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1.1 Preface

 

Image registration is the process of aligning images so that corresponding fea-
tures can easily be related. The term is also used to mean aligning images with
a computer model or aligning features in an image with locations in physical
space. The images might be acquired with different sensors (e.g., sensitive to
different parts of the electromagnetic spectrum) or the same sensor at different
times. Image registration has applications in many fields; the one that is
addressed in this book is medical imaging. This encompasses a wide range of
image usage, but the main emphasis is on radiological imaging. 

The past 25 years have seen remarkable developments in medical imaging
technology. Universities and industry have made huge investments in
inventing and developing the technology needed to acquire images from
multiple imaging modalities. Medical images are increasingly widely used in
healthcare and biomedical research; a very wide range of imaging modalities
is now available. X-ray computed tomography (CT) images are sensitive to
tissue density and atomic composition, and the x-ray attenuation coefficient
and magnetic resonance imaging (MR) images are related to proton density,
relaxation times, flow, and other parameters. The introduction of contrast
agents provides information on the patency and function of tubular struc-
tures such as blood vessels, the bile duct, and the bowel, as well as the state
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of the blood-brain barrier. In nuclear medicine, radiopharmaceuticals intro-
duced into the body allow delineation of functioning tissue and measurement
of metabolic and pathophysiological processes. Ultrasound detects subtle
changes in acoustic impedance at tissue boundaries and diffraction patterns
in different tissues, providing discrimination of different tissue types. Doppler
ultrasound provides images of flowing blood. Endoscopy and surgical
microscopy provide images of visible surfaces deep within the body. These
and other imaging technologies now provide rich sources of data on the phys-
ical properties and biological function of tissues at spatial resolutions from 5
mm for nuclear medicine down to 1.0 or 0.5 mm for MR and CT, and 20 to 100

 

�

 

m for optical systems. Each successive generation of image acquisition sys-
tem has acquired images faster, with higher resolution and improved image
quality, and together these have been harnessed for great clinical benefit.

Since the mid 1980s medical image registration has evolved from being
perceived as a rather minor precursor to some medical imaging applications
to a significant subdiscipline in itself. Entire sessions are devoted to the topic
in major medical imaging conferences,

 

1,2

 

 and workshops have been held on
the subject.

 

3

 

 Image registration has also become one of the more successful
areas of image processing, with fully automated algorithms available in a
number of applications.

Why has registration become so important? Medical imaging is about
establishing shape, structure, size, and spatial relationships of anatomical
structures within the patient, together with spatial information about function
and any pathology or other abnormality. Establishing the correspondence of
spatial information in medical images and equivalent structures in the body
is fundamental to medical image interpretation and analysis.

In many clinical scenarios, images from several modalities may be acquired
and the diagnostician’s task is to mentally combine or ‘‘fuse’’ this information to
draw useful clinical conclusions. This generally requires mental compensation
for changes in subject position. Image registration aligns the images and so
establishes correspondence between different features seen on different imag-
ing modalities, allows monitoring of subtle changes in size or intensity over
time or across a population, and establishes correspondence between images
and physical space in image guided interventions. Registration of an atlas or
computer model aids in the delineation of anatomical and pathological struc-
tures in medical images and is an important precursor to detailed analysis.

It is now common for patients to be imaged multiple times, either by
repeated imaging with a single modality, or by imaging with different modal-
ities. It is also common for patients to be imaged 

 

dynamically

 

, that is, to have
sequences of images acquired, often at many frames per second. The ever
increasing amount of image data acquired makes it more and more desirable
to relate one image to another to assist in extracting relevant clinical informa-
tion. Image registration can help in this task: intermodality registration
enables the combination of complementary information from different
modalities, and intramodality registration enables accurate comparisons
between images from the same modality.
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International concern about escalating healthcare costs drives develop-
ment of methods that make the best possible use of medical images and, once
again, image registration can help. However, medical image registration does
not just enable better use of images that would be acquired anyway, it also
opens up new applications for medical images. These include serial imaging
to monitor subtle changes due to disease progression or treatment; perfusion
or other functional studies when the subject cannot be relied upon to remain
in a fixed position during the dynamic acquisition; and image-guided inter-
ventions, in which images acquired prior to the intervention are registered
with the treatment device, enabling the surgeon or interventionalist to use
the preintervention images to guide his or her work. Image registration has
also become a valuable technique for biomedical research, especially in neu-
roscience, where imaging studies are making substantial contributions to our
understanding of the way the brain works. Image registration can be used to
align multiple images from the same individual (intrasubject registration) and
to compare images acquired from different subjects (intersubject registration). 

