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Preface

There are several books on queueing theory available for students as well as re-
searchers. At the low end of mathematical sophistication, some provide usable for-
mulas in a recipe fashion. At the high end there are research monographs on specific
topics and books with an emphasis on theoretical analysis. In between there are a
few textbooks with one common feature: all of them require an adequate background
knowledge of probability and Markov processes that can be acquired normally with
a semester-length graduate course. Consequently, most people who deal with the
modeling and analysis of queueing systems either do not take a course on the subject
because it would require an extra semester, or take a course on queueing systems
without the necessary background and learn only how to use the results. This book is
addressed to remedy this situation by providing a one-semester foundational introduc-
tion to the theory necessary for modeling and analysis of systems while developing
the essential Markov process concepts and techniques using queueing processes as
examples.

Some of the key features of the book also distinguish it from others. Its introduc-
tory chapter includes a historical perspective on the growth of queueing theory in the
last 100 years. With an emphasis on modeling and analysis it deals with topics such
as identification of models, collection of data, and tests for stationarity and indepen-
dence of observations. It provides a rigorous treatment of basic models commonly
used in applications with references for advanced topics. It gives a comprehensive
discussion of statistical inference techniques usable in the modeling of queueing sys-
tems and an introduction to decision problems in their management. The book also
includes a chapter, written by computer scientists, on the use of computational tools
and simulation in solving queueing theory problems.

The book can be used as a text for first-year graduate students in applied science
areas such as computer science, operations research, and industrial and/or systems
engineering, and allied fields such as manufacturing and communication engineering.
It can also serve as a text for upper-level undergraduate students in mathematics,
statistics, and engineering who have a reasonable background in calculus and basic
probability theory. This book is the product of the author’s experience in teaching
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queueing theory for 40 years at various levels to students with or without the necessary
background in stochastic processes.

The mathematical background assumed here is a two- or three-semester course
in calculus, some exposure to transforms and matrices, and an introductory course
in probability and statistics—all at the undergraduate level. An appendix on mathe-
matical results provides some of the essential theorems for reference. Instructors
may request a guide to the solutions of exercises via the Birkhäuser website at
www.birkhauser.com/978-0-8176-4724-7.

The book does not advocate any specific software for the numerical analysis of
queueing problems. The one chapter on modeling and analysis using computational
tools employs MATLAB r© for the purpose, and we believe students can benefit more
by using mathematical software such as MATLAB and Mathematica r© rather than
system-specific software because of their limited scope.

For this author, writing the book has been a retirement project. He is indebted to
Southern Methodist University and the Institute for the Study of Earth and Man for
providing necessary resources and facilities even after his retirement. He acknowl-
edges his gratitude to Professors Krishna Kavi and Robert Akl of the University of
North Texas for contributing a chapter on the numerical analysis of queueing systems
(in which the author’s expertise is limited). Special acknowledgement of indebted-
ness is also made to the reviewers’ comments, which have helped to improve the
organization and contents of the book. The author also wishes to thank Professor
N. Balakrishnan for recommending this book for inclusion in the Statistics for Indus-
try and Technology series of Birkhäuser. Thanks are due to Professor Junfang Yu of
the Department of Engineering Management, Information, and Systems of Southern
Methodist University for using the prepublication copy of this book in his class and
pointing out some of the typographical errors in it. Thanks are also due to Ms. Sheila
Crain of the Department of Statistical Science for setting the manuscript in LATEX with
care and perserverance.

The author’s wife, Girija, son Girish, and daughter Gouri have supported and
encouraged him throughout his academic career. They deserve all the credit for his
success.

U. Narayan Bhat
Dallas, TX

January 2008



1

Introduction

1.1 Basic System Elements

Queues (or waiting lines) help facilities or businesses provide service in an orderly
fashion. Forming a queue being a social phenomenon, it is beneficial to the society
if it can be managed so that both the unit that waits and the one that serves get the
most benefit. For instance, there was a time when in airline terminals passengers
formed separate queues in front of check-in counters. But now we see invariably
only one line feeding into several counters. This is the result of the realization that a
single line policy serves better for the passengers as well as the airline management.
Such a conclusion has come from analyzing the mode by which a queue is formed
and the service is provided. The analysis is based on building a mathematical model
representing the process of arrival of passengers who join the queue, the rules by
which they are allowed into service, and the time it takes to serve the passengers.
Queueing theory embodies the full gamut of such models covering all perceivable
systems that incorporate characteristics of a queue.

We identify the unit demanding service, whether it is human or otherwise, as
the customer. The unit providing service is known as the server. This terminology
of customers and servers is used in a generic sense regardless of the nature of the
physical context. Some examples are given below:

(a) In communication systems, voice or data traffic queue up for lines for transmis-
sion. A simple example is the telephone exchange.

(b) In a manufacturing system with several work stations, units completing work in
one station wait for access to the next.

(c) Vehicles requiring service wait for their turn in a garage.
(d) Patients arrive at a doctor’s clinic for treatment.

Numerous examples of this type are of everyday occurrence. While analyzing
them we can identify some basic elements of the systems.

Input process. If the occurrence of arrivals and the offer of service proceed strictly
according to schedule, a queue can be avoided. But in practice this does not happen.
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2 1 Introduction

In most cases the arrivals are a product of external factors. Therefore, the best one can
do is to describe the input process in terms of random variables that can represent either
the number arriving during a time interval or the time interval between successive
arrivals. If customers arrive in groups, their size can be a random variable as well.

Service mechanism. The uncertainties involved in the service mechanism are the
number of servers, the number of customers being served at any time, and the duration
and mode of service. Networks of queues consist of more than one server arranged in
series and/or parallel. Random variables are used to represent service times, and the
number of servers, when appropriate. If service is provided for customers in groups,
their size can also be a random variable.

System capacity. The number of customers that can wait at a time in a queueing
system is a significant factor for consideration. If the waiting room is large, one can
assume that, for all practical purposes, it is infinite. But our everyday experience
with telephone systems tells us that the size of the buffer that accommodates our call
while waiting to get a free line is important as well.

Queue discipline. All other factors regarding the rules of conduct of the queue can be
pooled under this heading. One of these is the rule followed by the server in accepting
customers for service. In this context, rules such as “first come, first served’’ (FCFS),
“last come, first served’’ (LCFS), and “random selection for service’’ (RS) are self-
explanatory. Others such as “round robin (RR)’’ and “shortest processing time’’
may need some elaboration, which is provided in later chapters. In many situations
customers in some classes have priority in service over others. There are many other
queue disciplines that have been introduced for the efficient operation of computers
and communication systems. Also, there are other factors of customer behavior, such
as balking, reneging, and jockeying, that require consideration as well.

The identification of these elements provides a taxonomy for symbolically repre-
senting queueing systems with a variety of system elements. The basic representation
widely used in queueing theory is made up of symbols representing three elements:
input/service/number of servers. For instance, using M for Poisson or exponential,
D for deterministic (constant), Ek for the Erlang distribution with scale parameter k,
and G for general (also GI for general independent), we write the following:

M/G/1: Poisson arrivals, general service, single server.
Ek/M/1: Erlangian arrival, exponential service, single server.
M/D/s: Poisson arrival, constant service, s servers.

These symbolic representations are modified when other factors are involved.

1.2 Problems in a Queueing System

The ultimate objective of the analysis of queueing systems is to understand the be-
havior of their underlying processes so that informed and intelligent decisions can be
made in their management. Three types of problems can be identified in this process.
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Behavioral problems. The study of behavioral problems of queueing systems is in-
tended to understand how they behave under various conditions. The bulk of the
results in queueing theory is based on research on behavioral problems. Mathe-
matical models for the probability relationships among the various elements of the
underlying process are used in the analysis. To make the ideas concrete let us briefly
define a few terms that will be defined formally later. A collection or a sequence of
random variables that are indexed by a parameter such as time is known as a stochastic
process, e.g., an hourly record of the number of accidents occurring in a city. In the
context of a queueing system the number of customers with time as the parameter is a
stochastic process. LetQ(t) be the number of customers in the system at time t . This
number is the difference between the number of arrivals and departures during (0, t).
Let A(t) andD(t), respectively, be these numbers. A simple relationship would then
be Q(t) = A(t)−D(t). In order to manage the system efficiently one has to under-
stand how the process Q(t) behaves over time. Since the process Q(t) is dependent
on A(t) and D(t), both of which are also stochastic processes, their properties and
dependence characteristics between the two should also be understood. All these are
idealized models to varied degrees of realism. As in many other branches of science,
the models are studied analytically with the hope that the information obtained from
such a study will be useful in the decision-making process.

In addition to the number of customers in the system, which we call the queue
length, the amount of time a new arrival has to wait until its service begins, which we
call the waiting time, and the length of time during which the server is continuously
busy, which we call the busy period , are major characteristics of interest. Note that
the queue length and the waiting time are stochastic processes and the busy period
is a random variable. Distribution characteristics of the stochastic processes and
random variables are needed to understand their behavior. Since time is a factor,
the analysis has to make a distinction between the time-dependent (also known as
transient) and the limiting (also known as the long-term) behavior. Under certain
conditions a stochastic process may settle down to what is commonly called a steady
state or a state of equilibrium, in which its distribution properties are independent
of time.

Statistical problems. Under statistical problems we include the analysis of empirical
data in order to identify the correct mathematical model, and validation methods to
determine whether the proposed model is appropriate. Chronologically, the statisti-
cal study precedes the behavioral study, as could be seen from the early papers by
A. K. Erlang (as reported in Brockmeyer et al. (1960)) and others. For an insight into
the selection of the correct mathematical model and its properties, a statistical study
is fundamental.

In the course of modeling we make several assumptions regarding the basic ele-
ments of the model. Naturally, there should be a mechanism by which these assump-
tions could be verified. Starting with testing the goodness of fit for the arrival and
service distributions, one would need to estimate the parameters of the model and/or
test hypotheses concerning the parameters or behavior of the system. Other impor-
tant questions where statistical procedures play a part are in the determination of the
inherent dependencies among elements, and the dependence of the system on time.
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Decision problems. Under this heading we include all problems that are inherent
in the operation of queueing systems. Some such problems are statistical in nature.
Others are related to the design, control, and the measurement of effectiveness of the
systems.

1.3 A Historical Perspective

The history of queueing theory goes back 100 years. Johannsen’s “Waiting times and
number of calls’’ (an article published in 1907 and reprinted in Post Office Electrical
Engineers Journal, London, October 1910) seems to be the first paper on the subject.
But the method used in this paper was not mathematically exact. Therefore, from the
point of view of exact treatment, the paper that has historic importance is A. K. Er-
lang’s “The theory of probabilities and telephone conversations’’ (Nyt Tidsskrift for
Matematik B, 20 (1909), 33). In this paper, he lays the foundation for the place of
Poisson (and hence exponential) distribution in queueing theory. His papers written
during the next 20 years contain some of the most important concepts and techniques;
the notion of statistical equilibrium and the method of writing state balance equations
are two such examples. Special mention should be made of his paper “On the rational
determination of the number of circuits’’ (see Brockmeyer et al. (1960)), in which an
optimization problem in queueing theory was tackled for the first time.

In Erlang’s work, as well as the work done by others in the 1920s and 1930s, the
motivation has been the practical problem of congestion. See for instance, Molina
(1927) and Fry (1928). During the next two decades several theoreticians became
interested in these problems and developed general models which could be used
in more complex situations. Some of the authors with important contributions are
Crommelin, Feller, Jensen, Khintchine, Kolmogorov, Palm, and Pollaczek. Adetailed
account of the investigations made by these authors may be found in books by Syski
(1960) and Saaty (1961). Kolmogorov’s and Feller’s study of purely discontinuous
processes laid the foundation for the theory of Markov processes as it developed in
later years.

Noting the inadequacy of the equilibrium theory in many queue situations, Pol-
laczek (1934) began investigations of the behavior of the system during a finite time
interval. Since then and throughout his career, he did considerable work in the analyt-
ical behavioral study of queueing systems; see Pollaczek (1965). The trend towards
the analytical study of the basic stochastic processes of the system continued, and
queueing theory proved to be a fertile field for researchers who wanted to do funda-
mental research on stochastic processes involving mathematical models.

A concept that plays a significant role in the analysis of stochastic systems is
statistical equilibrium. This is a state of the stochastic process which signifies that
its behavior is independent of time and the initial state. Suppose we define

Pij (s, t) = P [Q(t) = j |Q(s) = i], s < t,

as the transition probability of the process {Q(t), t ≥ 0}, which is a statement of
the probability distribution of the state of the process at time t , conditional on its
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state at time s, s < t . The statement that the process attains statistical equilibrium
implies that

lim
t→∞Pij (s, t) = pj ,

which does not depend on time t and the initial state i.
Even though Erlang did not explicitly state his results in these terms, he used this

basic concept in his results. To this day, a large majority of queueing theory results
used in practice are those derived under the assumption of statistical equilibrium.
Nevertheless, to understand the underlying processes fully a time-dependent analysis
is essential. But the processes involved are not simple, and for such an analysis so-
phisticated mathematical procedures become necessary. Thus the growth of queueing
theory can be traced on two parallel tracks:

1. using existing mathematical techniques or developing new ones for the analysis
of the underlying processes; and

2. incorporating various system characteristics to make the model closely represent
the real-world phenomenon.

Queueing theory as an identifiable body of literature was essentially defined by
the foundational research of the 1950s and 1960s. For a complete bibliography of
research in this period, see Syski (1960), Saaty (1961, 1966), and Bhat (1969). Here
we mention only a few papers and books that, in the opinion of this author, have made
a profound impact on the direction of research in queueing theory.

The queue M/M/1 (Poisson arrival, exponential service, single server) was one
of the earliest systems to be analyzed. Under statistical equilibrium, the state balance
equations are simple and the limiting distribution of the queue size is obtained by
recursive arguments. But for a time-dependent solution more advanced mathematical
techniques become necessary. The first such solution was given by Bailey (1954)
using generating functions for the differential equations governing the underlying
process, while Ledermann and Reuter (1956) used spectral theory in their solution.
Laplace transforms were used later for the same problem, and their use together
with generating functions has been one of the standard and popular procedures in the
analysis of queueing systems ever since.

A probabilistic approach to the analysis was initiated by Kendall (1951, 1953)
when he demonstrated that imbedded Markov chains can be identified in the queue
length process in systemsM/G/1 and GI/M/s. (The widely used symbolic notation
to identify queueing systems was used by Kendall (1953).) Lindley (1952) derived
integral equations for waiting time distributions defined at imbedded Markov points
in the general queue GI/G/1. These investigations led to the use of renewal theory
in queueing systems analysis in the 1960s. Identification of the imbedded Markov
chains also facilitated the use of combinatorial methods by considering the queue
length at Markov points as a random walk. See Prabhu and Bhat (1963) and Takàcs
(1967).

Mathematical modeling of a random phenomenon is a process of approximation.
A probabilistic model brings it a little bit closer to reality; nevertheless, it cannot
completely represent the real-world phenomenon because of involved uncertainties.
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Therefore, it is a matter of convenience where one can draw the line between the
simplicity of the model and the closeness of the representation. In the 1960s several
authors initiated studies on the role of approximations in the analysis of queueing
systems. Because of the need for usable results in applications, various types of
approximations have appeared in the literature. For an extensive bibliography, see
Bhat et al. (1979). One approach to approximation is the analysis under heavy traffic
(when the traffic intensity, the ratio of the rates of input to output, approaches 1), and
investigations on this topic were initiated by Kingman (for an extensive bibliography,
see Kingman (1965)) with the objective of deriving a simpler expression for the final
result. The heavy-traffic assumption also led to diffusion approximation as well as
weak convergence results by researchers such as Iglehart (see Iglehart and Whitt
(1970). See also Whitt (2000), with an extensive bibliography. Gaver’s analysis
(1968) of the virtual waiting time of anM/G/1 queue is one of the initial efforts using
diffusion approximation for a queueing system. Fluid approximation, as suggested
by Newell (1968, 1971) considers the arrival and departure processes in the system as
a fluid flowing in and out of a reservoir, and their properties are derived using applied
mathematical techniques. For a recent survey of some fluid models, see Kulkarni
(1997).

By the end of the 1960s most of the basic queueing systems that could be consid-
ered as reasonable models of real-world phenomena had been analyzed; the papers
coming out dealt with only minor variations of the systems without contributing much
to methodology. There were even statements made to the effect that queueing theory
was at the last stages of its life. But such predictions were made without knowing what
advances in computer technology would mean to queueing theory. Advances inspired
or assisted by computer technology have come in two dimensions: methodological
and applications. Given below are some of the prominent topics explored in such
advances. Since in applied probability, methodology and applications contribute to
the growth of the subject in a symbiotic manner, they are listed below without being
categorized.

(i) The matrix-analytic method. Starting with the introduction of phase-type prob-
ability distributions, Marcel Neuts (1975) has developed an analysis technique that
extends and modifies the earlier transform method to multivariables and makes it
amenable for an algorithmic solution. See Neuts (1978, 1989), Sengupta (1989), and
Ramaswami (1990, 2001). The use of phase-type distributions in the representation
of system elements and the matrix-analytic method in their analysis has significantly
expanded the scope of queueing systems for which usable results can be derived.

(ii) Transform inversion. The traditional method of analysis of queueing systems
depends on inverting generating functions and/or Laplace transforms to derive usable
results. The complexities of transform inversion has spurred more research, and
beginning with Abate and Dubner (1968), Dubner and Abate (1968), and Abate et al.
(1968) many papers have been published on the subject. For a comprehensive survey
of the state of the art of the Fourier series method of inversion, see Abate and Whitt
(1992).
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In the inversion of Laplace transforms and probability-generating functions, find-
ing roots of characteristic equations is a key step. The celebrated Rouché’s the-
orem only establishes the existence of the roots, not their magnitude. Pioneering
and painstaking work in adapting various root-finding algorithms for use in inverting
transforms and generating functions is due to Professor M. L. Chaudhry (1992). Start-
ing in the 1970s, along with his associates, he has put together a significant amount
of research on various queueing systems of interest (see Chaudhry and Templeton
(1983)). For instance, Chaudhry et al. (1992) provides a good illustration.

(iii) Queueing networks. The first article on queueing networks is by J. Jackson
(1957). Mathematical foundations for the analysis of queueing networks are due to
Whittle (1967, 1968) and Kingman (1969), who treated them in the terminology of
population processes. Complex queueing network problems have been investigated
extensively since the beginning of the 1970s.

Two key concepts that advanced investigations into the properties of queueing
networks are the Poisson nature of the departure process from anM/M/s-type queue
(Burke (1956)) and the local balance in state transitions (Whittle (1967, 1968)). The
M → M property, as the Poisson property has been called in computer network
literature, is a necessary condition for the limiting distribution to be in the product
form. Going beyond the simple Jackson network, Baskett et al. (1975) show that the
product-form solutions are valid for networks more general than those with simple
M/M/s-type nodes, such as state-dependent service; processor-sharing discipline;
heterogeneous service times; Coxian service time distributions; and the preemptive
resume LCFS discipline.

Since the publication of Baskett et al., a large body of literature has grown in
the performance modeling of queueing networks. The works of Courtois (1977),
Kelly (1979), Sauer and Chandy (1981), Lavenberg (1983), Disney and Kiessler
(1987), Molloy (1989), Perros (1994), and Gelenbe and Pujolle (1998) are some of
the significant books that have come out on this subject.

(iv) Computer and communication systems. The need to analyze traffic processes
in the rapidly growing computer and communication industry is the primary reason
for the resurgence of queueing theory after the 1960s. Research on queueing networks
(see the references cited earlier) and books such as those by Coffman and Denning
(1973) and Kleinrock (1975, 1976) laid the foundation for a vigorous growth in the
application of queueing theory in computer and communication system operation.

In tracking this growth, we cite the following survey-type articles from the journal
Queueing Systems: Denning and Buzen (1978) on the operational analysis of queueing
network models; Coffman and Hoffri (1986), describing important computer devices
and the queueing models used in analyzing their performance; Yashkov (1987) on
analytical time-sharing models, complementary to McKinney (1969) on the same
topic; three special issues of the journal edited by Mitra and Mitrani (1991), Doshi
and Yao (1995), and Konstantopolous (1998); and a paper by Mitra et al. (1991) on
communication systems. Research on queueing applications can also be found in
various computer journals. Several books have appeared and continue to appear on
the subject as well.
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(v) Manufacturing systems. The machine interference problem analyzed by Palm
(1947) and Benson and Cox (1951, 1952) was the first problem in manufacturing
systems in which queueing theory methodology was used. The classical Jackson net-
work (1957) originated out of the manufacturing setting since a jobshop is a network
of machines. (See also Jackson (1963).) Simulation studies reported in Conway et
al. (1967) provide excellent examples of the incorporation of queueing models with
jobshop scheduling. Since the 1970s, with the advent of new processes in manu-
facturing incorporating computers in their various stages, not only the application of
queueing theory results, but also the development of new techniques have occurred
at a phenomenal rate. Three articles in Buzacott and Shanthikumar (1992) and the
book by Buzacott and Shanthikumar (1993) bring together most of the important
developments in the application of queueing theory in manufacturing systems.

As described by Buzacott and Shanthikumar (1993) the “product-to-order’’ and
“product-to-stock’’ models make direct use of queueing theory results. With de-
mand as a customer and the manufacturing process as a server, the first model is
a direct application of queueing models, while the second incorporates production-
inventory system concepts, with the production system substituting for multiple or
an infinite number of servers. Other applications include job-flow lines as tandem
queues, and jobshops and flexible manufacturing systems as queueing networks. For
recent articles on the applications of queueing theory in manufacturing system mod-
eling, readers may refer to various journals such as Management Science, European
Journal of Operational Research, IIE Transactions, and Computers and Industrial
Engineering.

(vi) Specialized models. Some of the special queueing models of the 1950s and
1960s have found broader applicability in the context of computer and communica-
tion systems. We mention below three such models that have attracted considerable
attention.

Polling models. These models represent systems in which one or more servers pro-
vide service to several queues in a cyclical manner (Koenigsberg (1958)). Based on
variations in the system structure and queue discipline, a large number of models
emerge. For research on polling models see a special issue of Queueing Systems
edited by Boxma and Takagi (1992), as well as Takagi (1997) and Hirayama et al.
(2004), all of which provide excellent bibliographies on the subject.

Vacation models. Queueing systems with service breaks are not uncommon. Machine
breakdowns, service disruption due to maintenance operations, cyclic server queues,
and scheduled job streams are some of the examples. A key feature of the models
is the ability to decompose the results into those corresponding to systems without
vacations and those depending on the distributions related to the vacation sequence.
For bibliographies on this topic, see Doshi (1986) and Alfa (2003).

Retrial queues. In finite-capacity systems, the concept of customers being denied
entry to the system and trying to enter again is quite common. Since they have
already tried to get service once, they belong to a different population of customers
than the original one. Problems related to this phenomenon have been extensively



1.3 A Historical Perspective 9

explored in the literature. The following papers and more recent ones appearing in
journals provide bibliographies for further study: Yang and Templeton (1987), Falin
(1990), and Kulkarni and Liang (1997).

(vii) Statistical inference. In any theory of stochastic modeling statistical problems
naturally arise in the applications of the models. Identification of the appropriate
model, estimation of parameters from empirical data, and drawing inferences regard-
ing future operations involve statistical procedures. These were recognized even in
earlier investigations in the studies by Erlang; see Brockmeyer et al. (1960), Molina
(1927), and Fry (1928).

Since elements contributing to the underlying processes in queueing systems can
be modeled as random variables and their distributions, it is reasonable to assume
that inference problems in queueing are not any different from such problems in
statistics in general. However, often in real-world systems, it may not be possible
to implement sampling plans appropriate for data collection to estimate parameters
of the constituent elements. Consequently, modifications of the standard statistical
procedures become necessary.

The first theoretical treatment of the estimation problem was given by Clarke
(1957), who derived maximum likelihood estimates of arrival and service rates in an
M/M/1 queueing system. Billingsley’s (1961) treatment of inference in Markov pro-
cesses in general and Wolff’s (1965) derivation of likelihood ratio tests and maximum
likelihood estimates for queues that can be modeled as birth-and-death processes are
other significant advances in this area. See also Cox (1965) for a comprehensive sur-
vey of statistical problems as related to queues. Cox also provides a broad guideline
for inference investigations in non-Markovian queues.

The first paper on estimating parameters in a non-Markovian system is by Goyal
and Harris (1972), who used the transition probabilities of the imbedded Markov
chain to set up the likelihood function. Since then significant progress has occurred
in adapting statistical procedures to various systems. Some of the examples are the
following: Basawa and Prabhu (1981, 1988) and Acharya (1999) considered the
problem of estimation of parameters in the queue GI/G/1; Rao et al. (1984) used a
sequential probability ratio technique for the control of parameters in M/Ek/1 and
Ek/M/1; Armero (1994) and Armero and Conesa (2000) used Bayesian techniques
for inference in Markovian queues; Thiruvaiyaru et al. (1991) and Thiruvaiyaru and
Basawa (1996) extended the maximum likelihood estimation to include Jackson net-
works; and Pitts (1994) considered the queue as a functional that maps the service
and interarrival time distribution functions on to the stationary waiting time distri-
bution function to determine its confidence bound. For a comprehensive survey of
inference problems in queues, see Bhat et al. (1997). More recent investigations are
by Bhat and Basawa (2002) who use queue length as well as waiting time data in
estimating parameters in queueing systems. A recent paper (Basawa et al. (2008))
uses waiting time or system sojourn time, adjusted for idle times when necessary, to
estimate parameters of interarrival and service times in GI/G/1 queues.

(viii) Design and control. The study of real systems is motivated by the objectives
of improving their design, control, and effectiveness. Until the 1960s, when opera-
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tions researchers trained in mathematical optimization techniques became interested
in queueing problems, operational problems were being handled using primarily be-
havioral results. Note that Erlang’s interest in the subject was for building better
telephone systems for the company for which he was working. His paper “On the ra-
tional determination of the number of circuits’’ (Brockmeyer et al. (1960)) deals with
the determination of the optimum number of channels so as to reduce the probability
of loss in the system.

Until computers made them obsolete, graphs and tables prepared using analytical
results of measures of effectiveness assisted the designers of communication systems
such as telephones. Other examples are the papers by Bailey (1952), which looked
into the appointment system in hospitals, and Edie (1954), which analyzed the traffic
delays at tollbooths. From the perspective of applications of queueing results to
realistic problems, Morse’s (1958) book has been held in high regard. This is because
he presented the theoretical results available at that time in a manner appealing to the
applied researchers and gave procedures for improving system design.

Hillier’s (1963) paper on economic models for industrial waiting line problems
is, perhaps, the first paper to introduce standard optimization techniques to queueing
problems. While Hillier considered an M/M/1 queue, Heyman (1968) derived an
optimal policy for turning the server on and off in an M/G/1 queue, depending on
the state of the system.

Since then, operations researchers trained in mathematical optimization tech-
niques have explored their use in much greater complexity to a large number of
queueing systems. For an excellent overview, a valuable reference is a special issue
of the journal Queueing Systems edited by Stidham (1995), which includes several
review-type articles on special topics. See also Bäuerle (2002), who considers an
optimal control problem in a queueing network.

(ix) Other topics. Even though there were a few papers on discrete-time queues
before the 1970s, since then, these systems have taken a larger significance because
of the discreteness of time, however short the interval may be, in computer and
communication systems. It is not hard to imagine that a large portion of the results
for discrete-time queues are in fact derived in the same way as for continuous-time
queues with obvious modifications in methodology.

There have also been theoretical advances in stochastic processes with the intro-
duction of modified processes such as Markov modulated processes, marked point
processes, and batch Markovian processes. These processes are used to represent
various patterns such as burstiness and heterogeneity in traffic.

In the preceding paragraphs we have outlined the growth of queueing theory
identifying major developments and directions. For details of any of the facets readers
are referred to the articles and books cited above. See also Prabhu (1987), who gives
a bibliography of books and survey papers in various categories and subtopics, Adan
et al. (2001), who give a broad treatment of queues with multiple waiting lines, and
Dshalalow (1997), who considers systems with state-dependent parameters. The last
two articles also provide extensive bibliographies. It is hoped that with the help of
these references and modern Internet tools, applied researchers will be able to build
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on the systems covered in this text to establish an appropriate model to represent the
system of their interest.

1.4 Modeling Exercises

These exercises are given as an introduction to modeling a random phenomenon as
a queueing system. In addition to answering the questions posed in the exercises,
the reader is required only to identify (i) model elements, (ii) system structure, and
(iii) the assumptions one has to make in setting up the model.

1. A city bus company wants to establish a schedule for its bus fleet. In order to do
this in a scientific manner, the company entrusts this job to an operations research
specialist with sufficient data processing support. Describe the queueing systems
involved in this process and the types of data that need to be collected in order
to come up with the schedule. Identify the measures of performance for the bus
system and the factors that affect these measures when the system is in operation.

2. A newly established business would like to decide on the number of telephone
lines it has to install in a cost-effective manner. Identify the elements of the
underlying process of the telephone answering system and indicate the specific
data that need to be collected to establish the parameters of the system. Also
identify the performance measures of interest.

3. In a manufacturing system, a product undergoes several stages (e.g., an auto-
mobile assembly line) and within each stage there may be several substages,
including testing of components. How can such a system be modeled as a queue-
ing system (including queueing systems for stages and substages) in order to
improve the performance of the manufacturing process?

4. An airline offers three types of check-in service for the passengers: (1) first-
class and business-class check-in, (2) regular check-in, and (3) self-check-in.
Describe the structure of the queueing system that can represent the check-in
system and identify the data elements that need to be known to measure its
performance. Also indicate the complexities that may result in improving the
system by incorporating flexibilities in the system operation.

5. Several terminals used for data entry to a computer share a communication line.
Terminals use the line on an FCFS basis and wait in a queue when the line is busy.

Describe the elements of this queueing system and identify the assumptions that
need to be made to analyze system characteristics.

6. In store-and-forward communication networks messages for transmission are
stored in buffers of fixed size. Each message may need one or more buffers.
The message is transmitted through several identical channels. Knowing the
characteristics of the arrival process, transmission rate, and the message, we are
interested in the storage requirements of a network node.

Describe how the long-run storage requirements can be estimated for this type
of a system.



12 1 Introduction

7. In a warehouse items are stacked in such a way that the most recently stacked
item is removed first. In order to use a queueing model to determine the amount
of time the item is stored in the warehouse, describe the elements of such a system
and say how we may characterize the time interval of interest.

8. In order to reduce the waiting time of short jobs, a round-robin (RR) service
discipline is used. Under an RR queue discipline, each job gets a fixed amount
of service, known as a quantum, when it is admitted to the central processing
unit (CPU). If the service requirement of the job is more than the quantum, it is
sent back to the end of the queue of waiting jobs. This process continues until
the CPU can provide the required number of quanta of service to the job.

Describe how the total service time of the job can be characterized in order to
determine the mean amount of time the job spends in the system; this is known
as the mean response time. (See Coffman and Kleinrock (1968) and Coffman
and Denning (1973).)

9. Auniprogramming computer system consists of a CPU and a disk drive. After one
pass at the CPU a job may need the services of the disk input–output (I/O) with a
certain probability, say p, and the job is complete with probability 1 − p. There
are three independent phases to disk service time: (1) seek time, (2) latency time,
and (3) transfer time, each with a specified distribution. After disk service the job
goes back to the CPU for completing the execution. (Note that a uniprogramming
system cannot start another job until the service on the one in the system is
complete.)

We are interested in determining the average response time (waiting time + service
time). What type of a model is appropriate for this problem? If a queueing model
is appropriate, describe the elements of the system (Trivedi (2002)).

10. In a drum storage unit a shortest-latency-time-first file drum is used to read or
write records on files while the drum is rotating. Once a decision is made to
process a particular record, the time spent waiting for the record to come under
the read/write heads which are fixed is called the latency. The records are not
constrained to be of any particular strength. Also, no restrictions are placed on
the starting position of the records. Assume that the circumference of the drum is
the unit of length and the drum rotates at a constant angular velocity, with period
τ (Fuller (1980)).

Suppose a queueing model is to be used to analyze the performance of the drum
storage unit described above. Describe the elements of such a system and the
characteristics to be considered for its performance evaluation.
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System Element Models

2.1 Probability Distributions as Models

In building a suitable model for a queueing system, we start with its elements. Of
the elements mentioned in Chapter 1, the number of servers, system capacity, and
discipline are normally deterministic (unless the number of available servers becomes
a random variable—which is possible in some cases). But there are uncertainties
related to arrivals and service which result in the underlying process being stochastic.

The similarity of the arrival and service processes can be brought out by identifying
similar components, such as interarrival times and service times, or arrival epochs
and departure epochs.

Of these pairs departure epochs are almost always from a nonempty system,
whereas arrival epochs are mostly independent of the system (exceptions are possible).
Therefore, first we discuss the possibilities of using certain probability distributions
to represent the process of interarrival times and service times. In the case of the
Poisson process discussed below, it is also convenient to consider the distribution of
the number of events occurring in a given length of time.

To start with, we note that depending on the properties of the basic process and
convenience, we may use either continuous or discrete distributions. In many situa-
tions continuous distributions may be easier to handle analytically. (The algebra of
discrete distributions could be cumbersome.) Nevertheless, continuous and discrete
models are mutual analogues and most of the properties carry through in both cases.

Using a common notation we take Z1, Z2, . . . as nonnegative random variables
representing either interarrival times or service times of consecutive customers. Fur-
ther, let

F(x) = P(Zn ≤ x), n = 1, 2, . . . .

We also assume that {Zn}∞n=1 are independent and identically distributed (i.i.d.) ran-
dom variables. Let

E[Zn] = b, n = 1, 2, . . . ,

and define the Laplace–Stieltjes transform of F(x) as
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ψ(θ) =
∫ ∞

0
e−θxdF (x), Re(θ) ≥ 0.

Clearly, we get
−ψ ′(0) = b.

Note that when b is the mean interoccurrence time, 1/b is the rate of occurrence of
the event.

In considering the suitability of a probability model for a random phenomenon,
the moment properties of the model distribution become useful. Often the first two
moments appear as the parameters of the model. Furthermore, the first few mo-
ments describe the shape of the density curve, thus making them suitable measures
in selecting the model; e.g., using s.d. to represent standard deviation, coefficient of
variation = s.d./mean, coefficient of skewness = (third moment)/(s.d.)3, coefficient
of kurtosis = (fourth moment)/(s.d.)4.

The commonly used distribution models for arrivals and service are deterministic
(when arrivals are specified time epochs or interarrival times are of constant length);
exponential (as distribution models for interarrival times or service times); Poisson
(as the distribution of the number of arrivals during a specified length of time);
Erlang (as distribution models for interarrival times or service times); and variants
of these distributions. We introduce deterministic, exponential, Poisson, and Erlang
distributions in the following discussion, and the remainder in Appendix A.

2.1.1 Deterministic Distribution (D)

Let

F(x) = 0, x < b,

= 1, x ≥ b. (2.1.1)

We get E(Zn) = b and ψ(θ) = e−θb. Also, V (Zn) = 0.
This seemingly simple distribution is suitable when arrivals take place at equal

intervals of time (interval length b) or service takes exactly b units of time. In practice,
however, it may be hard to achieve this exactness. Early or late arrivals and late or
early service completions will be closer to reality. In such cases, the assumption of
a deterministic distribution should be considered a reasonable approximation of the
real system.

If we are interested in an exact model for the early or late occurrence of events,
we may consider the displacement from the deterministic epoch as a random variable
with some distribution like the uniform or the normal. Under these conditions, it is
possible that the occurrence of the kth scheduled event can be later than the occurrence
of the (k + 1)th scheduled event.

2.1.2 Exponential distribution; Poisson process (M)

Let
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F(x) = 1 − e−λx, x ≥ 0, λ > 0. (2.1.2)

Then we get

f (x) = d

dx
F(x) = λe−λx,

E[Zn] = 1

λ
,

and

ψ(θ) = λ

θ + λ
.

Also, V (Zn) = 1
λ2 and CV(Zn) = 1.

LetX(t) be the number of events occurring at time t , such that the interoccurrence
times have the distribution given by F(x). Symbolically, for the stochastic process
X(t), we can write

X(t) = max{n|Z1 + Z2 + · · · + Zn ≤ t}.
Let

Pn(t) = P(X(t) = n|X(0) = 0)

= P(Z1 + Z2 + · · · + Zn ≤ t)

− P(Z1 + Z2 + · · · + Zn+1 ≤ t),

where Fn(t) = P(Z1 + Z2 + · · · + Zn ≤ t) is obtained as the n-fold convolution of
F(t) with itself. Using the Laplace transform of F(t), we find∫ ∞

0
e−θt dFn(t) =

(
λ

θ + λ

)n
.

On inversion this gives

Fn(t) =
∫ t

0
e−λy λ

nyn−1

(n− 1)!dy

= 1 −
n−1∑
r=0

e−λt (λt)
r

r! . (2.1.3)

Thus we get

Pn(t) = Fn(t)− Fn+1(t)

=
[

1 −
n−1∑
r=0

e−λt (λt)
r

r!

]
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−
[

1 −
n∑
r=0

e−λt (λt)
r

r!

]

= e−λt (λt)
n

n! , (2.1.4)

which is a Poisson distribution with mean λt . Hence X(t) is known as a Poisson
process.

Define the probability-generating function (PGF) of X(t) as

�(z, t) =
∞∑
n=0

znPn(t), |z| ≤ 1.

For the Poisson process, we get

�(z, t) = e−λ(1−z)t .

Also, E[X(t)] = λt and V [X(t)] = λt .
The Poisson process is a special case of the Markov process, which is introduced

in the next chapter. It is widely used in stochastic modeling because of its properties
with reference to the occurrence of events and the properties of the exponential distri-
bution representing the corresponding interoccurrence times of events. Two of them
are given below: (a) the first describes the memoryless property of the exponential
distribution, and (b) the second generates the Erlang distribution.

(a) When P(Zn ≤ x) = 1 − e−λx (λ > 0)

P (Zn ≤ t + x|Zn > t) = P(t < Zn < t + x)

P (Zn > t)

= [1 − e−λ(t+x)] − [1 − e−λt ]
e−λt

= 1 − e−λx. (2.1.5)

The implication of this property is that if an interval, such as service time, can be
represented by an exponential distribution and the interval is ongoing at time t , the
remaining time in the interval has the same distribution as the original one, regardless
of the start of the interval. This property is commonly known as the memoryless
property of the exponential distribution.

(b) The discussion leading to (2.1.3) implies that the time required for the occur-
rence of a given number of Poisson events has a distribution given by that expression;
i.e., if Yn is the waiting time until the nth occurrence and {Z1, Z2, . . . } are the inte-
roccurrence times, then

Yn = Z1 + Z2 + · · · + Zn,

Fn(t) = P(Yn ≤ t)

=
∫ t

0
e−λy λ

nyn−1

(n− 1)!dy
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and

fn(y) = e−λy λ
nyn−1

(n− 1)!dy (y > 0). (2.1.6)

The distribution given by (2.1.6) is a gamma distribution with parameters n and λ. In
queueing theory, it is commonly called the Erlang distribution with scale parameter
n. It is symbolically denoted by En. (2.1.3) also establishes a useful identity,

∫ ∞

y

e−λx (λx)
n−1

(n− 1)!λdx =
n−1∑
r=0

e−λy (λy)
r

r! . (2.1.7)

For modeling purposes, the Poisson process is considered an appropriate model
for events occurring “at random.’’ The reasons for such a characterization rest on its
properties described in Appendix A; specifically, independence of events occurring
in nonoverlapping intervals of time, the constant rate of occurrence independent of
time, the i.i.d. nature of the interoccurrence times, and its relationship with the uniform
distribution as expressed in (A.1.4) in Appendix A. The significance of the Erlang
distribution stems from the phase interpretation that can be provided for generating
a suitable arrival or service process.

Consider a Poisson arrival process and suppose a queueing system admits every
kth customer into the system instead of all arrivals. Now the interarrival time between
effective arrivals to the queueing system is the sum of k exponential random variables
with mean 1/λ, and hence it has the distribution given by (2.1.6) with n replaced by
k. Similarly, consider a service process in which a customer goes through k phases of
service, each phase being exponentially distributed with mean 1/λ. The total service
time has the distribution (Ek), given by (2.1.6) with n replaced by k.

To facilitate comparison with the Poisson and deterministic processes consider
the Erlang distribution F(x) with mean 1/λ and scale parameter k. This can be
accomplished by starting with an exponential distribution with parameter kλ. Then
we get

F(x) =
∫ x

0
e−kλy (kλ)

kyk−1

(k − 1)! dy,

f (x) = e−kλx (kλ)
kxk−1

(k − 1)! . (2.1.8)

For k = 1, we have the exponential distribution, which generates a Poisson process.
To determine the form of f (x) as k → ∞, we use its transform ψ(θ). We have

ψ(θ) =
(

kλ

kλ+ θ

)k
= 1

(1 + θ/kλ)k
→ e−θ/λ as k → ∞.

The resulting transform is the transform of a constant 1/λ and hence generates the
deterministic distribution given in (2.1.1). Depending on the values of λ, even a
moderately large value of k (e.g., k = 10 or 15) may be sufficient for the Erlang to
exhibit the property of a deterministic distribution.
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2.2 Identification of Models

In the formulation of a queueing model, one starts with the identification of its ele-
ments and their properties. The system structure is easily determined. What remains
is the determination of the form and properties of the input and service processes.
Four major steps are essential in this analysis: (i) collection of data, (ii) tests for
stationarity in time, (iii) tests for independence, and (iv) distribution selection and/or
estimation.

2.2.1 Collection of Data

To estimate parameters of system elements, one has to establish a sampling plan
identifying the data elements to be collected with reference to specific parameters.
For instance, the number of arrivals in a time period gives the arrival rate or the mean
interarrival time, which are reciprocals of each other. Sometimes there is a tendency
to use empirical performance measures to estimate parameters intrinsic to the model.
For instance, in an M/M/1 queue, noting that the traffic intensity (which is the ratio
of arrival to service rates) provides the utilization factor for the system, we may use
the empirical utilization factor as its estimate. Some of the pitfalls of this approach
are indicated by Cox (1965), who notes that if ρ is the traffic intensity, the efficiency
of this approach is given by 1 −ρ. See also the discussion by Burke following Cox’s
article on the bias resulting from estimating the load factor in anM/M/s loss system
as (average number of customers in systems)/(1 − probability of loss).

The length and the mode of observation are problems of interest in a sampling
plan. If the arrival process is Poisson, Birnbaum (1954) has shown that observing
the system until a specific number of events has occurred gives a better sample than
observing for a specific amount of time. But when nothing is known regarding the
processes, no such statements can be made and the efficiency of different schemes
should be considered in individual cases. Another aspect of the sampling plan is the
mode of observations; for discussions of what are known as the snap reading method
and systematic sampling, the reader is referred to Cox (1965) and Cox (1962), p. 86,
respectively.

2.2.2 Tests for Stationarity

Cox and Lewis (1966) give a comprehensive treatment of tests for stationarity in
stochastic processes. In addition to the treatment of data on the occurrence of events
as a time series and the determination of second-order properties of the counting
processes, they consider statistical problems related to renewal processes and provide
tests of significance in general and specific cases. Lewis (1972) updates this study
and considers topics such as trend analysis of nonhomogeneous Poisson processes.

In many queueing systems (such as airport and telephone traffic), the nonstation-
arity of the arrival process leads to a periodic behavior. Furthermore, even though
the process is nonstationary when the entire period is considered, it may be possible
to consider it as a piecewise stationary process in which stationary periods can be
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identified (e.g., a rush hour). Under such circumstances, a procedure that can be used
to test the stationarity of the process, as well as to identify stationary periods, is the
Mann–Whitney–Wilcoxon test (see, for example, Conover (1971) or Randles and
Wolfe (1979)), or a test appropriately modified to handle ties in ranks, as in Putter
(1955). The data for the test can be obtained by considering two adjacent time inter-
vals (0, t1] and (t1, t2] and observing the number of arrivals during such intervals for
several time periods. Let X1, X2, . . . , Xn be the number of arrivals during the first
interval for n periods, and let Y1, Y2, . . . , Ym be the number of arrivals during the
second interval form periods (usuallym = n). If F andG represent the distributions
of the Xs and Y s, respectively, then the hypothesis to be tested is F = G against the
alternative F �= G, for which the Mann–Whitney–Wilcoxon statistic can be used.
Using this test, successive stationary periods can be delineated and the system can
be studied in detail within such periods. (See Moore (1975), who gives an algorithm
for the procedure.)

To analyze cyclic trends of the type discussed above, we may also use the pe-
riodogram method described by Lewis (1972) for the specific case of a nonhomo-
geneous Poisson process. Another test in the framework of the nonhomogeneous
Poisson process is proposed by Joseph et al. (1990). They consider the output of an
M/G/∞ queue, where G is assumed to be known.

2.2.3 Tests for Independence

While formulating a queueing model, for simplification and convenience, several
assumptions of independence are made about its elements. Thus most of the models
assume that interarrival times and service times are independent sequences of i.i.d.
random variables. If there are reasons to make such assumptions, statistical tests can
be used for verification. Some of the tests that can be used to verify independence
of a sequence of observations are tests for serial independence in point processes,
described in Lewis (1972), and various tests for trend analysis and renewal processes,
given by Cox and Lewis (1966). To verify the assumption of independence between
interarrival and service times, nonparametric tests seem appropriate. Spearman’s rho
and Kendall’s tau (Conover (1971), Randles and Wolfe (1979)) are used to test for
the correlation between two sequences of random variables, whereas Cramer–von
Mises-type statistics (see Koziol and Nemec (1979) and references cited therein) are
used to test for bivariate independence directly from the definition of independence
applied to random variables.

2.2.4 Distribution Selection

The next step in the model identification process is the determination of the best
model for arrival and service processes. The distribution selection problem is based
on the nature of the data and the availability of model distributions. For this problem,
readers are referred to books on applied statistics and data analysis (e.g., Venables and
Ripley (2002)). It is advisable to start with simple distributions such as the Poisson
and exponential, since the analysis under such assumptions is considerably similar.
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After all, a mathematical model is essentially an approximation of a real process.
The simpler the model is, the easier it is to analyze and to extract information from
it. Thus the selection of a distribution should be made with due consideration to the
tradeoff between the advantages of the sophistication of the model and our ability to
derive useful information from it.

Distributions such as the Erlang and hyperexponential are closely related to the
exponential, and with an appropriate selection of parameter values, they represent
a wide variety of distributions. As noted in Appendix A, the Erlang with a coeffi-
cient of variation ≤ 1 and the hyperexponential with a coefficient of variation ≥ 1
form a family of distributions with a broad range of distribution characteristics while
retaining the convenience of analysis based on Markovian properties.

Once the distribution model is chosen, the next step is the determination of pa-
rameter values that bind the model to the real system. Normally, either the maximum
likelihood method or the method of moments is used for parameter estimation; the
former is preferred because of its desirable statistical properties and the latter is used
for its ease of implementation. A discussion of parameter estimation and hypothesis
testing in queueing theory is given in Chapter 10.

2.3 Review Exercises

1. Determine the mean, variance, and coefficient of variation (CV) for the following
distributions introduced in this chapter and Appendix A:
(a) deterministic, (2.1.1);
(b) exponential, (2.1.2);
(c) hyperexponential, (A.3.1);
(d) Erlang, (2.1.6), (A.4.1);
(e) mixed Erlang, (A.5.1), (A.5.2);
(f) geometric;
(g) binomial;
(h) negative binomial.

2. Determine the Laplace transform or the PGF, as the case may be, for the distribu-
tions listed in Exercise 1.

3. Determine the PGF for
(a) the Poisson process;
(b) the compund Poisson process.

4. Redo Exercise 1 using the Laplace transform or PGFs, as the case may be.

5. Determine for a specific value of t , the mean, variance, and coefficient of variation
for a
(a) Poisson process;
(b) Compound Poisson process.

6. Establish the identity (2.1.7).
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7. Establish the result (A.1.3).

8. Establish the result (A.2.4).

9. Determine the maximum likelihood estimates of the mean value parameters in
distributions listed in Exercise 1.
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Basic Concepts in Stochastic Processes

3.1 Stochastic Process

In this chapter we introduce basic concepts used in modeling queueing systems.
Analysis techniques are developed later in conjunction with the discussion of specific
systems.

Uncertainties in model characteristics lead us to random variables as the basic
building blocks for the queueing model. However, a random variable quantitatively
represents an event in a random phenomenon. In queueing systems, and all systems
that operate over time (or space or any other parameter), the model must be able
to represent the system over time. That means we need a sequence or a family of
random variables to represent such a phenomenon over time. Let T be the range
of time of interest. Time can be continuous or discrete. We denote time by t ∈ T

when it is continuous and by n ∈ T when it is discrete. Then the family of random
variables {X(t), t ∈ T } or the sequence of random variables {Xn, n ∈ T } is known
as a stochastic process. (A sample value of a random variable can be thought of as a
snapshot, whereas a sample path of a stochastic process can be considered a video.)
The space in which X(t) or Xn assumes values is known as the state space and T is
known as the parameter space. Another way of saying this is that a stochastic process
is a family or a sequence of random variables indexed by a parameter.

The underlying processes of queueing systems are the products of arrivals and
service. They may be continuous or discrete. Even when we define continuous-state
processes such as waiting times, arrival and departure points are embedded in them.
The next two sections describe commonly occurring processes used in the analysis of
queueing systems. Since general stationary and nonstationary stochastic processes
are not normally used in the analysis of queueing models we do not provide any
information on them in our discussion.

3.2 Point, Regenerative, and Renewal Processes

Point process. Consider a randomly located discrete set of points in the parameter
space T . These points may represent events such as arrivals in a queueing system or

U.N. Bhat, An Introduction to Queueing Theory, DOI: 10.1007/978-0-8176-4725-4_3, 
© Springer Science+Business Media, LLC 2008 
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accidents on a stretch of road. LetN(t), t ∈ T be the number of points in (0, t]. Then
the counting process N(t) is known as a point process (see Lewis (1972)). There are
processes in which the points may be of different types; for instance, the arrival of
two types of customers. Then the process is identified as a marked point process.

Regenerative process. Let us consider a stochastic process {X(t), t ∈ T } and a
discrete set of points t1 < t2 < · · · < tn ∈ T . Suppose the distribution properties of
the process from ti onwards is the same for all i = 1, 2, . . . , n. Then we can consider
the process regenerating itself at these points.

Renewal process. Consider a discrete set of points (t0, t1, t2, . . . ) at which a specified
event occurs and let ti − ti−1 = Zi (i = 1, 2, . . . ) be i.i.d. random variables. The
process of the sequence of random variables (Z1, Z2, . . . ) is known as a renewal
process. Let N(t) be the process representing the number of events occurring in
(0, t]. This is known as the renewal counting process. The periods Zi (i = 1, 2, . . . )
are renewal periods. Since the renewal periods are i.i.d., it is clearly seen that the
renewal process is also a regenerative process.

In the context of queueing systems, when the interarrival times are i.i.d., the
arrivals form a renewal process. But, since a departure cannot take place when there
are no customers in the system, the departure process is not renewal even when service
times are i.i.d. random variables. They form a renewal process only during the period
when customers are continuously busy. (Periods when customers are continuously
busy are known as busy periods. They are followed by idle periods during which
the server is idle.) When the queue discipline dictates that the server does not stay
idle when there are customers in the system, the starting points of busy periods form
another set of renewal points, with the sequence of busy period-idle period pairs
forming the renewal periods. The renewal process framework is useful in analyzing
some advanced classes of queueing systems.

3.3 Markov Process

Some of the simple models widely used in queueing theory are based on Markov
processes. Suppose a stochastic process {X(t), t ∈ T } is such that

P [X(t) ≤ x|X(t1) = x1, X(t2) = x2, . . . , X(tn) = xn]
= P [X(t) ≤ x|X(tn) = xn] (t1 < t2 · · · < tn < t)

= F(xn, x; tn, t). (3.3.1)

Then {X(t)} is a Markov process. When T and the state space are discrete the parallel
definition is given as

P(Xn = j |Xn1 = i1, Xn2 = i2, . . . , Xnk = ik) = P(Xn = j |Xnk = ik)

= P
(nk,n)
ik,j

. (3.3.2)

Now the process {Xn, n = 1, 2, . . . } is called the Markov chain.
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The dependence structure exhibited here is a one-step dependence, in which the
state of the process is dependent only on the last parameter point at which full in-
formation of the process is available. As will be seen in the following chapters,
the property of Markov dependence simplifies the analysis while retaining essential
characteristics of the systems.

Since the time parameter in a Markov process has a specific range we use transition
distributions or probabilities of the process in its analysis. These are conditional
statements, conditioned on the process value at the initial value of t . An unconditional
distribution or the probability (in the discrete case) can be obtained by the usual
method of removing the condition.

For the transition probabilities of Markov processes, we use the following notation
depending on the nature of state and parameter spaces:

(i) Discrete state, discrete parameter:

P
m,n
ij = P(Xn = j |Xm = i), m < n. (3.3.3)

(ii) Discrete state, continuous parameter:

Pij (s, t) = P [X(t) = j |X(s) = i], s < t. (3.3.4)

(iii) Continuous state, discrete parameter:

F(xm, x;m, n) = P(Xn ≤ x|Xm = xm), m < n. (3.3.5)

(iv) Continuous state, continuous parameter:

F(xn, x; tn, t) = P [X(t) ≤ x|X(tn) = xn], tn < t. (3.3.6)

The fundamental property of the Markov process is given by the Chapman–Kolmo-
gorov relation. Corresponding to the above four cases, it can be given as follows:

(i) P
(m,n)
ij =

∑
k∈S

P
(m,r)
ik Pkj (r, n), m < r < n; (3.3.7)

(ii) Pij (s, t) =
∑
k∈S

Pik(s, u)Pkj (u, t), s < u < t; (3.3.8)

(iii)

F(xm, x;m, n) =
∫
y∈S

dyF (xm, y;m, r) · F(y, x; r, n), m < r < n; (3.3.9)

(iv)

F(xs, x; s, t) =
∫
y∈S

dyF (xs, y; s, u) · F(y, x; u, t), s < u < t. (3.3.10)
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These equations can be easily established by considering the transitions of the process
in two time periods (m, r) and (r, n) when the time parameter is discrete and (s, u)
and (u, t)when the time parameter is continuous, and using the basic definition of the
Markov process. For instance, when both the state and parameter spaces are discrete,
the probability of the transition from the initial state i to a state k (k ∈ S) in time
period (m, r) isP (m,r)ik and from state k to state j in time period (r, n) isP (r,n)kj . (3.3.7)
now follows by multiplying these two probabilities and summing over all values of
k ∈ S. Similar arguments establish (3.3.8)–(3.3.10).

The stochastic processes underlying queueing systems considered in this book
primarily belong to two classes: discrete-state and -parameter spaces (case (i) above)
and discrete-state space and continuous-parameter space (case (ii) above). We provide
the conceptual framework for the method by which (3.3.7) and (3.3.8) can be used in
their analysis here and in Appendix B.

Case (i): Discrete-state and -parameter space. Let {Xn, n = 0, 1, 2, . . . } be a time-
homogeneous Markov chain. By time homogeneous we mean that the transition
probabilities P (m,n)ij and P (m+k,n+k)

ij are the same. Without loss of generality, we use
m = 0 and write

P
(n)
ij = P(Xn = j |X0 = i). (3.3.11)

For convenience, write P (1)ij = Pij as the one-step transition probability. In matrix
notation, we have

P(n) =

⎡
⎢⎢⎢⎢⎣
P
(n)
00 P

(n)
01 P

(n)
02 . . .

P
(n)
10 P

(n)
11 P

(n)
12 . . .

P
(n)
20 P

(n)
21 P

(n)
22) . . .

...
...

...

⎤
⎥⎥⎥⎥⎦ . (3.3.12)

When n = 1, the matrix P = P(1) is known as the transition probability matrix.

Note that 0 ≤ P
(n)
ij ≤ 1 and the row sums of P(n) (i.e.,

∑
j∈S P

(n)
ij ) are equal to 1

for all values of n. With these notational simplifications, (3.3.7) can be written as

P
(n)
ij =

∑
k∈S

P
(r)
ik P

(n−r)
kj , 0 < r < n,

or

P(n) = P(r)P(n−r).

By iterating on the value of r = 1, 2, . . . , n, it follows that

P(n) = Pn, (3.3.13)

showing that the n-step transition probabilities are given by the elements of the nth
power of the one-step transition probability matrix.
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Case (ii): Discrete-state space and continuous-parameter space. As in case (i), con-
sider a time-homogeneous Markov process in which transition probabilities Pij (s, t)
and Pij (s + u, t + u) are the same. Without loss of generality, use s = 0 and write

Pij (t) = P [X(t) = j |X(0) = i]. (3.3.14)

In matrix notation, the probabilities of transition among states i, j ∈ S can be given
as elements of the matrix

P(t) = ||Pij (t)||.
Because of the continuous nature of the time parameter, we cannot get a result similar
to (3.3.13) in this case. Also, instead of the product representation, here we use dif-
ferential equations from which Pij (t) can be determined. To start, note the following
properties, which are either obvious or assumed:

(a) Pij (t) ≥ 0;
(b)

∑
j∈S Pij (t) = 1;

(c) Pij (s + t) =∑k∈S Pik(s)Pkj (t);
(d) Pij (t) is continuous;
(e) limt→0 Pij (t) = 1 if i = j and = 0 otherwise.

Note that properties (a) and (b) are obvious from the transition structure and (c)
is a restatement of the Chapman–Kolmogorov relation. Properties (d) and (e) are
necessary (hence assumed) for deriving the differential equations.

Using a Taylor series expansion and�t as an infinitesimal increment in t , we may
write

Pij (t, t +�t) = Pij (t)+�tP ′
ij (t)+ �t2

2
P ′′
ij (t)+ · · · .

Setting t = 0

Pij (�t) = Pij (0)+�tP ′
ij (0)+ �t2

2
P ′′
ij (0)+ · · · .

Rewriting these equations and taking limits as �t → 0, we get

lim
�t→0

Pij (�t)

�t
= P ′

ij (0) = λij , i �= j, (3.3.15)

lim
�t→0

Pii(�t)− 1

�t
= P ′

ii (0) = −λii, (3.3.16)

where λij are such that ∑
j �=i

λij = λii . (3.3.17)

Noting that λij are infinitesimal transition rates, it is easy to see that (3.3.17) is the
direct consequence of the property

∑
j∈S Pij (t) = 1. These transition rates are also

known as generators, displayed in a matrix as
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A =

⎡
⎢⎢⎢⎣

−λ00 λ01 λ02 . . .

λ10 −λ11 λ12 . . .

λ20 λ21 −λ22 . . .
...

...
...

⎤
⎥⎥⎥⎦ . (3.3.18)

In continuous-time Markov processes with discrete states, the generator matrix A
plays the same role in its analysis as that of the transition probability matrix P (matrix
(3.3.12) with n = 1) in the analysis of a Markov chain.

