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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book
series aims to provide the engineering, mathematical, and scientific
communities with significant developments in harmonic analysis,
ranging from abstract harmonic analysis to basic applications.
The title of the series reflects the importance of applications and
numerical implementation, but richness and relevance of applica-
tions and implementation depend fundamentally on the structure
and depth of theoretical underpinnings. Thus, from our point of
view, the interleaving of theory and applications and their creative
symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability
that has flourished, developed, and deepened over time within
many disciplines and by means of creative cross-fertilization with
diverse areas. The intricate and fundamental relationship between
harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected
in our state-of-the-art ANHA series.

Our vision of modern harmonic analysis includes mathematical
areas such as wavelet theory, Banach algebras, classical Fourier
analysis, time-frequency analysis, and fractal geometry, as well as
the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate
tool to deal with some basic problems in digital signal process-
ing, speech and image processing, geophysics, pattern recognition,
biomedical engineering, and turbulence. These areas implement
the latest technology from sampling methods on surfaces to fast
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algorithms and computer vision methods. The underlying mathe-
matics of wavelet theory depends not only on classical Fourier
analysis, but also on ideas from abstract harmonic analysis,
including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor
systems, and of the metaplectic group for a meaningful interaction
of signal decomposition methods. The unifying influence of wavelet
theory in the aforementioned topics illustrates the justification for
providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This
will be a key role of ANHA. We intend to publish with the scope
and interaction that such a host of issues demands.

Along with our commitment to publish mathematically
significant works at the frontiers of harmonic analysis, we have
a comparably strong commitment to publish major advances in
the following applicable topics in which harmonic analysis plays a
substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications

Digital signal processing Sampling theory
Fast algorithms Spectral estimation

Gabor theory and applications Speech processing
Image processing Time-frequency and

Numerical partial differential equations time-scale analysis
Wavelet theory

The above point of view for the ANHA book series is inspired
by the history of Fourier analysis itself, whose tentacles reach into
so many fields.

In the last two centuries Fourier analysis has had a major
impact on the development of mathematics, on the understanding
of many engineering and scientific phenomena, and on the solution
of some of the most important problems in mathematics and the
sciences. Historically, Fourier series were developed in the analysis
of some of the classical PDEs of mathematical physics; these series
were used to solve such equations. In order to understand Fourier
series and the kinds of solutions they could represent, some of the
most basic notions of analysis were defined, e.g., the concept of
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“function.” Since the coefficients of Fourier series are integrals, it
is no surprise that Riemann integrals were conceived to deal with
uniqueness properties of trigonometric series. Cantor’s set theory
was also developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how compli-
cated phenomena, such as sound waves, can be described in terms
of elementary harmonics. There are two aspects of this problem:
first, to find, or even define properly, the harmonics or spectrum
of a given phenomenon, e.g., the spectroscopy problem in optics;
second, to determine which phenomena can be constructed from
given classes of harmonics, as done, for example, by the mechanical
synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other prob-
lems in engineering, mathematics, and the sciences. For example,
Wiener’s Tauberian theorem in Fourier analysis not only char-
acterizes the behavior of the prime numbers, but also provides
the proper notion of spectrum for phenomena such as white light;
this latter process leads to the Fourier analysis associated with
correlation functions in filtering and prediction problems, and
these problems, in turn, deal naturally with Hardy spaces in the
theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the
study of Fourier integral operators. Problems in antenna theory are
studied in terms of unimodular trigonometric polynomials. Appli-
cations of Fourier analysis abound in signal processing, whether
with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time-frequency-scale methods such
as wavelet theory. The coherent states of mathematical physics
are translated and modulated Fourier transforms, and these are
used, in conjunction with the uncertainty principle, for dealing
with signal reconstruction in communications theory. We are back
to the raison d’être of the ANHA series!

John J. Benedetto
Series Editor

University of Maryland
College Park



Preface

My main reason for writing this book was to present the theory of
the Fourier transform (FT) in a clear manner that requires mini-
mal mathematical knowledge without compromising mathematical
rigor, so that it would be useful to students, mathematicians, scien-
tists, and engineers.

The path along which I chose to develop the theory is not
best, but it is elementary and within reach of many well-prepared
undergraduate students. One can give better proofs of many
results presented in this book; however, I feel the proofs given are
elementary and easy to follow and that they require only minimal
mathematical background.

The FT on finite Abelian groups has applications in many
different areas of science, such as quantum information, quan-
tum computation, image processing, signal analysis, cryptography,
crypt-analytics, pattern recognition, and physics. With that said,
my focus is on the theoretical aspect. I have designed this book to
serve students in these areas and in other sciences, who have com-
pleted a semester of linear algebra and have some knowledge of
abstract algebra. Typically, these would be second- or third-year
students at American universities. Consequently, this monograph
can be used as a one-semester undergraduate textbook in many
different disciplines of mathematics and science. The book is self-
contained and concise, and I have made an effort to make it easy
to read. I hope that it will help students and professionals have a
better understanding of the theory of the FT.
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I would like to thank Franz Delahan, Robert Kibler, Tristan
Nguyen, Glenn Shell, and Anita Woodley for their helpful com-
ments, suggestions, and corrections concerning this book.

Bao Luong
April 2009



Overview

In general, the FT of a function defined on a group is a function
defined on the dual group. For finite Abelian groups, the dual of
a group is isomorphic to the group itself; this result allows us to
define the FT as a linear operator on a finite-dimensional inner
product space of scalar-valued functions defined on the group.
This approach is clear and it gives much insight into the theory of
the FT, since the theory of linear operators on finite-dimensional
vector spaces is well understood.

We associate a group G with the inner product space of
complex-valued functions defined on G and show that, under
this association, spaces associated with isomorphic groups are iso-
metric. Further, spaces associated with direct products of groups
equal the tensor product of spaces associated with each factor
group. Rather than define an inner product for a tensor product
of inner product spaces to be the product of the inner products
on factor spaces as is usually done, we obtain this “definition”
as a consequence of the tensor decomposition of the FT. We also
show that the convolution operator characterizes linear operators
commuting with translations, and the tensor decomposition of the
FT enables us to reduce the theory of the FT on finite Abelian
groups to the transform on cyclic groups Zn, the integers modulo
n. A related topic, quadratic Gaussian sums, is introduced and
studied. We show that some quadratic Gaussian sums (evaluated
at a point) are eigenvalues of the FT. This result, along with other
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properties of Gaussian sums, provides the means to find general
formulas for these sums in terms of their parameters.

We note that the exercises in this book are numbered sequen-
tially.



1

Foundation Material

In this chapter, we recall some results from elementary group
theory, number theory, and approximation theory. In doing so, we
also establish notation that will be used consistently throughout
the rest of the text.

The symbol |S| denotes the size of S. For example, if S is a
finite set, then |S| is the number of elements in S; if z is a complex
number, then |z| is the modulus (or absolute value) of z; and if
f is a complex-valued function defined on a set S, then |f | is the
function (defined on the same set) whose value at a point s ∈ S is
|f(s)|.

Suppose S and S′ are nonempty sets and f : S → S ′. We say
that f is injective if it is one-to-one; surjective if it is onto; bijective
if it is both injective and surjective. If S = S ′ and f is bijective,
we say that f is a permutation of S (or in S).

Throughout this book the symbol i denotes the principal square
root of −1.

1.1 Results from Group Theory

Chapter 3 to establish the theory of characters of finite Abelian

either [6] or [14], no proofs are given.
Let Z be the set of integers and, for a positive integer n, let

Zn

©  Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
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= {0, . . . , n − 1} be the set of integers modulo n. The sets Z

groups. Since most of the material in this section can be found in

B. Luong, Fourier Analysis on Finite Abelian Groups, Applied and 

We present some results from group theory that we will use in

Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4916-6_1,



2 1 Foundation Material

and Zn form groups under the operation of addition and addition
modulo n, respectively. The binary operations on these two groups
are written additively. The identity elements of Z and Zn are both
denoted by 0, and the inverse of k ∈ Z or k ∈ Zn is denoted by −k.
If an integer k has a multiplicative inverse in Zn, that is, if there
is x ∈ Z such that kx ≡ 1 (mod n), then we use k−1 to denote x.
An element of Zn for which a multiplicative inverse exists is called
a unit ; the units of Zn are precisely the nonzero elements of Zn

that are coprime (or relatively prime) with n.
In general, we use the product notation for the binary operation

of an arbitrary group; that is, if G is a group and a and b are
elements of G, then ab denotes the product of a and b, which
is defined with respect to the given binary operation in G. The
identity of G is denoted by 1 and the inverse of g ∈ G is denoted
by g−1.

In any group G, the equation xg = xg′ is equivalent to g = g′;
roughly speaking, the cancellation law holds in G. This simple
property leads to the following theorem.

Theorem 1.1.1. Suppose that G is a finite group and x is an
element of G. The function fx : G → G defined by fx(g) = xg is a
permutation of G.

We use this theorem twice. (1) In a proof of a result about
the sum of a character over a subgroup; i.e., Theorem 3.2.1 in
Section 3.2. (2) In an evaluation of the quadratic Gaussian sum of
order n at 1; i.e., Theorem 9.1.1 of the last chapter.

Though it is not needed in our work, we point out the fact that
the map x �→ fx is injective. This follows from the definition of fx

and the cancellation law in G. This result is a prelude to Cayley’s
theorem, which states that every group is isomorphic to a subgroup
of a group of permutations (of some set). (We will define the term
isomorphic in the next paragraph.) We outline a proof of Cayley’s
theorem in Exercise 1.

Let G1 and G2 be groups. A map h : G1 → G2 is called a
homomorphism if h(ab) = h(a)h(b) for every a, b ∈ G1. Here, ab is
a product of elements in G1, whereas h(a)h(b) is a product of ele-
ments in G2. A bijective homomorphism is called an isomorphism.
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We use the expression G1
∼= G2 to indicate that two groups G1

and G2 are isomorphic. There are, up to isomorphism, only one
infinite cyclic group and one finite cyclic group of order n, namely,
Z and Zn, respectively.

Theorem 1.1.2. Suppose that G is a cyclic group. Then

(i) G ∼= Z if G is infinite,
(ii) G ∼= Zn if G is finite and n = |G|.

If G1, . . . , Gm are groups and

G = G1 × · · · × Gm = {(g1, . . . , gm) | gj ∈ Gj},
then G is a group with respect to the binary operation defined
component-wise by

(g1, . . . , gm)(g′
1, . . . , g

′
m) = (g1g

′
1, . . . , gmg′

m),

where gjg
′
j is the product defined in Gj for j = 1, . . . , m. The

identity for this operation is (1, . . . , 1), an m-tuple of all 1’s,
which is simply denoted by 1. The inverse of (g1, . . . , gm), denoted
by (g1, . . . , gm)−1, is given by (g−1

1 , . . . , g−1
m ). With respect to the

defined binary operation, G is called the external direct product
(or, briefly, direct product) of G1, . . . , Gm. If Gj = A for every j,
then we write G = Am. If for each j, either Gj = Z or Gj = Zn,
then the binary operation of G is component-wise addition or
addition modulo n; that is,

gjg
′
j =

{
gj + g′

j if Gj = Z,

gj + g′
j (mod n) if Gj = Zn.

The identity of G, i.e., the m-tuple of zeros (0, . . . , 0), is denoted
simply by 0. We also call the identity of G the zero.

Theorem 1.1.3 (The fundamental theorem of finite Abelian
groups). If G is a nontrivial finite Abelian group (i.e., G has more
than one element), then there are unique positive integers s and
n1, . . . , ns, where each nj ≥ 2, such that nj |nj+1 for j = 1, . . . , s−1
and

G ∼= Zn1 × · · · × Zns.
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The number s is the torsion-rank of G, and n1, . . . , ns are the
invariants of G.

There is an equivalent version of this theorem in which the
order of each cyclic group in the factorization of G is a power of a
prime. We state this equivalent version next.

Theorem 1.1.4. If G is a nontrivial finite Abelian group, then
G ∼= Zq1 × · · · × Zqt, where q1, . . . , qt are (not necessarily distinct)
powers of primes. Also, the numbers q1, . . . , qt are uniquely deter-
mined (up to order).

The prime powers are the elementary divisors of G.
The two versions of the fundamental theorem stated above are

equivalent because of the Chinese remainder theorem which we
outline in Exercises 2 and 3. A proof of the equivalent of the two
versions of the fundamental theorem is outlined in Exercise 4. The
fundamental theorem implies that every finite Abelian group is
isomorphic to a direct product of cyclic groups, and this statement
is the only implication that we will use.

Let n be an integer greater than 2. The dihedral group Dn is
defined to be the set of all formal symbols asbt, where s = 0, 1 and
t = 0, . . . , n − 1, such that the following relations are satisfied:

(i) asbt = as′bt′ if and only if s = s′ and t = t′,
(ii) a2 = bn = 1,
(iii) ab = b−1a.

These relations imply that Dn is a non-Abelian group of order
2n. We use Dn in Section 6.4 to indicate one of the difficulties in
any attempt to generalize the theory of the FT on finite Abelian
groups to finite non-Abelian groups.

Exercises.

.1 Let G be a group and let SG be the set of permutations of G.
Let fx be as in Theorem 1.1. Then fx ∈ SG for each x ∈ G.
Define the product in SG to be the composition of maps.

(i) Show that, with the defined product, SG is a group and
that fxy = fxfy. Conclude that the map x �→ fx is an
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injective homomorphism (which is also called a monomor-
phism), hence Cayley’s theorem follows. The group SG is
also called the symmetric group on G.

(ii) Consider g ∈ G with g �= 1 (this implicitly assumes that
G has at least two elements). Define the map f : G → G
by f(1) = g, f(g) = 1, and f leaves other elements of G
fixed. Show that f ∈ SG.

(iii) Suppose G has more than two elements. Prove that there
is no x ∈ G such that fx = f . Conclude that {fx | x ∈ G}
is a proper subgroup of SG. In general, the size of G is
much smaller than that of SG. An obvious example to
illustrate this point is to consider the group G = Zn with
n > 2. Then |G| = n and |Sn| = n!. (Note: tradition-
ally we use Sn to denote the group of permutations on n
elements.)

For further elementary and clear treatment of Cayley’s theo-
rem see [6]. Roughly speaking, Cayley’s theorem states that
every group is a subgroup of a group of permutations of some
set W . By choosing an appropriate set W , one can show the
existence of a certain type of group, e.g., the existence of the
external free product of groups (for more details see Theo-
rem 68.2 and its proof given in [16], and the explanations
followed on pp. 417–418).

.2 The Chinese remainder theorem (CRT): Suppose that m1, . . . ,
mn are pairwise coprime positive integers; that is, ms and mt

are coprime if s �= t. Let m =
∏n

j=1 mj. For any integers
a1, . . . , an, the system of congruences

x ≡ aj (mod mj), 1 ≤ j ≤ n (1.1)

has a unique solution x ∈ Z modulo m. The uniqueness of
the solution means that if x′ is another solution, then x ≡
x′ (mod m). Replace aj by aj + kjmj for some integer kj if
necessary, we may assume that 0 ≤ aj < mj for each j. Prove
this theorem by following the outline below.

(i) Let α be an integer and consider mj (for any fixed j).
Prove that if α and mj are coprime, then there is an
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integer y such that αy ≡ 1 (mod mj). The number y is
unique if we impose the condition 0 < y < mj. (Hint:
there are integers y and y′ such that αy + mjy

′ = 1.)
(ii) Set αj = m/mj . Show that αj and mj are coprime. Con-

clude that there is an integer yj such that αjyj ≡ 1
(mod mj).

(iii) Show that x =
∑n

j=1 αjyjaj is a solution of the system
of equations (1.1).

(iv) Show that if x and x′ are two distinct solutions of (1.1),
then x ≡ x′ (mod mj) for every j. That is, every mj

divides x − x′. Since ms and mt are coprime if s �= t,
deduce that m | (x − x′) or, equivalently, x ≡ x′

(mod m).

The CRT can be generalized to the case that does not require
the moduli mj are pairwise coprime (see either p. 59 of [9],
p. 29 of [11], or p. 69 of [15], also a good illustration is given
in Chapter VIII of [5]). Note that the CRT also holds in rings
that are more general than the ring Z of integers; for example,
it holds in principle idea rings (pp. 76 and 329 of [12], also
p. 8 of [17]).

.3 Theorem: If m1, . . . , mn are pairwise coprime positive integers
and m =

∏n
j=1 mj, then Zm

∼= Zm1×· · ·×Zmn . Prove that this
theorem is equivalent to the CRT. For simplicity we outline
a proof for the case n = 2; the same outline (but with more
variables involved) would also produce a proof for the general
case. In the outline below we set p = m1 and q = m2.

• CRT ⇒ Theorem.

Define the map h : Zp×Zq → Zpq as follows: for any (a, b) ∈
Zp × Zq, the CRT implies that there is a unique x ∈ Zpq

such that

x ≡ a (mod p) and x ≡ b (mod q).

Set h(a, b) = x. The uniqueness of x guarantees that h is a
well-defined injective map. Since the domain and codomain
of h have the same finite cardinality, h is also surjective.
Prove that h is a group homomorphism, i.e.,



1.1 Results from Group Theory 7

h(a + a′, b + b′) = h(a, b) + h(a′, b′).

(A slightly different proof is given in [7], p. 35.)

Observe that the commutativity of the ordinary product of
two integers, i.e., pq = qp, implies that Zpq

∼= Zq × Zp. Since
the composition of isomorphisms is also an isomorphism (or,
equivalently, the isomorphic relation is transitive), we have
Zp × Zq

∼= Zq × Zp. However, the implication

pq = qp ⇒ Zp × Zq
∼= Zq × Zp

via the CRT is unintended. There is an obvious proof which
shows that Zs × Zt

∼= Zt × Zs for any positive integers s and
t regardless whether s and t are coprime. Can you find this
“obvious” proof? Stated differently, if p and q are coprime,
the conclusions of the theorem are

(a) the group Zp × Zq is cyclic (hence, by Theorem 1.1.2, it
is isomorphic with Zpq);

(b) the group Zpq can be decomposed as Zp × Zq.

• Theorem ⇒ CRT.

(i) Suppose that there is a group isomorphism h :
Zp × Zq → Zpq. It follows that h(a, b) = ah(1, 0) +
bh(0, 1). What can we say about h(1, 0) and h(0, 1)?
Consider h(1, 0). Show that (1, 0) and h(1, 0) have the
same order p.

(ii) Show that elements of Zpq which have order p are of
the form zq, where z is coprime with p and 0 < z < p.
Conclude that

(1) h(1, 0) ≡ 0 (mod q);

(2) there is a unique integer s with 0 < s < p such
that sh(1, 0) ≡ 1 (mod p) (hint: h(1, 0) and p are
coprime).

(iii) By symmetry, conclude that

(1′) h(0, 1) ≡ 0 (mod p);
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(2′) there is a unique integer t with 0 < t < q such
that th(0, 1) ≡ 1 (mod q).

(iv) Given (a, b) ∈ Zp ×Zq. Let x = h(as, bt) = ash(1, 0)+
bth(0, 1). Note that s and t do not depend on a and b.
Prove that x is the unique element of Zpq such that

x ≡ a (mod p) and x ≡ b (mod q).

(Hint: for the uniqueness see (iv) of the previous exer-
cise.)

A particular case of the theorem: if n = pe1
1 pe2

2 . . . pek
k is the

prime decomposition of n, where all the primes pj are distinct,
then

Zn
∼= Zp

e1
1
× · · · × Zp

ek
k

. (1.2)

.4 Prove that the two stated versions of the fundamental theo-
rem for finite Abelian groups are equivalent. Below is an out-
line (which requires some knowledge of quotient groups).

• Theorem 1.1.3 ⇒ Theorem 1.1.4.

Decompose each nj into a product of powers of distinct
primes, then use (1.2). To prove the uniqueness of the qj,
we use the fact that the direct product of finite cyclic
groups is commutative (which we mentioned in the pre-
vious exercise). Suppose also that G ∼= Zq′1 × · · · × Zq′r .

Let p be a prime that divides the product
∏t

j=1 qj , which
equals

∏r
j=1 q′j . Relabeling the subscripts if necessary, we

may assume that

(1) q1 = pe is the largest power of p in {q1, . . . , qt};
(2) q′1 = pf is the largest power of p in {q′1, . . . , q′t}.
Suppose q1 > q′1. Show that the group Zq1 × · · · × Zqt has
an element of order q1, whereas the group Zq′1 × · · · × Zq′r
does not. Conclude that these two groups are not isomor-
phic, which is a contradiction. Similarly, the inequality
q1 < q′1 cannot hold. Hence, we have q1 = q′1. Next, by
considering the quotient group G/Zq1, we may assume that
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Zq2×· · · ×Zqt
∼= Zq′2×· · ·×Zq′r . Consider this isomorphism

and, as before, conclude that q2 = q′2. Conclude that r = t
and qj = q′j for j = 1, . . . , t.

• Theorem 1.1.4 ⇒ Theorem 1.1.3.

Set A0 = {q1, . . . , qt} and construct the sets Nj as follows:

(a) Choose the largest number qj1 ∈ A0 (if there are two
equal numbers, choose either one), then choose the
largest number qj2 ∈ A0−{qj1} that is coprime with qj1,
then choose the largest number qj3 ∈ A0−{qj1 , qj2} that
is coprime with qj1 and qj2, and continue the process.
Let N0 denote the set of numbers chosen.

(b) Set A1 = A0 − N0. If A1 �= ∅, then by construction
every number in A1 divides some number in N0.

(c) If A1 �= ∅, we construct N1 from A1 by the same method
as in the construction of N0 from A0. That is, choose
the largest number qk1 ∈ A1, then choose the largest
number qk2 ∈ A1 −{qk1} that is coprime with qk1, then
choose the largest number qk3 ∈ A1 − {qk1, qk2} that is
coprime with qk1 and qk2 , and so on. Let N1 denote the
set of numbers chosen (from A1). Conclude from (b)
that every number in N1 divides some number in N0.

(d) Repeat steps (b) and (c) to define Aj and to construct
Nj , respectively, for j > 2.

Since A0 is a finite set and A0 � A1 � A2 � · · · , there
is a smallest positive integer s such that As = ∅. Thus,
As−1 = Ns−1 �= ∅. For j = 0, 1, . . . , s − 1, let ns−j be the
product of all numbers in the set Nj . Show that each nk ≥ 2
and nk | nk+1 for k = 1, . . . , s− 1. Since the direct product
of finite cyclic groups is commutative, use the theorem in
the previous exercise to conclude that G ∼= Zn1 × · · · ×Zns

and nj | nj+1 for j = 1, . . . , s − 1. To prove the uniqueness
of s and the nj , assume that there are positive integers t
and m1, . . . , mt with mj | mj+1 for j = 1, . . . , t − 1 such
that

Zm1 × · · · × Zmt
∼= Zn1 × · · · × Zns . (1.3)
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Prove the following:

(e) nsg = 0 for every g ∈ Zn1 × · · · × Zns .

(f) Conclude from (1.3) and (e) that nsg
′ = 0 for every

g′ ∈ Zm1 × · · · × Zmt . In particular, considered as an
element of Zmt , ns = 0. So ns is a nonzero multiple of
mt, which implies that mt ≤ ns. By symmetry, we also
have mt ≥ ns; thus mt = ns.

(g) By considering the quotient group G/Zns, we may
assume that

Zm1 × · · · × Zmt−1
∼= Zn1 × · · · × Zns−1 .

Conclude from (b) that mt−1 = ns−1.
(h) Repeat step (g) and conclude that s = t and mj = nj

for every j.

1.2 Quadratic Congruences

We present some results from elementary number theory, which
we will use later in our construction of some particular eigenvalues
and eigenvectors of the FT. Then we will use these eigenvalues and
eigenvectors in our evaluation of quadratic Gaussian sums. Except
for the material from Theorem 1.2.3 and thereafter, most of the
other results stated here can be found in many introductory books
on number theory, in particular [2].

Suppose that a and n are nonzero integers and that n is posi-
tive. If there is an integer x such that x2 ≡ a (mod n), then a is
called a quadratic residue modulo n. The Legendre symbol (a/p),
where p is an odd prime and p � a (i.e., p does not divide a), is
defined by

(a/p) =

{
1 if a is a quadratic residue modulo p, and

−1 if a is not a quadratic residue modulo p.

In the symbol (a/p) we may assume that 0 < a < p, since
x2 ≡ a (modp) if and only if x2 ≡ (a + kp) (modp) for any
integer k.
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Example 1.2.1. It is easy to verify that the congruence equation
x2 ≡ a ( mod 11) has solutions for a = 1, 3, 4, 5, 9 and no solutions
for a = 2, 6, 7, 8, 10. That is,

(1/11) = (3/11) = (4/11) = (5/11) = (9/11) = 1

and

(2/11) = (6/11) = (7/11) = (8/11) = (10/11) = −1.

We may conclude from this example that

(6/11)(8/11) = (4/11), (5/11)(9/11) = (1/11),

(5/11)(7/11) = (2/11), (2/11)(4/11) = (8/11).

These equations of product of Legendre’s symbol have the form
(a/p)(b/p) = (ab/p), which is guaranteed to be true in general by
the following theorem.

Theorem 1.2.1. Suppose that p is an odd prime and a and b are
integers.

(i) If p � a and p � b, then (ab/p) = (a/p)(b/p).

(ii) If a has a multiplicative inverse modulo p, i.e., if there is an
integer x such that ax ≡ 1 (mod p), then (a/p) = (a−1/p).

Recall that in the symbol (a/p) we assumed that 0 < a < p. For
the same reason, in the equation x2 ≡ a (mod p) we may assume
that 0 < x < p. With this assumption we can show that if the
equation x2 ≡ a (mod p) has a solution, then it has exactly two
solutions.

Theorem 1.2.2. Suppose that p is an odd prime. If a ∈ Zp and
a �= 0, then the equation x2 ≡ a (mod p) has either exactly two
solutions or no solutions in Zp. Furthermore, if x is a solution,
then the other solution is p − x.

Proof. Fix a nonzero element a ∈ Zp and suppose that there is an
element x ∈ Zp such that x2 ≡ a (mod p). It is clear that we also
have (p − x)2 ≡ a (mod p). To show there are no solutions other
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than x and p − x, we assume that y2 ≡ a (mod p) and show that
either y = x or y = p − x.

Since x2 ≡ a (mod p) and y2 ≡ a (mod p), by the transitivity
property of the congruence modulo p, we have x2 ≡ y2 (mod p).
It follows that (x − y)(x + y) ≡ 0 (modp) or, equivalently,
p | (x − y)(x + y). Thus, either p | (x − y) or p | (x + y).

If p | (x − y), then, since |x − y| < p, we have x − y = 0 or
y = x. If p | (x+ y), then, since 0 < x+ y < 2p, we have x+ y = p
or y = p − x.

Example 1.2.2. If k ∈ Z17 and k �= 0, then the following table

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k2 (mod 17) 1 4 9 16 8 2 15 13 13 15 2 8 16 9 4 1

shows that the equation x2 ≡ a (mod 17) has solutions in Z17 for
a = 1, 2, 4, 8, 9, 13, 15, 16 and has no solutions for a = 3, 5, 6, 7,
10, 11, 12, 14.

The example illustrates that half of the nonzero members of
the group Z17 are quadratic residues modulo 17 and the other
half of the nonzero members are not. In general, Theorem 1.2.2
implies that the equation x2 ≡ a (mod p) has two solutions in Zp

for (p−1)/2 values of a and no solutions for the remaining (p−1)/2
values of a. Thus, if the range of (a/p) is extended to include zero
by allowing p divides a, that is,

(a/p) =

⎧⎪⎨
⎪⎩

1 if a is a quadratic residue modulo p,

0 if p | a, and

−1 if a is not a quadratic residue modulo p,

then ∑
a∈Zp

(a/p) = 0. (1.4)

Part (i) of Theorem 1.2.1 may be stated in terms of the
extended definition of the Legendre symbol as follows:

(ab/p) = (a/p)(b/p). (1.5)
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Since x2 ≡ (p − x)2 (mod p), the entries in a table similar to
that given in Example 1.2.2 are symmetric about p/2 and the same
quadratic residues modulo p appear in each half. Hence, if Q1 is the
subset of Zp consisting of quadratic residues, then |Q1| = (p−1)/2
and, as k runs through Zp, the set {k2 (mod p)} produces 0 and
two copies of Q1. It follows that for any integer a,

1 + 2
∑

k∈Q1

e−
2πi
p

ak =
∑
k∈Zp

e−
2πi
p

ak2

. (1.6)

We will use this result in the proof of the next theorem.

Note. The set Q1 is a group with respect to multiplication mod-
ulo p.

Theorem 1.2.3. If p is an odd prime and a is an integer that is
not divisible by p, then∑

k∈Zp

e−
2πi
p

ak(k/p) =
∑

k ∈Zp

e−
2πi
p

ak2

.

Proof. If Q0 is the subset of Zp that consists of quadratic non-
residues, then the sets {0}, Q0, and Q1 are pairwise disjoint and
their union is Zp. Thus, since (0/p) = 0, we have∑

k ∈Zp

e−
2πi
p

ak(k/p)

=
∑

k∈Q1

e−
2πi
p

ak −
∑

k∈Q0

e−
2πi
p

ak

= 1 + 2
∑

k∈Q1

e−
2πi
p

ak −
(

1 +
∑

k∈Q1

e−
2πi
p

ak +
∑

k ∈Q0

e−
2πi
p

ak

)

= 1 + 2
∑

k∈Q1

e−
2πi
p

ak −
∑

k∈Zp

e−
2πi
p

ak.

It follows from (1.6) that∑
k ∈Zp

e−
2πi
p

ak(k/p) =
∑

k∈Zp

e−
2πi
p

ak2 −
∑

k ∈Zp

e−
2πi
p

ak.
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To complete the proof we show that
∑

k∈Zp
e−

2πi
p

ak = 0. For this

we set r = e−
2πi
p

a. Then r �= 1 (since p � a), by the geometric
progression formula we have

p−1∑
k=0

rk =
1 − rp

1 − r

or ∑
k∈Zp

e−
2πi
p

ak =

p−1∑
k=0

(e−
2πi
p

a)k =
1 − e−2πia

1 − e−
2πi
p

a
= 0.

In Section 7.2, we rephrase the result of Theorem 1.2.3 in terms
of the FT and Gaussian sums and show that sums of the type given
in the theorem are eigenvalues of the FT.

Finally, we derive a result that we will use in a later section.
Set p = 2 and let ν be an integer greater than one. We will show
that the set {k2 (mod 2ν) | k ∈ Z2ν} contains two copies of the set
{k2 (mod 2ν) | k ∈ Z2ν−1}. The following example illustrates the
case ν = 4.

Example 1.2.3. Let ν = 4 and consider the following table of values
of k2 when k takes its values in Z24 .

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
k2 (mod 16) 0 1 4 9 0 9 4 1 0 1 4 9 0 9 4 1

Since the first eight elements of the first row are members of Z8,
it is clear from the table that the set {k2 (mod16) | k ∈ Z16}
contains two copies of the set {k2 (mod 16) | k ∈ Z8}.