All the images that we wish to register or manipulate in any other way on
a computer must be available in digital form. This means that most medical
images are made up of a rectangular array of small square or rectangular ele-
ments called 

 

pixels 

 

(an abbreviation of 

 

picture elements

 

); each pixel has an
associated image intensity value. This array provides the coordinate system
of the image, and an element in the image can be accessed by its two-dimen-
sional position within this array. A typical CT slice will be formed of 512 

 

�

 

 512
pixels, and each will correspond to an element of the cut through the patient
of about 0.5 

 

�

 

 0.5 mm

 

2

 

. This dimension determines the limiting spatial reso-
lution of the image. 2D images are often stacked together to form a 3D vol-
ume, and many images are now acquired directly as 3D volumes. Each pixel
will now correspond to a small volume element of tissue, or 

 

voxel

 

. If the slice
spacing in high resolution CT is, say, 1.5 mm, the voxel size will be 0.5 

 

�

 

 0.5 

 

�

 

1.5  mm

 

3

 

. The number stored in each voxel—the voxel image intensity—will
be some average of a physical attribute measured over this volume. In MR,
voxels are generally slightly larger, typically 1 

 

�

 

 1 

 

�

 

 3–5 mm

 

3

 

 in size.
Radiologists have traditionally reviewed medical images by viewing them

as film transparencies on a back-illuminated light box. Most imaging modal-
ities involve some digital manipulation and computation, and so these
images are now often stored in digital form and displayed on a workstation.
Digital storage greatly facilitates further digital manipulation, such as regis-
tration of the images and fusion of the information from the different modal-
ities. Subjective judgments of the relative size, shape, and spatial
relationships of visible structures and physiology inferred from intensity dis-
tributions are used for developing a diagnosis, planning therapy, and moni-
toring disease progression or response to therapy. A key process when
interpreting these images together is the explicit or implicit establishment of
correspondence between different points in the images. The spatial integrity
of the images can allow very accurate correspondence to be determined.
Once correspondence has been established in a verifiable way, multiple
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images can be interpreted as single unified data sets and conclusions drawn
with increased confidence. Creating this single unified data set is the process
of “fusion.” In many instances, new information becomes available that
could not have been deduced from inspection of individual images in loose
association with one another.

 

1.2 Historical Background

 

Although this is the first book dedicated to medical image registration, it is
not a new topic. Image registration has been widely used for many years in
x-ray angiography. It is common to acquire x-rays before and after injection
of intravascular contrast and then subtract these images in order to visualize
the blood vessels in isolation. This technique almost invariably uses digital
systems now, but optical subtraction using photographic methods has been
extremely effective. A negative of the radiograph taken before the arrival of
the contrast material, the “mask,” was positioned on a light box over the
radiograph taken after the arrival of contrast and an additional film was
taken. If the patient moved between the acquisition of the precontrast mask
image and the image with contrast, then the subtracted image would contain
edge artifacts. Translating and rotating the films prior to optical subtraction
greatly reduced these artifacts. Photographic subtraction was also used with
MR to correct for patient motion and generate images showing where gado-
linium contrast had been taken up.

 

4

 

Image-guided surgery was the first application of medical image registration.
Indeed, the very first radiograph acquired for this purpose was reported to
have been in Birmingham, U.K., only two weeks after the discovery of x-rays
was published in December 1895. A patient had broken a needle in her hand.
A radiograph was taken and the casualty officer aligned the plate with the
hand in order to successfully guide his scalpel to removal of the needle.

 

5

 

Other early examples included battlefield surgery for removal of shrapnel by
registering a calibrated pair of x-ray films to the patient so that the x-ray
could guide the surgeon precisely to the target in 3D. The stereotactic frame
was proposed for image-guided neurosurgery as a means of localizing target
structures with respect to anatomical features identified in the patient’s
radiographs and

 

�

 

or a standard atlas.