The Poisson process discussed in Chapter 2 and Appendix A is a Markov process
with a simple transition structure. Let {X(t), t ∈ T } be a Poisson process with
parameter λ, such that

Pn(t) = P [X(t) = n] = e−λt (λt)
n

n! , n = 0, 1, 2, . . . . (3.3.19)

(See B.2.2 in Appendix B.)
Using arguments similar to those used in deriving (3.3.15)–(3.3.17) we can show

that the infinitesimal transition rates λij = λ for j = i, i + 1, and = 0 otherwise.
When the Poisson process and the associated exponential distribution are used to

model queueing systems, their underlying processes, such as the number of customers
in the system, are Markov and hence require analysis techniques appropriate for
Markov processes.

The differential equations used in the analysis of Markov processes are based on
Chapman–Kolmogorov relations as applied to infinitesimal transitions to the process
in the time interval (t, t +�t). These are given as

P ′
ij (t) = −λjjPjj (t)+

∑
k �=j

λkjPik(t). (3.3.20)

This equation is known as the forward Kolmogorov equation, and its derivation is
provided in Appendix B.

In matrix notation, we can write these relations as

P ′(t) = P (t)A. (3.3.21)

Thus the analysis of the behavior of a queueing system that can be modeled as a
Markov process involves two key steps: the determination of the appropriate values
of λij and the solution of the resulting equation (3.3.20). The first part of this pro-
cedure is accomplished from the nature of transitions in the Markov process, and the
resulting differential equations are solved using standard mathematical/computation-
al techniques. In many applications a finite time solution may not be needed. Then
a limiting solution, when t → ∞, is obtained to determine the limiting behavior of
the system. These procedures will be introduced as and when they are needed.
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Simple Markovian Queueing Systems

Poisson arrivals and exponential service enable us to use Markovian queueing models
that are easy to analyze and that produce usable results. Historically, these have also
been the models used in the early stages of queueing theory to help decision making
in the telephone industry. The underlying Markov process representing the number
of customers in such systems is known as a birth-and-death process, which is widely
used in population models. The birth–death terminology is used to represent increases
and decreases in the population size. The corresponding events in queueing systems
are arrivals and departures. In this chapter, we present some of the important models
belonging to this class.

4.1 A General Birth-and-Death Queueing Model

Again using the birth (arrival)–death (departure) terminology, when the population
size is n, let λn and µn be the infinitesimal transition rates (generators) of birth and
death, respectively.

When the population is the number of customers in the system, λn andµn indicate
that the arrival and service rates depend on the number in the system. Based on the
properties of the Poisson process, i.e., when arrivals are in a Poisson process and
service times are exponential, we can make the following probability statements for
a transition during (t, t +�t]:
birth (n ≥ 0):

P(one birth) = λn�t + o(�t),

P (no birth) = 1 − λn�t + o(�t),

P (more than one birth) = o(�t),

death (n > 0):
P(one death) = µn�t + o(�t),

P (no death) = 1 − µn�t + o(�t),

P (more than one death) = o(�t),

U.N. Bhat, An Introduction to Queueing Theory, DOI: 10.1007/978-0-8176-4725-4_4, 
© Springer Science+Business Media, LLC 2008 
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where o(�t) is such that o(�t)
�t

→ 0 as �t → 0. Note that in these statements the
o(�t) terms do not specify actual values. In each of the two cases, the o(�t) terms
sum to 0 so that the total probability of the three events is equal to 1.

Let Q(t) be the number of customers in the system at time t . Define

Pin(t) = P [Q(t) = n|Q(0) = i].
Incorporating the probabilities for transitions during (t, t + �t], as stated above,
we get

Pn,n+1(�t) = λn�t + o(�t), n = 0, 1, 2, . . . ,

Pn,n−1(�t) = µn�t + o(�t), n = 1, 2, 3, . . . ,

Pnn(�t) = 1 − λn�t − µn�t + o(�t), n = 1, 2, 3, . . . ,

Pnj (�t) = o(�t), j �= n− 1, n, n+ 1. (4.1.1)

In deriving terms on the right-hand side of these equations, we have made use of
simplifications of the type

[λn�t + o(�t)][1 − µn�t + o(�t)] = λn�t + o(�t),

[1 − λn�t + o(�t)][1 − µn�t + o(�t)] = 1 − λn�t − µn�t + o(�t).

The infinitesimal transition rates of (4.1.1) lead to the following generator matrix for
the birth-and-death process model of the queueing system:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−λ0 λ0
µ1 −(λ1 + µ1) λ1

µ2 −(λ2 + µ2) λ2
·

·
·

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4.1.2)

The generator matrix A of (4.1.2) leads to the following forward Kolmogorov
equations for Pin(t); see equations (3.3.20) and (B.1.2). (For ease of notation, from
here onwards, we writePin(t) ≡ Pn(t) and insert the initial state i only when needed.)

P ′
0(t) = −λ0P0(t)+ µ1P1(t),

P ′
n(t) = −(λn + µn)Pn(t)+ λn−1Pn−1(t)

+ µn+1Pn+1(t), n = 1, 2, . . . . (4.1.3)

As a point of digression, note that (4.1.3) can also be derived directly using (4.1.1)
without going through the generator matrix as illustrated below.

Considering the transitions of the process Q(t) during (t, t +�t], we have

P0(t +�t) = P0(t)[1 − λ0�t + o(�t)] + P1(t)[µ1�t + o(�t)],
Pn(t +�t) = Pn(t)[1 − λn�t − µn�t + o(�t)]
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+ Pn−1(t)[λn−1�t + o(�t)]
+ Pn+1(t)[µn+1�t + o(�t)]
+ o(�t), n = 1, 2, . . . . (4.1.4)

Subtracting Pn(t) (n = 0, 1, 2, . . . ) from both sides of the appropriate equation in
(4.1.4) and dividing by �t we get

P0(t +�t)− P0(t)

�t
= −λ0P0(t)+ µ1P1(t)+ o(�t)

�t
,

Pn(t +�t)− Pn(t)

�t
= −(λn + µn)Pn(t)

+ λn−1Pn−1(t)+ µn+1Pn+1(t)

+ o(�t)

�t
.

Now (4.1.3) follows by letting �t → 0.
To determine Pn(t) [≡ Pin(t)], (4.1.3) should be solved along with the initial

condition Pi(0) = 1, Pn(0) = 0 for n �= i. (See Stewart (1994) for the numerical
solution of special cases of (4.1.3).) Unfortunately, even in simple cases such as
λn = λ and µn = µ, n = 0, 1, 2, 3, . . . , that is when the arrivals are Poisson
and service times are exponential (M/M/1 queue), deriving Pn(t) explicitly is an
arduous process. Furthermore in most of the applications the need for knowing the
time-dependent behavior is not all that critical. The most widely used result, therefore,
is the limiting result, determined from (4.1.3) by letting t → ∞.

A general result on Markov processes is given below.

Theorem 4.1.1.

(1) If the Markov process is irreducible (all states communicate), then the limiting
distribution limt→∞ Pn(t) = pn exists and is independent of the initial conditions
of the process. The limits {pn, n ∈ S} are such that they either vanish identically
(i.e., pn = 0 for all n ∈ S) or are all positive and form a probability distribution
(i.e., pn > 0 for all n ∈ S,

∑
n∈S pn = 1).

(2) The limiting distribution {pn, n ∈ S} of an irreducible recurrent Markov process
is given by the unique solution of the equation pA = 0 and

∑
j∈S pj = 1, where

p = (p0, p1, p2, . . . ).

The results presented in the theorem essentially confirm what one can think of as
a state of equilibrium in a stochastic process and how that affects the Kolmogorov
equations (3.3.20) in a Markov process. In a state of equilibrium, also known as the
steady state, the behavior of the process is independent of the time parameter and the
initial value; i.e.,

lim
t→∞Pin(t) = pn, n = 0, 1, 2, . . . ,

and therefore
P ′
n(t) → 0 as t → ∞.
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Using these results in (4.1.3), we get

0 = −λ0p0 + µ1p1,

0 = −(λn + µn)pn + λn−1pn−1 + µn+1pn+1, n = 1, 2, . . . . (4.1.5)

These equations can be easily solved through recursion. Rearranging the first equation
in (4.1.5), we have

p1 = λ0

µ1
p0. (4.1.6)

For n = 1, the second equation gives

(λ1 + µ1)p1 = λ0p0 + µ2p2.

Using (4.1.6), this equation reduces to

µ2p2 = λ1p1,

p2 = λ1λ0

µ2µ1
p0.

Continuing this recursion for n = 2, 3, . . . , we get

µnpn = λn−1pn−1, (4.1.7)

and therefore

pn = λ0λ1 · · · λn−1

µ1µ2 · · ·µn p0. (4.1.8)

Theorem 4.1.1 also gives the normalizing condition
∑
n∈S pn = 1, which when

applied to (4.1.8) gives

p0 =
[

1 +
∞∑
n=1

λ0λ1 · · · λn−1

µ1µ2 · · ·µn

]−1

. (4.1.9)

The limiting distribution of the state of the birth-and-death queueing model is
{pn, n = 0, 1, n, . . . }, as given by (4.1.8) and (4.1.9). Note that {pn, n =
0, 1, 2, . . . } are nonzero only when

1 +
∞∑
n=1

λ0λ1 · · · λn−1

µ1µ2 · · ·µn < ∞. (4.1.10)

In order to derive (4.1.5), deriving (4.1.3) first is not necessary. As noted in The-
orem 4.1.1, with p = (p0, p1, p2, . . . ) and the generator matrix A, (4.1.5) can be
obtained directly from

pA = 0 (4.1.11)

and
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∞∑
n=1

pn = 1.

For the birth-and-death queueing model, the generator matrix A is given by (4.1.2).
Another way of looking at (4.1.5) is to consider the equations as representing a

condition of balance among the states. Rearranging (4.1.5),

λ0p0 = µ1p1,

(λn + µn)pn = λn−1pn−1 + µn+1pn+1. (4.1.12)

The transitions among the states can be pictorially represented as in Figure 4.1.1.

0

λ0 ��
1µ1��

λ1 ��
2µ2��

λ2 ��
3 . . .µ3��

Fig. 4.1.1. Transition diagram.

Noting that the λs and µs represent infinitesimal transition rates in and out of the
states, the equalities in (4.1.12) can be interpreted as (long-term probability of being
in state n)× (transition rates out of state n) =∑i=n−1,n+1 (long-term probability of
being in state i)× (transition rate from state i to state n).

Such state balance equations can be easily written using the transition diagram of
Figure 4.1.1.

Thus we have given three ways of determining the state balance equations:

1. taking the appropriate limits as t → ∞ in the forward Kolmogorov equations;
2. using the equation pA = 0; and
3. with the help of the transition diagram.

When using the last method care should be taken to ensure that all transitions
have been accounted for. Also, in applications the readers may use any method with
which they are comfortable. In our discussion of special models we normally use the
second method based on the generator matrix unless the transition diagram throws
more light on the behavior of the system.

There are two other theorems that establish some important properties of the
limiting distribution of a Markov process with an irreducible state space. The first of
them addresses the concept of stationarity.

Theorem 4.1.2. The limiting distribution of a positive recurrent irreducible Markov
process is also stationary.

A process is said to be stationary if the state distribution is independent of time;
i.e., if

Pn(0) = pn, n = 0, 1, 2, . . . ,
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then

Pn(t) = pn for all t.

Since we deal with transition distributions conditional on the initial state in stochastic
processes, the stationarity means that if we use the stationary distribution as the initial
state distribution, from then on all time-dependent distributions will be the same as
the one we started with.

The second theorem enables us to interpret the limiting probability pn, n =
0, 1, 2, . . . , as the fraction of time that the process occupies state n in the long run.

Theorem 4.1.3. Having started from state i, letNij (t) be the time spent by the Markov
process in state j during (0, t]. Then

lim
t→∞

[∣∣∣∣Nij (t)t
− pj

∣∣∣∣ >∈
]

= 0.

The general birth-and-death queueing model encompasses a wide array of special
cases. Some of the widely used models are discussed in the following sections.

4.2 The Queue M/M/1

The M/M/1 queue is the simplest of the queueing models used in practice. The
arrivals are assumed to occur in a Poisson process with rate λ. This means that
the number of customers N(t) arriving during a time interval (0, t] has a Poisson
distribution

P [N(t) = j ] = e−λt (λt)
j

j ! , j = 0, 1, 2, . . . .

It also means that the interarrival times have an exponential distribution with proba-
bility density

a(x) = λe−λx, x > 0.

We assume that the service times have an exponential distribution with probability
density

b(x) = µe−µx, x > 0.

With these assumptions, we have

E[interarrival time] = 1

λ
= 1

arrival rate
,

E[service time] = 1

µ
= 1

service rate
.

The ratio of arrival rate to service rate plays a significant role in measuring the
performance of queueing systems. Let
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ρ = traffic intensity = arrival rate

service rate
.

In an M/M/1 queue, ρ = λ/µ.
Clearly,M/M/1 is a special case of the general birth-and-death model with λn =

λ and µn = µ. The generator matrix is given by (state space: 0, 1, 2, . . . )

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−λ λ

µ −(λ+ µ) λ

µ −(λ+ µ) λ

·
·

·

⎤
⎥⎥⎥⎥⎥⎥⎦
. (4.2.1)

The corresponding forward Kolmogorov equations for Pn(t) (n = 0, 1, 2, . . . ) are

P ′
0(t) = −λP0(t)+ µP1(t),

P ′
n(t) = −(λ+ µ)Pn(t)+ λPn−1(t)

+ µPn+1(t), n = 1, 2, . . . , (4.2.2)

with Pn(0) = 1 when n = i and = 0 otherwise. For a complete solution of these
difference-differential equations the use of generating functions (to transform the
difference equation) and Laplace transforms (to transform the differential equation)
is needed. Since the resulting solution is the Laplace transform of a generating
function, Pn(t) can be obtained using inversion formulas. Because of the complexity
of the procedure and the final result, we do not provide it in this text. Interested
readers may refer to Gross and Harris (1998), p. 129, where the results have been
derived in detail. Computational methods may also be used to solve the differential
equations (4.2.2) (see Stewart (1994)).

Limiting distribution. For the limiting probabilities limt→∞ Pn(t) = pn, we have
the state balance equations (see (4.1.12))

λp0 = µp1,

(λ+ µ)pn = λpn−1 + µpn+1, n = 1, 2, 3, . . . . (4.2.3)

Solving these equations along with
∑∞

0 pn = 1 (or specializing (4.1.8) and (4.1.9)),
we get

pn = (1 − ρ)ρn, n = 0, 1, 2, . . . , (4.2.4)

where ρ = λ/µ < 1.
The probability that the server is busy is a performance measure for the system.

Clearly, this utilization factor = 1−p0 = ρ = traffic intensity in this case. Recall that
we have defined Q(t) as the number of customers in the system. Write Q(∞) = Q

and let Qq be the number in the queue, excluding the one in service. Now we may
define two mean values, L = E(Q) and Lq = E(Qq). From the distribution (4.2.4),
we get
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L =
∞∑
n=1

n(1 − ρ)ρn = ρ

1 − ρ
,

which can also be written as

= λ

µ− λ
. (4.2.5)

For Lq , we get

Lq =
∞∑
n=1

(n− 1)pn

=
∞∑
n=1

npn −
∞∑
n=1

pn

= L− ρ = ρ2

1 − ρ

= λ2

µ(µ− λ)
. (4.2.6)

The utilization factor ρ is the probability that the server is busy when the system
is in equilibrium, and therefore it gives the expected number in service. With this
interpretation we can provide the obvious explanation for (4.2.6) as E(number in
system) = E(number waiting)+ E(number in service).

From (4.2.4), we obtain the variance of the number of customers in the system as

V (Q) = ρ

(1 − ρ)2

= λµ

(µ− λ)2
. (4.2.7)

Customer waiting time. From a customer viewpoint, the time spent in the queue
and in the system are two characteristics of importance. When the system is in
equilibrium, let Tq and T be the amount of time a customer spends in queue and in
the system, respectively. We assume that the system operates according to a “first-
come, first-served’’ (FCFS) queue discipline. We note here that as long as the server
remains busy when there are customers in the system, and once a service starts it is
given to its completion, the number in the system is not dependent on the order in
which the customers are served. However, for waiting time the order of service is a
critical factor.

With an FCFS queue discipline, the waiting time for service (Tq) of an arriving
customer is the amount of time required to serve the customers already in the system.
The total time in system (T ) is Tq + service time. When there are n customers in the
system, since service times are exponential with parameter µ, the total service time
of n customers is Erlang with probability density
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fn(x) = e−µx µ
nxn−1

(n− 1)! . (4.2.8)

Let Fq(t) = P(Tq ≤ t), the distribution function of the waiting time Tq . Clearly,

Fq(0) = P(Tq = 0) = P(Q = 0) = 1 − ρ. (4.2.9)

Note that because of the memoryless property of the exponential distribution, the
remaining service time of the customer in service is also exponential with the same
parameter µ. Writing dFq(t) = P(t < Tq ≤ t + dt), for t > 0, we have

dFq(t) =
∞∑
n=1

pne
−µt µntn−1

(n− 1)!dt

= (1 − ρ)

∞∑
n=1

ρne−µt µ
ntn−1

(n− 1)!dt,

which on simplification gives

= λ(1 − ρ)e−µ(1−ρ)t dt. (4.2.10)

Because of the discontinuity at 0 in the distribution of Tq , we get

Fq(t) = P(Tq = 0)+
∫ t

0
dFq(t)

= 1 − ρe−µ(1−ρ)t , (4.2.11)

where we have combined results from (4.2.9) and (4.2.10).
Let E(Tq) = Wq and E(T ) = W . From (4.2.11), we can easily derive

Wq = E(Tq) = ρ

µ(1 − ρ)
= λ

µ(µ− λ)
(4.2.12)

and

V (Tq) = ρ(2 − ρ)

µ2(1 − ρ)2
. (4.2.13)

Recalling that the total time in the system, T , is the sum of Tq and service time, we get

W = E[T ] = λ

µ(µ− λ)
+ 1

µ

= 1

µ− λ
. (4.2.14)

Comparing the result (4.2.14) with (4.2.5), we note the relationship



38 4 Simple Markovian Queueing Systems

L = λW. (4.2.15)

A similar comparison between results (4.2.6) and (4.2.12) establishes

Lq = λWq. (4.2.16)

The result (4.2.15) is known as Little’s law in queueing literature. Numerous articles
have been published on this result, and it has been shown that it is a general property
of queueing systems subject to only some restrictions on the system structure. It is
discussed further in the context of the queue G/G/1 in Chapter 9 (Section 9.2).

Busy period. A busy period is defined as the period of time during which the server
is continuously busy. When it ends, an idle period follows. Together they form a
busy cycle. Since the idle period ends with an arrival, it is simply the remaining
interarrival time, after the last customer in the busy period leaves after service. With
an exponential interarrival time, because of the memoryless property, the idle period
also has the same exponential distribution.

There are several methods by which the distribution of the busy period inM/M/1
can be derived. None of them is simple. Here we give the outline of the method using
forward Kolmogorov equations. Looking at the underlying Markov process, the busy
period is the duration of time that the process starting from state 1, stays continuously
away from state 0. (Since the busy period starts with an arrival, it is the amount
of time the process takes to get back to state 0.) Considering the transitions of the
Markov process, transitions within a busy period can be brought about by converting
state 0 into an absorbing state and all other states into an irreducible transient class.
Then the generator matrix (4.2.1) takes the modified form

A =

⎡
⎢⎢⎢⎣

0 0
µ −(λ+ µ) λ

µ −(λ+ µ) λ

. . .
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ . (4.2.17)

The corresponding forward Kolmogorov equations for Pn(t) (n = 0, 1, 2, . . . ) are

P ′
0(t) = µP1(t),

P ′
1(t) = −(λ+ µ)P1(t)+ µP2(t),

P ′
n(t) = −(λ+ µ)Pn(t)+ λPn−1(t)+ µPn+1(t), n = 2, 3, . . . , (4.2.18)

with the initial condition P1(0) = 1, Pn(0) = 0 for n �= 1. Solving these difference-
differential equations requires the use of PGFs and Laplace transforms. (See Gross
and Harris (1998).)

Let π0(θ) be the Laplace transform of the busy period defined as

π0(θ) =
∫ ∞

0
e−θtP ′

0(t)dt, Re(θ) > 0.

After appropriate transform operations on (4.2.18), we get
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π0(θ) = 1

2λ

[
θ + λ+ µ−

√
(θ + λ+ µ)2 − 4λµ

]
. (4.2.19)

This can be inverted to give the explicit form

P ′
0(t) = e−(λ+µ)t

√
µ/λ

t
I1(2

√
λµt), (4.2.20)

where Ij (x) is the modified Bessel function defined as

Ij (x) =
∞∑
n=0

(x/2)2n+j

n!(n+ j)! .

Using combinatorial arguments an alternative form for (4.2.20) can be given as

P ′
0(t) = e−(λ+µ)t

∞∑
n=1

λn−1µnt2n−2

n!(n− 1)! (4.2.21)

(see Prabhu (1960)).
Suppose f (x) is the probability density of a random variable X and φ(θ) its

Laplace transform. (See Section C.2 in Appendix C.)

φ(θ) =
∫ ∞

0
e−θxf (x)dx, Re(θ) > 0.

Two easily established properties of φ(θ) are

E(X) = −φ′(0), (4.2.22)

E(X2) = φ′′(0). (4.2.23)

Let B represent the length of the busy period. Using (4.2.22) and (4.2.23) on the
transform of B given by (4.2.19), we get

E[B] = 1

µ− λ
, (4.2.24)

V [B] = 1 + ρ

µ2(1 − ρ)3
. (4.2.25)

There may be occasions when a busy period starts out with an initial number of i
customers in the system. Because of the Markovian properties of the arrival process
we can show that the transition of the underlying Markov process from i to 0 can
be considered to be made up of i intervals with the same distribution representing
the transitions from i → i − 1, i − 1 → i − 2, . . . , 1 → 0. These i independent
busy periods start with 1 customer in the system. Then if Bi is the random variable
representing a busy period initiated by i customers, we get

E[Bi] = i

µ− λ
, (4.2.26)
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V [Bi] = i(1 + ρ)

µ2(1 − ρ)3
. (4.2.27)

The explicit expression of the distribution of Bi can be given as

P ′
0(t) = e−(λ+µ)t i

√
µ/λ

t
Ii(2

√
λµt). (4.2.28)

It is easy to visualize the effect of the increase in traffic intensity ρ in the range (0, 1)
on the length of the busy period. As ρ increases, the length of the busy period should
increase. This can be shown with the help of the Laplace transform (4.2.19). Consider

lim
θ→0

π0(θ) = lim
θ→0

(θ + λ+ µ)− [(θ + λ+ µ)2 − 4λµ]1/2

2λ

= 1

2λ

[
λ+ µ−

√
(λ− µ)2

]

=
{

1
2λ [λ+ µ− (µ− λ)] if µ ≥ λ,
1

2λ [λ+ µ− (λ− µ)] if µ < λ

=
{

1 if µ > λ, i.e., ρ < 1,
µ
λ

if µ < λ, i.e., ρ > 1.
(4.2.29)

But limθ→0 π0(θ) = ∫∞
0 P ′

0(t)dt , where P ′
0(t) is the probability density of the busy

period distribution. The conclusion we can draw from (4.2.29) is, therefore, that the
busy period has a proper distribution when ρ ≤ 1 and an improper distribution when
ρ > 1. In the latter case, the probability that it will not terminate is given by 1−ρ−1.

4.2.1 Departure Process

The departure process is the product of processes of arrival and service. When the
server is continuously busy it coincides with the service process. But when idle times
intervene there is a pause in the departures as well. Nevertheless, in equilibrium we
can derive properties of the process without reference to arrivals and service.

Let t1, t2, . . . be the epochs of departure from the system, and define Tn = tn+1 −
tn. When the queue is in equilibrium, i.e., when traffic intensity ρ < 1, denote this
random variable by T . LetQ(x) be the number of customers in the system x amount
of time after departure and define

Fn(x) = P [Q(x) = n, T > x]. (4.2.30)

We note here, as we shall see in Chapter 5, that in the M/M/1 queue, the limiting
distribution of the process Q(t) derived in (4.2.4) remains the same when t in Q(t)
is an arbitrary time point, an arrival point, or a departure point. (See Wolff (1982).)
Therefore, regardless of the value of x, we have

P [Q(x) = n] = (1 − ρ)ρn, n = 0, 1, 2, . . . (x ≥ 0).
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From (4.2.30), we can determine F(x) as

F(x) = P(T > x) =
∞∑
0

Fn(x). (4.2.31)

For a specified n, because of the Markovian property of the underlying process, the
random variable T is dependent only on n, not on the preceding interdeparture inter-
vals. To establish the relationship betweenQ(x) and T and to derive the distribution
of T , we start by considering the transition in the interval (x, x +�x]. In (4.2.31),
F(x) is the probability that T , the time interval between epochs of the last departure
and the next departure, is greater than x. This means that we have to consider the
possibility of only arrivals during (x, x +�x]. We have

F0(x +�x) = F0(x)[1 − λ�x] + o(�x),

Fn(x +�x) = Fn(x)[1 − λ�x − µ�x]
+ Fn−1(x)λ�x + o(�x), n = 1, 2, . . . . (4.2.32)

Rearranging terms in (4.2.32), dividing by �x, and letting �x → 0, we get

F ′
0(x) = −λF0(x),

F ′
n(x) = −(λ+ µ)Fn(x)+ λFn−1(x), n = 1, 2, . . . . (4.2.33)

From (4.2.30), we also have

Fn(0) = P [Q(0) = n] = pn. (4.2.34)

The first equation in (4.2.33) can be solved by noting that

d

dx
ln F0(x) = F ′

0(x)

F0(x)
= −λ.

Hence
ln F0(x) = −λx + C.

Now using the initial condition (4.2.34) to determine C, we get

F0(x) = p0e
−λx (4.2.35)

The general solution to (4.2.33) can be obtained by induction. Let

Fn−1(x) = pn−1e
−λx, n = 1, 2, . . . .

Substituting this in the second equation of (4.2.33), we get

F ′
n(x)+ (λ+ µ)Fn(x) = λpn−1e

−λx.

The general form is now confirmed by multiplying both sides by e(λ+µ)x , integrating
and using the initial condition from (4.2.34). We get
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Fn(x) = pne
−λx, n = 1, 2, 3, . . . . (4.2.36)

Thus we get

F(x) =
∞∑
n=0

pne
−λx

= e−λx, (4.2.37)

which is the same as the distribution of the interarrival times. Since {pn} is also the
distribution of the number of customers in the system at departure points, equation
(4.2.36) also confirms the independence of the distribution of T from the queue length
distribution at departure points. Note that here we are talking about the independence
of distribution of two random variables and not any relationship between their specific
values. For a more exhaustive treatment of this problem, see Burke (1956), who has
considered this problem for the multiserver M/M/s queue.

The important result from this analysis states that the departure process of the
M/M/1 queue in equilibrium is the same Poisson as the arrival process. Conse-
quently, the expected number of customers served during a length of time t when the
system is in equilibrium is given by λt .

Example 4.2.1. An airport has a single runway. Airplanes have been found to arrive
at the rate of 15 per hour. It is estimated that each landing takes 3 minutes. Assuming
a Poisson process for arrivals and an exponential distribution for landing times, use
an M/M/1 model to determine the following performance measures.

(a) Runway utilization:

arrival rate = 15/hour (λ),

service rate = 60

3
/hour = 20/hour (µ),

utilization = ρ = λ

µ
= 3

4
. Answer

(b) Expected number of airplanes waiting to land:

Lq = ρ2

1 − ρ
= (0.75)2

0.25
= 2.25. Answer

(c) Expected waiting time:

E(Wq) = λ

µ(µ− λ)
= 15

20(20 − 15)
= 3

20
hour = 9 minutes. Answer

(d) Probability that the waiting will be more than 5 minutes? 10 minutes? No waiting?
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P(no waiting) = P(Tq = 0) = 1 − ρ = .25, Answer

P(Tq > t) = ρe−µ(1−ρ)t ,

P (Tq > 5 minutes) = 3

4
e−20(1− 3

4 )5/60

= 3

4
e−

25
60 = 0.4944, Answer

P(Tq > 10 minutes) = 3

4
e−

50
60 = 0.3259. Answer

(e) Expected number of landings in a 20-minute period = 15
60 × 20 = 5. Answer

4.3 The Queue M/M/s

The multiserver queue M/M/s is the model used most in analyzing service stations
with more than one server such as banks, checkout counters in stores, check-in coun-
ters in airports, and the like. The arrival of customers is assumed to follow a Poisson
process, and service times are assumed to have an exponential distribution. We will
let the number of servers be s, providing service independently of each other. We
also assume that the arriving customers form a single queue and the one at the head
of the waiting line enters into service as soon as a server is free. No server stays idle
as long as there are customers to serve.

Let λ be the arrival rate and µ the service rate. (This means that the interarrival
times and service times have exponential distributions with densities λe−λx (x > 0)
and µe−µx (x > 0), respectively.) Note that the service rate µ is the same for all
servers. In order to use the birth-and-death model introduced earlier, we have to
establish values for λn and µn, when there are n customers in the system. Clearly,
the arrival rate does not change with the number of customers in the system (i.e., λ is
the constant arrival rate). What about µn, and how does it change?

Supposen (n = 1, 2, . . . , s) servers are busy at time t . Then during (t, t+�t], the
event that a busy server will complete service has the probabilityµ�t+o(�t). Since
there are n busy servers at t , the probability that any one of the n busy servers will
complete service during (t, t +�t] can be determined using the binomial probability
distribution as

=
(
n

1

)
[µ�t + o(�t)] [1 − µ�t + o(�t)]n−1

= nµ�t + o(�t). (4.3.1)

Note that o(�t)
�t

→ 0 as �t → 0.
In a similar manner the probability that a number r(> 1) of the busy servers will

complete service during (t, t +�t] can be given as

=
(
n

r

)
[µ�t + o(�t)]r [1 − µ�t + o(�t)]n−r

= o(�t).
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Therefore, when there are n busy servers at time t , the only event in (t, t + �t]
contributing to the reduction in that number that has a nonnegligible probability is
the completion of one service, and it has the probability given in (4.3.1). Hence the
service rate at that time is nµ. Then in the framework of the birth-and-death queueing
model, we have

λn = λ, n = 0, 1, 2, . . . ,

µn = nµ, n = 1, 2, . . . , s − 1,

= sµ, n = s, s + 1, . . . . (4.3.2)

The generator matrix A for the process can be given as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −λ λ

1 µ −(λ+ µ) λ
... · ·
s sµ −(λ+ sµ) λ

s + 1 sµ −(λ+ sµ) λ
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.3.3)

Let Q(t) be the number of customers in the system at time t and Pn(t) = P [Q(t) =
n|Q(0) = i]. Forward Kolmogorov equations for Pn(t) can be written as specializ-
tions of (4.1.3). Since solving such equations is very cumbersome we do not plan to
attempt it here. For solution through transform methods interested readers may refer
to Saaty (1961). For numerical solutions of the forward Kolmogorov equations, see
Stewart (1994). For the limiting probabilities pn = limt→∞ Pn(t), we have (writing
out pA = 0)

λp0 = µp1,

(λ+ nµ)pn = λpn−1 + (n+ 1)µpn+1, 0 < n < s,

(λ+ sµ)pn = λpn−1 + sµpn+1, s ≤ n < ∞. (4.3.4)

A recursive procedure on the lines of that used in the case of M/M/1 provides the
following solution:

nµpn = λpn−1, n = 1, 2, . . . , s,

sµpn = λpn−1, n = s + 1, s + 2, . . . .

(See also (4.1.7).) Therefore,

pn = 1

n!
(
λ

µ

)n
p0, 0 ≤ n ≤ s,

ps+r =
(
λ

sµ

)r
ps, r = 0, 1, 2, . . . ,

pn =
(
λ

sµ

)n−s
ps, n = s, s + 1, . . . . (4.3.5)



4.3 The Queue M/M/s 45

Writing λ
sµ

= ρ and simplifying, we get

pn = 1

n! (sρ)
np0, 0 ≤ n ≤ s,

= 1

s! (sρ)
sρn−sp0, s ≤ n < ∞. (4.3.6)

Using the condition
∑∞

0 pn = 1, (4.3.6) gives

p0 =
[
s−1∑
r=0

(sρ)r

r! + (sρ)s

s!(1 − ρ)

]−1

,

pn = (sρ)n

n! p0, 0 ≤ n ≤ s,

= ssρn

s! p0, s ≤ n < ∞, (4.3.7)

provided λ
sµ

= ρ < 1. Since sµ is the maximum service rate, we may consider ρ
as defined above as the traffic intensity for the system. Writing the last equation in
(4.3.5) as

pn = ρn−sps, n ≥ s, (4.3.8)

we may say that when the number of customers in the system is ≥ s, the system
behaves like an M/M/1 with service rate sµ. For convenience, we may also write
α = λ

µ
, so that α/s = ρ. An alternative form of (4.3.7) using α can be given as

p0 =
[
s−1∑
r=0

αr

r! + αs

s!
(

1 − α

s

)−1
]−1

,

pn = αn

n! p0, 0 ≤ n ≤ s,

= αs

s!
(α
s

)n−s
p0, s ≤ n < ∞. (4.3.9)

Note that customers will have to wait for service only if the number in the system is
≥ s. The probability of this event is given by

∑∞
n=s pn, and hence

P(customer delay) = C(s, α)

= αs

s!
(

1 − α

s

)−1
[
s−1∑
r=0

αr

r! + αs

s!
(

1 − α

s

)−1
]−1

. (4.3.10)

The formula for C(s, α) is known in the literature as Erlang’s delay formula or
Erlang’s second formula, and it is also denoted as E2,s(α). (This result was first
published by Erlang in 1917.) Before the advent of computers, the telephone industry
used C(s, α) charts plotted for different combinations of s and α.
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WritingL andLq as the mean number of customers in the system and the number
in the queue, respectively, we may derive them as follows: Using expressions from
(4.3.6), we get (writing sρ = α when convenient)

∞∑
n=1

npn = p0

⎡
⎣ s∑
n=1

n
αn

n! +
∞∑

n=s+1

nρn−s α
s

s!

⎤
⎦

= p0

⎡
⎣α s∑

n=1

αn−1

(n− 1)! + αs

s!
∞∑

n−s=1

nρn−s
⎤
⎦

= p0

[
α

s−1∑
r=0

αr

r! + αs

s!
∞∑
r=1

(r + s)ρr

]

= p0

[
α

s−1∑
r=0

αr

r! + αs

s!
(

ρ

(1 − ρ)2
+ sρ

(1 − ρ)

)]

= ραsp0

s!(1 − ρ)2
+ αp0

[
s−1∑
r=0

αr

r! + αs

s!(1 − ρ)

]
.

Note that the terms inside [ ] above = p−1
0 (see (4.3.7)). Thus we get

L = α + ραsp0

s!(1 − ρ)2
, (4.3.11)

which can also be written as

L = α + ρps

(1 − ρ)2
. (4.3.12)

To derive Lq , we write

Lq =
∞∑

n=s+1

(n− s)
αs

s! ρ
n−sp0

= αs

s! p0

∞∑
n−s=1

(n− s)ρn−s

= αs

s! p0

∞∑
r=1

rρr

= ραsp0

s!(1 − ρ)2
, (4.3.13)

which can also be written as
Lq = ρps

(1 − ρ)2
. (4.3.14)
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The expression for the variance of the number in the system is cumbersome, so we
do not present it here.

Comparing expressions for L and Lq , we can surmise that sρ (= α) represents
the expected number of busy servers. This can also be determined as the contribution
of the utilization factor corresponding to s servers. For example, we may write

individual server utilization =
s−1∑
n=1

n

s
pn +

∞∑
n=s

pn. (4.3.15)

Using expressions for pn from (4.3.7) in (4.3.15) and simplifying, we find the in-
dividual server utilization factor to be ρ, i.e., in the long run the probability (or the
fraction of time) a server will be busy is ρ.

Waiting time. For the discussion on waiting times of customers we assume that they
are served with an FCFS queue discipline. When the number of customers in the
system is ≥ s, the interdeparture times are exponential with rate parameter sµ. Let
Tq be the waiting time of the customer as t → ∞ and Fq(t) = P [Tq ≤ t]. Clearly,

Fq(0) = P [Tq = 0] = P(Q < s)

=
s−1∑
n=0

pn

= p0

s−1∑
n=0

αn

n! .

From the first equation in (4.3.9), we have

s−1∑
n=0

αn

n! = 1

p0
− αs

s! (1 − ρ)−1,

giving

Fq(0) = 1 − αsp0

s!(1 − ρ)
. (4.3.16)

Also, following the arguments leading to (4.2.10) for the queue M/M/1, in the
multiserver case, we have (using (4.3.8) in the simplification)

dFq(t) =
∞∑
n=s

pne
−sµt (sµt)(n−s)

(n− s)! sµdt

= pse
−sµt

∞∑
n=s

ρn−s (sµt)
n−s

(n− s)! sµdt

= sµpse
−sµ(1−ρ)t dt, (4.3.17)

which can also be written as
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= sµαs

s! p0e
−sµ(1−ρ)t dt. (4.3.18)

Noting that Fq(0) does not contribute any term for the expected value of Tq , from
(4.3.17) we have

Wq =
∫ ∞

0
tdFq(t) =

∫ ∞

0
sµpste

−sµ(1−ρ)t dt

= ps

sµ(1 − ρ)2
. (4.3.19)

Using p0 instead of ps , we may also write

Wq = αsp0

s!sµ(1 − ρ)2
. (4.3.20)

Comparing (4.3.14) with (4.3.19) (or (4.3.13) with (4.3.20)), we can again verify
Little’s formula Lq = λWq .

The distribution function Fq(t) of the waiting time can now be obtained from
(4.3.16) and (4.3.18):

Fq(t) = Fq(0)+
∫ t

0

sµαs

s! p0e
−sµ(1−ρ)xdx

= 1 − αsp0

s!(1 − ρ)
+ αsp0

s!(1 − ρ)

∫ t

0
sµ(1 − ρ)e−sµ(1−ρ)xdx

= 1 − αsp0

s!(1 − ρ)
e−sµ(1−ρ)t . (4.3.21)

Busy period. The meaning of the busy period in a multiserver queue requires further
elaboration. If the busy period is the time during which arriving customers have
to wait for service, in a multiserver queue it is the time when all servers are busy.
In M/M/s this period has the same characteristics as a busy period in an M/M/1
queue, with the same arrival rate λ, but with a service rate sµ. But if it has to include
periods during which at least one of the servers is busy, we need new results, which
are beyond the scope of this discussion. The theoretical construct for the equations
remains the same as in (4.2.18), but because of the varying service rates, the equations
are much harder to simplify.

Departure process. As mentioned during the discussion of the departure process of
the queue M/M/1, the procedure outlined there applies to M/M/s as well. In fact,
the differential equations (4.2.33) can be extended to include varying service rates,
and the inductive procedure adopted in their solution applies in this case as well.
Using the same notation as before, we get

Fn(x) = pne
−λx, n = 0, 1, 2, . . . ,

and
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F(x) =
∞∑
n=0

pne
−λx

= e−λx. (4.3.22)

(See Burke (1956) for details; see also Reich (1965).)

Example 4.3.1. In the airport problem of Example 4.2.1, how would the performance
measures change if there are two runways while assuming the same arrival and ser-
vice rates?

(a) Runway utilization:

arrival rate = 15/hour (λ),

service rate = 20/hour (µ),

number of servers = 2 (s),

utilization of each runway = ρ = λ

sµ
= 3

8
. Answer

(b) Expected number of airplanes waiting to land:

Lq = ραsp0

s!(1 − ρ)2

(note that α = sρ = 3
4 ),

p0 =
[

1∑
r=0

αr

r! + αs

s!(1 − ρ)

]−1

=
[

1 + 3

4
+ ( 3

4 )
2

2

(
1 − 3

8

)−1
]−1

= 0.4545,

Lq =
[(

3

8

)(
3

4

)2

(0.4545)

]/
2

(
5

8

)2

= 0.1227. Answer

(c) Expected waiting time:

Wq = αsp0

s!sµ(1 − ρ)2

=
[(

3

4

)2

(0.4545)

]/
2 × 2 × 20

(
1 − 3

8

)2

= 0.00818 hour = 0.49 minute. Answer
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(d) Probability that the waiting will be more than 5 minutes? 10 minutes? No waiting?

P(no waiting) = Fq(0) = 1 − αsp0

s!(1 − ρ)

= 1 − ( 3
4 )

2(0.4545)

2(1 − 3/8)

= 0.7955; Answer

P(Tq > t) = αsp0

s!(1 − ρ)
e−sµ(1−ρ)t ,

P (Tq > 5 minutes) = ( 3
4 )

2(0.4545)

2( 5
8 )

e−2( 1
3 )(

5
8 )5

= 0.1245; Answer

P(Tq > 10 minutes) = 0.0155. Answer

(e) Expected number of landings in a 20-minute period = 15
60 × 20 = 5. Answer

(The departure process is Poisson with parameter λ.)

Example 4.3.2. A bank has established two counters—one for commercial banking
and the second for personal banking. Arrival and service rates at the commercial
counter are 6 and 12 per hour, respectively. The corresponding numbers at the personal
banking counter are 12 and 24, respectively. Assume that arrivals occur in Poisson
processes and service times have exponential distributions.

(a) Assuming that the two counters operate independently of each other, determine
the expected number of waiting customers and their mean waiting time at each
counter. The results are listed in Table 4.3.1.

Table 4.3.1. Results from Example 4.3.2(a).

Commercial Personal

λ 6/hour 12/hour

µ 12/hour 24/hour

ρ = λ

µ
0.5 0.5

Lq = ρ2

1 − ρ
0.5 0.5 Answer

Wq = ρ

µ(1 − ρ)
5 minutes 2.5 minutes Answer

(b) What is the effect of operating the two queues as a two-server queue with arrival
rate 18/hour and service rate 18/hour? What conclusion can you draw from this
operation? See Table 4.3.2.
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Table 4.3.2. Results from Example 4.3.2(b).

Two-server queue

λ 18/hour

µ 18/hour

Number of servers (s) 2

ρ = λ

sµ
0.5

α = λ

µ
1

p0 =
⎡
⎣ 1∑

0

αr

r! + α2

2(1 − ρ)

⎤
⎦

−1

0.4

Lq = ρα2p0

2(1 − ρ)2
0.4 Answer

Wq = α2p0

(2)2µ(1 − ρ)2
1.33 minutes Answer

Conclusion: The two-server queue operation is more efficient than the two single-
server operations.

Incidentally, the efficiency of multiserver queues over single-server systems is the rea-
son that multiserver service systems, whenever possible, use single waiting lines feed-
ing multiple counters for service. Airline check-in counters and checkout counters
in stores effectively operate this way because of jockeying among the waiting lines.
(See Smith and Whitt (1981).)

4.4 The Finite Queue M/M/s/K

When the waiting room in a queueing system has a capacity limit we get a finite
queue. In most situations, a finite queue occurs more naturally than a queue with a
waiting room of infinite size. However, as the capacity limit gets larger, the behavior
of the system approximates that of an infinite-capacity system, and in such cases we
are justified in ignoring the size limit. A communication system with a finite buffer
and several service channels is a good example of a finite queue.

Consider an s-server queueing system with Poisson arrivals, exponential service,
and a capacity limit ofK for the number in the system. Clearly,K ≥ s. Assume that
λ andµ are the arrival and service rates, respectively. These assumptions result in the
following infinitesimal transition rates in the generalized birth-and-death queueing
model:

λn = λ, n = 0, 1, 2, . . . , K − 1,
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µn = nµ, n = 1, 2, . . . , s − 1,

= sµ, n = s, s + 1, . . . , K. (4.4.1)

Note that we assume the arrivals to be denied entry to the system (or the arrival
process stops) once the number in the system reaches K . The generator matrix A is
essentially the same as (4.3.3) in the first K rows:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −λ λ

1 µ −(λ+ µ) λ
...

. . .
...

. . .

K − 1 sµ −(µ+ sµ) λ

K sµ −sµ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (4.4.2)

For the limiting probabilities {pn}, n = 0, 1, 2, . . . , K , the state balance equations
can be written in a manner similar to those of (4.3.4). The solution corresponding to
(4.3.6) can be given as

pn = 1

n!
(
λ

µ

)n
p0, 0 ≤ n ≤ s,

= 1

s!
(
λ

µ

)s (
λ

sµ

)n−s
p0, s ≤ n ≤ K.

Writing λ
sµ

= ρ and λ
µ

= α, p0 can be obtained using the condition
∑K
n=0 pn = 1:

p0 =
[
s−1∑
r=0

αr

r! + αs

s!
K∑
n=s

ρn−s
]−1

.

Since the second sum on the right-hand side of the expression for p0 is a finite sum,
we need not impose the condition ρ < 1 for a solution with p0 > 0. Thus we have

p0 =
[
s−1∑
r=0

αr

r! + αs

s!
1 − ρK−s+1

1 − ρ

]−1

, ρ �= 1,

=
[
s−1∑
r=0

αr

r! + αs

s! (K − s + 1)

]−1

, ρ = 1,

pn = αn

n! p0, 0 ≤ n ≤ s,

= αs

s! ρ
n−sp0, s ≤ n ≤ K. (4.4.3)

Because of the unwieldy nature of the expressions for the mean number in the
system (L) and in the queue (Lq), we do not present them here. The procedure for
deriving them starts with the limiting distribution given by (4.4.3).
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In discussing the characteristics of the waiting time of customers in a finite queue
we need to allow for the possibility of an arriving customer not joining the system.
When the system is in equilibrium, the probability that the arriving customer will not
join the system is pK . Hence when there are n (n < K) customers in the system, the
probability that an arriving customer will join the system is given by pn

1−pK . Thus,
with the notation used earlier for the distribution for the waiting time, we have

Fq(t) = Fq(0)+ P(0 < Wq ≤ t),

where

Fq(0) =
s−1∑
n=0

pn

1 − pK
.

Also,

dFq(t) =
K−1∑
n=s

pn

1 − pK
e−sµt (sµt)

n−s

(n− s)! sµdt, (4.4.4)

Fq(t) = Fq(0)+ 1

1 − pK

K−1∑
n=s

pn

∫ t

0
e−sµt (sµt)

n−s

(n− s)! sµdt

= Fq(0)+ 1

1 − pK

K−1∑
n=s

pn

(
1 −

∫ ∞

t

e−sµt (sµt)
n−s

(n− s)! sµdt
)
.

In simplifying this expression, we note that

Fq(0)+ 1

1 − pK

K−1∑
n=s

pn = 1

and

∫ ∞

t

e−sµt (sµt)
n−s

(n− s)! sµdt =
n−s∑
r=0

e−sµt (sµt)
r

r!

(see (2.1.3)). Then we get

Fq(t) = 1 − 1

1 − pK

K−1∑
n=s

pn

n−s∑
r=0

e−sµt (sµt)
r

r! . (4.4.5)

Taking expectations, we get

Wq =
∫ ∞

0
tdFq(t) =

K−1∑
n=s

pn

1 − pK

∫ ∞

0
e−sµt (sµt)

n−s

(n− s)! sµtdt
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= 1

sµ(1 − pK)

K−1∑
n=s

(n− s + 1)pn. (4.4.6)

The expected time in the system can be obtained as

W = Wq + 1

µ
. (4.4.7)

The expected number of customers in the queue and in the system are obtained by
noting that the effective arrival rate is λ(1 − pK):

L = λ(1 − pK)W, (4.4.8)

Lq = λ(1 − pK)Wq. (4.4.9)

Two special cases of this system have been used widely in applications:

(i) M/M/1/K and
(ii) M/M/s/s.

The finite queue M/M/1/K . For single-server systems with limited waiting room
M/M/1/K is a better model than the infinite waiting room queue M/M/1. A direct
specialization of results (4.4.3)–(4.4.7) yields the following results (note that s = 1
and α = ρ = λ

µ
):

p0 = 1 − ρ

1 − ρK+1
, ρ �= 1,

= 1

K + 1
, ρ = 1, (4.4.10)

pn = (1 − ρ)ρn

1 − ρK+1
, ρ �= 1,

= 1

K + 1
, ρ = 1. (4.4.11)

Also,

1 − pK = 1 − ρK

1 − ρK+1
, ρ �= 1,

= K

K + 1
, ρ = 1,

Fq(t) = 1 − 1 − ρ

1 − ρK

K−1∑
n=1

ρn
n−1∑
r=0

e−µt (µt)
r

r! , ρ �= 1,

= 1 − 1

K

K−1∑
n=1

n−1∑
r=0

e−µt (µt)
r

r! , ρ = 1, (4.4.12)
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Wq = 1

µ

[
ρ

1 − ρ
− KρK

1 − ρK

]
, ρ �= 1,

= 1

2µ
(K − 1), ρ = 1, (4.4.13)

W = 1

µ

[
1

1 − ρ
− KρK

1 − ρK

]
, ρ �= 1,

= 1

2µ
(K + 1), ρ = 1, (4.4.14)

Lq = ρ

1 − ρ
− ρ(1 +KρK)

1 − ρK+1
, ρ �= 1,

= K(K − 1)

2(K + 1)
, ρ = 1, (4.4.15)

L = ρ(1 − ρK)

(1 − ρ)(1 − ρK+1)
− KρK+1

1 − ρK+1
, ρ �= 1,

= K

2
, ρ = 1. (4.4.16)

Note that in the simplifications leading to some of the results given above, we have
used the formula

K−1∑
n=1

nρn−1 = d

dρ

(
1 − ρK

1 − ρ

)
.

Example 4.4.1. A small mail-order business has one telephone line and a facility for
call waiting for two additional customers. Orders arrive at the rate of one per minute
and each order requires 2 minutes and 30 seconds to take down the particulars. Model
this system as an M/M/1/3 queue and answer the following questions:

(a) What is the expected number of calls waiting in the queue? What is the mean
wait in queue?
Assuming that the arrivals are in a Poisson process with rate 1 per minute (λ) and
the service times are exponential with mean 2.5 minutes (1/µ), we have ρ = 2.5.
Also, K = 3. Using the first result from (4.4.15), we get

Lq = 2.5

1 − 2.5
− (2.5)[1 + 3(2.5)3]

1 − (2.5)4

= 1.4778. Answer

Since λ = 1, the mean waiting time in queue is

Wq = 1.4778 minutes. Answer

(b) What is the probability that the call has to wait for more than 1.5 minutes before
being served?
We use the formula for 1 − Fq(t) from (4.4.12) with t = 1.5, 1/µ = 2.5, and
ρ = 2.5. We get
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P(wait in queue > 1.5 minutes)

= 1 − 2.5

1 − (2.5)3

3−1∑
n=1

(2.5)n
n−1∑
r=0

e−
1.5
2.5
(1.5/2.5)r

r!
= 0.7036. Answer

(c) Because of the excessive waiting time, the business decides to use two telephone
lines instead of one, keeping the same total capacity for the number in the system,
namely 3. What improvements result in the performance measures considered
under (a) and (b)?
With two lines, now s = 2 and we have an M/M/2/3 system. Accordingly, in
(4.4.3) we have α = 2.5, ρ = 1.25, and s = 2 and K = 3. We get

p0 = 0.0950, p1 = 0.2374,

p2 = 0.2969, p3 = 0.3711.

Using these results in (4.4.6), (4.4.9), and (4.4.5), we get

Wq = 0.5902 minute; Answer

Lq = λ(1 − p3)Wq = 0.3712; Answer

P(wait in queue > 1.5 minutes):

1 − Fq(1.5) = 0.1422. Answer

(d) What is the impact of increasing the capacity to four customers in the system?
Now we have an M/M/2/4 queue. Using the formulas as in (c), we get

p0 = 0.0649, p1 = 0.1622,

p2 = 0.2028, p3 = 0.2535,

p4 = 0.3169,

Wq = 1.2989 minutes; Answer

Lq = 0.8873; Answer

P(wait in queue > 1.5 minutes):

1 − Fq(1.5) = 0.3353. Answer

It is instructive to note that the performance has not improved from the viewpoint
of the customer, because the system now accepts more customers than before.
But from the management perspective fewer customers are being denied access
to the system (p4 = 0.3169 vs. p3 = 0.3711).
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The loss system M/M/s/s. The queueM/M/s/s in which customers arriving when
all servers are busy are not allowed entry to the system is one of the earliest systems
considered by A. K. Erlang (1917). Before the introduction of call waiting buffers,
telephone systems operated strictly as loss systems.

Let customer arrivals be Poisson with parameter λ and service times be exponen-
tial with mean 1/µ. There are s servers, and all customers arriving when all servers
are busy are lost to the system. Thus the state space for the number of customers in
the system is {0, 1, 2, . . . , s}. The generator matrix for the birth-and-death model is
the truncated version of (4.3.3):

A =

⎡
⎢⎢⎢⎢⎢⎣

0 −λ λ

1 µ −(λ+ µ) λ
...

...

s − 1 (s − 1)µ −[λ+ (s − 1)µ] λ

s sµ −sµ

⎤
⎥⎥⎥⎥⎥⎦. (4.4.17)

Accordingly, the limiting probabilities are obtained using the state balance equations,

λp0 = µp1,

(λ+ nµ)pn = λpn−1 + (n+ 1)µpn+1, 1 ≤ n < s,

sµps = λps−1. (4.4.18)

Writing λ
µ

= α, (4.4.18) can be solved recursively to give

p0 =
[

1 + α + α2

2! + · · · + αs

s!
]−1

,

pn = αn

n! p0, n = 0, 1, . . . , s. (4.4.19)

This gives

ps =
αs

s!
1 + α + α2

2! + · · · + αs

s!
, (4.4.20)

which is the probability that a customer is blocked from entering the system. (Tele-
phones calls are lost.) Also, λps gives the expected number of customers who will
be blocked from entering the system in unit time. (4.4.20) is commonly known as
Erlang’s loss formula or Erlang’s first formula and denoted as E1,s(α) or B(s, α).
This formula has been extensively used in designing telephone systems by traffic
engineers.

For ready reference ps values are plotted for different values of s, against varying
values of the offered load α. In the teletraffic literature, it is common to measure the
offered load (the ratio of arrival rate to the service rate) in Erlangs for convenience.
Note that in the telephone industry parlance the carried load is given by α(1 − ps),
since a proportion ps of the arriving customers is lost to the system.
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The right-hand side expression in formula (4.4.20) has been shown to be a convex
function of s in [0,∞) for α > 0. (See Smith and Whitt (1981) and Jagers and van
Doorn (1986).) Another characteristic of this formula is its validity even when service
times have a general distribution.

4.5 The Infinite-Server Queue M/M/∞
Even though calling a system an infinite-server queue (an infinite number of servers
and consequently no waiting line) is a misnomer, the system M/M/∞ is being
identified as such because of its structure. The customers arrive in a Poisson process
and the service times have an exponential distribution. Let λ and µ be the arrival
and service rates. We assume that the system is able to provide service as soon as the
customer arrives. A simple example is a large grocery store or a supermarket where
customers serve themselves while picking up merchandise. The checkout counters
will then have to be modeled as an M/M/s system. Another example is a large
parking lot.

When there are n customers in the system the service rate is nµ (n = 1, 2, . . . ).
For the birth-and-death parameters of the queueing model, we then get

λn = λ, n = 0, 1, 2, . . . ,

µn = nµ, n = 1, 2, 3, . . . . (4.5.1)

The generator matrix is obtained by extending the first part of the matrix (4.3.3) of
the multiserver queue M/M/s for n = s + 1, s + 2, . . . . We get

A =

⎡
⎢⎢⎢⎣

0 −λ λ

1 µ −(λ+ µ) λ

2 2µ −(λ+ 2µ) λ . . .
...

...
...

⎤
⎥⎥⎥⎦. (4.5.2)

The state balance equations for the limiting probabilities {pn, n = 0, 1, 2, . . . } take
the form

λp0 = µp1,

(λ+ nµ)pn = λpn−1 + (n+ 1)µpn+1, n = 1, 2, . . . . (4.5.3)

These equations along with
∑∞

0 pn = 1 give the solution

p0 = e−λ/µ,

pn = e−λ/µ( λ
µ
)n

n! , n = 0, 1, 2, . . . , (4.5.4)

which is Poisson with parameter λ/µ.
Because of the structure of the birth-and-death parameters (4.5.1), the system

can also be considered a queueing system with arrivals in a Poisson process and
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exponential service times in a linearly dependent service rate nµ when there are
nµ customers in the system. Note that the departure process properties established
in Section 4.2 apply to this system as well, and therefore the departure process of
customers in equilibrium has the same Poisson distribution as the arrival process.
This property justifies the use of an M/M/s model for the checkout counters in the
supermarket example cited above.

4.6 Finite-Source Queues

The source of customers is an important element of a queueing system. In the models
discussed so far, we have assumed that the source is infinite. This assumption is
essential in characterizing the arrivals to the system as being Poisson. If the source of
customers is finite, a prespecified number in the population, even though we cannot
assume a Poisson process for arrivals, we can generate a Markovian arrival process
with the following arrival scheme.

Suppose there are M customers in the population. Each customer goes through
two alternating phases, not needing service and being in need of service. An exam-
ple is a population of machines that require service when they become inoperative.
Another example is a subscriber group in an information exchange. Assume that
the phase during which the customer does not require service is exponentially dis-
tributed with mean 1/λ. This implies that if at time t a customer is in this phase,
during (t, t +�t] the event that it will need service has the probability λ�t + o(�t).
Thus if there are k customers in that phase requiring no service at time t , the prob-
ability that one of them will call for service is kλ�t + o(�t) (see the discussion
preceeding (4.3.1)). When the service times are exponential, we are now able to use
a birth-and-death queueing model for such a system.

For convenience, let us define the state of the process as the number of customers
requiring service. It takes values in S : {0, 1, 2, . . . ,M}. Note that if n is the number
requiring service, the leftover population size that can generate customers for service
is M − n. Also assume that there are s (s ≤ M) servers. These assumptions lead to
the birth-and-death parameters as

λn = (M − n)λ, n = 0, 1, . . . ,M,

= 0, n > M,

µn = nµ, n = 1, 2, . . . , s − 1,

= sµ, n = s, s + 1, . . . ,M,

= 0, n > M. (4.6.1)

There are two classical examples with these characteristics treated in the queueing
literature. The machine interference problem has M machines and s repairmen.
Naturally, inoperative machines wait for their turn when all repairmen are busy. The
second problem is similar to the M/M/s/s loss system in which customers arriving
when all servers are busy are lost and the lost customers have to reinitiate the request
for service.
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The machine interference problem. Let Q(t) be the number of inoperative ma-
chines at time t out of a total number M . Assume that the call for service and the
completion of service have the characteristics leading to the birth-and-death param-
eters as described in (4.6.1). Define

Pn(t) = P [Q(t) = n|Q(0) = i]
and pn = limt→∞ Pn(t).