In general, since

(i) the first half of Z2ν (i.e., the set {0, 1, . . . , 2ν−1 − 1}) is Z2ν−1

and
(ii) x2 ≡ (x− 2ν−1)2 (mod 2ν) for every x in the second half of Z2ν

(i.e., x > 2ν−1 − 1),

it follows that the two halves of the second row in a table similar
to that given in Example 1.2.3 are identical. That is, as k runs
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through Z2ν the set {k2 (mod 2ν)} produces two copies of the set
{k2 (mod 2ν) | k ∈ Z2ν−1}. Hence, for any integer a we have∑

k∈Z2ν

e−
2πiak2

2ν = 2
∑

k∈Z2ν−1

e−
2πiak2

2ν . (1.7)

We use equation (1.7) in Section 9.2 of the last chapter to evalu-
ate Gaussian sums of degree 2ν .

1.3 Chebyshev Systems of Functions

Consider the functions fj for j = 0, . . . , n−1, where these functions
are defined on the set of real numbers by f0(x) = 1 and fj(x) = xj

if j > 0. By the fundamental theorem of algebra,1 the equation

c0f0(x) + · · ·+ cn−1fn−1(x) = c0 + c1x + · · · + cn−1x
n−1 = 0,

where the coefficients c1, . . . , cn−1 are real numbers and cn−1 �= 0,
has at most n− 1 real roots. In other words, a linear combination
of n continuous functions fj has at most n − 1 distinct real zeros.
(A real zero of a function f is a real number r such that f(r) =
0.) We generalize this notion for arbitrary real-valued continuous
functions on an interval.

Definition 1.3.1. Suppose that φ1, . . . , φn are real-valued continu-
ous functions defined on an interval I, where I can be either closed,
open, half-closed, or half-open, and of finite or infinite length. The
set {φk | k = 1, . . . , n} is called a Chebyshev system (or, briefly,
C-system) if for every set {ck | k = 1, . . . , n} of real numbers, not
all zero, the equation c1φ1(x)+ · · ·+cnφn(x) = 0 has at most n−1
distinct (real) roots.

Since the equation c1φ1(x)+ · · ·+cnφn(x) = 0 has at most n−1
roots, the function c1φ1(x) + · · · + cnφn(x) changes sign at most
n − 1 times.

The following theorem is an immediate consequence of the
definition.
1 An equivalent statement of the fundamental theorem of algebra: every noncon-

stant polynomial of positive degree n, whose coefficients are complex numbers,
has exactly n complex roots, counting multiplicity.
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Theorem 1.3.1. If the set {φk | k = 1, . . . , n} is a C-system on
an interval I, then the set {αkφk | k = 1, . . . , n} is also a C-system
on I for any nonzero constants α1, . . . , αn.

Example 1.3.1. The set {1, x, . . . , xn} forms a C-system on any
interval.

C-systems are studied in the theories of approximation and
methods of interpolation, (e.g., [10] and [19]). Our goals in this
section are

(a) to show that the sets {cos(kx)}n
k=0 and {sin(kx)}n

k=1 are
C-systems (on appropriate intervals), and

(b) if the functions φ1, . . . , φn form a C-system on an interval I,
then, for every n distinct points x1, . . . , xn in I, the n × n
matrix (φs(xt)), where s, t = 1, . . . , n, is nonsingular.

These results are used in Section 7.3 to determine the multiplicity
of the eigenvalues of the FT.

Theorem 1.3.2. For each positive integer n, the sets {cos(kx)}n
k=0

and {sin(kx)}n
k=1 are C-systems on the intervals [0, π] and [0, π),

respectively.

Proof. First, we show that the set {cos(kx)}n
k=0 is a C-system on

the interval [0, π]. Suppose that a0, . . . , an are real numbers, not all
zero, and that Φ is a real-valued function defined on the interval
[0, π] by

Φ(x) =

n∑
k=0

ak cos(kx).

Since cos(kx) = (eikx + e−ikx)/2, we can express Φ in terms of the
exponential function as

Φ(x) =
1

2

n∑
k=0

ak(e
ikx + e−ikx)

=
1

2

n∑
k=−n

bke
ikx
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=
1

2einx

n∑
k=−n

bke
i(k+n)x

=
1

2einx

2n∑
k=0

cke
ikx,

where

bk =

⎧⎪⎨
⎪⎩

ak if k > 0,

2a0 if k = 0,

a−k if k < 0,

and ck = bk−n.

The equation Φ(x) = 0 is equivalent to the equation H(z)
def
=∑2n

k=0 ckz
k = 0, where z = eix is a point on the unit circle S1 =

{eix | −π ≤ x ≤ π}. Since the coefficients c0, . . . , c2n are real
numbers, it follows that if z = eix is a root of H , then z̄ = e−ix

is also a root of H . Equivalently, considered as a function of x,
H(x) = 0 if and only if H(−x) = 0. Consequently, the intervals
[−π, 0] and [0, π] contain the same number of roots of H . Since H
is a polynomial of degree at most 2n, it has at most 2n roots in
the complex plane; hence the unit circle S1, being a subset of the
complex plane, contains no more than 2n roots of H . Therefore,
the interval [0, π] contains at most n roots of H . Since H and Φ
have the same roots in the interval [0, π], the function Φ has at
most n distinct roots. This proves that the set {cos(kx)}n

k=0 is a
C-system on the interval [0, π].

To prove that the set {sin(kx)}n
k=1 is a C-system on the interval

[0, π), we assume that a1, . . . , an are real numbers, not all zero, and
that Φ is a real-valued function defined on the interval [0, π) by

Φ(x) =

n∑
k=1

ak sin(kx).

Since sin(kx) = (eikx − e−ikx)/(2i), we can express Φ in terms of
the exponential function as
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Φ(x) =
1

2i

n∑
k=1

ak(e
ikx − e−ikx)

=
1

2i

n∑
k=−n

bke
ikx

=
1

2ieinx

n∑
k=−n

bke
i(k+n)x

=
1

2ieinx

2n∑
k=0

cke
ikx,

where

bk =

⎧⎪⎨
⎪⎩

ak if k > 0,

0 if k = 0,

−a−k if k < 0,

and ck = bk−n.

The equation Φ(x) = 0 is equivalent to the equation H(z)
def
=∑2n

k=0 ckz
k = 0, where z = eix is a point on the unit circle S1 =

{eix | −π ≤ x ≤ π}. The same arguments given before (in the case
for cosine) show that the interval [0, π] contains at most n roots
of H . Since H(π) = 0 and since H and Φ have the same roots in
the interval [0, π), the function Φ has at most n− 1 distinct roots
in [0, π). This proves that the set {sin(kx)}n

k=1 is a C-system on
the interval [0, π).

The following lemma is a basic result from linear algebra, which
we will use in the proof of the next theorem.

Lemma 1.3.1. Consider two matrices

A =

⎛
⎜⎜⎜⎝

a11 a12 . . . a1n

a21 a22 . . . a2n
...

. . .
...

an1 an2 . . . ann

⎞
⎟⎟⎟⎠

n×n
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and

B =

⎛
⎜⎜⎜⎝

b11 b12 . . . b1n

b21 b22 . . . b2n
...

. . .
...

bk1 bk2 . . . bkn

⎞
⎟⎟⎟⎠

k×n

,

where A is nonsingular and B has an arbitrary number of rows.
Suppose that the entries of A and B are real numbers and M is a
(k + n)×n matrix formed by the rows of A and B (in any order).
Then the columns of M form n linearly independent vectors (in
R

n+k).

Proof. Denote the column vectors of A and M by A1, . . . , An and
M1, . . . , Mn, respectively. If c1, . . . , cn are real numbers such that
c1M1 + · · · + cnMn = 0, the zero vector, then

c1A1 + · · ·+ cnAn = 0.

Since A is nonsingular, its column vectors A1, . . . , An are linearly
independent, which implies that c1 = · · · = cn = 0. Thus, the
vectors M1, . . . , Mn are linearly independent.

Another proof of the lemma is given as follows: since A is non-
singular, its row vectors are linearly independent, so the row rank
of M is at least n. Since the row rank and column rank of a matrix
are equal and M has only n columns, these column vectors are
linearly independent.

Essentially, the lemma says that after inserting into a non-
singular square matrix any number of arbitrary row vectors, in
any order, the column vectors of the new matrix are linearly
independent.

Example 1.3.2. Consider the nonsingular matrix

A =

(
1 2
3 4

)
2×2

.
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By the lemma, the column vectors of each of the following matrices

⎛
⎝1 2

0 5
3 4

⎞
⎠

3×2

,

⎛
⎜⎜⎝

1 2
7 7
3 4

14 14

⎞
⎟⎟⎠

4×2

, and

⎛
⎜⎜⎜⎜⎜⎜⎝

105 −79
π 27.1
1 2

−5 6.25
3 4

−1.3 π2

⎞
⎟⎟⎟⎟⎟⎟⎠

6×2

are linearly independent.

Theorem 1.3.3. Suppose that φ1, . . . , φn are continuous real-
valued functions defined on an interval I. Then the following state-
ments are true:

(i) The functions φ1, . . . , φn form a C-system on the interval I if
and only if for every n distinct points x1, . . . , xn in I the matrix
(φs(xt))n×n is nonsingular.

(ii) Let b1, . . . , bn+1 be alternating sign nonzero real numbers and
let x1, . . . , xn+1 be points in I, where xj < xk if j < k. If the
functions φ1, . . . , φn form a C-system on I, then the matrix⎛
⎜⎜⎜⎝

φ1(x1) φ2(x1) . . . φn(x1) b1

φ1(x2) φ2(x2) . . . φn(x2) b2
...

...
φ1(xn+1) φ2(xn+1) . . . φn(xn+1) bn+1

⎞
⎟⎟⎟⎠

(n+1)×(n+1)

(1.8)

is nonsingular.

Proof. Suppose that φ1, . . . , φn are continuous real-valued func-
tions defined on the interval I.

(i) Assume that the set {φk}n
k=1 is a C-system on I and

x1, . . . , xn are distinct points in I. Suppose that the matrix
(φs(xt))n×n is singular. Then its transpose is also singular, so the
column vectors of the transposed matrix⎛

⎜⎜⎜⎝
φ1(x1) φ2(x1) . . . φn(x1)

φ1(x2) φ2(x2) . . . φn(x2)
...

...
φ1(xn) φ2(xn) . . . φn(xn)

⎞
⎟⎟⎟⎠

n×n
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are linearly dependent. Hence there are constants c1, . . . , cn, not
all zero, such that the equation c1φ1(x) + · · ·+ cnφn(x) = 0 has n
distinct roots, namely, x1, . . . , xn. This is a contradiction.

Conversely, assume that the matrix (φs(xt))n×n is nonsingular
for every n distinct points x1, . . . , xn in I. Let v1, . . . , vn be real
numbers and consider the real-valued function Φ defined on I by

Φ(x) = v1φ1(x) + · · · + vnφn(x).

If the equation Φ(x) = 0 has more than n − 1 distinct roots in I,
then it has at least n distinct roots in I. Denote these n roots by
r1, . . . , rn. We have

v1φ1(r1) + · · · + vnφn(r1) = 0

v1φ1(r2) + · · · + vnφn(r2) = 0
...

v1φ1(rn) + · · ·+ vnφn(rn) = 0.

This system of equations is equivalent to Mv = 0, where

M =

⎛
⎜⎜⎜⎝

φ1(r1) φ2(r1) . . . φn(r1)

φ1(r2) φ2(r2) . . . φn(r2)
...

...
φ1(rn) φ2(rn) . . . φn(rn)

⎞
⎟⎟⎟⎠

n×n

and

v =

⎛
⎜⎝

v1
...
vn

⎞
⎟⎠ .

By the assumption, the matrix M is nonsingular. It follows that
v = 0, i.e., every vk equals zero. Thus, if the numbers v1, . . . , vn

are not all zero, then the equation Φ(x) = 0 has no more than
n − 1 distinct roots in I. That is, the functions φ1, . . . , φn form a
C-system on the interval I.

(ii) Assume that the functions φ1, . . . , φn form a C-system on
the interval I and x1, . . . , xn+1 are distinct points in I such that
xj < xk if j < k. By (i) the matrix



22 1 Foundation Material⎛
⎜⎜⎜⎝

φ1(x1) φ2(x1) . . . φn(x1)

φ1(x2) φ2(x2) . . . φn(x2)
...

...
φ1(xn) φ2(xn) . . . φn(xn)

⎞
⎟⎟⎟⎠

n×n

is nonsingular. By the lemma, the column vectors of the matrix⎛
⎜⎜⎜⎝

φ1(x1) φ2(x1) . . . φn(x1)
...

...
φ1(xn) φ2(xn) . . . φn(xn)

φ1(xn+1) φ2(xn+1) . . . φn(xn+1)

⎞
⎟⎟⎟⎠

(n+1)×n

, (1.9)

which is obtained by inserting the row vector
(
φ1(xn+1), φ2(xn+1),

. . . , φn(xn+1)
)

into the previous matrix, are linearly independent.
These vectors are the first n column vectors of the matrix (1.8).
We aim to show that the vector

b =

⎛
⎜⎝

b1
...

bn+1

⎞
⎟⎠

is linearly independent of the column vectors of the matrix (1.9).
Suppose that b is linearly dependent on the column vectors of

the matrix (1.9); i.e., there are constants c1, . . . , cn, not all zero,
such that

c1φ1(xj) + · · ·+ cnφn(xj) = bj .

Since none of the numbers b1, . . . , bn+1 is zero and they have
alternating sign, the function c1φ1 + · · · + cnφn has a root in the
open interval (xj , xj+1) for every j = 1, . . . , n. Since there are n of
these open intervals and no two of them have a point in common,
the function c1φ1 + · · ·+ cnφn has at least n distinct roots. These
roots all lie in I, since each interval (xj , xj+1) is a subset of I.
The last sentence contradicts the assumption that the functions
φ1, . . . , φn form a C-system on I or, equivalently, that any linear
combination c1φ1 + · · ·+ cnφn with at least one nonzero coefficient
cannot have more than n − 1 distinct roots in I. Thus the vector
b is linearly independent of the column vectors of the matrix (1.9)
or, equivalently, the matrix (1.8) is nonsingular.
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Linear Algebra

The FT is a linear operator defined, for our purposes, on finite-
dimensional inner product spaces. Given a finite Abelian group G,
we will define the FT (in Chapter 4) to be a linear operator on
a finite-dimensional inner product space associated with G. More
generally, in this chapter, we define an association of sets with
inner product spaces. We also define dual bases and a special type
of linear operator, i.e., a type of operator that carries orthonormal
bases to orthonormal bases. These operators are then formulated
in terms of orthonormal bases and the dual of these bases.

The following definition will be used throughout this book: For
any nonempty set S and any complex-valued function f defined
on S, the complex conjugate of f , denoted by f̄ , is defined, for
s ∈ S, by f̄(s) = f(s).

2.1 Inner Product Spaces

Let V be a complex vector space, i.e., a vector space over the
field of complex numbers C. An inner product in V is a function
〈·, ·〉 : V × V
perties: for x, y, z ∈ V and c ∈ C,

〈x, y〉 = 〈y, x〉 (conjugate symmetric),

〈x, x〉 > 0 if x �= 0 (positive),

〈x, x〉 = 0 ⇒ x = 0 (definite),

〈cx + y, z〉 = c〈x, z〉 + 〈y, z〉 (linear in the first variable).
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A vector space in which an inner product is defined is called an
inner product space.

Example 2.1.1. The complex Euclidean vector space C
n is an inner

product space with the inner product defined by

〈x, y〉 =

n∑
j=1

xj ȳj,

where x = (x1, . . . , xn) and y = (y1, . . . , yn) are vectors in C
n.

Suppose that V is a complex inner product space. The norm
(or length) of a vector x ∈ V , denoted by ‖x‖, is defined to be the
(nonnegative) number

√〈x, x〉. Two vectors x and y in V are said
to be orthogonal or perpendicular (in symbols, x ⊥ y) if 〈x, y〉 = 0.
The linear, positive and definite properties of the inner product
imply that the zero vector is the only vector that is orthogonal
to every vector in V . Consequently, the norm of the zero vector is
equal to zero. A nonzero vector x is called a unit vector if ‖x‖ = 1.
A subset E of V is called an orthonormal set if every vector in
E is a unit vector and if every vector in E is orthogonal to every
other vector in E. If, in addition to being an orthonormal set, E
is a basis of V , then E is called an orthonormal basis.

There is a very useful inequality which guarantees that the
absolute value of the inner product of two vectors is never greater
than the product of the norms of the vectors involved. The men-
tioned inequality is known as Schwarz’s inequality. Although we
will use only Schwarz’s inequality (in the remark at the end of
Section 2.2 below, and in Sections 5.2 and 5.3), we also list other
well-known inequalities and identities involving norm of vectors in
the following theorem.

Theorem 2.1.1. Suppose that V is a complex inner product space.
The following inequalities and identities hold: for any x, y ∈ V ,

(i) (Bessel’s inequality) if {ej | j = 1, . . . , k} is an orthonormal
subset of V , then

k∑
j=1

|〈x, ej〉|2 ≤ ‖x‖2,

equality holds if and only if x =
∑k

j=1〈x, ej〉ej;
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(ii) (Schwarz’s inequality) |〈x, y〉| ≤ ‖x‖‖y‖, furthermore, if y �=
0, then equality holds if and only if x = cy, where c =
〈x, y〉/‖y‖2;

(iii) (Triangle inequality) ‖x + y‖ ≤ ‖x‖ + ‖y‖, furthermore, if
y �= 0, then equality holds if and only if x = cy for some
nonnegative constant c;

(iv) (Pythagorean theorem) ‖x + y‖2 = ‖x‖2 + ‖y‖2 if x ⊥ y;
(v) (Parallelogram law) ‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2.

Proof. (i) For the Bessel inequality, we note that

0 ≤
∥∥∥x −

k∑
s=1

〈x, es〉es

∥∥∥2

= ‖x‖2 −
k∑

s=1

〈x, es〉〈es, x〉 −
k∑

s=1

〈x, es〉〈x, es〉

+
k∑

s, t=1

〈x, es〉〈x, et〉〈es, et〉

= ‖x‖2 −
k∑

s=1

|〈x, es〉|2.

(ii) The Schwarz inequality holds trivially if y = 0. For y �= 0 it
is a special case of the Bessel inequality, in which the orthonormal
set is taken to be the set {y/‖y‖} consisting of only one vector.

(iii) We use the Schwarz inequality to prove the triangle
inequality. Denote the real part of a complex number z by Re z.
Since

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2Re〈x, y〉 (2.1)

≤ ‖x‖2 + ‖y‖2 + 2|〈x, y〉| (by the fact that Re z ≤ |z|)
(2.2)

≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ (by the Schwarz inequality)
(2.3)

= (‖x‖ + ‖y‖)2,

the triangle inequality follows.
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If y �= 0, then ‖x+y‖ = ‖x‖+‖y‖ if and only if we have equal-
ity in (2.2) and (2.3) or, equivalently, Re〈x, y〉 = 〈x, y〉 = ‖x‖‖y‖.
By the Schwarz inequality, the latter equality is equivalent to
x = cy, where c = 〈x, y〉/‖y‖2 ≥ 0.

The remaining statements (iv) and (v), that is, the Pythagorean
theorem and the parallelogram law, follow from (2.1).

There is a simple geometric interpretation of the Bessel inequal-
ity. Since the sum

∑k
j=1〈x, ej〉ej is the orthogonal projection of x in

the subspace spanned by the orthonormal vectors ej , j = 1, . . . , k,
the Bessel inequality states that the norm of any vector x is always
greater than the norm of its orthogonal projection in any finite-
dimensional subspace, unless the subspace in consideration con-
tains x, in which case x and its orthogonal projection are identical.

Remark. We shall use the same notation for inner products in all
inner product spaces; consequently, we shall use the same notation
to denote norms in all inner product spaces.

Let Λ : V → W be a linear operator, where W is also a complex
inner product space. The operator Λ is said to be an operator on
V if W = V , a linear functional if W = C, and an isometry if it
is one-to-one, onto, and preserves the inner product, i.e.,

〈Λ(x), Λ(y)〉 = 〈x, y〉

for all x, y ∈ V . It is easy to verify that the inverse of an isometry
is also an isometry. Hence, we can speak of an isometry between
two inner product spaces. Two complex inner product spaces V
and W are said to be isometric (in symbols, V � W ) if there is
an isometry between them.

2.2 Linear Functionals and Dual Spaces

Suppose that V is a complex inner product space (not necessarily
finite-dimensional). The set V ∗ of linear functionals on V is a
complex vector space with respect to the pointwise definition of
addition and scalar multiplication defined as follows: for f, g ∈ V ∗
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and c ∈ C, the sum of f and g, denoted by f + g, and the scalar
multiplication of f by c, denoted by cf , are defined by

(f + g)(x) = f(x) + g(x)

cf(x) = c(f(x))

for all x ∈ V . The vector space V ∗ is called the dual space of V .
To exhibit some elements of V ∗, for each y ∈ V , we define the

function �y : V → C by setting �y(x) = 〈x, y〉. Since the inner
product is linear in the first variable, �y is a linear functional on
V , that is, �y ∈ V ∗. In fact, every linear functional on V can be
obtained in this way if V is finite-dimensional. This is the main
content of the next theorem, which is a special case of a famous
theorem known as the Riesz representation theorem.

Theorem 2.2.1. Let V be a finite-dimensional complex inner
product space. The function � : V → C is a linear functional if
and only if there is a unique vector y in V such that �(x) = 〈x, y〉
for all x in V .

Proof. It remains to show only that if � is a linear functional on
V , then there is a unique y ∈ V such that �(x) = 〈x, y〉 for every
x ∈ V . Let n = dim V and let {bj}n

j=1 be an orthonormal basis for
V . If x ∈ V , then x can be written uniquely as

x =

n∑
j=1

〈x, bj〉bj .

Since � is linear, we have

�(x) =
n∑

j=1

〈x, bj〉�(bj)

=

n∑
j=1

〈x, �̄(bj)bj〉

=

〈
x,

n∑
j=1

�̄(bj)bj

〉

= 〈x, y〉,
where y =

∑n
j=1 �̄(bj)bj . To prove the uniqueness of y, assume

that there is another y′ ∈ V such that �(x) = 〈x, y′〉 for all x in
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V . It follows that 〈x, y − y′〉 = 0 for every vector x in V , whence
y − y′ = 0 or y = y′.

By Theorem 2.2.1, there is a one-to-one correspondence between
V and V ∗, which is given by v ↔ �v, where �v(x) = 〈x, v〉 for all
x ∈ V . Since

�cv = c̄�v and �v+v′ = �v + �v′ , (2.4)

for all v, v′ ∈ V and c ∈ C, the correspondence v ↔ �v, which is
conjugate linear, induces an inner product in V ∗ defined in terms
of the inner product in V by the equation

〈�v, �v′〉 = 〈v, v′〉. (2.5)

Consequently, the relation ‖�v‖ = ‖v‖ holds for every v ∈ V ;
i.e., every linear functional on V has finite norm or, equivalently,
bounded.

For each v ∈ V , the linear functional �v, called the dual of v, is
often denoted by v∗. With this notation, we have

v∗(x) = 〈x, v〉. (2.6)

In general, bases of V induce bases of V ∗. Furthermore, ortho-
normal bases induce orthonormal bases. A special case is illus-
trated next. Suppose that n = dim V and E = {ej | j = 1, . . . , n}
is an orthonormal basis for V . Since every element of V ∗ is of the
form v∗ for some

v =

n∑
j=1

〈v, ej〉ej ∈ V,

by (2.4) we have

v∗ =

n∑
j=1

〈v, ej〉 e∗j .

It follows that the set E∗ = {e∗j | j = 1, . . . , n} spans the space
V ∗. Moreover, the relation (2.5) implies that E∗ is an ortho-
normal set, hence it is an orthonormal basis of V ∗. Consequently,
we have dim V = dim V ∗. The basis E∗ is called the dual basis
of E.
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Remark. As mentioned, Theorem 2.2.1 is the finite-dimensional
case of the Riesz representation theorem. The main conclusion of
Theorem 2.2.1 is that every linear functional � is given in terms
of the inner product. Consequently, � is bounded. Observe that
any linear functional � defined in terms of the inner product as
�(x) = 〈x, y〉 for some fixed y is bounded regardless of the dimen-
sion of V . That is, |�(x)| ≤ ‖x‖‖y‖ for all x. This fact follows
from the Schwarz inequality. Thus, to modify the statement of
Theorem 2.2.1 to get a general version of the Riesz theorem for
infinite-dimensional Hilbert spaces we must add the hypothesis
that � is bounded. For a beautiful introduction to the topic of
Hilbert spaces and a nice proof of the Riesz representation theo-
rem see [4].

2.3 A Special Class of Linear Operators

It is simpler to define a general family of operators of which the
FT is a member than to define the FT itself. This is what we do
in this section.

Let S be any nonempty finite set and let VS be the set of all
complex-valued functions defined on S. Then VS is a complex vec-
tor space with respect to the pointwise definition of addition and
scalar multiplication. Furthermore, VS becomes an inner product
space with an inner product defined by setting

〈f, g〉 =
∑
s∈S

f(s)ḡ(s).

With this definition, it is simple to construct an orthonormal basis
for VS. For each s ∈ S, let δs : S → C be the function defined by

δs(t) =

{
1 if s = t,

0 if s �= t.

Then it is obvious that the set ΔS = {δs | s ∈ S} is an orthonormal
basis for VS, called the standard basis . Since S is a finite set, VS is a
finite-dimensional complex inner product space. In fact, VS � C

n,



30 2 Linear Algebra

where n = |S|. Hence, S can serve as an index set for any basis
of VS.

Suppose, in addition to ΔS, that BS = {Bs | s ∈ S} is
another orthonormal basis of VS. Since every x ∈ VS can be written
uniquely as

x =
∑
s∈S

〈x, Bs〉Bs =
∑
s∈S

BsB
∗
s (x),

the identity operator on VS can be expressed uniquely in terms of
the basis BS and its dual B∗

S as

I =
∑
s∈S

BsB
∗
s . (2.7)

In terms of the dual basis Δ∗
S, we have

B∗
s =

∑
t∈S

〈B∗
s , δ

∗
t 〉δ∗t =

∑
t∈S

〈δt, Bs〉δ∗t ,

whence
I =

∑
s, t∈S

〈δt, Bs〉Bsδ
∗
t .

It follows that the image of any x ∈ VS under any linear operator
Λ on VS is given by

Λ(x) =
∑

s, t∈S

〈δt, Bs〉Λ(Bs)δ
∗
t (x).

Hence,

Λ =
∑

s, t∈S

〈δt, Bs〉Λ(Bs)δ
∗
t . (2.8)

In equation (2.8), for each s ∈ S, Λ(Bs) can be any vector in VS.
Now we single out an operator that maps Bs to the unique element
of the basis ΔS that is associated with Bs in a very natural way:
for a fixed s ∈ S, by (2.7),

Bs =
∑
t∈S

BtB
∗
t (Bs) =

∑
t∈S

δs(t)Bt. (2.9)

The uniqueness of this expression (of Bs in the basis BS) induces
a one-to-one correspondence Bs ↔ δs, which is independent of any
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enumeration (or indexing of elements) of the basis BS. Through
this correspondence, we define a linear operator F on VS by setting
F(Bs) = δs for every s ∈ S.

The next theorem follows from the definition of F and equa-
tion (2.8).

Theorem 2.3.1. Assume the following:

(a1) S is a nonempty finite set and VS is the associated inner
product space of complex-valued functions on S;

(a2) ΔS = {δs | s ∈ S} and BS = {Bs | s ∈ S} are two ortho-
normal bases of VS, where ΔS is the standard basis;

(a3) F is the linear operator on VS such that F(Bs) = δs for every
s ∈ S, where δs is the unique vector in ΔS associated with Bs

by equation (2.9).

Then

(c1) F =
∑

s, t∈S〈δt, Bs〉δsδ
∗
t ,

(c2) F is an isometry, and
(c3) Ff(s) = 〈f, Bs〉, for any f ∈ VS. (Here we write Ff for

F(f).)

The complex number 〈f, Bs〉 is called the s-coefficient of f in
the orthonormal basis BS.

If G is a finite Abelian group, the FT on G is the linear operator
F described in Theorem 2.3.1 with respect to a particular ortho-
normal basis BG, which we will define in the next chapter.

Exercises.

.5 Let V be a complex vector space, not necessarily finite-
dimensional. Is every non-identically zero linear functional
on V surjective?

.6 Let V be a finite-dimensional complex vector space, not
necessarily an inner product space.

(i) Assume that f and g are linear functionals on V and
that f(x) = 0 whenever g(x) = 0. Show that f = cg for
some constant c.
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(ii) Let {b1, . . . , bn} be a basis of V and let {c1, . . . , cn} be
any set of constants. Show that there is a unique linear
functional f on V such that f(bj) = cj for j = 1, . . . , n.

(iii) Let x be a nonzero vector in V . Prove that there is a
linear functional f on V such that f(x) = 1.

(iv) Let f be a nonzero linear functional on V . Prove that
there is at least one vector x ∈ V such that f(x) = 1.

(v) Let f1, . . . , fn be linear functionals on V , where n <
dim V . Prove that there is a nonzero vector x ∈ V such
that fj(x) = 0 for j = 1, . . . , n.

.7 Let V be an inner product space, not necessarily finite-
dimensional, with the underlying field of scalars F, where
either F = R or F = C. Let x and y be two vectors in V ,
prove the following statements:

(i) If F = R and ‖x‖ = ‖y‖, then (x + y) ⊥ (x − y).
(ii) If F = R, then x ⊥ y if and only if ‖x+y‖2 = ‖x‖2+‖y‖2.
(iii) If F = C, then x ⊥ y if and only if ‖x + cy‖2 = ‖x‖2 +

‖cy‖2 for every complex number c.

.8 Let F−1 denote the inverse of F . For f ∈ VS, prove that

f =
∑
s∈S

〈Ff, δs〉Bs and F−1f =
∑
s∈S

〈f, δs〉Bs.
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Characters of Finite Groups

There are two goals in this chapter. The first goal is to sufficiently
develop the theory of characters of groups, which will enable us
to reduce the study of characters of finite Abelian groups to the
study of characters of finite cyclic groups. Second, we investigate
the characters of finite cyclic groups. Throughout the rest of the
book, we use the symbol C

∗ to denote the multiplicative group of
nonzero complex numbers.

3.1 Definition and Basic Properties of

Characters

Definition 3.1.1.1 A character of a group G is a homomorphism
from G into the multiplicative group of nonzero complex numbers.
That is, a character of G is a function χ : G → C

∗ that satisfies
the equation χ(ab) = χ(a)χ(b) for all a, b ∈ G. A character χ is
called trivial (or principal) if χ(g) = 1 for all g ∈ G.

ter, namely, the trivial character. The trivial character of a group
is often denoted by χT . (2) Every character maps the identity of
G to 1.

Let χ and χ′ be characters of G. The pointwise product of χ and
χ′ is the function χχ′ : G → C

∗ defined by χχ′(g) = χ(g)χ′(g).