 

6,7

 

 The frame is rigidly fixed to the skull
and defines a coordinate system for both imaging and treatment. Stereotactic
neurosurgery became more widely used when the technology was comput-
erized and combined with CT,

 

8,9

 

 and then with multiple preoperative imag-
ing modalities.

 

10

 

 Stereotactic neurosurgery can only be used for a small
proportion of neurosurgical procedures, because the frame has to be attached
to the patient prior to imaging and left on until surgery, and the presence of
the frame restricts the types of surgery that can be performed, often just to
biopsy and electrode implantation. These problems were overcome with the
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development of more sophisticated registration techniques leading to the
introduction of frameless stereotaxy in the mid 1980s,

 

11 

 

though it was another
decade before frameless stereotactic systems obtained the regulatory
approval necessary for widespread use in health care.

In image-guided interventions, correspondence is established between
image and the physical space of the patient during the intervention. Estab-
lishing this correspondence allows the image to be used to guide, direct, and
monitor therapy, akin to providing a 3D map for navigation, with the aim of
making the intervention more accurate, safer, and less invasive for the patient.
In the last few years, image registration techniques have entered routine clinical
use in image-guided neurosurgery systems and computer-assisted orthopedic
surgery. Systems incorporating image registration are sold by a number of
manufacturers. 

Stereotactic frames can also be used for intermodality image registration, but
their use is restricted to highly invasive surgical procedures because of the
need for rigid fixation to the skull. Various relocatable frames were proposed
to avoid this invasiveness, but beginning in the mid 1980s, registration algo-
rithms were devised that were “retrospective,” that is, did not require special
measures to be taken during image acquisition in order for registration to be pos-
sible. Various approaches were introduced in the mid 1980s.

 

12–14

 

 These tech-
niques were devised to make it possible to combine images of the same patient
taken with different modalities and they required substantial user interaction.

Another major step forward in image registration came in the first half of
the 1990s with the development of retrospective registration algorithms that
were fully or virtually fully automated for both intramodality

 

15,16

 

 and
intermodality registration.

 

17–21

 

 A significant breakthrough in the mid 1990s
was the development of image alignment measures and registration algo-
rithms based on entropy and, in particular, mutual information—measures
first derived from the information theory developed by Shannon in 1948.

 

22

 

Recently the focus of research in medical image registration has returned to
intramodality rather than intermodality registration, and to extending regis-
tration algorithms to handle the more complicated transformations needed
to model soft tissue deformation and intersubject registration.

Detailed atlases or computer models of anatomy are becoming available, in
particular from high resolution sources such as the Visible Human datasets.

 

4

 

The Montreal Brain Atlas has been generated by averaging images of the
brain across a population. Establishing spatial correspondence between these
atlases and an individual’s images allows for easier interpretation and, in
particular, enables computer assistance in delineation of anatomical struc-
tures of interest.

Rapid advances in the power of computer technology and in the perfor-
mance of new registration algorithms and displays mean that image manip-
ulation deemed impractical or far too computationally expensive only a few
years ago can now be undertaken on the PCs available on most people’s
desks. In our experience, initial work on voxel similarity measures was prov-
ing successful in the laboratory in 1994 but took an hour or more to complete.
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Between then and late 2000, desktop workstations have increased in speed by
nearly two orders of magnitude while their cost has been reduced by an order
of magnitude, so the same calculations can now be achieved in a few minutes
on desktop PCs. The first algorithms for nonrigid registration required large
amounts of interaction or were prohibitively slow, but more recent work has
resulted in highly automated algorithms that can run on standard hardware
in minutes rather than days.

 

1.3 Overview of the Book

 

This book is divided into three sections. Section I, Methodology, introduces
the wide variety of techniques used for medical image registration. The con-
cepts behind registration techniques are introduced for a general audience in
Chapter 2, and, for those who wish to understand the underlying algorithms
or implement registration methods themselves. Behind the techniques are
described in more detail in Chapter 3. The necessary additional considerations
behind acquiring and preparing data for image registration are discussed in
Chapter 4, and correcting errors in the scanners is addressed in Chapter 5. In
the final chapter in this section, Chapter 6, the essential problem of detecting
when the algorithms have failed is discussed, and how accurately the algo-
rithms have aligned the images is assessed.

