196

Workbooks collection,
146-147

overview, 75-77
PickFolder, 216-217
PickUp, 182
Print, 348-349
PrintOut, 167-168
Raise, 333
Range, 125, 153-154, 

171, 175
RemoveItem, 253
Reply, 225
ReplyAll, 225
Resize, 163
Rows, 155-156
Run, 187-188
Save

Document object, 119
Presentation 

object, 168
SaveAs

Attachment object, 229
Document object, 120
Presentation 

object, 168
Select, 129, 182
Show, 85
Sort, 75
syntax, 75-76
Update, 204
Wait, 104, 141

Microsoft Office Security
Options dialog box, 302

Microsoft Root Certificate
Program, 304

Mid function, 64, 369
Mid$ function, 64, 66, 369
MidB function, 369
MidB$ function, 369
Min property (ScrollBar

object), 253

How can we make this index more useful? Email us at indexes@quepublishing.com

389Min property (ScrollBar object)



Minute function, 69, 362
MIRR function, 63, 364
Misc properties (forms),

240-241
MkDir statement, 316, 358
mnuCloseDocument2_

OnAction procedure, 280
Mod operator, 55
Modify Button dialog 

box, 12
modular programming, 104
modules

creating, 17-18
exporting, 300
importing, 300
opening, 18-19
removing, 301
renaming, 299-300

modulus operator, 55
monitoring procedure 

values
data tips feature, 347
Locals window, 344
Quick Watch feature, 347
watch expressions, 

344-346
Month function, 69, 362
MonthName function, 

69, 362
Move method

MailItem object, 222
Recordset object, 200
Worksheet object, 152

MoveEnd method, 130
MoveFirst method, 200
MoveLast method, 200
MoveNext method, 200
MovePrevious method, 200
MoveStart method, 130
MoveTo method, 217

MsgBox function, 21, 
329, 367

Buttons parameter, 46-48
return values, 48-49
syntax, 45-46

multidimensional
arrays, 44

MultiLine property
(TextBox object), 250

multipage controls, 
257-258

MultiPage object, 257-258
multiple If...Then...Else

statements, 95-96
multiplication

operator (*), 55
MultiSelect property

(ListBox object), 252
MyRibbon.xml file

adding to document 
package, 268-269

creating, 267-268
renaming and 

opening, 269

N

Name property
forms, 240
Presentation object, 167
Recipient object, 226
Shape object, 179
Slide object, 173
Worksheet object, 151

Name statement, 316, 358
named arguments, 76
named ranges containing

active cell, selecting, 
160-161

names
Excel range names, 

defining, 162
macro names, 20

module names, 299-300
range names, 352
variable names, 34

Names collection, 162
NameSpace object, 213

Folders property, 214
Logoff method, 233-234
Logon method, 232
PickFolder method, 

216-217
navigating records, 

199-201
negation operator (-), 55
NewWindow method, 88
NewWorkbookWithCustom

Sheets procedure, 148
not equal operator (<>), 57
Not operator, 57
Now function, 69, 363
nper function, 62-63, 364
NPV function, 63, 364
Number property (Err

object), 330
numbers

random numbers, 
generating, 61-62

serial numbers, 68
numeric expressions

financial functions, 62-63
math functions, 60-62
overview, 60

O

Object Browser, 84
Object data type, 36
object hierarchy, 73
object models, 

choosing, 190-191

Index Minute function390



objects. See also collections
ActiveDocument, 116
ActivePresentation, 166
ActiveWindow, 88
ActiveWorkbook, 146
ADO (ActiveX Data

Objects), 189
Application, 73, 81, 139

Calculate method, 140
CalculateFull 

method, 140
Caption property, 82
CheckSpelling 

method, 87
CreateItem 

method, 225
Dialogs property, 83-87
Evaluate method, 

140-141
Height property, 83
Left property, 83
OnKey method, 

142-143
OnRepeat method,

145-146
OnTime method, 144
OnUndo method, 

145-146
StatusBar property, 82
Top property, 83
UsableHeight 

property, 83
UsableWidth 

property, 83
Wait method, 141
Width property, 83
WindowState 

property, 83
WorksheetFunction

property, 139-140
assigning to variables, 

79-80
Attachment, 229
CheckBox, 251
ComboBox, 252

CommandButton, 249
comparing with Is 

operator, 80
converting strings 

into, 140-141
DAO (Data Access

Objects), 190
definition of, 71
Document, 73, 115

Close method, 121
Range method, 125
Save method, 119
SaveAs method, 120

Documents, 73, 115
Err

methods, 332-333
overview, 330
properties, 330-332

events
definition of, 77
event handlers, 77-78

Frame, 250
Label, 249
ListBox, 252-253
MailItem

methods, 221-223
properties, 220-221

MAPIFolder
listing, 214-215
methods, 217
prompting users for,

216-217
referencing, 214

methods. See also specific
methods

multiple methods, 
80-81

named arguments, 76
overview, 75-77
syntax, 75-76

MultiPage, 257-258
NameSpace, 213

Folders property, 214
Logoff method, 

233-234

Logon method, 232
PickFolder method,

216-217
Object Browser, 84
object hierarchy, 73
OptionButton, 250-251
Options, 73
overview, 71-73
Paragraph, 136-138
Presentation

methods, 167-168
properties, 166-167
SlideShowSettings

property, 187
specifying, 165-166

Presentations, 165
properties

multiple properties, 
80-81

overview, 74
referencing, 73
returning value of, 75
setting value of, 75

Range (Word)
Bold property, 126
Case property, 126
Delete method, 

128-129
deleting text, 128-129
Font property, 126
formatting text, 126
InsertAfter 