1 The type of character defined in this definition is also known as Abelian character
or one-dimensional representation of G in C.
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Theorem 3.1.1. The characters of an arbitrary group G form an
Abelian group with respect to the pointwise product.

Proof. Suppose that χ, χ′, and χ′′ are characters of G. We must
verify the following five properties that define an Abelian group:

(i) the pointwise product χχ′ is a character of G (closure);
(ii) χχ′ = χ′χ (commutative);
(iii) (χχ′)χ′′ = χ(χ′χ′′) (associative);
(iv) χχ

T
= χ (existence of the identity);

(v) for each χ, there is a character χ−1 (necessarily unique) such
that χχ−1 = χ

T
(existence of the inverse).

Statements (i)–(iv) are trivial. To prove (v) let χ−1 : G → C
∗ be

the function defined, for each g ∈ G, by

χ−1(g) = χ(g−1).

It is easy to check that χ−1 is a character of G and χχ−1 = χ
T
.

The group of characters of G is denoted by Ĝ and is called the
character group or the dual group of G.

Suppose that h : G1 → G2 is a homomorphism of groups and
χ is a character of G2. The pullback of χ by h, denoted h�χ, is
defined by h�χ = χ ◦ h, the composition of χ and h. Since the
composition of two homomorphisms is again a homomorphism, it
follows that the pullback of a character of G2 is a character of G1.
Consequently, there is a one-to-one correspondence between the
groups of characters of any two isomorphic groups. In fact, we can
say more.

Theorem 3.1.2. Isomorphic groups have isomorphic character
groups. That is, if G1 and G2 are groups and G1

∼= G2, then
Ĝ1

∼= Ĝ2.

Proof. Suppose that h : G1 → G2 is an isomorphism and χ2 is a
character of G2. Consider the diagram

G1
h� G2

χ2

�
C

∗

�
�

��
χ1
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Note that the pullback χ2◦h of χ2 is a character of G1. Conversely,
every character χ1 of G1 is a pullback of some character χ2 of G2

(simply set χ2 = χ1 ◦ h−1). Thus the function h� : Ĝ2 → Ĝ1 is
surjective. Now we show that h� is an isomorphism in steps (a)
and (b) as follows:

(a) Homomorphism: If χ2, χ′
2 ∈ Ĝ2, then, by the pointwise defini-

tion,
h�(χ2χ

′
2) = (h�χ2)(h

�χ′
2).

(b) Kernel(h�)={identity}: For j = 1, 2, let χ
Tj

be the trivial

character of Gj . If h�χ2 = χ
T1

, then χ2 ◦ h(g1) = 1 for every
g1 ∈ G1. The bijectivity of h forces χ2 = χ

T2
.

Next we define the tensor product of characters and show that
a character of a direct product of groups is the tensor product of
characters of its summands. Suppose that G1 and G2 are groups
and χ1 and χ2 are characters of G1 and G2, respectively. The tensor
product of χ1 and χ2 is the function χ1⊗χ2 : G1×G2 → C

∗ defined
by

χ1 ⊗ χ2(g1, g2) = χ1(g1)χ2(g2). (3.1)

There are two immediate consequences of this definition:

(i) The tensor product is not commutative. In general, χ1 ⊗ χ2

and χ2 ⊗ χ1 have different domains.
(ii) It follows from the definition of the binary operation of the

group G1×G2, the definition of χ1⊗χ2, and the commutativity
of the product of complex numbers that the tensor product
χ1⊗χ2 is a character of G1×G2. Furthermore, every character
of G1×G2 is of the form χ1⊗χ2; the truth of this is guaranteed
by the next theorem.

Theorem 3.1.3. Suppose that G1 and G2 are groups. Then χ is a
character of G1×G2 if and only if χ = χ1⊗χ2, for some χ1 ∈ Ĝ1

and χ2 ∈ Ĝ2.

Proof. It remains to show that if χ is a character of G1 × G2,
then there are characters χ1 of G1 and χ2 of G2 such that χ =
χ1 ⊗ χ2. Since the injection ı1 : G1 ↪→ G1 × G2 given by ı1(g1) =
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(g1, 1) is a homomorphism, the pullback of χ by ı1 is a character
of G1. Similarly, the pullback of χ by ı2 is a character of G2. It is
straightforward to check that if χ1 = ı�1χ and χ2 = ı�2χ, then
χ = χ1 ⊗ χ2.

A consequence of Theorem 3.1.3 is that the dual of a direct
product is the tensor product of the duals. In the following coroll-
ary, Ĝ1 ⊗ Ĝ2 = {χ1 ⊗ χ2 | χ1 ∈ Ĝ1 and χ2 ∈ Ĝ2}.
Corollary 3.1.1. If G1 and G2 are groups, then

Ĝ1 × G2 = Ĝ1 ⊗ Ĝ2.

It is clear that the complex conjugate of a character is also a
character. It turned out that, for finite groups, the complex con-
jugate of a character is exactly its inverse, as we shall see shortly.

Suppose that χ is a character of G and g is an element of
G having finite order k. Since χ(g)k = χ(gk) = χ(1) = 1, it
follows that characters send elements of finite order to roots of
unity. In particular, if G is a group and n is the smallest positive
integer such that gn = 1 for every g ∈ G, then elements of G
are mapped to nth roots of unity by characters. In this case, the
codomain C

∗ in the definition of characters can be replaced by the
set Un = {ξk

n | ξn = e2πi/n, 0 ≤ k < n} consisting of all nth roots of
unity, which is a cyclic subgroup of C

∗ having ξn as a generator.2

Therefore, if χ ∈ Ĝ, then |χ(g)| = 1 for all g ∈ G. Hence

χ̄(g) = χ(g) =
1

χ(g)
= χ(g−1) = χ−1(g),

which gives
χ̄ = χ−1. (3.2)

We emphasize that equation (3.2) is a consequence of the existence
of a positive integer n such that gn = 1 for every g ∈ G; the

2 Though it is not needed in our work, we point out the fact that other generators
of Un have the form ξk

n where k is relatively prime to n. There are ϕ(n) of such.
Here ϕ is the Euler phi function; ϕ(n) is the number of positive integers less
than n that are relatively prime to n and ϕ(1) = 1. Note that if n > 1, then
0 < ϕ(n) < n.
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smallest of such integers is known as the exponent of G. This is
the case if G is a finite group.

Since Theorem 1.1.3, Theorem 3.1.2, and Corollary 3.1.1 reduce
the study of characters of finite Abelian groups to the study of
characters of cyclic groups of finite order, we concentrate our inves-
tigation on characters of groups of the latter type in the remainder
of this section.

The characters of Un are easy to find. Suppose that g is a gene-
rator of Un and h : Un → Un is a homomorphism. If h(g) is known,
then, since h(gk) = h(g)k, h(gk) is determined, so h(u) is deter-
mined for all u ∈ Un. Thus a choice for h(g) determines h uniquely.
Since the group Un has n elements, there are n choices for h(g).
Therefore, the character group Ûn has n elements, i.e., |Ûn| = n.
Also, since the identity function on Un is an element of Ûn of order
n, the dual group Ûn is cyclic. Thus the groups Un and its dual, Ûn,
are both cyclic and have n elements. By Theorems 1.1.2 and 3.1.2,
we can summarize this result as follows.

Theorem 3.1.4. If n is a positive integer, then Zn
∼= Ẑn.

Corollary 3.1.2. If G is a finite Abelian group, then G ∼= Ĝ.

Proof. Corollary 3.1.2 follows from Theorem 1.1.3, Theorem 3.1.2,
Corollary 3.1.1, and Theorem 3.1.4 (in that order).

Example 3.1.1. Using additive notation for the binary operation
on Zn, a character of Zn is a function χ : Zn → Un such that

χ(a + b) = χ(a)χ(b)

for all a, b ∈ Zn. Since addition modulo n is a binary operation
on Zn, the sum a + b in the previous equation implicitly means
(a+ b)(mod n). For each a ∈ Zn, let χa : Zn → Un be the function
defined by

χa(b) = ξab
n . (3.3)

Then for b1, b2 ∈ Zn we have

χa(b1 + b2) = ξa(b1+b2)
n = ξab1

n ξab2
n = χa(b1)χa(b2).

Thus χa is a character of Zn.
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Moreover, χa = χb if and only if a = b. The truth of this
statement can be seen as follows: since it is obvious that if a = b,
then χa = χb, we need only to show that if χa = χb, then a = b.
The equality χa = χb implies that χa(1) = χb(1) or ξa

n = ξb
n, it

follows that a = b (mod n). Since 0 ≤ a, b < n we have a = b.
We have exhibited n characters of Zn, namely, χ0, . . . , χn−1.

These are all the characters of Zn, since |Ẑn| = n. Note that char-
acters of Zn are symmetric in the sense that χa(b) = χb(a).

Example 3.1.2. Let χ be a character of the group G = Zn1 × · · ·×
Znm . By Theorem 3.1.3, there is a point x = (x1, . . . , xm) ∈ G
such that

χ = χx1 ⊗ · · · ⊗ χxm

def
= χx,

where χxj
is a character of Znj

. By definition of the tensor product
for characters we have

χx(y) = χx1(y1) . . . χxm(ym) = e
2πi
�

x1y1
n1

+···+ xmym
nm

�
(3.4)

for any y ∈ G. Note that the second equality follows from (3.3). It
follows that

χx(y) = χy(x) and χ̄x(y) = χx(−y) = χ−x(y), (3.5)

where −y is the inverse of y in G.
In particular, if nj = n for every j, then χx(y) = e

2πi
n

x·y, where
x·y = x1y1 + · · ·+ xmym.

Example 3.1.3. A special case of the previous example is the case
n = 2. Since ξ2 = e2πi/2 = −1, the characters of Z

m
2 are χx as x

ranges over Z
m
2 and, for each x ∈ Z

m
2 ,

χx(y) = (−1)x·y

for every y ∈ Z
m
2 .

Exercises.

.9 Let G1 and G2 be groups. Prove that the tensor product of
characters has the following properties: for χ1, χ′

1 ∈ Ĝ1 and
χ2, χ′

2 ∈ Ĝ2,
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(χ1 ⊗ χ2)(χ
′
1 ⊗ χ′

2) = χ1χ
′
1 ⊗ χ2χ

′
2,

(χ1 ⊗ χ2)
−1 = χ−1

1 ⊗ χ−1
2 .

.10 For a nonempty subset S of a finite Abelian group G, let ĜS

be the set of characters of G whose kernels contain S, that
is, elements of Ĝ that map every s ∈ S to 1. Prove that ĜS

is a subgroup of Ĝ. The group ĜS is called the annihilator
of S. Suppose that H and K are subgroups of G, prove the
following:

(i) if H ⊂ K, then ĜH ⊃ ĜK ;
(ii) ĜHK = ĜH ∩ ĜK , where HK = {hk | h ∈ H, k ∈ K};
(iii) ĜH∩K = ĜHĜK ;
(iv) the map H �→ ĜH is a bijection between subgroups of

G and Ĝ;
(v) every character of G restricted to H is a character of H ;
(vi) if R : Ĝ → Ĥ is the restriction map defined by R(χ) =

χ|H , where χ|H is the restriction of χ to H , prove that

(a) R is a homomorphism;
(b) the kernel of R is ĜH ;
(c) R is surjective.

Conclude that

Ĥ ∼= Ĝ

ĜH

, Ĝ ∼= Ĥ ⊗ ĜH , and ĜH
∼= Q̂,

where Q = G
H

is the quotient group of G by H . Note

that Ĥ is not a subgroup of Ĝ.
(vii) If h ∈ G and h �= 1, then there is a character χ ∈ Ĝ

such that χ(h) �= 1. Equivalently, if a, b ∈ G and a �= b,
there is a character χ ∈ Ĝ such that χ(a) �= χ(b).

.11 Let G1, G2, G3 be finite Abelian groups. The sequence 1 →
G1 → G2 → G3 → 1 is said to be an exact sequence if there
are homomorphisms α and β, where

G1
α→ G2

β→ G2,
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such that α is one-to-one, β is onto, and the kernel of β is
identical to the range of α. Prove that the exact sequence
1 → G1 → G2 → G3 → 1 induces an exact sequence 1 →
Ĝ1 → Ĝ2 → Ĝ3 → 1.

.12 Let G be a finite Abelian group. The double dual of G is
defined to be the dual of the dual of G; a natural notation

for the double dual of G is
ˆ̂
G. By Corollary 3.1.2, we have

G ∼= ˆ̂
G. This isomorphism depends on the isomorphism given

by the fundamental theorem of finite Abelian groups. Alter-

natively, we can define an isomorphism from G to
ˆ̂
G that is

independent of the fundamental theorem of finite Abelian

groups: let κ : G → ˆ̂
G be the map defined by g �→ κg,

where κg is a character of Ĝ given by κg(χ) = χ(g) for every

χ ∈ Ĝ. Show that the map κ is well-defined and is an isomor-
phism. The isomorphism κ is called the natural isomorphism

between G and
ˆ̂
G.

3.2 The Orthogonal Relations for Characters

The notion of orthogonality of characters of finite Abelian groups
is indispensable in the development of the FT. Most importantly
it implies that the characters of a finite Abelian group form an
orthogonal basis for the vector space of complex-valued functions
defined on the group. Based on this basis we define the FT.

Let G be a finite Abelian group and let H be a subgroup G.
We recall from Exercise 10 of the last section that ĜH is the sub-
group of Ĝ formed by characters of G which are identically 1
on H .

Theorem 3.2.1. If H is a subgroup of G and χ ∈ Ĝ, then

∑
h∈H

χ(h) =

{
|H| if χ ∈ ĜH ,

0 otherwise.
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Proof. Let A be the sum in the statement of the theorem. If χ ∈
ĜH , then χ(h) = 1 for every h ∈ H , so A = |H|. On the other
hand, if χ �∈ ĜH , then there exists h0 ∈ H such that χ(h0) �= 1.
By Theorem 1.1 we have

A =
∑
h∈H

χ(h0h) = χ(h0)
∑
h∈H

χ(h) = χ(h0)A,

whence A = 0.

In what follows it is convenient to enumerate the elements of G
as g1, . . . , gη, i.e., we consider G = {g1, . . . , gη}. Since, by Coroll-

ary 3.1.2, G and Ĝ have the same number of elements, G can
serve as an index set for Ĝ. There are many different ways to
enumerate (or to index the elements of) Ĝ. For our purpose it
suffices to choose an enumeration of Ĝ such that χg1 is the trivial
character of G. For simplicity we write s for gs; that is, we identify
elements of G with their subscripts. Let X = (χs(t)) be the matrix
whose (s, t) entry is the complex number χs(t). It follows from
Corollary 3.1.2 that X is a square matrix of dimension η. Further,
if G = Zn1 × · · · × Znm , then (3.4) implies that the characters of
G are symmetric (i.e., χs(t) = χt(s)), whence X is a symmetric
matrix.

Example 3.2.1. If G = Zn then

X =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 ξn ξ2

n . . . ξn−1
n

1 ξ2
n ξ4

n . . . ξ
2(n−1)
n

...
...

1 ξn−1
n ξ

2(n−1)
n . . . ξ

(n−1)(n−1)
n

⎞
⎟⎟⎟⎟⎟⎠

n×n

,

where ξn = e2πi/n. Note that since ξn is an nth root of unity, some
entries of X may be simplified, e.g., ξ

(n−1)(n−1)
n = ξn.

Corollary 3.2.1. The sum of the entries in the first row of X is
η and the sum of the entries in each of the remaining rows is zero.
That is,

η∑
t=1

χs(t) =

{
η if s = 1,

0 if s �= 1.
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Proof. Set H = G in Theorem 3.2.1.

Example 3.2.2. Suppose that G = Zn1 ×· · ·×Znm . Then (3.4) and
Corollary 3.2.1 imply that the formula

∑
y ∈G

χx(y) =
∑
y ∈G

e
2πi
�

x1y1
n1

+···+ xmym
nm

�
=

{
n1 · · ·nm if x = 0,

0 if x �= 0,

holds for any x = (x1, . . . , xm) ∈ G. It follows that if nj = n for
every j, then we have

∑
y ∈Zm

n

e
2πi
n

x·y =

{
nm if x = 0,

0 if x �= 0,

for every x ∈ Z
m
n . In particular, for n = 2, since eπi = −1, the

formula ∑
y ∈Z

m
2

(−1)x·y =

{
2m if x = 0,

0 if x �= 0,

holds for x ∈ Z
m
2 .

If we denote the adjoint (i.e., conjugate transpose) of X by X∗,
then the following corollary states that the inverse of

(
1/
√

η
)
X is(

1/
√

η
)
X∗.

Corollary 3.2.2. The matrix
(
1/
√

η
)
X is a unitary matrix; that

is, XX∗ = ηI, where I is the η × η identity matrix.

Proof. Let M = (mst) = XX∗. By the definition of matrix multi-
plication, the definition of the product of characters, the fact that
the pointwise product of two characters is again a character, and
the previous theorem we have

mst =

η∑
k=1

χs(k)χ̄t(k) =

η∑
k=1

(χsχ̄t)(k) =

{
η if χsχ̄t = χ1,

0 if χsχ̄t �= χ1.

Recall from (3.2) that χ̄t = χ−1
t and since each character has a

unique inverse, we have χsχ̄t = χ1 if and only if s = t.
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Since X is a constant (i.e.,
√

η) multiple of a unitary matrix
of complex numbers, the rows (and columns) of X are orthogonal
with respect to the standard inner product in C

η. Also, the length
of each row and column of X is η. These results are the contents
of the next corollary.

Corollary 3.2.3 (Orthogonal relations).

(i) The rows of X, considered as vectors in C
η, are orthogonal

and each has length η. That is, if χs and χt are characters of
G, then

η∑
k=1

χs(k)χ̄t(k) =

{
η if s = t,

0 if s �= t.

(ii) The columns of X, considered as vectors in C
η, are orthogonal

and each has length η. That is, if χk is a character of G, then

η∑
k=1

χ̄k(s)χk(t) =

{
η if s = t,

0 if s �= t.

Corollary 3.2.4 (Row and column sums of XXX).

(i) The sum of the entries in the �th row of X is

η∑
k=1

χ�(k) =

{
η if � = 1 (the identity of G),

0 if � �= 1.

(ii) The sum of the entries in the �th column of X is

η∑
k=1

χk(�) =

{
η if � = 1,

0 if � �= 1.

Proof. Set s = 1 in the previous corollary.

It follows from (i) of Corollary 3.2.3 that the set

BG =
1√|G|Ĝ =

{
1√|G|χ

∣∣∣ χ ∈ Ĝ

}
(3.6)

is an orthonormal subset of the complex inner product space VG

associated with G. Since |BG| = dim VG, BG is an orthonormal
basis for VG. We record this fact in the following theorem.
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Theorem 3.2.2. The set BG is an orthonormal basis of VG.

In the remainder of this section, we set some notation for the
rest of the exposition, point out the nearly homomorphism pro-
perty of functions in the basis BG, and list two properties of the
function δg.

1) Since |G| = |BG|, the group G can serve as an index set for BG.
In general, we write Ĝ = {χg | g ∈ G} and

BG = {Bg | g ∈ G, where Bg = (1/
√
|G|) χg }.

In this notation, every f ∈ VG can be expressed uniquely as

f =
∑
g∈G

〈f, Bg〉Bg. (3.7)

2) Because of the scalar multiplication, functions in BG are not
homomorphisms and hence they are not characters. Never-
theless, we call BG the character basis for VG. Though not
homomorphisms, functions in BG are “homomorphisms up to
the factor

√|G| ”; i.e., for any Bg ∈ BG, we have

Bg(xy) =
√
|G|Bg(x)Bg(y)

for all x, y ∈ G. This property of functions in BG will be used
freely.

3) Suppose that h : G1 → G2 is an isomorphism of finite Abelian
groups. Then h induces the isomorphism h� : Ĝ2 → Ĝ1, which
was defined in the proof of Theorem 3.1.2 as the pullback by
h. For x ∈ G2 and χx ∈ Ĝ2, we denote the pullback of χx with
respect to h by χh−1(x), i.e.,

h�χx = χh−1(x). (3.8)

The isomorphism h� will play an important role in later develop-
ment (in Sections 6.3 and 6.4).

4) For any g in G, the function δg satisfies the following property:
if f : G → C and S is a nonempty subset of G, then
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∑
x∈S

δgf(x) =

{
f(g) if g ∈ S,

0 if g �∈ S,

where δgf is the pointwise product of two functions. Thus, we
can think of δg as the discrete Dirac delta function supported
at g.

For those who wish to pursue further into character theory we
recommend [8].

Exercises.

.13 Prove that ∑
g ∈G

χg = |G|δ1,

where 1 is the identity of G.

.14 If χ ∈ Ĝ and n = |G|, then on G \ ker(χ) we have

n−1∑
k=0

χk = 0.

.15 For x = (x1, . . . , xm) ∈ G = Zn1 × · · · × Znm , prove that
δx = δx1 ⊗ · · · ⊗ δxm.

.16 Let n be an integer greater than 2. Prove that if f1 and f2

are elements of VG, then

〈f1, f2〉 =
1

n

n−1∑
k=0

‖f1 + ξk
nf2‖2ξk

n, (3.9)

where we recall that ξn = e2πi/n. Equation (3.9) is known as
the polarization identity.

.17 Let f : S → G be a map from a nonempty finite set S into a
finite Abelian group G. For any fixed g ∈ G, the number of
points in S which are mapped to g by f , i.e., |f−1(g)|, can
be expressed by the equation

|f−1(g)| =
1

|G|
∑
s∈S

∑
χ∈ Ĝ

χ̄(f(s))χ(g).
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.18 Fix a nonzero vector

x =

⎛
⎜⎝

x1
...

xn

⎞
⎟⎠ ∈ C

n.

Define the rotation of x to be the vector

rot(x) =

⎛
⎜⎜⎜⎝

xn

x1
...

xn−1

⎞
⎟⎟⎟⎠ .

The matrix Mx = [x, rot(x), rot2(x), . . . , rotn−1(x)], whose
jth column is the (j−1)th rotation of x, is called the circulant
matrix generated by x. For example, the circulant matrix
generated by a nonzero vector

x =

⎛
⎝a

b
c

⎞
⎠ ∈ C

3

is

Mx =

⎛
⎝a c b

b a c
c b a

⎞
⎠

3×3

.

A complex number λ is called an eigenvalue of Mx if there
is a nonzero vector y such that Mxy = λy. Such a vector y
is called an eigenvector of Mx corresponding to the eigen-
value λ.

(i) Set px(z) = xn+xn−1z+xn−2z
2+ · · ·+x1z

n−1, i.e., px(z)
is the polynomial in a single variable z whose coefficients
are the coordinates of x. For j = 1, . . . , n, show that the
jth column of the matrix X in Example 3.2.1 on page 41
is an eigenvector of Mx corresponding to the eigenvalue
ξj−1
n px(ξ

j−1
n ).
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(ii) Conclude that

det Mx =

n∏
j=1

(
ξj−1
n px(ξ

j−1
n )

)
= ξ

n(n−1)
2

n

n∏
j=1

px(ξ
j−1
n ).

(iii) Suppose that n is prime, px(1) �= 0, and not all coordi-
nates of x are equal (i.e., xs �= xt for some s and t).
Show that det Mx �= 0.

We will see later in Exercise 26 (page 62) that the FT diago-
nalizes Mx for all nonzero vectors x ∈ C

n.
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The Fourier Transform

As alluded to at the beginning of Chapter 2, the FT on a finite
Abelian group G is a linear operator on VG. A more specific
description was given at the end of Section 2.3: the FT on G is
an operator of the type described in Theorem 2.3.1 with S = G.
In the following chapter, we formally define the FT and describe
some of its properties in the first section.

4.1 Definition and Some Properties

Suppose that G is a finite Abelian group, VG is the inner product
space associated with G, ΔG = {δg |g ∈ G} and BG = {Bg |g ∈ G}
are standard and character bases for VG, respectively. By (3.7),
each Bg can be written uniquely as

Bg =
∑
s∈G

〈Bg, Bs〉Bs =
∑
s∈G

δg(s)Bs.

It follows from the uniqueness that the one-to-one correspondence
Bg ↔ δg is independent of the enumeration of vectors in the basis
BG. Through this correspondent we define the FT.

Definition 4.1.1. The Fourier transform on the group G is the

G

which maps Bg to δg for every g ∈ G.

The FT is denoted by either F or ˆ; i.e., if f ∈ VG, we denote
the FT of f by either Ff or f̂ . We will use the two notations
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interchangeably. By Theorem 2.3.1, we can express the FT in terms
of elements in the bases ΔG and BG as

F =
∑

s, t∈G

〈δt, Bs〉δsδ
∗
t . (4.1)

The following properties hold: Let f , f1, and f2 be complex-valued
functions defined on G.

(i) The FT is an isometry, i.e., 〈f1, f2〉 = 〈f̂1, f̂2〉. (This is known
as the Plancherel theorem.) In particular, ‖f‖ = ‖f̂‖.

(ii) f̂ is the complex-valued function defined on G whose value at g
is the g-coefficient of f in the basis BG, that is, f̂(g) = 〈f, Bg〉.

Equation (4.1) is the general expression for the FT operator in
terms of the bases ΔG, BG, and their duals. In practice, to find
the FT of a function f , we often use the linearity of the FT, the
equation B̂g = δg, and property (ii) listed above. For instance, if
f ∈ VG, applying the FT on both sides of equation (3.7) we obtain

f̂ =
∑
g ∈G

〈f, Bg〉δg. (4.2)

Example 4.1.1. Suppose that G = Zn1 × · · · × Znm and f is a
complex-valued function defined on G. Then, by (ii), the value of
f̂ at a point x in G is given by

f̂(x) = 〈f, Bx〉 =
1√|G|〈f, χx〉 =

1√|G|
∑
y ∈G

f(y)χ̄x(y).

From (3.4) and the fact that |G| = n1 . . . nm, we have

f̂(x) =
1√

n1 . . . nm

∑
y ∈G

e
−2πi

�
x1y1
n1

+···+ xmym
nm

�
f(y). (4.3)

In particular, if nj = n for every j, then

f̂(x) =
1√
nm

∑
y ∈Zm

n

e−
2πi
n

x·yf(y). (4.4)
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It follows that if m = n = 1, then f̂ = f for all f ∈ VZ1 , i.e., the FT
is the identity operator on VZ1 . Since there is nothing interesting
about the identity operator, hereafter, when the group Zn is under
consideration, we assume that n ≥ 2.

Example 4.1.2. Set n = 2 in (4.4). Since eπi = −1, we have

f̂(x) =
1√
2m

∑
y ∈Z

m
2

(−1)x·yf(y)

for all x ∈ Z
m
2 .

There are three immediate consequences of equation (4.3):

1) For a ∈ G = Zn1×· · ·×Znm , the translation by a is the operator
τa on VG defined by f �→ τaf , where τaf(x) = f(x+a). It follows
from this definition that the translation by a is linear and it is
straightforward to show that

τ̂af = χaf̂ and χ̂af = τ−af̂ , (4.5)

where χaf is the pointwise product of χa and f . The values of
the functions τ̂af and χ̂af at a point x ∈ G are given by

τ̂af (x) = e2πi
�m

j=1(ajxj/nj)f̂(x) and χ̂af(x) = f̂(x − a).

For the special case n1 = · · · = nm = 2, we have

τ̂af (x) = (−1)a·xf̂(x)

for every x ∈ Z
m
2 , where a ∈ Z

m
2 .

2) Suppose that u ∈ Zn is a unit. The dilation by u is the operator
du on VZn defined by f �→ duf , where duf(x) = f(ux). It is
straightforward to show that dilation by u is linear and that

d̂uf = du−1 f̂ . (4.6)

Since the only unit in Z2 is the multiplicative identity, there is
no dilation on VZ2 other than the identity operator.
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3) The equation ˆ̄f(x) =
¯̂
f(−x) holds for every complex-valued

function f defined on G = Zn1 × · · · × Znm , where x ∈ G and
−x is the inverse of x in G.

The following theorem, which characterizes nonzero constant
functions in terms of the FT, follows directly from the definition
of the FT. First, some terminology: the support of a function f
defined on G is the set

supp(f) = {g ∈ G | f(g) �= 0}.
Theorem 4.1.1. Suppose that G is a finite Abelian group and f is
a complex-valued function defined on G. A necessary and sufficient
condition that f is a nonzero constant is that f̂ is supported only
at the identity. Furthermore, if c is a constant (zero or nonzero),
then

ĉ = c
√

|G| δ1.

Proof. By the linearity of the FT and the fact that B1 = 1/
√|G|,

for any constant c, we have

ĉ = c1̂ = c
√

|G| 1̂√|G| = c
√

|G|B̂1 = c
√

|G| δ1.

So, the FT of a nonzero constant function is supported only at 1.
Conversely, if supp(f̂) = {1}, then f̂ = c

√|G| δ1 for some
nonzero constant c. By taking the inverse FT, we have

f = c
√

|G|B1 = c.

It follows from Theorem 4.1.1 that the FT of the uniform distri-
bution on G, given by p(g) = 1/|G|, is concentrated at the identity
with weight 1/

√|G|.
The characters of the group G = Zn1 × · · · × Znm have some

special properties, namely, properties (3.5). Using these properties
we can derive a simple formula for the second FT of a function
defined on G in terms of itself.

Theorem 4.1.2. If f is a complex-valued function defined on G =
Zn1 × · · · × Znm, then
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ˆ̂
f(x) = f(−x)

for every x ∈ G, where −x is the inverse of x in G.

Proof. By the linearity property of the FT, it suffices to prove
the theorem only for members of the basis BG. For x ∈ G, we
have

ˆ̂
Bg(x) = 〈B̂g, Bx〉 = 〈δg, Bx〉 = B̄x(g).

Since, by (3.5), B̄x(g) = Bg(−x), we have
ˆ̂
Bg(x) = Bg(−x).

Theorem 4.1.2, the definition of the FT, and (3.5) imply the
following corollary.

Corollary 4.1.1. For every x in G = Zn1 × · · · × Znm, we have
δ̂x = B̄x = B−x, where −x is the inverse of x in G.

There are algorithms for computing the FT on Zn,1 many of
which are relatively fast and they are known collectively as the
FFT (fast Fourier transform). There are many books on the FFT,
in particular, we refer the readers to [20].

Exercises.

.19 Prove the formulas in (4.5) and (4.6).

.20 Let f be a complex-valued function defined on G. Prove the
following:

(i) f̂ is identically zero if and only if f is identically zero.
(ii) The formula

f̂(1) =
1√|G|

∑
g ∈G

f(g)

holds.

1 We will see later that, by Theorem 6.4.1, the FT on any finite Abelian group is
determined by the FT on Zn.
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.21 Let n be an integer greater than 2. Prove that if f1 and f2

are elements of VG, then

〈f̂1, f2〉 =
1

n

n−1∑
k=0

〈
(f1 + ξk

nf2)̂ , (f1 + f2)
〉
ξk
n,

where we recall that ξn = e2πi/n.

.22 Let f be a real-valued function defined on G. Consider the
following two statements:

(i) f(g) > 0 for all g ∈ G.

(ii) f(g) ≥ 0 for all g ∈ G, and there are at least two points
in G where f is not zero.