The generator matrix has a structure similar to that of (4.4.2), with obvious mod-
ifications to the birth rate. We give the state balance equations as follows:

Mλp0 = µp1,

[(M − n)λ+ nµ]pn = (M − n+ 1)λpn−1 + (n+ 1)µpn+1, 1 ≤ n < s,

[(M − n)λ+ sµ]pn = (M − n+ 1)λpn−1 + sµpn+1, s ≤ n < M,

sµpM = λpM−1. (4.6.2)

Solving these equations recursively,

p1 = M

(
λ

µ

)
p0,

[(M − 1)λ+ µ]p1 = Mλp0 + 2µp2,

giving

p2 = M(M − 1)

2

(
λ

µ

)2

p0,

. . .

pn =
(
M

n

)(
λ

µ

)n
p0, 0 ≤ n ≤ s,

[(M − s)λ+ sµ]ps = (M − s + 1)λps−1 + sµps+1,

ps+1 = (M − s)λ

sµ
ps,

=
(
M

s + 1

)
(s + 1)!
s!s

(
λ

µ

)s+1

p0,

. . .

pn =
(
M

n

)
n!

s!sn−s
(
λ

µ

)n
p0, s ≤ n ≤ M. (4.6.3)

The limiting probabilities {pn, n = 0, 1, . . . ,M} are now determined in the usual
manner using the condition

∑M
0 pn = 1. In particular, when s = 1, writing λ

µ
= α,

we get

pn = M!
(M − n)!α

np0
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and

p0 =
[

1 + M!
(M − 1)!α + · · · +M!αM

]−1

. (4.6.4)

In the context of machines and repairmen, two measures of effectiveness can be
defined (using L to stand for the mean number of inoperative machines):

machine availability = 1 − L

M
,

operative utilization =
s−1∑
n=0

npn

s
+

M∑
n=s

pn.

The number of machines actually waiting for service could also be of interest. Because
of the permutations occurring in the expressions, unfortunately, we are unable to get
closed-form expressions for the mean number of inoperative machines in the system.
To determine the number actually waiting, Lq , we may use the relation obtained for
the M/M/s queue in (4.3.11) and (4.3.13). However, the arrival rate in this case is
dependent on the remaining number of operative machines in the population. Let λ′
be the effective arrival rate. Then we have

λ′ =
M−1∑
n=0

(M − n)λpn

= λ(M − L). (4.6.5)

We get

Lq = L− λ′

µ
= L− α(M − L). (4.6.6)

The expressions for the waiting time for service can be obtained using Little’s law
with λ′ as the arrival rate instead of λ.

Illustrative values of machine availability and operative utilization for different
values of α and M are tabulated in Bhat (1984), p. 394. An obvious conclusion we
can draw from them is that it is better to use repairmen in a pool, rather than assigning
a certain number of machines to each of them.

The finite-source loss system. Consider an information exchange with M sub-
scribers. The exchange has s servers, and there is no facility for call waiting when
all servers are busy. Assume that the call arrivals are initiated in the same manner
as in the machine interference problem with parameter λ, and the service times are
exponential with rateµ. The state of the system is the number of calls being serviced,
and the state space is therefore S : 0, 1, 2, . . . , s. The state balance equations for the
limiting probabilities pn, n = 0, 1, 2, . . . , s, can be written as

Mλp0 = µp1,

[(M − n)λ+ nµ]pn = (M − n+ 1)λpn−1 + (n+ 1)µpn+1, 1 ≤ n < s,
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sµps = (M − s + 1)λps−1. (4.6.7)

Solving these equations recursively, we get

pn =
(
M

n

)
αnp0, 0 ≤ n ≤ s,

p0 =
[

1 +
(
M

1

)
α +

(
M

2

)
α2 + · · · +

(
M

s

)
αs
]−1

, (4.6.8)

and therefore

pn =
(
M
n

)
αn∑s

k=0

(
M
k

)
αk
, n = 0, 1, 2, . . . , s. (4.6.9)

To determine the probability that one of theM sources will find the system busy while
initiating a call, we have to consider the probability that all servers are busy serving
calls from the remaining M − 1 sources. Let this probability be bs . We have

bs =
(
M−1
s

)
αs∑s

k=0

(
M−1
k

)
αk
. (4.6.10)

This result is often called the Engset formula in the literature. Clearly, this is the
proportion of calls lost to the system. The distribution (4.6.9) is known as the Engset
distribution.

In the discussion of the M/M/s/s system, we mentioned that the distribution
(4.4.19) was valid even when the service time is general. In a similar manner, it has
been shown that the distribution (4.6.9) holds even when the service times are not
exponential.

4.7 Other Models

In this section, we present additional models that may be considered as specializations
of the general birth-and-death queueing model.

4.7.1 The M/M/1/1 System

Although this system can be considered a specialization of the finite queueM/M/1/K
of Section 4.4, the M/M/1/1 system is significant in its own right because it corre-
sponds to a two-state Markov process useful in a large number of applications.

Let customers arrive in a Poisson process with parameter λ and be served by a
single server. The service time distribution is exponential with mean 1/µ. The system
can accommodate only one customer who is being served, and customers arriving
when the server is busy leave the system without service. LetQ(t) be the number of
customers in the system at time t and limt→∞Q(t) = Q. The random variableQ can
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assume two values (0, 1), and letP(Q = n) = pn (n = 0, 1). Clearly, {Q(t), t ∈ T }
is a Markov process with the generator matrix

A =
[ 0 1

0 −λ λ

1 µ −µ
]
. (4.7.1)

For the transition probability Pij (t) = P [Q(t) = j |Q(0) = i] (i, j = 0, 1), we get
the forward Kolmogorov equations

P ′
i0(t) = −λPi0(t)+ µPi1(t),

P ′
i1(t) = −µPi1(t)+ λPi0(t). (4.7.2)

If we note that Pi0(t)+ Pi1(t) = 1, the two equations in (4.7.2) give a single linear
first-order differential equation:

P ′
i0(t) = µ− (λ+ µ)Pi0(t). (4.7.3)

Using the initial condition

Pi0(0) =
{

1 if i = 0,

0 if i = 1,

(4.7.3) can be solved through standard techniques to give

P00(t) = µ

λ+ µ
+ λ

λ+ µ
e−(λ+µ)t ,

P10(t) = µ

λ+ µ
− µ

λ+ µ
e−(λ+µ)t . (4.7.4)

Also, we have

P01(t) = 1 − P00(t) = λ

λ+ µ
− λ

λ+ µ
e−(λ+µ)t ,

P11(t) = 1 − P10(t) = λ

λ+ µ
+ µ

λ+ µ
e−(λ+µ)t .

The limiting probabilities pn, n = 0, 1, can be determined either by letting t → ∞
in (4.7.4) or by solving the state balance equation

λp0 = µp1 (4.7.5)

along with the normalizing condition p0 + p1 = 1. We get

p0 = µ

λ+ µ
; p1 = λ

λ+ µ
. (4.7.6)

These probabilities can be expressed in terms of the mean busy and idle periods.
Dividing the numerator and denominator of the expressions for p0 and p1 by λµ,
we get
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p0 = 1/λ

1/µ+ 1/λ
; p1 = 1/µ

1/µ+ 1/λ
. (4.7.7)

Note that 1/λ is the mean idle period and 1/µ is the mean busy period. Generalizing
this concept to a process that occupies two alternate states 0 and 1, represented by
two independent random variablesX and Y , it can be shown, with the help of renewal
theory, that in the long run, the probabilities that the process can be found in the states
0 and 1 are given by

p0 = E(X)

E(X)+ E(Y )
; p1 = E(Y )

E(X)+ E(Y )
. (4.7.8)

The breadth of applicability of this model can be easily seen if we look at the process
alternating between two states: busy or idle in the context of a service system; working
or under repair in the context of a machine in operation; “locked’’or “ready to register
signals’’ in a Type I counter; etc.

Suppose that there areN such multiple processes undergoing transitions between
alternate states independently of each other with the transition structure as described
above. The probability distribution of the number of processes in state 0 is then given
by the binomial distribution

P(N = k) =
(
N

k

)
pk0p

N−k
1 , k = 0, 1, 2, . . . , N. (4.7.9)

4.7.2 Markovian Queues with Balking

Balking is a phenomenon in which an arriving customer decides not to join the queue.
The reason for balking could be external or internal to the queue; in the latter case,
normally, it depends on the number in the systems.

As a general model, consider a single-server queueing system with Poisson arrivals
and exponential service, the rates of arrival and service being λn andµn, respectively,
when there are n customers in the system. In order to incorporate balking in the
arrival process we consider several special forms for the arrival rate λn. The limiting
probability pn, n = 0, 1, 2, . . . , for the number of customers in the system is given
by (4.1.8) and (4.1.9) of the general birth-and-death model.

(i)
λn = λα, n = 0, 1, 2, . . . , 0 < α ≤ 1,

µn = µ, n = 1, 2, . . . . (4.7.10)

This case assumes that only a certain portion α of the arriving customers decide
to join the queue. Substituting in (4.1.8) and (4.1.9), we get

pn = (1 − ρ)ρn, n = 0, 1, 2, . . . , (4.7.11)

where ρ = λα
µ

.
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(ii)

λn = λ

n+ 1
, n = 0, 1, 2, . . . ,

µn = µ, n = 1, 2, 3, . . . . (4.7.12)

The arrival rate here is inversely proportional to the number of customers in the
system (Haight (1957)). Substituting in (4.1.9) and (4.1.8), we get

p0 =
[

1 + λ

µ
+ 1

2

(
λ

µ

)2

+ 1

3!
(
λ

µ

)3

+ · · ·
]−1

= e−ρ,

pn = 1

n!
(
λ

µ

)n
ρ0

= e−ρ ρ
n

n! , n = 0, 1, 2, . . . , (4.7.13)

where ρ = λ
µ

.
(iii)

λn = N − n

N(n+ 1)
, n = 0, 1, 2, . . . , N,

= 0, n > N,

µn = µ, n = 1, 2, . . . , N. (4.7.14)

In this case, the blocking phenomenon also includes the factor that the customers
do not join the queue when its size reaches N (Haight (1957)). Substituting in
(4.1.8), we get

pn = N(N − 1) . . . (N − n+ 1)

n!
(

1

Nµ

)n

=
(
N

n

)(
1

Nµ

)n
.

Using (4.1.9),

p0 =
[
N∑
n=0

(
N

n

)(
1

Nµ

)n]−1

=
(

1 + 1

Nµ

)−N
.

Thus we get

pn =
(
N

n

)(
1

Nµ

)n (
1 + 1

Nµ

)−N

=
(
N

n

)(
1

1 +Nµ

)n (
Nµ

1 +Nµ

)N−n
. (4.7.15)
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(iv)

λn = λe−nα/µ, n = 0, 1, 2, . . . , α > 0,

µn = µ, n = 1, 2, 3, . . . . (4.7.16)

The arrival rate here incorporates a fraction that reflects an estimate of the waiting
time t and an impatience factor α in the customer’s decision to join the queue
(Morse (1958), p. 24). Substituting in (4.1.9) and (4.1.8), we get

p0 =
[ ∞∑
n=0

ρn�n−1
i=1 e

−iα/µ
]−1

=
[ ∞∑
n=0

ρne
−n(n−1)α

2µ

]−1

,

pn =
[
ρne

−n(n−1)α
2µ

]
p0, n = 1, 2, . . . , (4.7.17)

where ρ = λ
µ

.

4.7.3 Markovian Queues with Reneging

After joining the queue, if a customer abandons its desire to be served and leaves the
system, the customer is said to have reneged . One way to incorporate this factor in
modeling is to assume a distribution, normally an exponential distribution in between
successive customer reneging events. Let β be the rate, independent of the number
in the system, at which reneging occurs. Then, assuming a constant arrival rate λ and
service rate µ, we can give the birth-and-death parameters for the model as

λn = λ, n = 0, 1, 2, . . . ,

µn = µ+ β, n = 1, 2, 3, . . . . (4.7.18)

Writing µ+ β = γ and ρ = λ
γ

for the limiting probabilities, we have

pn = (1 − ρ)ρn, n = 0, 1, 2, . . . , (4.7.19)

with ρ < 1.

4.7.4 Phase-Type Machine Repair

The M/M/1/1 system discussed in Section 4.7.1 can be generalized to consider a
machine repair requiring k phases. Suppose that a machine requires service after it
has been in operation for a length of time exponentially distributed with mean 1/λ.
Let the repair require k phases of service, where the ith phase (i = 1, 2, . . . , k) is
exponentially distributed with mean 1/µi . The operating and repair states of the
machine are 0 (operating) and i (representing phase i, i = 1, 2, . . . , k). Because of
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the exponential distributions involved in the process, the machine can be considered
to undergo transitions in a Markov process with the following generator matrix:

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 2 . . . k

0 −λ λ

1 −µ1 µ1
2 −µ2 µ2
...

. . .

k µk −µk

⎤
⎥⎥⎥⎥⎥⎦. (4.7.20)

Let pn = (p0, p1, p2, . . . , pk) be the limiting probabilities for the state of the ma-
chine. For state balance equations, we have

λp0 = µkpk,

µ1p1 = λp0,

...

µkpk = µk−1pk−1. (4.7.21)

Solving recursively, we get

p1 = λ

µ1
p0,

p2 = λ

µ2
p0,

· · ·pk = λ

µk
p0.

Using the normalizing condition
∑k

0 pn = 1, we get

p0 =
[

1 + λ

k∑
1

1

µi

]−1

,

pn =
(
λ

µn

)[
1 + λ

k∑
1

1

µi

]−1

, (4.7.22)

n = 1, 2, . . . , k.

We note that the overall repair time has a generalized Erlang distribution of (A.6.1)
with the transform

ψ(θ) =
k∑
i=1

(
µi

θ + µi

)
. (4.7.23)
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4.8 Remarks

In this chapter, we have discussed only a few queueing systems for which generalized
birth-and-death process models are suitable. We shall discuss a few more extended
models in Chapters 6 and 7. There are many more examples in the queueing litera-
ture where such models have been effectively used. For instance, Syski (1960) has
provided a large number of models for queueing systems applicable to the telephone
industry. Further perusal of the telecommunication systems literature would reveal
models developed since 1960.

There are other application areas, such as computer and manufacturing systems,
where investigators use birth-and-death process models as a first line of attack in solv-
ing problems. The major advantages of these models are their Markovian structure
(often leading to usable explicit results), and the ability to use numerical investigations
without complex computational problems when explicit results are not forthcoming.
After all, queueing models are approximate representations of real systems, and start-
ing with a Markovian model provides a good starting point for an understanding of
their approximate behavior.

4.9 Exercises

1. Compare the system idle time probability (p0) in the three systems: (1)M/M/s/s,
(2) M/M/s, and (3) M/M/∞ and show that

p
(1)
0 > p

(2)
0 and p

(3)
0 > p

(2)
0 . (4.9.1)

2. An airline employs two counters, one exclusively for first-class and business-class
passengers and the other for coach-class passengers. The service times at both
counters have been found to be exponential with mean 3 minutes. The coach-
class passengers arrive at the rate of 18 per hour and the upper-class passengers
arrive at the rate of 15 per hour. Is there any advantage in keeping the exclusivity
of service in the counters? Answer this question using server utilization, mean
number of customers in the system, and the mean waiting time, all in steady state.

3. A customer service counter has s telephone lines. Service requests arrive in a
Poisson process with rate λ and the length of service is exponentially distributed
with mean 1/µ. What is the probability that a request will encounter a busy
system? What is the probability that a service request will arrive when the
service center is busy?

4. Customer arrivals at a 7-Eleven is Poisson at the rate of 20 per hour. They can
be assumed to spend an average of 12 minutes picking up merchandise, with
the length of time having an exponential distribution. Two checkout counters
provide service with a service rate of 15 per hour at each counter. We may also
assume that the service times have an exponential distribution. Determine the
limiting results for the following:
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(a) the distribution of the number of customers picking up merchandise and
its mean;

(b) the mean length of time the customers wait at the counter for service;
(c) the mean total amount of time the customers spend in the store.

5. In a taxi stand there is space for only five taxicabs. Taxis arrive in a Poisson
process with rate 12 per hour. If there is no waiting room, arriving taxis leave
without passengers. Customers arrive at the taxi stand in a Poisson process once
every 6 minutes on average.
(a) Determine the limiting distribution of the number of customers waiting

for taxis.
(b) What is the probability that there are taxis waiting for customers?
(c) Determine the mean waiting time for a customer.

6. An automobile service station has one station for oil and filter changes. On
average the oil and filter change takes 7 minutes, the amount of time having an
exponential distribution. Cars arrive in a Poisson process at the rate of 6 per hour.
What is the probability that an arriving car has to wait more than 10 minutes to
get served?

What is the effect on the waiting time of adding another station with identical
service characteristics? Determine the probability that the waiting time will be
more than 5 minutes with two stations for oil and filter changes.

7. Customer arrivals to a service counter are in a Poisson process at the rate of 10 per
hour. The service time distribution can be assumed to be exponential. Determine
the minimum rate of service that would result in the customer waiting time being
greater than 5 minutes with a probability of 0.10 or less.

8. In a manufacturing process production machines break down at the rate of 3 per
hour. We may assume that the process of breakdowns is Poisson. The repair
times of the machines can be assumed to have an exponential distribution. The
repairs can be run at two rates: 4 per hour at a cost of $20/hour and 5 per hour at
a cost of $30/hour. Considering the loss of productivity of the machines while
they are either waiting for service or being in service, what is the minimum rate
of productivity gain that would make it beneficial to provide service at the faster
rate? You may assume an 8-hour workday in your calculations.

9. Customer arrivals to a store are in a Poisson process with a rate of 50 per hour.
On average each customer spends 15 minutes in the store, and we assume that
the time the customer spends in the store to have an exponential distribution.
Currently, the store provides parking spaces for 15 cars. Overflow cars from the
parking lot park elsewhere in the neighborhood. What is the probability that no
parking space will be available if a customer were to arrive at some time? How
many more spaces will be needed to make sure that the arriving customer will
find parking space 99% of the time?

10. Suppose that the arrival and the service rates in Exercise 9 are changed to arrivals
= 100 per hour and mean service time = 30 minutes. How many parking spaces
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should be provided to make sure that the arriving customers will find parking
space 99% of the time?

11. A single switchboard is used to direct calls coming to a doctor’s office. The calls
arrive in Poisson process at a rate of 15 per hour. Call holding times can be
assumed to be exponential with a mean of 2 minutes. What is the probability
that the calls will not have to wait for more than 2 minutes before getting to the
receptionist?

Suppose it is decided to establish an upper limitK for the number of calls waiting
such that the waiting time will be less than 2 minutes with a 90% probability.
Determine K .

12. In the M/M/s/s (loss system) show that in the long run,

L = ρ[1 − PB ], (4.9.2)

where L = long-run expected number of customers in the system,

ρ = arrival rate

service rate
,

PB = probability that an arriving customer is blocked from entering the system.

13. In a drugstore, customers arrive at the counter (with one server per counter) in
a Poisson process at the rate of 48/hour. The service time can be assumed to
be exponential with an average of 1 minute. The service is provided by one or
more servers depending on the number of customers waiting or being served as
follows:

0–4 customers 1 counter;
5–9 customers 2 counters;
10–14 customers 3 counters;
15 or more customers 4 counters.

Assume that this policy is used to increase or decrease the number of servers.

Determine the following:
(a) What is the probability of system idleness?
(b) How often would the store need more than one counter?
(c) What is the average number of customers either waiting for service or being

served?
(d) What is the average waiting time in the queue?

14. The atmopsheric quality at time t—denotedA(t)—is measured by the number of
pollutant units residing in the airshed at that time. These units are emitted from
pollutant sources one unit at a time with rate α. The emission process can be
assumed to be Poisson. Each unit thus emitted is diffused in an average time of
length β. Also assume that the diffusion times are exponential random variables
that are i.i.d. Obtain the mean and variance of A(t) as t → ∞.
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15. (a) Writing β = 1
α

= µ
λ

in (4.6.4), show that, using s in place of M , p0 from
(4.6.4) can be expressed as

p0 = (βs/s!)/
(

s∑
n=0

βn

n!

)
,

which is the probability of blocking in an M/M/s/s system (see (4.4.20)).
(b) Let λ∗ be the effective arrival rate of machines for repair. Noting that λ∗ can

also be expressed as

λ∗ = M

(1/λ)+Wq + (1/µ)

show that the mean waiting time of a machine repair (waiting + service) is
given by

W = M

λ∗ − 1

λ
.

16. Ten terminals used for data entry in a hospital share a communication line. Ter-
minals use the line on an FCFS basis and wait in a queue when the line is busy.
It has been observed that the data entry job takes on average 100 seconds, and
once the terminal is free, it is ready for the next job in 5 seconds on average.
Determine the throughput rate (effective arrival rate λ∗ of Exercise 15) and the
mean response time W . (Total time for job completion = waiting + service.)

17. A computer system has s servers. Since each server can be accessed separately,
each of the s servers can be considered a separate subsystem as well. The arrival
of jobs to each server is Poisson with rate λ, and the service time is exponential
with mean 1/µ. The main system operator would like to find out whether pooling
resources would be advantageous in terms of response time (the amount of time
the job spends in the system). With this objective consider the following three
setups when s = 3:
(a) Three separate systems.
(b) Arrivals are pooled into a single queue and processed separately as a multi-

server queue.
(c) The arrivals are pooled as in (b). In addition, the servers are connected such

that together they process jobs as a single server with rate 3µ.

Let Wi be the mean response time with the ith setup (i = a, b, c). Show that

Wa > Wb > Wc.

18. In a cyclic queue model of a single CPU and an I/O processor, the number of
jobs in the system remains a constant N . After receiving service at the CPU, the
job leaves the system with probability α and joins the I/O queue with probability
1−α. Soon after a job leaves the system a new job is admitted to the CPU queue.
The service times at the CPU and the I/O are exponential with means 1/µ1 and
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1/µ2, respectively. Determine the limiting distribution of the number of jobs
waiting and being served at the CPU queue. Also determine the mean time in
system for a job (Coffman and Denning (1973)).

19. In a communication system, messages are transmitted throughM identical chan-
nels. Messages are segmented for storage in fixed size buffers (bins). An in-
dividual message may require several buffers, but no buffer contains data from
more than one message. When messages release the buffers from which they are
transmitted, the buffers are ready for reuse.

Assume that messages arrive in a Poisson process with rateλ. The messages are of
length L, which is exponentially distributed with mean 1/µL. The transmission
rate for the messages isR, so that the transmission time is exponential with mean
1/(RµL).

The data field size per buffer is b. LetN be the random variable representing the
number of buffers in a message.
(a) Obtain the distribution of N .
(b) Obtain the limiting probability that no message is present in the system.
(c) Determine the distribution of the number of occupied buffers under statistical

equilibrium and its mean and variance in terms of the limiting probability of
no messages present in the system (Pedersen and Shah (1972)).

20. The following model describes a simplified representation of a multiprogram-
ming system. Let the drum storage unit with a shortest-latency-time-first file
drum, described in Exercise 10 of Chapter 1, be connected to a CPU with a fixed
number of m tasks circulating in a closed system, alternately requesting service
at the processor and the drum. Let µn be the service rate at the file drum unit as
described in Exercise 10 of Chapter 1, and let λ be the service rate at the central
processor. Let pn, n = 0, 1, 2, . . . , m, be the limiting distribution of the queue
length (including the one in service) at the file drum unit.

Determine {pn} and the expected processor utilization for various values of m
(which is known as the degree of multiprogamming) (Fuller (1980)).

21. A simplified model of the drum storage unit described in Exercise 20 assumes
a Poisson arrival of requests for files with rate λ. Let the service rate µn be
determined by the formula

1

µn
= τ

n+ 1
+ 1

µ
,

where τ is the period of rotation and n is the number of requests in the system.
Determine the mean waiting time of a request (Fuller (1980)).

22. In a time-shared computer system M terminals share a central processor. Let µ
be the processing rate at the CPU, with the processing time having an exponential
distribution. If a terminal is free at time t , the probability that it will initiate a
job in the infinitesimal interval (t, t +�t] is λ�t + o(�t), and it will continue
to be free at t +�t with probability 1 − [λ�t + o(�t)].
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(a) Let {pn} be the probability distribution of the number of busy terminals as
t → ∞. Determine pn, n = 0, 1, 2, . . . ,M .

(b) Show that in the long-run, the arrival rate at the CPU is given by

Mλ

1 + λW
,

where W is the mean response time (= mean waiting time of a job arriving
at the terminal).

(c) Equating the arrival rate with the departure rate from the processor show that
the mean response time can be obtained as

M

µ(1 − p0)
− 1

λ

(Fuller (1980)).

23. Consider a two-server Markovian queueM/Mi/2, in which customer arrivals are
in a Poisson process with parameter λ, and the service times of the two servers
are distributed exponentially with rates µ1 > µ2. An arriving customer finding
both servers free always chooses the faster server. But if there is only one server
free when an arrival occurs, it enters service with the free server regardless of
the service rate. If both servers are busy, the arriving customer waits in line for
service in the order of arrival.

Determine the limiting distribution of the number of customers in the system.

Compare numerically the mean number of customers in the heterogeneous system
M/Mi/2 with the corresponding homogeneous systemM/M/2 when the service
rate in the latter system is (µ1 + µ2)/2 (Singh (1970)).

24. Extend Exercise 23 to an M/Mi/3 heterogeneous queue and determine the lim-
iting distribution of the number of customers in it. Also, carry out a numerical
comparison of the mean number of customers in the systems between M/Mi/3
andM/M/3 when the service rate in the latter system is the average of the three
heterogeneous rates (Singh (1971)).
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Imbedded Markov Chain Models

In the last chapter we used Markov process models for queueing systems with Poisson
arrivals and exponential service times. To model a system as a Markov process, we
should be able to give complete distribution characteristics of the process beyond
time t , using what we know about the process at t and changes that may occur after
t , without referring back to the events before t . When arrivals are Poisson and
service times are exponential, because of the memoryless property of the exponential
distribution we are able to use the Markov process as a model. Then if the arrival
rate is λ and the service rate is µ, at any time point t , the time to the next arrival
has exponential distribution with rate λ, and if a service is in progress, the remaining
service time has the exponential distribution with rate µ. If one or both of the arrival
and service distributions are nonexponential, the memoryless property does not hold,
and a Markov model of the type discussed in the last chapter does not work. In this
chapter, we discuss a method by which a Markov model can be constructed, not for
all t , but for specific time points on the time axis.

5.1 Imbedded Markov Chains

In anM/G/1 queueing system, customers arrive in a Poisson process and are served
by a single server. We assume that service times of customers are i.i.d. with an
unspecified (general) distribution. LetQ(t) be the number of customers in the system
at time t . For the complete description of the state of the system at time t , we need the
value of Q(t) as well as information on the remaining service time of the customer
in service, if one is being served at that time. Let R(t) be the remaining service time
of such a customer. Now the vector [Q(t), R(t)] is a vector Markov process since
both of its components, viz., arrival and service times, are completely specified. The
earliest investigation to analyze this vector process by itself was performed by Cox
(1955), who used information on R(t) as a supplementary variable in constructing
the forward Kolmogorov equations given in Chapter 3. Since this method employs
analysis techniques beyond the scope of this text, we shall not cover it here.

U.N. Bhat, An Introduction to Queueing Theory, DOI: 10.1007/978-0-8176-4725-4_5, 
© Springer Science+Business Media, LLC 2008 
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In two papers in the 1950s, Kendall (1951, 1953) developed a procedure to convert
the queue length processes inM/G/1 andG/M/s into Markov chains. (In the queue
G/M/s, the service time has the memoryless property. Therefore, in the vector
process [Q(t), R(t)], R(t) now represents the time until a new arrival.) The strategy
is to consider departure epochs in the queue M/G/1 and arrival epochs in the queue
G/M/s. Let t0 = 0, t1, t2, . . . be the points of departure of customers in theM/G/1
queue and defineQ(tn+0) = Qn. ThusQn is defined as the value ofQ(t) soon after
departure. At the points {tn, n = 0, 1, 2, . . . }, R(t) is equal to zero, and hence Qn

can be studied without reference to the random variableR(t). Because of the Markov
property of the Poisson distribution the process {Qn, n = 0, 1, 2, . . . } is a Markov
chain with discrete-parameter and -state spaces. Because of the imbedded nature of
the process it is known as an imbedded Markov chain. In the queue G/M/s, arrival
points generate the imbedded Markov chain. We discuss the M/G/1 and G/M/1
systems in the next two sections.

Imbedded Markov chains can also be used to analyze waiting times in the queue
G/G/1. A limited exploration of that technique will be given in Chapter 9.

5.2 The Queue M/G/1

Let customers arrive in a Poisson process with parameter λ and are served by a
single server. Let the service times of these customers be i.i.d. random variables
{Sn, n = 1, 2, 3, . . . } with P(Sn ≤ x) = B(x), x ≥ 0; E(Sn) = b; V (Sn) = σ 2

s .
We assume that Sn is the service time of the nth customer. Let Q(t) be the number
of customers in the system at time t and identify t0 = 0, t1, t2, . . . as the departure
epochs of customers. As described above, at these points the remaining service times
of customers are zero. LetQn = Q(tn+0) be the number of customers in the system
soon after the nth departure. We can show that {Qn, n = 0, 1, 2, . . . } is a Markov
chain as follows.

LetXn be the number of customers arriving during Sn. With the Poisson assump-
tion for the arrival process we have

kj = P(Xn = j) =
∫ ∞

0
P(Xn = j |Sn)P (t < Sn ≤ t + dt)

=
∫ ∞

0
e−λt (λt)

j

j ! dB(t), j = 0, 1, 2, . . . . (5.2.1)

In writing dB(t) in (5.2.1), we use the Stieltjes notation in order to accommodate
discrete, continuous, and mixed distributions. (See Appendix C.)

Consider the relationship between Qn and Qn+1. We have

Qn+1 =
{
Qn +Xn+1 − 1 if Qn > 0,

Xn+1 if Qn = 0.
(5.2.2)

The first expression forQn+1 is obvious. The second expression (i.e., Xn+1 ifQn =
0) results from the fact that tn+1 is the departure point of the customer who arrives
after tn. Qn+1 is, in fact, = 1 − 1 +Xn+1.
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As can be seen from (5.2.2),Qn+1 can be expressed in terms ofQn and a random
variable Xn+1, which does not depend on any event before tn. Since Xn+1 is i.i.d.,
it does not depend on Qn either. The one-step dependence of a Markov chain holds.
Hence {Qn, n = 0, 1, 2, . . . } is a Markov chain. Its parameter space is made up
of departure points, and the state space S is the number of customers in the system;
S = {0, 1, 2, . . . }. Because of the imbedded nature of the parameter space, it is
known as an imbedded Markov chain.

Let
P
(n)
ij = P(Qn = j |Q0 = i), i, j ∈ S, (5.2.3)

and write P (1)ij ≡ Pij .
From the relationship (5.2.2) and the definition of kj in (5.2.1), we can write

Pij = P(Qn+1 = j |Qn = i)

=
{
P(i +Xn+1 − 1 = j) if i > 0,

P (Xn+1 = j) if i = 0

=
{
kj−i+1 if i > 0,

kj if i = 0.
(5.2.4)

The transition probability matrix P for the Markov chain is

P =

⎡
⎢⎢⎢⎢⎢⎣

0 1 2 . . .

0 k0 k1 k2 . . .

1 k0 k1 k2 . . .

2 k0 k1 . . .

3 k0 . . .
. . . . . .

⎤
⎥⎥⎥⎥⎥⎦. (5.2.5)

For the Markov chain to be irreducible (the state space has a single equivalence
class) the following two conditions must hold: k0 > 0 and k0 + k1 < 1. It is easy
to see that if k0 = 0, with one or more customer arrivals for each departure, there
is no possibility for the system to attain stability, and the number in the system will
only increase with time. If k0 + k1 = 1, only the two states {0, 1} are possible in the
system. (If the system starts with i > 1 customers, once it attains 0 or 1 it will remain
in {0, 1}.)

Further classification of states depends on E(Xn), the expected number of cus-
tomers arriving during a service time.

Define the Laplace–Stieltjes transform of the service time distribution,

ψ(θ) =
∫ ∞

0
e−θt dB(t), Re(θ) > 0, (5.2.6)

and the PGF of the number of customers arriving during a service time,
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K(z) =
∞∑
j=0

kj z
j , |z| ≤ 1. (5.2.7)

The results below are derived from well-known properties of Laplace–Stieltjes trans-
forms and PGFs:

E(Sn) = b = −ψ ′(0),
E(S2

n) = ψ ′′(0),
E(Xn) = K ′(1),
E(X2

n) = K ′′(1)+K ′(1). (5.2.8)

From (5.2.1) we get

K(z) =
∫ ∞

0
e−λt

∞∑
j=0

(λtz)j

j ! dB(t)

=
∫ ∞

0
e−(λ−λz)t dB(t)

= ψ(λ− λz).

Hence

K ′(z) = −λψ ′(λ− λz),

K ′(1) = −λψ ′(0)
= λb = ρ. (5.2.9)

Note that λb = (arrival rate) × (mean service time). This quantity is called the
traffic intensity of the queueing system, denoted by ρ. The value of ρ determines
whether the system is in equilibrium (attains steady state) when the time parameter
n (of tn) → ∞. It can be shown that when ρ < 1, the Markov chain is positive
recurrent (i.e., the process returns to any state with probability one and the mean time
for the return< ∞); when ρ = 1, the chain is null recurrent (i.e., the process returns
to any state with probability one, but the mean time for the return = ∞); and when
ρ > 1, the chain is transient (i.e., the process may not return to the finite states at all;
then the probability that the process will be found in one of the finite states is zero).
These derivations are beyond the scope of this text. Nevertheless, these properties are
easy to comprehend if we understand the real significance of the value of the traffic
intensity. See Appendix B for the classification of states in Markov chains.

Recalling the result derived in (3.3.13), the n-step transition probabilities P (n)ij

(i, j = 0, 1, 2, . . . ) of the Markov chain {Qn} are obtained as elements of the nth
power of the (one-step) transition probability matrix P. In considering Pn in real
systems, the following three observations will be useful:

1. The result (3.3.13) holds regardless of the structure of the matrix.
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2. Asn in Pn increases, the nonzero elements cluster within submatrices representing
recurrent equivalence classes.

3. In an aperiodic irreducible positive recurrent Markov chain, as n in Pn increases,
the elements in each column tend toward an intermediate value.

The probability P (n)ij for j = 0, 1, 2, . . . and finite n gives the time-dependent be-
havior of the queue length process {Qn}. There are analytical techniques for deriving
these probabilities. However, they involve mathematical techniques beyond the scope
of this text. For example, see Takács (1962), who uses PGFs to simplify recursive re-
lations generated by the Chapman–Kolmogorov relations for P (n)ij . Prabhu and Bhat
(1963a) look at the transitions of Qn as some first passage problems and use combi-
natorial methods in solving them. (See also Prabhu (1965a).) In practice, however,
with the increasing computer power for matrix operations, simple multiplications of
P to get its nth power seem to be the best course of action. When the state space is not
finite, the observations given above can be used to limit it without losing a significant
amount of information.

Limiting distribution

The third observation given above stems from the property of aperiodic positive
recurrent irreducible Markov chains, which results in limn→∞ Pn becoming a matrix
with identical rows. Computationally, this property can be validated by obtaining
successive powers of Pn; as n increases the elements in the columns of the matrix
tend to a constant intermediate value. This behavior of the Markov chain is codified
in the following theorem and its corollary, given without proof.

Theorem 5.2.1.

(1) Let i be a state belonging to an aperiodic recurrent equivalence class. Let P (n)ii

be the probability of the n-step transition i → i, and µi be its mean recurrence
time. Then limn→∞ P

(n)
ii exists and is given by

lim
n→∞P

(n)
ii = 1

µi
= πi, say.

(2) Let j be another state belonging to the same equivalence class and P (n)ji be the
probability of the n-step transition j → i. Then

lim
n→∞P

(n)
ji = lim

n→∞P
(n)
ii = πi.

Corollary 5.2.1. If i is positive recurrent, πi > 0, and if i is null recurrent, πi = 0.

See Karlin and Taylor (1975) for a proof of this theorem.
Note that the term recurrence time in the theorem signifies the number of steps a

Markov chain takes to return for the first time to the starting state. See Appendix B
for other definitions.
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Theorem 5.2.1 applies to Markov chains whether their state space is finite or
countably infinite.

For a state space S : {0, 1, 2, . . . } let (π0, π1, π2, . . . ) be the limiting probability
vector, where πi = limn→∞ P

(n)
ji , i, j ∈ S. Let � be the matrix with identical rows

π = (π0, π1, π2, . . . ). Now, using Chapman–Kolmogorov relations, we may write

P(n) = Pn−1P.

(See the discussion preceding (3.3.13).)
Applying Theorem 5.2.1 to P(n) and P(n−1), it is easy to write

� = �P

or

π = πP. (5.2.10)

Furthermore, multiplying both sides of (5.2.10) repeatedly by P, we can also estab-
lish that

πP = π = πP2,

πP = π = πPn. (5.2.11)

The last equation shows that if we use the limiting distribution as the intial distribution
of the state of an irreducible, aperiodic, and positive recurrent Markov chain, the state
distribution after n transitions (n = 1, 2, 3, . . . ) is also given by the same limiting
distribution. Such a property is known as the stationarity of the distribution. The
following theorem summarizes these results and provides a procedure by which the
limiting distribution can be determined.

Theorem 5.2.2.

(1) In an irreducible, aperiodic, and positive recurrent Markov chain, the limiting
probabilities {πi, i = 0, 1, 2, . . . } satisfy the equations

πj =
∞∑
i=0

πiPij , j = 0, 1, 2, . . . ,

∞∑
j=0

πj = 1. (5.2.12)

The limiting distribution is stationary.
(2) Any solution of the equations

∞∑
i=0

xiPij = xj , j = 0, 1, 2, . . . , (5.2.13)

is a scalar multiple of {πi, i = 0, 1, 2, . . . } provided
∑ |xi | < ∞.
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Thus the limiting distribution of the Markov chain can be obtained by solving the
set of simultaneous equations (5.2.12) and normalizing the solution using the second
equation

∑∞
0 πj = 1. Note that because the row sums of the Markov chain are

equal to 1, (5.2.12) by itself yields a solution only up to a multiplicative constant.
The normalizing condition is, therefore, essential in the determination of the limiting
distribution.

With this background on the general theory of Markov chains, we are now in a
position to determine the limiting distribution of the imbedded Markov chain of the
M/G/1 queue.

Let π = (π0, π1, π2, . . . ) be the limiting distribution of the imbedded chain.
Using the transition probability matrix (5.2.5) in the equation πP = π (which is
(5.2.12)), we have

k0π0 + k0π1 = π0,

k1π0 + k1π1 + k0π2 = π1,

k2π0 + k2π1 + k1π2 + k0π3 = π2,

. . . . (5.2.14)

A convenient way of solving these equations computationally is to define

ν0 ≡ 1 and νi = πi/π0

and rewrite (5.2.14) in terms of νi (i = 1, 2, . . . ) as

ν1 = 1 − k0

k0
,

ν2 = 1 − k1

k0
ν1 − k1

k0
,

...

νj = 1 − k1

k0
νj−1 − k2

k0
νj−2 − · · · − kj−1

k0
ν1 − kj−1

k0
,

.... (5.2.15)

These equations can be solved recursively to determine νi (i = 1, 2, . . . ). The
limiting probabilities (π0, π1, π2, . . . ) are known to be monotonic and concave, and
therefore for larger values ofn they become extremely small. Clearly, νi = πi/π0 will
also have the same properties, and for computational purposes it is easy to establish
a cutoff value for the size of the state space.

In order to recover πis from νis, we note that

∞∑
i=0

νi = 1 +
∞∑
i=1

πi

π0
=
∑∞
i=0 πi

π0
= 1

π0
.
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Here we have incorporated the normalizing condition
∑∞

0 πi = 1. Thus we get

π0 = (1 +
∞∑
i=1

νi)
−1

and
πi = νi

1 +∑∞
i=1 νi

. (5.2.16)

Analytically, the limiting distribution (π0, π1, π2, . . . ) can be determined by solving
equations (5.2.14) using generating functions. Unfortunately, deriving explicit ex-
pressions for the probabilities requires inverting the resulting PGF. However, we can
obtain the mean and variance of the distribution using standard techniques. Define

�(z) =
∞∑
j=0

πjz
j |z| ≤ 1.

and

K(z) =
∞∑
j=0

kj z
j |z| ≤ 1.

Multiplying equations (5.2.14) with appropriate powers of z and summing, we get

�(z) = π0K(z)+ π1K(z)+ π2zK(z)+ · · ·
= π0K(z)+ K(z)

z
(π1z+ π2z

2 + · · · )

= π0K(z)+ K(z)

z
[�(z)− π0].

Rearranging terms,

�(z)

[
1 − K(z)

z

]
= π0K(z)

[
1 − 1

z

]

�(z) = π0K(z)(z− 1)

z−K(z)
. (5.2.17)

The unknown quantity π0 on the right-hand side expression for �(z) in (5.2.17) can
be determined using the normalizing condition

∑∞
j=0 πj = 0. We must have

�(1) =
∞∑
j=0

πj = 1.

Letting z → 1 in (5.2.17), we get (applying l’Hôpital’s rule)
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1 = limz→1 π0[K(z)− (z− 1)K ′(z)]
limz→1[1 −K ′(z)] .

Recalling that K(1) = 1 and K ′(1) = ρ (from (5.2.9)), we have

1 = π0

1 − ρ
,

π0 = 1 − ρ. (5.2.18)

Thus we get

�(z) = (1 − ρ)(z− 1)K(z)

z−K(z)
. (5.2.19)

Explicit expressions for probabilities {πj , j = 0, 1, 2, . . . } can be obtained by ex-
panding �(z) in special cases. An alternative form of �(z) works out to be easier
for this expansion. We may write

�(z) = (1 − ρ)K(z)

[z−K(z)]/(z− 1)

= (1 − ρ)K(z)

1 − [1 −K(z)]/(1 − z)
. (5.2.20)

Note that
∑∞
j=0 z

j (kj+1 + kj+2 + · · · ) can be simplified to

1 −K(z)

1 − z
= C(z), say.

(See also the algebraic simplifications leading to (5.2.17).)
For |z| ≤ 1,

|C(z)| =
∣∣∣∣1 −K(z)

1 − z

∣∣∣∣ < 1 if ρ < 1. (5.2.21)

Now using a geometric series expansion, we may write

�(z) = (1 − ρ)K(z)

∞∑
j=0

[C(z)]j . (5.2.22)

The explicit expression forπj is obtained by expanding the right-hand side of (5.2.22)
as a power series in z and picking the coefficient of zj in it.

In a queueing system, the queue length process Q(t) may be considered with
three different time points: (1) when t is just before an arrival epoch, (2) when t is
soon after a departure epoch, and (3) when t is an arbitrary point in time. In general,
the distribution ofQ(t)with reference to these three time points may not be the same.
However, when the arrival process is Poisson, it can be shown that the limiting distri-
butions of Q(t) in all three cases are the same. The property of the Poisson process
that makes this happen is its relationship with the uniform distribution mentioned in
Appendix A. See Wolff (1982), who coined the acronym PASTA (Poisson arrivals
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see time averages). For proofs of this property, see also Cooper (1981) and Gross
and Harris (1998).

Therefore, the PGF �(z) derived in (5.2.19) also gives the limiting distribution
limt→∞Q(t). There are several papers in the literature deriving the transition dis-
tribution of Q(t) for finite t . Among them are those of Prabhu and Bhat (1963b)
and Bhat (1968), who obtain the transition distribution using recursive methods and
renewal theory arguments. The explicit expression for the limiting distribution of
Q(t) (and the limiting distribution of Qn in the imbedded chain case) derived in
these papers is given by

π0 = 1 − ρ,

πj = (1 − ρ)

∫ ∞

0
e−λt

∞∑
n=0

[
(λt)n+j−1

(n+ j − 1)! − (λt)n+j

(n+ j)!
]
dBn(t) (5.2.23)

for ρ < 1, where Bn(t) is the n-fold convolution of B(t)with itself (Prabhu and Bhat
(1963a, b), Bhat (1968)).

The mean and variance of limn→∞Qn can be determined from the PGF (5.2.19)
through standard techniques. Writing Q∗ = limn→∞Qn, we have

L = E(Q∗) = �′(1),
V (Q∗) = �′′(1)+�′(1)− [�′(1)]2. (5.2.24)

Differentiating �(z) with respect to z, we get

�′(z) = 1 − ρ

[z−K(z)]2
{[z−K(z)][K(z)+ (z− 1)K ′(z)]
− (z− 1)[1 −K ′(z)]K(z)}.

Using l’Hôpital’s rule twice while taking limits z → 1, we get

�′(1) = 2K ′(1)[1 −K ′(1)] +K ′′(1)
2[1 −K ′(1)] . (5.2.25)

But note that from (5.2.9), K ′(1) = ρ and

K ′′(1) = λ2ψ ′′(0)
= λ2E(S2), (5.2.26)

where we have used a generic notation for the service time. Substituting from (5.2.26)
in (5.2.25) we get, after simplifications,

L = E(Q∗) = ρ + λ2E(S2)

2(1 − ρ)
, (5.2.27)

which is often referred to as the Pollaczek–Khintchine formula. Noting that ρ is the
expected number in service (which is the same as the probability that the server is
busy in a single-server queue), Lq , the mean number in the queue, is obtained as
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Lq = λ2E(S2)

2(1 − ρ)
. (5.2.28)

Extending the differentiation to get �′′(z), and taking limits as z → 1 with the
multiple use of l’Hôpital’s rule to get �′′(1) yield

V (Q∗) = ρ(1 − ρ)+ λ2E(S2)

2(1 − ρ)

[
3 − 2ρ + λ2E(S2)

2(1 − ρ)

]

+ λ3E(S3)

3(1 − ρ)
(5.2.29)

Recall that σ 2
S is the variance of the service time distribution. Hence σ 2

S = E(S2)−
[E(S)]2. Using this expression in (5.2.27) and noting that λE(S) = ρ, we get an
alternative form for E(Q∗):

E(Q∗) = ρ + ρ2

2(1 − ρ)
+ λ2σ 2

S

2(1 − ρ)
, (5.2.30)

which clearly shows that the mean queue length increases with the variance of the
service time distribution. For instance, when σ 2

S = 0, i.e., when the service time is
constant (in the queue M/D/1)

E(Q∗) = ρ + ρ2

2(1 − ρ)
= ρ

1 − ρ

(
1 − ρ

2

)
. (5.2.31)

On the other hand, when the service time distribution is Erlang with mean 1/µ and
scale parameter k (i.e., by writing λ = µ in (2.1.8)), we get σ 2

S = 1/(kµ2) and

E(Q∗) = ρ + ρ2

2(1 − ρ)
+ ρ2

2k(1 − ρ)

= ρ + ρ2(1 + k)

2k(1 − ρ)
. (5.2.32)

When k = 1, we get E(Q∗) in M/M/1 as

E(Q∗) = ρ

1 − ρ
.

Waiting time

The concept of waiting time has been used earlier in the context of the M/M/1
queue. Since we had the distribution of the queue length explicitly, we were then
able to determine the distribution of the waiting time. But in the M/G/1 case the
explicit expression for the limiting distribution of the queue length, viz., (5.2.23), is
not easy to handle, even for computations. Consequently, we approach this problem
indirectly using the PGF �(z) of the queue length.
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Assume that the queue discipline is first come, first served (FCFS). Let T be the
total time spent by the customer in the system in waiting and service which we may
call the system time or time in system, and let Tq be the actual waiting time, both as
t → ∞. LetE(T ) = W andE(Tq) = Wq . Also, let F(·) be the distribution function
of T with a Laplace–Stieltjes transform

�(θ) =
∫ ∞

0
e−θt dF (t), Re(θ) > 0.

Consider a customer departing from the system. It has spent a total time of T in
waiting and service. Suppose the departing customer leaves n customers behind;
clearly, these customers have arrived during its time in system T . Then we have

P(Q∗ = n) =
∫ ∞

0
e−λt (λt)

n

n! dF(t), n ≥ 0. (5.2.33)

Using generating functions,

�(z) =
∞∑
n=0

P(Q∗ = n)zn =
∞∑
n=0

zn
∫ ∞

0
e−λt (λt)

n

n! dF(t)

=
∫ ∞

0
e−λt

∞∑
n=0

(λtz)n

n! dF(t)

= �(λ− λz). (5.2.34)

Comparing (5.2.19) with (5.2.34), we have

(1 − ρ)(z− 1)K(z)

z−K(z)
= �(λ− λz). (5.2.35)

Recall that
K(z) = ψ(λ− λz).

Substituting in (5.2.35),

�(λ− λz) = (1 − ρ)(z− 1)ψ(λ− λz)

z− ψ(λ− λz)
.

Writing λ− λz = θ , we get z = 1 − θ
λ

;

�(θ) = (1 − ρ) θ
λ
ψ(θ)

ψ(θ)− (λ− θ)/λ

= (1 − ρ)θψ(θ)

θ − λ[1 − ψ(θ)] . (5.2.36)

Since the system time T is the sum of the actual waiting time Tq and service time S,
defining the Laplace–Stieltjes transform of the distribution of Tq as �q(θ), we have
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�(θ) = �q(θ)ψ(θ). (5.2.37)

Comparing (5.2.36) and (5.2.37), we write

�q(θ) = (1 − ρ)θ

θ − λ[1 − ψ(θ)] , (5.2.38)

which can be expressed as

�q(θ) = 1 − ρ

1 − λ
θ
[1 − ψ(θ)]

= (1 − ρ)

∞∑
n=0

[
λ

θ
[1 − ψ(θ)]

]n
. (5.2.39)

In using the geometric series for (5.2.39), we can show that |λ
θ
[1 − ψ(θ)]| < 1 for

ρ < 1.
In Chapter 3 we have introduced a renewal process as a sequence of i.i.d. random

variables. Suppose tn+1 − tn = Zn is the nth member of such a sequence. Let t be
a time point such that tn < t ≤ tn+1. Then tn+1 − t = R(t) is known as the forward
recurrence time (also known as excess life in the terminology of reliability theory).
If B(·) is the distribution function of Zn, it is possible to show, as t → ∞, that rt (x),
the density function of R(t), can be given as

lim
t→∞ rt (x) = 1

E[Zn] [1 − B(x)]. (5.2.40)

For a more detailed description, see Chapter 8.
Using this concept, we can invert (5.2.39) to give the distribution function of Tq as

Fq(t) = (1 − ρ)

∞∑
n=0

ρnR(n)(t), (5.2.41)

where R(n)(t) is the n-fold convolution of the distribution of the remaining service
time R(t) (forward recurrence time) with itself.

As stated in Chapter 4, Little’s law (L = λW) applies broadly to queueing systems
with only some restrictions on structure and discipline. (See Section 9.2 for details.)
Hence using the law on (5.2.27) and (5.2.28), we get

W = E(S)+ λE(S2)

2(1 − ρ)
, (5.2.42)

Wq = λE(S2)

2(1 − ρ)
. (5.2.43)

These means can also be determined from the transforms �(θ) and �q(θ). For
example, we have
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W = E(T ) = �′(0),
σ 2
T = V (T ) = �′′(0)− [�′(0)]2,

and similar expressions forWq and σ 2
Tq

. The following result, derived in this manner,
might be useful in some applications:

σ 2
Tq

= V (Tq) = λE(S3)

3(1 − ρ)
+ λ2[E(S2)]2

4(1 − ρ)2
. (5.2.44)

The busy period

In the context of an imbedded Markov chain, the length of the busy period is measured
in terms of the number of transitions of the chain without visiting the state 0. Let Bi
be the number of transitions of the Markov chain before it enters state 0 for the first
time, having initially started from state i. Let

g
(n)
i = P [Bi = n], n = 1, 2, . . . . (5.2.45)

A key property of Bi is that it can be thought of as the sum of i random variables each
with the distribution of B1. This is equivalent to saying that the transition i → 0 can
be considered to be occurring in i segments, i → i − 1, i − 1 → i − 2, . . . , 1 → 0.
This is justified by the fact that the downward transition can occur only one step at a
time. Since all these transitions are structurally similar to each other we can consider
Bi as the sum of i random variables, each with the distribution of B1. Consequently,
g
(n)
i is the i-fold convolution of g(n)1 with itself. Thus for the PGF of g(n)i ,

Gi(z) =
n∑
n=i

g
(n)
i zn = [G1(z)]i . (5.2.46)

Noting that the busy period cannot end before the ith transition of the Markov chain,
we have

g
(i)
i = k

(i)
0 ,

g
(n)
i =

n−1∑
r=1

k(i)r g
(n−i)
r , (5.2.47)

where k(i)r is the i-fold convolution of the probability kr that r customers arrive during
a service period. (See (5.2.1).)

For i = 1,

g
(1)
1 = k0

and
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g
(n)
1 =

n−1∑
r=1

krg
(n−1)
r , n ≥ 1.

Multiplying both sides of these equations by appropriate powers of z, we convert
them into a single one in generating functions:

g
(1)
1 z = k0z,

∞∑
n=2

g
(n)
1 zn =

∞∑
n=2

zn
n−1∑
r=1

g(n−1)
r ,

G1(z) ≡ zk0 + z

∞∑
r=1

kr

∞∑
n=r+1

zn−1g(n−1)
r

= z

[
k0 +

∞∑
r=1

kr [G1(z)]r
]

= zK[G1(z)]. (5.2.48)

From the definition of K(z) earlier, we have

K(z) = ψ(λ− λz),

where ψ(θ) is the Laplace–Stieltjes transform of the service time distribution. Thus
the PGF G1(z) ≡ G(z) is such that it satisfies the functional equation

ω = zψ(λ− λω). (5.2.49)

It is possible to show that G(z) is the least positive root (≤ 1) of the functional
equation when ρ < 1 and determine explicit expressions for specific distributions.
There are other ways of deriving the busy period distribution in explicit forms (see
Prabhu and Bhat (1963a)).

We can easily obtain the mean length of the busy period by implicit differentiation
of (5.2.49). We have

G(z) = zψ(λ− λG(z)).

On differentiation,

G′(z) = ψ[λ− λG(z)] + zψ ′[λ− λG(z)][−λG′(z)].
As z → 1,

G′(1) = ψ(0)+ ψ ′(0)[−λG′(1)].
Rearranging terms,

G′(1)[1 + λψ ′(0)] = 1,

G′(1) = 1

1 + λψ ′(0)
.
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Referring back to the definitions given earlier,

E[B1] = G′(1) = 1

1 − ρ
.

Following the arguments leading to (5.2.46), for the busy period Bi initiated by i
customers, we get

E(Bi) = i

1 − ρ
. (5.2.50)

Since we are counting the number of transitions, to get the exact mean length of
a busy period we multiply by the mean length of time taken for each transition, viz.,
the service period. Hence

mean length of the busy period = E(S)

(1 − ρ)
. (5.2.51)

Noting that a busy cycle is made up of a busy period and an idle period and that
the mean length of the idle period in M/G/1 with arrival rate λ is 1/λ, we get

mean length of the busy cycle = E(S)

1 − ρ
+ 1

λ
= 1

λ(1 − ρ)
. (5.2.52)

The queue M/G/1/K

Consider theM/G/1 queue described earlier, with the restriction that the capacity for
the number of customers in the system is K . Since the state space for the imbedded
Markov chain is the number in the system soon after departure,K will not be included
in the state space; S = {0, 1, 2, . . . , K − 1}. Thus corresponding to (5.2.2), we have
the relation

Qn+1 =
{

min(Qn +Xn+1 − 1,K − 1) if Qn > 0,

min(Xn+1,K − 1) if Qn = 0.
(5.2.53)

Using the probability distribution {kj , j = 0, 1, 2, . . . } defined in (5.2.1), we get the
transition probability matrix

P =

⎡
⎢⎢⎢⎢⎢⎣

0 1 2 . . . K − 1

0 k0 k1 k2 . . . 1 −∑k−2
0 kj

1 k0 k1 k2 . . . 1 −∑k−2
0 kj

2 k0 k1 . . . 1 −∑k−3
0 kj

...
...

K − 1 1 − k0

⎤
⎥⎥⎥⎥⎥⎦. (5.2.54)

Let π = (π0, π1, . . . , πk−1) be the limiting distribution for the state of the Markov
chain. These probabilities are determined by solving the equations
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πj =
∑
i

πiPij , j = 0, 1, 2, . . . , K − 1,

K−1∑
0

πj = 1. (5.2.55)

The firstK−1 equations are identical to those forM/G/1 with no capacity restriction.
Therefore, we can use the computational method outlined in (5.2.15) for the solution
of (5.2.55). We note here that one of the k simultaneous equations in (5.2.55) is
redundant because of the Markov chain structure of the coefficients. In its place we
use the normalizing condition

∑K−1
0 πj = 1 for the solution. We may also note from

the computational solution technique that the finite case solution is obtained by using
the same νis as in the infinite case for i = 0, 1, 2, . . . , K − 1 and determining

π0 =
[
K−1∑

0

νi

]−1

,

πi = π0νi . (5.2.56)

The discussion of the waiting time distribution is a bit complicated in M/G/1/K ,
since for the Markov chain the state space is only {0, 1, 2, . . . , K − 1}, while our
arrival may find K customers in the system (before a departure). Thus from the
viewpoint of an arrival, we need the limiting distribution at an arbitrary point in time.
For further details, the readers are referred to Gross and Harris (1998), pp. 231–232.

The busy period analysis given earlier for the queue M/G/1 cannot be easily
modified for the finite-capacity case. Computationally, the best approach seems to be
to consider the busy period as a first passage problem in the irreducible Markov chain
from state 1 to state 0. This can be done by converting state 0 into an absorbing state
and using the concept of the fundamental matrix in the determination of the expected
number of transitions required for the first passage transition. For details, the readers
are referred to Bhat and Miller (2002), Chapter 2. A further discussion of this method
is also given in Chapter 7.

Example 5.2.1. Consider a computer network node in which requests for data arrive
in a Poisson process at the rate of 0.5 per unit time. Assume that the data retrieval
(service) takes a constant amount of one unit of time.

We can model this system as anM/D/1 queue and use the techniques developed
in this section for its analysis. We have

kj = e−0.5 (0.5)
j

j ! , j = 0, 1, 2, . . . ,

which on evaluation gives

k0 = 0.607; k1 = 0.303; k2 = 0.076; k3 = 0.012; k4 = 0.002.

The Laplace–Stieltjes transform of the service time distribution is
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ψ(θ) = e−(0.5)θ ,

and the PGF of kj , j = 0, 1, 2, . . . , is

K(z) = e−0.5(1−z).

These give the PGF �(z) of the limiting distribution as

�(z) = (1 − 0.5)(z− 1)e−0.5(1−z)

z− e−0.5(1−z) .

Instead of using �(z) to obtain the distribution explicitly, we use the computational
method described earlier. We have

ν1 = 1 − k0

k0
= 0.647,

ν2 = 1 − k1

k0
ν1 − k1

k0
= 0.244,

ν3 = 0.074,

ν4 = 0.022,

ν5 = 0.006,

ν6 = 0.002,

ν7 = 0.001,
7∑
i=0

νi = 1.996,

π0 =
(

7∑
0

νi

)−1

= 0.501,

πi = νiπ0, i = 1, 2, . . . , 7.

Thus we get

π0 = 0.501; π1 = 0.324; π2 = 0.122; π3 = 0.037;
π4 = 0.011; π5 = 0.003; π6 = 0.001; π7 = 0.000.

The mean number of customers in the system as t → ∞ can be determined either
from formula (5.2.31) or from the distribution π determined above. We get

L = E(Q) = 0.75.