method, 127
InsertBefore 

method, 127
inserting text, 127-128
InsertParagraph

method, 127
InsertParagraphAfter

method, 127
InsertParagraphBefore

method, 127
InsertParagraphsAnd

Text procedure, 
127-128

Italic property, 126

How can we make this index more useful? Email us at indexes@quepublishing.com

391objects



reading and changing
range text, 126

returning with Range
method, 125

returning with Range
property, 125

Range (Excel)
defining range 

names, 162
inserting data into

ranges, 162-163
resizing ranges, 

163-164
returning data about

ranges, 163
returning with Cells

method, 154
returning with

Columns method, 156
returning with Offset

method, 157-158
returning with Range

method, 153-154
returning with Rows

method, 155-156
selecting, 158-161

RecentFiles, 73, 116-117
Recipients, 226
Recordset

accessing recordset
data, 198-199

adding records, 
205-206

AddNew method, 
205-206

BOF property, 200
Delete method, 207
deleting records, 

207-208
editing records, 

203-205
EOF property, 200
Fields property, 198
Find method, 202
finding records, 

202-203

GetRows method, 208
Move method, 200
MoveFirst method, 200
MoveLast method, 200
MoveNext 

method, 200
MovePrevious 

method, 200
navigating records,

199-201
Open method, 193-195
opening with Open

method, 194-196
opening with SELECT

statement, 196-198
opening with tables,

193-194
overview, 192-193
Update method, 204

ScrollBar, 253
Selection

Collapse method, 132
collapsing 

selection, 132
creating, 129
extending selection,

131-132
MoveEnd method, 130
MoveStart method, 130
moving insertion 

point, 130
overview, 129
Type property, 129

Sentences, 133-135
Shape

adding to slides, 
175-178

methods, 176-178,
181-182

properties, 178-180
specifying, 174-175

Slide
adding to 

presentations, 171
methods, 171, 174

properties, 172-173
specifying, 170-171

SlideShowSettings, 187
SlideShowTransitions, 186
SpinButton, 253-254
TabStrip, 254-257

initializing, 256
modifying controls 

in, 256-257
TextBox, 249-250
ThisDocument, 116
ThisWorkbook, 146
ToggleButton, 251
Window, 88
Words, 132-133
Workbook

closing workbooks, 150
creating 

workbooks, 147
opening workbooks,

146-147
saving workbooks, 

148-149
specifying number of

worksheets, 147-148
Workbooks, 146
Worksheet

creating 
worksheets, 151

methods, 152-153
properties, 151-152
specifying, 150-151

Oct function, 61, 365
Oct$ function, 61, 365
ODBC Microsoft Access

Setup dialog box, 192
Office 2007 Ribbon. 

See Ribbon customization
Offset method, 157-158
On Error GoTo 

statement, 325
On Error Resume Next

statement, 324
On Error statement, 358

Index objects392



On...GoSub, On...GoTo
statement, 358

onAction attribute 
(controls), 276

one-dimensional arrays, 44
OnKey method, 142-143
OnRepeat method, 

145-146
OnTime method, 144
OnUndo method, 145-146
Open method

Documents 
collection, 116

Presentations 
collection, 166

properties, 195
Recordset object, 193-196
Workbooks collection,

146-147
Open statement, 358
opening

database connections, 191
Excel workbooks, 146-147
modules, 18-19
PowerPoint 

presentations, 166
recordsets, 192-193

with Open method,
194-196

with SELECT 
statement, 196-198

with tables, 193-194
windows, 88
Word documents

with Open 
method, 116

with RecentFiles
object, 116-117

operands, 54
operators

And, 95
arithmetic operators, 55
assignment (=), 54

comparison operators, 
56-57, 80

concatenation, 56
definition of, 54
logical operators

And, 67
Not, 67
Or, 67
table of, 57
Xor, 67

Or, 95
order of precedence, 

57-58
controlling, 58-60
table of, 58

optimizing procedures
avoiding data 

selection, 319
avoiding 

recalculation, 319
hiding documents, 319
loops, 320-321
turning off screen 

updating, 319
Option Base 0|1 

statement, 358
option buttons, 250-251
Option Compare

Text|Binary 
statement, 358

Option Explicit 
statement, 351, 358

Option Private 
statement, 358

OptionButton object, 
250-251

Options object, 73
Or operator, 95
order of precedence 

(operators), 57-58
controlling, 58-60
table of, 58

outgoing messages, 
handling (Outlook), 
219-220

Outlook
attachments

adding to messages,
230-231

Attachment 
objects, 229

removing from 
forwarded 
messages, 229-230

custom rules, 223-224
folders

listing all folders, 
214-215

methods, 217
prompting users for,

216-217
referencing default

folders, 214
incoming message 

handling, 217
AddItem event, 

218-219
custom rules, 223-224
spam, 224-225

logging off, 233-234
logging on, 232
MailItem object

methods, 221-223
properties, 220-221

messages
creating, 225
forwarding, 225
replying to, 225
sending, 226-227
specifying message