If either (i) or (ii) holds, then |f̂(g)| < f̂(1) for every g ∈ G
and g �= 1.

4.2 The Fourier Transform of Periodic

Functions

Let G be either the group Zn or Z. Once G is defined, it is fixed
throughout the following definition: A complex-valued function
defined on G is said to be periodic if there is a positive integer
σ ∈ G such that f(x + σ) = f(x) for all x ∈ G. The smallest
of such σ is called the period of f . If σ is the period of f , then
the subset {1, . . . , σ} of G is called the fundamental set of f ; f is
determined if its values on the fundamental set are known.

We consider periodic functions on Zn and Z separately.

4.2.1 Periodic functions on ZZZn

We begin with a theorem which describes a relationship between
the period of f : Zn → C and n, the number of elements of its
domain.

Theorem 4.2.1. The period of any periodic function defined on
Zn divides n. Consequently, if p is prime, then the only periodic
functions defined on Zp are constants.
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Proof. Suppose that σ is the period of f . If σ � n, then, by the
Euclidean algorithm, n = qσ + r for a unique pair of integers q
and r, where q ≥ 1 and 0 < r < σ. As an element of the group Zn,
qσ + r = 0, thus for any x ∈ Zn the periodicity of f implies that

f(x) = f(x + r + qσ) = f(x + r).

Since this equation holds for all x in Zn, by definition of the period
we have σ ≤ r, which is impossible.

Assume that f : Zn → C is a nonconstant periodic function with
period σ. Since f is nonconstant, σ > 1. Also, by Theorem 4.2.1,
n = kσ for some positive integer k. The periodicity of f implies
that

f̂(s) =
1√
n

n−1∑
t=0

e−
2πi
n

stf(t)

=
1√
n

k−1∑
j=0

(j+1)σ−1∑
t=jσ

e−
2πi
n

stf(t)

=
1√
n

k−1∑
j=0

σ−1∑
t=0

e−
2πi
n

s(t+jσ)f(t + jσ)

=
1√
n

k−1∑
j=0

e−
2πi
n

sjσ
σ−1∑
t=0

e−
2πi
n

stf(t)

=

(
1√
k

k−1∑
j=0

[
e−

2πi
k

s
]j
)(

1√
σ

σ−1∑
t=0

e−
2πi
n

stf(t)

)
,

whence, with the aid of the geometric progression formula, we
obtain

f̂(s) =

⎧⎪⎨
⎪⎩

0 if s is not a multiple of k,√
k√
σ

∑σ−1
t=0 e−

2πi
σ

mtf(t) if s = mk for some integer m,

where 0 ≤ m < σ.

Thus, if fσ is the function defined on the group Zσ by fσ(m) =
f(m), then
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f̂(s) =

⎧⎪⎨
⎪⎩

0 if s is not a multiple of k,√
kf̂σ(m) if s = mk for some integer m,

where 0 ≤ m < σ.

Theorem 4.2.2. Suppose that f : Zn → C is a nonconstant perio-
dic function with period σ. If fσ : Zσ → C is defined by fσ(m) =
f(m), then

f̂(s) =

⎧⎪⎨
⎪⎩

0 if s is not a multiple of n/σ,√
n/σf̂σ(m) if s = m(n/σ) for some integer m,

0 ≤ m < σ,

where f̂σ is the FT of fσ on Zσ. Consequently, the number of points
where f̂ �= 0 is at most σ.

Note that if f and fσ are considered as functions defined on
sets Zn and Zσ, respectively, then fσ is the restriction of f to the
subset Zσ. If the group structures on the domains of f and fσ

are taken into account, then fσ is not the restriction of f to Zσ.
With respect to the addition in Zσ, the sum of two elements of
Zσ is again an element of Zσ; on the other hand, the sum of the
same two elements with respect to the addition in Zn might not be
in Zσ.

For a periodic function f with period σ, we have τσf = f ,
whence

f̂(x) = τ̂σf (x) = e
2πi
n

σxf̂(x) (4.7)

for every x ∈ Zn. If f is nonconstant, then σ > 1 and, by Theo-
rem 4.1.1, f̂(x) �= 0 for some nonzero x ∈ Zn. We may con-
clude from (4.7) that e(2πi/n)σx = 1, which in turns implies that
gcd(x, n) > 1 (i.e., the greatest common divisor of x and n is
greater than 1). This result has a theoretical application to the
factoring problem: given an odd positive integer n, which is not a
prime, find a nontrivial divisor of n, i.e., a divisor that is greater
than 1 and less than n. We outline a three-step algorithm for a
solution to this problem as follows:
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Step 1: Define a nonconstant periodic function f : Zn → C.

Step 2: Find a positive x ∈ Zn such that f̂(x) �= 0.

Step 3: Find d = gcd(x, n).

Of the three steps, Step 1 seems to be the most difficult and for
a large value of n Step 2 is also difficult. Once the first two steps
are done, the Euclidean algorithm can be used in Step 3. Because
of the difficulty in Step 1, the given algorithm is not useful in
practice.

4.2.2 Periodic functions on ZZ

Suppose that f : Z → C is a periodic function with period σ.
If fσ : Zσ → C is the function defined by fα(k) = f(k), then f is
the periodic extension of fσ to Z. The FT of f is defined by setting
f̂(k) = f̂σ(k̃), where k̃ is the projection of k in Zσ, i.e., k̃ ∈ Zσ

and k ≡ k̃ (mod σ). Explicitly, for any j ∈ Z,

f̂(j) =
1√
σ

σ−1∑
k=0

e−
2πi
σ

j̃kfσ(k).

Since e−
2πi
σ

jk = e−
2πi
σ

j̃k and f(k) = fσ(k) for k = 0, . . . , σ − 1, we
can write the previous equation as

f̂(j) =
1√
σ

σ−1∑
k=0

e−
2πi
σ

jkf(k). (4.8)

Since constant functions have period 1, it follows from (4.8) that
ĉ = c for any c ∈ C, that is, the FT of constant functions defined on
Z are supported everywhere. Notice that the result just obtained is
different from that of Theorem 4.1.1; this occurs because there is a
distinction between the definitions of the FT of functions defined
on Z and Zn.

For each integer a, the translation by a is the linear operator
τa : VZ → VZ given by f �→ τaf , where τaf(x) = f(x + a). For a
periodic function f : Z → C with period σ, the relations (4.5) still
hold, i.e.,

τ̂af = χaf̂ and χ̂af = τ−af̂ , (4.9)
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where in these equations χa(x) = e
2πi
σ

ax. It follows from the second
equation in (4.9) that the FT of any periodic function defined on
Z is again a periodic function with the same period.

4.3 The Inverse Fourier Transform

Being an isometry, the FT has a unique inverse which is called the
inverse Fourier transform (IFT). The IFT is denoted by either
F−1 orˇ; i.e., for f ∈ VG, we denote the IFT of f by either F−1f
or f̌ . We will use the two notations interchangeably. Since the
inverse of an isometry is also an isometry, the IFT is an isometry
of VG. Consequently,

〈f1, f2〉 = 〈f̌1, f̌2〉

for every f1, f2 ∈ VG. In particular, ‖f‖ = ‖f̌‖ for every f ∈ VG.
By definition of the inverse, δ̌g = Bg for every g ∈ G. This

result enables us to express f̌ in terms of f . Applying the oper-
atorˇon both sides of the equation

f =
∑
g ∈G

〈f, δg〉δg (4.10)

we obtain

f̌ =
∑
g ∈G

〈f, δg〉Bg. (4.11)

(Also, see Exercise 8, page 32.)
Comparing (4.2) and (4.11) we see that these equations for f̂

and f̌ , respectively, are symmetric in Bg and δg in the sense that
we can obtain one equation from another by interchanging the role
of Bg and δg. This symmetry is a reflection of the fact that the FT
maps each Bg to δg, so its inverse maps each δg to Bg, for every
g ∈ G. Thus, many statements about the FT and the IFT are
symmetric. For instance, statements about the inversion formulas
for the FT (as we will see shortly in the next section) and the IFT
in Exercise 23 are symmetric.



4.4 The Inversion Formula 59

Example 4.3.1. Let G be the group Zn1 × · · · × Znm and let f be
a complex-valued function defined on G. By (4.11), the value of f̌
at a point x in G is given by

f̌(x) =
∑
y ∈G

f(y)By(x) =
1√|G|

∑
y ∈G

f(y)χy(x).

From (3.4) and the fact that |G| = n1 . . . nm, we have

f̌(x) =
1√

n1 . . . nm

∑
y ∈G

e
2πi
�

x1y1
n1

+···+ xmym
nm

�
f(y). (4.12)

In particular, if nj = n for every j, then

f̌(x) =
1√
nm

∑
y ∈Zm

n

e
2πi
n

x·yf(y). (4.13)

Comparing (4.3) and (4.12), we can conclude that ˆ̄f(x) = ¯̌f(x) =
¯̂
f(−x).

Example 4.3.2. Since eπi = −1, by setting n = 2 in equation (4.13),
we have

f̌(x) =
1√
2m

∑
y ∈Z

m
2

(−1)x·yf(y)

for all x ∈ Z
m
2 . Comparing this example to Example 4.1.2, we may

conclude that f̂ = f̌ . The converse also holds; that is, if f̂ = f̌ on
VZm

n
, then n = 2, which is proved later in Theorem 4.7.1. In other

words, the FT on Z
m
2 is a linear operator of order 2. Also, see

Theorem 4.1.2.

4.4 The Inversion Formula

Our next goal is to find the inversion formula for the FT, that is,
the formula which expresses f in terms of f̂ and functions in the
character basis. Let G be a finite Abelian group and let f be a
complex-valued function defined on G. Since



60 4 The Fourier Transform

f =
∑
g∈G

〈f, Bg〉Bg

and 〈f, Bg〉 = 〈f̂ , δg〉, we have

f =
∑
g∈G

〈f̂ , δg〉Bg.

This equation is called the inversion formula for the FT. (Compare
to Exercise 8, page 32.)

Example 4.4.1. Suppose that G = Zn1 × · · · × Znm and f is a
complex-valued function defined on G. For x ∈ G, by the inversion
formula, we have

f(x) =
∑
y ∈G

f̂(y)By(x)

=
1√|G|

∑
y ∈G

f̂(y)χy(x)

=
1√

n1 . . . nm

∑
y ∈G

e
2πi
�

x1y1
n1

+···+ xmym
nm

�
f̂(y).

In particular, if nj = n for every j, then

f(x) =
1√
nm

∑
y ∈Zm

n

e
2πi
n

x·yf̂(y).

Example 4.4.2. If n = 2, then

f(x) =
1√
2m

∑
y∈Z

m
2

(−1)x·yf̂(y)

for all x ∈ Z
m
2 .

Exercises.

.23 Prove the inversion formula for the IFT: if f ∈ VG, then

f =
∑
g ∈G

〈f̌ , Bg〉δg.
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.24 Prove that the formula

f(1) =
1√|G|

∑
g ∈G

f̂(g)

holds for every complex-valued function f defined on G.

.25 Suppose that f : Z → C is a periodic function with period
σ. Prove the inversion formula: for every j ∈ Z,

f(j) =
1√
σ

σ−1∑
k=0

e
2πi
σ

jkf̂(k).

4.5 Matrices of the Fourier Transform

As a linear operator on VG, the FT has a unique matrix represen-
tation with respect to the standard basis ΔG.

Theorem 4.5.1. The matrix of the FT with respect to the stan-
dard basis is X/

√|G|, where X is obtained by taking the complex
conjugate of the entries of X (the matrix defined in Example 3.2.1
on page 41).

Proof. We enumerate G and write G = {g1, . . . , gη}. Also, for sim-
plicity we write δs for δgs and Bt for Bgt . Then the (s, t) entry of

the FT with respect to the basis ΔG is 〈δ̂t, δs〉. Since

δ̂t =

η∑
j=1

〈δt, Bj〉δj =

η∑
j=1

B̄j(t)δj =
1√
η

η∑
j=1

χ̄j(t)δj ,

we have

〈δ̂t, δs〉 =
1√
η
χ̄s(t).

Hence the matrix of the FT is X/
√|G|.

We identify the FT with its matrix and write F = X/
√|G|.

Since F is the matrix of the FT and since it is unitary (by Coroll-
ary 3.2.2), it follows that the matrix of the IFT is F−1 = F∗ =
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X t/
√|G|, where X t is the transpose of X. Therefore, the adjoint

of the FT is the IFT, and conversely the adjoint of the IFT is
the FT. Equivalently, if f1 and f2 are complex-valued functions
defined on G, then

〈f̂1, f2〉 = 〈f1, f̌2〉.
This is expected since the FT is an isometry.

We can express the FT and IFT in terms of the matrices F and
F−1, respectively, as

Ff = f̂ and F−1f = f̌ .

In these equations, f , f̂ , and f̌ are considered as column vectors
whose coordinates consist of their values on G, respectively.

Exercise.

.26 Set cn = e−2πi/n. Recall the matrix Mx and the polynomial
px(z) from Exercise 18 (page 46). Show that the FT on Zn

diagonalizes Mx, that is,

F∗MxF = diag[λ1, . . . , λn],

where λj = cj−1
n px(c

j−1
n ).

4.6 Iterated Fourier Transforms

Let G = Zn1 × · · · × Znm and let f be a complex-valued function
defined on G. A point x = (x1, . . . , xm) in G can also be written as
x = (x1, w), where w = (x2, . . . , xm) is a point in Zn2 × · · · ×Znm .
If w is fixed, then the equation fw(x1) = f(x1, w) defines the
function fw on Zn1 . The FT of fw, denoted F1fw, is given pointwise
by

F1fw(x1) = 〈fw, Bx1〉 =
∑

y1 ∈Zn1

fw(y1)B̄x1(y1),

where Bx1 is a character of the group Zn1 . We can express F1fw

in terms of f as

F1f(x1, w) =
∑

y1 ∈Zn1

f(y1, w)B̄x1(y1)
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or
F1f(x) =

∑
y1 ∈Zn1

f(y1, x2, . . . , xm)B̄x1(y1).

In general, for j = 1, . . . , m, the FT of f in the jth-coordinate is
defined pointwise by the equation

Fjf(x) =
∑

yj ∈Znj

f(x1, . . . , yj, . . . , xm)B̄xj
(yj),

where Bxj
is a character of the group Znj

. Since the inner product
is linear in the first argument, the operator Fj is linear.

Theorem 4.6.1. Consider the group G = Zn1×· · ·×Znm and any
complex-valued function f defined on G. For any j, k = 1, . . . , m,
we have

FjFkf = FkFjf,

i.e., the operators F1, . . . ,Fm are commutative (with respect to
composition).

Proof. If f is a complex-valued function defined on G, then for
j < k we have

FjFkf(x)

= Fj

⎛
⎝ ∑

yk ∈Znk

f(x1, . . . , yk, . . . , xm)B̄xk
(yk)

⎞
⎠

=
∑

yk ∈Znk

Fjf(x1, . . . , yk, . . . , xm)B̄xk
(yk)

=
∑

yk ∈Znk

∑
yj∈Znj

f(x1, . . . , yj, . . . , yk, . . . , xm)B̄xj
(yj)B̄xk

(yk)

=
∑

yj ∈Znj

∑
yk∈Znk

f(x1, . . . , yj, . . . , yk, . . . , xm)B̄xk
(yk)B̄xj

(yj)

=
∑

yj ∈Znj

Fkf(x1, . . . , yj, . . . , xm)B̄xj
(yj)
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= Fk

⎛
⎝ ∑

yj ∈Znj

f(x1, . . . , yj, . . . , xm)B̄xj
(yj)

⎞
⎠

= FkFjf(x).

Thus Fj and Fk commute.

The following theorem states that the FT of f can be obtained
by applying the operators F1, . . . ,Fm sequentially, in any order,
to f .

Theorem 4.6.2. Suppose that G = Zn1 × · · · × Znm and ε is a
permutation of the set {1, . . . , m}. As a linear operator on the
inner product space VG, the FT, F , satisfies the equation F =
Fε(1) · · · Fε(m), the composition of the linear operators F1, . . . ,Fm.

Proof. By Theorem 4.6.1, it suffices to show that F = F1 · · ·Fm

and we prove this by induction on m. The case m = 1 is trivially
true since F = F1. Suppose that the theorem holds for m = k−1,
where k > 1, and consider the case m = k. Let f be a complex-
valued function defined on Zn1 ×· · ·×Znk

. For each y = (y′, wy) ∈
Zn1 ×· · ·×Znk

, where y′ ∈ Zn1 ×· · ·×Znk−1
and wy ∈ Znk

, let fwy

be the function on Zn1 ×· · ·×Znk−1
defined by fwy(y

′) = f(y′, wy).
By the induction hypothesis, we have Ffwy = F1 . . .Fk−1fwy ; i.e.,

F1 . . .Fk−1fwy(x
′) =

∑
y′

fwy(y
′)B̄x′(y′)

for all x′ ∈ Zn1 × · · · × Znk−1
. For x = (x′, wx) ∈ Zn1 × · · · × Znk

,
we have

Ff(x) =
∑

y

f(y)B̄x(y)

=
∑
y′, wy

f(y′, wy)B̄x′(y′)B̄wx(wy)

=
∑
wy

∑
y′

fwy(y
′)B̄x′(y′)B̄wx(wy)

=
∑
wy

F1 . . .Fk−1fwy(x
′)B̄wx(wy)
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= F1 . . .Fk−1

(∑
wy

fwy(x
′)B̄wx(wy)

)

= F1 . . .Fk−1

(∑
wy

f(x′, wy)B̄wx(wy)

)

= F1 . . .Fk−1Fkf(x′, wx)

= F1 . . .Fk−1Fkf(x).

The proof is complete.

Concerning the inverse operator F−1
j , by the equation for the

IFT (i.e., eq. (4.11)) we have

F−1
j f(x) =

∑
yj ∈Znj

f(x1, . . . , yj, . . . , xm)Byj
(xj).

From this equation it is clear that the operator F−1
j is linear. Also,

the operators F−1
1 , . . . ,F−1

m satisfy Theorems 4.6.1 and 4.6.2, i.e.,

F−1
j F−1

k = F−1
k F−1

j and F−1 = F−1
ε(1) · · · F−1

ε(m).

We leave the proof of these facts as an exercise.
For each fixed permutation ε, the products Fε(1) · · · Fε(m) and

F−1
ε(1) · · · F−1

ε(m) are called the iterated FT and iterated IFT, respec-
tively.

Exercise.

.27 Prove that Theorems 4.6.1 and 4.6.2 hold if we replace each
Fj and Fε(j) by their inverses F−1

j and F−1
ε(j), respectively.

4.7 Is the Fourier Transform a Self-Adjoint
Operator?

The FT on a finite Abelian group G is self-adjoint if and only
if 〈f̂1, f2〉 = 〈f1, f̂2〉 for all complex-valued functions f1 and f2

defined on G. In terms of the matrix X, the FT is self-adjoint if
and only if X = X t or, equivalently,
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χ̄x(y) = χy(x) (4.14)

for all x, y ∈ G. In general, condition (4.14) does not hold, for it
implies that χx(x) is real for all x ∈ G. However, by Example 3.1.3,
we have χx(y) = χy(x) = (−1)x·y for all x, y ∈ Z

m
2 and hence the

FT is self-adjoint on VZ
m
2
.

Next we show that if the FT is self-adjoint on VZm
n
, then n = 2.

Assume that Z
m
n is nontrivial, i.e., n > 1, and the FT is self-adjoint

on VZm
n
. Condition (4.14) and Example 3.1.2 imply that

e−
2πi
n

x·y = e
2πi
n

x·y

for all x, y ∈ Z
m
n . It follows that 2x · y = 0 (modn) for all x,

y ∈ Z
m
n . In particular, we can choose x and y such that x ·y =

1 (mod n); e.g., x = y = (1, 0, . . . , 0), an m-tuple. In this case we
have 2 ≡ 0 (mod n), whence n = 2. We have proved the following
theorem.

Theorem 4.7.1. Suppose that Z
m
n is a nontrivial group. The FT

on Z
m
n is self-adjoint if and only if n = 2.

Note that this theorem also follows from the spectral theorem,
as we will see in Section 7.3.

Another proof of the fact that the FT, in general, is not self-
adjoint, using the complexity of its eigenvalues, is indicated in
Exercise 41 of Section 7.2.



5

Convolution, Banach Algebras, and the

Uncertainty Principle

There is a bilinear map on VG (i.e., a map from VG×VG to VG which
is linear in each variable) which becomes the pointwise product
of functions under the FT. This map is called the convolution
of functions for the FT. The inner product space VG together
with the convolution form a Banach algebra. The discussion of
convolution and Banach algebras comprises the first two sections
of this chapter. In the final section, we prove that the order of G
does not exceed the product of the cardinalities of the supports
of f and f̂ provided f is nonzero. This result is known as the
uncertainty principle.

5.1 The Convolution Operator

As in the nondiscrete case, there is the notion of convolution which
we now define.

Definition 5.1.1. Suppose that G is a finite Abelian group and f1

and f2 are complex-valued functions defined on G. The convolution
of f1 and f2 is the complex-valued function f1 ∗ f2 defined on G by

f1 ∗ f2(x) =
1√|G|

∑
g∈G

f1(xg−1)f2(g).

operator on VG, i.e., a symmetric bilinear transformation from
VG × VG to VG. This fact will be established by Theorem 5.1.1
after the following lemma.
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We proceed to show that the convolution is a symmetric bilinear
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Lemma 5.1.1. Suppose that G is a finite Abelian group.

(i) For any s, t ∈ G,

Bs ∗ Bt =

{
Bs if s = t,

0 if s �= t.

Consequently, Bs and Bt commute, i.e., Bs ∗ Bt = Bt ∗ Bs.
(ii) (Br ∗ Bs) ∗ Bt = Br ∗ (Bs ∗ Bt) for any r, s, t ∈ G.

Proof. (i) For each x ∈ G,

Bs ∗ Bt(x) =
1√|G|

∑
g ∈G

Bs(xg−1)Bt(g)

= Bs(x)
∑
g∈G

Bs(g
−1)Bt(g)

= Bs(x)
∑
g∈G

B̄s(g)Bt(g)

= Bs(x)〈Bt, Bs〉

=

{
Bs(x) if s = t,

0 if s �= t.

(ii) follows from (i) by noting that

(Br ∗ Bs) ∗ Bt = Br ∗ (Bs ∗ Bt) =

{
Bs if r = s = t,

0 otherwise.

Some properties of the convolution are listed in the following
theorem, most of which are consequences of Lemma 5.1.1.

Theorem 5.1.1. Suppose that G is a finite Abelian group. Set δ =∑
g ∈G Bg and let f , f1, and f2 be complex-valued functions defined

on G. Then

(i) f ∗ (cf1 + f2) = c(f ∗ f1) + (f ∗ f2) for any c ∈ C.
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(ii)

f1 ∗ f2 =
∑
g ∈G

f̂1(g)f̂2(g)Bg.

Consequently,

supp(f̂1) ∩ supp(f̂2) = ∅ if and only if f1 ∗ f2 = 0.

(iii) (f1 ∗ f2)̂ = f̂1f̂2.
(iv) f1 ∗ f2 = f2 ∗ f1 (commutative).
(v) (f ∗ f1) ∗ f2 = f ∗ (f1 ∗ f2) (associative).
(vi) f ∗ δ = f , furthermore, if supp(f̂) = G, then δ is uniquely

determined (existence of identity).
(vii) If supp(f̂) = G, then there is a unique complex-valued func-

tion φ on G such that φ ∗ f = δ (existence of inverse).

Proof. (i) is straightforward from the definition. (ii) follows from
the inversion formula, (i), and Lemma 5.1.1 (i). (iii) follows from
(ii). (iv) follows from (i) and Lemma 5.1.1 (i). (v) follows from (i)
and Lemma 5.1.1 (ii). Both (vi) and (vii) follow from (ii).

It follows from (i) and (iv) of Theorem 5.1.1 that the convo-
lution is a symmetric bilinear operator on VG. Also, by the same
theorem, the set of all functions f : G → C such that supp(f̂) = G
form an Abelian group with respect to the operation of convolu-
tion.

Theorem 5.1.1 (i) also implies that, for a fixed � ∈ VG, the map
C� : VG → VG defined by C�(f) = �∗f is linear, so it is completely
determined once its values on a basis are known.

Definition 5.1.2. Let � be a complex-valued function defined on
G. The convolution operator with respect to � is the linear operator
C� : VG → VG defined on the basis BG by

C�(Bg) = � ∗ Bg.

By (ii) of Theorem 5.1.1 we have

C�(Bg) = �̂(g)Bg. (5.1)

This equation has several consequences, which are listed in the
following theorem.
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Theorem 5.1.2. Suppose that G is a finite Abelian group and � is
a complex-valued function defined on G. Then the following state-
ments are true:

(i) The functions in the character basis BG are eigenvectors of
C�; the eigenvector Bg belongs to the eigenvalue �̂(g).

(ii) The operator C� is normal, that is, C� commutes with its
adjoint C∗

�
.

(iii) The operator Cf̌ is an isometry for every f ∈ VG for which

|f | = 1. In particular, Cχ̌ is an isometry for every χ ∈ Ĝ.

Proof. (i) follows from (5.1). To prove (ii) we enumerate G as
G = {g1, . . . , gη}. Then by (5.1) the matrix of C� with respect to
the character basis is the diagonal matrix

D� = diag
[
�̂(g1), . . . , �̂(gη)

]
.

Hence D� commutes with its adjoint.
(iii) The matrix of Cf̌ with respect to the basis BG is Df̌ =

diag
[
f(g1), . . . , f(gη)

]
. Since |f(gj)| = 1 for j = 1, . . . , η, it follows

that D−1
f̌

= D∗
f̌

or, equivalently, Cf̌ is an isometry.

Besides properties listed in Theorem 5.1.2, the linear operator
C� has another property, namely, it commutes with translations.
That is, τaC� = C�τa for all a ∈ G, where τaC� and C�τa are
compositions of the operators τa and C�. In fact, we will prove
shortly that C� is the only type of linear operator on VG having
this property. Towards this end we recall that, in multiplicative
notation, the translation by a is the operator τa on VG defined
by f �→ τaf , where τaf(g) = f(ga). It is clear that translations
are linear. In the following example, we consider the translation of
functions in the character basis BG.

Example 5.1.1. For a fixed a ∈ G, we have τaBg(x) = Bg(xa) =√|G|Bg(a)Bg(x) for every x in G, whence

τaBg =
√

|G|Bg(a)Bg. (5.2)

Thus functions in the character basis are eigenvectors of the trans-
lation τa, where, according to the previous equation, the eigenvec-
tor Bg belongs to the eigenvalue

√|G|Bg(a). It follows that if G is
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enumerated as G = {g1, . . . , gη}, then with respect to the character
basis the matrix of τa is the diagonal matrix

Da =
√

|G|diag
[
Bg1(a), . . . , Bgη(a)

]
.

Consequently, we have D∗
aDa = DaD

∗
a = I, which is expected since

translations are obviously isometries.

Theorem 5.1.3. Let T be a linear operator on VG. Then T com-
mutes with translations if and only if T = C� for some � ∈ VG.

Proof. In what follows the product Tτa (or τaT ) denotes the com-
position of the operators τa and T . On the other hand, for f in
the domain of T , we use Tf to denote the image of f under T .
There should be no confusion in the context. In situations where
confusion may arise Tf is written as T (f) for clarity.

Assume that T commutes with translations. Let Bg be an ele-
ment of BG. If a is a fixed element of G, then, by Example 5.1.1,
τaBg =

√|G|Bg(a)Bg. By the assumption and the linearity of T ,
we have

τaT (Bg) = T (τaBg) =
√

|G|Bg(a)TBg,

which implies that, for all x ∈ G,

TBg(xa) = τaT (Bg)(x) =
√
|G|Bg(a)TBg(x).

Since xa = ax, by interchanging the role (or position) of a and x
in the expression on the right-hand side of the last equal sign in
the last chain of equations, we also have

TBg(xa) = TBg(ax) =
√

|G|Bg(x)TBg(a).

Hence Bg(a)TBg(x) = Bg(x)TBg(a) or, equivalently,

TBg =

[
TBg(a)

Bg(a)

]
Bg = μgBg

for all g ∈ G. Notice, in the last equation, the constant TBg(a)/
Bg(a) is denoted simply by μg. Observe that μ is a complex-valued
function on G whose value at g is μg. The surjection of the FT
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implies that there is some � ∈ VG such that �̂ = μ. In terms of �,
we have

TBg = �̂(g)Bg.

Comparing this equation with equation (5.1), we may conclude
that T = C� on the basis BG. But since both T and C� are linear,
the equation T = C� holds on the entire space VG.

For the converse, since C� and translation are linear, it is suf-
ficient to show that C� commutes with translations on the basis
BG. If a ∈ G and � ∈ VG, then by (5.1) and (5.2) we have

τaC�(Bg) = τa

(
�̂(g)Bg

)
= �̂(g)τaBg = C�(τaBg) = C�τa(Bg).

This chain of equations shows that C� commutes with translations.

Exercises.

.28 Suppose that f ∈ VG and g ∈ G. Show that
√|G| δg ∗ f =

τg−1f .

.29 Show that
√|G| δa ∗ δb = δab for all a, b ∈ G.

.30 Prove the following:
(i) For the constant 1, we have 1 ∗ B1 = 1. Here B1 =

χ1/
√|G|, where χ1 is the trivial character of G. (The

1 that appears in the subscripts of B1 and χ1 is the
identity of G.) It follows that c∗B1 = c for every c ∈ C.

(ii) δ̂1 = 1/
√|G| = B1.

(iii) Prove that ∑
g ∈G

Bg =
√
|G| δ1.

.31 Given any α and β in VG, there is an f ∈ VG such that f∗α =
β. Furthermore, f is uniquely determined if supp(α̂) = G.

.32 If f ∈ VG and supp(f̂) �= G, then the solutions of the equa-
tion f ∗ϕ = 0, in which ϕ is the unknown (or variable), form
a subspace of VG of dimension |G| − |supp(f̂)|.

.33 For every f, g, h ∈ VG, show that 〈f, g ∗ h〉 = 〈g, f ∗ h〉.
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.34 For f ∈ VG, the maximum value of |f | is denoted by ‖f‖∞,
i.e.,

‖f‖∞ = max
{|f(g)| : g ∈ G

}
,

and the L1-norm of f , denoted by ‖f‖1, is defined by setting

‖f‖1 =
1√|G|

∑
g ∈G

|f(g)|.

Prove the following:
(i) ‖f̂‖∞ ≤ ‖f‖1 and ‖f‖∞ ≤ ‖f̂‖1.
(ii) ‖f1 ∗ f2‖∞ ≤ min

{‖f1‖∞‖f2‖1, ‖f1‖1‖f2‖∞
}

for every
f1, f2 ∈ VG.

(iii) ‖f1 ∗ f2‖1 ≤ ‖f1‖1‖f2‖1 for every f1, f2 ∈ VG.
(iv) For each f ∈ VG, there is a subset Sf of G such that

the following inequality holds:

1√|G|

∣∣∣∣∣∣
∑
s∈Sf

f(s)

∣∣∣∣∣∣ ≥
1

π
‖f‖1.

