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Preface

Discontinuous control systems are the oldest type of control system and the
most widespread type of nonlinear control system. The theory of discontinuous
control, and the theory of relay feedback systems in particular, is usually con-
sidered a mature subject. However, many problems in discontinuous control
theory still remain open. One problem involves the input-output properties
of these systems, knowledge of which is extremely important to every appli-
cation.

Two types of discontinuous control systems are studied in this book. The
first is the so-called relay feedback system, which normally encompasses re-
lay servomechanisms, various on-off controllers, sigma-delta modulators, relay
feedback tests used for process dynamics identification, and controller tuning.
Relay systems are often considered the main type of nonlinear system, which is
evident by the enormous amount of house temperature control systems (that
are usually implemented as on-off controllers) that exist. The theory of relay
systems is an old subject. The problem of analysis of relay feedback systems
was first considered by L. MacColl in 1945 [71]; the study was motivated by
the development of relay servomechanisms of missile thrusters on the one hand
and vibrational voltage regulators on the other. MacColl’s analysis was based
on an approximate approach close to the describing function method. Later,
exact methods of analysis of relay feedback systems were developed, the most
well-known of which is the Tsypkin locus [94]. The exact approach developed
by Tsypkin, however, did not consider the servo aspect of relay feedback con-
trol. Its purpose was limited to finding periodic motions that may occur in a
relay system in an autonomous mode or under external excitation. The servo
problem in relay feedback control has not received due attention since. In
recent years, a relatively small number of publications on relay feedback sys-
tems theory have appeared, in which only autonomous modes, and not servo
modes, were considered.

The second type of discontinuous control system considered in this volume
is the so-called sliding mode control system, which includes the conventional
first-order sliding mode control system and the second-order sliding mode
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system. Sliding mode systems are a specific type of discontinuous control
system. There are a number of references on sliding mode control (systems)
devoted to this type of discontinuous control, the most well-known of which
is by V.I. Utkin [97]. This subject has been an active research area during the
past three decades. However, the present volume offers a different treatment
of sliding modes than the traditional approach. The approach presented in
this work allows accounting for the presence of so-called parasitic dynamics in
control loops and uncovers mechanisms of chattering and non-ideal closed-loop
performance in sliding mode control systems.

The purpose of this book is to present a new frequency-domain theory of
discontinuous control systems in which the control systems are viewed and
studied as servo systems. This theory involves a unified frequency-domain ap-
proach to both analysis of possible self-excited periodic motions and analysis
of input-output properties of discontinuous control systems. The servo aspect
of control is very important and was underestimated in the past. Knowledge of
input-output properties is as important as knowledge of autonomous behav-
ior in discontinuous control systems (self-excited oscillations). In fact, these
two aspects complement each other. For example, in on-off house temperature
control system design, it is equally important to know both the frequency of
relay switching and how the average indoor temperature might change in re-
sponse to the outdoor temperature. The latter problem can be solved only if
the servo aspect of the system is considered.

The core approach in this present book is the frequency-domain method
called the locus of a perturbed relay system (LPRS). This method offers an
exact analysis of both oscillatory properties and servo properties of relay
feedback systems. The method is analytical and very convenient for design
applications, which is illustrated by the numerous examples provided. This
approach is exact, which allows for overcoming the drawback of the well-
known describing function method. Further, overcoming the constraint of the
filtering hypothesis of the describing function method allows for extending
the proposed theory to analysis of motion in sliding mode control systems,
where the sliding mode itself is now considered as oscillations of either finite
or infinite frequency. The analysis provided, however, is not merely another
confirmation of available results in sliding mode control theory. The proposed
approach offers a more precise treatment of sliding mode control systems than
does classic sliding mode control theory. Thus, the proposed approach intro-
duces the theory of real sliding mode control versus ideal classic sliding mode
control.

This book is primarily a research monograph, as it is devoted only to
frequency-domain theory of discontinuous control systems, and the theory pre-
sented in the book is novel. However, it also has many features of a textbook,
as the theory presented covers a relatively large classic nonlinear control area.
This theory is illustrated by a number of application examples from different
areas of control engineering and is accessible to students with a background
in linear control. The included MATLAB code can also make understanding
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of the presented theory easy. The book, therefore, can be used by researchers,
practitioners, and undergraduate and graduate students.

The material is organized into two parts and appendices. Part I is de-
voted to the theory of the locus of a perturbed relay system (LPRS) method,
and Part II presents applications of the LPRS method. Part I comprises five
chapters. Chapter 1 poses the problem and outlines the scope and method of
analysis, which is presented in detail in the following chapter. In Chapter 3,
the results obtained in Chapter 2 for slow inputs are extended to the analy-
sis of the system response to relatively fast input signals. Chapter 4 presents
frequency-domain theory of sliding mode control systems. The sliding mode
analysis follows the methodology developed in the preceding chapters. Chap-
ter 5 is devoted to an emerging area of sliding mode control — second-order
sliding mode control systems analysis.

Part II gives a number of applications of LPRS theory. These applications
include the electro-pneumatic servomechanism (Chapter 6), the relay feed-
back test and its application to process dynamics identification and controller
tuning (Chapter 7), the sliding mode differentiator and dynamic compen-
sator (Chapter 8), and the sliding mode observer (Chapter 9). Some of these
applications have been in engineering practice for many years, and other ap-
plications are relatively new. In general, the material of each chapter in the
second part of the book is independent and only makes general references to
topics presented in the first part. The Appendix contains the derivations of
the LPRS, the proofs of the theorems, and the MATLAB code used in the
text for the LPRS computations.

I wish to acknowledge the many colleagues who have contributed to the
development of this book. I am especially grateful to Prof. L. Fridman for
the many discussions resulting in the refinement of the theory presented,
to Dr. A. Pisano for his review of the manuscript, to Prof. V.I. Utkin and
Prof. K. Furuta for their encouragement and support of my work on this
project, to the late Prof. V. Kainov who years ago introduced me to the
world of discontinuous control systems, to Prof. N.V. Faldin who influenced
my research in many ways, to Prof. D. Atherton and Prof. Y. Shtessel for
their valuable comments and discussions of the theory currently presented in
the book, and to Mr. E. Tamayo for providing the opportunity and help in
implementation of the presented theory in a loop tuner. I thank Alex and
Michael Boiko for their help with the LaTeX typesetting and artwork. I also
express gratitude to my family for their patience and support; without them
this undertaking would not have been possible.

Calgary, Canada Igor Boiko
October 2008
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1

The servo problem in discontinuous control
systems

1.1 Introduction

Discontinuous control systems, and relay feedback systems in particular, are
one of the most important types of nonlinear systems. The term “relay” comes
from electrical applications where on-off control has long been used. To de-
scribe the nonlinear phenomenon typical of electrical relays, the nonlinear
function also received the name “relay” comprising a number of discontinu-
ous nonlinearities. Thus, when applied to any type of control system, the term
“relay” is now associated not with applications but with the kind of nonlin-
earities that are found in the system models. However, what we traditionally
call the “relay system” cannot always be described by the relay system model.
For example, the vibrational voltage regulator is not a relay system in the full
sense, as the charge and discharge time constants are different and the regu-
lator is better described as a variable structure system (which is, however, a
discontinuous control system).

Applications of the discontinuous feedback principle have evolved from vi-
brational voltage regulators and missile thruster servomechanisms of the 1940s
to numerous on-off process parameter closed-loop control systems, sigma-
delta modulators, process identification and automatic tuning of proportional-
integral-derivative (PID) controller techniques, and DC motor, hydraulic and
pneumatic servo systems, to name a few. The enormous number of residential
temperature control systems available throughout the world illustrates how
popular discontinuous control systems are. A number of industrial examples
of relay systems were given in the classic book on relay systems [94]. Further-
more, many existing sliding mode algorithms can be considered and analyzed
via the relay control principle. Perhaps, some aspects of hybrid systems can
also be analyzed via application of discontinuous control system theory. In
fact, discontinuous control systems are probably the most conventional type
of control system in history.

Discontinuous control systems provide many advantages over linear sys-
tems: simplicity of design, cheaper components that were known as early as
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the 1930s [55], and the ability to adapt the open-loop gain in the relay feed-
back system in response to changing parameters [8, 50, 71]. As a rule, they
also provide a higher open-loop gain and a higher performance [56] than lin-
ear systems. In some applications, smoothing of the Coulomb friction and of
other plant nonlinearities can also be achieved.

Discontinuous control systems theory has been the subject of attention
since the 1940s from the worldwide research community. Traditionally, the
scope of research was composed of the following problems: existence and pa-
rameters of periodic motions, stability of limit cycles, and input-output prob-
lems (set point tracking or external signal propagation through the system),
which includes the disturbance attenuation problem. The theoretical devel-
opment was motivated by the design of missile thruster servomechanisms in
Germany [17] and in the United States [71, 72, 104] as well as vibrational
voltage regulators [51]. Later, a number of publications, some of which be-
came classic works in the area, appeared. Most of these were concerned with
the solution of the periodic problem. A semigrahpical solution [43], a matrix
method [28], a z-transform–based solution [57], frequency-domain methods
[54, 941] and [9] (which can be considered a generalization of method [94]), a
state-space–based technique [34], and a finite-difference operator method [81]
for the solution of problem of existence and local stability of periodic mo-
tions were proposed in the late 1950s to the mid-1960s. In [79] a systematic
overview of applications of Poincaré maps to the analysis of periodic motions
in relay systems was given. A rigorous solution of the problem of existence
and local stability of limit cycles was presented in [2] and [100] for symmet-
ric and asymmetric limit cycles, respectively. The problem of global stability
of limit cycles was considered in [53]. In [81, 94] and [84], the input-output
problem was analyzed. Relay feedback systems were also studied with the use
of more general approximate methods such as the describing function (DF)
method [71] (where the input-output problem in relay systems was probably
considered for the first time; the authors used the results obtained in [58]),
and [8, 50, 56, 87]. In the recent monographs [103] and [107], extensive cover-
age of the theory of relay feedback test–based identification is given.

Another study of oscillations in the relay and variable structure systems
was motivated by the chattering problem in sliding mode control [97, 105].
This problem is closely related to the original problem, and the results are
applicable to both variable structure systems and relay systems ([4, 16, 26, 46,
47, 98, 99]). A number of techniques of process parameter identification and
PID controller tuning based on the relay feedback test are given in [3, 59–61,
70, 73–75, 83]. Periodic motions in sigma-delta modulators were studied in [41]
and [78].

The method presented in this book is based on the frequency-domain char-
acteristic of the discontinuous control system that is similar in some ways
to the frequency response of a linear system (Nyquist plot) and the Tsypkin

1 The first edition of this book was published in 1955.
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locus [94]. Therefore, the presented approach has some resemblance to the DF
method and Tsypkin’s method. Moreover, from the methodological point of
view, the presented theory in some ways replicates the DF method. However,
the presented method offers a few advantages over both methods mentioned
above: better accuracy than that of the DF method (eliminating the necessity
of the filtering hypothesis) and a better solution of the input-output problem
compared with that of the Tsypkin locus, which can only furnish a solution
of the periodic problem.2

All discontinuous control systems have a nonlinear element in the control
loop. Usually the nonlinearity is associated with the controller. In most cases
the discontinuous nonlinearity is an ideal (sign function) or hysteretic relay.
However, it can be a more complex nonlinearity, examples of which are consid-
ered in the chapters devoted to sliding mode control and second-order sliding
mode control.

A mode that may occur in a discontinuous control system is a self-excited
(non-vanishing) oscillation, which is also referred to as a periodic motion. If
the system does not have asymmetric nonlinearities, this periodic motion is
symmetric in the autonomous mode (no external input applied). However, if
an external input (disturbance) is applied to the system that has a periodic
motion, the self-excited oscillations become biased or asymmetric. The key ap-
proach to the analysis of discontinuous control systems is a method of analysis
of self-excited oscillations (symmetric and asymmetric). The following section
gives a general methodology of such an analysis based on frequency-domain
concepts.

1.2 Fundamentals of frequency-domain analysis
of periodic motions in nonlinear systems

The problem of finding possible periodic motions in nonlinear dynamical sys-
tems is a fundamental problem in both mathematics and control theory. It
can be traced back to the works of Poincaré who introduced a widely used
now geometric interpretation of this problem as that of finding a closed orbit
in the state space.

Poincaré’s approach involves finding a certain map in the state space,
which is now called the Poincaré map. Yet Poincaré maps for most nonlinear
systems can hardly be obtained in an analytical form. Analytical expressions
have been obtained only for low-order systems or higher-order systems con-
taining simple types of nonlinear functions. An example of the latter is the
relay feedback system for which the Poincaré map is obtained in an explicit
form. A few formulations of Poincaré maps for relay feedback systems are pre-
sented in [2, 20, 54, 94, 100]. For more complex types of nonlinearities, only an
2 Tsypkin [94] also considers the input-output problem in his book; he proposes

that the solution of the input-output problem should be done via analysis of
asymmetric oscillations.
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approximate solution can be found as a rule. A number of different approaches
to the problem of finding a periodic solution have been proposed. The most
general approach was given in [64] in which the solution of the periodic prob-
lem was found in the form of a Fourier series. Despite the clear underlying
idea of this method, its application is computationally cumbersome, as the
original problem is transformed into the problem of solving the system of a
high number of nonlinear algebraic equations, which is often impractical. A
modification of this classic approach was given in [96]. However, the compu-
tational efficiency of the proposed approach rapidly decreases with required
accuracy. Among other methods are Volterra series used to solve both the pe-
riodic problem in autonomous systems [32] and forced oscillations [102]. Yet
the Volterra series approach can only handle weak (mild) nonlinearities. A
combination of the perturbation method and the harmonic balance method
was proposed in [29]. But this method also can handle only mild nonlinear-
ities. A singular perturbation method was used for analysis of the periodic
problem in relay systems in [47].

Commonly in engineering practice, only the first-harmonic approximation
is used, which is known as the describing function (DF) method. The main
concepts of this method were developed in the 1940s and 1950s [36, 51, 52,
63, 71, 95]. Comprehensive coverage of this method is given in [8, 50]. The
DF method provides a simple and efficient, but not exact, solution of the pe-
riodic problem. Its applications are limited to systems that can be separated
into nonlinear and linear parts interconnected into a closed loop (Fig. 1.1)
with the nonlinear part being a static nonlinearity (with possible hysteresis)
and the linear part given by linear time-invariant differential equations. More-
over, the linear part must be a low-pass filter to filter out higher harmonics,
so that the input to the nonlinearity could approximately be considered a
sinusoid.

Let us consider the frequency-domain approach to analysis of self-excited
oscillations. Consider the following nonlinear system,

ẋ = Ax + Bu

y = Cx
(1.1)

Fig. 1.1. Block diagram of the system for DF analysis
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Fig. 1.2. Poincaré mapping

u = f(σ), (1.2)

σ = −y, (1.3)

where A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n are matrices, x ∈ Rn, y ∈
R1, σ ∈ R1, f ∈ R1, f(σ) is a single-valued symmetric monotone nonlinear
function: f(−σ) = −f(σ) (it will be later extended to a hysteretic function).
Formula (1.1) provides a description of the linear part, formula (1.2) denotes
the nonlinear part of the system, and formula (1.3) gives the condition of
closing the system loop. We shall also use the linear part description in the
form of the transfer function W (s), which can be obtained from formulas (1.1)
as follows: W (s) = C(Is − A)−1B. Let us also assume that the linear part is
strictly proper, i.e., the relative degree of W (s) is one or higher.

The problem of finding a periodic solution of system (1.1), (1.2), and (1.3)
is usually formulated as the problem of finding a fixed point x∗ of Poincaré
map, which will be a solution to the equation: x = P (x), where P (x) is the
mapping. Figure 1.2 provides two examples of Poincaré mapping. P1 maps
point x1 into point x2, and P2 maps point x3 into itself. Therefore, x3 = x∗.
In the time domain, the closed orbit that starts from the point x∗ (denote it
x∗(t) for brevity) will be a periodic vector signal, and y∗(t) = Cx∗(t) will be
a periodic scalar signal.

Now consider the open-loop system (1.1), (1.2), which can be obtained by
ignoring equality (1.3). Let σ(t) be a periodic symmetric signal of period T
with zero mean, continuously differentiable with respect to t, so that σ(t +
T/2) = −σ(t), σ ∈ R, t ∈ D ⊂ R, D := t ∈ [0;T ]. Consider the following
lemma, which will be instrumental below.

Lemma 1.1. If σ(t) satisfies the conditions of symmetric periodicity and uni-
modality and f(σ) is a symmetric monotone nonlinear function, then x(t) will
be a periodic vector signal, and y(t) will be a periodic scalar signal.

Proof. u(t) is a periodic signal because it is a function of f(σ): u(t + T ) =
f(σ(t+T )) = f(σ(t)) = u(t). y(t) as well as x(t) are periodic because they are
responses to the periodic input u(t), which follows from linear system theory.

�
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Definition 1.2. Let us call the mapping of space R×D into itself, where σ(t)
satisfies the conditions of symmetric periodicity and unimodality, the periodic
signal mapping (PSM)

y(t) = g(f(σ(t)), (1.4)

which is a chain-rule application of two mappings: g for the linear part and f
for the nonlinear part.

Definition 1.3. Let us call the periodic function σ∗(t), which provides the
solution to the equation −σ(t) = g(f(σ(t)), t ∈ D, the fixed point of the
periodic signal mapping (the minus sign is attributed to the negative feedback
in the closed-loop system).

The following theorem relates periodic solutions in the state-space and
time domains.

Theorem 1.4. If σ∗(t) is a fixed point of the periodic signal mapping y(t) =
g(f(σ(t)) in the open-loop nonlinear system (1.1), (1.2) where f(σ) is a single-
valued symmetric monotone nonlinear function, then x∗(t) = h(f(σ∗(t)) will
be a fixed point of the Poincaré mapping in the closed-loop system (1.1), (1.2),
(1.3), where h is mapping u(t) → x(t).

Proof. Because σ∗(t) is a fixed point of the periodic signal mapping (1.4),
σ∗(t) provides a solution to system (1.1), (1.2), (1.3). This is a periodic so-
lution, as the property of periodicity is “embedded” in the type of function
σ(t). According to Lemma 1.1, x∗(t) will be a periodic vector function, which
means that in the state space, the trajectory that starts from x∗ is a closed
orbit, i.e., satisfying the condition of being a fixed point of the Poincaré map.

�
Let us analyze how the PSM can be implemented in practice. Transfer the

analyzed problem including the defined mappings into the spectral domain,
which can be provided via taking the Fourier series of the signals in the system.
Represent the periodic signal σ(t) in the form of the Fourier series as follows,

σ(t) = 2
∞∑

k=1

|qσk| cos ((2k − 1) ωt + arg qσk) (1.5)

where ω = 2π/T , and all even harmonics are zeros due to σ(t) being symmetric

qσk =
1
T

T/2∫

−T/2

σ(t) [cos(2k − 1)ωt − j sin(2k − 1)ωt] dt. (1.6)

Therefore, any σ(t) can be characterized by the matrix Qσ as follows:
Qσ = [qσ1 qσ3 qσ5 . . .] subject to the frequency ω being given. We shall call
the matrix Qσ the spectrum of the signal σ(t). The number of elements of Qσ

can be set arbitrarily large, but it makes sense to limit the number of elements
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to some reasonable value, so that any further increase of this number will not
provide any noticeable increase in the accuracy of the σ(t) representation. Let
us represent other periodic signals u and y in the system by their spectra: Qu,
Qy. Then the mapping Qσ → Qu can be given by the transformation into the
time domain as per (1.5), nonlinear mapping in the time domain as per (1.3),
and transformation into the spectral domain through the following formulas:

quk =
1
T

T/2∫

−T/2

u(t) [cos(2k − 1)ωt − j sin(2k − 1)ωt] dt (1.7)

Qu = [qu1 qu3 qu5 . . .] . (1.8)

The mapping Qu → Qy can be given by the following element-by-element
multiplication of the two matrices, which directly follows from linear systems
theory:

Qy = Qu • S (1.9)

where
Qy = [qy1 qy3 qy5 . . .] (1.10)

S = [W (jω) W (j3ω) W (j5ω) . . .] . (1.11)

According to Theorem 1.4, the periodic solution of (1.1), (1.2), (1.3) can be
found as a fixed point of the PSM. We have defined the PSM as the chain
application of two mappings: the first of which is provided by (1.5), (1.2),
and (1.7), and the second is given by (1.9). To find the fixed point, we have
to design a contraction mapping, so that iterates from the initial point will
converge to the solution.

Assume now that the linear part is an ideal low-pass filter. This assumption
enables one to rewrite (1.9) as

Qy = qu1W (jω) (1.12)

and (1.5), (1.2), (1.7) as just

qu1 =
1
T

T/2∫

−T/2

u(t) [cos ωt − j sinωt] dt (1.13)

with σ(t) = aσ cos ωt. The ratio qu1/qσ1 = 0.5aσ gives the describing func-
tion (DF) of the nonlinearity. As a result, considering (1.3) we can write the
harmonic balance equation for the DF approximated system as follows:

N(aσ)W (jΩ) = −1 (1.14)

where N(aσ) is the describing function of the nonlinearity, aσ is the amplitude
of σ(t), and Ω is the frequency of the periodic motion:
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N(aσ) =
qu1

qσ1
=

2
Taσ

T/2∫

−T/2

u(t) [cos ωt − j sin ωt] dt.

Equation (1.14) is a well-known formula [8, 50] that is widely used for
analysis of periodic motions. Therefore, the DF analysis can be viewed as a
fixed point of the PSM considered above, subject to the assumption about
the low-pass filtering property of the linear part.

Equation (1.14) provides a basis for analysis of possible periodic motions
in a nonlinear system via application of the DF method. Usually this equation
is presented in the following form:

W (jΩ) = − 1
N(aσ)

(1.15)

which is convenient for graphical interpretation, as the unknown variables are
separated into the left-hand and the right-hand parts of the equation.

1.3 Relay servo systems

Usually, control systems are categorized into two groups depending on the
control problem they are supposed to solve. These two categories are stabi-
lization systems and servo systems. Stabilization systems carry out the task of
stabilization of certain process variables. The main challenge for such systems
is producing a compensating action for the disturbances that inevitably oc-
cur. The servo systems implement the task of tracking certain input signals,
so that the system output follows the input signal as precisely as possible.
Normally, the input to the system is unknown, but some a priori informa-
tion about the input signal such as frequency and amplitude range may be
available. The typical examples of stabilization systems are temperature, pres-
sure, level, flow control systems; and examples of servo systems are actuators,
airplane autopilots, and temperature control systems, which are supposed to
ensure the temperature change in time according to a given profile.

We can see from the above examples that the autonomous mode, when no
external signals are applied to the system, does not normally occur. What is
common for both these types of control systems is the existence of external
signals that affect the functioning of the system. In the first case, this is a
disturbance to which the system is supposed to respond in such a way as
to provide its compensation. In the second case, the system is supposed to
respond to the input to bring the output in alignment with this external
input. In both cases, the problem analyzing the effect of external signals on
the system characteristics is the most important part of system performance
analysis.
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One could argue that for a stabilization system, this analysis is of
secondary importance. The example that may be given is control loop tuning
from the process step response [109]. Indeed, the disturbance effect is not
analyzed in this case. However, the logic of this tuning is as follows: to apply
the step test to identify some essential performance characteristics of the loop
and to tune this loop in such a way that the best disturbance rejection is
obtained. Set point change is not typical of stabilization systems, and the step
response is just a certain characteristic of a servo system, but the principal
concern when performing this test and the subsequent tuning, is the system
response to a potential disturbance. The explanation of such methodology
lies in the fact that it is much easier to generate the set point change than the
disturbance change. The disturbance for a temperature control system may
be, for instance, the ambient temperature, and it is practically impossible in
most cases to create the ambient temperature change to be able to measure
the system response.

This issue is often forgotten, creating the illusion that the autonomous
mode is enough for analysis of stabilization system performance. This is espe-
cially true with respect to the relay feedback systems and sliding mode (SM)
systems, where the input-output problem did not receive adequate attention.
A few examples where this problem was considered are given in the introduc-
tion. A vast majority of the publications on relay system theory are devoted
to the analysis of the parameters of the oscillations and their stability. In SM
theory, only chattering as a phenomenon typical of real sliding received some
attention as a subject of research.

By the servo problem we mean the analysis of the system response to an
external signal: either this external signal is the disturbance, which the system
is supposed to reject, or it is the input, which the system is supposed to track.
From this definition, one can see that this problem applies to both types of
systems considered above. Moreover, if we consider a model of the system, the
difference between those two signals is only in the point of application, and
from the point of the methodology of analysis they are no different. Because
we deal with models in this book, we can consider only one signal applied to
the system and consider it as being either a disturbance or a reference input
signal, depending on the system task. Naturally, the servo problem cannot be
solved without the autonomous mode analysis having been carried out first.
The servo problem is, therefore, an extension of the analysis of the system in
an autonomous mode. It includes the autonomous mode analysis and provides,
therefore, a more complex type of analysis.

We call the system described by the following equations the relay servo
system — emphasizing the fact that an external input is applied to this sys-
tem, and the system response to this input is one of the subjects of analysis,

ẋ = Ax + Bu

y = Cx
(1.16)
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Fig. 1.3. Relay servo system

u =

{
+c if σ = f0 − y ≥ b or σ > −b, u(t − 0) = c

−c if σ = f0 − y ≤ −b or σ < b, u(t − 0) = −c,

where A ∈ Rn×n,B ∈ Rn×1,C ∈ R1×n are matrices, and u(t − 0) is the
control value at the time immediately preceding the current time.

We represent the relay servo system as a block diagram (Fig. 1.3). In
Fig. 1.3, f is a cumulative input (disturbance) to the system transposed to
the relay input, u is the control, y is the output, σ is the error signal, c is
the amplitude of the relay, 2b is the hysteresis value of the relay function
u = u(σ), and Wl(s) is the transfer function of the linear part (of the plant in
the simplest case), which can be obtained from the matrix-vector description
(1.16) as Wl(s) = C(Is − A)−1B.

1.4 Symmetric oscillations in relay servo systems:
DF analysis

The describing function (DF) method provides a simple and often fairly precise
approach to the problems of analysis of periodic motions and input-output
analysis (within the framework of the assumption about a sinusoidal input to
the relay). The exact analysis considered below has many common features
with the DF analysis. For that reason, a review of the DF analysis of system
Fig. 1.3 is beneficial for understanding the concepts of the method described
in the subsequent chapters of this book. Consider the analysis of possible
periodic motions in the relay servo system (Fig. 1.3).

Consider the autonomous mode. Assume that the input to the system is
identically equal to zero (f(t) ≡ 0). Then we can assume that a symmetric
periodic process of unknown frequency Ωp and amplitude ap of the input
to the relay occurs in the system. Finding the values of the frequency and
amplitude is the main objective of this analysis.

In accordance with DF method concepts, we assume that the input to the
nonlinearity is a harmonic signal, and the so-called describing function of
the nonlinearity can be written as a function of the amplitude and frequency
as follows:

N(a, ω) =
ω

πa

∫ 2π/ω

0

u(t) sin ωt dt + j
ω

πa

∫ 2π/ω

0

u(t) cos ωt dt. (1.17)
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The DF given by formula (1.17) is essentially a complex gain of the trans-
formation of the harmonic input by the nonlinearity into the control signal
with respect to the first harmonic in the control signal. For the hysteretic
relay nonlinearity, the formula of the DF can be obtained analytically. It is
given as follows [8]:

N(a) =
4c

πa

√

1 −
(

b

a

)2

− j
4cb

πa2
, (a ≥ b). (1.18)

For the hysteretic relay, the DF is a function of the amplitude only and does
not depend on frequency.

The periodic solution in the relay feedback system can be found from the
equation of harmonic balance [8],

Wl(jΩp) = − 1
N(ap)

, (1.19)

which is a complex equation with two unknown values: frequency Ωp and
amplitude ap. Equation (1.19) has a convenient graphical interpretation. Note
that the value on the left-hand side of the equation is considered a function
of the frequency, and in fact is the Nyquist locus of the linear part of the
system. The value on the right-hand side is the negative reciprocal of the
DF of the hysteretic relay. Obtain the negative reciprocal of the DF from
formula (1.18):

−N−1(a) = −πa

4c

√

1 −
(

b

a

)2

− j
πb

4c
, (a ≥ b). (1.20)

We can see from (1.20) that the imaginary part does not depend on the
amplitude a, and the plot of −N−1(a) on the complex plane is a horizontal
line (Fig. 1.4), which lies on the left half-plane. The point corresponding to
zero amplitude is located on the imaginary axis, and the real part of −N−1(a)
tends to minus infinity as the amplitude grows.

The periodic solution of the equations of the relay servo system corre-
sponds with the point of intersection of the Nyquist plot of the linear part
(being a function of the frequency) and of the negative reciprocal of the DF
of the hysteretic relay (being a function of the amplitude), given by formula
(1.20), on the complex plane. This periodic solution is approximate, a result of
the approximate nature of the DF method itself, which is based upon the as-
sumption about the harmonic shape of the input signal to the relay. However,
if the linear part of the system has the property of the low-pass filter, so that
the higher harmonics of the control signal are attenuated to a higher degree,
the DF method may give a relatively precise result in terms of the found val-
ues of the frequency and the amplitude. A comparison with the exact solution
is given in Chapter 2.
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Fig. 1.4. DF analysis of periodic motions

1.5 Asymmetric oscillations in relay servo systems:
DF analysis

Now we turn to the analysis of asymmetric oscillations in the relay servo
system, which is the key step to the analysis of the system response to constant
and slow varying disturbances and reference input signals.

Assume that the input to the system is a constant signal f0 : f(t) ≡ f0.
Then an asymmetric periodic motion occurs in the system (Fig. 1.5), so that
each signal now has a periodic and a constant term u(t) = u0 + up(t), y(t) =
y0 + yp(t), σ(t) = σ0 + σp(t), where the subscript ‘0’ refers to the constant
term in the Fourier series, and the subscript ‘p’ refers to the periodic term of
the function (the sum of periodic terms of the Fourier series).

The constant term is the mean or averaged value of the signal over the
period. Now let us imagine that we slowly slew the input from a certain
negative value to a positive value, so that at each value of the input, the
system exhibits a stable oscillation, and measure the values of the constant
term of the control (mean control) versus the constant term of the error signal
(mean error). By doing this, we can determine the constant term of the control
signal as a function of the constant term of the error signal, which is not a
discontinuous but a smooth function: u0 = u0(σ0).

We call it the bias function. Two typical bias functions are depicted in
Fig. 1.6. The described effect is known as the chatter smoothing phenomenon,
which is studied in [56]. The derivative of the mean control with respect to the
mean error taken around the point of zero mean error σ0 = 0 (corresponding to
zero constant input) provides the equivalent gain of the relay kn, which would
be similar to the concept of the so-called incremental gain [50, 91] of the
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Fig. 1.5. Asymmetric oscillations at unequally spaced switches

Fig. 1.6. Bias functions (c = 1)

describing function method. The equivalent gain of the relay is used as a local
approximation of the bias function:

kn = du0/dσ0|σ0=0 = lim
f0→0

(u0/σ0).

Because at the slow inputs the relay servo system behaves similar to a
linear system with respect to the response to those input signals, finding the
equivalent gain value is the main point of the input-output analysis. Once it
is found, all subsequent analysis of propagation of the slow input signals can
be carried out exactly as in a linear system with the relay replaced by the
equivalent gain. The model obtained via the replacement of the relay with
the equivalent gain would represent the model of the averaged (over the pe-
riod of the oscillations) motions in the system. This is especially pertinent
to a SM analysis because the deviations of the sliding variable from the zero
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value are usually small, and the equivalent gain, being a local approximation
of the bias function, usually provides good accuracy. The model obtained as
described above is a non-reduced order model. It retains the order of the orig-
inal system. The non-reduced-order model is described in detail in Chapter 4.

Now let us carry out analysis of asymmetric oscillations in the system
Fig. 1.1 caused by a non-zero constant input f(t) ≡ f0 �= 0. The DF of
the hysteretic relay with a biased sine input is represented by the following
well-known formula [8]:

N(a, σ0) =
2c

πa

⎡

⎣
√

1 −
(

b + σ0

a

)2

+

√

1 −
(

b − σo

a

)2
⎤

⎦−j
4cb

πa2
, (a ≥ b+|σ0|),

(1.21)

where a is the amplitude of the oscillations. The mean control as a function
of a and σ0 is given by the following formula:

u0(a, σ0) =
c

π

(
arcsin

b + σ0

a
− arcsin

b − σ0

a

)
. (1.22)

From (1.21) and (1.22), we can obtain the DF of the relay and the deriva-
tive of the mean control with respect to the mean error for the symmetric sine
input:

kn(DF ) =
∂u0

∂σ0

∣∣∣∣
σ0=0

=
2c

πa

1√
1 −

(
b
a

)2
. (1.23)

1.6 Slow signal propagation through a relay servo system

With the presented methodology of analysis of the effect of constant input,
we can now consider analysis of slow signal propagation through a relay servo
system. Assume that signals f0, σ0, y0, previously considered constant, are
slowly changing signals in comparison to the periodic motions. We will call
them the slow components of the motion. By comparatively slow, we mean
signals that meet the following condition: those signals can be considered
constant over the period of the self-excited oscillations without significant
loss of accuracy of the oscillation estimation. Although this is not a rigorous
definition, it outlines a framework for the following analysis.

It is also worth noting that due to the feedback action, the system always
tries to decrease the value of the error signal σ. This is also true with respect
to the averaged value (or slow varying component) of the error signal σ0. As a
result, the averaged value of the error signal normally stays within the linear
zone of the bias function (Fig. 1.6). In that case, the periodic solution will not
be significantly different from the periodic solution of the symmetric periodic
process, which follows from the harmonic balance equation (1.19) in which
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Fig. 1.7. Dynamics of the slow motions

either the DF for the symmetric oscillation (1.18) or the DF for the biased
oscillation (1.21) must be used. One notices that if the hysteresis value b of
the relay is zero, then the frequency of the periodic motions is the same for the
symmetric and biased oscillations.3 The equivalent gain value will be equal to
the one found for the infinitesimally small constant input. The only difference
between this and the analysis of the response to the constant inputs is the
effect of the dynamics of the linear part, which must be accounted for. The
dynamics of the slow (averaged over the period of self-excited oscillations)
motions can be represented by the block diagram (Fig. 1.7).

The system in Fig. 1.7 is linear, and the dynamics of the slow motions
in the relay feedback system are governed by linear equations — due to the
chatter smoothing of the relay nonlinearity. It is worth mentioning here that
the hysteretic relay does not introduce any lag effect to the slow component
of the motion. However, it introduces some dynamics into the fast component
of the motion, which follows from the expression for the DF (1.18) having a
negative imaginary part.

1.7 Conclusions

In this chapter we outline the frequency-domain approach to analysis of self-
excited oscillations and external signal propagation. This approach is based
on the describing function method and the harmonic balance concept. Also,
the relationship between frequency-domain analysis and the state-space rep-
resentation is shown via the notion of periodic signal mapping. We show how
analysis of external signal propagation can be done via analysis of asymmet-
ric oscillations, and that the oscillations can be analyzed by finding a fixed
point of the periodic signal mapping. We introduce notions of the bias func-
tion and of the equivalent gain of the relay. These notions are extensively
used in subsequent chapters of the book, where an exact method of analysis
is presented.

3 This is only true within the framework of the DF analysis.
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The locus of a perturbed relay system (LPRS)
theory

2.1 Introduction to the LPRS

As we considered in the previous chapter, the motions in relay servo systems
are normally analyzed as motions in two separate dynamic subsystems: the
“slow” subsystem and the “fast” subsystem. The “fast” subsystem pertains
to self-excited oscillations or periodic motions. The “slow” subsystem deals
with forced motions caused by an input signal or by a disturbance, a non-zero
initial conditions component of the motion, and usually pertains to the aver-
aged (over the period of the self-excited oscillation) motion. The two dynamic
subsystems interact with each other via a set of parameters: the results of
the solution of the “fast” subsystem are used by the “slow” subsystem. This
decomposition of the dynamics is possible if the external input is much slower
than the self-excited oscillations, which is normally the case. Exactly as in the
DF method, we shall proceed from the assumption that the external signals
applied to the system are slow in comparison to the oscillations.

Consider again the harmonic balance equation (1.19). Using the formulas
for the negative reciprocal of the DF (1.20) and the equivalent gain of the
relay (1.23), we can rewrite formula (1.19) as follows:

Wl(jΩ) = −1
2

1
kn(DF )

+ j
π

4c
y(DF )(0). (2.1)

In the imaginary part of (2.1), we view the condition of the switch of
the relay from minus to plus (defined as zero time) as the equality of the
system output to the negative half hysteresis (−b): y(DF )(t = 0) = −b. It
follows from (1.21), (1.23), and (2.1) that the frequency of the oscillations
and the equivalent gain in the system (1.16) can be varied by changing the
hysteresis value 2b of the relay. Therefore, the following two mappings can
be considered: M1 : b → Ω, M2 : b → kn. Assume that M1 has an inverse
mapping (it follows from (1.21), (1.23), and (2.1) for the DF analysis and is
proved below by deriving an analytical formula) M−1

1 : Ω → b. Applying
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the chain rule, consider the mapping M2

(
M−1

1

)
: Ω → b → kn. Now let us

define a certain function J as the expression on the right-hand side of formula
(2.1) with the additional requirement that the values of the equivalent gain
and the output at zero time should be exact values. Applying the mapping
M2

(
M−1

1

)
: ω → b → kn, ω ∈ [0;∞), in which we treat the frequency ω as

an independent parameter, we get the following for J :

J(ω) = −1
2

1
kn

+ j
π

4c
y(t)|t=0 (2.2)

where kn = M2

(
M−1

1 (ω)
)
, y(t)|t=0 = M−1

1 (ω), t = 0 is the time of the switch
of the relay from “−c” to “+c.” Thus, J(ω) comprises the two mappings and
is defined as a characteristic of the response of the linear part to the unequally
spaced pulse input u(t), subject to f0 → 0 as the frequency ω varies. The real
part of J(ω) contains information about gain kn, and the imaginary part of
J(ω) comprises the condition of the switching of the relay and, consequently,
contains information about the frequency of the oscillations. By deriving the
function that satisfies the above requirements, we can obtain exact values of
the frequency of the oscillations and the equivalent gain.

We call the function J(ω) defined above, along with its plot on the complex
plane (with the frequency ω varied), the locus of a perturbed relay system
(LPRS). Suppose we have computed the LPRS of a given system. Then (as in
the DF analysis) we can determine the frequency of the oscillations (as well as
the amplitude) and the equivalent gain kn (Fig. 2.1). The point of intersection
of the LPRS and the straight line, which lies at the distance πb/(4c) below (if
b > 0) or above (if b < 0) the horizontal axis and parallel to it (line “−πb/4c”),
offers computing the frequency of the oscillations and the equivalent gain kn

of the relay.

Fig. 2.1. The LPRS and oscillation analysis
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According to (2.2), the frequency Ω of the oscillations can be computed
by solving the equation:

Im J(Ω) = −πb

4c
, (2.3)

(i.e., y(0) = −b is the condition of the relay switch) and the gain kn can be
computed as:

kn = − 1
2Re J(Ω)

. (2.4)

Formula (2.3) provides a periodic solution and is, therefore, a necessary
condition for the existence of a periodic motion in the system.1 Formula (2.2)
is only a definition and not intended for the purpose of computing the LPRS
J(ω). It is shown below that although J(ω) is defined through the parameters
of the oscillations in a closed-loop system, it can be easily derived from the
parameters of the linear part without employing the variables of formula (2.2).

2.2 Computing the LPRS for a non-integrating plant

2.2.1 Matrix state-space description approach

Deriving the computing formula of the LPRS involves only the parameters of
the linear part for the case of the non-integrating (self-regulating) linear part
given by the matrix differential equations. Let the system be described by the
equations (1.16), where A is nonsingular.

Let us find the periodic solution of system (1.16) at the unequally spaced
relay switching caused by a non-zero constant input signal f0. A common
way to find a periodic solution is to use a Poincaré map. Because the con-
trol switches are unequally spaced and the oscillations are not symmetric,
a Poincaré return map must be considered. Suppose that an asymmetric
periodic process of the period T exists in the system. Then, considering the
solution for the constant control u,

x(t) = eAtx(0) + A−1(eAt − I)Bu,

the periodic solution of system (1.16) for the control u = ±1 (it will be shown
below that the LPRS is a characteristic of the linear part only and we can
assume without loss of generality c = 1) can be written as

η = eAθ1ρ + A−1(eAθ1 − I)B, (2.5)

ρ = eAθ2η − A−1(eAθ2 − I)B, (2.6)

1 The actual existence of a periodic motion depends on a number of other fac-
tors, too, including orbital stability of the obtained periodic solution and initial
conditions.
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where ρ = x(0) = x(T ), η = x(θ1), for the periodic solution, and θ1, θ2

are the positive and the negative pulse durations of the periodic control u(t).
Formulas (2.5) and (2.6) are Poincaré return maps for the system (sequential
numbers of switches are not shown). The periodic solution of system (1.16)
can be obtained through finding a fixed point of the Poincaré return map
(solution of (2.5) and (2.6)), which is given as follows:

ρ = (I − eAT )−1A−1[eAT − 2eAθ2 + I]B, (2.7)

η = (I − eAT )−1A−1[2eAθ1 − eAT − I]B. (2.8)

We now need to consider the periodic solution (2.7) and (2.8) as a result of the
feedback action. The conditions of the switches of the relay can be written as

f0 − y(0) = b

f0 − y(θ1) = −b. (2.9)

Having solved the set of equations (2.9) for f0, we obtain: f0 = (y(0)+y(θ1))/2.
Hence, the constant term of σ(t) is

σ0 = f0 − y0 = (y(0) + y(θ1))/2 − y0, (2.10)

and the real part of the LPRS definition formula can be transformed into

Re J(ω) = −0.5 lim
γ→ 1

2

0.5[y(0) + y(θ1)] − y0

u0
, (2.11)

where γ = θ1
θ1+θ2

= θ1
T . Then θ1 = γT, θ2 = (1− γ)T, u0 = 2γ − 1, and (2.11)

can be written as

Re J(ω) = −0.5 lim
γ→ 1

2

0.5C[ρ + η] − y0

2γ − 1
,

where ρ and η are given by (2.7) and (2.8), respectively. The imaginary part
of the definition formula of J(ω) can be transformed into:

Im J(ω) =
π

4
C lim

γ→ 1
2

ρ.

Finally, the state-space description–based formula of the LPRS can be
derived on the basis of the previous two formulas and (2.7), (2.8) as follows:

J(ω) = −0.5C[A−1 + 2π
ω (I − e

2π
ω A)−1e

π
ω A]B

+j π
4 C(I + e

π
ω A)−1(I − e

π
ω A)A−1B.

(2.12)

Therefore, if the system is given in the state-space form (1.16), then for-
mula (2.12) can be used to compute the LPRS. The LPRS computed as
(2.12) comprises all possible periodic solutions and equivalent gain values
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for a given linear part. For that reason, the LPRS is a relatively universal
frequency-domain characteristic of the linear part of a relay servo system. An
actual periodic solution for a given linear part and parameters of the relay
can be found from equation (2.3). A detailed derivation of the LPRS is given
in the Appendix.

The subroutine “lprsmatr” (see Appendix) can be used for the LPRS com-
puting per formula (2.12).

2.2.2 Partial fraction expansion technique

We now derive the LPRS formula when the description of the linear part is
given in the form of the transfer function expanded into partial fractions. We
first prove the additivity property of the LPRS J(ω).

Theorem 2.1. (additivity property). If the transfer function Wl(s) of the lin-
ear part is a sum of n transfer functions Wl(s) = W1(s)+W2(s)+ ...+Wn(s),
then the LPRS J(ω) can be calculated as a sum of n LPRS: J(ω) = J1(ω) +
J2(ω) + ... + Jn(ω), where Ji(ω) (i = 1, ..., n) is the LPRS of the relay system
with the transfer function of the linear part being Wi(s).