recipients, 226
supplementing

reminders with email
messages, 227-228

NameSpace object, 213
Folders property, 214
Logoff method, 

233-234

How can we make this index more useful? Email us at indexes@quepublishing.com

393Outlook



Logon method, 232
PickFolder method,

216-217
outgoing message 

handling, 219-220
overview, 213
referencing from other

applications, 231
overflow errors, 330

P

Paragraph object, 136-138
Parameter Info feature

(IntelliSense), 29-30
parameters, displaying

information about, 29-30
Partition function, 367
PasswordChar property

(TextBox object), 250
Path property

(Presentation object), 167
pausing procedures, 141

breakpoints, setting, 341
entering break mode

at beginning of 
procedure, 340

from error dialog
boxes, 340

with Esc key, 341
with Stop 

statement, 342
exiting break mode, 342
overview, 339-340

PerformCalculations
procedure, 42

period (.), 40
Personal Macro 

Workbook, 7
PickFolder method, 

216-217
PickUp method, 182

Picture properties 
(forms), 241

PictureAlignment property
(forms), 241

PictureSizeMode property
(forms), 241

PictureTiling property
(forms), 241

plus sign (+), 47, 55
Pmt function, 29, 

62-63, 364
Position properties

(forms), 241
PowerPoint

presentations, 165
creating, 166
Juggling presentation, 168

AddJugglingSlides 
procedure, 173-174

CreateJuggling
Presentation proce-
dure, 169-170

Main procedure, 169
RunJugglingSlideShow

procedure, 187-188
SetUpJugglingSlides

procedure, 183-185
SetUpStartPage 

procedure, 180-181
opening, 166
Presentation object

methods, 167-168
properties, 166-167
SlideShowSettings

property, 187
specifying, 165-166

Presentations 
collection, 166

shapes
adding to slides, 

175-178
methods, 176-178,

181-182
properties, 178-180
specifying, 174-175

slide shows
running, 187-188
settings, 187
transitions, 186

slides
creating, 171
inserting from 

files, 172
methods, 174
properties, 172-173
specifying, 170-171

PPmt function, 63, 365
precedence (operators),

57-58
controlling, 58-60
table of, 58

prefixes, data type, 38
Presentation object

methods, 167-168
properties, 166-167
SlideShowSettings 

property, 187
specifying, 165-166

Presentations
collection, 166

Presentations object, 165
presentations. See

PowerPoint presentations
Print method, 348-349
Print statement, 358
printing data in Immediate

window, 348-349
PrintOut method, 167-168
Private statement, 358
Procedure command

(Insert menu), 20
procedures. See also macros

AddingARecord, 205-206
AddJugglingSlides, 

173-174
Application_

ItemSend, 219
Application_Quit, 218

Index Outlook394



Application_Reminder,
227-228

Application_Startup, 218
assigning keyboard 

shortcuts to, 142-143
BackUpToDrive, 328-329
BigNumbers, 105-106
BoldAndItalic, 145
btnChooseAnotherStyle_

OnAction, 287
btnCloseWindow_

GetEnabled, 297
btnCloseWindow_

OnAction, 296
btnPromptToSaveChanges

_OnAction, 279
btnRefreshList_

OnAction, 295-297
ButtonTest, 48
ButtonTest2, 49
cbWindows_

GetItemCount, 292-293
cbWindows_

GetItemID, 292
cbWindows_

GetItemLabel, 293
cbWindows_

OnChange, 296-297
chkToggleProofingErrors

_OnAction, 282
CloseAllOpenDocuments,

121-122
ColorTester, 101
ConcatenateStrings, 157
CreateJuggling

Presentation, 169-170
debugging

break mode, 339-342
breakpoints, 341
compile errors, 338
data tips feature, 347
debugging tips and

techniques, 350-352
Immediate window,

348-350
Locals window, 344

logic errors, 339
overview, 337-338
Quick Watch 

feature, 347
runtime errors, 

338-339
stepping into 

procedures, 343
stepping out of 

procedures, 343
stepping over 

procedures, 343
stepping to cursor, 343
syntax errors, 338
watch expressions, 

344-346
definition of, 19
DeleteAll, 143
DeleteFolder, 317-318
DeletingARecord, 207
DisplaySentenceLengths,

134-135
DivideNumbers, 331-332
dlLaunchInsertHyperlink

Dialog_OnAction, 289
DoNotSaveChanges_

OnAction, 279
EditingARecord, 204
EvaluateTest, 141
FormatFirstParagraph,

131-132
FormatParagraph, 80-81
FormatParagraph2, 81
ForwardAndDeleteAttach

ments, 229-230
galInsertHyperlinksFor_

OnAction, 287
GetAllChapter14Settings,

309
GetAttributes, 314
GetFilenames, 311-312
GetFolderUsage, 312-313
GetNumbers, 326
GoToNextSentence, 130
inboxItems_ItemAdd, 

219, 223-224

increasing speed of
avoiding data 

selection, 319
avoiding 

recalculation, 319-320
hiding documents, 319
optimizing loops, 

320-321
turning off screen

updating, 319
InputBoxTest, 51
InsertAndRedefine

Name, 164
InsertHyperlinks, 136-137
InsertParagraphsAndText,

127-128
ListFolders, 215-216
LoopTest, 107
lstInsertHyperlinksFor_

GetSelectedItem
Index, 291

lstInsertHyperlinksFor_
OnAction, 285

Main (Juggling
presentation), 169

MakeBackup, 122-124
mnuCloseDocument2_

OnAction, 280
NewWorkbookWith

CustomSheets, 148
PerformCalculations, 42
ReadInboxData, 233-234
RecordsetBookmark

Navigation, 201
RecordsetData, 199
RecordsetOpen

Properties, 196
RecordsetOpen

SELECT, 197
RecordsetOpenTable,

193-194
RemoveChapter14

Setting, 309
ResetKey, 143
RetrieveProducts, 210-212

How can we make this index more useful? Email us at indexes@quepublishing.com

395procedures



RetrievingEntire
Records, 209

RunJugglingSlideShow,
187-188

running at specific 
times, 144

SaveAll, 149
SaveChanges_

OnAction, 279
SearchRecordsWithFind,

202-203
SelectA1OnAllSheets,

158-159
SelectCurrentNamed

Range, 161
SelectHomeCells, 

159-160
SendAMessage, 227
SetKey, 143
SetUpJugglingSlides, 

183-185
SetUpStartPage, 180-181
SpellCheckTest, 87
stepping into, 343
stepping out of, 343
stepping over, 343
StoreWorksheetNames,

42-43
TabStrip1_Change, 

256-257
tbToggleDeveloperTab_

GetPressed, 290
tbToggleDeveloperTab_

OnAction, 283
TimingTest, 320-321
ToggleDeveloeprTab, 283
UndoBoldAndItalic, 146
user-defined functions

calling, 26
definition of, 19, 24
entering into cells, 

26-27
expressions, 24
structure, 24
writing, 25

UserForm_Initialize, 256

UserForm_Terminate, 260
VBAWait, 108
Workbook_Open, 

308-309
processing forms, 259-262
program variables. 