5.2 Banach Algebra

Let G be a finite Abelian group. As mentioned in Section 2.3,
the inner product space VG is isometric to the complex Euclidean
space C

η, where η = |G|. Thus, VG is a Banach space, that is, a
complete normed linear space. We will show shortly that convolu-
tion provides VG with a multiplication operator, which turns VG

into a Banach algebra. In general, a Banach space Ω is called a
Banach algebra if there is a multiplication defined on Ω such that,
for x, y, z ∈ Ω and c ∈ C, the following four statements hold:

(B1) ‖xy‖ ≤ ‖x‖‖y‖, where ‖ · ‖ denotes the norm on Ω,
(B2) x(yz) = (xy)z (associative),
(B3) x(y + z) = xy + xz, (x + y)z = xz + yz (distributive), and
(B4) (cx)y = x(cy) = c(xy).

Consider Ω = VG, where a multiplication on VG is taken to be
the convolution. Then by Theorem 5.1.1 the multiplication defined
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on VG satisfies properties (B2), (B3), and (B4). To show that con-
volution satisfies (B1), let f1 and f2 be complex-valued functions
defined on G. By the isometric property of the FT,

‖f1 ∗ f2‖2 = ‖f̂1 ∗ f2‖2 = ‖f̂1f̂2‖2 =
∑
g∈G

|f̂1(g)|2 |f̂2(g)|2.

Since it is obvious that∑
g ∈G

|f̂1(g)|2 |f̂2(g)|2 ≤
∑
g ∈G

|f̂1(g)|2
∑
g∈G

|f̂2(g)|2

= ‖f̂1‖2 ‖f̂2‖2

= ‖f1‖2 ‖f2‖2,

we have ‖f1 ∗ f2‖ ≤ ‖f1‖‖f2‖. Hence VG is a commutative Banach
algebra.

Among the linear functionals on VG, that is, the complex-valued
linear functions on VG, the most important are Banach algebra
homomorphisms. These are precisely the linear functionals which
also preserve multiplications; that is, the functions γ : VG → C

such that

γ(cf1 + f2) = cγ(f1) + γ(f2) and γ(f1 ∗ f2) = γ(f1)γ(f2)

for all f1, f2 ∈ VG and c ∈ C. The next theorem relates Banach
algebra homomorphisms and the FT.

Theorem 5.2.1. If γ is a non-identically zero algebra homomor-
phism on VG, then there is a unique x ∈ G such that γ(f) = f̂(x)
for every f ∈ VG. Conversely, for each x ∈ G, the map γ : VG → C

defined by γ(f) = f̂(x) is a non-identically zero algebra homomor-
phism on VG.

Proof. By the linearity of γ, it is sufficient to show that there is a
unique x ∈ G such that

γ(Bg) = B̂g(x) = 〈Bg, Bx〉 (5.3)

for all basis elements Bg.
Assume that γ is an algebra homomorphism on VG that is not

identically zero. We will prove that the following statements hold
for all a, b, g ∈ G:
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(i) There is a unique vγ ∈ VG such that γ(Bg) = 〈Bg, vγ〉.
(ii) δab = cδa ∗ δb, where c =

√|G|.
(iii) cvγ(ab) = cvγ(a)cvγ(b).

Because (iii) implies that cvγ is a character of G, hence vγ is in
the basis BG, from which vγ = Bx for a unique x ∈ G. Then (5.3)
follows from (i).

Proof of (i): Since γ is a linear functional, Theorem 2.2.1 guar-
antees the existence and uniqueness of vγ such that γ(Bg) =
〈Bg, vγ〉 for every g ∈ G.

Proof of (ii): For a, b ∈ G, the equation δab = cδa ∗ δb follows
from the definition of convolution and the definition of δg. (Also,
see Exercise 29 of the previous section.)

Proof of (iii): It follows from (i) and the linearity of γ that

γ̄(δg) = 〈δg, vγ〉 = 〈vγ, δg〉 = vγ(g)

for any g ∈ G. Hence,

cvγ(ab) = cγ̄(δab) = c2γ̄(δa ∗ δb) = cγ̄(δa)cγ̄(δb) = cvγ(a)cvγ(b),

where we used (ii) and the assumption that γ preserves the multi-
plication.

Thus, we proved that there is a unique x ∈ G such that γ(f) =
f̂(x) for every f ∈ VG.

Conversely, for a given x ∈ G, the map γ : VG → C defined
by γ(f) = f̂(x) is obviously linear and not identically zero. Theo-
rem 5.1.1 (iii) implies that γ is an algebra homomorphism.

There are two immediate consequences of Theorem 5.2.1; they
are listed in Corollary 5.2.1 below after we reformulate the norm of
linear functionals in terms of their arguments. By Theorem 2.2.1,
to every linear functional γ on VG there associates a unique
vector vγ ∈ VG such that γ(f) = 〈f, vγ〉 for all f ∈ VG,
furthermore, ‖γ‖ = ‖vγ‖ (see (2.5)). Since, by the Schwarz
inequality,

‖vγ‖ = sup
{ |〈f, vγ〉| : f ∈ VG and ‖f‖ = 1

}
,
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we have

‖γ‖ = sup
{ |γ(f)| : f ∈ VG and ‖f‖ = 1

}
. (5.4)

Equivalently, ‖γ‖ is the smallest number such that the inequality
|γ(f)| ≤ ‖γ‖‖f‖ holds for all f ∈ VG. Thus, γ maps the closed
unit ball, i.e., the set {f ∈ VG : ‖f‖ ≤ 1}, into the closed disc in
C center at 0 and radius ‖γ‖ (a closed disc with radius equal to
zero is a point).

Corollary 5.2.1.

(i) There are as many nonzero algebra homomorphisms on VG as
the number of elements in G.

(ii) The norm of any Banach algebra homomorphism on VG does
not exceed one.

Proof. (i) For each x ∈ G, let γx be an algebra homomorphism
on VG defined by γx(f) = f̂(x). Then by Theorem 5.2.1 the cor-
respondent x ↔ γx is a one-to-one correspondent between G and
the set of all nonzero algebra homomorphisms on VG.

(ii) Let γ be a Banach algebra homomorphism on VG. It is clear
from the definition of the norm of γ that if γ = 0, then ‖γ‖ = 0.
If γ �= 0, then by Theorem 5.2.1 there is an element x in G such
that γ(f) = f̂(x) for all f ∈ VG. It follows from this equation and
(5.4) that

‖γ‖ = sup
{ |γ(f)| : ‖f‖ = 1

}
= sup

{ |f̂(x)| : ‖f‖ = 1
}

= sup
{ |〈f, Bx〉| : ‖f‖ = 1

}
(by (c3) of Theorem 2.3.1)

≤ sup
{ ‖f‖ ‖Bx‖ : ‖f‖ = 1

}
(the Schwarz inequality)

= 1 (since ‖f‖ = ‖Bx‖ = 1).

5.3 The Uncertainty Principle

In physics, the Heisenberg uncertainty principle states that it
is impossible to measure a particle’s position and momentum
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simultaneously. An equivalent statement in analysis says that it
is impossible to localize both a function and its Fourier transform
simultaneously. We describe an equivalent version of the uncer-
tainty principle for functions defined on finite Abelian groups.

Recall that the support of a complex-valued function f defined
on G is the set

supp(f) =
{

g ∈ G : f(g) �= 0
}
.

Theorem 5.3.1 (The uncertainty principle). Let G be a finite
Abelian group and let f be a complex-valued function defined on
G. If f is not identically zero, then

|G| ≤ |supp(f)||supp(f̂)|.

Furthermore, if equality holds, then f is a constant on its support.
Conversely, if f is a constant, then equality holds.

Proof. In this proof, we will have occasion to use the maximum
value of |f |, that is, ‖f‖∞. It is convenient to recall its definition
(given in Exercise 34 at the end of Section 5.1) here:

‖f‖∞ = max
{ |f(g)| : g ∈ G

}
.

Since for each x ∈ G, by the inversion formula,

f(x) =
∑
g∈G

f̂(g)Bg(x),

and since |Bg(x)| = 1/
√|G|, by the triangle inequality, we have

|f(x)| ≤ 1√|G|
∑
g∈G

|f̂(g)| =
1√|G|

〈|f̂ |, 1supp(f̂)

〉
,

where 1supp(f̂) is the characteristic function of the set supp(f̂).
By the Schwarz inequality,

|f(x)| ≤ 1√|G|‖f̂‖
√

|supp(f̂)|,
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whence

‖f‖∞ ≤ 1√|G|‖f̂‖
√
|supp(f̂)| =

1√|G|‖f‖
√
|supp(f̂)|

or, equivalently,

‖f‖2
∞|G| ≤ ‖f‖2|supp(f̂)|.

Since
‖f‖2 =

∑
g ∈G

|f(g)|2 ≤ ‖f‖2
∞|supp(f)|,

we have

‖f‖2
∞|G| ≤ ‖f‖2|supp(f̂)| ≤ ‖f‖2

∞|supp(f)||supp(f̂)|. (5.5)

If f is not identically zero, then ‖f‖∞ �= 0, whence |G| ≤
|supp(f)||supp(f̂)|.

If f is a nonzero constant function, then |supp(f)| = |G|.
By Theorem 4.1.1, f̂ is supported only at the identity of G, thus
|supp(f̂)| = 1. It is clear that |G| = |supp(f)||supp(f̂)|. Con-
versely, if |G| = |supp(f)||supp(f̂)|, then

(i) |supp(f)| > 0, i.e., ‖f‖∞ �= 0,
(ii) |supp(f̂)| > 0, and
(iii) inequalities in (5.5) become equalities.

It follows that ‖f‖2 = ‖f‖2
∞|supp(f)|, whence f is a constant on

its support.

It follows from the uncertainty principle that the supports of f
and f̂ cannot both be small. That is, f and f̂ cannot be localized
to arbitrarily small subsets of G simultaneously.

Example 5.3.1. For g ∈ G, the function δg is supported only at g,
i.e., |supp(δg)| = 1. According to the uncertainty principle, the FT
of δg vanishes nowhere on G. On the other hand, if f is a constant

function, then f̂ is zero everywhere except at one point and, by
Theorem 4.1.1, that point is the identity 1.
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Corollary 5.3.1. If f : Zn → C is a periodic function with period
σ and f(k) �= 0 for some k ∈ Zn, then

|supp(f)| ≥ n

σ
.

Proof. The corollary follows from the uncertainty principle and
Theorem 4.2.2.



6

A Reduction Theorem

By the Fundamental Theorem of Finite Abelian Groups, every
finite Abelian group is a direct product of cyclic groups. We will
show that the FT on a given finite Abelian group is the ten-
sor product of the FT on the cyclic groups in its direct prod-
uct decomposition. Thus, to understand the FT on finite Abelian
groups, it suffices to investigate the FT on cyclic groups. This
approach to reduction of the FT is to show that a similar reduc-
tion (or decomposition) holds for vector spaces of complex-valued
functions on finite Abelian groups.

6.1 The Tensor Decomposition of Vector Spaces

Suppose that G is a finite Abelian group and VG is the vector
space associated with G. Then we can decompose VG as a tensor

G into smaller groups. To be precise, let A and B be finite Abelian
groups and denote, in general, the characters of A by χ and those
of B by μ. By Theorem 3.1.3 we have

Â × B = Â ⊗ B̂ =
{

χa ⊗ μb | a ∈ A, b ∈ B }
.

Here we recall from (3.1) that χa ⊗μb is the complex-valued func-
tion on A×B defined by

χa ⊗ μb(x, y) = χa(x)μb(y),

©  Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009

81B. Luong, Fourier Analysis on Finite Abelian Groups, Applied and 

product of smaller vector spaces according to the decomposition of

Numerical Harmonic Analysis, DOI 10.1007/978-0-8176-4916-6_6,



82 6 A Reduction Theorem

where x ∈ A and y ∈ B. We extend this definition in an obvious
way to include the tensor product of scalar multiples of characters.
That is, if c is a complex number, then the tensor product of cχa

and μb is the function cχa ⊗ μb : A× B → C defined by

cχa ⊗ μb(x, y) = cχa(x)μb(y). (6.1)

Since cχa(x) = c(χa(x)), we have

cχa ⊗ μb(x, y) = cχa(x)μb(y) = χa(x)cμb(y) = χa ⊗ cμb(x, y),

whence
c(χa ⊗ μb) = cχa ⊗ μb = χa ⊗ cμb. (6.2)

In particular, when c = 0 we have 0(χa⊗μb) = χa⊗0 = 0⊗μb = 0.
Recall the definition of the set BA×B from (3.6) that

BA×B =
1√|A||B|Â × B =

{
1√|A||B|χa ⊗ μb | a ∈ A, b ∈ B

}
.

Now, equation (6.2) allows us to write

1√|A||B|χa ⊗ μb =
1√|A|χa ⊗ 1√|B|μb = Ba ⊗ Bb,

so that

BA×B =
{

Ba ⊗ Bb | a ∈ A, b ∈ B }
= BA ⊗ BB.

The set BA ⊗ BB is a basis for the vector space which we
will define shortly. In preparation for the mentioned definition, we
introduce the following term: a linear combination of the elements
of Â ⊗ B̂ is a sum of the form∑

a, b

cabχa ⊗ μb,

where the sum is taken over all a ∈ A, b ∈ B, and {cab | a ∈
A and b ∈ B} is some set of complex constants. The set of all
linear combinations of elements of Â ⊗ B̂ over C is a vector space
with respect to the pointwise addition and scalar multiplication
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defined on page 27. This vector space, denoted by VA ⊗ VB, is
called the tensor product of VA and VB. From this definition we
see that Â ⊗ B̂ or, equivalently, BA ⊗ BB is a basis for VA ⊗ VB.

On the other hand, BA ⊗BB = BA×B is a basis for VA×B. Thus
the vector spaces VA×B and VA ⊗ VB have the same basis; hence
they are equal. We record this result as a theorem.

Theorem 6.1.1. If A and B are finite Abelian groups, then
VA×B = VA ⊗ VB.

Warning. BA ⊗ BB is a set, not a vector space; an element in
BA ⊗ BB equals the tensor product of an element in BA and an
element in BB. This is not true, in general, for elements in the
vector space VA⊗VB. An element in VA⊗VB is a linear combination
of vectors in the basis BA ⊗ BB.

Although none of the sets BA, BB, and BA ⊗ BB is a vector
space, we call the set BA ⊗ BB the tensor product of BA and BB.
With this terminology, the character basis of a tensor product of
(a finite number of) vector spaces is the tensor product of the
character bases of each factor space. The basis BA ⊗ BB is called
the character basis for VA ⊗ VB.

Finally, it follows from the pointwise definition of addition and
scalar multiplication for functions 1 that the defining equation (6.1)
implies that the tensor product is a bilinear mapping from VA×VB
to VA⊗VB. To prove this, we note that by (6.2), it suffices to show
that the equations

(Ba + Bα) ⊗ Bb = Ba ⊗ Bb + Bα ⊗ Bb

Ba ⊗ (Bb + Bβ) = Ba ⊗ Bb + Ba ⊗ Bβ

hold for all Ba, Bα ∈ BA and Bb, Bβ ∈ BB. Since proofs for these
two equations are similar, we prove only the latter equation by
showing that the functions on both sides of the equality are equal
at an arbitrary point (x, y) ∈ A× B. For (x, y) ∈ A× B, we have

Ba ⊗ (Bb + Bβ)(x, y) = Ba(x)(Bb + Bβ)(y)

= Ba(x)[Bb(y) + Bβ(y)]

= Ba(x)Bb(y) + Ba(x)Bβ(y)

1 Defined on page 27.
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= Ba ⊗ Bb(x, y) + Ba ⊗ Bβ(x, y)

= (Ba ⊗ Bb + Ba ⊗ Bβ)(x, y).

Consequently, if fα ∈ VA and fb ∈ VB, then fα ⊗ fb(x, y) =
fa(x)fb(y) for all (x, y) ∈ A× B.

We conclude this section by a note on the notation: we recall
that

BA×B = {Ba ⊗ Bb | a ∈ A, b ∈ B}.
It follows also from the notation convention after Theorem 3.2.2
that

BA×B = {B(a, b) | a ∈ A, b ∈ B}.
Thus, for each pair (a, b), B(a, b) = Bα ⊗ Bβ for some α ∈ A and
β ∈ B. We choose the notation for the indices so that

B(a, b) = Ba ⊗ Bb. (6.3)

In fact, we have used this indexing convention in (a special case)
Example 3.1.2.

6.2 The Tensor Decomposition of the Fourier
Transform

If A and B are finite Abelian groups, then it follows from (6.3)
and the definition of the FT that the following chain of equations
holds:

(Ba ⊗ Bb)̂ = B̂(a, b) = δ(a, b).

Since δ(a, b) =δa⊗δb (Exercise 36) and B̂x =δx, we have (Ba⊗Bb)̂ =

B̂a ⊗ B̂b; that is, FA×B = FA ⊗ FB on the basis BA×B, where FG

is the FT on G and

FA ⊗FB(Ba ⊗ Bb) = FA(Ba) ⊗ FB(Bb) = B̂a ⊗ B̂b.

The linearity and bilinearity properties of the FT and the tensor
product, respectively, imply that FA×B = FA ⊗ FB on the entire
space VA×B.
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Theorem 6.2.1. If A and B are finite Abelian groups, then
FA×B = FA ⊗ FB. Consequently, (fa ⊗ fb)̂ = f̂a ⊗ f̂b for every
fa ∈ VA and fb ∈ VB.

It follows from this theorem that the inner product in VA ⊗ VB
when restricted to the subset {α ⊗ β | α ∈ VA, β ∈ VB} equals
the product of the inner products on factor spaces. A more precise
statement of this is given in the following corollary.

Corollary 6.2.1. Suppose that A and B are finite Abelian groups.
The following relations hold for any α, α′ ∈ VA and β, β ′ ∈ VB:

(i) 〈α ⊗ β, α′ ⊗ β ′〉 = 〈α, α′〉〈β, β ′〉;
(ii) ‖α ⊗ β‖ = ‖α‖‖β‖;
(iii) (α ⊗ β)∗ = α∗ ⊗ β∗; consequently, by Theorem 6.1.1,

(VA ⊗ VB)∗ = V ∗
A ⊗ V ∗

B .

Proof. It is clear that (ii) and (iii) are consequences of (i), so we
prove (i) only. Since the inner product and the tensor product are
both bilinear, it suffices to prove the theorem for basis elements
only. Recall that the sets

{Ba | a ∈A}, {Bb | b ∈B}, and {B(a, b) = Ba⊗Bb | a ∈A, b ∈B}

are bases of VA, VB, and VA ⊗ VB, respectively. For a, a′ ∈ A and
b, b′ ∈ B, we have

〈Ba ⊗ Bb, Ba′ ⊗ Bb′〉
= 〈Ba ⊗ Bb, B(a′, b′)〉
= (Ba ⊗ Bb)̂ (a

′, b′) (by (c3) of Theorem 2.3.1)

= B̂a ⊗ B̂b(a
′, b′) (by Theorem 6.2.1)

= B̂a(a
′)B̂b(b

′)

= 〈Ba, Ba′〉〈Bb, Bb′〉.

The proof is complete.
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Another consequence of Theorem 6.2.1 is that the matrix of the
FT can be decomposed into a tensor product of smaller matrices.
This is made precise in the following corollary, the proof of which
is left as an exercise.

Corollary 6.2.2. Let A and B be finite Abelian groups. Assume
that

(i) MA is the matrix of the FT on A,
(ii) MB is the matrix of the FT on B,
(iii) MA×B is the matrix of the FT on A× B,

and these matrices are formed with respect to the standard bases for
each of the corresponding vector spaces.2 Then we have MA×B =
MA ⊗ MB.

Note. If MA = (mst)p×p′ and MB has dimension q × q′, then
MA ⊗ MB = (mstMB)pq×p′q′. The tensor product of matrices is
also called the Kronecker product .

Example 6.2.1. Consider the group Z2. By Example 3.1.3, it is easy
to verify that

MZ2 =
1√
2

(
1 1
1 −1

)
.

Hence, by Corollary 6.2.2, we have MZ
m
2

= MZ2 ⊗ · · · ⊗ MZ2 (m
factors).

Theorem 6.2.1 also implies a formula known as the Poisson
summation formula.

Theorem 6.2.2 (The Poisson summation formula). If A and
B are finite Abelian groups and f is a complex-valued function
defined on A× B, then the following formula holds:

1√|A|
∑
a∈A

f(a, 1) =
1√|B|

∑
b∈B

f̂(1, b).

2 First, enumerate A and B by writing A = {as | s = 1, . . . , m} and B = {bt |
t = 1, . . . , n}. Next, we write δs for δas and δ(s, t) for δ(as, bt). The standard bases
for the vector spaces VA, VB, and VA×B, respectively, are {δs | s = 1, . . . , m},
{δt | t = 1, . . . , m}, and {δ(s, t) | s = 1, . . . , m , t = 1, . . . , m}, where the latter
basis is ordered with the lexicographical ordering.
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Proof. Since VA×B = VA ⊗ VB and the set BA ⊗ BB = {Ba ⊗ Bb |
a ∈ A, b ∈ B} is a basis for VA⊗VB, it follows that any f ∈ VA×B
is a linear combination of elements in BA ⊗ BB; i.e.,

f =
∑
s, t

cstBs ⊗ Bt

for some set of constants {cst}, where the sum is taken over all
s ∈ A, t ∈ B. For a ∈ A, the evaluation of f at (a, 1) gives

f(a, 1) =
∑
s, b

csbBs ⊗ Bb(a, 1)

=
∑
s, b

csbBs(a)Bb(1)

=
1√|A||B|

∑
s, b

csbχs(a),

where b ∈ B. Hence, by Corollary 3.2.1 we have

1√|A|
∑
a∈A

f(a, 1) =
1

|A|√|B|
∑
s, b

csb

∑
a∈A

χs(a)

=
1√|B|

∑
b∈B

c1b

=
1√|B|

∑
b∈B

∑
s, t

cstδs(1)δt(b)

=
1√|B|

∑
b∈B

∑
s, t

cstδs ⊗ δt(1, b)

=
1√|B|

∑
b∈B

∑
s, t

cstB̂s ⊗ B̂t(1, b)

=
1√|B|

∑
b∈B

f̂(1, b).

If A and B are subgroups of a finite Abelian group G and
G = AB = {ab | a ∈ A, b ∈ B} is the internal direct product of A
and B, and if f ∈ VG, then the Poisson formula has the form
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1√|A|
∑
a∈A

f(a) =
1√|B|

∑
b∈B

f̂(b).

This formula equates a sum over a set A with a sum over a set B,
which may be useful if one of these sets is small and the other is
large.

Exercises.

.35 Show that the FT is not self-adjoint on the space V
Z

k
2
⊗VZm

n
,

where n > 2.

.36 Suppose that A and B are finite Abelian groups and that
G = A × B. Prove that δ(a, b) = δa ⊗ δb, where a ∈ A and
b ∈ B.

.37 Prove Corollary 6.2.2.

.38 Suppose that A and B are finite Abelian groups. Prove that
the formula

1√|A|
∑
a∈A

f̂(a, 1) =
1√|B|

∑
b∈B

f(1, b)

holds for every complex-valued function f defined on A×B.

6.3 The Fourier Transform and Isometries

Suppose that h : G1 → G2 is an isomorphism of finite Abelian
groups. First, we show that VG2 � VG1 as follows: By Theo-
rem 3.1.2, Ĝ2

∼= Ĝ1, moreover, this isomorphism is given by h�,
the pullback by h of complex-valued functions on G2. Since Ĝj is
a basis for VGj

, j = 1, 2, the linear extension of h� to VG2, also
denoted by h�, is a one-to-one mapping from VG2 onto VG1 . To see
that h� preserves the inner product, let f2 and f ′

2 be elements of
VG2 . We have

〈h�f2, h
�f ′

2〉 =
∑

g1 ∈G1

h�f2(g1)h�f ′
2(g1)

=
∑

g1 ∈G1

f2(h(g1))f̄
′
2(h(g1))
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=
∑

g2 ∈G2

f2(g2)f̄ ′
2(g2)

= 〈f2, f
′
2〉.

Theorem 6.3.1. Isomorphic finite Abelian groups induce isomet-
ric associated finite-dimensional inner product spaces. Further-
more, if G1 and G2 are finite Abelian groups, then

G1

h∼= G2 ⇒ VG2

h�

� VG1 ,

where h� is the pullback by h.

Second, we show that the FT and h� commute, that is, the
following diagram is commutative:

VG2

h�−−−→ VG1⏐̂⏐+ ⏐⏐+̂
VG2

h�−−−→ VG1

(6.4)

Since h� and the FT are linear, it suffices to show that these two
operators commute on the basis BG2 of the vector space VG2 . If x ∈
G2, then, by (3.8),

(h�Bx)̂ =
∑

g ∈G1

〈h�Bx, Bg〉δg

=
∑

g ∈G1

〈Bh−1(x), Bg〉δg = δh−1(x) = h�δx = h�B̂x.

Thus we have proved the following theorem.

Theorem 6.3.2. If G1 and G2 are isomorphic finite Abelian groups,
then the diagram (6.4) is commutative.

6.4 Reduction to Finite Cyclic Groups

Suppose that G is a finite Abelian group. By the Fundamental
Theorem of Finite Abelian Groups, there are positive integers
n1, . . . , nm and an isomorphism h such that



90 6 A Reduction Theorem

Zn1 × · · · × Znm

h∼= G.

The vector spaces associated with these groups are related as
follows:

VG
h�

� VZn1×···×Znm
= VZn1

⊗ · · · ⊗ VZnm
,

where the isometry h� is given by Theorem 6.3.1 and the equality
is guaranteed by Theorem 6.1.1. By Theorem 6.3.2, the following
diagram is commutative:

VG
h�−−−→ VZn1

⊗ · · · ⊗ VZnm⏐̂⏐+ ⏐⏐+̂
VG

h�−−−→ VZn1
⊗ · · · ⊗ VZnm

.

Consequently, (
h�f

)̂
= h�f̂ (6.5)

for all f ∈ VG. For a given f ∈ VG, we have

h�f =
∑

k1,...,km

c(k1, . . . , km)Bk1 ⊗ · · · ⊗ Bkm , (6.6)

where, for each j = 1, . . . , m, kj runs over Znj
, Bkj

is an element of
the character basis for VZnj

, and c(k1, . . . , km) is a constant. It fol-

lows from (6.5), (6.6), Theorem 6.2.1, and the identity B̂kj
= δkj

that
h�f̂ =

∑
k1,...,km

c(k1, . . . , km)δk1 ⊗ · · · ⊗ δkm .

Thus

f̂ =
∑

k1,...,km

c(k1, . . . , km)(h�)−1(δk1 ⊗ · · · ⊗ δkm),

where the inverse of h� is the pullback by h−1, i.e., (h�)−1 = (h−1)�.
This result is concluded in the following theorem.

Theorem 6.4.1. The FT is completely determined, up to an iso-
metry, by the transforms on VZn (for some positive values of n).
Furthermore, the isometry is the pullback by the isomorphism of
groups given by the fundamental theorem of finite Abelian groups.
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A note about the FT on G, where G is a finite non-Abelian
group: let n be an integer greater than 2 and consider the dihedral
group Dn, which is defined at the end of Section 1.1 of Chapter 1
as

Dn =
{

asbt | s = 0, 1, 0 ≤ t < n, a2 = bn = 1, ab = b−1a
}
.

Suppose that χ is a character of Dn. Then

(i) χ(a)2 = χ(a2) = χ(1) = 1. Thus, χ(a) = ±1.
(ii) From the relation ab = b−1a we have

χ(a)χ(b) = χ(ab) = χ(b−1a) = χ(b−1)χ(a) = χ(b)−1χ(a),

whence χ(b)2 = 1 or χ(b) = ±1. Hence, χ(b) can have at most
two values, namely, ±1.

Since elements of Dn are of the form asbt and χ(asbt) = χ(a)sχ(b)t,
the character χ is uniquely determined once the values of χ(a)
and χ(b) are given. From (i) there are two choices for χ(a) and
from (ii) there are at most two choices for χ(b), thus there are at
most four possible choices for the pairs χ(a) and χ(b). It follows
that there are at most four possible characters of Dn, therefore
|D̂n| ≤ 4 < |Dn|. In particular, if n = 3, then χ(b)3 = 1, which
implies that χ(b) = 1. The smallest non-Abelian group D3 has six
elements whereas its character group D̂3 has only two elements.
This shows that any generalization of the FT to finite non-Abelian
groups must be more subtle than that for finite Abelian groups.
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Eigenvalues and Eigenvectors of the

Fourier Transform

Having reduced the general theory of the FT on finite Abelian
groups to the theory of the FT on finite cyclic groups, it suffices

n for an
arbitrary value of n, where n > 1. Our next goals are the following:

• Determine the form of eigenvectors of the FT (Section 7.2).
• Find the spectral decomposition of the FT on Zn or, equiva-

lently, the decomposition of the space VZn as a direct sum of its
invariant subspaces (Section 7.3).

• Determine the multiplicity of the eigenvalues of the FT (Sec-
tion 7.5).

We will use symmetric and antisymmetric functions on Zn to
achieve these goals.

A function F : Zn → C is called symmetric if F (−x) = F (x) and
antisymmetric if F (−x) = −F (x), where −x is the inverse of x
in Zn. By this definition, it is necessary that F (0) = 0 for every
antisymmetric function F . Note that since x = −x for x ∈ Z2

every function in VZ2 is symmetric.
Symmetric and antisymmetric functions defined on Zn are simi-

lar to even and odd real-valued functions defined on the interval
[−c, c] (or on R), where c ∈ R and c > 0. For n = 2k + 1, an odd
positive integer, we can consider Zn = {−k, . . . , 0, . . . , k}. Then

to study the FT of functions defined on the cyclic group Z
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symmetric functions have equal values when their arguments are
symmetric about zero.

Geometrically, the values of an antisymmetric function defined
on Zn are symmetric about the origin in the complex plane C,
while its nonzero arguments (i.e., x �= 0) are “symmetric about
the point n/2.”

A linear combination of a finite number of symmetric functions
is a symmetric function; that is, if f1, . . . , fk are symmetric func-
tions, then the sum c1f1+ · · ·+ckfk is symmetric for any constants
c1, . . . , ck. Thus, symmetric functions on Zn form a subspace of the
vector space VZn. Similarly, antisymmetric functions on Zn form a
subspace of VZn . In general, without indication of the dependency
on n, we denote the vector spaces of symmetric and antisymmetric
functions by Vs and Va, respectively.

Suppose that f is a complex-valued function on Zn. We define
two functions f s and fa on Zn in terms of f by setting

f s(x) =
f(x) + f(−x)

2
and fa(x) =

f(x) − f(−x)

2
.

Then it is clear that f s is symmetric, fa is antisymmetric, and
f = f s + fa. Thus, we have decomposed f into a sum of sym-
metric and antisymmetric functions. Further, this decomposition
is unique (Exercise 39). It follows that the vector space VZn equals
the direct sum of the vector spaces of symmetric and antisymmet-
ric functions, that is, VZn = Vs ⊕ Va.