Proof. We prove the property for n = 2: if the property is true for n = 2,
it is true for any n. Consider the steady asymmetric oscillations in the system
when f(t) ≡ f0 �= 0. Assume that a unimodal asymmetric limit cycle occurs
(Fig. 1.4). Suppose that the frequency Ω of the oscillations is known, and
the control amplitude c, as well as the pulse duration (θ1 and θ2) of the
periodic control u(t), are given. If Wl(s) = W1(s) + W2(s), then the output
is y(t) = y1(t) + y2(t), where yi(t), i = 1, 2 is the output of the linear part,
which has the transfer function Wi(s), i = 1, 2 with its input u(t) as above.
Substitute y1(t) + y2(t) for y(t) in (2.10) and obtain σ0 = σ01 + σ02, where
σ01 = (y1(0)+ y1(θ1))/2− y01, σ02 = (y2(0)+ y2(θ1))/2− y02, y01 and y02 are
the constant terms of y1(t) and y2(t), respectively. Thus, when the parameters
of u(t) are as specified above, the constant term of σ(t) is equal to the sum
of the constant terms of σ1(t) and σ2(t) where σ1(t) and σ2(t) are the errors
in two different relay systems with the transfer functions W1(s) and W2(s),
respectively. Because the additivity property is true for σ0, it is also true for
σ0/u0 because u0 is constant and, consequently, this is true for lim(σ0/u0).
It is also obvious that y(0) = y1(0) + y2(0). Thus, according to (2.2): J(ω) =
J1(ω) + J2(ω). �

The additivity property offers a way of computing the LPRS J(ω) via
expanding Wl(s) into the sum of first- and second-order dynamics (partial
fractions), calculating the component LPRS Ji(ω) for each of them, and
summing the LPRS Ji(ω). Analytical formulas for J(ω) of first- and second-
order dynamics are derived in this chapter below and presented in Table 2.1.
The respective MATLAB functions are given in the Appendix (functions
“lprs1ord,” “lprsint,” “lprs2ord1,” “lprs2ord2,” “lprs2ord3,” “lprs2ord4,” and
“lprsfopdt”).
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Table 2.1. Formulas of the LPRS J(ω)

Tr. fun. W (s) The LPRS J(ω)

K
s

0 − j π2K
8ω

K
Ts+1

K
2

(1 − α csch α) − j πK
4

tanh(α/2),

α = π/(Tω)
K

(T1s+1)(T2s+1)
K
2

[1 − T1/(T1 − T2)α1 csch α1 − T2/(T2 − T1)α2 csch α2)]

−j πK
4

/(T1 − T2)[T1 tanh(α1/2) − T2 tanh(α2/2)],
α1 = π/(T1ω), α2 = π/(T2ω)

K
s2+2ξs+1

K
2

[(1 − (B + γC)/(sin2 β + sinh2 α)]

−j πK
4

(sinh α − γ sin β)/(cosh α + cos β),

α = πξ/ω, β = π(1 − ξ2)1/2/ω, γ = α/β
B = α cos β sinh α + β sin β cosh α,
C = α sin β cosh α − β cos β sinh α

Ks
s2+2ξs+1

K
2

[ξ(B + γC) − π/ω cos β sinh α]/(sin2 β + sinh2 α)]

−j πK
4

(1 − ξ2)−1/2 sin β/(cosh α + cos β),

α = πξ/ω, β = π(1 − ξ2)1/2/ω, γ = α/β
B = α cos β sinh α + β sin β cosh α,
C = α sin β cosh α − β cos β sinh α

Ks
(s+1)2

K
2

[α(− sinh α + α cosh α)/ sinh2 α − j0.25πα/(1 + cosh α)],

α = π/ω
Ks

(T1s+1)(T2s+1)
K
2

/(T2 − T1)[α2 csch α2 − α1 csch α1]

−j πK
4

/(T2 − T1)[tanh(α1/2) − tanh(α2/2)],
α1 = π/(T1ω), α2 = π/(T2ω)

Ke−τs

Ts+1
K
2

(1 − αeγ csch α) + j πK
4

(
2e−αeγ

1+e−α − 1
)

,

α = π
Tω

, γ = τ
T

2.2.3 Transfer function description approach

Another formula for J(w) can now be derived for the case of the linear part
given by a transfer function. Suppose the linear part does not have integrators.
We write the Fourier series expansion of the signal u(t) (Fig. 1.5)

u(t) = u0 + 4c/π
∑∞

k=1
sin(πkθ1/(θ1 + θ2))/k × {cos(kωθ1/2) cos(kωt)

+ sin(kωθ1/2) sin(kωt)},

where u0 = c(θ1−θ2)/(θ1+θ2), ω = 2π/(θ1+θ2). Therefore, y(t) as a response
of the linear part with the transfer function Wl(s) can be written as

y(t) = y0 + 4c/π
∑∞

k=1 sin(πkθ1/(θ1 + θ2))/k

×{cos(kωθ1/2) cos[kωt + ϕl(kω)]

+ sin(kωθ1/2) sin[kωt + ϕl(kω)]}Al(kω),

(2.13)
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where ϕl(kω) = arg Wl(jkω), Al(kω) = |Wl(jkω)|, y0 = u0|Wl(j0)|. The
conditions of the switches of the relay have the form of equations (2.9) where
y(0) and y(θ1) can be obtained from (2.13) if we set t = 0 and t = θ1,
respectively:

y(0) = y0 + 4c/π
∑∞

k=1[0.5 sin(2πkθ1/(θ1 + θ2))ReWl(jkω)

+ sin2(πkθ1/(θ1 + θ2))ImWl(jkω)]/k,
(2.14)

y(θ1) = y0 + 4c/π
∑∞

k=1[0.5 sin(2πkθ1/(θ1 + θ2))ReWl(jkω)

− sin2(πkθ1/(θ1 + θ2))ImWl(jkω)]/k.
(2.15)

Differentiating (2.9) with respect to f0 (and taking into account (2.14) and
(2.15)), we obtain the formulas containing the derivatives at the point θ1 =
θ2 = θ = π/ω. Solving those equations for d(θ1 − θ2)/df0 and d(θ1 + θ2)/df0,
we obtain: d(θ1 + θ2)/df0|f0=0 = 0, which corresponds to the derivative of the
frequency of the oscillations, and:

d(θ1 − θ2)
df0

|f0=0 = 2θ/[c(|Wl(0)| + 2
∞∑

k=1

cos(πk)ReWl(ωk))]. (2.16)

Considering the formula of the closed-loop system transfer function, we
can write:

d(θ1 − θ2)
df0

|f0=0 = kn/(1 + kn|Al(0)|)2θ/c. (2.17)

Solving equations (2.16) and (2.17) together for kn, we obtain the following
expression:

kn = 0.5/

∞∑

k=1

(−1)kReWl(kπ/θ). (2.18)

Taking into account formula (2.18), the identity ω = π/θ, and the defi-
nition of the LPRS (2.2), we obtain the final form of expression for ReJ(ω).
Similarly, solving the set of equations (2.9), where θ1 = θ2 = θ and y(0) and
y(θ1) have the form (2.14) and (2.15), respectively, we obtain the final formula
of ImJ(ω). Putting the real and the imaginary parts together, we obtain the
final formula of the LPRS J(ω) for relay systems with non-integrating plants:

J(ω) =
∞∑

k=1

(−1)k+1ReWl(kω) + j

∞∑

k=1

1
2k − 1

ImWl[(2k − 1)ω]. (2.19)

The subroutine “lprsser200” (see Appendix) can be used for the LPRS
computing per formula (2.19), which takes the sum of 200 terms of the series.
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2.2.4 Orbital stability of relay systems

The stability of periodic orbits (limit cycles) is usually referred to as or-
bital stability. The notion of orbital stability is different from the notion of
stability of an equilibrium point: for an orbitally stable motion, the differ-
ence between the perturbed and unperturbed motions does not necessarily
vanish. What is important is that the perturbed motion in an orbitally sta-
ble system converges to the orbit of the unperturbed system. More details
about this type of stability are provided in [62]. In relay feedback systems,
analysis of orbital stability can be reduced to the analysis of certain equiv-
alent discrete-time systems with time instants corresponding to the switches
of the relay, which can be obtained from the original system by the Poincaré
map of the motion with an initial perturbation. The stability condition based
on this approach was proposed in [2]. If we assume that the initial state is
x(0) = ρ + δρ, where δρ is the initial perturbation, and find the mapping
δρ → δη, we can make a conclusion about orbital stability of the system by
considering the Jacobian matrix of this mapping. A detailed derivation of the
Jacobian matrix that relates the perturbations at switching times is given in
the Appendix.

Therefore, the stability criterion can be formulated as follows.

Theorem 2.2. The relay feedback system (1.16) is locally orbitally asymptot-
ically stable if and only if all eigenvalues of the matrix

Φ0 =

[
I −

v(T
2 −)C

Cv(T
2 −)

]
eA T

2 , (2.20)

where T = 2π
Ω is the period of the oscillations, v is the velocity matrix,

v
(

T

2
−
)

= 2
(
I − eAT

)−1
(
eA T

2 − eAT
)
B = 2

(
I + eAT/2

)−1

eAT/2B,

have magnitudes less than one.

In addition to the stability analysis, the direction of the relay switch must
be verified, too [94]. This condition is formulated as the following inequality,

ẏ

(
T

2
−
)

= Cv
(

T

2
−
)

> 0,

where v
(

T
2 −

)
is given by the previous formula.

2.3 Computing the LPRS for an integrating plant

2.3.1 Matrix state-space description approach

For an integrating linear part, the formulas derived above cannot be used
without certain modifications. Despite the fact that the solution x(t) of the
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Fig. 2.2. Relay servo system with integrating linear part

system is well-defined even if the matrix A does not have an inverse, the
above results are not applicable to an integrating linear part. In the case of
unequally spaced switches, a system with a conventional description, strictly
speaking, cannot have a periodic process even if a ramp signal is applied to
the input of the system in Fig. 1.3. The motion occurring in such a system
is a combination of a periodic and a ramp motion — due to unlimited in-
tegration. To enable the system to have an asymmetric periodic motion, we
must transpose the constant input signal to the integrator input (Fig. 2.2).
The balance of the constant terms of the signals in the various points of the
system must be achieved for periodic motion to occur.

Similarly, we derive the formulas of J(ω) for the case of an integrating lin-
ear part. The state-space description of the system (Fig. 2.2) has the following
form,

ẋ = Ax + Bu, (2.21)

ẏ = Cx − f0, (2.22)

u =

{
+c if σ = −y ≥ b or σ > −b, u(t − 0) = c

−c if σ = −y ≤ −b or σ < b, u(t − 0) = −c

where A ∈ R(n−1)×(n−1),B ∈ R(n−1)×1,C ∈ R1×(n−1),A is nonsingular, f0 is
a constant input to the system, σ is the error signal, and u(t−0) is the control
value at the time immediately preceding the current time. Note that formula
(2.22) defines not the output y but its derivative, which adds an integrator to
the linear part. A separate consideration of the variable y(t) from the other
state variables is possible due to the integrating property of the linear part.
This allows us at first to find a periodic solution for x(t) (for a given unequally
spaced switching), and after that to determine a periodic solution for the
system output. The periodic solution for x(t) is given above (formulas (2.7)
and (2.8)). The periodic output y(t) can be obtained by integrating equation
(2.22) from the initial states determined by formulas (2.7) and (2.8). As a
result, for the control amplitude c = 1, the system output can be written as

y1(t) = y1(0)−CA−1Bt− f0t + CA−1[(eAt − I)ρ + A−1(eAt − I)B], (2.23)

y2(t) = y1(θ1)+CA−1Bt−f0t+CA−1[(eAt − I)η−A−1(eAt − I)B], (2.24)
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where y1(t) = y(t), y2(t) = y(t + θ1).
The time t in formulas (2.23) and (2.24) is independent, and t = 0 in

formula (2.23) is the time of the switch from minus to plus, and in formula
(2.24) t = 0 is the time of the switch from plus to minus. For periodic motion,
the following equations hold, which represents a Poincaré return map:

y(θ1) = y(0)−(CA−1B−f0)θ1+CA−1[(eAθ1−I)ρ+A−1(eAθ1−I)B], (2.25)

y(0) = y(θ1)+(CA−1B−f0)θ2+CA−1[(eAθ2−I)η−A−1(eAθ2−I)B]. (2.26)

Analysis of equations (2.25) and (2.26) shows that the set of equations has a
solution if and only if

f0 = −CA−1B(2γ − 1), (2.27)

γ =
θ1

θ1 + θ2
=

θ1

T
,

which corresponds to the situation when the constant term of the signal y∗(t)
is equal to f0 and, therefore, the constant term at the integrator input is
zero — the only possibility for the system to have a periodic process. Further-
more, equations (2.25) and (2.26) are equivalent and have an infinite number of
solutions. To understand why, note that if a periodic signal with zero constant
term is applied to the integrator input, its output signal is not uniquely deter-
mined, but, depending on the initial value, can represent an infinite number
of biased periodic signals. To define a unique solution, introduce an additional
condition:

y(θ1) = −y(0). (2.28)

The solution of equations (2.25) and (2.28) results in

y(0) = CA−1Bγ(1 − γ)T + 1
4CA−2{(I−eAT )−1[6eAT−3(eAθ1+eAθ2)

−eAT (eAθ1 + eAθ2) + 2I] − (eAθ1 + eAθ2) + 2I}B.
(2.29)

The output at t = θ1 is a negative value of the same formula. Thus, we
find the periodic solution of system (2.21), (2.22). The LPRS formula can be
derived from the analysis of the closed-loop system with an unequally spaced
switching control having an infinitesimally small asymmetry. The constant
term y0 of the output y(t) is determined as the sum of integrals of functions
(2.23) and (2.24) divided by the period T

y0 =
1
T
{
∫ θ1

0

y1(τ)dτ +
∫ θ2

0

y2(τ)dτ}, (2.30)

where y1(τ) is given by (2.23) and y2(τ) is given by (2.24). The formula for
the real part of J(ω) can be transformed into
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ReJ(ω) = lim
γ→ 1

2

y0

2γ − 1
, (2.31)

where expression (2.30) can be used for computing y0. The formula of the
imaginary part of J(ω) is determined by (2.29) with a coefficient, which follows
from the LPRS definition. Finally, the LPRS for the case of an integrating
linear part can be expressed with the following formula

J(ω) = 1
4CA−2{(I − D2)−1[D2 − (I + 4π

ω A)D + D3 − I] + D − I}B
+j π

8 CA−1{π
ω + A−1[(I − D2)−1(3D2 − 3D − D3 + I) − D − I]}B,

(2.32)

where D = e
π
ω A. Therefore, the state-space description–based LPRS formula

for the case of an integrating linear part has been derived above.
The subroutine “lprsmatrint” (see Appendix) can be used for the LPRS

computing per formula (2.32).

2.3.2 Transfer function description approach

We derive the LPRS formula for the case of an integrating linear part given
by a transfer function. The model suitable for the following analysis is given
in Fig. 2.2. One can notice that the periodic terms of the signals of the system
Fig. 2.2 are the same as the periodic terms of respective signal of the system
Fig. 1.3. For that reason, we can use some results of the above analysis for
the case of a non-integrating linear part. The constant input f0 causes an
asymmetry in the periodic motion. In a steady periodic motion, the constant
term of the input signal to the integrator is zero. Therefore, the constant input
is compensated for by the constant term of the signal y∗(t), and the output
of the system can again be written as in formula (2.13). However, the value
of y0 in (2.13) is different. Now it does not directly depend on u0. The values
of y(0) and y(θ1) are given by formulas (2.14) and (2.15), as before. In other
words, the input σ(t) to the relay has two terms: the constant term σ0 and the
periodic term σp(t). The periodic term σp(t) coincides with that of formula
(2.13) (the negative value of the latter), and the constant term is σ0 = −y0.
Because the input to the relay does not include the external input f0, the
following equation holds:

y(0) + y(θ1) = 0.

Solving this equation, we find that σ0 = −y0, and

σ0 =
2c

π

∞∑

k=1

sin(
2πkθ1

θ1 + θ2
)ReWl(jkω).

The equivalent gain kn can be obtained as a reciprocal of the derivative
dσ0/du0 at θ1 = θ2 = π/ω. We compute the following limit
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lim
γ→ 1

2

σ0

u0
= 2

∞∑

k=1

(−1)k · ReWl(jkω).

The real part of the LPRS is given by ReJ(ω) = −0.5/kn, where the
equivalent gain kn is the reciprocal of the above limit. The imaginary part
of the LPRS remains the same for the case of an integrating linear part.
And finally, a formula for the LPRS can be constructed on the basis of the
definition (2.2) and the above analysis. The final formula of the LPRS is given
as follows:

J(ω) =
∞∑

k=1

(−1)k+1ReWl(kω) + j

∞∑

k=1

1
2k − 1

ImWl[(2k − 1)ω]. (2.33)

One can see that formula (2.33) coincides with formula (2.19). Therefore,
despite the different model and different mechanism of generation of the con-
stant term in the error signal, the LPRS formula expressed in terms of the
frequency response of the linear part remains the same. For an accurate cal-
culation of a point of J(ω), the few first terms of the series (2.33) are enough
as a rule. It can be shown that the series (2.33) always converges for strictly
proper transfer functions. Formula (2.33) can also be used for the LPRS cal-
culation from a frequency response characteristic (Bode plot, Nyquist plot) of
the linear part.

2.3.3 Orbital stability of relay systems

An integrating plant provides significantly different dynamics in comparison
with a non-integrating plant. Therefore, the stability conditions in [2] cannot
be directly used for stability analysis of the systems with integrating plants.
The formal reason is that the matrix A is not invertible. However, with the
plant description as in (2.21), (2.22), the matrix A refers only to the non-
integrating part of the plant and, thus, has an inverse. Again, if we assume
that the initial state is x(0) = ρ + δρ, where δρ is the initial perturbation,
and find the mapping δρ → δη, we can make a conclusion about the orbital
stability of the system by considering the Jacobian matrix of this mapping. A
detailed derivation of the Jacobian matrix that relates the perturbations at
switching times is given in the Appendix.

Therefore, the stability criterion can be formulated as follows.

Theorem 2.3. The relay feedback system (2.21), (2.22) is locally orbitally
asymptotically stable if and only if all the eigenvalues of the matrix

Φ0 = −
v
(

T
2 −

)
CA−1(eA T

2 − I)
ẏp(T

2 )
+ eA T

2 , (2.34)

where T = 2π
Ω is the period of the oscillations, v is the velocity matrix,
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v(
T

2
−) = 2

(
I + eAT/2

)−1

eAT/2B,

and

ẏp

(
T

2

)
= CA−1B − 2CA−1

(
I + eAT/2

)−1

B

have magnitudes less than one.

In addition to the stability analysis, the direction of the relay switch must
be verified, too. This condition is formulated as the following inequality:

ẏp

(
T

2

)
> 0,

where ẏp

(
T
2

)
is given by the previous formula.

2.4 Computing the LPRS for a plant with a time delay

2.4.1 Matrix state-space description approach

Consider now the linear part with a time delay. Let the plant be

ẋ = Ax + Bu
y = Cx

and the control

u =
{

+1 if σ(t − τ) = f0 − y(t − τ) ≥ b or σ(t − τ) > −b , u(t−) = 1
−1 if σ(t − τ) = f0 − y(t − τ) ≤ −b or σ(t − τ) < b , u(t−) = −1

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n are matrices, and A is nonsingular.
We note that t = 0 corresponds to the time that the error signal reaches the
hysteresis values σ = b, σ̇ > 0. The control u(t) switches from −1 to +1 not
at time t = 0 but at time t = τ . The solution for the constant control u = ±1
is

x(t) = eA(t−τ)x(τ) ± A−1(eA(t−τ) − I)B, t > τ.

Therefore, also

x(τ) = eAτx(0) − A−1(eAτ − I)B.

Denoting ρp = x(τ) = x(T + τ), ηp = x(θ1 + τ), where θ1 is the length
of the positive pulse of control, we can partly use the results obtained above
for the linear part without time delay. A detailed derivation of the LPRS
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for the case being considered is given in the Appendix. The final state-space
description–based formula of the LPRS can be written as follows:

J(ω) = −0.5C
[
A−1 + 2π

ω

(
I − e

2π
ω A

)−1

e(
π
ω −τ)A

]
B

+j π
4 C

(
I + e

π
ω A

)−1
(
I + e

π
ω A − 2e(

π
ω −τ)A

)
A−1B.

(2.35)

The subroutine “lprsmatrdel” (see Appendix) can be used for the LPRS
computing per formula (2.35).

2.4.2 Orbital asymptotic stability

Let us extend the above methodology to the case of a plant with a time
delay. Consider only the case of symmetric oscillations and apply a simplified
approach. Again we need to find the mapping of the initial perturbation (at
time t = 0) into the perturbation at the time corresponding to the condition
σ = −b, σ̇ < 0. Denoting the initial perturbation δx(0), we can write the
mapping δx(0) → δρ as

δρ = eAτδx(0),

and the mapping δx(0) → δρ → δx(T/2) as

δx(T/2) = eA(T/2−τ)δρ = eA(T/2−τ)eAτδx(0) = eAT/2δx(0).

We note that the stability condition (2.20) is the product of two multi-
pliers. The first one is a mapping due to the change of the switching instant
when the initial perturbation is present, and the second one is the mapping
δx(0) → δx(T/2). The second multiplier comes from above, and the first mul-
tiplier stays the same, subject to the formula for the velocity matrix below.
Therefore, the stability criterion can be formulated as follows.

Theorem 2.4. The relay feedback system with a time-delay plant is locally
orbitally asymptotically stable if and only if all the eigenvalues of the matrix

Φ0 =

[
I −

v(T
2 −)C

Cv(T
2 −)

]
eA T

2 ,

where T = 2π
Ω is the period of the oscillations, v is the velocity matrix,

v
(

T
2 −

)
= ẋ

(
T
2 −

)
= Ax

(
T
2

)
+ B = −Ax(0) + B

= −A(I + eAT/2)−1A−1
[
I + eAT/2 − 2eA(T/2−τ)

]
B + B

= −(I + eAT/2)−1
[
I + eAT/2 − 2eA(T/2−τ)

]
B + B

= 2
(
I + eAT/2

)−1
eA(T/2−τ)B

have magnitudes less than one.
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In addition to the stability analysis, the direction of the relay switch must
be verified, too. This condition is formulated as the following inequality

ẏ

(
T

2
−
)

= Cv
(

T

2
−
)

> 0,

where v
(

T
2 −

)
is given by the previous formula.

2.5 LPRS of first-order dynamics

As mentioned above, one of the possible techniques of LPRS computing is
to represent the transfer function as partial fractions, compute the LPRS of
the component transfer functions (partial fractions), and add those partial
LPRS together in accordance with Theorem 2.1. To apply this technique, we
have to know the formulas of the LPRS for first- and second-order dynamics.
These are of similar meaning and importance as the characteristics of first-
and second-order dynamics in linear system analysis.

The knowledge of the LPRS of the low-order dynamics is important for
other reasons, too. Some features of the LPRS of low-order dynamics can be
extended to higher-order systems. Those features are considered in Chapter 4.

Let us find the formula of the LPRS for the first-order dynamics given by
the transfer function W (s) = K/(Ts + 1).

We derive an analytical formula for J(ω), ω ∈ [0;∞). There exist non-
symmetrical oscillations in the system (Fig. 2.3) if f(t) ≡ f0 �= 0. The system
model can be written as the following set of equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

y(θ1) = y(0)exp(−θ1/T ) + cK(1 − exp(−θ1/T ))
y(θ1 + θ2) = y(θ1)exp(−θ2/T ) − cK(1 − exp(−θ2/T ))
y(θ1 + θ2) = y(0)
f0 − y(0) = b

f0 − y(θ1) = −b.

(2.36)

Solving (2.36), we obtain θ1 and θ2:

θ1 = −T ln(2b/(f0 − b − cK) + 1), (2.37)

θ2 = −T ln(1 − 2b/(f0 + b + cK)). (2.38)

Consider the limit lim
f0→0

(u0/f0): on the one hand, it can be derived from (2.37),

(2.38) (taking into account that u0 = c(θ1 − θ2)/(θ1 + θ2))

lim
f0→0

(u0/f0) = −2bcT/(θ(b − cK)(b + cK) (2.39)
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where θ = lim
f0→0

θ1,2 = −T ln(1 − 2b/(cK + b)); on the other hand, it can be

related to the gain kn by the formula of a closed-loop system

lim
f0→0

(u0/f0) = kn/(1 + knK)). (2.40)

A formula for kn can easily be found from (2.39) and (2.40)

kn = −T (exp(−2θ/T ) − 1)/[K(2θ exp(−θ/T ) + T (exp(−2θ/T ) − 1))]

from which a formula for ReJ(ω) (where ω = π/θ) can be obtained. An
expression for ImJ(ω) can be found by solving the set of equations (2.36)
with f0 = 0. Finally we obtain

J(ω) =
K

2
(1 − π

Tω
csch

π

Tω
) − j

πK

4
tanh

π

2ωT
, (2.41)

where csch x and tanhx are hyperbolic cosecant and tangent, respectively. The
subroutine “lprs1ord” (see Appendix) can be used for the LPRS computing
per formula (2.41).

The plot of the LPRS for K = 1, T = 1 is given in Fig. 2.3. The whole plot
is totally located in the 4th quadrant. The point (0.5K;−j π

4 K) corresponds
to the frequency ω = 0, and the point (0; j0) corresponds to the frequency
ω = ∞. The high-frequency segment of the LPRS has the imaginary axis as
an asymptote.

With the formula for the LPRS available, we can easily find the frequency
of periodic motions in the relay servo system with the linear part being the
first-order dynamics. The LPRS is a continuous function of the frequency, and
for every hysteresis value from the range b ∈ [0; cK], there exists a periodic
solution of the frequency that can be determined from (2.3), (2.41), which is

Fig. 2.3. The LPRS of first-order dynamics
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Ω =
π

2T
tanh−1

(
b

cK

)
. (2.42)

It is easy to show that when the hysteresis value b tends to zero, then the
frequency of the periodic solution tends to infinity

lim
b→0

Ω = ∞,

and when the hysteresis value b tends to cK, then the frequency of the periodic
solution tends to zero

lim
b→cK

Ω = 0.

From (2.41), we can also see that the imaginary part of the LPRS is a mono-
tone function of the frequency. Therefore, the condition of the existence of a
finite frequency periodic solution holds for any non-zero hysteresis value from
the specified range, and the limit for b → 0 exists and corresponds to infinite
frequency.

It is easy to show that the oscillations are always orbitally stable. The
stability of a periodic solution is usually verified by finding eigenvalues of the
Jacobian of the corresponding Poincaré map [62]. For the first-order system,
the only eigenvalue of this Jacobian will always be zero, as there is only one
system variable, which also determines the condition of the switch of the relay.

2.6 LPRS of second-order dynamics

Now we carry out a similar analysis for second-order dynamics. Let the matrix
A of (1.16) be A = [0 1; −a1 − a2]. Here, consider a few cases, all with
a1 > 0, a2 > 0.

A. Let a2
2 − 4a1 < 0. Then the plant transfer function can be written as:

W (s) = K/(T 2s2 + 2ξTs + 1). (2.43)

The LPRS formula can be found, for example, by expanding the above
transfer function into partial fractions and applying formula (2.41) obtained
for the first-order dynamics. However, the coefficients of those partial fractions
will be complex numbers, and this circumstance must be considered. The
formula of the LPRS for the second-order dynamics given by transfer function
(2.43) can be written as follows:

J(ω) =
K

2

(
1 − g + γh

sin2 β + sinh2 α

)
− j

πK

4
sinhα − γ sinβ

cosh α + cos β
(2.44)
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where
α = πξ

ωT ,

β = π
√

1−ξ2

ωT ,

γ = α/β

g = α cos β sinhα + β sin β cosh α,

h = α sin β cosh α + β cos β sinh α.

The subroutine “lprs2ord1” (see Appendix) can be used for the LPRS
computing per formula (2.44).

The plots of the LPRS for K = 1, T = 1 and different values of damping
factor ξ are given in Fig. 2.4 (#1−ξ = 1,#2−ξ = 0.85,#3−ξ = 0.7,#4−ξ =
0.55,#5 − ξ = 0.4). The high-frequency segment of the LPRS of the second-
order plant approaches the real axis.

Now, with the LPRS formula available, we analyze possible existence of the
periodic solution in the relay feedback system with the plant being the second-
order dynamics. Consider two limits of J(ω) that can be obtained from (2.44):

lim
ω→∞

J(ω) = (0; j0); lim
ω→0

J(ω) = (0.5K;−j
π

4
K).

They give the two boundary points of the LPRS corresponding to zero
frequency and infinite frequency. Analysis of function (2.44) shows that it does
not have intersections with the real axis except at the origin. Because J(ω) is
a continuous function of the frequency ω (this follows from formula (2.44)), a
solution of equation (2.3) exists for any b ∈ (0; cK). This means that a periodic
solution of finite frequency exists for the second-order system for every value

Fig. 2.4. The LPRS of second-order dynamics
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of b within the specified range, and there is a periodic solution of infinite
frequency for b = 0.

Now we analyze the stability of those periodic solutions. We write the
Jacobian of the Poincaré map of the relay system:

Φ =
[
I − vC

Cv

]
eAπ/ω, (2.45)

where v = 2(I + eAπ/ω)−1eAπ/ωB. If all the eigenvalues of the matrix Φ have
magnitudes smaller than one, the periodic motion is orbitally asymptotically
stable. For the second-order system, we obtain analytical formulas of the ma-
trix Φ eigenvalues

λ1 = 0,

λ2 = −a1α
2
1π

2/ω2 + α0(a2α1π/ω − α0), (2.46)

where

α0 =
λ1A exp(λ2Aπ/ω) − λ2A exp(λ1Aπ/ω)

λ1A − λ2A

α1 =
exp(λ1Aπ/ω) − exp(λ2Aπ/ω)

λ1A − λ2A

ω
π .

λ1A and λ2A are eigenvalues of the matrix A,

λ1A = 0.5(−a2 +
√

a2
2 − 4a1), λ2A = 0.5(−a2 −

√
a2
2 − 4a1).

Therefore, if |λ2| < 1, then the periodic solution is stable. From (2.46), we can
also find the limit corresponding to the oscillations of infinite frequency, which
is of much interest in sliding mode control theory: lim

ω→∞
λ2 = 0. Therefore, the

periodic solution of infinite frequency is stable.
B. Consider the case when a2

2 − 4a1 = 0. To obtain the LPRS formula, we
use formula (2.44) and find the limit for ξ → 1. The LPRS for this case is
given in Fig. 2.4 (#1). All subsequent analysis and conclusions are the same
as in case A.

C. Assume that a2
2 −4a1 > 0. Then the transfer function can be expanded

into two partial fractions, and according to Theorem 2.1, the LPRS can be
computed as a sum of the two components. The subsequent analysis is similar
to the previous one.

D. Assume that a1 = 0. Then the transfer function is W (s) = K/[s(Ts +
1)]. For this plant, the LPRS is given by the following formula, which can be
obtained via partial fraction expansion of the transfer function expression and
application of the LPRS formulas of the first-order dynamics:

J(ω) =
K

2

( π

Tω
csch

π

Tω
− 1

)
+ j

πK

4

(
tanh

π

2ωT
+

π

2ω

)
. (2.47)

The plot of the LPRS for K = 1, T = 1 is given in Fig. 2.5. The whole
plot is totally located in the 3rd quadrant. The point (0.5K;−j∞) corresponds
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Fig. 2.5. The LPRS of integrating second-order plant

to the frequency ω = 0, and the point (0; j0) corresponds to the frequency
ω = ∞. The high-frequency segment of the LPRS has the real axis as an
asymptote.

Again, applying the LPRS formula and the same approach, we can prove
that the periodic solution of the relay feedback system, with the plant being
the second-order dynamics, exists; that in the case of the ideal relay it is the
oscillations of infinite frequency; and that the periodic solution is orbitally
asymptotically stable.

2.7 LPRS of first-order plus dead-time dynamics

Many industrial processes can be adequately approximated by the first-order
plus time-delay transfer function

W (s) =
Ke−τs

Ts + 1
(2.48)

where K is the process gain, T is a time constant, and τ is a time delay (dead
time). This factor results in the particular importance of the analysis of these
dynamics. To apply the above idea to the process (2.48), we need to obtain
the formula of the LPRS for the transfer function (2.48).

Consider the equation of the periodic process with unequally spaced
switching in the relay feedback system (Fig. 1.5) with the plant being the
transfer function (2.48). At first, for an auxiliary purpose, we find a re-
sponse of the first-order plant without time delay to the steady periodic
pulse control of the amplitude c, with positive pulse length θ1 and negative
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pulse length θ2. The steady periodic response of such a plant can be described
by the following expressions:

y∗(θ1) = y∗(0) · e−θ1/T + cK(1 − e−θ1/T ) (2.49)

y∗(0) = y∗(θ1) · e−θ2/T + cK(1 − e−θ2/T ). (2.50)

Formulas (2.49) and (2.50) are a Poincaré return map for the feedback relay
system with the plant being a first-order transfer function. Solution of (2.49)
and (2.50) provides the following result:

ymin = y∗(0) = cK
2e−θ2/T − e−(θ1+θ2)/T − 1

1 − e−(θ1+θ2)/T
(2.51)

ymax = y∗(θ1) = cK
1 + e−(θ1+θ2)/T − 2e−θ2/T

1 − e−(θ1+θ2)/T
. (2.52)

Denote the values of the output at the switching instants ymin and ymax (2.51)
and (2.52). With ymin and ymax available, we can now write the equations of
the asymmetric periodic process in the system with the first-order plus dead-
time plant:

y(θ1) = ymin · e−(θ1−τ)/T + cK(1 − e−(θ1−τ)/T ) (2.53)

y(0) = ymax · e−(θ2−τ)/T − cK(1 − e−(θ2−τ)/T ) (2.54)

f0 − y(0) = b (2.55)

f0 − y(θ1) = −b. (2.56)

First, we derive the formula of the imaginary part of the LPRS for the given
plant. According to the definition, the imaginary part of the LPRS is the value
of the system output at the time of the switch from “−” to “+.” Because the
input f0 tends to zero, to derive the formula of the imaginary part we consider
the symmetric oscillations. In that case y(θ1) = −y(0), and the solution of
equations (2.53)–(2.56) is fairly straightforward:

lim
f0→0

y(0) = cK

(
2e−α · eγ

1 + e−α
− 1

)
(2.57)

where

α =
θ

T
=

π

Tω
and γ =

τ

T
.

Now we derive the formula of the real part of the LPRS for the given plant.
We solve equations (2.53)–(2.56) for θ1 and θ2:

θ1 = −T ln
f0 + b − cK

f0 − b + cK − 2cKeγ
(2.58)
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θ2 = −T ln
f0 − b + cK

2cKeγ + f0 + b − cK
. (2.59)

We find the limiting value of the positive and negative pulse length for f0 → 0:

lim
f0→0

θ1 = lim
f0→0

θ2 = θ = T · ln cK(2eγ − 1) + b

cK − b
. (2.60)

In formula (2.60), θ is half of the period of the symmetric oscillations.
Consequently, the frequency of the oscillations is: Ω = π/θ.

Now we derive a formula of lim
f0→0

θ1−θ2
f0

. It can be derived from (2.58) and

(2.59) but it must not contain b or f0 on the right-hand side. For that reason,
formula (2.60) is helpful. After a number of transformations, we obtain:

lim
f0→0

θ1 − θ2

f0
=

T (1 + e−α) · (1 − e−α)
cKeγ · e−α

. (2.61)

Formula (2.61) does not contain b or f0 in the right-hand side.
Taking into account the relation between θ1, θ2 and u0, we obtain the

following limit:

lim
f0→0

u0

f0
=

c

2θ
· lim

f0→0

θ1 − θ2

f0
=

(1 + e−α) · (1 − e−α)
2αKeγ · e−α

. (2.62)

Another expression for the same limit is the formula of the closed-loop
system that uses the equivalent gain of the relay kn:

lim
f0→0

u0

f0
=

kn

1 + knK
. (2.63)

Equating the right-hand sides of (2.62) and (2.63), we obtain the equation
for the equivalent gain kn. After solving it, we obtain the formula of the
real part of the LPRS (taking into account the fact that the real part is the
reciprocal of the equivalent gain with the coefficient −0.5). Finally, we put
together the real and the imaginary parts and obtain the formula for the
LPRS for the first-order plus dead-time transfer function as follows:

J(ω) =
K

2
(1 − αeγ csch α) + j

π

4
K

(
2e−αeγ

1 + e−α
− 1

)
. (2.64)

The subroutine “lprsfopdt” (see Appendix) can be used for the LPRS
computing per formula (2.64).

Let us compute the LPRS and plot it for various values of γ. The plots
of the LPRS for γ = 0 (#1), γ = 0.2 (#2), γ = 0.5 (#3), γ = 1.0 (#4),
and γ = 1.5 (#5) are depicted in Fig. 2.6. All the plots begin at the point
(0.5,−jπ/4) that corresponds to the frequency ω = 0. Plot number 1 (which
corresponds to zero dead-time) comes to the origin, which corresponds to
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Fig. 2.6. The LPRS of first-order plus dead-time dynamics

infinite frequency. Other plots are defined only for frequencies less than those
corresponding to half of the period. Therefore, they do not reach the origin.

Formula (2.64) can be validated by computing the LPRS for the same
values of γ as in Fig. 2.6, with the use of the series expression (2.19). An
application of formula (2.19) to the transfer function (2.48) provides the same
results as formula (2.64).

2.8 Some properties of the LPRS

The knowledge of certain properties of the LPRS is computationally helpful,
especially for the design of linear compensators with the use of the LPRS
method. One of these properties, probably the most important, was formu-
lated in Theorem 2.1: it is the additivity property. A few other properties
relating to the boundary points corresponding to zero frequency and infinite
frequency are considered below.

Consider a non-integrating linear part of the relay servo system given by
equations (1.16). We find the coordinates of the initial point of the LPRS
corresponding to zero frequency. For that purpose, let us find the limit of
function J(ω) for ω tending to zero. Using formula (2.12), we can write:

lim
ω→0

J(ω) =

C lim
ω→0

{
−0.5[A−1+ 2π

ω (I− e
2π
ω A)−1e

π
ω A]+ j π

4 (I+ e
π
ω A)−1(I− e

π
ω A)A−1

}
B.
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We evaluate the following two limits:

lim
ω→0

[
2π
ω ((I − e

2π
ω A)−1e

π
ω A

]
= lim

ω→0

[
2π
ω e−

2π
ω Ae

π
ω A

]
= lim

ω→0

[
2π
ω e−

π
ω A

]
= 0

lim
ω→0

[
(I + e

π
ω A)−1(I − e

π
ω A)

]
= lim

ω→0

[
e−

π
ω Ae

π
ω A

]
= I.

With these two limits, we can write the limit for the LPRS as follows:

lim
ω→0

J(ω) =
[
−0.5 + j

π

4

]
CA−1B. (2.65)

The product of matrices CA−1B in (2.65) is the negative value of the gain
of the plant transfer function. We have thus proved that for a non-integrating
linear part of the relay servo system, the initial point of the corresponding
LPRS is (0.5K;−jπ/4K), where K is the static gain of the linear part. This
coincides with the above analysis of the LPRS of the first- and second-order
dynamics: see, for example, Fig. 2.3 and Fig. 2.4.

To find the limit of J(ω) as ω tends to infinity, consider the following power
series expansion of the exponential function.

lim
ω→∞

exp
(π

ω
A
)

= lim
ω→∞

∞∑

n=0

(π/ω)n

n!
An = I + lim

ω→∞

∞∑

n=1

(π/ω)n

n!
An = I,

and another limit:

lim
ω→∞

{
2π
ω

[
I − exp

(
2π
ω A

)]−1
}

= lim
λ→0

{λ[I − exp(λA)]−1}

= lim
λ→0

{(
∂λ
∂λ

) [∂(I−exp(λA))
∂λ

]−1
}

= −A−1.

Finally, taking account of the above two limits, we can prove that the final
point of the LPRS for the non-integrating linear part is the origin:

lim
ω→∞

J(ω) = 0 + j0. (2.66)

Reasoning along the same lines, we can obtain the initial and final points
of the LPRS for integrating linear parts, which are as follows:

lim
ω→0

J(ω) = 0.5CA−1B − j∞ (2.67)

lim
ω→∞

J(ω) = 0 + j0. (2.68)

Some further investigation of asymptotic behavior of the LPRS is done in
Chapter 4, which is devoted to analysis of sliding mode control systems. It
is shown there that the location of the high-frequency segment of the LPRS
determines whether chattering or ideal sliding mode occurs in the system.
Here we only consider a few rules that may be helpful for LPRS computing
and plotting, as well as verifying calculations of the LPRS.
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2.9 LPRS of nonlinear plants

2.9.1 Additivity property

In all the previous sections, we considered relay servo systems with linear
plants only. This is a limitation of the aforementioned method. However, the
LPRS is a characteristic of the relay servo system that remains meaningful
and useful even if the plant is nonlinear. Of course, the same methods of
computing cannot be used for nonlinear plants. However, other techniques of
computing can be developed on the basis of some properties considered below.
The application of this approach is demonstrated in the chapter devoted to
analysis and design of the pneumatic servomechanism.

Consider the relay feedback system depicted in Fig. 2.7. Let the system
be given by the following equations,

ẋ = g(x, u),
y = h(x), (2.69)

u =

{
+c if σ = f0 − y ≥ b or σ > −b, u(t − 0) = c

−c if σ = f0 − y ≤ −b or σ < b, u(t − 0) = −c,

where g and h are nonlinear functions. We limit our analysis to static sym-
metric nonlinearities. Assume as before that in the autonomous mode, a sym-
metric periodic motion exists in the system, and if a non-zero external input is
applied to the system, then a periodic motion with unequally spaced switches
of the relay occurs (see Fig. 1.5). We use the same definition of the LPRS that
was introduced above — except now we have the system with a nonlinear plant

J(ω) = −1
2

lim
f0→0

σ0

u0
+ j

π

4c
lim

f0→0
y(t)|t=0, (2.70)

where t = 0 is the time of the switch of the relay from “−c” to “+c.” The
definition in formula (2.70) does not require that the plant necessarily be
linear. Therefore, if via some technique, we compute and plot the LPRS for
this nonlinear plant that satisfies the given definition, then we can calculate
the frequency of possible periodic motions and the equivalent gain of the relay

Fig. 2.7. Relay servo system with a nonlinear plant



44 2 The LPRS theory

Fig. 2.8. Multichannel plant system

for input-output analysis. Nonlinear plants in the general case do not provide
any means for the LPRS computing other than a direct application of formula
(2.70). Yet, some features of the LPRS and the system under consideration
allow for a simpler approach. The problem is, therefore, to develop a technique
or techniques that use those features and do not directly involve the variables
of formula (2.70), but rather use the parameters of the plant. Consider the
main feature that allows us to simplify the task of LPRS computing.

Assume that the plant can be represented as a number of parallel channels
(plant components) as depicted in Fig. 2.8 with each component satisfying the
above requirements for the plant. Then the following property is valid.

Theorem 2.5. (Additivity property of the LPRS). If the plant of the relay
servo system can be represented as a sum of N nonlinear (in a general case)
plants as depicted in Fig. 2.8,

ẋi = gi(xi, u),
yi = hi(xi), i = 1, N,

y =
∑N

i=1 yi,

each satisfying the assumptions of equations (2.69), then the LPRS of this
system is equal to the sum of N LPRS, each of which corresponds to the relay
servo system (Fig. 2.7) with the plant being the plant component of the original
system given by i-th equation (Plant 1, Plant 2, Plant N in Fig. 2.8)

J(ω) = J1(ω) + J2(ω) + ... + JN (ω), (2.71)

where Ji(ω) is the LPRS for i-th plant.

Proof. Suppose the system in Fig. 2.8 is a type 0 servo system (has a non-
integrating plant), a constant input f(t) ≡ f0 is applied, and a limit cycle
of frequency Ω does occur. Then the output y(t) at the switching time is
y(0) = y+ (switching from “−” to “+” ) and y(θ1) = y− (switching from “−”
to “+”).

Each variable yi(t) (i = 1, N) at the switching time is equal to yi(0) = y+
i

and yi(θ1) = y−
i . The signals in each system have the following constant terms

(mean values): σ0, u0, y0, y0i(i = 1, N). The following identities obviously hold:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N∑
i=1

y+
i = y+,

N∑
i=1

y−
i = y−,

N∑
i=1

y0i = y0.

(2.72)

The periodic solution of the system in Fig. 2.8 (the switching conditions)
can be described as follows:

{
f0 − y+ = b,

f0 − y− = −b
(2.73)

Because each signal yi(t) (i = 1, N) is a periodic function, the periodic
solution for each plant component in the relay system in Fig. 2.7 (the plant
is supposed to be i-th component of the original plant) exists if the input f0

and hysteresis value b are equal to

f0i =
1
2
(y+

i + y−
i ) (2.74)

b0i =
1
2
(y−

i + y+
i ) (2.75)

respectively, which is a solution of system (2.73) for i-th component. Note
that the constant inputs and the hysteresis values are different for each of the
systems with an i-th plant. Therefore, a periodic solution for the system in
Fig. 2.7 with the plant being a plant component from the system in Fig. 2.8
exists, and the output of this system coincides with the component output
yi(t) in the system in Fig. 2.8. The relay controls are identical,

ui(t) = u2(t) = ... = uN (t) = u(t),

which is also true with respect to the constant terms (mean values):

u01 = u02 = ... = u0N = u0. (2.76)

Then the following equality holds:

N∑

i=1

σ0i

u0i
=

1
u0

N∑

i=1

σ0i =
1
u0

N∑

i=1

(f0i − y0i)

=
1
u0

N∑

i=1

[
1
2
(y+

i + y−
i ) − y0i

]

=
1
u0

[
1
2
(y+ + y−) − y0

]

=
f0 − y0

u0
=

σ0

u0
.

(2.77)
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Formula (2.77) holds for any given frequency ω = Ω. This means that
(2.71) holds with respect to the real part of the LPRS. It is also valid with
respect to the imaginary part of the LPRS that directly follows from (2.72). �

It should be noted that (2.72) and (2.77) provide an additivity property of
the LPRS that is valid not only for infinitesimally small constant terms but
also for any finite values. This is very important as we are going to use this
property for numerical computing of the LPRS for nonlinear plants.

The proved property suggests some techniques for LPRS computing. The
above definition implies existence of the LPRS only within the frequency range
where periodic solution is possible. Sometimes it is necessary to calculate the
LPRS beyond the frequency range where a periodic solution exists. A typical
example of this occurs when the desired frequency of the oscillations is beyond
the range of possible frequencies of the oscillations in a non-compensated
system.

The main property of the LPRS provides a solution to this problem. If
the LPRS definition does not allow for LPRS calculation at the frequency of
interest Ω, then additional dynamics with known LPRS can be connected in
parallel with the given plant to allow oscillations of frequency Ω to exist in
the system. The LPRS of the original plant can be calculated as the LPRS of
the latter system minus the LPRS of the known dynamics (at frequency Ω).