See variables
projects

adding forms to, 238
definition of, 17
digital signatures, 304-305

prompting users for
Outlook folders, 216-217

properties (of objects). See
also specific properties

multiple properties, 80-81
listing, 27-28
overview, 74, 129, 239
referencing, 73
returning value of, 75
setting value of, 75

Property Get 
statement, 358

Property Let 
statement, 358

Property Set 
statement, 358

Public statement, 358
Put statement, 358
pv function, 62-63, 365

Q

QBColor function, 367
Quick Access toolbar, 

11-13
Quick Watch command

(Debug menu), 347
Quick Watch dialog 

box, 347

R

Raise method, 333
RaiseEvent statement, 358
random numbers, 

generating, 61-62
Randomize statement, 358
Range method, 125, 

153-154, 171, 175
Range object, 125

in Excel
defining range 

names, 162
inserting data into

ranges, 162-163
resizing ranges, 

163-164
returning data about

ranges, 163
returning with Cells

method, 154
returning with

Columns method, 156
returning with Offset

method, 157-158
returning with Range

method, 153-154
returning with Rows

method, 155-156
selecting ranges, 

158-161
in Word, 153

Bold property, 126
Case property, 126
Delete method, 

128-129
deleting text, 128-129
Font property, 126
formatting text, 126
InsertAfter 

method, 127
InsertBefore 

method, 127
inserting text, 127-128

Index procedures396



InsertParagraph
method, 127

InsertParagraphAfter
method, 127

InsertParagraphBefore
method, 127

InsertParagraphsAnd
Text procedure, 
127-128

Italic property, 126
reading and changing

range text, 126
returning with Range

method, 125
returning with Range

property, 125
Range property, 125
ranges. See Range object
rate function, 62-63, 365
ReadInboxData procedure,

233-234
reading

application settings from
Registry, 306-307

range text (Word), 126
section settings, 309

ReadReceiptRequested
property (MailItem
object), 221

recalculating worksheets,
140, 319

ReceivedTime property
(MailItem object), 221

RecentFiles object, 73,
116-117

Recipients object, 226
Recipients property

(MailItem object), 221
Record Macro command

(Macros menu), 5-7
Record Macro dialog 

box, 5-7

recording macros
Excel macros, 7-8
overview, 3
Word macros, 5-7

records
adding, 205-206
deleting, 207-208
editing, 203-205
finding, 202-203
navigating, 199-201

Recordset object
accessing recordset 

data, 198-199
adding records, 205-206
deleting records, 207-208
editing records, 203-205
finding records, 202-203
methods, 199

AddNew, 205-206
Delete, 207
Find, 202
GetRows, 208
Move, 200
MoveFirst, 200
MoveLast, 200
MoveNext, 200
MovePrevious, 200
Open, 193-195
Update, 204

navigating records, 
199-201

opening with Open
method, 194-196

opening with SELECT
statement, 196-198

opening with tables, 
193-194

overview, 192-193
properties, 195

BOF property, 200
EOF property, 200
Fields property, 198

RecordsetBookmark
Navigation
procedure, 201

RecordsetData
procedure, 199

RecordsetOpenProperties
procedure, 196

RecordsetOpenSELECT
procedure, 197

RecordsetOpenTable 
procedure, 193-194

recordsets. See also
RecordSet object

accessing recordset 
data, 198-199

adding records, 205-206
deleting records, 207-208
editing records, 203-205
exporting from Access to

Excel, 210-212
finding records, 202-203
navigating records, 

199-201
opening with tables, 

193-198
overview, 192-193

ReDim statement, 42, 358
referencing

Outlook folders, 214
Outlook from other 

applications, 231
Registry

deleting settings from, 307
overview, 305
reading section 

settings, 309
reading settings from,

306-307
storing settings in, 306
tracking file usage, 

307-309
Relationship element

(XML), 265, 269
Rem statement, 358
Remove command (File

menu), 301

How can we make this index more useful? Email us at indexes@quepublishing.com

397Remove command (File menu)



RemoveChapter14Setting
procedure, 309

RemoveItem method, 253
removing

attachments from 
forwarded messages,
229-230

modules, 301
renaming

files/folders, 316
modules, 299-300

Replace function, 64, 369
Reply method, 225
ReplyAll method, 225
replying to email, 225
Reset statement, 359
ResetKey procedure, 143
resetting controls, 293-295
Resize method, 163
resizing

controls, 244
Excel ranges, 163-164

Resume statement, 
327-329, 359

resuming program 
execution, 327-329

RetrieveProducts
procedure, 210-212

RetrievingEntireRecords
procedure, 209

RGB function, 80, 99, 367
Ribbon customization

advantages, 270
controls

attributes, 276-277
buttons, 277
check boxes, 281-282
combo boxes, 288
dialog box launchers,

289
drop-down lists, 

284-285

galleries, 285-287
getting and changing

control values, 
295-297

initializing, 290-293
menus, 278-280
resetting, 293-295
split buttons, 280-281
toggle buttons, 

282-283
Custom UI Editor, 270
extensibility, 263-265
groups

creating, 274
customizing existing

groups, 274-275
hiding built-in Ribbon,

270-271
macro-enabled 

documents/templates,
creating, 265-267

MyRibbon.xml file
adding to document

package, 268-269
creating, 267-268
renaming and 

opening, 269
overview, 263
RibbonX, 270
tabs

creating, 271-272
customizing existing

tabs, 272-273
ribbon element (XML),

271
RibbonX, 270

controls
attributes, 276-277
buttons, 277
check boxes, 281-282
combo boxes, 288
dialog box 

launchers, 289
drop-down lists, 

284-285
galleries, 285-287

getting and changing
control values, 
295-297

initializing, 290-293
menus, 278-280
resetting, 293-295
split buttons, 280-281
toggle buttons, 

282-283
elements

checkBox, 281
comboBox, 288
dialogBoxLauncher,

289
dropdown, 284
gallery, 285-287
group, 274-275
menu, 278
Relationship, 265, 269
ribbon, 271
splitButton, 280
tab, 272-273
tabs, 271
toggleButton, 282-283

groups
creating, 274
customizing, 274-275

hiding built-in Ribbon,
270-271

tabs
creating, 271-272
customizing, 272-273

Right function, 65, 369
Right$ function, 65, 369
RightB function, 369
RightB$ function, 369
RightToLeft property