The functions f s and fa are called the symmetric and antisym-
metric parts of f , respectively.

Next, we show that Vs and Va are invariant subspaces of the
FT; that is, V̂s ⊂ Vs and V̂a ⊂ Va, whereV̂s = {f̂ | f ∈ Vs} and

similarly for V̂a.
1

Theorem 7.1.1. A function f : Zn → C is symmetric (resp.
antisymmetric) if and only if f̂ is symmetric (resp. antisymmetric).

1 A note on notation: when V is a vector space of complex-valued functions, we use
the notation �V to denote the set {f̂ | f ∈ V }. This notation is not to be confused
with the character group of V . Being a vector space, V is not a finite set; on
the other hand, except for the definition of characters, we consider the character
groups only for finite groups. Thus, there should be no confusion.
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Proof. Since

f̂(−x) =
1√
n

∑
y ∈Zn

e−
2πi
n

x(−y)f(y) =
1√
n

∑
z ∈Zn

e−
2πi
n

xzf(−z),

where z = −y, we have

f̂(−x) =

{
f̂(x) if f is symmetric,

−f̂(x) if f is antisymmetric.

That is, the FT of symmetric (resp. antisymmetric) functions are
symmetric (resp. antisymmetric).

The converse follows from the equation
ˆ̂
f(x) = f(−x), which

was proved earlier in Theorem 4.1.2.

Since the FT is an isometry, we have V̂s = Vs and V̂a = Va;
therefore, V̂Zn = V̂s ⊕ V̂a.

In the remainder of this section, we show that the dimension
of Vs is �n/2� + 1, where, for a real number x, �x� denotes the
greatest integer less than or equal to x. Since the dimension of
VZn equals n, it follows that the dimension of Va equals �n/2�− 1,
where, for a real number x, �x� denotes the least integer greater
than or equal to x. That is,

dim Vs = �n/2� + 1,

dim Va = �n/2� − 1.
(7.1)

We prove the first equation in (7.1) by constructing an explicit
basis for Vs. To make preparation for a proof we decompose each
function Bj in the character basis BZn = {Bj | j ∈ Zn} for the
space VZn into a unique sum of symmetric and antisymmetric func-
tions as

Bj(x) =
Bj(x) + Bj(−x)

2
+

Bj(x) − Bj(−x)

2
,

where x ∈ Zn. Since Bj(−x) = B−j(x), the previous equation
becomes

Bj(x) =
Bj(x) + B−j(x)

2
+

Bj(x) − B−j(x)

2
.
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Similarly, we have

B−j(x) =
Bj(x) + B−j(x)

2
− Bj(x) − B−j(x)

2
.

Notice the functions Bj and B−j have the same symmetric parts.
Thus, among the symmetric parts of the functions Bj, for j =
0, . . . , n−1, there are at most �n/2�+1 distinct functions, namely,
(Bj + B−j)/2 for j = 0, . . . , �n/2�. In fact, these functions are
pairwise distinct. The truth of the last sentence is settled once we
prove our objective that the set

S =

{
Bj + B−j

2

∣∣∣ j = 0, . . . , �n/2�
}

is an orthogonal basis for Vs (hence dim Vs = �n/2�+1). We prove
this in two steps:

(i) The functions in S are pairwise orthogonal (hence they are
linearly independent); i.e., for each fixed pair of indices j and
k, the number 〈Bj + B−j , Bk + B−k〉 is zero if j �= k, and is
nonzero if j = k.

(ii) The set S spans Vs, i.e., every symmetric function on Zn can
be written as a linear combination of functions in S.

The two equations

〈Bp, Bq〉 =

{
1 if p = q,

0 if p �= q,

for all p, q ∈ Zn, and

〈Bj + B−j , Bk + B−k〉
= 〈Bj , Bk〉 + 〈Bj, B−k〉 + 〈B−j, Bk〉 + 〈B−j , B−k〉

imply (i). To prove (ii) we note that any f ∈ VZn can be expressed
uniquely as a linear combination of elements in the basis {Bj | j ∈
Zn} as

f =
∑
j ∈Zn

〈f, Bj〉Bj.
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The decomposition Bj = Bs
j + Ba

j , where

Bs
j =

Bj + B−j

2
and Ba

j =
Bj − B−j

2

are the symmetric and antisymmetric parts of Bj , respectively,
leads to

f =
∑

j ∈Zn

〈f, Bj〉Bs
j +

∑
j ∈Zn

〈f, Bj〉Ba
j .

If f is symmetric, then the antisymmetric part of f is zero, i.e.,∑
j ∈Zn

〈f, Bj〉Ba
j = 0,

whence
f =

∑
j ∈Zn

〈f, Bj〉Bs
j . (7.2)

Since f is an arbitrary element of Vs and, for j > �n/2�, Bs
j is one

of the functions in S, equation (7.2) shows that S spans Vs.
To obtain an orthonormal basis for Vs, we normalize the

orthogonal basis S. If

εj =

{
2 if j = 0 or if n is even and j = n/2,√

2 otherwise,

i.e., εj is the norm of the function Bj + B−j , then the set

Bsym =

{
Bj + B−j

εj

∣∣∣ j = 0, . . . , �n/2�
}

(7.3)

obtained from S by scaling its elements, the jth element by the
factor 2/εj , is an orthonormal basis for Vs. Thus (7.1) is proved.

Similarly, the set

Bantisym =

{
Bj − B−j√

2

∣∣∣ j = 1, . . . , �n/2� − 1

}

is an orthonormal basis of the vector space Va of antisymmetric
functions on Zn for n > 2.
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Since the FT preserves the norm of vectors and is invariant on
Vs and Va, it follows from the definition of the FT that the sets

Δsym =

{
δj + δ−j

εj

∣∣∣ j = 0, . . . , �n/2�
}

and

Δantisym =

{
δj − δ−j√

2

∣∣∣ j = 1, . . . , �n/2� − 1

}
are also orthonormal bases of the vector spaces Vs and Va of sym-
metric and antisymmetric functions on Zn, respectively. We note
that the sets (i.e., bases) Bantisym and Δantisym make sense only
when n > 2, for otherwise, i.e., if n = 2, they are empty since
there are no antisymmetric functions on Z2.

Remark. Since Bj(k) = 1√
n
e

2πi
n

jk for j, k ∈ Zn, we have

Bj(k) + B−j(k)

2
=

1√
n

cos

(
2π

n
jk

)

and

Bj(k) − B−j(k)

2
=

1√
n

i sin

(
2π

n
jk

)
.

Exercises.

.39 Suppose that n > 2 and f ∈ VZn . Show that the decomposi-
tion f = f s + fa is unique.

.40 Suppose that n > 2 and f ∈ VZn . Show that f is symmetric
(resp. antisymmetric) if and only if f̌ is symmetric (resp.
antisymmetric).

7.2 Eigenvalues and Eigenvectors

As a linear operator on finite-dimensional vector spaces over the
field of complex numbers, which is algebraically closed, the FT
has eigenvalues and eigenvectors. The purpose of this section is to
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determine the form of its eigenvectors and to show that the set of
eigenvalues of the FT on Zn is {±1} if n = 2, and is U4 = {±1,±i},
the set of the 4th roots of unity, if n > 2.

It follows from Theorem 4.1.2 that the FT composed with itself
four times is the identity operator on VZn, that is, F4 = FFFF =
I. Thus, if λ is an eigenvalue of the FT and f is a corresponding
eigenvector (hence, f is not identically zero), then f = F4(f) =
λ4f . Hence, we have λ4 = 1. Therefore, the set of eigenvalues of
the FT is a subset of the set of 4th roots of unity.

If n = 2, then x = −x for every x ∈ Z2. It follows that the FT
composed with itself once is the identity operator on VZ2, that is,
F2 = I.

Theorem 7.2.1. Suppose that f is a complex-valued function
defined on Zn. Then

(i) f is symmetric if and only if
ˆ̂
f = f ;

(ii) f is antisymmetric if and only if
ˆ̂
f = −f ;

(iii) f is a non-identically zero symmetric function if and only
if f̂ ± f is an eigenvector of the FT corresponding to the
eigenvalue ±1, respectively;

(iv) f is a non-identically zero antisymmetric function if and only
if f̂ ± if is an eigenvector of the FT corresponding to the
eigenvalue ±i, respectively.

Proof. Statements (i) and (ii) follow directly from Theorem 4.1.2.
Statements (iii) and (iv) have similar proofs, and as an illustration
we prove only part of (iv). If f is a non-identically zero antisym-
metric function, then by (ii) the function f̂ + if is an eigenvector
of the FT corresponding to the eigenvalue i. Conversely, if f̂ + if
is an eigenvector of the FT corresponding to the eigenvalue i, then
f is not identically zero (since f̂ + if is not identically zero) and

i(f̂ + if) = (f̂ + if )̂ =
ˆ̂
f + if̂ ,

whence −f =
ˆ̂
f . Hence, by (ii), f is antisymmetric.

Corollary 7.2.1. The set of eigenvalues of the FT on Zn is
{1,−1} if n = 2 and is {1,−1, i,−i} if n > 2.
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In general, if a function defined on Zn is an eigenvector of the
FT, then it is either symmetric or antisymmetric. This fact is a
consequence of the following theorem.

Theorem 7.2.2. Suppose that a complex-valued function f defined
on Zn is an eigenvector of the FT corresponding to the eigenvalue
λ. Then

(i) f is symmetric if and only if λ = ±1,
(ii) f is antisymmetric if and only if λ = ±i.

Proof. Assume that f is an eigenvector of the FT corresponding
to the eigenvalue λ. Then (i) and (ii) follow from the equations

f(−x) =
ˆ̂
f(x) = λ2f(x).

The following theorem states that eigenvectors of the FT must
have either the form α̂±α for some symmetric function α or β̂±iβ
for some antisymmetric function β.

Theorem 7.2.3. Suppose that f is a complex-valued function
defined on Zn. Then the following statements are true:

(i) f is an eigenvector of the FT corresponding to the eigenvalue
±1 if and only if f = α̂ ± α, respectively, for some non-
identically zero symmetric function α.

(ii) f is an eigenvector of the FT corresponding to the eigenvalue
±i if and only if f = β̂ ± iβ, respectively, for some non-
identically zero antisymmetric function β.

Proof. Suppose that f is an eigenvector of the FT corresponding
to the eigenvalue λ.

(i) If λ = ±1, then, according to Theorem 7.2.2, f is symmetric.
Thus the function α defined by

α =

{
f/2 if λ = 1,

−f/2 if λ = −1,

is non-identically zero and symmetric. It is clear that

f =

{
α̂ + α if λ = 1,

α̂ − α if λ = −1.

The converse follows from (iii) of Theorem 7.2.1.
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(ii) Similar to the proof of (i) given above with

β =

{
−if/2 if λ = i,

if/2 if λ = −i.

Since symmetric and antisymmetric functions on Zn are easy to
construct, by Theorem 7.2.3, we can construct eigenvectors corres-
ponding to any given eigenvalue λ ∈ {±1,±i}. For later purposes,
we present familiar functions in number theory that serve as eigen-
vectors with eigenvalue 1 or −i. First, we define a special kind of
summation.

Definition 7.2.1. For each positive integer n, the quadratic
Gaussian sum of order n is the function Gn : Z → C defined by
the equation

Gn(x) =
1√
n

∑
k ∈Zn

e−
2πi
n

xk2

.

It follows from this definition that

(i) G1(x) = 1 for all x ∈ Z,
(ii) for n > 1, Gn(x) =

√
n if x is a multiple of n, and

(iii) Gn(x) = Gn(x+mn) for any integer m. In fact, Gn has period
n (Exercise 45). Thus Gn is completely determined once its
values on the fundamental set {0, 1, . . . , n − 1} are known.

We rephrase Theorem 1.2.3 and equation (1.4) in terms of the
FT as follows: if p is an odd prime and ζp is the function on Zp

defined in terms of the Legendre symbol by ζp(x) = (x/p), then

ζ̂p(x) =

{
Gp(x) if x �= 0,

0 if x = 0.
(7.4)

Theorem 7.2.4. If p is an odd prime, then ζ̂p = Gp(1)ζp.

Proof. Since ζ̂p(0) = 0 and ζ(0) = 0, the theorem holds for x = 0.
For a fixed x ∈ Zp and x �= 0, we have

ζ̂p(x) =
1√
p

∑
y ∈Zp

e−
2πi
p

xyζp(y) =
1√
p

∑
y ∈Zp

e−
2πi
p

xy(y/p).
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The change of variable θ = xy leads to

ζ̂p(x) =
1√
p

∑
θ ∈ xZp

e−
2πi
p

θ(θx−1/p),

where x−1 is the multiplicative inverse of x in Zp. Since xZp =
{xy (mod p) | y ∈ Zp} = Zp, it follows from (1.5), (ii) of Theo-
rem 1.2.1, and equation (7.4) that

ζ̂p(x) = (x−1/p)
1√
p

∑
θ∈Zp

e−
2πi
p

θ(θ/p) = ζp(x
−1)ζ̂p(1) = ζp(x)Gp(1).

We will show later in Chapter 9 that

Gn(1) =
1 + in

1 + i
.

From this formula we obtain

Gp(1) =

{
1 if and only if p ≡ 1 (mod 4),

−i if and only if p ≡ 3 (mod 4).

Thus 1 and −i are the eigenvalues of the FT on Zp, the eigenvalue
is 1 or −i depending on whether p ≡ 1 (mod 4) or p ≡ 3 (mod 4),
respectively. By Theorems 7.2.2 and 7.2.4, for an odd prime p, the
function ζp is symmetric if and only if p is congruent to 1 modulo
4 or, equivalently, ζp is antisymmetric if and only if p is congruent
to 3 modulo 4. Thus, for any integer a that is not divisible by p,
we have

(a/p) =

{
(−a/p) if and only if p ≡ 1 (mod 4),

−(−a/p) if and only if p ≡ 3 (mod 4).

Consequently, if p ≡ 3 ( mod 4), then (a/p) and (−a/p) have oppo-
site sign. That is, exactly one of the numbers a or −a is a quadratic
residue modulo p. Suppose that a is a quadratic residue modulo p.
In this case, there is a nonzero integer x such that x2 ≡ a (mod p)
and there is no integer y that satisfies y2 ≡ −a (mod p). Since a
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is an arbitrary integer that is not divisible by p, one can verify
that, for any nonzero integer k, there is no integer y such that
x2 + y2 = kp. The same result is obtained if −a is a quadratic
residue. We record this result of number theory (in different word-
ing) as a theorem.

Theorem 7.2.5. If p is a prime congruent to 3 modulo 4, then
no positive integral multiple of p can be written as a sum of two
squares of integers, one of which is relatively prime to p.

Said differently, if a positive integer m is divisible by a prime
p and p ≡ 3 (mod4), then there are no integers x and y with
properties that

(i) either gcd(x, p) = 1 or gcd(y, p) = 1, and
(ii) x2 + y2 = m.

The following corollary is a reformulation of Theorem 7.2.4
according to consequence (iii) of the definition and (7.4).

Corollary 7.2.2. If p is an odd prime and a is an integer that is
not divisible by p, then Gp(a) = (a/p)Gp(1).

Thus, for an odd prime p, we reduce the evaluation of the
Gaussian sum Gp(a) to the determination of the Legendre symbol
(a/p) and the constant Gp(1). Since the Legendre symbol (a/p) is
well-understood, it remains only to determine the value of Gp(1).
This is one of the crucial points in the direction we take in the
evaluation of general quadratic Gaussian sums (in Chapter 9).

Exercises.

.41 Let A be a self-adjoint linear operator on a finite-dimensional
complex inner product space. Show that the eigenvalues of
A are real numbers. Conclude from this result and Corollary
7.2.1 (on page 99) that the FT is not self-adjoint if n > 2.

.42 Prove that the trace of the FT on Zn is Gn(1).

.43 Suppose that p1, . . . , pk are odd primes and G = Zp1 ×· · ·×
Zpk

. Prove that if f is a complex-valued function defined on

G by f = ζp1⊗· · ·⊗ζpk
, then f̂ = cf , where c =

∏k
j=1 Gpj

(1).
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.44 Let n1, . . . , nk be positive integers greater than 1 and let G =
Zn1 × · · · ×Znk

. Prove that on the space VG the eigenvalues
of the FT are ±1 if n1 = · · · = nk = 2, and are ±1, ±i
otherwise.

.45 Show that Gn has period n.

7.3 Spectral Theorem

If λ is an eigenvalue of the FT, then the eigenvectors corresponding
to λ are nonzero solutions of the equation (F−λI)x = 0, which are
the nonzero elements of the kernel of the linear operator F − λI.
So, these eigenvectors together with the zero vector form a vector
subspace. This subspace, denoted by Eλ, is called the eigenspace
corresponding to λ. Our goals in this section are: first, to show
that VZn is equal to the direct sum of the eigenspaces; second, to
decompose the FT into a sum of simpler linear operators.

Suppose that f is a non-identically zero, complex-valued, sym-
metric function defined on Zn. From the identity

f =
f̂ + f

2
− f̂ − f

2
(7.5)

we have, by Theorem 7.2.1, that (f̂ + f)/2 is an eigenvector cor-
responding to the eigenvalue 1 and (f̂ − f)/2 is an eigenvector
corresponding to the eigenvalue −1. Thus, every nonzero symmet-
ric function can be decomposed as a sum of two functions, one is an
eigenvector corresponding to the eigenvalue 1 and the other is an
eigenvector corresponding to the eigenvalue −1. Furthermore, this
decomposition is unique (Exercise 46). Consequently, the vector
space of symmetric functions is the direct sum of the eigenspaces
corresponding to the eigenvalues ±1, that is, Vs = E1 ⊕ E−1.

Similarly, if f is a non-identically zero, complex-valued, anti-
symmetric function defined on Zn, then we have the decomposition

f =
f̂ + if

2i
− f̂ − if

2i
, (7.6)
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where, by Theorem 7.2.1, the functions (f̂ + if)/2i and (f̂ −if)/2i
are eigenvectors corresponding to the eigenvalues i and −i, respec-
tively. Moreover, the decomposition (7.6) is unique (Exercise 46),
so Va = Ei ⊕ E−i.

We treat the cases n = 2 and n > 2 separately. First, assume
that n > 2. Since VZn = Vs ⊕ Va, in view of the results obtained
from the previous two paragraphs, we have

VZn = E1 ⊕ E−1 ⊕ Ei ⊕ E−i. (7.7)

Moreover, the eigenspaces Eλ, for λ = ±1, ±i, are pairwise ortho-
gonal, that is, every vector in Eλ is orthogonal to every vector
in Eλ′ whenever λ �= λ′. This fact follows from the Plancherel
theorem; for, if fλ ∈ Eλ, fλ′ ∈ Eλ′ , and λ �= λ′, then

〈fλ, fλ′〉 = 〈f̂λ, f̂λ′〉 = λλ′〈fλ, fλ′〉 =
λ

λ′ 〈fλ, fλ′〉.

The inequality 〈fλ, fλ′〉 �= 0 would imply that λ = λ′. So, we must
have 〈fλ, fλ′〉 = 0.

The pairwise orthogonality of the eigenspaces Eλ induces ortho-
gonal projection operators defined as follows: by (7.7), every
complex-valued function f on Zn can be expressed uniquely as

f = f1 + f−1 + fi + f−i, (7.8)

where fλ ∈ Eλ for λ = ±1, ±i. We define, for each λ, the ortho-
gonal projection operator Pλ on VZn by setting

Pλf = fλ. (7.9)

It is obvious that Pλ is well-defined, linear, and that its range
is the space Eλ. The orthogonal projection operators are pairwise
orthogonal, idempotent, and self-adjoint; that is,

PλPλ′ =

{
0 if λ �= λ′,

Pλ if λ = λ′,
(7.10)

and Pλ = P ∗
λ for λ, λ′ = ±1, ±i (Exercise 47). We can conclude

from (7.8) and (7.9) that
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I = P1 + P−1 + Pi + P−i,

where the sum of operators is defined in an obvious way (i.e.,
pointwise) and I denotes the identity operator on VZn . Since
FPλ = λPλ, we have

F = FI = FP1 + FP−1 + FPi + FP−i = P1 − P−1 + iPi − iP−i.

The analysis for the case n = 2 is similar to that given above for
the case n > 2, except that, since Va = ∅ (the empty set), there are
no ±i, Ei, E−i, Pi, or P−i involved. Thus, we have VZ2 = E1⊕E−1,
I = P1 + P−1, and F = P1 − P−1.

The expression F = P1 − P−1 when n = 2 or F = P1 − P−1 +
iPi − iP−i when n > 2 is called the spectral form of F . We have
proved half of the spectral theorem for the FT.

Theorem 7.3.1 (Spectral Theorem). As a linear operator on
the inner product space VZn, the FT can be expressed uniquely as a
linear combination of the orthogonal projections on the eigenspaces
as follows:

F =

{
P1 − P−1 if n = 2,

P1 − P−1 + iPi − iP−i if n > 2.

Proof. It remains only to prove the uniqueness. Since proofs of the
two cases n = 2 and n > 2 are similar, we give a proof for the case
n > 2 only. Suppose that n > 2 and

F = c1P1 + c−1P−1 + ciPi + c−iP−i (7.11)

for some constants c1, c−1, ci, and c−i. What we must show is that
cλ = λ for λ = ±1, ±i.

For a fixed λ ∈ {±1,±i}, since Eλ �= {0}, there is a nonzero
vector fλ ∈ Eλ such that

(a) Pλfλ = fλ, and
(b) Ffλ = λfλ.

Also, since the eigenspaces are pairwise orthogonal, we have

(c) Pλ′fλ = 0 whenever λ′ �= λ.
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It follows from (7.11), (c), and (a) that

Ffλ = c1P1fλ + c−1P−1fλ + ciPifλ + c−iP−ifλ = cλPλfλ = cλfλ.

This result combines with (b) to give (cλ−λ)fλ = 0. Since fλ �= 0,
we have cλ = λ.

Remark. Theorem 4.7.1 is a simple consequence of the equation
(iPλ)

∗ = −iPλ and the spectral theorem.

Exercises.

.46 Prove the uniqueness of the decompositions (7.5) and (7.6).

.47 Prove that the orthogonal projections Pλ, where λ = ±1, ±i,
satisfy the equations in (7.10) and that Pλ = P ∗

λ .

.48 Recall the space VZn = Vs ⊕ Va and the bases Bsym and
Bantisym of Vs and Va, respectively, which were defined in
Section 7.1.

(i) Consider the FT restricted to the subspace Vs. It is a
linear operator on Vs. Show that its matrix with respect
to the orthonormal basis Bsym is(

4

εsεt

√
n

cos
2π

n
st

)
m×m

,

where m = �n/2� + 1 and s, t = 0, . . . , �n/2�.
(ii) Assume that n > 2 (so that Va is nonempty). Con-

sider the FT restricted to the subspace Va. It is a linear
operator on Va. Show that its matrix with respect to the
orthonormal basis Bantisym is(

− 2i√
n

sin
2π

n
st

)
m×m

,

where m = �n/2� − 1 and s, t = 1, . . . , m.

.49 For each λ = ±1, ±i, let MPλ
be the matrix of the orthogonal

projection Pλ with respect to the standard basis ΔZn = {δj |
j = 0, . . . , n − 1}. Prove that
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MP1 =
1

4
(Bt(s) + B−t(s) + δt(s) + δ−t(s))n×n,

MP−1 = −1

4
(Bt(s) + B−t(s) − [δt(s) + δ−t(s)])n×n,

MPi
=

1

4
(i[Bt(s) − B−t(s)] + [δt(s) − δ−t(s)])n×n,

MP−i
= −1

4
(i[Bt(s) − B−t(s)] − [δt(s) − δ−t(s)])n×n,

where in each case s, t = 0, . . . , n − 1 and −t is the inverse
of t in the cyclic group Zn. The notation for matrices means,
for example, that the (s, t) entry of the matrix MP1 is

1

4
(Bt(s) + B−t(s) + δt(s) + δ−t(s)),

which, by the remark at the end of Section 7.1, is equal to

1

2
√

n
cos

(
2π

n
st

)
+

δt(s) + δ−t(s)

4
.

.50 Since every element f ∈ VZn = Vs ⊕ Va can be expressed
uniquely as the sum of its symmetric and antisymmetric
parts as f = f s+fa, where f s ∈ Vs and fa ∈ Va, the induced
linear operator P defined by Pf = f s, i.e., P projects VZn

onto Vs, is well-defined. P is called the symmetric orthogonal
projection. Show that

(i) P = P1 + P−1,

(ii) PF = FP = PFP , and

(iii) PF−1 = F−1P = PF−1P ,

where, as usual, the product of operators is defined to be
their composition. Analogously, define the antisymmetric
orthogonal projection (only when n > 2) and show that
(ii) and (iii) still hold when P is replaced by the operator
just defined. Prove also that the antisymmetric orthogonal
projection satisfied a similar equation as in (i), where the
sum P1 + P−1 is replaced by Pi + P−i.
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.51 Find an orthonormal basis for VG with respect to which the
matrix of the FT is diagonal.

.52 A nonempty subset S of a complex inner product space V
is said to be convex if the straight line segment joining any
two points in S lies entirely in S; i.e., if x, y ∈ S and r is a
real number such that 0 < r < 1, then [(1 − r)x + ry] ∈ S.
A point in a convex set S is called an extreme point if it is
not an interior point of any straight line segment in S; i.e.,
e is an extreme point of S if e ∈ S and e �= (1− r)x + ry for
any x, y ∈ S and any r for which 0 < r < 1. Consider the
set S =

{〈f̂ , f〉 : f ∈ VZn and ‖f‖ = 1
}
. Is S a convex set?

If S is convex, determine its extreme points.

.53 (This exercise requires sufficient knowledge of linear alge-
bra.) Show that there is a self-adjoint linear operator A on
VZn such that F = eiA.

7.4 Ergodic Theorem

The spectral theorem for the FT provides us a convenient way
to illustrate the general theory by considering a very special (but
important) type of convergence problem.

Definition 7.4.1. Let A be a linear operator on a finite-dimen-
sional complex inner product space V .

(a) A sequence {An}∞n=1 of linear operators on V is said to con-
verge to A if, for each fixed x ∈ V ,

lim
n→∞

‖Anx − Ax‖ = 0.

We indicate that {An} converges to A by the expression
limn→∞ An = A.

(b) If c is a scalar (i.e., a complex number), then the scalar multi-
ple of A by c is the linear operator cA defined by cAx = c(Ax)
for all x ∈ V .
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If {cn} is a sequence of scalars which converges to zero and x
in a vector in V , then, since

lim
n→∞

‖cnAx‖ = lim
n→∞

‖cn(Ax)‖
= lim

n→∞
|cn|‖Ax‖ = ‖Ax‖ lim

n→∞
|cn| = 0,

we have
lim

n→∞
cnA = 0, (7.12)

where the zero operator is also denoted by 0.
The convergence (7.12) will be used shortly in the special case

when A is an orthogonal projection operator. Let V = VZn , where
n > 2. By the spectral theorem it is straightforward to show (by
induction with the aid of (7.10)) that

Fk = P1 + (−1)kP−1 + ikPi + (−i)kP−i

for every positive integer k. It follows that the average of the first
N positive powers of F is

SN =
1

N

N∑
k=1

Fk = P1 +

(
1

N

N∑
k=1

(−1)k

)
P−1

+

(
1

N

N∑
k=1

ik

)
Pi +

(
1

N

N∑
k=1

(−i)k

)
P−i.

For r = −1, ±i, the identity

N∑
k=1

rk = r
1 − rN

1 − r

implies that

lim
N→∞

1

N

N∑
k=1

rk = 0,

hence, by (7.12),
lim

N→∞
SN = P1. (7.13)
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For the case n = 2, since there are no ±i, Pi, and P−i involved,
we have

Fk = P1 + (−1)kP−1 and SN = P1 +

(
1

N

N∑
k=1

(−1)k

)
P−1.

Thus, the same conclusion (7.13) holds. We have proved the fol-
lowing theorem.

Theorem 7.4.1. The arithmetic mean of positive integral powers
of the FT on Zn converges to the orthogonal projection on the
eigenspace E1. In symbols,

lim
N→∞

1

N

N∑
k=1

Fk = P1.

For a more general (but still elementary) theorem which
includes this theorem as a special case, see p. 185 of [3].

We conclude this section by pointing out some facts about linear
operators defined on complex inner product spaces (these facts are
not needed in this exposition other than in the exercise at the end
of this section). First, we need a definition: Let A be a linear
operator on a complex inner product space V . We say that A is
bounded if there is a positive constant α such that ‖Ax‖ ≤ α‖x‖
for all x ∈ V ; if A is bounded, the norm of A, denoted by ‖A‖, is
defined to be the infimum of all such values of α. Next, some facts:
every linear operator on finite-dimensional inner product spaces
is bounded. In particular, the projections Pλ, for λ = ±1, ±i, are
bounded, in fact, ‖Pλ‖ = 1 for every λ. By the definition just given,
bounded linear operators are uniformly continuous. The converse
of the latter statement is also true.

Exercise.

.54 Let A be a linear operator on a finite-dimensional inner
product space V . Suppose that a sequence {An}∞n=1 of linear
operators on V converges to A. Prove the following:

(i) limn→∞ ‖An − A‖ = 0;
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(ii) limn→∞〈Anx, y〉 = 〈Ax, y〉 for every fixed pair of vectors
x and y in V ;

(iii) Let G be a finite Abelian group. Determine whether
there is a sequence {An}∞n=1 of invertible linear opera-
tors on VG that converges to F .

7.5 Multiplicities of Eigenvalues

Recall from (7.7) that VZn = E1 ⊕ E−1 ⊕ Ei ⊕ E−i and from Sub-
section 2.3 that dimVZn = n. In this section, we determine the
dimensions of the eigenspaces Eλ or, equivalently, the multiplici-
ties of the eigenvalues λ for λ = ±1, ±i by constructing an explicit
basis for each eigenspace Eλ.

We will use some results of Section 1.3 of Chapter 1 to show
that certain finite sets of the form {αj} or {iβj}, where αj and
βj are real-valued functions, are linearly independent over C. For
finite sets of the type described, linearly independent over C is
equivalent to linearly independent over R. This fact will be used
freely in this section, for this reason we state it as a lemma and
leave its proof to the readers.

Lemma 7.5.1. Suppose that for j = 1, . . . , k, αj and βj are real-
valued functions (defined on some set). Let S denote either one of
the sets {αj | j = 1, . . . , k} or {iβj | j = 1, . . . , k}. A necessary
and sufficient condition for S to be linearly independent over C is
that it is linearly independent over R.

Also, for convenience we recall from page 97 that the norm of
the function Bj + B−j is

εj =

{
2 if j = 0 or if n is even and j = n/2,√

2 otherwise.

Dimension of E1 and E−1. We consider two cases, n≡ 0 (mod 4)
or n≡1 (mod 4) and n≡2 (mod 4) or n≡3 (mod 4).
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Case 1. Either n ≡ 0 (mod4) or n ≡ 1 (mod4), that is, either
n = 4m or n = 4m+1 for some positive integer m. (The integer m
is not necessarily the same in these two subcases.) In either case,
we have �n/2� = 2m. Recall from Section 7.1 that the vector space
Vs of symmetric functions has an orthonormal basis

Bsym =

{
Bj + B−j

εj

∣∣∣ j = 0, . . . , 2m

}
.

