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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide
the engineering, mathematical, and scientific communities with significant develop-
ments in harmonic analysis, ranging from abstract harmonic analysis to basic appli-
cations. The title of the series reflects the importance of applications and numerical
implementation, but richness and relevance of applications and implementation
depend fundamentally on the structure and depth of theoretical underpinnings. Thus,
from our point of view, the interleaving of theory and applications and their creative
symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental rela-
tionship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing, geo-
physics, pattern recognition, biomedical engineering, and turbulence. These areas
implement the latest technology from sampling methods on surfaces to fast algo-
rithms and computer vision methods. The underlying mathematics of wavelet theory
depends not only on classical Fourier analysis, but also on ideas from abstract har-
monic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
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vi ANHA Series Preface

of ANHA. We intend to publish with the scope and interaction that such a host of
issues demands.

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications

Digital signal processing Sampling theory
Fast algorithms Spectral estimation

Gabor theory and applications Speech processing
Image processing Time-frequency and

Numerical partial differential equations time-scale analysis
Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the devel-
opment of mathematics, on the understanding of many engineering and scientific
phenomena, and on the solution of some of the most important problems in mathe-
matics and the sciences. Historically, Fourier series were developed in the analysis
of some of the classical PDEs of mathematical physics; these series were used to
solve such equations. In order to understand Fourier series and the kinds of solu-
tions they could represent, some of the most basic notions of analysis were defined,
e.g., the concept of “function.” Since the coefficients of Fourier series are integrals,
it is no surprise that Riemann integrals were conceived to deal with uniqueness
properties of trigonometric series. Cantor’s set theory was also developed because
of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers, but also
provides the proper notion of spectrum for phenomena such as white light; this latter
process leads to the Fourier analysis associated with correlation functions in filter-
ing and prediction problems, and these problems, in turn, deal naturally with Hardy
spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodu-
lar trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
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adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.
The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’être of the ANHA series!

John J. Benedetto
Series Editor

University of Maryland
College Park
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Classical harmonic analysis studies problems related to series expansions of
signals or functions using trigonometric polynomials. The theory of Fourier series
and Fourier integrals forms the core of harmonic analysis and extends from there
to other mathematical areas such as the theory of singular integrals, approximation
theory, and sampling theory, just to mention a few. Harmonic analysis is also used in
numerous applications where it can be thought of as the mathematical backbone for
a large number of modern methods in signal analyis and signal processing as well as
image analysis and image processing. Its internal growth has seen generalizations
to nontrigonometric expansions and noncommutative group settings, but its basic
role in other areas of mathematics (differential equations, number theory, probabil-
ity theory, and statistics), physics and chemistry (wave phenomena, crystallography,
and optics), financial analysis (time series), medicine (tomography, brain and heart
wave analyses), and biological signal processing has made harmonic analysis the
main fundamental contributor to all of 20th century’s human-based technologies.
These include telephone, radio, television, radar and sonar, satellite and wireless
communications, medical imaging, the Internet, and multimedia.

The applications of harmonic analysis to medical image processing have been
undergoing a rapid change primarily driven by better hardware and software. Part
of this development is an attempt by researchers to base medical engineering princi-
ples on solid and rigorous mathematical foundations, and to develop mathematical
methods that allow the creation of effective software programs that reduce or replace
invasive medical procedures.

Approximation theory and harmonic analysis benefit from each other. The
latter provides the means that the former uses to approximate complicated func-
tions or signals and surfaces or images, and to estimate the errors of this approxima-
tion. On the other hand, harmonic analysis problems often require methods or input
from approximation theory. Like harmonic analysis, approximation theory has seen
decades of rapid development and growth, again, primarily driven by applications,
such as computer-aided geometric design (CAGD) and its various ramifications.

Recently, a great deal of emphasis has been put into the digitization, transmission,
and processing of three-dimensional data sets. One-dimensional methods developed
in harmonic analysis and approximation theory in the past do not easily carry over to
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this higher-dimensional setting. Instead, new ideas and methods need to be found to
take into account the nonisotropy and nonhomogeneities inherent in such data sets.
In order for these generalizations to take place, new ideas from lower-dimensional
problems need to be reconsidered. As an example, we take the effective design of
wave forms that is essential to the simultaneous transmission of clear messages on
the same frequency band. Constructive approximations of unimodular sequences
whose autocorrelations vanish on prescribed sets are introduced, and their analysis
depends signifantly on Wiener’s generalized harmonic analysis (see [19]).

Signal analysis and image analysis have greatly benefited from the theory of
wavelets and their generalizations to frames. These multiscale methods use repre-
sentations based on two specific groups that are used to transfer information between
the scales and within each scale. It has become clear that for multidimensional data,
more general groups and multiscale methods need to be employed. The geometry
involved in such a high-dimensional setting is more complicated and challenging
than in the one-dimensional case, as spatial and, in the video setting, even temporal
features need to be taken into account. A first step toward such an improvement in
representation is undertaken in [130, 233].

This advanced textbook is intended for graduate students, pure and applied
mathematicians, mathematical physicists, and engineers working in image/signal
processing and communication theory. The book may be used in an advanced topics
course or in a seminar on harmonics analysis and its applications to image and signal
analysis. The prerequisites are a solid background in linear algebra and real analysis
and knowledge of the fundamentals of functional analysis and metric topology.

Chapters 2, 3, 4, and 5 in this book are based on lectures given by their authors
at the summer school on New Trends and Directions in Harmonic Analysis,
Approximation Theory, and Image Analysis, which took place in Inzell, Germany,
from September 17–21, 2007. One of the goals of this summer school was to bring
together a distinguished group of highly established international researchers to
present their latest cutting-edge research, and, in conjunction with a small group
of scientists including young researchers, to establish new and exciting directions
for future investigation into the topics described above.

A short introduction to the mathematical aspects of time-frequency analysis
paves the way for the above-mentioned chapters. The reader is exposed to the main
themes presented in this book and provided with a summary of those mathematical
notions and concepts needed to fully appreciate the contents of Chapters 2 to 5. In
addition, the material in these chapters is put into perspective in this introductory
chapter.

Chapters 2 to 5 were written by internationally renowned mathematicians and
have an expository and interdisciplinary character, allowing the reader to understand
the theory behind modern image and signal processing methodologies. In detail, the
chapters cover the following.

Ole Christensen considers B-spline generated frames. He exploits the flexibil-
ity of frames and combines them with the elegant representations for B-splines.
In the first part of his chapter, he introduces the terminology of Bessel sequences,
Riesz bases, and frames and exhibits their central properties. In the second part, he
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considers concrete constructions for Gabor systems and other tight frames, before
he finally deduces the wavelet frames generated by B-splines via the so-called
unitary extension principle.

Demetrio Labate and Guido Weiss consider the theory and applications of
composite wavelets. They first describe the unified theory of reproducing systems, a
simple and flexible mathematical framework to characterize and analyze wavelets,
Gabor systems, and other reproducing systems in a unified manner. These systems
can be rewritten as a countable family of translations applied to a countable collec-
tion of functions. The authors then define wavelets with composite dilations, a novel
class of reproducing systems that provide truly multidimensional generalizations of
traditional wavelets, and discuss so-called shearlets as a special case of optimally
sparse representations for 2D. Applications in edge detection and considerations on
the continuous analogues of composite wavelets are also considered.

Pierre Vandergheynst and Yves Wiaux introduce wavelets on the sphere and
therefore leave the classical Cartesian space. For many applications such as astro-
physics, geophysics, neuroscience, computer vision, and computer graphics, data
are given as functions on the sphere. In all these situations, one is compelled to
design data analysis tools that are adapted to spherical geometry, for one cannot
simply project the data into Euclidean geometry without having to deal with severe
distortions. The authors provide a generalization of the wavelet transform to signals
on the sphere. This generalization is not trivial, as the dilation operator is not well
defined on the sphere. In addition, any algorithm faces the problem of how to sam-
ple data on the sphere. This chapter discusses some recently developed methods for
the analysis and reconstruction of signals on the sphere with wavelets, on the basis
of theory, implementation, and applications.

Karlheinz Gröchenig gives various new and interesting aspects of Wiener’s
Lemma. This result is one of the main theorems of Banach algebra theory. In
the first part of his chapter, he discusses Wiener’s Lemma in detail and investigates
equivalent formulations for convolution operators. In the second part, he considers
various variations, especially in noncommutative settings. He also shows the impor-
tance of the lemma for time-varying systems and pseudodifferential operators and
concludes with applications in mobile communications.

One of the main features of this book is its emphasis on the interdependence of
these four modern research directions. Each chapter ends with exercises that allow
for a more in-depth understanding of the material and are intended to stimulate the
reader to further research.

We would like to thank the VolkswagenStiftung for generously providing the
funds and support for the summer school on New Trends and Directions in
Harmonic Analysis, Approximation Theory, and Image Analysis in Inzell, Germany.

Our thanks also go to the Institute for Biomathematics and Biometry at the
Helmholtz Zentrum München and the Centre of Mathematics, Research Unit
M6 – Mathematical Modelling, at the Technische Universität München.

We also would like to acknowledge that this work was partially supported
by the grant MEXT-CT-2004-013477, Acronym MAMEBIA, of the European
Commission.
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particular, Tom Grasso, Regina Gorenshteyn, and Patrick Keene, for their support
and help during the preparation of this book.

And last but not least, we heartily thank John Benedetto, who had the initial idea
for this book and invested the time and energy to launch it.

Munich, Germany Brigitte Forster
August 2009 Peter Massopust
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Chapter 1
Introduction:
Mathematical Aspects
of Time-Frequency Analysis

Peter Massopust and Brigitte Forster

Abstract Time-frequency analysis of signals or images deals with mathematical
transforms of continuous or discrete data with the aim of having more information
accessible after than before the transform. The possible choice of the respective
transform strongly depends on the mathematical model of the signal or image
source. The modeling scheme affects which analyzing transforms can be applied
in a mathematically sensible way, e.g., the mapping should be continuous, and also
which transforms give access to new and, in particular, well-formulated interpreta-
tions of the data.

In this chapter, we present the ideas behind the optimal choice of an appropriate
modeling scheme, the standard signal and image models, and the most important
mathematical analysis transforms. This covers aspects of Fourier series and inte-
grals, sampling or discretization problems, and various windowed transforms, such
as the short-time Fourier transform, the Gabor transform, and wavelets.

The chapter gives an introduction to the main mathematical terms used in the
subsequent four chapters of the book. It shows their relation and interplay and gives
entrance points to the lectures presented in subsequent chapters. We provide cita-
tions to references for further and more in-depth reading and conclude with a list of
exercises.

1.1 Aims of Time-Frequency Analysis

Time-frequency analysis deals with the characterization and manipulation of signals
whose frequency components vary in time. By a signal, we understand a complex-
valued functional f : X → C, where X is a Banach or Hilbert space and C denotes

Peter Massopust
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2 Peter Massopust and Brigitte Forster

the field of complex numbers. The choice of the time domain X determines different
types of signals. For instance,

• X := R describes a time-continuous signal;
• X := Z or X := N a discrete signal in time;
• X := [a,b ], −∞< a < b < +∞, a signal that is time-limited.

Among these signals, one also distinguishes the following classes:

• T -periodic signals: f (t) = f (t + kT ), T ∈ R+, and k ∈ Z;
• finite energy signals: f ∈ L2(R) or f ∈ l2(Z);
• bounded signals: f ∈ L∞(R) or f ∈ l∞(Z);
• integrable or summable signals: f ∈ L1(R), resp., f ∈ l1(Z).

In many applications, signals are measured in order to use them to monitor or
regulate a time-varying process, or to ensure and manage its quality. The measured
signals must be brought into a form that allows for efficient and quick evaluation and
interpretation. In order to achieve this, a signal f is transformed so that its image
f̃ under the transform is more easily interpretable and analyzable. In particular, f̃
should be such that any unwanted noise can be filtered out or removed, and the
characteristic system parameters can be estimated. In addition, more information
should be extractable from the transformed image f̃ than from f itself.

1.1.1 Signal and Model

There are many families of functions that can be used to analyze a signal by means
of a series expansion or an integral transform. Which family of functions is to be
chosen to analyze a signal depends on the underlying model for the system that gen-
erates the signal. For instance, for time-limited signals a different function family
is used than for time-unlimited signals, and for time-continuous signals a different
one than for time-discrete signals. However, the procedure is the same in each case.
Figure 1.1 shows a schematic sketch of this procedure.

One of the first analyzing systems was developed by J. B. J. Fourier and is known
as the Fourier series. Originally, Fourier was interested in finding an elegant way to
solve the heat equation. He expanded the initial value function or distribution in
a series of complex exponentials and then could easily derive the solution from
the series’ coefficients [162, 200, 223]. In fact, the Fourier series of a function
f ∈ Lp[−π ,π ], 1 ≤ p < ∞, or f ∈ C[−π ,π ] is given by

f ∼ ∑
k∈Z

f̂ (k)eik•, (1.1)

where

f̂ (k) =
1

2π

∫ π

−π
f (t)e−ikt dt
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Fig. 1.1: The different meth-
ods for signal analysis employ
the same scheme. Coefficients
are associated with a signal,
and these coefficients are
transformed. From these new
coefficients, a transformed
signal is reconstructed.

are the Fourier coefficients. They allow the following interpretation: | f̂ (k)| is the
amplitude and arg( f̂ (k)) is the phase corresponding to the frequency k ∈ Z.

The series (1.1) converges in norm for the Lp-spaces with 1 < p < ∞, such that
the Fourier transform ̂ : Lp[−π ,π ] → c0(Z), f → { f̂ (k)}k∈Z, is a linear, contin-
uous, and on its image continuously invertible operator. [Here, c0(Z) denotes the
space of all sequences with domain Z converging to zero.] For L1[−π ,π ] and
C[−π ,π ], convergence of (1.1) is attained with so-called approximate identities
[151, 162, 248].

A drawback of the Fourier series for signal analysis is that a local change of the
function f results in a global change of the coefficients. Therefore, mathematical
interest began to focus more on localized transforms, such as, e.g., the Haar system
(see Section 1.1.2.3) or the Rademacher system (see Section 1.1.2.4), and more
recently wavelet multiresolution analyses (see Section 1.5.3).

The same drawback as for the Fourier series applies to integral transforms,
such as, e.g., the Fourier transform for L2(Rn) functions (see Section 1.3). To
cope with this problem, local transforms such as the short-time Fourier transform
(Section 1.4.1) and, as a special case, the Gabor transform (Section 1.4.2) were
developed.

1.1.2 Transforms

For the better interpretability of a signal, a whole variety of possible transforms may
be considered. But the question is, which ones are appropriate? One major point is
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that the transform should not hide or cut off any information. This means that if,
in the diagram in Fig. 1.1, we choose the identity operator as the “manipulation,”
i.e., we leave the coefficients as they are, then the measured signal and the output,
the utilizable signal, should coincide. This fact gives rise to several mathematical
requirements:

• The transform should be continuous: Quantitatively small changes in the signal
should cause only quantitatively small effects in the transform’s image.

• The transform should be continuously invertible.
• There should exist an invertible discrete version of the transform.
• There should exist a stable numerical algorithm.

As examples, we review three common transforms based on Fourier series, Haar
wavelets, and Rademacher functions.

1.1.2.1 Fourier Series

Let T := {z ∈ C | |z| = 1} = {eit |t ∈ [0,2π)} be the torus. Then T = S1 is a compact
subset of R2 and a commutative group with respect to multiplication. Since the
multiplication · : T×T → T is continuous with respect to the metric topology on
Rn, T is a topological group.

Every function f : T → C can be uniquely identified with a 2π-periodic function
f̃ : R → C via f̃ (t + 2πn) = f̃ (t) = f (eit), where t ∈ [0,2π), n ∈ Z. The Lebesgue
measure on [0,2π) is mapped onto T via∫

T
f (z)dz =

∫ 2π

0
f (eit )dt =

∫ 2π

0
f̃ (t)dt,

provided the Lebesgue integral exists. We denote by L2(T) the space of all complex-
valued functions on T that are square-integrable with respect to the Lebesgue
measure. Endowed with the inner product

〈 f ,g〉 :=
1

2π

∫
T

f (z)g(z)dz, for f ,g ∈ L2(T),

L2(T) becomes a Hilbert space.

Remark 1.1. Let 1 ≤ p < ∞. Then Lp(T) = L p(T)/N , where

L p(T) =
{

f : T → C | f Lebesgue-measurable and
∫

T
| f (t)|pdt < ∞

}
and N = { f : T → C | f = 0 a.e.}.
Convention: In the following, we identify f̃ and f .

The complex trigonometric system {ein•}n∈Z is an orthonormal basis for
the Hilbert space L2(T). (This can be easily verified by a direct computation.)
Orthogonality then implies that the family is minimal and complete. It can be shown
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(see Section 1.2.1) that this implies that each f ∈ L2(T) has a unique Fourier series
representation of the form

f = ∑
n∈Z

〈 f ,ein•〉ein• in L2(T),

where

〈 f ,ein•〉 =
1

2π

∫ π

−π
f (t)e−int dt, n ∈ Z.

The Parseval equality, which is given in (1.10) in a general form, implies that

1
2π

∫ π

−π
| f (t)|2 dt = ∑

n∈Z

|〈 f ,ein•〉|2, ∀ f ∈ L2(T),

and that the mapping

T : L2(T) → l2(Z), f �→ {〈 f ,ein•〉}n∈Z

is a Hilbert space isomorphism.
Therefore, we have the following result.

Theorem 1.2. The trigonometric system {ein•}n∈Z is complete in L2(T).

Proof. We employ the Weierstraß theorem. Suppose that f ∈ L2(T) is an integrable
function with the property that f /∈ span{ein•}n∈Z. Then

〈 f ,ein·〉 =
1

2π

∫ π

−π
f (t)e−int dt = 0, ∀n ∈ Z.

We show that f = 0 almost everywhere. To this end, let

g(t) =
∫ t

−π
f (u)du, for t ∈ [−π ,π ].

Note that g is continuous. Suppose that c ∈ C is a constant. Integration by parts
yields ∫ π

−π
(g(t)− c)e−int dt = 0, for all n ∈ Z\ {0}. (1.2)

Now choose c such that (1.2) also holds for n = 0 and set F(t) := g(t)− c. Then F
is continuous on [−π ,π ] and F(π) = F(−π) = −c. The Weierstraß theorem now
implies that for all ε > 0 there exists a trigonometric sum

T (t) =
N

∑
k=−N

ckeikt ,

so that
|F(t)−T(t)| < ε, for |t| ≤ π .
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Thus,

‖F‖2 =
1

2π

∫ π

−π
|F(t)|2 dt =

1
2π

∫ π

−π
F(t)(F(t)−T (t))dt ≤ ε

2π

∫ π

−π
|F(t)|dt ≤ ε ‖F‖.

Hence, ‖F‖ ≤ ε and since F was arbitrary, we have that F = 0. Thus, g = c and
therefore f = 0 almost everywhere. 
�
Remark 1.3. Analogously, one establishes the completeness of {ein•}n∈Z in Lp(T)
for all 1 ≤ p < ∞.

The results obtained in this section can be summarized in the following theorem.

Theorem 1.4. The trigonometric system {ein•}n∈Z is an orthonormal basis for the
Hilbert space L2(T).

1.1.2.2 Convolution

Denote by L1(T) the Banach space of all complex-valued Lebesgue-measurable
functions on the torus T endowed with the L1-norm.

Theorem 1.5. Suppose that f ,g ∈ L1(T). Then the function

t �→ f (s− t)g(t)

is absolutely integrable for almost all s ∈ [−π ,π ]. Setting

h(s) :=
1

2π

∫ π

−π
f (s− t)g(t)dt,

one has that h ∈ L1(T) and ‖h‖1 ≤ ‖ f‖1‖g‖1. The Fourier coefficients satisfy

ĥ(n) = f̂ (n) · ĝ(n) (1.3)

for all n ∈ Z.

Proof. Exercise! 
�
Definition 1.6. Assume that f ,g ∈ L1(T). The a.e. defined function h : T → C in
Theorem 1.5 is denoted by f ∗g and is called the convolution of f and g.

Example 1.7 (Filtering). Consider a 2π-periodic signal f ∈ L1(T), i.e., a function
f : T → C, that contains the frequencies n ∈ Z, i.e., f̂ (n) = 0.

A filter is a function g ∈ L1(T) that removes certain frequencies I ⊂ Z and
preserves all others: ĝ(n) = 0, for n ∈ I, and ĝ(n) = 1, for n ∈ Z\ I.

The filtered signal h = f ∗g contains on Z\ I exactly the frequencies of f and on
I no frequencies.
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1.1.2.3 Haar System

In 1910, Haar [131] introduced a Schauder basis for Lp[0,1), 1 ≤ p < ∞, which is
an unconditional basis if p > 1. (Details on Schauder bases and unconditional bases
are explained in Section 1.2.1.) Let

ψH(t) :=

⎧⎪⎨⎪⎩
1, 0 ≤ t < 1

2 ;

−1, 1
2 ≤ t < 1;

0, otherwise.

The Haar system is defined as the family of functions

{2n/2ψH(2nt − k) |k = 0,1, . . . ,2n; n ∈ N0}.

It is easy to verify that the Haar system satisfies the L2-orthogonality conditions∫
R

2m/2ψH(2mt − k)2n/2ψH(2nt − l) = δmnδkl , k, l ∈ Z; m,n ∈ N0.

If φ := χ[0,1) denotes the characteristic function on [0,1), then one has the relation

ψH = φ(2•)−φ(2 •−1).

The disadvantage of the Haar system is that it is not continuous.

1.1.2.4 Rademacher System

The Rademacher system [199] is given by the family of functions R := {rn |n ∈ N0},
where

rn(t) := sgnsin2nπt, t ∈ [0,1).

Here sgn : R → R denotes the signum function

sgn(t) :=

{
t
|t| , t = 0;

0, t = 0.

It can be shown that the family R constitutes an orthonormal system for L2[0,1) with
respect to the L2-inner product, but not an orthonormal basis. An obvious disadvan-
tage of the Rademacher functions is their discontinuity.

Both Haar and Rademacher functions have support contained in [0,1] and are
orthogonal with respect to the L2-inner product, and both families are generated
by a single function. The difference between the two systems lies in the way the
family of functions is generated: For the Haar systems, one needs the dyadic dilates
and integer-translates of ψH , whereas for the Rademacher system, only the dyadic
dilates of r0 are needed.
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1.1.3 Signal Manipulations—Filters

In order to use and process information obained from a measured or received signal,
the sequence of real or complex values describing the signal must be manipulated
to yield a utilizable representation. This manipulation of a signal is called filtering.
Mathematically, it corresponds to transforming a given signal f into a new signal
f̃ via a transform (operator) T . The transform T can be linear, as in the case of a
bandpass filter (see Example 1.7), or nonlinear, as in the case of denoising, where
coefficients whose values are in magnitude less than a given threshold are set equal
to zero. As a simple example of a transform or filter T , we mention the Fourier
series introduced in Section 1.1.2.1. Here the signal is represented by its frequency
content.

Let στ denote the time shift (by τ > 0), i.e., στ( f ) := f (•+ τ). A transform T
is called time-invariant if

T (στ f ) = στ(T f ).

Any linear time-invariant transform T : L2(R) → L2(R) acting on a signal
f ∈ L2(R) can be represented as a convolution:

T ( f ) = F ∗ f , (1.4)

where the function F ∈ L2(R) is usually called the impulse response of the signal
f (see [175, Chapter II]). The fact that F is in L2(R) is a consequence of the Riesz
representation theorem. (Show this!)

In case the signal f is representable by a sequence, i.e., f ∈ l2(Z), and T :
l2(Z) → l2(Z) is again a linear time-invariant transform, the discrete analogue of
(1.4) then reads

T ( f )(n) = (F ∗ f )(n) := ∑
k∈Z

F(n− k) f (k), n ∈ Z.

1.1.4 Why Discretizing? Techniques, Challenges, Pitfalls

One approach for obtaining a numerical solution of a mathematical problem is to
discretize it. The discrete problem can then, in many cases, be solved computation-
ally efficiently.

The general procedure of discretization is as follows. Let B1,B2,Bn
1, and Bn

2,
n ∈ N, be Banach spaces. Let T be a linear, not necessarily continuous operator
on B1. Suppose that for all n ∈ N, the operator T n : Bn

1 → Bn
2 is linear and that

(T n)−1 exists and is linear. Moreover, assume that the discretization operators
Dn

i : Bn
i → Bn

i , i = 1,2, are linear.

B1
T−−−−→ B2

Dn
1

⏐⏐� ⏐⏐�Dn
2

Bn
1

T n−−−−→ Bn
2

(1.5)
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The spaces Bn
i , i = 1,2, are usually finite-dimensional, thus reducing the problem to

a linear algebraic setting.
From the above scheme one requires that the operators T and T n are consistent,

i.e., ‖Dn
2 T ( f ) −T nDn

1 ( f )‖ → 0, as n → ∞. Note that consistency implies that
diagram (1.5) commutes in the limit. If, in addition, the sequence of discretized
operators {(T n)−1}n∈N is uniformly bounded, then the discretization procedure is
called stable.

The next theorem gives conditions under which a discretization procedure yields
utilizable results.

Theorem 1.8. Let fi ∈ Bi and f n
i ∈ Bn

i be such that T f1 = f2 and T n f n
1 = f n

2 ,
for all n ∈ N. Suppose that ‖Dn

2 f2 − f n
2 ‖ → 0 as n → ∞. Furthermore, suppose

that ‖Dn
2 T ( f )−T nDn

1 ( f )‖ → 0 as n → ∞ and that {(T n)−1}n∈N is uniformly
bounded. Then

‖Dn
1 f1 − f n

1 ‖ → 0 as n → ∞.

Proof. Exercise! 
�
Remark 1.9. Theorem 1.8 can also be reformulated as: consistency plus stability
implies convergence.

In order to represent a continuous signal in a unique manner, the discretized
continuous transform T n must yield a basis for the spaces Bn. This is exemplified by
the Fourier series and, in particular, by Theorem 1.4. Below, several other bases are
described that come from discretized operators: the translates of the sinc-function
in the sampling theorem (Section 1.3.4), the Gabor system (Section 1.4), and the
wavelet system (Section 1.5).

Time- or space-based measurements of signals yield only finitely many discrete
values although the mathematical models are usually continuous. Applying the cor-
rect discretization procedure is therefore very important, as is the analysis of the
different types of measurement error. There are four basic types of measurement
error:

1. truncation error: arises if only a finite number of samples is taken into
account;

2. amplitude error: arises since in general the exact ordinate value of the sig-
nal is not known but is contaminated by noise, or falsified due to round-off or
quantization;

3. time-/space-jitter error: arises if the sample points are not met correctly;
4. aliasing error: arises if the signal is not exactly band-limited or the bandwidth

is larger than assumed.

For the precise analysis of these four types of measurement error, we refer the reader
to [35–37] and the references given therein.
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1.2 Basic Methods of Time-Frequency Analysis: Orthonormal
Bases and Generalized Fourier Series

In this section, we introduce Fourier series using general bases. In the following
sections, concrete Banach and Hilbert spaces are considered. For this purpose, we
first need to consider the concept of a function basis in Banach spaces.

1.2.1 Schauder Bases in Banach Spaces

In the following, X always denotes a separable Banach space and H a separable
Hilbert space. The topological dual to X is denoted by X ′ and consists of all linear
functionals φ : X → C. Endowed with the operator norm

‖φ‖op = sup
0 =x∈X
‖x‖≤1

|φ(x)|
‖x‖ , y ∈ X ′,

X ′ becomes a Banach space.
One of the most important concepts of a basis in analysis is that of a Schauder

basis.

Definition 1.10 (Schauder 1927 [135, 246]). A sequence of elements {xn}n∈N in an
infinite-dimensional Banach space X is called a Schauder basis for X if, for every
x ∈ X , there exists a unique sequence of scalars {cn}n∈N so that∥∥∥∥∥x−

n

∑
i=1

cixi

∥∥∥∥∥ → 0 as n → ∞. (1.6)

A Schauder basis is called bounded if 0 < infn∈N ‖xn‖ ≤ supn∈N ‖xn‖ < ∞. In case
{xn}n∈N is a Schauder basis, the linear functionals

fk : X → C, x = ∑
n∈N

cnxn �→ ck, k ∈ N, (1.7)

are called coefficient functionals.

Example 1.11. 1. The sequence spaces �p(N), 1 ≤ p < ∞, have as a Schauder basis
the canonical basis {en}n∈N, where the sequence

en = {0, . . . ,0,1,0, . . .}

has a “1” in the nth position.
2. Banach spaces that possess a Schauder basis are separable. Since the sequence

space �∞(N) is not separable, it cannot have a Schauder basis.
3. Orthonormal bases {en}n∈N in a Hilbert space H are Schauder bases having the

additional property that 〈en,em〉 = δnm and ‖en‖ = 1.
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For Schauder bases and their coefficient functionals, the following theorem
holds.

Theorem 1.12. Let X be a Banach space and {xn}n∈N a Schauder basis for X. Then
the following hold:

1. {xn}n∈N is complete and minimal; i.e., the Schauder basis spans the space and
the coefficients in a presentation x = ∑n∈N anxn are unique for all x ∈ X [167].

2. The coefficient functionals { fn}n∈N are continuous, hence elements of the dual
space X ′. Moreover, one has the estimate

1 ≤ ‖xn‖ · ‖ fn‖ ≤ K (1.8)

for a positive constant K and all n ∈ N.

Proof. 1. The first statement follows immediately from the definition.
2. To prove the second statement [246], let Y be the vector space

Y :=

{
{cn}n∈N ⊂ C

∣∣∣∣∣ ∞∑n=1

cnxn converges in X

}
(1.9)

endowed with the norm

‖{cn}n∈N‖ := sup
n∈N

∥∥∥∥∥ n

∑
i=1

cixi

∥∥∥∥∥ .

Then Y is a Banach space that is isomorphic to X : The mapping

T : Y → X , {cn}n∈N �→
∞

∑
n=1

cnxn

is linear and since {xn}n∈N is a Schauder basis for X , it follows from (1.9) that T is
bijective. Moreover,

‖T{cn}n∈N‖ =

∥∥∥∥∥ ∞

∑
n=1

cnxn

∥∥∥∥∥≤ sup
n∈N

∥∥∥∥∥ n

∑
i=1

cixi

∥∥∥∥∥ = ‖{cn}n∈N‖ ,

implying the continuity of T . Thus, by the open mapping theorem, T is a Banach
space isomorphism.

Let x = ∑∞n=1 cnxn ∈ X . Then we have for every n ∈ N,

| fn(x)| = |cn| = ‖cnxn‖
‖xn‖ ≤ ‖∑n

i=1 cixi‖+‖∑n−1
i=1 cixi‖

‖xn‖

≤ 2supk ‖∑k
i=1 cixi‖

‖xn‖ =
2‖T−1x‖
‖xn‖ ≤ 2‖T‖−1‖x‖

‖xn‖ .
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Hence, ‖ fn‖≤ 2‖T‖−1/‖xn‖. This implies that fn is continuous and we have proven
the right-hand side of the inequality. The left-hand side holds because of

1 = fn(xn) = | fn(xn)| ≤ ‖ fn‖ · ‖xn‖. 
�

Remark 1.13. Not every bounded, complete, and minimal sequence in a Banach
space is a Schauder basis. Below, we will encounter an example of this fact.

In order to compare Schauder bases in a Banach space, the concept of the equiv-
alence of Schauder bases is needed.

Definition 1.14. Two Schauder bases {xn}n∈N and {yn}n∈N in a Banach space are
called equivalent if there exists a bounded, invertible operator T : X → X such that
T xn = yn for all n ∈ N.

Every basis in a finite-dimensional vector space can be mapped onto the
canonical basis via an invertible operator. In infinite-dimensional vector spaces, this
is no longer true. In such spaces, the convergence with respect to a basis depends
in general on the order of summation. This and the question on how to find the
coefficients with respect to a Schauder basis will be considered next.

1.2.1.1 Biorthogonality

For the computation of the coefficients cn in an expansion of the form f ∼∑n∈Z cnxn,
certain linear functionals yn with cn = yn( f ) are used. These functionals are to satisfy
the following condition.

Definition 1.15. Two sequences {xn}n∈Z ⊂ X and {yn}n∈Z ⊂ X ′ are called biorthog-
onal provided that

ym(xn) = δmn, for all m,n ∈ Z.

Using the Hahn–Banach theorems, it can be shown that in a Banach space a
sequence {xn}n∈Z has a biorthogonal sequence if it is minimal and that this biorthog-
onal sequence is unique if {xn}n∈Z is complete.

The coefficient functionals satisfy additional properties.

Theorem 1.16 ([167, 246]).

1. If {xn}n∈N is a Schauder basis in a Banach space X, then the associated
coefficient functionals { fn}n∈N are biorthogonal.

2. Suppose that {xn}n∈N is a Schauder basis in a reflexive Banach space X. Then
the coefficient functionals { fn}n∈N form a Schauder basis of the dual space X ′.

Proof. Exercise! 
�
The connection between Schauder bases and their coefficient functionals gives

rise to the next definition.
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Definition 1.17. Let X be a reflexive Banach space and {xn}n∈N ⊂ X a Schauder
basis of X . The Schauder basis of X ′ consisting of the coefficient functionals
{ fn}n∈N is called the dual Schauder basis to {xn}n∈N ⊂ X .

Example 1.18. Complete minimal sequences are not necessarily Schauder bases.
To verify this statement, consider a Hilbert space H and an orthonormal

sequence {en}n∈N. This orthonormal sequence is minimal and complete. The family
{xn}n∈N ⊂ H given by

xn =
n

∑
k=1

1
k

ek, n ∈ N,

is also bounded, complete, and minimal, but not a Schauder basis. For otherwise,
the dual sequence {yn}n∈N with

yn = nen − (n + 1)en+1, n ∈ N,

would also be a Schauder basis, hence complete. This, however, is not possible since
f := ∑n∈N

1
n en does not lie in the span of {yn}n∈N.

1.2.1.2 Unconditional Convergence

In our consideration of Schauder bases, we have so far assumed conditional conver-
gence: The Schauder basis consists of an indexed sequence and the convergence of
a series with respect to this basis depends on the order of the basis elements. In the
case of unconditional bases, the order of the basis elements is irrelevant.

Definition 1.19. A series ∑n∈Z an in a Banach space X is called unconditionally
convergent if every permutation σ : N → N of the series ∑n∈Z aσ(n) converges to the
same element in X .

A Schauder basis {xn}n∈Z for X is called an unconditional basis for X if every
convergent series of the form ∑n∈Z cnxn converges unconditionally.

Remark 1.20. In signal analysis it is often customary to sum up the N largest manip-
ulated coefficients and to consider the limit N → ∞ to obtain an approximation of
the signal. If conditional bases are employed, then it is no longer guaranteed that the
result of the summation, i.e., the synthesized signal, is interpretable. The associated
series is summed up using an unpredictable order and may not converge.

Example 1.21. Recall that c0(N) := {x ∈ RN | limn→∞ xn = 0}. The sequence
{dn}n∈N, where

d1 = (1,0,0, . . .), d2 = (1,1,0, . . .), d3 = (1,1,1,0, . . .), . . . ,

is a conditional basis for the sequence space c0(N).
For suppose that {an}∈N is a sequence in R so that ∑n∈N an converges, but

does not converge absolutely. Then the series ∑n∈N andn is not unconditionally
convergent. (Show this!)
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In Hilbert spaces H, there are generalizations of unconditional bases in several
aspects. The most important ones are the notions of a Riesz basis and of a frame.
A frame in H is a redundant family of functions {xn}n∈N that spans H and fulfills
the following stability condition: There exist constants A,B > 0 such that

A‖x‖2 ≤ ∑
n∈N

|〈x,xn〉|2 ≤ B‖x‖2, ∀x ∈ H.

It can be shown that frame representations of functions are unconditionally conver-
gent. A Riesz basis is a frame, which is a Schauder basis, i.e., a minimal frame, and
allows for unconditionally convergent series representations. Moreover, it is equiv-
alent to an orthonormal basis. A detailed description on frames and Riesz bases
is given in Ole Christensen’s Chapter 2. Absolutely and therefore unconditionally
convergent Fourier series are explored in Karlheinz Gröchenig’s Chapter 5.

1.2.2 Generalized Fourier Series

The most important property of orthonormal bases as compared to other bases is the
simplicity of the terms in a basis representation. If {en}n∈N is an orthonormal basis
in a Hilbert space H, then every f ∈ H has a Fourier series representation of the
form

f =
∞

∑
n=1

〈 f ,en〉en,

and this series converges in the induced norm on H. The inner product 〈 f ,en〉 is
called the nth Fourier coefficient of f . The theorem of Pythagoras implies Parseval’s
equality:

‖ f‖2 =
∞

∑
n=1

|〈 f ,en〉|2. (1.10)

In particular, Parseval’s equality means that the linear mapping

S : H → l2(N), f �→ {〈 f ,en〉}n∈N

is an isometric Hilbert space isomorphism. Therefore, S also preserves scalar prod-
ucts and the weak Parseval equality holds:

〈 f ,g〉 =
∞

∑
n=1

〈 f ,en〉〈g,en〉, ∀ f ,g ∈ H.

Example 1.22. In l2(N) is the canonical basis in Example 1.11, item 1, an
orthonormal basis.

Theorem 1.23. For every finite orthonormal system, we have that

N

∑
n=1

|〈 f ,en〉|2 ≤ ‖ f‖2.
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This result has the immediate corollary

Lemma 1.24 (Lemma of Riemann–Lebesgue in Hilbert spaces).

lim
|n|→∞

〈 f ,en〉 = 0, ∀ f ∈ H.

1.3 The Fourier Integral Transform

In this section, we introduce the Fourier integral transform on L1(R) and discuss
some of its properties. In addition, we define the convolution between two integrable
functions and the concept of a summation kernel. Extending the Fourier transform
to a Hilbert space setting gives rise to the Plancherel transform, which is presented
next. The theorem of Paley–Wiener and the Poisson summation formula conclude
this section.

1.3.1 Definition and Properties

We consider time-continuous, Lebesgue-integrable functions f ∈ L1(R).

Definition 1.25. Assume that f ∈ L1(R). The Fourier transform F ( f ) of f is
defined by

F ( f )(ω) =
∫

R
f (x)e−iωx dx, for all ω ∈ R.

Theorem 1.26. Assume that f ,g ∈ L1(R), ω ∈ R, and λ ∈ C.

1. F is linear: F (λ f + g)(ω) = λF ( f )(ω)+F (g)(ω).
2. Let f (t) := f (t). Then F ( f )(ω) = F (−ω).
3. Let Ly f (t) := f (t − s), for s ∈ R. Then F (Ls f )(a) = e−isωF ( f )(ω).
4. |F ( f )(ω)| ≤ ‖ f‖1.
5. Let fλ (t) := λ f (λ t), for λ ∈ R\ {0}. Then F ( fλ )(ω) = F ( f )(ω/λ ).

Proof. Exercise! 
�
Remark 1.27. In higher dimensions and f ∈ L1(Rn), n ≥ 1, one defines for ω ∈ Rn

the Fourier transform of f by

F ( f )(ω) :=
∫

Rn
f (t)e−i〈t,ω〉 dt.

Theorem 1.28. Suppose that f ∈ L1(R). Then the function F ( f ) : R → C is
bounded and uniformly continuous.

Proof. Exercise! 
�
Remark 1.29. Note that in case of the Fourier transform in L1(T) we dealt with
a discrete-frequency spectrum, whereas here in L1(R) we consider a continuous-
frequency spectrum ω ∈ R.
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Completely analogous to the case L1(T), the Banach space L1(R) can be
endowed with a convolution structure and thus becomes a Banach algebra.

Theorem 1.30. Suppose that f ,g ∈ L1(R). For almost all t ∈ R is the mapping
s �→ f (t − s) ·g(s) absolutely integrable. Let

h(t) :=
∫

R
f (t − s)g(s)ds.

Then h ∈ L1(R) and

‖h‖1 ≤ ‖ f‖1 · ‖g‖1 and F (h)(ω) = F ( f )(ω) ·F (g)(ω), ∀ω ∈ R.

Proof. Analogous to Theorem 1.5. Exercise! 
�
Definition 1.31. Assume that f ,g ∈ L1(R). The function h in Theorem 1.30 is
denoted by f ∗ g and called the convolution of f and g.

Remark 1.32. The Banach space L1(T) together with the operation of convolution
becomes a commutative Banach algebra without unity. The Fourier transform is a
Banach algebra homomorphism

F : L1(T) → l∞(Z),

with respect to the Banach algebra l∞(Z) with elementwise multiplication.

Remark 1.33. The Fourier transform is an algebra homomorphism in Cb
u(R), i.e.,

the Banach algebra of pointwise multiplication of all uniformly continuous (u) and
bounded (b) functions on R.

Theorem 1.34. Let f ,k ∈ L1(R) and suppose that

k(t) =
∫

R
K(ω)eiωt da, where K ∈ L1(R).

Then
k ∗ f (t) =

∫
R

K(ω)F ( f )(ω)eiωt dω .

Proof. Exercise! 
�
Theorem 1.35. Let f ∈ L1(R).

1. Let

F(t) =
∫ t

−∞
f (s)ds =

∫
R

f (s)χ (−∞,t ](s)ds, for t ∈ R.

If F ∈ L1(R), then

F (F)(ω) =
1

iω
F ( f )(ω),

for all ω ∈ R\ {0}.
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2. Suppose that f is a differentiable function on R whose derivative f ′ ∈ L1(R).
Then

F ( f )(ω) =
1

iω
F ( f ′)(ω),

for all ω ∈ R\ {0}.

Proof. It suffices to show 1. We know that F ′(t) = f (t) holds for almost all t ∈ R.
Integration by parts and the dominated convergence theorem yield

F (F)(ω) = lim
A→∞

F(t)
1

−iω
e−iωt

∣∣∣∣A
t=−A

+
∫

R
f (t)

1
iω

e−iωt dt.

Obviously, limA→−∞F(A) = 0. Since f is integrable, the limit limA→∞F(A) exists
and is finite, for

lim
A→∞

F(A) =
∫

R
f (t)dt < ∞

exists.
Assume that limA→∞F(A) = α = 0. Then there exists A0 > 0 so that |F(A)| ≥

|α|/2 > 0 for all A > A0. This, however, is a contradiction to F ∈ L1(R). 
�
Theorem 1.36. Suppose that f ∈ L1(R). Set g(t) := t f (t), and assume that
g ∈ L1(R). Then, for all ω ∈ R, we have that F ( f ) is differentiable and
(F ( f ))′(ω) = F (−ig)(ω).

Proof. Consider

F ( f )(ω + h)−F ( f )(ω)
h

=
∫

R
f (t)e−iωt e−iht −1

h
dt.

Now, ∣∣∣∣e−iht −1
h

∣∣∣∣ ≤ |t|,

and
e−iht −1

h
→ −it for h → 0.

Since g(t) = t f (t) ∈ L1(R) is absolutely integrable, the dominated convergence
theorem yields

(F ( f ))′(ω) = −i
∫

R
f (t)e−iωt t dt = −iF (g)(ω). 
�

Induction implies a corollary to the above theorem.

Corollary 1.37. Suppose f ∈ L1(R) is such that t �→ tn f (t) =: g(t) is absolutely
integrable for an n ∈ N. Then F ( f ) is n-times differentiable and

(F ( f ))(n)(ω) = (i)nF (g)(ω), for all ω ∈ R.
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In particular, for ω = 0, we obtain

(F ( f ))(n)(0) = (−i)nmn,

where
mn :=

∫
R

tn f (t)dt

is the nth moment of f .

Corollary 1.38. Suppose that f : R → C has compact support and is twice continu-
ously differentiable. Then F ( f ) ∈ L1(R).

Proof. Since f has compact support and is an element of C2, the derivatives f ′ and
f ′′ are also compactly supported. Theorem 1.35 implies that

|F ( f )(ω)| =
∣∣∣∣F ( f ′′)(ω)

ω2

∣∣∣∣≤ 1
ω2 ‖ f ′′‖1.

Divide R into the sets [−1,1 ] and R\ [−1,1 ]. On the compact set [−1,1 ] the contin-
uous function F ( f ) is bounded and thus integrable. On R \ [−1,1 ]
the function F ( f )(ω) is also integrable since it decays like 1/ω2. Hence,
F ( f ) ∈ L1(R). 
�

Our next goal is to find approximations for the missing unity in the Banach
algebra (L1(R),∗). For this purpose, we need a definition.

Definition 1.39. A summation kernel on R is a family {kλ}λ∈(0,∞) of continuous
functions with the following properties.

(S1)
∫
R kλ (t)dt = 1, for all λ ∈ (0,∞) .

(S2)
∫
R |kλ (t)|dt ≤ M, for all λ ∈ (0,∞) and a constant M > 0.

(S3) For all δ > 0, we have that

lim
λ→∞

∫
|t|>δ

|kλ (t)|dt = 0.

Example 1.40. 1. All summation kernels are found via the following procedure.
Choose an f ∈ L1(R)∩C(R) with

∫
R f (t)dt = 1 and set kλ (t) := λ f (λ t).

Then

• ∫
R Kλ (t)dt =

∫
Rλ f (λ t)dt =

∫
R f (s)ds = 1. Hence, (S1) is satisfied.

• ∫
R |Kλ (t)|dt =

∫
R |λ f (λ t)|dt =

∫
R | f (s)|ds = ‖ f‖1. Thus, (S2) holds.

• For δ > 0, we have∫
|t|>δ

|Kλ (t)|dt =
∫
|t|>δ

|λ f (λ t)|dt =
∫
|s|>δλ

| f (s)|ds → 0, as λ → ∞.

Therefore, (S3) is also valid.
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2. The Fejér kernel:

F(t) :=
1

2π

(
sin t

2

t/2

)2

, Fλ (t) = λF(λ t), λ ∈ (0,∞) .

(Fλ )λ∈(0,∞ ) is called the Fejér kernel on R and it is a summation kernel. To verify
this last claim, it suffices to show that

∫
R Fλ (t)dt = 1.

To this end, we use the Fejér kernel

1
n + 1

(
sin n+1

2 t

sin t
2

)2

=
n

∑
k=−n

(
1− |k|

n + 1

)
eikt

defined on T. It is easy to verify that

1
2π

∫ π

−π
1

n + 1

(
sin n+1

2 t

sin t
2

)2

dt = 1

and

lim
n→∞

1
2π

∫ 2π−δ

δ

1
n + 1

(
sin n+1

2 t

sin t
2

)2

dt = 0.

Thus,

lim
n→∞

1
2π

∫ δ

−δ
1

n + 1

(
sin n+1

2 t

sin t
2

)2

dt = 1. (1.11)

For every 0 < ε < 1 exists a δ > 0, so that for all |t|< δ , the following inequalities
hold: (

sin
t
2

)2
≤

( t
2

)2
≤ (1 + ε)

(
sin

t
2

)2
.

For such a δ > 0, we thus have that

1
1 + ε

1
2π

∫ δ

−δ
1

n + 1

(
sin n+1

2 t

sin t
2

)2

dt

≤ 1
2π

∫ δ

−δ
1

n + 1

(
sin n+1

2 t
t
2

)2

dt

≤ 1
2π

∫ δ

−δ
1

n + 1

(
sin n+1

2 t

sin t
2

)2

dt. (1.12)

Setting λ := n + 1 yields∫
R

F(t)dt =
∫

R
Fn+1(t)dt =

∫ δ

−δ
Fn+1(t)dt +

∫
R\ [−δ ,δ ]

Fn+1(t)dt. (1.13)
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The second integral in (1.13) vanishes:

∫
R\ [−δ ,δ ]

Fn+1(t)dt =
1

2π

∫ δ

−δ
1

n + 1

(
sin( n+1

2 t)
t
2

)2

dt → 0 for n → ∞.

Hence,

∫
R

F(t)dt = lim
n→∞

∫ δ

−δ
Fn+1(t)dt = lim

n→∞
1

2π

∫ δ

−δ
1

n + 1

(
sin n+1

2 t
t
2

)2

dt.

Equations (1.11) and (1.12) now imply that

1
1 + ε

≤ lim
n→∞

1
2π

∫ δ

−δ
1

n + 1

(
sin n+1

2 t
t
2

)2

dt ≤ 1.

Since 0 < ε < 1 was arbitrary, the claim that
∫
R F(t)dt = 1 follows.

Definition 1.41. A family (kλ )λ∈(0,∞ ) is called an approximate identity for L1(R) if

lim
λ→∞

‖ f − kλ ∗ f‖1 = 0, ∀ f ∈ L1(R).

It can be shown that every summation kernel on R is an approximate identity
for L1(R).

Theorem 1.42. Assume that {kλ}λ∈(0,∞), is a summation kernel. Then

lim
λ→∞

‖ f − kλ ∗ f‖1 = 0, ∀ f ∈ L1(R).

Proof. See, e.g., [151, 162]. 
�
The special case kλ := Fλ yields a corollary.

Corollary 1.43. Let f ∈ L1(R). For a given λ > 0, set

σλ ( f )(t) := Fλ ∗ f (t) =
1

2π

∫ λ

−λ

(
1− |ω |

λ

)
F ( f )(ω)eiωt dω .

Then
lim
λ→∞

‖ f −Fλ ∗ f‖1 = 0.

Proof. Only the validity of the second equality needs to be shown. For this purpose,
define

∆(t) :=

{
1

2π (1−|t|), for |t| ≤ 1,

0, else.
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Then, for ω = 0, one has that∫ 1

0
(1− t)e−iωt dt = − 1

iω
− 1
ω2 (eiω −1)

and ∫ 0

−1
(1 + t)e−iωt dt =

1
iω

− 1
ω2 (e−iω −1).

Hence, for all ω = 0,

F (∆)(ω) =
1

2π

∫ 1

−1
(1−|t|)e−itω dt

=
1

2π

∫ 1

−1

2−2cosω
ω2 =

1
2π

(
sin ω2
ω
2

)2

= F(ω).

In addition, F (∆)(0) = 1/2π = F(0). Therefore, F = F (∆) and

Fλ (ω) = λF(λω) = λF (∆)(λω) = F (∆λ )(ω),

where

∆λ (t) =

{
1

2π

(
1− |t|

λ

)
, for |t| < λ ,

0, else.

Thus,

Fλ (t) =
1

2π

∫ λ

−λ

(
1− |ω |

λ

)
e−iωt dω =

1
2π

∫ λ

−λ

(
1− |ω |

λ

)
eiωt dω ,

since ∆ is an even function.
Theorem 1.34 implies

Fλ ∗ f (t) =
1

2π

∫ λ

−λ

(
1− |ω |

λ

)
F ( f )(ω)eiωt dω .

Now, Fλ is a summation kernel and according to Theorem 1.42 an approximate
identity for L1(R), which implies the statement. 
�
Corollary 1.44 (Uniqueness).

Let f ∈L1(R) satisfy F ( f )(ω) = 0 for allω ∈R. Then f = 0 almost everywhere.

Corollary 1.45 (Inversion formula).
Let f ∈ L1(R) satisfy F ( f ) ∈ L1(R). Then

f (t) =
1

2π

∫
R

F ( f )(ω)eiωt dω , for almost all t ∈ R,

with equality at the points of continuity of f .
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Proof. For fixed t ∈ R, the function

R → C : ω �→ χ[−λ ,λ ](ω)
(

1− |ω |
λ

)
F ( f )(ω)eiωt
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Fig. 1.2: (a) The Fejér kernel F(t) and (b) its Fourier integral transform ∆(ω) in L1(R).
(c) For scales λ ·F(λ t) with increasing λ = 1,2,3, the Fejér kernel becomes narrower and higher
and (d) the Fourier integral transform wider.

has as its limit the function

ω �→ F ( f )(ω)eiωt ,

as λ → ∞. The modulus of this function can be bounded above by |F ( f )|. As
by assumption F ( f ) ∈ L1(R), the dominated convergence theorem in the L1-norm
implies

lim
λ→∞

Fλ ∗ f (t) = lim
λ→∞

1
2π

∫
R
χ[−λ ,λ ](ω)

(
1− |ω |

λ

)
F ( f )(ω)eiωt dω

=
1

2π

∫
R

F ( f )(ω)eiωt dω .

Note that if a sequence gn → g in L1(R) and also ‖gn −g‖→ 0 as n →∞, then there
exists a subsequence gnk such that

lim
k→∞

gnk(t) = g(t) a.e.
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Applying this to the setting at hand, we deduce the existence of a subsequence
{Fλk

}k∈N with the property that Fλk
∗ f → f almost everywhere as k → ∞.

The statement regarding the points of continuity of f follows from a theorem
ahead. 
�
Definition 1.46. For a g ∈ L1(R), we denote the inverse Fourier transform of g by

F−1(g)(t) :=
1

2π

∫
R

g(ω)eiωt dω .

Remark 1.47. For functions f ∈ L1(R) such that F ( f ) ∈ L1(R), one has that

F−1(F ( f ))(t) = f (t) a.e.

Example 1.48 (The Fejér kernel revisited). We already know that F (∆) = F . Since
F (∆) has compact support, F (∆) ∈ L1(R) and the inversion formula

∆(ω) =
1

2π
F (F)(ω)

holds.

Corollary 1.49 (Continuous analogue of the theorem of Weierstraß). Let Cc(R)
denote the space of all continuous functions R → C with compact support. The set
of functions f ∈ L1(R) with F ( f ) ∈Cc(R) forms a dense (with respect to the norm
‖ • ‖1) subspace of L1(R).

Proof.

F (Fλ ∗ f )(ω) = F (Fλ )(ω)F ( f )(ω) = χ[−λ ,λ ](ω)
(

1− |ω |
λ

)
F ( f )(ω),

i.e., F (Fλ ∗ f ) ∈ Cc(R). The claim follows now from the fact that the Fejér kernel
is a summation kernel. 
�
Corollary 1.50 (Riemann–Lebesgue lemma).

Let f ∈ L1(R). Then lim|ω|→∞F ( f )(ω) = 0.

Proof. Use Corollary 1.49. The details are left to the reader. 
�
Theorem 1.51. Let f ∈ L1(R) and define

σλ ( f )(t) :=
1

2π

∫ λ

−λ

(
1− |ω |

λ

)
F ( f )(ω)eitω da.

Then σλ ( f )(t) → f (t) as λ → ∞, for almost all t ∈ R.
If t is a point of continuity of f , then σλ ( f )(t) converges to f (t).

Proof. See, for instance, [162]. 
�
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Example 1.52 (Additional summation kernels on R).

(i) Cauchy–Poisson kernel

P(t) :=
1
π

(
1

1 + t2

)
, Pλ (t) := λP(λ t), λ ∈ (0,∞) ,

is a summation kernel (see Fig. 1.3).

1
π

∫
R

1
1 + t2 dt =

1
π

arctan(t)
∣∣∣∣∞
t=−∞

= 1.
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Fig. 1.3: (a) The Cauchy–Poisson kernel P and (b) its Fourier transform in L1(R). (c) For scales
λ ·P(λ t) with increasing λ = 1,2,3, the Cauchy–Poisson kernel becomes narrower and higher,
and (d) the Fourier transform wider.

Hence, (Pλ )λ∈(0,∞ ) is a summation kernel. The Fourier transform is given by

F (Pλ )(ω) = exp
(
−
∣∣∣ωλ ∣∣∣) ,

since

f (t) = χ[0,∞ )(t)e
−t , F ( f )(ω) =

1
1 + iω

,

g(t) = χ(−∞,0 ](t)e
t , F (g)(ω) =

1
1− iω

.
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Set h(t)= f (t)+g(t) = e−|t|. Then F (h)(ω) = 2/(1 +ω2). However, h, F (h)∈
L1(R) and application of the inversion theorem yields

F (Pλ )(ω) =
∫

R
Pλ (t)e

−iωt dt

=
λ
2π

∫
R

F (h)(λ t)e−iωt dt

=
1

2π

∫
R

F (h)(s)e−iωλ s ds

= F−1Fh
(
−ω
λ

)
= e−|ωλ |.

(ii) Gauß kernel

G(t) :=
1√
π

e−t2
, Gλ (t) := λG(λ t), λ ∈ (0,∞)

(see Fig. 1.4). Note that
∫
R G(t)dt = 1. Thus, {Gλ}λ∈(0,∞ ) is a summation

kernel. Moreover,

F (G)(ω) = exp

(
−
(ω

2

)2
)

.
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Fig. 1.4: (a) The Gauß kernel G and (b) its Fourier transform in L1(R). (c) For scales λ ·G(λ t)
with increasing λ = 1,2,3, the Gauß kernel becomes narrower and higher, and (d) the Fourier
transform wider.
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1.3.2 The Plancherel Transform

For many applications, a Hilbert space model is more appropriate since in this case
an inner product is available. In this section, we extend the Fourier transform to the
Hilbert space L2(R).

To this end, we use the fact that Cc(R), the space of all continuous functions with
compact support, is a subspace of L1(R)∩L2(R) and dense in L1(R) and L2(R) in
the respective norm topology.

Lemma 1.53. If f ∈ Cc(R), then F ( f ) ∈ L2(R), and

1
2π

∫
R
|F ( f )(ω)|2 dω =

∫
R
| f (t)|2 dt.

Proof. See, for instance, [209]. 
�
Definition 1.54. Suppose that f ∈ L2(R) and { fn}n∈N ⊂ Cc(R) is an arbitrary
sequence that converges in L2(R) to f . The limit

P( f ) = lim
n→∞F ( fn) ∈ L2(R)

in the L2(R)-norm is called the Plancherel transform of f .

Remark 1.55. The Plancherel transform and the Fourier transform are both defined
on L1(R)∩ L2(R) and agree there. Indeed, let f ∈ L1(R)∩ L2(R) and choose a
sequence { fn}n∈N ⊂ Cc(R) that converges in L1(R) and L2(R) to f . Then

‖F ( fn)−P( f )‖2 → 0 and F ( fn)(ω)→F ( f )(ω), for all ω ∈R and n →∞.

Since F ( fn) → P( f ) in L2(R), there exists a subsequence {nk}k∈N ⊂ N so
that F ( fn)(ω) → P( f )(ω) for almost all ω ∈ R. Hence, F ( f ) = P( f ) almost
everywhere.

Lemma 1.56. Let f ∈ L1(R) ∩ L2(R). Then F ( f ) = P( f ) almost everywhere.
Moreover,

1
2π

∫
R
|F ( f )(ω)|2 dω =

∫
R
| f (t)|2 dt.

Theorem 1.57 (An equivalent description of the Plancherel transform). Let f ∈
L2(R). For λ > 0, let fλ := χ[−λ ,λ ] f . Then fλ ∈L1(R)∩L2(R) and F ( fλ )∈L2(R).
In particular,

lim
λ→∞

‖P( f )−F ( fλ )‖2 = 0.

Proof. Exercise! (Hint: Use Lemma 1.56.) 
�
So far we know that the Plancherel transform is a bounded linear operator P :

L2(R) → L2(R). In addition, we know that

1√
2π

‖P( f )‖2 = ‖ f‖2, ∀ f ∈ L2(R).
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Hence, P is injective. To show that P is also surjective, we prove an inversion
formula.

Lemma 1.58 (Parseval). Let f ,g ∈ L2(R). Then

〈P( f ),g〉 = 〈P(g), f 〉.

Proof. Let f ,g ∈ Cc(R). Fubini’s theorem yields

〈F ( f ),g〉 =
∫

R
F ( f )(a)g(ω)dω =

∫
R

∫
R

f (t)e−iωt dt g(ω)dω

=
∫

R
f (t)F (g)(t)dt = 〈F (g), f 〉.

For f ,g ∈ L2(R), choose convergent sequences { fn}n∈N,{gn}n∈N ⊂ Cc(R) so that
fn → f and gn → g as n → ∞ in the L2(R)-norm. From the continuity of the inner
product, it follows that

〈P( f ),g〉 = lim
n,m→∞〈F ( fn),gm〉 = lim

n,m→∞〈F (gm), fn〉 = 〈P(g), f 〉. 
�

Theorem 1.59 (Inversion formula for the Plancherel transform). Let f ∈ L2(R).
Then

f =
1

2π
P(P( f )) almost everywhere.

Proof. Set g := P( f ). The linearity of the inner product yields∥∥∥∥ f − 1
2π

P(g)
∥∥∥∥2

2
= ‖ f‖2

2 −
〈

f ,
1

2π
P(g)

〉
−

〈
1

2π
P(g), f

〉
+

∥∥∥∥ 1
2π

P(g)
∥∥∥∥2

2
.

By Parseval’s equality, we have that〈
f ,

1
2π

P(g)
〉

=
1

2π
〈
P(g), f

〉
=

1
2π

〈P( f ),g〉 =
1

2π
‖P( f )‖2

2 = ‖ f‖2
2

and 〈
1

2π
P(g), f

〉
=

1
2π

〈
P(g), f

〉
= ‖ f‖2

2,

as well as ∥∥∥∥ 1
2π

P(g)
∥∥∥∥2

2
=

1
4π2 ‖P(g)‖2

2 =
1

2π
‖g‖2

2 = ‖ f‖2
2.

Thus, ∥∥∥∥ f − 1
2π

P(g)
∥∥∥∥2

2
= 0,

which implies the statement in the theorem. 
�
Hence, P : L2(R) → L2(R) is a topological automorphism.
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In summary, we arrive at the following theorem.

Theorem 1.60 (Plancherel). The linear operator P : L2(R)→ L2(R) is an isomor-
phism from L2(R) onto L2(R). It has the following properties.

1. For all f ,g ∈ L2(R), one has that

1
2π

〈P( f ),P(g)〉 = 〈 f ,g〉.

In particular,
1√
2π

‖P( f )‖2 = ‖ f‖2.

2. P( f ) = F ( f ) for f ∈ L1(R)∩L2(R).
3. P( f )(ω) = limλ→∞

∫ λ
−λ f (t)e−iωt dt in the L2-norm.

4. f (t) = 1
2π limλ→∞

∫ λ
−λ P( f )(ω)eiωt dω in the L2-norm.

Proof. Only item 1 needs to be shown. However, Plancherel’s formula and the
inversion theorem imply that

1
2π

〈P( f ),P(g)〉 =
1

2π

〈
P(P(g)), f

〉
= 〈g, f 〉 = 〈 f ,g〉. 
�

We introduce the convolution ∗ : L1(R)×Lp(R)→ Lp(R), 1 < p <∞. For f ∈Lp(R)
and g ∈ L1(R), define

g ∗ f (t) :=
∫

R
f (t − s)g(s)ds.

One can show that g∗ f exists for almost all t ∈ R and that g∗ f ∈ Lp(R), satisfying
the estimate

‖g ∗ f‖p ≤ ‖g‖1‖ f‖p.

In the special case p := 2, we obtain the next result.

Theorem 1.61. Let g ∈ L1(R) and f ∈ L2(R). Then

g∗ f (t) =
∫

R
f (t − s)g(s)ds

is an element of L2(R) and the estimate

‖g ∗ f‖2 ≤ ‖g‖1‖ f‖2

holds. Moreover, the Plancherel transform satisfies

P(g ∗ f ) = F (g)P( f ).

Proof. Only the last statement needs to be proven. This, however, is left as an
exercise to the reader. 
�
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Note that if f ∈ L2(R), then Fλ ∗ f ∈ L2(R). In particular,

Fλ ∗ f (t) =
1

2π

∫ λ

−λ

(
1− |ω |

λ

)
P( f )(ω)eiωt dω .

This last equality can be shown as follows. Set ϕ(ω) := ∆λ (ω)eiωt . Then

F (ϕ)(s) =
∫

R
∆λ (ω)e−iω(s−t) dω = Fλ (s− t).

Since ϕ is continuous and has compact support, F (ϕ) = P(ϕ) holds. Plancherel’s
theorem then implies

Fλ ∗ f (t) =
∫

R
Fλ (t − s) f (s)ds =

∫
R

Fλ (s− t) f (s)ds

=
∫

R
P(ϕ)(s) f (s)ds =

∫
R

P( f )(ω)ϕ(ω)dω

=
1

2π

∫ λ

−λ

(
1− |ω |

λ

)
P( f )(ω)eiωt dω .

Using arguments analogous to those in the proof of Theorem 1.51, one can
establish the next result.

Theorem 1.62. Let f ∈ L2(R) and let

σλ ( f )(t) :=
1

2π

∫ λ

−λ

(
1− |ω |

λ

)
P( f )(ω)eiωt dω .

Then σλ ( f )(t) → f (t) as λ → ∞, for almost all t ∈ R.

1.3.3 The Theorem of Paley–Wiener

In this section, we exhibit the connection between Fourier series and the sampling
theorem. The link is the theorem of Paley and Wiener.

Theorem 1.63 (Paley–Wiener). Suppose that f ∈ L2(R). Then the following are
equivalent.

1. P( f )|R\[−δ ,δ ] = 0, a.e., for some δ > 0.
2. f can be extended to an entire function f : C → C of exponential type δ , i.e.,

|F(z)| ≤ M exp(δ |z|), ∀z ∈ C,

and some constant M > 0.

Proof. See [166, 209]. 
�



30 Peter Massopust and Brigitte Forster

Definition 1.64. An L2(R)-function satisfying P( f )|R\[−δ ,δ ] = 0, a.e., is called
band-limited. The number 2δ is referred to as the bandwidth of f . The space of
all band-limited functions is called a Paley–Wiener space and is denoted by PW 2

δ .

L2[−π ,π ] l2(Z)

PW 2
π

�

�

�
�

�
�

�
�

���

Fourier transform

Theorem of
Paley–Wiener

Sampling theorem

Fig. 1.5: The isometry of the Fourier transform on the torus T in both the theorem of Paley–Wiener
and in the sampling theorem generates a commutative diagram.

1.3.4 Discretization: The Poisson Summation Formula and the
Sampling Theorem

Let T > 0. Suppose that f ∈ L1(R) and that the following two conditions are
satisfied:

(P1) The series∑∞n=−∞ f (t +2nT ) converges everywhere to a continuous function.
(P2) The Fourier series ∑∞n=−∞F ( f )(n/2T) eint converges everywhere.

Under the above conditions, a relationship between Fourier coefficients and the
Fourier transform can be established. The result is the Poisson summation formula,
which can be stated in the form

∞

∑
n=−∞

f (t + 2nT) =
1

2T

∞

∑
n=−∞

F ( f )
( n

2T

)
eint .

A proof of the Poisson summation formula can be found in, e.g., [151].
The next theorem gives conditions on f and its Fourier transform F ( f ) under

which (P1) and (P2) automatically hold.

Theorem 1.65. Suppose that f is a Lebesgue-measurable function satisfying

f (t) = O

(
1

1 + |t|α
)

and F ( f )(ω) = O

(
1

1 + |ω |α
)

,

for some α > 1 as |t| → ∞ and |ω | → ∞ . Then conditions (P1) and (P2) hold.