(forms), 240
RmDir statement, 

316-318, 359
Rnd function, 61, 365
Root Certificate 

Program, 304
Round function, 365

Index RemoveChapter14Setting procedure398



Row property (Range
object), 163

rows
exporting from Access to

Excel, 208-210
returning, 155-156

Rows method, 155-156
RowSource property

(ListBox object), 252
RSet statement, 359
RTrim function, 65, 369
RTrim$ function, 65, 369
rules (Outlook), 223-224
Run method, 187-188
Run To Cursor command

(Debug menu), 343
RunJugglingSlideShow

procedure, 187-188
running

macros, 8, 21-22
PowerPoint slide shows,

187-188
procedures

at specific times, 144
when user selects

Repeat or Undo, 
144-146

runtime errors, 338-339

S

Save method
Document object, 119
Presentation object, 168

SaveAll procedure, 149
SaveAs method

Attachment object, 229
Document object, 120
Presentation object, 168

SaveChanges_OnAction
procedure, 279

Saved property
(Presentation object), 167

SaveSetting statement,
306, 359

saving
Excel workbooks, 148-149
Word documents, 118

with Save method, 119
with SaveAs 

method, 120
screen updating, turning

off, 319
screentip attribute 

(controls), 277
ScreenUpdating property

(Application object), 319
ScrollBar object, 253
ScrollBars property

(forms), 241
ScrollHeight property

(forms), 242
Scrolling properties

(forms), 241-242
ScrollLeft property

(forms), 242
ScrollTop property

(forms), 242
ScrollWidth property

(forms), 242
SearchRecordsWithFind

procedure, 202-203
Second function, 69, 363
section settings, 

reading, 309
security

digital signatures, 304-305
macros

macro security levels,
302-304

overview, 301
trusted locations, 

301-302

Seek function, 364
Seek statement, 359
Select All command (Edit

menu), 243
Select Case statement, 

97-101, 359
FutureValue4() 

example, 98
LetterGrade() example,

98-99
syntax, 97
VBAColor() example, 

99-101
Select Certificate dialog

box, 305
Select Database dialog 

box, 192
Select method, 129, 182
SELECT statement, 

196-198
SelectA1OnAllSheets

procedure, 158-159
SelectCurrentNamed

Range procedure, 161
SelectHomeCells

procedure, 159-160
selecting

controls, 243
Excel cells/ranges

selecting A1 on all
worksheets, 158-159

selecting home cell on
all worksheets, 
159-160

selecting named range
that contains active
cell, 160-161

selection handles, 243
Selection object

Collapse method, 132
collapsing selection, 132
creating, 129

How can we make this index more useful? Email us at indexes@quepublishing.com

399Selection object



extending selection, 
131-132

MoveEnd method, 130
MoveStart method, 130
moving insertion 

point, 130
overview, 129
Type property, 129

SendAMessage
procedure, 227

SenderEmailAddress
property (MailItem
object), 221

SenderName property
(MailItem object), 221

sending email messages,
226-227

SendKeys statement, 359
Sensitivity property

(MailItem object), 221
Sentences object, 133-135
SentOn property

(MailItem object), 221
serial numbers, 68
sessions (Outlook)

logging off, 233-234
logging on, 232

Set statement, 79, 359
SetAttr statement, 318, 359
SetKey procedure, 143
SetUpJugglingSlides

procedure, 183-185
SetUpStartPage procedure,

180-181
Sgn function, 61, 365
Shadow property (Shape

object), 179
Shape objects

(PowerPoint)
adding to slides, 175-178
methods, 176-178, 

181-182

properties, 178-180
specifying, 174-175

Shapes property (Slide
object), 173

Shell function, 364
shortcut keys

assigning to Excel 
macros, 10-11

assigning to Word 
macros, 9-10

Show method, 85
ShowModal property

(forms), 240
ShowType property

(SlideShowSettings
object), 187

ShowWithAnimation
property
(SlideShowSettings
object), 187

ShowWithNarration
property
(SlideShowSettings
object), 187

shutting down Visual Basic
Editor, 30

signatures, digital, 304-305
Sin function, 61, 365
Single data type, 37
size attribute 

(controls), 276
Size property (MailItem

object), 221
sizing controls, 244
slash (/), 55
Slide objects

adding to 
presentations, 171

methods, 174
properties, 172-173
Range method, 171
specifying, 170-171

slide shows (PowerPoint)
running, 187-188
settings, 187
transitions, 186

SlideMaster property
(Presentation object), 167

slides (PowerPoint)
creating, 171
inserting from files, 172
methods, 174
properties, 172-173
specifying, 170-171

Slides collection
Add method, 171
InsertFromFile 

method, 172
Slides property

(Presentation object), 167
SlideShowSettings

object, 187
SlideShowSettings

property (Presentation
object), 167, 187

SlideShowTransition 
property (Slide 
object), 173

SlideShowTransitions
object, 186

SLN function, 63, 365
SmallChange property

(ScrollBar object), 253
Sort method, 75
Source property

Err object, 330
Recordset object, 195

Space function, 65, 369
Space$ function, 65, 369
spam, filtering, 224-225
SpecialEffect property

(forms), 239
spell checking, 87

Index Selection object400



SpellCheckTest 
procedure, 87

spin buttons, 253-254
SpinButton object, 

253-254
split buttons (Ribbon), 

creating, 280-281
Split function, 370
splitButton element

(XML), 280
Sqr function, 61, 366
StandardHeight property

(Worksheet object), 151
StandardWidth property

(Worksheet object), 152
StartingSlide property

(SlideShowSettings
object), 187

StartUpPosition property
(forms), 241

statements. See also
functions; methods;
loops; procedures

AppActivate, 356
Beep, 356
Call, 356
ChDir, 315, 356
ChDrive, 315, 356
Close, 356
comments, 22
Const, 45, 356
Date, 356
Declare, 356
DefBool, 356
DefByte, 356
DefCur, 356
DefDate, 356
DefDbl, 356
definition of, 355
DefInt, 356
DefLng, 356
DefObj, 356
DefSng, 356