Since Vs = E1 ⊕E−1, each function (Bj + B−j)/εj in Bsym can be
written uniquely as the sum of a function in E1 and a function in
E−1, according to (7.5), as

Bj + B−j

εj
= sj + s′j ,

where

sj =
Bj + B−j + δj + δ−j

2εj
∈ E1 and

s′j =
Bj + B−j − δj − δ−j

2εj
∈ E−1.

By the remark at the end of Section 7.1, sj and s′j can be expressed
in terms of the cosine function as

sj(k) =
1

εj

√
n

(√
n

2
[δj(k) + δ−j(k)] + cos

2π

n
jk

)
,

(7.14)

s′j(k) =
−1

εj

√
n

(√
n

2
[δj(k) + δ−j(k)] − cos

2π

n
jk

)
,

where k ∈ Zn.

Subcase n = 4m. Recall from (7.1) that dim Vs = 2m + 1. Since
E−1 and E1 are nontrivial proper subspaces of Vs, we have 0 <
dim E−1 < 2m + 1 and 0 < dim E1 < 2m + 1.

The space E−1. Since dim E−1 < 2m + 1 and the 2m + 1 functions
s′0, . . . , s

′
2m belong to E−1, these functions are linearly dependent
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(over C). We claim that the first m of these functions, i.e.,
s′0, . . . , s

′
m−1, are linearly independent. Suppose that for some real

numbers c0, . . . , cm−1 the function S ′ = c0s
′
0 + · · · + cm−1s

′
m−1

is identically zero on the group Z4m. Then, in particular,
S ′(k) = 0 for k = m, . . . , 2m − 1 or, equivalently, M−1c = 0,
where

M−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 cos π
2

cos 2π
2

. . . cos(m − 1)π
2

1 cos m+1
2m

π cos 2m+1
2m

π . . . cos(m − 1)m+1
2m

π

1 cos m+2
2m

π cos 2m+2
2m

π . . . cos(m − 1)m+2
2m

π
...

. . .
...

1 cos 2m−1
2m

π cos 22m−1
2m

π . . . cos(m − 1)2m−1
2m

π

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

m×m

and c is the column vector in R
m whose coordinates are c0,√

2c1, . . . ,
√

2cm−1. For � = 0, . . . , m − 1, let

x� =
m + �

2m
π

and define the real-valued function φ� on the interval [0, π] by
φ�(x) = cos �x. In terms of these functions M−1 = (φs(xt)), where
s, t = 0, . . . , m−1. By Theorems 1.3.2 and 1.3.3(i), the matrix M−1

is nonsingular. It follows that c = 0, so the functions s′0, . . . , s
′
m−1

are linearly independent. Since these linearly independent func-
tions are elements of E−1, dim E−1 ≥ m.

The space E1. The inequality dim E1 < 2m + 1 implies that the
functions s0, . . . , s2m, all elements of E1, are linearly dependent
(over C). We claim that s0, . . . , sm−1, s2m are linearly independent.
To prove this, suppose that for some real numbers c0, . . . , cm−1, c2m

the function S = c0s0 + · · ·+ cm−1sm−1 + c2ms2m is identically zero
on Z4m. Then, in particular, S(k) = 0 for k = m, . . . , 2m or,
equivalently, M1c = 0, where
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M1 =

�
��������������

1 cos π
2

cos 2π
2

. . . cos(m − 1)π
2

(−1)m

1 cos m+1
2m

π cos 2m+1
2m

π . . . cos(m − 1)m+1
2m

π (−1)m+1

1 cos m+2
2m

π cos 2m+2
2m

π . . . cos(m − 1)m+2
2m

π (−1)m+2

...
. . .

...
1 cos 2m−1

2m
π cos 2 2m−1

2m
π . . . cos(m − 1) 2m−1

2m
π −1

1 cos π cos 2π . . . cos(m − 1)π 1 + 2
√

m

�
��������������
(m+1)×(m+1)

and c is the column vector in R
m+1 whose coordinates are c0,√

2c1, . . . ,
√

2cm−1, c2m. Alternatively, M1 can also be constructed
from M−1. First, insert the row vector

(1, cos π, . . . , cos(m − 1)π)

into M−1 in such a way that it is the last row of the resulting
matrix, call it Mresult. Second, insert the column vector⎛

⎜⎜⎜⎜⎜⎜⎜⎝

(−1)m

(−1)m+1

(−1)m+2

...
−1
1 + 2

√
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(m+1)×1

into Mresult to obtain M1. By Theorems 1.3.2 and 1.3.3, the matrix
M1 is nonsingular. It follows that c = 0. Thus the vector space E1

contains m+1 linearly independent vectors; namely, the functions
s0, . . . , sm−1, s2m, so dim E1 ≥ m + 1.

Subcase n = 4m + 1. For the space E−1, we claim that the func-
tions s′0, . . . , s

′
m−1 are linearly independent. Analogous to the sub-

case n = 4m we have M−1c = 0, where

M−1 =

⎛
⎜⎜⎜⎜⎜⎝

1 cos 2m
4m+1

π cos 2 2m
4m+1

π . . . cos(m−1) 2m
4m+1

π

1 cos 2(m+1)
4m+1

π cos 22(m+1)
4m+1

π . . . cos(m−1)2(m+1)
4m+1

π
...

. . .
...

1 cos 2(2m−1)
4m+1

π cos 22(2m−1)
4m+1

π . . . cos(m−1)2(2m−1)
4m+1

π

⎞
⎟⎟⎟⎟⎟⎠

m×m
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and c is the column vector in R
m whose coordinates are c0,√

2c1, . . . ,
√

2cm−1. For � = 0, . . . , m − 1, let

x� =
2(m + �)

4m + 1
π

and define the real-valued function φ� on the interval [0, π] by
φ�(x) = cos �x. In terms of these functions M−1 = (φs(xt)), where
s, t = 0, . . . , m−1. By Theorems 1.3.2 and 1.3.3(i), the matrix M−1

is nonsingular. It follows that c = 0, so the functions s′0, . . . , s
′
m−1

are linearly independent. Since these linearly independent func-
tions are elements of E−1, dim E−1 ≥ m.

For the space E1, we claim that s0, . . . , sm−1, s2m are linearly
independent. Analogous to the subcase n = 4m we have M1c = 0,
where M1 is the (m + 1) × (m + 1) matrix

�
�����������

1 cos 2m
4m+1

π cos 2 2m
4m+1

π . . . cos(m−1) 2m
4m+1

π cos(2m) 2m
4m+1

π

1 cos 2(m+1)
4m+1

π cos 2 2(m+1)
4m+1

π . . . cos(m−1) 2(m+1)
4m+1

π cos(2m) 2(m+1)
4m+1

π
...

. . .
...

1 cos 2(2m−1)
4m+1

π cos 2 2(2m−1)
4m+1

π . . . cos(m−1) 2(2m−1)
4m+1

π cos(2m) 2(2m−1)
4m+1

π

1 cos 4m
4m+1

π cos 2 4m
4m+1

π . . . cos(m−1) 4m
4m+1

π
√

4m+1
2

+ cos(2m) 4m
4m+1

π

�
�����������

and c is the column vector in R
m+1 whose coordinates are c0,√

2c1, . . . ,
√

2cm−1,
√

2c2m. The cosine terms in the last column of
M1 are cos(2m)2(m+�)

4m+1
π for � = 0, . . . , m. The inequalities

0 <
m + �

4m + 1
< 1/2

and

(2m)
2(m + �)

4m + 1
π =

(
1 − 1

4m + 1

)
(m + �)π

imply that

cos
m + �

4m + 1
π > 0
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and

cos(2m)
2(m + �)

4m + 1
π = cos

(
1 − 1

4m + 1

)
(m + �)π

= [cos(m + �)π] cos
m + �

4m + 1
π

= (−1)m+� cos
m + �

4m + 1
π.

Thus, the entries in the last column of M1 are alternating sign
nonzero real numbers. Alternatively, M1 can also be constructed
from M−1. First, insert the row vector(

1, cos
4m

4m + 1
π, cos 2

4m

4m + 1
π, . . . , cos(m − 1)

4m

4m + 1
π

)

into M−1 in such a way that it is the last row of the resulting
matrix, call it Mresult. Second, insert the column vector⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(2m) 2m
4m+1

π

cos(2m)2(m+1)
4m+1

π
...

cos(2m)2(2m−1)
4m+1

π
√

4m+1
2

+ cos(2m) 4m
4m+1

π

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(m+1)×1

into Mresult to obtain M1. Since the coordinates of this column
vector are alternating sign nonzero real numbers, Theorems 1.3.2
and 1.3.3 imply that the matrix M1 is nonsingular. It follows that
c = 0, whence dim E1 ≥ m + 1.

Since 2m + 1 = dim Vs = dim E1 + dim E−1, we conclude that

dim E1 = m + 1,

dim E−1 = m.

The sets {s0, . . . , sm−1, s2m} and {s′0, . . . , s′m−1} are bases for E1

and E−1, respectively.
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Case 2. Either n≡ 2 (mod 4) or n≡ 3 (mod 4), that is, either n =
4m+2 or n = 4m+3 for some nonnegative integer m. (The integer
m is not necessarily the same in these two subcases.) In either
case, we have �n/2� = 2m + 1. The vector space Vs of symmetric
functions has an orthonormal basis (see (7.3))

Bsym =

{
Bj + B−j

εj

∣∣∣ j = 0, . . . , 2m + 1

}
= { sj + s′j | j = 0, . . . , 2m + 1 },

where the functions sj and s′j are given by equations (7.14).

Subcase n = 4m + 2. Recall from (7.1) that dim Vs = 2m+2. Since
E−1 and E1 are nontrivial proper subspaces of Vs, we have 0 <
dim E−1 < 2m + 2 and 0 < dim E1 < 2m + 2.

The space E−1. Since dim E−1 < 2m + 2 and the 2m + 2 functions
s′0, . . . , s

′
2m+1 belong to E−1, they are linearly dependent. We claim

that the first m of these functions, i.e., s′0, . . . , s
′
m, are linearly

independent. Suppose that for some real numbers c0, . . . , cm the
function S ′ = c0s

′
0 + · · · + cms′m is identically zero on the group

Z4m+2. Then, in particular, S ′(k) = 0 for k = m + 1, . . . , 2m + 1
or, equivalently, M−1c = 0, where

M−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 cos m+1
2m+1

π cos 2 m+1
2m+1

π . . . cos m m+1
2m+1

π

1 cos m+2
2m+1

π cos 2 m+2
2m+1

π . . . cos m m+2
2m+1

π
...

. . .
...

1 cos 2m
2m+1

π cos 2 2m
2m+1

π . . . cos m 2m
2m+1

π

1 cos π cos 2π . . . cos mπ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(m+1)×(m+1)

and c is the column vector in R
m+1 whose coordinates are c0,√

2c1, . . . ,
√

2cm. For � = 1, . . . , m + 1, let

x� =
m + �

2m + 1
π

and define the real-valued function φ� on the interval [0, π] by
φ�(x) = cos(� − 1)x. In terms of these functions M−1 = (φs(xt)),
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where s, t = 1, . . . , m + 1. By Theorems 1.3.2 and 1.3.3(i), the
matrix M−1 is nonsingular. It follows that c = 0, whence the
functions s′0, . . . , s

′
m are linearly independent. Since these linearly

independent functions are elements of E−1, dim E−1 ≥ m + 1.

The space E1. From the inequality dimE1 < 2m + 2 we may
conclude that the functions s0, . . . , s2m+1, all elements of E1, are
linearly dependent. We claim that s0, . . . , sm are linearly indepen-
dent. Suppose that for some real numbers c0, . . . , cm the function
S = c0s0 + · · ·+ cmsm is identically zero on Z4m+2. Then, in parti-
cular, S(k) = 0 for k = m+1, . . . , 2m+1 or, equivalently, M1c = 0,
where M1 = M−1 is a nonsingular matrix and c is the column vec-
tor in R

m+1 whose coordinates are c0,
√

2c1, . . . ,
√

2cm. Since M1

is nonsingular, we have c = 0; i.e., the functions s0, . . . , sm are
linearly independent, whence dim E1 ≥ m + 1.

Subcase n = 4m + 3. For the space E−1 we claim that the functions
s′0, . . . , s

′
m are linearly independent and for the space E1 we claim

that s0, . . . , sm are linearly independent. Analogous to the subcase
n = 4m + 2 we have M1 = M−1 and M−1c = 0, where

M−1 =

�
������

1 cos m+1
4m+3

2π cos 2 m+1
4m+3

2π . . . cos m m+1
4m+3

2π

1 cos m+2
4m+3

2π cos 2 m+2
4m+3

2π . . . cos m m+2
4m+3

2π
...

. . .
...

1 cos 2m+1
4m+3

2π cos 2 2m+1
4m+3

2π . . . cos m 2m+1
4m+3

2π

�
������
(m+1)×(m+1)

and c is the column vector in R
m+1 whose coordinates are c0,√

2c1, . . . ,
√

2cm. For � = 1, . . . , m + 1, let

x� =
m + �

4m + 3
2π

and define the real-valued function φ� on the interval [0, π] by
φ�(x) = cos(� − 1)x. In terms of these functions M−1 = (φs(xt)),
where s, t = 1, . . . , m + 1. By Theorems 1.3.2 and 1.3.3(i),
the matrix M−1 is nonsingular. It follows that c = 0, whence
dim E−1 ≥ m + 1 and dim E1 ≥ m + 1.
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Since 2m + 2 = dim Vs = dim E1 + dim E−1, we conclude that

dim E1 = m + 1,

dim E−1 = m + 1.

The sets {s0, . . . , sm} and {s′0, . . . , s′m} are bases for E1 and E−1,
respectively.

Dimension of Ei and E−i. We consider three cases, n≡0 (mod 4),
n≡1 (mod 4) or n≡2 (mod 4), and n≡3 (mod 4).

Case 1. n ≡ 0 (mod 4), that is, n = 4m for some positive integer
m. In this case we have �n/2� = 2m. Recall from Section 7.1 that
the vector space Va of antisymmetric functions has an orthonormal
basis

Bantisym =

{
Bj − B−j√

2

∣∣∣ j = 1, . . . , 2m − 1

}
.

Since Va = Ei ⊕E−i, each function (Bj −B−j)/
√

2 in Bantisym can
be written uniquely as the sum of a function in Ei and a function
in E−i, according to (7.6), as

Bj − B−j√
2

= aj + a′
j ,

where

aj =
i(Bj − B−j) + (δj − δ−j)

i2
√

2
∈ Ei,

a′
j =

i(Bj − B−j) − (δj − δ−j)

i2
√

2
∈ E−i.

By the remark at the end of Section 7.1, aj and a′
j can be expressed

in terms of the sine function as

aj(k) =
−i√
2n

(√
n

2
[δj(k) − δ−j(k)] − sin

2π

n
jk

)
(7.15)

a′
j(k) =

i√
2n

(√
n

2
[δj(k) − δ−j(k)] + sin

2π

n
jk

)
,

where k ∈ Zn.
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By (7.1) dim Va = 2m − 1 and since Ei is a proper subspace
of Va, we have dim Ei < 2m − 1. It follows that the functions
a1, . . . , a2m−1, all elements of Ei, are linearly dependent. We claim
that the functions a1, . . . , am−1 are linearly independent. To prove
this claim, suppose that for some real numbers c1, . . . , cm−1 the
function A = c1a1+· · ·+cm−1am−1 is identically zero on Z4m. Then,
in particular, A(k) = 0 for k = m, . . . , 2m − 2 or, equivalently,
Mic = 0, where

Mi =

�
����������

sin π
2

sin 2π
2

sin 3π
2

. . . sin(m − 1)π
2

sin m+1
2m

π sin 2m+1
2m

π sin 3m+1
2m

π . . . sin(m − 1)m+1
2m

π

sin m+2
2m

π sin 2m+2
2m

π sin 3m+2
2m

π . . . sin(m − 1)m+2
2m

π
...

. . .
...

sin 2m−2
2m

π sin 2 2m−2
2m

π sin 3 2m−2
2m

π . . . sin(m − 1) 2m−2
2m

π

�
����������
(m−1)×(m−1)

and c is the column vector in R
m−1 whose coordinates are

c1, . . . , cm−1. Note that in the symbol Mi, just as in the symbol
Ei, the subscript is the eigenvalue i. For � = 1, . . . , m − 1, let

x� =
m − 1 + �

2m
π

and define the real-valued function φ� on the interval [0, π) by
φ�(x) = sin �x. In terms of these functions Mi = (φs(xt)), where
s, t = 1, . . . , m−1. By Theorems 1.3.2 and 1.3.3(i), the matrix Mi

is nonsingular. It follows that c = 0, so the functions a1, . . . , am−1

are linearly independent. Since these linearly independent func-
tions are elements of Ei, dim Ei ≥ m − 1.

Similarly, we have dim E−i < 2m − 1. It follows that the func-
tions a′

1, . . . , a
′
2m−1, all elements of E−i, are linearly dependent.

We claim that a′
1, . . . , a

′
m−1, a

′
2m−1 are linearly independent.

Suppose that for some real numbers c1, . . . , cm−1, c2m−1 the
function

A′ = c1a
′
1 + · · ·+ cm−1a

′
m−1 + c2m−1a

′
2m−1

is identically zero on Z4m. Then, in particular, A′(k) = 0 for k =
m, . . . , 2m−1 or, equivalently, M−ic = 0, where M−i is the matrix
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�
��������������

sin π
2

sin 2π
2

. . . sin(m − 1)π
2

sin(2m − 1)π
2

sin m+1
2m

π sin 2m+1
2m

π . . . sin(m − 1)m+1
2m

π sin(2m − 1)m+1
2m

π

sin m+2
2m

π sin 2m+2
2m

π . . . sin(m − 1)m+2
2m

π sin(2m − 1)m+2
2m

π
...

. . .
...

sin 2m−2
2m

π sin 2 2m−2
2m

π . . . sin(m − 1) 2m−2
2m

π sin(2m − 1) 2m−2
2m

π

sin 2m−1
2m

π sin 2 2m−1
2m

π . . . sin(m − 1) 2m−1
2m

π
√

m + sin(2m − 1) 2m−1
2m

π

�
��������������

m×m

and c is the column vector in R
m whose coordinates are

c1, . . . , cm−1, c2m−1. The sine terms in the last column of M−i are
sin(2m − 1)m+�

2m
π for � = 0, . . . , m − 1. The inequalities

0 <
m + �

2m
< 1

and

(2m − 1)
m + �

2m
π =

(
1 − 1

2m

)
(m + �)π

imply that

sin
m + �

2m
π > 0

and

sin(2m − 1)
m + �

2m
π = −[cos(m + �)π] sin

m + �

2m
π

= (−1)m+�+1 sin
m + �

2m
π.

Thus, the entries in the last column of M−i are alternating sign
nonzero real numbers. Alternatively, M−i can also be constructed
from Mi. First, insert the row vector(

sin
2m − 1

2m
π, sin 2

2m − 1

2m
π, . . . , sin(m − 1)

2m − 1

2m
π

)

into Mi in such a way that it is the last row of the resulting matrix,
call it Mresult. Second, insert the column vector
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⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

sin(2m − 1)π
2

sin(2m − 1)m+1
2m

π

sin(2m − 1)m+2
2m

π
...

sin(2m − 1)2m−2
2m

π
√

m + sin(2m − 1)2m−1
2m

π

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

m×1

into Mresult to obtain M−i. Since the coordinates of this column
vector are alternating sign nonzero real numbers, Theorems 1.3.2
and 1.3.3 imply that the matrix M−i is nonsingular. It follows that
c = 0, so dim E−i ≥ m.

Since 2m − 1 = dim Va = dim Ei + dim E−i, we conclude that

dim Ei = m − 1,

dim E−i = m.

The sets {a1, . . . , am−1} and {a′
1, . . . , a

′
m−1, a

′
2m−1} are bases for Ei

and E−i, respectively.

Case 2. Either n ≡ 1 (mod4) or n ≡ 2 (mod4), that is, either
n = 4m+1 for some positive integer m or n = 4m+2 for some non-
negative integer m. In either case, we have �n/2� = 2m + 1. The
vector space Va of antisymmetric functions has an orthonormal
basis

Bantisym =

{
Bj − B−j√

2

∣∣∣ j = 1, . . . , 2m

}
= { aj + a′

j | j = 1, . . . , 2m },
where the functions aj and a′

j are given by equations (7.15).

Subcase n = 4m + 1. Since Ei is a proper subspace of Va and, by
(7.1), dim Va = 2m, we have dim Ei < 2m. It follows that the
functions a1, . . . , a2m, all elements of Ei, are linearly dependent.
We claim that a1, . . . , am are linearly independent. Suppose that
for some real numbers c1, . . . , cm the function A = c1a1+· · ·+cmam

is identically zero on the group Z4m+1. Then, in particular, A(k) =
0 for k = m + 1, . . . , 2m or, equivalently, Mic = 0, where
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Mi =

�
�������

sin 2(m+1)
4m+1

π sin 2 2(m+1)
4m+1

π sin 3 2(m+1)
4m+1

π . . . sin m 2(m+1)
4m+1

π

sin 2(m+2)
4m+1

π sin 2 2(m+2)
4m+1

π sin 3 2(m+2)
4m+1

π . . . sin m 2(m+2)
4m+1

π
...

. . .
...

sin 4m
4m+1

π sin 2 4m
4m+1

π sin 3 4m
4m+1

π . . . sin m 4m
4m+1

π

�
�������

m×m

and c is the column vector in R
m whose coordinates are c1, . . . , cm.

For � = 1, . . . , m, let

x� =
2(m + �)

4m + 1
π

and define the real-valued function φ� on the interval [0, π) by
φ�(x) = sin �x. In terms of these functions Mi = (φs(xt)), where
s, t = 1, . . . , m. By Theorems 1.3.2 and 1.3.3(i), the matrix Mi is
nonsingular. It follows that c = 0, so the functions a1, . . . , am are
linearly independent. Since these linearly independent functions
are elements of Ei, dim Ei ≥ m.

For the space E−i, we claim that a′
1, . . . , a

′
m are linearly indepen-

dent. Suppose that for some real numbers c1, . . . , cm the function
A′ = c1a

′
1 + · · ·+cma′

m is identically zero on Z4m+1. Then, in parti-
cular, A′(k) = 0 for k = m + 1, . . . , 2m or, equivalently, M−ic = 0,
where M−i = Mi is nonsingular and c is the column vector in R

m

whose coordinates are c1, . . . , cm. Thus, c = 0 and the functions
a′

1, . . . , a
′
m are linearly independent, whence dim E−i ≥ m.

Subcase n = 4m + 2. For the space Ei we claim that the functions
a1, . . . , am are linearly independent and for the space E−i we claim
that a′

1, . . . , a
′
m are linearly independent. Analogous to the subcase

n = 4m + 1 we have Mi = M−i and Mic = 0, where

Mi =

⎛
⎜⎜⎜⎜⎜⎝

sin m+1
2m+1

π sin 2 m+1
2m+1

π sin 3 m+1
2m+1

π . . . sin m m+1
2m+1

π

sin m+2
2m+1

π sin 2 m+2
2m+1

π sin 3 m+2
2m+1

π . . . sin m m+2
2m+1

π
...

. . .
...

sin 2m
2m+1

π sin 2 2m
2m+1

π sin 3 2m
2m+1

π . . . sin m 2m
2m+1

π

⎞
⎟⎟⎟⎟⎟⎠

m×m

and c is the column vector in R
m whose coordinates are c1, . . . , cm.

For � = 1, . . . , m, let
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x� =
m + �

2m + 1
π

and define the real-valued function φ� on the interval [0, π) by
φ�(x) = sin �x. In terms of these functions Mi = (φs(xt)), where
s, t = 1, . . . , m. By Theorems 1.3.2 and 1.3.3(i), the matrix Mi is
nonsingular. Thus c = 0, whence dim Ei ≥ m and dim E−i ≥ m.

Since 2m = dim Va = dim Ei + dim E−i, we conclude that

dim Ei = m,

dim E−i = m.

The sets {a1, . . . , am} and {a′
1, . . . , a

′
m} are bases for Ei and E−i,

respectively.

Case 3. n≡ 3 (mod 4), that is, n = 4m + 3 for some nonnegative
integer m. We have �n/2� = 2m + 2. The vector space Va of anti-
symmetric functions has an orthonormal basis

Bantisym =

{
Bj − B−j√

2

∣∣∣ j = 1, . . . , 2m + 1

}
= { aj + a′

j | j = 1, . . . , 2m + 1 },

where the functions aj and a′
j are given by equations (7.15).

Analogous to the subcase n = 4m + 1 we have Mic = 0, where

Mi =

�
�������

sin 2(m+1)
4m+3

π sin 2 2(m+1)
4m+3

π sin 3 2(m+1)
4m+3

π . . . sin m 2(m+1)
4m+3

π

sin 2(m+2)
4m+3

π sin 2 2(m+2)
4m+3

π sin 3 2(m+2)
4m+3

π . . . sin m 2(m+2)
4m+3

π
...

. . .
...

sin 4m
4m+3

π sin 2 4m
4m+3

π sin 3 4m
4m+3

π . . . sin m 4m
4m+3

π

�
�������

m×m

and c is the column vector in R
m whose coordinates are c1, . . . , cm.

For � = 1, . . . , m, let

x� =
2(m + �)

4m + 3
π

and define the real-valued function φ� on the interval [0, π) by
φ�(x) = sin �x. In terms of these functions Mi = (φs(xt)), where
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s, t = 1, . . . , m. By Theorems 1.3.2 and 1.3.3(i), the matrix Mi is
nonsingular, hence c = 0. It follows that dim Ei ≥ m.

For the space E−i, we claim that a′
1, . . . , a

′
m, a′

2m+1 are linearly
independent. Suppose that for some real numbers c1, . . . , cm, c2m+1

the function

A′ = c1a
′
1 + · · ·+ cma′

m + c2m+1a
′
2m+1

is identically zero on Z4m+3. Then, in particular, A′(k) = 0 for
k = m + 1, . . . , 2m + 1 or, equivalently, M−ic = 0, where M−i is
the (m + 1) × (m + 1) matrix
�
������������

sin 2(m+1)
4m+3

π sin 2 2(m+1)
4m+3

π . . . sin m 2(m+1)
4m+3

π sin(2m+1) 2(m+1)
4m+3

π

sin 2(m+2)
4m+3

π sin 2 2(m+2)
4m+3

π . . . sin m 2(m+2)
4m+3

π sin(2m+1) 2(m+2)
4m+3

π
...

. . .
...

sin 2(2m)
4m+3

π sin 2 2(2m)
4m+3

π . . . sin m 2(2m)
4m+3

π sin(2m+1) 2(2m)
4m+3

π

sin 2(2m+1)
4m+3

π sin 2 2(2m+1)
4m+3

π . . . sin m 2(2m+1)
4m+3

π
√

4m+3
2

+sin(2m+1) 2(2m+1)
4m+3

π

�
������������

and c is the column vector in R
m+1 whose coordinates are

c1, . . . , cm, c2m+1. The sine terms in the last column of M−i

are sin(2m + 1)2(m+�)
4m+3

π for � = 1, . . . , m + 1. The inequalities

0 <
m + �

4m + 3
< 1

and

(2m + 1)
2(m + �)

4m + 3
π =

(
1 − 1

4m + 3

)
(m + �)π

imply that

sin
m + �

4m + 3
π > 0

and

sin(2m + 1)
2(m + �)

4m + 3
π = −[cos(m + �)π] sin

m + �

4m + 3
π

= (−1)m+�+1 sin
m + �

4m + 3
π.
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Thus, the entries in the last column of M−i are nonzero real
numbers with alternating sign. Alternatively, M−i can also be con-
structed from Mi. First, insert the row vector(

sin
2(2m + 1)

4m + 3
π, sin 2

2(2m + 1)

4m + 3
π, . . . , sin m

2(2m + 1)

4m + 3
π

)

into Mi in such a way that it is the last row of the resulting matrix,
call it Mresult. Second, insert the column vector⎛

⎜⎜⎜⎜⎜⎜⎜⎝

sin(2m + 1)2(m+1)
4m+3

π

sin(2m + 1)2(m+2)
4m+3

π
...

sin(2m + 1)2(2m)
4m+3

π
√

4m+3
2

+ sin(2m + 1)2(2m+1)
4m+3

π

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(m+1)×1

into Mresult to obtain M−i. Since the coordinates of this column
vector are alternating sign nonzero real numbers, Theorems 1.3.2
and 1.3.3 imply that the matrix M−i is nonsingular. It follows that
c = 0, so dim E−i ≥ m + 1.

Since 2m + 1 = dim Va = dim Ei + dim E−i, we conclude that

dim Ei = m + 1,

dim E−i = m.

The sets {a1, . . . , am} and {a′
1, . . . , a

′
m, a′

2m+1} are bases for Ei and
E−i, respectively.

We summarize the results just proved in the theorem that
follows, which is due to McClellan and Parks [13].

Theorem 7.5.1. Let n be a positive integer and for k = 0, . . . ,
�n/2� let

εk =

{
2 if k = 0 or if n is even and k = n/2,√

2 otherwise;

i.e., εk is the norm of the function Bk + B−k.
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(i) The eigenvalues of the FT on Zn are ±1, ±i. Further, if mλ

denotes the multiplicity of the eigenvalue λ, then the values
of m1, m−1, mi, and m−i are given in the following table:

n m1 m−1 mi m−i

4m m + 1 m m − 1 m
4m + 1 m + 1 m m m
4m + 2 m + 1 m + 1 m m
4m + 3 m + 1 m + 1 m m + 1

(ii) A basis for the eigenspace corresponding to the eigenvalue 1:
If n = 4m, 4m + 1, then{

Bj + B−j + δj + δ−j

2εj

∣∣∣ j = 0, . . . , m − 1, 2m

}
is a basis. If n = 4m + 2, 4m + 3, then{

Bj + B−j + δj + δ−j

2εj

∣∣∣ j = 0, . . . , m

}
is a basis.

(iii) A basis for the eigenspace corresponding to the eigenvalue −1:
If n = 4m, 4m + 1, then{

Bj + B−j − (δj + δ−j)

2εj

∣∣∣ j = 0, . . . , m − 1

}
is a basis. If n = 4m + 2, 4m + 3, then{

Bj + B−j − (δj + δ−j)

2εj

∣∣∣ j = 0, . . . , m

}
is a basis.