Therefore, if the LPRS cannot be calculated at a certain frequency of
interest Ω with the use of the LPRS definition, and if by adding components
in parallel with the plant (or deleting parallel components) the frequency of
interest Ω can be generated, then the LPRS of the given plant at frequency
Ω can be calculated as a difference (sum) of the LPRS of the consolidated
plant and the LPRS of the components connected in parallel with the given
plant; this follows from the additivity property. In the case of linear dynamics
connected in parallel with the plant, the LPRS of the linear dynamics can be
calculated through the formulas presented in Table 2.1. Thus, the calculation
of the LPRS of nonlinear plants depends on how well the auxiliary parallel
components are chosen to obtain a necessary frequency of the oscillations.

A typical application of this property is the calculation of the LPRS of a
nonlinear plant with two integrators. A periodic solution in the relay system
with such a plant doesn’t exist (despite the formula of J(ω) for corresponding
linear plant). On the other hand, if second-order dynamics are connected in
parallel with such a plant, a periodic solution may exist and the LPRS can be
calculated (the switching frequency can be varied by changing the hysteresis
value and the parameters of the parallel component).

2.9.2 The LPRS extended definition and open-loop LPRS
computing

The LPRS is a plant response to the asymmetric square-wave pulse input
signal. It can also be easily seen from formulas (2.12), (2.19), and (2.32) that
the LPRS is a function of the plant parameters only. This means that it is
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possible to construct a certain definition (different from the original definition
of the LPRS) that would involve an open-loop consideration of the plant.

Suppose the plant is a type 0 servo system (non-integrating) and the con-
trol is a square-wave pulse signal of frequency ω, relative pulse duration γ,
and amplitude c. Then, the coefficients of the Fourier series of the steady
periodic output of the plant can be computed. Relative pulse duration γ is
a quotient of positive pulse duration θ1 and the period of oscillations. Under
those assumptions, the plant output is

y(t) = y0 +
∞∑

k=1

{ak · cos(kωt) + bk · sin(kωt)}, (2.78)

where y0, ak, bk are the coefficients of the Fourier series, and t = 0 is the time
of the control switching from “−c” to “+c.”

It follows from (2.78) that at the switching times, the following equalities
hold:

y+ = y0 +
∞∑

k=1

ak, (2.79)

y− = y0 +
∞∑

k=1

{ak · cos(2πkγ) + bk · sin(2πkγ)}. (2.80)

Consider the following hypothetical experiment. Suppose that the plant is
closed by the feedback (see the system in Fig. 2.7) but the error signal link
is disconnected from the relay input and a periodic asymmetric signal from
an external generator is introduced to the relay input instead. This results
in a square-wave pulse signal of frequency ω, relative pulse duration γ, and
amplitude c from the relay. At a certain time, we instantaneously disconnect
the relay input from the external generator and connect it to the adder output.
To allow the oscillations to remain in the closed-loop system, the system input
f0 and relay hysteresis b must satisfy equations (2.73), from which f0 and b
values can be obtained (formulas (2.74) and (2.75)). This shows the existence
of a certain equivalence between the open-loop and closed-loop generation of
a periodic motion.

Simultaneous consideration of (2.70), (2.74), and (2.75) results in the for-
mula for the LPRS based on the plant output spectrum in the open-loop
experiment

J(ω) = − lim
γ→ 1

2

0.5[y+ + y−] − y0

2u0
+ j

π

4c
lim
γ→ 1

2

y+ − y−

2
(2.81)

where u0 = c(2γ−1), y+, and y− are defined by (2.79) and (2.80), respectively.
In practice, the values of γ close to 0.5 can be used for LPRS calcula-

tion as per (2.81). If the system is of non-zero type (integrating plant), the
adjustments stated above should be made.
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We call formula (2.81) the extended or open-loop definition of the LPRS
because it allows for the LPRS to be defined at frequencies that may not be
the frequencies of the oscillations in the closed-loop system (Fig. 2.7). As per
(2.81), the LPRS of a given plant can be computed at any frequency.

We call the set of coefficients of the Fourier expansion of plant output
y0, ak, bk (k = 1, ...,m) at a given frequency ω the spectral characteristic of
the plant at frequency ω. We have shown above (see the sections devoted to ob-
taining the LPRS formula from the plant transfer function) that the spectral
characteristic at any given frequency can be transformed into the LPRS at the
same frequency. In some cases, it is very convenient to calculate and memorize
the spectral characteristic. If, for example, a linear compensator is connected
in series with the plant (in the error signal), the resulting spectral characteris-
tic is easily calculated as a propagation of the plant output spectrum through
the linear compensator. This technique is convenient for the design of a linear
compensator. In the chapter devoted to pneumatic servomechanism analysis
and design, this technique is further investigated.

2.10 Application of periodic signal mapping
to computing the LPRS of some special nonlinear plants

Periodic signal mapping was introduced in Chapter 1, and the relation be-
tween this mapping and Poincaré mapping was reviewed above. Now, once
the open-loop definition of the LPRS is available, we can apply the periodic
signal mapping technique to the open-loop definition and design the method-
ology for computing the LPRS for nonlinear plants. However, this type of
analysis differs from the LPRS analysis in the case of a linear plant. More-
over, according to formula (2.81), the oscillation (the control signal) must be
asymmetric to enable us to compute the LPRS. Therefore, we have to consider
asymmetric signals and the Fourier series with non-zero constant term, which
is a more complex problem compared to the one solved above. Yet, for the
purpose of computing the LPRS, the frequency of the control signal can be
considered a known value. Also, we can assume a certain small (but sufficient
for computing the real part of the LPRS) asymmetry of the control signal.
Therefore, we can write the following spectral representation of the control:

Qu = [qu0 qu1 qu2 qu3 . . .] (2.82)

where qu0 = u0 = c(θ1 − θ2)/(θ1 + θ2), ω = 2π/(θ1 + θ2),

quk = 4c
π sin(πkθ1/(θ1 + θ2))/k × {cos(kωθ1/2) cos(kωt)

+ sin(kωθ1/2) sin(kωt)}, k = 1,∞.

In comparison to formula (1.8), formula (2.82) has a constant term. The map-
ping via linear dynamics given by the transferfunction W (s) is given by the



2.10 LPRS of some special nonlinear plants 49

following element-by-element multiplication formula,

Qy = Qu • S (2.83)

where y is the output of these linear dynamics (which can be an internal
variable of the plant), and

S = [W (j0) W (jω) W (j2ω) W (j3ω) . . .] (2.84)

assuming that W (s) is non-integrating.
We consider a few nonlinear models of the plant: the Hammerstein

model, the Wiener model, and a nonlinearity preceded and followed by linear
dynamics.

The Hammerstein model is given by a cascade connection of a single-valued
memoryless nonlinearity followed by linear dynamics (Fig. 2.9). We limit our
discussion to single-valued symmetric nonlinearities.

Because the control u(t) is either “+c” or “−c,” the input nonlinearity
of the Hammerstein model changes only the value of the effective control
amplitude. Instead of “±c,” we have to use “±c1,” where c1 = g(c), where the
input nonlinearity of the Hammerstein model is g(u). Therefore, the LPRS is
not affected by the presence of the input single-valued symmetric nonlinearity
of the plant. Yet, when determining the frequency of the periodic motion and
the equivalent gain value, the modified value of the relay amplitude must be
used instead of the original one.

In the same way, we analyze the effect of the output nonlinearity of the
Wiener model. The Wiener model is given by a cascade connection of lin-
ear dynamics followed by a single-valued memoryless nonlinearity (Fig. 2.10).
Again let us consider only symmetric nonlinearities.

We derive the formula of the LPRS for the plant given by the Wiener
model (Fig. 2.10). We rewrite (2.70) in the following form using the notation
for the figure,

Fig. 2.9. Hammerstein system

Fig. 2.10. Wiener system
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J(ω) = −1
2

lim
f0→0

f0 − y0

u0
+ j

π

4c
lim

f0→0
y(t)

∣∣∣∣
t=0

= −1
2

(
df0

du0
− dy0

du0

)
+ j

π

4c
y(t)|t=0 (2.85)

= −1
2

(
df0

du0
− dg

dz

∣∣∣∣
z=0

dz0

du0

)
+ j

π

4c
g (z(t)|t=0) ,

where ...|z=0 denotes the derivative at the point z = 0. It follows from formula
(2.85) that the LPRS of the Wiener system plant (Fig. 2.10) can be computed
as follows,

J(ω) =
dg

dz

∣∣∣∣
z=0

ReJl(ω) + jImJl(ω) (2.86)

where Jl(ω) is the LPRS computed for the linear part only (as per (2.12),
(2.32), (2.19)), and the hysteresis value is modified as follows,

b1 = g−1(b), (2.87)

where g−1(y) is the inverse function with respect to the function g(z).
The Hammerstein and Wiener models provide examples of simple

nonlinear plants to which the LPRS method can be applied with minimal
modifications. However, in real applications, plants dynamics often feature
nonlinearities preceded by and followed by linear dynamics as shown in Fig.
2.11. We note that other types of connections between the plant nonlinearity
and linear dynamics can be brought to the configuration in Fig. 2.11. We can
write the following model of control signal propagation through the nonlinear
plant. Assume that the control is given by (2.82). Then the following holds,

Qy1 = Qu • S1, (2.88)

where y1 is the output of the linear dynamics with the transfer function W1(s),
and Qy1 is the spectrum matrix of y1(t),

S1 = [W1(j0) W1(jω) W1(j2ω) W1(j3ω) . . .] . (2.89)

The time-domain form of y1 is obtained as the inverse Fourier transform
of its spectral representation:

Fig. 2.11. Nonlinearity preceded and followed by linear dynamics
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y1(t) = qy10 + 2
∞∑

k=1

|qy1k| cos (ωt + arg qy1k) . (2.90)

As a result, the output of the nonlinearity in the time domain is

z(t) = g(y1(t)). (2.91)

In the spectral domain it is as follows:

Qz = [qz0 qz1 qz3 qz5 . . .] (2.92)

where

qzk =
1
T

T/2∫

−T/2

z(t) [cos(2k − 1)ωt − j sin(2k − 1)ωt] dt, k = 1,∞, (2.93)

qz0 =
1
T

T/2∫

−T/2

z(t)dt. (2.94)

Subsequently, the output of the plant is given by the following spectral rep-
resentation,

Qy = Qz • S2, (2.95)

where

S2 = [W2(j0) W2(jω) W2(j3ω) W2(j5ω) . . .] (2.96)

and in the time domain

y(t) = qy0 + 2
∞∑

k=1

|qyk| cos (ωt + arg qyk) , (2.97)

where qyk are Fourier coefficients that comprise matrix Qy. Therefore, utilizing
the open-loop computing formula of the LPRS (2.81), the following approxi-
mate finite difference schema can be designed for computing the LPRS of the
nonlinear plant Fig. 2.11.

J(ω) ≈ −0.5[y+ + y−] − y0

2u0
+ j

π

4c

y+ − y−

2
, (2.98)

where y+ = y(0), y− = y(θ1), which is given by (2.97), y0 = qy0, and u0

is selected to be small enough for the finite difference estimate of the LPRS
(2.98) to be precise. Values of u0 that are too high result in errors in the
evaluation of the equivalent gain, and values that are too small may not
provide a sufficient resolution of the finite difference approach. As a rule of
thumb, u0 should correspond to the range of expected relative pulse duration
values of the control pulses in the system under an external input.
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2.11 Comparison of the LPRS with other methods
of analysis of relay systems

The LPRS method deals with a classic problem that is examined in many
sources. Naturally, the LPRS method should overlap with other existing meth-
ods and produce the same results under certain circumstances. Thus it is in-
teresting to compare the LPRS and other methods. The closest two methods
are the describing function method and Tsypkin’s method.

The describing function method ([8, 50]): Because the DF method is based
upon the filtering hypothesis, one might expect that the LPRS method pro-
vides the same result under this hypothesis. Indeed, if only the first terms of
the series (2.19) of the real and imaginary parts are used (in accordance with
the filtering hypothesis), this formula coincides with that of the DF method.
The LPRS method, therefore, provides a more precise model of the oscilla-
tions and of the input-output properties of a relay system compared to the
DF method. In particular, it takes into account the non-sinusoidal shape of
the output signal, and the precision enhancement is due to that. If the ac-
tual shape of the output signal is close to sinusoidal, both methods provide
similar results. Another difference is that the LPRS method does not require
harmonic balance conditions to be fulfilled in the closed-loop system; it can
handle systems where this condition is not fulfilled (i.e., a system consist-
ing of a hysteretic relay and a first-order linear part or sliding mode control
systems).

Tsypkin’s method ([94]). The main similarity between Tsypkin’s method
and the LPRS is in the imaginary parts of the two loci. The imaginary part of
the Tsypkin locus is defined as the output value in a periodic motion at the
time of the relay switch from minus to plus. The imaginary part of the LPRS
is essentially the same: the difference is only in the coefficient. However, the
real part of the Tsypkin locus is defined as the derivative of the output at
the time of the switch (t = 0−) and is intended for verifying the condition of
the proper direction of the switch. The real part of the LPRS is defined as a
ratio of the two infinitesimally small constant terms of the signals caused by
the infinitesimally small asymmetry of switching in a closed-loop system. As a
result, the Tsypkin locus is a method of analysis of possible periodic motions
only; whereas the LPRS is intended for more complex analysis: the solution
of the periodic problem and input-output analysis (disturbance rejection and
external signal propagation).

A brief example demonstrates some aspects of the above comparison.
Let the plant be the first-order plus dead-time transfer function: Wl(s) =
0.5 exp(−0.5s)/(1.5s+1). The frequency of the periodic solution found via ap-
plication of the LPRS and of the Tsypkin locus is ΩLPRS = ΩTs = 3.593s−1

(exact value); the same frequency found via application of the DF method
is ΩDF = 3.516s−1 (the error between the two values is 2.1%). The equiva-
lent gain values found via application of the LPRS and the DF methods are
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knLPRS = 6.258 and knDF = 5.371, respectively. The error between these
two values is 14.1%. The true value of the equivalent gain is the same as the
one found via the LPRS application. From those results, we can see that even
if the DF method may seem precise in terms of the frequency of a periodic
solution, the error of the input-output properties may be much larger.

2.12 An example of analysis of oscillations and transfer
properties

Let us find a periodic solution and analyze the transfer properties of the relay
feedback system with an integrating linear part, given by equations (2.21),
(2.22) with the following parameters:

A =
[

0 1
−0.4 − 0.5

]
, B =

[
0
1

]
, C =

[
1 0

]
,

c = 1, b = 0.1. Let an external harmonic signal of frequency 0.01 Hz (ωin =
0.0628s−1) and amplitude ain = 20 be applied to the closed-loop system. We
find the frequency and the amplitude of the self-excited oscillation and analyze
the system response to the specified external signal.

We compute the LPRS as per formula (2.32) and plot it (Fig. 2.12). For
computing the LPRS, the subroutine “lprsmatrint” (see Appendix) can be
used. The solution of equation (2.3) corresponding to the point of inter-
section of the LPRS and the line parallel to the real axis drawn at a dis-
tance of πb/(4c) = 0.0785 below provides the frequency of the oscillations:
Ω = 0.625s−1. The amplitude of the self-excited oscillation is a = 6.52.

Fig. 2.12. LPRS for example of Section 2.12
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Fig. 2.13. System response to external harmonic excitation (simulations)

We assess the orbital stability of the system. The eigenvalues of the ma-
trix Φ0 computed per (2.34) are λ1 = −0.319 and λ2 = 0.062, which have
magnitudes smaller than one. Therefore, the system is orbitally asymptot-
ically stable. According to formula (2.4), we calculate the equivalent gain:
kn = 0.103. We assess the tracking quality of the input signal by the sys-
tem using the linearized model, which is obtained via substitution of the
gain kn for the relay characteristic. Employing the methods of linear sys-
tems analysis, we obtain the component of the motion of frequency ωin in
the output signal. Note: The output signal also contains the self-excited pe-
riodic component yp(t) of frequency Ω = 0.625s−1. Therefore, the output is
y(t) = 19.8 sin(0.0628t−0.242)+yp(t), where yp(t) is the periodic component
of the motion of frequency Ω = 0.625s−1 (note that yp(t) is not a harmonic
signal). This result matches well the results obtained through simulations
(Fig. 2.13).

2.13 Conclusions

The frequency domain methodology of analysis is based on the notion of the
LPRS and an approach that involves substitution of the relay element with
the equivalent gain. The LPRS comprises both the oscillatory and the transfer
properties of a relay system, and succeeds even if the filtering hypothesis fails;
therefore, it is a relatively universal characterization of a discontinuous control
system. We prove that despite the fact that the LPRS is defined through the
parameters of the periodic motion in the closed-loop system, it is actually a
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characterization of the linear part only. We derive three different techniques
for computing the LPRS for both non-integrating and integrating linear parts,
and consider certain properties of the LPRS. Finally, we demonstrate that the
LPRS concept can be extended to nonlinear plants.
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Input-output analysis of relay servo systems

3.1 Slow and fast signal propagation through a relay
servo system

The LPRS method presented in the previous chapter allows one to build a
linearized model of the averaged motions in a relay servo system. This is done
by analyzing the system response to an external constant input. We have
shown that the discontinuous system reacts to a constant input essentially
like a linear system (if the averaged values of the variables are considered).
Therefore, the relay nonlinearity acts as a certain equivalent gain with respect
to the averaged values of the respective signals. This happens due to the
“chatter smoothing” phenomenon.

It is normally assumed in describing function analysis [8, 50] that if the
input is not a constant but a slowly varying signal (the meaning of the term
“slow” was discussed previously), then the concept of the equivalent gain
(incremental gain for DF analysis) of the relay is still applicable, and the
value of the equivalent gain remains the same as in the analysis of the system
response to a constant input. In the course of this analysis, the relay is replaced
with the equivalent gain while the linear part remains unchanged. To be able
to use the concept of the equivalent gain for non-constant input signals, we
need to assume the inputs are slow compared to the oscillations. According
to this assumption and the equivalent gain concept, the external input is
propagated through the relay without any lags or delays, which results in the
equivalent gain being a real number (not a complex one). There are some other
approaches similar to the DF method that use the same assumption [71, 87].
However, in the setup for the equivalent gain derivation that was used above
(when the input to the system was constant), the equivalent gain could only
be obtained as a real number. Because we assume that the inputs are slow
compared to the oscillations, we also assume the equality of the equivalent
gain at a varying input to the one at a constant input.
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In that respect, it is interesting to analyze if the assumption of the equiv-
alent gain being a real number (not a complex one) is valid regardless of
whether the external inputs are slow or not. Therefore, in this chapter we aim
to analyze whether the hysteretic relay nonlinearity does or does not intro-
duce any lags or delays to an input signal propagation. In other words, we aim
to analyze how precise the concept of the equivalent gain is with respect to
non-constant inputs in terms of the dynamics of signal propagation through
the relay. For the purpose of this analysis, let us ignore the actual shape of
the oscillation and consider the error signal being the sum of two sinusoidal
signals of multiple frequencies

σ(t) = A1 sin(ωt) + A2 sin
( ω

M
t
)

, (3.1)

where ω and A1 are the frequency and the amplitude of the oscillatory
component, ω/M and A2 are the frequency and the amplitude of the forced
component, and M is positive integer.

Let the error signal (3.1) be applied to the hysteretic relay, so that the
output of this relay is as follows,

u =

{
+c if σ = f0 − y ≥ b or σ > −b, u(t − 0) = c

−c if σ = f0 − y ≤ −b or σ < b, u(t − 0) = −c,
(3.2)

where c is the amplitude of the relay, b is the hysteresis value (half of the total
hysteresis width) of the relay, and u(t − 0) is the control value at the time
immediately preceding the current time.

Let us assume that the forced component acts on the oscillatory component
in such a way that it biases the switching instants but does not change the
switching pattern, so that the relay switches occur twice on the period of the
oscillatory component. This happens if the following inequality holds:

A1 > A2 + b. (3.3)

Let us analyze how these two components are propagated through the
relay nonlinearity. To this end, let us write expressions for the equivalent
complex gains of the oscillatory component and the forced component assessed
as a ratio of the complex amplitudes of the first harmonics of the respective
frequencies in the relay output to the complex amplitudes at the relay input.
In essence, we write expressions for the describing functions for each of those
two components. This is similar to the approach proposed by Gelb [50] and
in certain respects to the approaches proposed in [56, 87],

N1 =
ω

πM A1

∫ 2πM/ ω

0

u(t) sin ωt dt+j
ω

πM A1

∫ 2πM/ ω

0

u(t) cos ωt dt (3.4)

and



3.1 Slow and fast signal propagation through a relay servo system 59

N2 = ω
πM A2

∫ 2πM/ ω

0
u(t) sin

(
ω
M t

)
dt

+ j ω
πM A2

∫ 2πM/ ω

0
u(t) cos

(
ω
M t

)
dt,

(3.5)

where M ≥ 2 is integer. The complex gain (3.4) is investigated in [8, 50, 56].
However, the LPRS methodology does not involve the concept of the gain
as expressed in (3.4), and we are particularly interested in the complex gain
given in formula (3.5), especially in imaginary part.

The output of the relay is a series of square pulses with alternating values,
either c or −c. The switches of the relay occur twice on the period 2π/ω, in
accordance with the above assumption. Therefore, during the period 2πM/ω,
there are 2M switches of the relay. Let us denote the switching times by
t1, t2, t3, ..., t2M−1, t2M . Then we can write for the imaginary part of N2:

Im N2 = ω
πM A2

{
−
∫ t1
0

c cos
(

ω
M t

)
dt +

∫ t2
t1

c cos
(

ω
M t

)
dt

+ ... −
∫ 2πM/ ω

t2M
c cos

(
ω
M t

)
dt
}

= cω
πM A2

M
ω

{
−sin

(
ω
M t

)
|t10 + sin

(
ω
M t

)
|t2t1 + ... − sin

(
ω
M t

)
|2πM/ω
t2M

}

= c
π A2

{
−
(
sin

(
ω
M t1

)
− sin 0

)
+

(
sin

(
ω
M t2

)
− sin

(
ω
M t1

))

+ ... −
(
sin(2π) − sin

(
ω
M t2M

))}

= 2c
π A2

{
− sin

(
ω
M t1

)
+ sin

(
ω
M t2

)
− sin

(
ω
M t3

)

+ ... − sin
(

ω
M t2M−1

)
+ sin

(
ω
M t2M

)}
.

(3.6)
Thus, we have obtained the formula for the imaginary part of the complex

gain N2. All addends that contain odd switching instants are negative, and
all addends that contain even switching instants are positive. Formula (3.6)
contains switching instants that are currently unknown. We need to find these
values.

At first consider the case when A2 = 0 and the error signal has only
one component. Obviously, the switching occurs when either A1 sin ωt = b
or A1 sinωt = −b (in addition the condition of proper direction of the relay
switch must be satisfied). Denote the switching instants t0i, where i is the
sequential number of the switch. The switching instants can be explicitly
given by the following formulas,

t0i =
1
ω

arcsin
b

A1
+

π(i − 1)
ω

(3.7)

for both odd and even i.
Now we replace ti in (3.6) with the expressions given by formula (3.7) and

we find the value of Im N2 in the absence of the forced component at the relay
input (A2 −→ 0)

Im N2 =
2c

π A2

2M∑

i=1

(−1)i

[
sin

(
1
M

arcsin
b

A1
+

π(i − 1)
M

)]
. (3.8)



60 3 Input-output analysis of relay servo systems

We notice from (3.8) that

sin
( ω

M
tM+i

)
= − sin

( ω

M
ti

)
,

and if M is even, then the sum (3.8) is zero. If M is odd, then it is not obvious
whether the sum becomes zero or non-zero if no forced component is applied.
For that reason, assume for the purpose of our analysis that M is even.

Assume now that amplitude A2 is small compared to A1, so that the forced
component has a biasing effect on the oscillatory component, which results in
changes of the switching times. A switching time change (increment) can be
estimated with the use of linear components in the Taylor series expansion of
σ(t) around the respective switching instant as follows:

σ(t) = σ(t0i) + σ̇(t0i) · (t − toi), (3.9)

where σ(t0i) is
σ(t0i) = A1 sin ωt0i + A2 sin

( ω

M
t0i

)
(3.10)

and σ̇(t0i) can be given as follows:

σ̇(t0i) = A1ω cos ωt0i + A2
ω

M
cos

( ω

M
t0i

)
. (3.11)

We write equations for the switching instants — separately for odd end
even values of i. From (3.9)–(3.11) we obtain

A1 sin ωt0i + A2 sin
( ω

M
t0i

)
+

[
A1ω cos ωt0i + A2

ω

M
cos

( ω

M
t0i

)]
· �t1 = b

(3.12)
for odd i, where �ti = t − toi, and

A1 sinωt0i + A2 sin
( ω

M
t0i

)
+

[
A1ω cos ωt0i + A2

ω

M
cos

( ω

M
t0i

)]
· �t1 = −b

(3.13)
for even i. We solve (3.12) and (3.13) for �ti taking into account expression
(3.7) for t0i. Equations (3.12) and (3.13) have the following solutions

�ti =
A2 sin

(
ω
M t0i

)

±ω
√

A2
1 − b2 + A2

ω
M cos

(
ω
M t0i

)

=
A2 sin

(
1
M arcsin b

A1
+ π(i−1)

M

)

±ω
√

A2
1 − b2 + A2

ω
M cos

(
1
M arcsin b

A1
+ π(i−1)

M

) ,

(3.14)

where “+” applies to odd values of i, and “−” applies to even values of i.
Since Im N2 = 0 for the case of A2 = 0, we can apply the superposition

principle to find the first harmonic of the relay output u(t). The first harmonic
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Fig. 3.1. Variation of relay output due to application of forced component

of u(t) for the case of A2 �= 0 can be found as the first harmonic of the relay
output variation δu(t) (Fig. 3.1).

Since the value of A2 is small compared with A1, formula (3.14) can be
rewritten as follows:

�ti ≈
A2 sin

(
1
m arcsin b

A1
+ π(i−1)

M

)

(−1)i+1ω
√

A2
1 − b2

. (3.15)

From (3.15), we see that for even M (that was assumed above), the fol-
lowing equality holds:

�tM+i = −� ti. (3.16)

As a result, the formula for the imaginary part of the complex gain for the
forced component can be rewritten as follows,

Im N2 = ω
πM A2

M∑
i=1

[
2c · | � ti| · cos

(
ω
M t0i

)

−2c · | � tM+i| · cos
(

ω
M t0M+i

)]
,

(3.17)

where �ti is evaluated as in (3.15) and the sign is accounted for in (3.17).
The following equality

cos
( ω

M
t0i

)
= − cos

( ω

M
t0M+i

)
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and equality (3.16), allows us to rewrite formula (3.17) as follows:

Im N2 =
4cω

πM A2

M/2∑

i=1

| � ti| · cos
( ω

M
t0i

)

=
4cω

πM A2

M/2∑

i=1

[
| � t1| · cos

( ω

M
t0i

)
+ | � tM/2+i| · cos

( ω

M
t0M/2+i

)]

=
4c

πM
√

A2
1 − b2

M/2∑

i=1

[
sin

(
1

M
arcsin

b

A1
+

π(i − 1)

M

)
· cos

( ω

M
t0i

)

− cos

(
1

M
arcsin

b

A1
+

π(i − 1)

M

)
· sin

( ω

M
t0i

)]

=
4c

πM
√

A2
1 − b2

M/2∑

i=1

sin

(
1

M
arcsin

b

A1
+

π(i − 1)

M
− ω

M
t0i

)
= 0. (3.18)

We formulate the following proposition.

Proposition 3.1. If the switching of the relay occurs two times during every
period of the oscillatory component of the motion (one time from “−” to “+”
and one time from “+” to “−”), so that the presence of the forced component
does not change this pattern but only changes the switching instants, then the
hysteretic relay does not introduce any delay (or lag) into the forced component
propagation.

This proposition is proven above when only the frequency of the oscilla-
tory component is a multiple of the frequency of the forced component, and
small amplitudes of the forced component. However, simulation suggests that
Proposition 3.1 is valid for non-multiple frequencies and large amplitudes of
the forced component (while (3.3) remains valid). Some simulation results
are presented in Table 3.1. The value of the imaginary part of N2 obtained

Table 3.1. Describing function for the forced component

N2 values for b = 0, A1 = 1

M 2 10 50 200

A2 = 0.1 0.638 + j0 0.634 + j0 0.645 + j0 0.649 + j0

A2 = 0.4 0.636 + j0 0.650 + j0 0.650 + j0 0.653 + j0

A2 = 0.8 0.636 + j0 0.707 + j0 0.706 + j0 0.706 + j0

N2 values for b = 0.1

M 2 10 50 200

A2 = 0.1 0.639 + j0 0.642 + j0 0.633 + j0 0.607 + j0

A2 = 0.4 0.640 + j0 0.654 + j0 0.654 + j0 0.654 + j0

A2 = 0.8 0.641 + j0 0.717 + j0 0.718 + j0 0.718 + j0

N2 values for b = 0.3

M 2 10 50 200

A2 = 0.1 0.668 + j0 0.668 + j0 0.672 + j0 0.659 + j0

A2 = 0.4 0.671 + j0 0.688 + j0 0.690 + j0 0.693 + j0



3.3 Example of forced motions analysis with the use of the LPRS 63

from the computation is negligibly small. For that reason, in Table 3.1, the
imaginary part is zero.

3.2 Methodology of input-output analysis

We proved in the previous section that, subject to certain conditions imposed
on the signals, the concept of the equivalent gain of the relay is valid not
only for the propagation of constant and slow inputs through the relay servo
system, but also for fast enough signals as long as the switching is triggered
by the oscillatory component of the motion (occurs two times on the period
of the oscillatory component). As a result, the input-output analysis of relay
servo systems naturally follows from the LPRS method, the concept of the
equivalent gain of the relay and its validity for sufficiently fast input signals.

The analysis is a three-step procedure.
At the first step, the LPRS of the relay servo system is computed (for the

purpose of analysis, usually the knowledge of the whole LPRS is not necessary,
only the point corresponding with the periodic solution is needed).

At the second step, the frequency of the periodic solution is found as a
solution of equation (2.3).

After that, at the third step, the equivalent gain of the relay is computed
using formula (2.4).

Finally, at the fourth step, the linearized model of the relay servo sys-
tem for the average over the period motions is built via replacement of the
relay element with the equivalent gain, and analysis of the forced signal or
disturbance propagation is done with the use of this model and conventional
methods of linear systems analysis.

The problems that can be solved with this methodology are the analysis of
external inputs propagation through the relay servo system, which is the servo
problem, and the analysis of the effect of external disturbances on the output
of the system, which is the problem of analysis of disturbance attenuation in
stabilization control systems. This method can also be applied to problems
that are a combination of these two. In this case, the superposition principle
can be used to incorporate both effects.

An example of input-output analysis is presented in the following section.

3.3 Example of forced motions analysis
with the use of the LPRS

Consider the system in Fig. 3.2 with input f = sin 6.28t. Input-output analysis
of the relay feedback control system can be carried out as follows.
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Fig. 3.2. Block diagram of the system

Fig. 3.3. LPRS of linear part

We expand Wl(s) into the sum of Wi(s),

W1(s) = 100/s − 5/(0.1s + 1),

and using the formulas of Table 2.1, we derive the formula of J(ω),

J(ω) = −2.5(1 − 10π/ω csch (10π/ω)) − j(12.5π2/ω − 1.25π tanh(5π/ω))

and plot the locus (Fig. 3.3). The intersection of the LPRS and the line parallel
to the horizontal axis at the distance πb/(4c) = 0.0785 below it allows us to
calculate the frequency of the oscillations and the equivalent gain of the relay
kn for the forced component of the motion. Having solved equation (2.3) for
this system, we obtain Ω = 785.5 s−1. According to (2.4), we calculate the gain
of the relay kn = 714. We substitute the gain kn for the relay characteristic
and carry out input-output analysis of the linearized system. Employing well-
known methods of linear systems analysis, we obtain the forced component
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of the output signal. The output also contains a periodic term zp(t) with
frequency Ω = 785.5 s−1:

z(t) = 0.954 sin(6.28t − 0.304) + zp(t)

This perfectly matches the results of simulation of the system.

3.4 Conclusions

In the current chapter, we show that the LPRS theory and the equivalent gain
concept can be extended to the case of external inputs being non-slow signals.
Therefore, the whole approach can be applied to a much wider class of control
systems. The assumption of slowness of the input signal can be removed, and
the equivalent gain concept remains valid even at fast input signals as long as
the relay switching is triggered by the self-excited component of the motion.
These conclusions are supported theoretically and by simulations.



4

Analysis of sliding modes in the frequency
domain

4.1 Introduction to sliding mode control

The sliding mode (SM) control principle is a tool to design robust controllers
for nonlinear dynamic plants operating under uncertain conditions. It has be-
come one of the most popular research areas in automatic control and has a
number of industrial applications. The main advantage of the sliding mode
principle is low sensitivity of the sliding mode control system to plant param-
eter variations and disturbances. The sliding mode principle involves a discon-
tinuous control, which can easily be implemented as a conventional “on-off”
control. This makes the controller a relatively simple device.

Usually, SM control is considered a high-speed switching feedback control
because of the variable structure control type. The purpose of the switching
control law is to drive the plant state trajectory onto a predetermined surface
in the state space and then to maintain the state trajectory on that surface.
This surface is called the switching surface or the sliding surface. The control
function is designed in such a way that when the plant state trajectory is
“above” the surface, the control drives the plant state “down” to the surface,
and when the trajectory is “below” the surface, the control drives the plant
state “up” to the surface. To realize this principle, the control is designed
as a certain discontinuous function of the plant state. As a result, the plant
trajectory is always driven toward the sliding surface by the control, so that,
once intercepted, the switching control maintains the plant state trajectory on
the surface. Ideally speaking, the trajectory cannot deviate from the switching
surface and “slides” along it. As a result, the closed-loop system dynamics are
determined by the plant state trajectory restricted to the sliding surface. The
whole design of a SM system breaks down into two steps. The first step is to
properly choose or design a sliding surface so that the closed-loop system has
desired dynamics. The second step is to design a switching control that can
drive the plant state trajectory onto the sliding surface and maintain it on
that surface.
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We do not consider the problems of SM design in this work. There are
several publications devoted to the problems of SM design (see for example
[38, 97, 98] and references within). Neither of the above two steps is going
to be considered here. Rather we are concerned with the problem of analysis
of SM systems. Therefore, we will assume that the sliding surface has been
chosen and the switching control has been designed. The objective of this
chapter is to present a methodology for the analysis of SM systems based on
the LPRS approach.

The SM described above, with the state trajectory strictly located on
the sliding surface, is usually referred to as an ideal SM. In the ideal SM,
the switching of the discontinuous control occurs with infinite frequency. Yet
the real SM is realized as high but not infinite frequency oscillations. This
phenomenon is usually referred to as chattering, which remains the main
drawback of sliding mode control [105]. Chattering is caused by the pres-
ence of an actuator/sensor and/or switching imperfections. The presence of
an actuator (or sensor or switching imperfections) results in the convergence
of the transient process to the steady state, which is not an equilibrium point
but a periodic motion, and also results in the existence of oscillations in the
transient process. There also exist applications where the control must be im-
plemented as a pulse-width modulated signal and the chattering is a normal
operating mode of the system. In both cases, the analysis of chattering is an
important theoretical and especially practical problem. Another manifesta-
tion of the real sliding mode in comparison to the ideal one is the distinction
between the slow motions (the system output in particular) in a real sliding
mode control system from the slow motions in the reduced order system. It not
only concerns the character of the transient process but also the steady-state
value. The average motions in a real sliding mode may converge not to the
origin but to a different point, due to external disturbances [26]. Although
research efforts have been focused mostly on the problems related to ideal
sliding, there are a number of works devoted to the analysis of real sliding
modes [33, 45, 48, 85, 88, 97] as well as to the design methods aimed at chat-
tering reduction [11, 27, 49, 65, 67, 89, 92]. The problem of the construction
of a more precise model for the slow motions than that of the reduced order
system has been addressed only for the relay type of control with the use of
the describing function method [93, 108]. This problem may seem to be of
less importance, as there is a fairly good approximation of the slow motions,
which is the solution of the reduced-order system. However, the reduced-order
model cannot address some important phenomena in SM control systems and,
in our opinion, the indicated problem deserves further attention, as its solu-
tion can be useful for real-world applications. The use of the equivalent gain
and linearization based on that concept can also transfer the original prob-
lem into the framework of classic feedback design with applications to sliding
mode control.

If the discontinuous control in a SM system is implemented as a relay
control, the LPRS method presented previously can be used for analysis of
chattering and for solving the input-output problem in a SM control system.
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However, very often the switching control is designed as a discontinuous, but
not a relay-type, control. In this case, the LPRS approach cannot be applied
to the analysis of such a system directly. Yet the distinction of the control
algorithm from the relay control is not a limitation if an ideal SM is analyzed,
since the dynamics of the system are reduced in exactly the same way for
all types of control because the trajectory is restricted to the sliding surface.
Therefore, the closed-loop system dynamics do not depend on the type of
the switching control so long as the ideal sliding occurs. This is not the case
if we consider the real SM manifested as chattering. Here, the motions are
not restricted to the sliding surface. The motion occurs in a certain vicinity
of the sliding surface, and the motion depends on the type of discontinuous
control [18]. As a result, the closed-loop system dynamics depend on the type
of discontinuous control. Most commonly, the following types of discontinuous
control are used to generate a SM. We will refer to them as control algorithms
(relay control is included in this list, too):

• relays with constant output amplitudes (relay feedback systems),
• relays with state-dependent output amplitudes,
• linear state feedback control with switched gains,
• a sum of the discontinuous and equivalent control, and
• a combination of the above.

We solve the problem of analysis of a SM system by obtaining a relay
feedback system equivalent to the original SM system in a certain sense, and
analyzing the equivalent relay system with the use of the LPRS methodology.
We make the following assumptions in this problem. The real sliding mode
exhibits two types of motions: the fast motions associated with the motion
across the sliding surface and the slow motions associated with the motion
along the sliding surface. Also, the shape of the control signal in the time
domain is close to a square shape regardless of the realization of the control
function.

At first, we consider the problem of approximating the original control
function by the relay function in a vicinity of the sliding surface. After that,
we solve the problem of decomposing the original system into fast and slow
motion dynamics. Then we will apply the LPRS method to the obtained
structure and develop the analysis methodology. We also obtain a description
of ideal sliding as a limiting case of the non-reduced order model. Finally, we
consider an example of analysis of a SM system.

4.2 Representation of a sliding mode system
via the equivalent relay system

Consider a single-input single-output linear time-invariant plant:

ẋ = Ax + Bu (4.1)
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where x ∈ Rn is a state vector, u ∈ R1 is the control, A is an n×n matrix, and
B is an n× 1 matrix. We assume that the model (4.1) includes both principal
and parasitic dynamics, which are discussed below. The presence of parasitic
dynamics results in chattering, so that the control signal is a switching control
of finite frequency. The scalar control is a function of the state vector

u(x) =

{
u+(x) if σ(x) > 0
u−(x) if σ(x) < 0

(4.2)

where u+(x) and u−(x) are two different control functions, and the sliding
surface is a hyperplane given by the following equality,

σ = Sx = 0 (4.3)

where S is a row matrix of coefficients.
The control u(x) is designed in such a way that the tangent vectors of the

state trajectory point toward the sliding surface. In the time-invariant case, it
is given as a function of the state vector only. The sliding surface divides the
state space into two subspaces. Normally, the control u(x) is defined every-
where except for the sliding surface. We call the controls u+(x) and u−(x) the
subspace controls “above” the surface and “below” the surface, respectively.
We proceed from the assumption that the subspace controls “above” the sur-
face u+(x) and “below” the surface u−(x) are defined at every point of the
state space, including the sliding surface, and are differentiable functions of
x within the range of sign constancy of the state variables xi, i = 1, n. Note
that the switching control u(x) may not be defined on the sliding surface due
to the selection logic given in (4.2). Most of the control functions used as
subspace controls satisfy this condition.

Assume that there exists a �-neighborhood of the sliding surface such that
once the trajectory enters the �-neighborhood, it stays within this neighbor-
hood for all subsequent time. For any type of control listed above, we assume
that in the �-neighborhood of the sliding surface, each of the subspace con-
trols (u+(x) and u−(x)), as functions of x, can be expanded into Taylor series.
Namely, the control functions can be expanded into Taylor series at every point
of the sliding surface, as a series of the deviations from the surface.

The term “deviation from the sliding surface” requires some elabora-
tion. We do not consider the system dynamics at this time; we try, instead,
to construct a suitable approximation of the control u(x) as a function of
the state vector x in the state-control space. For that reason, we can set the
states x1, x2, ..., xn−1, equal to the respective coordinates of a point on the
sliding surface xS1, xS2, ..., xSn−1, and assume that xn is the only variable
that undergoes a deviation from the sliding surface. Under this supposition,
the condition that the location of a point of the trajectory be within the
�-neighborhood is
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∣∣∣∣
σ(x)
sn

∣∣∣∣ < � (4.4)

where sn is the n-th coefficient of the matrix S. Let us denote the control
“just above” the sliding surface (when σ(x) = 0+) as u+(xs) and the control
“just below” the sliding surface (when σ(x) = 0−) as u−(xs). In fact, those
control functions are the subspace controls on the sliding surface, so that
u+(xs) := {u+(x)|Sx = 0} and u−(xs) := {u−(x)|Sx = 0}. Then at every
point of the �-neighborhood, the subspace controls can be approximated by
the series expansion

u+(x) = u+(xs) + ∂u+

∂xn
� xn + ∂2u+

∂x2
n

� x2
n + ...

u−(x) = u−(xs) + ∂u−

∂xn
� xn + ∂2u−

∂x2
n

� x2
n + ...

(4.5)

where the derivatives are taken at the point x = xs, and �xn is the deviation
of xn from the sliding surface and is given by

�xn =
σ(x)
sn

. (4.6)

Each of the subspace control functions has now two terms: a term that
depends on the variables x1, x2, ..., xn−1 and a term that depends only on the
variable xn. We shall call the first term “the relay term” and the second one
“the continuous term.” It is important for future analysis that the relay term
does not depend on the variable xn. We write the expression for the overall
switching control and transform the obtained approximate control function
into the following form:

u = ψ1(x∗)sign σ + ψ2(x∗) + ρ(σ) (4.7)

where ψ1(x∗)sign σ+ψ2(x∗) is the relay term and ρ(σ) is the continuous term,
x∗ is a subset of x, and x∗ ∈ Rn−1 is the vector x without element xn,

ψ1(x) =
u+(xs) − u−(xs)

2
(4.8)

ψ2(x) =
u+(xs) + u−(xs)

2
(4.9)

ρ(σ) =

⎧
⎪⎪⎨

⎪⎪⎩

∂u+

∂xn

σ

sn
+

∂2u+

∂x2
n

σ2

s2
n

+ ... if σ ≥ 0

∂u−

∂xn

σ

sn
+

∂2u−

∂x2
n

σ2

s2
n

+ ... if σ < 0.

(4.10)

We note that the functions ψ1(x∗) and ψ2(x∗) are continuous, since the
subspace controls are continuous functions of their arguments. The function
ρ(σ) is continuous but does not necessarily have a continuous first derivative,
and also ρ(0) = 0. The function ψ1(x∗) is always positive, since it is the
difference between the corresponding higher and lower values of the subspace
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Fig. 4.1. Equivalent relay system

controls (see (4.8) above). A reasonable approach to approximation of u+(x)
and u−(x) is to limit the series (4.5) to the linear terms. In that case, the
function ρ(σ) is a linear gain or a combination of two gains which are different
for positive and negative argument values. As examples of the design of SM
control systems show, in many cases the function ρ(σ) may not be taken
into account at all. Disregarding this component often just slightly reduces
the accuracy of analysis. Another justification of such an approach is that the
purpose of the current analysis is not to build a very precise model of the slow
and fast motions in a sliding mode control system but to build a model that
is more accurate than the commonly used reduced-order model (considered
below) on the one hand and still takes account of all essential phenomena
in the system. Very high precision can always be achieved by integration of
the original equations of the system (containing the model of imperfections).
This approach results in the following block diagram representation, which
is further referred to as the equivalent relay system (the link through the
function ρ(σ) is shown as a dashed line because it may or may not be used,
depending on the required accuracy).

The model in Fig. 4.1 denoted by the transfer function Wσ(s) refers to
the combined principal and parasitic dynamics. We have thus completed the
regularization and approximation of the control function. The brief example
below illustrates this methodology.

Example 4.1. Let the plant dynamics be given by (4.1) and the sliding
surface by

σ = x1 + 1.5 x2 + x3.

This corresponds to the desired reduced-order dynamics with characteristic
polynomial P (λ) = λ2 +1.5 λ+1. Also, let the control be designed as a linear
state feedback control with switched gains:

u(x) = k1(x1)x1 + k2(x2)x2 + k3(x3)x3,

where



4.3 Analysis of motions in the equivalent relay system 73

ki(xi) =

{
ai if xi > 0
βi if xi < 0

, i = 1, 3

Let the trajectory be fully located in the octant given by x1 > 0, x2 < 0,
x3 > 0. Then the subspace controls in that octant are

u+(x) = α1x1 + β2x2 + α3x3,

u−(x) = β1x1 + α2x2 + β3x3.

On the sliding surface σ = x1 + 1.5 x2 + x3 = 0, the subspace controls are
(considering that x3 = −x1 − 1.5 x2 ):

u+
s (xs) = (α1 − α3)x1 + (β2 − 1.5α3)x2

u−
s (xs) = (β1 − β3)x1 + (α2 − 1.5β3)x2.