Section II describes the relatively mature applications of image registration
in which the images can be aligned by global translation and rotation
alone—so-called rigid-body registration. The chapters in this section are
written by researchers with many years of experience in the applications of
serial MR registration (Chapter 7), functional MRI (Chapter 8), registration of
PET and MRI (Chapter 9), registration of MRI and CT (Chapter 10), registra-
tion in nuclear medicine (Chapter 11), and the use of registration in guided
therapeutic procedures (Chapter 12).

Section III focuses on the less mature but rapidly developing field of nonrigid
image registration. The topic is introduced in Chapter 13, and alternative
approaches are reviewed and examples given of one approach for a variety
of applications. The problem of combining images from multiple subjects in
cohort studies is examined in detail in Chapter 14, and the rather different
approach of using biomechanical models to achieve registration is considered
in Chapter 15. Section III tells less of a finished story than Sections I and II, due
to the rapid evolution of techniques in this area. The goal of this section is
to give insight into some of the applications that drive nonrigid registration
and the different approaches being devised.

An observation as this book was prepared (late 2000) was that there are
literally hundreds of papers in the literature describing medical image regis-
tration methods and applications, and yet this technology is currently used
very little in clinical practice, with the exception of image-guided surgery.
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Why is this? Maybe the clinical applications are not relevant for day-to-day
patient management. This does not appear to be a sustainable view either
from the literature or from the view of centers using this technology. It may
be that image registration generally forms only one part of a complete image
analysis application, and other components, notably image segmentation and
labeling, are still not sufficiently robust or automated for routine clinical use. In
many applications, this is undoubtedly the case. Perhaps some of the problems
with segmentation will be solved by nonrigid atlas registration (see Chapter 14).
Another important factor is that to achieve widespread use, the clinical com-
munity and the medical imaging industry that supports it must embrace this
new technology more effectively. This will require investment in order to: 1)
ensure that technical validation and clinical evaluation are effective and
timely; 2) proceed rapidly down the path of standardization and integration
of information sources in healthcare so that innovative products from small
companies can be incorporated earlier and more cheaply into the healthcare
environment; 3) ensure that image registration becomes automatic or virtu-
ally automatic so that it is robust and transparent to the user; and, finally, 4)
ensure that the clinical community, and its scientific and technical support
staffs, are made fully aware of the power of this new technology and that
medical practice evolves to take full advantage of it.

We hope that this book will go some way in encouraging goals 1, 2, and 3
above by contributing to goal 4.

We are very grateful to the contributing authors for sharing our vision that
the time is right for a book on medical image registration, for the effort they
have put into their chapters, and, in particular, for responding to our sugges-
tions for making the book a more coherent whole.
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2.1 Introduction

 

This chapter presents a descriptive account of methods for image registra-
tion. Our intention here is to enable the reader to understand the main con-
cepts behind the different methods without recourse to the underlying
mathematics. All equations have been banished! The mathematics and
details of implementation are left to the following chapter, which has a very
similar structure that will allow the reader to switch between the two for
more detailed descriptions when required. 

As stated in Chapter 1, medical image registration has a wide range of
potential applications. These include:

• Combining information from multiple imaging modalities, for
example, when relating functional information from nuclear medi-
cine images to anatomy delineated in high-resolution MR images.

• Monitoring changes in size, shape, or image intensity over time
intervals that might range from a few seconds in dynamic perfusion
studies to several months or even years in the study of neuronal
loss in dementia.

• Relating preoperative images and surgical plans to the physical
reality of the patient in the operating room during image-guided
surgery or in the treatment suite during radiotherapy.

• Relating an individual’s anatomy to a standardized atlas.

To be effective, all these applications require the establishment of spatial
correspondence. What we mean by correspondence in image registration is
explored in this chapter before presenting, in descriptive terms, the various
methods of registration. The process of image registration involves finding
transformations that relate spatial information conveyed in one image to those
in another or in physical space. We relate the type of transformation to the
number of dimensions of the images. We describe the number of parameters,
or “degrees of freedom,” which are needed to describe this transformation
for the different classes of registration algorithm. We introduce the concept of
optimization, in which the computer makes a succession of guesses about the
correct data before converging to an answer that should be close to the correct
one. Issues related to image transformation are discussed, and a few comments
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on validation conclude the chapter. The following chapter covers the same
ground from a more formal mathematical perspective and with more technical
details on implementation.