Here, O denotes the Landau symbol.
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Theorem 1.66. Suppose that f ∈ L2(R)∩C(R) and that P( f ) ∈ L1(R). Then the
following estimate holds for every δ > 0:

sup
t∈R

∣∣∣∣∣ f (t)−
∞

∑
n=−∞

f
( n
δ

)
sinc(δ t −n)

∣∣∣∣∣≤ 1
π

∫
|ω|>πδ

|P( f )(ω)|dω .

Proof. See [162]. 
�
Considering band-limited functions in Theorem 1.66 immediately yields the

Shannon–Whittaker–Kotel’nikov sampling theorem.

Corollary 1.67 (Shannon–Whittaker–Kotel’nikov sampling theorem). Let f ∈
L2(R)∩C(R) be a band-limited function with bandwidth 2πδ , where δ > 0. Then,
for every t ∈ R,

f (t) =
∞

∑
n=−∞

f
( n
δ

)
sinc(δ t −n).

Moreover, the series on the right-hand side converges uniformly and absolutely
on R.

Defining B to be the smallest positive real number for which
P( f )|R\[−πB,πB] = 0, a.e., Corollary 1.67 expresses the fact that B is the largest
sampling rate allowing the exact reconstruction of f in terms of the samples f (n/B),
n ∈ Z. This value of B is called the Nyquist rate.

1.4 Windowed Fourier Transforms

The Fourier, resp. the Plancherel, transform is not stable with respect to local
changes in the time or frequency domain. As an example, consider Fig. 1.6, where a
small local change of the signal spreads over the whole frequency spectrum. This is
due to the fact the analyzing function family consisting of sine and cosine functions
is not local, but global.

In order to obtain a better location of a signal in both the time and frequency
domains, the ordinary Fourier transform is modified by multiplying the signal f by
a window function ϕ . The present section defines such windowed Fourier trans-
forms and discusses the dependence of the filtered signal on the parameters defining
the window function. Particular emphasis is placed on a specific windowed Fourier
transform, namely the Gabor transform.

1.4.1 The Short-Time Fourier Transform (STFT)

Definition 1.68. Suppose that ϕ ∈ L1(R)∩L2(R) and f ∈ L2(R). For ω ∈ R and
b ∈ R, define

Φb( f )(ω) :=
∫

R
f (t)ϕ(t −b)e−iωt dt = 〈 f ,Wb,ω 〉, (1.14)

where Wb,ω(t) := eiωtϕ(t −b).
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Fig. 1.6: (a) is a function f and (b) the modulus of its frequency spectrum with respect to the
Fourier transform in L1(R). (c): A perturbation was added to the function f , causing a global
change in the modulus of its frequency spectrum (d).

Then Φb( f )(ω) is called the short-time fourier transform (STFT) of f .

Hölder’s inequality and the Cauchy–Schwarz inequality imply that f ·ϕ(•−b)∈
L1(R)∩L2(R). Thus, the STFT has properties analogous to those of the Fourier and
Plancherel transforms.

1.4.2 The Gabor Transform

Consider the Gaussian

gs(t) :=
1

2
√
πs

e
−t2
4s (1.15)

with the parameter s > 0. Recall that gs(t) = Gλ (t), where λ = 1/2
√

s. With this
window in the STFT, we get the following special case.

Definition 1.69. Let f ∈ L2(R), and let s > 0 and b ∈ R. Define

G s
b ( f )(ω) :=

∫
R

f (t)gs(t −b)e−iωt dt. (1.16)

Then G s
b ( f )(ω) is called the Gabor transform of f with parameters s and b.

The Gabor transform is a so-called time-frequency representation, where the
parameter b models the time variable, i.e., the position of the window gs, and ω
the frequency part. The parameter s describes the “width” of the time window.
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1.4.2.1 The Gabor Transform as a Fourier and Plancherel Transform—From
the View point of the Variable ω

The variableω appears in (1.16) in the exponential term, similar to the usual Fourier
or Plancherel transform. Since the Gabor transform is localized with the integral
kernel gs, the variable ω can be interpreted as a local frequency and |G s

b ( f )(ω)| as
a local amplitude for a signal in a neighborhood of b. In fact, the variable ω allows
for similar properties as the Fourier and the Plancherel transform, as the following
proposition shows.

Proposition 1.70. Let f ∈ L2(R). Then

1. G s
b ( f ) ∈ Cb

u(R).
2. lim|ω|→∞G s

b ( f )(ω) = 0 (variation of the Riemann–Lebesgue lemma).
3. G s

b ( f ) ∈ L2(R).

Proof. The Hölder and Cauchy–Schwarz inequalities imply f ·gs(•−b) ∈ L1(R)∩
L2(R). Thus,

G s
b ( f ) = F ( f ·gs(•−b))

and statements 1 and 2 follow from the properties of the Fourier transform on L1(R).
Moreover,

G s
b ( f ) = P( f ·gs(•−b)),

together with the fact that the Plancherel transform is an isometry on L2(R), yields
statement 3. 
�

1.4.2.2 The Gabor Transform from the View point of the Variable b : Window
Translation

The family of functions {G s
b ( f )(ω) : b ∈R} partitions F ( f )(ω) into a set of Gabor

transforms. To see this, we first define the modulation operator

Mω : Lp(R) → Lp(R),

f �→ Mω f := eiω• f ,

for all ω ∈ R, and the translation operator

Tb : Lp(R) → Lp(R),
f �→ Tb f := f (•−b),

for all b ∈ R, where in both cases 1 ≤ p ≤ ∞.

Theorem 1.71. Let f ∈ L2(R). Then the following hold:

1. The mapping G s• ( f )(ω) : R → C, b �→ G s
b ( f )(ω) is continuous.

2. G s• ( f )(ω) ∈ L2(R) and ‖G s• ( f )(ω)‖2 ≤ ‖gs‖1 · ‖ f‖2, ∀s > 0,∀ω ∈ R.

3. P(G s• ( f )(ω)) = F (gs)P(Mω f ) is in L2(R), where F (gs)(ω) = e−sω2
.
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4. If f ∈ L1(R)∩L2(R), then G s• ( f )(ω) ∈ L1(R)∩L2(R) and∫
R

G s
b ( f )(ω)db = F ( f )(ω), ∀ω ∈ R,s > 0.

Proof. 1. Follows from the continuity of the function R → L2(R),b �→ Tbgs

= gs(•−b) and the dominated convergence theorem.
2. G s

b ( f )(ω) =
∫
R e−iωt f (t)gs(t −b)dt = gs ∗ (M−ω f )(b), with the convolution ∗ :

L1(R)×L2(R) → L2(R). Thus,

‖G s
• ( f )(ω)‖2 ≤ ‖gs‖1‖M−ω f‖2 = ‖gs‖1‖e−iω• f‖2 = ‖gs‖1‖ f‖2.

3. P(G s• ( f )(ω)) = P(gs)P(M−ω f ) = F (gs)P(M−ω f ).
4. G s• ( f )(ω) = gs ∗M−ω f ∈ L1(R), since gs and f are in L1(R). Hence,

F (G s
• ( f )(ω))(ρ) = F (gs)(ρ)F (M−ω f )(ρ), ∀ρ ∈ R.

Setting ρ = 0 yields the claim. 
�

1.4.2.3 The Window Parameter s and Time-Frequency Localization

The Gabor transform is a special case of the localized STFT. A measure for the
width of the window is given by the standard deviation of the “density” g2

s :

∆gs :=
1

‖gs‖2

(∫
R

t2(gs(t))2 dt

) 1
2

.

The quantity ∆gs is called the radius of gs. It is easy to verify that ∆gs =
√

s. (Show
this!)

Theorem 1.72. Let f ∈ L2(R) and let b,ω ∈ R. Then

G s
b ( f )(ω) =

1
2
√
πs

e−ibωG
1
4s
ω (P( f ))(−b).

Proof. Exercise! 
�
Remark 1.73. G s

ω(P( f ))(−b) localizes in the frequency domain with radius 1/
√

4s,
whereas G s

b ( f )(ω) localizes in the time domain with radius
√

s.
A measure for the simultaneous localization in the time and frequency domains

is given by
√

s ·1/
√

4s = 1/2.
The time-frequency window is thus [b − √

s,b +
√

s ] × [ω − (1/2
√

s),
ω+(1/2

√
s )].

Theorem 1.74. Let f ,g ∈ L2(R). Then∫
R

∫
R

G s
b ( f )(ω)G s

b (g)(ω)dbdω =
√
π√
2s

〈 f ,g〉.

Proof. Exercise! 
�
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Theorem 1.75 (Inversion theorem). Assume that f ∈ L1(R)∩L2(R). At all points
t ∈ R at which f is continuous, the following inversion formula holds:

f (t) =

√
2s
π

∫
R

∫
R

G s
b ( f )(ω)gs(t −b)eiωt dbdω .

Proof. Let {Fλ}λ∈(0,∞) be the Fejér kernel on R. Then Fλ ∈ L1(R) ∩ L2(R).
Approximating f with the Fejér kernel yields

〈 f ,TaFλ 〉 =
∫

R
f (t)Fλ (t −a)dt =

∫
R

f (t)Fλ (a− t)dt = f ∗Fλ (a).

This equation holds almost everywhere and pointwise at all points of continuity
of f . At these points, we also have pointwise convergence:

lim
λ→∞

〈 f ,TaFλ 〉 = f (a). (1.17)

Moreover,

G s
b (TaFλ )(ω) =

∫
R

Fλ (t −a)gs(t −b)e−iωt dt

= e−iωb
∫

R
Fλ (t −a)gs(t −b)e−iω(t−b) dt

= e−iωb
∫

R
Fλ (y + b−a)gs(y)e−iωy dy

= e−iωb
∫

R
Fλ (a−b− y)gs(y)e−iωy dy

= e−iωb (Fλ ∗M−ωgs)(a−b)

→ e−iωb M−ωgs(a−b) = gs(a−b)e−iωa as λ → ∞. (1.18)

Now apply Theorem 1.72 to f and Fλ (•−a) and use the dominated convergence
theorem to obtain

lim
λ→0

∫
R

∫
R

G s
b ( f )(ω)G s

b (TaFλ )(ω)dbdω =
∫

R

∫
R

G s
b ( f )(ω)gs(a−b)eiωa dbdω .

On the other hand, by Theorem 1.74 and Eq. (1.17),∫
R

∫
R

G s
b ( f )(ω)G s

b (TaFλ )(ω)dbdω

=
√
π
2s

〈 f ,TaFλ 〉 →
√
π
2s

f (a), for λ → ∞,

at all points a, where f is continuous. This gives the result. 
�
For an illustration of the dependence of the Gabor transform on the parameter s,

see Figs. 1.7 and 1.8.
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Fig. 1.7: (a) The function f and (b) the Gauß kernels for different values of the window
parameter s. Figure 1.8 depicts the corresponding Gabor transforms.

1.4.3 The Heisenberg Uncertainty Principle

In the context of localizating the Fourier transform, immediately the following
question arises: Is it possible to choose a window function ϕ for the STFT whose
energy is well localized in both time and frequency? Unfortunately, it is impossible
to tell which frequencies are present at a specific point in time. This is the content of
the so-called uncertainty principle, which states that a function f and its Plancherel
transform P( f ) cannot both have arbitrarily small support.

Definition 1.76. Assume that ϕ ∈ L2(R) and that
√| • | · |ϕ | ∈ L2(R).

1. a∗ := 1
‖ϕ‖2

2

∫
R t · |ϕ(t)|2 dt is called the center of ϕ .

2. ∆ϕ := 1
‖ϕ‖2

(∫
R(t −a∗)2|ϕ(t)|2 dt

)1/2
is called the radius of ϕ , occasionally also

the mean bandwidth or the mean running time.

Theorem 1.77 (The Heisenberg uncertainty relation). Let f ∈ L2(R). Then

1
2π

∫
R

t2 | f (t)|2 dt ·
∫

R
ω2 |P( f )(ω)|2 dω ≥ 1

4
‖ f‖4

2. (1.19)

(We allow the left-hand side to assume the value “∞.”) The left-hand side equals the
right-hand side iff f (t) = c · e−kt2

for k > 0 and c ∈ C.

Proof. We refer to [46] for the proof. 
�
The Heisenberg uncertainty relation was first proved in this form but under

stronger assumptions by H. Weyl.
For the proof of Theorem 1.77, one requires the concept of Schwartz space. The

Schwartz space S consists of all functions f ∈ C∞(R) that satisfy the condition

sup
|α |≤N

sup
t∈R

(1 + t2)N |Dα( f )(t)| < ∞ (1.20)

for every N ∈ N0.
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Fig. 1.8: Gabor transform for the functions in Fig. 1.7 for different values of the window
parameter s. For small s, e.g., s = 0.01, the window is well localized in the time domain,
and the edges of the function f appear nicely (horizontal axis), whereas the Fourier spectrum
(vertical axis) is blurred. For large s, e.g., s = 0.5, on the contrary, the sinc character of F ( f ) is
well recovered, but the time-domain representation of f is blurred.
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In other words, p · Dα f is a bounded function on R for every polynomial p
and every differential operator Dα of order α ∈ N0. Since this is also true for
(1 + t2)N p(t) instead of p(t), it follows that every p ·Dα f ∈ L1(R). For,

|p(t) ·Dα f (t)| ≤ const.
1

(1 + t2)N .

Therefore, functions in S decay faster than any power 1/|t|m as |t| → ∞.
Functions with this property form a vector space S for which the countably

many norms (1.20) generate a locally convex topology.

Theorem 1.78. 1. S is a Fréchet space, i.e., a complete, locally convex, metrizable
space.

2. Suppose that p is a polynomial, g ∈ S , and α ∈ N. Then each of the following
three maps is continuous and linear from S → S :

f �→ p · f , f �→ g · f , f �→ Dα f .

3. The Fourier transform is a continuous linear mapping from S → S . In partic-
ular, F ( f ) ∈ S for f ∈ S .

4. S is dense in L2(R).

Proof. See, for instance, [209]. 
�

1.4.4 Discretization: Gabor Frames

Up to now, the Gabor transform has been an integral transform operator with
continuous parameters and variables s, b, and ω . This family of parameters yields a
highly redundant system; therefore, the question arises if there exists a discretized
representation in the form of a series instead of an integral. Various aspects of such
a discretization are considered in Chapters 2, 3, and 5. We refer to these chapters for
the ideas and details. It is, however, worth noticing that a discretization to a Gabor
Riesz basis with fast decaying basis elements in the time domain as well as in the
frequency domain is not possible. This is the famous Balian–Low theorem, which
is stated in Chapter 2 (Theorem 2.27).

1.4.5 Shortcomings of the Windowed Fourier Transform

It follows from the definition (1.14) of the windowed Fourier transform that at each
point in the time-frequency domain, a window is translated to the time location
and frequency location under consideration. The duration and the bandwidth of the
window and thus the resolution do not change. The resolution in the time and
frequency domains depends only on the form of the window and, by the Heisenberg
uncertainty relation, it is not possible to achieve an optimal resolution simultane-
ously in the time and frequency domains. For a signal that contains both low- and
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high-frequency components, however, it would be desirable to obtain a good
resolution in the low-frequency spectrum since there small changes are relevant,
whereas in the high-frequency spectrum, a good time resolution is more important
since a complete oscillation requires less time, causing a faster change of the instan-
taneous frequency. Thus, at low frequencies one needs a good frequency resolution,
taking into account a bad time resolution, whereas at high frequencies a good time
resolution but a bad frequency resolution is desired. The STFT does not provide a
means of achieving this.

A generalization of the STFT is provided by the wavelet transform. Instead of
comparing a signal with a window function that is translated and modulated, the
wavelet transform compares a signal with a window function that is translated and
scaled. The scaling induces, analogous to modulation, a frequency shift. However,
a frequency increase causes a simultaneous reduction of the time duration. At high
frequencies this results in a better time resolution and at low frequencies in a better
frequency resolution but a worse time resolution.

1.5 The Wavelet Transform

The idea of the wavelet transform consists of comparing the analyzed signal or
image with one single pattern, the wavelet. The pattern is dilated and translated, such
that its shape works like a looking glass, which is moved (translated) over a signal
or an image in various distances (dilations) from the signal or image. The wavelet is
a function that is well localized in time or space as well as in the frequency domain.
Therefore, in contrast to the Fourier transform, it allows for a local analysis.

1.5.1 Definition and Properties

Definition 1.79. A function ψ ∈ L2(R) is called a wavelet if it fulfills the admissi-
bility condition:

0 < cψ =
∫

R

|P(ψ)(ω)|2
|ω | dω < ∞.

The wavelet transform of a function f ∈ L2(R) with respect to the wavelet ψ is
defined as

Wψ f (a,b) =
1√
cψ

1√|a|
∫

R
f (t)ψ

(
t −b

a

)
dt,

for all a ∈ R\ {0} and all b ∈ R.

Let ψ ∈ L1(R) be a wavelet. Then P(ψ) = F (ψ), and F (ψ) is continuous.
The admissibility condition therefore implies F (ψ)(0) = 0, which is equivalent to
ψ having zero mean:

0 = F (ψ)(0) =
∫

R
ψ(t)dt.

This is a necessary condition for wavelets in L1(R)∩L2(R).
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Example 1.80. 1. The generator of the Haar system from Section 1.1.2.3 is a
wavelet, the so-called Haar wavelet:

ψ(t) =

⎧⎪⎨⎪⎩
1, for 0 ≤ t < 1

2 ,

−1, for 1
2 ≤ t ≤ 1,

0, else.

For the Fourier transform, F (ψ)(ω) = ie−iω2 sin(ω/4)(sin ω4 /ω4 ). The admissi-
bility constant is cψ = 2ln2.

2. A C∞-example for a wavelet is the Mexican hat wavelet:

ψ(x) = − d2

dx2 e−x2/2 = (1− x2)e−x2/2.

The Fourier transform has the form

F (ψ)(ω) = ω2e−ω
2/2;

the admissibility constant cψ = 1.

Lemma 1.81. The set of wavelets {ψ ∈ L2(R) | ψ is admissible} is dense in L2(R).

Proof. Exercise! 
�
The wavelet transform operates as a linear time-invariant filter. To see this, we

consider the Plancherel transform with respect to the second variable:

P(Wψ f (a,•))(ω) =
√

|a| 1√
cψ

P(ψ)(−aω)P( f )(ω)

=
√

|a| 1√
cψ

P(ψ)(aω)P( f )(ω) in L2(R).

From this we can deduce that the wavelet transform is an isometry:

Theorem 1.82. The wavelet transform corresponding to the wavelet ψ is an
isometry:

Wψ : L2(R) → L2
(

R2,
dadb

a2

)
.

Proof. By definition of the wavelet transform, for f ∈ L2(R),

Wψ f (a,b) =
1√
cψ

1√|a|
∫

R
f (t)ψ

(
t −b

a

)
dt

=
1√
cψ

1√|a|

〈
f ,ψ

(•−b
a

)〉
.

Wψ f (a,b) is well defined, because ψ ∈ L2(R) and therefore also ψ(•−b/a) ∈
L2(R). By the Parseval inequality,

‖Wψ f‖2
L2

(
R2, dadb

a2

) =
∫

R

∫
R
|Wψ f (a,b)|2 dadb

a2
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=
1

2π

∫
R

∫
R
|P(Wψ f (a,•))(ω)|2 dadω

a2

=
1

2π

∫
R

∫
R

∣∣∣∣∣√|a| 1√
cψ

P(ψ)(−aω)P( f )(ω)

∣∣∣∣∣
2

dadω
a2

=
1

2π
1

cψ

∫
R

∫
R
|a||P(ψ)(−aω)|2|P( f )(ω)|2 dadω

a2

=
1

2π
1

cψ

∫
R

∫
R

|P(ψ)(s)|2
|s| |P( f )(ω)|2 dsdω

=
1

2π
‖P( f )‖2

L2(R) = ‖ f‖2
L2(R).

Theorem 1.83 (Inverse wavelet transform). The adjoint operator

W ∗
ψ : L2

(
R2,

dadb
a2

)
→ L2(R),

g �→ 1√
cψ

∫
R

∫
R

1√|a|ψ
(

t −b
a

)
g(a,b)

dadb
a2 (1.21)

is the inverse operator of the wavelet transform on the image Wψ(L2(R)).

In fact, for all f ∈ L2(R) and all g ∈ L2
(
R2,dadb/a2

)
,

〈Wψ f ,g〉
L2

(
R2, dadb

a2

) =
∫

R

∫
R

Wψ f (a,b)g(a,b)
dadb

a2

=
∫

R

∫
R

1√
cψ

∫
R

f (t)
1√|a|ψ

(
t −b

a

)
g(a,b)dt

dadb
a2

=
∫

R
f (t)

1
1√
cψ

∫
R

∫
R

1√|a|ψ
(

t −b
a

)
g(a,b)dt

dadb
a2 dt

= 〈 f ,W ∗
ψ g〉.

The parameter b shifts the pattern, the wavelet ψ , over the signal. The parameter
a scales the wavelet and therefore adapts its shape. If the scaled wavelet at a certain
place b has a similar local shape as the analyzed signal, then the wavelet coefficient
has a large absolute value. Small |a| describe small details, while larger |a| generate
approximations of the analyzed function in a neighborhood of the point b. In fact,
the wavelet transform operates as a filter:

Wψ f (a,b) =
1√
cψ

1√|a|
∫

R
f (t)ψ

(
t −b

a

)
dt =

1√
cψ

(D−aψ ∗ f )(b).

For fixed a, this corresponds to filtering with ψ(•/a) at the point b. ψ ∈ L1(R)∩
L2(R) is a bandpass filter, because due to the admissibility condition, F (ψ)(0) = 0
and by the Riemann–Lebesgue lemma, lim|ω|→∞F (ψ)(ω) = 0.
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1.5.2 Scale Discretization—The Dyadic Wavelet Transform

To discretize the wavelet transform Wψ , we will have to discretize both parame-
ters a and b. To this end, we consider the affine operators Da and Tb for dilations
and translations, respectively. Obviously, Wψ f (a,b) = (1/

√
cψ)〈 f ,TbDaψ〉L2(R).

Therefore, the question arises, if there exists a discrete set of wavelets {TbDaψ |
(a,b) in a discrete set I} such that the inversion formula still holds; i.e., no infor-
mation about the analyzed function f is lost by considering the discrete set of
coefficients {Wψ f (a,b) | (a,b) ∈ I}.

The wavelet transform is translation-invariant. Let τ ∈ R. Then

Wψ(Tτ f )(a,b) = Wψ( f (•− τ))(a,b) = Wψ ( f )(a,b− τ).

The idea of this section is to discretize the scale parameter a while keeping the
translation invariance of the wavelet transform.

Definition 1.84. Let f ∈ L2(R). Its dyadic wavelet transform is defined as

Wψ f (2 j,b) =
1√
cψ

1√
2 j

∫
R

f (t)ψ
(

t −b
2 j

)
dt, j ∈ Z.

Theorem 1.85. Suppose there exist two positive constants A and B such that

A ≤ ∑
j∈Z

|F (ψ)(2 jω)|2 ≤ B, ∀ω ∈ R.

Then
A‖ f‖2 ≤ ∑

j∈Z

cψ
2 j ‖Wψ f (2 j,•)‖2 ≤ B‖ f‖2

with respect to the L2(R)-norm.

Proof. Consider the Plancherel transform

P(Wψ f (2 j,•))(ω) =
√

2 j 1√
cψ

P(ψ)(2 jω)P( f )(ω).

Summation together with the assumption gives

A|P( f )(ω)|2 ≤ ∑
j∈Z

cψ
2 j |P(Wψ f (2 j,•))(ω)|2 ≤ B|P( f )(ω)|2,

for all ω ∈ R. Integration, the theorem of dominated convergence, and the
Parseval equation yield the claim. 
�

The theorem shows that the normalized dyadic wavelet transform

√
cψ√
2 j

Wψ f (2 j,b) =

〈
f ,

1
2 jψ

(•−b
2 j

)〉

has the same properties as a frame.
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1.5.3 Multiresolution Analyses

We have seen early above that the discretization of the scale parameter a yields
the dyadic wavelet transform that behaves similarly to a frame. In this section, we
discretize the translation parameter b. Our aim is to obtain a wavelet basis of the
form {

ψ j,n(t) =
√

cψ√
2 j
ψ
(

t −2 jn
2 j

)}
( j,n)∈Z2

.

A classical approach to this end is multiresolution analysis.

Definition 1.86. A sequence of nonempty closed subspaces {Vj} j∈Z of L2(R) is
called a multiresolution analysis if all of the following properties are satisfied:

1. For all j ∈ Z, Vj+1 ⊂ Vj; i.e., the spaces are nested.
2. The spaces are translation-invariant: For all ( j,k) ∈ Z2,

f ∈ Vj ⇐⇒ f (•−2 jk) ∈ Vj.

3. Scaling or refinement relation: For all j ∈ Z,

f ∈ Vj ⇐⇒ f (•/2) ∈ Vj+1.

4. The subspaces span L2(R) and separate the space:

lim
j→−∞

Vj = cl

(⋃
j∈Z

Vj

)
= L2(R);

lim
j→∞

Vj =
⋂
j∈Z

Vj = {0}.

5. There is a so-called scaling function ϕ ∈ L2(R), such that the family

{ϕ(•−n)}n∈Z

forms a Riesz basis of V0.

Because of the scaling relation, multiresolution analyses of this form with
dilation 2 are sometimes called dyadic multiresolution analyses. Since the spaces
{Vj} j∈Z are nested, the approximation at scale 2− j contains all information of the
coarser scale 2− j−1.

There is practical criterion to check, whether a function fulfills the Riesz
property 5.

Proposition 1.87. The following are equivalent:

1. The family {ϕ(•−n)}n∈Z is a Riesz basis of V0 = cl{span{ϕ(•−n)}n∈Z}.
2. There are constants A,B > 0 such that for all ω ∈ [−π ,π ],

1
B

≤ ∑
k∈Z

|F (ϕ)(ω−2kπ)|2 ≤ 1
A

.
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Proof. E.g., [244, Prop. 2.8].

Example 1.88. 1. The piecewise-constant functions generate multiresolution
analyses via the nested spaces

Vj = {g ∈ L2(R) | g|[2 jn,2 j(n+1)) = const. a.e.,n ∈ Z}.

The scaling function is ϕ = χ[0,1).
2. In an analogous manner, the piecewise polynomial functions generate multi-

resolution analyses [244].

Now the questions arises of how the wavelets come into play. In fact, they form
a Riesz basis for the complementary spaces Wj+1 of Vj+1 in Vj:

Vj+1 ⊕Wj+1 = Vj, j ∈ Z.

Properties 1 and 4 of Definition 1.86 give the decomposition

L2(R) =
⊕
j∈Z

Wj.

A wavelet can be generated from a scaling function in various ways. A common
approach is to consider

ψ(t) = ∑
n∈Z

(−1)nanϕ(2t + n + 1),

where an =
∫
Rϕ( t

2 )ϕ(t −n)dt. Thus, the wavelet can be calculated directly from
the scaling function.

The ideas behind this construction, as well as many other possibilities, are
discussed, e.g., in [60, 170, 175, 244] and many other books on wavelets.

There are many families of scaling function/wavelet pairs, e.g., B-splines are
among them. The Haar wavelet together with its scaling function ϕ = χ[0,1) belongs
to this class. A good introduction on spline wavelets and others and their approxi-
mation properties can be found in [226, 244].

Remark 1.89. There exist wavelet bases of L2(R) that are not associated with any
multiresolution analysis. An example are so-called unimodular wavelets, whose
Fourier transforms are characteristic functions of certain sets. Such sets are called
wavelet sets. More about unimodular wavelets and wavelet sets can be found in the
list of references in [244, Sect. 3.4]. For interesting connections between composite
wavelets as discussed in Chapter 3, wavelet sets, and reflection groups, we refer the
reader to [157–159]

Mallat made the important discovery that there is a fast algorithm for the
wavelet transform. In his article [174], his proposed pyramidal algorithm based on
convolutions brought the breakthrough for the applicability of the wavelet transform
theory.
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1.6 Other Multiscale Transforms

In this section, we briefly consider the problem of extending wavelets to higher
dimensions. Extensions via the tensor product are always possible, but from a
modeling viewpoint are not very desirable; images and data would have to be
assumed to be homogeneous and to possess a lattice structure. To overcome these
impediments, several new types of wavelets have been introduced, some with very
specific applications in mind.

After introducing the tensor product approach for the construction of wavelet
bases in R2, a simple case that nevertheless reflects the main ideas, we list some
examples of multiscale transforms and give references to the literature.

1.6.1 Tensor Product Wavelets in 2D

To employ wavelets for image analyses in 2D and 3D, one can consider the tensor
product of 1D wavelets. To this end, suppose that φ is a given (one-dimensional)
scaling function for an MRA on L2(R) and ψ the associated wavelet. Define

Φ j1k1; j2k2(x,y) = (φ j1k1 ⊗φ j2k2)(x,y) = φ j1k1(x)φ j2k2(y),

where φ jk := 2 j/2φ(2 j •−k), j,k ∈ Z. It can be shown that the scaling functions
{Φ jk1; jk2 | j ∈ Z; (k1,k2) ∈ Z × Z} are basis functions for approximation spaces
V j ⊂ L2(R2) by setting

V j = Vj ⊗Vj, j ∈ Z,

where ⊗ denotes the tensor product of the vector spaces Vj. It should be clear that if
the spaces Vj form an MRA of L2(R), then the spaces V j form an MRA of L2(R2).
Now

V j+1 = Vj+1 ⊗Vj+1 = (Vj ⊕Wj)⊗ (Vj ⊕wj)
= Vj ⊗Vj ⊕ (Vj ⊗Wj ⊕Wj ⊗Vj ⊕Wj ⊗Wj)
= V j ⊕W j,

where we set

W j = (Vj ⊗Wj)︸ ︷︷ ︸⊕(Wj ⊗Vj)︸ ︷︷ ︸⊕(Wj ⊗Wj)︸ ︷︷ ︸ .

horizontal vertical diagonal

Hence, in the two-dimensional setting, there are three wavelets:

Ψh(x,y) = (φ ⊗ψ)(x,y) = φ(x)ψ(y), (horizontal)

Ψ v(x,y) = (ψ⊗φ)(x,y) = ψ(x)φ(y), (vertical)

Ψd(x,y) = (ψ⊗ψ)(x,y) = ψ(x)ψ(y), (diagonal)
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if x is taken along the horizontal and y the vertical direction. Moreover,{
Ψλjk1; jk2

∣∣∣ (k1,k2) ∈ Z2; λ = h,v, or d
}

is a Riesz basis for W j, and function f ∈ L2(R2) can be written as

f (x,y) = ∑
j∈Z

∑
k1,k2∈Z

〈c j
k1k2

,Ψ jk1; jk2〉,

where Ψ = (Ψ h
jk1; jk2

,Ψ v
jk1; jk2

,Ψd
jk1; jk2

)T and the c j
k1k2

= c j
k1k2

( f ) are vector
coefficients.

A similar construction in 3D yields eight wavelets oriented along the face and
space diagonals of the unit 3D cube.

Remark 1.90. To reduce the number of wavelets, dilation matrices A other than the
dyadic 2I can also be used. The number of wavelets depends on the
number of cosets, which is specified by the determinant of A. For example, if in 2D
A = 2I, then |detA| = |det2I| = 4 and there are |detA|−1 = 3 wavelets, as we saw

above. The matrix

(
1 1

−1 1

)
generates the so-called quincunx grid in 2D, and every

multiresolution analysis based on this dilation matrix needs only one wavelet
to generate the orthogonal complements Wj. For more interesting facts on the
quincunx lattice, its dilation matrices in 2D, and extensions to higher dimensions,
we refer to [153, 170, 227] and the references therein.

1.6.2 Some Wavelet-Type Transforms

Although 1D wavelets have good resolution in both the time and frequency domains
they lack the ability to resolve signals along arbitrary directions in 2D and 3D. In
addition, a large number of wavelet coefficients are required to account for edges,
i.e., for singularities along lines or curves. In order to retain the multiscale struc-
ture of a signal decomposition, the idea of wavelet transform had to be extended to
incorporate the resolution of singularities along lines or curves.

Among these extensions are the following transforms, which are briefly
described for image decompositions and analysis.

• Ridgelet transform: The idea is to choose basis functions that are constant along
lines, i.e., ridges, and that transverse to these ridges are wavelets in the regular
sense. Details of this construction can be found in, for instance, [39, 67].

• Curvelet transform: Here an image is analyzed using different block sizes but
employing only a single transform. The image is first decomposed into a set
of wavelet bands and then each band is analyzed using a ridgelet transform.
The block size can be changed at each scale level. As references, we mention
[40–42]
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• Beamlets: Unlike wavelets which offer a localized scale and position
representation near fixed regions in an image with a specified scale and location,
beamlets offer a localized scale, position, and orientation based on dyadically
organized line segments. For more details, the reader is referred to [71].

• Wedgelets: Wedgelet approximations were introduced in [70] as a means to
efficiently approximate piecewise-constant images. Generally speaking, wedgelet
approximations are obtained by adaptively partitioning the image domain into
disjoint sets and by computing an approximation of the image on each of these
sets. Optimal approximations are defined using a certain functional that weighs
the approximation error against the complexity of the decomposition. As a refer-
ence for an application, see [99].

• Platelets: The image partition is based on recursive, dyadic squares allowing
wedge-shaped final nodes (instead of squares). Like wedgelets, platelets approx-
imate with piecewise-constant functions. They are suited for the approximation
of images consisting of smooth regions separated by smooth contours. For more
details and an application, see [243].

• Framelets: Here, the idea of redundent representations and frames is employed
to construct redundant wavelet systems. The interested reader is referred to [61]
for a construction and more details.

• Shearlets: Shearlets are an affine system with a single generator parameterized
by scaling, shear, and translation parameters. The shear parameter captures the
direction of singularities, and the shearlet transform can be regarded as matrix
coefficients of a unitary representation of a special affine group. In addition, there
exists a natural MRA structure associated with the systems. For the construction
and a discussion of shearlets, we refer the reader to Chapter 3.

1.6.3 Moving to Other Manifolds—Wavelets on the Sphere

For applications that deal with one- or two-dimensional signals of finite duration
or with data that are distributed on spherical surfaces and that require a multiscale
approach, the notion of a wavelet has to be extended to encompass the underlying
geometry of these applications.

One way of considering wavelets on compact intervals is via periodization, which
corresponds to constructing wavelets on the circle S1. (See, for instance, [60].)
There exist several methods of constructing wavelets on compact intervals. One such
method adds boundary functions to the collection of wavelets whose support lies in
the interior of the interval in order to preserve the orthogonality conditions [53].
Another approach is via multiwavelets based on fractal functions, where such
boundary functions are not necessary. This latter approach was also extended to
higher-dimensional settings. The interested reader may consult [72, 73, 103, 132,
181, 182] as references.

Extending wavelets to the sphere S2 is not trivial. One reason is the nonexis-
tence of a homogeneous dilation operator on S2. In addition, notions such as the
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Fourier transform that were introduced earlier in this chapter need to be transferred
to S2. The mathematical details of harmonic analysis on the sphere and also on other
manifolds can be found in [93] and [136].

In Chapter 4, a construction of wavelets on S2 is presented and applications to
astrophysics and neuroscience are considered.
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Exercises

1. Prove Theorem 1.8.
2. Prove Theorem 1.16.
3. Verify the claim made in Example 1.21.
4. Prove Theorem 1.26.
5. Prove Theorem 1.28.
6. Show that (L1(T),∗) is a commutative Banach algebra without unity and that

the Fourier transform is a Banach algebra homomorphism from L1(T)→ l∞(Z).
7. Verify the claim made in Remark 1.33.
8. Prove Theorem 1.34.
9. Complete the proof of Corollary 1.50.

10. Prove Theorem 1.57.
11. Assume that f ∈ L2(R) and g ∈ L1(R). Show that P(g∗ f ) = F (g)P( f ).
12. Prove Theorem 1.62.
13. Let gs be given as in (1.15). Show that ∆gs =

√
s.

14. Prove Theorem 1.72.
15. Prove Theorem 1.74.
16. Prove Lemma 1.81. Hint: For f ∈ L2(R) and ε > 0, consider F ( f ) · χR\(−ε,ε).
17. Show that the integral in (1.21) defines an element of L2(R).
18. Verify the following equations for the dilation and translation operators

introduced in Section 1.5.2, Da and Tb, respectively.

a. For the adjoint operators, (Da)∗ = D1/a and (Tb)∗ = T−b.
b. Wψ (TBDA f )(a,b) = WTbDaψ f (1/A,−B/A) = Wψ f (a/A,(b−B)/A).

19. Verify Example 1.88.
20. Show that the nested spaces

Vj = {g ∈ L2(R) | suppF (g) ⊂ [−2− jπ ,2− jπ ]}, j ∈ Z,

form a multiresolution analysis of L2(R).
Hint: Use ϕ(t) = (sinπt)/πt as the scaling function and apply the Shannon
sampling theorem.



Chapter 2
B-Spline Generated Frames

Ole Christensen

Abstract B-splines are some of the most versatile functions in applied mathematics.
The purpose of this chapter is to present the theory of frames in Hilbert spaces with
a direct focus on B-spline generators.

2.1 Introduction

Frames provide a natural way of expanding functions in separable Hilbert spaces:
They are more general than orthonormal bases and yield more flexibility. In this
chapter we give a short presentation of general frame theory, as well as an
introduction to frames in L2(R) having Gabor structure or wavelet structure. The
main body of the chapter concerns explicit frame constructions based on
B-splines.

The content can naturally be split into two parts: an introduction to frames in
general Hilbert spaces, and concrete constructions in L2(R). The two parts are tied
together by Section 2.7, where the B-splines are introduced.

We begin in Section 2.2 by considering the so-called Bessel condition: It is
a technical condition implying that all the series expansions considered in this
chapter converge unconditionally. Section 2.3 reminds the reader about bases, in par-
ticular, orthonormal bases, in Hilbert spaces; the important case of a Riesz basis is
discussed in Section 2.4. Section 2.5 introduces frames and their central properties.
Section 2.6 relates frames and Riesz bases; in particular, it turns out that all Riesz
bases are frames.

Section 2.7 marks the beginning of the second part of the chapters, where we
focus on concrete constructions. Most of these constructions are based on B-splines,
so Section 2.7 gives a short presentation on their key properties. Section 2.8

Ole Christensen
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deals with the basic properties of systems of functions formed by translates of a
single function. Section 2.9 introduces Gabor systems and their frame properties,
and Section 2.10 focuses on the case of tight frames. Section 2.11 states the main
results from the theory for dual frames associated with a given Gabor frame; in
Section 2.12 these results are used to construct explicitly given dual pairs of Gabor
frames. Finally, Section 2.13 deals with wavelet frames generated by B-splines, in
particular, the constructions obtained via the unitary extension principle due to Ron
and Shen.

2.2 Bessel Sequences in Hilbert Spaces

The ultimate goal of the present chapter is to obtain series expansions in infinite-
dimensional vector spaces. The purpose of the current section is to introduce a
condition that ensures that the relevant infinite series actually converge.

Let H be a separable Hilbert space, with the inner product 〈·, ·〉 chosen to be
linear in the first entry. When speaking about a sequence { fk}∞k=1 in H , we mean
an ordered set, i.e.,

{ fk}∞k=1 = { f1, f2, . . .}.
That we have chosen to index the sequence by the natural numbers is just for
convenience: Soon, we will see that all results in this section (and all subsequent
results based on the Bessel condition) hold with arbitrary countable index sets and
the elements fk ordered in an arbitrary way.

We begin with a technical lemma.

Lemma 2.1. Let { fk}∞k=1 be a sequence in H , and suppose that ∑∞k=1 ck fk is
convergent for all {ck}∞k=1 ∈ �2(N). Then

T : �2(N) → H , T{ck}∞k=1 :=
∞

∑
k=1

ck fk (2.1)

defines a bounded linear operator. The adjoint operator is given by

T ∗ : H → �2(N), T ∗ f = {〈 f , fk〉}∞k=1. (2.2)

Furthermore,
∞

∑
k=1

|〈 f , fk〉|2 ≤ ‖T‖2 ‖ f‖2, ∀ f ∈ H . (2.3)

Proof. Consider the sequence of bounded linear operators

Tn : �2(N) → H , Tn{ck}∞k=1 :=
n

∑
k=1

ck fk.

Clearly, Tn → T pointwise as n → ∞, so by the principle of uniform boundedness,
the map T defines a bounded linear operator. In order to find the expression for T ∗,
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let f ∈ H and {ck}∞k=1 ∈ �2(N). Then

〈 f ,T{ck}∞k=1〉H =

〈
f ,
∞

∑
k=1

ck fk

〉
H

=
∞

∑
k=1

〈 f , fk〉ck. (2.4)

When T : �2(N) → H is bounded, we know that T ∗ is a bounded operator from
H to �2(N). Therefore, the kth-coordinate function is bounded from H to C; by
Rieszs’ representation theorem, T ∗ therefore has the form

T ∗ f = {〈 f ,gk〉}∞k=1

for some {gk}∞k=1 in H . By the definition of T ∗, (2.4) now shows that

∞

∑
k=1

〈 f ,gk〉ck =
∞

∑
k=1

〈 f , fk〉ck, ∀{ck}∞k=1 ∈ �2(N), f ∈ H .

It follows from here that gk = fk.
The adjoint of a bounded operator T is itself bounded, and ‖T‖ = ‖T ∗‖. Under

the assumption in Lemma 2.1, we therefore have

‖T ∗ f‖2 ≤ ‖T‖2 ‖ f‖2, ∀ f ∈ H ,

which leads to (2.3). 
�
Sequences { fk}∞k=1 for which an inequality of the type (2.3) holds will play a

crucial role in the sequel.

Definition 2.2. A sequence { fk}∞k=1 in H is called a Bessel sequence if there exists
a constant B > 0 such that

∞

∑
k=1

|〈 f , fk〉|2 ≤ B ‖ f‖2, ∀ f ∈ H . (2.5)

Any number B satisfying (2.5) is called a Bessel bound for { fk}∞k=1. The optimal
bound for a given Bessel sequence { fk}∞k=1 is the smallest possible value of B > 0
satisfying (2.5). Except for the case fk = 0, ∀k ∈ N, the optimal bound always exists.
We will now present a useful characterization of Bessel sequences.

Theorem 2.3. Let { fk}∞k=1 be a sequence in H and B > 0 be given. Then { fk}∞k=1
is a Bessel sequence with Bessel bound B if and only if

T : {ck}∞k=1 �→
∞

∑
k=1

ck fk

defines a bounded operator from �2(N) into H and ‖T‖ ≤ √
B.

Proof. First, assume that { fk}∞k=1 is a Bessel sequence with Bessel bound B. Let
{ck}∞k=1 ∈ �2(N). First, we want to show that T{ck}∞k=1 is well defined, i.e., that
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∑∞k=1 ck fk is convergent. Consider n,m ∈ N,n > m. Then∥∥∥∥∥ n

∑
k=1

ck fk −
m

∑
k=1

ck fk

∥∥∥∥∥ =

∥∥∥∥∥ n

∑
k=m+1

ck fk

∥∥∥∥∥ .

It follows that∥∥∥∥∥ n

∑
k=1

ck fk −
m

∑
k=1

ck fk

∥∥∥∥∥ = sup
‖g‖=1

∣∣∣∣∣
〈

n

∑
k=m+1

ck fk,g

〉∣∣∣∣∣
≤ sup

‖g‖=1

n

∑
k=m+1

|ck〈 fk,g〉|

≤
(

n

∑
k=m+1

|ck|2
)1/2

sup
‖g‖=1

(
n

∑
k=m+1

|〈 fk,g〉|2
)1/2

≤
√

B

(
n

∑
k=m+1

|ck|2
)1/2

.

Since {ck}∞k=1 ∈ �2(N), we know that
{
∑n

k=1 |ck|2
}∞

n=1 is a Cauchy sequence in
C. The above calculation now shows that {∑n

k=1 ck fk}∞n=1 is a Cauchy sequence
in H and therefore convergent. Thus, T{ck}∞k=1 is well defined. Clearly, T is linear;
since ‖T{ck}∞k=1‖ = sup‖g‖=1 |〈T{ck}∞k=1,g〉|, a calculation as above shows that T

is bounded and that ‖T‖ ≤ √
B.

For the opposite implication, suppose that T defines a bounded operator with
‖T‖ ≤ √

B. Then Lemma 2.1 shows that { fk}∞k=1 is a Bessel sequence with Bessel
bound B. 
�

The Bessel condition (2.5) remains the same regardless of how the elements
{ fk}∞k=1 are numbered. This leads to a very important consequence of Theorem 2.3:

Corollary 2.4. If { fk}∞k=1 is a Bessel sequence in H , then ∑∞k=1 ck fk converges
unconditionally for all {ck}∞k=1 ∈ �2(N).

Thus, a reordering of the elements in { fk}∞k=1 will not affect the series ∑∞k=1 ck fk

when {ck}∞k=1 is reordered the same way: The series will converge toward the same
element as before. For this reason we can choose an arbitrary indexing of the ele-
ments in the Bessel sequence; in particular, it is not a restriction that we present all
results with the natural numbers as the index set. As we will see in the sequel, all
orthonormal bases, Riesz bases, and frames are Bessel sequences.

2.3 General Bases and Orthonormal Bases

Before we introduce the frame concept in Section 2.5, we shortly remind the reader
about bases in Hilbert spaces. In particular, we will discuss orthonormal bases.
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Orthonormal bases are widely used in mathematics as well as in physics, signal
processing, and many other areas where one needs to represent functions in terms
of “elementary building blocks.”

Definition 2.5. Consider a sequence {ek}∞k=1 of vectors in a Hilbert space H .

1. The sequence {ek}∞k=1 is a (Schauder) basis for H if for each f ∈ H there exist
unique scalar coefficients {ck( f )}∞k=1 such that

f =
∞

∑
k=1

ck( f )ek. (2.6)

2. A basis {ek}∞k=1 is an unconditional basis if the series (2.6) converges uncondi-
tionally for each f ∈ H .

3. A basis {ek}∞k=1 is an orthonormal basis if {ek}∞k=1 is an orthonormal system, i.e.,
if

〈ek,e j〉 = δk, j =

{
1 if k = j,

0 if k = j.

The next well-known theorem gives equivalent conditions for an orthonormal
system {ek}∞k=1 to be an orthonormal basis.

Theorem 2.6. For an orthonormal system {ek}∞k=1, the following are equivalent:

1. {ek}∞k=1 is an orthonormal basis.
2. f = ∑∞k=1〈 f ,ek〉ek, ∀ f ∈ H .
3. 〈 f ,g〉 = ∑∞k=1〈 f ,ek〉〈ek,g〉, ∀ f ,g ∈ H .
4. ∑∞k=1 |〈 f ,ek〉|2 = ‖ f‖2, ∀ f ∈ H .
5. span{ek}∞k=1 = H .
6. If 〈 f ,ek〉 = 0, ∀k ∈ N, then f = 0.

The equality in item 4 is called Parseval’s equation; in particular, it shows that
an orthonormal system {ek}∞k=1 is a Bessel sequence. Via Corollary 2.4, we obtain
the following important consequence of Theorem 2.6:

Corollary 2.7. If {ek}∞k=1 is an orthonormal basis, then each f ∈ H has an uncon-
ditionally convergent expansion

f =
∞

∑
k=1

〈 f ,ek〉ek. (2.7)

The expansion property (2.7) is the main reason for considering orthonormal
bases. In practice, orthonormal bases are certainly the most convenient bases to
use: We will later see that, for other types of bases, the representation (2.7) has to be
replaced by a more complicated expression. Unfortunately, the conditions for
{ek}∞k=1 being an orthonormal basis are strong, and often it is impossible to
construct orthonormal bases satisfying extra conditions.

The following theorem characterizes all orthonormal bases for H in terms of an
operator acting on an arbitrary orthonormal basis.
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Theorem 2.8. Let {ek}∞k=1 be an orthonormal basis for H . Then the orthonormal
bases for H are precisely the sets {Uek}∞k=1, where U : H → H is a unitary
operator.

Proof. Let { fk}∞k=1 be an orthonormal basis for H . Define the operator

U : H → H , U
(
∑ckek

)
=∑ck fk, {ck}∞k=1 ∈ �2(N).

Then U maps H boundedly and bijectively onto H , and fk = Uek. For f ,g ∈ H ,
write f = ∑〈 f ,ek〉ek and g = ∑〈g,ek〉ek; then, via the definition of U and
Theorem 2.6,

〈U∗U f ,g〉 = 〈U f ,Ug〉
=

〈
∑〈 f ,ek〉 fk,∑〈g,ek〉 fk

〉
=∑〈 f ,ek〉〈g,ek〉 = 〈 f ,g〉.

This implies that U∗U = I. Since U is surjective, it follows that U is unitary. On the
other hand, if U is a given unitary operator, then

〈Uek,Ue j〉 = 〈U∗Uek,e j〉 = 〈ek,e j〉 = δk, j;

i.e., {Uek}∞k=1 is an orthonormal system. That it is a basis follows from Theorem
2.6 and the fact that U is surjective. 
�

2.4 Riesz Bases

In Theorem 2.8 we characterized all orthonormal bases in terms of unitary opera-
tors acting on a single orthonormal basis. Formally, the definition of a Riesz basis
appears by weakening the condition on the operator:

Definition 2.9. A Riesz basis for H is a family of the form {Uek}∞k=1, where
{ek}∞k=1 is an orthonormal basis for H and U : H → H is a bounded bijective
operator.

A Riesz basis { fk}∞k=1 is actually a basis; this follows from the proof of Theorem
2.10, which we state now. Note that the expansion (2.8) of elements f ∈ H in
terms of a Riesz basis is more involved than the expression (2.7) we obtained via
orthonormal bases:

Theorem 2.10. If { fk}∞k=1 is a Riesz basis for H , then { fk}∞k=1 is a Bessel sequence.
Furthermore, there exists a unique sequence {gk}∞k=1 in H such that

f =
∞

∑
k=1

〈 f ,gk〉 fk, ∀ f ∈ H . (2.8)
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The sequence {gk}∞k=1 is also a Riesz basis, and the series (2.8) converges
unconditionally for all f ∈ H .

Proof. According to the definition, we can write { fk}∞k=1 = {Uek}∞k=1, where U is
a bounded bijective operator and {ek}∞k=1 is an orthonormal basis. Now let f ∈ H .
By expanding U−1 f in the orthonormal basis {ek}∞k=1, we have

U−1 f =
∞

∑
k=1

〈U−1 f ,ek〉ek =
∞

∑
k=1

〈 f ,(U−1)∗ek〉ek.

Therefore, with gk := (U−1)∗ek,

f = UU−1 f =
∞

∑
k=1

〈 f ,(U−1)∗ek〉Uek

=
∞

∑
k=1

〈 f ,gk〉 fk.

Since the operator (U−1)∗ is bounded and bijective, {gk}∞k=1 is a Riesz basis by
definition. Furthermore, for f ∈ H ,

∞

∑
k=1

|〈 f , fk〉|2 =
∞

∑
k=1

|〈 f ,Uek〉|2 = ‖U∗ f‖2 (2.9)

≤ ‖U∗‖2‖ f‖2

= ‖U‖2‖ f‖2. (2.10)

This proves that a Riesz basis is a Bessel sequence. Thus, the series (2.8) con-
verges unconditionally by Corollary 2.4. We complete the proof by showing that the
sequence {gk}∞k=1 constructed in the proof is the only one that satisfies (2.8). For
that purpose, we first note that if

f =
∞

∑
k=1

ck( f ) fk =
∞

∑
k=1

dk( f ) fk (2.11)

for some coefficients ck( f ) and dk( f ), then necessarily ck( f ) = dk( f ) for all k ∈ N;
this follows by applying the operator U−1 on both sides of the equality and using
that {ek}∞k=1 is known to be a basis. This argument shows that a Riesz basis actually
is a basis. Now we only have to show that if {gk}∞k=1 and {hk}∞k=1 are sequences in
H such that

f =
∞

∑
k=1

〈 f ,gk〉 fk =
∞

∑
k=1

〈 f ,hk〉 fk, ∀ f ∈ H , (2.12)

then gk = hk for all k ∈ N. However, due to the argument above, (2.12) implies that
for all k ∈ N,

〈 f ,gk〉 = 〈 f ,hk〉, ∀ f ∈ H ;

the desired result now follows. 
�
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The unique sequence {gk}∞k=1 satisfying (2.8) is called the dual Riesz basis
of { fk}∞k=1. Let us find the dual of {gk}∞k=1. In the notation used in the proof of
Theorem 2.10, we have that the dual of { fk}∞k=1 = {Uek}∞k=1 is given by

{gk}∞k=1 = {(U−1)∗ek}∞k=1;

thus, the dual of {gk}∞k=1 is{((
(U−1)∗

)−1
)∗

ek

}∞
k=1

= {Uek}∞k=1 = { fk}∞k=1.

That is, { fk}∞k=1 and {gk}∞k=1 are duals of each other. For this reason, we frequently
call { fk}∞k=1 and {gk}∞k=1 a pair of dual Riesz bases.

Already in the proof of Theorem 2.8, we saw that a Riesz basis is a Bessel
sequence. For later use, we now state that it also satisfies some kind of “opposite
inequality”; the proof is left to the reader (Exercise 5).

Proposition 2.11. If { fk}∞k=1 = {Uek}∞k=1 is a Riesz basis for H , there exist
constants A,B > 0 such that

A‖ f‖2 ≤
∞

∑
k=1

|〈 f , fk〉|2 ≤ B‖ f‖2, ∀ f ∈ H . (2.13)

The largest possible value for the constant A is 1/‖U−1‖2, and the smallest possible
value for B is ‖U‖2.

For completeness we finally state an equivalent characterization of Riesz bases.
Several authors use condition (ii) as the definition of a Riesz basis; the proof of the
equivalence with the definition used here can be found, e.g., in [246] or [49].

Theorem 2.12. For a sequence { fk}∞k=1 in H , the following conditions are
equivalent:

1. { fk}∞k=1 is a Riesz basis for H .
2. { fk}∞k=1 is complete in H , and there exist constants A,B > 0 such that for every

finite scalar sequence {ck}, one has

A∑ |ck|2 ≤
∥∥∥∑ck fk

∥∥∥2 ≤ B∑ |ck|2. (2.14)

A sequence { fk}∞k=1 satisfying (2.14) for all finite sequences {ck}∞k=1 is called a
Riesz sequence.

If (2.14) holds for all finite scalar sequences {ck}, then it automatically holds for
all {ck}∞k=1 ∈ �2(N); see Exercise 6. If { fk}∞k=1 is a Riesz basis, numbers A,B > 0
that satisfy (2.14) are called lower Riesz bounds, respectively, upper Riesz bounds.
They are clearly not unique, and we define the optimal Riesz bounds as the largest
possible value for A and the smallest possible value for B.
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2.5 Frames and Their Properties

We are now ready to introduce frames. Frames were invented in 1952 by Duffin
and Schaeffer [77], but it took several years before the potential was realized by the
scientific community. By now, frame theory is well established; we will only give a
glimpse of the general theory, and focus on the parts of the theory that are important
for our later constructions based on B-splines.

Definition 2.13. A sequence { fk}∞k=1 of elements in H is a frame for H if there
exist constants A,B > 0 such that

A ‖ f‖2 ≤
∞

∑
k=1

|〈 f , fk〉|2 ≤ B ‖ f‖2, ∀ f ∈ H . (2.15)

The numbers A and B are called frame bounds. They are not unique. The optimal
upper frame bound is the infimum over all upper frame bounds, and the optimal
lower frame bound is the supremum over all lower frame bounds. Note that the
optimal bounds actually are frame bounds.

The following lemma shows that it is enough to check the frame condition on a
dense set. The proof is left to the reader as Exercise 7.

Lemma 2.14. Suppose that { fk}∞k=1 is a sequence of elements in H and that there
exist constants A,B > 0 such that

A ‖ f‖2 ≤
∞

∑
k=1

|〈 f , fk〉|2 ≤ B ‖ f‖2 (2.16)

for all f in a dense subset V of H . Then { fk}∞k=1 is a frame for H with bounds A,B.

A special role is played by frames for which the optimal frame bounds coincide:

Definition 2.15. A sequence { fk}∞k=1 in H is a tight frame if there exists a number
A > 0 such that

∞

∑
k=1

|〈 f , fk〉|2 = A‖ f‖2, ∀ f ∈ H .

The (exact) number A is called the frame bound.

Since a frame { fk}∞k=1 is a Bessel sequence, the operator

T : �2(N) → H , T{ck}∞k=1 =
∞

∑
k=1

ck fk (2.17)

is bounded by Theorem 2.3; T is called the preframe operator or the synthesis
operator. By Lemma 2.1, the adjoint operator is given by

T ∗ : H → �2(N), T ∗ f = {〈 f , fk〉}∞k=1. (2.18)
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T ∗ is called the analysis operator. Composing T and T ∗, we obtain the frame
operator

S : H → H , S f = TT ∗ f =
∞

∑
k=1

〈 f , fk〉 fk. (2.19)

Note that because { fk}∞k=1 is a Bessel sequence, the series defining S converges
unconditionally for all f ∈ H by Corollary 2.4. We state some of the important
properties of S; proofs can be found, e.g., in [135] or [49].

Lemma 2.16. Let { fk}∞k=1 be a frame with frame operator S and frame bounds A,B.
Then the following hold:

1. S is bounded, invertible, self-adjoint, and positive.
2. {S−1 fk}∞k=1 is a frame with frame operator S−1 and frame bounds B−1, A−1.

The frame {S−1 fk}∞k=1 is called the canonical dual frame of { fk}∞k=1. The reason
for the name will soon become clear; in fact, Theorem 2.17 will show that
{S−1 fk}∞k=1 plays the same role in frame theory as the dual basis in the theory of
bases.

The frame decomposition, stated in (2.20) below, is one of the most important
frame results. It shows that if { fk}∞k=1 is a frame for H , then every element in H
has a representation as an infinite linear combination of the frame elements. Thus,
it is natural to view a frame as some kind of “generalized basis.”

Theorem 2.17. Let { fk}∞k=1 be a frame with frame operator S. Then

f =
∞

∑
k=1

〈 f ,S−1 fk〉 fk, ∀ f ∈ H , (2.20)

and

f =
∞

∑
k=1

〈 f , fk〉S−1 fk, ∀ f ∈ H . (2.21)

Both series converge unconditionally for all f ∈ H .

Proof. Let f ∈ H . Using the properties of the frame operator in Lemma 2.16,

f = SS−1 f =
∞

∑
k=1

〈S−1 f , fk〉 fk =
∞

∑
k=1

〈 f ,S−1 fk〉 fk.

Because { fk}∞k=1 is a Bessel sequence and {〈 f ,S−1 fk〉}∞k=1 ∈ �2(N), the fact that the
series converges unconditionally follows from Corollary 2.4. The expansion (2.21)
is proved similarly, using that f = S−1S f . 
�

Theorem 2.17 shows that all information about a given vector f ∈ H is
contained in the sequence {〈 f ,S−1 fk〉}∞k=1. The numbers 〈 f ,S−1 fk〉 are called frame
coefficients.

Theorem 2.17 also immediately reveals one of the main difficulties in frame
theory. In fact, in order for the expansions (2.20) and (2.21) to be applicable in
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practice, we need to be able to find the operator S−1, or at least to calculate its
action on all fk, k ∈ N. In general, this is a major problem. One way of
circumventing the problem is to consider only tight frames:

Corollary 2.18. If { fk}∞k=1 is a tight frame with frame bound A, then the canonical
dual frame is {A−1 fk}∞k=1, and

f =
1
A

∞

∑
k=1

〈 f , fk〉 fk, ∀ f ∈ H . (2.22)

Proof. If { fk}∞k=1 is a tight frame with frame bound A and frame operator S, the
definition shows that

〈S f , f 〉 =
∞

∑
k=1

|〈 f , fk〉|2 = A‖ f‖2 = 〈A f , f 〉, ∀ f ∈ H .

Since S is self-adjoint, this implies that S = AI; thus, S−1 acts by multiplication by
A−1, and the result follows from (2.20). 
�

By a suitable scaling of the vectors { fk}∞k=1 in a tight frame, we can always obtain
that A = 1; in that case, (2.22) has exactly the same form as the representation via an
orthonormal basis; see (2.7). Thus, such frames can be used without any additional
computational effort compared with the use of orthonormal bases.

Tight frames have other advantages. For the design of frames with prescribed
properties, it is essential to control the behavior of the canonical dual frame, but the
complicated structure of the frame operator and its inverse makes this difficult. If,
for example, we consider a frame { fk}∞k=1 for L2(R) consisting of functions with
exponential decay, nothing guarantees that the functions in the canonical dual frame
{S−1 fk}∞k=1 have exponential decay. However, for tight frames, questions of this
type trivially have satisfying answers. Also, for a tight frame, the canonical dual
frame automatically has the same structure as the frame itself: If the frame has a
wavelet structure or a Gabor structure (see Sections 2.9–2.13), the same is the case
for the canonical dual frame. In contrast, the canonical dual frame of a nontight
wavelet frame might not have the wavelet structure.

Later we will discuss another way to avoid the problem of inverting the frame
operator S. In fact, for frames { fk}∞k=1 that are not bases, we prove in Theorem 2.21
that one can find other frames {gk}∞k=1 than {S−1 fk}∞k=1, for which

f =
∞

∑
k=1

〈 f ,gk〉 fk, ∀ f ∈ H . (2.23)

Such a frame {gk}∞k=1 is called a dual frame of { fk}∞k=1. Now, there is a chance that
even if the canonical dual frame is difficult to find, there exist other duals that are
easy to find; or, that it is possible to find duals having more pleasant properties than
the canonical dual. In Section 2.12 we discuss such cases.

A note on terminology is in order. In Exercise 9 we ask the reader to prove that if
{gk}∞k=1 is a dual frame of { fk}∞k=1, then { fk}∞k=1 is also a dual of {gk}∞k=1. For this
reason, we will usually call { fk}∞k=1 and {gk}∞k=1 a pair of dual frames, or a dual
frame pair, when (2.23) holds.
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2.6 Frames and Riesz Bases

As we have seen, a frame { fk}∞k=1 in a Hilbert space H has one of the main
properties of a basis: Given f ∈ H , there exist coefficients {ck}∞k=1 ∈ �2(N) such
that f = ∑∞k=1 ck fk. This makes it natural to study the relationship between frames
and bases. In this section we notice that all Riesz bases are frames and characterize
the frames that are actually Riesz bases.

Theorem 2.19. A Riesz basis { fk}∞k=1 for H is a frame for H . The dual Riesz basis
equals the canonical dual frame {S−1 fk}∞k=1.

Proof. By Proposition 2.11, a Riesz basis { fk}∞k=1 for H is also a frame for H .
The rest follows from the frame decomposition combined with the uniqueness part
of Theorem 2.10. 
�

A frame that is not a Riesz basis is said to be overcomplete; in the literature,
the term “redundant frame” is also used. Theorem 2.20 will explain why the word
“overcomplete” is used: In fact, if { fk}∞k=1 is a frame that is not a Riesz basis, there
exist coefficients {ck}∞k=1 ∈ �2(N)\ {0} for which

∞

∑
k=1

ck fk = 0. (2.24)

That is, for such frames there is some dependency between the frame elements.

Theorem 2.20. Let { fk}∞k=1 be a frame for H . Then the following are equivalent:

1. { fk}∞k=1 is a Riesz basis for H .
2. If ∑∞k=1 ck fk = 0 for some {ck}∞k=1 ∈ �2(N), then ck = 0, ∀k ∈ N.

Proof. 1 ⇒ 2: Assume that { fk}∞k=1 is a Riesz basis and that ∑∞k=1 ck fk = 0 for a
sequence {ck}∞k=1 ∈ �2(N). Writing { fk}∞k=1 = {Uek}∞k=1 for a certain orthonormal
basis for H and an appropriate bounded bijective operator H , it follows that

U
∞

∑
k=1

ckek = 0.

Because U is injective, this implies that ∑∞k=1 ckek = 0, and thus ck = 0 for all k.

2 ⇒ 1: Let {δk}∞k=1 be the canonical orthonormal basis for �2(N). Assumption (ii)
assures that the preframe operator T associated with { fk}∞k=1 is injective, and T is
also surjective because { fk}∞k=1 is a frame. Since Tδk = fk, ∀k, the result follows
from the definition of a Riesz basis. 
�

Much more can be said about the relationship between frames and Riesz bases;
the following result and the proof are borrowed from [135].

Theorem 2.21. Assume that { fk}∞k=1 is an overcomplete frame. Then there exist
frames {gk}∞k=1 = {S−1 fk}∞k=1 for which
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f =
∞

∑
k=1

〈 f ,gk〉 fk, ∀ f ∈ H . (2.25)

Proof. We split the proof in two cases and assume first that f� = 0 for some
� ∈ N; in this case S−1 f� = 0. Letting gk := S−1 fk for k = � and choosing g� to
be any arbitrary nonzero vector, the frame decomposition shows that (2.25) holds;
and, clearly, {gk}∞k=1 = {S−1 fk}∞k=1.

Now we consider the case where fk = 0 for all k ∈ N. By Theorem 2.20, there
exists a sequence {ck}∞k=1 ∈ �2(N)\ {0} such that

0 =
∞

∑
k=1

ck fk.

For a certain � ∈ N, we have c� = 0, and we can write

f� =
−1
c�
∑
k =�

ck fk.

We now show that { fk}k =� is a frame for H ; we only have to prove that { fk}k =�

satisfies the lower frame condition. In order to do so, observe that for any f ∈ H ,
the Cauchy–Schwarz inequality shows that

|〈 f , f�〉|2 =

∣∣∣∣∣−1
c�
∑
k =�

ck〈 f , fk〉
∣∣∣∣∣
2

≤ 1
|c�|2 ∑k =�

|ck|2 ∑
k =�

|〈 f , fk〉|2

= C∑
k =�

|〈 f , fk〉|2,

where C := (1/|c�|2)∑k =� |ck|2. Letting A denote a lower frame bound for the frame
{ fk}∞k=1, this implies that

A‖ f‖2 ≤
∞

∑
k=1

|〈 f , fk〉|2

= ∑
k =�

|〈 f , fk〉|2 + |〈 f , f�〉|2

≤ (1 +C)∑
k =�

|〈 f , fk〉|2.

This shows that { fk}k =� indeed satisfies the lower frame condition.
Denoting the canonical dual frame of { fk}k =� by {gk}k =� and defining g� = 0, we

have found a frame {gk}∞k=1 for which (2.25) holds; it is different from the canonical
dual of { fk}∞k=1 because S−1 f� = 0. 
�
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2.7 B-Splines

So far, we have considered frames in general Hilbert spaces. Our purpose is now
to consider concrete frames in L2(R). We will focus on frames generated by
B-splines, so in this section we recall the basic properties for these functions. For
more information on B-splines (and more general splines), we refer to the books by
de Boor [28] and Chui [51].