Using Little’s law, L = λW , the mean system time can be obtained as

W = 0.75

0.5
= 1.5 time units.

Also, for the length of a busy period B, we have

E(B1) = 1

1 − 0.5
= 2 time units. Answer
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Example 5.2.2. In an automobile garage with a single mechanic, from the records
kept by the owner, the distribution of the number of vehicles arriving during the
service time of a vehicle is obtained as follows:

P(no new arrivals) = 0.5,

P (one new arrival) = 0.3,

P (two new arrivals) = 0.2.

If we assume that the arrival of vehicles for service follow a Poisson distribution, we
can model this system as anM/G/1 queue, even when we do not have a distribution
form for the service times. With this assumption, we get

k0 = 0.5; k1 = 0.3; k2 = 0.2

with E(number of arrivals during one service period) = 0.7 = traffic intensity ρ.
The computational method for the determination of the limiting distribution is the
most appropriate since no distribution form is available for the service time. Using
(5.2.15), we get

ν0 = 1; ν1 = 1; ν2 = 0.8; ν3 = 0.32;
ν4 = 0.128; ν5 = 0.051; ν6 = 0.021; ν7 = 0.008;
ν8 = 0.003; ν9 = 0.001; ν10 = 0.001.

Hence
∑10
i=0 νi = 3.333. Since π0 = (

∑10
i=0 νi)

−1 and πi = νiπ0, we get

π0 = 0.300; π1 = 0.300; π2 = 0.240; π3 = 0.096;
π4 = 0.038; π5 = 0.015; π6 = 0.006; π7 = 0.002;
π8 = 0.001; π9 = 0.000.

The mean of this distribution is obtained as

L = E(Q∗) = 1.353.

Using Little’s law, for the mean system time we get

W = 1.353

0.7
= 1.933 service time units.

Note that we use the mean service time as the unit time for the purpose of determining
the mean waiting time. Answer

Example 5.2.3. In a queueing system with RR service discipline, service is provided
for a fixed amount of time, called a quantum (Q), with every visit to the server, and
if the service time of a job is longer than Q, the customer is sent back to the end
of the queue to wait for its turn again. Clearly, such a discipline favors customers
with short service times. This example illustrates the procedure for the determination
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of the mean total time spent in the system by a customer in receiving service. This
time period is commonly called the response time in the computer science literature
(Coffman and Kleinrock (1968)).

Consider a single-server queueing system with arrivals in a Poisson process with
parameter λ. Let the service times have a geometric distribution

gi = (1 − σ)σ i−1, i = 1, 2, . . . , 0 < σ < 1, (5.2.57)

where gi is the probability that the service time consists of i quanta, each of lengthQ.
We are interested in the determination of the conditional mean response time (Wk)

of a customer requiring k quanta of service. The response time is made up of three
components: the service time of the customer in service at the time of the arrival, the
total service time of the customers waiting in queue at the time of the arrival, and the
service time of the arriving customer. The mean number of customers waiting or in
service at the time of the arrival is given by (5.2.27) as

L = ρ + λ2E(S2)

2(1 − ρ)
, (5.2.58)

where ρ = λE(S) is the traffic intensity with S denoting the service time and E(S2)

the second moment of the service time distribution. From the distribution (5.2.57),
we have

E(S) =
( ∞∑
i=1

igi

)
Q

= Q

1 − σ
, (5.2.59)

E(S2) = Q2
∞∑
i=1

i2gi

= Q2
∞∑
i=1

[i(i − 1)+ i]gi

= (1 − σ)Q2
∞∑
i=1

[i(i − 1)+ i]σ i−1

= (1 − σ)Q2[2σ(1 − σ)−3 + (1 − σ)−2]
= 1 + σ

(1 − σ)2
Q2. (5.2.60)

Substituting from (5.2.59) and (5.2.60) in (5.2.58), we get

L = ρ + ρ2(1 + σ)

2(1 − ρ)
, (5.2.61)

where ρ = λQ/(1 − σ).
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Let Wk(j) be the conditional expectation of the time spent in the system by an
arriving customer requiring k quanta of service when there are j customers in the
system. Then for the conditional mean response time, we have

Wk =
∞∑
j=0

pjWk(j), (5.2.62)

where {pj , j = 0, 1, 2, . . . } is the limiting distribution of the number of customers in
the system at an arrival epoch. Note that, because of the PASTA property discussed
earlier, the distribution {pj }∞j=0 is identical to the limiting distribution {πj }∞j=0 of
customers in the system soon after a departure epoch, and its mean value is given
by (5.2.61).

Because of the RR nature of service, we have to break down Wk(j) in terms of
the number of times the customer passes through service, which is k. Let Ui(j),
i = 1, 2, . . . , k, be the random variable denoting the time required for the ith pass,
assuming that the customer arrives when there are j customers in the system. For
simplicity, we shall suppress the argument j until its inclusion is necessary.

Suppose Ui = x, i ≥ 2. Then Ui+1 is made up of three components:

(i) the amount of time required to serve those who are ahead of the customer at the
ith pass; this is σ [( x

Q
)− 1]Q, where σ is the probability of a customer returning

for another quantum of service and x/Q is the number of quanta of service ahead
of the customer at the ith pass;

(ii) the amount of time needed to provide one quantum of service for those who
arrive during Ui ; and

(iii) the customer’s quantum of service.

Thus we get

E[Ui+1|Ui = x] = σ

(
x

Q
− 1

)
Q+ λxQ+Q, (5.2.63)

giving

E[Ui+1] = (λQ+ σ)E(Ui)+Q(1 − σ), i = 2, 3, . . . , k. (5.2.64)

By successive iteration, from (5.2.64) we get

E[Ui] = αi−2E(U2)+Q(1 − σ)
1 − αi−2

1 − α
, i = 2, 3, . . . , k, (5.2.65)

where we have written λQ+ σ = α. Also, in the first pass for U1(j), we have

U1(j) = (time to complete the service in progress)

+ (total time to serve j − 1 customers)

+ (one quantum of service for the arriving customer)

= ρ

(
Q

2

)
+ (j − ρ)Q+Q
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=
(

1 − ρ

2

)
Q+ jQ. (5.2.66)

The term ρ(
Q
2 ) leading to (5.2.66) represents the mean of a uniform distribution

in (0,Q) with ρ as the probability of finding a customer in service. Using similar
arguments,

E(U2(j)) = λQE(U1)+ σ(jQ)+Q. (5.2.67)

Now

Wk(j) =
k∑
i=1

E(Ui(j)). (5.2.68)

Substituting from (5.2.65) and (5.2.67), we get

Wk(j) = E(U1)+
k∑
i=2

[
αi−2(λQE(U1)+Q(σj + 1))+Q(1 − σ)

1 − αi−2

1 − α

]

= E(U1)+ [λQE(U1)+Q(σj + 1)]1 − αk−1

1 − α

+ Q(1 − σ)

1 − α

[
(k − 1)− 1 − αk−1

1 − α

]

= E(U1)+ (k − 1)Q

1 − ρ
+Q

[
λE(U1)+ σj − ρ

1 − ρ

]
1 − αk−1

1 − α
. (5.2.69)

In deriving (5.2.69), we have used the following simplifications:

α = λQ+ σ ; ρ = λQ

1 − σ
; 1 − ρ = 1 − σ − λQ

1 − σ
.

Taking expectations as in (5.2.62), for the conditional mean response time we get

Wk = W1 + (k − 1)Q

1 − ρ
+Q

[
λW1 + σL− ρ

1 − ρ

]
1 − αk−1

1 − α
, k ≥ 1, (5.2.70)

with W1 = (1 − ρ
2 )Q+ LQ and L given by (5.2.61).

When the service time distribuion is exponential, µe−µx(x > 0), we get σ =
e−λQ and

gi = (1 − e−λQ)e−(i−1)λQ, i = 1, 2, . . . . (5.2.71)

For the ramifications of makingQ very small and other variations, readers may refer
to Coffman and Denning (1973).

Example 5.2.4. The storage in a warehouse is such that the most recent item stored
is taken out first. This is an example of a last-come, first-served (LCFS) service
discipline if the process of replenishment of the item and its disposal is looked upon
as a queueing process. Let the replenishment process be Poisson with parameter λ
and let B(·) be the distribution function of the interarrival times of demands.
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We want to determine the average time an item stays in the warehouse before it
is disposed of.

Considering the interdemand times as the service times of the queueing system,
we have here an M/G/1 queue with an LCFS service discipline.

Since the customer arriving last gets served first in an LCFS queueing system, the
amount of time the customer spends while waiting is the sum of the remainder of the
service that is in progress and the length of the busy period initiated by the number
of customers who arrive during that period.

When the service time distribution has a general form B(·) as t → ∞, the re-
mainder of the service time at the time of the customer arrival can be considered to
be the forward recurrence time of a renewal process, the density function of which
was briefly introduced in (5.2.40). We have

r(x) = lim
t→∞ rt (x) = 1

E(S)
[1 − B(x)], (5.2.72)

where we have used S to denote the service time random variable. The mean of this
distribution can be obtained as follows:∫ ∞

0
xr(x)dx = 1

E(S)

∫ ∞

0
x[1 − B(x)]dx

= 1

E(S)

∫ ∞

x=0
x

[∫ ∞

y=x
dB(y)

]
dx

= 1

E(S)

∫ ∞

y=0

[∫ y

x=0
xdx

]
dB(y)

= 1

E(S)

∫ ∞

y=0

y2

2
dB(y)

= E(S2)

2E(S)
. (5.2.73)

With the Poisson arrival rate λ, the expected number of customers arriving during the
remainder of the service time can be given as

λE(S2)

2E(S)
. (5.2.74)

As described earlier, the customer’s mean waiting time Wq is the sum of the mean
length of the remainder of the service time and the mean length of the busy period
initiated by the number of customers who arrive during that period. Using (5.2.51),
we get

Wq = λE(S2)

2E(S)
× 1

1 − ρ
· E(S)

= λE(S2)

2(1 − ρ)
. (5.2.75)
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We note here that the remainder of the service time of the customer in service gets
absorbed in the busy periods initiated by the arrivals.

The average time the item stays in the warehouse is the time spent in the system
W = Wq + E(S). We have

W = E(S)+ λE(S2)

2(1 − ρ)
. (5.2.76)

Comparing these results with (5.2.42) and (5.2.43), we note that in this example
we have shown that the mean waiting time (and also the mean queue length) of the
customer in the system is the same whether the queue discipline is FCFS or LCFS.

5.3 The Queue G/M/1

Let customers arrive at time points t0 = 0, t1, t2, . . . and be served by a single server.
Let Zn = tn+1 − tn, n = 1, 2, 3, . . . , be i.i.d. random variables with distribution
functionA(·)with mean a. Also, let the service time distribution be exponential with
mean 1/µ. Note that this system has been tranditionally represented by the symbol
GI/M/1 (GI = general independent). We use the symbolic representation G/M/1
for symmetry with the system M/G/1. (Also, the I in GI does not really add any
additional information.)

LetQ(t) be the number of customers in the system at time t and defineQ(tn−0) =
Qn, n = 1, 2, . . . . Thus Qn is the number in the system just before the nth arrival.
Define Xn as the number of potential service completions during the interarrival
period Zn. (Note that we use the word “potential’’ to indicate that there may not be
Xn actual service completions, if the number of customers in the system soon after
tn is less than that number.) Let {bj , j = 0, 1, 2, . . . } be the distribution of Xn.
We have

bj = P(Xn = j) =
∫ ∞

0
e−µt (µt)

j

j
dA(t). (5.3.1)

Now consider the relationship between Qn and Qn+1. We have

Qn+1 =
{
Qn + 1 −Xn+1 if Qn + 1 −Xn+1 > 0,

0 if Qn + 1 −Xn+1 ≤ 0.
(5.3.2)

Note that sinceXn+1 is defined as the potential number of departures,Qn+1−Xn+1
can be < 0. Clearly, Qn+1 does not depend on any random variable with an earlier
index parameter than n; hence {Qn, n = 0, 1, 2, . . . } is a Markov chain imbedded
in the queue length process. From (5.3.2), we get the transition probability

Pij = P(Qn+1 = j |Qn = i)

=
{
P(Xn+1 = i − j + 1) if j > 0,

P (Xn+1 ≥ i + 1) if j = 0,
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giving

Pij = bi−j+1, j > 0,

Pi0 =
∞∑

r=i+1

br . (5.3.3)

The transition probability matrix takes the form

P =

⎡
⎢⎢⎢⎣

0 1 2 3 . . .

0
∑∞

1 br b0
1

∑∞
2 br b1 b0

2
∑∞

3 br b2 b1 b0 . . .
...

...
...

...

⎤
⎥⎥⎥⎦. (5.3.4)

For the Markov chain to be irreducible, b0 > 0 and b0 + b1 < 1. (These two
conditions can be justified in much the same way as for the queue M/G/1.) We can
easily determine that the Markov chain is aperiodic. Let

φ(θ) =
∫ ∞

0
e−θt dA(t), Re(θ) > 0,

be the Laplace–Stieltjes transform ofA(·). Using φ(θ), the PGF of {bj } is obtained as

β(z) =
∞∑
j=0

bj z
j , |z| ≤ 1,

=
∫ ∞

0
e−(µ−µz)t dA(t)

= φ(µ− µz).

Following the definitions given in (5.2.8), we get (using generic symbols X and Z
for Xn and Zn)

E(Z) = β ′(1) = −µφ′(0) = aµ. (5.3.5)

We define the traffic intensity ρ = (arrival rate)/(service rate). From (5.3.5), we get

ρ = 1

aµ
. (5.3.6)

It can be shown that the Markov chain is positive recurrent when ρ < 1, null recurrent
when ρ = 1, and transient when ρ > 1. (See the discussion under M/G/1 for the
implications of these properties. Also, a proof is provided later in (5.3.31) and the
remarks following that equation.)

The n-step transition probabilities P (n)ij (i, j = 0, 1, 2, . . . ) of the Markov chain
{Qn} are obtained as elements of the nth power of P. The observations made under
M/G/1 regarding the behavior of Pn hold in theG/M/1 case as well. For analytical
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expressions for P (n)ij , the readers may refer to the same references, Takács (1962),
Prabhu and Bhat (1963a), and Prabhu (1965a). In practice, however, if the state space
can be restricted to a manageable size depending on the computer power, successive
multiplication of P to obtain its power Pn is likely to be the best course of action.

Limiting distribution

Let π = (π0, π1, π2, . . . ) be the limiting probabilities defined asπj = limn→∞ P
(n)
ij .

Based on Theorem 5.2.1, this limiting distribution exists when the Markov chain is
irreducible, aperiodic, and positive recurrent, i.e., when ρ < 1. Theorem 5.2.2
provides the method to determine the limiting distribution. Thus from (5.2.12), we
have the equations

πj =
∞∑
i=0

πiPij , j = 0, 1, 2, . . . ,

∞∑
0

πj = 1.

Using Pij s from (5.3.4), we get

π0 =
∞∑
i=0

πi

⎛
⎝ ∞∑
r=i+1

br

⎞
⎠ ,

π1 = π0b0 + π1b1 + π2b2 + · · · ,
π2 = π1b0 + π2b1 + π3b2 + · · · ,

...

πj =
∞∑
r=0

πj+r−1br (j ≥ 1). (5.3.7)

The best computational method for the determination of the limiting distribution
seems to be the direct matrix multiplication to get Pn for increasing values of n until
the rows can be considered to be reasonably identical. The computational technique
suggested for M/G/1 (see (5.2.15)) does not work because of the lower triangular
structure of P. As we will see later in the discussion of the finite queue G/M/1/K ,
unless we start with a large enoughK , restricting the state space to a finite value alters
the last row of the matrix on which the technique has to be anchored.

In this case, however, (5.3.7) can be easily solved by the use of finite difference
methods. This procedure is mathematically simple as well as elegant. (For back-
ground in techniques for solving finite difference equations, see standard texts on the
subject, e.g., Hildebrand (1968) and Boole (1970).)

Define the finite difference operator D as
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Dπi = πi+1. (5.3.8)

Using (5.3.8), equation (5.3.7) can be written as

πj−1(D − b0 −Db1 −D2b2 −D3b3 − · · · ) = 0. (5.3.9)

Using finite difference methods, a nontrivial solution to (5.3.9) is obtained by solving
its characteristic equation

D − b0 −Db1 −D2b2 − · · · = 0,

D =
∞∑
j=0

bjD
j ,

D = β(D). (5.3.10)

Hence the solution to (5.3.10) should satisfy the functional equation

z = β(z). (5.3.11)

In (5.3.10) and (5.3.11), we have used the fact that β(z) is the PGF of {bj , j =
0, 1, 2, . . . }.

To obtain roots of (5.3.11), consider two equations y = z and y = β(z). The
intersections of these two equations give the required roots.

We also have the following properties:

• β(0) = b0 > 0; β(1) =∑∞
0 bj = 1; β ′(1) = ρ−1.

• β ′′(z) = 2b2 + 6b3z+ · · · > 0 for z > 0.

Hence β ′(z) is monotone increasing and therefore β(z) is convex.
Of the two equations, y = z is a straight line passing through 0 and since β(0) =

b0 > 0, β(1) = 1, and β(z) is convex, equations y = z and y = β(z) intersect at
most twice, once at z = 1. Let ζs be the second root. Whether ζs lies to the left or to
the right of 1 is dependent on the value of the traffic intensity ρ.

Case 1: ρ < 1. When ρ < 1, β ′(1) > 1; then y = β(z) intersects y = z approaching
from below at z = 1. But b0 > 0. Hence ζs < 1.

Case 2: ρ > 1. When ρ > 1, β ′(1) < 1. Then y = β(z) intersects y = z

approaching from above at z = 1. Hence ζs > 1.

Case 3: ρ = 1. In this case, β ′(1) = 1 and y = z is a tangent to y = β(z) at z = 1.
This means that ζs and 1 coincide.

Let ζ be the least positive root. We have ζ < 1 if ρ < 1 and ζ = 1 if ρ ≥ 1.
This root is used in the solution of the finite difference equation (5.3.9). (Note that
our solution is in terms of probabilities that are ≤ 1, so the root we use must be ≤ 1
as well.)

Going back to the difference equation (5.3.9), we can say that

πj = cζ j (j > 0) (5.3.12)
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is a solution. Since ζ < 1,
∑∞

0 πj = 1, we get

∑
j

πj = c

∞∑
j=0

ζ j = c

1 − ζ
= 1,

giving
c = 1 − ζ.

Substituting this back into (5.3.12), we get

πj = (1 − ζ )ζ j , j = 0, 1, 2, . . . , (5.3.13)

as the limiting distribution of the state of the system in the queue G/M/1.
Note that ζ is the root of the equation

z = φ(µ− µz). (5.3.14)

In most cases, the root ζ of (5.3.14) has to be determined using numerical techniques.
For efficient root-finding algorithms, readers may refer to Chaudhry (1992) and the
references cited therein.

With the geometric structure for the limiting distribution (5.3.13), the mean and
variance of the number in the system, say QA, are easily obtained. We have (the
superscript A denotes arrival point restriction)

LA = E(QA) = ζ

1 − ζ
; LAq = ζ 2

1 − ζ
,

V (QA) = ζ

(1 − ζ )2
. (5.3.15)

It is important to note that the imbedded Markov chain analysis gives the properties
of the number in the system at arrival epochs. (For convenience, we have used the
number before the arrivals.) As pointed out under the discussion of theM/G/1 queue,
the limiting distributions of the number of customers in the system at arrival epochs,
at departure epochs, and at arbitrary points in time are the same only when the arrivals
occur as a Poisson process. Otherwise, we have to make appropriate adjustments to
the distribution derived above. In this context, results derived in Prabhu (1965a) and
Bhat (1968) are worth mentioning. Writing pj = limt→∞ P [Q(t) = j ], whereQ(t)
is the number at an arbitrary time t , these authors arrive at the following explicit
expression for the limiting distribution {pj , j = 0, 1, 2, . . . }, when ρ < 1:

p0 = 1 − ρ,

pj = ρ(1 − ζ )ζ j−1, j ≥ 1, (5.3.16)

From (5.3.16), the results below follow on mean queue length:

L = ρ

1 − ζ
; Lq = ρζ

1 − ζ
. (5.3.17)
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As an example, consider the queue M/M/1. Let A(t) = 1 − e−λt (t ≥ 0). Then
we have

φ(θ) = λ

λ+ θ
,

φ(µ− µz) = λ

λ+ µ− µz
.

Now the functional equation (5.3.11) takes the form

z = λ

λ+ µ− µz
,

−µz2 + (λ+ µ)z− λ = 0. (5.3.18)

This quadratic equation has two roots, 1 and λ
µ

= ρ. Substituting ρ in place of ζ in
(5.3.16)–(5.3.17), we have the limiting distribution and mean values for the queue
M/M/1, which match with the results derived in Chapter 4.

Waiting time

To determine the distribution of the waiting time of a customer, we need the distribu-
tion of the number of customers in the system at the time of that customer’s arrival.
The limiting distribution derived in (5.3.13) is, in fact, an arrival point distribution in
G/M/1. Furthermore, its structure is the same as the geometric distribution we had
for M/M/1, with ζ taking the place of ρ of the M/M/1 result. The service times
of customers in the system are exponential with rate µ, also as in M/M/1. Hence
the waiting time results for G/M/1 have the same forms as those for M/M/1 with
ζ replacing ρ. Without going into the details of their derivation, we can write

Fq(t) = P(Tq ≤ t) = 1 − ζe−µ(1−ζ )t ,

Wq = E[Tq ] = ζ

µ(1 − ζ )
,

V [Tq ] = ζ(2 − ζ )

µ2(1 − ζ )2
. (5.3.19)

The time T spent by the customer in the system is obtained by adding service time
to Tq . We get

W = E(T ) = E(Tq)+ 1

µ
= 1

µ(1 − ζ )
,

V (T ) = V [Tq + S] = 1

µ2(1 − ζ )2
. (5.3.20)

Busy cycle

A busy cycle of aG/M/1 queue, when modeled as an imbedded Markov chain, is the
number of transitions the process takes to go from state 0 to state 0 for the first time.
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This interval is also known as the recurrence time of state 0. The busy cycle includes
the busy period, when the server is continuously busy, and the idle period, when there
is no customer in the system. Let R denote the number of transitions in a busy cycle.
(Note that we are using a generic symbol R, with the assumption that all such busy
cycles have the same distribution.) Let h(n)j be the probability that the number of
customers just before the nth arrival in a busy cycle is j . Working backward from n,
considering the arrival time of the first of those j customers, we can write, for j ≥ 1,

h
(j)
j = b

(j)

0 ,

h
(n)
j =

∑
r

h
(n−j)
r b

(j)
r , n ≥ j, (5.3.21)

where b(j)r is the j -fold convolution of br with itself. Looking back to relations
(5.2.47), we see that (5.3.21) is structurally similar to (5.2.47) with h(n)j replacing

g
(n)
i and b(i)r replacing k(i)r . Define

Hj(z) =
∞∑
n=j

h
(n)
j zn, |z| ≤ 1. (5.3.22)

Using arguments similar to those used in determining G(z), we can show that

Hj(z) = [η(z)]j , j ≥ 1, (5.3.23)

where η(z) is the unique root in the unit circle of the equation

ω = zβ(ω). (5.3.24)

The distribution of R is given by h(n)0 . Considering the transitions during the nth
transition interval, we have

h
(n)
0 =

n−1∑
r=1

h(n−1)
r

⎛
⎝ ∞∑
k=r+1

bk

⎞
⎠ ,

h
(1)
0 =

∞∑
1

bk. (5.3.25)

Taking generating functions,

H0(z) =
∞∑
n=1

h
(n)
0 zn

=
( ∞∑

1

bk

)
z+

∞∑
n=2

n−1∑
r=1

h(n−1)
r

⎛
⎝ ∞∑
k=r+1

bk

⎞
⎠ . (5.3.26)
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The right-hand side of (5.3.26) can be simplified as follows. For ease of notation,
write

∑∞
r+1 bk = βr . The right-hand-side of (5.3.26) simplifies to

β0z+ z

∞∑
n=2

zn−1
n−1∑
r=1

βrh
(n−1)
r

= z

⎡
⎣β0 +

∞∑
r=1

βr

∞∑
n=r+1

h(n−1)
r zn−1

⎤
⎦

= z

[ ∞∑
r=0

βr [η(z)]r
]
,

where we have used (5.3.22) and (5.3.23). But

∞∑
r=0

βrz
r = 1 − β(z)

1 − z

since

∞∑
r=0

zr
∞∑

j=r+1

bj =
∞∑
j=1

bj

j−1∑
r=0

zr

=
∞∑
j=1

bj

⎛
⎝ ∞∑
r=0

−
∞∑
r=j

⎞
⎠ zr

=
∞∑
j=1

bj

⎡
⎣ 1

1 − z
− zj

∞∑
r=j

zr−j
⎤
⎦

= 1 − β(z)

1 − z
.

Thus we get

H0(z) = z− zβ[η(z)]
1 − η(z)

.

But η(z) is such that
η(z) = zβ[η(z)].

Hence

H0(z) = z− η(z)

1 − η(z)
. (5.3.27)

Letting z → 1 in H0(z), we can show that R is a proper random variable (i.e.,
P(R < ∞)) when ρ ≤ 1. The expected length of the busy cycle (recurrence time of
state 0) is obtained as H ′

0(z). We have

H ′
0(z) = [1 − η(z)][1 − η′(z)] + [z− η(z)]η′(z)

[1 − η(z)]2
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= 1 − η′(z)
1 − η(z)

+ [z− η(z)]η′(z)
[1 − η(z)]2

. (5.3.28)

To simplify (5.3.28) further, we need values for η(1) and η′(1). Referring back to
the functional equation (5.3.24), we find that for z = 1, η(1) is the solution of the
functional equation (5.3.11) which we have found to be the least positive root ζ (< 1
or = 1). Hence

η(1) = ζ if ρ < 1 and = 1 if ρ ≥ 1. (5.3.29)

Consider η(z) = zβ[η(z)]. We get

η′(z) = zβ ′[η(z)]η′(z)+ β[η(z)],
η′(z)[1 − zβ ′[η(z)]] = β[η(z)].

Letting z → 1 and using (5.3.29),

η′(1)[1 − β ′(ζ )] = β(ζ ),

η′(1) = β(ζ )

1 − β ′(ζ )
. (5.3.30)

Substituting from (5.3.29) and (5.3.30) in (5.3.28),

lim
z→1

H ′
0(z) =

[
1 − β(ζ )

1 − β ′(ζ )

]
1

1 − ζ
+
[
(1 − ζ )

β(ζ )

1 − β ′(ζ )

]
× 1

(1 − ζ )2

= 1

1 − ζ
< ∞ if ρ < 1. (5.3.31)

Similarly, we can also show that H ′
lim z→1(z) = ∞ when ρ = 1.

We note that these results establish the classification properties of positive recur-
rence, null recurrence, and transience of the imbedded Markov chain.

The mean length of the busy cycle is obtained as the product (expected number
of transitions)× (mean interarrival time),

E[busy cycle] = E(Z)

1 − ζ
. (5.3.32)

Since the busy period terminates during the last transition of the Markov chain and
the transition interval (interarrival time) has a general distribution, the determination
of the mean busy period is too complicated to be covered in this text.

The queue G/M/s

The imbedded Markov chain analysis of the queueG/M/1 can be easily extended to
the multiserver queue G/M/s. Since the Markov chain is defined at arrival points,
the structure of the process is similar to that of G/M/1, except for the transition
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probabilities. Retaining the same notation, for the relationship between Qn and
Qn+1, we get

Qn+1 =
{
Qn + 1 −Xn+1 if Qn + 1 −Xn+1 > 0,

0 if Qn + 1 −Xn+1 ≤ 0,

whereXn+1 is the total number of potential customers who can be served by s servers
during an interarrival time with distribution A(·).

To determine transition probabilities Pij (i, j = 0, 1, 2, . . . ), we have to consider
three cases for the initial value i and the final value j : i + 1 ≥ j ≥ s; i + 1 ≤ s and
j ≤ s; and i+1 > s but j < s. Note that whenQn = i, the transition starts with i+1,
and j is always ≤ i + 1. Since the service times are exponential with density µe−µx
(x > 0), the probability that a server will complete service during (0, t] is 1 − e−µt
and the probability that the service will continue beyond t is e−µt . Incorporating
these concepts along with the assumptions that the servers work independently of
each other, we get the following expressions for Pij .

Case 1: i + 1 ≥ j ≥ s.

Pij =
∫ ∞

0
e−sµt (sµt)

i+1−j

(i + 1 − j)!dA(t). (5.3.33)

This represents i+1−j service completions during an interarrival period, when all s
servers are busy. See the discussion underM/M/s (see (4.3.1)) to justify the service
rate sµ when all servers are busy.

Case 2: i + 1 ≤ s and j ≤ s.

Pij =
(

i + 1

i + 1 − j

)∫ ∞

0
(1 − e−µt )i+1−j e−jµtdA(t). (5.3.34)

This expression takes into account the event in which i+1− j out of i+1 customers
complete service during (0, t] while j customers are still being served. Because of
the independence of servers among one another, each service can be considered a
Bernoulli trial and the outcome has a binomial distribution with success probability
1 − e−µt .
Case 3: i + 1 > s but j < s.

Pij =
∫ ∞

t=0

∫ t

τ=0
e−sµτ (sµt)

i−s

(i − s)! sµ
(

s

s − j

)
[1 − e−µ(t−τ)]s−j e−jµ(t−τ)dτdA(t).

(5.3.35)
Initially, i+ 1 − s customers complete service with rate sµ, and then s− j out of the
remaining s complete their service independently of each other.

The transition probability matrix of the imbedded chain has a structure similar
to the one displayed in (5.3.4). Because of the structure of the Pij values under
cases 2 and 3, the finite difference solution given earlier for the limiting distribution
needs major modifications. Interested readers are referred to Gross and Harris (1998),
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pp. 256–258, or Takács (1962). Considering the complexities of these procedures,
the computational method developed for G/M/1/K could be advantageous in this
case if it is possible to work with a finite limit for the number of customers in the
system.

The queue G/M/1/K

Consider theG/M/1 queue described earlier with the restriction that the system can
accommodate only K customers at a time. Since the imbedded chain is defined just
before an arrival epoch, the number of customers in the system soon after the arrival
epoch is K , whether it is K or K − 1 before that time point. If it is K before, the
arriving customer is not admitted to the system. Thus in place of (5.3.2), we have
the relation

Qn+1 =
{

min(Qn + 1 −Xn+1,K) if Qn + 1 −Xn+1 > 0,

0 if Qn + 1 −Xn+1 ≤ 0.
(5.3.36)

Using probabilities bj , j = 0, 1, 2, . . . , defined in (5.3.1), the transition probability
matrix P can be displayed as

P =

⎡
⎢⎢⎢⎢⎢⎣

0 1 2 . . . K − 1 K

0
∑∞

1 br b0 0
1

∑∞
2 br b1 b0

...
...

...

K − 1
∑∞
K br bK−1 bK−2 . . . b1 b0

K
∑∞
K br bK−1 bK−2 . . . b1 b0

⎤
⎥⎥⎥⎥⎥⎦. (5.3.37)

Note that the last two rows of the matrix P are identical because the Markov chain
effectively starts off with K customers from either of the states K − 1 and K .

Let π = (π0, πi, . . . , πK) be the limiting distribution of the imbedded chain.
Writing out πj =∑K

i=0 πiPij , we have

π0 =
K∑
i=0

πi

⎛
⎝ ∞∑
r=i+1

br

⎞
⎠ ,

π1 = π0b0 + π1b1 + · · · + πK−1bK−1 + πKbK−1,

π2 = π1b0 + π2b1 + · · · + πK−1bK−2 + πKbK−2,

...

πK−1 = πK−2b0 + πK−1b1 + πKb1,

πK = πK−1b0 + πKb0. (5.3.38)

If the value of K is not too large, solving these simultaneous equations in πj ,
j = 0, 1, 2, . . . , K , along with the normalizing condition

∑K
0 πj = 1 directly, could
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be computationally practical. Or, obtaining Pn for increasing values of n until the row
elements are close to being identical will also give the limiting distribution under these
circumstances. An alternative procedure is to develop a computational recursion as
done in the case of the M/G/1 queue (see (5.2.15)).

To do so we start with the last equation of (5.3.38) and define

νi = πi

πi−1
, i = 1, 2, . . . , K.

We have

πi = νiπi−1

= νiνi−1πi−2

= νiνi−1 · · · νiπ0. (5.3.39)

From the last equation in (5.3.38), we get

νK = b0 + νKb0,

νK = b0

1 − b0
.

From the next-to-last equation in (5.3.38), we get

νK−1 = b0 + νK−1b1 + νKνK−1b1,

νK−1 = b0

1 − b1 − νKb1
,

and so on.
Since

∑K
0 πj = 1, from (5.3.39), we get

(1 + ν1 + ν1ν2 + · · · + ν1ν2 · · · νK)π0 = 1

and hence

π0 = 1

1 +∑K
i=1�

i
r=1νr

. (5.3.40)

Substituting these back in (5.3.39), we get πj , j = 0, 1, 2, . . . , K .
Note that in developing the recursion we have defined νis as the ratio of consec-

utive πis, unlike the case of (5.2.15). We do so for the reason that the πj s decrease
in value as j increases and dividing by a very small πj is likely to result in large
computational errors. Looking at the structure of the limiting distribution ofG/M/1,
the ratio of consecutive terms of π is likely to be close to the constant ζ .

Example 5.3.1. In a service center job arrivals occur in a deterministic process, one
job per one unit of time. Service is provided by a single server with an exponential
service time distribution with rate 1.5 jobs per unit time.

In order to determine the limiting distribution, using aD/M/1 model, we note that
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φ(θ) =
∫ ∞

0
e−θt dA(t)

= e−θ .

With an exponential service time distribution, we have µ = 1.5. Hence

β(z) = φ(µ− µz)

= e−1.5(1−z).

The limiting distribution is expressed in terms of ζ , which is the unique root in the
unit circle of the functional equation

z = e−1.5(1−z).

We can easily solve this equation by successive substitution starting wtih z = 0.4.
We get the results shown in Table 5.3.1.

Table 5.3.1. Results for Example 5.3.1.

z β(z)

0.400 0.407
0.407 0.411
0.411 0.413
0.413 0.415
0.415 0.416
0.416 0.416

We use ζ = 0.416 in the limiting distribution π = (π0, π1, π2, . . . ) given by
(5.3.13). We get

π0 = 0.584; π1 = 0.243; π2 = 0.101; π3 = 0.042;
π4 = 0.017; π5 = 0.007; π6 = 0.003; π7 = 0.001. Answer

Example 5.3.2. Consider the service center of Example 5.3.1 with a capacity restric-
tion of K customers in the system.

In this case, we use the computational recursion developed in (5.3.39) for two
values: K = 4 and 7.

The distribution of the potential number of customers served during an interarrival
period is Poisson with mean 1.5. We have

b0 = 0.223; b1 = 0.335; b2 = 0.251; b3 = 0.125;
b4 = 0.047; b5 = 0.015; b6 = 0.003; b7 = 0.001.

K = 4: Using νi = πi/πi−1 in (5.3.38) with K = 4, we get
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ν4 = b0[1 − b0]−1,

ν3 = b0[1 − b1 − ν4b1],
ν2 = b0[1 − b1 − ν3b2 − ν4ν3b2],
ν1 = b1[1 − b1 − ν2b2 − ν3ν2b3 − ν4ν3ν2b3]−1.

Substituting appropriate values of bj , for j = 0, 1, 2, 3, we get

ν1 = 0.413; ν2 = 0.398; ν3 = 0.392; ν4 = 0.287.

But we have

π4 = ν4ν3ν2ν1π0,

π3 = ν3ν2ν1π0,

π2 = ν2ν1π0,

π1 = ν1π0.

Using
∑4

0 πj = 1, we get

π0 = [1 + ν1 + ν1ν2 + ν1ν2ν3 + ν1ν2ν3ν4]−1

= 0.602.

Thus we have the limiting distribution

π0 = 0.602; π1 = 0.249; π2 = 0.099; π3 = 0.039; π4 = 0.001.
Answer

K = 7: Looking at the structure of the νis, it is clear that ν4, . . . , ν1 determined
above, in fact, yield ν7, . . . , ν4, when K = 7. Extending the equations to determine
the remaining νs, viz., ν3, ν2, and ν1, we get the following set of values:

ν7 = 0.287; ν6 = 0.392; ν5 = 0.398; ν4 = 0.413;
ν3 = 0.415; ν2 = 0.416; ν1 = 0.417.

Converting these back to πs, we get

π0 = 0.585; π1 = 0.244; π2 = 0.101;
π3 = 0.042; π4 = 0.017; π5 = 0.007;
π6 = 0.003; π7 = 0.001.

A comparison of these values with those obtained for Example 5.3.1 shows that
whenK = 7 the effect of the capacity limit is negligible for the long-run distribution
of the process.



112 5 Imbedded Markov Chain Models

5.4 Exercises

1. Specialize the mean waiting time results (5.2.42) and (5.2.43) when the service
time distribution is (a) deterministic (constant service time) and (b) Erlang Ek .

2. Obtain the transition probability matrices P of the Markov chains representing
the number of customers in the system at epochs at which service completion
occurs in (a) Example 5.2.1 and (b) Example 5.2.2.

Determine the limiting distributions of the queueing systems in (a) and (b) by
obtaining Pn for large enough n.

3. Obtain the transition probability matrix P of the Markov chain representing the
number of customers at arrival epochs in the problem described in Example 5.3.1.

Determine the limiting distribution of the queueing system by obtaining Pn for
large enough n.

4. A mail-order business receives orders for various items of merchandise in a
Poisson process at the rate of 15/hour. The amount of time required to fill an
order has a mean of 3.5 minutes and variance 2.5 minutes2. Determine the
expected number of orders waiting to be filled. Also, determine the mean length
of the period from the time the order is received until it is filled.

How much of an improvement in service can be accomplished (a) if the length
of service time is shortened to 3 minutes without changing the variance or (b) if
the variance of service time is reduced to 2 minutes2 without altering the mean?

5. (a) Cars arrive at a single station carwash at the rate of 15 per hour. The automatic
carwash is set to take up exactly 3 minutes. Assuming the arrivals are in a
Poisson process, determine (1) the expected number of cars waiting for wash
at any time and (2) the expected waiting time of each automobile.

(b) The owner of the carwash wants to reduce the waiting time by shortening the
amount of time taken for each wash. However, a quick survey of customers
reveals that a third of them would like to have a longer wash. To satisfy
their need he sets up two wash times, 5 minutes and 2.5 minutes, for the two
groups. Both groups will pass through the same station. With this change, has
he improved the situation or worsened it? Determine the expected number
of cars waiting and the mean waiting time in the long run.

6. In a doctor’s office, appointments to see the doctor are made at 15-minute in-
tervals. But the amounts of time the doctor spends with her patients are mostly
less than 15 minutes, although some of them may take much longer. It has been
found that these times can be represented by an exponential distribution with
mean 12 minutes. Assuming steady state, determine the expected number of
patients in the waiting room at any time. Also, determine the mean amount of
time a patient waits at the doctor’s office per visit.

Suppose the office personnel and the doctor decide to take breaks when there are
no customers in the system. During a 7-hour workday, how often will they be
able to take such breaks?
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7. At a taxi stop on a busy street, the interarrival times of taxis dropping off pas-
sengers (and then being ready for a pickup) have a mean of 5 minutes with a
standard deviation of 1 minute. The taxis are not allowed to wait for customers at
the stop. Customers arrive at the stop in a Poisson process once every 6 minutes
on average.
(a) Determine the expected number of customers waiting when a taxi leaves

the stop.
(b) What is the probability that there would be no waiting customer when a taxi

leaves the stop?
(c) Determine the mean waiting time of a customer.

8. In Example 5.2.3, let the time be discretized into segments, each of Q units of
time in length. Assume that the arrivals occur at the end of each such interval with
probability λQ. The service times have a geometric distribution as described in
(5.2.57) and the queue discipline is RR as described in the example. Following
the same arguments as in the example, derive the conditional mean response time
Wk corresponding to the result (5.2.70).

9. In the computer system model of Exercise 9 of Chapter 1, the following numerical
value and distributional assumptions are made. Determine the average response
time for the system.
(a) Arrivals are in a Poisson process with rate 1 per second.
(b) The CPU time of the job (for the first time or after I/O use) is exponential

with mean 0.1 second.
(c) The three phases of disk service have the following characteristics:

• Seek time: Exponentially distributed with mean 0.03 second.
• Latency time: Uniformly distributioned with mean 0.01 second.
• Transfer time: Constant = 0.01 second.

(iv) P(a job will need disk service) = 0.8.

10. The memory disk in a computer is organized into tracks and sectors with a read–
write head per track. Requests for the use of the memory disk arrive in a Poisson
process with rate λ. Let the disk rotation time be R units and the number of
sectors per track beK . Determine the mean response time of a request under the
following two alternatives:
(a) The requests follow a single queue and are handled on an FCFS basis. Assume

that the duration of service can take any of the K equal probability values
iR
K
(i = 1, 2, . . . , K).

(b) Each sector has its own queue and the requests select the K sectors with
equal probability. Once a request has been handled, the next in queue must
wait for the sector to come around again during the next rotation.

(See Krakowiak (1988).)

11. In the RR discipline model of Example 5.2.3, if we let the quantum Q → 0, the
resulting discipline is a processor-sharing (PS) service discipline. This is because
when Q → 0, it is as if service is provided simultaneously to all customers in
the system.
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LettingQ → 0 in Example 5.2.3, show that the mean response time in a PS system
with Poisson arrivals and any arbitrary service time distribution is given by

W = 1

µ(1 − ρ)
,

where 1/µ is the mean service time and ρ = λ
µ

is the traffic intensity.

(Hint: When Q → 0, α and σ → 1 and L → ρ
1−ρ . Set S

Q
= k, where S is the

service time requested by the customer.)
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Extended Markov Models

The queueing systems discussed in the last two chapters were devoid of any features
such as group arrivals, group service, priority service, etc., that would make modeling
difficult. In this chapter we introduce them in a limited sense so that Markov process
modeling is still possible by extending the models as well as the analytical procedures.

6.1 The Bulk Queue M(X)/M/1

The queueing systems discussed in the previous chapters assume that the customers
arrive one at a time. There are many situations where customers arrive in groups,
e.g., customer arrivals in restaurants and voice or data traffic segmented as packets
in a communication system. Queueing systems in which customer arrivals and/or
service occur in groups are known as bulk queues in the literature.

Let customers arrive in groups of sizeX, where, in general,X is a random variable
assuming integer values greater than zero. Let the group arrivals occur in a Poisson
process with rate λ and let the customer service be provided one at a time with an
exponential service time distribution with rateµ. For simplicity, we use the symbolic
notation M(X)/M/1 to signify this system.

Let dk = P(X = k), k = 1, 2, . . . , be the distribution of the size of the arriving
group of customers. We assume that the group size is independent of other charac-
teristics of the system. Thus whenever an arrival occurs, the number of customers in
the system increases by the size of the group.

Let Q(t) be the number of customers in the system at time t , and let Q represent
Q(t) as t → ∞. Because Q(t) increases by the arriving group size at arrival points,
{Q(t)} is a modified birth-and-death process in which increases in the state space can
occur by more than 1. Let pn = P(Q = n), n = 0, 1, 2, . . . . Making appropriate
modifications to the state balance equations for M/M/1 given in (4.2.3), we have

λp0 = µp1,

(λ+ µ)pn = λ
∑
k

dkpn−k + µpn+1, n = 1, 2, . . . . (6.1.1)
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Note that the first term on the right-hand side of the second equation in (6.1.1) exists
only if n− k ≥ 0.

Unfortunately, (6.1.1) cannot be solved using recursive methods, as done in the
M/M/1 case. Instead, we use PGFs to simplify the equations. Let

P(z) =
∞∑
n=0

pnz
n; δ(z) =

∞∑
k=1

dkz
k, |z| ≤ 1.

Multiplying the equations in (6.1.1) by appropriate powers of z, we have

λp0 = µp1,

(λ+ µ)

∞∑
n=1

pnz
n = λ

∞∑
n=1

zn
∞∑
k=1

dkpn−k + µ

∞∑
n=1

pn+1z
n. (6.1.2)

Interchanging summations on the right-hand side of (6.1.2) and simplifying, we obtain

(λ+ µ)P (z)− µp0 = λ

∞∑
k=1

dkz
k

∞∑
n=k

zn−kpn−k

+ µ

∞∑
n=0

znpn+1

= λδ(z)P (z)+ µ

z

∞∑
m=1

zmpm

= λδ(z)P (z)+ µ

z
[P(z)− p0].

Rearranging terms and simplifying,

P(z) = µp0(1 − z)

µ(1 − z)− λz[1 − δ(z)] . (6.1.3)

To determine p0, we use the normalizing condition
∑
n pn = 1 and note that

limz→1 P(z) = 1. Taking limits on the right-hand side of (6.1.3) using l’Hôpital’s
rule, we get

lim
z→1

P(z) = limz→1 µp0(1 − z)

limz→1[µ(1 − z)− λz(1 − δ(z))] ,

giving

1 = µp0

µ+ λ(1 − δ′(1))
,

p0 = 1 − λδ′(1)
µ

. (6.1.4)

Note that
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δ′(1) = lim
z→1

∞∑
k=1

kdkz
k−1

= E(X) = d, say.

With the average group size d, we also note that λd
µ

= ρ, the traffic intensity. This
leads us to the result

p0 = 1 − ρ (6.1.5)

and

P(z) = µ(1 − z)(1 − ρ)

µ(1 − z)− λz(1 − δ(z))
. (6.1.6)

Unfortunately, even with simple forms of the distribution {dn}, inverting the PGF
(6.1.6) is not simple. See the discussion following the PGF (5.2.19) of the limiting
distribution of the imbedded chain in the queue M/G/1. Nevertheless, (6.1.6) can
be used easily for the determination of the mean value ofQ as t → ∞ by noting that
E(Q) = limz→1 P

′(z). Because of the terms (1 − z) in the numerator and (1 − δ(z))
in the denominator of (6.1.6), we use l’Hôpital’s rule in taking limits in P ′(z). After
simplifications, we get

E(Q) = lim
z→1

P ′(z) = 2ρ + λ
µ
δ′′(1)

2(1 − ρ)
. (6.1.7)

But δ′′(1) = E(X2)− E(X). With d as the mean group size, (6.1.7) simplfies to

L = E(Q) = ρ + λ
µ
E(X2)

2(1 − ρ)
. (6.1.8)

The variance of Q can be determined by letting z → 1 in P ′′(z) and noting that
V (Q) = P ′′(1) + P ′(1) − [P ′(1)]2. The algebra in the determination of V (Q)
involves the use of l’Hôpital’s rule multiple times.

When the group sizes are a constant K , the mean number of customers in the
system given by (6.1.8) simplifies to

L = E(Q) = ρ + λ
µ
K2

2(1 − ρ)

=
(
K + 1

2

)
ρ

1 − ρ
(6.1.9)

since ρ = λK
µ

.
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6.2 The Bulk Queue M/M(X)/1

In the queueing modelM/M(X)/1, we assume that the customers arrive one at a time,
but are served in groups of sizeX. For simplicity, we also assume thatX is a constant
K . When the service is in groups, there are two other factors of queue discipline
that can complicate the analysis: (1) whether or not the server waits for customer
arrivals when there are fewer than K customers in the queue at the time of a service
completion and (2) if the server starts service with less thanK customers in the group,
whether the new arrivals are allowed to join the ongoing service or are required to
wait for the next batch. To keep the algebra simple, we make the assumption that the
server starts service only when the batch is full. For an analysis of the system under
queue discipline in which service starts even with a single customer and the arriving
customers are allowed to join the batch in service to fill the vacancies, see Gross and
Harris (1998).

Thus the customers arrive one at a time in a Poisson process with parameter λ
and are served in groups of size K if there are K or more customers in the queue
at the completion of a service. If there are less than K customers waiting at the
completion of a service, the server waits until the service batch of K is full. The
service time distribution is exponential with parameter µ. With these assumptions,
for the limiting distribution {pn, n = 0, 1, 2, . . . } of the number of customers in the
system as t → ∞, the state balance equations can be presented as

λp0 = µpK,

λpn = λpn−1 + µpn+K, n = 1, 2, . . . , K − 1,

(λ+ µ)pn = λpn−1 + µpn+K, n = K,K + 1, . . . . (6.2.1)

The method we use to solve these equations makes use of PGFs. Multiply both sides
of (6.2.1) by appropriate powers of z and add. We get

λp0 + λ

K−1∑
n=1

pnz
n + (λ+ µ)

∞∑
n=K

pnz
n

= µpK + λ

K−1∑
n=1

pn−1z
n + µ

K−1∑
n=1

pn+Kzn

+ λ

∞∑
n=K

pn−1z
n + µ

∞∑
n=K

pn+Kzn.

Noting that
∑∞
n=0 pnz

n = P(z) and making appropriate simplifications, we can write

(λ+ µ)P (z)− µ

K−1∑
n=0

pnz
n

= λz

∞∑
n=1

pn−1z
n−1 + µ

zK

∞∑
n=0

pn+Kzn+K
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= λzP (z)+ µ

zK

[
P(z)−

K−1∑
m=0

pmz
m

]
.

Rearranging terms and multiplying by zK , we get

[(λ+ µ)zK − λzK+1 − µ]P(z) = µ(zK − 1)
K−1∑
n=0

pnz
n,

P (z) = (1 − zK)
∑K−1
n=0 pnz

n

(λ/µ)zK+1 −
(
λ
µ

+ 1
)
zK + 1

. (6.2.2)

For the complete determination of the PGF P(z), we need to determine
∑K−1
n=0 pnz

n

in the numerator. For this we have to make use of Rouché’s theorem from the theory
of complex variables. Being a PGF, P(z) must converge inside the unit circle. The
denominator of (6.2.2) has K + 1 zeros. Thus for P(z) to be a proper PGF, the
numerator of (6.2.2) must vanish at these K + 1 zeros. It is easily seen that z = 1 is
a zero of the numerator as well as the denominator. Appealing to Rouché’s theorem
(we leave out the details of using the theorem here because its theory is beyond the
scope of this text; interested readers may refer to more advanced books on queueing
theory), we can show that exactlyK − 1 zeros of the denominator are within the unit
circle, leaving one zero lying outside. Let z0 (> 1) be the root of the equation(

λ

µ

)
zK+1 −

(
λ

µ
+ 1

)
zK + 1 = 0. (6.2.3)

Clearly, if we divide the denominator of (6.2.2) by (z− 1)(z− z0), we are left with a
polynomial withK−1 roots within the unit circle. The portion of the numerator with
zeros within the unit circle is

∑K−1
n=0 pnz

n; therefore, this function and the leftover of
the denominator can differ by at most a multiplicative constant. We get

K−1∑
n=0

pnz
n = C

(λ/µ)zK+1 −
(
λ
µ

+ 1
)
zK + 1

(z− 1)(z− z0)
. (6.2.4)

Substituting this result in (6.2.2), we have

P(z) = C(1 − zK)

(z− 1)(z− z0)

= C

z0 − z

K−1∑
n=0

zn. (6.2.5)

Since P(1) = 1, setting z = 1 in (6.2.5), we get

C = z0 − 1

K
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and

P(z) = (z0 − 1)
∑K−1
n=0 z

n

K(z0 − z)
. (6.2.6)

The right-hand side of (6.2.6) can be expanded as a power series in x to determine
pn, n = 0, 1, 2, . . . , explicitly as follows:

P(z) = z0 − 1

Kz0

(
K−1∑
s=0

zs

)( ∞∑
r=0

(
z

z0

)r)
, (6.2.7)

pn = z0 − 1

Kz0

n∑
r=0

(
1

z0

)r
, n < K,

= z0 − 1

Kzn−K+1
0

K−1∑
r=0

(
1

z0

)r
, n ≥ K. (6.2.8)

Noting that
n∑
r=0

(
1

z0

)r
= 1 − ( 1

z0
)n+1

1 − ( 1
z0
)
,

we can present (6.2.8) as

pn = zn+1
0 − 1

Kzn+1
0

, n < K,

= zK0 − 1

Kzn+1
0

, n ≥ K. (6.2.9)

As mentioned above, finding the root z0 lying outside the unit circle of (6.2.3) is
essential to the determination of the limiting distribution. This is a common problem
in the analysis of systems of this type, and there are root-finding algorithms that are
specifically applicable in such cases. For elaboration on the appropriate root-finding
algorithms, the readers may refer to Chaudhry and Templeton (1983) and journal
articles by M. L. Chaudhry and his associates; see, for instance, Chaudhry et al.
(1992).

6.3 The Queues M/Ek/1 and Ek/M/1

In Section 2.1 and Appendix A, we define the Erlang distribution, Ek , as the distribu-
tion of the sum of k i.i.d. exponential random variables. In Appendix B, we note that
Erlang Ek is the simplest phase-type distribution and it represents the distribution of
the time taken by a Markov process to traverse k phases of exponential service. We
may use this representation to provide a Markov model for the number of customers
in the system in queues M/Ek/1 and Ek/M/1.



6.3 The Queues M/Ek/1 and Ek/M/1 121

Let us first consider the queueM/Ek/1. Suppose that arrivals occur in a Poisson
process with rate λ. Let service be provided by a single server with service time
distribution

f (x) = e−kµx (kµx)
k−1kµ

(k − 1)! , x > 0, (6.3.1)

which has mean = 1
µ

. Using the observations made in Section 2.1 and Appendix A,
we note that when the service time has the Erlang distribution (6.3.1), it can be
considered to be made up of k phases, each with an exponential distribution with
density kµe−kµx (x > 0), which has mean 1

kµ
. Thus if we associate a number rep-

resenting the number of phases of service yet to be used (we use the unexpended
number for convenience) for the customer being served along with the number of
customers in the system, we have a representation of the state of the process that can
be considered Markovian. Using {(number of customers in the system, number of
phases of service yet to be used)} as the bivariate process, the state space can be rep-
resented as {(0, 0); (1, 0), (1, 1), . . . , (1, k); (2, 0), (2, 1), . . . , (2, k); . . . }. Defining
the limiting distribution of this process {pn1,n2 , n1 = 0, 1, 2, . . . ; n2 = 0, 1, . . . , k}
appropriately, we may write the state balance equations and solve them using PGFs.
(See Prabhu (1997) for details.)

An alternative method is to count the number of exponential phases waiting to be
served or in service. When there are n customers in the system and the number of
phases of service yet to be used for the customer in service is r , the total count for the
number of phases is (n−1)k+r . In order to use this approach, each arriving customer
should be thought of as bringing k phases of service to the system. Accordingly,
consider anMk/M/1 queue, in which customers arrive in a Poisson process in groups
of size k. The rate of arrival for groups is λ. Each customer demands service that has
an exponential distribution with mean 1

kµ
. The total number of phases waiting for or in

service in this system is the same as the total number of phases waiting for or in service
in an M/Ek/1 system. The limiting distribution of the state of the system is given
in Section 6.1. Since these results are given in terms of the corresponding number
of phases, all we need now is a procedure to convert phases into the corresponding
number of customers.

As described above, when there are n customers and r service phases yet to be
used in the system, the total phase count is (n− 1)k + r . Reversing this procedure,
when there are a total number of n phases in the system, the number of customers in
the system can be obtained as [n

k
]+1, where [ ] signifies the largest integer contained

in n
k

when n is not a multiple of k and in n
k

when n is a multiple of k.
Let {pn, n = 0, 1, 2, . . . } be the limiting distribution of the number of customers

in an M/Ek/1 system and let {p(b)n , n = 0, 1, 2, . . . } be the limiting distribution of
the corresponding group arrival queue Mk/M/1 for the phases. We then have

pn =
nk∑

j=(n−1)k+1

p
(b)
j , n ≥ 1,

p0 = p
(b)
0 . (6.3.2)
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Another alternative analysis ofM/Ek/1 is via the imbedded Markov chain approach
of Section 5.2. The Laplace transform (5.2.6) of the service time distribution takes
the form

ψ(θ) =
(

kµ

kµ+ θ

)k
, (6.3.3)

and the PGF (5.2.7) of the number of customers arriving during a service period is
now given by

K(z) =
(

kµ

kµ+ λ− λz

)k
. (6.3.4)

The resulting PGF of the limiting distribution {πj , j = 0, 1, 2, . . . } has the form

�(z) = (1 − ρ)(z− 1)(kµ)k

z(kµ+ λ− λz)k − (kµ)k
. (6.3.5)

Since the arrival process is Poisson, the limiting distribution {πj } of the imbedded
Markov chain {Qn} and the limiting distribution {pn} of its continuous-time analogue
{Q(t)} are the same in the queue M/Ek/1. Hence as a practical matter, any of the
alternative procedures suggested above should lead to the same result.

Similar alternative procedures for analysis can be suggested for the queue
Ek/M/1:

(i) The use of a bivariate Markov process with the number of customers in the
system as the first variable and the number of elapsed exponential interarrival
phases as the second variable. When the interarrival times are distributed as
Erlang Ek , each of them may be considered to be made up of k exponentially
distributed phases. Now keeping track of the number of elapsed phases in an
interarrival time helps in defining the Markov process. State balance equations
may be written for the bivariate process and solved using PGFs. For details, see
Prabhu (1997).

(ii) Using the M/Mk/1 model. In addition to a real customer arriving at the end of
the kth exponential phase of an Erlangian interarrival time, we may assume that
k − 1 virtual customers arrive at the end of the preceding k − 1 phases. Since
these virtual customers are associated with real customers, all k customers (one
real and k − 1 virtual) will have to be served as a group. The modified system
now has a single server, customer arrivals occur in a Poisson process in such a
way that every kth customer is a real one preceded by k − 1 virtual customers,
and all these k customers are served in a group. Then the number of “customers’’
(which include real and virtual customers) can be modeled as anM/Mk/1 queue.
The limiting distribution of the number of customers in the model as given in
Section 5.3 gives the limiting distribution of the number of “customers’’ in the
Ek/M/1 queue. Let {pn, n = 0, 1, 2, . . . } be the limiting distribution of the
number of customers in the queue Ek/M/1, and let {p(b)n , n = 0, 1, 2, . . . }
be the limiting distribution of the number of customers in the M/Mk/1 queue.
Then {pn, n = 0, 1, 2, . . . } can be determined using the relation



6.4 The Bulk Queues M/GK/1 and GK/M/1 123

pn =
nk+k−1∑
j=nk

p
(b)
j , n = 1, 2, . . . ,

p0 =
k−1∑
j=0

p
(b)
j . (6.3.6)

(iii) Using the imbedded Markov chain of Ek/M/1 as a special case of G/M/1
described in Section 5.3. Let the interarrival time distribution be given as

f (x) = e−kλx (kλx)
k−1kλ

(k − 1)! , x > 0. (6.3.7)

The Laplace transform of (6.3.7) takes the form

φ(θ) =
(

kλ

kλ+ θ

)k
, (6.3.8)

and the PGF β(z) of the number of potential services during an interarrival
period can be given as

β(z) =
(

kλ

kλ+ µ− µz

)k
. (6.3.9)

The limiting distribution of the number of customers in the system just before
an arrival is obtained as

πj = (1 − ζ )ζ j , j = 0, 1, 2, . . . , (6.3.10)

where ζ is the least positive root of the equation

z = β(z). (6.3.11)

6.4 The Bulk Queues M/GK/1 and GK/M/1

In the last three sections, we have assumed that both interarrival times and service
times of customers are exponential or Erlangian, thus making it easy to use Markov
processes (although in an extended sense) in the analysis. Here we briefly describe
a practical approach based on imbedded Markov chains that can be used when one
of the element distributions does not have the nice properties of the exponential dis-
tribution even when arrival or service in groups is allowed. For readers interested
in the continuous-time analogue of the results that can be derived using imbedded
Markov chains, the best comprehensive reference seems to be Chaudhry and Tem-
pleton (1983).