The derivatives of the subspace controls, necessary for calculation of the
continuous term, (4.10) are ∂u+/∂x3 = α3 and ∂u−/∂x3 = β3. Therefore, the
amplitude of the symmetric relay control is

ψ1(x∗) = 0.5((α1 − α3 − β1 + β3)x1 + (β2 − 1.5α3 − α2 + 1.5β3)x2).

and the bias of the relay control is

ψ2(x∗) = 0.5((α1 − α3 + β1 − β3)x1 + (β2 − 1.5α3 + α2 − 1.5β3)x2).

The continuous term of the control function is ρ(x) = α3σ if σ ≥ 0 and
ρ(x) = β3σ if σ < 0.

Therefore, we obtain an approximation suitable for the following analysis.

4.3 Analysis of motions in the equivalent relay system

Now we consider analysis of motions in the equivalent relay system (Fig. 4.1).
Obviously, there are two simultaneous motions in this system: the fast motion,
denoted by xf (t), and the slow motion, denoted by x0(t):

x(t) = x0(t) + xf (t). (4.11)

The fast motion, manifested as high-frequency oscillation (chattering), oc-
curs due to the existence of the relay component of the control, and the slow
motion occurs due to the existence of the non-zero average control value (av-
eraged over the period of the fast motion) and non-zero initial conditions. The
notion of averaged control is similar to the notion of equivalent control but
not identical to it, as the model of the slow motions is not the reduced-order
model. Usually, the frequency of the fast motion is much higher than the
frequency of the slow motion. This allows for the following two assumptions:
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Assume that the slow component x0(t) remains constant during the period
of the fast motions; and also assume that ψ1(x∗) = ψ1(x∗

0) and ψ2(x∗) =
ψ2(x∗

0), where x∗
0 is the slow component of the truncated state vector (vector

x without element xn). The first assumption is the same as the one made
in the analysis of relay feedback systems with the use of the LPRS. The
second assumption is the assumption of independence of the amplitude and
the bias of the relay control function from the fast component of the motion.
In essence, we assume that the amplitude bias of the discontinuous component
of the control ψ1(x∗)sign σ +ψ2(x∗) does not change during the period of one
oscillation even if x∗ changes; on one period of oscillation, the control value
changes only due to the continuous term change ρ(σ). The closeness of x∗ and
x∗

0 and the validity of the second assumption are illustrated by the following
example. Let xn(t) be the sum of two sinusoidal signals, xn(t) = sin(ωt) +
sin(hωt), where the first component is slow motion and the second component
is fast motion. We suppose that h is a large number. Then xn−1(t), being the
integral of xn(t), is given by xn−1(t) = −ω−1 cos(ωt)− h−1ω−1 cos(hωt), and
therefore, the amplitude of the fast component is decreased by a factor of h
compared to the slow component, and so on, inductively down to the variable
x1(t). The difference between x∗ and x∗

0 lies only in the existence of the high-
frequency component in x∗. Yet we have shown that if h is a large number,
x∗ and x∗

0 are close, because the amplitude of the high-frequency component
is small. Therefore, once this property is applied to the estimation of the
functions ψ1(x) and ψ2(x), we obtain the “quasi-statical” model of the change
in the discontinuous component of the control ψ1(x∗)sign σ + ψ2(x∗) from
one period of oscillations to another. Moreover, we showed that in the relay
feedback system, both the frequency of the fast motions and the equivalent
gain of the relay do not depend at all on the value of the relay amplitude. This
is also applicable to the equivalent relay system under present consideration,
which also justifies the “quasi-statical” model of the control amplitude change.

Therefore, the above assumptions allow us to apply the “frozen parame-
ters” principle to the analysis of fast motions and the principle of “chatter
smoothing” to the analysis of slow motions, with the replacement of the relay
nonlinearity with the equivalent gain. As a result, the models of fast and slow
motions can be represented by the diagram in Fig. 4.2. In Fig. 4.2, the block
containing the function ρ(σ) is transposed to the feedback around the plant,
which obviously is equivalent to the original structure (Fig. 4.1).

We now have two models for the fast (upper) and for the slow (lower)
motion analysis. Those models are not independent but interact with each
other through a set of parameters that are a result of each system’s solution.

Under the first assumption, obtain the solution of the “fast” system. We
shall further consider only the piecewise-linear form of the function ρ(σ) (only
linear terms of (4.10)). Viewing the “fast” system as a system with a limit
cycle, we obtain the Poincaré return map for it. The model of the fast motions
can be written as

ẋ = Ax + Bu (4.12)
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Fig. 4.2. Model of fast and slow motions

where x ∈ Rn, u ∈ R1,A ∈ Rn×n, B ∈ Rn×1, with a scalar control given by

u(x) = ψ1sign(σ) + ψ2 + ρ(σ) (4.13)

where ψ1 and ψ2 are constant values, ρ = ρ1σ if σ ≥ 0 or ρ = ρ2σ if σ < 0
(ρ1 and ρ2 are constants), and the sliding surface is a hyperplane given by

σ = Sx (4.14)

where S is a 1 × l matrix of coefficients. We take account of the link through
the function ρ(σ) by making adjustments to the matrix A. Because ρ(σ) is
piecewise linear and σ(t) is a signal that causes both switches of the control
and switches of ρ(σ) between ρ = ρ1σ and ρ = ρ2σ, we consider the following
switched plant model. Denote by A1 the matrix which is constructed from
matrix A by replacing element a11 with element (a11−ρ1), and A2 the matrix
constructed from A by replacing element a11 with element (a11 − ρ2). (Note:
element a11 is the outer gain a1 of the control canonical form of the plant
description with a negative sign.) By doing this, we write two separate sets of
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equations of the plant, one for the positive control and one for the negative
control, to find the periodic solution.

A common way to find a periodic solution is to use a Poincaré map.
Because the control switches are unequally spaced and the oscillations are
not symmetric, we must consider a Poincaré return map. Suppose an asym-
metric periodic process with period T exists in the system. Then, by recalling
the solution for the constant control u = ±1,

x(t) = eAtx(0) + A−1(eAt − I)Bu

the periodic solution of system (4.12), (4.13) can be written as

η = eA1θ1ζ + A−1
1 (eA1θ1 − I)Bψ1, (4.15)

ζ = eA2θ2η − A−1
2 (eA2θ2 − I)Bψ1, (4.16)

where ζ = x(0) = x(T ), η = x(θ1) for the periodic solution, and θ1, θ2 are the
positive and the negative pulse duration of the periodic control u(t). Formulas
(4.15) and (4.16) are a Poincaré return map for the system (sequential num-
bers of switches are not shown). The effect of ψ2 is not considered in (4.15),
(4.16). It is more convenient to add this constant value to the sliding variable
σ(t). Solving equations (4.15),(4.16) gives

ζ = (1 − eA2θ2eA1θ1)−1[eA2θ2A−1
1 (eA1θ1 − I) − A−1

2 (eA2θ2 − I)]Bψ1 (4.17)

η = (1− eA1θ1eA2θ2)−1[−eA1θ1A−1
2 (eA2θ2 − I) + A−1

1 (eA1θ1 − I)]Bψ1 (4.18)

and the switching conditions are

σ(0) = S(ζ − A−1
2 Bψ2) = 0 (4.19)

σ(θ1) = S(η − A−1
1 Bψ2) = 0. (4.20)

In (4.19), (4.20), the effect of ψ2 is added.
Hence, we obtain a set of two equations (4.19), (4.20) (with substitution of

(4.17) and (4.18)), from which the positive and negative control pulse length
θ1, θ2 can be found. From this, we can obtain the frequency of the oscillations
and the equivalent gain of the relay as a quotient of constant terms of the relay
output and relay input. The slow motions can be analyzed as the motions in
the system Fig. 4.2 (lower part). The transfer properties of the system can
be analyzed as a response of the system output to the constant input ψ2 (or
another external input or disturbance).

Although there is no fundamental difficulty in the solution of system
(4.17)–(4.20), this system is not simple enough to serve as a basis for quali-
tative analysis and design conclusions. The limiting case of equations (4.17),
(4.18), when the asymmetry of the control tends to zero, (θ1 → T/2, θ2 →
T/2, ψ2 → 0 with T being the period) and A1 = A2 = A, provides more op-
portunities in this respect without a significant loss of accuracy. We, therefore,
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have arrived at the LPRS method, which, as illustrated in Chapter 2, consid-
ers asymmetric oscillations corresponding to unequally spaced relay switching
with infinitesimally small asymmetry. Despite the fact that the LPRS method
described in the preceding chapters and the analysis of the real sliding phe-
nomena is fundamentally no different than analysis of relay servo systems, we
consider the LPRS analysis of SM control systems, because this analysis deals
with some specific problems of SM control that are not typical of conventional
relay servo systems.

4.4 The chattering phenomenon and its LPRS analysis

We have shown that the SM control system is essentially a relay feedback
system even if the control algorithm is not a relay function. This is very
important and allows us to carry out analysis of SM systems as relay feedback
systems without taking into account the actual SM control algorithm.

The real SM is always realized as high but finite frequency oscillations.
This phenomenon is known as chattering [22, 45, 46, 97, 98, 105]. Chattering
is caused by the presence of an actuator/sensor and/or switching imperfec-
tions. The presence of an actuator results in the convergence of the transient
process to a steady periodic motion instead of an equilibrium point. Oscil-
lations also exist in the transient process. In Section 4.2, when deriving the
equations of the equivalent relay system, we intentionally mentioned the exis-
tence of parasitic dynamics in the system model. Without parasitic dynamics,
an ideal SM would occur, and the system transformation into an equivalent
relay form would be unnecessary, as chattering would not occur. The subject
of this chapter is the analysis of real SM phenomena, which manifest them-
selves as chattering and non-ideal closed-loop performance (non-ideal tracking
of external signals or non-ideal disturbance rejection). From now on, with the
methodology of transforming any SM system into an equivalent relay system
available, we consider only one type of SM algorithm: the relay feedback al-
gorithm (system). We find conditions for the existence of the ideal SM and
chattering by applying the LPRS method.

Nevertheless, we note the difference between the treatment of the ideal
SM in the approach based on Lyapunov stability and in the LPRS approach.
If we consider the relay feedback system in Fig. 1.3 and the Poincaré map
given by (2.5) and (2.6) (we assume a symmetric map), the whole idea of
the existence of ideal SM is based upon the absence of a fixed point of this
Poincaré map (Fig. 4.3.a). A different treatment of ideal SM arises through
the LPRS approach. The LPRS is a frequency-domain method, which implies
that a periodic motion exists in the system. As per the LPRS approach, ideal
SM occurs when the frequency of this periodic motion becomes infinite. This
situation is a limiting case of the system with a limit cycle of finite frequency
at one value of a certain variable parameter (the relay hysteresis, for example),
which becomes the limit cycle of infinite frequency if this parameter tends to
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Fig. 4.3. Poincaré maps: (a) in system having ideal SM and (b) in system having
a limit cycle (with a few different values of hysteresis of relay)

a certain limiting value (the hysteresis tending to zero, for example). This
approach is illustrated in Fig. 4.3.b. Chattering, on the other hand, can be
considered as a limit cycle or as the existence of a fixed point of the Poincaré
map (2.5), (2.6).

SM control is designed in a certain specified way that, despite the fact that
a SM system is a relay feedback system, it is a special type of relay feedback
system, which necessitates some special treatment of a SM system.

We now analyze the SM control system consisting of a plant and an actua-
tor and represent the equations of a variable structure SM system (4.1)–(4.3)
as a relay type SM control system in the following format,

ẋp = Apxp + Bpua (4.21)

where xp ∈ Rl is the state vector of the plant, xp ⊂ x, ua ∈ R1 is the control
applied to the plant (the actuator output), and Ap ∈ Rl×l, Bp ∈ Rl×1. The
scalar control produced by the SM control algorithm is

u(xp) =

{
c if σ(xp) > 0
−c if σ(xp) < 0

(4.22)

and the sliding surface is given by

σ = Spxp = 0 (4.23)

where Sp is an 1 × l row matrix of coefficients, Sp ⊂ S.
The dynamics given by formulas (4.21)–(4.23) are called the principal dy-

namics of the SM system. The principal dynamics, therefore, include the
dynamics of the plant and the equation of the sliding surface. We call variable
σ the sliding variable. We can see from (4.22) that the input to the relay is
the sliding variable. Therefore, the SM system is a relay feedback system with
respect to the sliding variable, which makes it a special kind of relay feedback
system. If we analyze the principal dynamics with u as the input into and σ
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as the output out of these dynamics (this is equivalent to the plant dynamics
in the conventional sense), then we notice that the principal dynamics are
always of relative degree one (noting that Sp ≡ S and assuming that n-th
element of matrix S is non-zero). This is important for understanding why, if
we analyze only the principal dynamics of the SM system, we always obtain
the ideal SM (the relationship between relative degree of the linear part and
the possibility of ideal SM to occur is discussed below). Therefore, to obtain
the parameters of the mode that would occur in a real SM control system, the
dynamics of the actuator, sensor, and non-ideality of the controller need to
be accounted for. We call these additional dynamics the parasitic dynamics.
We show below that chattering in a SM system exists due to the presence of
these parasitic dynamics. We model parasitic dynamics by the transfer func-
tion Wa(s) attributed to the actuator dynamics, which is convenient because
the principal and parasitic dynamics are connected in series:

ua(s)
u(s)

= Wa(s).

With the plant, sliding surface, and parasitic dynamics models available,
analysis of chattering is no different than analysis of periodic motions in a con-
ventional relay feedback system. The combined dynamics of the plant, sliding
surface, and parasitic dynamics are treated as a linear part of the relay system.
The LPRS for this linear part must be computed at various frequencies, and
the LPRS plot can be drawn on the complex plane. Once the LPRS is com-
puted, the frequency Ω of chattering can be determined from (2.3). Equation
(2.3) with J(ω) in the format with state-space equation matrices (2.12) or the
transfer function infinite-series format (2.19) provides a more precise model
of the chattering than, for example, [33], in which chattering is studied in the
frequency domain, too (chattering in [33] is analyzed as the result of a hys-
teresis of the relay, and the problem is reduced to the analysis of oscillations
in a system with a hysteretic relay and an integrator).

The LPRS, being a function of the frequency, contains all possible periodic
solutions for a given linear part, including the solution of infinite frequency
corresponding to the ideal SM. Because a periodic solution is a point of inter-
section between the LPRS and the real axis, the location of the high-frequency
segment of the LPRS can be very informative with respect to whether ideal
SM or chattering will occur in the system. If, for example, the high-frequency
segment of the LPRS is located in the upper half-plane — and, therefore, the
LPRS must have an intersection with the real axis at a finite frequency —
then chattering normally occurs (there may be situations when both finite
and infinite periodic solutions can occur).

We analyze the location of the high-frequency segment of the LPRS for
arbitrary-order linear dynamics. Let the transfer function Wl(s) = Wa(s) ·
Wp(s) for the linear part (that includes the plant, the sliding surface, and
possible parasitic dynamics), where Wp(s) is the plant-sliding surface transfer
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function, determined by Wp(s) = Sp(Is−Ap)−1Bp, be given as a quotient of
two polynomials of degrees m and n,

Wl(s) =
Bm(s)
An(s)

=
bmsm + bm−1s

m−1 + ... + b0

ansn + an−1sn−1 + ... + a0
. (4.24)

The relative degree of the transfer function Wl(s) is (n − m). Thus the
following statement holds (we give it without proof as it is rather straightfor-
ward; moreover it is a reflection of the well-known fact that the Nyquist plot
has the real or imaginary axis as an asymptote).

Lemma 4.2. If the function Wl(s) is strictly proper (n > m), then there
exists ω∗ corresponding to any given ε > 0 such that for every ω ≥ ω∗:

∣∣∣∣ReWl(jω) − Re
bm

an(jω)n−m

∣∣∣∣ ≤ ε

(
ω∗

ω

)n−m

(4.25)

∣∣∣∣ImWl(jω) − Im
bm

an(jω)n−m

∣∣∣∣ ≤ ε

(
ω∗

ω

)n−m

. (4.26)

This lemma is given without proof here (for an idea of the proof, see the
proofs of other statements below). This lemma simply means that at frequency
ω ≥ ω∗, the following equality holds:

Wl(s) ≈
bm

ansn−m
.

Lemma 4.3. (monotonicity of the high-frequency segment of the LPRS).
If ReWl(jω) and ImWl(jω) are monotone functions of frequency ω and
|ReWl(jω)| and |ImWl(jω)| are decreasing functions of frequency ω for every
ω ≥ ω∗∗, then within the range ω ≥ ω∗∗ the real and imaginary parts of the
LPRS J(ω) corresponding to that transfer function are monotone functions
of frequency ω, with decreasing magnitudes.

Proof. Because |ReWl(jω)| and |ImWl(jω)| are monotone decreasing func-
tions of ω within the range ω ∈ [ω∗∗;∞), their derivatives are negative.
Therefore, the functions |ReWl(jkω)| and |ImWl(jkω)|, where k = 1,∞, also
have negative derivatives. As a result, the derivatives of the following series
are negative (being sums of negative addends):

d
∞∑

k=1

|Im W1[(2k−1)ω]|
2k−1

dω < 0,

d
∞∑

k=1
|ReWl(2kω)|

dω < 0,

d
∞∑

k=1
|ReWl[(2k−1)ω]|

dω < 0.
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From the first inequality and formula (2.19), it directly follows that the abso-
lute value of the imaginary part of the LPRS J(ω) is a monotone decreasing
function of frequency ω: note that the sign of its derivative is negative. To
prove the monotonicity of ReJ(ω), note that the second derivatives of the
functions |ReWl(jkω)| and |ImWl(jkω)|, where k = 1,∞, are positive (other-
wise, because these functions are monotone, Wl(jω) will not hit the origin as
ω → ∞). Now we group the terms in the series (2.19) for the real part by two
and find the sign of the following derivative:

d [|ReWl [(2k − 1)ω]| − |ReWl [2kω]|]
dω

, k = 1,∞,

which is negative, because the first derivatives of |ReWl [(2k − 1)ω]| and
|ReWl [2kω]| are negative and the second derivatives are positive, and the
terms with higher ω have negative derivatives of smaller magnitude. There-
fore, the absolute value of the real part of the LPRS J(ω) is a monotone
decreasing function of frequency ω. �

We use the above lemmas in the following statement.

Theorem 4.4. If the transfer function Wl(s) is a quotient of two polynomials
Bm(s) and An(s) of degrees m and n, respectively (4.24), then the high-
frequency segment (where the above Lemma 4.2 holds) of the LPRS J(ω)
corresponding with the transfer function Wl(s) is located in the same quadrant
of the complex plane where the high-frequency segment of the Nyquist plot of
Wl(s) is located, with either the real axis (if the relative degree (n − m) is
even) or the imaginary axis (if the relative degree (n − m) is odd) being an
asymptote of the LPRS.

Proof. We prove the above theorem for an arbitrary relative de-
gree r=n−m≥1. We note that the following infinite series have finite sums
for any positive integer r ≥ 1:

S1(r) = 1 − 1
2r + 1

3r − 1
4r + ... =

(
1 − 1

2r−1

)
ς(r),

for r ≥ 2, and S1(1) = ln2 for r = 1,

S2(r) = 1 + 1
3r+1 + 1

5r+1 + 1
7r+1 + ... =

(
1 − 1

2r+1

)
ς(r + 1),

where ς(r) is Riemann Zeta Function [37].
Also, in accordance with (2.19), the LPRS of r-th order multiple integra-

tor is

Jr−int(ω) =

⎧
⎨

⎩
(−1)r/2 1

ωr S1(r) + j0 if r is even

0 + j (−1)(r+1)/2 1
ωr S2(r) if r is odd

(4.27)

with either ReJr−int(ω) being zero for all odd r = n−m or ImJr−int(ω) being
zero for even r.
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We take magnitudes of the differences between the real and imaginary
parts of the LPRS J(ω) and the LPRS of the multiple integrator Jr−int(ω)
(which corresponds to the transfer function of the integrator Wr−int(s) =
bm/(ansr)). Using Lemma 4.2, we derive the following inequalities:

|ReJ(ω) − ReJr−int(ω)| ≤
∞∑

k=1

(−1)k+1ε

(
ω∗

kω

)r

= ε

(
ω∗

ω

)r

S1(r),

|ImJ(ω) − ImJr−int(ω)| =
∞∑

k=1

1
2k − 1

∣∣∣∣ImWl[(2k − 1)ω] − Im
bm

jan(2k − 1)ω

∣∣∣∣

≤
∞∑

k=1

ε

2k − 1

(
ω∗

(2k − 1)ω

)r

= ε

(
ω∗

ω

)r

S2(r).

Therefore, for all ω ≥ ω∗, each point of the LPRS J(ω) is located inside the

rectangle, which is 2ε
(

ω∗

ω

)r

S1(r) wide by 2ε
(

ω∗

ω

)r

S2(r) high with its center
at the point given by the formula for Jr−int(ω). The size of this rectangle is
frequency-dependent, and both its dimensions tend to zero when ω → ∞. The
signs of the real and the imaginary parts of the high-frequency segment of the
LPRS coincide with the signs of the real and the imaginary parts of the high-
frequency segment of the corresponding transfer function (Lemma 4.3). The
property of either the real or the imaginary axis being an asymptote of the
LPRS follows from the monotonicity and the fixed sign of the high-frequency
segments of the LPRS (Lemma 4.3). �

The non-existence of periodic motion of finite frequency in a SM system
(chattering) is therefore equivalent to the absence of points of intersection
between the LPRS and the real axis (except the origin), which is addressed
by the following theorem.

Theorem 4.5. If the transfer function Wl(s) is a quotient of two polynomials
Bm(s) and An(s) of degrees m and n, respectively, with non-negative coeffi-
cients, then for the existence of ideal SM, it is necessary that the relative
degree (n − m) of Wl(s) be one or two. If the relative degree is one, then a
conventional ideal SM can occur; if the relative degree is two, then the so-called
asymptotic second-order SM can occur.

Proof. The proof directly follows from Theorem 4.4. If the relative degree is
higher than two, then the LPRS necessarily has a point of intersection with the
real axis at a finite frequency. This fully coincides with classical results [1, 94].
Note 1: this does not, however, concern the case of the plant that has two or
more imaginary poles (integrators). Such a system may not have a periodic
solution at all. Note 2: Theorem 4.5 does not provide a sufficient condition,
as a periodic motion of a finite frequency can exist even if the relative degree
is one or two [19]. �
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The aforementioned theorems provide a foundation for the analysis of pos-
sible modes in a relay system. With the LPRS computed or only the transfer
function available, one can easily see whether the ideal SM or chattering will
occur in the SM system under analysis.

We consider a few examples of the analysis in [19] based on the relative
degree of the plant transfer function along with the LPRS analysis and the
modes of oscillations that may occur in a relay feedback system. In certain
cases, the analysis of the relative degree is sufficient for making a conclusion
about the mode in a relay system. However, a combination of the relative
degree analysis and the LPRS analysis provides more reliable results.

Example 4.6. Let the plant transfer function be given by

W (s) = (0.5s + 1)/[(0.05s + 1)(s + 1)].

The relative degree of the transfer function is one and the LPRS fits the
pattern of the first-order system. As a result, ideal SM occurs in the relay
feedback system.

Example 4.7. Let the plant transfer function be given in one case as

W1(s) = 1/(s2 + s + 1)

and in another case be given as

W2(s) = (0.005s + 1)/[(0.1s + 1)(s2 + s + 1)].

Both transfer functions are of relative degree two. However, the LPRS cor-
responding to the first one does not intersect the real axis at finite frequen-
cies (Fig. 4.4, plot #1), but the second LPRS does intersect the real axis
at ω = 3.29s−1 (Fig. 4.4, plot #2). A zoomed picture of the high-frequency
segments shows that both LPRS have an asymptote, which is the real axis,
but the second LPRS approaches the origin from the second quadrant. As
a result, a second-order SM occurs if the transfer function is W1(s), and fi-
nite frequency oscillations occur if the transfer function is W2(s). Despite the
fact that both linear parts are of relative degree two, SM cannot occur in the
system with W2(s). Simulations confirm this conclusion.

Example 4.8. Let the plant transfer function be given by

W (s) =
(0.0215s + 1)(0.00464s + 1)

(0.1s + 1)(0.001s + 1)(s2 + s + 1)
.

The transfer function is of relative degree two, and it includes a phase-lag-
phase-lead element. As a result, the LPRS intersects the real axis from below,
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Fig. 4.4. The LPRS of Example 4.7

Fig. 4.5. The LPRS of Example 4.8 (qualitative behavior)

then returns to the lower half-plane and finally approaches the origin from
below, with the real axis as an asymptote. The two points of the intersection
are at the frequency Ω1 = 3.75s−1 and at the frequency Ω2 = 91.42s−1 (see
the qualitative plot in Fig. 4.5). Obviously, there is one more periodic solution
corresponding to the intersection at the origin: Ω3 = ∞. The frequency Ω2

is an unstable periodic solution. However, both the other frequencies Ω1 and
Ω3 are locally orbitally asymptotically stable solutions with certain domains
of attraction. If the initial conditions are large, the process converges to the
slower periodic process with frequency Ω1. Simulations show that if the initial
conditions are sufficiently small, the process converges to the periodic process
of infinite frequency. Although this approach does not allow for determination
of domains of attraction, it allows for prediction of the existence of two possible
periodic motions.
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4.5 Reduced-order and non–reduced-order models
of averaged motions in a sliding mode system
and input-output analysis

There are two types of input-output problems in SM control. The first one
is typical of stabilization control and the second one applies to servo control.
The first type of input-output problem is the determination of a response of
the SM system to a constant or variable external disturbance (e.g., a static
load). This problem is very similar to the analysis of the external disturbance
effect on the relay feedback system. The difference between this and the relay
systems analysis is that the consideration of only principal dynamics does
not provide a meaningful result. The parasitic dynamics must necessarily be
considered to obtain results different from the ones corresponding to ideal
closed-loop performance.

The second type of input-output problem is analysis of the tracking quality
of a SM servo system. Here, some specifics of the implementation of the SM
servo system exist, which results in the differences between this and analysis
of relay servo systems. In both cases, analysis must be done with the use of
the model of averaged (over the period of the fast motions) motions in the
SM system.

For the stabilization type of control, the model of the averaged motions
in the system can be obtained from the original equations by replacing the
nonlinear control function with the equivalent gain of the relay, in accordance
with the LPRS method:

ẋ0 = Ax0 + Bu0 + Dd, (4.28)

where x0 and u0 are averaged values of x and u, respectively, x0 ∈ Rn, u0 ∈
R1,A is an n× n matrix, B is an n× 1 matrix, D is an n× 1 matrix, d ∈ R1

is the disturbance to the system, with the averaged scalar control being

u0 = kn · σ0, (4.29)

where σ0 is an averaged value of σ, σ0 ∈ R1,

σ0 = Sx0, (4.30)

and S is 1 × n matrix. The equivalent gain kn is computed in (2.4) with
the LPRS computed as in (2.12) or (2.32). We call the system defined by
equations (4.28)–(4.30) the non–reduced-order model of a SM system. One can
see that the non–reduced-order model of the SM system is linear. For that
reason, analysis of averaged motions can be done by applying the methods
commonly used from linear systems theory. The objective of analysis is usually
the transient process and the degree of disturbance attenuation by the closed-
loop system.

Let us establish the relationship between the reduced-order model [97] and
the non–reduced-order model (4.28)–(4.30). It is known that if the ideal SM
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Fig. 4.6. Effect of parasitic dynamics on the LPRS

occurs, then the averaged motions in the system are described by the reduced-
order model. As follows from the LPRS method, an ideal SM occurs if the
LPRS does not have any point of intersection with the real axis except the
origin (Fig. 4.6). This can only happen if the relative degree of the transfer
function of the linear part is one or two. Assume that the relative degree
of Wl(s) is one and the hysteresis value b of the relay is zero. In that case,
the straight line “−πb/(4c)” coincides with the real axis, and the LPRS (as
in Theorem 4.5) approaches the origin from below, with the imaginary axis
as an asymptote. Therefore, as follows from (2.3) ideal SM occurs. Yet not
only does the frequency of chattering becomes infinite, but also the equiva-
lent gain becomes infinite; this follows from (2.4). Figure 4.6 illustrates the
transformation due to removing parasitic dynamics from the model.

We obtain equations of the SM system for this case when the equivalent
gain approaches infinity. We rewrite equation (4.29) as follows:

u0 = kn · σ0, kn → ∞, (4.31)

One can see from (4.31) that the only opportunity for the averaged control
u0 to be finite occurs when the averaged sliding variable σ0 is zero. This means
that equations (4.30) and (4.31) become

Sx0 = 0. (4.32)

Equations (4.28) and (4.32) represent the reduced-order model. The or-
der of this system is n − 1 (recall that the order of the non–reduced-order
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model was n). Any of the state variables can be expressed through the others
through (4.32) and can be excluded from equation (4.28). The reduced-order
model describes the case of ideal sliding, which is reflected in formula (4.32).
This model is incapable of handling the effects of external disturbance; this is
illustrated by the following example of a second-order system. For the second-
order system, equation (4.32) is written as

s1x01 + s2x02 = 0, (4.33)

and equation (4.28) as follows (assuming that the first elements of B and D
are zeros):

ẋ01 = x02, ẋ02 = a21x01 + a22x02 + u0 + d. (4.34)

From equation (4.33), x02 can be expressed as a function of x01 and sub-
stituted in equation (4.34). As a result, we obtain the following formula for
the system motion

ẋ01 = −s1

s2
x01.

From this formula, we see that the disturbance does not affect the system
motion. Therefore, we observe an ideal disturbance rejection in the reduced-
order model of the SM control system. This, however, is not the case if the non–
reduced-order model is used. Examples of this type of analysis are considered
in the following section.

For the SM servo system, the variable that has to be maintained on the
sliding surface is the error vector, which is defined as follows:

z = f − x,

where f is the input vector of the same dimension as x. If the plant model is
given in the control canonical form, the input vector must contain the signal
itself and all its derivatives up to the order n−1 (f2 = f1, f3 = f2, f4 = f3, . . .).
We note that the necessity of higher derivatives to be available with the input
signal limits the use of SM control in servo systems. The equations of the
averaged motions for a SM servo system are written as follows

ż0 = Az0 + Bu0, (4.35)

where z0 is the averaged value of z on the period of chattering, z0 ∈ Rn,

u0 = kn · σ0, (4.36)

σ0 = Sz0, (4.37)
Again, the non–reduced-order model of the averaged motions (4.35)–(4.37)

is linear, and all applicable methods of analysis can be used. However, the
objective of analysis is different from the stabilization problem. The most
common objective is the tracking quality of the input signal f1(t). Here we
emphasize that despite the fact that a vector input is needed to organize a
SM servo system, the only variable that must be tracked by the system is the
first component of this vector. Tracking quality can be assessed on the basis
of frequency characteristics of the closed-loop system from f1(t) to x1(t).
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4.6 On fractal dynamics in sliding-mode control

There are a number of control methods that rely heavily on characteristics
of the process (plant) models such as order and relative degree. Sliding mode
control, high gain methods, Pontryagin’s maximum principle, and approaches
that use Lyapunov functions usually fall into this category. Normally, these
methods use low-order (or low relative degree) plant dynamic models, which
are in fact approximations. Control is usually designed for those low-order
models, assuming that the effect of mismatch between the model dynamics and
the actual plant dynamics is insignificant. Those models are built from first
principles and usually represent only the principal dynamics of the process
(plant). However, it is well-known from applications that besides the principal
dynamics, there also exist parasitic dynamics. In SM control, the existence
of parasitic dynamics is the cause of chattering not only in first-order SM
but also in second-order SM [23] and continuous first-order and second-order
SM systems [24]. The SM principle is, therefore, one of the most sensitive to
parasitic dynamics control principles. Other control principles are also affected
by parasitic dynamics, so that some quality deterioration due to parasitic
dynamics can be expected everywhere. Therefore, this is a relatively universal
problem; however, it is revealed to a higher extent in the SM system.

Let us take a closer look at the nature of principal and parasitic dynamics
and their relationship. Consider a system that is supposed to control water
level in a vessel. Usually the dynamics of the level in a vessel can be considered
an integrator, with the valve dynamics neglected. This is very reasonable if
the objective is the tank level dynamics. However, for a valve actuator de-
signer, the emphasis is on the actuator dynamics. Most of the control valves
use pneumatic actuation. At the analysis of the dynamics of the pneumat-
ics, one neglects the electromagnet dynamics, which are not neglected by the
electrical engineer who develops the electromagnet. Yet this engineer can le-
gitimately ignore the dynamics of the electronic amplifier that is used for the
control of the electromagnet. For the electronic engineer, the subject of de-
sign is the amplifier, and he can disregard the dynamics of transistors. This
sequence continues to single components, junctions, and particles. According
to the author’s belief, this sequence is really infinite and limited only by our
knowledge of nature.

The following observations can be made from the example above. (a) At
each level of consideration, there always exist principal dynamics, which pro-
vide the main contribution to the overall dynamics, and parasitic dynamics,
the effect of which is much smaller; these dynamics are usually neglected.
(b) The connection between the principal and parasitic dynamics is serial,
which is determined by the control system design principles.

We shall refer to the considered structure of process (plant) dynamics as
fractal dynamics. This structure includes an infinite number of levels of con-
sideration and existence of non-negligible principal dynamics and negligible
parasitic dynamics on each level. The term “fractal” obviously reflects the
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similarity to fractal geometry [76]. In fractal dynamics, like in fractal geome-
try, one notices the property of self-similarity and the possibility of scaling at
each level of consideration.

This section is devoted to the design and analysis of a model of fractal
dynamics that reflects the properties of self-similarity and scaling.

Returning to the above analysis of the level control, we note that this
analysis implies that the most complete description of the process dynamics
is a serial connection of other dynamics, with diminishing dominant time
constants. The following model in the form of a transfer function accounts for
this property:

Ψ(T, λ, s) =
∞∏

k=0

1
λ−kTs + 1

(4.38)

where λ > 1 and T is a time constant. Formula (4.38) is, therefore, a serial
connection of an infinite number of first-order dynamics with diminishing
time constants. We call this type of dynamics first-order fractal dynamics.
Obviously, we can also design a model of second-order fractal dynamics:

Ψ(T, λ, s) =
∞∏

k=0

1
(λ−kT )2s2 + 2ξλ−kTs + 1

as well as other models of fractal dynamics. Below, we consider only first-order
fractal dynamics. Consider some properties of fractal dynamics. The property
of self-similarity is expressed as follows

Ψ(λT, λ, s) =
1

λTs + 1
Ψ(T, λ, s) (4.39)

which means that an increase of the time constant by a factor of λ is equivalent
to adding one more multiplier in the product (4.38). This property leads to
the following function:

Ψ0(λ, s) = Ψ(1, λ, s) =
∞∏

k=0

1
λ−ks + 1

. (4.40)

Then for time constants that are multiples of λk , the transfer function
can be obtained from formula (4.39). Therefore, we rewrite formula (4.39) as
follows:

Ψ(λn, λ, s) = Ψ0(λ, s)
n∏

k=1

1
λks + 1

. (4.41)

We prove below that despite the infinite character of the formulas for Ψ ,
the properties of fractal dynamics are in many ways similar to those of finite-
dimensional dynamics. We analyze these properties in the frequency and time
domains.

Assume that the input to the fractal dynamics is a harmonic excitation and
suppose we find the harmonic response to the fractal dynamics (4.38). With
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a harmonic input, we replace the Laplace variable as follows: s = jω. There-
fore, Ψ(jω) is a complex function and can be represented by the magnitude
component and the phase component as follows:

Ψ(T, λ, jω) = |Ψ(T, λ, jω)| exp (j arg (Ψ(T, λ, jω))) (4.42)

We prove that the harmonic response (4.42) provides finite attenuation
of the amplitude and finite phase lag with respect to the external harmonic
excitation.

Theorem 4.9. At any finite frequency ω and λ > 1, the magnitude response
of the fractal dynamics (4.38) is non-zero (finite attenuation).

Proof. First we prove that |Ψ0(λ, jω)| provides finite attenuation to any
harmonic excitation of finite frequency. We evaluate this function at ω = 1.

ln |Ψ0(λ, j1)| ln
∞∏

k=0

1√
1+λ−2k

= −0.5
∞∑

k=0

ln(1 + λ−2k) (4.43)

Using the following expansion for the logarithmic function [30]

ln(1 + α) = α − α2

2
+

α3

3
− α4

4
+ . . . , |α| < 1 (4.44)

we find the lower estimate of the magnitude function. Assume that α = λ−2.
From (4.44), it follows that ln(1 + α) < α. Thus, we write:

∞∑

k=0

ln(1 + λ−2k) =
∞∑

k=0

ln(1 + αk) <

∞∑

k=0

αk. (4.45)

The last formula is an infinite geometric series with sum 1
1−α . Therefore,

given the minus sign in (4.43), we write the lower estimate for the magnitude
of Ψ0

ln |Ψ0(λ, j1)| > −0.5
λ2

λ2 − 1
. (4.46)

It follows from (4.46) that (4.40) converges to a finite number for any
λ > 1.

Next, the function |Ψ0(λ, jω)| is obviously a decreasing function of the
frequency ω, since the magnitudes of all the multipliers in (4.38) are decreasing
functions. Also, it follows from (4.41) that for any frequency Ω, there exists
an integer n such that the following inequality holds:

|Ψ(1, λ, jΩ)| > |Ψ(λn, λ, j1)| = |Ψ0(λ, j1)| ·
∣∣∣∣∣

n∏

k=1

1
jλ−k + 1

∣∣∣∣∣

which is also true for an arbitrary time constant T . �
Now consider the phase response of the transfer function (4.38).



4.6 On fractal dynamics in sliding-mode control 91

Theorem 4.10. At any finite frequency ω and λ > 1, the phase response of
the fractal dynamics (4.38) is finite (finite phase lag).

Proof. The phase response for the transfer function (4.38) is

arg Ψ (T, λ, jω) = −
∞∑

k=0

arctan
(
Tωλ−k

)
. (4.47)

From the expansion of the arctan function [30]

arctan α = α − α3

3
+

α5

5
− α7

7
+ ..., for α2 < 1,

it follows that |arctan α| < |α| if α2 < 1, so we derive the following inequality:

arg Ψ (T, λ, jω) = −
∞∑

k=0

arctan
(
Tωλ−k

)
> −

∞∑

k=0

(
Tωλ−k

)
= − Tω

1 − λ−1
.

(4.48)
In formula (4.48), the negative sign of the phase response is accounted for

by using “>”; and we have used the formula of the sum for a geometric series.
Formula (4.48) is only valid if Tω < 1; this is not always the case. However,
because λ > 1, beginning from a certain k = k∗, the inequality Tωλ−k∗ < 1
holds, so we consider two sums: one from k = 0 to k∗ − 1 and one from k∗

to infinity. In the second sum, we treat Tωλ−k∗
as a new value of Tω. Both

sums will obviously be finite.
Again, as in the case of the amplitude response, for any λ > 1 and any

finite frequency, the phase response of the fractal dynamics (4.38) is finite. �
The phase and amplitude characteristics (Bode plot) of the fractal dynam-

ics (4.38) for two different λ are depicted in Fig. 4.7. The Nyquist plot of (4.38)
is given in Fig. 4.8 (the Nyquist plot of conventional first-order dynamics is
shown for comparison, too).

One can see the linear dependence of the phase characteristic on the loga-
rithm of frequency for higher frequencies (see Fig. 4.7). We demonstrate this.

Using formula (4.47), we find the value of arg Ψ (T, λ, jλω):

arg Ψ (T, λ, jλω) = −
∞∑

k=0

arctan
(
Tλωλ−k

)
= arg Ψ (T, λ, jω) − arctan(Tλω)

We evaluate the following limit:

lim
ω→∞

[arg Ψ (T, λ, jλω) − arg Ψ (T, λ, jω)] = − lim
ω→∞

arctan(Tλω) = −π

2
.
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Fig. 4.7. Bode plots of fractal dynamics (T = 1)

Fig. 4.8. Nyquist plots of fractal dynamics (T = 1)

It follows from the last formula that the slope of the phase characteristic
of the fractal dynamics at high enough frequencies is 90◦/ log λ per decade.
Therefore, for λ = 2, it is 299◦/decade and for λ = 10 it is 90◦/decade
(Fig. 4.7).
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Fig. 4.9. Step response of fractal dynamics (T = 1)

Regarding the time-domain characteristics of the fractal dynamics, the
most important is the step response of the dynamics (4.38). It is difficult to
obtain analytical formulas for the step response. For that reason, we approxi-
mate this function numerically via multiple integration (as per (4.38)) of the
time evolution of the response of first-order dynamics W (s) = 1/(Ts + 1):
h(t) = 1 − exp (−t/T ). The step response of (4.38) for two different values
of λ is given in Fig. 4.9. In Fig. 4.9, the step input is applied at t = 0. One
can see that the effect of the fractal dynamics is similar to that of time delay
(see the plot for λ = 2), as there is an initial time interval when the out-
put stays almost equal to zero. However, fractal dynamics are minimal-phase,
which makes them different from time delay. The length of this initial interval
depends on the parameter λ. One can see that the length of the initial time
interval for λ = 2 is larger than for λ = 10. The existence of such an ini-
tial time interval in a step response of real plants was first identified in [109]
many years ago. In fact, the response in Fig. 4.9 is often approximated by a
first-order plus dead-time model for the purpose of process identification and
controller tuning.

We compute the LPRS for the dynamics (4.38) using formula (2.19). The
LPRS plots for two different values of λ are given in Fig. 4.10. We have already
shown that the point of the LPRS corresponding to zero frequency is always
(0.5;−jπ/4) for all non-integrating plants with unity static gains. One can see
from Fig. 4.10 that it is also the case for the fractal dynamics. Also, similarly
to the Nyquist plots, the LPRS plots have a spiral shape around the origin
with the frequency tending to infinity.
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Fig. 4.10. The LPRS of fractal dynamics (T = 1)

It is well-known and shown above that chattering in SM control systems
is caused by the inevitable existence of parasitic dynamics, which exist along
with the principal dynamics of the plant. The principal dynamics are the
dynamics of the model of the plant and of the sliding surface. Yet, for imple-
mentation of the designed control algorithms, devices such as actuators and
sensors are needed, which brings into the system certain parasitic dynamics
not accounted for in the SM control design. Due to the SM design principle
that involves the use of the sliding surface, the relative degree of the principal
dynamics is always one. If no parasitic dynamics are present, the LPRS has
the shape similar to the one depicted in Fig. 4.10 for the first-order dynamics
(dashed line). In this case, the LPRS would not have any points of intersec-
tion with the real axis except the origin. However, in any actual application,
parasitic dynamics always exist along with the principal ones. Let us assume
that the parasitic dynamics are fractal (4.38). In that case, the principal dy-
namics are connected in series with the parasitic dynamics, which are fractal.
The LPRS of the overall dynamics then has a shape similar to that depicted
in Fig. 4.10 for λ = 2 or λ = 10 (spiral motion with increased omega). In
particular, a point of intersection between the LPRS and the real axis always
exists. Moreover, this point is not the origin, which means that finite-frequency
oscillations (chattering) will necessarily occur in a real SM system.

Furthermore, due to the spiral shape of the LPRS, the point of first in-
tersection is always located on the left half-plane, and the following equality
holds: ReJ(Ω) < 0. As a result, the equivalent gain of the relay always a
finite positive value, 0 < kn < ∞, which results in a deteriorated closed-loop
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performance in the form of non-ideal disturbance rejection and non-ideal
tracking of external signals. Therefore, due to the fractal nature of parasitic
dynamics, real SM systems always feature chattering and non-ideal closed-
loop performance.

4.7 Examples of chattering and disturbance
attenuation analysis

Consider three examples that illustrate the analysis of chattering and distur-
bance attenuation analysis.

Example 4.11. Consider the equations of a spring-loaded cart with viscous
output damping on an inclined plane, which can be written as follows,

ẋ = x2, ẋ2 = −x1 − x2 + ua + d,

where x1 is the linear displacement of the cart, x2 is the linear velocity, ua is
the force developed by the actuator, and d is the disturbance (projection of the
gravity onto the inclined plane). The goal is to stabilize the cart at the point
corresponding to zero displacement. We design the switching surface (line) as
x1 + x2 = 0 and the control as a relay control that can make the point x = 0
an asymptotically stable equilibrium point of the closed-loop system under
the applied disturbance d = −1 : u = −4sign(x1 +x2). Suppose that the force
ua is developed by an actuator with the second-order dynamics

T 2
a üa + 2ξaTau̇a + ua = u,

where Ta = 0.01s−1, ξa = 0.5. Clearly, the system should exhibit oscillations
due to the actuator presence. Finding the frequency and the amplitude of those
oscillations is one of our goals. Another goal is an assessment of the distur-
bance effect. In the case of ideal sliding, even if the disturbance is applied, the
trajectory tends to the origin. In the case of non-ideal sliding (due to the actu-
ator presence), the trajectory does not tend to the origin. We write an expres-
sion for the transfer function of the linear part Wl(s) = (s+1) ·Wa(s) ·Wp(s),
where Wa(s) = 1/(T 2

a s2 + 2ξa Ta s+1), Wp(s) = 1/(s2 +s+1). We compute
the LPRS for Wl(s) as per (2.19), and plot it on the complex plane (Fig. 4.11).

We find the point of intersection between the LPRS and the real axis. This
point corresponds to the frequency Ω = 99.27 s−1, which is the frequency of
chattering in the system. The real part of the LPRS at this point is ReJ(Ω) =
−0.00946, and the equivalent gain of the relay (according to formula (2.4)) is
kn = 52.8. As a result, the model of the averaged (slow) motions is written as
follows (subscript ‘0’ denotes the slow component of respective variables):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ01 = x02,
ẋ02 = −x01 − x02 + u0a + d,
ü0a = (u0 − 2ξaTau̇0a − u0a)/T 2

a ,
u0 = −knσ0,
σ0 = x01 + x02.