The B-splines are defined inductively: The first is simply

N1(x) = χ[0,1](x), (2.26)

and, assuming that we have defined Nn for some n ∈ N, the next is defined by a
convolution:

Nn+1(x) = Nn ∗N1(x) =
∫ ∞

−∞
Nn(x− t)N1(t)dt

=
∫ 1

0
Nn(x− t)dt. (2.27)

The functions Nn defined by (2.26) and (2.27) are called B-splines, and n is the
order. See Fig. 2.1 for graphs of the first few B-splines. We collect some of their
fundamental properties; all of the results can be proved by induction (Exercise 13).

Fig. 2.1: The B-splines N2 and N3, respectively.

Theorem 2.22. Given n ∈ N, the B-spline Nn has the following properties:

1. supp Nn = [0,n ] and Nn > 0 on (0,n).
2.

∫ ∞
−∞Nn(x)dx = 1.
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3. For n ≥ 2,

∑
k∈Z

Nn(x− k) = 1 for all x ∈ R; (2.28)

for n = 1, formula (2.28) holds for a.e. x ∈ R.
4. For any n ∈ N,

N̂n(γ) =
(

1− e−2π iγ

2π iγ

)n

. (2.29)

We will now consider a centered version of the discussed B-splines. For n ∈N, let

Bn(x) := T− n
2
Nn(x) = Nn

(
x +

n
2

)
. (2.30)

We will also call the functions Bn for B-splines. Alternatively, one can define
these functions by

B1 := χ[− 1
2 , 1

2 ], Bn+1 := Bn ∗B1, n ∈ N. (2.31)

Thus, for any n ∈ N, we have that

Bn+1(x) =
∫ 1

2

− 1
2

Bn(x− t)dt.

It is clear that Bn has support on the interval [−n/2, n/2 ]. We state the following
direct consequences of Theorem 2.22:

Corollary 2.23. For n ∈ N, the B-spline Bn has the following properties:

1. For n ≥ 2,

∑
k∈Z

Bn(x− k) = 1 for all x ∈ R.

For n = 1, the formula holds for a.e. x ∈ R.

2. B̂n(γ) =
(

eπ iγ−e−π iγ

2πiγ

)n
=

(
sin(πγ)
πγ

)n
.

2.8 Frames of Translates

We will now start the approach to the explicit construction of frames in L2(R). Our
focus will be on frames having Gabor structure or wavelet structure, to be discussed
in Sections 2.9–2.13; however, both of these types of systems involve translation of
a fixed function, so we first give a short presentation of such systems.

For b ∈ R, define the translation operator Tb : L2(R) → L2(R) by

(Tb f )(x) = f (x−b), x ∈ R.
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We will consider systems of functions in L2(R) of the form {Tkφ}k∈Z, where φ is a
fixed function. Our goal is to state a characterization of Riesz sequences and frames
of this form.

Associated with a given function φ ∈ L2(R), we will consider the function

Φ(γ) = ∑
k∈Z

∣∣φ̂ (γ+ k)
∣∣2 , γ ∈ R. (2.32)

We will state the announced characterization of the frame properties for {Tkφ}k∈Z

in terms of the function Φ associated with φ . It was first proved by Benedetto and
Li in [18]. We state the result without proof:

Theorem 2.24. Let φ ∈ L2(R). For any A,B > 0, the following characterizations
hold:

1. {Tkφ}k∈Z is an orthonormal sequence if and only if

Φ(γ) = 1, a.e. γ ∈ [0,1 ].

2. {Tkφ}k∈Z is a Riesz sequence with bounds A,B if and only if

A ≤Φ(γ) ≤ B, a.e. γ ∈ [0,1 ].

3. {Tkφ}k∈Z is a frame sequence with bounds A,B if and only if

A ≤Φ(γ) ≤ B, a.e. γ ∈ [0,1 ]\N,

where N = {γ ∈ [0,1 ] :Φ(γ) = 0} .

As a very important consequence of Theorem 2.24, we now prove that the
integer-translates of any B-spline form a Riesz sequence. We formulate the result
for the symmetric B-splines Bn defined in (2.31), but the same result holds for the
B-splines Nn in (2.27).

Theorem 2.25. For each n ∈ N, the sequence {TkBn}k∈Z is a Riesz sequence.

Proof. For n = 1, {TkB1}k∈Z is an orthonormal system, and therefore a Riesz
sequence. In order to prove the result for n > 1, we apply Theorem 2.24 to B1;
this shows that

∑
k∈Z

∣∣∣B̂1(γ+ k)
∣∣∣2 = 1, a.e. γ ∈ R.

Since |B̂1(γ)| ≤ 1 for all γ ∈ R and B̂n(γ) = (B̂1(γ))n by Corollary 2.23, it immedi-
ately follows that

∑
k∈Z

∣∣∣B̂n(γ+ k)
∣∣∣2 ≤ ∑

k∈Z

∣∣∣B̂1(γ+ k)
∣∣∣2 = 1, a.e. γ ∈ R.

Thus, {TkBn}k∈Z is a Bessel sequence. In order to prove that {TkBn}k∈Z satisfies
the lower Riesz basis condition, we again use Corollary 2.23: It shows
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that, for a.e. γ ∈ R,

∑
k∈Z

∣∣∣B̂n(γ+ k)
∣∣∣2 ≥ inf

γ∈[− 1
2 , 1

2 ]

∣∣∣B̂n(γ)
∣∣∣2 =

(
sin(π/2)
π/2

)2n

=
(

2
π

)2n

. (2.33)

The result now follows from Theorem 2.24. 
�

2.9 Basic Gabor Frame Theory

We are now ready to approach the analysis of Gabor systems. Consider for b ∈ R

the modulation operator

Eb : L2(R) → L2(R), (Eb f )(x) = e2π ibx f (x).

A collection of functions on the form {EmbTnag}m,n∈Z is called a Gabor system.
Explicitly, these functions have the form

EmbTnag(x) = e2π imbxg(x−na).

Systems of the Gabor type play a role in time-frequency analysis. In this chapter
we will focus on the frame properties for Gabor systems, in particular, for the case
where g is a B-spline. For a broader view on Gabor systems, we refer to the book
by Gröchenig [108], as well as the collections of research papers in the books [86]
and [87] edited by Feichtinger and Strohmer.

Our purpose is to consider frames for L2(R) having the Gabor structure:

Definition 2.26. A Gabor frame is a frame for L2(R) of the form {EmbTnag}m,n∈Z,
where a,b > 0 are given and g ∈ L2(R) is a fixed function.

Frames of this type are also called Weyl–Heisenberg frames. The function g is
called the window function or the generator.

Gabor systems play a role in the context of time-frequency analysis. Although
bases of the Gabor type exist (take, e.g., a = b = 1 and g = χ[0,1]), they are not well
suited for the purpose of the time-frequency analysis of functions. One reason is that
the generator g cannot be particularly nice; for example, it is known that no contin-
uous and compactly supported function g can generate a Gabor basis, regardless of
the choice of the parameters a and b. Another reason is that it is impossible to have
a Gabor basis generated by a function g with fast decay in the time domain and the
frequency domain. This is the famous Balian–Low theorem:

Theorem 2.27. Let g ∈ L2(R). If {EmTng}m,n∈Z is a Riesz basis for L2(R), then(∫ ∞

−∞
|xg(x)|2 dx

)(∫ ∞

−∞
|γ ĝ(γ)|2 dγ

)
= ∞. (2.34)
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The Balian–Low theorem implies that if {EmbTnag}m,n∈Z is a Gabor–Riesz basis,
then it is not possible that g and ĝ satisfy decay conditions like

|g(x)| ≤ C
1 + x2 , x ∈ R, |ĝ(γ)| ≤ C

1 + γ2 , γ ∈ R,

simultaneously. The reader can find a proof of the Balian–Low theorem in [59].
This discussion motivates the analysis and construction of Gabor frames: As we

have seen, frames lead to expansions that are somewhat similar to the expansions
obtained via bases, at least if we restrict our attention to tight frames or to frames
for which convenient duals can be found. We will present such constructions in the
next sections.

We now state a proposition that gives a necessary condition for {EmbTnag}m,n∈Z

to be a frame for L2(R). It depends on the interplay between the function g and the
translation parameter a and is expressed in terms of the function

G(x) := ∑
n∈Z

|g(x−na)|2, x ∈ R. (2.35)

The proof can be found, e.g., in [135] or [49].

Proposition 2.28. Let g ∈ L2(R) and a,b > 0 be given, and assume that the collec-
tion of functions {EmbTnag}m,n∈Z is a frame with bounds A,B. Then

bA ≤ ∑
n∈Z

|g(x−na)|2 ≤ bB, a.e. x ∈ R. (2.36)

More precisely: If the upper bound in (2.36) is violated, then {EmbTnag}m,n∈Z is not
a Bessel sequence; if the lower bound is violated, then {EmbTnag}m,n∈Z does not
satisfy the lower frame condition.

It follows from Proposition 2.28 that a function g generating a Gabor frame
{EmbTnag}m,n∈Z necessarily is bounded. Note also that Proposition 2.28 gives a
relationship between the frame bounds and the lower and upper bounds for the
function G in (2.35). In Corollary 2.32 we will see that under certain circumstances,
the necessary condition (2.36) is also sufficient for {EmbTnag}m,n∈Z to be a frame
for L2(R).

If we want to check that a Gabor system {EmbTnag}m,n∈Z forms a frame by hand,
we need to be able to estimate the expression∑m,n∈Z |〈 f ,EmbTnag〉|2 for all functions
f belonging to L2(R) (or at least a dense subset thereof). Under certain conditions
on the functions f and g, we can find an explicit expression for this infinite sum.
The next statement is taken from [44], but we notice that similar results already
appear in [59].

Lemma 2.29. Suppose that f is a bounded, measurable function with compact
support and that the function G defined by (2.35) is bounded. Then

∑
m,n∈Z

|〈 f ,EmbTnag〉|2 =
1
b

∫ ∞

−∞
| f (x)|2 ∑

n∈Z

|g(x−na)|2 dx

+
1
b ∑k =0

∫ ∞

−∞
f (x) f (x− k/b)∑

n∈Z

g(x−na)g(x−na− k/b)dx.
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Lemma 2.29 has several important consequences. For example, as shown in [44],
it leads to a sufficient condition for {EmbTnag}m,n∈Z to form a frame (the original
proof can be found in [207]):

Theorem 2.30. Let g ∈ L2(R), a,b > 0, and suppose that

B :=
1
b

sup
x∈[0,a ]

{
∑
k∈Z

∣∣∣∣∣∑n∈Z

g(x−na)g(x−na− k/b)

∣∣∣∣∣
}

< ∞. (2.37)

Then {EmbTnag}m,n∈Z is a Bessel sequence with bound B. If also

A :=
1
b

inf
x∈[0,a ]

{
∑
n∈Z

|g(x−na)|2 −∑
k =0

∣∣∣∣∣∑n∈Z

g(x−na)g(x−na− k/b)

∣∣∣∣∣
}

(2.38)

> 0,

then {EmbTnag}m,n∈Z is a frame for L2(R) with bounds A,B.

Condition (2.37) leads to an easy, sufficient condition for {EmbTnag}m,n∈Z to be
a Bessel sequence (Exercise 18):

Corollary 2.31. Let g ∈ L2(R) be bounded and compactly supported. Then the
collection of functions {EmbTnag}m,n∈Z is a Bessel sequence for any choice of
a,b > 0.

The condition that the function g is bounded and compactly supported is not
sufficient for {EmbTnag}m,n∈Z to be a frame: In fact, as shown in Proposition 2.28,
the associated function G in (2.35) also needs to be bounded below and above. On
the other hand, for a function g with compact support, the condition that the function
G is bounded below and above for some a > 0 is enough for {EmbTnag}m,n∈Z to be
a frame for sufficiently small values of b. We also obtain expressions for the frame
operator and its inverse in this case:

Corollary 2.32. Let a,b > 0 be given. Suppose that g ∈ L2(R) has support in an
interval of length 1/b and that the function G satisfies (2.36) for some A,B > 0.
Then {EmbTnag}m,n∈Z is a frame for L2(R) with bounds A,B. The frame operator S
and its inverse S−1 are given by

S f =
G
b

f , S−1 f =
b
G

f , f ∈ L2(R).

Proof. That {EmbTnag}m,n∈Z is a frame follows directly from Lemma 2.29 or
Theorem 2.30 because

∑
n∈Z

g(x−na)g(x−na− k/b)= 0 for all k = 0.
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Given a continuous function f with compact support, Lemma 2.29 implies that

〈S f , f 〉 = ∑
m,n∈Z

|〈 f ,EmbTnag〉|2 =
1
b

∫ ∞

−∞
| f (x)|2G(x)dx =

〈
G
b

f , f

〉
.

By the continuity of S, this expression even holds for all f ∈ L2(R). It follows that
S acts by multiplication with the function G/b. 
�

For a continuous function g, we can be even more explicit. We leave the proof of
the following result to the reader (Exercise 22).

Corollary 2.33. Suppose that g ∈ L2(R) is a continuous function with support on an
interval I with length |I| and that g(x) > 0 on the interior of I. Then {EmbTnag}m,n∈Z

is a frame for all (a,b) ∈ (0, |I|)× (0,1/|I|].
In particular, this result applies to the B-splines. In order to avoid a conflict with

our notation for a Gabor system, we will denote the splines by B� and N�, � ∈ N,
instead of Bn and Nn.

Corollary 2.34. For � ∈ N, the B-splines B� and N� generate Gabor frames for all
(a,b) ∈ (0, �)× (0,1/� ].

One might wonder whether the Gabor system {EmbTnaB�}m,n∈Z is a frame for
(a,b) /∈ (0, �)× (0,1/�]. Surprisingly, only a few partial results are known. For the
B-spline B2, it is proved in [117] that if b ∈ N\ {1}, the Gabor system cannot form
a frame for any a > 0; see also Exercise 19.

The results discussed so far concentrate on the interplay between the function
g and the parameters a,b. For completeness, we mention a central result in Gabor
analysis, although it does not have a direct influence on the result presented here:
It shows that, regardless of the choice of generator g ∈ L2(R), the choice of the
parameters a and b puts certain restrictions on the possible frame properties for
{EmbTnag}m,n∈Z.

Theorem 2.35. Let g ∈ L2(R) and a,b > 0 be given. Then the following hold:

1. If ab > 1, then {EmbTnag}m,n∈Z cannot be a frame for L2(R).
2. If {EmbTnag}m,n∈Z is a frame, then

ab = 1 ⇔ {EmbTnag}m,n∈Z is a Riesz basis. (2.39)

2.10 Tight Gabor Frames

In applications of frames, it is inconvenient that the frame decomposition, stated
in Theorem 2.17, requires inversion of the frame operator. As we have seen in the
discussion of general frame theory, one way of avoiding the problem is to consider
tight frames. We will now characterize tight Gabor frames; the first result is taken
from [45].
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Theorem 2.36. Let g ∈ L2(R) and a,b > 0 be given. Then the following are
equivalent:

1. {EmbTnag}m,n∈Z is a tight frame for L2(R) with frame bound A = 1.
2. For a.e. x ∈ R, the following conditions hold:

a. G(x) := ∑n∈Z |g(x−na)|2 = b;

b. Gk(x) := ∑n∈Z g(x−na)g(x−na− k/b)= 0 for all k = 0.

Proof. 1 ⇒ 2: Assume that {EmbTnag}m,n∈Z is a tight frame for L2(R) with frame
bound A = 1. Then Proposition 2.28 shows that G(x) = b for a.e. x ∈ R. Therefore,

∑
m,n∈Z

|〈 f ,EmbTnag〉|2 =
1
b

∫ ∞

−∞
| f (x)|2G(x) dx

for all functions f ∈ L2(R). Using Lemma 2.29, we conclude that for all bounded,
compactly supported f ∈ L2(R),

1
b ∑k =0

∫ ∞

−∞
f (x) f (x− k/b)∑

n∈Z

g(x−na)g(x−na− k/b)dx = 0.

A change of variable shows that the contribution in the above sum arising from
any value of k ∈ Z is the complex conjugate of the contribution from the value −k.
Therefore,

∞

∑
k=1

Re

(∫ ∞

−∞
f (x) f (x− k/b)∑

n∈Z

g(x−na)g(x−na− k/b)dx

)
= 0. (2.40)

Now fix k0 ≥ 1 and let I be any interval in R of length at most 1/b. Define a function
f ∈ L2(R) by

f (x) =

⎧⎪⎨⎪⎩
e−iarg(Gk0

(x)) for x ∈ I,

1 for x ∈ I + k0/b,

0 otherwise.

Then, by (2.40),

0 =
∞

∑
k=1

Re

(∫ ∞

−∞
f (x) f (x− k/b)∑

n∈Z

g(x−na)g(x−na− k/b) dx

)

= Re

(∫ ∞

−∞
f (x) f (x− k0/b)Gk0(x) dx

)
=

∫
I
|Gk0(x)| dx.

It follows that Gk0(x) = 0 for a.e. x ∈ I. Since I was an arbitrary interval of length
at most 1/b, we conclude that Gk0 = 0. In order to deal with Gk for k < 0, a direct
computation shows that

G−k0(x) = Gk0(x + k0/b) = 0;

this shows that statement 2b indeed holds for all k = 0.
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2 ⇒ 1: The assumptions in 2 imply, again by Lemma 2.29, that for all bounded,
compactly supported functions f ∈ L2(R),

∑
m,n∈Z

|〈 f ,EmbTnag〉|2 =
1
b

∫ ∞

−∞
| f (x)|2 ∑

n∈Z

|g(x−na)|2 dx = ‖ f‖2.

Since the bounded, compactly supported functions are dense in L2(R), Lemma
2.14 implies that {EmbTnag}m,n∈Z is a tight frame with frame bound A = 1, as
desired. 
�

In general, it is not easy to construct functions g such that the conditions in
Theorem 2.36 (2) are satisfied for some given a,b > 0. A simplification occurs if
we assume that g has compact support: In that case, condition 2b is automatically
satisfied for sufficiently small values of the parameter b. In particular, we obtain the
following very useful sufficient condition for {EmbTnag}m,n∈Z being a tight Gabor
frame. We ask the reader to provide the proof in Exercise 23.

Corollary 2.37. Let a,b > 0 be given. Assume that ϕ ∈ L2(R) is a real-valued,
nonnegative function with support in an interval of length 1/b, and that

∑
n∈Z

ϕ(x + na) = 1, a.e. x ∈ R. (2.41)

Then the function
g(x) :=

√
bϕ(x)

generates a tight Gabor frame {EmbTnag}m,n∈Z with frame bound A = 1.

If (2.41) is satisfied, we say that the functions {Tnaϕ}n∈Z form a partition of unity.
In particular, we can apply the result to B-splines:

Example 2.38. For any � ∈ N, the B-spline ϕ = N� defined in (2.26) satisfies the
requirements in Corollary 2.37 with a = 1 and any b ∈ (0,1/� ]. Thus, for any
b ∈ (0,1/� ], the function

g(x) =
√

bN�(x)

generates a tight Gabor frame {EmbTng}m,n∈Z with frame bound A = 1.

We note that the frame generators in Example 2.38 are very suitable for
time-frequency analysis: They are given by an explicit formula, have compact sup-
port, and can be chosen with polynomial decay of any desired order in the frequency
domain, simply by taking the parameter � sufficiently large.

2.11 The Duals of a Gabor Frame

For a Gabor frame {EmbTnag}m,n∈Z with associated frame operator S, the frame
decomposition (see Theorem 2.17) shows that

f = ∑
m,n∈Z

〈 f ,S−1EmbTnag〉EmbTnag, ∀ f ∈ L2(R). (2.42)
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In order to use the frame decomposition, we need to be able to calculate the
canonical dual frame {S−1EmbTnag}m,n∈Z. This is usually difficult. Via the follow-
ing lemma, we will be able to obtain a simplification; for the proof, we refer, to [49].

Lemma 2.39. Let g ∈ L2(R) and a,b > 0 be given, and assume that {EmbTnag}m,n∈Z

is a Bessel sequence with frame operator S. Then the following hold:

1. SEmbTna = EmbTnaS for all m,n ∈ Z.
2. If {EmbTnag}m,n∈Z is a frame, then

S−1EmbTna = EmbTnaS−1, ∀m,n ∈ Z.

Lemma 2.39 has important consequences for the structure of the canonical dual
frame of a Gabor frame:

Theorem 2.40. Let g ∈ L2(R) and a,b > 0 be given, and assume that the collection
of functions {EmbTnag}m,n∈Z is a Gabor frame. Then the canonical dual frame also
has Gabor structure and is given by {EmbTnaS−1g}m,n∈Z.

Via Theorem 2.40, the frame decomposition (2.42) associated with a Gabor
frame {EmbTnag}m,n∈Z takes the form

f = ∑
m,n∈Z

〈 f ,EmbTnaS−1g〉EmbTnag, ∀ f ∈ L2(R). (2.43)

In practice, this version of the frame decomposition is much more convenient than
(2.42): Instead of calculating the double infinite family {S−1EmbTnag}m,n∈Z, it is
enough to find S−1g and then apply the modulation and translation operators. The
function S−1g is called the dual window function or the dual generator.

We will now leave the discussion of the canonical dual frame and examine the
question of how general dual frames of a given Gabor frame {EmbTnag}m,n∈Z can
be found. Our analysis is based on a fundamental result due to Ron and Shen [207],
respectively, Janssen [146]; the technical proof can be found in the original papers
or in [49].

Theorem 2.41. Let g,h ∈ L2(R) and a,b > 0 be given. Two Bessel sequences
{EmbTnag}m,n∈Z and {EmbTnah}m,n∈Z form dual frames if and only if

∑
k∈Z

g(x−n/b− ka)h(x− ka) = bδn,0, a.e. x ∈ [0,a ]. (2.44)

2.12 Explicit Construction of Dual Gabor Frame Pairs

So far, we have only seen a few examples of Gabor frames and their dual frames.
After the preparation in Section 2.11, we are now ready to provide explicit construc-
tions of certain Gabor frames and some particularly convenient duals. The assump-
tions are tailored to the properties of the B-splines. The results presented here first
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appeared in [48]. For convenience, we first consider the case where the translation
parameter is a = 1:

Theorem 2.42. Let N ∈ N. Let g ∈ L2(R) be a real-valued, bounded function with
supp g ⊆ [0,N ], for which

∑
k∈Z

g(x− k) = 1, x ∈ R. (2.45)

Let b ∈ (0,1/(2N −1) ]. Then the function g and the function h defined by

h(x) = bg(x)+ 2b
N−1

∑
k=1

g(x + k) (2.46)

generate dual frames {EmbTng}m,n∈Z and {EmbTnh}m,n∈Z for L2(R).

Proof. By assumption, the function g has compact support and is bounded; by
definition (2.46), the function h shares these properties. It now follows from
Corollary 2.31 that {EmbTng}m,n∈Z and {EmbTnh}m,n∈Z are Bessel sequences. In
order to verify that these sequences form dual frames, we use Theorem 2.41:
According to (2.44), we need to check that for x ∈ [0,1 ],

∑
k∈Z

g(x−n/b− k)h(x− k)= bδn,0. (2.47)

The function g has support in [0,N ], so by construction h has support in
[−N + 1,N ]; thus, (2.47) is satisfied for n = 0 whenever 1/b ≥ 2N − 1, i.e., if
b ∈ (0,1/(2N −1) ]. For n = 0, condition (2.47) means that

∑
k∈Z

g(x− k)h(x− k) = b, x ∈ [0,1 ];

because of the compact support of g, this is equivalent to

N−1

∑
k=0

g(x + k)h(x + k) = b, x ∈ [0,1 ]. (2.48)

Condition (2.48) is indeed satisfied in our setting. To see this, we use that for
x ∈ [0,1 ],

1 =
N−1

∑
k=0

g(x + k).

This implies that, again for x ∈ [0,1 ],

1 =

(
N−1

∑
k=0

g(x + k)

)2

=(g(x)+ g(x + 1)+ · · ·+ g(x + N−1))
× (g(x)+ g(x + 1)+ · · ·+ g(x + N −1))
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=g(x) [g(x)+ 2g(x + 1)+ 2g(x +2)+ · · ·+ 2g(x + N−1)]
+ g(x + 1) [g(x + 1)+ 2g(x + 2)+2g(x +3)+ · · ·+ 2g(x + N−1)]
+ g(x + 2) [g(x + 2)+ 2g(x + 3)+2g(x +4)+ · · ·+ 2g(x + N−1)]
+ · · ·
+ · · ·
+ g(x + N − 2) [g(x + N −2)+ 2g(x + N−1)]
+ g(x + N − 1) [g(x + N −1)]

=
1
b

N−1

∑
k=0

g(x + k)h(x + k).

Thus, condition (2.48) is satisfied. 
�
The assumptions in Theorem 2.42 are tailored to the properties of the B-splines

N� defined in (2.26):

Corollary 2.43. For any � ∈ N and b ∈ (0,1/(2�−1) ], the functions N� and

h�(x) := bN�(x)+ 2b
�−1

∑
k=1

N�(x + k) (2.49)

generate dual frames {EmbTnN�}m,n∈Z and {EmbTnh�}m,n∈Z for L2(R).

Some of the important features of the dual pair of frame generators (N�,h�) in
Corollary 2.43 are as follows:

1. The functions N� and h� are splines for all choices of � ∈ N;
2. N� and h� are explicitly given functions with compact support, i.e., they have

perfect time-localization;
3. By choosing � ∈ N sufficiently large, polynomial decay of N̂� and ĥ� of any de-

sired order can be obtained.

Example 2.44. For the B-spline

N2(x) =

⎧⎪⎨⎪⎩
x, x ∈ [0,1),
2− x, x ∈ [1,2),
0, x /∈ [0,2),

we can use Corollary 2.43 for b ∈ (0,1/3 ]. For b = 1/3, we obtain the dual generator

h2(x) =
1
3

N2(x)+
2
3

N2(x + 1) =

⎧⎪⎨⎪⎩
2
3 (x + 1), x ∈ [−1,0),
1
3 (2− x), x ∈ [0,2),
0, x /∈ [−1,2).

(2.50)

See Fig. 2.2, which also shows a similar construction based on N3.
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(a) (b)

Fig. 2.2: (a) The B-spline N2 and the dual generator h2 in (2.50); (b) the B-spline N3 and the dual
generator h3 in (2.46) with b = 1/5.

Via a scaling, one can obtain a version of Theorem 2.42 that is valid for any
translation parameter a > 0; see [48] for details.

The reader will notice that even though the B-splines N� are symmetric, the
constructed dual generators are not. We state without proof a recent result, due to
Christensen and Kim [50], that gives freedom to choose various duals:

Theorem 2.45. Let N ∈ N. Let g ∈ L2(R) be a real-valued, bounded function with
supp g ⊂ [0,N ], for which

∑
n∈Z

g(x−n) = 1.

Let b ∈ (0,1/(2N − 1) ]. Consider any scalar sequence {an}N−1
n=−N+1 for which

a0 = b and an + a−n = 2b, n = 1,2, . . . ,N −1, (2.51)

and define h ∈ L2(R) by

h(x) =
N−1

∑
n=−N+1

ang(x + n). (2.52)

Then g and h generate dual frames {EmbTng}m,n∈Z and {EmbTnh}m,n∈Z for L2(R).

In particular, if the generator g is symmetric, it is possible to construct a
symmetric dual generator:

Corollary 2.46. Under the assumptions in Theorem 2.45, the function

h(x) = b
N−1

∑
n=−N+1

g(x + n) (2.53)
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generates a dual frame of {EmbTng}m,n∈Z. The function h satisfies that h = b on the
support of g. Furthermore, if g is symmetric, then h is symmetric.

See Fig. 2.3 for an illustration of the dual generators, based on the B-splines
N2 and N3.
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Fig. 2.3: (a) The B-spline N2 and the dual generator h2 in (2.53) for b = 1/3. (b) The B-spline N3
and the dual generator h3 in (2.53) for b = 1/5.

2.13 Wavelets and the Unitary Extension Principle

Classical wavelet theory deals with the construction of orthonormal bases for L2(R)
of the form {2 j/2ψ(2 jx− k)} j,k∈Z for a suitable function ψ ∈ L2(R). Introducing
the dilation operator

D : L2(R) → L2(R), (D f )(x) = 21/2 f (2x),

the wavelet system takes the form

{2 j/2ψ(2 jx− k)} j,k∈Z = {DjTkψ} j,k∈Z.

Most wavelet constructions are based on the so-called multiresolution analysis,
invented by Mallat in 1989; soon after that, Daubechies [59] presented her famous
construction of compactly supported wavelets. We will not go into a discussion of
all the aspects of classical multiresolution analysis, but refer to Daubechies’ book
[60]. Our focus will be on a more recent construction of tight wavelet frames, based
on B-splines.

It the context of B-splines, Battle and Lemarié have proven that for any (centered)
B-spline Bm, it is possible to construct an orthonormal basis {DjTkψ} j,k∈Z for L2(R)
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for a function ψ of the form

ψ(x) = ∑
k∈Z

ckBm(2x− k). (2.54)

However, except for the case of the first B-spline B1, the sequence {ck}k∈Z is
infinite; and one can prove that no orthonormal basis construction for a func-
tion ψ of the form (2.54) with a finite sequence {ck}k∈Z is possible. This
motivates the result presented in the current section: In fact, we will construct
tight frames of wavelet structure, but based on two (or more) generators of the
form (2.54).

Our aim is to state the unitary extension principle of Ron and Shen [206], which
enables us to construct tight frames for L2(R) of the form {DjTkψ�} j,k∈Z,�=1,...,n;
after doing so, we will show how to construct frames based on B-splines. We follow
the approach by Benedetto and Treiber [20].

The following proofs are based on standard Fourier analysis for 1-periodic func-
tions. It will be convenient to write the integrals appearing, e.g., in the expression
for the Fourier coefficients and in Parseval’s equation, as integrals over the inter-
val (−1/2,1/2) rather than (0,1). The interval (−1/2,1/2) is identified with the
torus T, and the class of 1-periodic functions on R whose restriction to (−1/2,1/2)
belongs to Lp(−1/2,1/2), p = 1,2, is denoted by Lp(T). Similarly, L∞(T) con-
sists of the bounded, measurable 1-periodic functions on R. With this notation,
L∞(T) ⊂ L2(T). We note that the spaces Lp(T) actually consist of equivalence
classes of functions that are identical almost everywhere, so when we speak about
pointwise relationships between functions, it is understood that they can only be
expected to hold almost everywhere.

We now list the standing assumptions and conventions for this section.

General setup: Let ψ0 ∈ L2(R) and assume that

1. There exists a function H0 ∈ L∞(T) such that

ψ̂0(2γ) = H0(γ)ψ̂0(γ). (2.55)

2. limγ→0 ψ̂0(γ) = 1.

Further, let H1, . . . ,Hn ∈ L∞(T), and define ψ1, . . . ,ψn ∈ L2(R) by

ψ̂�(2γ) = H�(γ)ψ̂0(γ), � = 1, . . . ,n. (2.56)

Finally, let H denote the (n + 1)×2 matrix-valued function defined by

H(γ) =

⎛⎜⎜⎜⎜⎝
H0(γ) T1/2H0(γ)
H1(γ) T1/2H1(γ)

· ·
· ·

Hn(γ) T1/2Hn(γ)

⎞⎟⎟⎟⎟⎠ , γ ∈ R. (2.57)

With this setup, our purpose is to find conditions on the functions H1, . . . ,Hn such
that ψ1, . . . ,ψn defined by (2.56) generate a multiwavelet frame for L2(R). It turns
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out to be convenient to formulate the results in terms of the matrices H(γ), γ ∈ R.
Note that if we know the functions H�, then we can find an explicit expression for
the functions ψ�: In fact, expanding H� in a Fourier series, H�(γ) = ∑k∈Z ck,�e2π ikγ ,
elementary manipulations with the Fourier transform show that

ψ�(x) =
√

2∑
k∈Z

ck,�DT−kψ0(x) = 2∑
k∈Z

ck,�ψ0(2x + k). (2.58)

Recall that we prefer the functions H� to be trigonometric polynomials: This implies
that the sums in (2.58) are finite and therefore that the functions ψ� have compact
support if ψ0 has compact support.

We are now ready to formulate the unitary extension principle; the quite compli-
cated proof can be found in the original paper [206] by Ron and Shen, in the paper
[20] by Benedetto and Treiber, or in [49].

Theorem 2.47. Let {ψ�,H�}n
�=0 be as in the general setup above, and assume that

H(γ)∗H(γ) = I for a.e. γ ∈ T. Then the multiwavelet system {D jTkψ�} j,k∈Z,�=1,...,n

constitutes a tight frame for L2(R) with frame bound equal to 1, and

f =
n

∑
�=1
∑
j∈Z

∑
k∈Z

〈 f ,D jTkψ�〉D jTkψ�, ∀ f ∈ L2(R). (2.59)

The matrix H(γ)∗H(γ) has four entries, so at first glance it seems that we have
to solve four scalar equations in order to apply Theorem 2.47. However, it turns out
that it is enough to verify two sets of equations (Exercise 24):

Corollary 2.48. Let {ψ�,H�}n
�=0 be as in the general setup given above, and assume

that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
n

∑
�=0

|H�(γ)|2 = 1,

n

∑
�=0

H�(γ)T1/2H�(γ) = 0,

(2.60)

for a.e. γ ∈ T. Then the multiwavelet system {D jTkψ�} j,k∈Z,�=1,...,n constitutes a
tight frame for L2(R) with frame bound equal to 1.

As an application of Corollary 2.48, we show how one can construct com-
pactly supported, tight multiwavelet frames based on B-splines. In contrast with
the Battle–Lemarié wavelets, the generators will be finite linear combinations of the
type (2.54), and thus have compact support.

Example 2.49. For any m = 1,2, . . . , we consider the B-spline

ψ0 := B2m

of order 2m as defined in (2.31). By Corollary 2.23,

ψ̂0(γ) =
(

sin(πγ)
πγ

)2m

.
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It is clear that limγ→0 ψ̂0(γ) = 1. Furthermore, the result in Exercise 17 shows that

ψ̂0(2γ) = cos2m(πγ)ψ̂0(γ).

Thus, ψ0 satisfies a refinement equation with the two-scale symbol

H0(γ) = cos2m(πγ). (2.61)

Note that Exercise 17 also explains why we are restricting ourselves to the case of
even-order B-splines. Now, consider the binomial coefficient(

2m
�

)
:=

(2m)!
(2m− �)!�!

,

and define the functions H1, . . . ,H2m ∈ L∞(T) by

H�(γ) =

√(
2m
�

)
sin�(πγ)cos2m−�(πγ), � = 1, . . . ,2m. (2.62)

Using that cos(π(γ−1/2)) = sin(πγ) and sin(π(γ−1/2)) = −cos(πγ), it follows
that

T1/2H�(γ) =

√(
2m
�

)
(−1)� cos�(πγ)sin2m−�(πγ), � = 1, . . . ,2m. (2.63)

Thus, the matrix H in (2.57) is given by

H(γ) =

⎛⎜⎜⎜⎜⎝
H0(γ) T1/2H0(γ)
H1(γ) T1/2H1(γ)

· ·
· ·

H2m(γ) T1/2H2m(γ)

⎞⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos2m(πγ) sin2m(πγ)√(
2m
1

)
sin(πγ)cos2m−1(πγ) −

√(
2m
1

)
cos(πγ)sin2m−1(πγ)

√(
2m
2

)
sin2(πγ)cos2m−2(πγ)

√(
2m
2

)
cos2(πγ)sin2m−2(πγ)

· ·
· ·√(

2m
2m

)
sin2m(πγ)

√(
2m
2m

)
cos2m(πγ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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We now verify the conditions in Corollary 2.48. Using the binomial formula

(x + y)2m =
2m

∑
�=0

(
2m
�

)
x�y2m−�, (2.64)

we see via (2.62) that

2m

∑
�=0

|H�(γ)|2 =
2m

∑
�=0

(
2m
�

)
sin2�(πγ)cos2(2m−�)(πγ)

=
(
sin2(πγ)+ cos2(πγ)

)2m

= 1, γ ∈ T.

Using the binomial formula with x = −1,y = 1, the expressions in (2.62) and (2.63)
yield

2m

∑
�=0

H�(γ)T1/2H�(γ) = sin2m(πγ)cos2m(πγ)
2m

∑
�=0

(−1)�
(

2m
�

)
= sin2m(πγ)cos2m(πγ)(1−1)2m

= 0.

Now Corollary 2.48 implies that the 2m functions ψ1, . . . ,ψ2m defined by

ψ̂�(γ) = H�(γ/2)ψ̂0(γ/2)

=

√(
2m
�

)
sin2m+�(πγ/2)cos2m−�(πγ/2)

(πγ/2)2m

generate a tight multiwavelet frame {D jTkψ�} j,k∈Z,�=1,...,2m for L2(R).

We want to study the properties of the frame constructed in Example 2.49, but we
first change the definition slightly by multiplying each of the functions H� in (2.62)
with a complex number of absolute value 1. This modification will not change the
frame properties for the generated wavelet system.

Example 2.50. We continue Example 2.49, but now we define

H�(γ) = i�

√(
2m
�

)
sin�(πγ)cos2m−�(πγ), � = 1, . . . ,2m. (2.65)

H� only differs from the choice in (2.62) by a constant of absolute value 1, so the
functions ψ1, . . . ,ψ2m given by

ψ̂�(2γ) = H�(γ)ψ̂0(γ), � = 1, . . . ,2m, (2.66)
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also generate a tight multiwavelet frame. Instead of inserting the expression for ψ̂0

in (2.66), we now rewrite H�(γ) using Euler’s formula:

H�(γ) = i�

√(
2m
�

)(
eπ iγ − e−π iγ

2i

)�(
eπ iγ + e−π iγ

2

)2m−�

= 2−2m

√(
2m
�

)(
eπ iγ − e−π iγ)� (

eπ iγ + e−π iγ)2m−�
. (2.67)

Via the binomial formula we see that H�(γ) is a finite linear combination of terms:

e−2π imγ ,e−2π i(m−1)γ , . . . ,e2π i(m−1)γ ,e2π imγ .

All coefficients in the linear combination are real. Writing

H�(γ) =
m

∑
k=−m

ck,�e
2π ikγ ,

it follows that

ψ� =
√

2
m

∑
k=−m

ck,�DT−kψ0. (2.68)

That is, ψ� is a real-valued spline. Since DTmψ0 has support in [0,m ] and DT−mψ0

has support in [−m,0 ], the spline ψ� has support in [−m,m ]. Our arguments also
show that the splines ψ� inherit other properties from ψ0: They have degree 2m−1,
belong to C2m−2(R), and have knots at Z/2.

Let us find an explicit expression for the generators in Example 2.50 in the case
m = 1:

Example 2.51. In the case m = 1, the construction in Example 2.50 leads to two
generators, ψ1 and ψ2. Via the expression (2.67) for H1,

H1(γ) =
1
4

√(
2m
�

)
(eπ iγ − e−π iγ)(eπ iγ + e−π iγ)

=
1

2
√

2
(e2π iγ − e−2π iγ).

Via elementary manipulations with the Fourier transform, we conclude that

ψ1(x) =
1√
2
(B2(2x + 1)−B2(2x−1)). (2.69)

See Fig.2.4 Similarly, one proves (Exercise 25) that

ψ2(x) =
1
2

(B2(2x + 1)−2B2(2x)+ B2(2x−1)) , (2.70)

which is shown in Fig. 2.4.
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(a) (b)

Fig. 2.4: (a) The function ψ1 given by (2.69); (b) the function ψ2 given by (2.70).

We note that the computational effort in Example 2.50 increases with the order
of the B-spline B2m we start with: The number of generators ψ1, . . . ,ψ2m increases
with the order of the spline B2m, and (2.68) shows that computation of ψ� involves
the calculation of a large number of coefficients for high-order B-splines.

Wavelet orthonormal bases have traditionally been used for approximation-
theoretic purposes. In this context it is known that the number of vanishing
moments plays a key role. Unfortunately, it has been shown that among the B-spline
frame generators constructed using the unitary extension principle, at least one of
the generators can have at most one vanishing moment. Using a modification of the
unitary extension principle, it has been shown by two groups of researchers [52]
and [61] how one can obtain similar constructions with a high number of vanishing
moments. Also, one can prove that it is possible to construct multiwavelet frames
with two generators based on any B-spline B2m, i.e., with any prescribed regularity;
see [52] and [61].
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Exercises

1. Assume that {ek}∞k=1 is a sequence of normalized vectors in a Hilbert space H
and that

∞

∑
k=1

|〈 f ,ek〉|2 = ‖ f‖2, ∀ f ∈ H .

Show that {ek}∞k=1 is an orthonormal basis for H .
2. Assume that { fk}∞k=1 is a Bessel sequence with bound B. Prove that

a. ‖ fk‖2 ≤ B for all k ∈ N.
b. If ‖ fk‖2 = B for some k ∈ N, then fk⊥ f j for all j ∈ N\ {k}.

3. Let { fk}∞k=1 be a sequence in a Hilbert space H . Prove that

a. If there exists B > 0 such that∥∥∑ck fk
∥∥2 ≤ B∑ |ck|2

for all finite sequences {ck}, then ∑∞k=1 ck fk converges for all {ck}∞k=1 ∈ �2(N)
and { fk}∞k=1 is a Bessel sequence with bound B.

b. If (2.14) holds for all finite scalar sequences {ck}, then it holds for all
{ck}∞k=1 ∈ �2(N).

c. If { fk}∞k=1 is a Riesz basis, then

∞

∑
k=1

ck fk is convergent ⇔ {ck}∞k=1 ∈ �2(N).

4. Two sequences { fk}∞k=1 and {gk}∞k=1 in a Hilbert space are biorthogonal if

〈 fk,g j〉 = δk, j.

Show that for a pair of dual Riesz bases { fk}∞k=1 and {gk}∞k=1 , the following
hold:

a. { fk}∞k=1 and {gk}∞k=1 are biorthogonal.
b. For all f ∈ H ,

f =
∞

∑
k=1

〈 f ,gk〉 fk =
∞

∑
k=1

〈 f , fk〉gk. (2.71)

5. Prove Proposition 2.11.
6. Show that if (2.14) holds for all finite sequences {ck}∞k=1, it automatically holds

for all {ck}∞k=1 ∈ �2(N).
7. Prove Lemma 2.14.
8. Find an example of a sequence in a Hilbert space that is a basis but not a frame.
9. Show that if { fk}∞k=1 is a dual frame of a frame {gk}∞k=1 , then {gk}∞k=1 is also a

dual frame of { fk}∞k=1.
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10. Prove that the upper and lower frame conditions are unrelated: In an arbitrary
Hilbert space H , there exists a sequence { fk}∞k=1 satisfying the upper condition
for all f ∈ H , but not the lower condition; and vice versa.

11. Let {ek}∞k=1 be an orthonormal basis and consider the family

{ fk}∞k=1 :=
{

e1 +
1
k

ek,ek

}∞
k=2

.

Prove that { fk}∞k=1 is not a Bessel sequence.
12. Let { fk}∞k=1 and {gk}∞k=1 be dual frames for a Hilbert space H , and U : H →

H a unitary operator. Show that {U fk}∞k=1 and {Ugk}∞k=1 also form a pair of
dual frames for H .

13. Prove Theorem 2.22.
14. We consider the B-splines N2 and N3.

a. Show via the definition that the B-spline N2 is given by

N2(x) =

⎧⎪⎨⎪⎩
x, if x ∈ [0,1 ],
2− x, if x ∈ [1,2 ],
0, otherwise.

b. Use (a) to show that

N3(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2 x2, if x ∈ [0,1],
−x2 + 3x− 3

2 , if x ∈ [1,2],
1
2 x2 −3x + 9

2 , if x ∈ [2,3],
0, otherwise.

15. Consider the B-spline Nn, n ∈ N.

a. Show that

N̂n(γ) = e−π inγ
(

sinπγ
πγ

)n

.

b. Show that

N̂n(2γ) = e−π inγ (cosπγ)n N̂n(γ).

c. Show that the function

H0(γ) := e−π inγ (cosπγ)n

is 1-periodic.

16. Show that the definitions of the centered B-splines Bm in (2.30) and (2.31)
coincide.
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17. Consider the centered B-spline Bn, n ∈ N.

a. Show that
B̂n(2γ) = (cosπγ)n B̂n(γ).

b. Show that the function
H0(γ) := (cosπγ)n

is 1-periodic if and only if n is even.

18. Prove Corollary 2.31.
19. Show that for the B-spline B2, the system {EmbT2nB2}m,n∈Z cannot be a frame

for any b > 0.
20. Show by an example (maybe with a = b = 1) that the necessary condition in

Proposition 2.28 does not suffice for {EmbTnag}m,n∈Z being a Gabor frame.
21. Prove that {EmTnaχ[0,1 ]}m,n∈Z is a frame for L2(R) for all a ∈ (0,1 ].
22. Prove Corollary 2.33.
23. Prove Corollary 2.37.
24. Verify that (2.60) is equivalent to the condition H(γ)∗H(γ) = I, a.e. γ .
25. Derive expression (2.70) for the function ψ2.
26. Let {D jTkψ} j,k∈Z be a frame with frame operator S. Prove that S commutes

with the dilation operator D, and thereby that

{S−1D jTkψ} j,k∈Z = {DjS−1Tkψ} j,k∈Z.



Chapter 3
Continuous and Discrete Reproducing Systems
That Arise from Translations. Theory and
Applications of Composite Wavelets

Demetrio Labate and Guido Weiss

Abstract Reproducing systems of functions such as the wavelet and Gabor systems
have been particularly successful in a variety of applications from both mathematics
and engineering. In this chapter, we review a number of recent results in the
study of such systems and their generalizations developed by the authors and their
collaborators. We first describe the unified theory of reproducing systems. This is a
simple and flexible mathematical framework to characterize and analyze wavelets,
Gabor systems, and other reproducing systems in a unified manner. The systems
of interest to us are obtained by applying families of translations, modulations, and
dilations to a countable set of functions. As the reader will see, we can rewrite such
systems as a countable family of translations applied to a countable collection of
functions. Building in part on this approach, we define the wavelets with composite
dilations, a novel class of reproducing systems that provide truly multidimensional
generalizations of traditional wavelets. For example, in dimension 2, the elements
of such systems are defined not only at various scales and locations, as traditional
wavelet systems, but also at various orientations. The shearlet system is a special
case of a composite wavelet system that provides an optimally sparse representation
for a large class of bivariate functions. This is useful for a number of applications
in image processing, such as image denoising and edge detection. Finally, we dis-
cuss some related issues about the continuous wavelet transform and the continuous
analogues of composite wavelets.

3.1 Introduction

These lectures present an overview of a research program developed by the authors
and their collaborators at Washington University in St. Louis during the past
10 years, which is devoted to the study of reproducing systems of functions.

Demetrio Labate
North Carolina State University, Raleigh, NC 27695, USA, e-mail: dlabate@math.ncsu.edu

Guido Weiss
Washington University in St. Louis, St. Louis, MO 63130, USA,
e-mail: guido@math.wustl.edu

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2010

87
Applied and Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4891-6_3,
B. Forster and P. Massopust (eds.), Four Short Courses on Harmonic Analysis, 



88 Demetrio Labate and Guido Weiss

By reproducing systems of functions, we refer to those families of functions
{ψi : i ∈ I } in L2(Rn) that are obtained by applying a countable collection of
operators to a countable set of “generating” functions and have the property that
any function f ∈ L2(Rn) can be recovered from the reproducing formula

f = ∑
i∈I

〈 f ,ψi〉ψi,

with convergence in the L2-norm. The wavelet systems, for example, have received
a great deal of attention in the last 20 years, since their applications in mathemat-
ics and engineering have been especially successful. In dimension n = 1, they are
defined as those collections of the form

Ψ = {ψ j,k = 2 j/2ψ(2 j ·−k) : j,k ∈ Z}, (3.1)

where ψ is a fixed function in L2(R). As the above expression shows,Ψ is obtained
by applying dyadic dilations and integer translations to the generating function ψ .
For particular choices of the generator ψ , the wavelet system Ψ is an orthonor-
mal basis or a Parseval frame for L2(R), in which case any f ∈ L2(Rn) can be
recovered as

f = ∑
j,k∈Z

〈 f ,ψ j,k〉ψ j,k, (3.2)

with convergence in the L2-norm. Other important classes of reproducing systems
are the Gabor systems, which are obtained by applying translations and modula-
tions to a fixed generator, and the wave packet systems, which involve translations,
dilations, and modulations.

One main theme developed in these lectures is that there is a general framework
that allows us to describe and analyze wavelet systems, Gabor systems, and many
other reproducing systems by using a unified approach. Indeed, for a large class of
reproducing systems of the form

{gp(·−Cpk) : k ∈ Zn, p ∈ P}, (3.3)

where P is countable and {Cp} is a set of invertible matrices, there is a relatively
simple set of equations that characterizes those generating functions {gp}p∈P such
that the corresponding system (3.3) is an orthonormal basis or, more generally, a
Parseval frame for L2(Rn). For example, it was discovered by Gripenberg [107] and
Wang [232] independently, in 1995, that a function ψ ∈ L2(R) is the generator of
an orthonormal wavelet system if and only if ‖ψ‖2 = 1,

∑
j∈Z

|ψ̂(2 jξ )|2 = 1 for a. e. ξ ∈ R, (3.4)

and

tq(ξ ) = ∑
j≥0
ψ̂(2 jξ )ψ̂(2 j(ξ + q)) = 0 for a.e. ξ ∈ R, (3.5)
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whenever q is an odd integer. It is remarkable that a similar set of characterization
equations holds not only for wavelet systems in higher dimensions, but also for
many other reproducing systems. This topic, and the corresponding unified theory
of reproducing systems, will be presented in Section 3.2.

Parallel to the unified theory mentioned above, there is another “unifying”
perspective to the study of reproducing systems that is provided by representa-
tion theory and, more specifically, by the study of the continuous wavelet transform
and its generalization. In Section 3.3, we introduce the continuous analogues of the
wavelet systems (3.1), which are obtained by applying dilations (with respect to a
dilation group) and continuous translations to a function ψ ∈ L2(Rn). For example,
in dimension n = 1, the continuous wavelet system is a system of the form

{ψat = a− 1
2ψ(a−1(·− t)) : a > 0, t ∈ R},

and the (one-dimensional) continuous wavelet transform is the mapping

f �→
{
〈 f ,ψat 〉 = a− 1

2

∫ ∞

0
f (y)ψ(a−1(y− t))dy : (a,t) ∈ R+ ×R

}
.

Then, provided that ψ satisfies a certain admissibility condition, any f ∈ L2(R) can
be expressed using the Calderón reproducing formula:

f =
∫

R

∫ ∞

0
〈 f ,ψat 〉ψat

da
a

dt. (3.6)

The close relationship between the discrete and continuous frameworks is apparent
by comparing the last expression with formula (3.2). A number of observations
concerning this relationship, as well as several multidimensional extensions of the
continuous wavelet transform, are discussed in Section 3.3.

Traditional multidimensional wavelet systems are obtained by taking tensor
products of one-dimensional ones, as a result, they have a very limited capability
to deal effectively with those directional features that typically occur in images and
other multidimensional data. To overcome such limitations, several extensions and
generalizations have been proposed in applied harmonic analysis during the last 10
years. One such approach is the theory of wavelets with composite dilations, which
was originally introduced by the authors and their collaborators and provides a very
flexible and powerful framework to construct “truly” multidimensional extensions
of the wavelet approach.

An example of a composite wavelet system, in dimension n = 2, is the collection

{ψi jk = |detA|i/2ψ(B jAi ·−k) : i, j ∈ Z, k ∈ Z2}, (3.7)

where A =
(

2 0
0
√

2

)
and B =

(
1 1
0 1

)
. The elements of such systems are defined not

only at various scales and locations, as traditional wavelet systems, but also at var-
ious orientations, associated with the powers of the shearing matrix B. In addition,
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for appropriate choices of ψ , the elements ψi jk have the ability to provide very
efficient representations for data containing directional and anisotropic features
(see Section 3.5). There is a variety of systems of the form (3.7) forming Parseval
frames or even orthonormal bases, for many choices of matrices A and B. Indeed, the
theory of wavelets with composite dilations encompasses the theory of wavelets, and
there is a generalized multiresolution analysis (MRA) associated with this theory.
As in the case of the classical MRA, this framework allows one to obtain a variety
of constructions with many different geometric and analytic properties. An outline
of this theory is presented in Section 3.4.

In Section 3.5, we examine a generalization of the wavelet transform associated
with the affine group

G = {(M,t) : M ∈ Dα , t ∈ R2},

where, for each 0 < α < 1, Dα ⊂ GL2(R) is the set of matrices

Dα =

⎧⎨⎩M = Mas =

⎛⎝a −aα s

0 aα

⎞⎠ , a > 0, s ∈ R

⎫⎬⎭ .

Associated with this is the continuous shearlet transform S α
ψ , defined by

f → {S α
ψ f (a,s,t) = 〈 f ,ψast 〉 : a > 0, s ∈ R, t ∈ R2},

which is mapping f ∈ L2(R2) into a transform domain dependent on the scale a,
the shearing parameter s, and the location t. The analyzing elements ψast , forming a
continuous shearlet system, are the functions

ψast(x) = |detMas|− 1
2ψ(M−1

as (x− t)), (3.8)

with Mas ∈ Dα . One remarkable property is that the continuous shearlet transform
of a function f has the ability to completely characterize both the location and the
geometry of the set of singularities of f .

A discrete shearlet system is obtained by appropriately discretizing the functions
(3.8). Indeed, such a discrete system can be designed so that it forms a Parseval
frame and it provides us with a special case of wavelets with composite dilations
(3.7). In addition, the generator ψ can be chosen to be a well-localized function;
that is, ψ has fast decay in both the space and frequency domains (see [124, 127]).
As a result, the elements of the discrete shearlet systsm form a collection of
well-localized waveforms at various scales, locations, and orientations and pro-
vide optimally sparse representations for a large class of bivariate functions with
distributed discontinuities. Only the curvelets introduced by Candès and Donoho
have been proved, to have similar properties; however, the curvelets do not share
the simple affine-like structure of wavelets with composite dilations. To illustrate
the advantages of the shearlet framework with respect to wavelets and other
traditional representations, we describe a number of useful applications of shearlets
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to the analysis and processing of images, including some representative applications
of feature extraction and edge detection.

3.2 Unified Theory of Reproducing Systems

In order to describe the types of reproducing systems that we will consider in this
study, it will be useful to introduce the following definitions. We adopt the conven-

tion that x ∈ Rn is a column vector, i.e., x =

⎛⎜⎝x1
...

xn

⎞⎟⎠, and that ξ ∈ R̂n is a row vector,

i.e., ξ = (ξ1, . . . ,ξn). A vector x multiplying a matrix M ∈ GLn(R) on the right is
understood to be a column vector, while a vector ξ multiplying M on the left is a
row vector. Thus, Mx ∈ Rn and ξM ∈ R̂n.

Let f ∈ L2(Rn). For y ∈ Rn, the translation operator Ty is defined by
Ty f (x) = f (x − y); for M ∈ GLn(R), the dilation operator DM is defined by
DM f (x) = |detM|−1/2 f (M−1x); for ν ∈ Rn, the modulation operator Mν is defined
by (Mν f )(x) = e2π iνx f (x).

We will use the Fourier transform in the form

f̂ (ξ ) =
∫

Rn
f (x)e−2π iξx dx,

for f ∈ L1(Rn)∩L2(Rn). Thus, the inverse Fourier transform is given by

f̌ (x) =
∫

R̂n
f (ξ )e2π iξx dξ .

We remark that (Ty f )∧(ξ ) = (My f̂ )(ξ ) and (DM f )∧(ξ ) = (D̂M f̂ )(ξ ), where
(DM f )∧(ξ ) = (D̂M f̂ )(ξ ) = |detM|1/2 f̂ (ξM).

Virtually all systems of functions used in harmonic analysis to generate sub-
spaces of L2(Rn) are obtained by applying a certain combination of translations,
dilations, and modulations to a finite family of functions in L2(Rn). Let us start by
recalling the definitions of the systems commonly used in many harmonic analysis
applications.

Gabor Systems. LetΨ = {ψ1, . . . ,ψL} ⊂ L2(Rn), and B,C ∈ GLn(R). The Gabor
systems are the collections

G = GB,C(Ψ ) = {MBm TCkψ� : m,k ∈ Zn, � = 1, . . . ,L}
or

G̃ = G̃B,C(Ψ) = {TCk MBmψ� : m,k ∈ Zn, � = 1, . . . ,L}.
Notice that G̃ is obtained from G by interchanging the order of the translation and
modulation operators. Also, it is easy to see that

MBm TCkψ� = e−2π iBmCk TCk MBmψ�.
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Affine Systems. Given Ψ = {ψ1, . . . ,ψL} ⊂ L2(Rn), A ⊂ GLn(R), and Γ ⊂ Rn,
the affine systems are the collections

F = FA,Γ (Ψ ) = {Da Tγ ψ� : a ∈ A, γ ∈ Γ , � = 1, . . . ,L}.

Very often we use the notation D = {M j : j ∈ Z}, where M ∈ GLn(R) is expanding
(i.e., each proper value λ of M satisfies |λ | > 1), and Γ is the lattice CZn, where
C ∈ GLn(R).

Wave Packet Systems. These include the above two systems. ForΨ={ψ1, . . . ,ψL},
they consist of those functions

WPΓ ,A,S(Ψ) = {TγDa Myψ� : γ ∈ Γ , a ∈ D , y ∈ S, � = 1, . . . ,L},

where Γ ,S are countable (or finite) subsets of Rn, A ⊂ GLn(R). As will be discussed
later, the order of the three operators Tγ ,Da,My can be permuted.

It is easy to see that each of the above systems can be expressed in the following
form.

Let P be a countable indexing set, {gp : p ∈P} a family of functions in L2(Rn),
and {Cp : p ∈ P} a corresponding collection of matrices in GLn(R). Then each of
the systems we just described has the form{

TCpk gp : k ∈ Zn, p ∈ P
}

. (3.9)

Indeed, in order to write down the general wave packet system into the form (3.9),
one needs just to use the “commutativity relations” DM Tk = TMk DM and My Tk =
e2π iykTk My (notice that e2π iyk is a constant of absolute value 1).

3.2.1 Unified Theorem for Reproducing Systems

In the theory of wavelets and, more generally, in harmonic analysis, it is of para-
mount importance to construct such systems that form a reproducing set for the
space L2(Rn) (or more general function spaces). For example, it is of particular
interest to know when a system {φ j : j ∈Z} of functions in L2(Rn) is an orthonormal
basis or, more generally, a frame. Many characterizations of systems that are
Parseval frames have been given in the literature; most often these results concern
affine systems [107, 106, 137, 158, 206, 232].

We shall now give necessary and sufficient conditions for the system (3.3) to be
a Parseval frame for L2(Rn). For simplicity, we are letting the lattice Γ be Zn; our
arguments below can be easily extended to a more general Γ .

Recall that a countable collection {φi}i∈I in a (separable) Hilbert space H is a
Parseval frame (sometimes called a tight frame with constant 1) for H if

∑
i∈I

|〈 f ,φi〉|2 = ‖ f‖2 for all f ∈ H .
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This is equivalent to the reproducing formula f =∑i〈 f ,φi〉φi, for all f ∈ H , where
the series converges unconditionally in the norm of H . This shows that a Parseval
frame provides a basis-like representation even though a Parseval frame need not be
a basis in general. We refer the reader to [43, 47] for more details about frames.

We refer to the following result as the “unifying theorem for reproducing
systems” [137]:

Theorem 3.1. Let P be a countable indexing set, {gp}p∈P a collection of functions
in L2(Rn), and {Cp}p∈P ⊂ GLn(R). Let

E =
{

f ∈ L2(Rn) : f̂ ∈ L∞(Rn) and supp f̂ is compact
}
,

and suppose that

L ( f ) = ∑
p∈P
∑

m∈Zn

∫
supp f̂

| f̂ (ξ + mC−1
p )|2 1

|detCp| |ĝp(ξ )|2 dξ < ∞ (3.10)

for all f ∈ E . Then the system (3.3) is a Parseval frame for L2(Rn) if and only if

∑
p∈Pα

1
|detCp| ĝp(ξ ) ĝp(ξ +α) = δα ,0 for a.e. ξ ∈ Rn, (3.11)

for each α ∈ Λ =
⋃

p∈P Zn C−1
p , where Pα = {p ∈ P : αCp ∈ Zn} and δ is the

Kronecker delta for Rn.

Before discussing the proof of this theorem, it will be useful to make a few com-
ments about this result, in order to elucidate its context and impact.

Remark 3.2. It is relatively well known that if ψ ∈ L2(R), then {ψ jk = D2 j Tkψ :
j,k ∈ Z} is an orthonormal basis for L2(R) (i.e., ψ is an orthonormal wavelet)
if and only if Eqs. (3.4) and (3.5) hold. As we mentioned above, this result was
obtained independently by Gripenberg [107] and Wang [232]. As will be discussed,
these equations are a simple consequence of Theorem 3.1 (see Exercise 1).

Remark 3.3. Assumption (3.10) is referred to as the local integrability condition
(LIC). At first sight, it might appear as a rather formidable technical hypothesis.
In some cases, however, it can be shown that it is a simple consequence of the
system being considered. For example, let us consider the Gabor system G̃B,C(G),
where G = {g1, . . . ,gL}, and let us write it in the form (3.3). Namely, let
P = Zn ×{1,2, . . . ,L}, gp = g j,� = MB j g�, and Cp = C, so that

TCpk gp = TCk MB j g�.

Without loss of generality, we can assume that L = 1. Thus, the expression
of (3.10) is

L ( f ) = ∑
p∈P
∑

m∈Zn

∫
K
| f̂ (ξ + m(Cp)−1|2 |ĝp(ξ )|2 dξ

|detCp|

=
1

|detC| ∑p∈Zn
∑

m∈Zn

∫
K
| f̂ (ξ + m(C)−1|2 |ĝ(ξ −B p)|2 dξ ,
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for f ∈ E and K = supp f̂ is compact. Since ξ ∈ K, only a finite number of terms in
the sum ∑m∈Zn are nonzero. Moreover, if Tn is the n-torus, for each j ∈ Zn, the set
{B(Tn + j− p) : p ∈ Zn} is a partition of Rn. Thus,

‖g‖2
2 =

∫
⋃

p∈Zn B(Tn+ j−p)
|ĝ(η)|2 dη = ∑

p∈Zn

∫
B(Tn+ j)

|ĝ(ξ −Bp)|2 dξ .

Now observe that a finite union of the sets {B(Tn + j) : j ∈ Zn} covers K. Using
this fact and the fact that ‖ f̂‖∞ ≤ ∞ (since f ∈ E ), it is not difficult to show that

L ( f ) ≤ A‖g‖2
2,

where A is a positive constant. As a result, the characterization theorem for the
Gabor systems can be stated explicitly as follows:

Theorem 3.4. The system GB,C(G) [or the system G̃B,C(G)] is a Parseval frame for
L2(Rn) if and only if

L

∑
�=1
∑

k∈Zn

1
|detC| ĝ�(ξ −Bk) ĝ�(ξ −Bk + mC−1) = δm,0

for a.e. ξ ∈ Rn, all m ∈ Zn.

This result is well known and can be found, for example, in [145, 207, 58, 158].
The situation for the “usual” affine systems is somewhat more subtle. Here, by

the word “usual,” we mean the case where A = {a j : j ∈ Z}, where a ∈ GLn(R)
is expanding, and Γ = Zn. In this case, one can show that if conditions (3.11) are
true, then the LIC is valid and, conversely, if the system (3.3) is a Parseval frame,
then the LIC also holds. Thus, in the characterization of Parseval frames given by
Theorem 3.1, it is not needed to assume the LIC. The characterization theorem for
these systems can be written down explicitly as

Theorem 3.5. LetΨ = {ψ1, . . . ,ψL}⊂ L2(Rn) and a ∈ GLn(R) be expanding. Then
the system FA,Γ (Ψ ) = {Da j Tkψ� : j ∈ Z,k ∈ Zn, � = 1, . . . ,L} is a Parseval frame
for L2(Rn) if and only if

L

∑
�=1
∑

j∈Pα

ψ̂�(ξ a− j) ψ̂�((ξ +α)a− j) = δα ,0, for a.e. ξ ∈ Rn, (3.12)

for all α ∈Λ =
⋃

j∈Z Zn a j, where Pα = { j ∈ Z : α a− j ∈ Zn}.

Apart from the argument needed to establish the validity of the LIC, which we
mentioned above, this last theorem is a simple consequence of Theorem 3.1 once
the system FA,Γ (Ψ ) is expressed in the form (3.3). Notice that there is a redun-
dancy in condition (3.12). Indeed, an elementary argument shows that (3.12) can be
simplified to

L

∑
�=1
∑

j∈Pm

ψ̂�(ξ a− j) ψ̂�((ξ + m)a− j) = δm,0, for a.e. ξ ∈ Rn, (3.13)
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for all m ∈ Zn, where Pm = { j ∈ Z : ma− j ∈ Zn}. It follows easily from this form
of Theorem 3.5 that the result of Gripenberg and Wang (given in Remark 3.2) holds
for n = 1 and a = 2.

In order to present the ideas involved in the proof of Theorem 3.1, it is useful
to introduce the C-bracket product of f ,g ∈ L2(Rn), which, for C ∈ GLn(R), is
defined by

[ f ,g](x;C) = ∑
k∈Zn

f (x−Ck)g(x−Ck).

It is clear that [ f ,g] is CZn- periodic; that is, [ f ,g](x+Cm;C) = [ f ,g](x;C) for each
m ∈ Zn.

That the system (3.3) is a Parseval frame for L2(Rn) is equivalent to

N2( f ) = ∑
p∈P
∑

k∈Zn

|〈 f ,TCpk gp〉|2 = ‖ f‖2
2, (3.14)

for all f ∈ E [recall that E is dense in L2(Rn)].
Using the fact that Rn =

⋃
l∈Zn{(Tn − l)C−1} is a disjoint union, it follows easily

that

〈 f ,TCk g〉 =
∫

Rn
f̂ (ξ ) ĝ(ξ )e2π iCk·ξ dξ

= ∑
l∈Zn

∫
CI (Tn)

f̂ (ξ −CIl) ĝ(ξ −CIl)e2π iCk·ξ dξ

=
∫

CI (Tn)
[ f̂ , ĝ](ξ ;CI)e2π iCk·ξ dξ .

Under all these assumptions, let us consider the function

H(x) = ∑
k∈Zn

|〈Tx f ,TCk g〉|2,

where C ∈ GLn(R). Indeed, it is clear that the function H is CZn- periodic. Using
the fact that f̂ has compact support, one can show that

Lemma 3.6. The function H(x) is the trigonometric polynomial where

H(x) = ∑
m∈Zn

Ĥ(m)e2π i(CI m)·x,

where

Ĥ(m) =
1

|detC|
∫

Rn
f̂ (ξ ) f̂ (ξ +CIm) ĝ(ξ ) ĝ(ξ +CIm)dξ ,

and only a finite number of these expressions are nonzero.
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The fact that Ĥ(m) = 0 for finitely many m at most follows from the fact that f̂ has
compact support.