Let us first consider the queue M/GK/1 with the following description. Cus-
tomers arrive one at a time in a Poisson process with rate λ. There is a single server,
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providing service to groups of exactly K customers at a time. The service times
have a general distribution B(·). If there are less than K customers waiting in the
queue at the completion of a service, the server waits until the number K is reached
to start the service. Note that we have made this policy assumption for convenience.
Modifications to this policy, such as starting service with at least a specified number
of customers less than K , require making appropriate changes to the expressions.

Let {Qn, n = 0, 1, 2, . . . } be the number of customers in the system soon after
the nth group departure. Let Xn be the number of customers arriving during the nth
service. Following the arguments used in Section 5.2, for the distribution {kj , j =
0, 1, 2, . . . } of Xn, we have

kj = P(Xn = j) =
∫ ∞

0
e−λt (λt)

j

j ! dB(t), j = 0, 1, 2, . . . . (6.4.1)

We also have the random variable relationship between Qn and Qn+1,

Qn+1 =
{
Qn +Xn+1 −K if Qn > K,

Xn+1 if Qn ≤ K.
(6.4.2)

(The justification for this relationship is exactly the same as given following (5.2.2)
except that now we need K customers to start the service instead of one.)

For Pij = P(Qn+1 = j |Qn = i), (6.4.2) gives

Pij =
{
P(i +Xn+1 −K = j) if i > K,

P (Xn+1 = j) if i ≤ K

=
{
kj−i+K if i > K,

kj if i ≤ K.
(6.4.3)

Displaying these probabilities in matrix form, we get the transition probability matrix
P of the imbedded Markov chain:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 . . .

0 k0 k1 . . .

1 k0 k1 . . .

2 k0 k1 . . .
...

...
...

K k0 k1 . . .

K + 1 k0 . . .
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6.4.4)

Comparing (6.4.4) with (5.2.5), we note that (6.4.4) hasK+1 identical rows, instead
of two as in (5.2.5). If we are interested in a mathematical expression for the limiting
distribution of the Markov chain, we proceed in the same way as in Section 5.2. In
order to completely specify the PGF of the distribution, it would be necessary to
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specify the zeros of its denominator using Rouché’s theorem. However, as a practical
approach, in this age of computers, we can use the matrix (6.4.4) itself. Note that
the elements kj of the matrix are known (can be determined numerically) and the
limiting distribution is given by limn→∞ Pn. Also, recall that the limiting matrix has
identical rows.

The imbedded Markov chain analysis of the queue length process in queue
GK/M/1 follows the method outlined in Section 5.3 by considering the number of
customers in the system just before arrival points. LetA(·) be the distribution function
of the interarrival times and f (x) = µe−µx (x > 0) be the service time distribution.
We assume that customers arrive in groups of constant sizeK . (If we assume variable
group sizes, we have to incorporate the group size distribution in our analysis.) For
the reasons explained following (5.3.2), we define Xn+1 as the number of potential
departures during the (n+ 1)st interarrival period. Let {Qn, n = 0, 1, 2, . . . } be the
number of customers in the system just before the nth group arrival. Analogous to
(5.3.2), we have

Qn+1 =
{
Qn +K −Xn+1 if Qn +K −Xn+1 > 0,

0 if Qn +K −Xn+1 ≤ 0.
(6.4.5)

Let P(Xn = j) = bj , j = 0, 1, 2, . . . , as given in (5.3.1). Following the steps
used in Section 5.3 for the transition probability Pij = P(Qn+1 = j |Qn = i), from
(6.4.5) we get

Pij =
{
P(i +K −Xn+1 = j) if j > 0,

P (i +K −Xn+1 ≤ 0) if j = 0

=
{
bi+K−j , j > 0,∑∞
i+K br, j = 0.

(6.4.6)

The transition probability matrix has the form

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 2 . . .

0
∑∞
K br bK−1 bK−2 . . .

1
∑∞
K+1 br bK bK−1 . . .

...

K
∑∞

2K br b2K−1 b2k−2 . . .
...

...

⎤
⎥⎥⎥⎥⎥⎥⎦
. (6.4.7)

For the limiting distributionπ = (π0, π1, π2, . . . ), we may use the standard procedure
of solving equation πP = π and

∑∞
0 πj = 1 along the same lines as illustrated in

Section 5.3. But as a practical matter, since the elements of P can be determined
numerically from (5.3.1), obtaining a close approximation to limn→∞ Pn by matrix
multiplication is likely to be simpler.

For the determination of analytical solutions in bulk queueing systems that lead
to algorithmic procedures, the matrix-analytic solution techniques developed by
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M. F. Neuts and his associates are highly recommended. A thorough knowledge
of matrix analysis is essential to understanding them. The basic references are the
books by Neuts (1978, 1989). Many articles solving a wide variety of queueing
problems using the Neuts method continue to appear in journals such as Queueing
Systems: Theory and Applications and Stochastic Models. See also Chaudhry and
Templeton (1983) as a comprehensive reference on bulk queueing systems.

6.5 The Queues Ek/G/1 and G/Ek/1

The queueing systems Ek/G/1 and G/Ek/1 can also be analyzed as bulk queueing
systems M/Gk/1 and Gk/M/1, respectively, along the same lines as described in
Section 6.3. Since the results of the bulk queueing analysis are given in terms of the
number of phases in the system, appropriate conversion has to be made to give results
in terms of the number of customers in the system.

A better alternative is the use of Neuts’ matrix-analytic solution technique on
the bivariate Markov chain. In the queue Ek/G/1, the state space of the imbedded
Markov chain is given by two variables {number of customers in the system; number
of elapsed exponential phases since the last arrival}. In the queue G/Ek/1, the state
space is characterized by two variables {number of customers in the system, number
of exponential service phases yet to be used for customer in service}. For details, the
references mentioned in the last section and journal articles that have appeared since
then on the matrix-analytic method of analysis are appropriate.

6.6 The Queue M/D/s

When jobs are mechanized in manufacturing systems constant service times are com-
mon. Also, jobshops employ multiple machines in parallel to maintain job flow.
Under these circumstances a Poisson arrival, constant service time, and multiple
server queueing system constitutes a natural model. Let customers arrive in a Pois-
son process with rate λ, let the service time be a constant b, and let the number of
servers be s. Even though this does not look like a Markovian system, an imbedded
Markov chain can be identified in the queue length process of this system.

Let (0, b, 2b, 3b, . . . ) be the epochs of observation on the time axis. Define
Q(t) as the number of customers in the system at time t and Qn = Q(nb). Let
{Xn, n = 1, 2, . . . } be the number of customers arriving during [(n − 1)b, nb].
We have

kj = P(Xn = j) = e−λb (λb)
j

j ! , j = 0, 1, 2, . . . . (6.6.1)

Considering the number of arrivals and service completions during [nb, (n + 1)b],
we may write

Qn+1 =
{
Qn +Xn+1 − s, Qn > s,

Xn+1, Qn ≤ s.
(6.6.2)
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This relationship can be justified by noting that if there are > s customers in the
system at time nb, s of them will be in service and will depart before (n+ 1)b. If the
number of customers in the system at time nb is ≤ s, all of them will depart before
(n+ 1)b, and Xn+1, the number of customers arriving during [nb, (n+ 1)b], will be
left in the system at (n+ 1)b.

The relationship (6.6.2) is exactly the same as (6.4.2) obtained for the bulk queue
M/GK/1 (with s replacingK). Thus {Qn, n = 0, 1, . . . } is a Markov chain imbed-
ded in the queue length process. Its transition probability matrix is given by (6.4.4)
with K replaced by s, and its analysis follows along similar lines.

6.7 The Queue M/M/1 with Priority Disciplines

Queue disciplines that assign priority service to some customers are common in
service systems. The priority can be based on factors such as customer class, the type
of service, and even the length of service. With the advent of computers, a wide variety
of priority disciplines have been introduced for improving system performance. The
RR, shortest-processing-time, and earliest-due-date-first disciplines are some of the
examples. Since an analysis of most of the variants involves underlying processes
much more complex than those we consider in this text, we shall not delve into them
here. However, we will introduce the simple two-class priority model under the
M/M/1 setting and discuss the fundamental issues of its analysis.

To begin with, when we consider priority queues, the following factors need
attention:

1. There are more than one class of customers based on their needs or importance
to the system.

2. The customers in one class have a higher priority for service than others. When
there are more than two classes, we can arrange them in a hierarchy of priorities
with regard to service.

3. The priority accorded to a class of customers can be preemptive or nonpreemp-
tive. If a customer has preemptive priority over another customer, the priority
customer will preempt the nonpriority customer for service. If the priority is
nonpreemptive, the priority customer will enter service on the completion of the
ongoing service at the time of its arrival. (Such a priority discipline is also known
as a head-of-the-line priority discipline.)

4. When preemption of service is allowed, the service to the preempted customer
can be resumed after the priority customers are served, from the point at which the
service was preempted or starting from the beginning all over again. These two
alternatives are known as preemptive resume and preemptive repeat disciplines,
respectively. For purposes of analysis, the preemptive repeat discipline can be
further divided into different and identical, depending on the service time selected
while resuming service. Under preemptive repeat different discipline, the sample
realization of service is different from the one originally chosen. Under the
preemptive repeat identical discipline, the same sample realization is used.
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5. As long as the priority assignment is not based on the length of service and there
is no preemption, the total number of customers in the priority system has the
same distribution as the number of customers in the system without priorities.
Thus in this case the priority discipline affects only the waiting time of customers
entering the system.

Consider an M/M/1 queue with two priority classes. Let class 1 customers have
higher priority for service over class 2 customers. Also, let the Poisson arrival and
exponential service rates of the customers of the two classes be as follows:

Class 1: Arrival rate λ1; service rate µ1.
Class 2: Arrival rate λ2; service rate µ2.

Let us first assume a nonpreemptive priority system with service provided by a single
server. Because of the Poisson arrival and exponential service time assumption,
we may use a generalized birth-and-death process model for this system. The state
space of the underlying Markov process must be represented with three components:
(number of class 1 customers; number of class 2 customers; class of customer in
service). Let {pmnr , m, n = 0, 1, 2, . . . ; r = 1, 2} be the limiting distribution of
the state space for the process. When m = n = 0, for convenience we denote the
probability by p0. In general, the elements of the state space are

{0, 101, 012,m01, 0n2,mn1,mn2;m, n ≥ 1}.
The following state balance equations determine the limiting distribution of the state
of the process (λ = λ1 + λ2):

λp0 = µ1p101 + µ2p012,

(λ+ µ1)p101 = λ1p0 + µ1p201 + µ2p112,

(λ+ µ2)p012 = λ2p0 + µ1p111 + µ2p022,

(λ+ µ1)pm01 = λ1pm−1,01 + µ1pm+1,01 + µ2pm12, m ≥ 1,

(λ+ µ2)p0n2 = λ2p0,n−1,2 + µ1p1n1 + µ2p0,n+1,2, n ≥ 1,

(λ+ µ2)pm12 = λ1pm−1,12, m ≥ 1,

(λ+ µ1)p1n1 = λ2p1,n−1,1 + µ1p2n1 + µ2p1,n+1,2, n ≥ 1,

(λ+ µ1)pmn1 = λ1pm−1,n1 + λ2pm,n−1,1

+ µ1pm+1,n1 + µ2pm,n+1,2, m ≥ 2, n ≥ 1,

(λ+ µ2)pmn2 = λ1pm−1,n2 + λ2pm,n−1,2, m ≥ 1, n ≥ 2, (6.7.1)

and
∑
pmnr = 1.

For a complete analytical solution of these equations the best approach is to use
PGFs. See Morse (1958), Miller (1981), and Gross and Harris (1998) for details.
However, when the number of customers allowed in the system is small, these equa-
tions can be solved numerically. Before embarking on a numerical solution, note that
the number of equations (accordingly, the number of unknowns) can become very
large even with low capacity limits. If K (K > 2) is the number allowed in the
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system, the number of equations turns out to be K2 + K + 1. Thus if K = 10, one
must deal with 111 equations. Example 6.7.1 below is illustrative of the procedure
when K = 2.

Without going through the analysis, we state the following conclusions that are
useful in understanding the effect of priority assignment on customers as well as on
the system:

1. When the service rates of the two classes of customers are different, the mean
number of low-priority customers waiting is larger and the mean number of
high-priority customers waiting is smaller than the corresponding means for a
two-class system with no priorities.

2. For the queueing system, a priority scheme is useful only if the service rate of
the higher-priority customers is larger than the service rate of the lower-priority
customers.

3. If the reduction of the waiting time of customers in the system is a design criterion,
extending the conclusion in 2 above, we can infer that the priority scheme known
as the shortest-processing-time discipline is optimal. In this queue discipline, the
customer with the shortest service time gets the highest priority.

4. Because of the nonpreemptive nature of the priority discipline, the mean waiting
time of the high-priority customer will be larger than its mean waiting time under
a preemptive priority. This difference is equal to the mean service time of the
low-priority customer conditioned on the arrival of the high-priority customer
when there are no high-priority customers in the system. This can be obtained as

1

µ2
· λ1

λ

( ∞∑
n=1

p0n2

)
= λ1λ2

λµ2
2

. (6.7.2)

5. The derivation of the mean waiting time of the low-priority customer is much
more complex. Suppose that when a low-priority customer arrives there are m
high-priority (class 1) and n low-priority (class 2) customers in the system. Then
the components of its waiting time are the following:
(a) the remaining service time of the customer in service;
(b) total length of the busy periods of class 1 customers who arrive during the

remaining service time in (a);
(c) total length of the m class 1 busy periods;
(d) total length of the busy periods initiated by class 1 customers who arrive

during the service times of n class 2 customers.

For details, see Cobham (1954). The key point here is that for every class 1 customer
in the system, the class 2 customer will be delayed by an amount of time equivalent
to the length of the busy period initiated by that class 1 customer.

Let us now consider the effect of preemption on the service of the low-priority
customer, due to the arrival of a high-priority customer. Consider theM/M/1 system
with two priority classes as described above with incorporation of preemption in the
priority queue discipline. Suppose that when a lower-priority (class 2) customer is in
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service, on the arrival of a high-priority customer (class 1), the service of the class 2 is
terminated and the new arrival is taken into service right away. Since the service time
of the low-priority customer is exponential, the distribution of the remaining service
time of the low-priority customer has the same distribution as the original one.

Because of the preemptive nature of priority, when there is a high-priority cus-
tomer in the system, it will be in service. Hence the state space can be identified with
only two components: (number of class 1 customers in the system; number of class 2
customers in the system). Let {pmn, m, n > 0} and p0 be the limiting probabilities
of the system. For the state balance equations, we have (λ = λ1 + λ2)

λp0 = µ1p10 + µ2p01,

(λ+ µ1)pm0 = λ1pm−1,0 + µ1pm+1,0, m ≥ 1,

(λ+ µ2)p0n = λ2p0,n−1 + µ1p1n + µ2p0,n+1, n ≥ 1,

(λ+ µ1)pmn = λ1pm−1,n + λ2pm,n−1 + µ1pm+1,n, m, n > 0, (6.7.3)

and
∑
pmn = 1.

Again, for the complete analytical solution of these equations, the use of prob-
ability generating functions is essential. As in the case of nonpremptive priority, if
we think of numerical solutions of these equations when the capacity limit of the
system is K , the number of equations to be solved will be 2K + K(K−1)

2 + 1. Thus
if K = 10, the number of equations in this case is 66, compared to 111 for the
nonpreemptive case.

When there are only two priority classes and the priority is preemptive, as far as the
higher-priority customer is concerned, the system performs just like a regularM/M/1
system. But the effect on the low-priority customer is twofold: on the waiting time as
well as the service time. Here we define waiting time as the amount of time between
the customer’s arrival epoch and the time point at which it is taken into service for
the first time. (Note that because of preemption, the customer’s service could be
interrupted repeatedly.)

Let us first consider the time between the moment a low-priority customer enters
service for the first time and the time point at which it departs after completion of
service. When it is interrupted because of the arrival of a high-priority customer,
it can get back into service only after the service of the high-priority customer and
the corresponding busy period initiated by that service. This happens with every
high-priority arrival. Hence the amount of time between the moment a low-priority
customer enters service for the first time and the time it departs from the system is
made up of its service time and r busy periods of high-priority customers where r
is the number of high-priority customers arriving during the low-priority customer’s
service time. This time period is known as completion time in the literature (Jaiswal
(1968)). Other terms used to identify this time period are server sojourn time and
residence time.

Suppose that there are m high-priority customers and n low-priority customers
at the time of the arrival of the low-priority customer. Then the waiting time of this
customer is made up m high-priority busy periods and n completion times.
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In the foregoing discussion, for simplicity we have used only two priority classes.
If there are more classes of customers, normally there would be a hierarchy of pri-
orities, say 1, 2, . . . . Then for any class i, i = 1, 2, . . . , r , its performance would
be affected by the performance of classes 1, 2, . . . , i − 2 through the performance
of class i − 1. For instance, the class i − 1 completion time is the high-priority
service time as seen by the class i customer. We shall not go into the analysis of such
systems because of their complexity. Interested readers may refer to Jaiswal (1968)
and journal articles that have appeared since then.

Example 6.7.1. A service center is set up primarily to provide one type of service,
which we identify as class 1. However, in order to ensure that the service personnel
stay busy as much as possible, it accepts another type of service, called class 2, on a
low-priority basis. At any time only two customers are allowed to be present in the
system. Let λ1 and λ2 be the Poisson arrival rates of these two classes of customers
and µ1 and µ2 be their service rates on the assumption that the service times are
exponential.

Let us determine the limiting distribution of the number of customers in the system
under nonpreemptive and preemptive priority disciplines.

Nonpreemptive priority. This discipline assumes that once a nonpriority customer
starts service, it is carried out to conclusion even if a priority customer arrives in the
meantime. The states representing the number of customers in the system and the
class of customer in service are (0, 101, 012, 201, 022, 111, 112). The state balance
equations are as follows (λ = λ1 + λ2):

λp0 = µ1p101 + µ2p012, (6.7.4)

(λ+ µ1)p101 = λ1p0 + µ1p201 + µ2p112, (6.7.5)

(λ+ µ2)p012 = λ2p0 + µ1p111 + µ2p022, (6.7.6)

µ1p201 = λ1p101, (6.7.7)

µ2p022 = λ2p012, (6.7.8)

µ1p111 = λ2p101, (6.7.9)

µ2p112 = λ1p012, (6.7.10)∑
pmnr = 1.

Substituting from (6.7.6) and (6.7.9) in (6.7.4),

(λ+ µ1)p101 = λ1p0 + λ1p101 + λ1p012,

(λ2 + µ1)p101 − λ1p012 = λ1p0. (6.7.11)

But from (6.7.4),
µ1p101 + µ2p012 = λp0.

Solving for p101 and p012,

p101 = λ1(λ+ µ2)

λ1µ1 + λ2µ2 + µ1µ2
p0 = Ap0, say, (6.7.12)
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p012 = 1

µ2

[
λ− λ1µ1(λ+ µ2)

λ1µ1 + λ2µ2 + µ1µ2

]
p0 = Bp0, say. (6.7.13)

Substituting these values in (6.7.7)–(6.7.10), we get

p201 = λ1

µ1
Ap0, p111 = λ2

µ1
Ap0,

p022 = λ2

µ2
Bp0, p112 = λ1

µ2
Bp0. (6.7.14)

Now p0 is obtained from the normalizing condition
∑
pmnr = 1:

p0 =
[

1 +
(

1 + λ

µ1

)
A+

(
1 + λ

µ2

)
B

]−1

. (6.7.15)

Summarizing, we get

P(0) = P(service counter idle) = p0 =
[

1 +
(

1 + λ

µ1

)
A+

(
1 + λ

µ2

)
B

]−1

,

P (1) = P(class 1 in service) = p101 + p201 + p111 =
(

1 + λ

µ1

)
Ap0,

P (2) = P(class 2 in service) = p012 + p022 + p112 =
(

1 + λ

µ2

)
Bp0. (6.7.16)

To compare the two disciplines, let λ1 = 3/hour, λ2 = 2/hour, and the mean service
times be 30 minutes each (µ1 = µ2 = 2/hour). Then we get the following results:

A = 3

2
; B = 1,

p0 = 4

39
,

p101 = 6

39
; p201 = 9

39
; p111 = 6

39
,

p012 = 4

39
; p022 = 4

39
; p112 = 6

39
,

P (0) = 0.103; P(1) = 0.538; P(2) = 0.359. Answer

Preemptive priority. Because of the preemptive nature of the discipline, we further
assume that when there are two class 2 customers in the system and one of them is
in service, an arriving class 1 customer will displace the one in service. This means
that one class 2 customer will be removed from the center. The states representing
the number of customers in the system are (0, 10, 20, 01, 02, 11). The state balance
equations are given below (λ = λ1 + λ2):

λp0 = µ1p10 + µ2p01,

(λ+ µ1)p10 = λ1p0 + µ1p20,
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µ1p20 = λ1(p10 + p11),

(λ+ µ2)p01 = λ2p0 + µ1p11 + µ2p02,

(λ1 + µ2)p02 = λ2p01,

(λ1 + µ1)p11 = λ2p10 + λ1(p01 + p02),∑
pmn = 1.

This is an example in which the help of a computer in solving the simultaneous equa-
tions is likely to work out better. Below we give the standard elimination technique
for the solution. For convenience, we write

λ = a; µ1 = b; µ2 = c; λ+ µ1 = d; λ1 = e;
λ+ µ2 = g; λ2 = h; λ1 + µ2 = j ; λ1 + µ1 = k.

The second-to-last equation allows us to write

p02 = h

j
p01. (6.7.17)

Eliminating p02 from the set of equations, we get

bp10 + cp01 = ap0, (6.7.18)

dp10 − bp20 = ep0, (6.7.19)

ep10 − bp20 + ep11 = 0, (6.7.20)

−mp01 − bp11 = hp0, (6.7.21)

hp10 + np01 − kp11 = 0, (6.7.22)

where we have written c(h
j
)− g = m and e(1 + h

j
) = n.

Eliminating p11 from (6.7.20) and (6.7.21),

bep10 − b2p20 − emp01 = hep0. (6.7.23)

Eliminating p01 from (6.7.18) and (6.7.23),

(bem+ bce)p10 − b2cp20 = (aem+ che)p0. (6.7.24)

Eliminating p20 from (6.7.19) and (6.7.24),

b(em+ ce − cd)p10 = e(am+ ch− bc)p0,

giving

p10 = e(am+ ch− bc)

b(em+ ce − cd)
p0 = Ap0, say. (6.7.25)

Using this result in (6.7.19), we get

p20 = 1

b
(dA− e)p0 = Bp0, say. (6.7.26)
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Substituting the values of p10 and p20 in (6.7.23),

p01 = 1

em
[beA− b2B − eh]p0

= Cp0, say. (6.7.27)

Substituting this result in (6.7.21),

p11 = −1

b
[mC + h]p0

= Dp0, say. (6.7.28)

Finally, going back to (6.7.17),

p02 = h

j
Cp0 = Ep0, say. (6.7.29)

Using the results from (6.7.25)–(6.7.29) in the normalizing condition
∑
pij = 1,

we get
p0 = (1 + A+ B + C +D + E)−1. (6.7.30)

With the numerical values used in the nonpreemptive case, we get the following
results:

A = 1.748, B = 4.618, C = 0.752, D = 5.2, E = 0.301;
p0 = 0.073; p10 = 0.128; p20 = 0.339;
p01 = 0.055, p02 = 0.022, p11 = 0.382.

Hence

P(0) = 0.073, P (1) = 0.849, P (2) = 0.077. Answer

In the foregoing discussion, we described how we can determine the limiting
distribution of the number of customers in the various priority classes in the system.
As illustrated above, even when the number of classes is relatively small, the problem
becomes exceedingly difficult to solve. However, if we are interested only in the mean
values of the queue lengths and waiting times, a method given by Cobham (1954)
can be used to determine them with relative ease. We illustrate the procedure below
when the service times are exponential for each of the priority classes, even though
it is valid for arbitrary service time distributions. The changes to be made to the
expressions in the latter case will be indicated at the end of the discussion.

Consider a nonpreemptive priority queue with k priority classes. Customers of
class i arrive in a Poisson process with rate λi (i = 1, 2, . . . , k); their service time
distribution is exponential with mean 1/µi . Service is provided by one server. We
wish to determine the mean waiting time W(i)

q of a customer belonging to the ith
priority class.

Let ρi = λi
µi

and σi =∑i
j=1 ρj .
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Clearly, the limiting distributions of the queue lengths and waiting times exist
only if σk =∑k

j=1 ρi = ρ < 1.

Let T (i)q be the waiting time of the customer. (This is the time during which the
customer waits in line before entering service.) Suppose there are nr (r = 1, 2, . . . , i)
customers ahead of the arriving customer. The time the customer has to wait has three
components:

1. The remaining service time of the customer in service at the time of arrival,
say S0.

2. The total service time of the customers who are ahead of it. Let Sr be the total
serivce time of nr customers of rth priority class (r = 1, 2, . . . , i).

3. While waiting for service, the arriving customer must also wait for the completion
of service of arriving customers belonging to a higher priority class. Let n′

r

(r = 1, 2, . . . , i − 1) be the number of higher priority customers arriving during
T
(i)
q . The S′

r be the total service time of these arrivals.

Combining these three components, we have

T (i)q = S0 +
i∑
r=1

Sr +
i−1∑
r=1

S′
r . (6.7.31)

Taking expectations,

W(i)
q = E(S0)+

i∑
r=1

E(Sr)+
i−1∑
r=1

E(S′
r ). (6.7.32)

Since all service times are exponential, the remaining service time of the customer
in service is also exponential with the same rate, appropriate for its priority class.
Since the class of the customer is not known, we may use ρr

ρ
as the probability that

it belongs to class r . Furthermore, we must also account for the probability of the
system being busy at the time of arrival. This probability = ρ. Combining these
terms, we get

E(S0) =
k∑
r=1

1

µr

(
ρr

ρ

)
ρ =

k∑
r=1

ρr

µr
. (6.7.33)

Let S(j)r be the service time of customers in the rth priority class. When there are
nr customers of rth priority class ahead of the arriving customer, the total expected
service time of customers in that class is given by

E(Sr) = E(nr)E(S
(j)
r )

= E(nr) · 1

µr
. (6.7.34)

Here we have used the property that the number of customers and the service times
are independent of each other, and the service time distribution is exponential with
mean 1/µr . Now using Little’s formula (Lq = λWq), we get
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E(Sr) = λrW
(r)
q

µr
= ρrW

(r)
q . (6.7.35)

We may use similar arguments for the total service time of the higher priority cus-
tomers arrivng during T (i)q . However, we should note that the number of customers

to be included here are new arrivals during T (i)q , and therefore the expected number

of such new customers of class r is λr W
(i)
q . Thus we have

E(S′
r ) = λrW

(i)
q

µr

= ρrW
(i)
q . (6.7.36)

Combining the three expressions from (6.7.33), (6.7.35), and (6.7.36), we get

W(i)
q = E(S0)+

i∑
r=1

ρrW
(r)
q +

i−1∑
r=1

ρrW
(i)
q , (6.7.37)

[1 − ρi − σi−1]W(i)
q = E(S0)+

i−1∑
r=1

ρrW
(r)
q

W(i)
q = 1

1 − σi

[
i−1∑
r=1

ρrW
(r)
q + E(S0)

]
. (6.7.38)

From (6.7.37), noting that ρ0 = 0, we get

W(1)
q = E(S0)

1 − σ1
,

W(2)
q = 1

1 − σ2
[σ1W

(1)
q + E(S0)]

= E(S0)

(1 − σ2)(1 − σ1)
.

For induction, assume that

W(i)
q = E(S0)

(1 − σi−1)(1 − σi)
. (6.7.39)

From (6.7.37), we get

(1 − σi−1)W
(i)
q =

i∑
r=1

ρrW
(r)
q + E(S0),

W(i)
q =

∑i
r=1 ρrW

(r)
q + E(S0)

1 − σi−1
. (6.7.40)

Equating the right-hand sides of (6.7.39) and (6.7.40), we get
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i∑
r=1

ρrW
(r)
q = σiE(S0)

1 − σi
. (6.7.41)

Now using the assumed form of W(i)
q from (6.7.39) in (6.7.38) and using (6.7.41),

W(i+1)
q = 1

(1 − σi+1)

[
i∑
r=1

ρrW
(r)
q + E(S0)

]

= 1

(1 − σi+1)

[
σiE(S0)

1 − σi
+ E(S0)

]

= E(S0)

(1 − σi)(1 − σi+1)
, (6.7.42)

which shows by induction that the general form of W(i)
q is given by

W(i)
q = E(S0)

(1 − σi−1)(1 − σi)
. (6.7.43)

Substituting from (6.7.33)

W(i)
q =

∑k
r=1(

ρr
µr
)

(1 − σi−1)(1 − σi)
. (6.7.44)

When the service times have arbitrary distributions (i.e. the system is M/G/1 with
k priority classes) independent of other characteristics of the system, the result for
W
(i)
q remains the same as in (6.7.43) except that E(S0) is determined as follows.

The expected value of the remaining service time of a customer in the priority
class r is given by (5.2.73)

R = E[(S(j)r )2]
2E(S(j)r )

and

ρr = λrE(S
(i)
r ).

Now from the arguments used in deriving (6.7.33), we get

E(S0) =
k∑
r=1

E[(S(j)r ]2

2E(S(j)r )
· λrE(S

(j)
r )

ρ
· ρ

=
k∑
r=1

1

2
λrE[(S(j)r )2], (6.7.45)

giving
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W(i)
q =

∑k
r=1 λrE[(S(j)r )2]

2(1 − σi−1)(1 − σi)
, (6.7.46)

where we have used S(j)r to denote the service time of a customer in the rth priority
class.

When the mean waiting times are known, the mean time in the system is obtained
by adding the mean service time. The corresponding mean queue lengths are obtained
by using Little’s formula.

Analogous results for the queue with shortest processing time discipline can be
easily derived from (6.7.46), first by discretizing the service times to a geometric
distribution with a quantum Q as the time unit and then making Q → 0 to get the
continuous-time analogue. Details of the procedure can be found in Coffman and
Denning (1973).

6.8 Exercises

Note: Exercises in this chapter may require the use of computational tools.

1. In a service system groups of customers arrive and are served individually by a
single server. The customer groups arrive in a Poisson process with rate 5 per
hour and the group size has a distribution with mean 2.5 and variance 2. The
service times are exponential with mean 4 minutes. Determine the expected
number of customers in the system in the long run.

2. In an emergency medical clinic, patients arrive for treatment at the rate of 5
per hour and their interarrival times can be assumed to have an Erlang (Ek)
distribution with k = 3. Assume that each patient requires the services of the
doctor for an amount of time that has an exponential distribution with mean
10 minutes. Determine the average time a patient has to spend in the clinic.

3. An automobile service station has one station for general checkups such as oil and
filter change, tire rotation, checking fluid levels, etc. On average, the checkup
takes 15 minutes, the amount of time having an Erlang (Ek) distribution with
k = 4. Cars arrive in a Poisson process at the rate of 3 per hour. Determine the
average number of cars in the system in the long run.

4. In an assembly line, by the time a product reaches a specific station, it would have
passed through three stations, at each of which it would have spent an amount
of time that is exponentially distributed with mean 3 minutes. The assembly
time at the specific station is exponential with mean 5 minutes. Determine the
expected number of products waiting at the station for assembly, assuming that
an unlimited number of products are available at the first station and they pass
through the first three stations without delay.

5. In Exercise 4, assume that the assembly time at the specific station is exactly
5 minutes. Using an Ek/D/1 model, determine the transition probability matrix
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of the imbedded Markov chain of the number of “products’’ waiting to be assem-
bled at the specific station. Note that “products’’ represent the total number of
phases making up the interarrival time.

Using an appropriate finite capacity for the waiting room for products, determine
the limiting distribution of the number of phases as well as the expected number
of products waiting to be assembled.

6. In Exercise 6 of Chapter 5, suppose the amount of time the doctor spends with
a patient has the Erlang distribution with mean 10 minutes and k = 3. Using a
D/Ek/1 model and the phase interpretation of the patient’s time with the doctor,
determine the transition probability matrix of the imbedded Markov chain of the
number of outstanding phases of service waiting to be performed at the time of a
patient’s arrival. Obtain the limiting distribution of this process and the expected
number of patients waiting using an appropriate capacity limit.

7. In an airport, check-in counters for an airline are supplemented with four ad-
ditional self-service counters for ticketed passengers. The passengers arrive at
the self-service counters in a Poisson process at the rate of 80 per hour and take
exactly 2 minutes. to get their boarding passes. Using anM/D/s model, obtain
the transition probability matrix of the imbedded Markov chain of the process
representing the number of customers in the self-service system and determine its
limiting distribution. Use an appropriate capacity limit to make the computations
feasible.

8. Extend the numerical portion of Example 6.7.1 to allow four customers to be
present in the system, and determine the limiting distribution and the three prob-
abilities P(service counter idle), P(class 1 in service), and P(class 2 in service).
Compare the results in the nonpreemptive and preemptive priority cases.

9. Acomputer technician has maintenance contracts with three customers. The three
customers, C1, C2, and C3, have different preemptive priority assignments for
service. Under this scheme, C1 has preemptive priority over C2 and C3, and C2
has preemptive priority over C3. Customers C1, C2, and C3 call for service with
rates λ1, λ2, and λ3 and are serviced with rates µ1, µ2, and µ3, respectively, in
such a way that each such process can be modeled as a two-state Markov process
as described in Section 4.7.1.

Obtain the state space for the underlying process and determine its limiting dis-
tribution. Also determine the long-run probabilities P(technician is idle), P(C1
is being served), P(C2 is being served), P(C2 is waiting for service), P(C3 is
being served), and P(C3 is waiting for service).

10. Four classes of customers arrive at a counter for service and are served based
on a preemptive priority discipline, with class 1 having the highest priority and
class 4 the lowest. The arrivals of the four classes of customers are in Poisson
processes with rates 3, 6, 6, and 9 per hour, respectively. Service times of all
customers have exponential distributions with mean 2 minutes. Determine the
mean waiting time for customers in each class.
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Queueing Networks

7.1 Introduction

The queueing systems considered in the preceding chapters had customers demand-
ing service from a single facility. But there are many real-world systems in which
customers are served in more than one station arranged in a network structure, which
is a collection of nodes connected by a set of paths. In a queueing network, a group
of servers operating from the same facility is identified as a node. As described in
Chapter 1, under the historical perspective, a large portion of the advances occurring
in queueing theory after the 1960s is connected to networks of queues one way or
the other. Computer, communication, and manufacturing systems, where queueing
theory has found major application areas, abound with such networks.

In a queueing network, customers demand service from more than one server. All
customers may not require service from the same set of servers. Also, often they may
have to go back to the same server more than once. Figure 7.1.1 is a simple illustration
of a network in which the sequencing of the service is shown by directional arrows
between the nodes. Figure 7.1.1 also shows that customers arrive at nodes 1 and 4
and depart from nodes 3 and 5. A queueing network with this feature is known as
an open network. All nodes of the network represent queues, and we let Qi(t) be
the number of customers at node i at time t . The total number of customers in the
network is

∑
i Qi(t). When no new customers are allowed to enter the network and

no customers in the network exit from it, i.e., when
∑
i Qi(t) = Q, a constant, we

have a closed network. A service center supporting a fixed number of machines is
an example of a closed network. When the arrival rate into and the departure rate

�� 1 �� 2

��

�� 3

����
��

��
�

��

��

�� 4 �� 5 ��

Fig. 7.1.1. Open network.
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out of the network are the same (or approximately the same), it can be modeled as a
closed network without sacrificing too much accuracy. (With a finite set of equations,
a closed network is sometimes easier to analyze, depending on its structure.)

As we shall point out later, queueing networks generally present formidable prob-
lems in their analysis. What we intend to cover here are Markovian networks, in
which the queueing systems at nodes are Markovian and the nodes themselves have
a Markovian structure. We start by analyzing the node networks. A node network is
often called the routing chain.

7.2 The Markovian Node Network

Consider a network of nodes {1, 2, . . . , k}. After being served at node i, suppose
a customer moves to node j with probability Pij (i, j = 1, 2, . . . , k). A customer
opting for a repeat service at node i is represented by probabilityPii . In the context of
an open queueing network, to account for the outside world from which the customers
arrive and to which they go after departing from any state in the network, we have to
define an extra state 0, with transition probabilitiesP00 = 0;P0j ≥ 0, j = 1, 2, . . . , k;
and Pi0 ≥ 0, i = 1, 2, . . . , k. The transition probability matrix P, also known as the
routing matrix, can be represented as

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 2 . . . k

0 0 P01 P02 . . . P0k
1 P10 P11 P12 . . . P1k
2 P20 P21 P22 . . . P2k
...

...
...

k − 1 Pk−1,0 Pk−1,1 Pk−1,2 . . . Pk−1,k
k Pk0 Pk1 Pk2 . . . Pk,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (7.2.1)

For the closed network, node 0 is unnecessary.
A surprising amount of information, exclusive of the queue phenomenon, can be

derived from the transition probability matrix P of the node network. Note that the
Markov chain is irreducible (all states communicate with each other), and in general
it is also aperiodic unless a special structure is imposed on it.

(i) Relative throughput. The rate of customers passing through each node is known
as the throughput of that node. Under stable conditions, rates of customer arrivals
at each node must attain I/O parity. Let λi be the arrival rate at node i, and let
λ = (λ0, λ1, . . . , λk). Under steady state, therefore, we have λP = λ, which is the
same basic equation we solve for obtaining the limiting distribution of the Markov
chain. In the absence of the normalizing condition

∑k
0 πi = 1, as in the case of the

limiting distribution, the solution of the equation λP = λ gives us only the relative
throughput in the network. When the arrival rate from outside the network is known,
one can obtain the actual throughputs. In a closed network, however, the actual values
depend on the traffic circulating in the system.
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(ii) Throughput time exclusive of waiting. Consider a customer passing through
the nodes of the network with a given transition structure. Let 1/µj be the mean time
the customer spends at node j and νij be the expected number of visits the customer
makes to node j having started initially from node i. Then the mean throughput
time exclusive of waiting = ∑k

j=1 νij (
1
µj
). The expected number of visits νij ,

j = 1, 2, . . . , k, can be determined as elements of the fundamental matrix of the
finite Markov chain P after converting state 0 to be absorbing.

The transition probability matrix (7.2.1) has the following structure when state 0
is made absorbing:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 2 . . . k

0 1 0 0 . . . 0

1 P10 P11 P12 . . . P1k

2 P20 P21 P22 . . . P2k

...
...

...

k Pk0 Pk1 Pk2 . . . Pk,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(7.2.2)

=
[

1 0

R Q

]
. (7.2.3)

Matrix (7.2.2) is partitioned and denoted as shown in (7.2.3). Based on the theory
of finite Markov chains (see Bhat and Miller (2002)), the elements of the matrix
(I − Q)−1, which is known as the fundamental matrix, give the expected number of
visits of the Markov chain to the various states before it ultimately visits the absorbing
state 0. Let

(I − Q)−1 =

⎡
⎢⎢⎢⎣
ν11 ν12 . . . ν1k
ν21 ν22 . . . ν2k
...

...
...

νk1 νk2 . . . νkk

⎤
⎥⎥⎥⎦. (7.2.4)

Suppose that the Markov chain is initially in state i. The expected numbers of
visits of the process to states 1, 2, . . . , k before it is absorbed in 0 are νi1, νi2, . . . , νik ,
respectively. The expected total number of visits is therefore given by

∑k
j=1 νij .

In the node network, let the initial state be i with probability αi . With the as-
sumption that the process spends an average of 1/µj time units in state j , the total
throughput time of a customer exclusive of waiting is given by

∑k
i=1 αi

∑k
j=1 νij (

1
µj
)

time units. For an elaboration of this procedure, including expressions for the variance
of the throughput time, the readers may refer to Bhat and Miller (2002).

Even though we have used 1/µj as the mean service time of a customer in node
j , there is nothing to prevent us from using 1/µj as the average total amount of time
a customer spends in that node including waiting and service, as long as the queueing
systems in the various nodes are independent of each other.
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(iii) Reliability of the network. The fundamental matrix approach can also be used
to determine the reliability of the node network. This is done by introducing a failure
node, say k + 1, which is also absorbing. The new transition probability matrix will
have the structure as in (7.2.5):

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 k + 1 1 2 . . . k

0 1

k + 1 1

1 P10 P1,k+1 P11 P12 . . . P1k

2 P20 P2,k+1 P21 P22 . . . P2k

...
...

...
...

...
...

k Pk0 Pk,k+1 Pk1 Pk2 . . . Pk,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.2.5)

=
[

I 0

R Q

]
. (7.2.6)

Let fij be the probability that starting from state i (i = 1, 2, . . . , m), the Markov
chain ultimately is absorbed in j (j = 0, k + 1). Define

F ′ =
[
f10 f20 . . . fk0
f1,k+1 f2,k+1 . . . fk,k+1

]
. (7.2.7)

Again appealing to the theory of finite Markov chains (Bhat and Miller (2002)),
we have

F = (I − Q)−1R, (7.2.8)

where R is the submatrix as defined in (7.2.5) and (7.2.6). Thus for a customer
starting from state i,

P(customer will pass through the
network without system failure) =

k∑
j=1

νijPj,0,

P (system failure) =
k∑
i=1

k∑
j=1

νijPj,k+1.

Assuming that a customer starts from state i with probability αi , the reliability R of
the system is obtained as R = 1 − P(system failure) =∑k

i=1 αi
∑k
j=1 νijPj0.

For a finite time reliability analysis of a Markovian network, readers are referred
to Bhat and Kavi (1987).

7.3 Queues in Series

The simplest open queueing network structure is that in which service facilities are
located in series and customers pass through them sequentially. Such systems are
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also known as tandem queues. Examples of queues in series abound in most of the
application areas. Work done in assembly lines, traffic signals in a road network, and
sequential computations in a computer system are some obvious instances. Assume
that at each node, the system operates as a Markovian queue (M/M/s) with one or
more servers. Customers from outside the network always start at the first facility.
There is no blocking between successive service stations; this means that the waiting
rooms feeding customers to these stations have infinite capacity.

To illustrate the behavior of a series of queues, we consider two M/M/1 queues
in series. Assume that there is a waiting room of infinite size in front of each
server. Let customers arrive at the first queue in a Poisson process with rate λ,
and assume that the service times are exponential with means 1/µ1 and 1/µ2, re-
spectively. Let Q1(t) and Q2(t) be the number of customers at time t in the two
queues. As a consequence of the assumptions made on the arrival process and service
time distributions, {Q1(t),Q2(t)} is a vector Markov process, with states (n1, n2),
n1, n2 = 0, 1, 2, . . . . The transition probabilities of the process {Q1(t),Q2(t)} for
finite t can be derived theoretically starting with forward Kolmogorov equations and
using transforms. However, the solutions will turn out to be much more complex than
the transition probabilities for a singleM/M/1 queue, and, furthermore the transition
probabilities of the two systems in series will not be independent of each other. The
situation is much different when t → ∞. Let Q1 and Q2 be the limiting queue
lengths in the two queues. Define

pn1,n2 = P(Q1 = n1,Q2 = n2), n1, n2 = 0, 1, 2, . . . , (7.3.1)

which exists when ρ1 = λ
µ1
< 1 and ρ2 = λ

µ2
< 1. The transition diagram with

reference to (n1, n2) and its neighboring states can be shown as in Figure 7.3.1.

n1, n2 − 1 n1 − 1, n2

λ���������������

n1, n2 + 1
µ2 �� n1, n2

µ2

��������������

µ1

��

λ �� n1 + 1, n2

n1 − 1, n2 + 1 n1 + 1, n2 − 1

µ1

		�������������

Fig. 7.3.1. Transition diagram.

Writing the corresponding state balance equations, we get

λp00 = µ2p01,

(λ+ µ2)p0n2 = µ1p1,n2−1 + µ2p0,n2+1,

(λ+ µ1)pn1,0 = µ2pn1,1 + λpn1−1,0,

(λ+ µ1 + µ2)pn1n2 = µ1pn1+1,n2−1 + µ2pn1,n2+1

+ λpn1−1,n2 , n1, n2 > 0. (7.3.2)
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Because of the bivariate structure of states, the recursive solution technique em-
ployed in solving such equations in the univariate case does not work in this case.
Instead, we appeal to the uniqueness property of the solution to (7.3.2) and start with
a trial solution

pn1,n2 = ρ
n1
1 ρ

n2
2 p00 (7.3.3)

(see R. R. P. Jackson (1954)). It is easy to see that (7.3.3) satisfies equations (7.3.2).
Now using the normalizing condition

∞∑
n1=0

∞∑
n2=0

pn1n2 = 1,

we get
p00 = (1 − ρ1)(1 − ρ2).

Hence
pn1n2 = (1 − ρ1)(1 − ρ2)ρ

n1
1 ρ

n2
2 . (7.3.4)

Extending this approach to a series of k queues, each an M/M/1 system, with µi
as the parameter of the exponential service time distribution of the ith system and
ρi = λ

µi
< 1, i = 1, 2, . . . , k, we get

pn1n2···nk = �ki=1(1 − ρi)ρ
ni
i (7.3.5)

(see R. R. P. Jackson (1956)).
Observing the solution (7.3.5), it is clear that we would have obtained the same

solution if we had considered the k systems operating independently of each other.
But in fact they operate in series and in finite time their behaviors depend on each other.
This is the consequence of the departure process result we established in Section 4.2.1,
where we found that the departure process of anM/M/s-type queue was also Poisson
with the same rate as the arrival process, as t → ∞. In the queueing network literature
this property is sometimes denoted as the M → M property. The significance of
this property is that it is a necessary condition for the limiting distribution to be in
the product form as shown in (7.3.5). In the case of the series of queues, we may
conclude that even though in finite time the individual queues are not independent,
in the long term they behave as if they are independent.

Another concept closely related to theM → M property is local balance. While
discussing the general birth-and-death queueing model, we established a balance
relation (4.1.7) for transitions between two neighboring states. In the broader context
of networks of queues, that property is known as local balance, and because of the
bivariate nature of states, there may be more than one way of identifying neighboring
states. The necessary underlying assumption is the Markovian property of the arrival
and service processes. (See Chandy (1972) and Muntz (1973).)

In the two-queue series described in this section, consider the state balance equa-
tion (7.3.2). They can be broken up into the following local balance equations:

λpn1n2 = µ2pn1,n2+1, n1, n2 = 0, 1, 2, . . . ,
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µ1pn1n2 = λpn1−1,n2 , n1 = 1, 2, . . . ; n2 = 0, 1, 2, . . . ,

µ2pn1,n2 = µ1pn1+1,n2−1, n1 = 0, 1, 2, . . . ; n2 = 1, 2, . . . . (7.3.6)

The validity of such local balance equations is established by back-substitution in
the global state balance equations (7.3.2). For the rationale behind the local balance
equations, readers are referred to Bhat (1984), Chapters 7 and 12.

The structure of local balance equations leads directly to a product-form solution
for the limiting distribution of the bivariate process. We illustrate this property using
(7.3.6). From the second equation in (7.3.6), we get (writing λ

µ1
= ρ1 and λ

µ2
= ρ2)

pn1n2 = λ

µ1
pn1−1,n2 .

Using this equation recursively, we obtain

pn1n2 = ρ
n1
1 p0n2 . (7.3.7)

From the first equation in (7.3.6), we get

pn1,n2+1 = λ

µ2
pn1n2 ,

giving
pn1n2 = ρ2pn1,n2−1.

This yields
pn1n2 = ρ

n2
2 pn10. (7.3.8)

Inserting the value of p0n2 from (7.3.8) in (7.3.7), we get

pn1n2 = ρ
n1
1 ρ

n2
2 p00. (7.3.9)

The result (7.3.4) now follows on the application of the normalizing condition

∞∑
n1=0

∞∑
n2=0

pn1n2 = 1.

As seen in these derivations, identifying local balance equations is not as simple as
it seems to be. The preceding derivation has been provided to illustrate the close
connection among the three properties: (1) M → M , (2) local balance, and (3) the
product-form solution. Ageneral approach to the analysis of these systems is provided
in Section 7.5.

7.4 Queues with Blocking

The analysis becomes complicated if blocking is introduced when customers move
from one station to the next. This occurs when there is a waiting room of finite size in
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between two stations and the customer completing service from the first has to wait
until the completion of the ongoing service at the second station when the waiting
room between them is full. Thus any specification of the state space must include
information on the numbers of customers in all the stations adding an extra measure
of complication. We illustrate these factors with an example.

Example 7.4.1. Amachine repair has two stages, and there are two repairman working
sequentially, one for each stage. The system is set up in such a way that there can
be a maximum number of three machines, waiting for repair or being repaired, at
any time, two with the first mechanic and one with the second mechanic. In case
the first mechanic completes his work while the second mechanic is still working on
the second stage on the previous machine, the first mechanic stops working until the
second mechanic is ready to work on the machine that has completed the first stage
of repair. Repair requests arriving when there are two jobs with the first mechanic
(one waiting and one being worked on or one waiting and one blocked from entering
the second stage) are not allowed into the system. Repair requests arrive in a Poisson
process with rate λ, and repair times at the two stages have exponential distributions
with rates µ1 and µ2, respectively.

Let the numbers of machines in the two stages represent a bivariate Markov pro-
cess (the process is Markovian because of the Poisson and exponential assumptions).
The state space of the process can be identified as follows:

stage 1 0 0 1 1 1b 2 2 2b
stage 2 0 1 0 1 1 0 1 1

Note that because of blocking we had to increase the state space to include two
points (1b, 1) and (2b, 1) representing blocked machines at stage 1. We present the
corresponding transition diagram for the bivariate Markov process in Figure 7.4.1.
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Fig. 7.4.1. Transition diagram.

Let pij = P(Q1 = i;Q2 = j). Using the state balance principle of the equality
of the input and the output with reference to each state, we have the following eight
state balance equations:

λp00 = µ2p01,

(λ+ µ2)p01 = µ1p10 + µ2p1b,1,
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(λ+ µ1)p10 = λp00 + µ2p11,

(λ+ µ1 + µ2)p11 = λp01 + µ2p2b,1 + µ1p20,

(λ+ µ2)p1b,1 = µ1p11,

µ1p20 = λp10 + µ2p21,

(µ1 + µ2)p21 = λp11,

µ2p2b,1 = λp1b,1 + µ1p21.

Solving these equations with appropriate substitutions, we get

p01 = λ

µ2
p00; p10 = Ap00; p11 = Bp00,

p1b,1 = Cp00; p21 = Dp00; p20 = Ep00,

p2b,1 = Fp00,

where

A = λ(λ+ µ2)
2 + λµ1µ2

µ1µ2(2λ+ µ1 + µ2)
,

B = [(λ+ µ1)A− λ] 1

µ2
,

C = µ1

λ+ µ2
B,

D = λ

µ1 + µ2
B,

E = λ

µ1
A+ µ2

µ1
D,

F = µ1

µ2
D + λ

µ2
C.

Using the normalizing condition that requires these probabilities sum to 1, we get

p00 =
[

1 + λ

µ2
+ A+ B + C +D + E + F

]−1

. Answer

The solution to Example 7.4.1 illustrates the magnitude of the problem in dealing
with blocking in queues in series. For instance, even a minor change in the blocking
rule—such as allowing the first mechanic to repair the waiting machine while the
machine that has received the first stage repair is made to wait for the second stage
repair, instead of the rule used in the example above—will change the transition dia-
gram significantly, requiring rewriting of the equations and reworking of the solution.
This modification is left as an exercise to the reader. As a reference for dealing with
the blocking phenomenon in queueing networks, we cite Perros (1994).
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7.5 Open Jackson Networks

Suppose in the Markovian node network of Section 7.2, each node represents an
M/M/s queue, with si servers at node i (i = 1, 2, . . . , k), and there is no blocking
for transitions among the nodes. This means each of the queues is anM/M/s system
with a waiting room of infinite size. Also, assume that customers arrive at node i
from outside the network in a Poisson process with rate λi and that service times at
node i are exponential with mean 1/µi . Let αij be the probability that a customer
completing service at node i requests service from node j , j �= i, and let αi0 be the
probability that it will leave the network after service at node i. LetQ1,Q2, . . . ,Qk

be the number of customers in the k nodes, respectively, as t → ∞, and define

pn1n2···nk = P(Q1 = n1,Q2 = n2, . . . ,Qk = nk). (7.5.1)

This is an example of what is commonly known as an open Jackson network, after
J. R. Jackson (1957), who analyzed it for the first time. For the limiting distribution
pn1n2···nk of (7.5.1), Jackson has shown that

pn1n2···nk = p1(n1)p2(n2) · · ·pk(nk), (7.5.2)

where

pi(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
pi(0)

(γi/µi)
r

r! , r = 0, 1, 2, . . . , si ,

pi(0)
(γi/µi)

r

si !sr−sii

, r = si, si + 1, . . . ,
(7.5.3)

and

γi = λi +
∑
j

αjiγj , i = 1, 2, . . . , k. (7.5.4)

Given λi and αij (i, j = 1, 2, . . . , k), the quantity γi can be determined from
(7.5.4). Note that γi is the effective arrival rate at node i after taking into account
the traffic from outside the network and the k − 1 other nodes within the network.
Thus if ρi = γi/µi is the effective traffic intensity at each node, clearly ρi < 1 for
i = 1, 2, . . . , k for the limiting distribution to exist. Now pi(0) for i = 1, 2, . . . , k
can be determined using the normalizing condition∑

n1

∑
n2

· · ·
∑
nk

pn1n2···nk = 1.

The structure of the distribution pi(r) in (7.5.3) is similar to the limiting distribution
of the queueM/M/si with arrival rate γi and service rate µi . Does this mean that the
arrival process at the ith node is Poisson? In reality, it is not true even when t → ∞.
This is because of the feedback feature of transitions between nodes. In a series of
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queues with only feedforward transitions, we could apply Burke’s (1956) result on the
departure process and conclude that as t → ∞, the feedforward transition generates
a Poisson process. On the other hand, if the transition includes the feedback feature,
the resulting arrival process is not Poisson. In fact, Burke (1976) has shown that in an
M/M/1 queue with feedback, the effective interarrival time distribution is a mixture
of exponentials (i.e., hyperexponential). Thus from the limiting distribution pn1n2···nk
of (7.5.3), which is the product of limiting distributions ofM/M/si queueing systems,
the only conclusion we can draw is that in the limit, the Jackson network behaves as if
it is a series ofM/M/si queues, without being so in actuality. For a discussion of these
features of queueing networks, readers are referred to Disney and Kiessler (1987).

Markovian network models used in queueing are also known as Markov pop-
ulation processes. A systematic procedure for the analysis of such processes with
particular reference to their limiting distributions has been given by Kingman (1969).
Kingman’s results verify the results derived by Jackson, who also generalizes his
earlier result to incorporate production systems composed of special purpose service
centers (see Jackson (1963)), and Whittle (1967, 1968), who has derived limiting
distributions for migration processes. See Bhat (1984) for details.

The derivation of the limiting distribution (7.5.3) is complex and cumbersome,
even when there are only two nodes in the system, as can be seen from the following
outline. Assume that k = 2, and s1 = s2 = 1. Using properties of state transitions,
we can write the state balance equations as follows:

(λ1 + λ2)p00 = µ1α10p10 + µ2α20p01,

(λ1 + λ2 + µ1)p10 = λ1p00 + µ2α21p01 + µ1α10p20,

(λ1 + λ2 + µ2)p01 = λ2p00 + µ1α12p10 + µ2α20p02,

(λ1 + λ2 + µ1 + µ2)p11 = λ1p01 + λ2p10

+ µ1α10p21 + µ2α20p12

+ µ1α12p20 + µ2α21p02,

...

(λ1 + λ2 + µ1 + µ2)pn1n2 = λ1pn1−1,n2 + λ2pn1,n2−1

+ µ1α10pn1+1,n2 + µ2α20pn1,n2+1

+ µ1α12pn1+1,n2−1 + µ2α21pn1−1,n2+1,

n1, n2 > 0. (7.5.5)

Calculating the effective arrival rates to each of the two nodes, we get

γ1 = λ1 + α21γ2,

γ2 = λ2 + α12γ1. (7.5.6)

Solving for γ1 and γ2 in (7.5.6),

γ1 = λ1 + λ2α21

1 − α12α21
,
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γ2 = λ2 + λ1α12

1 − α12α21
. (7.5.7)

Write ρi = γi
µi

, i = 1, 2. Suppose that a trial solution is

pn1n2 = Cρ
n1
1 ρ

n2
2 . (7.5.8)

Verifying that (7.5.8) is, in fact, the correct solution to the state balance equation
(7.5.5) with a normalizing condition

∑
n1

∑
n1
pn1n2 = 1 is not a simple task. For

details of such a procedure in the general case, with k nodes and multiple servers in
each node, the readers are referred to Gross and Harris (1998).

7.6 Closed Jackson Networks

Suppose λi = 0 andαi0 = 0 in the assumptions made while defining the open Jackson
network. Let Q = ∑k

i=1Qi be the total number of customers in the network. Now
we have a closed Jackson network, which can be used to model a network of queues
with a fixed number of customers moving within the network.

Following the same reasoning as in open networks with k nodes, and the ith node
supporting si servers (i = 1, 2, . . . ), the limiting distribution pn1n2···nk = P(Q1 =
n1,Q2 = n2, . . . ,Qk = nk) can be obtained in the product form as

pn1n2···nk = C�ki=1
ρ
ni
i

ai(ni)
, (7.6.1)

where

ai(ni) =
{
ni !, ni < si,

si !sni−sii , ni ≥ si,
(7.6.2)

and ρi = γi
µi

with γi satisfying the relation

γi =
k∑
j=1

γjαji .

This relation can be written as

µiρi =
k∑
j=1

µjρjαji . (7.6.3)

The constant term C in (7.6.1) is determined using the normalizing condition∑
n1n2···nk pn1n2 · · · nk = 1. We note here that the term “product form’’ is used

only for the portion of the result involving n1, n2, . . . , nk . In this case, constant C
does not factor out corresponding to the nodes as it did in the open network. In
solving (7.6.3) to determine ρi , i = 1, 2, . . . , k, we note that since the total traffic is
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known, only k − 1 equations are independent. Hence we start by setting one of the
ρis equal to 1.