(4.49)
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Fig. 4.11. The LPRS of the linear part (actuator, plant, and sliding surface) of the
system in Example 4.9

The reduced order model can be obtained from (4.49) as a limiting case:
if the equivalent gain is set to infinity: kn → ∞ (this results in σ0 = 0 and,
consequently, in x01 = −x02, the condition of ideal sliding). However, the
actual value of the equivalent gain computed above is finite. For that reason
the non–reduced-order model provides higher accuracy in comparison to the
reduced-order model. Because the transient processes in both the reduced-order
model and the non–reduced-order model look alike, the advantage of the non–
reduced-order model can be best demonstrated if an external disturbance is
applied to the system, and the effect of this disturbance is of interest.

In this example, the equivalent gain kn is constant, which follows from
the time-invariance of the linear part (this results in the same point of in-
tersection between the LPRS with the real axis). For that reason, the effect
of the applied disturbance is identical in the transient and the steady-state
modes, and the analysis of disturbance attenuation can be carried out with
the use of techniques for linear systems. We analyze the disturbance atten-
uation. In a steady state, there exists periodic motion of frequency Ω with
the center (x01, 0) where x01 = d/(1 + kn) = −0.018, which can be consid-
ered a disturbance rejection measure. That means that in a steady state, the
cart exhibits oscillations around the point x01 = −0.018, with the frequency
Ω = 99.27 s−1 and the amplitude of the fundamental frequency component:
Ax1 = 4c/π|Wa(jΩ) · Wp(jΩ)| = 5.19 · 10−4. The simulations of the original
equations provide the following results (respective variables have the sub-
script sim). The frequency of chattering is Ωsim = 99.21s−1, and the output
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averaged steady-state value is x01sim = −0.017, which closely match the fre-
quency domain analysis.

Example 4.12. Consider an example similar to the previous one but with an
actuator given as fractal dynamics.

Consider the same equations of the spring-loaded cart with viscous output
damping on the inclined plane as in the previous example, and the same
control law. The applied disturbance is again d = −1.

Now suppose that the force ua is developed by an actuator the dynamics
of which are fractal with dominant time constant Ta = 0.01s−1 and parameter
λ = 5. Therefore, the transfer function of the actuator is

Wa(s) = Ψ(0.01, 5, s) =
∞∏

k=0

1
5−k0.01s + 1

.

We find the frequency of chattering and the displacement of the cart due
to the disturbance.

We write an expression for the transfer function of the linear part

W (s) = (s + 1)Wa(s) · Wp(s),

where Wp(s) = 1/(s2 + s + 1).
We compute the LPRS for W (s) and plot it on the complex plane

(Fig. 4.12). We find the point of intersection between the LPRS and the real

Fig. 4.12. The LPRS of the linear part (actuator, plant, and sliding surface)
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axis. This point corresponds to the frequency Ω = 189.4s−1, which is the fre-
quency of chattering in the system. The real part of the LPRS at this point
is Re J(Ω) = −0.00194 and the equivalent gain of the relay (according to
formula (2.4)) is kn = 257.7. As a result, the non–reduced-order model of
the slow motions can be written as follows (subscript ‘0’ denotes the slow
component of respective variables),

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ01 = x02

ẋ02 = −x01 − x02 + u0a + d
u0 = −knσ0

σ0 = x01 + x02

u0a(s) = Wa(s) · u0(s)

where the last formula is written in the Laplace domain (due to the infinite-
dimensional character of the dynamics).

The reduced-order model can be obtained as a limiting case: if the time
constant Ta → 0 and consequently the equivalent gain kn → ∞, then this
results in σ0 = 0 and, consequently, in x01 = −x02: i.e., the condition of
ideal sliding. We note that the reduced-order dynamics are the same as in the
previous example.

We analyze the disturbance attenuation. In a steady state, there exists
oscillations of frequency Ω with the center (x01, 0) where x01 = d/(1 + kn) =
−0.0039, which can be considered a disturbance rejection measure. Therefore,
in a steady mode, the cart exhibits oscillations around the point (−0.0039, 0),
with the frequency Ω = 189.4s−1.

A comparison with the results of the previous example shows high sensi-
tivity of chattering parameters and closed-loop performance with respect to
the parasitic (actuator) dynamics. It is apparent that the faster the actuator
is, the higher the frequency and the smaller the amplitude of chattering, and
the better the closed-loop performance of the SM system is.

Example 4.13. In this example, we carry out the transformation of the original
SM system to the equivalent relay feedback form. Consider the pendulum
equation (we assume the angles are small and, consequently, the sine function
is equal to the argument):

ẋ1 = x2, (4.50)

ẋ2 = −x1 − x2 + ua − δ1 (4.51)

where x1 = θ − δ1, x2 = θ, ua is the torque input, and θ is the pendulum
angle. The goal is to stabilize the pendulum at the angle θ = δ1. In [62], a
state feedback control is designed as a sum of an equivalent control and a
switching control, which makes x = 0 an asymptotically stable equilibrium
point of the closed-loop system

u = x1 + δ2 − 4(1 + |x2|)sign(x1 + x2) (4.52)
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where δ2 is an estimate of δ1, which is used in the equivalent control component
of the designed control. Suppose that the torque ua is developed by a dynamic
actuator, and ua �= u:

T 2
a üa + 2ξaTau̇a + ua = u, Ta = 0.01s, ξa = 0.5.

We transform system (4.50)–(4.52) into an equivalent relay system with
variable relay output (Fig. 4.4). We take the equivalent control term x1 of
(4.52) into account within the transfer function of the linear part by closing
the respective feedback. As a result, the transfer function of the linear part
can be written as follows (the multiplier “4” is transposed to the linear part
that makes the relay amplitude equal to (1 + |x2|)),

Wl(s) = 4(s + 1)[Wa(s) · Wp(s)/(1 − Wa(s) · Wp(s))],

where Wa(s) = 1/(T 2
a s2 + 2ξaTas + 1), Wp(s) = 1/(s2 + s + 1).

We bring the control function to the form of formula (4.7) and neglect the
continuous term:

u = δ2 − (1 + x01)sign σ.

Obviously, stabilization of the pendulum at a non-zero angle involves a
disturbance applied to the pendulum. In the case of ideal sliding, even if
δ2 �= δ1, the trajectory tends to the origin. In the case of non-ideal sliding,
due to the actuator presence, if δ2 �= δ1, there is an uncompensated distur-
bance D = −δ = δ2 − δ1 and the trajectory does not tend to the origin. In
Fig. 4.13, neither the disturbance δ1 nor the control component δ2 are shown;
the uncompensated part of the disturbance is shown instead.

We calculate and plot the LPRS for Wl(s) (Fig. 4.14). We find the point
of intersection between the LPRS and the real axis. This point corresponds

Fig. 4.13. Equivalent relay system
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Fig. 4.14. LPRS for transfer function Wl(s) in Example 4.10

to the frequency Ω = 99.3s−1, which is the frequency of chattering in the
system.

The real part of the LPRS at this point is ReJ(Ω) = −0.0354, and the
equivalent gain of the relay (according to formula (2.4)) is kn = 14.1. As a
result, the model of the slow motions can be written as follows (subscript “0”
denotes the slow component of respective variables):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ01 = x02

ẋ01 = −x01 − x02 + u0a

ü0a = (u0 − 2ξaTau̇0a − u0a)/T 2
a

u0 = x01 − δ − knσ0

σ0 = x01 + x02.

(4.53)

In (4.53), the equivalent gain kn does not vary; its value is calculated
above as kn = 14.1. The reduced-order model can be obtained from (4.53) as
a limiting case if the equivalent gain is set to infinity: kn → ∞, which results
in σ0 = 0 and, consequently, in x01 = −x02, the condition of ideal sliding.
We note that the actual value of the equivalent gain is finite and, moreover,
it is not a large number. For that reason, in this case, the non–reduced-order
model provides additional accuracy compared to the reduced-order model.

Because the equivalent gain kn does not depend on the amplitude of the
relay, the effect of the applied disturbance is identical in the transient and
the steady-state modes, and analysis of disturbance attenuation can be car-
ried out with linear systems techniques. Let us take δ = 0.1 and analyze the
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Fig. 4.15. State trajectory from initial point (1,0)

disturbance attenuation. In the steady-state, there exist oscillations of fre-
quency Ω centered at (x01, 0) where x01 = δ/(4 kn) = 0.0018, which is a
disturbance rejection measure. This means that in a steady state, the pen-
dulum exhibits oscillations around the point (0.1 − 0.0018, 0) = (0.0982, 0),
with frequency Ω = 99.3s−1 and amplitude of the fundamental frequency
component

Ax1 =
4c

π
|Wa−p(jΩ)| = 5.20 · 10−4 rad,

where Wa−p(s) = 4[Wa(s) ·Wp(s)/(1−Wa(s) ·Wp(s))], c = 1 + lim
t→∞

x01 ≈ 1.
We run a simulation of the original equations and compare the results

with the frequency domain analysis. The transient process in the state space
is presented in Fig. 4.15. The frequency of chattering determined from the
simulations is Ωsim = 99.7s−1, and the output average steady-state value is
x01sim = 0.0019 rad, which closely matches the frequency-domain analysis.

4.8 Conclusions

In this chapter, we present a frequency-domain approach to analysis of self-
excited and forced motions in a sliding mode system with parasitic dynamics.
We demonstrate that even if the control algorithm is not a relay one, both the
self-excited and the forced motions can be analyzed as motions in a certain
“equivalent” relay system. We give a methodology of bringing an original
sliding mode system to the equivalent relay form. We show that chattering is
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a self-excited motion, which can be analyzed as a limit cycle in the equivalent
relay system, and the forced motions can be derived from the solution of a
certain equivalent linear system with a time-varying or constant equivalent
gain of the relay. The order of the system for the forced motions analysis is
equal to the order of the original system. The model of averaged motions in
the SM system that retains the order of the original system is referred to as
the non–reduced-order model. We show how the LPRS method can be used
for analysis of the equivalent relay system.

We prove that in the limiting case corresponding with the absence of par-
asitic dynamics, both the frequency of chattering and the equivalent gain of
the relay approach infinity. This in turn leads to the traditional reduced-order
model of a SM control system. The examples of analysis of chattering and
disturbance attenuation illustrate the methodology of the LPRS analysis of
SM control systems.



5

Performance analysis of second-order SM
control algorithms

5.1 Introduction

Preliminaries. The SM control approach was developed in the late 1950s, and
the very first implementations of the sliding mode control technique showed
that the real sliding mode exhibited chattering, which is the most problematic
issue in sliding mode control applications [99, 105].

Three main approaches to chattering elimination and attenuation in SM
control systems were proposed in the 1980s:

• The use of saturation control instead of discontinuous control [31, 90].
This approach allows for control continuity but cannot restrict the system
dynamics onto the switching surface. It only ensures the convergence to a
boundary layer of the sliding manifold, the size of which is defined by the
slope of the saturation function.

• The observer-based approach [27]. This method allows for bypassing the
plant dynamics by the chattering loop. The approach reduces the problem
of robust control to the problem of exact robust estimation and conse-
quently can lead to the deterioration of robustness with respect to plant
uncertainties, due to the mismatch between the observer and plant dy-
namics [105].

• The high-order sliding modes [40, 66]. These modes allow for finite-time
convergence to zero of not only the sliding variable but its derivatives,
as well. This approach was actively developed over the past two decades
([11–14, 42, 68, 80, 86]) as not only a means of chattering attenuation but
also a means of robust control of plants of relative degree two and higher.
Theoretically, the r-th order sliding mode totally suppresses chattering in
the system with a plant of relative degree r (this, however, does not mean
that chattering in a real system can be suppressed; recall the intrinsic
existence of parasitic dynamics). Yet, any model is an approximation of a
real system and cannot fully account for parasitic dynamics; consequently,
the chattering effect cannot be avoided [23, 24].



104 5 Performance analysis of SOSM control algorithms

In previous chapters we showed that in the conventional SM control sys-
tem, parasitic dynamics cause chattering and deteriorated closed-loop perfor-
mance. Let us analyze the system controlled by a second-order SM control
algorithm and prove that the same effects exist in those systems, too, due
also to the presence of parasitic dynamics.

Among higher-order sliding modes, only the second-order sliding modes
(SOSM) feature prominently in applications. An important application of
SOSM is in the SM observers instead of the conventional first-order SM con-
trollers. SOSM controllers do not eliminate chattering but usually provide
smaller amplitudes of chattering, which makes the subsequent low-pass filter-
ing easy and may enhance the overall performance of the observer [23–25].

SOSM are realized not as simple on-off algorithms that switch the con-
trol depending on the sign of the sliding variable but as more complex al-
gorithms that, compared with the conventional SM, offer advance switching
of the control (“twisting algorithm” [66], “sub-optimal algorithm” [15], “pre-
scribed control law” [68]). Sometimes, if the principal dynamics is of relative
degree one, in addition to the advance switching, SOSM offer control smooth-
ing by including an integrator in series with the discontinuous nonlinearity
(“super-twisting algorithm” [68], “twisting-as-a-filter algorithm” [66]).

In this chapter, we analyze the sub-optimal algorithm using first the DF
and next the LPRS methods.

5.2 Sub-optimal algorithm

The sub-optimal algorithm was proposed in [15], and further studied in [11,
12] and analyzed with respect to the control of mechanical systems in [13].
Consider an application of this algorithm to the control of a linear plant. As
before, assume that the plant is given as follows,

ẋ = Ax + Bu
y = Cx (5.1)

where A ∈ Rn×n, B ∈ Rn×1, and C ∈ R1×n are matrices, x ∈ Rn, y ∈ R1.
The “generalized sub-optimal” SOSM control algorithm is given as follows
[15],

u = −c sign (y − βyMi) (5.2)

where c and β are controller parameters (constants) and yMi is the latest
“singular point” of y, i.e., the value of y at the most recent time instant tMi

(i = 1, 2, . . .) such that ẏ(tMi) = 0. We assume system (5.1) describes the
combined principal and parasitic dynamics.

Let us assume that the steady-state behavior of the system (5.1), (5.2)
is a periodic, unimodal symmetric limit cycle with zero mean and show that
the motion under assumption can exist. The sequence of singular points of



5.3 Describing function analysis of chattering 105

Fig. 5.1. Relay servo system representation of the sub-optimal algorithm

the variable y(t) is then an alternating sequence of positive and negative
values of the same magnitude: yp

M , −yp
M (where “p” stands for periodic). The

switching of the control occurs at the instants when the plant output y(t)
is equal either to βyp

M or to −βyp
M . This corresponds to the hysteretic relay

characteristic of the controller (Fig. 5.1).

5.3 Describing function analysis of chattering

With this representation, the DF method [8, 50] can be conveniently used to
analyze a system with the sub-optimal algorithm. The usual assumption for
applicability of the DF method is that the linear part (the combined principal
and parasitic dynamics) satisfies the filtering hypothesis. The DF analysis
is a simple approach that can provide, in most cases, a sufficiently accurate
estimate of the frequency and the amplitude of possible periodic motion. The
main difference between this case and the conventional relay system (even
having a relay with a negative hysteresis value) is that the hysteresis value
βyp

M is actually unknown. To solve this problem, we assume during a periodic
motion, the extreme values of the output coincide, in magnitude, with its
amplitude. Therefore, yp

M is actually the unknown amplitude of the periodic
motion. The DF of the relay with a negative hysteresis is given as in [8]:

N(ay) =
4c

πay

√
1 − b2

a2
y

+ j
4bc

πa2
y

(5.3)

where b = βyp
M is a half of the hysteresis, c is the relay amplitude, and

ay = yp
M is the amplitude of the harmonic input to the relay. We exploit

the relationships between the hysteresis value and the oscillation parameters
to obtain the following expression for the DF of the generalized sub-optimal
SOSM algorithm:

N(ay) =
4c

πay

(√
1 − β2 + jβ

)
. (5.4)
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Fig. 5.2. DF analysis of self-excited oscillations

A periodic solution can be found from the harmonic balance equation
N(ay)W (jω) = −1 [8], which can be rewritten as

W (jω) = − 1
N(ay)

(5.5)

where the negative reciprocal of the DF (5.4) is as follows:

− 1
N

= −πay

4c

(√
1 − β2 − jβ

)
. (5.6)

As usual, the periodic solutions correspond to the points intersection be-
tween the −1/N(ay) and W (jω) loci in the complex plane. The locus (5.6) is
a straight line that begins at the origin and makes an angle of arcsin(β) with
the horizontal axis, as depicted in Fig. 5.2.

Therefore, periodic motion may occur if, at some frequency ω = Ω, the
phase characteristic of the actuator-plant frequency response W (jω) is equal
to −1800 − arcsin(β). If this requirement is fulfilled, so that intersection be-
tween the two plots occurs, then the frequency and the amplitude of the
periodic solution can be derived from the “cross-over” frequency Ω and from
the magnitude |OA| in Fig. 5.2, respectively. An intersection point will cer-
tainly exist if the overall relative degree of the combined actuator-plant degree
(combined principal and parasitic dynamics) is three or higher. From the DF
analysis of the generalized sub-optimal algorithm, we can also conclude that
the frequency of self-excited oscillations (chattering) in the system with this
SOSM is always higher than the frequency of the oscillations in the system
with the conventional relay controller (ideal relay). This frequency increase
depends on the value of the parameter β.

5.4 Exact frequency-domain analysis of chattering

The DF analysis given above provides a simple and systematic, but approx-
imate, evaluation of magnitude and frequency of periodic motions in the
closed-loop system (5.1)–(5.2) driven by the generalized sub-optimal SOSM
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algorithm. As noted above, despite the fact that in a periodic motion the gen-
eralized sub-optimal algorithm acts as the relay system, the hysteresis value
of this relay depends on the amplitude of the oscillation and is, therefore,
unknown. Hence a conventional application of the LPRS method is impossi-
ble. Nevertheless, an exact solution can be obtained by applying the following
frequency-domain approach.

We introduce the following complex function Φ(ω):

Φ(ω) = −
√

[ay(ω)]2 − y2
(π

ω
, ω

)
+ jy

(π

ω
, ω

)
(5.7)

where y
(

π
ω , ω

)
is the value of the system output at the time instant when the

relay switches from −c to c (π/ω is half a period for the periodic motion and
t = 0 is assumed, without loss of generality, to be the time of the relay switch
from c to −c), and ay(ω) is the amplitude of the plant output in the assumed
periodic motion of frequency ω:

ay = max
t∈[0,T ]

|y(t, ω)|. (5.8)

y(t, ω) can be computed by means of its Fourier series

y(t, ω) = 4c
π

∑∞
k=1

1
k sin(1

2πk) sin[kωt + ϕ(kω)]L(ωk)

= 4c
π

∑∞
k=1

(−1)k+1

2k−1 sin[(2k − 1)ωt + ϕ((2k − 1)ω)] · L((2k − 1)ω)
(5.9)

where ϕ(kω) = arg W (jkω), L(kω) = |W (jkω)| are the phase and magnitude
of W (jω) at the frequency kω, respectively.

The frequency-dependent variable ay(ω) can be computed using (5.8) and
(5.9) and y(π

ω , ω) as the imaginary part of the LPRS (with coefficient 4c
π )

or through the Fourier series (5.9). As a result, the function Φ(ω) has the
same imaginary part as the Tsypkin locus [94] (or as the imaginary part of
the LPRS with a coefficient), and the magnitude of the function Φ(ω) at the
intersection point represents the amplitude of the periodic solution.

Having computed the function Φ(ω), we carry out analysis of possible
periodic motions in the same way as it was done above via the DF technique,
simply replacing the Nyquist plot of W (jω) with the function Φ(ω) given
by (5.7).

The methodology of the exact frequency-domain analysis is the same as
that of the DF analysis. Again, the point of intersection of the straight line
drawn through the origin and at an angle with the horizontal axis equal
to arcsin β, as depicted in Fig. 5.2, and of the locus Φ(ω) gives the fre-
quency and the amplitude of the periodic motion (chattering). The quali-
tative conclusions regarding chattering are the same as in the DF analysis:
self-excited oscillations (chattering) always exist if the relative degree of the
linear part transfer function is higher than two, and the frequency of chattering
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in the system with the generalized sub-optimal algorithm is always higher than
the frequency of chattering in the system with the conventional relay controller
(ideal relay). The example below illustrates the methodology of analysis and
these conclusions.

5.5 Describing function analysis of external signal
propagation

The autonomous properties of the generalized sub-optimal algorithm were
investigated above. We showed that it is superior in some respects to conven-
tional relay control. However, pure autonomous modes never occur in real sys-
tems due to the existence of external disturbances and servo modes. Therefore,
the analysis of transfer properties of systems controlled by SOSM controllers
and, in particular, by the generalized sub-optimal algorithm is important.

Let us apply an approach similar to the one used for the analysis of trans-
fer properties of the relay systems. First, we apply a constant input to the
closed-loop system controlled by the generalized sub-optimal algorithm; after
that, considering this constant input an infinitesimally small value, we deter-
mine the equivalent gain of the generalized sub-optimal algorithm; and finally
extend the obtained results to the case of variable inputs (slow and relatively
fast).

Suppose the system is controlled by the generalized sub-optimal algorithm
as in the block diagram (Fig. 5.3), where the generalized sub-optimal algo-
rithm is applied to the error signal.

An external constant input f0 is applied to the system. Let us assume that
the switching happens according to the following equation:

u = c sign (σ − βσMi) , (5.10)

where σMi is the latest “singular point” of σ, i.e., the value of σ at the most re-
cent time instant tMi (i = 1, 2, . . .) such that σ̇(tMi) = 0, so that the switching
instants depend on the amplitude of the error signal (not the system output).
Obviously, in the autonomous mode the singular points of σ(t) coincide with
those of y(t), and the amplitudes of σ and of y are equal. Therefore, the value
of the amplitude ay determined above can be used instead of the value of
the amplitude aσ of σ(t). Yet, at the input-output analysis with respect to

Fig. 5.3. System controlled by generalized sub-optimal algorithm
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Fig. 5.4. Transformation into equivalent symmetric relay

the external constant input, the asymmetric amplitudes for positive and neg-
ative values of σ(t) have to be considered. Because of the dependence of the
hysteresis value on the amplitudes of the oscillation, the switching points of
the relay (values b1 and b2) become asymmetric, and we have to consider the
relay with asymmetric hysteresis. Moreover, the values of b1 and b2 are both
negative due to the phase-lead character of the sub-optimal algorithm (we tra-
ditionally associate positive hysteresis with the lag in the relay characteristic).

To simplify our analysis, let us transform the original relay system into an
equivalent system with the relay having a symmetric hysteresis (Fig. 5.4).

We note that if we consider an augmented error σ∗(t)

σ∗(t) = σ(t) − Δσ (5.11)

where Δσ is the shift of the vertical axis in Fig. 5.4 (the distance between the
solid vertical axis and the dashed one) given by

Δσ =
b1 − b2

2
, (5.12)

then the analysis of the relay system with symmetrical hysteretic relay given
by

b =
b1 + b2

2
(5.13)

and error signal σ∗(t) can be done using the DF method (subject to accounting
for dependence of b on the amplitude of the oscillation). Therefore, we reduce
the task of analysis to the symmetric one by applying transformations (5.11)–
(5.13) to the system. Hence, the system can be considered as identical to the
one with a symmetric hysteresis b and an additional input Δσ due to the error
augmentation (5.11).

Now we find the dependence of Δσ on the value of the constant input
f0. Consider the Fourier expansion of the asymmetric periodic control u(t) in
Fig. 1.4,
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u(t) = u0 + 4c
π

∑∞
k=1

1
k sin(πk θ1

θ1+θ2
)

{cos(kωθ1/2) cos(kωt) + sin(kωθ1/2) sin(kωt)},

where u0 = c(θ1 − θ2)/(θ1 + θ2), ω = 2π/(θ1 + θ2). Therefore, considering
only the fundamental frequency component (as per the filtering hypothesis),
we write

u(t) ≈ u0 +
4c

π
sin(π

θ1

θ1 + θ2
) × {cos(ωθ1/2) cos(ωt) + sin(ωθ1/2) sin(ωt)},

(5.14)
which can be re-written as follows:

u(t) ≈ u0 +
4c

π
sin(πθ1/(θ1 + θ2)) × cos(ω(t − θ1/2)). (5.15)

One can see from (5.15) that the amplitude of the oscillations of u(t) is
4c
π sin(πθ1/(θ1 +θ2)) (the fundamental frequency component). An application
of the external constant signal f0 results not only in the bias of the error signal
σ(t) but also in the decrease of the amplitude of the oscillation σ(t). Moreover,
b1 and b2 are different and depend on the positive amplitude of σ(t) and
the negative amplitude, respectively. We consider the following relationship
between the hysteresis and the amplitudes of the error signal oscillation,

b1 = βσmin, b2 = −βσmax

or
b1 = βf0 − βap, b2 = −βf0 + βan,

where ap is the “positive” amplitude of y(t), ap > 0, and an is the “negative”
amplitude of y(t), an < 0.

Therefore, Δσ = β
2 (2f0 − ap − an) and the derivative dΔσ

du0
is

dΔσ

du0
= −β

2

(
dap

du0
+

dan

du0
− 2

df0

du0

)
. (5.16)

The derivatives of (5.16) at the point corresponding to u0 = 0 are found
below. It follows from (5.15) that

ap = u0 + 4c
π sin(π θ1

θ1+θ2
)

an = u0 − 4c
π sin(π θ1

θ1+θ2
).

Also, given the relationship between the averaged control u0 and the positive
pulse duration θ1, which is u0 = c(θ1 − θ2)/(θ1 + θ2) = c(2θ1 −T )/T , and the
derivative du0

dθ1
= 2c/T , we obtain formulas for the following derivatives at the

point θ1 = θ2 (u0 = 0):
dap

du0
=

dan

du0
= W (j0).
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The derivative df0
du0

in formula (5.16) can be obtained from the equation of the
balance of constant terms in the system

(f0 − u0W (j0))knDF = u0,

where knDF is the equivalent gain of the sub-optimal algorithm, which we
aim to find. The dependence of f0 on u0 is ficticious. It can be interpreted
as “how much we should adjust f0 to obtain the change in u0 that we need.”
The subscript DF indicates that this is a variable derived with the describing
function method.

Therefore,
df0

du0
=

1
knDF

+ W (j0)

and
dΔσ

du0
= −βW (j0) + β

(
1

knDF
+ W (j0)

)
=

β

knDF
(5.17)

Once the additional input due to the error augmentation is determined
(formula (5.17)), we obtain an analytical formula of the equivalent gain of the
sub-optimal algorithm. Let

k∗
nDF =

2c

π
√

a2
yDF − b2

=
2c

πayDF

√
1 − β2

be the equivalent gain of the hysteretic relay. It does not account for the Δσ

and is, therefore, not an equivalent gain of the whole algorithm. The equivalent
gain of the algorithm can be determined as the equivalent gain of the relay
k∗

nDF having a feedback with the gain β
knDF

:

knDF =
k∗

nDF

1 − βk∗
nDF /knDF

.

We find from the previous equation that

knDF = k∗
nDF (1 + β) . (5.18)

The rest of the analysis is the same as for the conventional relay system.
The effect of the error augmentation via the gain (5.18) can be depicted as in
Fig. 5.5.

Fig. 5.5. Equivalent system for averaged components propagation through system
with SOSM



112 5 Performance analysis of SOSM control algorithms

The results obtained for the constant input f0 can be extended to the case
of slowly varying f0, where “slow” implies the fact that the frequency of the
input signal is much lower than the frequency of chattering. In Fig. 5.5, the
results obtained for the constant input f0 are applied to slow varying input
f(t). As a result, the plant gain W (j0) is replaced with the plant gain at the
frequency of the input signal. One can see that application of the advance
switching as per the sub-optimal SOSM algorithm results in an increase of
the equivalent gain of the relay. This increase depends on the parameter β of
the sub-optimal algorithm.

5.6 Exact frequency-domain analysis of external signal
propagation

We carry out the same input-output analysis as above but via the LPRS
method. Consider the system controlled by the sub-optimal algorithm, to
which an external constant input f0 is applied as in Fig. 5.3.

Because of the dependence of the hysteresis value on the amplitudes of
the oscillation, the switching points of the relay (values b1 and b2) become
asymmetric, and we have to consider the relay with asymmetric hysteresis. As
before, to simplify our analysis by utilizing the LPRS method, let us transform
the original relay system into an equivalent system with the relay having a
symmetric hysteresis (Fig. 5.4). We note that if we consider an augmented
error σ∗(t), with Δσ being the shift of the vertical axis in Fig. 5.4 (the distance
between the solid vertical axis and the dashed one), then analysis of the relay
system with symmetrical hysteretic relay can be done with the LPRS method
(subject to accounting for dependence of b on the amplitude of the oscillation).
Therefore, we can reduce the task of analysis to the symmetric one by applying
transformations (5.11)–(5.13) to the system.

Now consider the dependence of the average error σ0 and the average con-
trol u0 on the constant input f0. Simulations show that these two dependences
are close to linear in a wide range (see example below). The dependence of
u0 on σ0 (due to the variation of f0) will be referred to as the bias func-
tion. Since these two dependences are linear, the bias function is linear too.
Therefore, we can approximate the bias function with the equivalent gain and
carry out an analysis of propagation of averaged (on the period of chattering)
variables through the sliding mode system as an analysis of a linear system.
The equivalent gain is determined as the slope of the bias function. We derive
an expression for the equivalent gain.

We use the following approach. Consider the unequally spaced control u(t)
of amplitude c with the positive and negative pulse durations being θ1 and
θ2, (respectively, in the same way as it was done in Chapter 2). After that, we
analyze the response of the linear part to this control and obtain the value of
constant input f0 and the relay hysteresis that is needed to produce the given
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u(t) in the closed-loop system. To find the equivalent gain, we find the recip-
rocal derivative:

dσ0

du0
=

1
kn

. (5.19)

It follows from (5.11) that

dσ0

du0
=

dσ∗
0

du0
+

dΔσ

du0
=

1
knLPRS

+
dΔσ

du0
(5.20)

where knLPRS is the equivalent gain obtained via the LPRS for the equivalent
system with symmetric hysteresis 2b (see Chapter 2). The second component
in formula (5.20) is given by formula (5.16). The last derivative in (5.16) can
be written as follows (the same as in the DF analysis),

df0

du0
=

1
kn

+ W (j0). (5.21)

The first two derivatives in (5.16) are found below.
The output of the linear part is

y(t) = y0 + 4c
π

∞∑
k=1

sin(πkθ1/(θ1 + θ2))/k

× {cos(kωθ1/2) cos[kωt + ϕL(kω)]

+ sin(kωθ1/2) sin[kωt + ϕL(kω)]}AL(kω).

(5.22)

We can rewrite the last formula (given that θ1 + θ2 = T = 2π
ω ) as follows:

y(t) = y0 + 4c
π

∞∑
k=1

1
ksin(k

2ωθ1)

× {cos(k
2ωθ1) cos[kωt + ϕL(kω)]

+ sin(k
2ωθ1) sin[kωt + ϕL(kω)]}AL(kω).

(5.23)

We find the derivative of y(t) with respect to θ1:

∂y(t)
∂θ1

= ∂y0
∂θ1

+ 4c
π

∞∑
k=1

1
k

{
k
2ω cos(k

2ωθ1) × {cos(k
2ωθ1) cos[kωt + ϕL(kω)]

+ sin(k
2ωθ1) sin[kωt + ϕL(kω)]}AL(kω)

+ sin(k
2ωθ1) × k

2ω {− sin(k
2ωθ1) cos[kωt + ϕL(kω)]

+ cos(k
2ωθ1) sin[kωt + ϕL(kω)]}AL(kω)

}
.

(5.24)
At θ1=π/ω, this derivative becomes
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∂y(t)
∂θ1

= ∂y0
∂θ1

+ 4c
π

∞∑
k=1

1
k

{
k
2ω cos(kπ

2 ) × {cos(kπ
2 ) cos[kωt + ϕL(kω)]

+ sin(kπ
2 ) sin[kωt + ϕL(kω)]}AL(kω)

+ sin(kπ
2 ) × k

2ω {− sin(kπ
2 ) cos[kωt + ϕL(kω)]

+ cos(kπ
2 ) sin[kωt+ϕL(kω)]}AL(kω)

}

(5.25)
or

∂y(t)
∂θ1

= ∂y0
∂θ1

+ 4c
π

∞∑
k=1

1
k

{
k
2ω cos2(kπ

2 ) cos[kωt + ϕL(kω)] AL(kω)

−k
2ω sin2(kπ

2 ) cos[kωt + ϕL(kω)]AL(kω)
}
.

(5.26)

Formula (5.26) can be transformed into:

∂y(t)
∂θ1

=
∂y0

∂θ1
+

2c

π

∞∑

k=1

ω

[
cos2(

kπ

2
) − sin2(

kπ

2
)
]

cos[kωt + ϕL(kω)]AL(kω),

(5.27)
which leads to the following formula when we expand the cosine of a sum:

∂y(t)
∂θ1

=
∂y0

∂θ1
+

2c

π

∞∑

k=1

ω

[
cos2(

kπ

2
) − sin2(

kπ

2
)
]

[cos(kωt) cos ϕL(kω)

− sin(kωt) sin ϕL(kω)]AL(kω).
(5.28)

For even k, the term in [. . . ] is 1, and for odd k it is −1. Therefore,

∂y(t)
∂θ1

=
∂y0

∂θ1
+

2c

π

∞∑

k=1

ω (−1)k [cos(kωt) cos ϕL(kω)

− sin(kωt) sin ϕL(kω)]AL(kω). (5.29)

Let us compare the derivative values for time t = tm and time t = π/ω+tm,
where tm is the time of maximum of y(t). It follows from (5.29) that

∂y(t)
∂θ1

∣∣∣∣
t=π/ω+tm

=
∂y0

∂θ1
+

2c

π

∞∑

k=1

ω (−1)k [cos(kω(tm + π/ω)) cos ϕL(kω)

− sin(kω(tm + π/ω)) sin ϕL(kω)]AL(kω)
(5.30)

and after applying the sum formulas for sine and cosine:

∂y(t)
∂θ1

∣∣∣
t=π/ω+tm

=∂y0
∂θ1

+ 2c
π

∞∑
k=1

ω (−1)k [(cos(kωtm) cos(kπ)− sin(kωtm) sin(kπ))

× cos ϕL(kω) − (sin(kωtm) cos(kπ)

+ cos(kωtm) sin(kπ)) sin ϕL(kω)]AL(kω).
(5.31)
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For every k (odd and even), the following equality holds: sin(kπ) = 0.
Therefore, (5.31) can be reduced to

∂y(t)
∂θ1

∣∣∣
t=π/ω+tm

=∂y0
∂θ1

+ 2c
π

∞∑
k=1

ω (−1)k [cos(kωtm) cos(kπ) cos ϕL(kω)

− sin(kωtm) cos(kπ) sin ϕL(kω)]AL(kω)
(5.32)

or

∂y(t)
∂θ1

∣∣∣
t=π/ω+tm

= ∂y0
∂θ1

+ 2c
π

∞∑
k=1

ω (−1)k cos(kπ) [cos(kωtm) cos ϕL(kω)

− sin(kωtm) sin ϕL(kω)]AL(kω)

= ∂y0
∂θ1

+ 2c
π

∞∑
k=1

ω (−1)k (−1)k [cos(kωtm) cos ϕL(kω)

− sin(kωtm) sin ϕL(kω)]AL(kω)

= ∂y0
∂θ1

+ 2c
π

∞∑
k=1

ω [cos(kωtm) cos ϕL(kω)

− sin(kωtm) sin ϕL(kω)]AL(kω). (5.33)

A similar derivative for time t = tm can be directly obtained from (5.29):

∂y(t)
∂θ1

∣∣∣
t=tm

= ∂y0
∂θ1

+ 2c
π

∞∑
k=1

ω(−1)k [cos(kωtm) cos ϕL(kω)

− sin(kωtm) sin ϕL(kω)]AL(kω).
(5.34)

Comparing (5.33) and (5.34), we see that positive and negative parts of
the plant output signal respond at different rates to the changes in the pulse
width (tm is considered an arbitrary value).

The derivatives of the positive and the negative amplitudes are determined
as follows:

dap

dθ1
=

∂y(t)
∂θ1

∣∣∣∣
t=tm

+
∂y(t)
∂t

∣∣∣∣
t=tm

dtm
dθ1

.

Given that ∂y(t)
∂t

∣∣∣
t=tm

= 0 (where tm is both the time of maximum and the

time of minimum), the following holds. For the “positive” amplitude

∂ap

∂θ1
=

∂y0

∂θ1
+

2c

π
ω

∞∑

k=1

(−1)k [cos(kωtmax) cos ϕL(kω)

− sin(kωtmax) sin ϕL(kω)]AL(kω)
(5.35)

and for the “negative” amplitude

∂an

∂θ1
=

∂y0

∂θ1
+

2c

π
ω

∞∑

k=1

[cos(kωtmax) cos ϕL(kω)

− sin(kωtmax) sin ϕL(kω)]AL(kω). (5.36)
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In (5.35) and (5.36), the time instant is the same: tm = tmax , an = y(tmin).
From formula (5.18), we obtain the derivative for the shift

∂Δσ

∂θ1
= −0.5β

(
∂ap

∂θ1
+

∂an

∂θ1
− 2

df0

dθ1

)
, (5.37)

where the derivatives in parentheses are given by (5.35) and (5.36).
We compute this derivative:

∂Δσ

∂θ1
= −β

{
− df0

dθ1
+ ∂y0

∂θ1
+ 2c

π ω
∞∑

k=1

[cos(2kωtmax) cos ϕL(2kω)

− sin(2kωtmax) sin ϕL(2kω)]AL(2kω)
}

= −β

{
− df0

dθ1
+ ∂y0

∂θ1
+ 2c

π ω
∞∑

k=1

[cos(2kωtmax + ϕL(2kω))] AL(2kω)
}

.

(5.38)

Now we compute the derivative with respect to u0. Given that u0 = c θ1−θ2
θ1+θ2

and that the frequency is constant, the following holds: u0 = c
(

θ1ω
π − 1

)
.

Therefore, the derivative is dθ1
du0

= π
cω . Also, it is obvious that dy0

du0
= Wl(j0),

and as a result:

∂Δσ

∂u0
= −β

{
− df0

du0
+ Wl(j0) + 2

∞∑

k=1

[cos(2kωtmax + ϕL(2kω))] AL(2kω)

}
.

(5.39)
Formula (5.39) includes the component df0

du0
that can only be determined if

the equivalent gain of the sub-optimal algorithm is known. Yet, it is also the
variable which we aim to determine. Consequently, computing the derivative
(5.39) involves solving an equation for kn. This component of (5.39) is given
as follows:

df0

du0
=

1
kn

+ Wl(j0).

Denote the series on the right-hand side of formula (5.39) multiplied by a
factor of –0.5 as R(ω), where

R(ω) =
∞∑

k=1

[cos(2kωtmax + ϕL(2kω))] AL(2kω). (5.40)

The function R(ω) accounts for the unequal response of the negative and
positive amplitudes to the change of u0. It contains only even harmonics of
the fundamental frequency component. It is a function of the linear plant
parameters and can be computed from the transfer function of the plant.
Therefore, (5.39) can be rewritten as follows,

∂Δσ

∂u0
=

β

kn
− 2βR(Ω) (5.41)
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where Ω is the frequency of chattering. The equivalent gain of the hysteretic
relay computed as per the LPRS method is: k∗

nLPRS = 1
−2ReJ(Ω) , where J(ω)

is the LPRS. Now we write an equation from which the formula of the equiva-
lent gain of the sub-optimal algorithm can be found. This equation considers
the effect of the shift of the asymmetric hysteretic relay characteristic by Δσ

as the equivalent gain of the relay k∗
nLPRS having a feedback with the gain

∂Δσ

∂u0
(formula (5.41)):

kn =
k∗

nLPRS

1 − k∗
nLPRSβ

(
1

kn
− 2R(Ω)

) . (5.42)

Equation (5.42) can be solved for kn, and the formula of the equivalent
gain of the sub-optimal algorithm is expressed as:

kn =
(1 + β) k∗

nLPRS

1 + 2βk∗
nLPRSR(Ω)

(5.43)

Presumably, the term in the denominator of (5.43) 2βR(Ω) is small (if the
oscillation is harmonic, it is zero). In this case, the value of the equivalent
gain computed as in (5.43) is approximately equal to the equivalent gain
value computed as in (5.18) (the difference is due to the difference between
the values of k∗

nLPRS and k∗
nDF ). Formula (5.43) can be rewritten with LPRS

notation:
kn =

1 + β

−2ReJ(Ω) + 2βR(Ω)
. (5.44)

Therefore, because ReJ(Ω) is normally a negative value, the plot
−2ReJ(Ω) + 2βR(Ω) is depicted as a small offset of the LPRS in either
positive or negative direction. Yet the main change of the equivalent gain
value (in comparison with the relay control) is due to the multiplier (1 + β).

Note: it was assumed above that ∂Ω
∂u0

∣∣∣
u0=0

= 0 . This property follows

from the symmetry principle: both positive and negative changes of u0 around
u0 = 0 result in the same changes of the oscillation frequency Ω. Hence, the
derivative of the frequency should be zero: ∂Ω

∂u0

∣∣∣
u0=0

= 0 . The proof of this

property for conventional relay control was given above.

5.7 Example of the analysis of sub-optimal algorithm
performance

We carry out the DF and LPRS analysis of a plant controlled by the sub-
optimal algorithm. Consider W (s) being the cascade connection of the second-
order linear plant Wp(s) and the first-order plus dead-time dynamic actuator
Wa(s)
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Table 5.1. Analysis of periodic motions for the example of Section 5.7

Frequency Amplitude
[rad s−1]

DF 3.887 0.0867

Exact frequency-domain analysis 3.743 0.0968

Simulation 3.705 0.0934

Fig. 5.6. DF analysis

Wp(s) =
1

s2 + s + 1
, Wa(s) =

e−0.1s

0.02s + 1
. (5.45)

The loop is closed via the sub-optimal algorithm (5.2) with switching an-
ticipation parameter β = 0.2 and control magnitude c = 1. The approximate
and theoretically exact parameters of the periodic solution [obtained by means
of the DF and the exact method via application of equation (5.7)] are com-
puted and found through computer simulations and presented in Table 5.1. A
higher accuracy of the exact frequency-domain approach is apparent.

The plots for the DF analysis are given in Fig. 5.6. The magnitude of
W (jω) at the intersection point is M = |W (j3.887)| ≈ 0.0681, and the esti-
mated oscillation amplitude is ayDF = 4Mc/π ≈ 0.0867.

Plots for the DF analysis are given in Fig. 5.6. The two plots given in
Fig. 5.7 refer to the exact frequency-domain analysis. The upper plot shows
the function Φ(ω) drawn in the frequency interval ω ∈ [1.3; 30]rad/s, and
the bottom plot focuses on the frequency range ω ∈ [2.9; 30]rad/s, where the
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Fig. 5.7. LPRS analysis

intersection with the negative reciprocal DF is found. Figure 5.8 provides the
results of the computer simulation of this system.

The higher accuracy of the exact frequency-domain analysis, with respect
to the DF analysis, is due to the actual shape of the oscillations and the
use of the true amplitude versus the amplitude of the fundamental frequency
component. The mismatch between the simulation values and those computed
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Fig. 5.8. Periodic motion in the system controlled by the sub-optimal algorithm
(simulations)

via the exact frequency-domain analysis is caused by the factors of numerical
approximation such as the truncation of the series (5.9), the round-offs, and
the discrete-time integration of the simulation example.

Now we continue with the input-output analysis and find the equivalent
gain value as in the DF method:
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k∗
nDF =

2c

π
√

a2
yDF − b2

=
2c

πayDF

√
1 − β2

≈ 5.83.

Therefore, the transfer function of the closed-loop system with the sub-optimal
algorithm is as follows:

W (s) =
k∗

nDF (1 + β)Wp(s)Wa(s)
1 + k∗

nDF (1 + β)Wp(s)Wa(s)
(5.46)

and the equivalent gain of the sub-optimal algorithm is

kn = k∗
nDF (1 + β) = 5.83 · 1.2 = 7.00.

The input-output LPRS analysis gives a very close value of the equivalent
gain to the one obtained via the DF method. This happens due to very good
low-pass filtering properties of the plant (see simulations below).

The results obtained analytically via the DF method are verified below via
simulations. The experimental values of the frequency and amplitude are given
in Table 5.1. The bias function measured in the simulations is given in Fig. 5.9.
There is some oscillatory component in the experimentally measured bias func-
tion. For that reason, the equivalent gain can be obtained as a linear regression
of the dependence given in Fig. 5.9. The experimental value of the equivalent
gain is knSIM = 7.03. Therefore, both methods of analysis provide a good
estimate of the input-output properties of the system controlled by the sub-
optimal algorithm. As a result, the undertaken simulation via the measure-
ment of the equivalent gain serves as a validation of the formula of the transfer

Fig. 5.9. Bias function obtained via simulations
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function of the closed-loop system (5.43). Moreover, the whole concept of the
equivalent gain is justified through simulations, and the value of the equivalent
gain is verified.

5.8 Conclusions

We analyze the second-order sliding mode control algorithm sub-optimal in
the frequency domain with the use of the DF and the LPRS methods. We
demonstrate that the nature of the SOSM in comparison with the conventional
first-order SM is due to the advance switching of the relay, which results
in the finite-time convergence of the transient process if the relative degree
of the plant dynamics is two. However, due to the inevitable existence of
parasitic dynamics, the relative degree of the actuator-plant-sensor dynamics
can never be two. It is always higher. As a result, chattering in the form of high-
frequency oscillations occurs in systems controlled by a SOSM. The frequency
of those oscillations is always higher than the frequency of the oscillations in
the corresponding system with the relay controller, though.