To show that Eq. (3.14) holds for all f ∈ E , consider now the function

w(x) = N2(Tx f ) = ∑
p∈P

Hp(x),

where Hp(x) = ∑k∈Zn |〈Tx f ,TCpk gp〉|2. By Lemma 3.6, for each p ∈ P ,

Hp(x) = ∑
m∈Zn

Ĥp(m)e2π i(CI
pm)·x,

where

Ĥp(m) =
1

|detCp|
∫

Rn
f̂ (ξ ) f̂ (ξ +CI

pm) ĝp(ξ ) ĝp(ξ +CI
pm)dξ .

Thus, using the assumptions of Theorem 3.1, from the observations we made above,
we have the expression

w(x) = N2(Tx f ) = ∑
α∈Λ

ŵ(α)e2π iα ·x, (3.15)

where

ŵ(α) =
∫

Rn
f̂ (ξ ) f̂ (ξ +α) ∑

p∈P

1
|detCp| ĝp(ξ ) ĝp(ξ +α)dξ . (3.16)

This integral is absolutely convergent, and the series defining w(x) is absolutely and
uniformly convergent. Notice that the LIC plays an important role in establishing
these convergence properties and the various uses of Fubini’s theorem needed for
the formulas developed here.

To complete the proof of Theorem 3.1 we argue as follows. Let us assume (3.11).
Then, by Eq. (3.16),

ŵ(α) = δα ,0

∫
Rn

f̂ (ξ ) f̂ (ξ +α)dξ .

By Eq. (3.15), this implies

w(x) = N2(Tx f ) = ∑
α∈Λ

ŵ(α)e2π iα ·x = ŵ(0) = ‖ f‖2
2.

Hence, the system (3.3) is a Parseval frame for L2(Rn).
Conversely, let us now assume that the system (3.3) is a Parseval frame for

L2(Rn). Hence, by our assumptions, we know that

N2(Tx f ) = w(x) = ∑
α∈Λ

ŵ(α)e2π iα ·x = ‖Tx f‖2
2 = ‖ f‖2

2,

for all f ∈ E .
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Since Λ is countable and the “Fourier coefficients” ŵ(α) of this generalized
Fourier series are unique, we must have ŵ(α) = 0 if α = 0 and ŵ(0) = 1. We can
then use (3.16) and appropriate choices of f ∈ E to show that the Eq. (3.11) must
hold. For example, by letting f be such that f̂ (ξ ) = f̂ε (ξ ) = (1/

√|B(ε)|)χB(ε)
(ξ − ξ0), where B(ε) is a ball of radius ε about the origin, ε > 0, and ξ0 is a point
of differentiability of the integral of h(ξ ) =∑p∈P(1/|detCp|) |ĝp(ξ )|2, one obtains
easily from (3.16) that h(ξ0) = 1. This gives (3.11) when α = 0.

This is, to conclude, the basic idea of the proof of Theorem 3.1. The role played
by these generalized Fourier series is arrived at naturally; it arises from the impor-
tance of the notion of shift invariance, which is essentially related to the structure of
these families of reproducing systems.

Theorem 3.1 has many applications, several of which are described in
[137, 138]. As mentioned above, they include Gabor, affine, and wave packet
systems. Theorem 3.1 applies also to the quasi-affine systems. In dimension n = 1,
these are the systems {ψ̃ jk : j,k ∈ Z} obtained from ψ ∈ L2(R) by setting

ψ̃ j,k =

{
2 j/2 Tk D2− j ψ�, j > 0,

D2− j Tkψ�, j ≤ 0.

These systems (as well as their higher-dimensional versions) were introduced by
Ron and Shen in [205]. They pointed out that, unlike the affine systems, these sys-
tems are shift-invariant. Furthermore, the quasi-affine system {ψ̃ j,k} is a Parseval
frame if and only if the corresponding affine system {ψ j,k} is a Parseval frame.

Recall that, in higher dimensions, affine and quasi-affine systems are typically
defined using dilations of the form DM j , where M is an expanding matrix: that is,
each proper value λ of M satisfies |λ | > 1. Notice that this condition is equivalent
to the existence of constants k and γ , satisfying 0 < k ≤ 1 < γ < ∞, such that

|M j x| ≥ k γ j |x| (3.17)

when x ∈ Rn, j ∈ Z, j ≥ 0, and

|M j x| ≤ 1
k
γ j |x| (3.18)

when x ∈ Rn, j ∈ Z, j ≤ 0. One remarkable property of Theorem 3.1 is that it
applies not only to the case of expanding-dilation matrices, but also to a more gen-
eral class of dilations that are expanding on a subspace [137] and are defined as
follows.

Definition 3.7. Given M ∈ GLn(R) and a nonzero linear subspace F of Rn, we
say that M is expanding on F if there exists a complementary (not necessarily
orthogonal) linear subspace E of Rn with the following properties1

1 This is the revised definition from [123]. It turned out that the definition initially proposed in
[137], with a different condition (iv), was not sufficient to guarantee that the LIC was satisfied.
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1. Rn = F + E and F ∩E = {0}; that is, for any x ∈ Rn, there exist unique xF ∈ F
and xE ∈ E such that x = xF + xE ;

2. M(F) = F and M(E) = E; that is, F and E are invariant under M;
3. conditions (3.17) and (3.18) hold for all x ∈ F ;
4. for any j ≥ 0, there exists k1 = k1(M) > 0 such that |xE | ≤ k1 |M j xE |.
It is clear that if a matrix M is expanding, then it is also expanding on a subspace.
However, there are several examples of matrices that satisfy Definition 3.7 and are
not expanding. For example, the following matrices are all expanding on a subspace:

• M =
(

a 0
0 1

)
, where a ∈ R, |a| > 1;

• M =

⎛⎝a 0 0
0 cosθ −sinθ
0 sinθ cosθ

⎞⎠ , where a ∈ R, |a| > 1.

It is shown in [123, 137] that for affine systems where the dilation matrix M is
expanding on a subspace, according to the definition above, then the LIC is “auto-
matically” satisfied. Hence, Theorem 3.5 applies to this class of affine systems as
well.

The examples seem to suggest that Theorem 3.5 applies whenever the dilation
matrix M has all eigenvalues |λk| ≥ 1 and at least one eigenvalue |λ1|> 1. However,
this is not the case. In [123] there is an example of a 3× 3 dilation matrix having
eigenvalues λ1 = a > 1 and λ2 = λ3 = 1, for which the LIC fails. Indeed, it turns out
that the information about the eigenvalues of M alone is not sufficient to determine
the LIC or even the existence of corresponding affine systems. We refer to [144, 215]
for additional results and observations about this topic.

3.3 Continuous Wavelet Transform

The full affine group of motions on Rn, denoted by An, consists of all pairs
(M,t) ∈ GLn(R)×Rn (endowed with the product topology) together with the group
operation

(M,t) · (M′,t ′) = (MM′,t ′ +(M′)−1t).

This operation is associated with the action x → M(x + t) on Rn. The subgroup
N = {(M,t) ∈ An : M = I, t ∈ Rn} is clearly a normal subgroup of An.

We consider a class of subgroups {G} of An of the form

G = {(M,t) ∈ An : M ∈ D , t ∈ Rn},

where D is a closed subgroup of GLn(R). We can identify D with the subgroup
{(M,t) ∈ G : M ∈ D , t = 0}. Hence, we refer to D as the dilation subgroup and
to N as the translation subgroup of G. If µ is the left Haar measure for D , then
dλ (M,t) = dµ(M)dt is the element of the left Haar measure for G.
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Let U be the unitary representation of G acting on L2(Rn) defined by(
U(M,t)ψ

)
(x) = |detM|− 1

2ψ(M−1x− t) := ψM,t (x), (3.19)

for (M,t) ∈ G and ψ ∈ L2(Rn). The elements {ψM,t : (M,t) ∈ G} are the continuous
affine systems with respect to G. The corresponding expression in the frequency
domain is (

U(M,t)ψ
)∧ (ξ ) = |detM| 1

2 ψ̂(ξM)e−2π iMt .

For a fixed ψ ∈ L2(Rn), the wavelet transform associated with G is the mapping

f → (Wψ f )(M,t) = 〈 f ,ψM,t 〉 = |detM|− 1
2

∫
Rn

f (y)ψ(M−1y− t)dy,

where f ∈ L2(Rn) and (M,t) ∈ G. If there exists a function ψ ∈ L2(Rn) such that,
for all f ∈ L2(Rn), the reproducing formula

f =
∫

G
〈 f ,ψM,t 〉ψM,t dλ (M,t) (3.20)

holds, then ψ is a continuous wavelet with respect to G. Expression (3.20) is a gen-
eralized version of the Calderón reproducing formula (3.6) presented in section 3.1.
Notice that Eq. (3.20) is understood in the weak sense (see the proof of Theorem 3.8
below); the pointwise result is much more subtle.

The following theorem establishes an admissibility condition for ψ that guaran-
tees that (3.20) is satisfied:

Theorem 3.8. Equation (3.20) is valid for all f ∈ L2(Rn) if and only if, for a.e.
ξ ∈ Rn \ {0},

∆ψ(ξ ) =
∫

D
|ψ̂(ξM)|2 dµ(M) = 1. (3.21)

Proof. Suppose that (3.21) is satisfied. Then, by direct computation, we have that

‖Wψ f‖2
L2(G,λ ) =

∫
D

∫
Rn

|〈 f ,ψM,t 〉|2 dt dµ(M)

=
∫

D

∫
Rn

∣∣∣∣∫
Rn

f̂ (ξ ) ψ̂(ξM)e2π iξMt dξ
∣∣∣∣2 |detM|dt dµ(M)

=
∫

D

(∫
Rn

∣∣∣∣( f̂ (ξ )ψ̂(·M)
)∨

(Mt)
∣∣∣∣2 |detM|dt

)
dµ(M)

=
∫

D

∫
Rn

| f̂ (ξ )|2|ψ̂(ξM)|2 dξ dµ(M)

=
∫

Rn
| f̂ (ξ )|2∆ψ (ξ )dξ

= ‖ f‖2
L2(Rn).
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This shows that the mapping Wψ : L2(Rn) → L2(G,λ ) is an isometry. By polariza-
tion, we then obtain

〈Wψ f ,Wψg〉L2(G) = 〈 f ,g〉L2(Rn), (3.22)

for all f ,g ∈ L2(Rn).
Conversely, suppose that Eq. (3.20) holds in the weak sense [i.e., (3.22) holds].

Consider the expression ∫
Rn

| f̂ (ξ )|2∆ψ(ξ )dξ ,

with f satisfying | f̂ (ξ )|2 = |β (r,ξ0)|−1χβ (r,ξ0)(ξ ), where β (r,ξ0) is a ball of radius
r and center ξ0, and ξ0 is a point of differentiability of ∆ψ . Then, by reversing the
chain of equalities above, we obtain that

|β (r,ξ0)|−1
∫
β (r,ξ0)

∆ψ(ξ )dξ = 1,

for all r > 0. By taking limr→0+ , we conclude that ∆ψ (ξ0) = 1. Thus, ∆ψ (ξ ) = 1 for
a.e. ξ ∈ Rn. 
�

Theorem 3.8 can easily be extended to the case where G is not a subgroup of
GLn(R), but simply a subset of GLn(R). Furthermore, Theorem 3.8 extends to func-
tions on subspaces of L2(Rn) of the form

L2(V )∨ = { f ∈ L2(Rn) : supp f̂ ⊂ V}.

The proof of this fact is left as an exercise.
In the special case of Theorem 3.8 where n = 1 and D = {2 j : j ∈ Z}, Eq. (3.21)

is ∑ j∈Z |ψ̂(2 jξ )|2 = 1 for a.e. ξ ∈ R (this is the classical Calderón equation), and
Eq. (3.20) is

f = ∑
j∈Z

∫
R
〈 f ,ψ j,t 〉ψ j,t dt, (3.23)

where ψ j,t(x) := 2− j/2ψ(2− jx− t), j ∈ Z, t ∈ R. Thus, the classical orthonormal
wavelet expansion

f = ∑
j∈Z

∑
k∈Z

〈 f ,ψ jk〉ψ jk

is a “discretization” of (3.23). This shows, by Eq. (3.4), that an orthonormal wavelet
(in this classical case) is always a continuous wavelet satisfying property (3.23) for
all f ∈ L2(R). This raises the question of how to “discretize” continuous wavelets
associated with general dilation groups D . We refer to [234] for more observations
about this topic.

A variant of the affine group An [and the corresponding affine systems (3.19)] is
obtained by considering the group G∗ consisting of all pairs (M,t) ∈ GLn(R)×Rn

(endowed with the product topology) together with the group operation

(M,t) · (M′,t ′) = (MM′,t + M′t ′).
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This operation is associated with the action x → Mx+ t on Rn. The co-affine systems
associated with G∗ are then defined as the elements(

V(M,t)ψ
)
(x) = |detM|− 1

2ψ(M−1(x− t)) := ψ∗
M,t(x),

for (M,t) ∈ G∗ and ψ ∈ L2(Rn). The corresponding expression in the frequency
domain is (

U(M,t)ψ
)∧ (ξ ) = |detM| 1

2 ψ̂(ξM)e−2π it .

The left Haar measure, λ ∗, for G∗ is easily seen to satisfy

dλ ∗(M,t) = |detM|−1dµ(M)dt,

where µ is the left Haar measure for D . Then the “co-affine” reproducing
formula is

f =
∫

G
〈 f ,ψ∗

M,t 〉ψ∗
M,t dλ ∗(M,t). (3.24)

A straightforward calculation shows that (3.24) holds if and only if ψ satisfies con-
dition (3.21). Thus, ψ is a continuous affine wavelet if and only if it is a continuous
co-affine wavelet.

Notice that the situation observed above is different from the discrete case. In
fact, consider the systems Ψ = {ψ j,k = 2− j/2ψ(2− j · −k) : j,k ∈ Z} and Ψ∗ =
{ψ∗

j,k = 2− j/2ψ(2− j(·− k)) : j,k ∈ Z}. A simple calculation shows that

〈ψ∗
j,k,ψ−1,−1〉 = 〈ψ j,0,ψ−1,2k−1〉.

This shows that the co-affine systems cannot generate the space L2(R) if the corre-
sponding affine systemΨ is an orthonormal basis for L2(R). In fact, since 2k−1 is
never 0, the affine systemΨ is an orthonormal basis for L2(R) (in which case the
right-hand side of the above expression is zero) if and only if the co-affine system
Ψ∗ has a nonempty orthogonal complement.

3.3.1 Admissible Groups

It is not difficult to show that there are dilation groups D for which one can find
no functions ψ satisfying Eq. (3.21). In particular, if D is compact, there are no
associated functions ψ that satisfy this condition. For example, let D = SO(2) and
suppose that there is a function ψ ∈ L2(R2) satisfying (3.21). Notice that, in this
case, using polar coordinates Eq. (3.21) can be expressed as

∫ 2π

0
|ψ̂(reiφeiθ )|2 dθ

2π
= 1,
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for a.e. ξ = r eiφ . Multiplying both sides of the equality by r > 0 and integrating
with respect to r ∈ [0,∞), we obtain

∞=
∫ ∞

0
r dr

=
∫ ∞

0
r
∫ 2π

0
|ψ̂(reiφeiθ )|2 dθ

2π
dr

=
∫ ∞

0
r
∫ 2π

0
|ψ̂(reiθ )|2 dθ

2π
dr

= ‖ψ‖2 < ∞.

This is clearly a contradiction and, thus, there is no ψ satisfying (3.21). In this
situation, we say that the group SO(2) is not admissible. That a general compact
D ⊂ GLn(R) is not admissible is not much harder to prove (see last paragraph in
this section).

The observation above leads to the question: What are the groups D that are
admissible? Our result on admissibility involves the notion of ε-stabilizer of x ∈ Rn,
which is defined as the set

Dε
x = {M ∈ D : |xM − x| ≤ ε},

for each ε > 0. The set Dx := D0
x = {M ∈ D : xM = x} is called the stabilizer of x.

The modular function ∆ , on D , defined by the property

µ(EM) = ∆(M)µ(E)

for all µ-measurable E ⊂D and M ∈D , also plays an important role in the following
basic result about admissible dilation groups.

Theorem 3.9. (a) If D is admissible, then ∆ = |detM| and the stabilizer of x is
compact for a.e. x ∈ Rn.

(b) If ∆ = |detM| and for a.e. x ∈ Rn there exists an ε > 0 such that the
ε-stabilizer of x is compact, then D is admissible.

The proof of Theorem 3.9 is rather involved and can be found in [163]. Even
though Theorem 3.9 “just fails” to be a characterization of admissibility, still it
is quite useful for determining the admissibility or nonadmissibility of particular
groups D . For example, if D is compact, then ∆ = |detM| = 1 and, thus, it cannot
be admissible. Another example where Theorem 3.9 can be used effectively is the
case where D is a one-parameter group. Namely, let D = {Mt = etL : t ∈R}, where L
is a real n×n matrix. Then D is admissible if and only if trace(L) = 0. Indeed, since
det Mt = et trace(L) and D is Abelian, it follows that the modular function, ∆ , is iden-
tically 1. Thus, when trace(L) = 0, we have that detMt = 1 = ∆ and D is admissible.

3.3.2 Wave Packet Systems

In [57], Córdoba and Fefferman introduced “wave packets” as those families of
functions obtained by applying certain collections of dilations, modulations, and
translations to the Gaussian function. More generally, we will describe as
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“wave packet systems” any collections of functions that are obtained by applying a
combination of dilations, modulations, and translations to a finite family of func-
tions in L2(Rn). For Ψ = {ψ� : 1 ≤ � ≤ L} ⊂ L2(Rn), where L ∈ N, and S ⊂
GLn(R)×Rn, the continuous wave packet system with respect to S that is gener-
ated byΨ is the collection

WPS(Ψ) = {DA Mν Tyψ� : (A,ν) ∈ S, y ∈ Rn, 1 ≤ � ≤ L}, (3.25)

where Mν is the modulation operator defined at the beginning of Section 3.2.
Let

G = {U = cDA Mν Ty : c ∈ C, |c| = 1, (A,ν,y) ∈ GLn(R)×Rn ×Rn}.

G is a subgroup of the unitary operators on L2(Rn) that is preserved by the action of
the mapping U → Û , where Û f = (U f )∧.

In the definition (3.25), we considered the map (A,ν,y) → U (0)
(A,ν,y) = DA Mν Ty,

which is a one-to-one mapping from S×Rn into the group G. By changing the order
of the operators, we can also define the following one-to-one mappings from S×Rn

into G:

U (1)
(A,ν,y) = DA Ty Mν ,

U (2)
(A,ν,y) = Ty DA Mν ,

U (3)
(A,ν,y) = Mν DA Ty,

U (4)
(A,ν,y) = Ty Mν DA,

U (5)
(A,ν,y) = Mν Ty DA.

Hence, we can generate alternate continuous wave packet systems, WP
(i)
S (Ψ ),

by replacing U (0)
(A,ν,y) with U (i)

(A,ν,y), for 1 ≤ i ≤ 5. The systems WP
(0)
S (Ψ ) and

WP
(1)
S (Ψ ) are equivalent in the sense that one is a Parseval frame if and only if

the other one is a Parseval frame (in fact, by the commutativity relations of trans-
lations and modulations, they only differ by a unimodular scalar factor). The same

is true for WP
(4)
S (Ψ) and WP

(5)
S (Ψ). The other systems, on the other hand, have

substantial differences.
Each subgroup U (i)

(A,ν,y), , i = 0, . . . ,5, is associated with a continuous wave packet

system generated byΨ ⊂ L2(Rn). We can characterize thoseΨ for which we have
Parseval frames:

L

∑
�=1

∫
S×Rn

∣∣∣〈 f ,U (i)
(A,ν,y)ψ�〉

∣∣∣2 dλ (A,ν)dy = ‖ f‖2
2

for all f ∈ L2(Rn), where λ is a measure on S. Such a characterization is an
extension of Theorem 3.8 and is given by an analogue of Eq. (3.21). Explicitly,
we have the result:
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Theorem 3.10. Let Ψ = {ψ� : 1 ≤ � ≤ L} ⊂ L2(Rn). The systems WP
(i)
S (Ψ ),

i = 0, . . . ,5, are continuous Parseval frame wave packet systems with respect to
(S,λ ), for L2(Rn), if and only if

∆ (i)
Ψ (ξ ) = 1 for a.e. ξ ∈ Rn,

where

∆ (1)
Ψ (ξ ) = ∆ (0)

Ψ (ξ ) =
L

∑
�=1

∫
S
|ψ̂�(ξA−1 −ν)|2 dλ (A,ν);

∆ (2)
Ψ (ξ ) =

L

∑
�=1

∫
S
|ψ̂�(ξA−1 −ν)|2 |detA|−1 dλ (A,ν);

∆ (3)
Ψ (ξ ) =

L

∑
�=1

∫
S
|ψ̂�((ξ −ν)A−1)|2 dλ (A,ν);

∆ (4)
Ψ (ξ ) = ∆ (5)

Ψ (ξ ) =
L

∑
�=1

∫
S
|ψ̂�((ξ −ν)A−1)|2 |detA|−1 dλ (A,ν).

3.4 Affine Systems with Composite Dilations

To describe the class of systems that will be considered in this section, it will be
useful to begin with one example in L2(R2).

Let A =
(

2 0
0 ε

)
, where ε = 0, B =

(
1 1
0 1

)
and G = {(B j,k) : j ∈ Z, k ∈ Z2}.

Then G is a group with group multiplication:

(B�,m)(B j,k) = (B�+ j,k + B− jm). (3.26)

In particular, we have (B j,k)−1 = (B− j,−B jk). The multiplication (3.26) is consis-
tent with the operation that maps x → B j(x + k) of R2 into R2. Let π be the unitary
representation of G, acting on L2(R2), which is defined by(

π(B j,k) f
)
(x) = f ((B j,k)−1x) = f (B− jx− k) =

(
D j

B Tk f
)
(x), (3.27)

for f ∈ L2(R2). Notice that detB j = 1. The observation that

(D�
B Tm)(D j

B Tk) = (D�+ j
B Tk+B− jm),

where �, j ∈ Z, k,m ∈ Z2, shows how the group operation (3.26) is associated with
the unitary representation (3.27).

Let S0 = {ξ = (ξ1,ξ2) ∈ R̂2 : |ξ1| ≤ 1} and define

V0 = L2(S0)∨ = { f ∈ L2(Rn) : supp f̂ ⊂ S0}.
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Since, for all j ∈ Z and k ∈ Z2, we have2(
π(B j,k) f

)∧
(ξ ) =

(
D j

B Tk f
)∧

(ξ ) = e−2π iξB jk f̂ (ξB j),

and ξB j = (ξ1,ξ2)B j = (ξ1,ξ2 + jξ1), then the action of B j maps the vertical strip
domain S0 into itself and, thus, the space V0 is invariant under the action of π(B j,k).
The same invariance property holds for the vertical strips

Si = S0 Ai = {ξ = (ξ1,ξ2) ∈ R̂2 : |ξ1| ≤ 2i},

i ∈ Z, and, as a consequence, the spaces Vi = L2(Si)∨ are also invariant under the
action of the operators π(B j,k).

The spaces {Vi}i∈Z defined above satisfy the basic MRA properties:

1. Vi ⊂ Vi+1, i ∈ Z;
2. D−i

A V0 = Vi;
3.

⋂
i∈Z

Vi = {0};

4.
⋃
i∈Z

Vi = L2(Rn).

The complete definition of an MRA includes the assumption that V0 is generated by
the integer-translates of a φ ∈V0, called the scaling function, and that these translates
{Tk φ : k ∈ Z2} are an orthonormal basis of V0. In some cases, there is more than
one scaling function.

The situation here is a bit different, and the scaling property is replaced by an
analogous property. Namely, consider V̂0 = L2(S0) and let φ̂ = χJ , where J = J+ ∪
J−, J+ is the triangle with vertices (0,0), (1,0), (1,1) and J− is the triangle with
vertices (0,0), (−1,0), (−1,−1). The sets J B j, j ∈ Z, form a partition of S0; that
is, S0 =

⋃
j∈Z J B j, except for the set of points {(0,ξ2) : ξ2 = 0}, which is, however,

a set of measure 0. The set J has measure 1 and the collection {e−2π ikξ χJ : k ∈ Z2}
is easily seen to be an ON basis of L2(J). Since(

e−2π ik· χJ(·) :
)∨

(x) = (Tkφ)(x) = φ(x− k),

these last functions form an ON basis of L2(J)∨. It follows that {DB j Tk φ : k ∈ Z2}
is an ON basis of L2(J B j)∨, for each j ∈ Z2. Hence, the set{

DB j Tk φ : j ∈ Z, k ∈ Z2} =
{

Tk DB j φ : j ∈ Z, k ∈ Z2}
is an ON basis of V0. The sets J+,J−, as well as the other sets used in this construc-
tion, are illustrated in Fig. 3.1.

Thus, the “complete” definition of the MRA, introduced above, adds to properties
1–4 the property

2 Recall that, according to the notation introduced in Section 3.2, in the frequency domain, the
matrices B j multiply row vectors on the right.
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Fig. 3.1: Example of ON AB–MRA. The sets {J+ B j,J− B j : j ∈ Z} form a disjoint partition of S0.

5. V0 is generated by a “scaling function” φ , in the sense that {Tk DB j φ : j ∈ Z,
k ∈ Z2} is an ON basis of V0.

Let GB be the group {B j : j ∈ Z}; this is equivalent to the dilation group
{DB j : j ∈ Z}. Then G = {(B j,k) : j ∈ Z, k ∈ Z2} is the semidirect product of
GB and Z2, denoted by GB � Z2. This shows that the shift invariance of the tradi-
tional MRA is replaced by a notion of GB � Zn invariance, that is, the space V0 is
invariant with respect to both integer translations and GB dilations.

We shall now show how the MRA we just introduced can be used to con-
struct a wavelet-like basis of L2(R2). We begin by constructing an ON basis of W0,
defined to be the orthogonal complement of V0 in V1, that is, V1 = V0 ⊕W0. It will
be convenient to work in the frequency domain. We have that V̂1 = V̂0 ⊕ Ŵ0 and,
consequently,Ŵ0 = L2(R0), where R0 = S1\S0 = {ξ = (ξ1,ξ2)∈ R̂2 : 1 < |ξ1| ≤ 2}.
We define the following subsets of R0 = S1 \S0:

I1 = I+
1 ∪ I−1 , I2 = I+

2 ∪ I−2 , I3 = I+
3 ∪ I−3 ,

where

I+
1 =

{
ξ = (ξ1,ξ2) ∈ R̂2 : 1 < ξ1 ≤ 2, 0 ≤ ξ2 <

1
2

}
,
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I+
2 =

{
ξ = (ξ1,ξ2) ∈ R̂2 : 1 < ξ1 ≤ 2,

1
2
≤ ξ2 < 1

}
,

I+
3 =

{
ξ = (ξ1,ξ2) ∈ R̂2 : 1 < ξ1 ≤ 2, 1 ≤ ξ2 < ξ1

}
,

and I−� = {ξ ∈ R̂2 : −ξ ∈ I+
� }, � = 1,2,3. These sets are illustrated in Fig. 3.1

and 3.2. Observe that each set I� is a fundamental domain for Z2: The functions
{e2π iξk : k ∈ Z2}, restricted to I�, form an ON basis for L2(I�), � = 1,2,3. We then
defineψ�, � = 1,2,3, by setting ψ̂� = χI� , � = 1,2,3. It follows from the observations
about the sets {I�} that the collection

{e2π iξk ψ̂�(ξ ) : k ∈ Z2}

�
ξ1

�
ξ2

S0 ��
S1 ��

�������

�
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��

�
�

���
�

���
�

��

�
�
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�
�
�
�

I+
1

I+
1 b

I+
2 b

I+
3 b

I+
2

I+
3

I+
1 a
I+

2 a

I+
3 a

I−1

I−3

I−2

1 2 4
−1−2

�1

�2

�−1

�−2

S1\S0S1\S0

Fig. 3.2: Example of an orthonormal AB wavelet.
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is an orthonormal basis of L2(I�), � = 1,2,3. A simple direct calculation shows that
the sets {I� b j : j ∈ Z, � = 1,2,3} are a partition of R0, that is,

3⋃
�=1

⋃
j∈Z

I� B j = R0,

where the union is disjoint. As a consequence, the collection

{e2π iξk ψ̂�(ξB j) : k ∈ Z2, j ∈ Z, � = 1,2,3} (3.28)

is an orthonormal basis of L2(R0) and, thus, by taking the inverse Fourier transform
of (3.28), we have that

{π(B j,k)ψ� : k ∈ Z2, j ∈ Z, � = 1,2,3} (3.29)

is an orthonormal basis of W0 = L2(R0)∨. Notice that, since, for each j ∈ Z fixed,
B j maps Z2 into itself, the collection {e2π iξB jk : k ∈ Z2} is equal to the collection
{e2π iξk : k ∈ Z2}.

It is clear that, by applying the dilations DAi , i ∈ Z, to the system (3.29), we
obtain an ON basis of L2(Ri)∨, where

Ri = R0 Ai = {ξ = (ξ1,ξ2) ∈ R̂2 : 2i < |ξ1| ≤ 21+i}.
Furthermore, we have that

⋃
i∈Z Ri = R̂2, where the union is disjoint, and hence

we can write L2(R2) =
⊕

i∈ZWi. Hence, by combining the observations above, it
follows that the collection

{DAi DB j Tkψ� : k ∈ Z2, i, j ∈ Z, � = 1,2,3} (3.30)

is an ON basis of L2(R2).

3.4.1 Affine System with Composite Dilations

The construction given above is a particular example of a general class of affine-like
systems called affine systems with composite dilations, which have the form

AAB(Ψ) = {DA DB Tkψ� : A ∈ GA,B ∈ GB, k ∈ Zn, � = 1, . . . ,L}, (3.31)

where Ψ ⊂ {ψ1, . . . ,ψ�} ∈ L2(Rn), GA ⊂ GLn(R) (usually, GA = {Ai : i ∈ Z},
with A expanding or having some “expanding” property), and GB ⊂ GLn(R) with
|detB| = 1. Later on, we will show that there are several examples of such systems
that form ON bases of L2(Rn) or, more generally, Parseval frames of L2(Rn).

The roles played by the two families of dilations, GA and GB, in definition (3.31),
are very different. The elements A ∈ GA dilate (at least in some direction), while
the elements of GB affect the geometry of the reproducing system AAB(Ψ ). In the
example we worked out, GB = {(1 1

0 1) j : j ∈ Z} is the shear group and exhibits
a “shear geometry,” in which objects in the plane are stretched vertically without
increasing their size (like the trapezoids in Fig. 3.2). In Section 3.5, we will use this
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group and a construction similar to the one above to obtain the shearlets, whose
geometrical properties are similar to the example above and are, in addition, well-
localized functions (i.e., they have rapid decay in both the space and frequency
domains). They have similarities to the curvelets introduced by Candès and Donoho
[38] and to the contourlets of Do and Vetterli [68]. However, their mathematical
construction is simpler, since it derived from the structure of affine systems, and, as
a result, their development and applications are “more systematic” [129, 130].

As indicated by the example above, there is a special multiresolution analysis
associated with the affine systems with composite dilations that is useful for
constructing “composite wavelets.” Let us give a proper definition of this new frame-
work. Let GB be a countable subset of S̃Ln(Z) = {B ∈ GLn(R) : |detB| = 1} and
GA = {Ai : i ∈ Z}, where A ∈ GLn(Z) (notice that A is an integral matrix). Also,
assume that A normalizes GB, that is, ABA−1 ∈ GB for every B ∈ GB, and that the
quotient space B/(ABA−1) is finite. Then the sequence {Vi}i∈Z of closed subspaces
of L2(Rn) is an AB-multiresolution analysis (AB-MRA) if the following hold:

1. DB Tk V0 = V0, for any B ∈ GB, k ∈ Zn

2. For each i ∈ Z, Vi ⊂ Vi+1, where Vi = D−i
A V0

3.
⋂

Vi1,= {0} and
⋃

Vi = L2(Rn)
4. There exists φ ∈ L2(Rn) such that ΦB = {DB Tk φ : B ∈ GB, k ∈ Zn} is a semi-

orthogonal Parseval frame for V0, that is, ΦB is a Parseval frame for V0 and, in
addition, DB Tk φ⊥DB′ Tk′ φ for any B = B′, B,B′ ∈ GB, k,k′ ∈ Zn.

The space V0 is called an AB scaling space and the function φ is an AB scaling
function for V0. In addition, if ΦB is an orthonormal basis for V0, then φ is an ortho-
normal AB scaling function.

The number of generators L of an orthonormal MRA AB-wavelet is completely
determined by the group G = {(B j,k) : j ∈ Z, k ∈ Zn}. Indeed, we have the follow-
ing simple fact:

Proposition 3.11. Let G be a countable group and u → Tu be a unitary represen-
tation of G acting on a (separable) Hilbert space H . Suppose Φ = {φ1, . . . ,φN},
Ψ = {ψ1, . . . ,ψM} ⊂ H , where N,M ∈ N

⋃{∞}. If {Tuφ k : u ∈ G, 1 ≤ k ≤ N} and
{Tuψ i : u ∈ G, 1 ≤ i ≤ M} are each orthonormal bases for H , then N = M.

Proof. It follows from the assumptions that, for each 1 ≤ k ≤ N

‖φ k‖2 = ∑
u∈G

M

∑
i=1

|〈φ k,Tuψ i〉|2.

Thus, by the properties of Tu, we have

N =
N

∑
k=1

‖φ k‖2 =
N

∑
k=1
∑

u∈G

M

∑
i=1

|〈φ k,Tuψ i〉|2

=
M

∑
i=1
∑
u∈G

N

∑
k=1

|〈Tu−1 φ k,ψ i〉|2

=
M

∑
i=1

‖ψ i‖2 = M. 
�
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Using Proposition 3.11, one obtains the following result, which establishes the
number of generators needed to obtain an orthonormal MRA AB-wavelet.

Theorem 3.12. Let Ψ = {ψ1, . . . ,ψL} be an orthonormal MRA AB-multiwavelet
for L2(Rn), and let N = |B/ABA−1| (= the order of the quotient group B/ABA−1).
Assume that |detA| ∈ N. Then L = N |detA|−1.

The composite wavelet system AAB(Ψ ) has associated continuous multiwavelets.
The simplest case is the one in which the translations are {Ty : y ∈ Rn}. In this case,
we have the reproducing formula corresponding to (3.20):

f =
L

∑
�=1
∑

i, j∈Z

∫
Rn

〈 f ,DAi DB j Tyψ�〉DAiDB j Tyψ� dy, (3.32)

for f ∈ L2(Rn). As in Section 3.3, one can show that Ψ = {ψ1, . . . ,ψ�} satisfies
(3.32) if and only if it satisfies the Calderón equation

L

∑
�=1
∑

i, j∈Z

|ψ̂�(ξAiB j)| = 1 for a.e. ξ ∈ Rn.

Some more general examples of continuous composite wavelet systems will be
examined in Section 3.5.

3.4.2 Other Examples

There are several other examples of affine systems with composite dilations AAB(Ψ)
that form ON bases or Parseval frames.

In particular, the construction presented above in dimension n = 2 extends to the
general n-dimensional setting. In this case, the shear group is given by GB = {Bi :
i ∈ Z}, where B ∈ GLn(R) is characterized by the equality (B− In)2 = 0, and In is
the n×n identity matrix. We refer to [130] for more details about these systems.

A different type of affine system with composite dilations arises when GB is a
finite group. For example, let GB = {±B0,±B1,±B2,±B3} be the eight-element

group consisting of the isometries of the square [−1,1 ]2. Specifically: B0 =
(

1 0
0 1

)
,

B1 =
(

0 1
1 0

)
, B2 =

(
0 1
−1 0

)
, B3 =

(−1 0
0 1

)
. Let U be the parallelogram with

vertices (0,0),(1,0),(2,1), and (1,1) and S0 =
⋃

b∈BU b (see the snowflake region
in Fig. 3.3). It is easy to verify that S0 is B-invariant.

Let A be the quincunx matrix

(
1 1
−1 1

)
, and Si = S0 Ai, i ∈ Z. Observe that A

is expanding, ABA−1 = B, and S0 ⊆ S0 A = S1. In particular, the region S1 \ S0 is
the disjoint union

⋃
b∈B RB, where the region R is the parallelogram illustrated in

Fig. 3.3. Thus, as in the case of the shear composite wavelet that we described
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Fig. 3.3: Example of composite wavelet with finite group. GA = {Ai : i ∈ Z}, where A is the
quincunx matrix, and GB is the group of isometries of the square [−1,1 ]2.

above, it follows that the system

{Di
A DB Tkψ : i ∈ Z, B ∈ GB, k ∈ Z2}, (3.33)

where ψ̂ = χR, is an orthonormal basis for L2(R2).

If the quincunx matrix A is replaced by the matrix Ã =
(

2 0
0 2

)
, we obtain a

different ON basis. Let B, U , and Si, i ∈ Z, be defined as above. Also, in this case,
Ã is expanding, ÃBÃ−1 = B, and S1 = S0a ⊃ S0. A direct computation shows that
the region S1 \ S0 is the disjoint union

⋃
B∈GB

Rb, where R = R1
⋃

R2
⋃

R3 and the
regions R1,R2,R3 are illustrated in Fig. 3.4. Observe that each of the regions
R1,R2,R3 is a fundamental domain. Thus, the system

{Di
Ã DB Tkψ� : i ∈ Z, B ∈ GB, k ∈ Z2, � = 1, . . . ,3}, (3.34)

where ψ̂� = χR�
, � = 1,2,3, is an orthonormal basis for L2(R2).

Note that the system in the first example [Eq. (3.33)] was generated by a single
function, while the second system [Eq. (3.34)] is generated by three functions
ψ1,ψ2,ψ3. This is consistent with Theorem 3.12. In fact, if B is a finite group,
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Fig. 3.4: Example of composite wavelet with finite group. GA = {Ai : i ∈ Z}, where A = 2I, and
GB is the group of isometries of the square [−1,1 ]2.

then N = |B/ABA−1| = 1, and so, in this situation, the number of generators is
L = |detA| − 1. Thus, by Theorem 3.12, in the first example, we obtain that the
number of generators is L = 1 since A is the quincunx matrix and detA = 2. In
the second example, the number of generators is L = 3 since Ã = 2I and det Ã = 4.
Finally, in the example at beginning of this section, where GB is the two-dimensional

group of shear matrices and GA = {Ai : i ∈ Z}, with A =
(

2 A1,2

0 A2,2

)
∈ GL2(Z), a

calculation shows that |B/ABA−1| = 2|A2,2|−1 and, thus, the number of generators
is L = 2|A2,2|−1 2|A2,2|−1 = 3.

In higher dimensions, the type of constructions we have just described extends
by using the Coxeter groups. These are finite groups (hence, their elements have
determinant 1 in magnitude) generated by reflections through hyperplanes.

Other examples of composite wavelets, in dimension n = 2, are obtained, for
each λ > 1 fixed, by considering the group

GB =
{

B j =
(
λ j 0
0 λ− j

)
: j ∈ Z

}
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and choosing GA to be a group of expanding matrices; for example,
GA = {Ai : i ∈ Z}, where A is diagonal and |detA| > 1. We refer to [130] for more
details about this construction.

All examples of composite wavelets presented so far are “direct” constructions
in the frequency domain. Let us now discuss a different class of composite wavelets
in the “time domain.”

Perhaps the simplest dyadic-dilation wavelet in dimension n = 1 is the Haar
wavelet. It is produced by the scaling function φ = χ[0,1) and is generated by the
Haar function ψ = χ[0, 1

2 )−χ[ 1
2 ,1). The Haar ON basis of L2(R) is the affine system

{ψi,k = D2i Tkψ : i,k ∈ Z}.

It is a natural question to ask what the extensions are of this compactly supported
wavelet ψ in higher dimensions. For example, in dimension n = 2, consider the

quincunx matrix Aq =
(

1 −1
1 1

)
and the associated affine system

{ψi,k = DAi
q

Tkψ : i ∈ Z, k ∈ Z2}. (3.35)

Then, similarly to the one-dimensional Haar wavelet, one can find an MRA wavelet
ψ produced by a scaling function φ that is the characteristic function of a compact
set Q ⊂ R2 of area 1. However, the functions φ and ψ are not that simple. In fact,
the scaling function φ is the characteristic function of a rather complicated fractal
set known at the “twin dragon” and ψ is the difference of two similar characteristic
functions (see Fig. 3.5).

Fig. 3.5: (a) The fractal set known as “twin dragon.” (b) Support of the two-dimensional Haar
wavelet ψ; ψ = 1 on the darker set, ψ = −1 on the lighter set.

We can construct an affine system with composite dilations having the same
expanding dilation group GA = {Ai

q : i ∈ Z} and the same translations that does,
however, generate a very simple Haar-type wavelet. For the group GB, let us again
choose the group of symmetries of the unit square given at the beginning of this
section. Let R0 be the triangle with vertices (0,0), (1/2,0), (1/2,1/2) and
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R� = B� R0, � = 1, . . . ,7 (see Fig. 3.6). Then, for φ = 2
√

2χR0 , it follows that the
system

{DB�
Tk φ : � = 0, . . . ,7, k ∈ Z2}

is an ON basis for the space V0, which is the closed linear span of the subspace
of L2(R2) consisting of the functions that are constant on each Z2-translate of the
triangles R�, � = 0,1, . . . ,7. Let us now consider the spaces Vi = DA−i

q
V0, i ∈ Z.

Then one can verify that each space Vi is the closed linear span of the subspace of
L2(R2) consisting of the functions that are constant on each A−i

q Z2-translate of the
triangles A−i

q R�, � = 0,1, . . . ,7. Thus, Vi ⊂ Vi+1 for each i ∈ Z, and the spaces {Vi}
form an AB-MRA, with φ as an AB-scaling function. We can now construct a simple
Haar-like wavelet obtained from this AB-MRA. Specifically, let

R0 = A−1
q R1 ∪

[
A−1

q R6 +
1
2

(
1
1

)]
= A−1

q R1 ∪A−1
q

[
R6 +

(
0
1

)]
.

R0R3

R7R4

R1

R6

R2

R5

A−1
q R1

A−1
q R0

Fig. 3.6: Example of a composite wavelet with finite support.

Thus, χR0 = χA−1
q R1

+ χ
A−1

q R6+
1
2 (1

1), or, equivalently,

φ (0)(x) = φ (1)(Aqx)+φ (6)(Aqx− (0
1)), (3.36)

where φ (�) = DB�
φ , for � = 0,1, . . . ,7. It is now easy to see that ψ = φ (1)(Aqx)−

φ (6)(Aqx − (0
1 )) is the desired Haar-like AB-wavelet. The space V0 is generated

by applying the translations Tk, k ∈ Z2, to the scaling functions φ (�) = DB�
φ ,

� = 0,1, . . . ,7. We see that this is the case by applying DB�
in Eq. (3.36); we obtain

φ (0) = φ (1)(Aqx)+φ (6)(Aqx− (0
1)),
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φ (1) = φ (2)(Aqx)+φ (5)(Aqx− (0
1)),

φ (2) = φ (3)(Aqx)+φ (0)(Aqx− (0
1)),

φ (3) = φ (4)(Aqx)+φ (7)(Aqx− (0
1)),

φ (4) = φ (5)(Aqx)+φ (2)(Aqx− (0
1)),

φ (5) = φ (6)(Aqx)+φ (1)(Aqx− (0
1)),

φ (6) = φ (7)(Aqx)+φ (4)(Aqx− (0
1)),

φ (7) = φ (0)(Aqx)+φ (3)(Aqx− (0
1)).

It follows that

{DAi
q

DB�
Tkψ : i ∈ Z, � = 0,1, . . . ,7, k ∈ Z2}

is an ON basis for L2(R2). This Haar-type AB-wavelet is clearly simpler that the
twin dragon wavelet obtained earlier. We refer to [23, 154] for more information
about this type of construction.

Other complicated fractal wavelets appear in many situations. For example, if

the dilation matrix Aq in the affine system (3.35) is replaced by Aq1 =
(

1
√

3
−√

3 1

)
or Aq2 =

(
3/2 −√

3/2√
3/2 3/2

)
, then also in this case there is a compactly supported

MRA wavelet generated by a (compactly supported) scaling function φ that is the
characteristic function of a fractal set (see Fig. 3.7).

The construction given above suggests that also in these cases one should be able
to find an AB-MRA such that the associated compactly supported AB-wavelet has a
simpler “nonfractal” support. This is done in [154].

Fig. 3.7: The fractal sets associated with the MRA generated by the dilation matrices (a) Aq1
and (b) Aq2.
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3.5 Continuous Shearlet Transform

An important class of subgroups of the affine group A2 (which was described in
Section 3.3) is obtained by considering

G = {(M,t) : M ∈ Dα , t ∈ R2}, (3.37)

where, for each 0 < α < 1, Dα ⊂ GL2(R) is the set of matrices

Dα =

⎧⎨⎩M = Mas =

⎛⎝a −aα s

0 aα

⎞⎠ , a > 0, s ∈ R

⎫⎬⎭ .

The matrices Mas can be factorized as Mas = Bs Aa, where

Bs =
(

1 −s

0 1

)
, Aa =

(
a 0

0 aα

)
. (3.38)

The matrix Bs is called a shear matrix and, for each s ∈ R, is a nonexpanding matrix
(detBs = 1 for each s). The matrix Aa is an anisotropic dilation matrix, that is, the
dilation rate is different in the x and y directions. In particular, if α = 1/2, the

matrix Aa produces parabolic scaling since f (Aax) = f
(

Aa

( x1

x2

))
leaves invariant

the parabola x1 = x2
2. Thus, the action associated with the dilation group Dα can be

interpreted as the superposition of anisotropic dilation and shear transformations.

Using Theorem 3.8 from Section 3.3, we can establish simple conditions on
the function ψ so that it will satisfy the Calderón reproducing formula (3.20) with
respect to G. This is done in the following proposition.

Proposition 3.13. Let G be given by (3.37) and, for ξ = (ξ1,ξ2) ∈ R2, ξ2 = 0, let ψ
be given by

ψ̂(ξ ) = ψ̂(ξ1,ξ2) = ψ̂1(ξ1) ψ̂2(
ξ2
ξ1

).

Suppose that

1. ψ1 ∈ L2(R) satisfies∫ ∞

0
|ψ̂1(aξ )|2 da

a2α = 1 for a.e. ξ ∈ R;

2. ‖ψ2‖L2 = 1.

Then ψ satisfies (3.20) and, hence, is a continuous wavelet with respect to G.

Proof. A direct computation shows that (ξ1,ξ2)M = (aξ1,aα(ξ2 − sξ1)). Also,
notice the element of the left Haar measure for D is dµ(Mas) = (da/|detMas|)ds.
Hence, the admissibility condition (3.21) for ψ is

∆(ψ)(ξ ) =
∫

R

∫
R+

|ψ̂1(aξ1)|2
∣∣∣ψ̂2

(
aα−1

(
ξ2
ξ1

− s
))∣∣∣2 da

a1+α ds = 1 (3.39)
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for a.e. (ξ1,ξ2) ∈ R2. Thus, by Theorem 3.8, to show that ψ is a continuous wavelet
with respect to G, it is sufficient to show that (3.39) is satisfied. Using the assumption
on ψ1 and ψ2, we have

∆(ψ)(ξ ) =
∫

R

∫
R+

|ψ̂1(aξ1)|2
∣∣∣ψ̂2

(
aα−1

(
ξ2
ξ1

− s
))∣∣∣2 da

a1+α ds

=
∫

R+
|ψ̂1(aξ1)|2

(∫
R

∣∣∣ψ̂2

(
aα−1 ξ2

ξ1
− s

)∣∣∣2 ds
) da

a2α

=
∫

R+
|ψ̂1 (aξ1)|2 da

a2α = 1

for a.e. ξ = (ξ1,ξ2) ∈ R2. This shows that Eq. (3.39) is satisfied. 
�
In the following, to distinguish a continuous wavelet ψ associated with this

particular group G from other continuous wavelets, we will refer to such a func-
tion as a continuous shearlet. Hence, for each 0 < α < 1, the continuous shearlet
transform is the mapping

f �→ {S α
ψ f (a,s,t) = 〈 f ,ψast 〉 : a > 0, s ∈ R, t ∈ R2},

where the analyzing elements,

{ψast(x) = |detMas|− 1
2ψ(M−1

as (x− t)) : a > 0, s ∈ R, t ∈ R2},

with Mas ∈ Dα , form a continuous shearlet system. Notice that, according to the
terminology introduced in Section 3.3, the elements {ψast} are co-affine functions.

A useful variant of the continuous shearlet transform is obtained by restricting
the range of the shear variable s associated with the shearing matrices Bs to a finite
interval. Namely, for 0 < α < 1, let us redefine

D
(h)
α =

⎧⎨⎩Mas =

⎛⎝a −aα s

0 aα

⎞⎠ , 0 < a ≤ 1
4
, −3

2
≤ s ≤ 3

2
,

⎫⎬⎭ ,

and
G(h) = {(M,t) : M ∈ D

(h)
α , t ∈ R2}.

Also, consider the subspace of L2(R2) given by L2(Ch)∨ = { f ∈ L2(R2) :
supp f̂ ⊂ Ch}, where Ch is the “horizontal cone” in the frequency plane:

Ch =
{
(ξ1,ξ2) ∈ R2 : |ξ1| ≥ 1 and | ξ2

ξ1
| ≤ 1

}
.

Hence, we can show that by slightly modifying the assumptions of Proposition 3.13,
the function ψ is a continuous shearlet for the subspace L2(Ch)∨.

Proposition 3.14. For ξ = (ξ1,ξ2) ∈ R2, ξ2 = 0, let ψ be given by

ψ̂(ξ ) = ψ̂(ξ1,ξ2) = ψ̂1(ξ1) ψ̂2

(
ξ2
ξ1

)
,
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where

1. ψ1 ∈ L2(R) satisfies∫ ∞

0
|ψ̂1(aξ )|2 da

a2α = 1 for a.e. ξ ∈ R,

and suppψ̂1 ⊂ [−2,−1/2 ]∪ [1/2,2 ];

2. ‖ψ2‖L2 = 1 and suppψ̂2 ⊂ [−1,1 ].

Then ψ satisfies (3.24). That is, for all f ∈ L2(Ch)∨,

f (x) =
∫

R2

∫ 3
2

− 3
2

∫ 1
4

0
〈 f ,ψast〉ψast(x)

da
a2+2α dsdt,

with convergence in the L2 sense.

There are several examples of functions ψ1 and ψ2 satisfying the assumptions
of Propositions 3.13 and 3.14. In particular, we can choose ψ1,ψ2 such that ψ̂1,
ψ̂2 ∈C∞0 , and we will make this assumption in the following. We refer to [122, 130]
for the construction of these functions.

If the assumptions of Proposition 3.14 are satisfied, we say that the set

Ψ (h) =
{
ψast : 0 < a ≤ 1

4 , − 3
2 ≤ s ≤ 3

2 , t ∈ R2}
is a continuous shearlet system for L2(Ch)∨ and that the corresponding mapping

from f ∈ L2(Ch)∨ into S
(h),α
ψ f (a,s,t) = 〈 f ,ψast 〉 is the continuous shearlet trans-

form on L2(Ch)∨.
In the frequency domain, an element of the shearlet system ψast has the form

ψ̂ast(ξ1,ξ2) = a
1+α

2 ψ̂1(aξ1) ψ̂2

(
aα−1

(
ξ2
ξ1

− s
))

e−2π iξ t .

As a result, each function ψ̂ast has support:

suppψ̂ast ⊂
{
(ξ1,ξ2) : ξ1 ∈ [− 2

a ,− 1
2a ]∪ [ 1

2a , 2
a ], | ξ2

ξ1
− s| ≤ a1−α

}
.

As illustrated in Fig. 3.8, the frequency support is a pair of trapezoids, symmetric
with respect to the origin, oriented along a line of slope s. The support becomes
increasingly elongated as a → 0.

As shown by Proposition 3.14, the continuous shearlet transform S
(h),α
ψ provides

a reproducing formula only for functions in a proper subspace of L2(R2). To extend
the transform to all f ∈ L2(R2), we introduce a similar transform to deal with the
functions supported on the “vertical cone”:

C(v) =
{
(ξ1,ξ2) ∈ R2 : |ξ2| ≥ 1 and

∣∣∣ ξ2
ξ1

∣∣∣ > 1
}

.
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(a)

��	
(a, s) = ( 1

32 ,1)
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(a, s) = ( 1
4 ,0)
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32 ,0)

ξ1 ξ1
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(b)

Fig. 3.8: Frequency support of the (a) horizontal shearlets and (b) vertical shearlets for different
values of a and s.

Specifically, let

ψ̂(v)(ξ ) = ψ̂(v)(ξ1,ξ2) = ψ̂1(ξ2) ψ̂2

(
ξ1
ξ2

)
,

where ψ̂1, ψ̂2 satisfy the same assumptions as in Proposition 3.14, and consider the
dilation group

D
(v)
α =

{
Nas =

(
aα 0

−aα s a

)
: 0 < a ≤ 1, − 3

2 ≤ s ≤ 3
2 , t ∈ R2

}
.

Then it is easy to verify that the set

Ψ (v) =
{
ψ(v)

ast : 0 < a ≤ 1
4 , − 3

2 ≤ s ≤ 3
2 , t ∈ R2

}
,

where ψ(v)
ast = |detNas|−1/2ψ(v)(N−1

as (x − t)), is a continuous shearlet system for

L2(C(v))∨. The corresponding transform S
(v),α
ψ f (a,s,t) = 〈 f ,ψ(v)

ast 〉 is the contin-
uous shearlet transform on L2(C(v))∨. Finally, by introducing an appropriate win-
dow function W , we can represent the functions with frequency support on the set
[−2,2 ]2 as

f =
∫

R2
〈 f ,Wt 〉Wt dt,

where Wt(x) = W (x− t). As a result, any function f ∈ L2(R2) can be reproduced
with respect of the full shearlet system, which consists of the horizontal shearlet
system Ψ (h), the vertical shearlet system Ψ (v), and the collection of coarse-scale
isotropic functions {Wt : t ∈ R2}. We refer to [156] for more details about this
representation. For our purposes, it is only the behavior of the fine-scale shear-
lets that matters. Indeed, in the following, we will apply the continuous shearlet

transforms S
(h),α
ψ and S

(v),α
ψ , at fine scales (a → 0), to resolve and precisely

describe the boundaries of certain planar regions. Hence, it will be convenient
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to redefine the shearlet transform, at “fine scales,” as follows. For 0 < a ≤ 1/4,
s ∈ R, t ∈ R2, the (fine-scale) continuous shearlet transform is the mapping from
f ∈ L2(R2 \ [−2,2 ]2)∨ into Sψ f , which is defined by

S α
ψ f (a,s,t) =

{
S

(h),α
ψ (a,s,t), if |s| ≤ 1,

S
(v),α
ψ (a, 1

s ,t), if |s| > 1.

3.5.1 Edge Analysis Using the Shearlet Transform

One remarkable property of the continuous shearlet transform is its ability to provide
a very precise characterization of the set of singularities of functions and distribu-
tions. Indeed, let f be a function on R2 consisting of several smooth regions Ωn,
n = 1, . . . ,N, separated by piecewise smooth boundaries γn = ∂Ωn:

f (x) =
N

∑
n=1

fn(x)χΩn(x),

where each function fn is smooth. Then the continuous shearlet transform
S α
ψ f (a,s,t) will signal both the location and orientation of the boundaries through

its asymptotic decay at fine scales. In fact, S α
ψ f (a,s,t) will exhibit fast asymptotic

decay a → 0 for all (s,t), except for the values of t on the boundary curves γn and
for the values of s associated with the normal orientation to the γn at t.

The study of these objects is motivated by image applications, where f is used
to model an image, and the curves γn are the edges of the image f . We will show
that the shearlet framework provides a very effective method for the detection and
analysis of edges. This is a fundamental problem in many applications from com-
puter vision to image processing.

To illustrate how the shearlet transform can be employed to characterize the
geometry of edges, let us consider the case where f is simply the characteristic
function of a bounded subset of R2. Also, to simplify the presentation, we will only

present the situation where α = 1/2 and use the simplified notation Sψ = S
1/2
ψ . In

more general case where α ∈ (0,1), the continuous shearlet transform S α
ψ is similar

and details can be found in [127].
We then have the following result from [127].

Theorem 3.15. Let D ⊂ R2 be a bounded region in R2, and suppose that the
boundary curve γ = ∂D is a simple C3 regular curve. Denote B = χD. If t = t0 ∈ γ ,
and s0 = tanθ0, where θ0 is the angle corresponding to the normal orientation to γ
at t0, then

lim
a→0+

a− 3
4 SψB(a,s0,t0) = 0.

If t = t0 ∈ γ and s = tanθ0, or if t /∈ γ , then

lim
a→0+

a−β SψB(a,s,t) = 0 for all β > 0.
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This shows that the continuous shearlet transform SψB(a,s,t) has “slow” decay
only for t = t0 on γ when the value of the shear variable s corresponds exactly to the
normal orientation to γ at t0. For all other values of t and s, the decay is fast. This
behavior is illustrated in Fig. 3.9.

O(aN)

O(a
3
4 )

O(aN)
O(aN)

Fig. 3.9: Asymptotic decay of the continuous shearlet transform of the B(x) = χD(x). On the
boundary ∂D, for normal orientation, the shearlet transform decays as O(a3/4). For all other values
of (t, s), the decay is as fast as O(aN), for any N ∈ N.

Theorem 3.15 can be generalized to the situation where the boundary curve γ
is piecewise smooth and contains finitely many corner points. Also, in this case,
the continuous shearlet transform provides a precise description of the geometry of
the boundary curve through its asymptotic decay at fine scales. In particular, at the
corner points, the asymptotic decay at fine scales is the slowest for values of s cor-
responding to the normal directions (notice that there are two of them). We refer the
interested reader to [128] for a detailed discussion of the shearlet analysis of regions
with piecewise smooth boundaries. We also refer to [127, 156] for other related
results, including the situation where f is not simply the union of characteristic
functions of sets.

Finally, we recall that the shearlet transform shares some of the features described
above with the continuous curvelet transform, another directional multiscale trans-
form introduced by Candès and Donoho in [41]. Even if a result like Theorem 3.15 is
not known for the curvelet transform, other results in [41] indicate that the curvelet
transform is also able to capture the geometry of singularities in R2 through its
asymptotic decay at fine scales. Notice that, unlike the shearlet transform, the
curvelet transform is not directly associated with an affine group.

3.5.2 A Shearlet Approach to Edge Analysis and Detection

Taking advantage of the properties of the continuous shearlet transform described
above, an efficient numerical algorithm for edge detection was designed by one
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of the authors and his collaborators [82, 83]. The shearlet approach adapts several
ideas from the well-known wavelet modulus maxima method of Hwang, Mallat,
and Zhong [176, 177], where the edge points of an image f are identified as the
locations corresponding to the local maxima of the magnitude of the continuous
wavelet transform of f . Recall that, at a single scale, this wavelet-based method is
indeed equivalent to the canny edge detector, which is a standard edge detection
algorithm [62].

As shown above, one main feature of the continuous shearlet transform is its
superior directional selectivity with respect to wavelets and other traditional meth-
ods. This property plays a very important role in the design of the edge detection
algorithm. In fact, one major task in edge detection is to accurately identify the
edges of an image in the presence of noise, to perform this task, both the location
and the orientation of edge points have to be estimated from a noisy image.

In the usual wavelet modulus maxima approach, the edge orientation of an image
f , at the location t, is estimated by looking at the ratio of the vertical over the hori-
zontal components of Wψ f (a,t), the wavelet transform of f . However, this approach
is not very accurate when dealing with discrete data. The advantage of the contin-
uous shearlet transform is that, by representing the image as a function of scale,
location, and orientation, the directional information is directly available. A number
of tests conducted in [82, 83] show indeed that a shearlet-based approach provides
a very accurate estimate of the edge orientation of a noisy image; this method
significantly outperforms the wavelet-based approach. A typical numerical exper-
iment is illustrated in Fig. 3.10, where the test image is the characteristic func-
tion of a disc. This figure displays the average angular error in the estimate of the
edge’s orientation, as a function of the scale a. The average angle error is defined by
where E is the set of edge points, θ is the exact angle, and θ̂ the estimated angle.
The average angle error is indicated for both shearlet- and wavelet-based meth-
ods, in the presence of additive Gaussian noise. As the figure shows, the shearlet
approach significantly outperforms the wavelet method, especially at finer scales,
and is extremely robust to noise.
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Fig. 3.10: (a) Test image. (b–c) Comparison of the average error in angle estimation using the
wavelet method versus the shearlet method, as a function of the scale, with different noise levels;
(b) PSNR = 16.9 dB, (c) PSNR = 4.9 dB. (Courtesy of Sheng Yi.)
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Using these properties, a very competitive algorithm for edge detection was
developed in [83] and a representative numerical test is illustrated in Fig. 3.11. We
refer to [82, 83] for details about these algorithms and for additional numerical
demonstrations.

1
|E| ·∑t∈E

|θ̂(t)−θ (t)|,

Fig. 3.11: Comparison of edge detection using a shearlet-based method versus a wavelet-based
method. From top left, clockwise: original image, noisy image (PSNR = 24.59 dB), shearlet result,
and wavelet result. (Courtesy of Glenn Easley.)

3.5.3 Discrete Shearlet System

By sampling the continuous shearlet transform

f �→ Sψ f (a,s,t) = 〈 f ,ψa,s,t〉

on an appropriate discrete set of the scaling, shear, and translation parameters
(a,s,t) ∈ R+ ×R×R2, it is possible to obtain a frame or even a Parseval frame

for L2(R2). Notice that, as above, we will only consider the case Sψ = S
1/2
ψ .

To construct the discrete shearlet system (see [157] for more details), we start by
choosing a discrete set of scales {a j} j∈Z ⊂ R+; next, for each fixed j, we choose
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the shear parameters {s j,�}�∈Z ⊂ R so that the directionality of the representation is
allowed to change with the scale. Finally, to provide a “uniform covering” of R2, we
allow the location parameter to describe a different grid depending on j on �; hence,
we let t j,�,k = Bs j,�Aa j k, k ∈ Z2, where the matrices Bs, for s ∈ R, and Aa, for a > 0,
are given by (3.38). Observing that

T{Bs j,�Aa j k}DBs j,� Aa j
= DBs j,� Aa j

Tk,

we obtain the discrete system{
ψ j,�,k = DBs j,� Aa j

Tkψ : j, � ∈ Z, k ∈ Z2
}

.

In particular, we will set a j = 22 j, s j,� = �
√

a j = �2 j. Thus, observing that B�2 j A22 j =
A22 j B�, we finally obtain the discrete shearlet system

{ψ j,�,k = DA4 j DB�
Tkψ : j, � ∈ Z, k ∈ Z2}. (3.40)

Notice that (3.40) is an example of the affine systems with composite dilations
(3.31), described in Section 3.4. More specifically, the discrete shearlet system
obtained above is similar to the “shearlet-like” system (3.30). Unlike the system
(3.30), however, whose elements are characteristic functions of sets in the frequency
domain, we will show that in this case we obtain a system of well-localized
functions.

To do that, we will adapt some ideas from the continuous case. Namely, for any
ξ = (ξ1,ξ2) ∈ R̂2, ξ1 = 0, let

ψ̂(h)(ξ ) = ψ̂(h)(ξ1,ξ2) = ψ̂1(ξ1) ψ̂2

(
ξ2

ξ1

)
,

where ψ̂1, ψ̂2 ∈ C∞(R̂), suppψ̂1 ⊂ [−1/2,−1/16] ∪ [1/16,1/2 ] and suppψ̂2 ⊂
[−2,2 ] . This implies that ψ̂(h) is a compactly supported C∞ function with support
contained in [−1/2,1/2 ]2. In addition, we assume that

∑
j≥0

|ψ̂1(2−2 jω)|2 = 1 for |ω | ≥ 1
8
, (3.41)

and, for each j ≥ 0,

2 j−1

∑
�=−2 j

|ψ̂2(2 jω− �)|2 = 1 for |ω | ≤ 1. (3.42)

From the conditions on the support of ψ̂1 and ψ̂2, one can easily deduce that the
functions ψ j,�,k have frequency support contained in the set

{
(ξ1,ξ2) : ξ1 ∈ [−22 j−1,−22 j−4 ]∪ [22 j−4,22 j−1 ],

∣∣∣ ξ2
ξ1

+ �2− j
∣∣∣≤ 2− j

}
.
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Thus, each element ψ̂ j,�,k is supported on a pair of trapezoids of approximate size
22 j ×2 j, oriented along lines of slope �2− j [see Fig. 3.12(b)].

From Eqs. (3.41) and (3.42), it follows that the functions {ψ̂ j,�,k} form a tiling of
the set

Dh =
{

(ξ1,ξ2) ∈ R̂2 : |ξ1| ≥ 1
8 ,

∣∣∣∣ξ2

ξ1

∣∣∣∣≤ 1

}
.

Indeed, for (ξ1,ξ2) ∈ Dh,

∑
j≥0

2 j−1

∑
�=−2 j

|ψ̂(h)(ξ A− j
4 B−�

1 )|2 =

∑
j≥0

2 j−1

∑
�=−2 j

∣∣∣∣ψ̂1(2−2 j ξ1)|2 |ψ̂2

(
2 j ξ2

ξ1
− �

)∣∣∣∣2 = 1.

(3.43)

An illustration of this frequency tiling is shown in Fig. 3.12(a).

(a)

ξ1

ξ2

(b)

��

∼ 22 j

�

�
∼ 2 j

Fig. 3.12: (a) The tiling of the frequency plane R̂2 induced by the shearlets. The tiling of Dh is
illustrated by solid lines, while the tiling of Dv appears is in dashed lines. (b) The frequency support
of a shearlet ψ j,�,k satisfies parabolic scaling. The figure shows only the support for ξ1 > 0; the
other half of the support, for ξ1 < 0, is symmetrical.

Letting L2(Dh)∨ = { f ∈ L2(R2) : supp f̂ ⊂ Dh}, property (3.43) and the fact that
ψ̂(h) is supported inside [−1/2,1/2 ]2 imply that the discrete shearlet system

Ψ (h)
d = {ψ j,�,k : j ≥ 0,−2 j ≤ � ≤ 2 j −1, k ∈ Z2}

is a Parseval frame for L2(Dh)∨. Similarly, we can construct a Parseval frame for
L2(Dv)∨, where Dv is the vertical cone Dv= {(ξ1,ξ2)∈ R̂2 : |ξ2| ≥ 1/8, |ξ1/ξ2|≤1}.
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Specifically, let

Ã =
(

2 0
0 4

)
, B̃ =

(
1 0
1 1

)
,

and let ψ(v) be given by

ψ̂(v)(ξ ) = ψ̂(v)(ξ1,ξ2) = ψ̂1(ξ2) ψ̂2

(
ξ1

ξ2

)
.