The determination of C ≡ C(Q) is not a simple problem. We have

C−1(Q) = [C(Q)]−1 =
∑

n1+n2+···+nk=Q
�ki=1

ρ
ni
i

ai(ni)
, (7.6.4)

where the sum extends over all possible ways of choosing n1, n2, . . . , nk such that∑k
1 ni = Q. The number of ways this can be done is given by the combinatorial term

(
Q+k−1
Q

). (The equivalent combinatorial problem is that of distributing Q balls in k
cells, which in turn is equivalent to randomly assigning positions to k−1 bars among
Q + k − 1 positions arranged in a row.) Thus determining C−1(Q) directly from
(7.6.4) is easy only for small values of Q and k, even with the help of a computer.
One of the earliest algorithms to computeG(Q) = C−1(Q) systematically was given
by Buzen (1973). He defines

fi(ni) = ρ
ni
i

ai(ni)
(7.6.5)

so that
G(Q) =

∑
�nr=Q

�ki=1fi(ni).

Consider
gm(n) =

∑
n1+n2+···+nk=n

�mi=1fi(ni) (7.6.6)

and gk(Q) = G(Q) (m = k and n = Q). We may write

gm(n) =
n∑
r=0

⎡
⎣ ∑
n1+n2+···+nm−1+r=n

�mi=1fi(ni)

⎤
⎦

=
n∑
r=0

fm(r)

⎡
⎣ ∑
n1+n2+···+nm−1=n−r

�m−1
i=1 fi(ni)

⎤
⎦

=
n∑
r=0

fm(r)gm−1(n− r), n = 0, 1, 2, . . . ,Q. (7.6.7)

Also, g1(n) = f1(n) and gm(0) = 1. Equation (7.6.7) gives a recursive structure
for the determination ofG(Q). The algorithm used in calculatingG(Q) is known as
the convolution algorithm, and it will be illustrated numerically in Chapter 12.

There are several computational algorithms in the literature, some of which are
improvements over Buzen’s algorithm, for the calculation ofG(Q) and the marginal
distributions pi(n). (See, for instance, Gelenbe and Pujolle (1998).) For a discussion
of their relative advantages, readers may refer to books on the performance modeling
of computer networks, such as Sauer and Chandy (1981). For an illustration of the
use of recursive solutions, see Gross and Harris (1998).
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7.7 Cyclic Queues

Consider the special case of the closed queueing network in which

αij =

⎧⎪⎨
⎪⎩

1, j = i + 1, 1 ≤ i ≤ k − 1,

1, i = k, j = 1,

0 otherwise.

(7.7.1)

This is a cyclic queue (see Koenigsberg (1958)), where service is provided cyclically
by one or more servers. Cyclic queue models are forerunners of polling models that
have been mentioned in Chapter 1. For simplicity, we assume that there is only one
server at each station. Using the same notation as in the last section, corresponding
to (7.6.3), we have the following equations:

µ1ρ1 = µkρk,

µ2ρ2 = µ1ρ1,

...

µkρk = µk−1ρk−1. (7.7.2)

From these we get

ρ2 = µ1

µ2
ρ1,

ρ3 = µ1

µ3
ρ1,

...

ρk = µ1

µk
ρ1. (7.7.3)

Without loss of generality, we set ρ1 = 1. For the limiting distribution, we get

pn1,n2,...,nk = 1

G(Q)

µ
Q−n1
1

µ
n2
2 µ

n3
3 · · ·µnkk

(7.7.4)

The factorG(Q) in (7.7.4) is determined using Buzen’s algorithm as described in the
last section.

Example 7.7.1. Suppose that there are only two stations in a closed cyclic network.
Service times at the two stations have exponential distributions with rates µ1 and µ2.
Following the arguments used in deriving (7.7.2)–(7.7.4), we have

ρ2 = µ1

µ2
ρ1.

Setting ρ1 = 1, we get ρ2 = µ1
µ2

,
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pn1,Q−n1 = 1

G(Q)

(
µ1

µ2

)Q−n1

.

Using the normalizing condition
∑
n1
pn1,Q−n1 = 1,

1

G(Q)

Q∑
n1=0

(
µ1

µ2

)Q−n1

= 1,

G(Q) =
1 −

(
µ1
µ2

)Q+1

1 − µ1
µ2

.

The limiting distribution is now obtained as

pn1,Q−n1 = 1 − (µ1/µ2)

1 − (µ1/µ2)Q+1

(
µ1

µ2

)Q−n1

. Answer

7.8 Operational Laws for Performance Analysis

Computer systems lend themselves easily for modeling as queueing networks. They
require measures and relationships additional to what we have discussed so far in their
performance analysis. We introduce a few of them here preparatory to the modeling
and analysis in applications to be illustrated in Chapter 12. For elaborations and
extensions of these performance measures and relationships, commonly known as
operational laws in the computer science literature, the readers may refer to the
articles and books cited here as well as elsewhere in the text. Our discussion follows
the excellent survey article on the topic by Denning and Buzen (1978). For ease of
understanding and to avoid confusion, when new notation is introduced, we use the
same notation as given in that article.

Consider a simple central server network that includes a central processing unit
(CPU) and k I/O stations (devices). A job begins with the CPU and continues with
zero or more I/O services. Assuming that a new job enters the system as soon as an
active job completes service we make this a closed network. With the assumption
of exponential distributions for service, we have a Markovian network in which
conditions for state balance exist.

Assume that the system operation has been observed long enough to be able to
estimate the following quantities. Let T be the observation period and Bi be the time
that device i has been busy providing service. Also, let Cij be the number of times
a job requests service at device j immediately after computing service at device i,
and Ci =∑k

j=0 Cij . Using these quantities, we can estimate the following measures
with respect to each device that we have seen in earlier sections (note that the original
notation is used for the estimates):
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utilization Ui = ρi = Bi

T
,

effective output rate γi = Ci

T
,

routing probabilities αij = Cij

Ci
.

Note that we are assuming input and output flow balance in these expressions. Since
the CPU is where the job is initiated and completed, using a subscript 0 to indicate
its status, we have the job-flow balance equations,

γ0 =
k∑
i=1

γiαi0. (7.8.1)

To be consistent with the computer science literature we use the term “response time’’
instead of “system time’’ (i.e., waiting + service). The response time Ri at device i
can be estimated as (the total amount of time accumulated by a device)/(the number
of services completed at the device). IfQi represents the number at the device waiting
for or being served in the long run, using Little’s law (L = λW), for each device
we get

E(Qi) = γiE(Ri). (7.8.2)

In Markovian networks, job flow is balanced and therefore γi can be identified as the
device throughput. These quantitites also give us the visit ratios, which are the mean
number of service requests per job for a device relative to the mean number of jobs
coming into the system. The visit ratio Vi for device i can be defined as

Vi = γi

γ0

and estimated as Ci/C0. The relation

γi = Viγ0 (7.8.3)

is known as the forced-flow law, which states that the flow in any one part of the
system determines the flows everywhere in the system. Substituting from (7.8.3) into
(7.8.1), we obtain the visit ratio equations

V0 = 1, Vj = α0j +
k∑
i=1

Viαij , j = 1, 2, . . . , k. (7.8.4)

The system response time R is obtained by pooling the response times of all devices.
From Little’s law, writing E(Q) =∑k

i=1 E(Qi), we have

E(R) = E(Q)/γ0

Using (7.8.2) and (7.8.3), we get
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E(R) =
i∑
i=1

ViE(Ri), (7.8.5)

which is known as the general response time law. This result is valid even when the
network is not Markovian.

IfM computers are sending jobs to the terminal, for the terminal user, its think time
Z (preparing to submit a job), together with the response time, forms the think–wait
cycle. When the job flow is balanced, we have

M = [E(Z)+ E(R)]γ0,

giving

E(R) = M

γ0
− E(Z). (7.8.6)

This relationship is known as the interactive response time law.
Denning and Buzen (1978) includes several illustrative examples of these rela-

tionships. (See also Jain (1991) for further elaborations on these laws.)
Another important analysis procedure used in applications is the mean value

analysis. Ordinarily, to determine the response times in networks, one has to obtain
the mean queue lengths and the corresponding throughputs (effective arrival rates)
and use Little’s law. In their article simplifying this procedure for applications,
Reiser and Lavenberg (1980) show that in closed queueing networks the mean queue
sizes, the mean waiting times, and the throughputs can be computed recursively
without computing the product terms and normalizing constants. The key result in
this computation is the seemingly simple result relating the mean waiting time of a
closed system with N customers with the mean waiting time of a system with N − 1
customers, thus providing a recursion. Let Rj (N) be the response time at station j
when there are N customers in the closed network, and let Qj(N) be the number
of customers in that station as t → ∞. The recursion established by Reiser and
Lavenberg is the relationship

E[Rj (N)] = E(Sj ){1 + E[Qj(N − 1)]}.
The derivation of this relationship is omitted because of its complexity. A numerical
illustration of its use in the mean value analysis is provided in Chapter 12. The readers
should to note that in the numerical illustration, the notation is simplified by dropping
the expected value operator E.

7.9 Remarks

We have described in the preceding sections some of the fundamental models for
queueing networks. In practice, however, networks of the real world are normally
much more complex. Since the 1970s, with the increased attention to models nec-
essary to analyze traffic in computer and communication systems, researchers have
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developed other indirect or approximate techniques of analysis. The mean value
analysis mentioned in the last section is one such example. In the category of ap-
proximations, we have the method of isolation and aggregation, in which systems are
analyzed through loosely dependent subsystems. For these and other approximate
methods, readers are referred to books such as Gelenbe and Pujolle (1998).

The paper by Baskett et al. (1975) on open, closed, and mixed queueing networks
with different classes of customers was one of the earliest attempts to go beyond
the Jackson network. Their extensions include the use of distributions other than
exponential (e.g., Coxian) and service disciplines other than FCFS (processor sharing,
no queueing, and LCFS). Since the publication of this article, the literature on the
performance modeling of queueing networks has greatly increased. What we have
provided here is an introduction to the topic. Interested readers and researchers may
consult books such as Courtois (1977), Kelly (1979), Sauer and Chandy (1981),
Lavenberg (1983), Molloy (1989), Perros (1994), and Gelenbe and Pujolle (1998)
and articles in various journals dealing with computer and communication networks.

7.10 Exercises

Note: Exercises in this chapter may require the use of computational tools.

1. Solve Example 7.4.1 with a change in the service discipline such that the first
mechanic starts working on a waiting machine, if there is one, on the completion
of service to a machine even when it is blocked by the ongoing service at the
second stage.

2. Solve Example 7.4.1 when the total number of machines allowed in the system is
four, with two machines with each mechanic.
Solve the problem under service disciplines in the two cases when a machine is
blocked from starting service at the second stage:
(a) The first mechanic stops work as in Example 7.4.1.
(b) The first mechanic starts work on a waiting machine, if there is one, as in

Exercise 1 above.

3. In a two-node open queueing network with blocking, let the number of waiting
spaces in front of the second server bem. Letm+1 represent the blocked state. If
n1 and n2 are the numbers of customers in the two nodes, respectively (including
those in service), we have n1 = 0, 1, 2, . . . and n2 = 0, 1, 2, . . . , m,m+ 1. Let
λ be the Poisson arrival rate and µ1 and µ2 be the service rates at the two nodes
with exponential service time distributions.
Examine the impact of two special cases:
(a) µ1 → ∞, when the customer at the first node receives an infinitesimal amount

of service;
(b) the first node is saturated, meaning that there is always at least one customer

waiting for service.
(See Perros (1994).)
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4. In Exercise 3(b) above, what is the percentage of time the first server is providing
service? Specialize the result for µ1 = µ2.

5. In a computer center jobs are submitted from N terminals in Poisson processes,
each with rate λ. Each job requests service from a processor followed by one
of the two I/O devices. The I/O devices are chosen with probability β1 and β2,
respectively. The job then exits the system with probability β3 or proceeds for
consultation of a file on another server with probability β4. (Note that β1 +β2 = 1
and β3 + β4 = 1.) After consulting the file, the job joins the first queue for
another round. Assume that the services provided at the various locations are all
distributed exponentially with the following rates: CPU, µ1; I/O(1), µ2; I/O(2),
µ3; file server, µ4. Determine the limiting distribution of jobs at each station and
the mean response time for a job in the entire system given the following values:

N = 40; λ = 0.01/second; β1 = 0.6; β3 = 0.4,

1

µ1
= 0.8 second; 1

µ2
= 0.3 second; 1

µ3
= 0.6 second; 1

µ4
= 1 second

(Krakowiak (1988)).

6. Consider the following motor vehicle registration process with four stations (re-
ception, clerk 1, clerk 2, cashier):
(a) Reception: Customers arrive in a Poisson process with rate 12 per hour. The

receptionist takes an amount of time that is exponentially distributed with
20 seconds to direct each customer to either one of two processing clerks with
probabilities 0.3 (clerk 1) and 0.7 (clerk 2).

(b) Clerk 1 handles out-of-state and new licenses and takes on average 10 minutes,
the amount of time having an exponential distribution.

(c) Clerk 2 handles standard in-state renewal applications and takes on average
5 minutes. An exponential distribution assumption is appropriate for this time
as well.

(d) 20% of applications processed by clerk 1 go to clerk 2 and 10% of applications
processed by clerk 2 go to clerk 1 for further processing. When the processing
is completed by the two clerks (80% by clerk 1 and 90% by clerk 2), the
customers move to the cashier for paying the fees.

(e) The amount of time spent by the cashier with a customer is exponential with
mean 1 minute.

Model this system as an open network and obtain the limiting distribution of the
number of customers at each station. Also, determine (i) the average total amount
of time a customer spends in the system and (ii) the average total amount of time
a customer with an in-state license spends in the system (Molloy (1989).)

7. An information network has N centers C1, C2, . . . , CN and a message arrival
center C0. If a message cannot be satisfied completely in center Ci , it is sent to
one of the remaining centers Cj . Consider a strictly hierarchical message transfer
network in which the message referral occurs in a path CN → CN−1 → · · · →
C2 → C1. In addition to the originating center C0, include a center CR that
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deals with all rejected messages. Let Pij (i, j = 1, 2, . . . , N) be the probabilities
of the referral path and include Pi0 and PiR (i = 1, 2, . . . , N) as probabilities
of satisfaction and rejection at center Ci (i = 1, 2, . . . , N). Let cij be the cost
associated with the referral path i → j and let γij and ηij be its mean and variance.
Assume that ni messages originate at center C0 during a given length of time and
let K be the total cost associated with these messages. Determine the mean and
variance of K . (See Bhat et al. (1975); see also Bhat (1984), Section 13.5.)
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Renewal Process Models

Up until now, we have used only Markov models for analyzing queueing systems.
As indicated in several places, Markov models are not general enough to provide a
complete analysis of the systems discussed. For instance, the queue length process
{Q(t), t ∈ T } in the queue M/G/1 is Markovian only at departure points and the
process {Q(t), t ∈ T } inG/M/1 is Markovian only at arrival points. Even though we
can use a Markov process analysis technique to analyze these processes by defining
supplementary variables to represent the remaining service time at time t in M/G/1
and the time since the last arrival inG/M/1, explicit results are very difficult to obtain.
In this chapter, we provide an alternative approach based on renewal processes. Since
only very brief mention has been made of the renewal process earlier in Section 3.2,
we start with an introduction to the basics of the process in the next section.

8.1 Renewal Process

Consider a discrete set of points (t0, t1, t2, . . . ) at which a specific event occurs. Let
ti − ti−1 = Zi (i = 1, 2, . . . ) be i.i.d. random variables with distribution

P(Zi ≤ x) = F(x). (8.1.1)

The process consisting of the sequence of random variables (Z1, Z2, . . . ) is known
as a renewal process. Let N(t) be the number of events occurring in (0, t]. This is
known as a renewal counting process. The periods Zi are known as renewal periods.
At t = 0, if the renewal process is already in progress, t0 may not be an epoch of
occurrence of the renewal event. To accommodate such situations, we may define
the random variable Z1 = t1 − t0 with a distribution different from F(x), say F1(x).
Such a renewal process is known as a delayed renewal process. For our discussion,
we restrict ourselves to the ordinary renewal process, in which F1(x) = F(x); this
means we assume that t0 = 0 is an epoch of occurrence of the renewal event.

In the context of queueing systems, under normal conditions, the arrival process
can be considered a renewal process; i.e., the interarrival times form a sequence of

U.N. Bhat, An Introduction to Queueing Theory, DOI: 10.1007/978-0-8176-4725-4_8, 
© Springer Science+Business Media, LLC 2008 
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i.i.d. random variables. The service process can be a renewal process only if there are
enough customers in the system to keep the server continuously busy and the queue
discipline requires the server to provide a complete service to a customer once that
customer’s service starts. In a G/G/1 queue with a queue discipline in which the
server is never idle as long as there are customers in the system, the time points at
which consecutive busy periods start are renewal epochs. The renewal period in this
case is made up of the combination of a busy period and an idle period, commonly
known as a busy cycle. Thus when we use renewal process models to analyze a
queueing system, we start with a busy cycle and its distribution.

Let Sn = Z1 +Z2 +· · ·+Zn. Using F(x), the distribution of Sn can be obtained
as the n-fold convolution of F(x) with itself, which we denote as Fn(x). Define

φ(θ) =
∫ ∞

0
e−θxdF (x), Re(θ) > 0, (8.1.2)

as the Laplace–Stieltjes transform of F(x). We then have∫ ∞

0
e−θxdFn(x) = [φ(θ)]n. (8.1.3)

The distribution of the renewal counting process N(t) for a specific value of t can be
derived as follows. Let

Pn(t) = P [N(t) = n]. (8.1.4)

Consider two events
{N(t) ≥ n} and {Sn ≤ t}.

These are equivalent events. By equating their probabilities, we get

P [N(t) ≥ n] = P [Sn ≤ t]
= Fn(t).

Thus we get
Pn(t) = Fn(t)− Fn+1(t). (8.1.5)

The mean value function E[N(t)] is called the renewal function, denoted by U(t),
and its derivative, when it exists, is called the renewal density, denoted by u(t). From
(8.1.5), it is easy to show that

U(t) = E[N(t)] =
∞∑
n=1

nPn(t)

=
∞∑
n=1

Fn(t) (8.1.6)

and

u(t) =
∞∑
n=1

fn(t),
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where we have written f (t) to denote the density function corresponding to the
distribution function F(t). The term “renewal density’’ can be intuitively justified as
follows:

u(t) = lim
�t→0

P(renewal event occurs in (t, t +�t])
�t

=
∞∑
r=1

lim
�t→0

P(rth renewal occurs in (t, t +�t])
�t

=
∞∑
r=1

lim
�t→0

fr(t)�t + o(�t)

�t

=
∞∑
r=1

fr(t) = U ′(t), (8.1.7)

where we have assumed that F(x) is absolutely continuous and F ′
r (t) = fr(t). Let

U∗(θ) =
∫ ∞

0
e−θtU(t)dt, Re(θ) > 0,

u∗(θ) =
∫ ∞

0
e−θtu(t)dt, Re(θ) > 0.

Using the relationship between the transforms of the distribution and the density
functions, we have

u∗(θ) = θU∗(θ). (8.1.8)

Referring back to (8.1.2) and (8.1.3) and using (8.1.8), we get

U∗(θ) = 1

θ

∞∑
n=1

[φ(θ)]n, (8.1.9)

u∗(θ) =
∞∑
n=1

[φ(θ)]n. (8.1.10)

From (8.1.9) and (8.1.10), we get

U∗(θ) = φ(θ)

θ [1 − φ(θ)] , (8.1.11)

u∗(θ) = φ(θ)

1 − φ(θ)
. (8.1.12)

Rearranging terms in (8.1.11), we get

U∗(θ) = φ(θ)

θ
+ U∗(θ)φ(θ),

which on inversion gives
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U(t) = F(t)+
∫ t

0
U(t − τ)dF (τ). (8.1.13)

Similarly, from (8.1.12) we can get

u(t) = f (t)+
∫ t

0
u(t − τ)f (τ)dτ. (8.1.14)

The integral equation (8.1.13) is known as the renewal equation, which in its general
form can be written as

Z(t) = h(t)+
∫ t

0
Z(t − τ)dF (τ), (8.1.15)

where h(t) is directly Riemann integrable and F(t) is a distribution function. This
equation can be solved to give

Z(t) = h(t)+
∫ t

0
h(t − τ)dU(τ). (8.1.16)

The significance of (8.1.16) in modeling queueing systems can be described as fol-
lows.

In a stochastic process made up of renewal periods, the distribution of the state
of the process at time t can be determined by convolving the renewal density of
the process at time τ when the last renewal occurs before t (i.e., dU(τ)) with the
transition probability distribution between t − τ and t (i.e., h(t − τ)). Note that the
first term (i.e., h(t)) takes care of the possibility that no renewal has occurred during
(0, t]. As described earlier, busy cycles are renewal periods for a queueing process.
When t → ∞, much simpler expressions follow thanks to important limiting results:

1.
U(t +�)− U(t) → �

R
as t → ∞, (8.1.17)

u(t) → 1

R
as t → ∞, (8.1.18)

where R is the mean of the renewal period.
2. Let h(t) be a nonnegative Riemann integrable function of t > 0 such that∫ ∞

0
h(t)dt < ∞.

Then ∫ t

0
h(t − τ)dU(τ) → 1

R

∫ ∞

0
h(t)dt as t → ∞. (8.1.19)

This result is known as the key renewal theorem.

For further details of the properties of renewal processes the readers are referred
to Bhat and Miller (2002). Proofs for the solution of the renewal equation and the
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limiting behavior of the process (key renewal theorem) can be found in advanced
textbooks in stochastic processes such as Karlin and Taylor (1975).

The results (8.1.17)–(8.1.19) can be easily understood if we note that U(t) is
the expected number of renewals in (0, t]. The implication of (8.1.17) is that when
t → ∞, i.e., when the process is in operation for a long time, the expected number
of renewals in a period of length� is obtained by dividing� by the expected length
of a renewal period. Since

lim
�→0

U(t +�)− U(t)

�
= u(t),

the result (8.1.18) follows directly from (8.1.17) and gives the rate of occurrence of
the renewal. The result (8.1.19) follows directly by taking limits (t → ∞) in (8.1.16).
Since h(t) is Riemann integrable it tends to 0 as t → ∞ and the contribution of dU(t)
in the integral in (8.1.16) is 1

R
, which is the rate of occurrence of the renewal. Thus

we get

lim
t→∞Z(t) = 1

R

∫ ∞

0
h(t)dt. (8.1.20)

When we observe a renewal process at an arbitrary time point t , it is unlikely that
t will be a renewal epoch. Then the time period since the last renewal epoch until
t is known as the backward recurrence time (or current life in the terminology of
reliability theory), and the time period until the next renewal epoch from t is known
as the forward recurrence time (or excess life, or residual life). Let S(t) and R(t)
denote these random variables and let st (x) and rt (x) be their probability density
functions, respectively. Using renewal arguments, we can write

st (x) = u(t − x)[1 − F(x)], 0 < x < t, (8.1.21)

and

rt (x) = f1(t + x)+
∫ t

τ=0
u(τ)f (t − τ + x)dτ, (8.1.22)

where f1(x) is the density function of the initial renewal period. As t → ∞, (8.1.21)
and (8.1.22) yield

lim
t→∞ st (x) = 1 − F(x)

R
,

lim
t→∞ rt (x) = 1 − F(x)

R
. (8.1.23)

Taking expected values, we get∫ ∞

0
x

[
1 − F(x)

R

]
dx = E[Z2]

2R
, (8.1.24)

where we have written Z as the random variable denoting the length of the renewal
period.



166 8 Renewal Process Models

8.2 Renewal Process Models for Queueing Systems

In order to apply these results to determine the properties of the underlying processes
of queueing systems, we proceed as follows. SupposeQ(t), the number of customers
in the system is the process of interest. Let

Pij (t) = P [Q(t) = j |Q(0) = i]
be its transition probability distribution for the period (0, t]. Let 0Pij (t) be the
probability that the transition of Q(·) from i to j occurs in (0, t], avoiding state 0
during that period. Probabilistically, this can be defined as

0Pij (t) = P [Q(t) = j,Q(τ) �= 0, 0 < τ < t |Q(0) = i]. (8.2.1)

Note that 0Pij (t) is the probability of transition of the process {Q(t)t ∈ T } within a
busy period. Noting further that the busy cycle is the renewal period for the queue
length process, we can write

Pij (t) = 0Pij (t)+
∫ t

0

0P0j (t − τ)dU(τ). (8.2.2)

The two terms on the right-hand side of this equation give the probabilities of the
two mutually exclusive and collectively exhaustive events in the transition: (1) the
process does not visit state 0 and (2) the process visits state 0 at τ (0 < τ < t) for
the last time, and between τ and t the transition is zero-avoiding. The equation now
is in the form of (8.1.16). Therefore, using the key renewal theorem, we get

lim
t→∞Pij (t) = 1

R

∫ ∞

0

0P0j (t)dt, (8.2.3)

where R = E[busy cycle].
In the case of the queue M/G/1, R has been obtained in (5.2.52) as

R = 1

λ(1 − ρ)
. (8.2.4)

In the case of queue G/M/1 from (5.3.32), we have

R = 1

λ(1 − ζ )
, (8.2.5)

where 1/λ is the mean interarrival time. Note that ζ is the least positive root of the
functional equation (5.3.24).

The determination of the transition probabilities 0P0j (t) is complicated in both
these queueing systems, and we do not present it here. Interested readers may refer
to Bhat (1968) for these results as well as a complete analysis of the queue length
processes in the two queueing systems. See also Takács (1962).

A semi-Markov process or a Markov renewal process is defined by incorporating
renewal process concepts into the structure of discrete-time Markov chains. Using
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a semi-Markovian model, we can extend the imbedded Markov chain analysis in
systems such asM/G/1 andG/M/1 to derive performance characteristics in contin-
uous time. Again, these analyses are beyond the scope of this text. Interested readers
may refer to Takács (1962), who does not explicitly use a semi-Markov model in his
investigations, and Neuts (1966, 1967).



9

The General Queue G/G/1 and Approximations

The use of Markov models in queueing theory is very common because they are
appropriate for basic systems and lend themselves to easy applications. But often
real-world systems are so complex and so general that simple Markov and renewal
process models do not represent them well. Computer and communication systems,
which have had a major role in advancing technology in the last three decades, require
queueing models that go well beyond those we have seen in the last eight chapters.
Their full discussion is beyond the scope of this text. Here we provide an introduction
to the analysis of the waiting time process in the general queue and a few approxima-
tion techniques that have proved useful in handling emerging complex applications.

9.1 The General Queue G/G/1

Consider the general queue G/G/1 (also known as GI/G/1 in the literature) with
the following description. Customers arrive at time points tn (n = 0, 1, 2, . . . ),
and we let the interarrival times Tn = tn+1 − tn be i.i.d. random variables with
distribution function A(·). Let the service time of the nth customer be Sn, and let
{Sn, n = 1, 2, . . . } be i.i.d. random variables with distribution function B(·). We
represent the means and variances of these random variables as follows:

E(Tn) = 1

λ
, E(Sn) = 1

µ
,

V (Tn) = σ 2
A, V (Sn) = σ 2

B. (9.1.1)

Note that for the means of interarrival times and service times, we have used the same
notation of 1

λ
and 1

µ
as in M/M/1 queues, but with a broader interpretation so as to

make comparisons simple. We also define the traffic intensity ρ = λ
µ

as before.
Let Wn (n = 1, 2, . . . ) be the waiting time of the nth customer and W(t) be the

waiting time of the customer if it were to arrive at time t . Since there may or may
not be a customer arrival at t , the process W(t) is known as the virtual waiting time
process. However, {Wn} (n = 1, 2, . . . ) are the actual waiting times of the arrivals at

U.N. Bhat, An Introduction to Queueing Theory, DOI: 10.1007/978-0-8176-4725-4_9, 
© Springer Science+Business Media, LLC 2008 
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(t1, t2, . . . ), and the processWn is a subset of theW(t) process. These are graphically
illustrated in Figure 9.1.1.

t1 t2 t3 t4 t5T3 T4

X4

S1

S2

S3

S4

S5

W2

W3
W4

W(t)

Fig. 9.1.1. Waiting time processes {W(t)} and {Wn}.

As shown in the figure, we may write the following relations:

W1 = 0,

W2 = W1 + S1 − T1,

W3 = W2 + S2 − T2,

W4 = W3 + S3 − T3,

W5 = 0 = W4 + S4 − T4 +X4. (9.1.2)

In writing these relations, we have used the fact that, in between arrivals the W(t)
process decreases at a unit rate because of the service provided to the customer. This
will be clear if we interpretWn as the service load in the system just before the arrival
at tn, and by providing service, the loadWn+Sn becomes depleted at a unit rate until
the arrival at tn+1, when its value is equal toWn+Sn−Tn. When this amount becomes
negative (by an amount Xn), to show that Wn+1 = 0, we write Wn + Sn − Tn +Xn.
Hence, generalizing (9.1.2), we have

Wn+1 =
{
Wn + Sn − Tn if Wn + Sn − Tn > 0,

0 if Wn + Sn − Tn ≤ 0,
(9.1.3)

or

Wn+1 = Wn + Sn − Tn +Xn, (9.1.4)

where Xn can be defined as

Xn = − min(0,Wn + Sn − Tn). (9.1.5)

We observe thatXn is the length of the idle time after the departure of the nth arrival.
Note that Xn is nonzero only when Wn+1 is zero and vice versa.
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Using the random variable relation (9.1.3), we may write

P(Wn+1 ≤ t) = P(Wn+1 = 0)+ P(0 < Wn+1 ≤ t)

= P(Wn + Sn − Tn ≤ 0)+ P(0 < Wn + Sn − Tn ≤ t)

= P(Wn + Sn − Tn ≤ t). (9.1.6)

Define Fn(t) = P(Wn ≤ t), Sn − Tn = Un, and Un(t) = P(Un ≤ t). With this
notation, (9.1.6) can be written as

Fn+1(t) =
∫ t

−∞
Fn(t − x)dUn(x), 0 ≤ t < ∞. (9.1.7)

For the existence of the steady state, we need the traffic intensity ρ < 1. This is the
same asE(Un) = E(Sn)−E(Tn) < 0. Under this condition, dropping the subscripts
notationally in (9.1.7), we get

F(t) =
∫ t

−∞
F(t − x)dU(x), (9.1.8)

where

U(x) =
∫ ∞

x

B(y)dA(y − x). (9.1.9)

Equation (9.1.8) was first established by Lindley (1952). It is one of the fundamental
equations in queueing theory. Unfortunately, its solution requires the use of the
Wiener–Hopf method, which has been well illustrated in Kleinrock (1975). See also
Gross and Harris (1998) for a summary of the solution technique and an illustration.

Instead of the distribution of Wn, we now look at its mean. As n → ∞, we may
writeE(Wn+1) = E(Wn). Dropping subscripts and taking expectations of both sides
of (9.1.4), we get

E(S)− E(T ) = E(U) = −E(X). (9.1.10)

Since X is the length of the idle period, say I , that ends with an arrival which finds
the system empty, we may write

E(X) = E(I)P (an arrival finds the system empty). (9.1.11)

Let us denote the probability on the right-hand side of (9.1.11) as a0. Then we have

E(I) = E(X)

a0
= −E(U)

a0

= 1 − ρ

λa0
. (9.1.12)

Going back to (9.1.4) and rewriting, we have

Wn+1 −Xn = Wn + Un. (9.1.13)

Squaring both sides and taking expectations,
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E(W 2
n+1)+ E(X2

n)− 2E(XnWn+1)

= E(W 2
n )+ E(U2

n )+ 2E(WnUn).

Observe that E[W 2
n+1] = E[W 2

n ] as n → ∞, Wn and Un are independent of each
other, and XnWn+1 = 0. Thus as n → ∞, we have

E(X2) = E[U2] + 2E[W ]E[U ],

E[W ] = E[X2] − E[U2]
2E(U)

. (9.1.14)

Defining E(X2) in a manner similar to (9.1.11), we may write E(X2) = a0E(I
2).

From (9.1.10), we also get

E(U) = 1

µ
− 1

λ
,

[E(U)]2 = 1

λ2
(1 − ρ)2,

V (U) = σ 2
A + σ 2

B,

E(U2) = V (U)+ [E(U)]2

= σ 2
A + σ 2

B + 1

λ2
(1 − ρ)2. (9.1.15)

Rewriting (9.1.14) as

E(W) = E(X2)

2E(U)
− E(U2)

2E(U)

and using (9.1.12) and (9.1.15), we get

E(W) = a0E(I
2)

2[−a0E(I)] − σ 2
A + σ 2

B + 1
λ2 (1 − ρ)2

2
(

1
µ

− 1
λ

)

= λ2(σ 2
A + σ 2

B)+ (1 − ρ)2

2λ(1 − ρ)
− E(I 2)

2E(I)
. (9.1.16)

This result leads us to the important upper bound for E(W) in the general queue
G/G/1.

The expression (9.1.16) for E(W) includes E(I 2) and E(I), which cannot be
determined without a complete analysis of the system. Nevertheless, to obtain a lower
bound for E(I 2)/2E(I) (in order to get an upper bound for E(W)), we proceed as
follows.

Setting a0 = 1 in E(I) = −E(S−T )
a0

of (9.1.12), we get

E(I) >
1

λ
− 1

µ
. (9.1.17)

Also,
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E(I 2) = V (I)+ [E(I)]2.

Since V (I) is a positive quantity,

E(I 2) ≥ [E(I ]2. (9.1.18)

Using these two results in (9.1.16), we get

E(W) = λ2(σ 2
A + σ 2

B)

2λ(1 − ρ)
+ 1

2λ
(1 − ρ)− [E(I)]2

2E(I)

≤ λ2(σ 2
A + σ 2

B)

2λ(1 − ρ)
+ 1 − ρ

2λ
− E(I)

2
,

giving

E(W) ≤ λ(σ 2
A + σ 2

B)

2(1 − ρ)
. (9.1.19)

These results are due to Kingman (1962a, b) and Marshall (1968). They have also
provided lower bounds. Unfortunately, the lower bounds given by these authors are
not easy to obtain. A simpler lower bound has been given by Marchal (1978) as

E(W) ≥ ρ2 + λ2σ 2
B − 2ρ

2λ(1 − ρ)
. (9.1.20)

In the case of multiserver queuesG/G/s, even getting the bounds forE(W) becomes
more complicated. The only result we mention here is by Kingman (1962a, b), which
has the form

E(W) ≤ λ(σ 2
A + σ 2

B)+ (s − 1) ρ
µ

2s(1 − ρ)
, (9.1.21)

where ρ = λ
sµ

is the traffic intensity.
See also Suzuki and Yoshida (1970) and the discussion in Gross and Harris (1998).
The relationship (9.1.3) between Wn and Wn+1 establishes the Markov property

of the process {Wn, n = 0, 1, 2, . . . }. It is a discrete-time, continuous-state Markov
process and all techniques applicable to Markov processes can be used for its anal-
ysis. See Prabhu (1998) for results providing the time-dependent as well as limiting
distributions of the process.

9.2 Little’s Law L = λW

One of the most important and useful relationships in queueing theory is what is
commonly known as Little’s law, named after J. D. C. Little (1961), who gave its first
formal proof. It relates the long-term mean number of customers to the mean amount
of time customers spend in the system provided the number of customers entering the
system is equivalent to the number of customers departing from it. Using common
notation, we write it as
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L = λW. (9.2.1)

If we are looking at the number of customers waiting, we may write it as

Lq = λWq. (9.2.2)

A formal proof of this result is beyond the scope of this text. Nevertheless, we may
give a plausibility argument by tracking the arrivals and departures in a queue.

Consider a queueing system in which customers arrive with rate λ. In Chapter 8,
we described how a queueing process can be considered a renewal process with a
busy cycle as the renewal period. The start of a busy cycle is a renewal epoch and
renewal periods are probabilistic replicas of each other. Consequently, the properties
that can be established in one such period should hold throughout the process.

Consider a busy cycle of 10σ units of time. Assume that arrivals and departures
(C1, C2, C3, C4, C5) occur at σ unit epochs as shown in Table 9.2.1. Note that the
10σ point is the start of the next busy cycle.

Table 9.2.1. Arrivals and departures in the busy cycle.

Time (σ ) Arrival Departure Number in system
0 C1 0
1 C2 1
2 2
3 C3 2
4 C1 3
5 C2 2
6 C4 1
7 2
8 C3 2
9 C4 1

10 C5 0

Let L(BC), W(BC), and λ(BC) be, respectively, the average number in the sys-
tem, average time in system for a customer, and average rate of arrival in the busy
cycle considered here. We get

L(BC) = 16

10
.

The amounts of times the four customers have spent in the system are

C1: 4; C2: 4; C3: 5; and C4: 3,

for a total of 16σ units of time. Thus we get

W(BC) = 16σ

4
= 4σ units.
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The arrival rate is obtained as

λ(BC) = 4

10
per σ unit,

verifying the relationship

L(BC) = λ(BC) ·W(BC).

A similar relationship can be verified forLq(BC),Wq(BC), and λ(BC) as well. Thus,
in general, we have the relationships

L = λW ; Lq = λWq.

(See also Jewell (1967).)

9.3 Approximations

Architectural models are exact; purely mathematical models can be exact, but prob-
ability models of random phenomena are always approximations. Since we use
probability models for queueing systems, their usefulness can be gauged only by
noting how closely the model approximates the real random phenomenon.

Three different stages may be identified in the modeling and analysis of a queueing
system. At the first stage, a suitable mathematical/probability model for the system is
developed. The second stage concerns the identification of and investigation into the
basic process underlying the model. At the third stage, results useful for understand-
ing the system are obtained in forms convenient for numerical and computational
evaluations. Corresponding to these three stages, we may identify three types of
approximations: approximating the systems, the process, and the result.

Approximating the system involves mainly simplifying the system under study
without undermining the basic structure, while making the analysis manageable. The
four main elements of a queueing system are the arrival process, the service process,
the queue discipline, and the system structure. These elements are described by
their properties and attributes. Also, due to the complexity of some systems, such as
networks of queues, we need to add a set of relations among these elements. Hence
a system approximation may be characterized either by simplifying the elements or
by relaxing the relational assumptions or both.

Often simplification of system elements is essential in order to be able to apply
the results obtained from theory. It may not be possible to derive results for a model
with the closest approximation to the element model (such as the distribution of the
interarrival time or service time). Then the best usable model is employed to derive
the best approximate result. The predominant use of the exponential distribution and
the Markov model in practice is due to this approximating process. Other examples
of approximation through simpler distribution models are the use of Erlangian and
hyperexponential distributions and the emergence of phase-type distributions, and the
matrix-analytic method. Structural simplifications include approximating dependent
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subsystems with independent subsystems, replacing weakly dependent subsystems in
queueing networks with single nodes, dividing a nonstationary process into segments
that are fairly stationary, and using bounding systems whose properties are easy to
derive.

System approximations are generally heuristic in nature. Their quality depends
very much on the practical insight of the analyst and a thorough understanding of the
system behavior. Therefore, validation of the model is always necessary in probability
modeling. It is also essential to confirm the applicability of the technique and the
reliability of the results. An analyst must evaluate constantly the tradeoff between the
ease of application of a particular technique and the accuracy of the ensuing result.
Thus the validation procedure must in some way involve a comparison between the
approximate and the expected results. Generally, validation of approximation can be
achieved through error analysis, experimentation, and simulation.

We have already seen one example of the process of approximating the result in
Section 9.1. There, unable to get a closed-form expression for the mean waiting time
of an arriving customer in a G/G/1 queue, we obtained an upper bound that can be
used in its place in applications. There are other examples of approximating the result,
either analytically or numerically, in the queueing theory literature. We consider them
beyond the scope of this text. For some early references, the readers may go to Bhat et
al. (1979), which provides a comprehensive discussion of approximations in queueing
theory.

In approximating the underlying process, we use a process that is simpler for
analysis while retaining as much of the original properties as possible. An example
with wide application is the heavy-traffic approximation in the general queueG/G/1.
The relationship (9.1.3) between Wn+1 and Wn can be stated as

Wn+1 = max(0,Wn + Sn − Tn)

= max(0,Wn + Un), (9.3.1)

where Un = Sn − Tn, n = 0, 1, 2, . . . .
For n = 0, 1, 2, . . . , we have

W1 = max(0,W0 + U0),

W2 = max(0,W1 + U1),

W3 = max(0,W2 + U2).

Thus we have W2 > 0 only if U1 > 0 (note that we have assumed that the first
customer enters an empty queue; otherwise, it would be W1 + U1 > 0); W3 > 0
only if W2 + U2 > 0; and so on. When the traffic is heavy, we may assume that the
arrival rate and the service rate are nearly equal to each other. Let 1

λ
− 1

µ
= α and

σ 2
A + σ 2

B = σ 2 giving E(U) = E(Un) = −α and V (U) = V (Un) = σ 2.
Under heavy traffic, we may write (using ∼= to indicate approximate equivalence)

W2 ∼= U1,

W3 ∼= U1 + U2,
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...

Wn+1 =
n∑
r=1

Ur = U(n), say. (9.3.2)

U(n), n = 1, 2, . . . , are known as partial sums of {Un}, and we have

E[U(n)] = −nα,
V (Un) = nσ 2. (9.3.3)

Since {Un, n = 1, 2, . . . } are i.i.d. random variables, for n large, using the central
limit theorem we may write

U(n) + nα√
nσ

∼ N(0, 1), (9.3.4)

indicating that the left-hand side of (9.3.4) has a normal distribution with zero mean
and unit variance.

When α/σ is small, Kingman (1962a, b, 1965) has shown that as n → ∞ the
waiting time Wn has approximately an exponential distribution with mean σ 2/2α.
(The details are beyond the scope of this text.) But

σ 2

2α
= 1

2

(
V (U)

−E(U)
)

= 1

2

[
V (T )+ V (S)

E(T )− E(S)

]
. (9.3.5)

Referring back to (9.1.19), we note that this is exactly the upper bound for E(W)
derived in Section 9.1. We should emphasize that (9.3.5) is a heavy-traffic approxi-
mation for the mean of the limiting waiting time in the queueG/G/1, and it is useful
only for larger values of traffic intensity.

In the case of the multiserver queue G/G/s, Kingman suggests two possible
approximations for its mean waiting time. The first approximate result is obtained
by extending the approximation to the mean waiting time under heavy traffic in the
queue G/M/s:

E(W) ∼= V (T )+ V (S/s)

2[E(T )− E(S/s)] . (9.3.6)

This result can also be obtained by considering the performance of theG/G/s queue
in heavy traffic as being approximately the same as that of a G/G/1 queue whose
service rate is s times the former. (See Gross and Harris (1998).)

The second approximation suggested by Kingman (1962a, b) is obtained by con-
sidering the performance of the G/G/s queue in heavy traffic as being similar to
that of a set of s parallel G/G/1 queues that are fed by an arrival process with mean
interarrival time sE(T ) = s

λ
:
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E(W) ∼= sV (T )+ V (S)

2[sE(T )− E(S)]
= V (T )+ sV (S/s)

2[E(T )− (1/s)E(S)] . (9.3.7)

Clearly, (9.3.7) is larger than (9.3.6) by (s − 1)V (S/s), and therefore these results
must be used with caution. Since these are not upper bounds but approximate values
obtained by considering an underlying process for which results are available, both
results may be considered as legitimate candidates for use.

9.4 Diffusion Approximation

Using a diffusion process to represent the underlying process in a queueing system is
another example of the process approximation introduced in the last section. A diffu-
sion process is a continuous-state and -parameter Markov process with the following
properties:

(a) The process changes its state continually, but only small changes occur in small
intervals of time.

(b) The mean and variance of the displacement during a small interval of time are
finite.

These two properties can be formally stated using the transition distribution function
F(x, t; y, s) = P(X(s) ≤ y|X(t) = s), t < s. Property (a) can be stated as

lim
�t→0

1

�t

∫
|y−x|>δ

dyF (x, t; y, t +�t) = 0. (9.4.1)

The following two equations mathematically describe property (b):

lim
�t→0

1

�t

∫
|y−x|≤δ

(y − x)dyF (x, t; y, t +�t) = a(x, t), (9.4.2)

lim
�t→0

1

�t

∫
|y−x|≤δ

(y − x)2dyF (x, t; y, t +�t) = b(x, t) > 0. (9.4.3)

Applying these properties in the derivation of the forward Kolmogorov equation for
the Markov process, we can get the diffusion equation, called the Fokker–Planck
equation, as

∂f (x, t)

∂t
= a(x, t)

∂f (x, t)

∂x
+ b(x, t)

2

∂2f (x, t)

∂x2
. (9.4.4)

(See Prabhu (1965b) or other books on stochastic processes.) The transition den-
sity function f (x, t) is determined by solving the differential equation (9.4.4) with
appropriate boundary conditions.

Suppose in a queueing process X(t), the mean and variance are defined as

α(t)�t ∼= E[X(t +�t)−X(t)|X(t)],
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σ 2(t)�t ∼= V [X(t +�t)−X(t)|X(t)]. (9.4.5)

These values are inserted in (9.4.4) to particularize the diffusion equation.
Gaver (1968) uses this approximation to determine the time-dependent distri-

bution and the mean waiting time in the queue M/G/1. Let W(t) be the waiting
time process as shown in Figure 9.1.1. For a small interval of time �t , the changes
occurring in W(t) are

W(t +�t)−W(t) = −�t with probability 1 − λ�t + o(�t),

W(t +�t)−W(t) = S −�t with probability λ�t + o(�t). (9.4.6)

In the statements of (9.4.6), we have used the following assumptions:

1. Since the arrivals are Poisson with rate λ, the �t interval includes an arrival
point with probability λ�t + o(�t) and does not include the arrival point with
probability 1 − λ�t + o(�t). (We may recall here the definition of o(�t) given
in Section 4.1: o(�t)

�t
→ 0 as �t → 0 and o(�t) can be positive or negative.)

2. The value of W(t) decreases at a unit rate with time.
3. When an arrival occurs, W(t) increases by an amount equivalent to the service

time of the customer. We have used a generic symbol S to denote the service time.

Using (9.4.6), the mean and variance of W(t) can be obtained as

α(t)�t = α�t ∼= E[W(t +�t)−W(t)|W(t)]
= E[(S −�t)(λ�t + o(�t)

+ (−�t)(1 − λ�t + o(�t)]
= λE(S)�t −�t + o(�t),

giving, when �t → 0,

α = λE(S)− 1 (9.4.7)

σ 2(t)�t ∼= (�t)2[1 − λ�t + o(�t)] + E[(S −�t)2][λ�t + o(�t)]
− [λE(S)�t −�t + o(�t)]2

= λE(S2)�t − [λE(S)− 1]2(�t)2 + o(�t),

giving, when �t → 0,
σ 2 = λE(S2). (9.4.8)

Substituting these values in the diffusion equation (9.4.4), we get

∂f (x, t)

∂t
= −α ∂f (x, t)

∂x
+ σ 2

2

∂2f

∂x2
(9.4.9)

with conditions

f (x, t |x0) ≥ 0,
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0
f (x, t |x0)dx = λ

µ
,

lim
t→0

f (x, t |x0) = 0, x �= x0,

f (x, t |x0) = 0 for x ≤ 0 and t ≥ 0. (9.4.10)

Solving the diffusion equation, in addition to the Laplace transform of the waiting
time distribution, Gaver finds an explicit expression for the mean waiting time as

E[W(t)|W(0) = x0] = αt + x0 + σ 2

2α
e
−( 2α

σ2 )x0 (9.4.11)

for large t .
The discontinuities and jumps in queueing processes make a diffusion approxi-

mation less than ideal for direct applications, as illustrated above. However, diffusion
approximation has played a major role in obtaining weak convergence of functional
limits in dealing with complex or unstable systems.

A special case of the general diffusion process defined by (9.4.4) is the Brownian
motion process (also known as the Wiener process) {X(t), t ≥ 0}, which has a normal
distribution for specific values of t > 0 and has stationary independent increments,
and for which E[X(t)] = 0 for t > 0, V [X(t)−X(S)] = σ 2|t − s|. There has been
much literature on the use of functional limit theorems on various queueing processes
when they are hard to analyze because of their complexity or lack of stability. The
Brownian motion process plays a significant role in such limits. For instance, one
of the earliest investigations is by Iglehart and Whitt (1970), who obtained weak
convergence results of functionals of queue length, waiting time, and other related
processes in a G/G/s queue (the first paper) and sequences of G/G/s queues (the
second paper) when the traffic intensity is larger than 1. For a survey of investigations
into such topics, including extensions to queueing networks, readers are referred to
Glynn (1990).

9.5 Fluid Approximation

The fluid approximation of a queueing process ignores the randomness in the arrival
and service processes and extends the early investigations of road traffic into queueing
problems. Starting with an engineering approach, the approximation procedure de-
veloped by Newell (1971) has the advantage of being able to handle time-dependent
queueing processes, especially when they are oversaturated (i.e., when the arrival rate
exceeds the service rate). Lately, a combination of the fluid approximation and the
use of diffusion processes has proved useful in investigations into communication
traffic.

Let A(t) and D(t) represent the number of arrivals and number of departures,
respectively, in (0, t). These are assumed to be continuous variables, not random; let
us assume the arrival and service rates to be λ(t) and µ(t), defined as
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dA(t)

dt
= λ(t); dD(t)

dt
= µ(t). (9.5.1)

The rate λ(t) is likely to be time dependent and the rate µ(t) is likely to be a constant
or piecewise constant.

Consider λ(t) = λ and µ(t) = µ, both constants. Define Q(t) = A(t) − D(t).
When λ < µ and Q(0)  1, Q(t) will gradually decrease until it reaches zero. On
the other hand, if λ > µ, Q(t) will grow progressively larger and larger and will go
to infinity as t → ∞.

The interesting problem is in modeling the rush hour traffic. Let λ(t) be time
dependent with the form

λ(t) = λ(t1)− β(t − t1)
2, (9.5.2)

where t1 is the point at which it achieves the maximum. Also, let t0, t2, and t3 be such
that λ(t0) = µ, λ(t2) = µ, and Q(t3) = 0. This means that during this rush hour,
Q(t) = 0 at t0 and t3. The β of (9.5.2) is obtained as

β = − 1

2

d2λ(t)

dt2

∣∣∣∣
t=t1

. (9.5.3)

At t0 and t2, since λ(t0) = λ(t2) = µ, we have

µ = λ(t1)− β(t0 − t1)
2,

µ = λ(t1)− β(t2 − t1)
2.

Hence we get

t0 = t1 −
[
λ(t1)− µ

β

]1/2

,

t2 = t1 +
[
λ(t1)− µ

β

]1/2

. (9.5.4)

Note that the positive square root in the first expression and the negative square root
in the second expression lead to inadmissible results.

Now

λ(t)− µ = λ(t1)− β(t − t1)
2

− [λ(t1)− β(t0 − t1)
2]

= β[(t0 − t1)
2 − (t − t1)

2].
Also, by a similar argument, we get

λ(t)− µ = β[(t2 − t1)
2 − (t − t1)

2].
Note that λ(t)− µ is a quadratic in t with zeros at t = t0 and t = t2. Hence we may
write
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λ(t)− µ = A(t − t0)(t − t2). (9.5.5)

Taking the second derivative of both sides of (9.5.5) and using (9.5.3), we get

A = −β,
giving

λ(t)− µ = β(t − t0)(t2 − t). (9.5.6)

Since Q(t0) = Q(t3) = 0, we have

Q(t) = A(t)−D(t) =
∫ t

t0

[λ(τ)− µ]dτ, t0 < t < t3,

=
∫ t

t0

β(τ − t0)(t2 − τ)dτ

= β(t − t0)
2
[
t2 − t0

2
− t − t0

3

]
. (9.5.7)

This gives

Q(t2) = β

6
(t2 − t0)

3.

But from (9.5.4), we have

t2 − t0 = 2

[
λ(t1)− µ

β

]1/2

. (9.5.8)

Hence

Q(t2) = 4

3
β− 1

2 [λ(t1)− µ)]3/2, (9.5.9)

showing that the maximal queue length is proportional to the 3
2 power of oversatura-

tion λ(t1)− µ.
Noting that the right-hand side of (9.5.7) is a cubic in t , we may write

t2 − t0

2
= t − t0

3
,

allowing us to express t3, where Q(t) = 0, as

t3 = t0 + 3

2
(t2 − t0),

t3 − t0

3
= t2 − t0

2
. (9.5.10)

Substituting this result back in (9.5.7), we get

Q(t) = β

3
(t − t0)

2(t3 − t). (9.5.11)

Now the total delay between t0 and t3 can be given as
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=
∫ t3

t0

Q(τ)dτ

= β

36
(t3 − t0)

4. (9.5.12)

Using (9.5.10) and (9.5.8), this can be simplified to write

total delay = 9[λ(t1)− µ]2

4β
. (9.5.13)

The results derived here come out of purely deterministic assumptions on system
elements. Also, the results are greatly dependent on the state of the system at specific
time points. For these reasons, the usefulness of such results is limited. One way of
addressing these problems is to use stochastic differential equations to represent the
transitions in the underlying process. Then both the arrival and service processes can
be made random, and we can consider the limiting properties of the process as well.
Examples of such models are provided in the review paper by Kulkarni (1997) for a
buffer content process in communication traffic.

9.6 Remarks

An in-depth discussion of the topics covered in this chapter is beyond the scope of
an introductory-level book. In fact, a large amount of cutting-edge ongoing research
solving increasingly complex problems related to computer and communication traf-
fic covers the area of approximations. Readers interested in gaining a better knowl-
edge of topics pertaining to general queues, approximations, limit theorems, etc., are
encouraged to seek out more recent issues of research journals and books on such
topics.



10

Statistical Inference for Queueing Models

10.1 Introduction

Statistical analysis of data is essential to initiate probability modeling. Statistical
inference completes the process by linking the model with a random phenomenon.
Thus to use the queueing models developed in earlier chapters, we need to estimate
model parameters and make sure that we have the right model. In the next few
sections, we shall discuss methods of parameter estimation appropriate to various
data collection procedures.

We have not discussed data collection and analysis procedures in this text simply
because there are several books on this topic in the literature on statistics. Statistical
inference procedures are also well established, and a chapter on statistical inference
may seem superfluous. However, in queueing systems standard data collection pro-
cedures may not be possible, and those are the cases we plan to consider in this
chapter.

When estimating parameters of a probability model, which define the input process
or the service time distribution, there are two issues to be settled first: the sampling
plan and the method of estimation. The sampling plan specifies the data collection
procedure: how long to observe the system (for a specific length of time or until a
specified number of events occur); what type of observations are to be made (the
length of interarrival times, the number of arrivals, length of service times, number
of departures, etc.); and how these data elements are to be collected. The job of
estimating a parameter can follow standard statistical procedures if we can collect all
the necessary information from the system. For instance, if data are available on the
arrival times of customers such that information on a specified number of interarrival
times can be obtained, then the parameters of the distribution of the interarrival
times can be estimated using standard statistical procedures. On the other hand,
if the information available provides only the number of arriving customers and the
number of departing customers during a period of specified length, standard statistical
procedures do not work. This sampling plan can be used only if an appropriate
statistical procedure is available.

U.N. Bhat, An Introduction to Queueing Theory, DOI: 10.1007/978-0-8176-4725-4_10, 
© Springer Science+Business Media, LLC 2008 
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Random samples of observations are used in estimating parameters of distribu-
tions. In a similar fashion, for estimating parameters of a stochastic process, we use
sample paths, which are samples of realizations of the stochastic process.

A stochastic process is ergodic when its time average converges to its ensemble
average as time → ∞. A Markov process in which the state space is irreducible,
positive recurrent, and aperiodic belongs to the class of ergodic processes. When
a stochastic process is ergodic, estimates obtained using one long sample path have
been found to be equally accurate as estimates obtained from a large number of shorter
sample paths.

There are two estimation procedures widely used in queueing applications: the
method of moments and the method of maximum likelihood. The method of moments,
as the name indicates, provides estimates by equating sample moments with the
moments of the distribution. The number of equations to be used depends on the
number of parameters to be estimated. In spite of its simplicity, a major drawback of
this procedure is that the desirable properties of the estimators are either difficult to
establish or do not exist in order to make them reliable. Also, the estimators are not
unique. For instance, one could use either the raw moments or the central moments.
To guard against the unreliability of the estimates, therefore, it would be necessary
to obtain the properties of the estimators themselves (such as asymptotic normality,
minimum variance, etc.).

In order to avoid the problems associated with the method of moments, the pre-
ferred procedure of estimation is the method of maximum likelihood (m.l.). In this
method, a likelihood function is constructed using observations from a random sam-
ple. When they are from a discrete distribution, the likelihood function is the probabil-
ity of obtaining that particular sample and is constructed as the product of probability
mass at the sample points. When the observations are from a continuous distribution,
likewise, the likelihood function is the product of probability densities evaluated at
the sample points. The parameter estimates are now those values that maximize the
likelihood function. For details of the procedure, readers are referred to introductory
textbooks on statistical theory. The properties that make m.l. estimation preferable are

1. consistency (the variance of the estimator → 0 as sample size n → ∞),
2. asymptotic normality (the estimator has a normal distribution when the sample

size is large), and
3. invariance (the m.l. estimator of a function of the parameter is the corresponding

function of the m.l. estimator).

However, m.l. estimation is not perfect either. The estimate obtained by this procedure
can be biased.

As indicated earlier, if random samples of interarrival times and service times are
available, the parameters of their parent distributions can be estimated separately using
the m.l. method. However, obtaining such random samples from the sample path of a
queueing process presents problems. For instance, if the sample path is observed for
a specific length of time, the sample sizes of both interarrival and service times are
random and the stopping time is unlikely to be an arrival or a departure time. These
factors need to be taken into account in the estimation procedure. For such reasons,
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special sampling plans have been developed for inference on stochastic processes.
These are discussed in the next two sections for queueing systems that allow birth-
and-death process models and imbedded Markov chain models.

10.2 Birth-and-Death Process Models

The estimation of parameters using the m.l. method is similar for all queueing systems
that can be modeled as birth-and-death processes. Therefore, for simplicity we use
m.l. estimation in the simple queueM/M/1 as given by Clarke (1957) for illustration.

Let λ andµ be the arrival and service rates, respectively. Suppose that the system
is observed for a length of time T after it has achieved steady state. Let n0 be the
number of customers in the system at the start of observations. The four components
of the sampling plan are the intial number of customers in the system (n0), the number
of arrivals (n), the number of departures (m), and the length of time during (0, T ] the
system has been busy (Tb). With these elements in the final result, the m.l. estimation
procedure is developed as follows.

If we observe the sample path of the number of customers in the system, we see
the following features:

1. Changes of state occur due to arrivals or departures. Using results from Sec-
tion 4.2, during a busy period, the amount of time that the process resides in a
specific state (sojourn time in a state) has an exponential distribution with mean
1/(λ+ µ).

2. When a change of state occurs during a busy period using property (d), leading to
the result (A.1.2) of Appendix A of the exponential distribution, we conclude that

P(an upward jump, i.e., an arrival) = λ

λ+ µ
,

P (a downward jump, i.e., a departure) = µ

λ+ µ
.

Thus the jump event has a Bernoulli distribution with probabilities given above.
3. If at any time the system is empty, the amount of time until the next arrival has

an exponential distribution with mean 1/λ. Then the probability that the process
takes an upward jump = 1.

4. If the stopping time T for observations during a busy period is of length x� from
the last change of state, then the probability element to be associated with that
event is e−(λ+µ)x� .