All the images that we wish to register or manipulate in any other way on
a computer must be available in digital form. This means that they are stored
in coded form with numbers representing the image intensity or color at each
location. This is usually achieved with a rectangular array of small square or
rectangular elements called 

 

pixels

 

 (an abbreviation of “picture elements”),
each pixel having an associated image intensity value. The pixel array pro-
vides a natural coordinate system for the images, and an element in each
image can be accessed by its two-dimensional (2D) position within this array.
A typical CT slice will be formed of 512 

 

�

 

 512 pixels, and each will corre-
spond to an element of about 0.5 

 

�

 

 0.5 mm

 

2

 

 in area. This dimension determines
the limiting spatial resolution of the image. 2D slice images are often stacked
together to form a 3D volume. Many images are now acquired directly as 3D
volumes. Each pixel will now correspond to a small volume element of tissue
or 

 

voxel

 

. If the slice spacing is, say, 1.5 mm, the voxel size will be 0.5 

 

�

 

 0.5 

 

�

 

1.5 mm

 

3

 

. The number stored in each voxel, the voxel image intensity, will be
some average of the physical attribute measured over this volume. For clini-
cal MR brain images, typical voxels are 0.9 

 

�

 

 0.9 

 

�

 

 3 to 5 mm

 

3

 

, with 256 

 

�

 

256 pixels in a slice. It is also possible to acquire MR images with cubic voxels,
e.g., 1.0 

 

�

 

 1.0 

 

� 

 

1.0 mm, and MR images with approximately cubic voxels are
often used for registration applications.

 

2.2 Correspondence

 

As stated above, image registration establishes spatial correspondence. We
should consider carefully what this means. Consider a scenario in which we
might have a patient who is imaged with MR and CT over the course of a
few hours, or perhaps on subsequent days, as workup for neurosurgery. The
process of registration will establish which point on one image corresponds
to a particular point on the other. By “correspond” we mean that these
points represent a measurement localized to the same small element of tis-
sue within the patient. We can then deduce something about spatial relation-
ships between different structures, each seen by only one modality. The
computational process of registration yields the appropriate transformation
between the “coordinate systems” of the two sets of scans, which are referenced
to the individual scanners. A coordinate system provides a way of describing a
position in space. 

No measurement is perfectly accurate, and there will always be uncer-
tainty, error, or “tolerance” in this estimate of correspondence. For many clin-
ical applications it is important to know what this tolerance is, so as not to
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overinterpret the registered datasets. Once correspondence is determined
throughout the volume imaged by the two modalities, then one image can
be transformed into the coordinate system of the other. This calculation can
lead to further approximations or errors. Typically, there will be some blurring
of the transformed image. In our simple neurosurgical example, once any scal-
ing errors and geometric distortion produced by the scanners are corrected
as described in Chapter 5, the transformation will be very well approximated
by that of a “rigid body.” A rigid-body transformation, as the name suggests,
is one that changes position and orientation without changing shape or size
between the two scans.

Finally, we have the process of combining or “fusing” the information in
the images in some useful or meaningful way. This process may be left
entirely to the clinician in his

 

�

 

her mind’s eye, or simple visualization effects
may be used, including color or interactive fading in and out of one image’s
contribution overlaid on the other. Alternatively, two cursors, called “linked
cursors,” might be used to indicate corresponding points in the two images.
Further computation or combined displays of fused information may be gen-
erated. Corresponding structures in the two images can be used to check the
transformation, while complementary information can be used to deduce
useful new information either by qualitative interpretation or by improving
the accuracy of measurement. This combination of information is sometimes
termed “data fusion,” a term originally coined for the combination of infor-
mation in computing systems for battlefield command and control.

We might wish to use individual 3D images or the combined images for
navigation in image-guided surgery. Again, this requires a process of regis-
tration, and now correspondence is defined between image and physical
space within the patient in the operating room. We require a transformation that
for each identified 3D point within the patient allows us to compute the corre-
sponding location of the tissue that occupied that point in the preoperative
image. If the tissue has moved as a result of the intervention, then we would like
to know by how much and what tissue element now occupies this point. 