Then the collection

Ψ (v)
d = {ψ(v)

j,�,k : j ≥ 0, −2 j ≤ � ≤ 2 j −1, k ∈ Z2},

where ψ(v)
j,�,k = D j

Ã
D�

B̃
Tkψ(v), is a Parseval frame for L2(Dv)∨.

Finally, let ϕ̂ ∈ C∞0 (R2) be chosen to satisfy

|ϕ̂(ξ )|2 +∑
j≥0

2 j−1

∑
�=−2 j

|ψ̂(h)(ξA− j
4 B−�

1 )|2 χDh(ξ )

+∑
j≥0

2 j−1

∑
�=−2 j

|ψ̂(v)(ξ Ã− jB̃−�)|2 χDv(ξ ) = 1, for ξ ∈ R̂2,

where χD is the indicator function of the set D . This implies that supp ϕ̂ ⊂
[−1/8,1/8 ]2, |ϕ̂(ξ )| = 1 for ξ ∈ [−1/16,1/16 ]2, and the collection {ϕk : k ∈ Z2}
defined by ϕk(x) = ϕ(x− k) is a Parseval frame for L2([−1/16,1/16]2)∨.

Thus, letting ̂̃ψ(ω)
j,�,k(ξ ) = ψ̂(ω)

j,�,k(ξ )χDω (ξ ), for ω = h or ω = v, we have the
following result.

Theorem 3.16. The discrete shearlet system

{ϕk : k ∈ Z2}
⋃

{ψ̃(ω)
j,�,k(x) : j ≥ 0, � = −2 j,2 j −1, k ∈ Z2, ω = h,v}⋃

{ψ(ω)
j,�,k(x) : j ≥ 0, −2 j + 1 ≤ � ≤ 2 j −2, k ∈ Z2, ω = h,v}

is a Parseval frame for L2(R2).

The “corner” elements ψ̃(ω)
j,�,k(x), � = −2 j,2 j −1, are simply obtained by truncation

on the cones χDω in the frequency domain. Notice that the corner elements in the
horizontal cone Dv match nicely with those in the vertical cone Dh. We refer to
[80, 130] for additional details on this construction.

3.5.4 Optimal Representations Using Shearlets

One major feature of shearlet systems is that if f is a compactly supported function
that is C2 away from a C2 curve, then the sequence of discrete shearlet coefficients
{〈 f ,ψ j,�,k〉} has (essentially) optimally fast decay. To make this more precise, let
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f S
N be the N-term approximation of f obtained from the N largest coefficients of its

shearlet expansion, namely,

f S
N = ∑

µ∈IN

〈 f ,ψµ 〉ψµ ,

where IN ⊂ M is the set of indices corresponding to the N largest entries of the
sequence {|〈 f ,ψµ〉|2 : µ ∈ M}. Also, we follow [38] and introduce STAR2(A), a
class of indicator functions of sets B with C2 boundaries ∂B. In polar coordinates,
let ρ(θ ) : [0,2π) → [0,1 ]2 be a radius function and define B by x ∈ B if and only if
|x| ≤ ρ(θ ). In particular, the boundary ∂B is given by the curve in R2:

β (θ ) =
(
ρ(θ ) cos(θ )
ρ(θ ) sin(θ )

)
. (3.44)

The class of boundaries of interest to us is defined by

sup |ρ ′′(θ )| ≤ A, ρ ≤ ρ0 < 1. (3.45)

We say that a set B ∈ STAR2(A) if B ⊂ [0,1 ]2 and B is a translate of a set obeying
(3.44) and (3.45). Finally, we define the set E 2(A) of functions that are C2 away
from a C2 edge as the collection of functions of the form

f = f0 + f1 χB,

where f0, f1 ∈C2
0([0,1 ]2), B ∈ STAR2(A), and ‖ f‖C2 =∑|α |≤2‖Dα f‖∞ ≤ 1. We can

now state the following result from [124].

Theorem 3.17. Let f ∈ E 2(A) and f S
N be the approximation to f defined above.

Then
‖ f − f S

N‖2
2 ≤ C N−2 (logN)3.

Notice that the approximation error of shearlet systems significantly outperforms
wavelets, in which case the approximation error ‖ f − fW

N ‖2
2 decays at most as fast

as O(N−1) [175], where fW
N is the N-term approximation of f obtained from the

N largest coefficients in the wavelet expansion. Indeed, the shearlet representation
is essentially optimal for the kind of functions considered here, since the optimal
theoretical approximation rate (cf. [65]) satisfies

‖ f − fN‖2
2 � N−2, N → ∞.

Only the curvelet system of Candès and Donoho is known to satisfy similar
approximation properties [38]. However, the curvelet construction has a number
of important differences, including the fact that the curvelet system is not associated
with a fixed translation lattice and, unlike the shearlet system, is not an affine-like
system, since it is not generated from the action of a family of operators on a single
or finite family of functions.

The optimal sparsity of the shearlet system plays a fundamental role in a number
of applications. For example, the shearlet system can be applied to provide a sparse
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representation of Fourier integral operators, a very important class of operators that
appear in problems from partial differential equations [125, 126]. Another class
of applications comes from image processing, where the sparsity of the shearlet
representation is closely related to the ability to efficiently separate the relevant
features of an image from noise. A number of results in this direction are described
in [79–81].



3 Composite Wavelet Systems 129

Exercises

1. Show that Eq. (3.12) in Theorem 3.5 can be simplified to obtain (3.13). Next,
show that, for n = 1, when the dilation matrix a is replaced by the dyadic factor
2, Eq. (3.13) yields the “classical” Gripenberg–Wang equations (3.4) and (3.5).

2. Show that the matrices

M =
(

a 0
0 1

)
and M =

⎛⎝a 0 0
0 cosθ −sinθ
0 sinθ cosθ

⎞⎠ ,

where a > 1, are expanding on a subspace (that is, they satisfy Definition 3.7).
3. Show that Theorem 3.8 is valid for functions on subspaces of L2(Rn) of the form

L2(V )∨ = { f ∈ L2(Rn) : supp f̂ ⊂V}.

4. Letψ1 ∈ L2(R) be a dyadic wavelet with supp ψ̂1 ⊂ [−1/2,1/2 ] and ψ2 ∈ L2(R)
be such that suppψ̂1 ⊂ [−1,1 ] and

∑
k∈Z

|ψ̂2(ω+ k)|2 = 1 for a.e. ω ∈ R.

For ξ = (ξ1,ξ2) ∈ R2, let ψ be defined by ψ̂(ξ ) = ψ̂1(ξ1) ψ̂2(ξ2/ξ1). Show

that the affine system {Di
A D j

BTkψ : i, j ∈ Z,k ∈ Z2}, where A =
(

2 0
0 1

)
and

B =
(

1 1
0 1

)
, is a Parseval frame for L2(R2).

5. Prove Proposition 3.14 by modifying the argument of Proposition 3.14.
6. Let ψ be a Schwarz class function and Sψ be the fine-scale continuous shearlet

transform (for α = 1/2), as defined in this chapter. Show that, for any s ∈ R, the
continuous shearlet transform of the Dirac delta distribution satisfies

Sψδ (a,s,(0,0)) ∼ a− 3
4 ,

asymptotically as a → 0. Show that if t = (0,0), then, for any N ∈ N, there is a
constant CN > 0 such that

Sψδ (a,s,(0,0)) ≤ CN aN ,

asymptotically as a → 0.
7. Let ψ and Sψ be as in Exercise 6. For p ∈ R, consider the distribution νp(x1,x2)

defined by ∫
R2
νp(x1,x2) f (x1,x2)dx1 dx2 =

∫
R

f (px2,x2)dx2.
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Show that, for s = −p and t1 = pt2, we have

Sψδ (a,s,(t1,t2)) ∼ a− 1
4 ,

asymptotically as a → 0. Show that for all other values of t = (t1,t2) or s, then,
for any N ∈ N, there is a constant CN > 0 such that

Sψδ (a,s,(0,0)) ≤ CN aN ,

asymptotically as a → 0.



Chapter 4
Wavelets on the Sphere

Pierre Vandergheynst and Yves Wiaux

Abstract In many application fields, ranging from astrophysics and geophysics
to neuroscience, computer vision, and computer graphics, data to be analyzed are
defined as functions on the sphere. In all these situations, there are compelling rea-
sons to design dedicated data analysis tools that are adapted to spherical geometry,
for one cannot simply project the data in Euclidean geometry without having to
deal with severe distortions. The wavelet transform has become a ubiquitous tool
in signal processing mostly for its ability to exploit the multiscale nature of many
data sets, and it is thus quite natural to generalize it to signals on the sphere. This
generalization is not trivial, for the main ingredient of wavelet theory, dilation, is
not well defined on the sphere. Moreover, when turning to algorithms, one faces
the problem that sampling data on the sphere is not an easy task either. In this
chapter, we discuss recently developed results for the analysis and reconstruction
of signals on the sphere with wavelets, on the basis of theory, implementation, and
applications.

4.1 Introduction

There are many application scenarios where data to be analyzed are defined as a
scalar function on the sphere. Some of the most common examples include process-
ing geodesic signals, climate indicators (atmospheric or ocean temperature, for
example), or astronomical data defined on the celestial sphere. Recently, with the
advent of advanced imaging modalities and devices, data sets defined in spher-
ical geometry have started to appear in many other areas. In computer vision,
catadioptric cameras allow one to record omnidirectional images using a regular
sensor overlooking a curved mirror. The captured images are most naturally
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expressed in spherical coordinates around the focal point of the system. In com-
puter graphics, complicated but closed genus-zero surfaces are expressed as eleva-
tion maps in spherical coordinates. One then seeks to process these surfaces so as to
reveal or simplify their shape attributes.

In all these situations, there are compelling reasons to design dedicated data
analysis tools that are adapted to spherical geometry, for one cannot simply project
the data in Euclidean geometry without having to deal with severe distortions. The
wavelet transform has become a ubiquitous tool in signal processing mostly for its
ability to exploit the multiscale nature of many data sets, and it is thus quite natural
to generalize it to signals on the sphere. However, this generalization is not trivial,
for the main ingredient of the wavelet theory, dilation, is not well defined on the
sphere. Moreover, when turning to algorithms, one faces the problem that sampling
data on the sphere is not an easy task either: There is no preferred sampling grid
similar to the Z2 lattice in the plane.

There have been many attempts at generalizing the wavelet transform to the
sphere, and it is well beyond the scope of the present chapter to review all
approaches. Instead, we will focus on recently developed results that provide a sen-
sitive mathematical framework and that can be efficiently implemented by provably
stable and fast algorithms. We will proceed by first defining and studying several
possible dilation operations on the sphere. A continuous wavelet formalism will then
be simply defined by generalizing the operation of correlating a signal with suitably
dilated waveforms. We will then define a scale-discretized wavelet formalism in
order to allow the practical reconstruction of a signal from its wavelet coefficients.
We will also discuss fast algorithms allowing efficient analysis and reconstruc-
tion of digital data. Finally, we will conclude with applications in astrophysics and
neuroscience illustrating the usefulness of the proposed tools.

4.2 Scale-Space Premises

In this section, we discuss the notion of directional correlation on the sphere, we
concisely recall the harmonic analysis on the sphere and on the rotation group, and
we discuss affine transformations, in particular dilations. These are the essential
tools for the definition of a wavelet formalism.

4.2.1 Directional Correlations

We consider a three-dimensional Cartesian coordinate system (o,ox̂,oŷ,oẑ) centered
on the unit sphere S2, and where the direction oẑ identifies the north pole. Any point
ω on the sphere is identified by its corresponding spherical coordinates (θ ,ϕ),
where θ ∈ [0,π ] stands for the colatitude, or polar angle, and ϕ ∈ [0,2π) for the
longitude, or azimuthal angle. We consider signals F and analysis functions Ψ
on the sphere as described by elements of the Hilbert space of square-integrable
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functions L2(S2,dΩ), with the invariant measure dΩ = d cosθdϕ . In this space,
the scalar product between two functions F1 and F2 reads as 〈F1|F2〉=

∫
S2 dΩ F∗

1 (ω)
F2(ω).

In order to perform a scale-space analysis of signals, continuous affine trans-
formations such as translations, rotations, and dilations on the sphere must be
applied to the analysis function. These affine transformations are mathematically
defined and described in detail below. In a few words, the continuous translations
by ω0 = (θ0,ϕ0) ∈ S2 and rotations by χ ∈ [0,2π) are defined by the three Euler
angles defining an element ρ = (ϕ0,θ0,χ) of the group of rotations in three dimen-
sions SO(3). The continuous dilations affect by definition the continuous scale of
the function and may be parametrized in terms of some dilation factor a ∈ R∗

+. The
precise definition of spherical dilations is the main challenge for building spherical
wavelets, and clean mathematical arguments will be given in Section 4.2.3. Let us
simply assume that the operation is formally defined so that we can fix notations.

The analysis of the signal F with an analysis functionΨ defines wavelet coef-
ficients through the scalar products of F with the translated, rotated, and dilated
functionsΨρ ,a as

W F
Ψ (ρ ,a) = 〈Ψρ ,a|F〉. (4.1)

This relation also defines the so-called directional correlation of F with the
dilated functions Ψa. At each scale a, the function W F

Ψ (·,a) of ρ identifying the
wavelet coefficients is an element of the Hilbert space of square-integrable func-
tions L2(SO(3),dρ) on the rotation group SO(3), with the invariant measure dρ =
dϕd cosθdχ . They characterize the signal around each point ω0, and in each
orientation χ . This defines the scale-space nature of the wavelet decomposition on
the sphere. In this context, some basic knowledge of harmonic analysis on both S2

and SO(3) is absolutely essential.

4.2.2 Harmonic Analysis

4.2.2.1 On the Sphere S2

As discussed, any point ω on the sphere S2 may be identified as ω = (θ ,ϕ), with
θ ∈ [0,π ] and ϕ ∈ [0,2π), and we consider signals in L2(S2,dΩ). The harmonic
analysis in this space may be summarized as follows. The spherical harmonics
Ylm(ω) form an orthonormal basis of L2(S2,dΩ), with l ∈ N, m ∈ Z, and |m| ≤ l.
They are explicitly given in a factorized form in terms of the associated Legendre
polynomials Pm

l (cosθ ) and the complex exponentials eimϕ as

Ylm (θ ,ϕ) =
[

2l + 1
4π

(l −m)!
(l + m)!

]1/2

Pm
l (cosθ )eimϕ . (4.2)

The index l represents an overall frequency on the sphere. The absolute value |m|
represents the frequency associated with the azimuthal variable ϕ . The definition
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(4.2) corresponds to the choice of Condon–Shortley phase (−1)m for the spherical
harmonics, ensuring the relation

(−1)m Y ∗
lm (ω) = Yl(−m) (ω) . (4.3)

This phase is included in the definition of the associated Legendre polynomials
[1, 229]. Another convention [31] explicitly transfers it to the spherical harmonics.
The orthonormality and completeness relations for the spherical harmonics respec-
tively read as ∫

S2
dΩ Y ∗

lm (ω)Yl′m′ (ω) = δll′δmm′ (4.4)

and

∑
l∈N

∑
|m|≤l

Y ∗
lm

(
ω ′)Ylm (ω) = δ 2 (ω ′ −ω) , (4.5)

with the notation δ 2(ω ′ −ω) ≡ δ (cosθ ′ − cosθ )δ (ϕ ′ −ϕ).
Any function G ∈ L2(S2,dΩ) is thus uniquely given as a linear combination of

spherical harmonics:

G(ω) = ∑
l∈N

∑
|m|≤l

ĜlmYlm (ω) . (4.6)

This combination defines the inverse spherical harmonic transform on S2. The
corresponding spherical harmonic coefficients are given by the scalar products in
L2(S2,dΩ):

Ĝlm =
∫

S2
dΩ Y ∗

lm (ω)G(ω) , (4.7)

with l ∈ N, m ∈ Z, and |m| ≤ l.
By definition, any function G ∈ L2(S2,dΩ) explicitly depending on the

azimuthal angle ϕ is said to be directional. It exhibits generic spherical harmonic
coefficients Ĝlm for l ∈ N, m ∈ Z, and |m| ≤ l. For a real function G, these spheri-
cal harmonic coefficients also satisfy the reality constraint (−1)mĜ∗

lm = Ĝl(−m) fol-
lowing from the symmetry (4.3). Any function G ∈ L2(S2,dΩ) independent of the
azimuthal angle ϕ is said to be zonal, or axisymmetric: G = G(θ ). It only exhibits
nonzero spherical harmonic coefficients for m = 0: Ĝlm = Ĝl0δm0. For a real function
G, these spherical harmonic coefficients also satisfy the reality constraint Ĝ∗

l0 = Ĝl0,
still following from the symmetry (4.3). Such an axisymmetric function is obviously
invariant under rotation around itself by any angle χ ∈ [0,2π).

Notice that the orthonormality of scalar spherical harmonics implies the follow-
ing Plancherel relation for F1,F2 ∈ L2(S2,dΩ):

〈F2|F1〉 = ∑
l∈N

∑
|m|≤l

(̂F2)
∗
lm(̂F1)lm. (4.8)
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4.2.2.2 On the Rotation Group SO(3)

Any rotation ρ in the group of rotations in three dimensions SO(3) is given in
terms of the three Euler angles ρ = (ϕ ,θ ,χ), with θ ∈ [0,π ], and ϕ ,χ ∈ [0,2π).
We consider signals H in the Hilbert space of square-integrable functions L2(SO(3),
dρ), with the invariant measure dρ = dϕd cosθdχ . The harmonic analysis in this
space may be summarized as follows. The Wigner D-functions are the matrix
elements of the irreducible unitary representations of weight l of the group in
L2(SO(3),dρ). By the Peter–Weyl theorem on compact groups, the matrix elements
Dl∗

mn also form an orthogonal basis in L2(SO(3),dρ), with l ∈ N, m,n ∈ Z, and
|m|, |n| ≤ l. They are explicitly given in a factorized form in terms of the real Wigner
d-functions dl

mn(θ ) and the complex exponentials, e−imϕ and e−inχ , as

Dl
mn (ϕ ,θ ,χ) = e−imϕdl

mn (θ )e−inχ . (4.9)

Again, l represents an overall frequency on SO(3), and |m| and |n| the frequen-
cies associated with the variables ϕ and χ , respectively [229, 31]. The Wigner
d-functions read as

dl
mn (θ ) =

C2

∑
t=C1

(−1)t [(l + m)!(l −m)!(l + n)!(l −n)!]1/2

(l + m− t)!(l −n− t)!t!(t + n−m)!

(
cosθ

2

)2l+m−n−2t

×
(

sinθ
2

)2t+n−m

,

with the summation bounds C1 = max(0,m−n) and C2 = min(l +m, l −n) defined
to consider only factorials of positive integers. They satisfy various symmetry prop-
erties on their indices. The orthogonality and completeness relations of the Wigner
D-functions respectively read as∫

SO(3)
dρDl

mn (ρ)Dl′∗
m′n′ (ρ) =

8π2

2l + 1
δll′δmm′δnn′ (4.10)

and

∑
l∈N

2l + 1
8π2 ∑

|m|,|n|≤l

Dl
mn

(
ρ ′)Dl∗

mn (ρ) = δ 3 (ρ ′ −ρ) , (4.11)

with δ 3(ρ ′ −ρ) ≡ δ (ϕ ′ −ϕ)δ (cosθ ′ − cosθ )δ (χ ′ − χ). Notice that for n = 0, the
Wigner D-functions are independent of χ and simply identify with the spherical
harmonics:

Dl
m0 (ω) =

[
4π

2l + 1

]1/2

Y ∗
lm (ω) . (4.12)
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Any function H ∈ L2(SO(3),dρ) is thus uniquely given as a linear combination
of Wigner D-functions:

H (ρ) = ∑
l∈N

2l + 1
8π2 ∑

|m|,|n|≤l

Ĥl
mnDl∗

mn (ρ) . (4.13)

This combination defines the inverse Wigner D-function transform on SO(3). The
corresponding Wigner D-function coefficients are given by the scalar products in
L2(SO(3),dρ):

Ĥl
mn =

∫
SO(3)

dρDl
mn (ρ)H (ρ) , (4.14)

with l ∈ N, m,n ∈ Z, and |m|, |n| ≤ l.

4.2.3 Affine Transformations

4.2.3.1 Translations and Rotations

Continuous translations and rotations of square-integrable functions on the sphere
are described by the three Euler angles defining an element ρ = (ϕ0,θ0,χ) in SO(3).
The operator R(ω0) in L2(S2,dΩ) for the translation of amplitude ω0 = (θ0,ϕ0) of
a function G reads as

Gω0 (ω) = [R(ω0)G] (ω) = G
(
R−1
ω0
ω
)
, (4.15)

where Rω0(θ ,ϕ) = [Rẑ
ϕ0

Rŷ
θ0

](θ ,ϕ) is defined by the three-dimensional rotation

matrices Rŷ
θ0

and Rẑ
ϕ0

, acting on the Cartesian coordinates (x,y,z) associated with

ω = (θ ,ϕ). The rotation operator Rẑ(χ) in L2(S2,dΩ) for the rotation of the func-
tion G around itself, by an angle χ ∈ [0,2π), is given as

Gχ (ω) =
[
Rẑ (χ)G

]
(ω) = G

(
Rẑ
χ
−1ω

)
, (4.16)

where Rẑ
χ(θ ,ϕ) = (θ ,ϕ+ χ) also follows from the action of the three-dimensional

rotation matrix Rẑ
χ on the Cartesian coordinates (x,y,z) associated with ω = (θ ,ϕ).

The operator incorporating both the translations and rotations simply reads as
R(ρ) = R(ω0)Rẑ(χ) and Gρ(ω) = [R(ρ)G](ω) = G(R−1

ρ ω), with Rρ = Rω0Rẑ
χ .

Notice that the action of the operator R(ρ) on G ∈ L2(S2,dΩ) reads in terms of
its spherical harmonic coefficients as(̂

Gρ
)

lm = ∑
|n|≤l

Dl
mn (ρ)Ĝln. (4.17)
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4.2.3.2 Stereographic Dilation

As already stated, there is no natural dilation operator for functions defined on S2.
One of the main compelling reasons behind this difficulty is the compactness of the
sphere: It is not possible to linearly scale the geodesic distance between points as
one would in R2. However, intuitively at least, the size of compact features on the
sphere may be associated with a given scale. By analogy with the Euclidean case,
dilation may a priori be defined both in real or harmonic space on S2. But as we
shall see, and contrary to the Euclidean setting, these definitions do not necessarily
coincide. This will lead us to study several proposed dilations, each of which is well
defined mathematically and has particular advantages. We will thus formulate the
wavelet formalism so that we can incorporate those various definitions into a single,
unifying framework.

The stereographic dilation of functions is a natural candidate if one wants to
define dilations explicitly in real space on S2. This naturally appears in the wavelet
formalism on the sphere originally proposed by (3–6), further developed by [235,
236], and reviewed in [7, 237]. The stereographic dilation operator D(a) on G ∈
L2(S2,dΩ), for a continuous dilation factor a ∈R∗

+, is defined in terms of the inverse
of the corresponding stereographic dilation Da on points in S2. It reads as

Ga (ω) = [D(a)G] (ω)

= λ 1/2 (a,θ )G
(
D−1

a ω
)
, (4.18)

with λ 1/2(a,θ ) = a−1[1 + tan2(θ/2)]/[1 + a−2 tan2(θ/2)]. The dilated point is
given by Da(θ ,ϕ) = (θa(θ ),ϕ) with the linear relation tan(θa(θ )/2) = a tan(θ/2).
The dilation operator therefore maps the sphere without its south pole on itself:
θa(θ ) : θ ∈ [0,π) → θa ∈ [0,π). This dilation operator is uniquely defined by
the requirement of the following natural properties. The dilation of points on S2

must be a radial (i.e., only affecting the radial variable θ independently of ϕ ,
and leaving ϕ invariant) and conformal (i.e., preserving the measure of angles
in the tangent plane at each point) diffeomorphism (i.e., a continuously differ-
entiable bijection). The normalization by λ 1/2(a,θ ) in (4.18) is uniquely
determined by the requirement that the dilation of functions in L2(S2,dΩ) be a
unitary operator [i.e., preserving the scalar product in L2(S2,dΩ), and specifically
the norm of functions]. Notice that the stereographic dilation operation is sup-
ported by a group structure for the composition law of the corresponding operator
D(a). A group homomorphism also holds with the operation of multiplication by
a on R∗

+.
Finally, in the Euclidean limit where a function is localized on a small portion of

the sphere, this portion is assimilated to the tangent plane, and the stereographic
dilation identifies with the standard dilation in the plane [6, 235], which is the
expected geometric behavior in this asymptotic regime.
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4.2.3.3 Harmonic Dilation

Another possible definition of the dilation of functions may be considered, that
which is explicitly defined in harmonic space on S2. It was proposed in previous
developments relative to the definition of a wavelet formalism of axisymmetric
[97, 96] and also directional [140, 186] wavelets on the sphere. The harmonic dila-
tion is defined directly on G ∈L2(S2,dΩ) through a sequence of prescriptions rather
than in terms of the application of a simple operator. First, an arbitrary prescription
must be chosen to define a set of generating functions G̃m(k) of a continuous vari-
able k ∈ R+ for each m ∈ Z. These functions are identified to the spherical harmonic
coefficients of G through G̃m(l) = Ĝlm for l ∈ N, and |m| ≤ l. Second, the variable
k is dilated linearly, k = l → k = al, just as would be the norm of the Fourier fre-
quency on the plane. For a continuous dilation factor a ∈R∗

+, the spherical harmonic
coefficients of the dilated function Ga are defined by

(̂Ga)lm = G̃m (al) . (4.19)

Again, in the Euclidean limit where a function is localized on a small portion of
the sphere, this portion is assimilated to the tangent plane, and the harmonic dilation
identifies with the standard dilation in the plane [140].

Notice that in the framework of scale-space signal processing through the linear
heat flow on the sphere [34, 32, 33], the harmonic dilation applied to axisymmetric
filters appears to be an extremely natural procedure. Considering the heat diffusion
equation on the sphere, one may understand the signal F to be analyzed as an ini-
tial temperature distribution, at time t = 0. The analysis of the signal is performed
through the analysis of the temperature distribution at any instant t ∈ R+ in the
course of the diffusion process, which reveals larger and larger scales in the signal.
The heat kernel is an axisymmetric functionΦheat defined as a function of time t by
the following spherical harmonic coefficients:

̂[(Φheat)t ]lm =

√
2l + 1

4π
e−l(l+1)tδm0. (4.20)

The solution of the heat equation for an initial condition F simply results from its
scalar products with the heat kernel at any ω0 ∈ S2 and t ∈ R+:

W F
Φheat

(ω0,t) = 〈(Φheat)ω0,t |F〉. (4.21)

At t = 0, the heat kernel is given by the optimally localized Dirac delta distribu-
tion and the initial temperature distribution identifies with the signal itself. In the
limit t → ∞, the kernel is a constant function on the sphere with the unique coeffi-

cient ̂[(Φheat)t→∞]00 = (4π)−1/2 and the well-known constant asymptotic tempera-
ture distribution identifies with the mean of the signal. The dilation process in this
context is very similar to the harmonic dilation applied to axisymmetric functions.
A generating function forΦheat can be defined as Φ̃heat(k) = e−k, and the continuous
variable k ∈ R+ is dilated linearly. However, this variable is not identified with the
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spherical harmonic index l itself, but with l(l +1). Notice that the dilation process is
additive in the time variable t ∈ R+, rather than multiplicative in the corresponding
dilation factor a ∈ R∗

+ in the case of the harmonic dilation. Directional filters were
also considered in this context [32].

On the one hand, the very simple action of the harmonic dilation in harmonic
space also exhibits several advantages relative to the stereographic dilation. Notably,
the harmonic dilation ensures that the band limit of a wavelet and of the correspond-
ing wavelet coefficients is reduced by a factor a. Such a multiresolution property is
essential in reducing the memory and computation time requirements for the wavelet
analysis of signals. On the other hand, the harmonic dilation lacks some of the
important properties that hold under stereographic dilation. Notably, as the
harmonic dilation does not act on points, the question of the corresponding proper-
ties of a radial and conformal diffeomorphism make no sense. The harmonic dilation
of functions is also not a unitary procedure. Moreover, as the harmonic dilation is
explicitly defined in harmonic space, the evolution in real space of the localization
and directionality properties of functions on the sphere through harmonic dilation
is not known analytically. In order to circumvent this last drawback, the definition
of harmonic dilation may be slightly amended to obtain the kernel dilation defined
next.

4.2.3.4 Kernel Dilation

A function G ∈ L2(S2,dΩ) can be defined to be a factorized function in harmonic
space if it can be written in the form

Ĝlm = K̃G (l)SG
lm, (4.22)

for l ∈ N and |m| ≤ l. The positive real kernel K̃G(k) ∈ R+ is a generating function
of a continuous variable k ∈ R+, initially evaluated on integer values k = l. The
directionality coefficients SG

lm, for l ∈ N and |m| ≤ l, define the directional split
of the function. In particular, for a real function G, they bear the same symmetry
relation as the spherical harmonic coefficients Ĝlm themselves: SG∗

lm = (−1)mSG
l(−m).

Without loss of generality, one can impose

∑
|m|≤l

|SG
lm|2 = 1, (4.23)

for the values of l for which SG
lm is nonzero for at least one value of m. Hence,

localization properties of a function G, such as a measure of dispersion of angular
distances around its central position as weighted by the function values, are gov-
erned by the kernel and to a lesser extent by the directional split. Indeed, the power
contained in the function G at each allowed value of l is fixed by the kernel only.
The norm of G ∈ L2(S2,dΩ) reads as ||G||2 =∑l∈N K̃2

G(l), where the sum runs over
the values of l for which SG

lm is nonzero for at least one value of m. However, the
directional split is essential in defining the directionality properties measuring the
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behavior of the function with the azimuthal variable ϕ , because it bears the entire
dependence of the spherical harmonic coefficients of the function in the index m.

The kernel dilation applied to a factorized function (4.22) is simply defined by
application of the harmonic dilation (4.19) to the kernel only. The directionality of
the dilated function is defined through the same directional split as the original func-
tion. For a continuous dilation factor a ∈ R∗

+, the dilated function therefore reads as

(̂Ga)lm = K̃G (al)SG
lm. (4.24)

Let us emphasize that the directionality coefficients SG
lm are not affected by dila-

tions, contrary to what the complete action of the harmonic dilation (4.19) would
imply. The specific directionality properties of the function may, however, be modi-
fied through kernel dilation due to the modification of the values of l identifying the
dilated kernel. Also, notice that the kernel and harmonic dilations strictly identify
with one another when applied to factorized axisymmetric functions A, for which
the directional split takes the trivial values SA

lm = δm0 for l ∈ N.
Any function G ∈ L2(S2,dΩ) can be said to have a compact harmonic support

in the interval l ∈ (
⌊
α−1B

⌋
,B), for any B ∈ N0 and any real value α > 1, if

Ĝlm = 0 for all l,m with l /∈ (⌊
α−1B

⌋
,B

)
, (4.25)

where  x! denotes the largest integer value below x ∈R. Notice that the compactness
of the harmonic support of G can be defined as the ratio of the band limit to the width
of its support interval. For a factorized function G of the form (4.22), the compact
harmonic support in the interval l ∈ (

⌊
α−1B

⌋
,B) is ensured by the choice of a kernel

with compact support in the interval k ∈ (α−1B,B):

K̃G (k) = 0 for k /∈ (α−1B,B). (4.26)

The compactness of the harmonic support of G can simply be estimated from the
compact support of the kernel as c(α) = α/(α − 1) ∈ [1,∞). One has c(α) → ∞
when α → 1, and c(α) → 1 when α → ∞. Typical values would be α = 2, cor-
responding to a compactness c(2) = 2, or α = 1.1, leading to a higher compact-
ness c(1.1) = 11. By a kernel dilation with a dilation factor a ∈ R∗

+ in (4.24),
the compact support of the dilated kernel K̃G (ak) ∈ R+ is defined in the inter-
val k ∈ (a−1α−1B,a−1B). The compact harmonic support of the dilated function
Ga itself is thus defined in the corresponding interval l ∈ (

⌊
a−1α−1B

⌋
,
⌈
a−1B

⌉
),

where "x# denotes the smallest integer value above x ∈ R. In particular, the com-
pactness of the harmonic support of a function remains invariant through a kernel
dilation.

The factorization and compact harmonic support, together with the notion of
steerability introduced in Section 4.3.1, have been shown to be important properties
that ensure good control of the evolution of localization and directionality properties
of functions through kernel dilation [238]. In particular considering functions with
directionality coefficients SG

lm that become independent of l in the limit l →∞, it can
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be shown that the kernel dilation identifies with the standard dilation in the plane in
the Euclidean limit [140].

Several definitions of dilations in real or harmonic space may hold for the
development of a wavelet formalism on the sphere, each of which exhibits its
specific advantages. In the following, we review various wavelet formalisms with
different definitions for a dilation operation. We review both continuous and discrete
formalisms, respectively identified by continuous and discrete position, orientation,
and scale parameters.

4.3 Continuous Formalism

In this section, we begin with a definition of a continuous wavelet formalism
relying on a generic dilation operation. We notably introduce the notion of steerabil-
ity of the analysis function, which will reveal to be essential in many respects in the
context of a wavelet formalism. We then consider the cases of the stereographic and
kernel dilations. We also comment on the necessary discretization of the translation,
rotation, and dilation parameters in the perspective of practical implementations of
the wavelet formalism.

4.3.1 Generic Wavelets

4.3.1.1 Directional Case

We consider the general case of analysis of a real signal F with a real and directional
analysis function Ψ . In a continuous wavelet formalism, the wavelet coefficients
W F
Ψ (ρ ,a) of F with Ψ are defined at each continuous scale a ∈ R∗

+, around each
continuous point ω0 ∈ S2, and in each continuous orientation χ ∈ [0,2π), through
the directional correlations (4.1). These coefficients living on SO(3) follow a very
simple expression in harmonic space. At each scale a, the directional correlation
reads as an inverse Wigner D-function transform:

W F
Ψ (ρ ,a) = ∑

l∈N

2l + 1
8π2 ∑

|m|,|n|≤l

(̂
W F
Ψ
)l

mn (a)Dl∗
mn (ρ) . (4.27)

The Wigner D-function coefficients in this relation follow from relations (4.8) and
(4.17) as the pointwise product of the spherical harmonic coefficients of the signal
and the wavelet: (̂

W F
Ψ
)l

mn (a) =
8π2

2l + 1
(̂Ψa)

∗
lnF̂lm. (4.28)

The operation of decomposition of the signal F in its wavelet coefficients W F
Ψ

with the analysis function Ψ may somewhat abusively be called analysis. An
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essential feature of a wavelet formalism, by opposition with generic filtering, resides
in the formal possibility of reconstruction of the signal from its wavelet coefficients.
This actually raises the analysis function to the rank of a wavelet. A reconstruction
formula

F (ω) =
∫

R∗
+

dµ (a)
∫

SO(3)
dρW F

Ψ (ρ ,a)[R(ρ)LΨΨa] (ω) (4.29)

directly follows from (4.28) for a generic scale integration measure dµ(a). This
measure is fixed by each formalism relying on a specific definition of the dilation
operation. The operator LΨ in L2(S2,dΩ) is defined by its action on the spherical
harmonic coefficients of a function G: L̂ΨGlm = Ĝlm/Cl

Ψ . The reconstruction for-
mula holds if and only if the analysis function satisfies the following admissibility
condition for all l ∈ N:

0 < Cl
Ψ =

8π2

2l + 1 ∑|m|≤l

∫
R∗

+

dµ (a) |(̂Ψa)lm|2 < ∞. (4.30)

This intuitively requires that the whole wavelet family {Ψa(ω)}, for a ∈ R∗
+, covers

each frequency index l with a finite and nonzero amplitude, hence preserving the
signal information at each frequency.

4.3.1.2 Steerability

The steerability of a function G ∈ L2(S2,dΩ) represents a notion of controlled
directionality. By definition, a function G ∈ L2(S2,dΩ) is steerable if any rotation
of the function around itself may be expressed as a linear combination of a finite
number M of basis functions Gp:

Gχ (ω) =
M−1

∑
p=0

kp (χ)Gp (ω) . (4.31)

The square-integrable functions kp(χ) on the unit circle S1 ≡ [0,2π), with 0 ≤ p ≤
M −1, and M ∈ N0, are called interpolation weights.

The generic continuous wavelet formalism described is obviously directly
applicable to steerable analysis functions. If the analysis function Ψ is steerable
with M basis functionsΨp and weights kp(χ), the linearity of the directional corre-
lation (4.1) automatically implies that the steerability relation holds identically on
the wavelet coefficients:

W F
Ψ (ρ ,a) =

M−1

∑
p=0

kp (χ)W F
Ψp

(ω0,a) , (4.32)

for ρ = (ϕ0,θ0,χ) and ω0 = (ϕ0,θ0). In this relation, the wavelet coefficients
W F
Ψp

(ω0,a) simply follow from the standard correlations with the basis functionsΨp:

W F
Ψp

(ω0,a) = 〈(Ψp)ω0,a |F〉. (4.33)
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Consequently, at a scale a and a point ω0, the exact value of the wavelet coefficient
in any continuous orientation χ is known on the basis of the computation of the
finite number M of the coefficients W F

Ψp
(ω0,a).

This property was actually first introduced on the plane [98, 212], and more
recently defined on the sphere [235, 238]. It is of great interest in the context of
wavelet analysis in a computational perspective both for analysis of local signal
orientations (see Section 4.4.2.3) as well as for exact signal reconstruction (see Sec-
tion 4.6.1). In this perspective, this notion of steerability is further discussed in the
following paragraphs and an equivalent definition in harmonic space is established.

Intuitively, steerable functions have a nonzero angular width in the azimuthal
angle ϕ , which renders them sensitive to a range of directions and enables them to
satisfy the steerability relation. This nonzero angular width naturally corresponds
to an azimuthal band limit N ∈ N0 in the frequency index m associated with the
azimuthal variable ϕ :

Ĝlm = 0 for all l,m with |m| ≥ N. (4.34)

It can actually be shown that the property of steerability (4.31) is equivalent to the
existence of an azimuthal band limit N (4.34). First, if a function G is steerable
with M basis functions, then the number T of values of m for which Ĝlm has a
nonzero value for at least one value of l is less than or equal to M: M ≥ T . This
was first established for functions on the plane [98], and the proof is absolutely
identical on the sphere. As a consequence, the function has some azimuthal band
limit N, with T ≤ 2N − 1. Second, if a function G has an azimuthal band limit N,
then it is steerable, and the number of basis functions can be reduced at least to
M = 2N −1. This second part of the equivalence can be proved by explicitly deriv-
ing a steerability relation for band-limited functions with an azimuthal band limit
N. Any band-limited function G can in particular be steered using M rotated ver-
sions Gχp = Rẑ(χp)G as basis functions, and interpolation weights given by simple
translations by χp of a unique square-integrable function k(χ) on the circle S1:

Gχ (ω) =
M−1

∑
p=0

k (χ− χp)Gχp (ω) , (4.35)

for specific rotation angles χp with 0 ≤ p ≤ M − 1. One may choose M = 2N − 1
equally spaced rotation angles χp ∈ [0,2π) as χp = 2π p/(2N − 1), with 0 ≤ p ≤
2N−2. The function k(χ) is then defined by the Fourier coefficients k̂m=1/(2N−1)
for |m| ≤ N − 1, and k̂m = 0 otherwise. Notice that the angles χp and the structure
of the function k(χ) are independent of the explicit nonzero values Ĝlm.

Typically, if Ĝlm has a nonzero value for at least one value of l for all m with
|m| ≤ N −1, then T = 2N −1 and the function is optimally steered by these M = T
angles and the function k(χ) described. On the contrary, when values of m, with
|m| ≤ N − 1, exist for which Ĝlm = 0 for all values of l, then T < 2N − 1 and one
might want to reduce the number M = 2N −1 of basis functions. Depending on the
distribution of the T values of m for which Ĝlm has a nonzero value for at least one
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value of l, the number of basis functions required to steer the band-limited function
may indeed be optimized to its smallest possible value M = T . This optimization
is notably reachable for functions with specific distributions of the T values of m,
corresponding to particular symmetries in real space. For example, a function G is
even or odd through rotation around itself by χ = π if and only if Ĝlm has nonzero
values only for, respectively, even or odd values of m. This property notably implies
that the central position of the function G identifies with the north pole, in the sense
that its modulus |G| is always even through rotation around itself by χ = π . The
combination of an azimuthal band limit N with that symmetry reads as

Ĝlm = 0 for all l,m with m /∈ TN , (4.36)

with
TN = {−(N − 1) ,−(N −3) , . . . ,(N −3) ,(N −1)} . (4.37)

In this particular case, T = N and one may choose M = N equally spaced rotation
angles χp ∈ [0,π) as χp = π p/N, with 0 ≤ p ≤ N−1, and steer the function through
relation (4.35). The function k(χ) is defined by the Fourier coefficients k̂m = 1/N
for m ∈ TN , and k̂m = 0 otherwise.

The lower the azimuthal band limit N of the filter, the smaller the number of basis
functions M required for its steerability. In particular, the axisymmetry of a function
may be understood as an extreme case of steerability, for an azimuthal band limit
N = 1, and a number of basis functions M = 1. By opposition, one may understand
a function as optimally directional if it is only sensitive to the specific direction χ
in which it is rotated. Such a function would have an azimuthal dependence ∼ δ (ϕ)
thus containing nonzero coefficients for an infinite number of values of m, i.e.,
N → ∞. An infinite number of weights would thus be required to steer such a func-
tion. Optimal directionality and steerability are thus competing concepts.

4.3.1.3 Axisymmetric Case

We consider the particular case of analysis of a real signal F with a real and
axisymmetric analysis function Θ , in a continuous wavelet formalism. The direc-
tional correlation of F with Θ is obviously independent of the rotation angle χ . As
such, it reduces to a so-called standard correlation [236]:

W F
Θ (ω0,a) = 〈Θω0,a|F〉. (4.38)

At each scale a, the wavelet coefficients identify a square-integrable function on S2

rather than on SO(3), which reads as an inverse spherical harmonic transform:

W F
Θ (ω0,a) = ∑

l∈N

∑
|m|≤l

(̂
W F
Θ
)

lm (a)Ylm (ω) . (4.39)

The spherical harmonic coefficients in this relation follow from relation (4.28) as
the pointwise product of the spherical harmonic coefficients of the signal and the
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wavelet: (̂
W F
Θ
)

lm (a) =

√
4π

2l + 1
(̂Θa)

∗
l0F̂lm. (4.40)

The reconstruction of F from its wavelet coefficients reads as

F (ω) =
∫

R∗
+

dµ (a)
∫

S2
dω0 W F

Θ (ω0,a) [R(ω0)LΘΘa] (ω) , (4.41)

for any scale integration measure dµ(a), and with the operator LΘ in L2(S2,dΩ)
defined by L̂ΘGl0 = Ĝl0/Cl

Θ . The reconstruction formula holds if and only if the
analysis function satisfies the following admissibility condition for all l ∈ N:

0 < Cl
Θ =

4π
2l + 1

∫
R∗

+

dµ (a) |(̂Θa)l0|2 < ∞. (4.42)

4.3.2 Stereographic Wavelets

4.3.2.1 Correspondence Principle

When the stereographic dilation is considered, the effect of the dilation on the
spherical harmonic coefficients of a function is not easily tractable analytically. Con-
sequently, the admissibility condition (4.30) is difficult to check in practice. It can
be shown that the nearly zero-mean condition

1
4π

∫
S2

dΩ
Ψ (ω)

1 + cosθ
= 0 (4.43)

is a necessary condition for wavelet admissibility. It is, however, formally not
sufficient. On the contrary, wavelets on the plane are well known, and may be
easily constructed, as the corresponding admissibility condition reduces to a
zero-mean condition for a function that is both integrable and square-integrable.
In that context, a correspondence principle was proved [235], stating that the
inverse stereographic projection of a wavelet on the plane leads to a wavelet on
the sphere.

The stereographic projection is the unique radial conformal diffeomorphism
mapping the sphere S2 onto the plane R2. The unitary stereographic projection
operators between functions G ∈ L2(S2,dΩ) and g ∈ L2(R2,d2x), and its inverse,
respectively read as

[ΠG] (x) =
(

1 +
( r

2

)2
)−1

G
(
π−1x

)
,

[
Π−1g

]
(ω) =

(
1 + tan2 θ

2

)
g(πω) , (4.44)
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where ω = (θ ,ϕ) still identify spherical coordinates on the sphere, and x = (r,ϕ)
identify polar coordinates in the plane tangent to the sphere at the north pole. The
azimuthal coordinates on the plane and on the sphere are identified to one
another: ϕ . The radial conformal diffeomorphism between points is given as
π(θ,ϕ)= (r(θ ),ϕ) for r(θ )= 2tan(θ/2), and its inverse reads π−1(r,ϕ)= (θ (r),ϕ)
for θ (r) = 2arctan(r/2). The diffeomorphism r(θ ) and its inverse θ (r) explicitly
define the stereographic projection and its inverse. This stereographic projection
maps the sphere, without its south pole, on the entire plane: r(θ ) : θ ∈ [0,π [→ [0,∞[.
Geometrically, it projects a point ω = (θ ,ϕ) on the sphere onto a point x = (r,ϕ)
on the tangent plane at the north pole, colinear with ω and the south pole (see
Fig. 4.1). The prefactors in (4.44) are required to ensure the unitarity of the
projection operatorsΠ and Π−1.

ϕ(r,  )

x̂

ẑ

x̂

ŷ

ŷ

Π −1

S

χ

θ

ϕ o

Π

θ/2

θ ϕ(  ,  )

Fig. 4.1: Stereographic projection π and its inverse π−1, relating points (θ ,ϕ) on the sphere and
(r,ϕ) on its tangent plane at the north pole. The same relation holds through Π and Π−1 between
functions living on each of the two manifolds, as illustrated by the shadow on the sphere and the
localized region on the plane. (Figure borrowed from [235].)

In this framework, the correspondence principle established states that if the
function ψ ∈ L2(R2,d2x) satisfies the wavelet admissibility condition on the plane,
then the function

Ψ (θ ,ϕ) =
[
Π−1ψ

]
(θ ,ϕ) , (4.45)

in L2(S2,dΩ), satisfies the wavelet admissibility condition (4.53) on the sphere.
Notice that this correspondence principle requires the definition of a scale
integration measure identical to the measure used on the plane: dµ(a) = a−3da.
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This enables the construction of wavelets on the sphere by projection of wavelets
on the plane. It also transfers wavelet properties from the plane onto the sphere. In
particular, as the steerability of functions only depends on their behavior relative to
the azimuthal variable ϕ , it is obviously preserved through stereographic projection,
which only affects the function through its dependence in the polar angle θ on the
sphere or in the radial variable r on the plane.

4.3.2.2 Example Filters

For the sake of illustration, here we present axisymmetric, directional, and steerable
example wavelets on the sphere in the context of the wavelet formalism with stere-
ographic dilation. These wavelets are thus built as inverse stereographic projections
of wavelets on the plane.

The axisymmetric Mexican hat wavelet on the plane is defined as the normalized
(negative) Laplacian of a Gaussian e−(x2+y2)/2. Its inverse stereographic projection
defines the axisymmetric Mexican hat wavelet on the sphere (see Fig. 4.2). The ellip-
tical Mexican hat wavelet is a directional modification of the axisymmetric Mexican
hat, obtained by considering different widths σx and σy, respectively, in the x̂ and
ŷ directions on the plane for the original Gaussian [187]. The wavelet obtained as
the inverse stereographic projection of the (negative) Laplacian of this Gaussian is
proportional to (see Fig. 4.2)

Ψ (θ ,ϕ) ∝
(

1 + tan2 θ
2

)[
1− 4tan2 θ/2

σ2
x +σ2

y

(
σ2

y

σ2
x

cos2ϕ+
σ2

x

σ2
y

sin2ϕ

)]
(4.46)

× e−2 tan2 θ
2 (cos2ϕ/σ2

x +sin2ϕ/σ2
y ).

One can identify the wavelet parameters through the eccentricity of the ellipse
defined by the points where the wavelet has zero value (zero-crossing),
ε = (1 − (σx/σy)4)1/2 (for σy ≥ σx), and the sum s = σ2

x +σ2
y . It is alternatively

described by the ratio of the semimajor and semiminor axes of the Gaussian
r = σx/σy, and the sum s = σ2

x +σ2
y . The axisymmetric Mexican hat is recovered

for σx = σy = 1, in which case r = 1 (ε = 0), and s = 2.
The real Morlet wavelet on the plane is another typical example of a directional

wavelet. Its inverse stereographic projection (see also [64, 187] for similar projec-
tions) on the sphere is proportional to (see Figure 4.3)

Ψ (θ ,ϕ)∝
(

1 + tan2 θ
2

)[
cos

(
k · (π−1x)√

2

)
− e−k2/4

]
e−2 tan2(θ/2), (4.47)

with π−1x = (2tan(θ/2)cosϕ ,2tan(θ/2)sinϕ) in Cartesian coordinates. The
arbitrary wave-vector k = (kx,ky) controls the direction and frequency of oscilla-
tion of the wavelet (k2 = k2

x + k2
y). Notice that for |k| = 2, the real Morlet wavelet

closely approximates at large scales the second Gaussian derivative described in the
following.
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ŷx̂

ẑ ẑ

ŷx̂

ẑ

ŷx̂

Fig. 4.2: Mexican hat wavelet on the sphere for a dilation factor a = 0.4 and different eccentricities.
On the left, the axisymmetric Mexican hat: r = 1 (ε = 0) and s = 2 (left). At the center and on the
right, respectively, the elliptical Mexican hat for r = 0.5 (ε $ 0.96825) and s = 2, and r = 0.1
(ε = 0.99995) and s = 2. Dark and light regions respectively identify negative and positive values.
(Figure borrowed from [237].)

ŷx̂

ẑ ẑ

ŷx̂

Fig. 4.3: Real Morlet wavelet on the sphere for a dilation factor a = 0.4 and a wave-vector k = (6,0)
on the left, and for a dilation factor a = 0.4 and a wave-vector k = (2,0) on the right. Dark and
light regions respectively identify negative and positive values. (Figure borrowed from [237].)

Derivatives of order N − 1 in direction x̂ of radial functions on the plane are
steerable wavelets. Their inverse stereographic projection thus defines steerable
wavelets on the sphere. They have an azimuthal band limit equal to N and may be
rotated in terms of M = N basis filters. We give explicit examples of the normalized
first and second Gaussian derivatives. A first derivative has a band limit N = 2 and
only contains the frequencies m = {±1}. It may be rotated in terms of two specific
rotations at χ = 0 and χ = π/2, corresponding to the inverse projection of the first
derivatives in directions x̂ and ŷ,Ψ∂x̂ andΨ∂ŷ , respectively:[

Rẑ (χ)Ψ∂x̂

]
(ω) =Ψ∂x̂ (ω)cosχ+Ψ∂ŷ (ω)sinχ . (4.48)

The normalized first derivatives of a Gaussian (see Fig. 4.4) in directions x̂ and ŷ
read

Ψ∂x̂ (θ ,ϕ) =

√
8
π

(
1 + tan2 θ

2

)(
tan
θ
2

cosϕ
)

e−2 tan2(θ/2)

Ψ∂ŷ (θ ,ϕ) =

√
8
π

(
1 + tan2 θ

2

)(
tan
θ
2

sinϕ
)

e−2 tan2(θ/2). (4.49)
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y^ x^
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Fig. 4.4: First Gaussian derivative wavelet on the sphere for a dilation factor a = 0.4: from left
to right, Ψ∂x̂ ,Ψ∂ŷ , and rotation by χ = π/4 of Ψ∂x̂ . Dark and light regions respectively identify
negative and positive values. (Figure borrowed from [235].)

A second derivative has a band limit N = 3 and contains the frequencies
m = {0,±2}. It may be rotated in terms of three basis filters. It indeed reads in
terms of the inverse projection of the second derivatives in directions x̂ and ŷ,Ψ∂ 2

x̂

andΨ∂
2
ŷ , respectively, and the cross derivativeΨ∂x̂∂ŷ as[

Rẑ (χ)Ψ∂
2
x̂

]
(ω) =Ψ∂

2
x̂ (ω)cos2 χ +Ψ∂

2
ŷ (ω) sin2 χ+Ψ∂x̂∂ŷ (ω)sin2χ . (4.50)

The correctly normalized second derivatives of a Gaussian (see Fig. 4.5) in
directions x̂ and ŷ read

Ψ∂
2
x̂ (θ ,ϕ) =

√
4

3π

(
1 + tan2 θ

2

)(
1−4tan2 θ

2
cos2ϕ

)
e−2 tan2(θ/2)

Ψ∂
2
ŷ (θ ,ϕ) =

√
4

3π

(
1 + tan2 θ

2

)(
1−4tan2 θ

2
sin2ϕ

)
e−2 tan2(θ/2),

Ψ∂x̂∂ŷ (θ ,ϕ) = − 4√
3π

(
1 + tan2 θ

2

)(
tan2 θ

2
sin2ϕ

)
e−2 tan2(θ/2). (4.51)

4.3.3 Kernel Wavelets

4.3.3.1 Harmonic Dilation Case

When the harmonic dilation is considered, the analysis functionΨ must satisfy the
following form of the admissibility condition (4.30). As a first constraint, one has
Ψ̂00 = Ψ̃0 (0) = 0, which corresponds to the requirement thatΨ has a zero mean on
the sphere:

1
4π

∫
S2

dΩΨ (ω) = 0. (4.52)
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Fig. 4.5: Second Gaussian derivative wavelet on the sphere for a dilation factor a = 0.4: from left to

right,Ψ∂2
x̂ ,Ψ∂

2
ŷ ,Ψ∂x̂∂ŷ , and below, rotation by χ = π/4 ofΨ∂2

x̂ . Dark and light regions respectively
identify negative and positive values. (Figure borrowed from [235].)

This zero mean is of course preserved through harmonic dilation. As the zero
frequency is not supported by the wavelets, only signals with zero mean can be
analyzed in this formalism [see relation (4.28)]. Notice that the scale integration
measure can arbitrarily be chosen as dµ(a) = a−1da. This leads to a simple expres-
sion of the remaining constraints for l ∈ N0 as

0 < Cl
Ψ =

8π2

2l + 1 ∑|m|≤l

∫
R+

dk′

k′
|Ψ̃m

(
k′
) |2 < ∞. (4.53)

The left-hand-side inequality implies 0 <
∫
R+

dk′/k′ |Ψ̃m0(k
′)|2 for at least one of the

first two generating functions: m0 ∈ {0,1}. In other words, either Ψ̃0 or Ψ̃1 must be
nonzero on a set of nonzero measure on R+. The right-hand-side inequality implies∫
R+

dk′/k′ |Ψ̃m(k′)|2 < ∞ for all generating functions: m ∈ Z. Hence, the generat-

ing functions must satisfy Ψ̃m(0) = 0 [this condition encompasses the zero-mean
condition (4.52) in the form Ψ̃0(0) = 0] and tend to zero when k′ → ∞. With this
choice of scale integration measure, the constraints summarize to the requirement
that each generating function satisfies a condition very similar to the wavelet admis-
sibility condition [235, 4] for an axisymmetric wavelet on the plane defined by a
Fourier transform identical to Ψ̃m (k). Consequently, the wavelet admissibility con-
dition (4.53) can be checked in practice and wavelets associated with the harmonic
dilation can be designed easily.
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For continuous axisymmetric wavelets, a unique generating function Θ̃0(k) of a
continuous variable k ∈ R+ is required. The admissibility condition (4.42) reduces
to the following expression. The analysis function Θ must have a zero mean and
only allows the analysis of signals with zero mean. A unique additional condition
holds independently of l:

0 < CΘ =
∫

R+

dk′

k′
|Θ̃0

(
k′
) |2 < ∞. (4.54)

This condition actually encompasses the zero-mean condition in the form Θ̃0(0) = 0
and also requires that the generating function must tend to zero when k′ → ∞. The
coefficients entering the reconstruction formula (4.41) read as Cl

Θ = 4πCΘ/(2l +1),
for l ∈ N0.

However, as discussed in Section 4.2.3, the evolution of the localization and
directionality properties of functions in real space through harmonic dilation are
not explicitly controlled. These requirements are met in the context of the kernel
dilation. Consequently, in the following we describe the continuous wavelet for-
malism based on this kernel dilation. Moreover, this dilation renders the transition
between the continuous and scale-discretized formalism much simpler and more
transparent than what the harmonic dilation can provide.

4.3.3.2 Kernel Dilation Case

When the kernel dilation is considered, factorized steerable functionsΨ ∈ L2(S2,
dΩ) with compact harmonic support must be used:

Ψ̂lm = K̃Ψ (l)SΨlm, (4.55)

for a continuous kernel defined by a positive real function K̃Ψ (k) ∈ R+ and a
directional split defined by the directionality coefficients SΨlm. The compact
harmonic support of the wavelet in the interval l ∈ (

⌊
α−1B

⌋
,B) is ensured by a

kernel K̃Ψ (k) with compact support in the interval k ∈ (α−1B,B), with a compact-
ness c(α) = α/(α−1) ∈ [1,∞):

K̃Ψ (k) = 0 for k /∈ (α−1B,B). (4.56)

The steerability of a wavelet with an azimuthal band limit N is ensured by the direc-
tional split:

SΨlm = 0 for all l,m with |m| ≥ N, (4.57)

with

∑
|m|≤min(N−1,l)

|SΨlm|2 = 1, (4.58)

for all l ∈ N0. Continuous axisymmetric wavelets Θ(θ ) with compact harmonic
support are simply obtained by the trivial directional split with SΘlm = δm0 for all
l ∈ N0.
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The analysis of a signal F ∈ L2(S2,dΩ) with the analysis functionΨ gives the
wavelet coefficients W F

Ψ (ρ ,a) at each continuous scale a, around each pointω0, and
in each orientation χ , through the directional correlation (4.1). The reconstruction of
F from its wavelet coefficients results from relation (4.29). The zero-mean condition
(4.52) for the admissibility of Ψ implies K̃Ψ (0) = 0. One can also arbitrarily set
SΨ00 = 0. The admissibility condition (4.53) summarizes to

0 < CΨ =
∫

(α−1B,B)

dk′

k′
K̃2
Ψ
(
k′
)

< ∞, (4.59)

which actually also encompasses the zero-mean condition. The coefficients entering
the reconstruction formula are Cl

Ψ = 8π2CΨ/(2l +1) for l ∈ N0. In other words, the
kernel must formally be identified with the Fourier transform of an axisymmetric
wavelet on the plane.

Notice that for a factorized wavelet Ψ , the directional correlation defining the
analysis of a signal may also be understood as a double correlation, by the kernel
and the directional split successively. The standard correlation (4.38) of the signal
F and the axisymmetric wavelets defined by the kernel ofΨ provides intermediate
wavelet coefficients W F

K̃Ψ
(ω0,a) on S2 at each scale a ∈ R∗

+. The spherical harmonic
transform of these coefficients reads as(̂

W F
K̃Ψ

)
lm

(a) =

√
4π

2l + 1
K̃Ψ (al) F̂lm. (4.60)

At each scale a, the directional correlation of the intermediate signal W F
K̃Ψ

(ω0,a) and
a directional wavelet defined by the directional split ofΨ provides the final wavelet
coefficients on SO(3):

(̂
W F
Ψ
)l

mn (a) =
8π2

2l + 1

(√
2l + 1

4π
SΨln

)∗ (̂
W F

K̃Ψ

)
lm

(a) . (4.61)

This reasoning obviously holds independently of the steerability or compact
harmonic support properties ofΨ .

Let us finally emphasize that even though the steerability of the wavelet is ini-
tially set by the directional split, this steerability may be affected through kernel
dilation due to the modified compact harmonic support associated with the dilated
kernel. However, the computational advantage in relation (4.32) introduced by the
existence of an azimuthal band limit in the definition of the directional split is pre-
served through kernel dilation.

4.3.4 Discretization of Variables

The directional correlation defining wavelet coefficients at each position,
orientation, and scale in (4.1) requires integration of functions on a continuous
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variable on S2. The reconstruction of the signal at each point on S2 from its wavelet
coefficients in (4.29) also requires integration on a continuous variable on SO(3), as
well as on the dilation parameter on R∗

+. Practical implementations must obviously
be based on a choice of discretization for each of these variables.

On the one hand, adequate pixelizations of the parameter spaces of the sphere
and the rotation group may be designed for approximate or even exact integration on
ω ∈ S2 or ρ ∈ SO(3) by finite weighted summations, generically called quadratures.
Quadrature rules obviously rely on the fact that the spaces of integration are com-
pact. On the other hand, continuous scale integration on a ∈ R∗

+ may not be suitably
approximated by quadrature rules. As a consequence, in the framework of a wavelet
formalism relying on a continuous dilation parameter, signals may be analyzed at
specifically chosen scales by computing of the corresponding wavelet coefficients,
but reconstruction is not accessible in practice. In the next section, we describe fast
and potentially exact algorithms for the analysis of a signal with a wavelet in that
context. The definition of a wavelet formalism in which the dilation operation relies
on a discrete dilation parameter is a necessary condition in order to reach in practice
signal reconstruction from wavelet coefficients. Applications such as denoising or
deconvolution with wavelets obviously require a discrete formalism where the sig-
nal under scrutiny may in practice be reconstructed after modification of its wavelet
coefficients. Such a discrete wavelet formalism is discussed later in this chap-
ter, along with a corresponding fast and exact algorithm for both analysis and
reconstruction.

4.4 Analysis Algorithms

In this section, we discuss choices of pixelizations on the sphere and on the rotation
group, and describe two fast algorithms for the analysis of signals in the context of
the continuous wavelet formalism developed.

4.4.1 Pixelization

4.4.1.1 Sampling Theorems

We generally consider band-limited signals. Any function G ∈ L2(S2,dΩ) is said
to be band-limited with band limit B, for any B ∈ N0, if Ĝlm = 0 for all l,m with
l ≥ B. Any function H ∈ L2(SO(3),dρ) is said to be band-limited with band limit
B, for any B ∈ N0, if Ĥl

mn = 0 for all l,m,n with l ≥ B. From relation (4.28), if the
signal F or the waveletΨ is band-limited on S2, then the wavelet coefficients W F

Ψ
are automatically band-limited on SO(3), with the same band limit B. A continu-
ous band-limited signal F ∈ L2(S2,dΩ) and a continuous waveletΨ ∈ L2(S2,dΩ)
are respectively identified by the O(B2) spherical harmonic coefficients F̂lm and
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Ψ̂lm with l ∈ N, m ∈ Z, and |m| ≤ l. A simple extrapolation of the Nyquist–Shannon
theorem on the line would suggest that the same number O(B2) of sampled
values F(ωi) on points ωi ∈ S2 is required in order to describe the signal
completely. The index i simply identifies the points of the sampling. Typically, O(B)
values are required for both samplings in θ and ϕ . The directional correlation asso-
ciated with the wavelet coefficients at each scale W F

Ψ (·,a) ∈ L2(SO(3),dρ) is iden-

tified by O(B3) Wigner D-function coefficients (̂W F
Ψ )

l

mn(a) with l ∈ N, m,n ∈ Z,
and |m|, |n| ≤ l. A similar Nyquist–Shannon extrapolation would also suggest that
a number O(B3) of sampled values W F

Ψ (ρi,a) on points ρi ∈ SO(3) are required
for the exact description of each directional correlation. Again, O(B) values are
required for samplings in θ0, ϕ0, and χ .

These considerations raise the question of the choice of pixelization of S2 on
which the original signal should be sampled in order to provide precise computation
of the required directional correlation at each scale. The same question is raised
for the choice of pixelization of SO(3) on which the wavelet coefficients should be
computed so that the continuous counterpart of the sampled values is known.

On the sphere S2, 2B × 2B equiangular pixelizations are defined on points
ωi j = (θi,ϕ j) for 0 ≤ i, j ≤ 2B − 1, with a uniform discretization of the coordi-
nates: ∆θ = θi+1 − θi = π/2B and ∆ϕ = ϕ j+1 −ϕ j = 2π/2B. The specific choice
θ0 = π/4B and ϕ0 = 0 can be made for convenience. It gives θi = (2i + 1)π/4B
and ϕ j = 2 jπ/2B, and excludes the poles of the sampling, which can be convenient
for numerical reasons. The pixel centers are identified with the sampling points ωi j

defined above. The pixel’s edges are identified by meridians shifted by ∆θ/2 =
π/4B, and parallel shifted by ∆ϕ/2 = 2π/4B relative to ωi j. The poles therefore
appear as pixel corners. Equiangular pixelizations enjoy the so-called iso-latitude
property; i.e., the sampling in θ is independent of ϕ , of interest for computational
purposes discussed below. Also, notice that the pixel area varies drastically with θ
as sinθdθdϕ .

A sampling theorem ensures that exact quadrature rules for integration of signals
with band limit B on S2 exist on 2B× 2B equiangular grids [76]. This sampling
theorem represents a generalization of the Nyquist–Shannon theorem on the line.
One way of stating it is to say that the spherical harmonic coefficients of a band-
limited function on the sphere may be computed exactly up to a band limit B,
through an equi-angular sampling, as a finite weighted sum, i.e., a quadrature, of
the sampled values of that function [76]. The weights are defined from the structure
of the Legendre polynomials Pl(cosθ ) on the interval [0,π ].

Other pixelization schemes widely used in astrophysics and cosmology may be
considered. The HEALPix pixelization1 (Hierarchical Equal Area iso-Latitude Pix-
elization) [105], and the GLESP pixelization2 (Gauss–Legendre Sky Pixelization)
[75, 74] are two major examples. GLESP pixelizations are defined by a sampling
of θ on the roots of the Legendre polynomials of some order related to B, and by
an equiangular sampling on ϕ for each value of θ . This scheme provides pixels of

1 http://healpix.jpl.nasa.gov/
2 http://www.glesp.nbi.dk/
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nearly equal areas. A sampling theorem also ensures exact quadrature rules on such
pixelizations. HEALPix pixelizations are defined through a hierarchical pixeliza-
tion scheme, containing 12N2

side pixels of exactly equal areas at resolution Nside = 2k

with k ∈ N. Only approximate quadrature rules exist, which nevertheless can be
made very precise thanks to an iteration process.