5. If the stopping time T is during the idle period, and if x� is the corresponding
time from the last change of state, the probability element to be associated with
that event is e−λx� .

6. Because of the Markovian nature of the process, the intervals of time representing
the interevent times as identified in items 1 and 3–5 above are independent of
each other and also of the events identified in item 2, and the nature of jumps is
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independent of all other events. Thus the sample path is made up of indepen-
dent realizations of various random variables, which can be used to construct a
likelihood function for the m.l. estimation.

For the purpose of deriving the m.l. estimator, we define

nae = number of arrivals to an empty system,

nab = number of arrivals to a busy system,

m = number of departures from the system,

xi = intervals of time spent in state i when the system is busy

(i = 0, 1, 2, . . . , (nab +m)),

xj = intervals of time the system has been empty (j = 0, 1, 2, . . . , nae),

x� = the very last interval terminating in T ,

n = nab + nae,

Tb =
∑

xi + x�,

T − Tb =
∑

xj + x�.

The likelihood function can now be constructed with the following components:

(a) the probability distribution of the initial queue size n0;
(b) the probability distribution of nab arrivals and m departures out of a total of

nab +m Bernoulli events;
(c) likelihood elements corresponding to xi (i = 0, 1, 2, . . . , (nab + m)), xj (j =

0, 1, 2, . . . , nae), and x�;
(d) a combinatorial term reflecting the restrictions on the sequence of arrivals and

departures, so that departures can occur only when there are customers in the
system; since this term does not involve the parameters λ and µ, we denote it as
a constant C.

Then we have the likelihood function as

f (λ, µ) = C

(
1 − λ

µ

)(
λ

µ

)n0
(
nab +m

nab

)(
λ

λ+ µ

)nab ( µ

λ+ µ

)m
×�

nab+m
i=1 (λ+ µ)e−(λ+µ)xi

×�
nae
j=1λe

−λxj e−(λ+µ)x� (10.2.1)

if the last interval is part of a busy period. Otherwise, the last term e−(λ+µ)x� will be
replaced by e−λx� . Simplifying the terms in (10.2.1), we get

f (λ, µ) = C′
(

1 − λ

µ

)(
λ

µ

)n0

λnµme−λT e−µTb , (10.2.2)

where C′ includes C and the combinatorial term of (10.2.1). If the initial number in
the system is ignored we have the likelihood function as
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f (λ, µ) = C′λnµme−λT e−µTb . (10.2.3)

Taking logarithms, differentiating with respect to λ and µ, equating to zero, and
solving the resulting equations, we get (estimators of λ and µ are denoted as λ̂ and
µ̂, respectively)

λ̂crude = n

T
; µ̂crude = m

Tb
. (10.2.4)

If the information provided by the initial queue length is included in the likelihood
function, we have to use (10.2.2) in the maximization process. (The more information
we use in estimating a parameter, the better will be the accuracy of the estimate.)
Taking logarithms, differentiating with respect to λ and µ, equating the resulting
expressions to zero, and simplifying, we find that the estimated λ̂ and µ̂ of λ and µ
must satisfy the following equations:

λ̂ = (µ̂− λ̂)(n+ n0 − λ̂T ),

λ̂ = (λ̂− µ̂)(m− n0 − µ̂Tb). (10.2.5)

Nonlinearity of these equations compels us to use indirect methods of solution. Writ-
ing λ̂ = µ̂ρ̂ in the two equations of (10.2.5), we get

ρ̂ = (1 − ρ̂)(n+ n0 − µ̂ρ̂T ),

ρ̂ = (ρ̂ − 1)(m− n0 − µ̂Tb). (10.2.6)

These equations give

µ̂ = n+m

ρ̂T + Tb
,

λ̂ = (n+m)ρ̂

ρ̂T + Tb
. (10.2.7)

The problem is solved if we can get ρ̂ from (10.2.6). Eliminating µ̂ from these two
equations (rearranging and dividing one equation by the other), we get

ρ̂ − (n+ n0)(1 − ρ̂)

ρ̂ − (m− n0)(ρ̂ − 1)
= − ρ̂T

Tb
, (10.2.8)

which gives a quadratic equation in ρ̂,

f (ρ̂) = T (m−n0−1)ρ̂2−[(m−n0)T+(n+n0+1)Tb]ρ̂+(n+n0)Tb = 0. (10.2.9)

This has exactly one admissible root ρ̂1 (say) since f (0) = (n + n0)Tb > 0 and
f (1) = −T − Tb < 0. Clearly, ρ̂1 is therefore the required estimate. Now λ̂ and µ̂
are obtained by substituting this value back in (10.2.7).

Asimple approximation to ρ̂1 can be obtained by replacingm−n0−1 withm−n0
and n+ n0 + 1 with n+ n0 in (10.2.9). The corresponding quadratic equation

f ∗(ρ̂) = T (m−n0)ρ̂
2 −[(m−n0)T + (m+n0)Tb]ρ̂+ (n+n0)Tb = 0 (10.2.10)
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yields the two roots

ρ̂∗
1 , ρ̂

∗
2 = (n+ n0)Tb

(m− n0)T
, 1. (10.2.11)

Substituting ρ̂∗
1 from (10.2.11) into (10.2.7), we get

λ̂approx ∼= n+ n0

T
, µ̂approx ∼= m− n0

Tb
(10.2.12)

By comparing ρ̂1 obtained from (10.2.9) with ρ̂∗
1 as obtained above, we can also

show that

ρ̂1 < ρ̂∗
1

and

0 < ρ̂∗
1 − ρ̂1 <

2ρ̂∗
1

(1 − ρ̂∗
1 )(m− n0)

. (10.2.13)

We may therefore conclude that ρ̂∗
1 is a good approximation of ρ̂1 when it is bounded

away from 1 (i.e., � 1) and m− n0 is large.

Example 10.2.1. Observations of a theater ticket counter for 30 minutes (T ) yielded
the following results:

• Number of customers at the start of observation (n0) = 2.
• Number of arrivals during (0, T ) (n) = 75.
• Number of departures during (0, T ) (m) = 70.
• Amount of time the system was busy (Tb) = 25 minutes.

Assume that at the time of observation the system was in steady state.
Without using the initial value, from (10.2.4) we get (λ̂ and µ̂ are the estimates

for the arrival and service rates, respectively)

λ̂crude = 75

30
= 2.5,

µ̂crude = 70

25
= 2.8.

Evaluating the admissible root in (0, 1) of (10.2.9), we get

ρ̂exact = 0.827,

from which, after substituting back in (10.2.7), we get

λ̂exact = 2.407; µ̂exact = 2.911.

When the initial value n0 = 2 and the approximation are used in the estimation
process, from (10.2.12) the approximate estimates are obtained as

λ̂approx = 2.567, µ̂approx = 2.720.

Table 10.2.1 summarizes these results.
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Table 10.2.1. Summary of results.

ρ̂ λ̂ µ̂

Exact 0.827 2.407 2.911
Approximate 0.944 2.567 2.720
Crude 0.893 2.500 2.800

Answer

The m.l. method used in the foregoing discussion can be easily expanded for use
in other birth-and-death process models of queueing systems. For instance, in the
generalized model with arrival parameters λn (n = 0, 1, 2, . . . ) and service parame-
ters µn (n = 1, 2, 3, . . . ), ignoring the information on the initial state (λ̂n and µ̂n are
the corresponding estimates), we get

λ̂n = number of arrivals when the process is in state n

total time the process is in state n
,

µ̂n = number of departures when the process is in state n

total time the process is in state n
. (10.2.14)

(See Wolff (1965).)

10.3 Imbedded Markov Chain Models for M/G/1 and G/M/1

In the birth-and-death process models, because of the Markovian structure of the
queue length process (number of customers in the system), we are able to construct a
likelihood function using information on macroelements such as number of arrivals,
number of departures, etc. The queue length process in M/G/1 and G/M/1 is
Markovian only at certain time epochs (departure points inM/G/1 and arrival points
in G/M/1). Consequently, we have to use the information provided by a realization
of the resulting Markov chain. Such a realization is known as its sample path.

Let θ represent the parameters of the interarrival and service time distributions
in an M/G/1 queue. Recalling definitions and notation from Section 5.2, for the
one-step transition probability Pij of the imbedded Markov chain, we have

Pij =
{
kj−i+1 if i > 0,

kj if i = 0,
(10.3.1)

where

kj =
∫ ∞

0
e−λt (λt)

j

j ! dB(t), j = 0, 1, 2, . . . . (10.3.2)

Now θ includes arrival rate λ and the parameters of the distribution B(·).
Suppose that the sampling plan is to observe the queueing system until N depar-

tures have occurred and to note down the number of customers in the system at the
start of observations, which we assume to be a departure point, and at the subsequent
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departure points, soon after departure. These are the values ofQn in the sample path,
and we let nij be the number of transitions of observed values of Qn from state i
to state j (i, j = 0, 1, 2, . . . ). Let (r0, r1, . . . , rN ) be the observed values of Qn

(n = 0, 1, 2, . . . , N). Using the observed values of the sample path, the likelihood
function may be written as (ignoring the distribution of r0)

f (θ) = �Nn=1P(Qn = rn|Qn−1 = rn−1).

Taking logarithms,

ln f (θ) =
N∑
n=1

ln P(Qn = rn|Qn−1 = rn−1). (10.3.3)

Expressing the transition probabilities in terms of the kj s defined in (10.3.2) and using
the transition counts nij , (10.3.3) simplifies to

ln f (θ) =
∞∑
j=0

(n0j + n1j ) ln kj

+
∞∑
i=2

∞∑
j=i−1

nij ln kj−i+1. (10.3.4)

The m.l. estimates of θ (λ and parameters of B(·)) can be determined by specializing
(10.3.4) in particular cases. In most cases, the maximization of ln f (θ) will have to
be carried out using numerical methods. For illustrations of this approach, see Goyal
and Harris (1972).

A similar approach can be used for theG/M/1 queue as well. But the expressions
are a little more complicated because the transition probability Pi0 = ∑∞

r=i+1 br as
shown in (5.3.3) involves a sum of integrals. (See Bhat (2003).)

Harishchandra and Rao (1988) have suggested another way of using the queue
length information from the sample path in the queue M/G/1. Equation (5.2.2) of
Section 5.2 can be rearranged as

Xn+1 =
{
Qn+1 −Qn + 1 if Qn > 0,

Qn+1 if Qn = 0,
(10.3.5)

where {Xn, n = 1, 2, . . . } are i.i.d. random variables representing the number of
arrivals during service times with the distribution given by (10.3.2). Thus from
successive observations of Qn, n = 0, 1, . . . , N , we get a corresponding sample
of {Xn} suitable for use as a random sample. Now the product of corresponding
density elements gives the likelihood function. But as discussed in Bhat (2003),
this likelihood function may not have enough information to estimate all parameters.
For instance, in the queue M/Ek/1, only the traffic intensity ρ can be estimated by
this method. To estimate the arrival and service rates separately, we need additional
information, such as the amount of time the server has been busy, say τ , during the
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period N customers have been served. Then the service rate µ can be independently
estimated as µ̂ = N

τ
, from which the estimate of λ is obtained from the relationship

λ
µ

= ρ.
A similar approach to the queue G/M/1 does not work because (5.3.2), when

rearranged, yields the relation

Xn+1 = Qn + 1 −Qn+1 when Qn+1 > 0,

≥ Qn + 1 when Qn+1 = 0, (10.3.6)

which does not provide a complete sample on {Xn} since when Qn+1 = 0, Xn+1 is
available only as being larger than Qn.

10.4 The Queue G/G/1

As mentioned earlier, a sampling plan that collects data for a specified length of time or
until a specified number of events have occurred (these are known as stopping rules)
presents problems because of the randomness of the sample size. Nevertheless, it is
possible to obtain at least approximate estimates of parameters of the distributions
using the m.l. method with most of the asymptotic properties of m.l. estimates intact
(Basawa and Prabhu (1981)). The idea of using only sequences of interarrival and
service times in estimation is originally due to Cox (1965).

Let a(u; θ) and b(v; φ) be the interarrival time and service time densities, respec-
tively, with θ and φ representing the respective parameters. Let the corresponding
distribution functions be denoted as A(·) and B(·), respectively. Let the system be
observed until n departures have occurred, and letNA be the number of arrivals during
that period. Note that NA is a random variable. We assume that the initial customer
arrival is at t = 0. Let u1, u2, . . . , uNA and v1, v2, . . . , vn be the sample data. Also,
let xn be the time difference between the stopping time (nth departure point) and the
last arrival epoch. The likelihood function f (θ ,φ) can be written as

f (θ ,φ) = [�NAi=1a(ui; θ)][�nj=1b(vj ; φ)][1 − A(xn; θ)]. (10.4.1)

Since the factor [1−A(xn; θ)] causes difficulty in obtaining simple estimates, consider
the alternative approximate likelihood function, sometimes called the conditional
likelihood function, obtained by dropping the last term in (10.4.1):

fc(θ ,φ) = [�NAi=1a(ui; θ)][�nj=1b(vj ; φ)]. (10.4.2)

The m.l. estimators are obtained from (10.4.2) by solving the following two equations:

NA∑
i=1

∂

∂θ
ln a(ui; θ) = 0,

n∑
j=1

∂

∂φ
ln b(vj ; φ) = 0. (10.4.3)
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For large samples, estimators of θ and φ can be obtained from (10.4.3), at least
numerically, if not in closed form.

Basawa and Prabhu (1981) show that the estimators determined using the con-
ditional likelihood function (10.4.2) have the requisite properties of the true m.l.
estimators. Also, if θ̂ and φ̂ are estimators based on the full likelihood (10.4.1) and
θ̂C and φ̂C are estimators based on (10.4.2), they have also shown that θ̂ and θ̂C have
the same limiting distribution whenever

1√
n

∂

∂θ
ln[1 − A(xn; θ)] → 0 in probability. (10.4.4)

Referring back to the second term in (10.4.1) and (10.4.2), and noting that the cor-
responding equation to solve for the estimators is the same as (10.4.3) in both cases,
we can conclude φ̂ = φ̂c.

In a subsequent paper, Basawa and Prabhu (1988) extend the results using four
different stopping rules: (1) observe until a fixed time T , (2) observe until n arrivals
have occurred, (3) observe until n departures have occurred, and (4) observe until n
transitions have occurred. Conditions have been established for the approximate m.l.
estimators to be asymptotically equivalent to the m.l. estimators one gets by using the
likelihood functions corresponding to the four stopping rules in the sampling plan.

10.5 Other Methods of Estimation

In other methods of estimation, the method of moments plays a major role. One such
method, using data on interdeparture intervals to estimate parameters of the service
time distribution in the queue M/G/1, is given by Cox (1965). Let λ and µ be the
arrival and service rates in such a system, with B(·) as the distribution function of
the service time. Let C(·) be the distribution function of the interdeparture interval.
Note that in steady state 1− λ

µ
is the probability that the system is empty and λ

µ
(= ρ)

is the probability that it is busy. Also, when it is busy the interdeparture interval is
the service time itself.

With this information, it is not difficult to write

C(t) = λ

µ
B(t)+

(
1 − λ

µ

)∫ t

0
B(t − x)λe−λxdx. (10.5.1)

When the service time is exponential, we do not get any additional information on µ
from (10.5.1) since the departure process inM/M/1 has the same distribution as the
interarrival time as t → ∞ (see Section 4.2.1). On the other hand, if the service time
is a constant = 1

µ
, we have

C(t) = 0, t <
1

µ
,

= λ

µ
, t = 1

µ
,

= λ

µ
+
(

1 − λ

µ

)(
1 − e−λ(t−1/µ)

)
, t >

1

µ
. (10.5.2)
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Because of the nonzero probability associated with t = 1/µ, we may use the minimum
observed interdeparture time as the estimate of 1/µ. (Even without the help of
(10.5.2), this is the best conclusion because the length of the service time is the
minimum of the interdeparture times).

When the service time distribution is different from the exponential or the deter-
ministic, the parameters of the distribution can be estimated by equating the appro-
priate cumulants of the interdeparture time distribution with those of the cumulants
from observed data. (See Cox (1965) for details and a discussion on the problems
arising out of dependent observations.)

When data are available on the time in the system for customers, a similar approach
can be used by noting their arrival and departure epochs. The time in system (waiting
+ service time) has the Laplace–Stieltjes transform given by (5.2.36). Its moments
can be determined by differentiation and by setting θ = 0 in the resulting expressions.
Now the parameters of the service time distribution B(·) are determined by solving
equations resulting from equating these moments with those from the data. For
details, readers are referred to Gross and Harris (1998), p. 320.

When estimating parameters in M/G/1 queueing systems, we need to assume a
parametric form for the service time distribution to specify parameters. What if we
are not certain about the parametric form itself? From Appendix A, we know that the
Erlangian family of distributions for different values of k have a coefficient of variation
(CV = standard deviation/mean) less than 1, and the distributions belonging to the
hyperexponential family have CV greater than 1. If one looks at these two families
of distributions as belonging to a large family with CV varying in the range [0,∞),
we can say that the exponential distribution with CV equal to 1 divides them in two
groups. Also, because of their relationship to the exponential distribution, they are
easy for analysis as models for interarrival or service time distributions. Furthermore,
the Erlangian family with different values of k and the hyperexponential family with
different mixing parameters together cover a wide variety of distribution forms that
can be used in modeling in most of the applications. Thus estimating the value of CV
from the data can lead to the selection of the right distribution model for service time
in an M/G/1 queue.

To estimate the coefficient of variation of the service time in an M/G/1 queue,
we start with equation (10.3.5), where {Xn, n = 1, 2, . . . } are i.i.d. random variables
representing the number of arrivals occurring during service periods. The random
variable Xn has the distribution {kj } given by (10.3.2). Let µ1 and µ2 be the first
and second moments of this distribution. The PGF of kj can be obtained as (see the
derivations leading to (5.2.9))

K(z) = ψ(λ− λz), (10.5.3)

where ψ(θ) is the Laplace–Stieltjes transform of the service time distribution B(·).
Clearly, we have

K ′(1) = µ1 = −λψ ′(0),
K ′′(1) = µ2 − µ1 = λ2ψ ′′(0). (10.5.4)
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Let µs1 and µs2 be the first two moments of the service time distribution, with σ 2 as
its variance. The CV of the service time distribution is now given by C = σ/µs1.

From the properties of ψ(θ), we get µs1 = −ψ ′(0) and µs2 = ψ ′′(0). Thus

K ′′(1) = λ2[σ 2 + (µs1)
2] = λ2σ 2 + [K ′(1)]2, (10.5.5)

which leads to
σ 2 = λ−2[K ′′(1)− (K ′(1))2].

But µs1 = λ−1K ′(1). Hence we get

C2 = K ′′(1)− [K ′(1)]2

[K ′(1)]2
. (10.5.6)

Substituting from (10.5.4), we have

C2 = µ2

µ2
1

− 1

µ1
− 1. (10.5.7)

Let m1 and m2 be the first two sample moments of Xn as observed from the system.
For the estimator of C, Ĉ, we get

Ĉ =
√
m2

m2
1

− 1

m1
− 1. (10.5.8)

Asymptotic properties of this estimator (consistency and normality) have been estab-
lished by Miller and Bhat (2002). A simulation study used to determine the working
rules for distribution selection provide the following guidelines: When Ĉ � 1, use
Erlang; when Ĉ  1, use hyperexponential; and when Ĉ ∼= 1, use exponential. The
last conclusion is based on the fact that when k is close to 1, using the exponential
distribuion in the model is likely to be more cost effective in further analysis than
either the Erlang (if Ĉ is slightly less than 1) or hyperexponential (if Ĉ is slightly
greater than 1) distribution.

If the decision is to adopt an Erlangian distribution, its parameters, µ and k,
can be determined using the m.l. method. In the case of the scale parameter k,
however, the integer m.l. method should be used. For details, see Miller and Bhat
(1997) and Miller (1999). If the hyperexponential distribution H2 is chosen, the m.l.
method becomes unwieldly. For such circumstances, Miller (1996) has developed an
estimation procedure for the mixing parameter p using moments of the distribution.

In queueing theory, very often estimates of performance measures are the ma-
jor objectives, e.g., system utilization and probability of blocking in a communica-
tion system. Since the theory has grown along with its applications, over the years
researchers in industrial labs have developed various methods of estimating such
measures. Also, there are other investigations that provide additional methods of es-
timation of parameters. For a comprehensive survey of these procedures and results,
readers are referred to Bhat et al. (1997).
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10.6 Tests of Hypotheses

Hypothesis testing is an integral part of inference in statistical theory. It involves
analytical procedures to determine whether hypotheses made regarding the charac-
teristics of the random phenomena are true. In queueing theory, since the objective is
to set up a suitable probability model as an aid to decision making, the use of hypoth-
esis testing is limited. Therefore, we restrict ourselves to providing only references
and the type of problems considered in them.

Most of the circumstances where hypothesis testing can be used in queueing
theory occur when there is some prior information on parameter values of the process
or when the goodness of fit of a distribution form for the interarrival time or the
service time must be ascertained. In all these cases, if we can get enough information
from the sample path of the process, standard techniques from statistical theory can
be used. But there are circumstances where complete information is not available.
For instance, Clarke’s (1957) estimation of parameters in Section 10.2 for the queue
M/M/1 used only the number of arrivals and departures, the amount of time the
system was busy, and the total time. Using a similar sampling plan, Wolff (1965)
develops likelihood ratio tests for parameter values. Thiagarajan and Harris (1979)
have developed a procedure to test whether the service time distribution is exponential
in anM/G/1 queue based only on information on waiting times. Using information
derived from (10.3.5) for the number of customers arriving during a service period in
anM/Ek/1 queue, Harishchandra and Rao (1988) have developed a likelihood ratio
test for the traffic intensity ρ.

Another form of test that can be used in queueing theory is the sequential proba-
bility ratio test, which is described in the next section.

10.7 Control of Traffic Intensity in M/G/1 and G/M/1

Confidence intervals are useful in determining whether a parameter can be assumed to
lie within some specified limits. As pointed out by Cox (1965), confidence intervals
for λ, µ, and ρ in an M/M/1 queue can be obtained by observing that 2λ̂T can be
treated as a chi-square variate with 2n degrees of freedom and 2µ̂Tb as a chi-square
variate with 2m degrees of freedom. The notation used here is from Section 10.2.
It is well known that the ratio of two chi-square variates has an F distribution. The
confidence intervals now follow using the known values of this distribution. (See
also Lilliefors (1966).)

When operating a queueing system, monitoring and controlling the parameter
values are essential to ensure that the system performance is consistent with design
standards and in order to respond to exigencies of the environment. The parameter
control problem, in effect, involves the problem of testing the hypothesesH0: θ = θ0,
where θ is the vector of parameters, with θ0 as the set of desired values, against a
suitable alternative, sayH1: θ = θ1. If the hypothesis is not rejected at a chosen level
of significance, we conclude that the system parameters have not changed, while the
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rejection of the hypothesis is indicative of change in parameter values. Once the
change is detected, an appropriate control action can be taken.

When the difference between parameter values under the null and alternative
hypothesis is large, a sequential test has the advantage of using a considerably smaller
sample size. With this objective, Rao et al. (1984) have developed a procedure for
testing the hypothesis H0: ρ = ρ0 versus H1: ρ = ρ1 using Wald’s sequential
probability ratio test (SPRT) for the systems M/G/1 and G/M/s. In their study,
they use the fact that the queue length process {Qn, n = 0, 1, 2, . . . }, representing
the number of customers in the system at departure epochs (in M/G/1) or arrival
epochs (in G/M/s), has an imbedded Markov chain. Let the transition probabilities
of the chain be Pij (ρ) when ρ is the traffic intensity, and let nij be the number of
transitions i → j of {Qn} up to and including the nth transition. Then the likelihood
ratio for the SPRT is (n =∑∑

nij )

Ln = �i,jP
nij
ij (ρ1)/�i,jP

nij
ij (ρ0). (10.7.1)

LetA = (1−β)/α andB = β(1−α), whereα andβ are the probabilities of type I and
type II errors, respectively. The SPRT procedure is as follows: after observing Qn,
acceptH1 if Ln ≥ A; acceptH0 if Ln ≤ B; and observe the next queue lengthQn+1,
computeLn+1, and repeat the procedure if B < Ln < A. The mechanics of applying
the test are easier if logarithms are used. For the systemsM/M/1,M/Ek/1,Ek/M/s,
andM/M/s/s and the machine interference problem, the logarithm of (10.7.1) takes
the form lnLn = an +∑i,j nij cij , where a and cij are constants depending upon
ρ0, ρ1, and the transition probabilities of the imbedded Markov chain.

For details of the procedure, see Rao et al. (1984). The paper also provides the
operating characteristic function and the average sample number for the SPRT. Even
though the procedure uses a finite Markov chain, its validity for denumerable infinite
chains has been established in Rao and Bhat (1991).

An alternative procedure in parameter control in M/G/1 and G/M/1 queues is
to use the limiting distribution of the number of customers in the system as outlined
in Bhat (1987). Let t0, t1, . . . be the departure epochs in an M/G/1 (or arrival
epochs in a G/M/1) queue, and let Qn be the number of customers at these points
(appropriately defined). The control technique has two phases. The first phase (the
warning phase) indicates the time at which the sample function gets out of the region
covered by the upper and lower control limits cu and c�; the second phase (the testing
phase) is intended to see whether the process returns to the control region within a
specific amount of time and involves two limits, say du and d�.

The procedure here is similar to the control chart technique of industrial quality
control, but with the addition of a second set of limits. The second phase has been
introduced in order to avoid errors in decision making that may result because of
fluctuations in the sample path of the process.

The first set of limits is determined using the limiting distribution of {Qn, n =
0, 1, 2, . . . }. LetQ∗ = limn→∞Qn and let αu and α� be two specified probabilities.
Then cu and c� are integers such that

cu = min{k|P(Q∗ ≥ k) ≤ αu},
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c� = max{k|P(Q∗ ≤ k) ≤ α�}. (10.7.2)

A simple procedure, suggested in Bhat (1987), for the determination of the second set
of limits du and d� makes use of those service periods in which no customer arrivals
occur in the queue M/G/1 and interarrival periods in which no service completion
occurs in the queue G/M/1. Clearly, these are Bernoulli events with probability of
success k0 in the queueM/G/1 and b0 in the queueG/M/1. The second-phase limits
du and d� are then defined with associated probabilities βu and β� as follows.

In the queue M/G/1, when {Qn} reaches or goes beyond the upper limit cu, we
do not conclude that the traffic intensity > ρ0 unless the process stays at or beyond
cu for a minimum number of du transitions. Hence given a probability βu, du is the
smallest number n such that the probability of the number of arrivals being at least 1
in n consecutive transitions is ≤ βu. This can be stated as

du = min{n|(1 − k0)
n ≤ βu} (10.7.3)

When {Qn} reaches c�, we do not conclude that the traffic intensity < ρ0 unless it
stays at or lower than c� for a minimum number of d� transitions. Hence given a
probability β�, d� is the smallest number n such that the probability that the number
of arrivals is zero for n consecutive transitions is ≤ β�. This can be stated as

d� = min{n|kn0 ≤ β�}. (10.7.4)

In the case of the G/M/1 queue, similar expressions can be obtained by noting that
b0 is the probability of no service completion during an interarrival period. This will
be accomplished by replacing 1 − k0 with b0 in (10.7.3) and (10.7.4).

Since 1 − k0 is the probability of one or more arrivals in M/G/1, the second-
phase limits derived as described above are very conservative and provide enough
protection from the wrong conclusion that the traffic intensity has changed.

Thus once the limits (cu, c�; du, d�) are determined as given in (10.7.2)–(10.7.4),
the procedure to monitor and control traffic intensity in M/G/1 and G/M/1 can be
described as follows:

1. Starting with an initial queue length i and traffic intensity ρ0, leave the system
alone as long as Qn lies between cu and c�, or when it goes out of these limits if
it returns within bounds before du and d� transitions, respectively.

2. If the queue length does not return within bounds between du or d� consecutive
transitions, as the case may be, conclude that the traffic intensity has changed
from ρ0 and reset the system to bring the traffic intensity back to the level ρ0.

3. Repeat steps 1 and 2 using the last state of the system as the initial state.

10.8 Remarks

Statistical inference for queueing models is often ignored in textbooks on queueing
theory. One exception in a limited form is the book by Gross and Harris (1998),
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starting from its first edition in 1974. Generally, it seems that queueing models
are applied without going beyond the method of moments for estimation of model
parameters. However, the author of this text believes that an adequate use of statistical
inference is necessary for a rigorous application of any probability model. For this
reason, we have incorporated several inference topics beyond what is given by Gross
and Harris. For a comprehensive discussion of these and other topics in inference
on queueing systems, readers may consult Bhat et al. (1997), which also includes an
extensive bibliography.
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Decision Problems in Queueing Theory

11.1 Introduction

In Chapter 1, we identified three types of problems occurring in queueing theory.
These related to the behavioral, statistical, and operational decision-making aspects
of queueing systems. In Chapters 4–9, we described probability models used in under-
standing system behavior, and in Chapter 10, we discussed how statistical techniques
can be employed to choose the right models. In this chapter, we address some of the
simpler decision problems that arise in the operation of queueing systems.

If we recall the origins of queueing theory recounted in Chapter 1, A. K. Erlang
used the Poisson model for telephone call arrivals with the objective of improving
the operation of the system. His 1924 paper “On the rational determination of the
number of circuits’’ (see Brockmeyer et al. (1960)) specifically addressed a decision
problem.

The use of behavorial results derived from probability models in decision making
has played a major role in queueing theory. Since the 1950s, with the development of
optimization techniques for decision making, operations researchers have introduced
design and control procedures into the field. However, the volume of work on these
topics makes up only a small fraction of the volume of research on the subject.

In his introduction to a special issue of the journal Queueing Systems on design
and control, Stidham (1995) provides two reasons for the paucity of research on these
topics in queueing theory: the well-developed nature of models and the availability
of explicit performance measures in these models. We may add a third reason as well:
the complexity of models required in representing the advanced systems in areas such
as computers and communications.

In the next three sections, we introduce the three modes of decision making: using
(1) performance measures, (2) design problems, and (3) control problems. We use the
categorization of decision problems as design and control, as provided by Crabill et al.
(1977). According to them, the use of static optimization to determine the best system
for optimizing some long-run average criterion, such as cost or profit, characterizes
a design problem. In a control problem, the optimization is dynamic and the system
operating characteristics are allowed to change over time. In all three cases, our

U.N. Bhat, An Introduction to Queueing Theory, DOI: 10.1007/978-0-8176-4725-4_11, 
© Springer Science+Business Media, LLC 2008 
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discussion will be minimal because using performance measures in decision making
is a natural process in probability modeling, and real-world applications of queueing
theory do not make extensive use of design and control procedures.

11.2 Performance Measures for Decision Making

The first half of the 20th century was the formative period for queueing theory. Model
development occurred for improving the operations of queueing systems starting
with the work of A. K. Erlang. Since the early applications were in the telephone
industry, graphs and charts were developed for using information on performance
measures, such as probability of blocking and mean waiting times, in decision making.
Examples of such charts can be found in Cooper (1981) and Hillier and Lieberman
(1986) or in issues of Bell Systems Technical Journal of earlier times. With the advent
of computers, such preprepared charts and graphs have become unnecessary.

As indicated earlier, with the availability of performance measures from models
developed specifically for the systems in question, most of the decisions are based on
such measures. System performance is measured against specified objectives, and
changes are made in the parameters of the system elements in order to achieve them.
See Edie (1954) for an example of this procedure in the context of traffic delays in
tollbooths.

An additional aid to decision making developed in the last 30 years or so is the use
of computer simulations. They can be used to validate models as well as to determine
the best characteristics of the system in specific scenarios. Since there is enough
published material on this subject, we shall not go into it in detail in this text. An
introduction to simulation and some examples are provided in Chapter 12. See also
the books on the subject by Law and Kelton (1991) and Schriber (1991).

11.3 Design Problems in Decision Making

In a design problem, cost functions are used to establish optimum values of the pa-
rameters or optimum structural configurations to achieve a desired performance in
the system. The cost functions could be based on monetary costs or performance
measures. These problems are also known as economic models. The optimization is
static (i.e., varying values of the parameters are not considered), and it is achieved
using established procedures. Unfortunately, when queueing system models become
complex, the expressions for performance measures may not be tractable for opti-
mization procedures. In such cases, trial and error or numerical procedures may be
needed.

Three investigations published in the 1950s and 1960s illustrate the economic
model approach. Brigham (1955) determined the optimum number of clerks to be
placed behind tool crib counters in an aircraft factory. After determining that the
arrivals follow a Poisson process and the service times are exponentially distributed,
Brigham uses Erlang’s formula for the probability of blocking to get an expression
for the waiting time of arriving customers. The cost function includes the cost per
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clerk and the cost per customer per unit time. The best value for the number s of
clerks is obtained with the help of graphs of the ratio of the two costs for each value
of s. To complete the determination of cost savings, Brigham uses what he calls the
“obverse’’ queue, in which the cost of idleness of the clerks is obtained.

Morse (1958) tackles the problem of determining the optimum value of the number
admitted to an M/M/1/N queueing system by balancing the service cost with the
cost of losing customers. He uses a cost of Eµ dollars per unit time to provide
service when the rate of service is µ, and a gross profit ofG dollars per single service
operation. With λ as the Poisson arrival rate, the net profit per unit time is obtained as

P = λG(1 − ρN)

1 − ρN+1
− Eµ. (11.3.1)

Differentiating this expression with respect to µ and setting the result equal to zero,
Morse obtains the following equation for the maximum value of µ:

ρN+1
[
N − (N + 1)ρ + ρN+1

(1 − ρN+1)2

]
= E

G
. (11.3.2)

Plotting this equation forE/G against ρ, we get graphs that can be used to determine
the number N of customers to be admitted to the system for varying cost structure
and service rates.

In the infinite waiting room case M/M/1, Morse is able to obtain the optimum
service rate µ with the standard approach to optimization. He uses the cost function

Dµ+ CW = Dµ+ C

µ− λ
, (11.3.3)

where C is the cost of wait per unit time, D is the cost of service per unit time, and
W is the mean waiting time. Optimizing this cost function by differentiating with
respect to µ and equating to zero, he gets

µ = λ+
√
C

D
. (11.3.4)

In the multiple-server case, however, for the determination of the optimum number
of servers, the optimization is carried out with a trial-and-error method. For details,
readers are referred to Morse (1958).

Hillier’s (1963) study of economic models for waiting lines is much more general
than the previous two models. He considers three multiserver models, with models 2
and 3 having two variants each. The arrivals in all models are Poisson and the queue
discipline is FCFS. All models assume that the cost of waiting is proportional to the
time in system, and the cost of service is a linear function of the number of servers.
Let λ and µ be the arrival rate and the service rate per server, respectively, and let s
be the number of servers. Three basic models are used to determine optimum values
for λ, µ, and s as noted below with various cost structures:
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Model 1: Find s.
Model 2: Find λ and s.
Model 3: Find µ and s.

Under model 2, travel time is also considered. Because of the multiserver structure,
when the service time is other than exponential, individual queues in front of servers
become necessary.

The usual method of solution is trial and error, except in cases where the service
times are exponential, when explicit expressions that are mathematically tractable for
optimization are available. For details, readers are referred to Hillier (1963). These
problems have been discussed in a more general framework in Hillier and Lieberman
(1986).

The following example illustrates the use of cost considerations in a static decision
model.

Example 11.3.1. Customer arrivals at a department store can be assumed to be Pois-
son at the rate of λ per unit time. After picking up their merchandise, the customers
queue up in front of checkout counters. The time spent in doing so can be assumed
to have an exponential distribution. The checkout time for each customer has a dis-
tribution with mean b1 and second moment b2. Suppose we have to determine the
optimum number of checkout counters under the following cost structure:

(i) C1 per unit time due to a waiting customer and
(ii) C2 per unit time for maintaining service at a counter.

Because of the exponential distribution of the time spent in picking up merchan-
dise, the arrival process at the checkout counters can be assumed to be Poisson as
well. (See Section 4.2.1.) When there are s counters, assuming that the customers
choose the counters at random, the arrival rate at each counter can now be assumed
to be Poisson with rate λ/s. Using the expression for the waiting time in queue for a
customer in an M/G/1 system from (5.2.43), we have

Wq =
(
λ

s

)
b2

/
2

(
1 − λb1

s

)

= λb2

2(s − λb1)
. (11.3.5)

Let C be the total cost per unit time. We have

E(C) = λb2C1

2s − 2λb1
+ sC2. (11.3.6)

Minimizing this cost function with respect to s in the usual manner, we find that

s = λb1 +
√
λb2

2

(
C1

C2

)
(11.3.7)
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minimizes E(C) as given by (11.3.6). Since the optimal value s must be an integer,
it is determined by evaluating E(C) at [s], the integer part of s, and at [s] + 1, and
choosing the one that gives the smallest E[C]. Answer

For a numerical example, use λ = 2 per minute; the checkout time as exponential
with mean (b1) = 3 minutes. Then b2 = 9.

Further, let C1 = 0.5, C2 = 2.5. Substituting in (11.3.7), we get

s = 7.34

with E(C)|s=7 = 22 and E(C)|s=8 = 22.25. Hence the optimum values of
s = 7. Answer

11.4 Control Problems in Decision Making

Under control problems, we include decision problems that require optimization in a
dynamic setting. One of the earliest investigations is by Moder and Phillips (1962),
in which the authors consider a multiserver queue with a variable number of servers
depending on whether the queue length reaches a given number N . When the queue
length reaches N , if the number of servers is s + i (i ≥ 0), an additional server is
added. This procedure is continued until the number of servers reaches a maximum
of S. On the other hand, if the queue length drops below N − 1 when the number
of servers is s + i, one server is removed from service. Again, this procedure is
continued until the minimum number s of servers is reached. Performance measures
of the model provide the effectiveness of such a policy in the operation of the system.

The optimality of increasing the service rate with the increasing number of cus-
tomers in the system has been formally established by Crabill (1972).

In a queueing system M/M/1, let λ be the arrival rate and µi (i = 1, 2, . . . , K)
be K possible service rates. Then Crabill uses two cost rates:

C(i) = the customer cost rate incurred when there are i customers in the system,

ri = cost rate incurred when the service rate µi is being used.

The general policy stated by Crabill is as follows: If C(i) is nondecreasing and if
→ ∞ as i → ∞, 0 < µ1 < µ2 < · · · < µk , 0 ≤ r1 < r2 < · · · < rk , λ < µk , and

∞∑
i=0

C(i)

(
λ

µk

)i
< ∞,

then the optimal stationary policy is given by the specification of K + 1 numbers
0 = d1 ≤ d2 ≤ d3 ≤ · · · ≤ dk ≤ dk+1 = ∞ and the use of service rate µj when the
number of customers in the system is ≥ dj but < dj+1. If dj = dj+1, then service
rateµj is not used in the optimal policy. Crabill (1972) provides a proof of this policy
for K = 2.

Another type of control problem that has been investigated in the queueing lit-
erature considers whether, given a cost structure, it is optimal to start serving when
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there is at least one customer in the system. For an M/G/1 queue, with the cost
structure that includes a server startup cost, a server shutdown cost, a cost per unit
time when the server is turned on, and a holding cost per unit time spent in the sys-
tem for each customer, Heyman (1968) has obtained a stationary optimal policy of
turning the server on when a specified number of customers are present and turning
it off when the system is empty. Balachandran (1973) derives a similar policy based
on the workload in the system. Because of the esoteric nature of these investigations,
we shall not explore them any further. For a more detailed discussion of problems,
see Gross and Harris (1998).

Numerous papers have been written on various optimal design and control prob-
lems. Readers interested in them are referred to the survey papers by Sobel (1974),
Stidham and Prabhu (1974), and Crabill et al. (1977) and to the special issue of the
journal Queueing Systems edited by Stidham (1995). These articles provide extensive,
though sometimes overlapping, bibliographies.

As mentioned in the introduction, because of the nature of queueing theory, design
and control policies used in applications are relatively few. As the systems become
complex, the representative models are also complex, and the resulting performance
measures become intractable for deriving usable policies. For these reasons, we have
given only a few examples of such investigations. The survey articles cited above
can be used to build an appropriate bibliography on topics of the reader’s interest.
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Modeling and Analysis Using Computational Tools1

Most of the results from Chapters 4–6 can be used for the numerical analysis of
queueing systems using standard techniques from applied mathematics with the help
of software packages provided by numerical analysis tools such as MATLAB and
Mathematica. Some of the significant mathematical techniques that may be needed
are matrix multiplications; solving of difference, differential, or integral equations;
and root-finding algorithms. Software specific to queueing systems is also available
for these analyses. See, for instance, the QTS software accompanying the book by
Gross and Harris (1998) the use of Mathematica by Hastings (2006).

In this chapter, we present two special algorithms, mean value analysis and the
convolution algorithm, for the analysis of closed queueing networks, as well as an
introduction to simulation techniques that are widely used in analyzing queueing
systems in general. To illustrate special algorithms, we use simplifying assumptions
that also show how they provide practical solutions to systems that are intractable or
whose behaviors cannot be easily modeled using simple probability distributions.

As a note to the reader, we point out that the notation used in this chapter is
slightly modified from that used in Chapter 7. For instance, since the service times
used are deterministic, no expected values are used in the analysis and the notation
representing random variables is also used for the expected values.

12.1 Mean Value Analysis

Mean value analysis (MVA) applies to closed queueing networks and provides their
performance in mean values. Also, MVA can be used only if a queueing network
has a product-form solution. We will limit ourselves to simple service centers with a
fixed limit on the queue size and a single class of customers (or jobs).

Before we introduce MVA, consider the network in Figure 12.1.1, representing a
computer system with a single central processing unit (CPU) and several I/O devices

1 This chapter is authored by Professors Robert Akl and Krishna Kavi, Department of Com-
puter Science and Engineering, University of North Texas, Denton, TX 76203, USA.

U.N. Bhat, An Introduction to Queueing Theory, DOI: 10.1007/978-0-8176-4725-4_12, 
© Springer Science+Business Media, LLC 2008 



208 12 Modeling and Analysis Using Computational Tools

CPU (S1)

Server SM

Server S3

Server S2

Fig. 12.1.1. A computer system model.

(or file servers). Each of these devices represents a service station. A task (or a
computer program) starts at the CPU, visits a file server, returns to the CPU for more
service, and repeats this process of visiting a file server and CPU until the task is
completed. Thus a job makes Vj visits to service station Sj .

If jobs are not lost, the arrival rate at each service station is the same as the departure
rate, and the arrival rate into the computer system is the same as the departure rate
from the system. For such systems, Vj can be computed as Vj = γj

γ0
, where γ0 is

the arrival rate of jobs entering the system (and also leaving the system, assuming
job-flow balance) and γj is the arrival rate of jobs at the j th service center. The

number of visits to the CPU is given by 1 +∑j=M
j=2 Vj .

These formulations are based on the “operational laws’’ (Denning and Buzen
(1978)) introduced in Chapter 7, which can be verified by direct observations.

In a closed network, the number of jobs in the system is fixed. This can be a
model for a system in which a new job arrives soon after a completed job leaves the
system. Such models are used to represent time-sharing computer systems in which
the number of terminals connected to the system represents the total number of jobs
in it. One can insert a delay before a job reenters the system to represent the think
time of a user sitting at a terminal.

Reiser and Lavenberg (1980) showed that the mean response time for service at
the j th service station in a closed network with N jobs is given by

Rj (N) = (1/µj ) ∗ [1 +Qj(N − 1)], (12.1.1)

where µj is the service rate andQj(N) is the mean number of jobs at the j th service
station. This relationship is intuitive. The N th job arriving at the j th service center
will see a queue with a mean number of jobs (including one being serviced) given by
Qj(N − 1) and must wait for these jobs to be serviced. Note that this formulation
assumes that the service distribution is exponential. The response time shown in
(12.1.1) can be solved iteratively by starting with Qj(0) = 0.

To compute the mean response time R(N) of the system with N jobs and M
service centers, we will use operational laws that specify that
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R(N) =
M∑
j=1

Rj (N)Vj . (12.1.2)

Here Vj is the number of visits that a job makes to the j th service center.
Using Little’s law, we can obtain the mean throughput rate and mean number of

jobs at service station j . In the case of a delay representing think time, the system
throughput is given by X(N) = N

(R+Z) , where Z is the mean think time of a user.
The queue lengths of each service station can be calculated as

Qj(N) = X(N) ∗ Rj ∗ Vj . (12.1.3)

Example 12.1.1. Consider a computer system with a CPU (C) and 3 file servers
(labeled F1, F2, and F3) that can perform file reads and writes. Let us assume that
each job vists F1 10 times, F2 20 times, and F3 30 times. After each visit to a file
server, the job comes back to the CPU. (Thus the number of visits that each program
makes to the CPU is 1 + 10 + 20 + 30 = 61). We are also given the following data:
The mean service times per visit to the various service stations are given as CPU = 1;
F1 = 2; F2 = 3; F3 = 4.

Initialization. N = 0:

QC = QF1 = QF2 = QF3 = 0.

Iteration 1. N = 1:

RC(1) = (1/µC)[1 +QC(0)] = 1 ∗ [1 + 0] = 1,

RF1(1) = (1/µF1)[1 +QF1(0)] = 2 ∗ [1 + 0] = 2,

RF2(1) = (1/µF2)[1 +QF2(0)] = 3 ∗ [1 + 0] = 3,

RF3(1) = 1/µF3)[1 +QF3(0)] = 4 ∗ [1 + 0] = 4.

System response time:

R(1) = RC(1) ∗ VC + RF1(1) ∗ VF1 + RF2(1) ∗ VF2 + RF3(1) ∗ VF3

= 1 ∗ 61 + 2 ∗ 10 + 3 ∗ 20 + 4 ∗ 30 = 261.

Queue lengths at each service station are computed as follows:

Qj(N) = [N/R(N)] ∗ Rj(N) ∗ Vj,
QC(1) = [1R(1)] ∗ RC(1) ∗ VC = (1/261) ∗ 1 ∗ 61 = 0.234,

QF1(1) = [1/R(1)] ∗ RF1(1) ∗ VF1 = (1/261) ∗ 2 ∗ 10 = 0.077,

QF2(1) = [1/R(1)] ∗ RF2(1) ∗ VF2 = (1/261) ∗ 3 ∗ 20 = 0.230,

QF3(1) = [1/R(1)] ∗ RF3(1) ∗ VF3 = (1/261) ∗ 4 ∗ 30 = 0.460,

Iteration 2. N = 2:

RC(2) = (1/µC)[1 +QC(1)] = 1 ∗ [1 + 0.234] = 1.234,
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RF1(2) = (1/µF1)[1 +QF1(1)] = 2 ∗ [1 + 0.077] = 2.154,

RF2(2) = (1/µF2)[1 +QF2(1)] = 3 ∗ [1 + 0.230] = 3.69,

RF3(2) = (1/µF3)[1 +QF3(1)] = 4 ∗ [1 + 0.460] = 5.84.

System response time:

R(2) = RC(2) ∗ VC + RF1(2) ∗ VF1 + RF2(2) ∗ VF2 + RF3(2) ∗ VF3

= 1.234 ∗ 61 + 2.154 ∗ 10 + 3.69 ∗ 20 + 5.84 ∗ 30 = 345.814.

Queue lengths:

QC(2) = [2/R(2)] ∗ RC(2) ∗ VC = (2/345.814) ∗ 1.234 ∗ 61 = 0.435,

QF1(2) = [2/R(2)] ∗ RF1(2) ∗ VF1 = (2/345.814) ∗ 2.154 ∗ 10 = 0.125,

QF2(2) = [2/R(2)] ∗ RF2(2) ∗ VF2 = (2/345.814) ∗ 3.69 ∗ 20 = 0.427,

QF3(2) = [2/R(2)] ∗ RF3(2) ∗ VF3 = (2/345.814) ∗ 5.84 ∗ 30 = 1.013.

We can continue the iterative process to find response times and queue lengths
for a higher number of jobs N in the system. Table 12.1.1 shows some values.

Table 12.1.1. Mean response times and queue lengths.

N R QC QF1 QF2 QF3
1 261.000 0.234 0.077 0.230 0.460
2 345.814 0.435 0.125 0.427 1.013
3 437.215 0.601 0.154 0.587 1.657
4 534.875 0.730 0.173 0.712 2.385
5 637.915 0.827 0.184 0.805 3.184
6 745.494 0.897 0.191 0.872 4.041
7 856.711 0.946 0.195 0.918 4.942
8 970.700 0.978 0.197 0.948 5.877
9 1086.709 0.999 0.198 0.968 6.834

10 1204.129 1.013 0.199 0.981 7.807
20 1322.500 1.857 0.363 1.797 15.983
30 2407.349 2.172 0.340 2.092 25.397
40 3573.418 2.166 0.300 2.076 35.458
50 4778.653 2.021 0.272 1.931 45.776

100 5998.709 3.072 0.424 2.932 93.572

The following pseudoalgorithm using C programming notation can be used
for MVA:

for (j=1; i <= M; j++) //Initialization
Q[j] = 0.0;

for (k=1; k <= N; k++) // Main loop
{

for (j=1; j <= M; j++) //Compute new response times



12.2 The Convolution Algorithm 211

R[j] = (1.0 / mu[j]) * (Q[j] + 1.0);
R = 0.0;
for (j=1; j <= M; j++) //Compute system response time

R = R + R[j];
for (j=1; j <= M; j++) //Update queue lengths

Q[j] = (k/R)*R[j];
}

When dealing with networks containing delay centers, where a job arriving at a
center is serviced immediately without having to wait, the only change that needs
to be made to MVA is in the response time computation. For delay centers, we use
Rj (N) = 1/µj .

MVA can be used for multiple classes of customers. In this case, we iterate the
MVA for each class of customers. In other words, we find the average queue lengths
iteratively for each customer class.

There have been many extensions and approximate solutions proposed with MVA
so that it can be used with other types of queues, to obtain upper bounds on response
times or to improve the computational efficiency of the analyses. We consider it
beyond the scope of this book for discussion.

12.2 The Convolution Algorithm

The MVA presented so far provides an easy way to obtain average (mean) response
times and queue lengths, but MVA is not useful for obtaining more detailed analysis,
such as the distribution of queue lengths or response times. In this section, we will
introduce how some of these analyses can be made using convolution techniques.

Chapter 7 included an analysis of both closed and open networks of queues.
These analyses can be used to solve for the distribution of jobs in a system pn,n2,...,nM

when there are nj jobs at service station j (including the job being serviced) and
{n1, n2, . . . , nM} denotes the state of the system. Note that the system state represents
an element of the set defined as

−→
N =

⎧⎨
⎩{n1, n2, . . . , nm}

∣∣∣∣∣∣
j=M∑
j=1

nj = N

∣∣∣∣∣∣
⎫⎬
⎭ .

In this chapter, we will restrict ourselves to closed networks of queues and provide a
technique that can be implemented as a computer program.

For systems in which the service time per job is independent of the queue lengths
(load-independent service), we can use the following result (Gordon and Newell
(1967)):

pn,n2,...,nM = d
n1
1 d

n2
2 · · · dnMM
G(N)

, (12.2.1)

where dj is the total service demand per job at the j th device and N = ∑j=M
j=1 nj .

The total demand for service by a job at a service station is the combined service
requirements for all visits a job makes to the service station. G(N) is a normalizing
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constant such that the probabilities that the system is in any one of the possible states
add to 1. This is very complex since we need to find the probabilities for all possible
states of the system, where the number of states is given by(

N +M − 1
M − 1

)
,

with N as the number of jobs in the system and M as the number of service stations.
Buzen’s (1973) iterative solution method for G(N), described in Chapter 7, is

based on the observation

∑
−→
N

M∏
j=1

(dj )
nj =

∑
−→
N |nM=0

M∏
j=1

(dj )
nj +

∑
−→
N |nM>0

M∏
j=1

(dj )
nj , (12.2.2)

where the summation is over the set of all possible states {n1, n2, . . . , nM}, such
that

∑M
j=1 nj = N . The first term on the right-hand side is the case when there are

zero customers at service station M , which can be viewed as a system with one less
service station. The second term indicates that there is at least one customer at service
stationM and places one service demand on that server. Thus the second term can be
rewritten with the summation over the set of all possible vectors {n1, n2, . . . , nM},
such that

∑M
j=1 nj = N − 1. Note that since there is at least one customer at service

station M , we factor dM out. The summation now deals with a system with one less
customer. Thus we have

∑
−→
N

M∏
j=1

(dj )
nj =

∑
−→
N |nM=0

M∏
j=1

(dj )
nj + dM

∑
−−→
N−1

M∏
j=1

(dj )
nj . (12.2.3)

If we use g(n,m) for
∑−→

n

∏m
j=1(dj )

nj then the normalizing constantG(N) is given
by g(N,M). But as we have seen,

g(n,m) = g(n,m− 1)+ dm ∗ g(n− 1,m), (12.2.4)

with initial conditions

g(j, 0) = 0 for j = 1, 2, . . . , n,

g(0, k) = 1 for k = 1, 2, . . . , m.

(12.2.4) provides the basis of the iterative convolution algorithm for computing the
normalizing constant G(N). This can be used to compute the state probabilities as
shown in (12.2.1).

Example 12.2.1. Let us use the same example (Example 12.1.1) as used for comput-
ing MVA. Here we have four service stations (CPU and three file servers). Using
the service times and the number of visits at each service station, we can obtain the
service demands as shown here:
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d1 = dCPU = 1 ∗ 61 = 61,

d2 = dF1 = 2 ∗ 10 = 20,

d3 = dF2 = 3 ∗ 20 = 60,

d4 = dF3 = 4 ∗ 30 = 120.

Table 12.2.1 shows the g(n,m) values for n = 0, 1, . . . , 10 and m = 1, 2, 3, 4.

Table 12.2.1. Iterative convolution algorithm for G(N).

n g(n, 1) g(n, 2) g(n, 3) g(n, 4)
0 1 1 1 1
1 61 81 141 261
2 3721 5341 13801 45121
3 226981 333801 1161861 6576381
4 13845841 20521861 90233521 879399241
5 844596301 1255033521 6669044781 1.12197E + 11
6 51520374361 76621044781 4.76764E + 11 1.39404E + 13
7 3.14274E + 12 4.67516E + 12 3.32810E + 13 1.70613E + 15
8 1.91707E + 14 2.85211E + 14 2.28207E + 15 2.07018E + 17
9 1.16941E + 16 1.73984E + 16 1.54323E + 17 2.49964E + 19

10 7.13343E + 17 1.06131E + 18 1.03207E + 19 3.00989E + 21

Thus G(N ) when N = 10 is 3.01 × 1021.

Using this value for the normalizing constant, we can find the probability dis-
tribution given by (12.2.1). For example, the probability that all 10 customers are
waiting at the CPU is given by

p10,0,0,0 = 6110

3.00989 × 1021
= 2.027 × 10−10.

As can be seen from this example, using total service demands dj for service stations
may lead to a G(N) that is too large (or too small in some systems) to provide
accurate results in a computer (although one can use higher-precision arithmetic such
as a double-precision floating-point arithmetic). In such cases, the service demands
can be scaled up or down by writing yj = (

dj
k
) and using the scaled value yj in the

convolution algorithm.

12.2.1 Computing Other Performance Measures

OnceG(N) is known for a closed queueing network, we can obtain other performance
measures, including queue lengths, utilizations, and response times of individual
service stations. Note that the convolution algorithm not only computes G(N) but
also computes several intermediate values including G(N − i).

Queue lengths. The probability that there are k or more jobs at service station j is
given by
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P(nj ≥ k) =
∑

−→
N |nj≥k

d
n1
1 d

n2
2 · · · dnMM
G(N)

= dkj
G(N − k)

G(N)
. (12.2.5)

Note that if we use a scaled value yj = (
dj
k
) when computing G(N), we will use yj

in the above equation.
In the previous example,

P(n1 ≥ 5) = d5
1
G(10 − 5)

G(10)
= 0.00023.

This gives the probability that there are five or more jobs at the CPU.
Using this method, we can find the entire distribution for the number of jobs at

each service. Consider first computing P(nj ≥ 0), then computing P(nj ≥ 1). We
can find the probability of P(nj = 0) = P(nj ≥ 1)−P(nj ≥ 0). Likewise, we can
compute P(nj = k) for all k. From these probabilities, we can compute the expected
values for the queue lengths.

Utilizations. The utilization of service station j is the probability that there is at least
one customer at that service station. In other words,

Uj = P(nj ≥ 1) = dj
G(N − 1)

G(N)
.

In the previous example, the utilizations of the various service stations are

UCPU = 0.508, UF1 = 0.167, UF2 = 0.50, UF3 = 1.00.

As can be seen, file server F3 is a bottleneck since it reached 100% utilization. Note
that for the purpose of simplifying the examples, we picked service times and visits
that are whole numbers. These numbers should not be viewed as representative of a
real computing system.

Throughput. The throughput of service station j is given by γj = Uj
1/µj

. Since

closed queueing networks are based on forced flows, the system throughput is given
by

γj
Vj

= Uj
dj

. For the above example, the system throughput is 0.0083 jobs per

unit time.
In this chapter, we have considered only simple queueing systems. MVA and

convolution algorithms for more complex queueing networks are available in the lit-
erature. Interested readers should consult more advanced sources for such techniques.

12.3 Simulation

As systems modeled as stochastic processes or queueing systems become complex
and dynamic, analytical or numerical solutions may become intractable. In such
cases, a computer program that mimics the behavior of the system (or at least the
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behaviors of interest) may be used. The computer program (or simulation) is run
with several random values and the modeled behaviors are recorded for analysis.

A key to good simulations is the quality of the random-number generators used.
Computer-generated random numbers are actually pseudorandom numbers since they
all start with a seed that is not random. With the same initial seed, the generators
produce the same sequence of random numbers. The numbers in the sequence rep-
resent outcomes of a uniform random variable. Repeating the same sequence of
random numbers is sometimes useful in reproducing results of a simulation. How-
ever, simulations may have to be repeated with different seeds to produce a sample of
the population of outcomes. To produce accurate analyses of the system, statistical
analysis of these results is required. A good random-number generator should have
a long period before the random numbers recycle. The correlation between succes-
sive numbers in a sequence should be small. The linear congruential (LC) method
is a widely used technique for generating numbers. In this method, the next random
number rn is generated using the current random number rn−1 in the equation

rn = (a ∗ rn−1 + c) modulo m,

where a and c are nonnegative constants. In order to produce m different numbers,
the following conditions must hold:

• The constants m and c are relatively prime.
• All prime factors of m divide a − 1.

To increase the range of numbers generated and to reduce the correlation among
successive numbers, several variations to the LC method have been proposed. These
include multiplicative LC (where c = 0) and adaptive LC (where rn = (rn−1 + rn−k)
modulom). Because of the growing interest in computer security using cryptography,
which requires the generation of random keys, several new techniques have arisen
for generating long sequences of random numbers.

For most simulations, we recommend using a random-number generator that has
been tested for its quality (for example, those provided by MATLAB).