This process of establishing correspondence becomes more complicated if
one of the images represents a projection of physical space, as is the case with
most optical images and conventional x-ray radiographs. These images are
called “projection” images. One point in a radiograph will correspond to
some combination of the x-ray attenuation values along the line in the patient
leading from the x-ray source to the imaging plane. This means that one point
in the radiograph will correspond to a line of points through a CT or MR image.
One point in the CT image will only correspond to a component of the inten-
sity seen at a point in the radiograph. In optical images, only the visible surface
will contribute to the image. Establishing correspondence between a pair of
points in two projection images that have been calibrated allows the 3D posi-
tion of that point to be determined. This is the basis of stereo-photogrammetry,
used widely outside medicine in robotics, nondestructive testing in industry,
analysis of remote or hostile environments, surveillance work, and analysis
of satellite images.
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What if we are using image registration to monitor change? If the change is
only in intensity and we can guarantee that the imaged structure has not
changed size, as might be the case in functional neuroimaging of the brain by
MRI (fMRI), then the concept of correspondence is straightforward. If, how-
ever, change in volume is possible, such as when monitoring atrophic
changes in the brain in longterm studies, then the concept of correspondence
becomes less well defined. We are using serial MR to monitor neuronal loss,
so the tissue corresponding to a certain location in the patient at the first visit
may not exist at the later visit. In this case we normally undertake registra-
tion and establish correspondence, assuming that the tissue has not changed
volume, and change will be inferred from absence of correspondence, often
by displacements of boundaries. This may be displayed to good effect by
using image subtraction, as explained in more detail in Chapter 7. Detecting
a change in boundary location is relatively straightforward. Inferring which
particular element of tissue has changed volume is much more difficult. Even
in our first example, workup for neurosurgery, changes may occur due to dif-
ferences in patient positioning, systemic blood pressure, hydration, and
imaging at different phases of the breathing or cardiac cycle, although most
of these changes are thought to be below the level detectable with current
imaging devices. 

When tissue changes significantly over time, such as long term monitoring
of the breast postmenopause with MR, the concept of correspondence becomes
even more difficult to define. Over repeat scans for a year or two, glandular
tissue may be replaced by fatty tissue, yet registration to establish anatomical
correspondence might have great potential to detect the presence of small
focal disease, as described in Chapter 13. In this case the required transforma-
tion has to allow the tissue to deform by changing shape and size. This type
of transformation is called “nonrigid” and is more appropriate for soft tis-
sues. Over a short time period, for example, a dynamic acquisition of 3D MR
images taken over a few tens of minutes, tissue will obey the laws of physical
motion associated with elasticity and viscosity; during longer periods of
time, tissue may grow or be destroyed. When monitoring surgery or thera-
peutic response, tissue will, by definition, be removed, and therefore corre-
spondence in the excised or ablated region cannot exist. Conversely, the
growth of a tumor adds tissue and structure. Anesthetics and drugs to control
edema may also change tissue volumes.

Finally, we need to consider correspondence when combining images
from multiple subjects or images between an individual and an atlas
derived from one or more other individuals. Is correspondence defined in
anatomical terms, e.g., the most anterior pole of the occipital cerebral cor-
tex? Or is it defined in geometric terms, e.g., the portion of cerebral cortex
in this region with the highest surface curvature? Is it defined in functional
terms, e.g., the region of the cerebral cortex associated with vision that
exhibits the greatest change in blood flow when the subject observes a flash-
ing checkerboard pattern? Or is it defined by a particular histological
appearance? On a coarse scale these may all correspond in normal subjects
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but on a fine scale, still within the spatial resolution of current imaging
devices, and certainly when including pathology, they may not. These dis-
tinctions are illustrated in Figure 2.1, which shows three possible corre-
spondences on a pair of MR slices from two individuals that have been
aligned with one another and scaled so that the heads are the same size. Of
course, correspondence is defined in 3D, not 2D as in this example, but nev-
ertheless the figure illustrates the problem. In many applications reported
in the literature, correspondence is implicitly defined as the points resulting
from arbitrary transformations derived using algorithms that plausibly
“morph” one image into another. Morphing is a term used to describe a
process in computer graphics in which one image is transformed seam-
lessly into another, for example, a photograph of Tony Blair transformed
into a photograph of Margaret Thatcher. There is an infinite number of pos-
sible transformations that can morph one image into another, including
those that lead to creation or destruction of complete structures. Medical
imaging applications usually require deformations of the images that main-
tain correspondence (nose to nose, eye to eye, etc.). Registration of images
from different individuals requires the use of deformations that can accom-
modate biological variations, and is discussed in Chapter 14. Where the
images are related by a physical process, the transformation may be mod-
eled or constrained by those processes that result in the differences between
imaged structures. In practice, we generally do not have sufficient informa-
tion to do this. Algorithms based on physical models of elasticity or viscos-
ity provide plausible transformations but do not model the real physical