DefStr, 356
DefType, 39
DefVar, 356
DeleteSetting, 307, 357
Dim, 33-34, 357
Do...Loop, 105-106, 357
End, 357
entering, 22-23
Enum, 357
Erase, 357
Error, 357
Event, 357
executing in Immediate

window, 350
Exit, 357
Exit Do, 110
Exit For, 110
FileCopy, 315, 357
For Each...Next, 109, 357
For...Next, 106-108, 357
Function, 38, 357
Get, 357
GetAllSettings, 309
GetSetting, 306-307
GoSub...Return, 357
GoTo, 357
If...Then

And operator, 95
block syntax, 92
example, 92-93
Or operator, 95
single-line syntax, 92

If...Then...Else, 357
example, 93-94
indenting for 

readability, 94
multiple

If...Then...Else 
statements, 95-96

syntax, 93
Implements, 357
indenting for 

readability, 111
Input, 357
Kill, 315-316, 357

Let, 357
Line Input, 357
Load, 258, 357
Lock, 357
LSet, 358
MkDir, 316, 358
Name, 316, 358
On Error, 358
On Error GoTo, 325
On Error Resume 

Next, 324
On...GoSub, On...

GoTo, 358
Open, 358
Option Base 0|1, 358
Option Compare

Text|Binary, 358
Option Explicit, 351, 358
Option Private, 358
Print, 358
Private, 358
Property Get, 358
Property Let, 358
Property Set, 358
Public, 358
Put, 358
RaiseEvent, 358
Randomize, 358
ReDim, 42, 358
Rem, 358
Reset, 359
Resume, 327-329, 359
RmDir, 316-318, 359
RSet, 359
SaveSetting, 306, 359
Seek, 359
SELECT, 196-198
Select Case, 359

FutureValue4() 
example, 98

LetterGrade() 
example, 98-99

syntax, 97
VBAColor() 

example, 99-101
SendKeys, 359

How can we make this index more useful? Email us at indexes@quepublishing.com

401statements



Set, 79, 359
SetAttr, 318, 359
Static, 359
Stop, 342, 359
Sub, 359
Time, 359
Type, 359
Unload, 259, 359
Unlock, 359
While...Wend, 359
Width, 359
With...End With, 359
Write, 359

Static statement, 359
status bars, displaying 

messages in, 82
StatusBar property

(Application object), 82
Step Into command

(Debug menu), 340, 343
Step Out command

(Debug menu), 343
Step Over command

(Debug menu), 343
stepping into 

procedures, 343
stepping out of 

procedures, 343
stepping over 

procedures, 343
stepping to cursor, 343
Stop Recording command

(Macros menu), 7-8
Stop statement, 342, 359
StoreWorksheetNames

procedure, 42-43
storing

application settings in
Registry, 305-306

user input in variables, 45
InputBox function, 

50-51
MsgBox function, 

45-49

Str function, 65, 370
Str$ function, 65, 370
StrComp function, 65, 370
StrConv function, 65
String data type, 36
String function, 65, 370
String$ function, 65, 370
strings

concatenating, 157
converting into objects,

140-141
String data type, 36
string expressions, 63-66
string functions, 65, 

368-370
StrReverse function, 370
Style property (ComboBox

object), 252
Sub statement, 359
Subject property (MailItem

object), 221
subscripts, 41
subtraction operator (-), 55
supertip attribute (con-

trols), 277
supplementing reminders

with email messages, 
227-228

Switch function, 103-104,
367

SYD function, 63, 365
syntax checking, 351
syntax errors, 23, 338

T

tab element (XML), 
272-273

Tab function, 367
tab order (controls), 

setting, 247-248

Tab Order command (View
menu), 247

Tab Order dialog box, 247
tab strips, 254-257

initializing, 256
modifying controls in,

256-257
TabIndex property 

(controls), 247
tables, opening recordsets

with, 193-194
tabs (Ribbon)

creating, 271-272
customizing, 272-273

tabs element (XML), 271
TabStop property 

(controls), 247
TabStrip object, 254-257

initializing, 256
modifying controls in,

256-257
TabStrip1_Change 

procedure, 256-257
Tan function, 61, 366
tbToggleDeveloperTab_

GetPressed
procedure, 290

tbToggleDeveloperTab_
OnAction procedure, 283

templates, macro-enabled,
265-267

text (Word)
Paragraph object, 136-138
Range object

Bold property, 126
Case property, 126
Delete method, 

128-129
deleting text, 128-129
Font property, 126
formatting text, 126
InsertAfter 

method, 127

Index statements402



InsertBefore 
method, 127

inserting text, 127-128
InsertParagraph

method, 127
InsertParagraphAfter

method, 127
InsertParagraphBefore

method, 127
InsertParagraphsAnd

Text procedure, 
127-128

Italic property, 126
reading and changing

range text, 126
returning with Range

method, 125
returning with Range

property, 125
Selection object

Collapse method, 132
collapsing 

selection, 132
creating, 129
extending selection,

131-132
MoveEnd method, 130
MoveStart method, 130
moving insertion 

point, 130
overview, 129
Type property, 129

Sentences object, 133-135
Words object, 132-133

text boxes, 249-250
Text property

ListBox object, 252
TextBox object, 250

TextBox object, 249-250
TextEffectFormat property

(Shape object), 179
TextFrame property

(Shape object), 180
ThisDocument object, 116

ThisWorkbook object, 146
Time function, 69, 363
Time statement, 359
Time$ function, 69, 363
time/date functions, 