(iv) A basis for the eigenspace corresponding to the eigenvalue i:
If n = 4m, then{

i(Bj − B−j) + (δj − δ−j)

i2
√

2

∣∣∣ j = 1, . . . , m − 1

}
is a basis. If n = 4m + 1, 4m + 2, 4m + 3, then{

i(Bj − B−j) + (δj − δ−j)

i2
√

2

∣∣∣ j = 1, . . . , m

}
is a basis.
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(v) A basis for the eigenspace corresponding to the eigenvalue −i:
If n = 4m, then{

i(Bj − B−j) − (δj − δ−j)

i2
√

2

∣∣∣ j = 1, . . . , m − 1, 2m − 1

}

is a basis. If n = 4m + 1, 4m + 2, then{
i(Bj − B−j) − (δj − δ−j)

i2
√

2

∣∣∣ j = 1, . . . , m

}

is a basis. If n = 4m + 3, then{
i(Bj − B−j) − (δj − δ−j)

i2
√

2

∣∣∣ j = 1, . . . , m, 2m + 1

}

is a basis.

In the table, for instance, if n = 4m > 0, then the eigenvalues
1, −1, i, and −i have multiplicities m + 1, m, m − 1, and m,
respectively. Also, the theorem says that for a fixed integer n,
where n > 2, all 4th roots of unity are eigenvalues of the FT on
Zn.

Corollary 7.5.1. The trace and determinant of the FT on Zn are
given in the following table:

n tr(F) detF
4m 1 − i i(−1)m+1

4m + 1 1 (−1)m

4m + 2 0 (−1)m+1

4m + 3 −i i(−1)m
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The Quantum Fourier Transform

The FT has many applications, particularly in the fields of quantum
computation and quantum information. In these fields, the FT is
often called the quantum Fourier transform. Traditionally, nota-
tion used in quantum physics (i.e., the Dirac notation) to denote
vectors is different from that used in mathematics. In this chapter,
we introduce the Dirac notation and describe the FT in terms of
the new notation.

8.1 The Dirac Notation

Let V be a finite-dimensional complex inner product space. The
Dirac notation is defined for nonzero vectors only; the zero vector

by |x〉, called the ket-vector x; the bra-vector x, denoted by 〈x|,
is defined to be the dual of x. In terms of ket and bra vectors, for
x, y ∈ V , the value of the linear functional y∗ at x (recall (2.6)) is
denoted by 〈y|x〉, i.e.,

〈y|x〉 = 〈x, y〉.
Because of this equation, we call 〈y|x〉 the inner product of x
and y.

In particular, if x = (x1, . . . , xn) and y = (y1, . . . , yn) are
nonzero vectors in C

n, then

〈y|x〉 = 〈x, y〉 =
n∑

j=1

xj ȳj.

©  Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
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of V is denoted by 0 (as usual). A nonzero vector x ∈ V is denoted
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In practice, the ket-vector x, i.e., |x〉, is considered to be the
column vector ⎛

⎜⎝
x1
...
xn

⎞
⎟⎠ (8.1)

and the bra-vector y, i.e., 〈y|, is considered to be the row vector
(ȳ1, . . . , ȳn). With that in mind, the inner product 〈y|x〉 can be
thought of as multiplication of matrices. That is, if we consider the
row vector (ȳ1, . . . , ȳn) as a 1 × n matrix and the column vector
(8.1) as an n × 1 matrix, then

〈y|x〉 = (ȳ1 · · · ȳn)

⎛
⎜⎝

x1
...
xn

⎞
⎟⎠ .

Let G be a finite Abelian group. Recall from Section 2.3 that
the set ΔG = {δg | g ∈ G} is the standard orthonormal basis of the
complex vector space VG associated with G. In terms of the ket-
vector notation, we denote δg simply by |g〉. With this notation,
equation (4.10) becomes

|f〉 =
∑
g ∈G

〈g|f〉 |g〉,

where f is any non-identically zero complex-valued function defined
on G and 〈g|f〉 = 〈f, δg〉 = f(g).

The purpose of the following example is to emphasize that the
symbol |0〉 does not denote the zero vector! (Recall that the ket
and bra vector notation are not defined for the zero vector.)

Example 8.1.1. If G = Zn, then |0〉 is a unit vector in the basis
ΔZn and 〈0| is a linear functional on VZn , which is the dual of |0〉.

In summary, for a finite Abelian group G, the set ΔG =
{|g〉 | g ∈ G} is the standard orthonormal basis 1 for the inner

1 Also called the standard computational basis.
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product space VG. The dual of ΔG is the set Δ∗
G = {〈g| : g ∈ G},

which is an orthonormal basis of the dual space V ∗
G.

The character basis BG =
{|Bg〉 : g ∈ G

}
is sometimes called

the Fourier basis of VG.

Example 8.1.2. Let V and W be finite-dimensional complex inner
product spaces. If |v〉 ∈ V and |w〉 ∈ W , then the symbols |w〉〈v|
define a linear operator from V to W , which maps a vector |v′〉
in V to the vector 〈v|v′〉|w〉 in W . The operator |w〉〈v| is called
an outer product of |w〉 and |v〉, (another outer product of |w〉
and |v〉 is |v〉〈w|, a linear operator from W to V ). In general, if
{|v1〉, . . . , |vn〉} and {|w1〉, . . . , |wn〉} are finite sets of vectors in V
and W , respectively, then the equation

L = |w1〉〈v1| + · · ·+ |wn〉〈vn|
defines a linear operator L from V to W . The image of a vector
|v〉 ∈ V is given by the equation

L|v〉 = 〈v1|v〉|w1〉 + · · · + 〈vn|v〉|wn〉,

where L|v〉 = L(|v〉).
A special case of Example 8.1.2: let G be a finite Abelian group.

For a fixed g ∈ G, the outer product |g〉〈g| is the orthogonal
projection of VG onto the one-dimensional subspace spanned by
the unit vector |g〉. More general, if S is a nonempty subset of G,
then the equation

L =
∑
g ∈S

|g〉〈g|

defines the orthogonal projection of VG onto the subspace spanned
by the orthonormal set of vectors {|g〉 : g ∈ S}. In particular, if
S = G, then L is the identity operator I on VG, i.e.,

I =
∑
g ∈G

|g〉〈g|. (8.2)

Equation (8.2) is known as the completeness relation for the
orthonormal vectors |g〉, g ∈ G.
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8.2 The Fourier Transform in the Dirac
Notation

For each non-identically zero complex-valued function f defined
on G, i.e., |f〉 ∈ VG, we denote the FT of |f〉 by either F|f〉 or

|̂f〉. These notations shall be used interchangeably.
In the Dirac notation for vectors, equation (4.1) becomes

F =
∑

x, y ∈G

〈Bx|y〉 |x〉〈y|,

where 〈Bx|y〉 = 〈δy, Bx〉 = B̄x(y). Since F is linear, it is uniquely
determined by its action on any basis of VG. Often, we determine
F by expressing its values at the vectors in the standard compu-
tational basis ΔG; by the orthonormal property of the basis ΔG,
the image of |y〉 ∈ ΔG under F is

|̂y〉 =
∑
x∈G

〈Bx|y〉 |x〉.

Example 8.2.1. Let x = (x1, . . . , xm) and y = (y1, . . . , ym) be ele-
ments of the group G = Zn1 × · · · × Znm . By (3.4), we have

B̄x(y) =
1√

n1 . . . nm

e
−2πi

�
x1y1
n1

+···+ xmym
nm

�
,

whence

|̂y〉 =
1√

n1 . . . nm

∑
x∈G

e
−2πi

�
x1y1
n1

+···+ xmym
nm

�
|x〉.

It follows from this formula (with y = 0) that

|̂0〉 =
1√|G|

∑
x∈G

|x〉.

Example 8.2.2. If G = Z
m
n , then by the previous example (with

nj = n, for j = 1, . . . , m) we have

|̂y〉 =
1√
nm

∑
x∈Zm

n

e−
2πi
n

x·y |x〉 (8.3)
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for all y ∈ Z
m
n , where x ·y = x1y1 + · · · + xmym. In particular, if

n = 2, then

|̂y〉 =
1√
2m

∑
x∈Z

m
2

(−1)x·y |x〉. (8.4)

For the group Zn = {j | j = 0, . . . , n − 1}, we have, by (8.3)
with m = 1, that

|̂j〉 =
1√
n

∑
k ∈Zn

e−
2πi
n

jk |k〉. (8.5)

Setting n = 2 in equation (8.5) (or setting m = 1 in equation
(8.4)) we obtain

|̂0〉 =
|0〉 + |1〉√

2
and |̂1〉 =

|0〉 − |1〉√
2

,

which can be combined into one formula as

|̂k〉 =
|0〉 + (−1)k|1〉√

2
, (8.6)

where k = 0, 1.

Notation conventions. There are notation conventions for the ten-
sor product when the group in consideration (or the underlying
group) is either Z

m
2 or Z2m . First, if the underlying group is Z

m
2

and y = (y1, . . . , ym) is an element of this group, then by Exer-
cise 15 (at the end of Chapter 3) and Theorem 6.2.1 we have

δy = δy1 ⊗ · · · ⊗ δym and δ̂y = δ̂y1 ⊗ · · · ⊗ δ̂ym .

In the ket-vector notation, these equations become

|y〉 = |y1〉 ⊗ · · · ⊗ |ym〉 and |̂y〉 = |̂y1〉 ⊗ · · · ⊗ |̂ym〉, (8.7)

respectively.
Since there is a natural one-to-one correspondence between the

set Z
m
2 and the set of all bit-strings of length m given by

(y1, . . . , ym) ↔ y1 . . . ym,
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we may identify y with the ordered bit-string y1 . . . ym and write
y = y1 . . . ym. Also, for simplicity we write the tensor product
|y1〉 ⊗ · · · ⊗ |ym〉 simply as |y1〉 · · · |ym〉. With this simplification
and the defined identification, equations (8.7) can be written as

|y〉 = |y1 . . . ym〉 = |y1〉 · · · |ym〉 and |̂y〉 = |̂y1〉 . . . |̂ym〉. (8.8)

Second, since the groups Z2m and Z
m
2 have the same num-

ber of elements, namely, 2m, there is a one-to-one correspondence
between them. Moreover, there is a canonical one-to-one corre-
spondence between the two groups, which may be described as
follows: by the Euclidean division algorithm, each y ∈ Z2m can be
expressed uniquely in base 2 as

y = y12
m−1 + y22

m−2 + · · · + ym−12 + ym,

where, for each j = 1, . . . , m, yj is either 0 or 1. Thus, the function
ω : Z2m → Z

m
2 defined by

ω(y) = y1 . . . ym

is bijective. The ordered bit-string y1 . . . ym is the binary represen-
tation of y. Through the correspondence ω, we identify y with its
binary representation y1 . . . ym and write

y = y1 . . . ym.

Remarks.

1) Since ω is a one-to-one correspondence between the bases ΔZ2m

and ΔZ
m
2

of the inner product spaces VZ2m and VZ
m
2
, respectively,

the linear extension of ω to the entire space VZ2m , also denoted
by ω, is an isometry between VZ2m and VZ

m
2
.

2) For y ∈ Z2m , we observe from (8.5) with n = 2m, where m > 1,
that some 2 coefficients of the vector F|y〉 (in the basis ΔZ2m )
are complex numbers (which are not real), whereas by (8.4)
all coefficients of the vector F|ω(y)〉 ∈ VZ

m
2

(in the basis ΔZ
m
2
)

are real numbers; in fact, they are either 1 or −1. Thus, the
following diagram is not commutative:

2 If m is large, then most of the coefficients are in C and not in R.
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VZ2m

F−−−→ VZ2m

ω

⏐⏐+ ⏐⏐+ω

VZ
m
2

F−−−→ VZ
m
2

3) In the field of quantum computation, often the space VZ2m is
used as a state space (i.e., an underlying space in which all
mathematical representations of a quantum physical system
under consideration take place). To compute the FT of basis
vectors, i.e., to evaluate finite sums such as that in (8.5) with
n = 2m, it is convenient to identify the spaces VZ2m and VZ

m
2

by the identification ω. Then, a quantum circuit (i.e., a compo-
sition of a finite number of tensor products of, not necessarily
distinct, linear isometries on VZ2) is used for the computation.
That is, to compute the sum in (i) of Theorem 8.2.1 below, a
quantum circuit is used to compute its identification, the tensor
product. The point here is that the correspondence ω necessi-
tates the construction of a quantum algorithm to evaluate the
FT on Z2m . For this reason, the product (or composition) ωF
is useful.

Theorem 8.2.1.

(i) For each j ∈ Z2m, we have the identity

2m−1∑
k=0

e−
2πi
2m jk |k〉 =

m⊗
ν=1

(|0〉 + e−
2πi
2ν j|1〉).

(ii) For each y = (y1, . . . , ym) ∈ Z
m
2 , we have the identity

∑
x∈Z

m
2

(−1)x·y |x〉 =
m⊗

ν=1

(|0〉 + (−1)yν |1〉).

Notes.

(a) In this theorem the notation
⊗

has the following meaning:

m⊗
ν=1

|xν〉 = |x1〉 . . . |xm〉.
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(b) In (i), the sum is an element of the vector space VZ2m while the
tensor product is an element of the space VZ

m
2
. The equality

means that they are identified by the correspondence ω.

Proof of Theorem 8.2.1. To prove (i), for each k = 0, . . . , 2m − 1,
we express k (in base 2) as

k = k12
m−1 + k22

m−2 + · · ·+ km−12 + km,

where kν = 0, 1. Upon dividing both sides by 2m, we have

k

2m
=

k1

2
+

k2

22
+ · · · + km−1

2m−1
+

km

2m
.

If we write k = k1 . . . km, then

2m−1∑
k=0

e−
2πi
2m jk |k〉 =

1∑
k1,...,km=0

e−2πij(
�m

ν=1
kν
2ν )|k1 . . . km〉

=

1∑
k1,...,km=0

m⊗
ν=1

e−
2πi
2ν jkν |kν〉

=

m⊗
ν=1

1∑
kν=0

e−
2πi
2ν jkν |kν〉 (bilinearity of ⊗)

=

m⊗
ν=1

(
|0〉 + e−

2πi
2ν j |1〉

)
.

(ii) Let y = (y1, . . . , ym) be an element of the group Z
m
2 and iden-

tify y with the ordered bit-string y1 . . . ym, i.e., write y = y1 . . . ym.
Since |y〉 = |y1〉 . . . |ym〉, it follows from (8.8) and (8.6) that

|̂y〉 =
m⊗

ν=1

|̂yν〉 =
1√
2m

m⊗
ν=1

(
|0〉 + (−1)yν |1〉

)
.

On the other hand, we recall from (8.4) that

|̂y〉 =
1√
2m

∑
x∈Z

m
2

(−1)x·y |x〉.
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The FT plays an important role in the two well-known quantum
algorithms, Shor’s and Grover’s algorithms. For readers who are
interested in quantum computation and, in particular, the two
mentioned quantum algorithms we recommend [18].

Exercise.

.55 In this exercise we assume that V is a finite-dimensional
complex inner product space and every vector belongs to V .
Also, we denote the adjoint of a linear operator A (on V ) by
A∗. Prove the following:

(i) (|x〉〈y|)∗ = |y〉〈x|; in particular, |x〉〈x| is self-adjoint.
(ii) |x〉〈y||u〉〈v| = 〈y|u〉|x〉〈v|.
(iii) ‖|x〉〈y|‖ = ‖|x〉‖‖|y〉‖.
(iv) P is a 1-dimensional orthogonal projection (i.e., projec-

tion of rank 1) if and only if P = |x〉〈x| for some unit
vector |x〉.

(v) A|x〉〈y| = |Ax〉〈y| and |x〉〈y|A = |x〉〈A∗y|. It follows
that if V = VG and A = F , then we have

F|f〉〈g| = |f̂〉〈g|

for every f and g in VG.
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Quadratic Gaussian Sums

Recall that the quadratic Gaussian sum of order n is the complex-
valued function Gn defined on the set of integers by the equation

Gn(x) =
1√
n

∑
k ∈Zn

e−
2πi
n

k2x.

If n is prime, then one may use the expression on the left of the
equation in Theorem 1.2.3 as a definition for Gn(x) (see page 71
of [7]).

9.1 The Number Gn 1)Gn(1)

For an odd prime p, we showed that Gp(1) is an eigenvalue of the
FT on Zp (Theorem 7.2.4 on page 101). Also, Corollary 7.2.2 on
page 103 reduces the determination of Gp(a) to the evaluation of
Gp(1). Presently, we evaluate Gp(1). We can do more by giving a
general formula for Gn(1).

Theorem 9.1.1. If n is a positive integer, then

Gn(1) =
1 + in

1 + i
.

Proof. Consider the function f : [0, 1] → C defined by

f(x) =
1√
n

n−1∑
k=0

e−
2πi
n

(k+x)2 .

©  Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2009
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Since f(0) = f(1) (by Theorem 1.1 on page 2), we can extend
f periodically (with period 1) to a piecewise smooth continuous
function on R. If we denote this extension also by f , then the
Fourier series of f converges (uniformly) to f at every point x ∈ R,
that is,

f(x) =
∞∑

m=−∞
ame2πimx,

where

am =

∫ 1

0

f(x)e−2πimx dx. (9.1)

Since Gn(1) = f(0) =
∑∞

m=−∞ am, our aim is to evaluate this
infinite series. First, we express the general term am in a form
that can be added without much difficulty. Using the defining sum
of f in the integrand of (9.1) we have

am =
1√
n

∫ 1

0

n−1∑
k=0

e−
2πi
n

(k+x)2e−2πimx dx

=
1√
n

n−1∑
k=0

∫ 1

0

e−2πi (k+x)2+mnx
n dx.

Now the exponent of e in the last integral can be rewritten as
follows:

− 2πi
(k + x)2 + mnx

n

= −2πi

((
k + x + 1

2
mn

)2 − kmn − 1
4
m2n2

n

)

= −2πi

((
k + x + 1

2
mn

)2

n
− km − 1

4
m2n

)

= −2πi

(
k + x + 1

2
mn

)2

n
+ 2πikm +

πi

2
m2n.

It follows that

e−2πi (k+x)2+mnx
n = e

πi
2

m2ne−2πi
(k+x+ 1

2 mn)2

n = im
2ne−2πi

(k+x+1
2 mn)2

n ,
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whence

am =
im

2n

√
n

n−1∑
k=0

∫ 1

0

e−2πi
(k+x+1

2 mn)2

n dx.

The change of variable u = k + x + 1
2
mn leads to

am =
im

2n

√
n

n−1∑
k=0

∫ k+1+ 1
2
mn

k+ 1
2
mn

e−2πi u2

n du =
im

2n

√
n

∫ n+ 1
2
mn

1
2
mn

e−2πi u2

n du.

Using the last equation for am we have

Gn(1) =

∞∑
m=−∞

am =
1√
n

∞∑
m=−∞

im
2n

∫ n+ 1
2
mn

1
2
mn

e−2πi u2

n du.

Next, since

m2 ≡
{

0 (mod 4) if m is even,

1 (mod 4) if m is odd,

we have

im
2n =

{
1 if m is even,

in if m is odd.

Consequently,

Gn(1)

=
1√
n

{ ∑
m even

∫ n+ 1
2
mn

1
2
mn

e−2πi u2

n du + in
∑

m odd

∫ n+ 1
2
mn

1
2
mn

e−2πi u2

n du

}

=
1 + in√

n

∫ ∞

−∞
e−2πi u2

n du

= (1 + in)2

∫ ∞

0

e−2πit2 dt (t = u/
√

n).

To evaluate the last integral, we observe that

1 = G1(1) = (1 + i)2

∫ ∞

0

e−2πit2 dt,
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from which we may conclude that

2

∫ ∞

0

e−2πit2 dt =
1

1 + i
. (9.2)

Therefore, we have

Gn(1) =
1 + in

1 + i
.

The proof of Theorem 9.1.1 contains the following results
(which is normally seen in advanced calculus):

∫ ∞

0

cos(x2) dx =

∫ ∞

0

sin(x2) dx =
1

2

√
π

2
.

These equations follow from (9.2) by equating the real and imagi-
nary parts of the two sides.

9.2 Reduction Formulas

After we found a simple formula for Gn(1), we concentrate on
evaluating (or simplifying) Gn(a) for arbitrary integers a and n
with n > 0. We need the following lemma.

Lemma 9.2.1.

(i) If m and n are relatively prime positive integers, then

Zmn = nZm + mZn (mod mn)

=
{
(nx + my) (mod mn) | x ∈ Zm and y ∈ Zn

}
.

(ii) If j and n are positive integers, then

Znν = nν−j
Znj + Znν−j =

{
nν−jα + β | α ∈Znj and β ∈Znν−j

}
for any integer ν ≥ j.

Proof. (i) It is clear that nZm + mZn (mod mn) ⊂ Zmn. For the
reverse inclusion let k ∈ Zmn. If m and n are relatively prime, then
c1n+c2m = 1 for some integers c1 and c2, so k = kc1n+kc2m. Now
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observe that there are integers j and j′ such that x
def
= (jm+kc1) ∈

Zm and y
def
= (j′n + kc2) ∈ Zn. Then we have

k = nx + my (mod mn),

whence Zmn ⊂ nZm + mZn (mod mn).
(ii) Fix a positive integer j and assume that ν ≥ j. Since

0 ≤ nν−jα + β ≤ nν − 1 for any α ∈ Znj and β ∈ Znν−j , we have
nν−j

Znj + Znν−j ⊂ Znν . Conversely, the Euclidean division algo-
rithm implies that every m ∈ Znν can be written as m = αnν−j +β
for some α ∈ Znj and β ∈ Znν−j . Thus Znν ⊂ nν−j

Zn + Znν−j .

The following theorem enables us to evaluate Gn(a).

Theorem 9.2.1. Let a, m, n, and ν be integers. Suppose that
m, n > 0, p is a prime, and p � a.

(i) If m and n are relatively prime, then Gmn(a) = Gm(an)
Gn(am).

(ii) If k ∈ Z and ν ≥ 1, then Gnν (kn) =
√

n Gnν−1(k).
(iii) If either ν ≥ 2 and p > 2 or ν ≥ 4 and p = 2, then Gpν(a) =

Gpν−2(a).

Proof. (i) Assume that m and n are relatively prime. We have

Gm(an)Gn(am) =
1√
m

∑
α∈Zm

e−2πi anα2

m
1√
n

∑
β ∈Zn

e−2πi amβ2

n

=
1√
mn

∑
α∈Zm
β ∈Zn

e−2πiaα2n2+β2m2

mn

=
1√
mn

∑
α∈Zm
β ∈Zn

e−2πia (αn+βm)2

mn

=
1√
mn

∑
k∈Zmn

e−
2πiak2

mn

(
Lemma 9.2.1(i)

)
= Gmn(a).
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(ii) Assume that ν ≥ 1. For a ∈ Z we have

Gnν (a) =
1√
nν

∑
m∈Znν

e−
2πiam2

nν =
1√
nν

∑
α∈Zn
β ∈Znν−1

e−
2πia(β+αnν−1)2

nν ,

where the last equality is assured by Lemma 9.2.1(ii) (with j = 1).
It follows from the following equation for the exponent

−2πia(β + αnν−1)2

nν
= −2πiaβ2

nν
− 4πiaα

β

n
− 2πiaα2nν−2,

that

Gnν(a) =
1√
nν

∑
β ∈Znν−1

e−
2πiaβ2

nν

∑
α∈Zn

e−4πiaα β
n e−2πiaα2nν−2

. (9.3)

Thus, for a = kn we have e−4πiaαβ/n = 1 and equation (9.3) be-
comes

Gnν (kn) =
1√
nν

∑
β ∈Znν−1

e−
2πikβ2

nν−1

∑
α∈Zn

e−2πikα2nν−1

.

The assumption ν ≥ 1 assures that e−2πikα2nν−1
= 1, hence

Gnν(kn) =
n√
nν

∑
β ∈Znν−1

e−
2πikβ2

nν−1

=
n√
nν

√
nν−1 Gnν−1(k) =

√
nGnν−1(k).

(iii) First, assume that ν ≥ 2 and p is odd. The assumption ν ≥ 2
implies that e−2πiaα2pν−2

= 1, thus equation (9.3) (with n = p) is
simplified to

Gpν(a) =
1√
pν

∑
β ∈Zpν−1

e−
2πiaβ2

pν
∑

α∈Zp

e−4πiaα β
p .

By the geometric progression formula (in the case p � β)

∑
α∈Zp

e−4πiaα β
p =

{
p if p | β,

0 if p � β,
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whence

Gpν(a) =
p√
pν

∑
β ∈Zpν−1

p |β

e−
2πiaβ2

pν =
1√
pν−2

∑
β ∈Zpν−1

p | β

e
− 2πia

pν−2 (
β
p )

2

.

Since the subset of Zpν−1 that consists of multiples of p is pZpν−2,
we have

Gpν (a) =
1√
pν−2

∑
k ∈Zpν−2

e
− 2πiak2

pν−2 = Gpν−2(a).

Next, assume that ν ≥ 4 and p = 2. We have

G2ν (a) =
1√
2ν

∑
k∈Z2ν

e−
2πiak2

2ν

=
1√
2ν

∑
α∈Z22

β ∈Z2ν−2

e−
2πia(β+α2ν−2)2

2ν

(
Lemma 9.2.1(ii)

with j = 2 and n = 2
)

=
1√
2ν

∑
β ∈Z2ν−2

e−
2πiaβ2

2ν

∑
α∈Z22

e−πiaαβ .

It is easy to verify that

∑
α∈Z4

e−πiaαβ = 2
(
1 + e−πiaβ

)
=

{
4 if 2 | β,

0 if 2 � β,

whence

G2ν (a) =
4√
2ν

∑
β ∈Z2ν−2

2 | β

e−
2πiaβ2

2ν =
2√
2ν−2

∑
β ∈Z2ν−2

2 |β

e−
2πia
2ν−2 (

β
2 )

2

.

Since the subset of Z2ν−2 that consists of multiples of 2 is 2Z2ν−3 ,
we have

G2ν(a) =
2√
2ν−2

∑
k ∈Z2ν−3

e−
2πiak2

2ν−2 .

Finally, equation (1.7) on page 15 implies that

G2ν (a) =
1√
2ν−2

∑
k∈Z2ν−2

e−
2πiak2

2ν−2 = G2ν−2(a).
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Statement (i) of Theorem 9.2.1 reduces the study of Gm(n) to a
special case Gpν(n), where p is a prime. Statement (ii) reduces the
determination of Gpν (n) to the case Gpν(n), where p � n. Statement
(iii) reduces the power ν to its smallest permissible value. When
p = 2 and n is odd, the determination of Gpν(n) rests on the
evaluation of either G4(n) or G8(n) depending on whether ν is
even or odd, respectively. The evaluations of G4(n) and G8(n) are
trivial; their values are given in the following corollary.

Corollary 9.2.1. Suppose that k, n, ν are integers.

(i)

G2(n) =

{
0 if n is odd,√

2 if n is even.

G4(n) = 1 + (−i)n.

G8(n) =
1√
2

(
1 + (−1)n + 2e−

nπi
4

)
.

(ii) If ν > 0, p is an odd prime, and a is an integer that is not
divisible by p, then

Gpν(a) =

{
1 if ν is even,

(a/p)Gp(1) if ν is odd.

(iii) If ν ≥ 4 and n is odd, then

G2ν (n) =

{
1 − in if ν is even,√

2e−
nπi
4 if ν is odd.

(iv) If ν > n ≥ 0 and k is odd, then G2ν (k2n) = (
√

2)nG2ν−n(k).

Example 9.2.1. Suppose that n = 1139062500 and a = 7882875.
This example illustrates the use of various results obtained to
evaluate Gn(a). First, it is necessary to find the prime power
decomposition of n. We find that n = (22)(36)(58). Then by (i)
of Theorem 9.2.1 we have
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Gn(a) = G22(3658a)G3658(22a)

= G22(3658a)G36(2258a)G58(2236a).

Next, we evaluate each term in the product on the right-hand
side of the last equality separately. For that, it is necessary to
find the prime power decomposition of a. We find that a =
(32)(53)(72)(11)(13).

Evaluation of G22(3658a): By (iii) of the previous corollary,
G22(3658a) = 1 − i3

658a. Since 3658a ≡ 3 (mod 4) we have i3
658a =

−i, whence
G22(3658a) = 1 + i. (9.4)

Evaluation of G36(2258a): By (ii) of Theorem 9.2.1 and (ii) of
the previous corollary, we have

G36(2258a) = G36(2232b) = 3G34(22b) = 3, (9.5)

where b = 51172(11)(13).
Evaluation of G58(2236a): We have G58(2236a) = G58(53c)

with c = 223872(11)(13). Part (ii) of Theorem 9.2.1 implies that
G58(2236a) = 5

√
5G55(c). By (ii) of the previous corollary and (i)

of Theorem 1.2.1,

G58(2236a) = 5
√

5(22/5)(38/5)(72/5)(11/5)(13/5)G5(1).

Again, by (i) of Theorem 1.2.1, we have

G58(2236a) = 5
√

5(2/5)2(3/5)8(7/5)2(11/5)(13/5)G5(1).

Since the value of each of the Legendre symbols (2/5), (3/5), and
(7/5) is either 1 or −1, the square of each has value 1. Also, since
(11/5) = 1 and (13/5) = −1, it follows that

G58(2236a) = −5
√

5G5(1) = −5
√

5
1 + i5

1 + i
= −5

√
5. (9.6)

We gather the results from (9.4)–(9.6) and obtain

Gn(a) = −15
√

5(1 + i).
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As an application of some of the results about Gaussian sums,
we give a short proof of the Quadratic Reciprocity Law for the
Legendre symbol.

Theorem 9.2.2 (Quadratic Reciprocity Law). If p and q are
distinct odd primes, then

(p/q)(q/p) = (−1)
(p−1)(q−1)

4 .

Proof. By Corollary 7.2.2 (on page 103), (i) of Theorem 9.2.1, and
Theorem 9.1.1 we have

(p/q)(q/p) =
Gp(q)Gq(p)

Gp(1)Gq(1)
=

Gpq(1)

Gp(1)Gq(1)
=

(1 + ipq)(1 + i)

(1 + ip)(1 + iq)
.

It is easy to verify that

(1 + ipq)(1 + i)

(1 + ip)(1 + iq)
=

{
1 if either p ≡ 1 (mod 4) or q ≡ 1 (mod 4),

−1 otherwise,

therefore (p/q)(q/p) = (−1)(p−1)(q−1)/4.

An equivalent statement of the Quadratic Reciprocity Law: if p
and q are distinct odd primes, then (p/q) = (q/p) unless p ≡ q ≡
3 (mod 4), in which case (p/q) = −(q/p).

For readers who are interested in learning more about Gauss
sums we recommend [7], which has a good chapter on the subject.
A more comprehensive treatment may be found in [1].

Exercise.

.56 (Formulas for Gaussian sums) Suppose that n is an odd
positive integer greater than 1 whose prime decomposition
is given by the equation

n =

k∏
j=1

p
νj

j ,

where each integral exponent νj is positive. For an integer
a, the Jacobi symbol (a/n) is defined by the equation
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(a/n) =

k∏
j=1

(a/pj)
νj ,

where (a/pj) is the Legendre symbol. Thus, the possible val-
ues of (a/n) are −1, 0, 1, with (a/n) = 0 if and only if a
and n have a common factor greater than one. Prove that if
a and n are relatively prime, then

Gn(a) =

{
(a/n) if n ≡ 1 (mod 4),

−i(a/n) if n ≡ 3 (mod 4).
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