On the rotation group SO(3), pixelizations may, for instance, be defined by com-
bining pixelizations on S2 with an equiangular sampling of χ . A sampling theorem
exists on the pixelizations based on equiangular and Gauss–Legendre pixelizations
on S2, hence providing exact quadrature rules for the integration of band-limited
signals on SO(3). Again, quadrature rules for pixelizations based on HEALPix pix-
elizations are approximate. This extension basically relies on the separation of the
integration variables [180, 179, 152] from relation (4.9). The sampling theorem
notably ensures that the Wigner D-function coefficients of a band-limited func-
tion on SO(3) may be computed exactly by quadrature up to a band limit B.
A corresponding choice of pixelization for computation of the wavelet coefficients
W F
Ψ (ρi,a) at each scale a will thus provide exact knowledge of the corresponding

function in L2(SO(3),dρ).

4.4.1.2 A Priori Computational Complexity

The computational complexity of an algorithm, or of a part of it, may be defined
as the number of basic summation or multiplication operations required to obtain
the result from initial data. Each two-dimensional scalar product on S2 required in
the directional correlation relation (4.1) may a priori be computed by quadrature
with computational complexity O(B2) on O(B2) positions and O(B) orientations,
at each analysis scale a. The computation would be exact on those pixelizations
where a sampling theorem holds. However, such a O(B5) complexity appears to be
absolutely unaffordable for fine samplings on the sphere with B ≥ 103. The defini-
tion of fast analysis algorithms is consequently essential.

4.4.2 Fast Algorithms

4.4.2.1 Separation of Variables

Let us consider a function G ∈ L2(S2,dΩ) with band limit B and given in terms of
its sampled values G(ωi) on the O(B2) discrete points ωi of the chosen pixeliza-
tion of S2. The factorized form (4.2) of the spherical harmonics naturally enables
one to compute a direct spherical harmonic transform by quadrature through sepa-
ration of the integrations on the variables θ and ϕ . Conversely, an inverse spherical
harmonic transform may be computed as successive summations on the indices l
and m, up to the band limit B. Correctly ordering the corresponding operations pro-
vides a calculation of direct and inverse spherical harmonic transforms in O(B3)
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operations [76]. This separation of variables in the spherical harmonic transforms
simply requires iso-latitude pixelizations on the sphere. The computation of the
spherical harmonic coefficients of a band-limited function is theoretically exact only
on those pixelization where a sampling theorem holds. The inverse spherical har-
monic transform is of course exact independently of the pixelization as it is a simple
finite sum truncated by the band limit.

Let us consider a function H ∈ L2(SO(3),dρ) with band limit B and given in
terms of its sampled values H(ρi) on the O(B3) discrete points ρi of the chosen
pixelization of SO(3). The factorized form (4.9) of the Wigner D-functions enables
the computation of a direct Wigner D-function transform by quadrature through
separation of the integrations on the variables θ0, ϕ0, and χ . Conversely, an inverse
Wigner D-function transform may be computed as successive summations on the
indices l, m, and n, up to the band limit B. Correctly ordering the corresponding
operations provides a calculation of direct and inverse Wigner D-function transform
in O(B4) operations [180, 179]. Again, iso-latitude pixelizations are required for
θ0 and ϕ0 on the sphere, while the separation of variable may be performs for any
structure of the sampling in the third Euler angle χ , potentially depending on θ0

and ϕ0. The computation of the Wigner D-function coefficients of a band-limited
function is theoretically exact only on those pixelizations where a sampling theorem
holds. The inverse Wigner D-function transform is of course exact independently of
the pixelization as it is a simple finite sum truncated by the band limit.

In this context, relation (4.28) provides a simple expression for the Wigner
D-function coefficients of the directional correlation defining the wavelet coeffi-
cients W F

Ψ (ρ ,a) on SO(3) for a signal F with a wavelet Ψ , at each analysis scale
a. This relation is essential to avoid the large O(B5) computational complexity for
the wavelet coefficients through simple quadrature in real space. A corresponding
harmonic space algorithm can be designed. The band-limited signal F is given in
terms of its sampled values F(ωi) on the O(B2) discrete points ωi of the chosen
pixelization of S2. The algorithm first computes required direct spherical harmonic
transforms (4.7) for F̂lm and (̂Ψa)ln, second performs the pointwise product (4.28),
and finally computes the inverse Wigner D-function transform (4.27) to obtain the
wavelet coefficients. The resulting band-limited coefficients W F

Ψ (ρ ,a) at each scale
a are given in terms of sampled values W F

Ψ (ρi,a) on the O(B3) discrete points ρi

of the chosen pixelization of SO(3). Using the separation of variables, the compu-
tational complexity of the spherical harmonic coefficients is of order O(B3). The
computational complexity of the pointwise product (4.28) is also of order O(B3).
Again using the separation of variables, the computation complexity of the inverse
Wigner D-function transform is of order O(B4), which consequently sets the overall
computational complexity of the algorithm.

Consequently, a harmonic space algorithm relying on the separation of variables
on iso-latitude pixelizations on the sphere allows computation of a directional cor-
relation in O(B4) instead of O(B5) operations. The exactness of the computation
relies only on the exactness of computation of the spherical harmonic coefficients
of the signal and the wavelet, which depends on the existence of a sampling theorem
on the pixelization chosen.
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4.4.2.2 Factorization of Rotations

A second fast algorithm for the directional correlation of a band-limited signal F
with a band limit B and a wavelet Ψ may be designed through the technique of
factorization of three-dimensional rotations detailed below.

The rotation operator R(ρ) on functions in L2(S2,dΩ) may be factorized as [204,
231, 188]

R(ϕ0,θ0,χ) = R
(
ϕ0 − π2 ,−π

2
,θ0

)
R
(

0,
π
2

,χ+
π
2

)
. (4.62)

Let us recall that the Wigner D-functions are the matrix elements of the opera-
tor R(ρ). The factorized form (4.9) thus provides an alternative expression for the
wavelet coefficients at scale a relative to the explicit inverse Wigner D-function
transform (4.27) as

W F
Ψ (ρ ,a) = ∑

|m|,|m′|,|n|<B

̂〈RΨa|F〉mm′nei(mϕ0+m′θ0+nχ). (4.63)

The coefficients in this relation read as

̂〈RΨa|F〉mm′n = ei(n−m)π/2∑
l≥C

dl
m′m

(π
2

)
dl

m′n

(π
2

)
(̂Ψa)

∗
lnF̂lm, (4.64)

where C = max(|m|, |m′|, |n|), and where the symmetry relation dl
m′m(θ )= dl

mm′(−θ )
was used.

In this context, a harmonic space algorithm must firstly compute required spheri-
cal harmonic transforms for F̂lm and (̂Ψa)ln, secondly perform the summation (4.64),
and finally compute the inverse transform (4.63) to obtain the wavelet coefficients.
The band-limited signal F is given in terms of its sampled values F(ωi) on the
O(B2) discrete points ωi of the chosen pixelization of S2. Considering an iso-
latitude pixelization for θ and ϕ , the spherical harmonic transforms may be com-
puted by quadrature in O(B3) operations through separation of variables in the
spherical harmonics. The computational complexity of the summation (4.64) for all
required values of m, m′, and n is of order O(B4). Again considering an iso-latitude
pixelization for θ0 and ϕ0, the computation of the inverse transform (4.63) may be
performed by quadrature in O(B4) operations through separation of variables in the
imaginary exponentials, instead of an explicit separation of variables in the Wigner
D-functions themselves. Again, the resulting band-limited coefficients W F

Ψ (ρ ,a) at
each scale a are given in terms of sampled values W F

Ψ (ρi,a) on the O(B3) discrete
points ρi of the chosen pixelization of SO(3).

Consequently, a harmonic space algorithm relying on the factorization of rota-
tions on iso-latitude pixelizations on the sphere also allows computation of a direc-
tional correlation in O(B4) operations, now driven by the intermediate summation
(4.64) and the inverse transform (4.63), instead of O(B5) operations. The exactness
of the computation again relies only on the exactness of the computation of the
spherical harmonic coefficients of the signal and the wavelet, which still depends on
the existence of a sampling theorem on the pixelization chosen.
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Notice that, while the Euler angles ϕ0 and χ are in the range ϕ0,χ ∈ [0,2π), the
original range for θ0 is θ0 ∈ [0,π ], in order to cover the parameter space of SO(3).
A formal extension of this interval θ0 ∈ [0,2π) provides the parameter space of the
three-torus T3, covering twice the parameter space of SO(3). In this context, the
relation (4.63) represents a three-dimensional inverse Fourier transform, which can
be calculated in O(B3 log2 B) operations on a 2B×2B×2B equiangular grid on T3

by the use of the standard Cooley–Tukey fast Fourier transform (FFT) algorithm.
This optimization, however, does not reduce the overall computational complexity
for the directional correlation, still driven by the summation (4.64).

4.4.2.3 Steerable Optimization

Steerable wavelets may be used for further optimization of the algorithmic
complexity. Wavelets Ψ are considered with a small number M of basis functions
Ψp, for 0 ≤ p ≤ M−1 in (4.31), which may actually represent rotations of a unique
filter in M basis orientations in (4.35). In other words, the azimuthal band limit
N of the wavelets is small relative to the overall band limit B: M,N % B. The
directional correlation with a steerable wavelet reduces to a linear combination of
M standard correlations (4.33) with the basis functions. The computational com-
plexity of a directional correlation reduces to that of M standard correlations, with
total a priori computational complexity of order O(M B4), to which is simply added
the O(M B3) linear combination that arises from (4.32). Either the technique of
separation of variables or the factorization of rotations can be applied to the stan-
dard correlation on iso-latitude pixelizations on the sphere, by setting χ = 0 in the
relation (4.27) or (4.63), respectively. The computational complexity count for the
index n, with |n| < N, is also reduced from B down to M. It readily appears that the
corresponding computational complexity for the two algorithms hence reduces to
O(M2 B3) rather than O(M B4) for the directional correlation. When the basis func-
tions actually represent rotations of a unique filter in M basis orientations in (4.35),
coefficients in all basis orientations may be computed at once, hence reducing the
overall computational complexity for the directional correlation to O(M B3). The
steerable optimization thus renders the computation more easily affordable, even
when multiple signals and multiple scales are considered.

Details on the algorithmic structure, computation times, memory requirements,
and numerical stability of the corresponding implementations on HEALPix and
equiangular grids on the sphere may be found in [188] for the factorization of
rotations, and in [236] for the technique of separation of variables and the opti-
mization with steerable wavelets. Further possible optimization of the algorithm
to a computational complexity of order O(M2 B2 log2

2 B) can formally be reached
through separation of variables on equiangular pixelizations on the sphere. It notably
relies on the Driscoll and Healy algorithm for fast spherical harmonic transform
[76, 134, 133, 236].

Considering an axisymmetric wavelet Θ , the azimuthal band limit is reduced to
N = 1: Θ̂ln = 0 for |n| ≥ 1. The proper rotation by χ has no effect on the filter, and
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the directional correlation reduces to a unique standard correlation. At each scale,
the wavelet coefficients of a signal with an axisymmetric filter live on the sphere S2.
On iso-latitude pixelizations, the direct spherical harmonic transforms for F̂lm and
(̂Θa)l0, the pointwise product (4.40), and the inverse spherical harmonic transform
(4.39) can simply be computed by separation of variables in the spherical harmonics
(4.2). This provides an algorithmic structure with O(B3) asymptotic complexity,
which again can formally be reduced to O(B2 log2 B) on equiangular pixelizations.

4.5 Discrete Formalism

In this section, we define a discrete wavelet formalism following from a discretiza-
tion of the scales in the continuous formalism based on the kernel dilation. We also
comment on other possible constructions of a discrete wavelet formalism.

4.5.1 Discrete Wavelets

4.5.1.1 Scale Discretization

In the context of the wavelet formalism relying on the kernel dilation,
scale-discretized wavelets Γ can simply be obtained from continuous factorized
steerable wavelets with compact harmonic support, through an integration by slices
of the dilation factor a ∈ R∗

+. Through this transition procedure, scale-discretized
wavelets remain factorized steerable functions with compact harmonic support and
are dilated through the same kernel dilation.

We consider the analysis of a signal F ∈ L2(S2,dΩ) with band limit B.
The original continuous waveletΨ ∈ L2(S2,dΩ) with a compact support is defined
in the interval k ∈ (α−1B,B). The value α > 1 regulates the compactness c(α) ofΨ .
It is also taken as a basis dilation factor. The discrete dilation factors for the
scale-discretized wavelet will correspond to integer powers α j , for analysis depths
j ∈ N.

The scale-discretized wavelet Γ ∈ L2(S2,dΩ) is thus defined in factorized form:

Γ̂lm = K̃Γ (l)SΓlm, (4.65)

for a scale-discretized kernel defined by a positive real function K̃Γ (k) ∈ R+ and a
directional split defined by the directionality coefficients SΓlm. The directional split
of Γ is identified with the split ofΨ :

SΓlm = SΨlm, (4.66)

also giving
SΓlm = 0 for all l,m with |m| ≥ N, (4.67)
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and

∑
|m|≤min(N−1,l)

|SΓlm|2 = 1, (4.68)

for l ∈N0, while SΓ00 = 0. In this relation, N stands for the azimuthal band limit of the
steerable wavelets. The identification of the directional splits ensures that the same
steerability properties are shared by the continuous wavelet and the scale-discretized
wavelet. The scale-discretized kernel K̃Γ (k) is obtained from the continuous ker-
nel K̃Ψ (k) through an integration by slices of the dilation factor a ∈ R∗

+ of the
continuous wavelet formalism.

As a first step, a positive real scaling function Φ̃Γ (k) ∈ R+ of a continuous
variable k∈R+ is defined that gathers the largest dilation factors a∈(1,∞), or cor-
respondingly the lowest values of k. This generating function reads for k ∈ R∗

+ as

Φ̃2
Γ (k) =

1
CΨ

∫ ∞

1

da
a

K̃2
Ψ (ak) =

1
CΨ

∫
(α−1B,B)∩(k,∞)

dk′

k′
K̃2
Ψ
(
k′
)

(4.69)

and is continuously extended at k = 0 by Φ̃2
Γ (k) = 1. The scaling function Φ̃Γ (k)

therefore decreases continuously from unity down to zero in the interval
k ∈ (α−1B,B):

Φ̃Γ (k) = 1 for 0 ≤ k ≤ α−1B,

Φ̃Γ (k) ∈ (0,1) for α−1B < k < B,

Φ̃Γ (k) = 0 for k ≥ B. (4.70)

Notice that similar procedures of scale integration by slices were already proposed
in the development of corresponding formalisms for directional wavelets on the
plane [78, 190, 228], and in the particular case of axisymmetric wavelets on the
sphere [97].

As a second step, a simple Littlewood–Paley decomposition [95] is used to define
the scale-discretized kernel K̃Γ (k) by subtracting the scaling function Φ̃Γ (k) to its
contracted version Φ̃Γ (α−1k). This implicitly sets the value α as the basis dilation
factor. The scale-discretized kernel also reads as an integration of the continuous
kernel over a slice a ∈ (α−1,1) for the dilation factor, or equivalently over a slice
k ∈ (α−1B,B)∩ (α−1k,k) of the compact support interval:

K̃2
Γ (k) = Φ̃2

Γ
(
α−1k

)− Φ̃2
Γ (k)

=
1

CΨ

∫ 1

α−1

da
a

K̃2
Ψ (ak) =

1
CΨ

∫
(α−1B,B)∩(α−1k,k)

dk′

k′
K̃2
Ψ
(
k′
)
. (4.71)

The scale-discretized kernel therefore has a compact support in the interval
k ∈ (α−1B,αB):

K̃Γ (k) = 0 for k /∈ (
α−1B,αB

)
. (4.72)

This support is wider than that for the original continuous kernel and the scaling
function. The corresponding compactness reads as c(α2) = α2/(α2 − 1) ∈ [1,∞).
The compact harmonic support of the scale-discretized wavelet Γ itself is thus
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defined in the interval l ∈ (
⌊
α−1B

⌋
,"αB#). The kernel also satisfies K̃2

Γ (0) = 0,
leading to a scale-discretized wavelet Γ with a zero mean on the sphere:

1
4π

∫
S2

dΩ Γ (ω) = 0. (4.73)

The dilations by α j of the scale-discretized wavelet are defined by the
kernels K̃Γ (α jk) for any analysis depth j ∈ N. Each kernel has compact support
in the interval k ∈ (α−(1+ j)B,α(1− j)B) and exhibits a maximum at k = α− jB, with
K̃Γα j (α− jB) = 1. The scale-discretized wavelet Γα j at each analysis depth j thus

has a compact harmonic support in the interval l ∈
(⌊
α−(1+ j)B

⌋
,
⌈
α(1− j)B

⌉)
. The

property K̃Γ (0) = 0 still ensures that each scale-discretized wavelet has a zero mean
on the sphere. Notice that for j ≥ 1, one gets a dilation factor strictly greater than
unity α j > 1, and the scale-discretized wavelet has a band limit less than or equal
to the assumed band limit B for the signal F to be analyzed. At j = 0, only the
values of the kernel in the interval l ∈ (

⌊
α−1B

⌋
,B) are of interest, as higher fre-

quencies l are truncated by the signal F itself through the directional correlation.
One can equivalently consider that the compact support of the kernel is restricted
to k ∈ (α−1B,B) in the definition of the scale-discretized wavelet at this first analy-
sis depth j = 0. For j ≤ −1, the lower bound of the compact harmonic support of
the scale-discretized wavelet is larger than the band limit B. The scale-discretized
wavelets with negative analysis depths can therefore be discarded, as the result of
their directional correlation with the signal F would be identically zero.

4.5.1.2 Invertible Filter Bank

The admissibility condition (4.59) for continuous wavelets simply turns into a
resolution of the identity below the band limit by a set of dilated wavelets at various
analysis depths j, with 0 ≤ j ≤ J, and a dilated scaling function at some total analy-
sis depth J ∈ N. This defines what one can call a filter bank on the sphere. One gets
in particular for 0 ≤ k = l < B:

Φ̃2
Γ
(
αJ l

)
+

J

∑
j=0

K̃2
Γ
(
α j l

)
= 1. (4.74)

The scaling function values Φ̃Γ (αJ l) are equal to unity in the interval

l ∈
[
0,
⌊
α−(1+J)B

⌋]
, then decrease in the interval l ∈

(⌊
α−(1+J)B

⌋
,
⌈
α−JB

⌉)
, and

are equal to zero for l ≥ ⌈
α−JB

⌉
. The kernel values K̃Γ (α jl) are nonzero only in

the compact harmonic support interval l ∈
(⌊
α−(1+ j)B

⌋
,
⌈
α(1− j)B

⌉)
. The scaling

function typically retains the low-frequency part of the signal, which will not be

analyzed. All signal information at frequencies l ≤
⌊
α−(1+J)B

⌋
is kept only in the

scaling function, equal to unity. The wavelets are equal to zero at these frequencies.
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All signal information at frequencies l ≥ ⌈
α−JB

⌉
is fully analyzed by the wavelets,

while the scaling function is equal to zero. Intermediate frequencies are also ana-
lyzed by the wavelets, but the scaling function is required for the reconstruction of
the corresponding signal information.

Let us define the maximum analysis depth JB(α) as the lowest integer value such
that α−JB(α)B ≤ 1:

JB (α) = "logα B# . (4.75)

In a case where the total analysis depth would be chosen strictly above JB(α), all
wavelets at analysis depths j with J ≥ j ≥ JB(α) + 1 would be identically null,
as their kernels have a compact support strictly included in the interval k ∈ (0,1).
The total analysis depth is consequently naturally limited by J ≤ JB(α). In the case
J = JB(α), the dilated scaling function evaluated at αJB(α)l has a nonzero value only
at l = 0, Φ̃2

Γ (αJB(α)l) = δl0, while all wavelets are equal to zero at l = 0 as they have
a zero mean. Hence, the identity can be resolved with JB(α)+1 dilated wavelets and
a trivial scaling function that simply retains the spherical harmonic coefficient F̂00

out of the analysis, or equivalently the mean of the signal over the sphere. One gets
in particular for 0 ≤ k = l < B:

δl0 +
JB(α)

∑
j=0

K̃2
Γ
(
α jl

)
= 1. (4.76)

4.5.1.3 Analysis

Following the scale discretization defining the wavelets Γ ∈ L2(S2,dΩ), a new
scale-discretized wavelet formalism is provided for the analysis and exact recon-
struction of band-limited signals.

The analysis of a band-limited signal F ∈ L2(S2,dΩ) with band limit B, with a
scale-discretized wavelet Γ , is performed by directional correlations just as in the
continuous wavelet formalism. At each analysis depth j with 0 ≤ j ≤ J ≤ JB(α), the
wavelet coefficients W F

Γ (ρ ,α j) characterizing the signal around each continuous
point ω0 = (θ0,ϕ0) ∈ S2, and in each continuous orientation χ ∈ [0,2π), are still
defined by the directional correlation of F with the analysis functions Γα j dilated
through the kernel dilation by the dilation factor α j:

W F
Γ
(
ρ ,α j) = 〈Γρ ,α j |F〉, (4.77)

with ρ = (ϕ0,θ0,χ). Once more, at each analysis depth j, the wavelet coefficients
read as an inverse Wigner D-function transform:

W F
Γ
(
ρ ,α j) = ∑

l∈N

2l + 1
8π2 ∑

|m|,|n|≤l

(̂
W F
Ψ
)l

mn

(
α j)Dl∗

mn (ρ) , (4.78)
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with the Wigner D-function coefficients

(̂
W F
Γ
)l

mn

(
α j) =

8π2

2l + 1
(̂Γα j)

∗
lnF̂lm. (4.79)

Again, the factorization relation (4.65) allows one to understand the directional
correlation (4.79) as a double correlation, by the kernel and the directional split
successively.

4.5.1.4 Exact Reconstruction

The reconstruction of the band-limited signal F from its wavelet coefficients reads
in terms of a summation on a finite number J + 1 of discrete dilation factors:

F (ω) = [ΦαJ F ] (ω)+
J

∑
j=0

∫
SO(3)

dρW F
Γ
(
ρ ,α j)[R(ρ)LdΓα j

]
(ω) . (4.80)

The approximation [ΦαJ F ](ω) accounts for the part of the signal retained in the
scaling function Φ̃Γ (αJ l). In a very similar way to the part of the signal analyzed
by the wavelets, it can be written as

[ΦαJ F ] (ω) = 2π
∫

S2
dΩ0 W F

Φ
(
ω0,αJ)[R(ω0)LdΦαJ

]
(ω) , (4.81)

with W F
Φ (ω0,αJ) = 〈Φω0,αJ |F〉, and for an axisymmetric function Φ ∈ L2(S2,dΩ)

defined by (̂ΦΓ )lm = Φ̃Γ (l)δm0. In the particular case where J = JB(α), one gets

(̂ΦΓ )lm = δl0δm0 and the approximation simply reduces to the mean of the signal
over the sphere: [ΦαJB(α) F ] = (4π)−1 ∫

S2 dΩ F(ω). The zero-mean signal is com-
pletely analyzed by the scale-discretized wavelets. The operator Ld in L2(S2,dΩ)
in the present scale-discretized wavelet formalism is defined by the following action

on the spherical harmonic coefficients of functions: L̂dGlm = (2l +1)Ĝlm/8π2. This
operator defining the scale-discretized wavelets LdΓα j used for reconstruction is
independent of Γ , contrary to the operator LΨ for continuous wavelets. This simply
comes from the fact that the scale-discretized wavelets are, through their definition
(4.71), normalized by CΨ .

Just as in the continuous wavelet formalism where the admissibility
condition (4.59) is required, the present reconstruction formula holds if and only
if the scale-discretized wavelet satisfies the constraints (4.68), and (4.74) or (4.76).
These constraints are automatically satisfied by construction of the scale-discretized
wavelets through the integration by slices. Again, this corresponds to the require-
ment that the wavelet family as a whole, including the scaling function, preserves
the signal information at each frequency l ∈ N.
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Equivalently, the decomposition of the reconstruction relation (4.80) into
spherical harmonic coefficients reads as a finite summation:

̂̄Flm = ̂[ΦαJ F ]lm +
2l + 1
8π2

J

∑
j=0

∑
|n|≤min(N−1,l)

(̂Γα j)ln

(̂
W̄ F
Γ
)l

mn

(
α j) , (4.82)

with
̂[ΦαJ F ]lm = Φ̃2

Γ
(
αJ l

)
F̂lm. (4.83)

Let us emphasize the fact that a finite number of discrete dilation factors
are required for the analysis and reconstruction of a band-limited signal. Contrary
to the case of the continuous dilation factors, this allows the exact reconstruction
of band-limited signals from relation (4.80), on pixelizations of the sphere where a
sampling theorem holds.

4.5.1.5 Example Filter

We describe a real scale-discretized factorized steerable wavelet Γ with compact
harmonic support, designed through relations (4.65)–(4.71) from a real continu-
ous wavelet Ψ , for a band limit B = 1024, a basis dilation factor α = 2, and an
azimuthal band limit N = 3 of steerability. The function is imposed to be real and
to be even both under rotation around itself by π and under a change of sign on ϕ .
This corresponds to the constraints that only the T = 3 values m ∈ {−2,0,2} are
allowed and SΓlm is real. We also impose that the directionality coefficients are inde-
pendent of l for l ≥ 2. This ensures that the directionality and steerability properties
are preserved for the analysis depths for which the lower bound of the compact
harmonic support is larger than 2. The continuous kernel is defined with a com-
pact support in the interval k ∈ (512,1024). The scaling function Φ̃Γ (k) for each
analysis depth j is obtained by numerical integration, with nonzero values in the
intervals k ∈ (512/2 j,1024/2 j). The scale-discretized kernel K̃Γ (k) then follows
with nonzero values in the intervals k ∈ (512/2 j,2048/2 j). For j = 0, the corre-
sponding compact support interval is cut at the band limit: k ∈ (512,1024). For
1 ≤ j ≤ 9, the intervals progressively move to lower frequencies and shrink. At
the maximum analysis depth j = JB(α) = 10, the compact support is shrunk to
k ∈ (0.5,2) and the scale-discretized kernel only contains the frequency l = 1. A
specific choice of directional split and continuous kernel is made under all these
constraints, as in [238]. Corresponding graphs are reported in Fig. 4.6.

Plots of the scale-discretized wavelet are also reported in Fig. 4.7. The wavelets
are represented at the four largest analysis depths, 7 ≤ j ≤ 10, identifying the four
largest scales. At j = 7, j = 8, and j = 9, the compact supports of the scale-
discretized kernels respectively contain the frequencies l = 5 to l = 15 with a kernel
maximum at l = 8, l = 3 to l = 7 with a kernel maximum at l = 4, and l = 2 to
l = 3 with a kernel maximum at l = 2. At j = 10, the scale-discretized kernel only
contains the frequency l = 1. For the depths j with 7 ≤ j ≤ 9, the lowest frequencies
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Fig. 4.6: Graphs of the continuous kernel (continuous red line), scaling function (dot-dashed blue
line), and scale-discretized kernels (dotted black lines) for the example scale-discretized wavelet
designed at a band limit B = 1024 and with a basis dilation factor α = 2. The scale-discretized
kernels are plotted for the first five analysis depths j, with 0 ≤ j ≤ 4. (Figure borrowed from
[238].)

l are greater than or equal to 2 and the azimuthal frequency indices contained in the
directional split are m ∈ {−2,0,2}. These wavelets all have the same directionality
and steerability properties. For the depth j = 10, the scale-discretized wavelet is a
pure dipole (l = 1). The azimuthal frequency index is restricted to m = 0 due to the
constraint |m| ≤ l, ensuring that the harmonic structure on the sphere is respected,
and the wavelet is simply axisymmetric.

4.5.2 Other Constructions

First, a scale-discretized wavelet formalism with relations (4.74) and (4.76) for
factorized steerable wavelets with compact harmonic support can be developed by
simply relying on a Littlewood–Paley decomposition, without any contact with the
continuous wavelet formalism. One simply needs to choose any arbitrary scaling
function satisfying relation (4.70) and define the corresponding scale-discretized
kernels by differences of scaling functions at successive scales.

Such invertible filter banks based on the harmonic dilation were already devel-
oped in the case of axisymmetric wavelets [97, 216]. Our definition of factorized
steerable wavelets with compact harmonic support allows a straightforward gen-
eralization to directional wavelets with the kernel dilation. Also, notice that the
constraints of steerability and compact harmonic support for the scale-discretized
wavelets can technically be relaxed without affecting the Littlewood–Paley decom-
position. However, both properties are essential for the control of localization and
directionality properties through kernel dilation. Moreover, in the absence of com-
pact harmonic support, relation (4.74) turns into a resolution of the contracted scal-
ing function Φ̃Γ (α−1l), which differs from unity below the band limit. In other
words, the filter bank developed in such a case analyzes the part of the signal
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Fig. 4.7: Plots of the example scale-discretized wavelet designed with B = 1024, α = 2, and N = 3.
The wavelets are represented at the four largest analysis depths: from left to right j = 7, j = 8, and
j = 9, and below j = 10. Light and dark regions respectively correspond to positive and negative
values of the functions (see value bars). The wavelets are neither translated, i.e., they have their
central position at the north pole, nor rotated, i.e., they are in their original orientation χ = 0
(the meridian ϕ = 0 corresponds to a vertical line passing by the north pole). (Figure borrowed
from [238].)

corresponding to its standard correlation with the contracted scaling function, rather
than the signal itself. In the absence of compact harmonic support and steerability,
essential multiresolution properties are also lost (see Section 4.6.1). The mem-
ory and computation time requirements of the algorithm for the analysis and
reconstruction of signals therefore increase significantly and may rapidly become
overwhelming.

Second, also notice that scale-discretized axisymmetric wavelets with compact
harmonic support and dilated through kernel dilation were introduced under the
name of needlets [193, 11, 178]. It is possible to show that the needlet coefficients of
a wide class of random signals on the sphere are uncorrelated in the asymptotic limit
of small scales, at any fixed angular distance on S2. The scale-discretized steerable
wavelets with compact harmonic support, thanks to their factorized form and to the
choice of the kernel dilation, are also good candidates for a directional extension of
needlets.

Third, invertible filter banks based on the stereographic dilation have also
recently been proposed [245], but they do not share these essential multiresolution
properties.

Finally, frames of stereographic wavelets have been constructed in [25] by direct
discretization of the translation, rotation, and dilation parameters. Notice though that
the obtained frames are not tight, which means that numerical reconstruction can
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only be achieved by resorting to rather heavy algorithms that seek to approximate the
pseudo-inverse of the forward analysis wavelet operator. By contrast, the formalism
discussed here leads to an efficient and simple numerical scheme.

4.6 Reconstruction Algorithm

In this section, we identify the multiresolution properties of the scale-discretized
wavelet formalism developed. We also describe a corresponding fast algorithm for
the analysis and reconstruction of signals.

4.6.1 Multiresolution

We consider the analysis and reconstruction of a signal F ∈ L2(S2,dΩ) with a scale-
discretized wavelet Γ ∈ L2(S2,dΩ), which is a factorized steerable function with
compact harmonic support. The band limit and basis dilation factor of interest are
denoted B and α > 1, respectively.

The compact harmonic support of the scale-discretized wavelet Γα j is reduced in

the intervals l ∈≤
(⌊
α−(1+ j)B

⌋
,
⌈
α(1− j)B

⌉)
through the kernel dilation at each

analysis depth j. As a function on SO(3), the wavelet coefficients at depth j
exhibit the same compact harmonic support as the scale-discretized wavelet Γα j .

From relation (4.79), the Wigner D-transform (̂W F
Γ )

l

mn(α
j) of the wavelet

coefficients is indeed nonzero only in the same interval as the wavelet. In partic-

ular, the band limit of the wavelet coefficients is decreased to
⌈
α(1− j)B

⌉
at depth

j. Consequently, the number of sampled values required for the wavelet coefficients
is reduced at each increase of the analysis depths j to α2(1− j) O(B2) discrete points
of the form (ω0)i( j) on S2, where i( j) simply indexes these points. The number of
operations required for their computation is reduced correspondingly. Hence, the
kernel dilation applied to scale-discretized wavelets with compact harmonic sup-
port provides a first strong multiresolution property for the formalism. The steer-
ability of the wavelet is also important in the algorithmic structure of the analysis,
beyond its interest in preserving directionality properties through kernel dilation.
At each point (ω0)i( j) and at each analysis depth j, the wavelet coefficients of a
signal F with the scale-discretized wavelet Γα j are known for all continuous rota-
tion angles χ ∈ [0,2π) as a linear combination of the wavelet coefficients of F with
M basis wavelets, which can be taken as specific rotations Γχp,α j of the wavelet
Γα j , with 0 ≤ p ≤ M − 1. From this perspective, steerability provides a second
strong multiresolution property for the formalism.

In summary, when multiresolution properties of the formalism are fully
accounted for, a reduced number of discrete points of the form ρI( j) = ((ω0)i( j),χp)
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on SO(3) are required for the sampled values W F
Γ (ρI( j),α j) of the wavelet coeffi-

cients, where I( j)={i( j), p} simply indexes these points at each analysis depth j.

4.6.2 Fast Algorithm

We describe here an algorithm for both analysis and reconstruction. As for the
analysis algorithms described earlier in this chapter, it is designed in harmonic space
in order to take advantage of the directional correlation relation (4.79).

Some precalculations are required in order to build the wavelets Γα j in real
space, from the spherical harmonic coefficients Ψ̂lm of a continuous wavelet in
relation (4.69). As it clearly appears in the following, the cost of these operations is
negligible relative to the cost of the analysis and reconstruction themselves. More-
over, it must be performed only once for all signals to be analyzed.

The analysis may be performed by application of either the separation-of-
variables algorithm or the factorization-of-rotations algorithm defined in Section
4.4, at all analysis depths j separately. The band-limited signal F is given in terms
of its sampled values F(ωi) on the O(B2) discrete points ωi of the chosen pixeliza-
tion of S2. The resulting band-limited coefficients W F

Γ (ρ ,α j) at each depth j are
given in terms of sampled values W F

Γ (ρI( j),α j) on the α2(1− j) O(M B2) discrete
points ρI( j) of the chosen pixelization of SO(3). The exactness of the computation
relies only on the exactness of the computation of the spherical harmonic coeffi-
cients of the signal, which depends on the existence of a sampling theorem on the
initial pixelization on which the original signal was sampled. The a priori compu-
tational complexity for the directional correlation (4.77) by quadrature is of order
α4(1− j)×O(M B4) at each analysis depth j. This cost is reduced to α3(1− j)O(M B3)
with the steerable optimization of the fast analysis algorithms.

The reconstruction part of the algorithm proceeds through the exact same
operations as the analysis, in reverse order. The Wigner D-function coefficients

(̂W F
Γ )

l

mn(α
j) of the wavelet coefficients are computed by quadrature through a

direct Wigner D-function transform at each analysis depth j. The spherical harmonic
coefficients of the reconstructed signal F̂lm are then obtained as a finite summa-
tion following from relations (4.82) and (4.83). The samples F(ωi) of the signal
are finally recovered by a simple inverse spherical harmonic transform. The recon-
struction is symmetric to the analysis and therefore requires the same number of
operations.

The total computational complexity of the algorithm is obtained by summing
over all analysis depths j with 0 ≤ j ≤ J. In the most exacting case where J = JB(α),
it simply reads as

C (α,B,M) =
[
1 + c

(
α3)(1−α−3JB(α)

)]
O(M B3). (4.84)

In this expression, the impact of the compact harmonic support of the scale-
discretized wavelet is concentrated in c(α3) = α3/(α3 −1) ∈ [1,∞). For example,
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a complete decomposition at a high band limit with a dyadic decomposition of the
scales α = 2 gives C $ 15/7×O(MB3). Obviously, the more compact the support
of the scale-discretized wavelet, the larger the computational complexity.

Let us finally comment on the exactness of the analysis and reconstruction
algorithm described. If pixelizations of S2 and SO(3) are chosen where a sampling
theorem holds, exact quadrature rules hold both for the direct spherical harmonic
transform of a band-limited signal in the analysis part, and for the direct Wigner
D-function transform of its wavelet coefficients in the reconstruction part. Such
exact quadrature is accessible on equiangular or Gauss–Legendre pixelizations on
S2 for sampling of the original signal on points ωi, and for sampling the wavelet
coefficients at each analysis depth j and for each value χp on points (ω0)i( j). In this
context, if the computed wavelet coefficients are not altered before reconstruction,
the exact same samples are obtained after reconstruction as for the original signal F .
Again, HEALPix pixelizations provide nonexact but very precise quadrature rules.

Details on the algorithmic structure, computation times, memory requirements,
and numerical stability of the corresponding implementation may be found in
[238].3

4.7 Applications

In this section, we illustrate the usefulness of the wavelet formalisms developed for
analysis and reconstruction of signals in the context of applications in astrophysics
and neuroscience.

4.7.1 Cosmic Microwave Background Analysis

The aim of cosmology is the study of the structure and evolution of the universe.
The last decades have led us to the dawn of a new era of precision cosmology,
characterized by access to more and more precise observations of our universe. One
of our best laboratories is the cosmic microwave background radiation (CMB).

The CMB is a relic black-body radiation, a unique realization of a random
process that occurred in the early universe. The radiation is observed in all direc-
tions of the celestial sphere. The corresponding data crystallize various forms of
complexities. The data are distributed on the surface of the celestial sphere. Cur-
rent and forthcoming experiments give access to high angular resolutions on the
celestial sphere, and therefore large volumes of data. The radiation is described not
only by a scalar temperature field but also by tensor polarization parameters. The
observed CMB signal is inevitably contaminated by galactic and extragalactic fore-
ground emissions that allow only partial sky coverage. Moreover, data are inevitably

3 Code for Steerable and Scale-Discretized Wavelets on the sphere (S2DW) is available for down-
load at the following URL: http://www.mrao.cam.ac.uk/∼jdm57/software.html



170 Pierre Vandergheynst and Yves Wiaux

contaminated by instrumental noise, blurred by an experimental beam, and affected
by other sources of systematic errors.

In this context, the analysis of CMB data is of major importance to obtain a
precise picture of the universe through the definition of a cosmological model that
best fits the data. Wavelets on the sphere appeared in recent years as an essential
tool for CMB data analysis. Corresponding analyses of the Wilkinson Microwave
Anisotropy Probe satellite mission (WMAP) data have allowed the probe of the
fundamental pillars of our models. Gaussianity and statistical isotropy of the random
process from which the CMB arises have been studied and corresponding anomalies
were found in the data, thereby confirming and synthesizing other analyses. The
presence of a very poorly understood form of energy in the universe, called dark
energy, was also assessed and confirmed independently of other probes through
wavelet analyses. These analyses were based on the decomposition of the CMB
temperature signal on the sphere with continuous axisymmetric, directional, and
steerable wavelets. Statistical analyses of the corresponding wavelet coefficients led
to the physical conclusions. The first of these analyses is reviewed in [185]. More
recent analyses are specifically based on steerable wavelets [240, 230, 189, 239].

To quote only one of these applications, steerable wavelets have allowed the
identification of anomalously preferred directions in the CMB data, through the
following process. The steerability gives access to morphological measures of local
features of the signal at a given analysis scale a and around each pointω0. The orien-
tation χ∗(a,ω0) of a local feature may notably be defined as the direction in which
the signal response to the wavelet has maximum absolute value. This orientation
may simply be obtained from relation (4.32). The corresponding absolute value of
the signal identifies the intensity of the feature. The alignment of local CMB features
toward specific directions on the celestial sphere can then be probed by combining
the information on the orientation and on the intensity of local features. First, the
great circle is defined, which passes by the point ω0 and admits as a tangent the
local direction defined by χ∗(a,ω0). All directions on that great circle are consid-
ered to be seen by the local feature at ω0 with a weight naturally given as the inten-
sity at that point. At scale a, the degree of preference of each direction ω is defined
as the sum of the weights originating from all points in the original signal for which
the defined great circle crosses the direction considered. Fig. 4.8 represents the
result of this alignment analysis with a second Gaussian derivative wavelet at a
typical scale of 10◦ of angular opening, as performed on WMAP data in compar-
ison with simulations based on an assumption of isotropy of the universe. Further
analysis of this result allowed the identification of a mean preferred plane with a
normal direction close to the CMB dipole axis, and a mean preferred direction in
this plane, very close to the ecliptic poles’ axis [240, 230].

4.7.2 Human Cortex Image Denoising

Subtle changes in human cortical thickness are thought to be associated with
neurological or clinical deficiencies. It is therefore important to detect these changes
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Fig. 4.8: Cumulative probabilities map in Mollweide projection of a HEALPix pixelization
(Nside = 32), for the degree of preference of each direction on the celestial sphere as obtained
by an alignment analysis of the CMB signal using continuous steerable wavelets. The observed
pattern presents several great circles of anomalously high (red) and low (blue) preference with
a value well higher, or lower, than the median value of the simulations. (Figure borrowed from
[230].)

using bioimaging modalities. Typically, cortical thickness maps are inferred over the
brain surface through magnetic resonance imaging (MRI) examinations.
Cortical thickness features are extracted from these maps and studied using
statistical tests. The acquisition process is, however, unavoidably affected by noise.
As discussed in [21], the outcome of the statistical tests is known to be greatly
improved by spatial smoothing, specifically with low-pass Gaussian filters, which
enhances the signal-to-noise ratio. Since the cortex is a very convoluted surface,
there is no easy way directly to apply simple low-pass filtering. One successful
method, illustrated in Fig. 4.9, is to first map the cortex to a sphere where scalar
data can be analyzed in a simple way.

In this context, scale-discretized wavelets on the sphere offer a very flexible
and computationally efficient way to denoise data while preserving the most salient
features and most important spatial variations. Denoising with wavelets obviously
require a discrete formalism where the signal may be reconstructed after modi-
fication of its wavelet coefficients. In [21], the spherical cortical thickness map
is processed using scale-discretized axisymmetric wavelets on the sphere such as
those discussed in Section 4.5. The wavelet coefficients are then thresholded by soft
thresholding [69] in order to remove the noise, which is assumed to be uniformly
distributed over the coefficients, while the most important spatial variations of the
original data are encoded in the strongest wavelet coefficients only. This study shows
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Fig. 4.9: A cortical thickness map is measured from T1 MRI sequences. The scalar map is then
inflated to a spherical surface before being processed. (Figure reproduced from [21], with the kind
permission of the authors.)

that wavelet denoising yields a significant improvement over spatial smoothing by
Gaussian filtering, as illustrated in Fig. 4.10.

Fig. 4.10: Comparison of processing of a cortical thickness map by spatial smoothing using a
Gaussian filter or by denoising using soft thresholding of wavelet coefficients. Wavelets allow
for better reconstruction of morphological features. (Figure reproduced from [21], with the kind
permission of the authors.)
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4.8 Conclusion

The wavelet transform has grown into a mature tool for data analysis and has
enjoyed large success in an amazingly broad spectrum of applications. In this
chapter, we have reviewed several constructions that aim at extending wavelets to
data defined in spherical geometry, which is a desirable generalization for many
practical problems.

Wavelets on the sphere implement multiresolution through specific dilation
mechanisms, but the concept of directional correlation provides a flexible frame-
work that unifies the various families of wavelets discussed here. We have seen that
the continuous wavelet formalism on the sphere is a powerful analysis tool, while
the scale-discretized wavelet formalism offers a full-fledged framework for digital
data processing on the sphere, allowing for reconstruction from wavelet coefficients.
Finally, this theoretical formalism is also backed up by computationally
efficient algorithms. Virtually all applications involving wavelets can now be gen-
eralized to data on the sphere. In particular, solving inverse problems in spherical
geometry, notably denoising and deconvolution problems, by imposing some sort
of sparsity of wavelet coefficients is of significant practical interest in application
fields ranging from astrophysics to neuroscience.
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Exercises

1. Prove the Plancherel relation (4.8) from the orthonormality of the spherical
harmonics.

2. Prove that the stereographic dilation Da on points in (4.18) is the unique radial
conformal diffeomorphism on S2.

3. Prove that the expression λ 1/2(a,θ ) = a−1[1 + tan2(θ/2)]/[1 + a−2 tan2(θ/2)]
is required to ensure unitarity of the dilation D(a) of functions in L2(S2,dΩ).

4. Prove the pointwise product form (4.28) for the Wigner D-function transform of
the directional correlation defining wavelet coefficients of a signal on S2.

5. Prove that the admissibility condition (4.30) is a necessary and sufficient condi-
tion for the reconstruction formula (4.29).

6. Prove that the stereographic projection π in (4.44) is the unique radial conformal
diffeomorphism mapping the sphere S2 onto the plane R2.

7. Prove that the prefactors in (4.44) are required to ensure the unitarity of the
projection operatorΠ between L2(R2,d2x) and L2(S2,dΩ).

8. Prove the relation (4.62) for the factorization of rotations.
9. Prove that the admissibility condition (4.59) for continuous wavelets simply

turns into the resolution of the identity (4.74) after scale discretization.
10. Prove the expression (4.75) for the maximum analysis depth JB(α).



Chapter 5
Wiener’s Lemma: Theme and Variations.
An Introduction to Spectral Invariance and
Its Applications

Karlheinz Gröchenig

Abstract Wiener’s Lemma is a classical statement about absolutely convergent
Fourier series and remains one of the driving forces in the development of Banach
algebra theory. In the first part of the chapter—the theme—we discuss Wiener’s
Lemma in detail. We prove Wiener’s Lemma and discuss equivalent formulations
about convolution operators. We then extract the underlying abstract concepts from
Banach algebras. In the second part of the chapter—the variations—we discuss
several, mostly noncommutative reincarnations of Wiener’s Lemma. We will
develop some of the theoretical background and explain why Wiener’s Lemma is
still useful and inspiring. The topics cover weighted versions of Wiener’s Lemma,
infinite matrix algebras, noncommutative tori and time-frequency analysis,
convolution operators on noncommutative groups, and time-varying systems and
pseudodifferential operators.

5.1 Introduction

Wiener’s Lemma is a classical and seemingly innocent result about absolutely
convergent Fourier series. In its original version it asserts that the pointwise
inverse of an absolutely convergent Fourier series without zeros is again an
absolutely convergent Fourier series. This result is contained in every text about
Fourier series and in every treatment of commutative Banach algebras. Norbert
Wiener needed this lemma for his proof of a “Tauberian theorem” [241, 242].

But Wiener’s Lemma is much more: Wiener’s Lemma is central in the develop-
ment of the abstract theory of Banach algebras and has inspired Gel’fand’s theory of
commutative Banach algebras [100, 101]. The generalizations of Wiener’s Lemma
are now legion, and this chapter bears witness to some recent developments.
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Why is Wiener’s Lemma so important?

Wiener’s Lemma is a deep result about the invertibility and spectrum of cer-
tain operators.

For the direct verification that the function 1/ f possesses an absolutely conver-
gent Fourier series, we would have to calculate or estimate the Fourier coefficients
of 1/ f and check that they are summable. Wiener’s Lemma offers a much easier
test. We only need to make sure that f does not have any zeros; this means that 1/ f
exists as a continuous function. This is the heart of Wiener’s Lemma: A difficult
condition for the invertibility can be replaced by an easier, more evident, and more
convenient condition.

Clearly, the understanding of the invertibility is of tremendous importance for
solving systems of linear equations or operator equations. Indeed, parallel to our
journey through the manifold aspects of Wiener’s Lemma, we will discuss its rel-
evance in signal analysis. In engineering Wiener’s Lemma plays a vital role in the
analysis of signal transmission, time-invariant and time-varying channels, and for
the signal recovery in wireless communications.

The realm of Wiener’s Lemma is a vector space of functions that can be multi-
plied by each other. Adding a norm and completeness, the mathematical structure
in the background is that of a Banach algebra. Thus, from an abstract point of view
Wiener’s Lemma is about invertibility in a Banach algebra and provides an easy
criterion. A function f is invertible as an absolutely convergent Fourier series if and
only if it is invertible as a continuous function.

The invertibility of a function or an operator is closely related to its spectrum,
and we will see how Wiener’s Lemma can be formulated as a result about spectral
invariance. The spectrum of an absolutely convergent Fourier series f is independent
of the underlying Banach algebra. The concept of spectral invariance is fundamental
in many fields. One of our objectives is a unified treatment of spectral invariance
in several areas of mathematics and to trace back several fundamental results on
spectral invariance to Wiener’s Lemma.

Following the title, this chapter is divided into two parts, the theme and its
variations.

Section 5.2 discusses the classical version of Wiener’s Lemma under different
angles. We introduce absolutely convergent Fourier series and then elaborate an ele-
mentary proof of Wiener’s Lemma. This proof is void of abstract theory and requires
only elementary estimates from analysis. Only then do we provide the structural
background and interpret Wiener’s Lemma in the context of Banach algebra theory.
In Section 5.2.5 we discuss the main concepts of spectral invariance and the imme-
diate consequences. Finally, we convert Wiener’s Lemma to a statement about the
spectrum of convolution operators.

The material is fundamental for an appreciation of the variations, because the
sequence of definitions and results sets the pattern for the treatment of the variations,
which are usually considered parts of different fields of mathematics.
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Section 5.2 is elementary and requires only basic analysis. We do not even need
the Gel’fand theory of commutative Banach algebras, although some knowledge of
Banach algebras may be helpful to appreciate the context and to open more perspec-
tives on Wiener’s Lemma.

Section 5.3 is devoted to variations of Wiener’s Lemma in several areas of math-
ematics, namely in Fourier analysis, infinite matrix algebras and operator theory,
in the noncommutative geometry of tori and time-frequency analysis, in the
harmonic analysis of locally compact groups, and in the theory of pseudodifferential
operators.

In each of the variations we will set up the basic concepts, and then draw the anal-
ogy between Fourier series and the new object, series of time-frequency shifts, say.
The analogy to Fourier series usually suggests some natural questions; in particular,
we will always wonder whether a version of Wiener’s Lemma holds. We then will
proceed to formulate answers that are similar to the classical Wiener’s Lemma. The
proofs are usually much more advanced, and some proofs are outside the scope of
this introduction. Wiener’s Lemma is often hidden in the proofs, and we will try to
make the connections visible. Section 5.3 can no longer be self-contained, because
the mathematical concepts are drawn from disjoint mathematical worlds. Our goal
is to reveal the common structure and convince the reader that the topics treated are
indeed variations of a classical theme, albeit the variations may be highly nontrivial.

In Section 5.3.1 we introduce weights and investigate weighted versions of
Wiener’s Lemma for Fourier series. We discuss the dichotomy between subexpo-
nential and exponential weights and define the Gel’fand–Raikov–Shilov condition.
This is a new concept that arises invariably in spectral problems with weights.

Section 5.3.2 deals with the spectral invariance of matrices with some form of
off-diagonal decay and is a first version of a noncommutative Wiener’s Lemma.
In Section 5.3.3 we turn to time-frequency analysis and investigate series of time-
frequency shifts instead of Fourier series. The next section, 5.3.4, treats convolution
operators on general locally compact groups. Here we have to content ourselves with
explaining the concepts of harmonic analysis, stating the results, and discussing
their meaning. Section 5.3.5 is devoted to pseudodifferential operators and their
invertibility. We discuss a class of symbols (the so-called Sjöstrand class) that
resembles absolutely convergent Fourier series and formulate the correct general-
ization of Wiener’s Lemma for pseudodifferential operators.

In the last section, 5.3.6, we explain how and why the results on pseudodifferen-
tial operators can be used for the analysis of time-varying systems and in wireless
communications.

5.2 Wiener’s Lemma—Classical

Let us motivate Wiener’s Lemma with a familiar statement from calculus. Let
Ck(T) be the space of k-times differentiable functions with period 1. We identify
the interval [0,1) of a period with the torus T = {z ∈ C : |z| = 1} when necessary.
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The product rule ( f g)′ = f ′g + f g′ implies that Ck(T) is an algebra. The quotient
rule for differentiation implies the following property of Ck(T).

Lemma 5.1. If f ∈ Ck(T) and f (t) = 0 for all t ∈ [0,1), then 1/ f ∈ Ck(T).

Proof. Since (1/ f )′ = − f ′/ f 2, 1/ f is continuously differentiable whenever
f (t) = 0. Now proceed by induction. Assume that we already know that 1/ f ∈C�(T)
for � < k. Then (1/ f )′ = − f ′/ f 2 is continuous and in C�(T) by the induction
hypothesis. Therefore 1/ f ∈ C�+1(T). 
�

5.2.1 Definitions from Banach Algebras

The quotient rule and Lemma 5.1 are about the invertibility of differentiable
functions. The abstract discussion of invertibility is best carried out in the context
of Banach algebras. To begin with, let us recall the standard definitions.

Definition 5.2. A Banach space A is called a Banach algebra if it possesses a mul-
tiplication A ×A →A that satisfies the following properties for all a,b,c ∈A and
λ ∈ C:

1. (a + b)c = ac + bc and a(b + c) = ab + ac;
2. (ab)c = a(bc);
3. (λa)b = a(λb) = λ (ab);
4. ‖ab‖ ≤ ‖a‖‖b‖.

We always assume that A possesses a unit element e that satisfies ae = ea = a
for all a ∈ A . In a unital algebra an element a is called invertible if there exists an
element b ∈ A such that ab = ba = e. If such a b exists, it is unique and called the
inverse of a and denoted by a−1.

If we endow Ck(T) with the norm ‖ f‖Ck = ∑k
j=0

1
j!‖ f ( j)‖∞, then Ck(T)

becomes a Banach algebra with respect to pointwise multiplication (see Exercises).
Lemma 5.1 provides a simple and in this case rather obvious condition for the
invertibility of an element in the algebra Ck(T).

5.2.2 Absolutely Convergent Fourier Series

Let us now introduce A (T), the main object of Wiener’s Lemma.

Definition 5.3. A periodic function f possesses an absolutely convergent Fourier
series if it can be written as f (t) = ∑k∈Z ak e2π ikt with coefficients in a ∈ �1(Z). In
this case we write f ∈ A (T) and endow A (T) with the norm

‖ f‖A = ‖a‖1 = ∑
k∈Z

|ak| .

It is not completely obvious that ‖ · ‖A is a norm. This fact follows from the
uniqueness of the Fourier coefficients.
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Lemma 5.4. The space A (T) is a Banach algebra under pointwise multiplication.

Proof. Let f (t) =∑k∈Z ak e2π ikt and g(t) =∑k∈Z bk e2π ikt with norms ‖ f‖A = ‖a‖1

and ‖g‖A = ‖b‖1. Then

f (t)g(t) =

(
∑
k∈Z

ake2π ikt

)(
∑
l∈Z

ble
2π ilt

)
= ∑

k,l∈Z

akble
2π i(k+l)t

= ∑
n∈Z

(
∑
k∈Z

akbn−k︸ ︷︷ ︸
)

e2π int . (5.1)

(a∗b)(n)

The interchange of the summation is justified because both series converge
absolutely. Thus, the coefficients of the pointwise product f g are given by the con-
volution of the sequences a and b. Now

‖a ∗b‖1 = ∑
n∈Z

∣∣∣∑
k∈Z

akbn−k

∣∣∣
≤ ∑

k∈Z

∑
n∈Z

|ak| |bn−k| = ‖a‖1‖b‖1 ,

and consequently,

‖ f g‖A = ‖a ∗b‖1 ≤ ‖a‖1‖b‖1 = ‖ f‖A ‖g‖A .

The other properties of Definition 5.2 are obvious, and thus A (T) is a Banach
algebra. 
�

In Section 5.3 we will encounter several variations of this proof in rather different
contexts.

5.2.3 Wiener’s Lemma

As with the algebra Ck(T), we may now investigate the invertibility for absolutely
convergent Fourier series. The formulation of Lemma 5.1 suggests the following
question: If f ∈A (T) and f (t) = 0 for all t ∈ [0,1), is f then invertible in A (T)? In
the absence of a quotient rule the answer is by no means obvious. It is given by the
following theorem, which, with historical understatement, is now called Wiener’s
Lemma.

Theorem 5.5 (Classical formulation). If f ∈ A (T) and f (t) = 0 for all t ∈ T, then
also 1/ f ∈ A (T), i.e., 1/ f (t) = ∑k∈Z bk e2π ikt with b ∈ �1(Z).
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Wiener’s original proof [241, 242] from 1932 uses a localization property and a
partition-of-unit argument. Today’s standard proof is an abstract proof via Gel’fand
theory [56, 150, 151, 209].

Wiener’s Lemma has intrigued many analysts and is the seed for the abstract
theory of Banach algebras by Gel’fand. In fact, Gel’fand [100, 101] developed his
theory of commutative Banach algebras for the specific purpose of finding a con-
ceptual proof of Wiener’s Lemma. Variations of Wiener’s lemma and its proof were
found by Levy [165] and Zygmund [248]. An interesting proof of Wiener’s Lemma
without the use of Fourier series was given by Hulanicki [142]. A very short, ele-
mentary proof was found by Newman [194].

Quantitative aspects of Wiener’s Lemma, namely norm estimates for the inverse
f−1, were investigated by Nikolski [195] and Tao [222].

5.2.4 Proof of Wiener’s Lemma

Here we give an elementary proof of Wiener’s Lemma following Newman [194]
and Hulanicki [142]. It is of interest in its own right because it does not use Fourier
series and avoids the abstract notions of Gel’fand theory.

Step 1. Reduction to special case. If f ∈ A (T), then also f ∈ A (T) and | f |2 =
f · f ∈ A (T). Since 1/ f = f/| f |2, it suffices to show that 1/| f |2 ∈ A (T).
By replacing f by | f |2, we may assume without loss of generality that f is
nonnegative. By normalizing, we may further assume that 0 ≤ f (t) ≤ 1 for t ∈ T.

Now note that since f is continuous, the assumption f (t) = 0 for all t implies
that

inf
t∈T

| f (t)| = δ > 0 . (5.2)

Step 2. Analyze the invertibility of f in C(T) by a geometric series. Let
h = 1− f ; then

0 ≤ h(t) = 1− f (t) ≤ 1− δ .

Hence, the geometric series ∑∞n=0 h(t)n converges in C(T) and possesses the limit

∞

∑
n=0

h(t)n =
1

1−h(t)
=

1
f (t)

∈C(T) .

Our goal is to show that ∑hn also converges in A (T).

Step 3. Approximate h by a trigonometric polynomial. Given ε > 0, choose a
trigonometric polynomial p(t) such that

‖h− p‖A < ε .

If fact, if f (t) = ∑k∈Z ake2π ikt , we may choose p(t) = 1 − ∑|k|≤N ake2π ikt for
sufficiently large N and obtain ‖h− p‖A = ∑|k|>N |ak| < ε .

Set r = h− p; then h = p + r and ‖r‖A < ε .
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As to the choice of ε , we will see that we must have 1− δ + 2ε < 1, where δ is
given by (5.2).

Step 4. Some elementary estimates. First, if q(t) = ∑|k|≤N bke2π ikt is a trigono-
metric polynomial of degree N, then

‖q‖A = ∑
|k|≤N

|bk| ≤ ‖b‖2 (2N + 1)1/2

= ‖q‖2 (2N + 1)1/2 ≤ ‖q‖∞ (2N + 1)1/2 .

Second, if q is trigonometric polynomial of degree N, then qk is a trigonometric
polynomial of degree kN.

Step 5. Estimate the A -norm of hn. By the binomial theorem we have

hn =
n

∑
k=0

(
n
k

)
pkrn−k ,

so we may estimate

‖hn‖A ≤
n

∑
k=0

(
n
k

)
‖pkrn−k‖A

≤
n

∑
k=0

(
n
k

)
‖pk‖A ‖rn−k‖A .

Now by our choice of p in Step 3, we have ‖rn−k‖A ≤ ‖r‖n−k
A < εn−k. By Step 4

applied to the trigonometric polynomials pk, we have

‖pk‖A ≤ ‖pk‖∞ (2Nk + 1)1/2 ≤ (2Nn + 1)1/2‖p‖k
∞ .

Step 6. Complete the estimate for the A -norm of hn.

‖hn‖A ≤ (2Nn + 1)1/2
n

∑
k=0

(
n
k

)
εn−k‖p‖k

∞

= (2Nn + 1)1/2 (‖p‖∞+ ε)n ≤ (2Nn + 1)1/2 (‖h− r‖∞+ ε)n

≤ (2Nn + 1)1/2 (‖h‖∞+ 2ε)n ≤ (2Nn + 1)1/2(1− δ + 2ε︸ ︷︷ ︸)n.

< 1

(5.3)

Step 7. Convergence of geometric series in A -norm. Using the estimate from
the previous step, we finally obtain that

∞

∑
n=0

‖hn‖A ≤
∞

∑
n=0

(2Nn + 1)1/2 (1− δ + 2ε)n < ∞ . (5.4)

Thus, the geometric series ∑∞n=0 hn converges in A (T), and we have proved that
1/ f = ∑∞n=0 hn ∈ A (T). 
�
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Remark 5.6. Let us take nth roots in (5.3). Then we obtain

lim
n→∞‖hn‖1/n

A ≤ ‖h‖∞+ 2ε .

Since ε > 0 was arbitrary, this implies that

lim
n→∞‖hn‖1/n

A ≤ ‖h‖∞ = lim
n→∞‖hn‖1/n

∞ .

Since ‖hn‖∞ ≤ ‖hn‖A always holds, the estimate in (5.3) implies that

lim
n→∞‖hn‖1/n

A = lim
n→∞‖hn‖1/n

∞ . (5.5)

This identity can be interpreted as a statement about spectral radii. It is
fundamental for the generalizations and abstract versions of Wiener’s Lemma. See
Proposition 5.11.

Remark 5.7. The proof above is certainly not the simplest proof and lacks the
elegance of Gel’fand theory. However, in view of the many variations and general-
izations of Wiener’s Lemma, it is important to understand which properties of A (T)
come into play. First, we have studied the problem on the dense subspace of trigono-
metric polynomials; second, we have compared several norms, namely the L2-norm,
the L∞-norm, and the A -norm. The A -norm is rather tricky, because it is defined
indirectly via the Fourier coefficients. The comparison of ‖ · ‖A with more accessi-
ble norms is therefore natural. Last but not least, we used that A (T) is commutative,
when we applied the binomial theorem in Step 5.

Remark 5.8. The final estimate (5.4) of the proof leads to an estimate for the norm
of 1/ f in A (T). The norm ‖1/ f‖A depends on δ , on ε , and on N, which in turn
is a function of ε . It can be shown that there is no control of ‖1/ f‖A in terms
of δ alone [195]. The problem of norm-controlled inversion in Banach algebras is
rather difficult, and in general little can be said. We refer to the beautiful work of
Nikolski [195] and an essay by Tao [222].

5.2.5 Abstract Concepts—Inverse-Closedness

Following Naimark, let us now take a very abstract look at Wiener’s Lemma.
Naimark [191, 192] turned Wiener’s Lemma into a definition. This is not a cheap
trick (to avoid a proof), but Naimark’s procedure conveys an important insight into
Wiener’s Lemma. Naimark understood that Wiener’s Lemma is a result about the
relationship between two Banach algebras, namely, the algebras A (T) and C(T). In
particular, the condition “ f (t) = 0,∀t ∈ T” occurring in Theorem 5.5 simply means
that f is invertible in C(T). This observation justifies the following definition.

Definition 5.9. Let A ⊆ B be two Banach algebras with a common identity. Then
A is called inverse-closed in B if

a ∈ A and a−1 ∈ B =⇒ a−1 ∈ A .
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In other words, A is inverse-closed in B if an element a in the smaller algebra
that is invertible in the bigger algebra is automatically invertible in the smaller alge-
bra. Or to put it differently, an element a ∈ A is invertible in A if and only if a is
invertible in B.

The inverse-closedness is often extremely useful for the study of invertibility.
The large algebra B contains more invertible elements; it may therefore be easier
to check the invertibility of an element. If we start with a ∈ A , then a−1 is auto-
matically in A . The direct verification that a is invertible in A may be much more
difficult.

In the light of Definition 5.9, Wiener’s Lemma states that the algebra of
absolutely convergent Fourier series A (T) is inverse-closed in the algebra C(T).
For most mathematicians it is easier and more natural to see that f does not have
any zeros on the interval [0,1). The direct verification of 1/ f ∈A (T) would require
finding the Fourier coefficients of 1/ f and checking whether they are absolutely
summable.

Inverse-closedness is an important concept in many area of mathematics where
Banach algebra arguments and spectra of operators play a role. Each area uses its
own terms, and so there is a Babylonian confusion in the terminology. We follow
Barnes [13]. Naimark uses the term Wiener pair (A ,B) when A is inverse-closed
in B. Palmer [196] says that A is a spectral subalgebra of B. In K-theory one
says that A is a local subalgebra of B [22]; in the Russian literature (or rather its
translations into English) A is a full subalgebra of B. Connes [55] says that A is
invariant under holomorphic calculus in B, and Arveson [8] calls A a spectrally
invariant subalgebra of B and uses the term spectral permanence. Some of the ter-
minology will become clearer when we discuss the properties of inverse-closedness
in more detail.

5.2.5.1 Spectral Invariance

Recall that the spectrum of an element a in Banach algebra A (with unit e) is defined
to be the set

σA (a) = {λ ∈ C : a−λe is not invertible in A }.
The spectral radius of a is

rA (a) = max{|λ | : λ ∈ σA (a)} = lim
n→∞‖an‖1/n

A .

The last identity is the fundamental spectral radius formula. See [27, 56, 150, 209].

Lemma 5.10. Let A ⊆ B be two Banach algebras with a common unit e. Then the
following statements are equivalent:

1. A is inverse-closed in B.
2. σA (a) = σB(a) for all a ∈ A .

Proof. (1) ⇒ (2): If λ ∈ σA (a), then (a − λe)−1 ∈ A ⊆ B, so λ ∈ σB(a). This
means that

σB(a) ⊆ σA (a) .
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This argument shows that the inclusion A ⊆ B always implies that
σB(a) ⊆ σA (a) .

Conversely, if a ∈ A and λ ∈ σB(a), then (a−λe)−1 ∈ B. Since A is inverse-
closed in B, (a−λe)−1 must also be in A , and so λ ∈ σA (a) and thus

σA (a) ⊆ σB(a) .

(2)⇒ (1): a ∈A ,a−1 ∈ B means 0 ∈ σB(a), so 0 ∈ σA (a) and a−1 ∈A . Thus,
A is inverse-closed in B. 
�

Lemma 5.10 explains why the term spectral invariance is often used in
connection with an inverse-closed subalgebra.

In the light of Lemma 5.10, Wiener’s Lemma states that

σA (T)( f ) = σC(T)( f ) = f (T) . (5.6)

In general, it is very difficult to verify when an algebra A is inverse-closed in
B. Hulanicki’s lemma [143] yields an important criterion for, and offers a strategy
to prove, inverse-closedness. In this regard Hulanicki’s result lies somewhat deeper
and requires some additional property of the larger algebra B.