362-363
Timer function, 69, 363
TimeSerial function, 

69, 363
TimeValue function, 

69, 144, 363
TimingTest procedure,

320-321
title bar captions, 82
To property (MailItem

object), 221
Toggle Breakpoint 

command (Debug 
menu), 341

toggle button, 251, 
282-283

toggleButton element
(XML), 282-283

ToggleButton object, 251
ToggleDeveloperTab 

procedure, 283
toolbar, Quick Access, 

11-13
Tools menu commands,

Digital Signature, 305
Top property

Application object, 83
forms, 241
Shape object, 180

tracking file usage, 
307-309

transitions
(PowerPoint), 186

trapping errors
disabling traps, 330
Err object

methods, 332-333
overflow errors, 330
overview, 330
properties, 330-332
type mismatch 

errors, 330
error handlers, 325-327
On Error GoTo 

statement, 325
On Error Resume Next

statement, 324
overview, 323-324
Resume statement, 

327-329
trappable VBA errors,

table of, 333-335
Trim function, 65, 100, 370
Trim$ function, 65, 370
true/false decisions

making with If...Then
statement

And operator, 95
block syntax, 92
example, 92-93
Or operator, 95
single-line syntax, 92

making with
If...Then...Else 
statement

example, 93-94
indenting for 

readability, 94
multiple

If...Then...Else 
statements, 95-96

syntax, 93
Trust Center dialog box,

302-303
trusted locations, 301-302
type function, 62
Type keyword, 40

How can we make this index more useful? Email us at indexes@quepublishing.com

403Type keyword



type mismatch errors, 330
Type property

Recipient object, 226
Selection object, 129

Type statement, 359
TypeName function, 367

U

UBound function, 43, 367
UCase function, 65, 

140, 370
UCase$ function, 65, 370
underscore (_), 66
UndoBoldAndItalic

procedure, 146
Ungroup command

(Format menu), 245
Unload statement, 

259, 359
unloading forms, 258-259
Unlock statement, 359
UnRead property

(MailItem object), 221
Update method, 204
upper bounds of arrays,

returning, 41, 43
UsableHeight property

(Application object), 83
UsableWidth property

(Application object), 83
UsedRange property

(Worksheet object), 152
user-defined constants, 

45, 352
user-defined data 

types, 39-40
user-defined functions

calling, 26
definition of, 19, 24
entering into cells, 26-27

expressions, 24
structure, 24
writing, 25

user input, storing in 
variables

InputBox function, 50-51
MsgBox function, 45-49

UserForm_Initialize
procedure, 256

UserForm_Terminate 
procedure, 260

V

Val function, 65, 370
Value property

controls, 259-260
ScrollBar object, 253

variables
arrays

declaring, 41
definition of, 40
dynamic arrays, 41-43
finding lower/upper

bounds of, 41-43
multidimensional

arrays, 44
one-dimensional 

arrays, 44
assigning objects to, 79-80
avoiding errors, 35-36
data types

Boolean, 37
Byte, 36
changing, 39
Currency, 37
data type prefixes, 38
Date, 36
DefType keywords, 39
Double, 37
Integer, 36
Long, 37
Object, 36
Single, 37
specifying, 36-38

String, 36
user-defined data 

types, 39-40
Variant, 37

declaring, 33-35
explicit declarations,

35-36
implicit 

declarations, 35
naming, 34
requiring variable 

declarations, 351
storing user input in

InputBox function, 
50-51

MsgBox function, 
45-49

Variant data type, 37
VarType function, 367
VBA macros. See macros
vbAbort return value

(MsgBox function), 49
vbAbortRetryIgnore option

(MsgBox buttons), 47
VBAColor function, 100
vbApplicationModal option

(MsgBox buttons), 47
VBAWait procedure, 108
vbCancel return value

(MsgBox function), 49
vbCritical option (MsgBox

buttons), 47
vbDefaultButton1 option

(MsgBox buttons), 47
vbDefaultButton2 option

(MsgBox buttons), 47
vbDefaultButton3 option

(MsgBox buttons), 47
vbExclamation option

(MsgBox buttons), 47
vbIgnore return value

(MsgBox function), 49

Index type mismatch errors404



vbInformation option
(MsgBox buttons), 47

vbNo return value
(MsgBox function), 49

vbOK return value
(MsgBox function), 49

vbOKCancel option
(MsgBox buttons), 47

vbOKOnly option (MsgBox
buttons), 47

vbQuestion option
(MsgBox buttons), 47

vbRetry return value
(MsgBox function), 49

vbRetryCancel option
(MsgBox buttons), 47

vbSystemModal option
(MsgBox buttons), 47

vbYes return value
(MsgBox function), 49

vbYesNo option (MsgBox
buttons), 47

vbYesNoCancel option
(MsgBox buttons), 47

View menu commands
Code, 248
Immediate Window, 348
Tab Order, 247
Watch Window, 344

visible attribute 
(controls), 277

Visible property
controls, 247
Shape object, 180
Worksheet object, 152

Visual Basic Editor
displaying, 16
modules

creating, 17-18
opening, 18-19

shutting down, 30

W

Wait method, 104, 141
watch expressions

adding, 344-345
deleting, 346
editing, 346

Watch Window command
(View menu), 344

Weekday function, 69, 363
WeekdayName function,

69, 363
While...Wend 

statement, 359
Width property

Application object, 83
forms, 241
Shape object, 180

Width statement, 359
Window object, 88
windows, opening, 88
WindowState property

(Application object), 83
With...End With 

statement, 359
wizards, Function, 26-27
word completion feature

(IntelliSense), 30
word count, testing, 102
Word documents

ActiveDocument 
object, 116

backing up, 122-124
closing

Close method, 121
closing all documents,

121-122
creating, 118
Document object, 115

macro-enabled docu-
ments/templates, creat-
ing, 265-267

opening
with Open 

method, 116
with RecentFiles

object, 116-117
Paragraph object, 136-138
Range object

Bold property, 126
Case property, 126
Delete method, 

128-129
deleting text, 128-129
Font property, 126
formatting text, 126
InsertAfter 

method, 127
InsertBefore 

method, 127
inserting text, 127-128
InsertParagraph

method, 127
InsertParagraphAfter

method, 127
InsertParagraphBefore

method, 127
InsertParagraphsAnd

Text procedure, 
127-128

Italic property, 126
reading and changing

range text, 126
returning with Range

method, 125
returning with Range

property, 125
saving, 118

with Save method, 119
with SaveAs 

method, 120
Selection object

Collapse method, 132
collapsing 

selection, 132

How can we make this index more useful? Email us at indexes@quepublishing.com

405Word documents



creating, 129
extending selection,

131-132
MoveEnd method, 130
MoveStart method, 130
moving insertion 

point, 130
overview, 129
Type property, 129

Sentences object, 133-135
ThisDocument 

object, 116
Words object, 132-133

Word macros
recording, 5-7
shortcut keys, 9-10

words
counting, 133
displaying sentence word

counts, 134-135
Words object, 132-133
WordWrap property

(TextBox object), 250
Workbook object

closing workbooks, 150
creating workbooks, 147
opening workbooks, 

146-147
saving workbooks, 

148-149
specifying number of

worksheets, 147-148
workbooks (Excel)

closing, 150
creating, 147
opening, 146-147
recalculating, 140
saving, 148-149
specifying number of

worksheets, 147-148
Workbooks collection

Add method, 147
Open method, 146-147

Workbooks object, 146
Workbook_Open 

procedure, 308-309
Worksheet object

creating worksheets, 151
methods, 152-153
properties, 151-152
specifying, 150-151