Also, the input-output properties of the SOSM are analyzed via the DF
and the LPRS methods. We show that the application of the SOSM results in
an increase of the equivalent gain of the discontinuous nonlinearity (relay) for
the averaged variables. This increase depends on the “anticipation” parame-
ter β of the sub-optimal algorithm. We analyze the relationships between the
“anticipation” parameter and the frequency and the amplitude of chattering,
as well as its effect on the equivalent gain of the relay. The example given in
Section 5.7 demonstrates the frequency-domain methodology of analysis and
justifies the conclusions.
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Relay pneumatic servomechanism design

6.1 Relay pneumatic servomechanism dynamics
and characteristics

Relay servomechanisms were first designed in the 1940s [17, 71] and are still
being widely used now in aerospace applications. Among their advantages
over linear servomechanisms are simplicity, low cost, reliability, lower weight,
and, as a rule, better dynamical characteristics [56]. The basic design of a
pneumatic servomechanism is given schematically in Fig. 6.1.

The main components of a servomechanism are a source of the pressur-
ized air, an air valve, a solenoid, an air cylinder, a piston position sensor, a
comparison device, a compensating filter, and a relay (class D) amplifier. The
servomechanism operates as follows. Pressurized air enters into either the left
or the right chambers of the air cylinder, depending on the air valve position.
Because of the pressure differential in the cylinder chambers, the piston moves
in the appropriate direction. The position sensor measures the position of the
cylinder and sends a signal proportional to the piston displacement from the
neutral position to the comparison device, which provides an error signal equal
to the difference between the reference input Uinp and the sensor signal. If the
error is positive, the relay energizes the solenoid, which moves the air valve
(to the left, as in Fig. 6.1); if the error is negative, the solenoid is deenergized
and the spring moves the air valve to the right. There are some other designs
of the relay pneumatic servomechanism: with two solenoids, or the solenoid
with two different windings, different types of air valves, etc.

By modulating the flow of pressurized air into the air cylinder (this is the
task of the control devices), one can regulate the piston position. If the ref-
erence input to the servomechanism is zero, a symmetric periodic motion oc-
curs in the servomechanism loop; the piston has small oscillations around the
zero position, the position measurements (through the comparator) are trans-
formed into pulses and amplified by the relay amplifier, the pulses drive the
solenoid and the air valve, the air is alternately let into the first or the second
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Fig. 6.1. Relay pneumatic servomechanism

Fig. 6.2. Piston motion: (a) in the autonomous mode and (b) under external
excitation

chambers of the cylinder, and the piston moves back and forth because of the
pressure differential. A self-sustained oscillation occurs as a result (Fig. 6.2a).
The frequency of these oscillations for small-size pneumatic servomechanisms
can reach over 100 Hz. The higher frequency of self-excited oscillations reveals
the faster dynamics of the servomechanism.

If a slow input signal is applied to the servomechanism, it modulates the
self-sustained oscillations, and the resulting motion of the piston is a combi-
nation of self-sustained oscillations and forced motion (Fig. 6.2b).

The model of the electro-pneumatic servomechanism built from first prin-
ciples (the laws of thermodynamics) is nonlinear. In practice, the linearized
model is commonly used. It is presented as a block diagram in Fig. 6.3. The
compensator is not shown in this diagram, and it thus represents the model
of the uncompensated servomechanism.

In this diagram, f is an external excitation, u is the relay amplifier output,
α is the position of the solenoid, F is the force developed by the pressure
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Fig. 6.3. Uncompensated electro-pneumatic servomechanism

differential and applied to the piston, ẏ is the velocity of the piston, y is the
piston position (displacement from the neutral position), Ki and Ti, i = 1, 3
are gains and time constants, respectively, 2b is the relay hysteresis, and αmax

is the maximal stroke of the solenoid (the relay output is calibrated in the
values of the solenoid stroke).

Usually, servomechanism performance is characterized by the magnitude
frequency response and the phase frequency response in a certain range of
frequencies and amplitudes of the harmonic excitation. The requirements are
defined as an envelope within which the magnitude and the phase responses
of the servomechanism should be located. Normally, the phase response is a
declining function of the frequency, and instead of the envelope specifications,
the maximum phase lag at the highest frequency of the external excitation is
specified. Two other characteristics are the frequency and the amplitude (of
the piston strokes) of the self-sustained (self-excited) oscillation in the ser-
vomechanism loop. Usually, the lower boundary of the frequency and the up-
per boundary of the amplitude of self-excited oscillations are specified. These
two characteristics are related to each other. In fact, if the parameters of the
servomechanism are constant, one of the two characteristics can be obtained
from the other. However, if the parameters of the servomechanism vary, the
use of both characteristics is necessary.

6.2 LPRS analysis of uncompensated relay
electro-pneumatic servomechanism

The overall design of an electro-pneumatic servomechanism includes the steps
of generation of the specification for the servomechanism components, selec-
tion or design of those components, analysis of dynamics of the uncompen-
sated servomechanism, and design of compensating filters. The first two steps
are beyond the scope of this book. We assume that all components of the
servomechanism are properly designed or selected and, if connected with each
other in the loop given by Fig. 6.1, make a properly working system. By
“properly working,” we mean that self-excited oscillations exist and under
external excitation the system exhibits tracking of this external signal in the
sense illustrated by Fig. 6.2. However, we assume that the requirements for
the system characteristics specified above may not be satisfied. We call this
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system an uncompensated electro-pneumatic servomechanism. The analytic
methodology logically follows from the LPRS method, the plant model, and
the specified characteristics of the relay pneumatic servomechanism.

First, the dynamic characteristics of the uncompensated servomechanism
must be computed and checked to ensure the specifications are satisfied. After
that, the compensating filters must be designed to meet the required speci-
fications. If we consider an unloaded servomechanism, which is depicted in
Fig. 6.3, the linear part of the relay servo system is an integrating plant. For
that reason, the LPRS formula for integrating linear parts (2.32) or formula
(2.19) must be used for the calculations as follows:

J(ω) =
∞∑

k=1

(−1)k+1ReWl(kω) + j

∞∑

k=1

ImWl[(2k − 1)ω]/(2k − 1) (6.1)

where

Wl(s) =
K1K2K3

1 + K2K3

e−T1s

s
(

T2T3
1+K2K3

s2 + T2+T3
1+K2K3

s + 1
) . (6.2)

The frequency of the self-sustained periodic motion is calculated by solving
the equation

ImJ(Ω) = −πb

4c
, (6.3)

and the equivalent gain kn is calculated as per (2.4) as a function of the
frequency Ω computed above.

Next, the transfer function of the closed-loop uncompensated relay ser-
vomechanism is evaluated as

Wclosed(s) =
knWl(s)

1 + knWl(s)
, (6.4)

and the magnitude frequency response and the phase frequency response are
found using the following formulas, respectively:

M(ω) = 20 lg |Wclosed(jω)| (6.5)

ϕ(ω) = arg Wclosed(jω). (6.6)

6.3 Compensator design in the relay electro-pneumatic
servomechanism

Relay control involves modes in which the frequency of self-excited oscillations
(switching frequency) is typically much higher than the closed-loop system
bandwidth (that corresponds with the frequency range of the external input
signals). Therefore, the equivalent gain of the relay in the closed-loop system
and input-output properties of the plant are defined by different frequency
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ranges of the LPRS. The input-output properties of the relay (the equivalent
gain) are defined by the shape of the LPRS at frequencies near the switching
frequency, whereas the input-output properties of the plant depend on the
characteristics of the plant at frequencies within the system bandwidth. In
order to have a larger equivalent gain, the point of intersection with the real
axis must be closer to the origin. At the same time, the LPRS shape in the
frequency range of the system bandwidth must be preserved. Therefore, the
idea of the compensating filters design is based on the change of the shape of
the LPRS at frequencies near the frequency of self-excited oscillations, without
affecting the LPRS values at the frequencies of the input signals, which would
result in an increase of the equivalent gain of the relay and enhancement of
the closed-loop performance of the servomechanism. The LPRS gives a very
demonstrative illustration of this idea (Fig. 6.4).

Therefore, compensation can be defined as the selection of linear filters
and their connection within the system so that the LPRS of the system has a
desired location at the frequencies near the switching (chattering) frequency
and does not change the open-loop characteristics of the system at frequencies
within the specified bandwidth.

The desired configuration of the LPRS can be evaluated from the spec-
ification on the system closed-loop performance in the specified bandwidth
(provided that the performance enhancement is achieved only by an increase
of the equivalent gain kn, so that the frequency properties of the open-loop sys-

Fig. 6.4. Desired LPRS configuration
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tem in the specified bandwidth do not change). The methodology of design in
the system is as follows. First, an uncompensated servomechanism consisting
of the plant and the relay is analyzed. At this stage, the frequency charac-
teristics and the LPRS of the plant, the frequency of self-excited oscillations,
and the frequency response of the closed-loop system are computed.

Next, the requirements to the desired LPRS configuration are calculated
on the basis of the results of the uncompensated servomechanism analysis.
Namely, a desired location of the point of intersection between the LPRS and
the straight line “−πb/(4c)” and the corresponding frequency of self-excited
oscillation is determined. This is done by applying formulas (6.3), (2.4) and
the results of the analysis of the uncompensated servomechanism.

Depending on the application of the servomechanism, its performance can
be specified in a few different ways. Consequently, there are various ways of
generating the desired LPRS. Assume that the compensator is not supposed
to change the frequency response of the open-loop system in the bandwidth.
Then the desired LPRS location is determined by

⎧
⎪⎪⎨

⎪⎪⎩

ReJd(Ωd) > −0.5/knd

Ω1 < Ωd < Ω2

ImJd(Ωd) = −πb/(4c)

(6.7)

where “d” denotes “desired,” knd is the desired value of gain kn of the relay,
Ω1, Ω2 are the specified range for the switching frequency, b is the specified
value of the hysteresis (usually small value), and c is the output level of the
relay (control).

Considering the idea of changing the LPRS shape (location at higher fre-
quencies), we must assess what kinds of filters and signals are available. We
might consider the use of low-pass, high-pass, phase-lead, phase-lag, lead-
lag, lag-lead, band-pass, and band-rejecting filters and two possible points of
connection: in the output signal (error signal), which provides the cascade
connection of the filter (in series with the plant), and in the output of the
relay, so that the output of the filter is summed with the system input, which
is a parallel connection of the filter (parallel with the plant). Among possible
connections and filters, two types of compensators perform the described func-
tion of the LPRS transformation: (1) the cascade connection with the use of
the phase-lag filter, and (2) the parallel connection with the use of band-pass
filter.

The Cascade Compensation. The output of the servomechanism is always
available. Therefore, cascade compensation can be implemented in most cases.
The circuit connected in series with the plant must force the LPRS to have a
desired location. This can be done using elements with the transfer function

W (s) =
T1s + 1
T2s + 1

,
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where
ωmax < 1/T2 < 1/T1 < Ω,

ωmax is the upper boundary of the specified input signal bandwidth.
This compensator does not strongly affect the frequency response of the

open-loop system at frequencies within the bandwidth. It changes the location
of the LPRS at higher frequencies only (beginning at a certain frequency, the
LPRS of the compensated system can be approximately calculated as the
product of the plant LPRS and the coefficient T1/T2 < 1).

Of course, other dynamic filters of higher order with similar amplitude-
frequency response can be used for such compensation. One of the features
of such cascade compensation is that it causes the frequency of self-excited
oscillations to decrease. An example of the cascade compensation is considered
below.

The Parallel Compensation. The output of the relay is always available
and can be used for parallel compensation.

The circuit connected in parallel with the plant must force the LPRS to
have a desired location (Fig. 6.4). The transfer function of the open-loop
system is calculated as a sum of the transfer functions of the plant and the
compensator. As a result, in the case of parallel compensation, the LPRS
of the open-loop system is calculated as a sum of the plant LPRS and the
compensator LPRS (see Theorem 2.1). Yet the addition of the compensator
must not change the frequency response of the open-loop system at frequencies
within the bandwidth.

Such properties are typical of the band-pass filters with the bandwidth
encompassing the frequency of self-excited oscillations of the system. Formulas
of the LPRS of some band-pass filters are presented in Table 2.1. The LPRS
of second-order band-pass filters are depicted in Fig. 6.5. One of the features

Fig. 6.5. The LPRS Jn(ω) of band-pass filters W (s) = s/(s2 + 2ξs + 1) for
ξ = 0.3 − 1.5
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of parallel compensation is that it can cause the frequency of self-excited
oscillations to increase.

It is worth mentioning that Table 2.1 and Fig. 6.5 show the normalized
LPRS Jn(ω) (computed for unity gain and time constants). To obtain the
LPRS for the transfer function

W (s) =
KTs

T 2s2 + 2ξTs + 1

(including the case of the general form with ξ ≥ 1), we have to recalculate the
LPRS according to

J(ω) = K Jn(Tω),

where Jn(ω) is the normalized LPRS of the band-pass compensator.
An example of parallel compensation is considered below.

6.4 Examples of compensator design in the relay
electro-pneumatic servomechanism

Consider cascade and parallel compensation of the electro-pneumatic ser-
vomechanism (Fig. 6.6).

In Fig. 6.6, future cascade and parallel compensators are displayed as
dashed lines.

Using formulas (6.1), (6.2), we calculate the LPRS of the uncompensated
servomechanism. The model parameters are as follows: K1 = 160, K2 =
105, K3 = 0.4, T1 = 0.002 s, T2 = 0.003 s, T3 = 0.04 s. The LPRS plot
is depicted in Fig. 6.7 (plot #1). We draw the horizontal line “−πb/(4c)”
(c = 1, b = 0.01). We now solve equation (6.3) to calculate the frequency Ω0

of self-excited oscillations in the uncompensated servomechanism. It yields
Ω0 = 429.4 rad/s.

Let the specified bandwidth of the servomechanism be [1Hz; 8Hz] (or
[6.28 rad/s; 50.2 rad/s]) with the maximum amplitude of the harmonic in-
put Amax = 1 V. According to (2.4), we calculate the equivalent gain of the
relay: kn = 0.768. The amplitude and phase frequency response of the closed-
loop uncompensated servomechanism is depicted in Fig. 6.8. It is calculated
on the basis of the linearized model (solid line) and as the Fourier series anal-
ysis of the system output y(t) obtained through computer simulation (dots).
Very good agreement is observed within the system bandwidth.

Fig. 6.6. Cascade and parallel compensation of relay servomechanism
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Fig. 6.7. The LPRS of electro-pneumatic servomechanism (1, uncompensated; 2,
cascade-compensated; 3, parallel-compensated)

Fig. 6.8. Closed-loop frequency response of the uncompensated servomechanism

We specify the requirements to the desired LPRS location as follows, which
means that the desired value of the open-loop gain is twice the gain of the
uncompensated system:

ReJ(Ω) = 0.5 ReJd(Ω0), (6.8)
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Fig. 6.9. Closed-loop frequency response of the cascade-compensated servomecha-
nism

0.85 Ω0 < Ω < 1.15 Ω0.

The last inequality limits the change in the frequency of self-excited oscil-
lations due to the compensation.

The Cascade Compensation. Formula (6.8) leads to T4/T5 < 0.5. We
choose T4/T5 = 0.5 and place the range [1/T5; 1/T4] in the middle of the range
[50.2 rad/s; 429.4 rad/s]. Thus, T4 = 0.0043 s, T5 = 0.0086 s. The LPRS of the
compensated servomechanism and the frequency response of the closed-loop
compensated servomechanism are depicted in Fig. 6.7 (plot #2) and Fig. 6.9
respectively (solid line, linearized model; dots, the result of process simula-
tion and Fourier analysis). The performance enhancement is achieved and
revealed as −12.0◦ of maximum phase lag for the compensated system within
the bandwidth, versus −20.2◦ of phase lag for the uncompensated system.

The Parallel Compensation. We choose ξ = 0.6 and T6Ω = 1.2, which cor-
responds to the point of the normalized LPRS Jn(T6Ω) = 0.602 − j0.423
(arg Jn(T6Ω) = −35.1◦, i.e., the angle at which the magnitude of Jn is
maximized).

The specified point of intersection of the desired LPRS and the straight line
“−πb/(4c)” is projected to the LPRS of the plant at the angle of 180◦−35.1◦ =
144.9◦, and the frequency Ω is obtained as a corresponding point of the plant
LPRS:

Ω = 475.5 rad/s.

T6 is then calculated as T6 = 1.2/ Ω = 0.0025s.
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Fig. 6.10. Closed-loop frequency response of the parallel-compensated servomech-
anism

The LPRS of the compensated system is depicted in Fig. 6.7 (plot #3).
The frequency response of the compensated system is depicted in Fig. 6.10
(solid line, linearized model; dots, the result of process simulation and Fourier
analysis). We note that performance enhancement is achieved and revealed as
−8.8◦ of maximum phase lag for the compensated system within the band-
width versus −20.2◦ of phase lag for the uncompensated system.

The design of the compensator carried out above is a first iteration of the
design procedure, and the performance of the system can be further improved
by applying an optimization procedure to the filter parameters. But even this
first step brings a significant enhancement to the system performance.

6.5 Compensator design in the relay electro-pneumatic
servomechanism with the use of the LPRS
of a nonlinear plant

The use of the nonlinear model of the servomechanism offers higher accuracy
of design. The most significant precision enhancement can be achieved by
using the nonlinear model of the solenoid valve and considering the Coulomb
friction of the piston motion inside the cylinder. The use of the time delay
model of the solenoid valve does not allow for the impact of the solenoid travel
time. The Coulomb friction between the cylinder and the piston can also be
significant and, therefore, noticeably affect the system dynamics.
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Fig. 6.11. Nonlinear servomechanism with parallel compensation

The design of the servomechanism with the use of the linear model of the
plant was considered in Chapter 5. Now we consider a nonlinear model of the
uncompensated servomechanism (Fig. 6.11).

The solenoid model is represented by a nonlinear block plus a time delay.
This model reflects the finite and constant travel time of the air valve. The
model is given as follows:

α(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−αmax, if u = c and t+ ≤ t < t+ + τ1

2αmax
τ2

(t − t+ − τ1) − αmax, ifu = c

and t+ + τ1 ≤ t ≤ t+ + τ1 + τ2

αmax, ifu = c and otherwise
αmax, if u = −c and t− ≤ t < t− + τ1

− 2αmax
τ2

(t − t− − τ1) + αmax, if u = −c

and t− + τ1 ≤ t ≤ t− + τ1 + τ2

−αmax, if u = −c and otherwise,

(6.9)

where t+, t− is the time of the last switch of the relay from “−” to “+” and
from “+” to “−” respectively, τ1 is the time delay of the solenoid, and τ2 is
the air valve travel time from position −αmax to position αmax.

The above model of the solenoid reflects the fact that the shape of the
armature motion signal in the relay pneumatic servo system is close to trape-
zoidal. Consequently, the above nonlinear block transforms the square pulse
signal into the trapezoidal signal.

Suppose the system parameters have the following values: c = 1, b =
0.1, K1 = 160, K2 = 105, K3 = 0.41, τ1 = 0.0004 s, τ2 = 0.0032 s, αmax =
1, T1 = 0.002 s, T2 = 0.003 s, T3 = 0.041 s, Ffr = 20 N.

The system in Fig. 6.11 can be viewed as one with an integrating plant
like that in Fig. 2.2. Assume that a periodic process exists in the system.
For that reason, no additional elements connected in parallel are needed to
compute the LPRS of this nonlinear plant (this approach was described in
Section 2.9). A simulation of this system with a small (f0=5% of its maximal
value) constant input and hysteresis b varied within range b ∈ [−1.9; 0.5] was
carried out (aimed at generating self-excited oscillations of various frequen-
cies), and values of σ(t) in a steady periodic motion were recorded in a file. At



6.5 Compensator design – nonlinear plant model 137

Fig. 6.12. The LPRS of the servomechanism (1, uncompensated with linear
plant; 2, uncompensated with nonlinear plant; 3, parallel-compensated)

each frequency of oscillations, the LPRS was calculated as per the following
formula:

J(Ω) ≈ −0.5
σ0

u0
+ j

π

4c
(f0 − σ(t))|t=0. (6.10)

The result of this simulation and calculations are presented in Fig. 6.12
(plot #2). The LPRS calculated on the basis of the linearized model of the
plant is depicted in the same figure for comparison (plot #1). We see that the
high-frequency segments of the two LPRS differ more than the low-frequency
segments. This is a result of the air valve travel time, which has a stronger
effect on the resulting LPRS at higher frequencies.

Compensation by a parallel band-pass filter, tuned so that its bandwidth
encompasses the frequency of the oscillations, can be used for system perfor-
mance enhancement in the same way as in the previous section for the linear
plant. Applying the technique and formulas of the LPRS of a band-pass filter,
we calculate the parameters of the compensating filter as follows:

K4 = 0.378, T6 = 0.0025s, ξ = 0.6.

We note that the nonlinear features of the plant allow for more accurate LPRS
calculation and, as a result, more accurate compensator design. If the com-
pensator were designed on the basis of the linearized model of the plant (plot
#1 in Fig. 6.12), it might result in small stability margins for the system
(the LPRS of the compensated system might approach the origin too near
and even cross the line “−πb/(4c)” in the right half-plane). The LPRS of
the compensated system is depicted in Fig. 6.12 as plot #3. The frequency
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Fig. 6.13. Servomechanism closed-loop dynamics frequency response (nonlinear
model of the plant; uncompensated and parallel-compensated)

responses of the uncompensated and compensated servomechanisms are de-
picted in Fig. 6.13. We note that the performance enhancement, estimated as
a phase lag reduction, is significant.

6.6 Conclusions

We consider the application of the LPRS method to analysis of dynamics and
design of compensators for relay electro-pneumatic servomechanisms, and we
present a methodology of analysis and design. We demonstrate that the use
of the LPRS method not only allows for a precise analysis of the complex
dynamics of the relay electro-pneumatic servomechanism, but also provides a
convenient tool for compensator selection and design. Beside the linear model
of the servomechanism, the concept of the LPRS of a nonlinear plant is used
for the compensator design in the relay electro-pneumatic servomechanism
with the Coulomb friction and nonlinear model of the solenoid and air valve
dynamics. Despite the increase of the amount of computations, the use of the
LPRS leads to an efficient design of the system.
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Relay feedback test identification
and autotuning

7.1 The relay feedback test

Proportional-integral-derivative (PID) control is the main type of control used
in the process industry. PID controllers are usually implemented as config-
urable software modules within distributed control systems (DCS). The DCS
configuration software is constantly evolving and giving developers many new
features. One of most useful features is the controller autotuning feature. This
trend can be seen in the development of new releases of such popular DCS
software as Honeywell Experion PKS and Emerson DeltaV. Despite the exis-
tence of a large number of tuning algorithms, there is still a need for simple
and precise loop tuning algorithms that can be embedded as additional au-
totuning add-ons in the PID controllers of DCS. The requirements of the
controller autotuners are simplicity, precision, and robustness.

One of the most convenient tests on the process is the relay feedback test
proposed in [5]. This method has received a lot of attention from both indus-
try and the worldwide research community. It has become a starting point
for a number of directions of research as well. In comparison to the original
approach by Ziegler and Nichols [109], which was aimed at obtaining the val-
ues of the ultimate gain and ultimate frequency (i.e., the minimal gain that
brings the system to the state of self-excited oscillations and the frequency of
those oscillations), it was proposed in [70] that the relay feedback test be used
for process parameters identification. This idea was further developed and
extended to various models and types of processes. The survey of available
tuning methods and techniques based on the relay feedback test is presented
in [7]. However, despite the obvious success of the relay feedback test in au-
totuning and identification, it can lead to significant errors. The errors come
from the model of the oscillations based on the application of the approximate
describing function method. There have been a few attempts to overcome this
source of inaccuracy which have solved the problem to some degree. In [59],
for example, it is proposed that the amplitude of the oscillations be used in
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addition to the imaginary part of the Tsypkin locus [94]. This results in a pre-
cise model for two simple transfer functions. In [60] and [61], it is shown how
the parameters of first-order and second-order process transfer functions with
time delay can be found exactly using the A-locus [9] from measurements
of the asymmetric limit cycle. In [73], exact parameters of first-order and
second-order plus dead-time models are obtained from measurements of the
asymmetric limit cycle. In [74], a relay feedback and wavelet-based method for
estimation of unknown processes is proposed. In [106], it is proposed that the
saturation function should be used instead of the relay nonlinearity, which
transforms the square wave into a nearly sinusoidal one and, consequently,
brings the test to the limitations of the describing function method.

However, the problem has not been fully solved. The fundamental obstacle
here is the absence of a simple and precise model of the oscillations in a relay
feedback system, which would lead to simple calculations suitable for DCS
applications. The LPRS method offers an opportunity to further solve the
problem of accuracy. Although the LPRS provides an exact model only for an
infinitesimally small asymmetry of the oscillations, experiments on a number
of plants and simulations show that linear approximation of the propagation
through the relay function is also precise within a certain non-small finite
range. This ensures sufficiently high accuracy of the application of the LPRS
method to autotune identification.

7.2 The LPRS and asymmetric relay feedback test

A closer look at the LPRS definition (2.2) shows that the LPRS is a character-
istic that can be measured from the asymmetric relay feedback test. Indeed,
the real part is defined as a ratio of two constant values (it is defined as a limit
of the ratio, and the problem of the accuracy of this measurement is consid-
ered below), and the imaginary part is equal to the hysteresis value (with a
coefficient). Hence, there are two factors available that are important for the
solution of the identification problem. First, the LPRS can be computed from
the process model, and second, it can be measured from the relay feedback
test. Therefore, the identification methodology is based on the matching of
the computed LPRS to the measured LPRS. The identification is carried out
as follows. An asymmetric relay feedback test is run over the process, and
the length of the positive control pulse θ1, the negative control pulse θ2 (see
Fig. 1.5), and the average on the period process output y0 are measured (the
constant input f0, hysteresis b, and the amplitude of the relay c are given
parameters). On the basis of the measured three values, the following param-
eters are computed. The frequency of the oscillations is computed from the
obvious formula

Ωm =
2π

θ1 + θ2
,
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and the average control signal is computed from the pulses length measure-
ments as

u0 = c
θ1 − θ2

θ1 + θ2
.

With those values available, the following two equations for two unknown
process parameters and a formula for the process static gain K can be written
(we assume no disturbance):

ReJ(Ωm) = −1
2

f0 − y0

u0
(7.1)

ImJ(Ωm) = −πb

4c
(7.2)

K =
yo

u0
. (7.3)

Therefore, one relay feedback test provides three parameters of the process
model — via the solution of (7.1), (7.2), (7.3), with the LPRS computed as
per (2.12), (2.19), (2.32) or using other techniques. In the case of more than
three unknown parameters, a few relay feedback tests with different values of
the hysteresis b must be carried out. Each test provides one frequency point
of the LPRS and, consequently, each additional test allows identification of
two additional parameters.

This is the general idea of the LPRS-based identification. One particular
case that involves a very common process model — the first-order plus dead-
time dynamics — is considered below in detail.

7.3 Methodology of identification of the first-order plus
dead-time process

Many industrial processes can be precisely approximated by the first-order
plus dead-time (FODT) transfer function:

W (s) =
Ke−τs

Ts + 1
(7.4)

The LPRS formula for FODT dynamics was derived in Section 2.7 with
the LPRS formula given by:

J(ω) =
K

2
(1 − αeγ csch α) + j

π

4
K

(
2e−αeγ

1 + e−α
− 1

)
(7.5)

where α = π
Tω and γ = τ

T . With the values θ1, θ2, and y0 measured from the
asymmetric relay feedback test, and given the values of the constant input
f0, relay amplitude c, and hysteresis b, we now formulate the identification
problem as the solution of the following set of equations:
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ReJ(Ωm) =
K

2
(1 − αeγ csch α) = −1

2
f0 − y0

u0
(7.6)

ImJ(Ωm) =
π

4
K

(
2e−αeγ

1 + e−α
− 1

)
= −πb

4c
(7.7)

K =
y0

u0
(7.8)

where Ωm = 2π/(θ1 + θ2), u0 = c(θ1 − θ2)/(θ1 + θ2), α = π
TΩm

and γ = τ
T .

Because K can be calculated separately, according to (7.8), we have to
solve the two equations (7.6) and (7.7) with two unknown values T and τ . By
expressing eγ from (7.6) and substituting in (7.7), equations (7.6)–(7.8) can
be reduced to one equation with one unknown variable α as follows:

y0

f0
=

1 − e−α

α
. (7.9)

Consider the solution of equation (7.9) in more detail. We compute and
plot the function ψ(α) (Fig. 7.1):

ψ(α) =
1 − e−α

α

It is possible to find a suitable approximation for the inverse function
α = α(ψ). However, here we can tabulate this function within the range
ψ ∈ [0.2; 1] and use an interpolation for in-between values. The tabulation
of α = α(ψ) is given in Table 7.1. For the values ψ below 0.2, the following
approximate formula can be used:

α ≈ 1/ψ. (7.10)

Fig. 7.1. Function ψ(α)
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Table 7.1. Tabulation of function α = α(ψ)

ψ 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

α = α(ψ) 4.965 3.197 2.232 1.594 1.126 0.761 0.464 0.215 0

Therefore, the identification is carried out using the following algorithm.
(a) The values of θ1, θ2, and y0 are measured from the asymmetric relay

feedback test and Ωm and u0 are calculated.
(b) The static gain K of the process is calculated as per (7.8).
(c) The equation (7.9) is solved for α by interpolating the data of Table 7.1

or using formula (7.10).
(d) Once the parameter α is found, the time constant T is calculated as

T =
π

αΩm
.

(e) Finally the dead time τ is calculated as

τ = T ln
[
1
2
(eα + 1)

]
.

The described algorithm is very easy to program and implement as an
add-on to a PID controller. In spite of its simplicity, it can perform very well
if the process is described by formula (7.4) adequately enough. It is, therefore,
very suitable for an autotune identification. A few simulation examples are
given below.

7.4 Analysis of potential sources of inaccuracy

Consider the following example that demonstrates the identification algorithm
described above.

Example 7.1. Suppose the process is described by the first-order plus dead-
time transfer function

W (s) =
0.5e−0.5s

1.5s + 1
.

The parameters of the relay are chosen as follows: c = 1, b = 0. The
constant input signal value is f0 = 0.1. The relay feedback test produces the
following parameters of the oscillations: positive and negative pulse duration
θ1 = 1.165 s, θ2 = 0.625 s, and the average value of the process output y0 =
0.0754. The process transfer function identified in formulas (7.6)–(7.8) is

W (s) =
0.4998e−0.5130s

1.5059s + 1
.
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The highest identification error is of the dead time (2.6%). The other two
errors are much smaller: 0.04% for the gain and 0.39% for the time constant.
All the error values are acceptable for the autotuning purpose, as the main
source of error in the autotuners is the distinction between the underlying
process model and the actual process dynamics. It should also be mentioned
that the pulse duration in the relay feedback test is 65% for the positive pulse
and 35% for the negative pulse. Therefore, the asymmetry of the control is
significant. This substantiates the use of the real part of the LPRS (being
defined as a limit) at non-small values of the input signal. This phenomenon
is considered in more detail below.

In spite of the demonstrated accuracy, this example, of course, is not
a proof of the efficiency of this algorithm, in particular, and of the whole
methodology of matching the analytical and experimental LPRS, because the
actual system response is always the result of a number of different factors.
For that reason, potential sources of inaccuracy are considered below.

Besides the approximation of the function α = α(ψ), there are two poten-
tial sources of errors within the considered methodology. The first one is the
use of finite values for the ReJ(Ωm) estimation while the LPRS is defined as
a limit at f0 → 0. Another potential source of error is the measurement of
the frequency of the oscillations Ωm in the asymmetric test when the LPRS is
defined only for the case of infinitesimally small asymmetry of the oscillations.

If we consider the value of u0 as a function of σ0, which is a result of
the variation of f0 within a certain range, we obtain the bias function. The
derivative of this function at σ0 = 0 is the equivalent gain of the relay. If,
therefore, the bias function is linear within a certain range around the point
σ0 = 0, the equivalent gain is a good approximation and the calculation of
ReJ(Ω) using finite values results in a small error. Simulations prove that
the bias functions for many plants are virtually linear within the range of
up to 80% of u0. For the given process approximation, the bias functions
for γ = τ/T = 0.2 (plot #1) and γ = τ/T = 0.5 (plot #2) are depicted
in Fig. 7.2. One can see that in both cases, the bias functions are virtually
linear within [−80%;+80%] and [−70%;+70%] respectively, of the input f0

maximum span f0MAX = cK, which is the maximal value of f0 that still
allows for the existence of oscillations in the system. Note that the bias of
the functions is symmetric about the origin. The actual span of f0 used for
obtaining the plots is 0–90% of f0MAX = cK.

Another contributing factor in the error is the measured frequency of the
oscillations Ωm, which is not equal to the frequency of the symmetric oscil-
lations. Again, simulations prove that within the range of up to 40% of u0,
the frequency does not significantly change. An indirect substantiation of this
observation is the fact that the derivative of the frequency of the oscillations
with respect to the input f0 in the point f0 = 0 is zero (see Appendix).
Additionally, there always exists the option of setting the input to zero and
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Fig. 7.2. Bias functions for relay system with first-order plus dead-time plant

measuring the frequency of the symmetric oscillations. Therefore, there exists
a certain optimal range of f0 settings that provides a sufficiently precise result.
From simulations and experiments, the optimal range is the one that results
in the average control u0 10%–30% of its maximal value (u0 max = c). This is
sufficiently large to obtain precise measurements of ReJ(Ω) and sufficiently
small to obtain a good estimate of frequency of symmetric oscillations.

7.5 Performance analysis of the identification algorithm

We consider a few different situations that commonly occur in the operation
of industrial autotuners and assess performance of the described identification
algorithm via simulations.

Example 7.2. Suppose the process is described by the same first-order plus
dead-time transfer function as the example above:

W (s) =
0.5e−0.5s

1.5s + 1
.

Ideal conditions. We randomly generate two parameters uniformly dis-
tributed within the ranges T ∈ [0.1; 5.1], τ ∈ [0.1; 5.1], which cover the range
τ/T ∈ [0.02; 51] (gain K is considered constant as it can be identified exactly
per (7.8)); we run the identification algorithm; and we assess the accuracy of
identification through standard (root mean square) deviations. The accuracy
of identification in 1000 tests with random T and τ values are as follows:
the standard deviations are σT = 2.76% and στ = 0.82%. The existence of
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Table 7.2. Identification accuracy (standard deviation) in noisy conditions

aN MAX = 5 % aN MAX = 10 % aN MAX = 15 % aN MAX = 20 %

σT [%] 3.32 4.00 4.47 6.08

στ [%] 1.08 1.17 1.55 2.05

Fig. 7.3. Relay feedback test over process e−5s/(s + 1) with noise component
aNMAX = 25%

the identification errors is a result of the use of the equivalent gain as an
approximation for the bias functions in Fig. 7.2 and the dependence of the
frequency on f0.

Noisy measurements. Let us inject the measurement noise of different am-
plitudes and assess the accuracy of identification. In Table 7.2, identification
errors for T and τ are presented at different levels of white noise injected at
the system output y(t). The statistics of 100 tests are given for each case.
Noise is characterized by its maximal amplitude measured with respect to
the amplitude of y(t). An example of this test over the process e−5s/(s + 1)
with noise component aNMAX = 25% is presented in Fig. 7.3. The transfer
function identified from the test is e−4.912s/(1.072s + 1).

External constant load (disturbance). In the practice of controller tuning
in process industries, the relay feedback test over the process can only be
implemented in an incremental way. This involves initially bringing the pro-
cess controlled by a PID controller (not yet tuned or at least not optimally
tuned) to a steady state. After that, the relay feedback test is applied to the
process via controller output changes from the steady state by ±c. However,
if an external disturbance is applied to the process and this disturbance is
constant, its effect is the same for the initial (prior to the test) control and
during the test. Therefore, the disturbance is compensated for by the cor-
rect initialization before the test. The correctness of the initialization involves
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Table 7.3. FODT approximation of higher-order dynamics

Test # Actual process FODT model FODT model as per [61]

a exp−2s 1

(2s+1)2
exp−3.112s 1

4.150s+1
exp−2.998s 1

4.271s+1

b exp−2s 1

(2s+1)5
exp−7.675s 1

6.641s+1
exp−7.420s 1

7.066s+1

c exp−0.5s 1

(s+1)(s2+s+1)
exp−3.363s 1

1.301s+1
exp−2.112s 1

1.296s+1

d exp−s −s+1
(s+1)5

exp−5.838s 1
2.782s+1

exp−5.082s 1
2.292s+1

bringing the process to a steady state as precisely as possible before starting
the test. In practice, disturbance may vary. Therefore, it is important that the
test be quick enough, so that the changes of the disturbance during the test
are small, since it was assumed above that the value of external load would
not change during the test.

Higher-order process model. Also, we analyze robustness of identification
with respect to the existence of higher-order dynamics of the process. We run
the set of tests over the same higher-order dynamics as in [61], in which the
actual higher-order dynamics are identified as a FODT model. The results
are presented in Table 7.3. Results of [61] are also given for reference. Nyquist
plots for each of those transfer functions are given in Figs. 7.4 and 7.5. One can
see that there is high accuracy of approximation when the phase characteristic
is close to −180◦ (except for case “c” for which the process is oscillatory, in
which case, the FODT is not a good approximation).

7.6 Tuning algorithm

Tuning criterion. There are a number of tuning criteria that are used
for selecting optimal settings of PID controllers. Among the most well-known
are minimum of integral absolute error (IAE) and integral time absolute er-
ror (ITAE). It is worth noting that those criteria are time-domain criteria
and represent certain characteristics of the step response of the closed-loop
system. On the other hand, the most easily measurable and most important
characteristic of the step response is the value of overshoot. In other words,
neither the above-mentioned criteria account for the overshoot value directly,
nor is the overshoot included in these criteria as a constraint. In practical ap-
plications, even if the tuning is optimal in accordance with a certain criterion
but the overshoot exceeds a desirable value, the choice is always in favor of
the tuning rules that account for the overshoot constraint.

However, the overshoot cannot serve as a criterion of optimization, since
it is related to stability rather than to performance. In this section, the over-
shoot is considered a constraint, which implies the use of a certain criterion
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Fig. 7.4. Nyquist plots for options (a), (b) as per Table 7.3; [61] is denoted as [∗]

that does not involve overshoot. Consider this criterion and assume for sim-
plicity that the controller is only a proportional gain. The problem of tuning in
this case is the problem of finding the maximum value of the gain that satisfies
the overshoot constraint, as the higher values of the gain provide better dis-
turbance rejection properties. In other words, there is a trade-off between the
desired overshoot and the attainment of the maximum value of the controller
gain. We note that this trade-off is resolved in a very simple way in this situ-
ation: we reach the maximum of the gain subject to the constraint. Suppose
now that the controller is a PI-controller. Our objective is to increase both the
proportional gain and the integral gain and to satisfy the constraint for the
overshoot. However, the fact that we have to manipulate two gains does not
allow for a unique solution. We need to reformulate the original objective of
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Fig. 7.5. Nyquist plots for options (c), (d) as per Table 7.3; [61] is denoted as [∗]

maximizing the proportional gain into a different criterion, which also works
for two and three gains. This is the criterion of minimal settling time. We note
that in the case of the proportional gain, the maximum value of the gain also
provides the minimum settling time. However, the former cannot be applied
to the case of several parameters, whereas the latter can.

Therefore, we formulate and use the tuning criterion as the minimal set-
tling time subject to satisfying the constraint on the overshoot value,

tset(Kp,Ki,Kd) → min (7.11)

max
t∈[o;∞]

y(t) = 1 + yos/100 (7.12)
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where tset =
{

tset := y(tset) = 1 − Δ or y(tset) = 1 + Δ
y(t > tset) ∈ [1 − Δ; 1 + Δ]

}
is the settling

time, Δ is the step response envelope width, and yos is the overshoot value
in %. In formulas (7.11) and (7.12), it is assumed a unity feedback and the
unity step value.

PI-controller settings. The solution of this optimization problem for the
underlying process transfer function W (s) = Ke−τs

Ts+1 and the PI-controller leads
to the following optimal settings of the controller.

For overshoot 5%, 10%, and 20%, the integrator normalized time constant
can be computed as follows (respectively):

T0i = 1.60τ/T (7.13)

T0i = 1.80τ/T (7.14)

T0i = 1.95τ/T. (7.15)

The normalized values of the proportional gain are tabulated and presented
in Table 7.4. (in-between values are found via interpolation).

Table 7.4 and formulas (7.13)–(7.15) provide the values of settings that
apply to the transfer function with unity gain and time constant. For arbi-
trary parameter values, recalculation can be done using the following formu-
las, which give the scaled optimal solution that accounts for non-unity process
gains and time constants. The proportional gain is

Kp = K0p/K (7.16)

and the integrator gain is

Table 7.4. Normalized proportional gain settings K0p

yos = 5% yos = 10% yos = 20%

τ/T = 0.1 5.203 5.957 7.177

τ/T = 0.2 2.624 3.058 3.702

τ/T = 0.3 2.823 2.120 2.564

τ/T = 0.4 1.483 1.673 2.007

τ/T = 0.5 1.294 1.419 1.683

τ/T = 0.6 1.170 1.258 1.473

τ/T = 0.7 1.082 1.148 1.329

τ/T = 0.8 1.014 1.068 1.225

τ/T = 0.9 0.964 1.008 1.146

τ/T = 1.0 0.924 0.963 1.086

τ/T = 1.5 0.808 0.833 0.915
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Ki =
1

T0i
TK

. (7.17)

These settings of the PI-controller provide the fastest possible step re-
sponse of the closed-loop system subject to the overshoot constraints.

Tuning algorithm. Therefore, the complete autotuning algorithm comprises
the following steps.

(a) The values of θ1, θ2, and y0 are measured from the asymmetric relay
feedback test and Ωm and u0 are calculated.

(b) The static gain K is calculated as K = y0/u0.
(c) Equation (7.9) is solved for α with the use of the data of Table 7.1 or

formula (7.10).
(d) Once the parameter α is found, the time constant T is calculated as

T = π/(αΩm).
(e) The dead time τ is calculated as τ = T ln(0.5(eα + 1)).
(f) The normalized proportional gain and integrator time constant are

computed using Table 7.4 and formulas (7.13)–(7.15).
(g) The PI-settings of the controller are calculated using (7.16) and (7.17).
Consider the following example.

Example 7.3. Suppose the process is described by the following transfer func-
tion, which is considered unknown to the autotuner:

W (s) =
0.5e−0.6s

0.8s2 + 2.4s + 1
.

The parameters of the relay are chosen as follows: c = 1, b = 0. The
constant input signal value is f0 = 0.1. The objective is to design a PI con-
troller for this process with the use of the first-order plus dead-time transfer
function as an approximation of the process dynamics. After that, the PI con-
troller must be tuned in such a way that the system produces the shortest
possible settling time and the overshoot ≤ 10% at the step response.

The following values of the oscillatory process are measured: the frequency
of the oscillations Ωm = 1.903, the average value of the process output y0 =
0.0734, and the average value of the control signal u0 = 0.1455.

As per the described algorithm, the process parameters are identified as
follows: K = 0.5050, T = 2.5285s, τ = 0.9573s. The PI settings that provide
the characteristics of the closed-loop system are Ki = 1.349 and Kp = 3.503.
However, the actual system step response produces 12.5% overshoot. This
example demonstrates the accuracy issues and trade-offs in the design of in-
dustrial autotuners.

7.7 Conclusions

Modern DCS do not usually provide a convenient environment for itera-
tive computing (i.e., solution of algebraic equations). This is why represent-
ing identification algorithms by means of simple calculations is extremely
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important. A methodology of process identification based on the asymmet-
ric relay feedback test and the LPRS method is considered in this chapter.
The methodology involves fitting of the LPRS obtained analytically through
the given model of the process to the points of the LPRS measured from the
asymmetric relay feedback test. The methodology is presented in detail for
the process approximation (underlying process model) being the first-order
plus dead-time transfer function. We give simple analytical formulas and an
algorithm of identification suitable for the autotuning for this process approx-
imation. We consider examples and analyze the potential sources of identifi-
cation errors. The described identification-tuning algorithm is patented [21]
and implemented on Honeywell Experion PKS and TPS DCS platforms.



8

Performance analysis of the sliding
mode–based analog differentiator
and dynamical compensator

8.1 Transfer function “inversion” via sliding mode

The SM principle can be used to derive the input signal of a certain relatively
low-order dynamical system from its output. This operation is equivalent to
applying the reciprocal of the transfer function of this dynamical system to
the output, which can be viewed as the transfer function “inversion.” This is
closely related to the problems of state observation and signal differentiation.
In that respect, we analyze two devices: the SM differentiator and the SM
compensator of sensor dynamics.

Obtaining the derivative of a signal is done with devices called differ-
entiators which can be implemented either in hardware or software. Signal
differentiation is a very important practical problem, since using a differen-
tiator is normally a much cheaper option than using a sensor or a transmitter
for obtaining variables such as velocity and rate of change. However, practical
realizations of various differentiators reveal some fundamental limitations and
drawbacks, such as the presence of time delay (or lag) and sensitivity to noise.
Most of the efforts by designers of differentiators are aimed at mitigating these
drawbacks.