Recall that an involution a → a∗ of an algebra A is a mapping that satisfies the
following properties: (a) (λa + µb)∗ = λ̄a∗ + µ̄b∗ for all a,b ∈ A and λ ,µ ∈ C;
(b) (a∗)∗ = a for all a ∈ A ; and (c) (ab)∗ = b∗a∗ for all a,b ∈ A . A Banach algebra
with a continuous involution is called a Banach ∗-algebra. A Banach ∗-algebra A
is called symmetric if σA (a∗a) ⊆ [0,∞) for all a ∈ A ; i.e., the spectrum of positive
elements is positive.

Proposition 5.11 (Hulanicki’s lemma). Assume that A ⊆ B are two Banach
∗-algebras with a common unit element and common involution. Assume that B
is symmetric. Then the following are equivalent:

1. A is inverse-closed in B.
2. rA (a) = rB(a) for all a = a∗ ∈ A .
3. rA (a) ≤ rB(a) for all a = a∗ ∈ A .

If one of these conditions is satisfied, then A is also symmetric.

Thus, instead of verifying the spectral identity of Lemma 5.10, it suffices to verify
the equality of two spectral radii. The spectral radius is an analytic concept (whereas
the spectrum is an algebraic notion), and the equality of spectral radii in condition
(2) can be attacked with analytic methods. In this way Hulanicki’s lemma offers a
strategy to verify inverse-closedness.

Proof. The implication (1) ⇒ (2) follows from Lemma 5.10, and the implication
(2) ⇒ (3) is obvious. The implication (3) ⇒ (2) follows from the inclusion
σB(a) ⊆ σA (a) and the ensuing inequality rB(a) ≤ rA (a) , which always hold
when A ⊆ B (see the proof of Lemma 5.10).
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The heart of Hulanicki’s lemma is the nontrivial implication (2) ⇒ (1). The idea
is that the identity of spectral radii rA (a) = rB(a) implies that power series have
same radius of convergence in A and in B.

We first treat a special case: For b = b∗ ∈ A consider the geometric series
c = ∑∞k=0(e− b)k. If rB(e − b) < 1, then this series converges in B. In this case
the sum is c = b−1. By the spectral identity rA (e−b) = rB(e−b) < 1; hence, this
series also converges in A . Consequently, its sum c = b−1 belongs to the smaller
algebra A .

To treat the general case, assume that a ∈ A is invertible and a−1 ∈ B. Consider
the element b = (2‖a∗a‖B)−1a∗a ∈ A ⊆ B. Then b is invertible in B, and
‖b‖B = 1/2. Since B is assumed to be symmetric, the spectrum of b is contained in
[0,∞). The invertibility of b implies that 0 is not in the spectrum, and the norm bound
implies that the spectrum is contained in a disc of radius 1/2. Since the spectrum is
a compact set, there exists a δ > 0 such that

σB(b) ⊆ [δ , 1
2 ] .

Consequently, σB(e−b) ⊆ [1/2,1− δ ] and

ρB(e−b) ≤ 1− δ < 1 .

This is the situation of the special case above, and we may conclude that
b−1 = ∑∞n=0(e− b)n converges simultaneously in B and in A , whence b−1 ∈ A .

Now e = b−1b = ((2‖a∗a‖B)−1 b−1a∗)a and thus a possesses the left inverse
c = (2‖a∗a‖B)−1 b−1a∗. By applying the same argument to b̃ = (2‖aa∗‖B)−1 aa∗ ∈
A ⊆ B, we obtain a right inverse of a of the form (2‖aa∗‖B)−1a∗b̃−1 ∈ A . Thus,
a is invertible in A .

Finally, since B is symmetric, we know that σB(a∗a) ⊆ [0,∞) for all a ∈ A .
Since A is inverse-closed in B, σA (a∗a) = σB(a∗a) ⊆ [0,∞) for all a ∈ A , and so
A must be symmetric. 
�

Note that the structure of the proof of Hulanicki’s lemma is identical to that of the
proof of Wiener’s Lemma (Theorem 5.5). In both cases we first restricted to positive
elements for which we used geometric series to investigate their invertibility.

Since the symmetry of a Banach algebra with involution is usually difficult to
verify (and still a topic of many unsolved problems), Hulanicki’s lemma is usually
applied in the following form.

Lemma 5.12. Let A be an involutive Banach algebra with identity e. Suppose that
there exists a one-to-one ∗-homomorphism π from A into B(H ), the C∗-algebra
of bounded operators on a Hilbert space H , such that π(e) = IdH . If

rA (a) = ‖π(a)‖op for all a = a∗ ∈ A , (5.7)

then
σA (a) = σB(H )(π(a)) for all a ∈ A . (5.8)

In particular, A is symmetric.
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Proof. Since π is assumed to be faithful (i.e., one-to-one), we may identify A with
a ∗-subalgebra of B = B(H ). With this identification and Proposition 5.11, (5.7)
implies the spectral identity (5.8). Furthermore, B(H ) is symmetric, because we
know from functional analysis that the spectrum of operators of the form T ∗T is pos-
itive. Consequently, σA (a∗a) = σB(H )(π(a)∗π(a)) ⊆ [0,∞), and A is symmetric.

Remark 5.13. In the jargon π is called a faithful ∗-representation of A by bounded
operators on the Hilbert space H . To prove the symmetry of a Banach ∗-algebra,
one often constructs a faithful representation π on a Hilbert space and then tries to
establish the identity of spectral radii (5.7). Lemma 5.12 thus gives us a glimpse of
the important relationship between symmetry and representation theory.

At first glance, symmetry is a property of a single algebra, whereas
inverse-closedness is a relationship between two algebras. Nevertheless the two con-
cepts are closely related. Let us digress for a moment and describe their connection.
In the abstract theory of Banach ∗-algebras one can assign a C∗-algebra to every
Banach ∗-algebra. Consider the set S of all ∗-seminorms on A ; i.e., S contains
all seminorms p on A satisfying the C∗-condition p(a∗a) = p(a)2 for all a ∈ A .
Note that A is usually not complete with respect to such a seminorm. Now define
the maximal C∗-seminorm on A , the so-called Gel’fand seminorm, by

γA (a) = sup{p(a) : p ∈ S } .

The completion of the quotient A /{a∈A : γA (a)= 0} with respect to the maximal
C∗-seminorm γA is a C∗-algebra and is called the enveloping C∗-algebra of A ,
denoted by C∗(A ). Now we can formulate the relationship between symmetry and
inverse-closedness.

Proposition 5.14. Assume that γA is a norm on A . Then A is symmetric if and
only if A is inverse-closed in the enveloping C∗-algebra C∗(A ).

For a proof see [196, 11.4]. One implication is easy. If A is inverse-closed in
C∗(A ), then Lemma 5.10 implies that σA (a∗a) = σC∗(A )(a∗a) for all a ∈ A . Since
every C∗-algebra is symmetric [27, 196], the spectrum of positive elements a∗a is
contained in [0,∞). This means that A is symmetric.

Functional Calculus. Recall how the Riesz functional calculus (or holomorphic
functional calculus) works. Fix an element a ∈ B with spectrum σB(a). Let f be an
analytic functions on an open neighborhood O of σB(a) and let γ ⊆ O be a contour
of σB(a); i.e., γ is a rectifiable curve and points in σB(a) have winding number 1,
and points in the complement of O have winding number 0. Define the Banach-
algebra-valued path integral

f (a) =
1

2π i

∫
γ

f (z)(ze−a)−1 dz . (5.9)

Here the integral can be understood as a Riemann integral (limit of Riemann sums);
in particular, it is also defined weakly. If a∗ ∈ A ∗ is in the dual space of A , then

〈a∗, f (a)〉 =
1

2π i

∫
γ

f (z)〈a∗,(ze−a)−1〉dz .
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The mapping f → f (a) is an algebra homomorphism from the commutative
algebra of functions analytic on some neighborhood of σB(a) into a commutative
subalgebra of A . For a detailed exposition of the functional calculus, see [56, 209].

Usually the functional calculus depends sensitively on the underlying algebra.
We therefore note an immediate, but important, consequence of the spectral
invariance.

Corollary 5.15. Assume that A is continuously embedded in B and inverse-closed
in B. Then the Riesz functional calculi for A and B coincide.

Proof. Since σA (a) = σB(a) by Lemma 5.10, the set of analytic functions f for
which f (a) is well defined by (5.9) is the same for A as for B. Thus, the path
integral in (5.9) defines an element in both A and B. Since A is continuously
embedded B, the limit of Riemann sums is the same in A as in B. Thus, f (a) is
defined unambiguously and does not depend on the algebra. 
�

Corollary 5.15 is extremely useful in situations when the existence of f (a)
is known by other means. The most common situation is when B is B(H ),
the algebra of bounded operators on a Hilbert space. In this case we have the
continuous functional calculus at our disposal and know how to establish the
existence of (square) roots, absolute values, and other functions of positive oper-
ators. Assume that A is inverse-closed in B(H ) and that a is a positive invertible
element in A , i.e., a = b∗b for some b ∈ A . Then f (z) = zσ is analytic on a neigh-
borhood of σA (a) ⊆ [α,β ], α > 0, and aσ makes sense in B for arbitrary σ ∈ R.
By Corollary 5.15, aσ ∈ A as well.

As another consequence we state an early result from the theory of absolutely
convergent series, which is known as the theorem of Wiener–Levy [165, 248].

Theorem 5.16. Assume that h ∈ A (T) and that f is holomorphic on an open set
containing the image h(T). Then f ◦ h ∈ A (T).

Proof. We use the Riesz functional calculus to compute f (h). Choose a contour γ of
σA (T)(h) = h(T) [by (5.6)] and let δt ∈A (T)∗ be the point evaluation δt(h) = h(t).
Then with the weak definition of the Banach-algebra-valued integral we obtain

f (h)(t) = 〈δt , f (h)〉
=

1
2π i

∫
γ

f (z)〈δt ,(ze−h)−1〉dz

=
1

2π i

∫
γ

f (z)(z−h(t))−1 dz = f
(
h(t)

)
,

where in the last step we used Cauchy’s integral formula. By the properties of the
functional calculus, f (h) ∈ A (T), and by the above computation, f (h) = f ◦ h.
Hence, f ◦ h possesses an absolutely convergent Fourier series. 
�

Note that if we take f (z) = 1/z, we recover the classical formulation of Wiener’s
Lemma.
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5.2.6 Convolution Operators

Wiener’s Lemma can be reformulated as a statement about the spectrum of convo-
lution operators. This formulation is useful for concrete problems in signal analysis.

As a motivation let us introduce some engineering terminology. In engineering
a system is a black box that transforms an input signal a into an output signal b.
Usually this transformation is assumed to be linear, so for a mathematician a system
is just a linear operator A. In other applications a is a signal that is transmitted
by a sender and b is the received signal. In this case, the operator A describes the
distortion of a. In this context one speaks of a channel rather than of a system.

The goal is to understand the properties of the “channel” and the input–output
relationship. A specific goal in signal processing is to calculate or estimate the input
a from a measured output b. This process is called equalization and amounts to
solving the equation Aa = b for a or to inverting A.

The simplest systems are discrete time-invariant systems corresponding to a
black box with constant characteristics or to a stationary transmission environment.
As before we denote sequences with boldface letters a,b, etc., and their entries
with a(k),b(k) or ak,bk,k ∈ Z. Let Tr denote the translation operator; it acts on a
sequence a by (Tra)(k) = a(k − r) for k,r ∈ Z. Time invariance means that if the
input a results in the output b, then the shifted input Tra results in the output Trb.
For a linear system we then have

ATr a = Tr Aa, ∀r ∈ Z, (5.10)

for “all” sequences a. Mathematically, a time-invariant system is therefore an
operator that commutes with translations.

Let δ k,k ∈ Z, be the standard basis of �2(Z) defined by δk(l) = 1, if l = k, and
δk(l) = 0, if l = k. Then δ k = Tkδ 0 and every sequence on Z can formally be written
as a = ∑k∈Z a(k)δ k = ∑k∈Z a(k)Tkδ 0.

Then by (5.10) we find that

(Aa)(l) = A

(
∑
k

a(k)Tkδ 0

)
(l)

=∑
k

a(k)Tk(Aδ 0)(l)

=∑
k

a(k)(Aδ 0)(l − k)

=
(

a ∗ (Aδ0)
)
(l) .

Thus, the time-invariant system A is the convolution with the sequence h := Aδ 0.
This sequence is the response of the system to the “pulse” δ 0 and therefore is called
the impulse response.

We denote the convolution operator Cha = a ∗ h and call h the symbol of Ch.
Our informal argument shows that every time-invariant linear system is uniquely
defined by its impulse response h, and conversely that every sequence h defines a
unique time-invariant system A = Ch.
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For physical reasons we may assume that signals of finite energy (i.e., finite
�2-norm) are mapped to signals of finite energy; in other words, A is bounded on �2.
Usually the symbol h is a finite sequence (a system with “finite impulse response”),
so it is safe to assume that h is in �1(Z). Under this assumption our deduction is
rigorous, because all sums converge absolutely.

In particular, we note the following boundedness property.

Lemma 5.17 (Young’s inequality).

1. If h ∈ �1(Z) and a ∈ �p(Z), then h∗a ∈ �p(Z) and ‖h∗ a‖p ≤ ‖h‖1‖a‖p.
2. Thus, if h ∈ �1(Z), then Ch is bounded on �p for 1 ≤ p ≤ ∞. The operator norm

is bounded uniformly by
‖Ch‖�p→�p ≤ ‖h‖1 .

By Young’s inequality a convolution operator with �1-symbol is bounded
simultaneously on all �p-spaces. So for h ∈ �1, Ch is an element of the Banach
algebra B(�p), the Banach algebra of bounded operators on �p(Z). Let

σB(�p)(Ch) = {λ ∈ C : Ch −λ Id�p is not invertible on �p(Z)}

be the spectrum of Ch as an operator acting on �p(Z).
An immediate question is how the spectrum of Ch depends on the domain space

�p(Z). This question is important for signal analysis and interesting in its own right.
In signal analysis one would like to deduce properties of the input a from the output
b = Cha. In particular, if b ∈ �p(Z), can we assert that a is in the same �p(Z)?

The mathematical analysis of this problem brings good news for the engineer:
The spectrum is independent of �p(Z), and in particular the invertibility of a time-
invariant system is independent of the domain space �p(Z).

We now come to the main point: Wiener’s Lemma is the main tool to understand
and compute the spectrum of convolution operators. We first give a formulation
of Wiener’s Lemma for convolution operators that is equivalent to the classical
Wiener’s Lemma.

Theorem 5.18 (Wiener’s Lemma for convolution operators). If h ∈ �1(Z) and
Ch is invertible on �2(Z), then the inverse operator is again a convolution operator
C−1

h = Cg with a symbol g ∈ �1(Z). Consequently, Ch is invertible simultaneously
on all �p(Z), 1 ≤ p ≤ ∞.

Proof. As a preparation, consider the Fourier series ĥ(t) = ∑k∈Z hke2π ikt of the
sequence h. Since {e2π ikt : k ∈ Z} is an orthonormal basis for L2(T), the mapping
h → ĥ is a unitary operator from �2(Z) onto L2(T). Consequently, if h ∈ �2(Z), then
the Fourier series ĥ converges in L2(T) and ĥ is defined almost everywhere. If, in
addition, h ∈ �1(Z), then the Fourier series ĥ converges absolutely and ĥ ∈ A (T).

Next, by reading (5.1) backwards, we know that the Fourier series of h∗g, h,g ∈
�1(Z), is just the pointwise product

ĥ∗ g = ĥ ĝ . (5.11)
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If h ∈ �1(Z) and g ∈ �2(Z), then this formula holds almost everywhere and is an
identity of two L2-functions.

Consequently, the Fourier series of Cha is

Ĉha = ĥ∗ a = ĥ â . (5.12)

Thus, on the Fourier side, Ch becomes the multiplication operator Mĥâ = ĥ â. More
precisely, we may write the identity (5.12) by means of a commutative diagram:

�2(Z)
Ch−→ �2(Z)

↓̂ ↓̂
L2(T)

Mĥ−→ L2(T) .

(5.13)

Since ̂ is unitary, Ch has the same spectrum as Mĥ:

σB(L2)(Mĥ) = σB(�2)(Ch) = ran ĥ . (5.14)

In particular, Ch is invertible on �2(Z) if and only if Mĥ is invertible on L2(T). This

is the case if and only if |ĥ(t)| ≥ δ > 0 for almost all t ∈ T.
Here Wiener’s Lemma makes its decisive appearance: Since Ch is assumed to be

invertible and h ∈ �1(Z), we have ĥ(t) = 0 for all t ∈ T. Theorem 5.5 asserts that
1/ĥ possesses an absolutely convergent Fourier series. This means that there exists
a g ∈ �1(Z) such that ĝ = 1/ĥ. By (5.11), the equation ĝ ĥ ≡ 1 implies that

g ∗h = h∗ g = δ 0 .

Consequently, for a ∈ �2(Z) we find, using (5.11) repeatedly,

a = δ 0 ∗a = (h∗g)∗ a

= h∗ (g ∗a) = ChCga .

Thus, ChCg = Id�2 and likewise CgCh = Id�2 . So C−1
h =Cg with g ∈ �1(Z) as claimed.

Since both Ch and Cg are bounded on every �p(Z), 1 ≤ p ≤ ∞, the convolution
operator Ch is also invertible on �p(Z) with the inverse Cg. 
�
Spectral Invariance of Convolution Operators. Finally, let us draw some conse-
quences of Wiener’s Lemma for convolution operators.

Theorem 5.19. Assume that h ∈ �1(Z). Then the following statements are
equivalent.

1. Ch is invertible on �2(Z).
2. Ch is invertible on �p(Z) for all p ∈ [1,∞].
3. Ch is invertible on �p(Z) for some p ∈ [1,∞].

Proof. The implication (1) ⇒ (2) is Wiener’s Lemma for convolution operators
(Theorem 5.18) and the implication (2) ⇒ (3) is trivial. To verify (3) ⇒ (1), let us
assume that Ch is invertible on �p(Z) for some p ∈ [1,∞].
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For the implication (3) ⇒ (1) we use a duality argument and interpolation. First
let us prepare the argument. Let a → a∗ be the usual involution a∗(k) = a(−k)
extended to �p(Z). This involution is a bijective conjugate-linear isometry on �p(Z)
and satisfies the relation (a ∗ b)∗ = b∗ ∗ a∗ = a∗ ∗ b∗ whenever the convolution is
defined, in particular, when a ∈ �1(Z) and b ∈ �p(Z). Next, using the inner product
〈a,b〉 = ∑k∈Z akbk for the duality between �p(Z) and �p′(Z), 1/p + 1/p′ = 1, it is
easily checked that

〈Cha,b〉 = 〈a,Ch∗b〉 for h ∈ �1,a ∈ �p,b ∈ �p′ .

Thus, the adjoint operator of a convolution operator with respect to 〈·, ·〉 is
(Ch)∗ = Ch∗ .

Claim: For h ∈ �1(Z) and fixed p ∈ [1,∞], the convolution operator Ch is invertible
on �p(Z) if and only if Ch∗ is invertible on �p(Z).

Since Ch∗a = h∗ ∗ a = (h ∗ a∗)∗ = (Cha∗)∗ and ∗ is a bijection on �p(Z), Ch∗ is
one-to-one if and only if Ch is one-to-one, and likewise Ch∗ is onto if and only if Ch
is onto.

Now assume that Ch is invertible on �p(Z). By the claim, Ch∗ is also invertible
on �p(Z) and thus by a general principle [56, Prop. VI.1.4] its adjoint (Ch∗)∗ = Ch

is invertible on the dual space �p′(Z). Let M be the inverse of Ch on �max(p,p′)(Z);
then clearly M is also the inverse of Ch on �min(p,p′)(Z). Since M is bounded on both
�p(Z) and �p′(Z), the Riesz–Thorin interpolation theorem [151, 248] implies that
M is bounded on �2(Z). The factorization MCh = Ch M = Id�2 holds on the dense
subspace �min(p,p′)(Z), and thus Ch is invertible on �2(Z) with inverse M, as was to
be shown. 
�
Corollary 5.20. If h ∈ �1(Z), then

σB(�p)(Ch) = σB(�2)(Ch) = σ�1(Z)(h) = ĥ(T), ∀p ∈ [1,∞] .

Proof. Theorem 5.19 says that the algebra {Ch : h ∈ �1(Z)} is inverse-closed in
the Banach algebra B(�p(Z)). The spectral identity σB(�p)(Ch) = σB(�1)(Ch) now

follows from Lemma 5.10. Finally, σB(�2)(Ch) = ĥ(T) follows from (5.14). 
�
Summarizing, we may say that convolution operators obey a strong form of

spectral invariance: Namely, the spectrum of a convolution operator is indepen-
dent of the domain space �p(Z). For a version on noncommutative groups, see
Section 5.3.4.

Symbolic Calculus. Wiener’s Lemma may be seen as a primitive form of a symbol
calculus.

Usually, by a symbol calculus we understand a mapping from functions to
operators. To each function a is associated an operator Op(a). Then a is called
the symbol of the operator. The mapping a → Op(a) is assumed to be linear. A
nice symbolic calculus satisfies some additional desirable properties. Whereas the
pointwise product of functions is commutative, the composition of operators is
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noncommutative in general; thus, the mapping a → Op(a) usually fails to be an
algebra homomorphism. However, for a “good” symbolic calculus or for a suitable
class of “nice” symbols one can often show that the mapping is close to an alge-
bra homomorphism by showing that Op(ab)−Op(a)Op(b) is small in some sense.
In particular, if the operator Op(a) is invertible, then Op(a−1) is an approximate
inverse. This idea is fundamental in the symbolic calculus for pseudodifferential
operators.

Wiener’s Lemma is the prototype of a symbolic calculus. In this case, we map
a sequence h to the convolution operator Ch. The distinguished class of symbols is
�1(Z). This symbolic calculus is particularly simple, because it is an algebra homo-
morphism from �1(Z) (with respect to convolution) to bounded operators on �2(Z).

The inverse of a convolution operator Ch is again a convolution operator
C−1

h = Cg. If h ∈ �1, then also g ∈ �1. Thus, Wiener’s Lemma shows that the inverse
of a convolution operator possesses the same form; i.e., it is again a convolution
operator. If the symbol of the operator is “nice” (in �1), then the symbol of the
inverse is also “nice.”
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Exercises for Section 5.2

1. Let A be an algebra with a unit element e and a ∈A . If there exist b,c ∈A such
that ac = e and ba = e, then a is invertible and b = c = a−1.

2. Consider the algebra C(T) of continuous functions of period 1. Show that the
spectrum of a function f ∈ C(T) coincides with its range: σC(T)( f ) = f (T) =
{ f (t) : t ∈ T}.

3. (a) Show that both f (t) = 2 + cos2πt and g(t) = 1− |2t − 1| (for t ∈ [0,1] and
extended with period 1) possess an absolutely convergent Fourier series.
(b) Show that f α possesses an absolutely convergent Fourier series for every
α ∈ R.
(c) Show that g1/2 does not have an absolutely convergent Fourier series. (Hint:
Use integration by parts to estimate the Fourier coefficients of g1/2.)

4. Let 0 < s ≤ 1. We say that a function f on T is Hölder continuous with exponent
s if

| f (x)− f (y)| ≤C|x− y|s for all x,y ∈ T .

Let Cs(T) be the space of all Hölder continuous functions with exponent s and
the norm

‖ f‖Cs := ‖ f‖∞+ sup
x,y∈T,x=y

| f (x)− f (y)|
|x− y| .

(a) Show that Cs is a Banach algebra contained in C(T).
(b) Show that Cs is inverse-closed in C(T).
(c) Find a bound for the norm of 1/ f in Cs(T) in terms of ‖ f‖Cs .

5. Let A p(T) be the space of all absolutely convergent Fourier series with coeffi-
cients in �p(Z) for 0 < p < 1; i.e., a Fourier series f (t) = ∑k∈Z ake2π ikt belongs
to A p(T) whenever ∑k∈Z |ak|p < ∞. Endow A p(T) with the norm

‖ f‖A p = ∑
k∈Z

|ak|p = ‖a‖p
p .

(a) Show that A p satisfies all properties of a Banach algebra, except that the
homogeneity of the norm is replaced by the property ‖c f‖A p = |c|p‖ f‖A p for
c ∈ C and f ∈ A p(T). [Such an algebra is called a p-normed algebra.]
(b) Show Wiener’s Lemma for A p(T) and 0 < p < 1: If f ∈A p(T) and f (t) = 0
for all t ∈ T, then 1/ f ∈ A p(T).
Hint: Verify and use the inequality |a+b|p ≤ |a|p+ |b|p for a,b∈C and 0 < p ≤ 1.
Follow the proof of Wiener’s Lemma in Section 5.2.4.
For the original statement and result, see [247].

6. Brandenburg’s trick [30]: Let A ⊆ B be two Banach algebras with a common
unit element. Assume for every a ∈ A there exists a sequence cn = cn(a) > 0,

such that limn→∞ c1/n
n = 1 and

‖a2n‖A ≤ cn‖an‖A ‖an‖B .

Show that A is inverse-closed in B. Hint: Apply Hulanicki’s Lemma 5.11.
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7. Let A 1
s (T) be the space of all absolutely convergent Fourier series whose

coefficients decay like |ak| ≤C|k|−s and norm

‖ f‖A 1
s

= ∑
k∈Z

|ak|+ sup
k∈Z

|ak||k|s .

(a) Show that A 1
s (T) is a Banach algebra for any s ≥ 0.

(b) Show that A 1
s (T) is inverse-closed in C(T).

Hint: Use that |k + l|s ≤ Cs(|k|s + |l|s) for all k, l ∈ Z and prove that

sup
k∈Z

|(a ∗b)(k)| |k|s ≤ C

(
‖a‖1 sup

k∈Z

|bk| |k|s + ‖b‖1 sup
k∈Z

|ak| |k|s
)

.

Now apply Brandenburg’s trick from Exercise 6.
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5.3 Variations

In this chapter we discuss a number of variations of Wiener’s Lemma. We will cover
the following variations:

• weighted versions of Wiener’s Lemma for Fourier series;
• noncommutative versions for matrix algebras;
• a version of Wiener’s Lemma for twisted convolution and its relation to

noncommutative tori;
• the analysis of the spectrum of convolution operators in certain non-Abelian

locally compact groups; and
• a symbolic calculus for pseudodifferential operators and their spectrum.

We will develop each subject in parallel to the exposition of Section 5.2.

• First, we will define the basic concepts and unravel a relevant Banach algebra.
• Then we will formulate a version of Wiener’s Lemma and turn it into a statement

of inverse-closedness between two Banach algebras. Although we will not be
able to give the complete proofs in each case, we will explain the main ideas and
establish the connection to the classical version of Wiener’s Lemma.

• Finally, we will make explicit the consequences for spectral invariance.

Since each subsection draws material from a different field of mathematics, the
exposition is not always self-contained. Our goal is to provide a synthetic and
unifying view of related topics in apparently unrelated fields.

5.3.1 Weighted Versions of Wiener’s Lemma

When considering Fourier series, the �1-condition on the coefficients guarantees
that the series converges absolutely. In particular, the partial sums converge in the
supremum norm. To obtain faster convergence of the partial sums, it is natural to
impose decay conditions on the coefficients. This is done with weight functions.

In general, a weight is simply a nonnegative function. To consider weighted
absolutely convergent Fourier series, we use the following definition. From now on,
we work with multivariate Fourier series f (t) =∑k∈Zd ak e2π ik·t for t = (t1, . . . ,td) ∈
Td and replace the index set Z by Zd .

A weight v on Zd is called submultiplicative if

v(k + l) ≤ v(k)v(l) for k, l ∈ Zd . (5.15)

For simplicity we consider only symmetric weights satisfying v(−k) = v(k).
Associated to each weight function on Zd is the weighted �1-space �1

v defined by
the norm

‖a‖�1
v
= ‖av‖1 = ∑

k∈Zd

|ak|v(k) . (5.16)
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In analogy to A (Td), we define the weighted absolutely convergent Fourier series
as follows: We say that f ∈ Av(Td) if f (t) = ∑k∈Zd ak e2π ik·t with norm

‖ f‖Av = ‖a‖�1
v
.

Example 5.21. The typical submultiplicative weights on Zd are of the form

v(k) = ea|k|b (1 + |k|)s, k ∈ Zd ,

for a,s ≥ 0 and 0 ≤ b ≤ 1.

Weights are useful for the study of convergence properties of Fourier series.
They can be seen as a parameter for the rate of convergence of the partial sums.
For simplicity take an absolutely convergent Fourier series of one variable f (t) =
∑k∈Z ake2π ikt ∈ Av(T) and let SN f (t) = ∑|k|≤N ake2π ikt be the Nth partial sum of f .
Then

‖ f −SN f‖∞ = ‖ ∑
|k|>N

ake2π ikt‖∞

≤ ∑
|k|>N

|ak|v(k)v(k)−1

≤
(

sup
|k|>N

v(k)−1

)
∑

|k|>N

|ak|v(k)

≤
(

sup
|k|>N

v(k)−1

)
‖ f‖Av .

For increasing weight v, such as the standard weights in Example 5.21, we have
sup|k|>N v(k)−1 ≤ v(N)−1, and thus the partial sums SN f converge to f at the rate

v(N)−1. The precise connection between the approximability by trigonometric poly-
nomials and the decay of the Fourier coefficients is treated in approximation theory.
See, for instance, [66].

The following simple lemma explains why we need the above conditions on the
weight function v.

Lemma 5.22. 1. If v is submultiplicative, then Av(Td) is a Banach algebra with
respect to pointwise multiplication.

2. If, in addition, v is symmetric, then complex conjugation f → f̄ is an isometry
on Av.

Proof. The proof is almost identical to the proof of Lemma 5.4. Fix a,b ∈ �1
v(Zd).

Since v(n) ≤ v(k)v(n− k) by the submultiplicativity of v, we have

‖a ∗b‖�1
v
= ∑

n∈Z

∣∣∣∑
k∈Z

akbn−k

∣∣∣v(n)

≤ ∑
k∈Z

∑
n∈Z

|ak| |bn−k|v(k)v(n− k)

= ‖a‖�1
v
‖b‖�1

v
.
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Now let f ,g ∈ Av with coefficient sequences a and b ∈ �1
v(Z

d). Then

‖ f g‖Av = ‖a ∗b‖�1
v
≤ ‖a‖�1

v
‖b‖�1

v
= ‖ f‖Av ‖g‖Av

and Av(Td) is a Banach algebra. Item (2) is obvious. 
�
At this point arises the natural question of whether Wiener’s Lemma holds for the

weighted absolutely convergent series Av(Td). In other words, suppose we know
that f ∈ Av(Td) and f (t) = 0 for all t ∈ Td . What can we say about 1/ f ?

Though this seems a harmless variation that is typical for the mathematical mind,
the answer to this question has led to a new idea in Banach algebra theory. A striking
result of Gel’fand, Raikov, and Shilov characterizes all weights for which Wiener’s
Lemma remains true [102].

Before we state their fundamental result, we need a new concept about weights.

Definition 5.23. A submultiplicative weight v is said to satisfy the GRS condition
(Gel’fand-Raikov-Shilov condition) if

lim
n→∞v(nk)1/n = 1, ∀k ∈ Zd . (5.17)

(When dealing with the GRS condition and only in this context, we write integer
vectors in boldface as k ∈ Zd to distinguish them from positive integers.)

The limit in (5.17) exists always because v is submultiplicative. If v is symmetric,
then v(k) ≥ 1 for all k ∈ Zd and so always limn→∞ v(nk)1/n ≥ 1.

Considering the standard weight functions v(k) = ea|k|b (1+ |k|)s, we see imme-
diately that v satisfies the GRS condition if and only if 0 ≤ b < 1. On the other hand,
if b = 1 and v(k) = ea|k| for a > 0, then obviously v(nk)1/n = ea|k| > 1 for all n and
k = 0, and thus the exponential weight violates the GRS condition.

In fact, exponential growth in some direction is the only reason why the GRS
condition may fail. Assume that the weight v violates the GRS condition. Then
there exist a k ∈ Zd and a > 0 such that

v(nk)1/n ≥ ea > 1 for n ≥ N0 .

Thus, v(nk) ≥ ean and the weight v grows exponentially along the subgroup kZ.
To summarize, the GRS condition is a precise technical condition that excludes

the exponential growth of a weight.
We can now formulate the weighted version of Wiener’s lemma.

Theorem 5.24. Let v be a submultiplicative weight on Zd . If v satisfies the GRS
condition, then Wiener’s Lemma holds for Av: If f ∈ Av(Td) and f (t) = 0 for all
t ∈ Td, then 1/ f ∈ Av(Td).

Proof. We follow the proof of Wiener’s Lemma in Section 5.2.4 and make the nec-
essary modifications when the weight occurs.

As in Steps 1 and 2, we may assume that h ∈ Av(T) and 0 ≤ h(t) ≤ 1 − δ for
some δ > 0. We then have to show that the geometric series ∑∞n=0 hn converges in
Av(T), and not just in C(T).
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Now choose a trigonometric polynomial p (of degree N in each variable) such
that ‖ f − p‖Av < ε . Set r = h− p, and then ‖r‖∞ ≤ ‖r‖Av < ε .

The main modification is the following estimate for the comparison of various
norms: If q is a trigonometric polynomial of degree N in each of the d variables,
then—writing |k|∞ = max j=1,...,d |k j| for the maximum norm on Rd—we obtain

‖q‖Av = ∑
|k|∞≤N

|bk|v(k)

≤ ‖b‖2
(
2N + 1

)d/2
max
|k|∞≤N

v(k) (5.18)

= ‖q‖2
(
2N + 1

)d/2
max
|k|∞≤N

v(k)

≤ ‖q‖∞
(
2N + 1

)d/2
max
|k|∞≤N

v(k) .

For further use, we set ṽ(n) = max|k|∞≤n v(k) and formulate the properties of ṽ as a
sublemma [89].

Lemma 5.25. The weight ṽ is submultiplicative and increasing on N. If v satisfies
the GRS condition, then ṽ also satisfies the GRS condition.

The proof is elementary, but not instructive. For completeness we will give it at the
end of this section.

To estimate the Av-norm of hn, we use the binomial theorem and obtain as in
Step 5 of Section 5.2.4

‖hn‖Av ≤
n

∑
l=0

(
n
l

)
‖pl‖Av‖rn−l‖Av ≤

n

∑
l=0

(
n
l

)
‖pl‖Av ε

n−l .

By (5.18) we have

‖pl‖Av ≤ ‖pl‖∞ (2Nl + 1)d/2 ṽ(Nl) .

Therefore, the complete estimate for the Av-norm of hn becomes

‖hn‖Av ≤ (2Nn + 1)d/2
n

∑
l=0

(
n
l

)
εn−l‖p‖l

∞ ṽ(lN)

= (2Nn + 1)d/2 ṽ(nN) (‖p‖∞+ ε)n

≤ (2Nn + 1)d/2 ṽ(nN) (‖h− r‖∞+ ε)n

≤ (2Nn + 1)d/2ṽ(nN)(1− δ + 2ε)n . (5.19)

Finally, the Av-norm of the geometric series ∑hn is majorized by

∞

∑
n=0

‖hn‖Av ≤
∞

∑
n=0

(2Nn + 1)d/2 ṽ(Nn) (1− δ + 2ε)n . (5.20)
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This series converges provided that

1 > limsup
n→∞

(
(2Nn + 1)d/2ṽ(Nn) (1− δ + 2ε)n

)1/n
= limsup

n→∞
ṽ(Nn)1/n(1−δ+2ε) .

This is the case, because ṽ satisfies the GRS condition by Lemma 5.25. 
�

Remark 5.26. The expression in (5.20) offers some insight into the nature of the
GRS condition. The radius of convergence of the power series ∑∞n=0 ν̃(nN)zn is

exactly
(

limsupn→∞ ν̃(nN)1/n
)−1

. For this series to converge for all z, |z| < 1, we

need
(

limsupn→∞ ν̃(nN)1/n
)−1 ≥ 1. This is exactly the GRS condition for ṽ.

Corollary 5.27. The algebra Av(Td) is inverse-closed in C(Td) if and only if the
weight v satisfies the GRS condition.

Proof. The sufficiency of the GRS condition is the content of Theorem 5.24.
To show the necessity of the GRS condition, we assume that v violates this

condition and give a counterexample to Wiener’s Lemma. The following exam-
ple illustrates the nature of the GRS condition and will return in several further
variations.

If v violates the GRS condition, then there are k ∈ Zd and a > 0, and n0 ∈ N such
that

v(nk) ≥ ean for n ≥ n0 .

Now fix δ ∈ (0,a] and set

f (t) = 1− e−δe2π ik·t ∈ Av(Td).

Then | f (t)| ≥ 1−e−δ > 0 and thus f (t) = 0 for all t ∈ Td . Furthermore, the inverse
of f is given by the trigonometric series

1
f (t)

= (1− e−δe2π ik·t)−1 =
∞

∑
n=0

e−δne2π inkt . (5.21)

Calculating the Av-norm of 1/ f , we find that∥∥∥ 1
f

∥∥∥
Av

=
∞

∑
n=0

e−δnv(nk) ≥
∞

∑
n=n0

e−δnean =∞ .

Thus, 1/ f does not belong to Av, and Wiener’s Lemma does not hold in Av. 
�
The GRS condition is ubiquitous in the investigation of inverse-closed sub-

algebras with weights. This condition draws the fine line between exponential and
subexponential growth. Exponential growth is special and usually implies the exis-
tence of some analytic structure.
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What happens in the case of exponential weights? If va(k) = ea|k| is an
exponential weight with growth constant a, then Ava(T

d) is still a Banach algebra
with respect to pointwise multiplication (Lemma 5.22). One can show the follow-
ing weak version of Wiener’s Lemma for exponential weights. If f ∈ Ava(T) and
f (t) = 0 for all t ∈ Td , then there exists δ > 0, δ ≤ a, such that 1/ f ∈ Avδ (T

d).
Thus, the Fourier coefficients of the inverse still have exponential decay, but the
growth constant δ may be arbitrarily small and depends on f . This is also shown in
our counterexample, especially (5.21).

Proof (of Sublemma 5.25). Set ṽ(n) = max|k|∞≤n v(k). Then the weight ṽ is submul-
tiplicative and increasing on N. If v satisfies the GRS condition, then ṽ also satisfies
the GRS condition.

The submultiplicativity and monotonicity are clear; we only show the GRS
condition for ṽ. Let e j, j = 1, . . . ,d, be the standard basis for Rd and let v j(l) = v(le j)
be the restriction of v to the subgroup {0}× ·· ·×{0}×Z×{0}× ·· ·×{0}. Then

v(k) = v

(
d

∑
j=1

k je j

)
≤

d

∏
j=1

v j(k j) .

Now assume that the GRS condition is not satisfied for ṽ; then for some N ∈ N and
a > 0 we have ṽ(nN)≥ ean for n large enough. Consequently, there exists a sequence
kn ∈ Zd such that |kn|∞ ≤ nN and

v(kn) = ṽ(nN) ≥ ean .

Since ean ≤ v(kn) ≤∏d
j=1 v j(kn, j), there exist a coordinate j0 and a subsequence nr

of N such that, with �r = |knr , j0 |,

eanr/d ≤ v j0(�r) and |�r| ≤ nrN .

For this subsequence we obtain

v(�re j0) = v j0(�r) ≥ eanr/d ≥ ea�r/(dN)

and
lim
r→∞v(�re j0)

1/�r ≥ ea/(dN) > 1 ,

in contradiction to the assumed GRS condition of v. 
�

5.3.2 Matrix Algebras

In Section 5.2.6 we argued that a discrete time-invariant channel is modeled by
a convolution operator and discussed the relevance of Wiener’s Lemma for the
analysis of the input–output relationship. In this section we study time-varying
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channels and the corresponding mathematical model, namely matrix algebras. We
present a version of Wiener’s Lemma in this context.

5.3.2.1 Discrete Time-Varying Channels

Recall that a time-invariant system corresponds to a convolution operator

(Cha)(k) = ∑
k∈Z

h(k− l)a(l).

The infinite matrix M corresponding to this linear operator has the entries
mkl = h(k− l). The system matrix is thus constant along diagonals; such a matrix is
usually called a Toeplitz matrix.

When we deal with time-varying systems, the corresponding matrix will no
longer be constant along diagonals, but for a slowly time-varying system, it will
have small variations along the diagonals and will still be close to a convolution
operator.

If M is a matrix over the index set Zd with entries mkl,k, l ∈ Zd , then the lth
diagonal has the entries mk,k−l . We may write the matrix-vector multiplication in a
way that resembles a convolution, namely,

(Ma)(k) = ∑
l∈Zd

mklal = ∑
l∈Zd

mk,k−lak−l .

If M is a Toeplitz matrix, then this is a convolution. If M is “almost constant” along
diagonals, the action of M resembles a convolution.

This observation motivated Gohberg, Kaashoek, and Woerdeman [104] to intro-
duce a nonstationary Wiener algebra. It is defined as the class of all matrices for
which the norm

‖M‖C = ∑
l∈Zd

sup
k∈Zd

|mk,k−l|

is finite. This class of matrices was studied simultaneously and independently by
Baskakov [14] and Kurbatov [155], and was later rediscovered by Sjöstrand [214].
It is often named after the inventors as the Baskakov–Gohberg–Sjöstrand matrix
algebra. This class of matrices has recently appeared in several applications in frame
theory [10, 94, 109, 119] and in the analysis of the finite section method in numer-
ical analysis [121, 198].

Let us look in more detail at the class C . The number

d(l) = sup
k∈Zd

|mk,k−l|

is the supremum of the lth diagonal of M and so

|mkl| ≤ d(k− l), k, l ∈ Zd . (5.22)
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Hence, the action of M on a vector c can be estimated as follows:

|(Mc)(k)| =
∣∣∣∣∣∑
l∈Zd

mklcl

∣∣∣∣∣≤ ∑
l∈Zd

d(k− l)|cl| = (d∗ |c|)(k) . (5.23)

This inequality says that the action of M is dominated (pointwise) by the convo-
lution with the sequence d ∈ �1(Zd). This explains our notation; C is the class of
convolution-dominated matrices. Young’s inequality (Lemma 5.17) implies that a
matrix M ∈ C is bounded on every �p(Zd), 1 ≤ p ≤ ∞.

Next let us consider a weighted version of convolution-dominated matrices. Let
v be a submultiplicative weight on Zd . Then Cv contains all matrices for which the
norm

‖M‖Cv = ∑
l∈Zd

sup
k∈Zd

|mk,k−l|v(l)

is finite. As above, this means that M is dominated by a convolution with an
�1

v-sequence. In particular, the matrix of a convolution operator Ch with symbol
h ∈ �1

v(Z
d) belongs to Cv. Moreover, identifying the operator with its matrix, we

have
‖Ch‖Cv = ‖h‖�1

v
.

Lemma 5.28. If v is submultiplicative and symmetric, then Cv is a Banach ∗-algebra
with respect to matrix multiplication and taking the adjoint matrix as the involution.

Proof. Again, the proof is similar to the one of Lemmas 5.4 and 5.22 and in fact
makes direct use of Lemma 5.22. Let M,N ∈ Cv and set d(l) = supk∈Zd |mk,k−l | and
e(l) = supk∈Zd |nk,k−l|. Then by (5.22)

|(MN)k,k−l | =
∣∣ ∑

r∈Zd

mkrnr,k−l

∣∣
≤ ∑

r∈Zd

d(k− r)e(r− k + l) = (d∗ e)(l)

and

‖MN‖Cv = ∑
l∈Zd

sup
k∈Zd

|(MN)k,k−l |v(l)

≤ ∑
l∈Zd

(d∗ e)(l)v(l) = ‖d∗ e‖�1
v

≤‖d‖�1
v
‖e‖�1

v
= ‖M‖Cv ‖N‖Cv .

For the involution M → M∗ we find

‖M∗‖Cv = ∑
l∈Zd

sup
k∈Zd

|(M∗)k,k−l |v(l) = ∑
l∈Zd

sup
k∈Zd

|mk−l,k|v(l)

= ∑
l∈Zd

sup
k∈Zd

|mk,k+l |v(−l) = ‖M‖Cv .

So the involution is an isometry. 
�
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5.3.2.2 A Nonstationary Version of Wiener’s Lemma

For convolution-dominated matrices we may now pose the same questions as for
convolution operators in Section 5.2.6. The question is now whether the inverse of
a convolution-dominated matrix is again convolution-dominated. In the context of
time-varying systems we are interested in a meaningful input–output relationship.
So if M is convolution-dominated and the output y = Mc is in �p, is it true that the
input c was also in �p? As for convolution operators in Section 5.2.6, a satisfactory
answer requires the independence of the spectrum of M of the domain space �p(Zd).

After the discussion of several versions of Wiener’s Lemma, it is perhaps no
longer surprising that the answers to these questions will be the same as for
time-invariant systems (convolution operators). The techniques and proofs, how-
ever, are significantly more involved, because the matrix algebra C is highly
noncommutative.

Theorem 5.29. If M ∈ C and M is invertible on �2(Zd), then M−1 ∈ C .

This result was obtained independently and almost simultaneously by Gohberg,
Kaashoek, and Woerdemann [104], by Baskakov [14] and Kurbatov [155], and a
little later by Sjöstrand [214] with a completely different proof.

As with the classical Wiener’s Lemma, we next consider a variation of
Theorem 5.29 with weights. The weighted version is due to Baskakov, who stud-
ied convolution-dominated operators on Banach spaces with unconditional (block)
bases. The following theorem is often referred to as Baskakov’s theorem [14].

Theorem 5.30 (Baskakov [14]). Assume that v satisfies the GRS condition and 1 ≤
p ≤∞. If M ∈ Cv and M is invertible on �p(Zd), then M−1 ∈ Cv. In other words, Cv

is inverse-closed in B(�p) for all p ∈ [1,∞].

We cannot give the complete proof of this theorem, but will sketch the proof
idea at the end of this section. In particular, we will elaborate the relationship of
Theorems 5.29 and 5.30 with the classical Wiener’s Lemma.

As with convolution operators, the GRS condition characterizes those weights
for which Wiener’s Lemma holds.

Corollary 5.31. The algebra Cv is inverse-closed in B(�2) if and only if v satisfies
the GRS condition.

This is just a reformulation of Theorem 5.30. The hard part is to show that the
GRS condition is sufficient for the inverse-closedness of Cv.

To verify the necessity of the GRS condition, we return to the example in the
proof of Corollary 5.27. If v violates the GRS conditions, then there are k ∈ Zd and
a > 0 such that v(nk) ≥ ean for n ≥ n0.

We construct an invertible convolution operator Ch with h ∈ �1
v with C−1

h ∈ Cv.
Set h(0) = 1 and h(k) = e−δ and h(l) = 0 for l = 0 and l = k and consider the
convolution operator Ch. Since ĥ(t) = 1− e−δe2π ik·t = 0 for all t ∈ Td , the operator
Ch is invertible on �2(Zd) by Corollary 5.20. Its inverse is the operator Cg = C−1

h
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with ĝ(t) = ĥ(t)−1 = ∑∞n=0 e−δne2π ink·t . Since g ∈ �1
v(Z

d), the matrix of Cg is not in
Cv. So Cv is not inverse-closed in B(�2).

Further variations on convolution-dominated matrices, including a complete
characterization of inverse-closed Banach algebras of convolution dominated
matrices, can be found in [120]. For a recent extension to noncommutative groups
as index sets, see [90].

5.3.2.3 Spectral Invariance

We next formulate Baskakov’s theorem as a statement about the spectral invariance
of matrices.

We first note that, like convolution operators, a matrix in Cv is not only bounded
on �2(Zd), but acts on a whole class of weighted �p-spaces (and other spaces
as well). For this we introduce another class of weight functions. We say that a
nonnegative function m on Zd is v-moderate if

m(k + l) ≤ Cv(k)m(l), for all k, l ∈ Zd . (5.24)

A weight is called moderate if it is v-moderate with respect to some submultiplica-
tive weight v.

Let the weighted �p-space �p
m(Zd) be defined by the norm ‖c‖�

p
m

= ‖cm‖p.
The relevance of moderate weight functions is explained by the next lemma.

Lemma 5.32. Let v be a submultiplicative weight on Zd .

1. Then �p
m is invariant under all translations Tk,k ∈Zd, if and only if m is moderate.

2. If m is v-moderate, then �1
v ∗ �p

m ⊆ �p
m; i.e., if a ∈ �1

v and b ∈ �p
m, then a ∗b ∈ �p

m

with the convolution estimate

‖a∗b‖�
p
m
≤ C‖a‖�1

v
‖b‖�

p
m
. (5.25)

3. If M ∈ Cv and m is v-moderate, then M is bounded on every �p
m for 1 ≤ p ≤ ∞,

and
‖M‖�

p
m→�

p
m
≤ C‖M‖Cv ,

where C is the constant in (5.24).

Proof. Items (1) and (2) are elementary and left to the reader (see Exercises). In
fact, (2) is just a modified version of Young’s inequality (Lemma 5.17).

Since |(Mc)(k)| ≤ (d ∗ |c|)(k) by (5.23), the weighted Young inequality (5.25)
yields

‖Mc‖�
p
m
≤ C‖d‖�1

v
‖c‖�

p
m

= C‖M‖Cv ‖c‖�
p
m
. 
�

We may reformulate (3) by saying that the matrix algebra Cv is continuously
embedded in the algebra B(�p

m) of bounded operators on �p
m. Given a matrix M

that is bounded on �p
m, we denote its spectrum as an operator on �p

m by σB(�p
m)(M).
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We can now formulate the spectral invariance for convolution-dominated
matrices.

Corollary 5.33. Assume that v satisfies the GRS condition and M ∈ Cv. Then the
spectral invariance

σB(�p
m)(M) = σB(�2)(M) = σCv(M)

holds for every p ∈ [1,∞] and every v-moderate weight m.

Proof. The statement follows from a weighted version of Baskakov’s theorem
(Theorem 5.30). In fact, Baskakov’s general result implies that Cv is inverse-closed
in B(�p

m) for 1 ≤ p < ∞ and every v-moderate weight m. Now Lemma 5.10 implies
that σB(�p

m)(M) = σCv(M) for all M ∈ Cv. For p = ∞ we use duality and find that
σB(�∞m)(M) = σB(�1

1/m)(M
∗) = σCv(M

∗) = σCv(M). Thus, the spectrum is indepen-

dent of the domain space �p
m. 
�

Corollary 5.33 says that the spectrum of a matrix M is independent of the domain
space provided that the matrix has sufficient off-diagonal decay. We may also state
the corollary in the style of Theorem 5.19 as follows: A matrix M ∈ Cv is invertible
on �2(Zd) if and only if M is invertible on �p

m(Zd) for some p ∈ [1,∞], and some
v-moderate weight m if and only if M is invertible on all �p

m(Zd) for all p ∈ [1,∞]
and all v-moderate weights m.

This result is analogous to Corollary 5.20 for convolution operators. However,
whereas convolution operators on Zd form a commutative algebra of operators, Cv

is a highly noncommutative matrix algebra.
For some recent results in the line of Baskakov’s theorem, see [2, 211].

5.3.2.4 The Idea of the Proof of Baskakov’s Theorem

Although we cannot give a complete proof of Baskakov’s theorem, we will indicate
the main ideas. Our goal is to show how the classical version of Wiener’s Lemma
for absolutely convergent Fourier series enters the field of matrix algebras.

It is tempting to imitate the proof of the classical Wiener’s Lemma (Theorem 5.5)
in the noncommutative setting. Though many of the steps carry over, the proof can-
not be saved because the binomial theorem is not applicable in noncommutative
algebras.

Following deLeeuw [63], we first associate to every matrix A a matrix-valued
function. Define modulation Mt , t ∈ Rd , acting on a sequence c by

(Mt c)(k) = e2π ik·tc(k) for k ∈ Zd .

Given a matrix A, we next consider the matrix-valued function

f(t) = MtAM−t .
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Clearly, MtAM−t is periodic with period 1 in each coordinate of t = (t1, . . . ,td) ∈ Rd

and is a continuous matrix-valued function on Td . Instinctively, the first question to
ask is, what are the Fourier coefficients of f?

Lemma 5.34 (Fourier coefficients of f). The nth Fourier coefficient is the nth side
diagonal of A. Precisely, let Dn be the matrix with entries (Dn)k,k−n = ak,k−n and
(Dn)kl = 0 for l = k− n, where k, l,n ∈ Zd . Then∫

[0,1]d
f(t)e−2π in·t dt = Dn . (5.26)

Proof. The integral in (5.26) is a matrix-valued integral; we interpret it entrywise.
First note that (

MtAM−tc
)
(k) = e2π ik·t ∑

l∈Zd

akle
−2π il·tcl

= ∑
l∈Zd

akle
2π i(k−l)·tcl .

The matrix f(t) = MtAM−t has the entries akle2π i(k−l)·t . Therefore, the nth Fourier
coefficient of the (k, l)th entry is

f̂(n)kl =
∫

[0,1]d
f(t)kle

−2π in·tdt

=
∫

[0,1]d
akle

2π i(k−l)·te−2π in·tdt

= aklδk−l−n = ak,k−n δk−l−n ,

and so f̂(n) = Dn. 
�
Therefore, the matrix-valued function f(t) possesses the formal Fourier series

f(t) = ∑n∈Zd Dne2π ik·t . In particular, for t = 0 we recover A = ∑n∈Zd Dn as a sum of
its diagonals. As always with Fourier series, we must be cautious in which sense the
Fourier series represents the given function.

This question is easy to answer for convolution-dominated matrices.
Recall that

‖A‖C = ∑
n∈Z

sup
k∈Z

|mk,k−n|

= ∑
n∈Z

‖Dn‖�p→�p .

Thus, the Fourier series of f converges in the operator norm, and f possesses an
absolutely convergent Fourier series. The difference is that the coefficients of f are
infinite matrices (or operators).

Let us go a step further and introduce the space of absolutely convergent matrix-
valued Fourier series Av(Td ,B(�p)). A matrix-valued function f belongs to
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Av(Td ,B(�p)) if it has a Fourier series f(t) = ∑k∈Zd Ake2π ik·t with coefficients
Ak ∈ B(�p) satisfying

‖f‖Av(Td ,B(�p)) := ∑
k∈Zd

‖Ak‖�p→�p v(k) < ∞ .

Using this notation, we quickly obtain the following.

Lemma 5.35. 1. A matrix A belongs to Cv if and only if the matrix-valued function
f belongs to Av(Td ,B(�p)). In this case,

‖A‖Cv = ‖f‖Av(Td ,B(�p)) .

2. Assume that Wiener’s Lemma holds for Av(Td ,B(�p)). [This means that if
f ∈ Av(Td ,B(�p)) and f(t) is invertible on �p(Zd) for all t ∈ Td, then f−1 is
in Av(Td ,B(�p)).] Then Cv is inverse-closed in B(�p).

Proof. (1) follows directly from the definitions.
(2): If A ∈ Cv ⊆ B(�p) is invertible, then the operator-valued function associ-

ated to its inverse is just MtA−1M−t = f(t)−1, and f(t) is invertible on �p(Zd) for
all t ∈ Td . Wiener’s Lemma for Av(Td ,B(�p)) implies that f−1 ∈ Av(Td ,B(�p)).
Consequently, by (1), A−1 ∈ Cv. 
�

Lemma 5.35 establishes a surprisingly direct connection between the topic
of matrix algebras and the classical formulation of Wiener’s Lemma. To under-
stand the inverse of a convolution-dominated matrix A ∈ Cv, we need a version
of Wiener’s Lemma for operator-valued Fourier series. Such a generalization of
Wiener’s Lemma exists indeed and was obtained by Bochner and Phillips [24]
already in 1946. Though this generalization is “only” from scalar-valued func-
tions to matrix-valued functions, it is highly nontrivial, because the algebra of
operator-valued absolutely convergent Fourier series is noncommutative. Therefore,
neither Gel’fand theory nor the elegant arguments of Newman and Hulanicki used in
Section 5.2.4 can be applied. The proof of the operator-valued version of Wiener’s
Lemma requires several results from noncommutative Banach algebras and their
representations. For the details we refer to the original sources [14, 24] or the
appendix of [120].

Our main point was to reveal the connection of the nonstationary version of
Wiener’s Lemma to its classical version.

5.3.2.5 Off-Diagonal Decay of Matrices

So far we have discussed convolution-dominated matrices in analogy to absolutely
convergent Fourier series. In applications, many other conditions are used to mea-
sure off-diagonal decay. We mention just a few of them.

(a) Strict off-diagonal decay is measured by the norm

‖M‖A ∞
v

= sup
k,l∈Zd

|mkl |v(k− l) .
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The weight function v measures the rate of off-diagonal decay. The typical weights
are the polynomial weights v(k) = (1 + |k|)s or a combination of polynomial and

subexponential weights v(k) = (1 + |k|)sea|k|b , s > d, a ≥ 0, and 0 ≤ b < 1.
(b) Schur-type conditions: In imitation of Schur’s test, which involves the column

sums and row sums of a matrix, we may also study the norm

‖M‖A 1
v

= max
{

sup
l∈Zd
∑

k∈Zd

|mkl |v(k− l), sup
k∈Zd
∑

l∈Zd

|mkl|v(k− l)
}

. (5.27)

If v is submultiplicative on Zd , then A 1
v is a Banach algebra with respect to matrix

multiplication (see Exercises).
We note that the matrix algebras defined by off-diagonal conditions obey the

following inclusion relations:

Cv ⊂ A 1
v ⊂ A ∞

v . (5.28)

As in the case of convolution-dominated matrices, the off-diagonal decay is
preserved under suitable conditions on the weight involved. We quote a typical
theorem from [119] and refer also to the work of Baskakov [14–16] and Sun [221].

Theorem 5.36. 1. Assume that v−1 ∈ �1(Z), v−1 ∗ v−1 ≤ Cv−1, and v satisfies the
GRS condition. Then A ∞

v is inverse-closed in B(�2) .
2. Assume that v is submultiplicative, v(k) ≥ (1 + |k|)δ for some δ > 0, and v

satisfies the GRS condition. Then A 1
v is inverse-closed in B(�2).

Again, the GRS condition is necessary and sufficient for the validity of
Theorem 5.36. The necessity follows from the counterexample constructed after
Corollary 5.31.

5.3.3 Absolutely Convergent Series of Time-Frequency Shifts

We now turn to time-frequency analysis and noncommutative geometry.

5.3.3.1 The Basic Definitions

Recall the definition of time-frequency shifts. Given x,ξ ∈ Rd , the translation oper-
ator or time shift Tx and the modulation or frequency shift Mξ act on a function f
on Rd by

Tx f (t) = f (t − x) and Mξ f (t) = e2π iξ ·t f (t), x,ξ ,t ∈ Rd .

Combining the parameter x and ξ into a single point z = (x,ξ ) ∈ R2d in the time-
frequency “plane,” their composition is the time-frequency shift

π(z) f (t) = MξTx f (t) = e2π iξ ·t f (t − x), t ∈ Rd . (5.29)
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The time-frequency shifts π(z), z ∈ R2d , are unitary operators on L2(Rd) and
isometries on Lp(Rd) for p = 2. The translations and modulations satisfy the com-
mutation relations

TxMξ = e−2π ix·ξMξTx .

As a consequence the composition of two time-frequency shifts π(z) and π(w) with
w = (w1,w2) ∈ R2d and z = (z1,z2) ∈ R2d is

π(w)π(z) = (Mw2Tw1)(Mz2 Tz1) (5.30)

= e−2π iw1·z2Mw2+z2Tw1+z1 = e−2π iw1·z2π(w+ z) .

Thus, the composition of time-frequency shifts is a multiple of a time-frequency
shift. However, since the π(z),z ∈ R2d , do not commute, the mathematics of
time-frequency shifts always leads to noncommutative structures.

Next we fix a lattice Λ in R2d . A lattice is a discrete subgroup Λ ⊆ R2d with
compact quotient R2d/Λ . Choosing a basis a j, j = 1, . . . ,2d, we can write every
λ ∈Λ as λ =∑2d

j=1 k ja j with integer coefficients k j ∈ Z. Consequently, every lattice

can be represented as Λ = AZ2d for some invertible 2d ×2d-matrix A, the columns
of which are just the basis vectors a j.

5.3.3.2 The Rotation Algebra

In time-frequency analysis and in noncommutative geometry one considers formal
sums of time-frequency shifts on a lattice Λ , i.e., operators of the form

A = ∑
λ∈Λ

cλ π(λ ) .

We should think of sums of time-frequency shifts as a noncommutative analogue
of Fourier series. The complex exponentials e2π ik·t are replaced by the unitary
operators π(λ ). Whereas a Fourier series is a function on the torus Td , a sum of
time-frequency shifts on a lattice Λ yields an operator. The structure and prop-
erties of function spaces (and algebras) on the torus Td completely describe the
(topological) properties of Td (this is the content of the theorem of Gel’fand–
Naimark [27, 56, 150, 209]). By analogy the sums of time-frequency shifts are inter-
preted as “functions” on some “exotic” structure. Since by (5.30) the time-frequency
shifts π(λ ) do not commute for a general lattice, this structure is taken to be a
noncommutative torus.

Keeping the analogy between Fourier series and time-frequency shifts in mind,
it is now time to make some precise definitions.

Definition 5.37. Let A0(Λ) be the vector space of all finite linear combinations of
time-frequency shifts π(λ ). The rotation algebra or noncommutative torus C∗(Λ)
is the closure of A0(Λ) in the operator norm on L2(Rd).

By definition C∗(Λ) is a closed subspace of B(L2(Rd)), the algebra of all
bounded operators on L2(Rd). An operator A ∈ B(L2) belongs to C∗(Λ) if and only
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if for every ε > 0 there exists a finite linear combination P =∑λ∈Λ cλπ(λ )∈A0(Λ)
with suppc finite, such that ‖A−P‖L2→L2 < ε .

Let us collect some basic properties of series of time-frequency shifts to ensure
that such series are well defined.

Lemma 5.38. 1. If the sequence c = (cλ )λ∈Λ grows polynomially, |cλ | = O(1 +
|λ |N) for some N ≥ 0, then the sum ∑λ∈Λ cλπ(λ ) is a well-defined continuous
operator from the Schwartz class S (Rd) to S ′(Rd).

2. Strong linear independence: If ∑λ∈Λ cλπ(λ ) = 0 for a sequence c of polynomial
growth, then c = 0.

Proof. 1. We use the following property of time-frequency shifts ([108, Thm.
11.2.5] or [92]): If f ,g ∈ S (Rd), then the function z ∈ R2d →〈π(z) f ,g〉 belongs to
S (R2d) and depends continuously on f and g. In particular, for all M ≥ 0,

|〈π(λ ) f ,g〉| = O
(
(1 + |λ |)−M)

.

Consequently, |〈∑λ∈Λ cλπ(λ ) f ,g〉| ≤ ∑λ∈Λ |cλ | |〈π(λ ) f ,g〉| is well defined and
∑λ∈Λ cλ π(λ ) makes sense as an operator from S (Rd) to S ′(Rd).

2. The proof of the linear independence is taken from [113]. By assumption we
have, for all g,h ∈ S (Rd) and z ∈ R2d ,

∑
λ∈Λ

cλ 〈π(λ )π(z)g,π(z)h〉 = 0 .

Now π(z)−1π(λ )π(z)= e2π i[z,λ ]π(λ ), where [z,λ ] = z1 ·λ2−z2 ·λ1 is the symplectic
form on R2d . This implies that

∑
λ∈Λ

cλ 〈π(λ )g,h〉 e2π i(λ2·z1−λ1·z2) = 0 (5.31)

for all z ∈ R2d and all g,h ∈ S (Rd).
Equation (5.31) is an absolutely convergent Fourier series on R2d/Λ . Since it

vanishes everywhere, we must have

cλ 〈π(λ )g,h〉 = 0 for all λ ∈Λ ,

from which we deduce that cλ = 0 for all λ . 
�
Lemma 5.38 guarantees that formal series of time-frequency shifts with poly-

nomially growing coefficients are always well defined in a distributional sense. In
particular, every A ∈ C∗(Λ) possesses a unique expansion A = ∑λ∈Λ aλπ(λ ). It
can be shown that the coefficient sequence must be in �2(Λ). However, not every
c ∈ �2(Λ) defines an operator in B(L2(Rd)) ⊇ C∗(Λ). See [147] for details.

To pursue the analogy between Fourier series and series of time-frequency
shifts further, we next study the composition of sums of time-frequency shifts.
Let A =∑λ∈Λ aλπ(λ )∈ A0(Λ) and B =∑µ∈Λ bµπ(µ)∈ A0(Λ) be two finite sums
of time-frequency shifts. We now mimic the calculation in Lemma 5.4 and see what
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we get. Using (5.30), we have

AB =

(
∑
λ∈Λ

aλπ(λ )

)(
∑
µ∈Λ

bµπ(µ)

)
= ∑
λ ,µ∈Λ

aλbµe−2π iλ1·µ2π(λ + µ) (5.32)

= ∑
ν∈Λ

(
∑
λ∈Λ

aλbν−λ e−2π iλ1·(ν2−λ2)

)
π(ν) .

Except for the phase factor e−2π iλ1·(ν2−λ2), the coefficient sequence of AB looks like
the convolution of the sequence a and b. Thus, we make the following definition.

Definition 5.39. The twisted convolution �Λ of two (finite) sequences a and b over
Λ is defined by

(a �Λ b)(ν) = ∑
λ∈Λ

aλbν−λ e−2π iλ1·(ν2−λ2) . (5.33)

Remark 5.40. 1. If Λ = Z2d , then the phase factor disappears and a�Z2d c = a∗ c is
just the ordinary convolution and thus commutative.

2. However, in general, the twisted convolution �Λ is not commutative.
3. By pulling in absolute values, we have

|(a�Λb)(ν)| ≤ ∑
λ∈Λ

|aλ | |bν−λ | = (|a| ∗ |b|)(ν)

for all ν ∈ Λ . We may therefore apply Young’s inequality (Lemma 5.17) and
obtain

‖a�Λ b‖p ≤ ‖a‖1‖b‖p (5.34)

whenever a ∈ �1(Λ) and b ∈ �p(Λ), 1 ≤ p ≤ ∞. Thus, convolution inequalities
for the ordinary convolution imply immediately analogous inequalities for the
twisted convolution, and �Λ is well defined on many sequence spaces.

Proposition 5.41. The subspace C∗(Λ) is a C∗-subalgebra of B(L2(Rd)).

Proof. If A,B ∈ A0(Λ), then by (5.32) AB is again a finite linear combination of
time-frequency shifts and thus AB ∈ A0(Λ).

Next note that π(z)∗ = (MξTx)∗ = T−xM−ξ = e−2π ix·ξM−ξT−x = e−2π ix·ξπ(−z).
If A = ∑λ aλπ(λ ) ∈ A0(Λ), then the adjoint operator A∗ is

A∗ = ∑
λ∈Λ

aλ e−2π iλ1·λ2π(−λ ) ∈ A0(Λ) .