Using a random-number generator that represents a uniform probability distribu-
tion with a range [0, 1], other probability distributions can be generated. For example,
the following function generates outcomes of a Poisson distribution with an arrival
rate of lambda and a fixed time interval of T :

int poisson (float lambda, T)
{

float r, temp;
int n;
n =0;
temp= -1/(lambda * ln(random_number(seed)));

while (temp < T)
{

n = n+1;
temp = temp -1/(lambda * ln (random_number(seed)));

}
return n;

}
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The accuracy of a simulation also depends on a clear understanding of the mod-
eled system, including interactions among the various subsystems, as well as the
quality of the developed software. Since complex behaviors lead to complex models
and complex programs, they are difficult to validate for correct behaviors. A good
simulation should permit variance in data (or simulation parameters) in order to study
the modeled systems under different conditions.

Since simulations of stochastic systems use random numbers, they are known
as Monte Carlo simulations. Typically, computer simulators only simulate specific
events at discrete times; hence they are also known as discrete event simulators. An
event can be viewed as a point in time when the modeled system changes its state.
Examples of events include the arrival of a new customer (or job), the start of a
service, or the end of a service. Program-defined state variables are used to track the
state of the system. Examples of state variables include the number of jobs waiting
at each server (or in each queue when multiple job classes are modeled). Other
variables are used to define system parameters, including arrival rates, service rates,
and maximum sizes of queues. The program will simulate the events by changing
the values of system variables and changing the time (or simulated clock) to the time
of the event.

The following outlines a generic structure of typical simulators:

Initialize; //Initialize termination conditions
//Initialize system state variables, clocks
//Schedule an initial event

while (termination is false)
{

set_clock; //move clock to next event time
simulate_next_event; //execute procedures to simulate the event

//remove the simulated event
update_statistics;

}
Analyse_results; //produce statistical reports

In order to develop a simulator for a queueing system (e.g., M/M/1), we can
select one of two possible variations. We can create all job arrival events at the very
beginning of the simulation. We use a random-number generator to generate the
time of arrival for each job (by adding interarrival time to the time when the last job
arrived). Alternatively, we can generate one job at a time. In this case, we randomly
generate a new event, which can either be an arrival or service. We recommend the
first choice because it will be easier to control the simulation, and this approach also
permits reproduction of the population such that different queue disciplines (such as
priority scheduling, earliest deadline first, shortest job first) can be applied to the same
population.

It is also necessary to decide on a termination test based on either a total number of
jobs processed by the simulation or on a maximum time period over which the system
is simulated. In the first case, all jobs entering the system will be processed, while in
the second case, not all entering jobs may be processed by the time the simulation is
terminated.

It is necessary to decide on the information to be associated with each job. In
a simple M/M/1 system using the first-in, first-out (FIFO) discipline, it is only
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necessary to use the time of arrival, the time when a service is initiated, and the
service time with each job. From this information, it is possible to calculate waiting
times and response times for each job, as well as average waiting times and response
times for the system. For real-time systems, it is necessary to maintain deadlines by
which a job must be completed. Deadlines can be based on service times or created
randomly.

Changes in processing the lists of waiting jobs can simulate variations to FIFO
queue disciplines. To implement earliest-deadline-first scheduling, it is necessary
to sort the waiting list of jobs by their deadlines. To implement shortest-job-first
scheduling, the list is sorted by the service times of waiting jobs. Priority queues can
be simulated by maintaining separate lists for each priority.

To simulate M/M/1, the simulation time is set to the arrival time of the next job
in the waiting list. If the server is idle, the job is scheduled by setting the service
initiation time. If the server is busy, the simulation time is set to the service completion
time of the currently serviced job (which is equal to the service initiation time plus
service time). At this time, the next waiting job is scheduled for service. This process
is repeated until the termination condition is met.

M/M/s queues can be simulated as follows: The simulation clock is set to the
earliest time when any server completes an assigned job (and becomes idle). A new
job (unless the waiting queue is not empty) is assigned to the server.

Programming languages and software libraries are available to simplify the de-
sign of simulation programs. They provide ready-made random-number generators;
functions to generate various probability distributions; and data structures to queue
events, manage time, record outcomes, and produce common statistical analyses.
One of the earliest languages is Simula, dating back to the 1960s. Newer versions
of Simula based on C++ and Java have been developed at various universities, often
as freeware. Another example is SMPL, developed by MacDougall at MIT, which
contains a set of C language functions that can be used to simulate queueing systems.
Other commercial languages and tools are available for purchase. In this chapter, we
will focus on developing simulation systems using MATLAB.

Even when using available software libraries, it is still necessary to develop pro-
grams representing the behavior of a modeled system. The behaviors of each modeled
component, the connections among the components (how a job moves from one com-
ponent to another), and the way in which a waiting queue of jobs is processed must
be coded into the simulation. In the next section, we provide a basic introduction to
MATLAB and how it can be used to model queueing systems.

12.4 MATLAB

MATLAB2 is a high-level technical computing language and interactive environment
for algorithm development, data visualization, data analysis, and numeric computa-
tion. Using MATLAB, we can solve technical computing problems faster than with

2 The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098, USA, http://www.
mathworks.com/products/matlab/.
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traditional programming languages, such as C, C++, and Fortran. MATLAB is avail-
able for Windows, Linux, Solaris, and Mac. There is also a student edition that is
educationally priced that runs on Windows, Mac, and Linux.

MATLAB’s functionality can be extended by adding different toolboxes for op-
timization, statistics, data analysis, control system design, signal processing, image
processing, data acquisition, financial modeling, application deployment, and com-
putational biology.

The statistics toolbox, for instance, provides tools for data organization, statistical
plotting and data visualization, analysis of variance, linear and nonlinear modeling,
hypothesis testing, and probability distributions that may be very useful when simu-
lating queues.

The MATLAB program that follows3 will perform a discrete event simulation of
an M/M/1 queue with arrival rate λ = 0.5 and service rate µ = 1.

The variable nextarrival gives the time when the next customer will ar-
rive. Similarly, nextdeparture gives the time when the customer currently
being served will depart. (This is set to infinity if the queue is currently empty.)
The key statement isif nextarrival < nextdeparture, which determines
whether the next event to occur will be an arrival or a departure. For an arrival, we
move the now variable forward to the time of the arrival, increase the length of the
queue currentlength by 1, announce the arrival with a disp statement, and
schedule the next arrival (after this one) by resetting nextarrival. Recall that
(-1/lambda)*log(rand) generates an exponential (λ) interarrival time. If the
newly arrived customer is the only one present (i.e., if currentlength == 1),
the customer can go straight into service, so we also decide how long the service
will take by generating a random service time (-1/mu)*log(rand) with the ex-
ponential (µ) distribution and setting nextdeparture accordingly. To handle a
departure, we decrease the current queue length by 1 and announce the departure
with another disp statement. This either leaves the queue empty, in which case
nextdeparture must be set to infinity, or brings another customer into service,
in which case nextdeparture must be set by generating a service time for that
customer.

The complete processing is enclosed in a while loop which keeps the simulation
going until targettime, which is the time when the simulation must end.

M/M/1 Queue Simulation

lambda = 0.5;
mu = 1.0;

targettime = 50;

nextarrival = (-1/lambda)*log(rand);
now = 0;
nextdeparture = inf; % infinity
currentlength = 0;

while now < targettime,

3 Available online from http://www.stat.auckland.ac.nz/∼stat320/.
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if nextarrival < nextdeparture,
now= nextarrival;
currentlength= currentlength + 1;
disp(sprintf(’Arrival at : %f (current length %d)’, now, currentlength));
nextarrival= now + (-1/lambda)*log(rand);
if currentlength == 1,

nextdeparture= now + (-1/mu)*log(rand);
end

else
now= nextdeparture;
currentlength= currentlength - 1;
disp(sprintf(’Departure at : %f (current length %d)’, now,

currentlength));
if currentlength > 0,

nextdeparture= now + (-1/mu)*log(rand);
else

nextdeparture= inf;
end

end

end

When the program is run, the output is something like the following:

Arrival at : 0.102314 (current length 1).

Departure at : 0.601800 (current length 0).

Arrival at : 3.031791 (current length 1).

Departure at : 3.146866 (current length 0).

Arrival at : 4.474956 (current length 1).

Arrival at : 5.018319 (current length 2).

Departure at : 5.259194 (current length 1).
...

Each time it goes through the main loop, the program generates one line of output,
corresponding to an arrival or departure.

The following is another example of a simple M/M/1 queue simulation that
graphs the average number of clients in the system, the average delay, and the uti-
lization.

Implementation of a Simple M/M/1

queue_lim = 200000; % system limit
arrival_mean_time(1:65) = 0.01;
service_mean_time = 0.01;
sim_packets = 750; %number of clients to be simulated
util(1:65) = 0;
avg_num_in_queue(1:65) = 0;
avg_delay(1:65) = 0;
P(1:65) = 1;

for j=1:64 %loop for increasing the mean arrival time

arrival_mean_time(j+1)=arrival_mean_time(j) + 0.001;

num_events=2;
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% initialization
sim_time = 0.0;

server_status = 0;
queue_size = 0;
time_last_event = 0.0;

num_pack_insys = 0;
total_delays = 0.0;
time_in_queue = 0.0;

time_in_server = 0.0;
delay = 0.0;

time_next_event(1) = sim_time + exprnd(arrival_mean_time(j+1));

time_next_event(2) = exp(30);

disp([’Launching Simulation...’,num2str(j)])

while(num_pack_insys < sim_packets)

min_time_next_event = exp(29);
type_of_event=0;
for i=1:num_events

if(time_next_event(i)<min_time_next_event)
min_time_next_event = time_next_event(i);
type_of_event = i;

end;

end

if(type_of_event == 0)
disp([’no event in time ’,num2str(sim_time)]);

end

sim_time = min_time_next_event;

time_since_last_event = sim_time - time_last_event;
time_last_event = sim_time;

time_in_queue = time_in_queue + queue_size * time_since_last_event ;

time_in_server = time_in_server + server_status * time_since_last_event;

if (type_of_event==1)
disp([’packet arrived’]);

% ————————-arrival————————-
time_next_event(1) = sim_time + exprnd(arrival_mean_time(j+1));

if(server_status == 1)

num_pack_insys = num_pack_insys + 1;
queue_size = queue_size + 1 ;

if(queue_size > queue_lim)
disp([’queue size = ’, num2str(queue_size)]);
disp([’System Crash at ’,num2str(sim_time)]);
pause

end

arr_time(queue_size) = sim_time;
else
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server_status = 1;
time_next_event(2) = sim_time + exprnd(service_mean_time);

end

elseif (type_of_event==2)

% —————service and departure—————

if(queue_size == 0)
server_status = 0;
time_next_event(2) = exp(30);

else

queue_size = queue_size - 1;

delay = sim_time - arr_time(1);
total_delays = total_delays + delay;

time_next_event(2) = sim_time + exprnd(service_mean_time);

for i = 1:queue_size
arr_time(i)=arr_time(i+1);

end

end

end

end

%results output
util(j+1) = time_in_server/sim_time;
avg_num_in_queue(j+1) = time_in_queue/sim_time;
avg_delay(j+1) = total_delays/num_pack_insys;
P(j+1) = service_mean_time./arrival_mean_time(j+1);

end

%———————-graphs——————————–
figure(’name’,’mean number of clients in system diagram(simulated)’);
plot(P,avg_num_in_queue,’r’);
xlabel(’P’);
ylabel(’mean number of clients’);
axis([0 0.92 0 15]);

figure(’name’,’mean delay in system diagram (simulated)’);
plot(P,avg_delay,’m’);
xlabel(’P’);
ylabel(’mean delay (hrs)’);
axis([0 0.92 0 0.15]);

figure(’name’, ’UTILIZATION DIAGRAM’)
plot(P,util,’b’);
xlabel(’P’);
ylabel(’Utilization’);
axis([0 0.92 0 1]);

Routines4Simulating M/G/1 and M/G/∞
function [jumptimes, systsize, systtime] = simmg1(tmax, lambda)
% SIMMG1 simulate a M/G/1 queueing system. Poisson arrivals

4 Written by R. Gaigalas and I. Kaj and available online from http://www.mathworks.com/
matlabcentral/fileexchange/loadFile.do?objectId=2494.
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% of intensity lambda, uniform service times.
%
% [jumptimes, systsize, systtime] = simmd1(tmax, lambda)
%
% Inputs: tmax - simulation interval
% lambda - arrival intensity
%
% Outputs: jumptimes - time points of arrivals or departures
% systsize - system size in M/G/1 queue
% systtime - system times

% set default parameter values if ommited
if (nargin==0)

tmax=1500; % simulation interval
lambda=0.99; % arrival intensity

end

arrtime=-log(rand)/lambda; % Poisson arrivals
i=1;
while (min(arrtime(i,:))<=tmax)

arrtime = [arrtime; arrtime(i, :)-log(rand)/lambda];
i=i+1;

end
n=length(arrtime); % arrival times t_1,...,t_n

servtime=2.*rand(1,n); % service times s_1,...,s_k
cumservtime=cumsum(servtime);

arrsubtr=arrtime-[0 cumservtime(:,1:n-1)]’; % t_k-(k-1)
arrmatrix=arrsubtr*ones(1,n);
deptime=cumservtime+max(triu(arrmatrix)); % departure times
% u_k=k+max(t_1,...,t_k-k+1)

% Output is system size process N and system waiting
% times W.
B=[ones(n,1) arrtime ; -ones(n,1) deptime’];
Bsort=sortrows(B,2); % sort jumps in order
jumps=Bsort(:,1);
jumptimes=[0;Bsort(:,2)];
systsize=[0;cumsum(jumps)]; % size of M/G/1 queue
systtime=deptime-arrtime’; % system times

figure(1)
stairs(jumptimes,systsize);
xmax=max(systsize)+5;
axis([0 tmax 0 xmax]);
grid

figure(2)
hist(systtime,20);

function [jumptimes, systsize] = simmginfty(tmax, lambda)
% SIMMGINFTY simulate a M/G/infinity queueing system. Arrivals are
% a homogeneous Poisson process of intensity lambda. Service times
% Pareto distributed (can be modified).
%
% [jumptimes, systsize] = simmginfty(tmax, lambda)
%
% Inputs: tmax - simulation interval
% lambda - arrival intensity
%
% Outputs: jumptimes - times of state changes in the system
% systsize - number of customers in system
%

% set default parameter values if ommited
if (nargin==0)
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tmax=1500;
lambda=1;

end

% generate Poisson arrivals
% the number of points is Poisson-distributed
npoints = poissrnd(lambda*tmax);

% conditioned that number of points is N,
% the points are uniformly distributed
if (npoints>0)

arrt = sort(rand(npoints, 1)*tmax);
else

arrt = [];
end

% uncomment if not available POISSONRND
% generate Poisson arrivals
% arrt=-log(rand)/lambda;
% i=1;
% while (min(arrt(i,:))<=tmax)
% arrt = [arrt; arrt(i, :)-log(rand)/lambda];
% i=i+1;
% end
% npoints=length(arrt); % arrival times t_1,...,t_n

% servt=50.*rand(n,1); % uniform service times s_1,...,s_k

alpha = 1.5; % Pareto service times
servt = rand∧(-1/(alpha-1))-1; % stationary renewal process
servt = [servt; rand(npoints-1,1).∧(-1/alpha)-1];
servt = 10.*servt; % arbitrary choice of mean

dept = arrt+servt; % departure times

% Output is system size process N.
B = [ones(npoints, 1) arrt; -ones(npoints, 1) dept];
Bsort = sortrows(B, 2); % sort jumps in order
jumps = Bsort(:, 1);
jumptimes = [0; Bsort(:, 2)];
systsize = [0; cumsum(jumps)]; % M/G/infinity system size process

stairs(jumptimes, systsize);
xmax = max(systsize)+5;
axis([0 tmax 0 xmax]);
grid

12.5 Exercises

1. Write a simulation program to simulate a traffic intersection with a north–south
street crossing an east–west street. You should also permit left turns at the inter-
sections. All cars waiting for a green light will proceed immediately when the
light turns green. For safety reason, once a light turns green it will remain green
for t1 seconds. Unless cars are waiting on the cross-street, once a signal turns
green it will stay green. Assume that cars arrive at the intersection as a Poisson
process with an arrival rate of λ. If there are no cars in the left-turn lane, no turn
signal appears.

You need to generate a random number indicating how many cars arrive at the
intersection from each direction and if a car is requesting a left-turn signal or not.
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Simulate the intersection using different values for t1 and λ. Calculate the average
waiting time at the intersection, that is, the interval from when a car arrives at the
intersection until the light turns green, allowing the car to exit the intersection.
Note that this time can be zero.

Using the statistical data, can you derive an empirical relationship between t1, λ,
and the average waiting times?

2. Repeat the simulation of Exercise 1 using different arrival rates for each direction
of travel.

3. Consider a multithreaded computer system that uses the following model to exe-
cute programs. Each thread consists of three phases: preload, execute, poststore.
A memory processor (MP) executes preload and poststore phases, providing ac-
cess to memory-resident data. An execute processor (EP) provides service during
the execute phase. New threads are enabled as some threads complete their exe-
cution and supply data to waiting threads (modeled as Synch service). Consider
the queueing network in Figure 12.5.1 as a model of the system.

MP 

Synch

EP

Fig. 12.5.1. A multithreaded computer system model.

The service time of the MP is based on the average number of load and store
instructions, while the service time of the EP is based on the average number
of nonmemory instructions. The service time at Synch depends on the average
number of inputs needed by a thread (and provided by other threads).

Explore the response time of such a system for a different number of threads (jobs
in the system) by varying the service times at each server. You should examine
any available benchmarks to estimate the various service times. Assume that each
thread visits EP and Synch once and visits MP twice.

For example, you can try with these service times: MP = 3, EP = 10, Synch = 6.
(The time unit is one instruction cycle, and using a 1GHz processor, the time unit
is a nanosecond.) Using N = 10, 20, 50 threads, perform MVA for this exercise.
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4. Using the convolution algorithm, find the expected queue lengths at each process-
ing element of the computer system described in Exercise 3.

5. In real-time systems, it is necessary to ensure that jobs (or tasks) complete before a
specified deadline; otherwise, the task is considered to have failed. A well-known
algorithm used for such systems is called earliest deadline first (EDF). As the
name implies, tasks are scheduled based on their deadlines. In this exercise, you
are asked to simulate an EDF-based system. You need to generate tasks using an
arrival process, task service times, and deadlines. Note that the deadlines should
be greater than the task arrival time plus its service time. Once a job is created, the
waiting list of jobs will be sorted based on the task deadlines. A task is scheduled
only if it can meet its deadline. A performance measure of EDF is the percentage
of jobs that meet their deadlines, known as the success ratio of EDF.

Write a program to simulate EDF scheduling. A job in a real-time system, τi , is
defined as τi = (ri, ei,Di), where ri is its arrival time, ei is its estimated average
execution time, and Di is its deadline. You should also maintain a dynamic
deadline di with an initial value ri + Di , which tracks the absolute time before
the deadline expires. In other words, Di is the relative deadline of the job with
respect to the arrival time and di is the absolute (wall clock) deadline.

Figure 12.5.2 shows the relationship among the various parameters.

di – t (remaining time to deadline)

ei (execution time)

Di (static or relative deadline)

ri (arrival time) t (current time) di (dynamic deadline) 

job  i

laxity

Fig. 12.5.2. Relationship among parameters.

For your simulations, generate a fixed number (N ) of jobs with randomly generated
arrivals, execution times, and deadlines. Assume that jobs are mutually indepen-
dent. Each simulation is terminated when the predetermined experimental time T
has expired.

Investigate the sensitivity of the various task parameters on the success rates of
EDF. Use random distributions available in MATLAB to generate the necessary
parameters for tasks.
(a) Generate five jobs (N = 5) that arrive at the same time 0 and have the same

deadline. Schedule the jobs based on FIFO. What is the success ratio using
EDF with FIFO? What is the average response time for the completed jobs?
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(b) Another commonly used scheduling method to increase throughput of a system
is known as shortest job first (SJF). As the name implies, tasks are scheduled
based on their execution times—schedule jobs with progressively increasing
execution times. As in the previous exercise, create jobs using an arrival time
and service time. Schedule the jobs based on SJF. Determine the success ratio
and the response time for EDF with SJF.

(c) Repeat parts (a) and (b) for five jobs with different deadlines.
(d) Repeat parts (a) and (b) for five jobs with different deadlines and different

arrival times.

6. Another variation of EDF used in real-time systems is known as the least laxity
first (LLF) algorithm. Defining laxity as the deadline of a task minus its execution
time, the job with the smallest laxity is scheduled first. Repeat the experiment of
Exercise 5 with LLF and compare its success ratio with that of EDF.
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Poisson Process: Properties and Related Distributions

The Poisson process and exponential distribution occupy an important place in the
modeling and analysis of queueing systems. This appendix provides properties ad-
ditional to those given in Section 2.1 of Chapter 2 and related distributions that are
often used in applications. Distributions other than those mentioned here that are
sometimes used in queueing theory can be found in standard statistics texts.

A.1 Properties of the Poisson Process

(a) In reliability theory, it is common to identify the failure rate of a component
as an instantaneous failure rate, called the hazard rate, say h(t). With f (t) as the
probability density of the life distribution of a component, h(t) is defined as

h(t) = f (t)

1 − F(t)
. (A.1.1)

Note that probabilistically f (t)dt is approximately the probability that the component
fails during (t, t + dt] and 1 − F(t) is the probability that it is at least of age t .
Thus h(t)dt represents the approximate probability that the component fails during
(t, t + dt], given that it is of age t . Hence the term instantaneous failure rate, or
simply the failure rate.

When f (x) is exponential, i.e., equal to λe−λx (x > 0), then h(t) = λ, a constant.

(b) Let Z1, Z2, . . . be the random variables representing the interoccurrence times
of a Poisson process. Apart from the fact that {Zn, n = 1, 2, . . . } have exponential
distributions, it can also be shown that they are i.i.d.

(c) For purposes of modeling, the implications of (a) and (b) above and the mem-
oryless property of the exponential distribution to the Poisson process described in
Section 2.1 are the following:

• Events occurring in nonoverlapping intervals of time are independent of each other.

U.N. Bhat, An Introduction to Queueing Theory, DOI: 10.1007/978-0-8176-4725-4_13, 
© Springer Science+Business Media, LLC 2008 
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• There is a constant λ such that the probabilities of occurrence of events in a small
interval of length �t are given as follows:
· P {number of events of occurring in

(t, t +�t] = 0} = 1 − λ�t + o(�t).

· P {number of events occurring in

(t, t +�t] = 1} = λ�t + o(�t).

· P {number of events occurring in

(t, t +�t] > 1} = o(�t),

where o(�t) is such that o(�t)/�t → 0 as �t → 0.

With these properties, λ is the mean number of events occurring per unit time.
(d) Consider two independent exponential random variablesX1 andX2 with param-
eters λ1 and λ2, respectively. Then we have

P(X1 < X2) =
∫ ∞

x=0
P(X1 < X2|X2 = x)f2(x)dx,

where we have written f2(x) for the density function of the random variable X2.
We get

P(X1 < X2) =
∫ ∞

x=0
P(X1 < x)f2(x)dx

=
∫ ∞

x=0
(1 − e−λ1x)λ2e

−λ2xdx

= λ1

λ1 + λ2
. (A.1.2)

Thus if two types of Poisson events occur independently of each other, the probability
that the first type of event occurs before the second is given by (A.1.2).
(e) The additive property of the Poisson distribution carries through to the Poisson
process as well. Let X1(t) and X2(t) be two Poisson processes with parameters λ1
and λ2, respectively. Let X(t) = X1(t)+X2(t). For t ≥ 0, we have

P [X1(t) = n1] = e−λ1t
(λ1t)

n1

n1! ,

P [X2(t) = n2] = e−λ2t
(λ2t)

n2

n2! .

Using these results, we can show that X(t) is also Poisson for t ≥ 0:

P [X(t) = n] =
n∑

n2=0

P [X1(t) = n− n2]P [X2(t) = n2]

= e−(λ1+λ2)t
[(λ1 + λ2)t]n

n! . (A.1.3)

Clearly, this property can be extended to any number of Poisson processes.
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(f) Another useful property of the Poisson process is its relationship to the uniform
distribution. Let n Poisson events occur at epochs t1 < t2 < t3 < · · · < tn in
the interval [0, T ]. Then the random variables t1, t2, . . . , tn have the same distribu-
tion as the nth-order statistics corresponding to the independent random variables
U1, U2, . . . , Un, uniformly distributed in the interval [0, T ]. If ft1,t2,...,tn (x1, . . . , xn)

is the joint probability density function of t1, t2, . . . , tn, this property shows that

ft1,t2,...,tn (x1, x2, . . . , xn) = n!
T n
, 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ T . (A.1.4)

A.2 Variants of the Poisson Process

The Poisson process assumes that the events occur one at a time. However, in real
systems, the occurrence of arrivals and service in groups is not uncommon. To
accommodate such situations, we may assume that each Poisson event spawns a
group of subevents. If arrival is the event, customers in the group are the subevents.
Using this terminology for convenience, let arrivals occur in a Poisson process with
rate of occurrence λ, and assume that the nth arrival epoch brings in Gn customers,
where

Pr(Gn = j) = gj .

Then the probability distribution of X(t), the number of customers arriving during
(0, t], is given by

Pn(t) =
n∑
r=0

e−λt (λt)
r

r! g(r)n , (A.2.1)

where g(r)n is the r-fold convolution of gn with itself, with g(0)n = 1 if n = 0 and 0
otherwise. Let γ (z) be the PGF of {Gn}∞n=1; then we get

�(z, t) =
∞∑
n=0

znPn(t) = e−λ(1−γ (z))t

and

E[X(t)] = λγ ′(1)t,

where γ ′(1) is the mean size of the arriving group.
When the arriving groups consist of continuous units that can be represented by

continuous random variables with distribution functionH(x), letX(t) be the number
of such arrivals and Y (t) be the resultant input (e.g., the number of claims X(t) and
the total amount of claims Y (t) in insurance-risk theory). Then we get
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Pr[X(t) = n, Y (t) ≤ x] = e−λt (λt)
n

n! Hn(x) (A.2.2)

and

∞∑
n=0

zn
∫ ∞

0
e−θt dx Pr[X(t) = n, Y (t) ≤ x] = e−λ(1−zη(θ))t ,

where we have used η(θ) to represent the Laplace–Stieltjes transform of H(x), and
Hn(x) for the n-fold convolution of H(x) with itself. Clearly, we get

E[Y (t)] = [−η′(0)]λt,
where −η′(0) is the mean input per arrival.

The processes given in (A.2.1) and (A.2.2) are known as compound Poisson
processes (also known as stuttering Poisson processes). These turn out to be good
approximating models for a wide variety of arrival processes. (See Haight (1967)
and Johnson and Kotz (1969).)

Another class of Poisson-related processes can be generated by assuming that the
Poisson parameter λ itself is a random variable (�). Let L(x) be its distribution
function. Then X(t), the number of arrivals occurring in (0, t], can be given as

Pn(t) = P [X(t) = n] =
∫ ∞

0
e−λt (λt)

n

n! dL(λ). (A.2.3)

When the range of� is other than (0,∞), a suitable range is to be used for integration.
From (A.2.3), we get

E[X(t)] = tE[�].
For instance, when

dL(λ) = e−µλ µ
kλk−1

(k − 1)!dλ (0 ≤ λ < ∞),

we get

Pn(t) =
(
n+ k − 1

k − 1

)(
µ

t + µ

)k (
t

t + µ

)n
, n = 0, 1, 2, . . . , (A.2.4)

which is in a negative binomial form. The underlying process is called a Polya
process.

The Polya process belongs to the class of mixed Poisson distributions, which
can be used to represent variations in the arrival or service intensity. Other useful
mixing patterns would be to assumeL(x) as normal in the positive range or a discrete
distribution of the type

P(� = λ) = pλ, λ = λ1, λ2, . . . .
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A.3 Hyperexponential (HE) Distribution

Let random variables {Z1, Z2, . . . } be distributed as

F(x) = 1 −
K∑
i=1

pie
−λix, 0 ≤ x < ∞,

λi > 0 for all i for which pi > 0;

1 ≥ pi ≥ 0,
K∑
1

pi = 1. (A.3.1)

We get

E(Zn) =
K∑
1

(
pi

λi

)

and

ψ(θ) =
K∑
1

pi

(
λi

θ + λi

)
.

Also,

E[Z2
n] =

k∑
i=1

2pi
λ2
i

and CV(Zn) =
⎡
⎢⎣2
∑K
i=1

pi

λ2
i(∑ pi

λi

)2
− 1

⎤
⎥⎦

1/2

.

This distribution is generated if events fall into identifiable classes and an event
belonging to class i generates with probability pi an interoccurrence time that is
exponential with mean 1

λi
. Depending on the values of pi and λi and the possible

values of i, a wide variety of distributions can be generated.
To retain the same mean 1

λ
, the following form of the HE distribution can be used:

F(x) = 1 −
K∑
i=1

pie
−Kpiλx (x ≥ 0), (A.3.2)

λ > 0, 1 ≥ pi ≥ 0,
K∑
1

pi = 1.

Then

E[Zn] = 1

λ
,

E[Z2
n] = 2

(Kλ)2

K∑
i=1

(
1

pi

)
,
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CV[Zn] =
[(

K∑
i=1

1

pi

)
2

K2
− 1

]1/2

.

The value of K commonly used in applications is 2.

A.4 Erlang Distribution (Ek)

This distribution has been introduced in Chapter 2 (see (2.1.6)).
Let random variables {Z1, Z2, . . . } be distributed as

F(x) =
∫ x

0
e−λy λ

kyk−1

(k − 1)!dy, 0 ≤ x ≤ ∞, λ > 0,

= 1 −
k−1∑
r=0

e−λx (λx)
r

r! . (A.4.1)

We get

E[Zn] = k

λ
,

ψ(θ) =
(

λ

θ + λ

)k
,

and

E[Z2
n] =

(
1 + 1

k

)
k2

λ2
and CV[Zn] = 1√

k
.

The distribution F(x) is a two-parameter distribution and is commonly known as the
Erlang distribution (A. K. Erlang demonstrated its use in the analysis of telephone sys-
tem congestion), or the gamma distribution, or the Pearson type III distribution with
integral values for the parameter k. (It is also a particular case of the χ2 distribution.)

A.5 Mixed Erlang Distributions

The HE distribution of SectionA.3 is obtained by using a finite mixture of exponential
distributions. In a similar manner, in order to provide versatility, we can get mixed
Erlang distributions.

(a) Constant λ, varying k. Let

F(x) =
∫ x

0

K∑
i=1

pie
−kiλy (kiλ)

ki yki−1

(ki − 1)! dy, 0 ≤ x < ∞, λ > 0. (A.5.1)
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We get

E[Zn] = 1

λ
,

ψ(θ) =
K∑
i=1

pi

(
kiλ

θ + kiλ

)ki
,

and

E[Z2
n] = 1

λ2

K∑
i=1

pi

(
1 + 1

ki

)
,

CV(Zn) =
[
K∑
i=1

pi

ki

]1/2

.

This adds another dimension of generality to the Erlang distribution. It has been
shown by several authors that this distribution approximates very well nearly all
distributions of practical interest. A finite limit for the values of K has also been
found satisfactory. (See Luchak (1956).)

(b) Both λ and k varying.

F(x) =
∫ x

0

K∑
i=1

pie
−kiλiy (kiλi)

ki yki−1

(ki − 1)! dy. (A.5.2)

This general form admits both the HE and Erlang distribution as special cases:

HE: ki = 1 for i = 1, 2, . . . , K,

mixed Erlang: λi = λ for i = 1, 2, . . . , K.

Assuming the coefficient of variation (CV) to be a measure providing an adequate
representation of the model, the Erlang (with CV ≤ 1) and HE (with CV ≥ 1)
distributions offer a wide spectrum of choice for model selection. In the Erlang
model, the CV is decreased by increasing the value of the parameter k. In the HE
model with K = 2, CV is increased by moving p1 and p2 away from 1

2 .

A.6 Coxian Distributions; Phase-Type Distribution

Generalizing the Laplace transform of the Erlang distribution (A.4.1), Cox (1955) has
proposed a class of distributions whose Laplace transforms are rational functions. A
member of this class is the generalized Erlang distribution, which has the Laplace
transform

ψ(θ) = �Ki=1

(
λi

θ + λi

)
. (A.6.1)
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The corresponding distribution can be thought of as the distribution of the time that
a process takes to pass through K phases (X1, X2, . . . , XK), where Xi has an expo-
nential distribution with mean 1

λi
. It is obtained as the convolution ofK exponentials

with parameters λ1, λ2, . . . , λK . Another large subset of Coxian distributions is the
phase-type distribution introduced by Neuts (1975, 1989), which can be considered
to be a natural probabilistic generalization of the Erlang. The underlying process gen-
erating the distribution undergoes transitions on a Markov chain with an absorbing
state. Further discussion of this distribution is given in Section B.4 of Appendix B.

Using Coxian distributions in their generality in queueing models leads to highly
complicated analytical expressions and requires the use of complex variables in their
analysis. For instance, see Cohen (1969). In striking a balance between generality
and practical use, Neuts’ phase-type distributions have found wide use because of
their versatility in modeling leading to algorithmic solutions.

A.7 A General Distribution

LetF(x) be a continuous distribution function with probability density function f (x).
We have

f (x) = − d

dx
[1 − F(x)]. (A.7.1)

Using the hazard function concept introduced in (A.1.1), we have

h(x) = 1

1 − F(x)

{
− d

dx
[1 − F(x)]

}

= − d

dx
ln[1 − F(x)]. (A.7.2)

Integrating, we find ∫ x

0
h(y)dy = − ln[1 − F(x)],

F (x) = 1 − e−
∫ x

0 h(y)dy,

and

f (x) = h(x)e−
∫ x

0 h(y)dy, (A.7.3)

which is in a generalized exponential form and is very convenient for use in the study
of queueing systems with arbitrary interarrival time and/or service time distributions.

A.8 Some Discrete Distributions

Let 0, σ, 2σ, 3σ, . . . be discrete equidistant points along the time axis. We assume
that events occur only at these time points. (Even when events occur at other points,



A.8 Some Discrete Distributions 237

we may think of a counter that registers the events only at these time points.) If the
value of σ is small enough, the discrete-time axis is a convenient base to represent
most systems of practical interest. Furthermore in systems such as computer systems,
time is discrete, and a discrete queueing system is the most natural outcome.

As before, let Z1, Z2, . . . be nonnegative (integer-valued) random variables, rep-
resenting the interoccurrence times of events. Define

pk = P(Zn = k), n = 1, 2, . . . , k = 0, 1, 2, . . . ,

and
φ(z) =

∑
k

pkz
k, |z| ≤ 1.

Three discrete distributions that are analogues of exponential, Poisson, and Erlang
distributions are given below:

(i) The geometric distribution: Let events occur one at a time independent of each
other, and let the probability that an event occurs at a time point be α and does
not occur be (1−α). Let pk be the probability that the event occurs at time point
k for the first time. Then

pk = α(1 − α)k−1, k = 1, 2, . . . . (A.8.1)

We get

E[Z] = 1

α
and V [Z] = 1 − α

α2

and

φ(z) = αz

1 − (1 − α)z
.

The distribution in (A.8.1) is called the geometric distribution, and it gives the
discrete version of the exponential.

(ii) The binomial distribution: Consider the distribution of X(nσ), the number of
events occurring in the interval (0, nσ ). Let pk(n) = P(X(nσ) = k). Then
using the properties of the binomial distribution,

pk(n) =
(
n

k

)
αk(1 − α)n−k, k = 0, 1, 2, . . . , n. (A.8.2)

We get

E[X(nσ)] = nα and V [X(nσ)] = nα(1 − α)

and

φn(z) =
n∑
k=0

pk(n)z
k = (1 − α + αz)n.
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Clearly, (A.8.2) is the discrete analogue of the Poisson distribution. (Recall the
method of derivation of the Poisson distribution as a limit of the binomial in
statistics texts.)

(iii) The negative binomial distribution: Now let pk(n) be the probability that the
event occurs for the kth time at time point n. This means that the event occurs
k − 1 times during [0, (n− 1)σ ]; this event has the binomial probability given
in (A.8.2). Since the event has to occur at the nth time point, we have

p
(n)
k =

(
n− 1

k − 1

)
αk−1(1 − α)n−kα

=
(
n− 1

k − 1

)
αk(1 − α)n−k, n = k, k + 1, . . . . (A.8.3)

We get

E[Z] = k

α
and V [Z] = k(1 − α)

α2

and

φ(z) =
[

αz

1 − (1 − α)z

]k
.

As in the Erlang, this distribution is generated by counting every kth event as an
effective event for the queueing system.
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Markov Process

This appendix builds on the basic concepts introduced in Section 3.3 of the main text
and provides additional background material for further work on modeling and anal-
ysis of queueing systems. The notation used in the material given here is consistent
with that used in Chapter 3.

B.1 Kolmogorov Equations

Let {X(t), t ∈ T } be a time-homogeneous Markov process and (see (3.3.14))

Pij (t) = P [X(t) = j |X(0) = i]. (B.1.1)

There are two types of differential equations for the determination ofPij (t) in Markov
processes. They are the forward Kolmogorov equations and backward Kolmogorow
equations. Forward Kolmogorov equations are the ones commonly used in applica-
tions because of their convenient structure, even though the backward equations are
considered to be more fundamental due to the nature of the limiting properties used
in their derivation. In order to derive these equations, we proceed as follows: In a
time-homogeneous Markov process, (3.3.8) of Chapter 3, representing the Chapman–
Kolmogorov relation, can be written as

Pij (t + s) =
∑
k∈S

Pik(t)Pkj (s).

Set s = �t ; then
Pij (t +�t) =

∑
k∈S

Pik(t)Pkj (�t).

Subtracting Pij (t) from both sides of the equation and dividing by �t ,

Pij (t +�t)− Pij (t)

�t
=
∑
k �=j

Pik(t)Pkj (�t)

�t

U.N. Bhat, An Introduction to Queueing Theory, DOI: 10.1007/978-0-8176-4725-4_14, 
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+ Pij (t)
Pjj (�t)− 1

�t
.

Let �t → 0; we get

P ′
ij (t) = −λjjPij (t)+

∑
k �=j

λkjPik(t). (B.1.2)

In deriving (B.1.2), we have used the definition of λij given in (3.3.15) and (3.3.16).
Equations (B.1.2) for i, j ∈ S are known as forward Kolmogorov equations.

In matrix notation, we can write them as

P′(t) = P(t)A. (B.1.3)

The transition probabilityPij (t) can be determined by solving these differential equa-
tions along with the boundary condition P(0) = I .

Backward Kolmorov equations can be obtained in a similar manner by starting
with the relation

Pij (�t + t) =
∑
k∈S

Pik(�t)Pkj (t).

The corresponding matrix equation can be given as

P′(t) = AP(t).

Formally, the solution for both sets of equations can be given as

P(t) = eAt = I +
∞∑
n=1

An t
n

n! . (B.1.4)

B.2 The Poisson Process

Here we show how forward Kolmogorov equations can be used to determine the
transition probability distribution of the Poisson process. In Chapter 2 we have
introduced events whose interoccurrence times are exponential. We have also listed
the following properties:

1. Events occurring in nonoverlapping intervals of time are independent of each
other.

2. There is a constant λ such that the probabilities of occurrence of events in a small
interval of length �t are given as follows:
(a) P {number of events occurring in (t, t +�t] = 0} = 1 − λ�t + o(�t),
(b) P {number of events occurring in (t, t +�t] = 1} = λ�t + o(�t),
(c) P {number of events occurring in (t, t +�t] > 1} = o(�t),
where o(�t) is such that o(�t)

�t
→ 0 as �t → 0.
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Using the notation and equations developed for Markov processes, in this context,
we have (see (3.3.15) and (3.3.16))

P ′
ij (0) = λ, P ′

ii (0) = −λ,
resulting in a generator matrix

A =

⎡
⎢⎢⎢⎣

−λ λ 0 0 0 . . .
0 −λ λ 0 0 . . .
0 0 −λ λ 0 . . .
...

...
...

...
...

⎤
⎥⎥⎥⎦ . (B.2.1)

The Poisson process is a counting process whose initial value is 0; i.e.,X(0) = 0.
Writing P0n(t) = Pn(t) for convenience and noting that P(t) = (P0(t), P1(t), . . . )

and P′(t) = (P ′
0(t), P

′
1(t), . . . ), the individual equations in (B.1.2) can be written

out as

P ′
0(t) = −λP0(t),

P ′
n(t) = −λPn(t)+ λPn−1(t), n > 0,

withP0(0) = 1 andPn(0) = 0 for n > 0. Solving these differential equations, we get

Pn(t) = e−λt (λt)
n

n! , n = 0, 1, 2, . . . , (B.2.2)

which is the result we stated in (3.3.19). As we have seen in Chapters 4 and 6, so-
lutions to the equations in (B.1.2) are not always easily determined. For the Poisson
process, because of the bidiagonal structure of A and the constant element λ, the
differential equations could be solved using standard methods. When such simplifi-
cations are not available, in simpler cases we may use Laplace transforms and PGFs
in their solutions. When A is finite and diagonalizable, the eigenvalue method can
be used to determine the solution in the form (B.1.4). Also, there are computational
methods to obtain solutions from the differential equations directly. (See Bailey
(1964), Stewart (1994), and Bhat and Miller (2002).)

In the modeling of queueing systems, it helps to understand what the elements of
matrix A of (3.3.18) stand for. As indicated earlier, by definition (see (3.3.15) and
(3.3.16)) λij , j �= i, is the instantaneous rate for the transition i → j . From (3.3.17),
we also know that

∑
j �=i λij = λii . That means that λii is also the sum of all the

instantaneous transition rates out of state i.
This allows us to interpret 1

λii
as the mean length of time the process stays in state

i during a visit. The length of time the process stays in a state during a visit is known
as the sojourn time in that state. This sojourn time of the Markov process in state i
has been shown to have an exponential distribution with mean 1

λii
.

For a proof of this result and for a discussion of special forms of Markov processes
used in stochastic modeling, readers are referred to Bhat and Miller (2002) and the
advanced books cited there.
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B.3 Classification of States

In order to describe a stochastic process, we need to specify the state space and
the parameter space. The parameter space is easily categorized as being discrete or
continuous. The state space, however, in addition to being discrete or continuous,
may include states or groups of states with special properties.

The states of a discrete-state stochastic process fall into groups depending on
how they interact with each other. The basic property defining this interaction is
communication. If state i can be reached from state j , i is said to be accessible from
j . If i and j are accessible to each other, they are said to communicate. It is not hard to
visualize all communicating states forming a single group, known as an equivalence
class. If a Markov process has all its states belonging to a single equivalence class,
it is said to be irreducible.

For instance, consider the number of customers, Qn, in a queueing system at
discrete-time points tn, n = 0, 1, 2, . . . . Assume that tn are such that {Qn, n =
0, 1, 2, . . . } can be modeled as a Markov chain. When no restrictions are imposed
on the transitions of {Qn}, it is easy to note that all states of the Markov chain com-
municate with each other and hence form a single equivalence class. Alternatively,
we may think of a finite queueing system that ceases to operate when Qn reaches a
value, say, M . As an example, consider M machines that are in operation in a ser-
vice facility. The facility ceases its operation when all machines become inoperative.
Let the number of failed machines be the state of the process. Now the state M of
the Markov chain is accessible from all other states {0, 1, 2, . . . ,M − 1}, but other
states are not accessible from M . Then we have two equivalence classes: {M} and
{0, 1, 2, . . . ,M−1}. Since the process stops inM , it is known as an absorbing state.

Suppose now that the system is modified such that the facility is not shut down
when all M machines are inoperative. One or more of them are repaired to bring
the facility back into operation. Now all states {0, 1, 2, . . . ,M} belong to the same
class. Comparing the states in the two systems, the first with an absorbing state and
the second with all communicating states, we can make the following observation:
The Markov chain starting from any one of the states in the class {0, 1, . . . ,M − 1}
in the first system will not remain in any of these states when n → ∞ because at
some stage it is bound to be absorbed in M . On the other hand, the Markov chain of
the second system will remain in the class even when n → ∞. This behavior of the
Markov chain allows us to classify the states, and the equivalence classes themselves,
into being recurrent (also known as persistent) or transient:

(1) Starting from state i, if the Markov chain is certain to return to i, the state is said
to be recurrent. Since all states in the equivalence class communicate with each
other, the class itself is recurrent. A further classification is made based on the
value of the recurrence time, which is the mean time the process takes to return
to the same state. If the recurrence time is finite, the state (and the class to which
it belongs) is known as positive recurrent. If it is infinite, the state and the class
are known as null recurrent. Note that an absorbing state is positive recurrent.
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(2) Starting from state i, if the Markov chain’s return to that state is not certain, it is
said to be transient. Since all states in the equivalence class communicate with
each other, then the class itself is transient.

The classification of states of a stochastic process such as queue length (number of
customers in the system) plays a major role in understanding its behavior. Here we
list some of the properties that can be deduced from the nature of the states of the
process:

1. If there are transient states in the state space of the process, in the long run
(n → ∞), the process will not be found in those states. Thus if there are
transient as well as recurrent states in the state space, the process will always end
up in the recurrent states.

2. A process starting out in a recurrent state i will always remain in the recurrent
equivalence class to which state i belongs.

3. Because of properties 1 and 2 above, only processes with irreducible Markov
process models need to be considered to understand the long-run behavior of the
system. As we have seen in earlier chapters, we can establish conditions under
which limiting distributions exist for such processes.

4. When the state space includes both transient and recurrent states, one of the
characteristics of interest is the transition from transient states to a state in the
recurrent class. For instance, the distribution properties of the busy period in a
queueing system can be determined by considering 0 as an absorbing state for
the queue length process, while all other states are transient.

For an elaboration on the classification of states and their usefulness in stochastic
modeling, readers are referred to Bhat and Miller (2002).

B.4 Phase-Type Distributions

InAppendixA, we postponed the description of a phase-type (PH) distribution because
it required results from Markov processes. For illustration, we use the generalized Er-
lang distribution, one of the simpler PH distributions, given by the Laplace transform
ψ(θ) of (A.6.1):

ψ(θ) = �ki=1

(
λi

θ + λi

)
. (B.4.1)

The generalized Erlang distribution can be generated as the distribution of the total
time a process takes to traverse k phases, with phase i lasting a duration that has
an exponential distribution with mean 1

λi
. Recalling the properties of the Markov

process, we can identify it as a Markov process with states {1, 2, . . . , k, k + 1} of
which state k + 1 is absorbing. The generator matrix of the process can be given as
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A =

⎡
⎢⎢⎢⎢⎣

−λ1 λ1 · · 0
−λ2 λ2 · · 0

−λ3 λ3 · 0
· −λk λk

0 0 0 0 · . . . 0

⎤
⎥⎥⎥⎥⎦

=
[

T T0

0 0

]
, (B.4.2)

where T (m×m) and T0(m× 1) are submatrices.
Let Pi(t) be the probability that the process is in state i at time t . Note that,

because k + 1 is an absorbing state, ultimately the process will come to reside in
that state. Therefore,

∑k
i=1 Pi(t) is the probability that the process is in one of the

transient states {1, 2, . . . , k} at time t . Let Yk be the time the process takes to traverse
all the k states. Then

P(Yk > t) =
k∑
i=1

Pi(t).

Hence

P(Yk ≤ t) = 1 −
k∑
i=1

Pi(t)

= Pk+1(t). (B.4.3)

For the Markov process with generator matrix A, we can write the forward Kol-
mogorov equations as

P ′
1(t) = −λ1P1(t),

P ′
i (t) = −λiPi(t)+ λi−1Pi(t), 1 < i ≤ k,

P ′
k+1(t) = λkPk(t), (B.4.4)

with P1(0) = 1 and Pi(0) = 0 for i > 1. Define the Laplace transform

φi(θ) =
∫ ∞

0
e−θtPi(t)dt.

Taking transforms of (B.4.4), we get

−1 + θφ1(θ) = −λ1φ1(θ),

θφi(θ) = −λiφi(θ)+ λi−1φi−1(θ), 1 < i ≤ k.

Solving these equations recursively, we get

φk(θ) =
(

1

θ + λk

)
�k−1
i=1

(
λi

θ + λi

)
. (B.4.5)
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If fk(y) is the probability density of Yk , it is easy to see that P ′
k+1(t) is, in fact, fk(y).

Thus from the last equation in (B.4.4), and (B.4.5), we have the Laplace transform
of Yk as ∫ ∞

0
e−θyfk(y)dy = �ki=1

(
λi

θ + λi

)
,

which is the same as (B.4.1).
Referring back to the general form of the solution to the forward Kolmogorov

equations given by (B.4.4), the distribution function of Yk can be given as

F(t) = 1 − α exp(Tt)e for t ≥ 0, (B.4.6)

where α = (1, 0, 0, . . . , 0) and e′ = (1, 1, . . . , 1).
Generalizing this structure, Neuts (1989) has defined the PH distribution as the

time until absorption in a finite Markov process with generator matrix

A =
[

T T0

0 0

]
,

where them×mmatrix T satisfies Tii < 0 for 1 ≤ i ≤ k and Tij ≥ 0 for i �= j . Also,
Te + T0 = 0. The initial probability vector (α, αk+1) is such that αe + αk+1 = 1.
States {1, 2, . . . , k} are transient and k + 1 is absorbing. A large number of PH
distributions can be generated by using different structures for T. For the properties
of PH distribution and its use in queueing theory, readers are referred to Neuts (1978,
1989).

The simplest PH distribution is the Erlang, in which the λi , i = 1, 2, . . . , k of
the generator matrix (B.4.2) are a constant, say λ. The underlying random variable
represents the time taken by the process to traverse k phases of service, each with an
exponential distribution with mean 1

λ
.



C

Results from Mathematics

In this appendix,1 we present useful results from several areas of mathematics that
have been used in the book.

C.1 Riemann–Stieltjes Integral

Let f (x) and φ(x) be real-valued functions on [a, b], and suppose that f (x) is
bounded on [a, b] and φ(x) is monotonically increasing there. By a partition P of
[a, b], we mean a finite sequence of points x0, x1, . . . , xn such that

a = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xn−1 ≤ xn = b.

For any partition P of the closed interval [a, b], we define

N1 = least upper bound f (x), where x ∈ [xi−1, xi],
ni = greatest lower bound f (x) where x ∈ [xi−1, xi],

�φi = φ(xi)− φ(xi−1),

U(P , f, φ) =
n∑
i=1

Ni�φi,

L(P , f, φ) =
n∑
i=1

ni�φi.

Then

∫ b−

a

f (x)dφ(x) = greatest lower bound U(P , f, φ),

1 Reprinted with permission from U. N. Bhat and G. K. Miller, Elements of Applied Stochastic
Processes, 3rd ed., Wiley, New York, 2002.

U.N. Bhat, An Introduction to Queueing Theory, DOI: 10.1007/978-0-8176-4725-4_15, 
© Springer Science+Business Media, LLC 2008 
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a−
f (x)dφ(x) = least upper bound L(P , f, φ),

where the greatest lower bound and least upper bound are taken over all partitions
of [a, b].

We say that f (x) is Riemann–Stieltjes integrable with respect to φ(x) over [a, b]
if and only if ∫ b

a−
f (x)dφ(x) =

∫ b−

a

f (x)dφ(x).

When f (x) is Riemann–Stieltjes integrable with respect to φ(x) over [a, b], we write
its integral as ∫ b

a

f (x)dφ(x).

It should be pointed out that one may define the Riemann–Stieltjes integral with
respect to a function φ(x), where φ(x) is of bounded variation on [a, b]. A function
φ(x) is of bounded variation on [a, b] iff

V (φ; a, b) = least upper bound
n∑
i=1

|�φi | < +∞,

where the least upper bound is taken over all partiions of [a, b].
(Rudin (1964).)

C.2 Laplace Transforms

The proofs of the properties have been omitted, and all operations are assumed to be
well defined.

Definition C.2.1. Let f (t) be a real-valued function in [0,∞). We define the Laplace
transform of f (t) as

L{f (t)} = φ(s) =
∫ ∞

0
e−stf (t)dt, Re(s) > 0.

If f (t) is piecewise continuous on every interval [0, N ] and of exponential order
α (i.e., there exist constants M1, M2, and α such that for all t > M2, we have
|f (t)| < M1e

αt ), then it can be shown that L{f (t)} = φ(x) exists. In Section C.1,
we defined what is meant by the Riemann–Stieltjes integral; in turn, we may also
define the Laplace–Stieltjes transform of F(t).

Definition C.2.2. Let F(t) be a real-valued function; then we define the Laplace–
Stieltjes transform of F(t) as∫ ∞

0
e−st dF (t), Re(s) > 0.
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We note that if F(t) is absolutely continuous and its Laplace–Stieltjes transform
exists, then F(t) is a differentiable monotonically increasing function and

dF(t) = F ′(t)dt.

The Laplace–Stieltjes transform of F(t) then equals the Laplace transform for
this case.

Properties C.2.1 below apply only to Laplace transforms, although analogous
properties hold for Laplace–Stieltjes transforms. Let L{f (t)} = φ(s), and assume
that all operations are well defined.

Properties C.2.1.

(1) If L{fi(t)} = φi(s) and f (t) = ∑∞
i=1 ξifi(t), where ξi is a constant (i =

1, 2, . . . ), then φ(s) =∑∞
i=1 ξiφi(s).

(2) If g(t) = eξtf (t), then L{g(t)} = φ(s − ξ).
(3) If

g(t) =
{
f (t − ξ) for t > ξ,

0 for t ≤ ξ,

then L{g(t)} = e−ξsφ(s).
(4) If ξ �= 0 and g(t) = f (ξ t), then

L{f (ξ t)} = 1

ξ
φ

(
s

ξ

)
.

(5) If g(t) = dn[f (t)]
dtn

= f (n)(t), then

L{g(t)} = snφ(s)− sn−1f (0)− sn−2f (1)(0)− · · · − sf n−2(0)− f (n−1)(0).

Here the continuity at 0 of f (n)t is assumed for each n.
(6) If g(t) = tnf (t), then L{g(t)} = (−1)nφ(n)(s).
(7) When the indicated limit exists, we have

lim
s→∞φ(s) = 0,

lim
t→0

f (t) = lim
s→∞ sφ(s),

lim
t→∞ f (t) = lim

s→0
sφ(s).

(8) Let f (t) be the probability density function of a continuous random variable T ;
then E(T ) = −φ(1)(0).

(9) Let

f (t) = f1(t) ∗ f2(t) =
∫ t

τ=0
f1(τ )f2(t − τ)dτ

and L{fi(t)} = φi(s) (i = 1, 2); then φ(s) = φ1(s) · φ2(s).
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(10) If f (t) is such that ∫ x

0
f (t)dt = 0

for all x > 0, then f (t) is called a null function and φ(s) = 0.

Perhaps a word about the uniqueness of the Laplace transform of f (t) is in order.
Suppose that f2(t) is a null function and f (t) = f1(t) + f2(t); then by Proper-
ties C.2.1(1) and (10), we have

φ(s) = φ1(s)+ φ2(s) = φ1(s) = L{f1(t)}.
One can see that several different functions may have the same Laplace transforms,
but if we do not consider null functions, the Laplace transform of a function is unique.

Finally, we give two theorems that are useful in limiting operations dealing with
transforms.

Theorem C.2.1 (an Abelian theorem). If for some nonnegative number ξ (≥ 0)
we have

lim
t→∞

F(t)

tξ
= C

�(ξ + 1)

and

ψ(s) =
∫ ∞

0
e−st dF (t)

exists for Re(s) > 0, then
lim
s→0+ s

ξψ(s) = C.

Theorem C.2.2 (a Tauberian theorem). If F(t) is nondecreasing and

ψ(s) =
∫ ∞

0
e−st dF (t)

exists for Re(s) > 0, and if for some constant ξ (≥ 0),

lim
s→0

sξψ(s) = C,

then

lim
t→∞

F(t)

tξ
= C

�(ξ + 1)
.

(Widder (1946).)

C.3 Generating Functions

Analogous to the transform of a function is the transform of a sequence of real numbers
{an}∞n=0. This is commonly called a Z-transform or generating function of {an}∞n=0.
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Definition C.3.1. Let {an}∞n=0 be a sequence of real numbers. If

A(z) =
∞∑
n=0

anz
n

exists, then A(z) is called the generating function of the sequence {an}∞n=0.

Since the series A(z) converges to a unique number, the generating function of
a sequence of real numbers is unique. The similarity between generating functions
and Laplace transforms is obvious and is further exemplified by the properties of
generating functions. We again assume that all operations are well defined. Let the
generating functions of {an}∞n=0 and {bn}∞n=0 be A(z) and B(z), respectively.

Properties C.3.1.

(1) If cn = ξ1an + ξ2bn for each n, where ξ1 and ξ2 are constants, then C(z) =∑∞
n=0 cnz

n = ξ1A(z)+ ξ2B(z).
(2) If bn = an+k , then B(z) = z−kA(z)−∑k−1

r=0 brz
r−k .

(3) If an = nk and bn = nk−1 for k ≥ 1, then A(z) = zB(1)(z) = z
dB(z)
dz

.
(4) If cn =∑n

r=0 arbn−r , then C(z) =∑∞
n=0 cnz

n = A(z) · B(z).
(5) Let X be a nonnegative, discrete random variable, and let P(X = n) = pn and

P(X > n) = qn. If P(z) =∑∞
n=0 pnz

n and Q(z) =∑∞
n=0 qnz

n, then
(a) Q(z) = [1−P(z)]

1−z ,

(b) E(X) = P (1)(1) = Q(1),
(c) V (X) = P (2)(1)+ P (1) − [P (1)(1)]2 = 2Q(1)(1)+Q(1)− [Q(1)]2.
Note that when pn = P(X = n), we may write P(z) = E[zX].
Finally, we give three theorems that are useful in analyzing stochastic systems.

Theorem C.3.1 (Abel’s theorem). If limn→∞ an = a, then

lim
z→1−

[
(1 − z)

∞∑
n=0

anz
n

]
= a.

Theorem C.3.2 (Tauber’s theorem). If limz→1−(1 − z)
∑∞
n=0 anz

n = a and
limn→∞ n(an − a(n−1) = 0, then

lim
n→∞ an = a.

Theorem C.3.3. Let {an}∞n=0 be a nonnegative sequence of real numbers whose gen-
erating function is

A(z) =
∞∑
n=0

anzn, |z| < 1.

The following hold (for a and c real constants):
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∞∑
n=0

an = a iff lim
z→1−A(z) = a,

lim
m→∞

(
1

m

m∑
n=0

an

)
= c iff lim

z→1− [(1 − z)A(z)] = c.

(Beightler et al. (1961), Feller (1968), Hardy (1949), Whittaker and Watson
(1962).)
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imbedded Markov chain, 75, 77, 123, 125,

191
independence, tests for, 19
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limiting, 3
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loss system, 57
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machine
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marked point process, 24
Markov
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distribution, 4, 14
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compound, 232
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Polya process, 232
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different, 127
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quantum, 93
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bulk, 115, 118, 123
cyclic, 154
discipline, 2
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finite, 51

-source, 59
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Jackson, 152
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Jackson, 150

random-number generator, 215
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backward, 165
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relative throughput, 142
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equation, 164
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law
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server, 130

specialized models, 8
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statistical
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stochastic process, 3, 23, 242
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independence, 19
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time
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