There are a variety of devices and algorithms that can be used as differen-
tiators. Beside the standard first or second finite difference algorithm, these
include high-pass linear filters, Kalman filters, Luenberger observers, etc. The
sliding mode principle can be used for the purpose of obtaining a derivative,
too. The first-order SM differentiator is introduced in [97]. Its dynamics are
described by the following equations:

ẏ = u (8.1)

u = c sign(f − y) (8.2)

where f is the input signal to be differentiated, and u is the output of the
differentiator, which also contains a high-frequency component that needs to
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be filtered out. The integrator (8.1) can be considered a plant in the relay
feedback system (8.1)–(8.2). These equations describe the first-order dynam-
ics, and ideal SM occurs in the system. Because ideal SM occurs, the sliding
variable σ = f − y is zero and, consequently, y = f . As a result, ẏ = ḟ , and
u = ḟ (which, of course, is true only with respect to the equivalent control),
i.e., the dynamics given by (8.1), (8.2) can be used for taking a derivative
(computing the rate of change) of a signal. The derivative can be extracted
from signal u(t), which, however, in accordance with (8.2), can possess only
two values: c and −c. Therefore, information about the derivative is modu-
lated by the high-frequency component, and the latter needs to be filtered out
through low-pass filtering.

8.2 Analysis of SM differentiator dynamics

Obviously, any practical implementation of the differentiator (8.1), (8.2) re-
sults in finite-frequency oscillations (chattering). This happens due to the ex-
istence of parasitic dynamics along with the principal dynamics. The character
of parasitic dynamics depends on the differentiator realization. If, for exam-
ple, the differentiator is implemented on operational amplifiers, the parasitic
dynamics are associated with the distinction of the amplifier dynamics from
a gain, which is revealed in the limited bandwidth of the operational ampli-
fier. Another imperfection is a delay in the switching of the relay (8.2), which
introduces a time delay in the differentiator loop. Both these imperfections re-
sult in the distinction of differentiator dynamics from the ideal differentiator,
which is the subject of analysis in this chapter. A different situation occurs
if a differentiator is implemented as a computing algorithm. In that case, the
parasitic dynamics are associated with the discrete-time realization of the al-
gorithm and the delays introduced into the differentiator loop. This type of
imperfection is considered in what follows and in further detail in Chapter 9.

Let the differentiator (8.1), (8.2) be implemented on operational amplifiers
as depicted in Fig. 8.1. In Fig. 8.1, if we assume R1 = R2 = R3, the amplitude
of the relay is determined by the limiting voltage of the Zener diodes, and the
plant transfer function is

Fig. 8.1. Analog differentiator
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Wp(s) =
1

R5C1

1
s
. (8.3)

However, as we noted above, the representation of the operational amplifier
(with a feedback) as a gain is an idealization. This is satisfactory for most
applications, but a more detailed description is needed for analysis of effects
such as chattering in the system in Fig. 8.1. A more detailed description of
the operational amplifiers would involve some dynamical properties of the
operational amplifiers such as bandwidth and maximum rate of change of the
output voltage. Let us assume that the parasitic dynamics for the first and
third amplifiers are given as first-order dynamics, and the parasitic dynamics
of the second amplifier (that has an on-off mode of operation) is given by the
time delay τ . As a result, we can write the dynamics of the linear part of the
relay servo system as follows:

Wl(s) =
Ke−τs

s(Ts + 1)2
(8.4)

where K = 1
RsC1

, T = 1
2πfmax

, fmax is the amplifier bandwidth, τ = Umax

U̇max

is the delay in the relay switching, Umax is the limiting voltage of the Zener
diodes D1 and D2, and U̇max is the maximum rate of change of the operational
amplifier output voltage.

It follows from prior analysis (see Chapter 4) that if a time delay is present
in the linear part of the system, the LPRS will always have a point of intersec-
tion with the real axis, and therefore finite-frequency oscillations (chattering)
will exist. It also results in the deterioration of the closed-loop performance.

Considering that the equivalent gain kn is obtained as a finite value, we
write the transfer function of the closed-loop differentiator dynamics:

W (s) =
kne−τs/(Ts + 1)

1 + knWl(s)
=

kne−τs(Ts + 1)
s(Ts + 1)2/K + kne−τs

· s

K
. (8.5)

In formula (8.5), the first multiplier represents the effect of the parasitic
dynamics due to the limited bandwidth of the operational amplifiers, and the
second multiplier represents the ideal differentiation. The smaller T and τ are,
the smaller is the effect of parasitic dynamics, and the higher the frequency
of chattering and the higher the value of the equivalent gain. Ideally, if we
set T → 0, τ → 0, then the differentiator transfer function W (s) → s

K , which
is the transfer function of the ideal differentiator. However, one can see that
this is impossible due to the limited bandwidth of the operational amplifiers.

It is also worth noting that formula (8.5) relates the average value of
the relay output with the input. To obtain the average value of this signal,
an additional low-pass filtering has to be applied to the differentiator output.
This also contributes to the differentiation error. The issue of low-pass filtering
of the discontinuous signal is addressed in the following section devoted to the
design of a temperature sensor compensator.
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Above, we considered the analog element implementation of the SM dif-
ferentiator. If the differentiator is realized by means of a digital controller, we
can consider only one type of parasitic dynamics, which in this case arises in
the form of the processing delay. The transfer function of the linear part in
this case is

Wl(s) =
e−τs

s
. (8.6)

The delay value is not exactly equal to the execution period (cycle) of the
controller; the relationship between those two values is more complex. This
relationship is addressed in detail in the following chapter devoted to the
SM observer. What is important in the current analysis is that in parasitic
dynamics exist, and they are manifested as an equivalent time delay. One can
see that formula (8.6) can be obtained from (8.4) by setting T = 0,K = 1.
Therefore, let us obtain the transfer function of the SM differentiator from
formula (8.5) assuming that T = 0,K = 1:

W (s) =
kne−τs

s + kne−τs
· s. (8.7)

In formula (8.7), the first multiplier represents the effect of parasitic dy-
namics due to the processing delay, and the second multiplier represents the
ideal differentiation.

The following example illustrates analysis of the performance of the ana-
logue SM differentiator.

Example 8.1. Let the differentiator be implemented as an analog circuit
(Fig. 8.1) with the following parameters: R1 = R2 = R3 = R4 = R5 = 100
kOhm, C1 = 103 nF, fmax = 1 MHz, Umax = 10 V, U̇max = 6 · 107 V/s.
We calculate the parameters of the transfer function (8.4): K = 10 s−1,
T = 1.59 · 10−7 s, τ = 1.67 · 10−7 s. We compute the LPRS for the trans-
fer function (8.4) using formula (2.33). The LPRS is presented in Fig. 8.2.

The frequency of the periodic oscillation in the differentiator loop is the
point of intersection of the LPRS and the real axis: Ω = 3.33 · 106 s−1

(∼530 kHz), and the value of the real part of the LPRS at this point is
ReJ(Ω) = −1.98 · 10−6, which provides the value of the equivalent gain
kn = 2.52 · 105. We compute the frequency response using formula (8.5) and
plot the Bode diagram (Fig. 8.3). One can see from the Bode plot that the
SM differentiator provides accurate differentiation at lower frequencies of the
input signal (subject to subsequent low-pass filtering to get rid of the oscilla-
tory component). Namely, up to frequencies of about 106 s−1 (∼159 kHz) the
accuracy is very high. At higher frequencies of the input signals the accuracy
is lower, and the frequency of the input signal cannot exceed the frequency of
the self-excited oscillation in the observer loop Ω (in fact, the input frequency
should be at least a few times lower than Ω). This example demonstrates the
analysis of the performance of the SM differentiator and highlights certain
limitations of possible applications of SM differentiators.
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Fig. 8.2. The LPRS of analog differentiator

Fig. 8.3. Bode plot of analog differentiator

8.3 Temperature sensor dynamics compensation
via SM application

Precise temperature measurements in the combustion chambers of modern
utility boilers, incinerators, and Claus furnaces in various transient pro-
cesses an important technical problem. Accurate temperature measurement
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are allows one to sense relatively fast fluctuations of this important inter-
nal process parameter and implement more sophisticated control schemes to
achieve better control. The same also applies to the measurement of water and
steam temperature in utility boilers. However, unless pyrometer measurements
are used (which is an expensive option), the dynamics of the sensor due to
the heat transfer in the thermowell and sensor material does not allow one to
read the process temperature instantaneously. The lag may be significant, pre-
venting the device from sensing fast temperature changes and fluctuations in
a transient mode. The combined thermowell-sensor time constant may range
from a few seconds to a few minutes.

A possible means of compensating for the sensor lag effect is the application
of the transfer function “inversion” principle based on SM. This application is
a special type of the SM observer, which allows one to obtain a variable that
cannot be measured directly, via matching the measured variables, subject
to the availability of the sensor dynamic model. This compensation can be
used within the electronics of temperature transmitters. The theory of SM
observers that can be utilized for this purpose is presented in [38, 97]. However,
this theory does not provide any non-ideal quantitative characteristics of a
SM observer in a transient mode, for example under harmonic excitation. It
assumes that once the SM is established, an ideal observation occurs.

With the LPRS method, which considers parasitic dynamics and their
effects, including the “chattering” phenomenon and non-ideal response to ex-
ternal inputs and disturbances, one is able to do a quantitative assessment of
compensator quality in various transient modes.

Let the dynamics of the temperature sensor be described by the following
transfer function [35] (this is an approximate model, and for that reason the
device being considered would provide only partial compensation),

Ts(s)
Tc(s)

= Ws(s) =
1

(T1s + 1)(T2s + 1)
(8.8)

where T1 is the time constant due to the thermowell heat transfer, T2 is the
sensor time constant, Ts(s) is the temperature signal provided by the sensor
(in the Laplace domain), and Tc(s) is the true combustion temperature (in
the Laplace domain).

Let us design a SM compensator using the same idea as that of SM observer
design [97]. The SM observer includes a model, which has the same dynamics
as the dynamics of the thermowell-sensor. This model has a discontinuous
control input that enforces the output of the model to match the measured
temperature. This is achieved via discontinuous SM control, which acts to
eliminate the mismatch between the measured temperature provided by the
sensor and the output of the model

¨̂
Ts =

1
T1T2

[
u − (T1 + T2)

˙̂
Ts − T̂s

]
(8.9)
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u =

{
+c if σ ≥ 0

−c if σ < 0,
(8.10)

σ = Ts − T̂s (8.11)

where T̂s is the output of the compensator’s internal model (which is supposed
to match the sensor reading Ts), u is the discontinuous control applied to the
compensator internal model, c is the amplitude of this control, and σ is the
error signal for the SM compensator (the mismatch between the sensor reading
and the compensator internal model output).

The mode that occurs in the SM compensator can be characterized as
an asymptotic second-order SM [1, 40], since the relative degree of the plant
given by equation (8.9) is two. The variable that represents an estimate of
the true combustion temperature is the equivalent control ueq(t), which is the
averaged discontinuous control u(t) subject to the existence of ideal SM.

With the compensator model given by equations (8.9)–(8.11), the mode
that occurs in the compensator closed loop is an ideal SM revealed as infinite
frequency oscillations. Obviously, such a mode cannot exist in a real system.
Due to the inevitable existence of some parasitic dynamics not accounted for
in the compensator model, the real mode has high but finite frequency oscil-
lations. This can be analyzed with the use of the LPRS method if the model
of these parasitic dynamics is available. A relatively precise model of para-
sitic dynamics can be derived from the characteristics of the components of
the SM compensator (limited bandwidth of the operational amplifiers, delays
and hysteresis in the switching elements, etc.). For the purpose of the current
analysis which is mostly illustrative, assume that the parasitic dynamics of
the SM compensator is manifested as the hysteresis of the relay function given
by formula (8.10). In this case the control function can be rewritten as:

u =

{
+c if σ = f0 − y ≥ b or σ > −b, u(t − 0) = c

−c if σ = f0 − y ≤ −b or σ < b, u(t − 0) = −c,
(8.12)

where b is the hysteresis value (half of the total hysteresis value) of the re-
lay, and u(t − 0) is the control value at the time immediately preceding the
current time.

In the system (8.9), (8.11), (8.12), high-frequency self-excited oscillations
occur, which we refer to as a real SM. As a result of this, the averaged control
is now slightly different from the equivalent control. The averaged control that
is used as an assessment of the combustion temperature can be obtained by
low-pass filtering of the control u(t). For that purpose, a low-pass filter (i.e.,
second-order filter) must be included in the compensator model as follows:

T̂c(s) =
1

T 2
3 s2 + T4s + 1

u(s). (8.13)
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Fig. 8.4. Sensor dynamics SM compensator

The resulting dynamical model of the senor and compensator can now be
represented as a block diagram (Fig. 8.4). It is worth noting here that the
SM compensator is essentially a relay servo system. Therefore, all applicable
methods of analysis that are used for relay systems can also be applied here.

8.4 Analysis of the sliding mode compensator

Let us carry out two types of analysis of compensator dynamics: under the
ideal SM assumption and under the non-ideal SM hypothesis. At first, we
assume that the control is given by (8.10). Then ideal SM occurs [1]. The
averaged control u0 in this case is equal to the equivalent control ueq. The
latter can be obtained by replacing the original relay nonlinearity (8.10) with
infinite gain (see Chapter 4 for details):

u0 = Kσ0, K → ∞. (8.14)

The subscript “0” in (8.14) refers to the averaged values. Therefore, for
the averaged motion, (8.10) and (8.11) can be rewritten as follows,

u0 = K
(
Ts − T̂s0

)
, K → ∞, (8.15)

where T̂s0 is the value T̂s averaged over the period of chattering. The equations
of averaged motions can be derived from (8.15) as follows. Because u0 is always
finite, the only way for (8.15) to hold is for the variables Ts and T̂s0 to be
equal. This in turn leads to the following equality:

ueq(s)
T̂s0(s)

=
u0(s)
T̂s0(s)

= (T1s + 1)(T2s + 1). (8.16)

Therefore, ueq = Tc. This conclusion is in agreement with the theory of SM
observation. However, this represents an ideal situation which cannot exist in
real applications.

Let us carry out a similar analysis, but consider the hysteretic character of
the relay nonlinearity. At first, the LPRS of the linear part of the system must
be computed through formula (2.19), where Wl(s) = Ws(s) = 1

(T1s+1)(T2s+1) .



8.4 Analysis of the sliding mode compensator 161

The series (2.19) converges very quickly and can be used for calculations.
Alternatively, for the Wl(s) given by the second-order transfer function, the
LPRS has an analytical formula

J(ω) = 0.5[1 − T1
T1−T2

α1 csch α1 − T2
T2−T1

α2 csch α2]

−j0.25 π
T1−T2

[T1 tanh α1
2 − T2 tanh α2

2 ],
(8.17)

where α1 = π
T1ω , α2 = π

T2ω .

Once the LPRS is computed, equation (2.3) must be solved, from which
the frequency of periodic motions in the SM compensator can be found. After
that, the equivalent gain of the relay, which relates the averaged values of the
input to and output of the relay, must be computed as per (2.4). With the
equivalent gain value available, one can write the equations of the averaged
motions in the compensator:

¨̂
Ts0 =

1
T1T2

[
u0 − (T1 + T2)

˙̂
Ts0 − T̂s0

]
(8.18)

u0 = kn σ0 (8.19)

σ0 = Ts − T̂s0 (8.20)

One can see that the equations of the averaged motions are linear, which
occurs due to the chatter smoothing phenomenon. Now by closing the open-
loop equations, we find the transfer function of the compensator:

Wc(s) =
u0(s)
T̂s0(s)

= (T1s + 1) (T2s + 1)
1

1 + 1
kn

(T1s + 1) (T2s + 1)
(8.21)

Comparing (8.21) and (8.16), one can see that the real transfer function
(8.21) of the compensator has an additional factor, given by the fraction in
(8.21), in comparison to the transfer function of the ideal compensator (8.16).
If kn → ∞, this factor tends to unity and the real transfer function becomes
equal to the ideal one. If the equivalent gain is a high but finite value, the
factor in (8.21) represented by the fraction is a low-pass filter, which reduces
the quality of compensation at high frequencies. Therefore, the bandwidth
of the compensator depends on the value of the hysteresis. The value of the
hysteresis b at given T1 and T2 determines both the frequency of periodic
motion and the value of the equivalent gain of the relay. This is illustrated
below in the example of compensator design. The low-pass filter, which serves
the purpose of suppressing the periodic component in signal u(t) in order to
obtain T̂s0, must be designed using conventional frequency-domain techniques
and techniques for separating two signals of frequencies that differ by a factor
of more than 100.
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8.5 An example of compensator design

Let us design the SM compensator for the sensor, the dynamics of which are
presented by the following two time constants: T1 = 5 s, T2 = 2 s. Let the
frequency range of possible temperature variations be ω ∈ [0; 0.2Hz]. There-
fore, the required bandwidth of the designed compensator must be at least the
same. Denote Ws(s) = 1

(5s+1)(2s+1) . Then the LPRS J(ω) corresponding to
this transfer function can be computed as in (8.17). It is presented in Fig. 8.5.

If the hysteresis b = 0, self-excited oscillations of infinite frequency would
occur in the SM compensator loop of the system in Fig. 8.4. Assuming c =
10 and a small value of hysteresis b = 5 · 10−10 (which represents parasitic
dynamics and is absolutely necessary in the model to obtain a finite-frequency
solution), we calculate −πb

4c = −3.93 · 10−11. According to (2.3), we compute
the frequency of self-excited oscillations in the SM observer loop: Ω = 1218
rad/s. The real part of the LPRS at this frequency is ReJ(Ω) = −5.54 · 10−8.
Now we calculate the equivalent gain of the relay as per (2.4): kn = 9.02 ×
106. The dynamical model of the averaged motions in the sensor-compensator
system is given in Fig. 8.6. We design the low-pass filter to filter out the
frequency of self-excited oscillations.

Consider two frequencies: the upper frequency of the required bandwidth
2π·0.2 Hz= 1.256 rad/s and the frequency of self-excited oscillations Ω = 1218
rad/s. Because the two frequencies are far from each other, we select a two-pole
Butterworth filter as the low-pass filter. We select the natural frequency of the
filter to be eight times higher than the upper frequency of the bandwidth ωn =

Fig. 8.5. The LPRS J(ω) for transfer function W (s)
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Fig. 8.6. Dynamics of averaged motions in SM compensator

Fig. 8.7. Simulink model of sensor-compensator dynamics

10.05 rad/s and calculate T3 and T4 as follows: T3 = 1/ωn = 0.0995 s, T4 =√
2/ωn = 0.141 s. Now let us run simulations of the designed SM compensator.

The Simulink model of the compensator is presented in Fig. 8.7.
We run a few different simulations using this model. The output of the

sliding mode controller (relay) is presented in Fig. 8.8, which shows that self-
excited oscillations of the predicted frequency indeed exist in the SM compen-
sator loop. The response to a harmonic input Tc(t) = sin 0.5t is presented in
Fig. 8.9. In this figure, the horizontal axis represents the actual temperature
Tc(t), and the vertical axis is the estimated temperature T̂c. There is a small
phase lag between the two signals, which is mainly due to the phase lag in-
troduced by the low-pass filter. The use of a higher-order filter would improve
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Fig. 8.8. Output of the relay (scope of the Simulink diagram)

Fig. 8.9. True temperature–observed temperature relationship

the quality of the compensator. The response of the compensator to the com-
bination of a ramp input and a harmonic input is presented in Fig. 8.10. One
can see from this figure that the output of the compensator T̂c tracks the true
temperature Tc(t) very closely.
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Fig. 8.10. True temperature and observed temperature: harmonic and ramp change

8.6 Conclusions

We consider a sliding mode differentiator and a SM compensator for tempera-
ture sensor dynamics. The differentiator can be used for taking the derivative
of various signals. The compensator is capable of restoring the original tem-
perature variations, which otherwise are lagged. It can be used as a part of a
temperature transmitter improving its dynamic response.

The compensation is based on the sliding mode observation principle. The
sliding mode is generated in the compensator loop, which includes the model
of either the integrator for the former or the sensor dynamics for the latter
and the SM controller. We show that if ideal sliding mode occurs, then the
equivalent control is equal to the observed variable. However, due to the in-
evitable presence of parasitic dynamics, the ideal SM cannot occur, and a real
SM occurs instead. We show that in this case, the true derivative or the true
temperature are approximately equal to the averaged control signal. Those
conclusions are illustrated with examples of design and simulations.
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Analysis of sliding mode observers

9.1 The SM observer as a relay servo system

The idea of using a dynamical system to obtain estimates of the system states
from measurable system variables was first proposed by Luenberger [69]. This
dynamical system is known as the observer. In this approach, the observer
dynamical system is driven by the control and by the difference between the
output of the observer and the output of the plant. Ideally, this difference is
zero, which indicates that the state estimates generated by the observer are
equal to the states of the plant.

SM can also be used for the purpose of observation if generated in the
observer dynamical system, and the system is designed in such a way that
the difference between the output of the observer and the output of the plant
becomes a sliding variable. The control should be designed to provide the
existence of SM in the observer dynamical system. This is the main idea of
the SM observer.

SM observers are analyzed in a number of publications (see, for example,
respective chapters of texbooks [38, 97], papers [82, 101], and recent tutorials
[10] and [39]). However, only the ideal SM in the observer dynamical system is
analyzed in those works (as well as in the publications referenced above). For
that reason, in a steady mode, the observation is done with zero error. The
nonzero observation error only appears in the transients while the process
is converging. After the process has converged (this time may be infinite,
though, and for that reason some observers are called asymptotic observers),
the observation error becomes zero and ideal observation occurs. Another
feature of the traditional analysis is that SM observers are always analyzed
as stabilization systems but not as servo systems.

However, no ideal SM exists in any real application. Parasitic dynamics
always exist along with the principal dynamics. Even if we consider an ob-
server in which the control is realized by means of a digital processor, the
processor itself introduces a delay into the observer loop. In addition to that,
the sensors that measure the variables of the plant also contribute to the
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error of observation, despite that fact that they are outside the observer loop,
due to a mismatch between the observer model, which does not include the
parasitic dynamics, and the plant, which does include these dynamics. It was
shown in Chapter 4 that due to the presence of parasitic dynamics, not only
does chattering occur but also the input-output properties of the SM system
differ from those of the reduced-order system model. Naturally, we can expect
the same effect in the SM observers, too.

Consider an n-dimensional version of the observer proposed by Utkin [97].
Let the linear plant, the states of which are supposed to be observed, be the
n-th order dynamical system

ẋ = Ax + Bu (9.1)

y = Cx, (9.2)

where x ∈ Rn is a state vector, y ∈ R1 is the measurable system output,
and A ∈ Rn×n,B ∈ Rn×1, and C ∈ R1×n are matrices. The pair (C,A) is
assumed to be observable.

The SM observer can be designed in the same form as the original sys-
tem (9.1), (9.2) with the addition of an output injection being, in fact, an
observer correction input which depends on the error between the output of
the observer and the output of the plant (the system to be observed):

˙̂x = Ax̂ + Bu + L sign(y − ŷ) (9.3)

ŷ = Cx̂ (9.4)

where x̂ is an estimate of the system state vector, ŷ is an estimate of the
system output, and L ∈ Rn×1 is a gain matrix.

We denote the sliding variable as follows:

σ = y − ŷ. (9.5)

The elements of L must ensure the reachability condition of the SM and
stability of the reduced SM dynamics. It is shown in [38, 97] that the matrix
L can be selected to guarantee convergence of the sliding variable σ to zero
in finite time and asymptotic convergence of the estimation error for the sys-
tem variables. We assume that the conditions for the existence of SM in the
observer dynamics are satisfied. The subject of analysis of the current chap-
ter is the effect of the inevitably present parasitic dynamics in any practical
realization of an observer.

Let us consider the observer to be a dynamical system that has two inputs
and one output. One of those two inputs y(t) must be followed (tracked) by the
observer output as precisely as possible. The other input u(t) can be treated
as a feedforward. Therefore, it makes sense to consider the observer as a relay
servo system (Fig. 9.1).

With this representation, we are now able to apply the LPRS approach
presented earlier to analysis of the SM observer performance. Yet, it is worth
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Fig. 9.1. Relay servo system representation of the SM observer

Fig. 9.2. Relay servo system representation of the SM observer with parasitic
dynamics

mentioning that a SM observer is designed so that, theoretically, in the system
in Fig. 9.1, an ideal SM occurs. As a result, in a steady state, the variables
ŷ(t) and y(t) are always equal, and the state estimates x̂(t) are equal to the
plant states x(t). To be able to analyze the dynamic performance of the SM
observers, we need to determine what kind of parasitic dynamics are present
in the system. Accounting for parasitic dynamics results in a system model
in which the ideal sliding mode no longer exists, and observation accuracy is
not ideal.

Considering a digital realization of the SM observer, we note that the
parasitic dynamics of the SM observer come from the delay in the output
calculation [6]. We show now that in a relay feedback system, the digital
realization of the observer equations is manifested as a delay. Consider only the
calculations that are done in the observer loop. Suppose that the computing
of the observer output begins from the calculation of the sliding variable σ(t),
followed by the calculation of the discontinuous control v(t), and so on up to
the observer output ŷ(t). All these calculations are done over one execution
period of the controller. Therefore, for the calculation of the sliding variable,
the value of the observer output calculated on the previous execution period
is used. This is equivalent to introducing the time delay in the observer loop
(Fig. 9.2). We note that the execution period for computing ŷ(t) and the
sampling rate for measuring y(t) are two different notions. However, for the
purpose of our analysis, we can assume that those two values are equal. This
is a simplified approach. In reality, there may be different combinations of
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sampling rate and execution period. The results also depend on the algorithm
of numeric integration of the differential equations.

Let us proceed from the following assumption. Because in the absence
of parasitic dynamics the SM is realized ideally, the digital implementation
exhibits chattering with the period equal to two execution periods of the algo-
rithm (see [77], for example). On the other hand, the system with a time delay
(Fig. 9.2) exhibits the same kind of motion. Obviously, by varying the time
delay, the frequency of chattering in the second case can be tuned to be equal
to the frequency of chattering in the first case. If we assume that the solution
of system (9.3), (9.4) is obtained exactly at the digital realization of the SM
observer, then the two SM observer dynamics, namely, the digital realization
and the time delay realization, are equivalent. In other words, if we know the
execution period, we can find a certain equivalent time delay such that the
dynamics of these two representations of the SM observer are equivalent. A
similar approach to analysis of discrete-time SM systems is proposed in [44].
Therefore, the use of time delay in the model represents a certain generic
approach to the evaluation of SM observer performance.

With this representation, we can analyze observer performance in terms
of the response of the relay servo system (Fig. 9.2) to two inputs: u and
y. This is a complex task, however, which, can be fulfilled by application
of the LPRS method, which is well suited for input-output analysis of relay
systems.

9.2 SM observer performance analysis
and characteristics

With the representation of the SM observer as a relay servo system, we can
formulate certain performance measures of the observer. In our analysis, we
have to consider certain properties of this servo system typical of the observers
only. The main feature of the observer input-output dynamics is that there
are two different inputs to the system that are not independent (Fig. 9.3).

From the function of the observer it follows that, apart from the initial
transient time, the values of y(t) and of ŷ(t) are very close. The variable y(t)
is a result of the propagation of the input u(t) through the dynamics of the
plant. On the other hand, if we assume that the model of the observer ideally
matches the model of the plant, then by setting v(t) ≡ 0, we can conclude
that ŷ(t) = y(t), which essentially means that the discontinuous control v(t) is
necessary to compensate for the mismatch between the dynamics of the plant
and the dynamics of the observer model.

Because the values of y(t) and of ŷ(t) are close, with the value of ŷ(t)
alternately slightly above or slightly below y(t), the control v(t) is almost
equally spaced, and the motion of the observer state variables is driven mainly



9.2 SM observer performance analysis and characteristics 171

Fig. 9.3. Plant and observer model

by the control u(t) (v(t) applies a corrective action to match the plant and
observer outputs).

At first, consider a possible methodology of analysis of the observer dy-
namical system given in Fig. 9.2. From the LPRS theory, we know that the
averaged forced motions in the system in Fig. 9.2 can be analyzed using the
concepts of the equivalent gain of the relay and the linearized model, which
can be obtained from the original model by replacing the relay function with
the equivalent gain. This is the general approach. The linear part of the sys-
tem for the LPRS analysis is the dynamics of the observer model and the
parasitic dynamics (time delay) marked in the diagram in Fig. 9.2 with the
dashed line. This model can also be represented by the transfer function Wl(s)
from the control v(t) to the output ŷ(t).

The methodology of input-output analysis of the dynamics given in Fig. 9.3
does not differ much from other applications of the LPRS method. However,
the observer analysis has its specifics, due to unknown value of the equivalent
time delay. As a result, analysis is done as before through the following steps:
(a) identification of the equivalent time delay of the continuous-time model of
the observer by matching the frequencies of chattering, where the frequency of
chattering of the continuous-time system is computed from (2.3), where b = 0,
with the LPRS computed using (2.12), (2.19), or (2.32); (b) computation of
the LPRS for the linear part of the relay servo system (corresponding to
Wl(s)); (c) computation of the equivalent gain value using formula (2.4); and
(d) replacement of the relay with the equivalent gain and analysis of the
linearized observer dynamics. The linearized plant-observer dynamics can be
represented as the diagram Fig. 9.4.

In Fig. 9.4, subscript “0” is used to indicate the average over the period
of chattering variables.

We have thus obtained a linear model of the plant and the observer, from
which various characteristics of the observer accuracy can be derived. Those
characteristics are different from the frequency and the amplitude of chat-
tering that can be obtained through the relay feedback representation of the
observer (Fig. 9.2). If, for example, We follow the conventional approach to
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Fig. 9.4. Linearized model of plant and observer

servo systems analysis, we can formulate a dynamical accuracy criterion as
a frequency response of the error signal σ(t) to the harmonic excitation u(t)
of variable frequency. This characteristic can be presented as magnitude and
phase responses

M = 20 lg |Wu−σ(jω)| (9.6)

ϕ = arg Wu−σ(jω) (9.7)

where M is the magnitude response, ϕ is the phase response, and Wu−σ(s) is
the transfer function from u(t) to σ(t) given by

Wu−σ(s) = C(sI − A)−1B
1 − e−τs

1 + knC(sI − A)−1Le−τs
. (9.8)

Such characteristics as the bandwidth, resonant frequencies, and others
can be easily obtained from the frequency response of the linearized plant-
observer model, too.

9.3 Example of SM observer performance analysis

Let the plant be the second-order system

ẋ = Ax + Bu (9.9)

y = Cx, (9.10)

where A =
[

0 1
−1 −3

]
, B =

[
0
1

]
, C =

[
1 1

]
, and the observer dynamics are

as follows,
˙̂x = Ax̂ + Bu + L sign(y − ŷ) (9.11)

ŷ = Cx̂, (9.12)

where L =
[
1
4

]
.
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Let the equivalent time delay be τ = 0.01s. The corresponding execution
period that causes such delay is determined below. Assume that the input
to the system is a harmonic oscillation of frequency ω that can be varied:
u(t) = sin(ωt).

We write an expression for the transfer function of the linear part in the
relay servo dynamics of the observer:

Wl(s) = C(sI − A)−1Le−τs = 5s+6
s2+3s+1e−0.01s

=
[

25+3
√

5
10

s+ 3+
√

5
2

+
25−3

√
5

10

s+ 3−
√

5
2

]
e−0.01s

= 1.2112
0.3819s+1e−0.01s + 4.7888

2.6180s+1e−0.01s.

(9.13)
The transfer function in (9.13) is represented in terms of partial fractions,

which allows for the use of the analytical expression for the LPRS. Now we
compute the LPRS corresponding to the transfer function (9.13) using the
formula for the first-order plus dead-time dynamics (2.64) and Theorem 2.1:

J(ω) =
K

2
(1 − αeγ csch α) + j

π

4
K

(
2e−αeγ

1 + e−α
− 1

)

where α = π
Tω and γ = τ

T , and τ is the time delay and T is the time constant.
The LPRS of the observer dynamics is presented in Fig. 9.5.
We calculate the frequency of chattering using formula (2.3) assuming zero

hysteresis (b = 0):
Ω = 158.48s−1.

Fig. 9.5. The LPRS of the SM observer linear part
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Fig. 9.6. Output error magnitude versus frequency

This corresponds to an execution period equal to π/Ω = 0.0198 s, which
illustrates the correspondence between the execution period and the equivalent
delay. Using formula (2.4), we calculate the equivalent gain of the relay:

kn = 20.08.

Now we can compute the observation error for various frequencies of the
input signal as the magnitude of the transfer function (9.8). The plot providing
the output error versus the frequency of the input signal is given in Fig. 9.6.
From this plot, we can also derive some other characteristics of the analyzed
SM observer. For example, the resonant frequency of the observer character-
istic is about 138 s−1, the observer bandwidth measured at the level of 1%
observation error is about 76 s−1, and maximum observation error is about
2.85%. It should be noted that the frequency-domain input-output analysis in
a SM system makes sense only for frequencies below the frequency of chatter-
ing. For that reason, the observation error is computed only in this frequency
range.

The observation error can also be computed for x1 and x2 using the same
methodology

Wu−x1(s) = C(sI−A)−1B
1 − e−τs

1 + knC(sI − A)−1Le−τs
C1(sI−A)−1L (9.14)

where C1 =
[
1 0

]
;

Wu−x2(s) = C(sI−A)−1B
1 − e−τs

1 + knC(sI − A)−1Le−τs
C2(sI−A)−1L (9.15)

where C2 =
[
0 1

]
.
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Fig. 9.7. Observation error of x1 (lower plot) and x2 (upper plot) versus frequency

The observation error for the variables x1 and x2 is plotted against the
frequency of the input signal in Fig. 9.7. Computer simulations qualitatively
match very well the results obtained analytically. However, the numerical
results may differ from the analytical results, depending on the used method
of integration, step value, execution order of the model, etc.

9.4 Conclusions

We consider LPRS-based analysis of the SM observer. We show that due to the
inevitable presence of parasitic dynamics, an observation error always takes
place. We uncover the nature of the parasitic dynamics in the observation al-
gorithm. We show that the parasitic dynamics reveal themselves as a delay in
the observer loop. We demonstrate that the delay can be identified by match-
ing the frequency of chattering in the original discrete-time system and in the
equivalent continuous-time system having a delay. We provide methodology
of subsequent analysis of the observer performance in the frequency domain.
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Appendix

10.1 The LPRS derivation for a non-integrating linear
part

Let the plant be
ẋ = Ax + Bu
y = Cx (10.1)

and the control

u =
{

+1 if σ = f0 − y ≥ b or σ > −b , u(t−) = 1
−1 if σ = f0 − y ≤ −b or σ < b , u(t−) = −1

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n are matrices, and A is nonsingular.
The solution for the constant control u is

x(t) = eAtx(0) + A−1(eAt − I)Bu.

A fixed point of the Poincaré return map for asymmetric periodic motion with
positive pulse length θ1 and negative pulse length θ2 and the unity amplitude
(the LPRS does not depend on the control amplitude) is given by:

ηp = eAθ1ρp + A−1(eAθ1 − I)B, (10.2)

ρp = eAθ2ηp − A−1(eAθ2 − I)B, (10.3)

where ρp = x(0) = x(T ), ηp = x(θ1). Suppose θ1 and θ2 are known. Then
we can solve (10.2) and (10.3) for ρp and ηp. We substitute (10.3) for ρp in
(10.2),

ηp = eAθ1
[
eAθ2ηp − A−1(eAθ2 − I)B

]
+ A−1(eAθ1 − I)B,

which leads to

ηp = eA(θ1+θ2)ηp − eAθ1A−1(eAθ2 − I)B + A−1(eAθ1 − I)B.
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We regroup the above equation.

(I − eA(θ1+θ2))ηp =
[
−eAθ1A−1(eAθ2 − I) + A−1(eAθ1 − I)

]
B.

We express ηp from the above.

ηp = (I − eA(θ1+θ2))−1
[
−eAθ1A−1(eAθ2 − I) + A−1(eAθ1 − I)

]
B.

Considering that AeAtA−1 = eAt, we obtain the following formula,

ηp = (I − eA(θ1+θ2))−1A−1
[
−eAθ1(eAθ2 − I) + eAθ1 − I

]
B

= (I − eA(θ1+θ2))−1A−1
[
2eAθ1 − eA(θ1+θ2) − I

]
B.

We similarly substitute (10.2) for ηp in (10.3),

ρp = eAθ2
[
eAθ1ρp + A−1(eAθ1 − I)B

]
− A−1(eAθ2 − I)B

= eA(θ1+θ2)ρp + eAθ2A−1(eAθ1 − I)B − A−1(eAθ2 − I)B

or
(I − eA(θ1+θ2))ρp = eAθ2A−1(eAθ1 − I)B − A−1(eAθ2 − I)B,

which gives

ρp = (I − eA(θ1+θ2))−1
[
eAθ2A−1(eAθ1 − I) − A−1(eAθ2 − I)

]
B

= (I − eA(θ1+θ2))−1
[
eAθ2A−1eAθ1 − eAθ2A−1 − A−1eAθ2 + A−1

]
B

= (I − eA(θ1+θ2))−1
[
A−1AeAθ2A−1eAθ1

−A−1AeAθ2A−1 − A−1eAθ2 + A−1
]
B

= (I − eA(θ1+θ2))−1A−1
[
eAθ2eAθ1 − eAθ2 − eAθ2 + I

]
B

= (I − eA(θ1+θ2))−1A−1
[
eA(θ1+θ2) − 2eAθ2 + I

]
B.

Considering that θ1 + θ2 = T , the solution of (10.2), (10.3) results in:

ηp = (I − eAT )−1A−1[2eAθ1 − eAT − I]B, (10.4)

ρp = (I − eAT )−1A−1[eAT − 2eAθ2 + I]B. (10.5)

Consider now the symmetric motion as a limit at θ1; θ2 → θ = T/2,

lim
θ1;θ2→θ=T/2

ρp = (I − e2Aθ)−1A−1[e2Aθ − 2eAθ + I]B

= (I − e2Aθ)−1A−1(I − eAθ)2B

= (I − e2Aθ)−1(I − eAθ)2A−1B

= (I + eAθ)−1(I − eAθ)A−1B.

(10.6)
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The imaginary part of the LPRS can be obtained from (10.6) in accordance
with its definition as follows:

ImJ(ω) =
π

4
C lim

θ1;θ2→θ=T/2
ρp =

π

4
C(I + eAπ/ω)−1(I− eAπ/ω)A−1B. (10.7)

For deriving the expression of the real part of the LPRS, consider the
periodic solution (10.4) and (10.5) as a result of the feedback action,

{
f0 − y(0) = b

f0 − y(θ1) = −b.
(10.8)

Having solved the set of equations (10.8) for f0, we obtain

f0 =
y(0) + y(θ1)

2
.

Hence, the constant term of the error signal σ(t) is

σ0 = f0 − y0 =
y(0) + y(θ1)

2
− y0.

The real part of the LPRS definition formula can be transformed into

Re J(ω) = −0.5 lim
γ→ 1

2

0.5 [y(0) + y(θ1)] − y0

u0
, (10.9)

where γ = θ1
θ1+θ2

= θ1
T .

Then θ1 = γT , θ2 = (1 − γ)T , u0 = 2γ − 1, and (10.9) can be rewritten as

Re J(ω) = −0.5 lim
γ→ 1

2

0.5C [ρp + ηp] − y0

2γ − 1
(10.10)

where ρρ and ηρ are given by (10.5) and (10.4), respectively. We find some
auxiliary limits that will be instrumental:

lim
u0→0(θ1+θ2=T=const)

eAθ1−eAθ2

u0
= lim

γ→ 1
2 (θ1+θ2=T=const)

eAθ1−eAθ2

u0

= lim
γ→ 1

2 (θ1+θ2=T=const)

eAθ1−eAθ2

2γ−1 = lim
γ→ 1

2

eAγT −eA(1−γ)T

2γ−1

= lim
γ→ 1

2

eAγT −e−AγT eAT

2γ−1 .

Taking derivatives of the numerator and the denominator, we find the
limit:

lim
γ→ 1

2

eAγT −e−AγT eAT

2γ−1 = lim
γ→ 1

2

ATeAγT +ATe−AγT eAT

2

= ATeAT/2+ATe−AT/2eAT

2 = ATeAT/2.

(10.11)
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Now using formula (10.10), we find the following limit,

lim
u0→0(θ1+θ2=T=const)

ρp+ηp

u0
= lim

γ→ 1
2

ρp+ηp

2γ−1

= lim
γ→ 1

2

2(I−eAT )−1A−1[eAθ1−eAθ2 ]B
2γ−1

= 2(I − eAT )−1A−1 lim
γ→ 1

2

eAθ1−eAθ2

2γ−1 B

= 2(I − eAT )−1A−1ATeAT/2B

= 2T (I − eAT )−1eAT/2B.

(10.12)

To calculate the limit lim
u0→0

y0
u0

, consider the equations for the constant

terms of the variables (averaged variables), which are obtained from the orig-
inal equations of the plant by equating the derivatives to zero,

{
0 = Ax0 + Bu0

y0 = Cx0.

From those equations, we obtain x0 = −A−1Bu0 and y0 = −CA−1Bu0.
Therefore,

lim
u0→0

y0

u0
= −CA−1B, (10.13)

which is essentially the steady-state gain of the plant. The real part of the
LPRS is obtained by substituting (10.12) and (10.13) for the respective limits
in (10.10),

Re J(ω) = −0.5 lim
u0→0

0.5C [ρp + ηp] − y0

u0

= −0.25C lim
u0→0

ρp + ηp

u0
+ 0.5 lim

u0→0

y0

u0
(10.14)

= −0.5TC(I − eAT )−1eAT/2B − 0.5CA−1B.

The real part of the LPRS was derived under the assumption that the
limits at u0 → 0 and at γ → 1

2 are equal. This is true only if the period T does
not change. Therefore, we need to prove that this is the case. The frequency of
the oscillations (or the period) is defined by the following switching condition
obtained from (10.8),

y(0) − y(θ1) = −2b.

We find the derivative ∂(y(0)−y(θ1))
∂u0

= 1
2

∂(y(0)−y(θ1))
∂γ at the point γ = 1

2 ,

y(0) − y(θ1) = C(I − eAT )−1A−1

×[eAT − 2eAθ2 + I − 2eAθ1 + eAT + I]B

= 2C(I − eAT )−1A−1
[
eAT + I −

(
eAθ1 + eAθ2

)]
B

= 2C(I − eAT )−1A−1
[
eAT + I −

(
eAγT + eA(1−γ)T

)]
B.
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We take the derivative with respect to γ of the last formula:

∂ (y(0) − y(θ1))
∂γ

= −2C(I − eAT )−1A−1
[
ATeAγT − ATeA(1−γ)T

]
B.

= −2C(I − eAT )−1T
[
eAγT − eA(1−γ)T

]
B

The derivative ∂(y(0)−y(θ1))
∂γ at the point γ = 1

2 is as follows:

∂ (y(0) − y(θ1))
∂γ

∣∣∣∣
γ=1/2

= 0.

It follows from the last formula that the two limits are equivalent. It also
follows from the last formula that

dΩ

df0

∣∣∣∣
f0=0

= 0.

Finally, the state-space description–based formula of the LPRS can be
obtained by combining formulas (10.7) and (10.15) as follows:

J(ω) = −0.5C[A−1 +
2π

ω
(I − e

2π
ω A)−1e

π
ω A]B

+j
π

4
C(I + e

π
ω A)−1(I − e

π
ω A)A−1B. (10.15)

10.2 Orbital stability of a system with a non-integrating
linear part

Assume that the periodic solution is given by formulas (10.4) and (10.5), and
at the initial time t = 0 the state vector has a deviation from the value in
a periodic motion, which is given as x(0) = ρ = ρp + δρ. Then for the time
interval t ∈ [0; t∗], where t∗ is the time of the switch of the relay from “+1”
to “-1,” the state vector (when the control is u = 1) is given as follows:

x(t) = eAt(ρp + δρ) + A−1(eAt − I)B

= eAtρp + A−1(eAt − I)B + eAtδρ, (10.16)

where the first two addends give the unperturbed motion, and the third ad-
dend gives the motion due to the initial perturbation δρ. We denote

x(t∗) = η = ηp + δη. (10.17)

We note that ηp is determined not at time t = t∗ but at time t = θ1.
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The main task of our analysis is to find the mapping δρ → δη. Therefore,
it follows from (10.17) that

δη = x(t∗) − ηp. (10.18)

Assuming that all perturbations are small and times t∗ and θ1 are close,
we evaluate x(t∗) by a linear approximation of x(t) at the point t = θ1,

x(t∗) − x(θ1) = ẋ(θ1−)(t∗ − θ1),

where ẋ(θ1−) is the value of the derivative at the time immediately preceding
the time t = θ1. We express x(t∗) from the last equation as follows,

x(t∗) = x(θ1) + ẋ(θ1−)(t∗ − θ1). (10.19)

Now we evaluate x(θ1) using (10.16).

x(θ1) = ηp + eAθ1δρ. (10.20)

We substitute (10.19) and (10.20) in (10.18),

δη = x(θ1) + ẋ(θ1−)(t∗ − θ1) − ηp

= ηp + eAθ1δρ + ẋ(θ1−)(t∗ − θ1) − ηp (10.21)

= v(θ1−)(t∗ − θ1) + eAθ1δρ,

where v(t) = ẋ(t). We evaluate (t∗ − θ1). The system output y(t) crosses the
level f0 + b at t = t∗, which results in the switch. Using linear approximation,
we can write for the perturbation of the output:

(t∗ − θ1)ẏ(θ1−) = −δy(θ1) = −Cδx(θ1−) = −CeAθ1δρ. (10.22)

From (10.22), we obtain

t∗ − θ1 = − δy(θ1)
ẏ(θ1−)

= − CeAθ1

ẏ(θ1−)
δρ.