WorksheetFunction 
property (Application
object), 139-140

worksheets (Excel)
creating, 151
functions, accessing, 

139-140
importing Access data

into, 208
individual field 

values, 208
recordsets, 210-212
rows, 208-210

methods, 152-153
properties, 151-152
specifying, 150-151

Worksheets collection, 151
Write statement, 359
writing macros

advantages of, 15
Developer tab, 

displaying, 16
example, 20-21
modules

creating, 17-18
opening, 18-19

names, 20
VBA statements, 

entering, 22-23
Visual Basic Editor, 

displaying, 16
writing user-defined 

functions, 25

X-Y-Z

XML documents. See also
RibbonX

elements
checkBox, 281
comboBox, 288
dialogBoxLauncher,

289
dropdown, 284
gallery, 285-287
group, 274-275
menu, 278
Relationship, 265, 269
ribbon, 271
splitButton, 280
tab, 272-273
tabs, 271
toggleButton, 282-283

MyRibbon.xml file
adding to document

package, 268-269
creating, 267-268
renaming and 

opening, 269
Xor operator, 57

Year function, 69, 363

Index Word documents406


	VBA for the 2007 Microsoft ® Office System
	Contents
	Introduction
	What Is a Macro?
	What Does VBA Have to Do with Macros?
	What You Should Know Before Reading This Book
	What's in the Book
	This Book's Special Features
	I: GETTING STARTED WITH VBA
	1 Creating and Running Recorded Macros
	Recording a VBA Macro
	Running a Recorded Macro

	2 Writing Your Own Macros
	Activating the Ribbon's Developer Tab
	Displaying the Visual Basic Editor
	Touring the Visual Basic Editor
	Understanding VBA Procedures
	Creating a Command Macro
	Creating a User-Defined Function
	Taking Advantage of IntelliSense
	Shutting Down the Visual Basic Editor

	3 Understanding Program Variables
	Declaring Variables
	Avoiding Variable Errors
	Variable Data Types
	Using Array Variables
	Working with Constants
	Storing User Input in a Variable

	4 Building VBA Expressions
	Understanding Expressions
	Working with VBA Operators
	Understanding Operator Precedence
	Working with Numeric Expressions
	Working with String Expressions
	Working with Logical Expressions
	Working with Date Expressions

	5 Working with Objects
	What Is an Object?
	The Object Hierarchy
	Working with Object Properties
	Working with Object Methods
	Handling Object Events
	Working with Object Collections
	Assigning an Object to a Variable
	The Is Operator
	Working with Multiple Properties or Methods
	Example: The Application Object
	Example: The Window Object

	6 Controlling Your VBA Code
	Code That Makes Decisions
	Using If...Then to Make True/False Decisions
	Using If...Then...Else to Handle a False Result
	Making Multiple Decisions
	Functions That Make Decisions
	Code That Loops
	Using Do...Loop Structures
	Using For...Next Loops
	Using For Each...Next Loops
	Using Exit For or Exit Do to Exit a Loop
	Indenting for Readability


	II: PUTTING VBA TO WORK
	7 Programming Word
	Working with Documents
	Working with Text
	Working with the Range Object
	Using the Selection Object
	Using the Words Object
	Working with the Sentences Object
	Programming the Paragraph Object

	8 Programming Excel
	Excel's Application Object
	Manipulating Workbook Objects
	Dealing with Worksheet Objects
	Working with Range Objects

	9 Programming PowerPoint
	PowerPoint's Presentation Object
	Working with PowerPoint Slide Objects
	Dealing with Shape Objects
	Operating a Slide Show

	10 Programming Access Databases
	Getting Ready: Two Steps Before You Begin
	Working with Database Records: Opening a Recordset
	Working with a Recordset
	Retrieving Data into Excel

	11 Programming Outlook Email
	Getting Started
	Working with Outlook Folders
	Handling Incoming and Outgoing Messages
	Working with Email Messages
	Sending a Message
	Working with Attachments
	Programming Outlook from Other Applications


	III: GETTING THE MOST OUT OF VBA
	12 Creating Custom VBA Dialog Boxes
	Adding a Form to Your Project
	Changing the Form's Design-Time Properties
	Working with Controls
	Handling Form Events
	Types of Form Controls
	Using a Form in a Procedure

	13 Customizing the Office 2007 Ribbon
	Understanding Ribbon Extensibility
	Extending the Ribbon: An Example
	Hiding the Built-In Ribbon
	Creating Custom Tabs
	Creating Custom Groups
	Creating Custom Controls

	14 VBA Tips and Techniques
	Working with Modules
	Configuring Macro Security Settings
	Digitally Signing a VBA Project
	Saving Application Settings in the Registry
	Accessing the File System Through VBA
	Tips for Faster Procedures

	15 Trapping Program Errors
	A Basic Error-Trapping Strategy
	Working with the Err Object
	Trappable VBA Errors

	16 Debugging VBA Procedures
	A Basic Strategy for Debugging
	Pausing a Procedure
	Stepping Through a Procedure
	Monitoring Procedure Values
	Using the Immediate Window
	Debugging Tips


	IV: APPENDIXES
	A: VBA Statements
	B: VBA Functions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Y-Z