As a consequence, A0(Λ) is a ∗-subalgebra of B(L2(Rd)). Hence, its closure in the
operator norm C∗(Λ) is a C∗-subalgebra of B(L2(Rd)). 
�
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We can now go back to Section 5.2 and imitate all the constructions about Fourier
series and repeat our previous questions in the context of the rotation algebras
C∗(Λ).

Let us first introduce some interesting subalgebras of C∗(Λ) that are easier to
work with than the full C∗-algebra.

To avoid convergence questions, one often resorts to the algebra of absolutely
convergent series of time-frequency shifts:

A (Λ) =

{
A ∈ B(L2(Rd)) : A = ∑

λ∈Λ
aλπ(λ ), a ∈ �1(Λ)

}
.

If A ∈ A (Λ), the sum of time-frequency shifts converges absolutely in the operator
norm on L2(Rd). Note that this in complete analogy with the procedure of Fourier
series.

Since the coefficients of an operator in C∗(Λ) are unique, we may endow A (Λ)
with the norm

‖A‖A = ‖a‖1 .

By Lemma 5.38(2), this is indeed a norm on A (Λ).
By (5.33) and (5.34) A (Λ) is a Banach algebra embedded in C∗(Λ). Since there

are no convergence issues, A (Λ) might be called the “lazy man’s rotation algebra.”
As a variation we may also consider algebras of weighted absolutely conver-

gent series of time-frequency shifts. If v is a submultiplicative weight on Λ , we
introduce

Av(Λ) =

{
A ∈ B(L2(Rd)) : A = ∑

λ∈Λ
aλπ(λ ), a ∈ �1

v(Λ)

}

with norm
‖A‖Av = ‖a‖�1

v
.

In noncommutative geometry one considers the smooth noncommutative torus

A∞(Λ)=

{
A ∈ B(L2(Rd)) : A =∑

λ∈Λ
aλπ(λ ), |aλ | = O((1 + |λ |)−N), ∀N ≥ 0

}
.

If we write vs for the polynomial weights vs(z) = (1+ |z|)s, then clearly the smooth
noncommutative torus is the intersection

A∞(Λ) =
⋂
s≥0

Avs(Λ) . (5.35)

The analogy between Fourier series and series of time-frequency shifts leads
to the natural questions: Is there a version of Wiener’s Lemma for the subalge-
bras of the rotation algebras? Is there a corresponding version of Wiener’s Lemma
for twisted convolution? These questions will be answered affirmatively in the
following.
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In contrast to Section 5.2 (where we treated absolutely convergent Fourier series
before convolution operators), we consider convolution operators first and then turn
to absolutely convergent series of time-frequency shifts.

5.3.3.3 Wiener’s Lemma for Twisted Convolution

Given h ∈ �1(Λ) or h ∈ �1
v(Λ), define the twisted convolution operator C�

h acting on
a ∈ �2(Λ) by

C�
ha = h �Λ a .

By Young’s inequality,C�
h maps �p(Λ) into �p(Λ). Likewise one can use convolution

from the right and define a twisted convolution operator a → a�Λ h. The results are
the same.

We now have the following noncommutative counterpart of Theorem 5.18 [118].

Theorem 5.42. Fix a weight v on Λ that satisfies the GRS condition. Assume that
h ∈ �1

v(Λ) and that C�
h is invertible on �2(Λ); then h is invertible in the algebra

(�1
v(Λ), �Λ ) and there exists a g ∈ �1

v(Λ) such that (C�
h)

−1 = C�
g. As a consequence,

C�
h is invertible on all �p(Λ) simultaneously.

Proof. Although the formulation is identical to that of Theorem 5.18 (we have
only replaced ∗ by �Λ ), the proof is radically different, because we have lost
commutativity and we can no longer use Fourier series. Instead we will use the
results on matrix algebras from the previous section. The following proof is taken
from [119].

Let us interpret C�
h as a matrix acting on �2(Λ) and find its entries:

C�
ha = ∑

λ∈Λ
hλaν−λ e−2π iλ1·(ν2−λ2)

= ∑
µ∈Λ

hν−µaµe−2π i(ν1−µ1)·µ2 .

Thus, the matrix M of C�
h has the entries

Mνµ = hν−µe−2π i(ν1−µ1)·µ2 .

Clearly, M is convolution-dominated. Moreover, since

sup
ν∈Λ

|Mν,ν−ρ | = |hρ | ,

we find that M ∈ Cv and that

‖M‖Cv = ‖h‖�1
v
. (5.36)
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Since Cv is inverse-closed in B(�2(Λ)) and M = C�
h is invertible on �2(Λ),

Theorem 5.30 guarantees that (C�
h)

−1 = M−1 ∈ Cv.
It is left to show that M−1 is again a twisted convolution operator. Let g ∈ �2(Λ)

be the unique element such that C�
hg = δ0. As in the proof of Theorem 5.18, we

argue that C�
g is the inverse of C�

h.

The (twisted) convolution operator C �
g is certainly defined on the dense subspace

�0(Λ) = {a : suppa is finite }, and maps �0(Λ) into �2(Λ). Then for all a ∈ �0(Λ)

C �
h

(
C �

g −M−1)a = h�Λ (g�Λ a)−C �
hM−1a = a−a = 0 .

Since we have C �
g = M−1 on the dense subspace �0(Λ), the matrix of C �

g coincides
with M, and so (5.36) implies that g ∈ �1

v(Λ). 
�
Note that the deduction of Theorem 5.42 from Baskakov’s Theorem 5.30 is
rigorous. So far the only results that we have not proved completely are the results
of Baskakov (or, equivalently, the operator-valued version of Wiener’s Lemma by
Bochner and Phillips [24]).

Since the matrix of C �
h is convolution-dominated and belongs to Cv,

Corollary 5.33 can be rephrased as the spectral invariance of twisted convolution
operators.

Corollary 5.43. Fix h ∈ �1
v(Λ). Then the following are equivalent:

1. C �
h is invertible on �2(Λ).

2. C �
h is invertible on �p

m(Λ) for some p ∈ [1,∞] and some v-moderate weight m.

3. C �
h is invertible simultaneously on �p

m(Λ) for all p ∈ [1,∞] and all v-moderate
weights m.

5.3.3.4 Wieners Lemma for the Rotation Algebra

The following result was proved in [118].

Theorem 5.44. Assume that v is submultiplicative and satisfies the GRS condition.
If A ∈ Av(Λ) and A is invertible on L2(Rd), then A−1 ∈ Av(Λ).

Let us make plausible why the result follows from Wiener’s Lemma for twisted
convolution (Theorem 5.42). Consider the mapping π : �1

v(Λ) → Av(Λ) defined by

π(a) = ∑
λ∈Λ

aλπ(λ ) .

By (5.32) and Lemma 5.38(2), π is an isometric ∗-isomorphism between �1
v(Λ)

(with respect to �Λ ) and Av(Λ) (with composition of operators). Thus,
(
�1

v(Λ), �Λ )
and Av(Λ) are just different realizations of the same abstract Banach ∗-algebra.
Clearly, Wiener’s Lemma for one realization should imply Wiener’s Lemma for the
other realization.
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The subtle part is in the hypotheses: In Theorem 5.42 we assume that C �
h is

invertible on �2(Λ), whereas in Theorem 5.44 we assume the invertibility of
A = π(h) on L2(Rd).

The technical part of the proof requires the spectral identity

σB(L2)(π(h)) = σB(�2(Λ))(C
�
h) (5.37)

for all h ∈ �1
v(Λ). This is a question of representation theory and requires some

effort; see [118]. Once (5.37) has been proved, Theorem 5.44 follows from

σAv(Λ)(π(h)) = σ�1
v
(h) = σB(�2(Λ))(C

�
h) = σB(L2)(π(h)) .

The interaction between time-frequency analysis and noncommutative geome-
try goes much further. The Banach algebras Av(Λ) and their spectral invariance in
the noncommutative torus C∗(Λ) play a central role in the theory and are the start-
ing point for many developments. We refer to [55, 170, 171, 199–201, 206] for
noncommutative geometry. A generalization of Theorem 5.44 to time-frequency
shifts not supported on a lattice is given in [9].

Once more the GRS condition characterizes those weights for which Wiener’s
Lemma for the rotation algebra holds.

Corollary 5.45. Av(Λ) is inverse-closed in C∗(Λ) and in B(L2(Rd)) if and only if
v satisfies the GRS condition.

Again the necessity of the GRS condition follows from a counterexample. If v
violates the GRS condition, then there are λ ∈ Λ and a > 0 such that v(nλ ) ≥ ean

for n ≥ n0. Let A = Id�2 − e−δ π(λ ) ∈ Av(Λ). Then A is invertible in B(L2(Rd))
with inverse

A−1 =
∞

∑
n=0

e−nδ π(λ )n =
∞

∑
n=0

e−nδ γnπ(nλ ) ,

where the γn are phase factors, |γn| = 1, resulting from the commutation rule (5.30).
Then

‖A−1‖Av(Λ) =
∞

∑
n=0

e−nδv(nλ )

and thus A−1 ∈ Av(Λ) whenever δ ≤ a.
This counterexample shows that the noncommutative torus Av(Λ) with expo-

nential weight v is not inverse-closed in C∗(Λ). This observation was already made
in [210] by means of a rather subtle argument.

In the motivating section 5.2 we discussed the quotient rule and proved that
Ck(T) is inverse-closed in C(T) (Lemma 5.1). Consequently, if f ∈ C∞(T) and
f (t) = 0 for all t ∈T, then 1/ f ∈C∞(T). The statement for the smooth noncommuta-
tive torus A∞(Λ) is completely analogous and is a celebrated result of Connes [54].

Corollary 5.46. If A ∈ A∞(Λ) and is invertible on L2(Rd), then A−1 ∈ A∞(Λ), i.e.,
A−1 = ∑λ∈Λ bλπ(λ ) with rapidly decaying b.
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Proof. Recall from (5.35) that A∞(Λ) =
⋂

s≥0 Avs(Λ) for the polynomial weight
vs(λ ) = (1 + |λ |)s. Since A ∈ A∞(Λ) ⊆ Avs(Λ) for all s ≥ 0 and A is invertible
on L2(Rd), Theorem 5.44 asserts that A−1 ∈ Avs(Λ). This is true for all s ≥ 0, so
A−1 ∈ A∞(Λ). 
�

In view of (5.35) the above statement is a simple corollary of Theorem 5.44.
For further discussion and background we refer to [172] and [202]; an independent
time-frequency proof was given by Janssen [147].

5.3.4 Convolution Operators on Groups

Another variation concerns the form of Wiener’s Lemma for convolution operators.
For this variation we replace the Abelian group Z by a general locally compact
group G .

5.3.4.1 The Basics

Let us first mention the basic facts about locally compact groups [93, 139]. We
write x,y, . . . for the elements of G . The group multiplication is (x,y) → xy and
is continuous by definition. Every locally compact group possesses a left-invariant
measure, the Haar measure dx, which satisfies∫

G
f (ax)dx =

∫
G

f (x)dx, for all a ∈ G ,

for all continuous functions with compact support in G . As usual, the Lp-norm

is defined as ‖ f‖p =
(∫

G | f (x)|p dx
)1/p

and Lp(G ) is the completion of the con-

tinuous functions with compact support with respect to the p-norm. We write
|U | = ∫

G χU(x)dx for the Haar measure of the set U ⊆ G . The convolution is

( f ∗g)(x) =
∫

G
f (y)g(y−1x)dy . (5.38)

As in the case of Z, we may now study the convolution operator Cf with symbol f
acting on a function h: Cf h = f ∗ h. Young’s inequality holds for arbitrary locally
compact groups; therefore, we have

‖ f ∗ h‖p ≤ ‖ f‖1 ‖h‖p

for all f ∈ L1(G ) and h ∈ Lp(G ). Consequently, whenever f ∈ L1(G ), the convo-
lution operator Cf is bounded on Lp(G ) for all p ∈ [1,∞]. In particular, L1(G ) is a
Banach algebra with respect to convolution. It is commutative if and only if G is a
locally compact Abelian group (see Exercises).
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The algebra L1(G ) can be equipped with an involution. Let ∆ : G → R+ be the
Haar modulus of G , which is defined by the right translation invariance∫
G f (xa)dx = ∆(a−1)

∫
G f (x)dx. Then f ∗(x) = f (x−1)∆(x−1) is an involution on

L1(G ), and L1(G ) becomes a Banach ∗-algebra.
Again we may study the spectrum of Cf as an operator acting on Lp(G ). To make

the possible dependence of the spectrum on p explicit, we denote

σB(Lp)(Cf ) =
{
λ ∈ C : Cf −λ I not invertible on Lp(G )

}
.

Now the fundamental question is whether the spectrum is independent of p. As we
have seen in Section 5.2, for the group G = Z this form of spectral invariance is
equivalent to Wiener’s Lemma.

What happens when we replace Z by more general groups; in particular, what
happens for non-Abelian groups G ? The answer to this question is a far-reaching
generalization of Wiener’s Lemma and has led to very deep mathematics.

We start with an abstract answer [12].

Lemma 5.47. The spectral invariance σB(Lp)(Cf ) = σB(L2)(Cf ) for 1 ≤ p ≤ ∞
holds for all f ∈ L1(G ) if and only if G is amenable and symmetric.

Thus, the appropriate formulation of Wiener’s Lemma on locally compact groups
holds only for groups with certain properties. As a first insight we note that Wiener’s
Lemma does not generalize to arbitrary locally compact groups. Its validity depends
subtly on the group structure.

But let us first explain the terms in Lemma 5.47.
A locally compact group is called amenable if there exists a continuous linear

functional m on L∞(G ) such that m(1) = 1, m is positive ( f ≥ 0 ⇒ m( f ) ≥ 0),
and m(Tx f ) = m( f ) holds for all f ∈ L∞(G ) and x ∈ G . One says that G possesses
a translation-invariant mean on L∞(G ). Here Tx is the translation operator on G
defined by Tx f (y) = f (x−1y),x,y ∈ G .

The group G is called symmetric if the Banach ∗-algebra L1(G ) is symmetric.
Recall from Section 5.2.5 that this means that the spectrum of positive elements is
positive:

σB(L1)(Cf ∗∗ f ) ⊆ [0,∞), ∀ f ∈ L1(G ) .

Both properties have been studied extensively and constitute independent
directions of harmonic analysis. For many classes of locally compact groups it is
known whether or not they possess these properties. Every compact group and every
locally compact Abelian group is both symmetric and amenable. Roughly speaking,
amenability and symmetry are properties that indicate the distance of a given group
G to the class of commutative groups or to compact groups. Currently there is no
example of a locally compact group that is symmetric, but not amenable. It is con-
jectured that every symmetric group is amenable.

To get a feeling for these two concepts, let us verify that every compact group is
amenable. Indeed, the Haar measure is an invariant mean on L∞(G ). Since L∞(G )⊂
L1(G ) for compact G , the invariance properties of the Haar measure imply that

m(Tx f ) =
∫

G
Tx f (y)dy =

∫
G

f (x−1y)dy =
∫

G
f (y)dy = m( f ), f ∈ L∞(G ), x ∈ G .
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To construct an invariant mean on Rd , we start with the functionals

mn( f ) = vol(Bn)−1
∫

Bn

f (x)dx,

where Bn = {x ∈ Rd : |x| ≤ n}. The functionals mn are in the unit ball of L∞(Rd)∗.
Since the unit ball of a dual Banach space is weak∗-compact, the sequence mn pos-
sesses at least one point of accumulation m. Since mn(1) = 1, we also have m(1) = 1
and so m = 0. This limit point is translation-invariant and positive, and is thus an
invariant mean on L∞(G ). See Exercises.

Next, every compact group is symmetric and every locally compact Abelian
group is symmetric. However, symmetry is more subtle. The symmetry of compact
groups requires some representation theory, and the symmetry of locally compact
Abelian groups requires several properties of the Fourier transform.

Many classes of groups are known to be amenable and symmetric. “Extremely
noncommutative” groups, in particular all semisimple Lie groups including SL(2,R)
or SL(2,C), are neither amenable nor symmetric. Not surprisingly, Wiener’s Lemma
fails for these groups, and the spectrum of a convolution operator depends crucially
on the domain space Lp(G ).

5.3.4.2 Convolution Operators on Groups of Polynomial Growth

A complete structural characterization of all groups that are symmetric and amenable
seems to be completely out of reach. Therefore, one restricts the investigation to cer-
tain natural classes of locally compact groups and studies convolution operators on
these groups. This is what we will do in the following.

A natural condition to impose on a group is how the size of a sequence of neigh-
borhoods grows. We will consider groups of polynomial growth.

We say that G is compactly generated if there exists a neighborhood U ⊆ G of
the identity element such that G =

⋃∞
n=1 Un, where Un = {u = u1u2 . . .un : u j ∈U}.

Such a neighborhood is called a generating neighborhood.
A group G is said to have polynomial growth if for some generating and rela-

tively compact neighborhood U of the identity G there exist positive constants C,d
such that

|Un| ≤Cnd for all n ∈ N .

Every compact group has polynomial growth, because the Haar measure is finite
and we may take U = G as a generating neighborhood. Also, every compactly gen-
erated, locally compact Abelian group possesses polynomial growth. This is easy to
see for the elementary groups G = Rd and G = Zd . Let U = [−1,1]d ⊆ Rd , then
Un = [−n,n]d , and |Un| = (2n)d , and thus Rd possesses polynomial growth. Like-
wise Zd and every finitely generated Abelian group possess polynomial growth. The
proof for general locally compact Abelian groups requires the structure theorem for
such groups [139], but the proof can be carried out similarly.

Every compactly generated group of polynomial growth is amenable. The
construction of an invariant mean is similar to the one on Rd . Let
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mn( f ) = |Un|−1∫
Un f (x)dx; then mn(1) = 1 and mn is positive. It is not easy to

show that every weak-∗ limit point of this sequence is an invariant mean on L∞(G ).
See [148, 149].

In view of Lemma 5.47 the next question is whether every compactly gener-
ated group of polynomial growth is symmetric. If this is true, then the version of
Wiener’s Lemma for convolution operators will also hold for every group of poly-
nomial growth.

The study of the symmetry of locally compact groups has a long history. It
was known early on that highly non-Abelian groups, such as the matrix groups
GL(d,R),SL(d,R), and more generally the semisimple Lie groups, cannot be sym-
metric. On the other hand, groups that are “almost Abelian,” such as nilpotent
groups, are symmetric [164, 171].

So far the final touch in the quest for symmetric groups was obtained by Losert.
He derived a deep structure theorem for groups of polynomial growth and as a con-
sequence showed that such groups are symmetric [168, 169]. The following theorem
is a milestone in noncommutative harmonic analysis and is one of the deepest gen-
eralizations of the original Wiener’s Lemma.

Theorem 5.48 (Losert [169]). Every compactly generated group of polynomial
growth is symmetric.

Combining all properties of groups of polynomial growth and applying
Lemma 5.47, we obtain the spectral invariance of convolution operators.

Corollary 5.49. Assume that G is a compactly generated group of polynomial
growth and f ∈ L1(G ). Then for 1 ≤ p ≤ ∞,

σB(Lp)(Ch) = σB(L2)(Ch) .

In other words, the spectrum of the convolution operator is independent of the
Lp-space, and the version of Wiener’s Lemma for convolution operators holds in all
groups of polynomial growth.

Next we consider weighted versions of Wiener’s Lemma on groups of polyno-
mial growth. Recall that a locally bounded weight function v on a locally compact
group is called submultiplicative if v(xy) ≤ v(x)v(y) for all x,y ∈ G , and symmetric
if v(x−1) = v(x) for all x ∈ G . The weighted L1-space L1

v(G ) is defined by the norm

‖ f‖L1
v
=

∫
G
| f (x)|v(x)dx.

If v is submultiplicative and symmetric, then L1
v is a Banach ∗-algebra with

respect to convolution and the involution f ∗(x) = f (x−1)∆(x−1) and L1
v(G ) is

embedded in L1(G ). See Exercises.
We have already seen in Section 5.3.1 that the GRS condition characterizes those

weights for which a weighted version of Wiener’s Lemma holds. This pattern carries
over to the much more difficult situation of groups of polynomial growth.
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Theorem 5.50 ([91, 89]). Assume that G is a compactly generated group of
polynomial growth. Then the following conditions are equivalent:

1. The Banach ∗-algebra L1
v(G ) is symmetric.

2. Spectral invariance holds:

σL1
v
(Ch) = σL2(Ch) for all h ∈ L1

v(G ).

3. The weight v satisfies the GRS condition

lim
n→∞v(xn)1/n = 1 for all x ∈ G .

This theorem is much deeper than the original version of Wiener’s Lemma
for weighted absolutely convergent Fourier series. The proof of the implication
(2) ⇒ (1) requires the full structure theorem of Losert [169] and a detailed analy-
sis and corresponding modifications of Ludwig’s proof that nilpotent groups are
symmetric [171].

The necessity of the GRS condition for nondiscrete groups is similar in spirit
to the counterexamples we have seen before, but it is tricky and requires Gaussian
estimates for the heat kernel on G . For discrete groups, the following argument
proves the implication (2) ⇒ (3).

The spectral invariance of (2) implies that rB(�1
v)(Ch)= rB(�2)(Ch). Choose h = δx

for x ∈ G and consider the convolution operator Cδx f = δx ∗ f . Since (δx ∗ f )(y) =
f (x−1y) is the translation by x, Cδx is unitary on �2(G ) and thus rB(�2)(Cδx) = 1 for
all x ∈ G .

To treat �1
v(G ), we first note that rB(�1

v)(Ch) = r�1
v
(h), because

‖h‖�1
v
= ‖h∗ δe‖�1

v
≤ ‖Ch‖�1

v→�1
v
≤ ‖h‖�1

v
.

So let us compute the spectral radius of δx in �1
v(G ):

r�1
v
(δx) = lim

n→∞‖δx ∗ · · · ∗ δx‖1/n
�1

v
= lim

n→∞‖δxn‖1/n
�1

v
= lim

n→∞v(xn)1/n .

Combining these observations, we find that

lim
n→∞v(xn)1/n = r�1

v
(δx) = rB(�1

v)
(Cδx ) = rB(�2)(Cδx ) = 1 ,

which is the GRS condition.

5.3.5 Pseudodifferential Operators

We now turn from harmonic analysis to a topic in classical analysis and discuss
pseudodifferential operators. These arise in partial differential equations, in quan-
tum mechanics, or in wireless communications. So far we have dealt with sequences
and matrices on the index set Zd ; now we deal with functions on Rd and operators
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acting on functions. Instead of Fourier series we use the Fourier transform

f̂ (ξ ) =
∫

Rd
f (x)e−2π ix·ξ dx.

In this section we will not prove any result. The goal is to tell the story of spec-
tral invariance for pseudodifferential operators and put it in the context of Wiener’s
Lemma. The sequence of statements is the same as in the previous sections.

5.3.5.1 The Basics

A pseudodifferential operator in the Kohn–Nirenberg calculus is formally defined
by the integral

Kσ f (x) =
∫

Rd
σ(x,ξ ) f̂ (ξ )e2π iξ ·x dξ . (5.39)

The function σ is called the (Kohn–Nirenberg) symbol of the operator.
This integral is certainly well defined wheneverσ ∈L∞(R2d) and f̂ belongs to the

Schwartz class S (Rd). For more general symbols one may resort to a distributional

interpretation. If f ,g ∈ S (Rd), then the function R(g, f )(x,ξ ) = e−2π ix·ξg(x) f̂ (ξ )
belongs to S (R2d). Then we may take a tempered distribution σ ∈ S ′(R2d) and
define Kσ weakly by the formula

〈Kσ f ,g〉 = 〈σ ,R(g, f )〉 for f ,g ∈ S (Rd) . (5.40)

This weak interpretation defines a continuous operator from S (Rd) to S ′(Rd).
Clearly, (5.40) extends the definition (5.39) to general symbols. (As in Section 5.2.6,
we take the duality conjugate-linear in the second term.)

If the symbol σ depends only on the first variable, σ(x,ξ )= m(x), then Kσ f (x)=∫
Rd m(x) f̂ (ξ )e2π ix·ξ dξ = m(x) f (x) is a just a multiplication operator. If σ depends

only on the second variable, σ(x,ξ ) = µ̂(ξ ), where µ̂ is the Fourier transform of
a measure or distribution on Rd , then Kσ f = µ ∗ f is a convolution operator or a
so-called Fourier multiplier.

Writing

Kσ f (x) =
∫

Rd
σ(x,ξ ) f̂ (ξ )e2π iξ ·x dξ

=
∫

Rd

(∫
Rd
σ(x,ξ )e2π iξ ·(x−y) dξ

)
f (y)dy

=
∫

Rd
k(x,x− y) f (y)dy ,

we may interpret Kσ f as a “time-dependent” convolution with kernel k(x,y). This
is the reason why pseudodifferential operators are used to model time-varying con-
tinuous systems in signal processing. See Section 5.3.6 for a detailed discussion.

By using the time-frequency shifts MξTx f (t) = e2π iξ ·t f (t − x), we may write
every pseudodifferential operator formally as a superposition of time-frequency
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shifts as follows:
Kσ f =

∫
Rd

∫
Rd
σ̂(η ,u)MηT−u f dudη . (5.41)

To understand (5.41), assume that σ , σ̂ ∈ L1(R2d) and use the Fourier inversion
formula

∫
Rd σ(x,ξ )e−2π iu·ξ dξ =

∫
Rd σ̂(η ,u)e2π iη·x dη . Now the following compu-

tation is rigorous:

Kσ f (x) =
∫

Rd
σ(x,ξ ) f̂ (ξ )e2π ix·ξdξ

=
∫∫

R2d
σ(x,ξ )e2π i(x−y)·ξ f (y)dydξ

=
∫∫

R2d
σ̂(η ,y− x)e2π iη·x f (y)dydη

=
∫∫

R2d
σ̂(η ,u)e2π iη·x f (u + x)dudη (5.42)

=
∫∫

R2d
σ̂(η ,u)MηT−u f (x)dudη .

For general symbols σ ∈ S ′(R2d), (5.42) can be proved with a distributional argu-
ment. The form (5.41) is sometimes called the spreading representation of Kσ . For
a survey of the time-frequency approach to pseudodifferential operators, we refer
to [111].

The theory of pseudodifferential operators is usually treated as a subject of
classical “hard” analysis, as is exemplified in the treatises of Hörmander [141] and
Stein [217]. The spreading representation (5.41) suggests an alternative approach
to pseudodifferential operators with time-frequency methods. The time-frequency
approach has been particularly successful in the study of time-varying systems
(Section 5.3.6) and is highly relevant for our discussion of Wiener’s Lemma.

5.3.5.2 The Sjöstrand Class M∞,1(R2d)

The mapping σ �→ Kσ is an example of a symbolic calculus (as discussed at the
end of Section 5.2). Our first task is the identification of “nice” symbols. Here
classical analysis and time-frequency analysis offer rather different answers.
Whereas the classical Hörmander classes are defined by differentiability properties,
the time-frequency approach defines symbol classes via properties of the short-time
Fourier transform.

Fix a nonzero window functionΦ ∈ S (R2d) of 2d-variables, e.g., the Gaussian.
The short-time Fourier transform (STFT) of a symbol σ is

VΦσ(z,ζ ) = (σ ·TzΦ )̂ (ζ ) = 〈σ ,MζTzΦ〉, z,ζ ∈ R2d . (5.43)

The STFT of a symbol is a function on R4d . We say that a symbol σ belongs to the
Sjöstrand class M∞,1(R2d) if
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‖σ‖M∞,1 =
∫

R2d
sup

z∈R2d
|(σ ·TzΦ )̂ (ζ )|dζ =

∫
R2d

sup
z∈R2d

|VΦσ(z,ζ )|dζ < ∞ . (5.44)

To obtain better control of the smoothness of the symbol, we will also consider
the weighted Sjöstrand class M∞,1

v (R2d). We assume that v is a submultiplicative
function on R2d . Then the weighted Sjöstrand class M∞,1

v (R2d) is defined by the
norm

‖σ‖
M∞,1

v
=

∫
R2d

sup
z∈R2d

|(σ ·TzΦ )̂ (ζ )|v(ζ )dζ .

It can be shown that the definition of M∞,1
v (R2d) is independent of the particular

window functionΦ as long as Φ belongs to a suitable space of test functions. Then
different windows yield equivalent norms on M∞,1

v (R2d) [108, Thm. 11.3.7].
Note that if σ ∈M∞,1(R2d) and z∈R2d is fixed, then (σ ·TzΦ )̂ (ζ )=VΦσ(z,ζ )∈

L1(R2d). This means that σ coincides locally with the Fourier transform of an
L1-function. At this stage one may already sense an analogy between Fourier
series with �1-coefficients and the symbol class M∞,1. This analogy should alert
us for yet another version of Wiener’s Lemma.

Before approaching Wiener’s Lemma, we first have to find two Banach algebras
[a small one corresponding to the absolutely convergent Fourier series and a big one
corresponding to C(T)]. This preliminary work was easy for convolution operators
[Lemma 5.17) and for matrices [Lemma 5.28 and (5.23)]. For pseudodifferential
operators the Banach algebra property is nontrivial and interesting in its own right.

We first state the algebra property of the Sjöstrand class [110, 213, 224]. The
composition of two pseudodifferential operators Kσ and Kτ defines a product on
the level of symbols via KσKτ = Kσ◦τ . Likewise, taking the adjoint operator yields
an involution on the level of symbols by (Kσ )∗ = Kσ∗ . Explicit formulas are avail-
able [141], but are not necessary for the time-frequency approach.

Theorem 5.51. If v is submultiplicative and σ ,τ ∈ M∞,1
v , then KσKτ = Kσ◦τ with

σ ◦ τ ∈ M∞,1
v . In fact, M∞,1

v is a Banach ∗-algebra with respect to ◦ .

The following boundedness result has been proved many times [29, 108, 112,
116, 213].

Theorem 5.52. If σ ∈ M∞,1(R2d), then Kσ is bounded on L2(Rd) and ‖Kσ‖L2→L2 ≤
C‖σ‖M∞,1 .

When dealing with convolution operators, we identified the sequence h with the
corresponding convolution operator Ch and thus obtained an embedding of �1(Z)
into B(�2). In this spirit let us define Op(M∞,1

v ) as the set of all operators T from
S (Rd) to S ′(Rd) that can be written as a pseudodifferential operator T = Kσ with
a symbol σ ∈ M∞,1

v . Then the two previous results (Theorems 5.51 and 5.52) can be
rephrased by saying that

Op(M∞,1
v ) is a Banach ∗-subalgebra of B(L2(Rd))

with norm ‖Kσ‖Op(M∞,1
v ) = ‖σ‖

M∞,1
v

.
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5.3.5.3 Wiener’s Lemma for Pseudodifferential Operators

We have reached exactly the same point as in our discussions of convolution
operators and matrix algebras. We study an interesting, noncommutative Banach
algebra of operators with two striking properties: It is embedded into the C∗-algebra
of bounded operators on L2 and it possesses a hidden �1-like structure. So the
logical next question is whether this algebra Op(M∞,1) is again inverse-closed in
B(L2(Rd)). This fundamental discovery is due to Sjöstrand [214].

Theorem 5.53. If σ ∈ M∞,1(R2d) and Kσ is invertible on L2(Rd), then K−1
σ = Kτ

for some τ ∈ M∞,1.

Sjöstrand’s proof works with a decomposition of the pseudodifferential operator
Kσ into small localized pieces and with Wiener’s Lemma for the matrix algebra C of
Gohberg, Baskakov, and Kurbatov (Section 5.3.2). Our recent proof [112] applies
time-frequency methods and structural Banach algebra arguments. It extends and
sharpens Sjöstrand’s result to the weighted case and clarifies the precise spectral
invariance properties.

Theorem 5.54 ([112]). Assume that v is a submultiplicative weight on R2d satisfy-
ing the GRS condition limn→∞ v(nz)1/n = 1 for all z ∈ R2d.

If σ ∈ M∞,1
v (R2d) and Kσ is invertible on L2(Rd), then K−1

σ = Kτ for some
τ ∈ M∞,1

v .

Theorem 5.55 ([112, 114]). Assume that v is submultiplicative on R2d. Then
Op(M∞,1

v ) is inverse-closed in B(L2) if and only if v satisfies the GRS condition

lim
n→∞v(nz)1/n = 1

for all z ∈ R2d.

Once again the counterexample follows the pattern established in Section 5.3.1.
If for some z0 = (u0,η0)∈R2d we have limn→∞ v(nz0)1/n = ea > 1, then we consider
the operator IdL2 − e−δπ(z0) for δ ≤ a. Its symbol σ(x,ξ ) = 1− e−δe2π i(η0·x−u0·ξ )

is in M∞,1
v (R2d), but the symbol of the inverse operator ∑∞n=0 e−δnπ(z0)n is not in

M∞,1
v (R2d). See Exercises.
Further generalizations were obtained in [120]. Let us also mention that the

theory of the rotation algebra discussed in Section 5.3.3 and the time-frequency
analysis of pseudodifferential operators are related: Theorem 5.44 can be derived
from Theorem 5.54 [115].

5.3.5.4 Spectral Invariance

As with convolution operators, pseudodifferential operators with “nice” symbols
are bounded on a much larger class of function spaces, the so-called modulation
spaces. In time-frequency analysis these are defined by properties of the short-time
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Fourier transform. Let ϕ(t) = e−πt·t be the Gaussian on Rd , 1 ≤ p,q <∞, and m be a
v-moderate weight. Then the modulation space Mp,q

m is defined as the completion of

the space of finite linear combinations
{

f : f = ∑r
j=1 c jπ(z j)ϕ ,c j ∈ C,z j ∈ R2d

}
with respect to the norm

‖ f‖Mp,q
m

=

(∫
Rd

(∫
Rd

|Vϕ f (x,ξ )|p m(x,ξ )p dx

)q/p

dξ

)1/q

.

For p =∞ or q =∞ a small modification of the definition is necessary. For a detailed
exposition of modulation spaces, see [108, Chap. 11–13], for a historical account
with an extensive list of reference, see [84].

The following general boundedness result for pseudodifferential operators on
modulation spaces is the analogue of Young’s inequality for convolution
(Lemma 5.17). See [108, Chap. 14] or [112, 120].

Theorem 5.56. If σ ∈ M∞,1
v (R2d), then Kσ is bounded on all modulation spaces

Mp,q
m with 1 ≤ p,q ≤ ∞ and v-moderate m.

As a consequence of Theorem 5.53, we obtain the complete spectral invariance
for pseudodifferential operators.

Corollary 5.57. Assume that v satisfies the GRS condition and σ ∈ M∞,1
v . Then the

spectral invariance

σB(Mp,q
m )(Kσ ) = σB(L2)(Kσ )

holds for every p,q ∈ [1,∞] and every v-moderate weight m.

The argument is similar to the proof of Theorem 5.19 and does not require new
ideas. One shows that Kσ is invertible on Mp,q

m if and only if (Kσ )∗ is invertible on
Mp,q

m and then uses duality and interpolation of modulation spaces.
To sum up, the spectrum of a “nice” pseudodifferential operator does not depend

on the space on which it acts.

A Connection to Classical Pseudodifferential Operators. Recall that a symbol
σ belongs to the Hörmander class S0

0,0 if and only if ∂ασ ∈ L∞(R2d) for all multi-
indices α ≥ 0. Toft [225] observed that the Hörmander class can be written as an
intersection of modulation spaces. If vs(ζ ) = (1 + |ζ |)s, then

S0
0,0 =

⋂
s≥0

M∞,1
vs

.

Since Op(M∞,1
vs ) is inverse-closed in B(L2), we find that the intersection

⋂
s≥0 M∞,1

vs

is also inverse-closed in B(L2). Formulated explicitly, this is a famous result of
Beals [17] and probably the earliest result on spectral invariance in the theory of
pseudodifferential operators.

Corollary 5.58. If σ ∈ S0
0,0 and Kσ is invertible on L2(Rd), then K−1

σ = Kτ for some

τ ∈ S0
0,0.
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5.3.5.5 Almost Diagonalization of Pseudodifferential Operators

The results about pseudodifferential operators may look fairly technical. In this
section we would like to make them a bit more plausible by using time-frequency
analysis. Since a pseudodifferential operator Kσ is defined as a superposition of
time-frequency shifts, it is almost obligatory to ask how Kσ acts on a time-frequency
shift π(z). This idea culminates in the insight that pseudodifferential operators are
almost diagonal with respect to time-frequency “bases.”

For the formulation of this result we need an additional concept. Fix a lattice
Λ = AZ2d ⊆ R2d and a “nice” basis function g. Ideally we choose the Gaussian
e−πt·t , but any nonzero function satisfying

∫
R2d |〈g,π(z)g〉|v(z)dz < ∞ works. Such

a g belongs to the modulation space M1,1
v (Rd). We say that the set {π(λ )g : λ ∈Λ}

is a Gabor frame if there exist constants A,B > 0 such that

A‖ f‖2
2 ≤ ∑

λ∈Λ
|〈 f ,π(λ )g〉|2 ≤ B‖ f‖2

2 for all f ∈ L2(Rd).

General frame theory and the explicit construction of Gabor frames are discussed
in detail in Ole Christensen’s Chapter 1. The construction of Gabor frames with
a basis function in M1,1

v (Rd) for rapidly increasing weights is more difficult and
in fact requires Wiener’s Lemma for twisted convolution! See [85, 118] and
[108, Chap. 13].

The following characterization of the Sjöstrand class is the key to understanding
many properties of pseudodifferential operators and to proving the main results in
Section 5.3.5.

Theorem 5.59. Assume that g ∈ M1,1
v (Rd), g = 0, and that {π(λ )g : λ ∈ Λ} is a

Gabor frame for L2(Rd). Then the following properties are equivalent.

1. σ ∈ M∞,1
v .

2. There exists a continuous function H ∈ L1
v(R

2d) such that

|〈Kσ (π(z)g),π(w)g〉| ≤ H(w− z) for all w,z ∈ R2d . (5.45)

3. There is a h ∈ �1
v(Λ) such that

|〈Kσ (π(µ)g),π(λ )g〉| ≤ h(λ − µ) for all λ ,µ ∈Λ . (5.46)

Theorem 5.59 shows that the time-frequency shift π(z) is almost an eigenvector
of Kσ and that Kσ is almost diagonalized by frames of time-frequency shifts.

Let us rewrite (5.46) and connect it to the topic of matrix algebras. Let M(σ) be
the matrix indexed by Z2d with the entries

M(σ)kl = 〈Kσ (π(Al)g),π(Ak)g〉 , λ = Ak,µ = Al ∈Λ . (5.47)

Then (5.46) states that |M(σ)kl | ≤ h(A(k − l)), and thus the matrix of Kσ is
dominated by convolution with h̃ = h◦A. In the light of Section 5.3.2 we may recast
Theorem 5.59 in a more compact way.
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Theorem 5.60. Assume that {π(λ )g : λ ∈ Λ} is a frame for L2(Rd) and
g ∈ M1,1

v (Rd). Then a symbol σ belongs to the weighted Sjöstrand class M∞,1
v if

and only if M(σ) belongs to the matrix algebra Cv.

σ ∈ M∞,1
v (R2d) ⇐⇒ M(σ) ∈ Cv .

Furthermore, it can be shown that ‖σ‖
M∞,1

v
and ‖M(σ)‖Cv are equivalent norms on

the symbol class M∞,1
v .

By means of Theorem 5.59, the algebra property of M∞,1
v and Wiener’s Lemma

for pseudodifferential operators are now much easier to understand and follow from
the corresponding properties of the matrix algebra Cv.

Assume that σ ,τ ∈ M∞,1
v and thus M(σ),M(τ) ∈ Cv. The composition of opera-

tors corresponds to matrix multiplication. Consequently, Kσ◦τ = KσKτ corresponds
to the matrix M(σ)M(τ) ∈ Cv and thus σ ◦ τ ∈ M∞,1

v .
Likewise, the inverse of Kσ corresponds to the inverse of M(σ). Since Cv is

inverse-closed in B(�2), M(σ)−1 ∈ Cv and by Theorem 5.59 the symbol τ of
K−1
σ = Kτ is in M∞,1

v . The rigorous proof requires much more work, because strictly
speaking, M(σ) is not invertible. It possesses a nontrivial kernel and is invertible
only on a certain subspace of �2. See [112] for the precise details.

Our main point here is that Wiener’s Lemma for matrix algebras enters crucially
and directly in the proof of Wiener’s Lemma for pseudodifferential operators.

5.3.6 Time-Varying Systems and Wireless Communications

In Section 5.2.6 we used discrete time-invariant systems as a motivation for convo-
lution operators on Z, and in Section 5.3.2 discrete time-varying systems served as
a motivation to study matrix algebras. In both cases, we assumed a “digital” world,
and a signal was understood to be a sequence of numbers. The “physical” world,
however, is continuous, and therefore we now turn to the discussion of “analog”
signals and continuous time-varying systems. For the mathematician, signals are
functions on R or Rd , and systems are operators on L2(Rd).

The goal of this section is to discuss how the results about pseudodifferential
operators of Section 5.3.5 can be applied in an engineering context.

5.3.6.1 Time-Varying Systems

Let us make a simple model of a time-varying system as it is used in mobile
communications.

In Fig. 5.1 a signal f is transmitted by an antenna to a cellular phone in a moving
tramway car. The signal is an electromagnetic wave and the propagation of f is
governed by the wave equation. Thus, we are forced to work with analog signals.

During transmission the signal is distorted and transformed by various effects, of
which we model two main effects:
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(a) The signal is reflected at various obstacles and the signal arrives at the
receiver with a delay caused by different path lengths. Formally, the received signal
f̃ is a weighted superposition of time shifts of the transmitted signal f with some
weight V :

f̃ (t) =
∫

Rd
V (u) · · · f (t + u)du .

The weight V depends on the physical characteristics of the transmission, such as
the path length or the absorption at reflectors.

(b) If the sender and receiver are in motion with respect to each other, then the
Doppler effect will result in a frequency shift proportional to the relative velocity of
sender and receiver. Since M̂ξ f (τ) = f̂ (τ−ξ ), the received signal f̃ is a superposi-
tion of modulations (= frequency shifts) with some weight W :

f̃ (t) =
∫

Rd
W (η) · · ·e2π iηt f (t)dη .

The differing path lengths and the Doppler effect are illustrated in Fig. 5.1.

Fig. 5.1: Signal distortion caused by variable path length and by the Doppler effect. (Courtesy of
Gerald Matz, Technical University of Vienna.)

Combining the two types of distortion, we find that the received signal f̃ is a
superposition of time-frequency shifts, which we write as

f̃ =
∫

R2d
σ̂(η ,u)e2π iη·t f (t + u)dudη . (5.48)
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The weighting factor σ̂ is the spreading function of the time-varying system. It
depends on the physical characteristics of the transmission and is usually estimated
with statistical methods.

Comparing with (5.42), we understand the awkward notation for the weighting
factor. The distortion f → f̃ is nothing more than the pseudodifferential operator
Kσ with the Kohn–Nirenberg symbol σ , and thus

f̃ = Kσ f =
∫

Rd
σ(x,ξ ) f̂ (ξ )e2π iξ ·x dξ .

Although mathematicians and engineers study the same object, there is a big
difference between pseudodifferential operators in analysis and time-varying
systems in engineering. Pseudodifferential operators are used for the construction
of approximate inverses (parametrices) of partial differential operators and for the
study of regularity properties in partial differential equations. Thus, all conditions
and arguments in analysis involve derivatives and smoothness.

In engineering, however, differentiability properties do not play a role. The
spreading representation (5.48) rather suggests time-frequency methods as a tool
for the investigation of time-varying systems.

Symbol Classes in Mobile Communications. Let us first discuss the question of
symbol classes. For physical reasons there are a maximum Doppler shift ν0 and
also a maximum time delay τ0; consequently, the spreading function σ̂ is compactly
supported in the rectangle [−ν0,ν0]× [0,τ0]. A time-varying system with compactly
supported spreading function is called underspread [183]. Such operators play an
important role in communication theory.

Concerning the nature of σ̂ , the modeling of engineers is at odds with the math-
ematician’s need for rigor. The standard assumption of engineers is that σ ∈ L2.
This assumption is doubtful, because then by Pool’s theorem [197] Kσ must be a
Hilbert–Schmidt operator. This is definitely a problem, because the class of Hilbert–
Schmidt operators excludes the distortion-free channel (the identity operator) and
time-invariant channels (convolution operators). Furthermore, a Hilbert–Schmidt
operator cannot have a bounded inverse on L2(R), or in engineering terms, the
recovery of f from f̃ is ill-posed, and the equalization will be extremely unstable.

To make a more satisfactory model for the symbols arising in wireless communi-
cations and time-varying channels, we follow Strohmer [219]. We keep the assump-
tion that supp σ̂ is compact, but we admit σ̂ to be a distribution in M∞(R2d). This
means that σ̂ is a tempered distribution with bounded short-time Fourier transform.
For instance, if σ̂ = δ (the point measure at 0), then Kσ = IdL2 .

Lemma 5.61. Assume that σ̂ ∈ M∞(R2d) and that supp σ̂ is compact in some ball
B(0,R) = {z ∈ R2d : |z| ≤ R}. If Φ̂ ∈ S (R2d) and supp Φ̂ ⊆ B(0,R), then∫

R2d
sup

z∈R2d
|VΦσ(z,ζ )|v(ζ )dζ < ∞ (5.49)
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for any nonnegative locally bounded function v. Consequently, σ ∈ M∞,1
v (R2d) for

any weight v.

Proof. Observe that (σ ·TzΦ )̂ (ζ ) = (σ̂ ∗M−zΦ̂)(ζ ) and hence for fixed z has its
support in B(0,2R). We find that

VΦσ(z,ζ ) = 0 for |z| > 2R .

Since VΦσ is bounded, (5.49) follows. 
�

5.3.6.2 Transmission of Information by OFDM

Next we explain how pseudodifferential operators enter in the process of data
transmission.

1. The data. Given is a discrete set of data (digital information), ckl ∈ C, where
k, l ∈Z. Usually the numbers ckl are taken from a finite alphabet, either ckl ∈ {−1,1}
or ckl ∈ {i�(1+ i) : � = 0,1,2,3}. The parameter k indicates the time when the coef-
ficient ckl is transmitted, and the parameter l labels the frequency band over which
the coefficient is sent. For fixed l, we may think of the sequence {ckl : k ∈ Z} as a
“word” that is sent over the lth frequency band. For fixed k, the set {ckl : l ∈ Z} is
the symbol group that is transmitted at time k.

2. Digital–analog conversion. In the first step the digital information ckl is con-
verted to an analog signal. The data ckl serve as coefficients in a series expansion.
Fix a suitable pulse g; then the transmitted analog signal is

f (t) = ∑
k∈Z

(
∑
l∈Z

ckle
2π iβ lt

)
g(t −αk) = ∑

k,l∈Z

cklMβ lTαkg(t) . (5.50)

A series of this form is called a Gabor series. (Of course, in practice the sum is
finite.)

It is easy to understand why Gabor series are a convenient way to transform a
discrete set of data into an analog signal. The symbol group transmitted at time αk
is ∑l∈Z ckle2π iβ lt g(t −αk); this is the Fourier series of the coefficients ckl and can
be calculated easily with a fast Fourier transform (FFT). For fixed l, the lth word
is transmitted as fl(t) = Mβ l

(
∑k∈Z cklg(t −αk)

)
. If supp ĝ ⊆ [−β ′/2,β ′/2], then

supp f̂l ⊆ [β l−β ′/2,β l +β ′/2]. If we choose β ′ < β , then each word is transmitted
on a different frequency band.

This method for the simultaneous transmission of several independent data sets
is called frequency-division multiplexing. If the time-frequency shifts Mβ lTαkg form
an orthogonal set, then one speaks of orthogonal frequency-division multiplexing,
OFDM in short.

In industrial applications the pulse g is usually chosen to be a characteristic
function g = χ[0,α ′] with α ′ < α . Such a pulse achieves a good separation of con-
secutive symbol groups and works optimally in stationary environments. However,
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in nonstationary environments the Fourier transform of the characteristic function
χ[0,α ′] decays slowly, and adjacent frequency bands are not separated adequately.

For nonstationary time-varying environments better pulse shapes are required.
The ideal pulse is compactly supported in time and frequency, and its time-frequency
shifts Mβ lTαkg are mutually orthogonal. These properties exclude each other
because of the uncertainty principle. Thus, it becomes a relevant mathematical prob-
lem to construct appropriate pulse shapes that are compatible with the uncertainty
principle. See [26, 184, 218, 220] for a small sample of papers by both engineers
and mathematicians. Let us mention that Wiener’s Lemma both for Fourier series
and for matrix algebras is used implicitly in several pulse-shaping constructions.

Figure 5.2 shows a formal representation of the transmitted signal in the
time-frequency plane. Each coefficient ckl belongs to a different cell in the
time-frequency plane; the goal of pulse design is to ensure that the cells are well
separated from each other.

T

f

F

t

Fig. 5.2: Each coefficient ckl of the transmitted signal occupies a cell in the time-frequency plane.

3. Transmission of f and signal distortion. Next the analog signal generated
from the digital information is transmitted by a sender and, in the course of its
propagation, undergoes various distortions. Let us emphasize that the transmission
is a physical process subject to the wave equation. This is not a phenomenon in a
discrete space, and any discretization is an approximation that has to be justified.
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As explained above, the distortion is described by a pseudodifferential operator.
The received signal is of the form

f̃ = Kσ f =
∫

Rd
σ̂(u,η)MηT−u f dudη ,

and the symbol may be assumed to be in a weighted Sjöstrand class M∞,1
v (R2d).

4. Analog–digital conversion. In terms of the coefficients ckl , the received
signal is

f̃ = Kσ f = ∑
k′,l′∈Z

ck′,l′ Kσ (Mβ l′Tαk′g) .

The goal is now to recover the coefficients ckl from f̃ . This task is usually
approached by taking correlations, i.e., by taking inner products with time-frequency
shifts of g (or with other known pulse shapes). After taking correlations, we obtain
the sequence

ykl = 〈 f̃ ,Mβ lTαkg〉
= ∑

k′,l′∈Z

ck′,l′ 〈Kσ (Mβ l′Tαk′g),Mβ lTαkg〉 .

Let y be the vector with components ykl and M(σ) be the matrix with entries

M(σ)kl,k′ l′ = 〈Kσ (Mβ l′Tαk′g),Mβ lTαkg〉 . (5.51)

Then we may write the relation between the original data sequence c and the output
sequence y as an infinite system of linear equations

M(σ)c = y . (5.52)

The matrix M(σ) is the matrix of Kσ with respect to a set of time-frequency shifts.
In the context of data transmission it is called the channel matrix. Its entries describe
the interference between different cells in the time-frequency plane caused by the
distortion operator Kσ .

5. Equalization. Finally, we have to recover the original data c. This amounts to
solving the system (5.52) or explicitly

c = M(σ)−1y .

In order to write the inverse of M(σ) in a meaningful way, we have to assume that
M(σ) is an invertible matrix. The usual assumptions are that Kσ is invertible and that
the set of time-frequency shifts Mβ lTαkg forms a Riesz basis (or orthogonal basis)
for some subspace of L2. (Otherwise the input–output relationship f → f̃ = Kσ f
would be ill-posed and the reconstruction of the data ckl from the received signal f̃
would be unstable.)

In general, the solution of the system (5.52) or the inversion of the channel
matrix poses a challenging computational problem. In practice this is not a problem,



5 Wiener’s Lemma: Theme and Variations 233

because it is generally assumed that the channel matrix M(σ) is diagonal. Thus,
〈Kσ (Mβ l′Tαk′g),Mβ lTαkg〉 = 0 for (k, l) = (k′, l′). Consequently, the original data
are simply given by

ckl = 〈Kσ (Mβ lTαkg),Mβ lTαkg〉−1ykl .

This assumption of diagonality seems truly miraculous. There is no reason why
the channel matrix should be exactly diagonal. At first glance it is really amazing
that the OFDM method should work for time-varying systems.

Nevertheless, the engineering intuition is correct, and the described equaliza-
tion method works in practice. The mathematical reason is, once again, Wiener’s
Lemma.

Proposition 5.62. Assume that σ̂ has compact support and M(σ) is invertible on

L2(Rd), that v(x,ξ ) = ea(|x|+|ξ |)b
for a > 0,0 < b < 1, and that g ∈ M1,1

v (Rd). Then

|M(σ)kl,k′ l′ | ≤C e−a(|k−k′|+|l−l′|)b
, ∀k,k′, l, l′ ∈ Z ,

and likewise

|(M(σ)−1)
kl,k′l′ | ≤C′ e−a(|k−k′|+|l−l′|)b

, ∀k,k′, l, l′ ∈ Z .

Proof. By Lemma 5.61 the symbol describing the channel is in every M∞,1
v (R2d).

Consequently, by Theorem 5.59 the matrix of Kσ is almost diagonal and its entries
are dominated by |M(σ)kl,k′ l′ | ≤ h(k − k′, l − l′) for some sequence h ∈ �1

v . In
particular, |M(σ)kl,k′ l′ | ≤ h(k− k′, l − l′) ≤ Cv(k− k′, l − l′)−1. Since the subexpo-
nential weight v satisfies the GRS condition, Wiener’s Lemma for pseudodifferential
operators (Theorem 5.53) implies that the same decay property holds for the inverse
matrix. 
�

Proposition 5.62 says that the channel matrix and its inverse are almost diagonal
with respect to arbitrary subexponential weights. Consequently, it suffices to use the
diagonal (and possibly a few side-diagonals) for matrix computations. In particular,
the inverse of M(σ) is almost a diagonal matrix. Thus, Proposition 5.62 can be taken
as a mathematical justification of the engineering practice.

At the core of this justification is Wiener’s Lemma for pseudodifferential
operators.
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Exercises for Section 5.3

1. Show that the weight function v(k) = ea|k|b a,b > 0, satisfies the GRS condition
if and only if b < 1. Show that the function v(k) = e|k|/ log(e+|k|) is submultiplica-
tive and satisfies the GRS condition.

2. Formulate and prove a version of the theorem of Wiener–Levy (Theorem 5.16)
for the algebra of weighted absolutely convergent Fourier series Av(T).

3. (a) Show that the space of matrices defined by the Schur-type conditions (5.27)
is a Banach algebra with respect to matrix multiplication.
(b) Prove the continuous embeddings Cv ⊆ A 1

v ⊆ A ∞
v of (5.28) and give

examples to show that the inclusions are proper.

4. Let J =
(

0 I
−I 0

)
(consisting of d × d blocks). Given a lattice Λ = AZ2d for

some invertible matrix A, define the adjoint lattice Λ◦ by

Λ◦ = J (AT )−1Z2d , (5.53)

where AT is the transpose of A. Show that a time-frequency shift π(z) commutes
with all π(λ ),λ ∈Λ , if and only if z ∈Λ◦ [88].

5. Given are a lattice Λ ⊆ R2d and the exponential weight v(λ ) = e|λ |. Find a
sequence h ∈ �1

v(Λ) such that the twisted convolution operator C�
h is invertible

on �2(Λ) with inverse C�
g, but g ∈ �1

v(Λ).
6. Show that the set {C�

h : h ∈ �1
v(Λ)} is a closed ∗-subalgebra of Cv.

7. Prove statements (1) and (2) of Lemma 5.32.
8. For a locally compact group G , show that L1(G ) is commutative if and only if

G is Abelian.
9. Let mn( f ) = vol(Bn)−1 ∫

Bn
f (x)dx for f ∈ L∞(Rd). Show that any limit point m

of the sequence mn is an invariant mean on L∞(Rd), i.e., m(1) = 1,
|m( f )| ≤ ‖ f‖∞, f ≥ 0 ⇒ m( f ) ≥ 0, and m(Tx f ) = m( f ) for all f ∈ L∞(Rd)
and x ∈ Rd .

10. Let G be a locally compact group and v be a submultiplicative, even weight
on G . Show that L1

v(G ) is a Banach ∗-algebra with respect to convolution and
the involution f ∗(x) = f (x−1)∆(x−1).

11. Let σ(x,ξ ) = ∑k,l∈Zd akle2π i(k·x+l·ξ ).

a. Describe the associated pseudodifferential operator Kσ .
b. Show that σ ∈ M∞,1

v (R2d) if and only if a ∈ �1
v(Z

2d).
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54. Connes, A.: C∗ algèbres et géométrie différentielle. C. R. Acad. Sci. Paris Sér. A-B 290,

A599–A604 (1980)
55. Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994)
56. Conway, J.B.: A Course in Functional Analysis, 2nd ed. Springer-Verlag, New York (1990)
57. Córdoba, A., Fefferman, C.: Wave packets and Fourier integral operators. Commun. Partial

Diff. Eq. 3, 979–1005 (1978)
58. Czaja, W.: Characterizations of Gabor systems via the Fourier transform. Collect. Math.

51(2), 205–224 (2000)
59. Daubechies, I.: The wavelet transformation, time-frequency localization and signal analysis.

IEEE Trans. Inform. Theory 36, 961–1005 (1990)
60. Daubechies, I.: Ten Lectures on Wavelets. CBMS-NSF Regional Conference series in

applied mathematics. Society for Industrial and Applied Mathematics, Philadelphia (1992)
61. Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet

frames. Appl. Comput. Harmon. Anal. 14(1), 1–46 (2003)
62. Davies, E.: Machine Vision: Theory, Algorithms and Practicalities. Academic Press,

San Diego (1990)
63. de Leeuw, K.: An harmonic analysis for operators. I. Formal properties. Illinois J. Math.

19(4), 593–606 (1975)
64. Demanet, L., Vandergheynst, P.: Gabor wavelets on the sphere. In: M.A. Unser, A. Aldroubi,

A.F. Laine (eds.) Proc. SPIE Conf. Wavelets: Applications in Signal and Image Processing X,
vol. 5207, pp. 208–215. SPIE, Bellingham, WA (2003)

65. DeVore, R.A.: Nonlinear approximation. In: A. Iserles (ed.) Acta Numerica, pp. 51–151.
Cambridge University Press (1998)

66. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Grundlehren der Mathema-
tischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303.
Springer-Verlag, Berlin (1993)

67. Do, M.N., Vetterli, M.: The finite ridgelet transform for image representation. IEEE Trans.
Image Process. 12, 16–28 (2003)

68. Do, M.N., Vetterli, M.: The contourlet transform: An efficient directional multiresolution
image representation. IEEE Trans. Image Process. 14, 2091–2106 (2005)

69. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inform. Theory 4(3), 613–627
(1995)

70. Donoho, D.L.: Wedgelets: Nearly minimax estimation of edges. Ann. Stat. 27(3), 859–897
(1999)

71. Donoho, D.L., Huo, X.: Beamlets and multiscale image analysis. In Multiscale and Multires-
olution Methods. Lect. Notes Comput. Sci. Eng., 20, Springer-Verlag, Berlin (2002)

72. Donovan, G., Geronimo, J., Hardin, D.: Compactly supported, piecewise affine scaling
functions on triangulations. Constr. Approx. 16, 201–219 (2000)

73. Donovan, G., Geronimo, J.S., Hardin, D.P., Massopust, P.R.: Construction of orthogonal
wavelets using fractal functions. SIAM J. Math. Anal. 27(4), 1158–1192 (1996)

74. Doroshkevich, A.G., Naselsky, P.D., Verkhodanov, O.V., Novikov, D.I., Turchaninov, V.I.,
Novikov, I.D., Christensen, P.R., Chiang, L.Y.: First release of Gauss–Legendre sky pixeliza-
tion (GLESP) software package for CMB analysis (2005). ArXiv:astro-ph/0501494v2



238 References

75. Doroshkevich, A.G., Naselsky, P.D., Verkhodanov, O.V., Novikov, D.I., Turchaninov, V.I.,
Novikov, I.D., Christensen, P.R., Chiang, L.Y.: Gausß–Legendre sky pixelation (GLESP) for
CMB maps. Int. J. Mod. Phys. D 14(2), 275–290 (2005)

76. Driscoll, J.R., Healy, D.M.J.: Computing Fourier transforms and convolutions on the
2-sphere. Adv. Appl. Math. 15(2), 202–250 (1994)

77. Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series. Trans. Amer. Math. Soc.
72, 341–366 (1952)

78. Duval-Destin, M., Muschietti, M., Torresani, B.: Continuous wavelet decompositions,
multiresolution, and contrast analysis. SIAM J. Math. Anal. 24(3), 739–755 (1993)

79. Easley, G., Lim, W., Labate, D.: Optimally sparse image representations using shearlets.
Proc. 40th Asilomar Conf. on Signals, Systems and Computers, Monterey (2006)

80. Easley, G., Lim, W., Labate, D.: Sparse directional image representations using the discrete
shearlet transform. Appl. Comput. Harmon. Anal. 25, 25–46 (2008)

81. Easley, G. R., Labate, D., and Colonna, F., Shearlet based total variation for denoising. IEEE
Trans. Image Process. 18 (2), 260–268 (2009)

82. Easley, G. R., Krim, H., Labate, D. and Yi, S., Edge detection and processing using
shearlets. Proceedings of IEEE Int. Conf. on Image Processing (ICIP), San Diego, Octo-
ber 12–15 (2008)

83. Easley, G. R., Krim, H., Labate, D. and Yi, S., A shearlet approach to edge analysis and
detection. IEEE Trans. Image Processing 18 (5), 929–941 (2009)

84. Feichtinger, H.: Modulation spaces: Looking back and ahead. Sampl. Theory Signal Image
Process. 5(2), 109–140 (2006)
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101. Gel’fand, I.: Über absolut konvergente trigonometrische Reihen und Integrale. Rec. Math.
[Mat. Sbornik] N. S. 9(51), 51–66 (1941)

102. Gel’fand, I., Raikov, D., Shilov, G.: Commutative Normed Rings. Chelsea Publishing, New
York (1964)

103. Geronimo, J.S., Hardin, D.P., Massopust, P.R.: Fractal functions and wavelet expansions
based upon several scaling functions. J. Approx. Theory 78(3), 373–401 (1994)

104. Gohberg, I., Kaashoek, M.A., Woerdeman, H.J.: The band method for positive and strictly
contractive extension problems: An alternative version and new applications. Integr. Equ.
Oper. Theory 12(3), 343–382 (1989)
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111. Gröchenig, K.: A pedestrian’s approach to pseudodifferential operators. In: Harmonic Analy-

sis and Applications, pp. 139–169. Appl. Numer. Harmon. Anal., Birkhäuser, Boston (2006)
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165. Lévy, P.: Sur la convergence absolue des séries de Fourier. Compositio Math. 1, 1–14 (1934)
166. Lewin, B.J.: Nullstellenverteilung ganzer Funktionen. Akademie-Verlag, Berlin (1962)
167. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I, Sequence Spaces. Springer-Verlag,

Berlin (1977)
168. Losert., V.: On the structure of groups with polynomial growth. Math. Z. 195(1), 109–117

(1987)
169. Losert., V.: On the structure of groups with polynomial growth. II. J. London Math. Soc. (2)

63(3), 640–654 (2001)
170. Louis, A.K., Maass, P., Rieder, A.: Wavelets: Theory and Applications. John Wiley & Sons,

Inc. New York (1997)
171. Ludwig, J.: A class of symmetric and a class of Wiener group algebras. J. Funct. Anal. 31(2),

187–194 (1979)
172. Luef, F.: On spectral invariance of non-commutative tori. In: Operator Theory, Operator

Algebras, and Applications, pp. 131–146. Vol. 414, Contemp. Math., Amer. Math. Soc.,
Providence (1984)

173. Luef, F.: Projective modules. J. Functional Anal. 257(6), 1921–1946 (2009)
174. Mallat, S.: A theory for multiresolution signal decomposition: The wavelet representation.

IEEE Trans. Patt. Anal. Mach. Intell. 11, 674–693 (1989)
175. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1997)
176. Mallat, S., Hwang, W.L.: Singularity detection and processing with wavelets. IEEE Trans.

Inform. Theory 38, 617–643 (1992)
177. Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Trans. Patt.

Anal. Mach. Intell. 14(7), 710–732 (1992)
178. Marinucci, D., Pietrobon, D., Balbi, A., Baldi, P., Cabella, P., Kerkyacharian, G., Natoli, P.,

Picard, D., Vittorio, N.: Spherical needlets for cosmic microwave background data analysis.
MNRAS 383(2), 539–545 (2008)

179. Maslen, D.K., Rockmore, D.N.: Generalized FFTs — A survey of some recent results. In:
L.F. et al. (eds.) Groups and Computation II. Workshop on Groups and Computation, June
1995, New Brunswick, NJ, DIMACS, Ser. Discrete Math. Theor. Comput. Sci., vol. 28,
pp. 183–237. Amer. Math. Soc. Providence (1997)

180. Maslen, D.K., Rockmore, D.N.: Separation of variables and the computation of Fourier
transforms on finite groups. I. J. Amer. Math. Soc. 10(1), 169–214 (1997)

181. Massopust, P.: Fractal Functions, Fractal Surfaces, and Wavelets. Academic Press, San Diego
(1994)



242 References

182. Massopust, P.: Multiwavelets: Some approximation-theoretic properties, sampling on the
interval, and translation invariance. In: N.M. Chuong et al. (edso.) Harmonic, Wavelet and
p-adic Analysis, pp. 37–58. World Scientific Publishing Co., Singapore (2007)

183. Matz, G., Hlawatsch, F.: Time-frequency transfer function calculus (symbolic calculus) of
linear time-varying systems (linear operators) based on a generalized underspread theory.
J. Math. Phys. 39(8), 4014–4070 (1998)
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231. Wandelt, B.D., Górski, K.M.: Fast convolution on the sphere. Phys. Rev. D 63(12) (2001).
Article 123002

232. Wang, X.: The study of wavelets from the properties of their Fourier transforms. Ph.D.
Thesis, Washington University in St. Louis (1995)



244 References

233. Weiss, G., Labate, D.: Examples of wavelets with composite dilations. Proceedings of a
symposium dedicated to M. de Guzman, Univ. Complutense de Madrid, pp. 231–249 (2005)

234. Weiss, G., Wilson, E.: The Mathematical Theory of Wavelets. Proceedings of the NATO–ASI
Meeting. Harmonic Analysis 2000 — A Celebration. Kluwer (2001)

235. Wiaux, Y., Jacques, L., Vandergheynst, P.: Correspondence principle between spherical and
Euclidean wavelets. The Astrophysical Journal 632(1), 15–28 (2005)

236. Wiaux, Y., Jacques, L., Vielva, P., Vandergheynst, P.: Fast directional correlation on the
sphere with steerable filters. The Astrophysical Journal 652(1), 820–832 (2006)

237. Wiaux, Y., McEwen, J., Vielva, P.: Complex data processing: Fast wavelet analysis on the
sphere. J. Fourier Anal. Appl. 13(4), 477–493 (2007)

238. Wiaux, Y., McEwen, J.D., Vandergheynst, P., Blanc, O.: Exact reconstruction with directional
wavelets on the sphere. MNRAS 388(2), 770–788 (2008)

239. Wiaux, Y., Vielva, P., Barreiro, R.B., Martı́nez-González, E., Vandergheynst, P.:
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