Now we substitute the expression for t∗ − θ1 in (10.22),

δη = −v(θ1−)
CeAθ1

ẏ(θ1−)
δρ + eAθ1δρ = eAθ1δρ − v(θ1−)

CeAθ1

Cv(θ1−)
δρ

=
[
eAθ1 − v(θ1−)C

Cv(θ1−)
eAθ1

]
δρ =

[
I − v(θ1−)C

Cv(θ1−)

]
eAθ1δρ. (10.23)

Denote
Φ1 =

[
I − v(θ1−)C

Cv(θ1−)

]
eAθ1 , (10.24)

which is the Jacobian matrix of the mapping δρ → δη. The velocity vector
v(θ1−) in (10.24) is determined by the following formula:
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v(θ1−) = Ax(θ1) + B

= A
(
I − eAT

)−1
A−1

[
2eAθ1 − eAT − I

]
B + B

=
(
I − eAT

)−1 [
2eAθ1 − eAT − I

]
B + B

=
{(

I − eAT
)−1 [

2eAθ1 − eAT − I
]
+ I

}
B (10.25)

=
{(

I − eAT
)−1 [

2eAθ1 − eAT − I + (I − eAT )
]}

B

=
{(

I − eAT
)−1 [

2eAθ1 − 2eAT
]}

B

= 2
(
I − eAT

)−1 (
eAθ1 − eAT

)
B.

To be able to assess local orbital stability of the system, we need to find
the Jacobian matrix of the Poincaré return map, which arises from the chain-
rule application of two mappings: δρ → δη and δη → δρ. Reasoning along the
same lines, we find the Jacobian matrix of the mapping δη → δρ,

Φ2 =
[
I − v(θ2−)C

Cv(θ2−)

]
eAθ2 , (10.26)

where
v(θ2−) = 2

(
I − eAT

)−1 (
eAT − eAθ2

)
B. (10.27)

The local orbital stability of the system is determined by the eigenvalues
of the matrix Φ = Φ2Φ1. If all eigenvalues of Φ have magnitudes less than one,
then the system is orbitally asymptotically stable.

For the symmetric motion, it is sufficient to check only half of the period
of motion. If, therefore, all eigenvalues of the matrix

Φ0 =

[
I −

v(T
2 −)C

Cv(T
2 −)

]
eA T

2 , (10.28)

where

v(
T

2
−) = 2

(
I − eAT

)−1
(
eA T

2 − eAT
)
B = 2

(
I + eAT/2

)−1

eAT/2B,

have magnitudes less than one, then the system is locally orbitally asymptot-
ically stable.

10.3 The LPRS derivation for an integrating linear part

We derive the formula for J(ω) in the case of an integrating linear part (type
1 relay servo system). The state-space description of the system has the fol-
lowing form:
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ẋ = Ax + Bu

ẏ = Cx − f0

(10.29)

u =
{

+1 if σ = −y ≥ b or σ > −b , u(t−) = 1
−1 if σ = −y ≤ −b or σ < b , u(t−) = −1

where A ∈ R(n−1)×(n−1), B ∈ R(n−1)×1, C ∈ R1×(n−1), f0 is a constant
input to the system, σ(t) is the error signal, 2b is the hysteresis of the relay
function, and A is nonsingular.

The periodic solution for x(t) before the integrator is given above (formulas
(10.4) and (10.5)). The periodic output y(t) can be obtained by integrating
the second equation of (10.29) from the initial states determined by formulas
(10.4) and (10.5). As a result, for the control u = 1, the system output can
be written as follows (denote it as y1(t)),

y1(t) = y(0) +
t∫
0

(Cx(τ) − f0) dτ

= y(0) +
t∫
0

(
C(eAτρp + A−1(eAτ − I)B) − f0

)
dτ

= y(0) + C
[
A−1eAtρp

∣∣t
0

+ A−2eAtB
∣∣t
0
− A−1Bt

∣∣t
0

]
− f0t|t0

= y(0) + C
[
A−1eAtρp − A−1ρp + A−2eAtB − A−2B − A−1Bt

]
− f0t

= y(0) − CA−1Bt − f0t + CA−1[(eAt − I)ρp + A−1(eAt − I)B].
(10.30)

From (10.30), we find the value of the output at t = θ1:

y1(θ1) = y(0) − (CA−1B + f0)θ1 + CA−1[(eAθ1 − I)ρp + A−1(eAθ1 − I)B].
(10.31)

We write the system output for the control u = −1 (denote it y2(t′), where
t′ = t − θ1 is a shifted time):

y2(t′) = y1(θ1) +
t′∫
0

(Cx(τ) − f0) dτ

= y1(θ1) +
t′∫
0

(
C(eAτηp − A−1(eAτ − I)B) − f0

)
dτ

= y1(θ1) + C
[
A−1eAtηp

∣∣t′
0
− A−2eAtB

∣∣t′
0

+ A−1Bt
∣∣t′
0

]
− f0t|t

′

0

= y1(θ1) + C
[
A−1eAt′ηp − A−1ηp − A−2eAt′B + A−2B + A−1Bt′

]
− f0t

′

= y1(θ1) + CA−1Bt′ − f0t
′ + CA−1[(eAt′ − I)ηp − A−1(eAt′ − I)B].

(10.32)
From (10.32), we find the value of the output at t′ = θ2:

y2(θ2) = y1(θ1) + (CA−1B− f0)θ2 + CA−1[(eAθ2 − I)ηp −A−1(eAθ2 − I)B].
(10.33)

Because y1(t) = y(t) and y2(t′) = y(t+θ1), the last formula gives y2(θ2) =
y(θ1 + θ2) = y(T ) = y(0). We rewrite (10.31), (10.33) as follows:
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y(θ1) − y(0) + (CA−1B + f0)θ1 = CA−1[(eAθ1 − I)ρp + A−1(eAθ1 − I)B]
(10.34)

y(0) − y(θ1) − (CA−1B − f0)θ2 = CA−1[(eAθ2 − I)ηp − A−1(eAθ2 − I)B].
(10.35)

The constant input f0 must be equal to the constant term of the output of the
plant (excluding the integrator), so that the constant term (averaged value)
of the input to the integrator is zero,

f0 = −CA−1B(2γ − 1).

We assess the components in (10.34), (10.35) that contain f0. From (10.35)
we have:

(CA−1B + f0)θ1 = (CA−1B − CA−1B(2γ − 1))γT

= CA−1B(1 − 2γ + 1)γT = 2CA−1B(1 − γ)γT.

From (10.34), we have the following:

(CA−1B − f0)θ2 = (CA−1B + CA−1B(2γ − 1))(1 − γ)T
= CA−1B(1 + 2γ − 1)(1 − γ)T = 2CA−1B(1 − γ)γT.

One can see that both components are equal. We rewrite (10.34), (10.35)
accounting for the last formulas:

y(θ1) − y(0) + 2γ(1 − γ)TCA−1B = CA−1[(eAθ1 − I)ρp + A−1(eAθ1 − I)B]
(10.36)

y(0) − y(θ1) − 2γ(1 − γ)TCA−1B = CA−1[(eAθ2 − I)ηp −A−1(eAθ2 − I)B].
(10.37)

We take the sum of the left-hand sides and the right-hand sides of (10.36) and
(10.37),

0 = CA−1[(eAθ1 − I)ρp + A−1(eAθ1 − I)B

+(eAθ2 − I)ηp − A−1(eAθ2 − I)B]

= C[A−1((eAθ1 − I)ρp + (eAθ2 − I)ηp)

+A−2((eAθ1 − I) − (eAθ2 − I))B]

= C[A−2(I − eAT )−1[(eAθ1 − I)(eAT − 2eAθ2 + I)

+(eAθ2 − I)(2eAθ1 − eAT − I)]B + A−2(eAθ1 − eAθ2)B]

= C[A−2(I − eAT )−1[eAθ1eAT − 2eAT + eAθ1 − eAT + 2eAθ2 − I
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+2eAT − eAθ2eAT − eAθ2 − 2eAθ1 + eAT + I]B + A−2(eAθ1 − eAθ2)B]

= C[A−2(I − eAT )−1[−eAθ1 + eAθ2 + eAθ1eAT − eAθ2eAT ]B

+A−2(eAθ1 − eAθ2)B]

= C[A−2(I − eAT )−1(eAT − I)(eAθ1 − eAθ2)B + A−2(eAθ1 − eAθ2)B]

= C[−A−2(eAθ1 − eAθ2)B + A−2(eAθ1 − eAθ2)B] = 0.
(10.38)

Therefore, equations (10.34) and (10.35) are equivalent and do not com-
prise a system with a unique solution. In fact, they allow for an infinite number
of solutions. To define a unique solution, we consider the condition of the relay
switching,

y(θ1) = −y(0). (10.39)

Assuming (10.39), we take the difference between the left-hand sides and
the right-hand sides of (10.35) and (10.34),

4y(0) − 4γ(1 − γ)TCA−1B = C{A−1[(eAθ2 − I)ηp − (eAθ1 − I)ρp]

− A−2[(eAθ2 − I) + (eAθ1 − I)]B}
= C{A−1[(eAθ2 − I)(I − eAT )−1A−1(2eAθ1 − eAT − I)B

−(eAθ1 − I)(I − eAT )−1A−1(eAT − 2eAθ2 + I)B]

−A−2(eAθ1 + eAθ2 − 2I)B}
= C{A−2(I − eAT )−1[(eAθ2 − I)(2eAθ1 − eAT − I) − (eAθ1 − I)(eAT

−2eAθ2 + I)]B − A−2(eAθ1 + eAθ2 − 2I)B}
= C{A−2(I − eAT )−1[2eAθ1eAθ2 − eAθ2eAT − eAθ2 − 2eAθ1 + eAT + I

−eAθ1eAT + 2eAθ1eAθ2 − eAθ1+eAT − 2eAθ2+I]B

−A−2(eAθ1 + eAθ2 − 2I)B}
= C{A−2(I − eAT )−1[6eAT − 3eAθ1 − 3eAθ2

−eAT (eAθ1 + eAθ2) + 2I]B − A−2(eAθ1 + eAθ2 − 2I)B}

= CA−2{(I − eAT )−1[6eAT − 3(eAθ1 + eAθ2) − eAT (eAθ1 + eAθ2) + 2I]

−(eAθ1 + eAθ2) + 2I}B.
(10.40)

We solve (10.40) for y(0),

y(0) = γ(1 − γ)TCA−1B + 1
4CA−2{(I − eAT )−1[6eAT − 3(eAθ1 + eAθ2)

−eAT (eAθ1 + eAθ2) + 2I]

−(eAθ1 + eAθ2) + 2I}B.
(10.41)
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Formula (10.41) provides an asymmetric periodic solution in the relay
system. We consider the limiting case, when θ1; θ2 → θ = T/2 (γ → 1

2 ), and
we find a symmetric periodic solution:

lim
θ1;θ2→θ=T/2

y(0) = 1
4TCA−1B + 1

4CA−2{(I − eAT )−1

×[6eAT − 6eAT/2 − 2eAT eAT/2 + 2I] − 2eAT/2 + 2I}B

= 1
4TCA−1B + 1

2CA−2{(I − eAT )−1

×[3eAT − 3eAT/2 − eAT eAT/2 + I] − eAT/2 + I}B.
(10.42)

The imaginary part of the LPRS can be obtained from (10.42) in accor-
dance with its definition as follows:

ImJ(ω) = π
4 lim

θ1,θ2→θ=T/2
y(0) = π

16TCA−1B + π
8 CA−2{(I − eAT )−1

×[3eAT − 3eAT/2 − eAT eAT/2 + I] − eAT/2 + I}B.
(10.43)

To derive the expression of the real part of the LPRS, consider the periodic
solution (10.41) as a result of the feedback action. The constant term y0 of
the output y(t) can be determined as the sum of integrals of functions (10.30)
and (10.32), divided by period T :

y0 =
1
T

⎧
⎨

⎩

θ1∫

0

y1(τ)dτ +

θ2∫

0

y2(τ)dτ

⎫
⎬

⎭ . (10.44)

Therefore,

y0 = 1
T

{
y(0)θ1 + C

[
A−2 eAt

∣∣θ1

0
ρ − A−1ρθ1 + A−3 eAt

∣∣θ1

0
B − A−2Bθ1

]

− 1
2 (CA−1B − f0) t2

∣∣θ1

0

−y(0)θ2 + C
[
A−2 eAt

∣∣θ2

0
η − A−1ηθ2 − A−3 eAt

∣∣θ2

0
B + A−2Bθ2

]

+ 1
2 (CA−1B − f0) t2

∣∣θ2

0

}

= 1
T

{
y(0)(θ1 − θ2) − 1

2 (CA−1B + f0)θ2
1 + 1

2 (CA−1B − f0)θ2
2

+C
[
A−2(eAθ1 − I)ρ − A−1ρθ1 + A−3(eAθ1 − I)B − A−2Bθ1

−A−1ηθ2 + A−2(eAθ2 − I)η + A−2Bθ2 − A−3(eAθ2 − I)B
]}

= 1
T

{
y(0)(θ1 − θ2) + CA−1B(1 − γ)γT (θ2 − θ1)

+CA−1
[(

A−1(eAθ1 − I) − θ1

)
ρ +

(
A−1(eAθ2 − I) − θ2

)
η

+A−2(eAθ1 − I − eAθ2 + I)B − A−1B(θ1 − θ2)
]}

(10.45)
We replace ρ and η in (10.45) with formulas (10.5) and (10.4),
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y0 = 1
T

{
y(0)(θ1 − θ2) − CA−1B(1 − γ)γT (θ1 − θ2)

+CA−1
[(

A−1(eAθ1 − I) − θ1

)
A−1(I − eAT )−1[eAT − 2eAθ2 + I]B

+
(
A−1(eAθ2 − I)−θ2

)
A−1(I−eAT )−1[2eAθ1 − eAT − I]B

+A−2(eAθ1 − eAθ2)B − A−1B(θ1 − θ2)
]}

= 1
T

{
y(0)(θ1 − θ2) − CA−1B(1 − γ)γT (θ1 − θ2)

+CA−1
[
A−2(eAθ1 − I)(I − eAT )−1[eAT − 2eAθ2 + I]

−A−1(I − eAT )−1[eAT − 2eAθ2 + I]θ1

+A−2(eAθ2 − I)(I − eAT )−1[2eAθ1 − eAT − I]

−A−1(I − eAT )−1[2eAθ1 − eAT − I]θ2

+A−2(eAθ1 − eAθ2) − A−1(θ1 − θ2)
]
B
}

.
(10.46)

We substitute for θ1 and θ2 (except for powers of exponents),

y0 = 1
T

{
y(0)(2γ − 1)T − CA−1B(1 − γ)γT (2γ − 1)T

+CA−2
[
A−1(eAθ1 − I)(I − eAT )−1(eAT + I)

−A−1(eAθ1 − I)(I − eAT )−12eAθ2

−(I − eAT )−1(eAT + I)γT + (I − eAT )−12eAθ2γT

−A−1(eAθ2 − I)(I − eAT )−1(eAT + I)

+A−1(eAθ2 − I)(I − eAT )−12eAθ1

+(I − eAT )−1(eAT + I)(1 − γ)T

−(I − eAT )−12eAθ1(1 − γ)T

+A−1(eAθ1 − eAθ2) − (2γ − 1)T
]
B
}

.
(10.47)

Rearranging the terms in (10.47), we obtain

y0 = 1
T

{
y(0)(2γ − 1)T − CA−1B(1 − γ)γT (2γ − 1)T

+CA−2
[
A−1(eAθ1 − eAθ2)(I − eAT )−1(eAT + I)

−2A−1(eAT − eAθ2 − eAT + eAθ1)(I − eAT )−1

−(I − eAT )−1(eAT + I)(2γ − 1)T

+2(I − eAT )−1(γeAθ2 − (1 − γ)eAθ1)T

+A−1(eAθ1 − eAθ2) − (2γ − 1)T
]
B
}

.
(10.48)
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Simplifying (10.48), we obtain

y0 = 1
T

{
y(0)(2γ − 1)T − CA−1B(1 − γ)γT 2(2γ − 1)

+CA−2
[
A−1(eAθ1 − eAθ2)(I − eAT )−1(eAT + I)

−2A−1(eAθ1 − eA2)(I − eAT )−1

−(I − eAT )−1(eAT + I)(2γ − 1)T

+2(I − eAT )−1(γ(eAθ2 + eAθ1) − eAθ1)T

+A−1(eAθ1 − eAθ2) − (2γ − 1)T
]
B
}

.

(10.49)

Now we compute the following limit, which is instrumental below,

lim
γ→ 1

2

γ(eAθ1−eAθ2)−eAθ1

2γ−1 = lim
γ→ 1

2

γ(eAγT −eA(1−γ)T )−eAγT

2γ−1

= lim
γ→ 1

2

(γ−1)eAγT +γeA(1−γ)T

2γ−1 .

Taking derivatives of the numerator and the denominator, we find the limit

lim
γ→ 1

2

γ(eAθ1−eAθ2)−eAθ1

2γ−1

= lim
γ→ 1

2

eAγT +(γ−1)ATeAγT +eA(1−γ)T −γATeA(1−γ)T

2

= 1
2

(
eAT/2 − 1

2ATeAT/2 + eAT/2 − 1
2ATeAT/2

)

= 1
2

(
2eAT/2 − ATeAT/2

)
=

(
I − 1

2AT
)
eAT/2.

(10.50)

Considering formula (10.49) and auxiliary limits (10.11) and (10.50), we
find that limit lim

u0→0

y0
u0

lim
u0→0

y0
u0

= lim
γ→ 1

2

y0
2γ−1 = 1

T

{
y(0)T − 1

4CA−1BT 2

+CA−2
[
TeAT/2(I − eAT )−1(eAT + I)

−2TeAT/2(I − eAT )−1 − (I − eAT )−1(eAT + I)T

+2(I−eAT )−1
(
I−1

2AT
)
eAT/2T +TeAT/2−T

]
B
}

.
(10.51)

We substitute formula (10.42) for y(0):

lim
u0→0

y0
u0

= 1
4
TCA−1B − 1

4
TCA−1B

+CA−2
[

1
2
(I − eAT )−1

(
3eAT − 3eAT/2 − eAT eAT/2 + I

)

− 1
2
eAT/2+ 1

2
I+eAT/2(I−eAT )−1(eAT +I)−2eAT/2(I−eAT )−1

−(I − eAT )−1(eAT + I) + 2(I − eAT )−1
(
I − 1

2
AT

)
eAT/2

+eAT/2 − I
]
B.

(10.52)
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Further simplification yields the following formula:

lim
u0→0

y0
u0

= CA−2
[
(I − eAT )−1

(
3
2eAT − 3

2eAT/2 − 1
2eAT eAT/2 + 1

2I

+eAT eAT/2+eAT/2−2eAT/2−eAT−I+2eAT/2−ATeAT/2
)

+ 1
2eAT/2 − 1

2I
]
B

= CA−2
[
(I − eAT )−1

(
1
2eAT −

(
1
2I + AT

)
eAT/2 + 1

2eAT eAT/2 − 1
2I

)

+ 1
2eAT/2 − 1

2I
]
B.

(10.53)
Considering the LPRS definition, we write the formula for the real part:

ReJ(ω) = −0.5 lim
f0→0

σ0
u0

= 0.5 lim
γ→ 1

2

y0
u0

= 1
4CA−2

[
(I − eAT )−1

(
eAT − (I + 2AT ) eAT/2 + eAT eAT/2 − I

)

+eAT/2 − I
]
B.

(10.54)
The real part of the LPRS is derived under the assumption that the limits

at u0 → 0 and at γ → 1
2 are equal. This is true only if the period T does not

change. Therefore, we need to prove that this is the case. The frequency of
the oscillations (or the period) is defined by the switching condition,

y(0) = −y(θ1) = −b.

We find the derivative ∂y(0)
∂u0

at the point γ = 1
2 by taking the derivative

of (10.41),

∂y(0)
∂u0

= 1
2

∂y(0)
∂γ = (1 − 2γ)TCA−1B + 1

4CA−2

×
{(

I − eAT
)−1 [−3AT (eAγT − eA(1−γ)T ) − eAT AT (eAγT − eA(1−γ)T )

]

−AT (eAγT − eA(1−γ)T )
}

B.

or continuing

∂y(0)
∂u0

∣∣∣
u0=0

= 1
2

∂y(0)
∂γ

∣∣∣
γ=1/2

= 0 · TCA−1B + 1
4CA−2

×
{(

I − eAT
)−1 [−3AT · 0 − eAT AT · 0

]
− AT · 0

}
B = 0.

(10.55)

The derivative (10.55) is zero, which is also equivalent to ∂Ω
∂f0

∣∣∣
f0=0

= 0;

hence the two limits are equal. Finally, the LPRS for the case of an integrating
linear part can be written through the following formula,

J(ω) = 0.25CA−2{(I − D2)−1[D2 − (I + 4π
ω A)D + D3 − I] + D − I}B

+j π
8 CA−1{π

ω + A−1[(I − D2)−1 · (3D2 − 3D − D3 + I) − D + I]}B,
(10.56)
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where D = e
π
ω A.

Therefore, the state-space description–based LPRS formula for the case of
an integrating linear part (type 1 relay servo system) has been derived above.

10.4 Orbital stability of a system with an integrating
linear part

We shall assess the orbital stability of the relay feedback system with an
integrating plant by finding the Poincaré return map for the deviation of the
variable x(t) at the switching times δρ → δη → δρ. The exclusion of the
variable y(t) from this consideration is possible, since the values of y(t) at the
switching times are confined by the switching condition y = ±b. A similar
exclusion of one of the state variables from consideration is also possible in
the analysis of stability for the system with a non-integrating linear part.
However, technically the consideration of the full-dimensional state vector
leads to simpler derivations.

Therefore, let the periodic solution be given by (10.4) and (10.5), where
ρp = x(0) and ηp = x(θ1), and the switching conditions y(0) = −y(θ1) = −b,
with the constant external input being f0 ≡ (2γ − 1)CA−1B. Let us assume
that at time t = 0, the state vector is x(0) = ρ = ρp + δρ. Then for the time
interval t ∈ [0; t∗], where t∗ is the time of the switch of the relay from “+1”
to “−1,” the state vector (while the control is u = 1) is given as follows:

x(t) = eAt(ρp + δρ) + A−1(eAt − I)B
= eAtρp + A−1(eAt − I)B + eAtδρ,

(10.57)

where the first two addends give the unperturbed motion, and the third ad-
dend gives the motion due to the initial perturbation δρ. Let us denote

x(t∗) = η = ηp + δη. (10.58)

We note that ηp is determined not at time t = t∗ but at time t = θ1.
The main task of our analysis is to find the mapping δρ → δη. Therefore,

it follows from (10.58) that

δη = x(t∗) − ηp. (10.59)

Considering that all perturbations are small and the times t∗ and θ1 are
close, we evaluate x(t∗) through a linear approximation of x(t) at the point
t = θ1,

x(t∗) − x(θ1) = ẋ(θ1−)(t∗ − θ1),

where ẋ(θ1−) is the value of the derivative at the time immediately preceding
time t = θ1. We express x(t∗) from the last equation as follows:

x(t∗) = x(θ1) + ẋ(θ1−)(t∗ − θ1). (10.60)
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Now we evaluate x(θ1) using (10.57):

x(θ1) = ηp + eAθ1δρ. (10.61)

We substitute (10.60) and (10.61) in (10.59):

δη = x(θ1) + ẋ(θ1−)(t∗ − θ1) − ηp

= ηp + eAθ1δρ + ẋ(θ1−)(t∗ − θ1) − ηp

= v(θ1−)(t∗ − θ1) + eAθ1δρ,
(10.62)

where v(t) = ẋ(t). We evaluate (t∗ − θ1). The system output y(t) crosses the
level b at t = t∗, which results in the switch. Using linear approximation, we
can write the following expression for the perturbation of the output:

(t∗ − θ1)ẏ(θ1−) = −δy(θ1). (10.63)

Note that due to the integrating character of the plant, the following equal-
ity holds: ẏ(θ1−) = ẏ(θ1+) = ẏ(θ1). Consider the equation

ẏ = Cx − f0

from which we obtain the following formula:

y(t) =

t∫

0

Cx(τ)dτ −
t∫

0

f0dτ + y(0),

where y(0) = −b and
t∫
0

f0dτ = f0t

∣∣∣∣
t

0

= f0t. Integration of the first addend

yields

t∫
0

Cx(τ)dτ =
t∫
0

C{eAτρp + A−1(eAτ − I)B + eAτδρ}dτ

= CA−1eAtρp

∣∣t
0

+ CA−2eAtB
∣∣∣
t

0
− CA−1Bt + CA−1eAtδρ

∣∣∣∣
t

0

= CA−1(eAt − I)ρp + CA−2(eAt − I)B − CA−1Bt + CA−1(eAt − I)δρ.
(10.64)

We write a formula for y(t) using the expression (10.64),

y(t) = CA−1(eAt − I)ρp + CA−2(eAt − I)B

−CA−1Bt + CA−1(eAt − I)δρ − f0t − b.
(10.65)

The component that is due to the initial perturbation is the one that
contains δρ. Therefore, the perturbation of the output at time t = θ1 is

δy(θ1) = CA−1(eAθ1 − I)δρ. (10.66)
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We evaluate ẏ(θ1) in formula (10.63) as

ẏ = Cx − f0

ẏ(θ1) = Cx(θ1) − f0 = Cηp + CeAθ1δρ − f0. (10.67)

We can now write an expression for (t∗ − θ1) as follows:

t∗ − θ1 = −δy(θ1)
ẏ(θ1)

= −CA−1(eAθ1 − I)δρ
ẏ(θ1)

. (10.68)

We substitute (10.68) for (t∗ − θ1) in (10.62):

δη = −v(θ1−) δy(θ1)
ẏ(θ1)

= −v(θ1−)CA−1(eAθ1−I)δρ
ẏ(θ1)

+ eAθ1δρ

= −v(θ1−) CA−1(eAθ1−I)
Cηp+CeAθ1δρ−f0

δρ + eAθ1δρ.

The Jacobian matrix for the mapping δρ → δη can be found by taking the
derivative of the previous formula with respect to δρ at the point δρ = 0,

Φ1 =
d(δη)
d(δρ)

∣∣∣∣
δρ=0

= −v(θ1−)
CA−1(eAθ1 − I)

ẏp(θ1)
+ eAθ1 , (10.69)

where v(θ1−) is given by formula (10.26), ẏp(θ1) = Cηp − f0, and ηp is given
by (10.4). Therefore,

ẏp(θ1) = C(I − eAT )−1A−1[2eAθ1 − eAT − I]B − f0. (10.70)

To be able to assess the local orbital stability of the system, we need to
find the Jacobian matrix of the Poincare return map, which arises from the
chain-rule application of two mappings: δρ → δη and δη → δρ. Reasoning
along the same lines, we find the Jacobian matrix of mapping δη → δρ,

Φ2 = −v(θ2−)
CA−1(eAθ2 − I)

ẏp(θ2)
+ eAθ2 , (10.71)

where v(θ2−) is given by formula (10.27), ẏp(θ2) = Cρp − f0, and ρp is given
by (10.5). Therefore,

ẏp(θ2) = −C(I − eAT )−1A−1[2eAθ2 − eAT − I]B − f0. (10.72)

The local orbital stability of the system is determined by the eigenvalues
of the matrix Φ = Φ2Φ1. If all eigenvalues of Φ have magnitudes less than one,
then the system is orbitally asymptotically stable.

For the symmetric motion, it is sufficient to check only half of the period
of motion. If, therefore, all eigenvalues of the matrix

Φ0 = −
v
(

T
2 −

)
CA−1(eA T

2 − I)
ẏp(T

2 )
+ eA T

2 , (10.73)
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where

v(
T

2
−) = 2

(
I − eAT

)−1
(
eA T

2 − eAT
)
B = 2

(
I + eAT/2

)−1

eAT/2B,

and

ẏp

(
T
2

)
= C

(
I − eAT

)−1
A−1

(
2eAT/2 − eAT − I

)
B

= CA−1
(
I − eAT

)−1 (2eAT/2 − eAT − I
)
B

= CA−1
(
I − eAT

)−1 (2eAT/2 + I − eAT − 2I
)
B

= CA−1
(
I − eAT

)−1 (2
(
eAT/2 − I

)
+

(
I − eAT

))
B

= CA−1B + 2CA−1
(
I − eAT

)−1 (
eAT/2 − I

)
B

= CA−1B − 2CA−1
(
I − eAT/2

)−1 (
I + eAT/2

)−1 (
I − eAT/2

)
B

= CA−1B − 2CA−1
(
I + eAT/2

)−1
B

(10.74)

have magnitudes less than one, then the system is locally orbitally asymptot-
ically stable.

10.5 The LPRS derivation for a linear part with time
delay

Let the plant be
ẋ = Ax + Bu
y = Cx (10.75)

and the control be

u =
{

+1 if σ(t − τ) = f0 − y(t − τ) ≥ b or σ(t − τ) > −b , u(t−) = 1
−1 if σ(t − τ) = f0 − y(t − τ) ≤ −b or σ(t − τ) < b , u(t−) = −1

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n are matrices, and A is nonsingular.
We assume that time t = 0 corresponds to the time the error signal reaches
the value of the hysteresis: σ = b, σ̇ > 0. The solution for the constant control
u = ±1 is

x(t) = eA(t−τ)x(τ) ± A−1(eA(t−τ) − I)B, t > τ.

Therefore, also

x(τ) = eAτx(0) − A−1(eAτ − I)B.

A fixed point of the Poincaré return map for asymmetric periodic motion
with positive pulse length θ1, negative pulse length θ2, and unity amplitude
(the LPRS does not depend on the control amplitude) is determined as follows:

ηp = eAθ1ρp + A−1(eAθ1 − I)B, (10.76)
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ρp = eAθ2ηp − A−1(eAθ2 − I)B, (10.77)

where ρp = x(τ) = x(T + τ), ηp = x(θ1 + τ). Suppose θ1 and θ2 are known.
Then (10.76) and (10.77) for ρp and ηp are identical to (10.2) and (10.3)
(however, the variables themselves are defined in a different way) and can be
solved in exactly the same way:

ηp = (I − eAT )−1A−1[2eAθ1 − eAT − I]B, (10.78)

ρp = (I − eAT )−1A−1[eAT − 2eAθ2 + I]B. (10.79)

Now given that ρp = x(τ) = eAτx(0)−A−1(eAτ − I)B and ηp = x(θ1 + τ) =
eAτx(θ1) + A−1(eAτ − I)B, we find x(0):

x(0) = e−Aτ
[
ρp + A−1(eAτ − I)B

]

= e−Aτ
[
(I − eAT )−1A−1[eAT − 2eAθ2 + I]B + A−1(eAτ − I)B

]
.

(10.80)

Reasoning along similar lines, we find the formula for x(θ1),

x(θ1) = e−Aτ
[
ηp − A−1(eAτ − I)B

]

= e−Aτ
[
(I − eAT )−1A−1[2eAθ1 − eAT − I]B − A−1(eAτ − I)B

]
.

(10.81)

Consider now the symmetric motion as a limit of (10.80) at θ1; θ2 → θ =
T/2,

lim
θ1;θ2→θ=T/2

x(0) = e−Aτ
[
(I − eAT )−1A−1[eAT − 2eAT/2 + I]B

+A−1(eAτ − I)B
]

= e−Aτ
[
(I − eAT/2)−1(I + eAT/2)−1A−1(I − eAT/2)2B

+A−1(eAτ − I)B
]

= e−Aτ
[
(I + eAT/2)−1A−1(I − eAT/2) + A−1(eAτ − I)

]
B

=
[
e−Aτ (I + eAT/2)−1A−1(I − eAT/2) + e−AτA−1(eAτ − I)

]
B

= (I + eAT/2)−1A−1
[
e−Aτ − eA(T/2−τ)

+(I + eAT/2)(I − e−Aτ )
]
B

= (I + eAT/2)−1A−1
[
I + eAT/2 − 2eA(T/2−τ)

]
B.

(10.82)
The imaginary part of the LPRS can be obtained from (10.82) in accor-

dance with its definition as follows:

ImJ(ω) = π
4 lim

θ1;θ2→θ=T/2
x(0)

= π
4 C(I + eAπ/ω)−1(I + eAπ/ω − 2eA(π/ω−τ))A−1B.

(10.83)

For deriving the expression of the real part of the LPRS, consider the
periodic solution (10.78) and (10.79) as a result of the feedback action,

{
f0 − y(0) = b
f0 − y(θ1) = −b.

(10.84)



196 10 Appendix

Solving the set of equations (10.84) for f0, we obtain

f0 =
y(0) + y(θ1)

2
.

Hence, the constant term of the error signal σ(t) is

σ0 = f0 − y0 =
y(0) + y(θ1)

2
− y0.

The real part of the LPRS formula is transformed into

Re J(ω) = −0.5 lim
γ→ 1

2

0.5 [y(0) + y(θ1)] − y0

u0
, (10.85)

where γ = θ1
θ1+θ2

= θ1
T .

Then θ1 = γT , θ2 = (1 − γ)T , u0 = 2γ − 1, and (10.85) can be rewritten as:

Re J(ω) = −0.5 lim
γ→ 1

2

0.5C [x(0) + x(θ1)] − y0

2γ − 1
, (10.86)

where x(0) and x(θ1) are given by (10.80) and (10.81), respectively. Now
considering the limit given by (10.11), which can also be applied to the plant
with a time delay, we find the following limit,

lim
u0→0(θ1+θ2=T=const)

x(0)+x(θ1)
u0

= lim
γ→ 1

2

x(0)+x(θ1)
2γ−1

= lim
γ→ 1

2

e−Aτ (ρp+ηp)
2γ−1

= e−Aτ lim
γ→ 1

2

2(I−eAT )−1A−1[eAθ1−eAθ2 ]B
2γ−1

= 2e−Aτ (I − eAT )−1A−1 lim
γ→ 1

2

eAθ1−eAθ2

2γ−1 B

= 2e−Aτ (I − eAT )−1A−1ATeAT/2B
= 2e−AτT (I − eAT )−1eAT/2B.

(10.87)

To find the limit lim
u0→0

y0
u0

, consider the equations for the constant terms

of the variables (averaged variables), which are obtained from the original
equations of the plant by equating the derivatives to zero,

{
0 = Ax0 + Bu0

y0 = Cx0.

From these equations, we obtain x0 = −A−1Bu0 and y0 = −CA−1Bu0.
Therefore,

lim
u0→0

y0

u0
= −CA−1B, (10.88)
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which is essentially the steady-state gain of the plant. The real part of the
LPRS is obtained by substituting (10.87) and (10.88) for the respective limits
in (10.86):

Re J(ω) = −0.5 lim
u0→0

0.5C[x(0)+x(θ1)]−y0
u0

= −0.25C lim
u0→0

x(0)+x(θ1)
u0

+ 0.5 lim
u0→0

y0
u0

= −0.5TC(I − eAT )−1eA(T/2−τ)B − 0.5CA−1B.

(10.89)

The real part of the LPRS is derived under the assumption that the limits
at u0 → 0 and at γ → 1

2 are equal. This is true only if the period T does not
change. Therefore, we need to prove that this is the case. The frequency of
the oscillations (or the period) is defined by the following switching condition
that is obtained from (10.82),

y(0) − y(θ1) = −2b.

We find the derivative ∂(y(0)−y(θ1))
∂u0

= 1
2

∂(y(0)−y(θ1))
∂γ at the point γ= 1

2 ,

y(0) − y(θ1)=Ce−Aτ{(I − eAT )−1A−1

×[eAT−2eAθ2 + I−2eAθ1 + eAT + I]B+2A−1(eAτ − I)B}
= 2Ce−Aτ (I − eAT )−1A−1

[
eAT + I −

(
eAθ1 + eAθ2

)]
B

+2CA−1(I − e−Aτ )B
= 2Ce−Aτ (I − eAT )−1A−1

[
eAT + I −

(
eAγT + eA(1−γ)T

)]
B

+2CA−1(I − e−Aτ )B.

We take the derivative with respect to γ in the last formula (considering
also that CA−1(I − e−Aτ )B does not depend on γ),

∂(y(0)−y(θ1))
∂γ = −2C(I − eAT )−1A−1

[
ATeAγT − ATeA(1−γ)T

]
B

= −2C(I − eAT )−1T
[
eAγT − eA(1−γ)T

]
B.

The derivative ∂(y(0)−y(θ1))
∂γ at the point γ = 1

2 is as follows,

∂ (y(0) − y(θ1))
∂γ

∣∣∣∣
γ=1/2

= 0.

It follows from the last formula that the two limits are equivalent. It also
follows from the last formula that

dΩ

df0

∣∣∣∣
f0=0

= 0.

Finally, the state space description based formula of the LPRS can be
obtained by combining formulas (10.81) and (10.89) as follows:

J(ω) = −0.5C
[
A−1 + 2π

ω

(
I − e

2π
ω A

)−1

e(
π
ω −τ)A

]
B

+j π
4 C

(
I + e

π
ω A

)−1
(
I + e

π
ω A − 2e(

π
ω −τ)A

)
A−1B.

(10.90)



198 10 Appendix

10.6 MATLAB code for LPRS computing

function J=lprsmatr(A,B,C,w)
%
% Calculation of a point of the LPRS
% of a non-integrating plant
% for matrix-vector system description,
% dx/dt=Ax+Bu; y=Cx
% w - frequency
%
n=size(A,1);
AINV=inv(A);
I=eye(n);
if w==0
J=(-0.5+j*0.25*pi)*C*AINV*B;
else
t=2.*pi/w;
AEXP=expm(0.5*A*t);
AEXP2=expm(A*t);
re lprs=-0.5*C*(AINV+t*inv(I-AEXP2)*AEXP)*B;
im lprs=0.25*pi*C*inv(I+AEXP)*(I-AEXP)*AINV*B;
J=re lprs+j*im lprs;
end

function J=lprsmatrint(A,B,C,w)
%
% Calculation of a point of the LPRS
% of an integrating plant
% for matrix-vector system description,
% dx/dt=Ax+Bu; dy/dt=Cx
% w - frequency
%
n=size(A,1);
AINV=inv(A);
AINV2=AINV*AINV;
I=eye(n);
if w==0
J=0.5*C*AINV*B-j*1000000.;
else
t=2.*pi/w;
D=expm(0.5*A*t);
re lprs=0.25*C*AINV2*(inv(I-D*D)*(D*D-(I+2.*t*A)*D+D*D*D-I)...
+D-I)*B;
im lprs=0.0625*pi*C*AINV*B*t+0.125*pi*C*AINV*AINV*(inv(I-D*D)...
*(3*D*D-3*D-D*D*D+I)-D+I)*B;
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J=re lprs+j*im lprs;
end

function J=lprsmatrdel(A,B,C,tau,w)
%
% Calculation of a point of the LPRS
% for matrix-vector system description having time delay “tau”,
% dx/dt=Ax+Bu(t-tau); y=Cx
% w - frequency
%
n=size(A,1);
AINV=inv(A);
I=eye(n);
if w==0
J=(-0.5+j*0.25*pi)*C*AINV*B;
else
t=2.*pi/w;
AEXP=expm(0.5*A*t);
AEXP2=expm(A*t);
AEXP3=expm(A*(0.5*t-tau));
re lprs=-0.5*C*(AINV+t*inv(I-AEXP2)*AEXP3)*B;
im lprs=0.25*pi*C*inv(I+AEXP)*(I+AEXP-2*AEXP3)*AINV*B;
J=re lprs+j*im lprs;
end

function J=lprsser200(w,name,pr)
% Function calculating the LPRS
% at a given frequency
% based on the series formula
% (as a sum of 200 terms of the series)
% ‘w’ - current frequency,
% ‘name’ - name of m-file providing
% calculation of transfer function,
% ‘name’ is a string variable
% ‘pr’ - parameters of transfer function
reloc=0;
imloc=0;
iodd=-1;
for k=1:200
iodd=-iodd;
omk=k*w;
reimloc=feval(name,omk,pr);
reloc=reloc+iodd*real(reimloc);
if iodd==1
imloc=imloc+imag(reimloc)/k;
end
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end
J=reloc+j*imloc;

function J=lprs1ord(k,t,w)
%
% Calculation of a point of the LPRS
% for Transfer Function G(s)=k/(t*s+1),
% w - frequency
%
if w==0
J=k*(0.5-j*pi/4);
else
al=pi/t/w;
J=0.5*k*(1-al*csch(al)-j*0.5*pi*tanh(al/2));
end

function J=lprsint(k,w)
%
% Calculation of a point of the LPRS
% for Transfer Function G(s)=k/s,
% w - frequency
%
if w==0
J=0-j*inf;
else
J=0-j*pi*pi*k/8/w;
end

function J=lprs2ord1(k,xi,w)
%
% Calculation of a point of the LPRS
% for Transfer Function G(s)=k/(s*s+2*xi*s+1),
% w - frequency
% xi < 1
%
if w==0
J=k*(0.5-j*pi/4);
else
al=pi*xi/w;
sq=sqrt(1-xi*xi);
bt=pi*sq/w;
gm=al/bt;
b=al*cos(bt)*sinh(al)+bt*sin(bt)*cosh(al);
c=al*sin(bt)*cosh(al)-bt*cos(bt)*sinh(al);
J=0.5*k*(1-(b+gm*c)/(sin(bt)∧2+sinh(al)∧2))...
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-j*0.25*pi*k*(sinh(al)-gm*sin(bt))/(cosh(al)+cos(bt));
end

function J=lprs2ord2(k,xi,w)
%
% Calculation of a point of the LPRS
% for Transfer Function G(s)=k*s/(s*s+2*xi*s+1),
% w - frequency
% xi < 1
%
if w==0
J=0-j*0;
else
al=pi*xi/w;
sq=sqrt(1-xi*xi);
bt=pi*sq/w;
gm=al/bt;
b=al*cos(bt)*sinh(al)+bt*sin(bt)*cosh(al);
c=al*sin(bt)*cosh(al)-bt*cos(bt)*sinh(al);
denom=sin(bt)∧2+sinh(al)∧2;
J=0.5*k*(-pi/w*sinh(al)*cos(bt)/denom+xi*(b+gm*c)/denom)...
-j*0.25*k*pi/sq*sin(bt)/(cosh(al)+cos(bt));
end

function J=lprs2ord3(k,w)
%
% Calculation of a point of the LPRS
% for Transfer Function G(s)=k*s/(s+1)∧2,
% w - frequency
%
if w==0
J=0-j*0;
else
al=pi/w;
chal=cosh(al);
shal=sinh(al);
J=k*(0.5*al*(-shal+al*chal)/shal/shal-j*0.25*pi*al/(1+chal));
end

function J=lprs2ord4(k,xi,w)
%
% Calculation of a point of the LPRS
% for Transfer Function G(s)=k*s/(s*s+2*xi*s+1),
% w - frequency
% xi > 1
%
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if w==0
J=0-j*0;
else
sq=sqrt(xi*xi-1);
k1=-0.5/sq;
k2=-k1;
t1=xi+sq;
t2=xi-sq;
J=k*(lprs1ord(k1,t1,w)+lprs1ord(k2,t2,w));
end

function J=lprsfopdt(k,t,tau,w)
%
% Calculation of a point of the LPRS
% for transfer function G(s)=k*exp(-tau*s)/(t*s+1),
% ‘w’ - current frequency
%
if w==0
J=k*(0.5-j*pi/4);
else
al=pi/t/w;
gm=tau/t;
expal=exp(-al);
expgm=exp(gm);
J=0.5*k*(1-al*expgm*csch(al)+j*0.5*pi*(2*expal*expgm/(1+expal)-1));
end

Example of the LPRS computing for FOPDT dynamics.

script
%
% Calculation of the LPRS of FOPDT dynamics
% with ransfer function
% G(s)=k*exp(-tau*s)/(t*s+1)
% and plotting the locus
%
clear
clc
gain=1.; % gain
tconst=1.; % time constant
tdead=1.; % dead time
ommin=0.0001; % minimum frequency (in this code it is slightly higher
% than 0 to enable the use of the logarithmic scale)
ommax=1000.; % Maximum frequency
% The following code is used to generate logarithmic distribution
% of frequency points
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nom=100; % number of frequency points
lmin=log10(ommin);
lmax=log10(ommax);
delta=(lmax-lmin)/(nom-1);
lom=lmin-delta;
for iom=1:nom
lom=lom+delta;
om=10∧lom;
locus(iom)=lprsfopdt(gain,tconst,tdead,om);
end
plot(locus)
grid
axis(‘equal’)

The LPRS computing for Example 4.6
script
clc
clear
% ————————————–
% Calculation of the LPRS of the
% actuator + plant + sliding surface
% for Example 4.6
% ————————————–
% “w ex 4 6” is the name of the external
% function (complex) that returns the value of the
% transfer function at frequency “om”;
% “ommin” and “ommax” are the low and the high frequencies
% of the analyzed frequency range;
% “nom” is the number of points of this frequency range;
pr=0.; % “pr” is not used in this example;
% however, is can be used for sending parameters to the function
% that calculates the transfer function
ommin=20.;
ommax=10000.;
nom=200;
lmin=log10(ommin); % the next 4 lines are used to make a logarithmic
lmax=log10(ommax); % distribution of frequency points in the range
delta=(lmax-lmin)/(nom-1);
lom=lmin-delta;
name=‘w ex 4 6’;
for iom=1:nom
lom=lom+delta;
om=10.∧lom;
omega(iom)=om;
lprs(iom)=lprsser200(om,name,pr);
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end
plot(lprs)
grid
axis(‘equal’)

function w=w ex 4 6(om,pr)
s=0+j*om;
wact=1./(0.0001*s*s+2.*0.5*0.01*s+1.);
wplant=1./(s*s+s+1);
w=4.*(s+1.)*wact*wplant/(1.-wact*wplant);
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