 

FIGURE 2.1

 

A pair of near mid sagittal slices of MR images of different individuals that have been
scaled and registered assuming a rigid-body transformation. The solid line gives the trans-
formation derived from the registration process while either of the two dotted lines might
be more plausible from an anatomical perspective, within the constraints of this simple 2D
example.
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processes that lead to individual variability. These issues are explored in
more detail in Chapter 14.

 

2.3 Types of Transformation

 

2.3.1 Dimensionality Transformations

 

The process of registration involves computation of a transformation between
the coordinate systems of the images or between an image and physical space.
We are three-dimensional beings who move, so in principle, registration
should be four-dimensional. In practice, we usually make some approximations
and assumptions so that the body can be represented with fewer dimensions. 

 

2.3.1.1 2D-to-2D

 

If the geometry of image acquisition is tightly controlled, 2D images may be
registered purely via a rotation and two orthogonal translations. It may also
be necessary to correct for differences in scaling from the real object to each
of the images. However, computationally straightforward, clinically relevant
examples of this are rare, as controlling the geometry of image acquisition is
usually very difficult. One example is the registration of x-ray radiographs of
the hand with 

 

99m

 

Tc methyl-diphosphonate planar nuclear medicine images
for the diagnosis of suspected scaphoid injury.

 

1

 

 Color Figure 2.2* shows a
nuclear medicine image overlaid in color on the radiograph, confirming a
scaphoid fracture. In this example, a purpose-built holding device con-
strained the hand to be in identical positions in the two images. 

 

2.3.1.2 3D-to-3D

 

Of more widespread applicability is the accurate registration of multiple 3D
images such as MR and CT volumes. The assumption is usually made that
the internal anatomy of the patient has not distorted or changed in spatial
relationships between organs, so that the imaged part of the body behaves as
a “rigid body.” In this case three translations and three rotations will bring
the images into registration. Careful calibration of each scanning device is
required to determine image scaling, i.e., the size of the voxels in each modal-
ity. 3D-to-3D registration is the most well developed and widely used method
and is the primary emphasis of this book.

 

2.3.1.3 2D-to-3D 

 

2D-to-3D registration may be required when establishing correspondence
between 3D volumes and projection images such as x-ray or optical images.
Another class of 2D-to-3D registration arises when the position of one or

 

* Color Figures follow page 22.
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more slices from tracked B-mode ultrasound, interventional CT, or interven-
tional MRI are to be established relative to a 3D volume. The main applica-
tion of these methods is in image-guided interventions, as described in more
detail in Chapter 12. 

 

2.3.1.4 Time

 

Another class of registration problem concerns registration of image sequences
that follow some process that changes with time. An obvious example is imag-
ing of the heart, where images are acquired in synchrony with the heartbeat,
monitored by the ECG or blood pressure waveform. Synchronized or “gated”
acquisitions allow averaging of images over multiple cardiac cycles to reduce
image noise in nuclear medicine and MR imaging. In a similar way, temporal
registration of x-ray images of the heart before and after injection of contrast
material allows synchronous subtraction of mask images. All these methods
assume that the heart cycle does not change from beat to beat. The same prin-
ciple can be applied to images acquired at different stages of the breathing
cycle, although the breathing cycle is less reproducible and therefore registra-
tion errors will be greater. Acquisition of images over time and subsequent reg-
istration can be used to study dynamic processes such as tissue perfusion,
blood flow, and metabolic or physiological processes.

 

2.3.2 Degrees of Freedom of the Transformation

 

The number of parameters needed to describe a registration transformation
is referred to as the number of “degrees of freedom.” This depends on the
dimensionality of the images and the constraints of the imaged structures.
The simplest transformation corresponds to the motion of a rigid body.
For 2D-to-2D registration, there will be three degrees of freedom: two trans-
lations and one rotation. Figure 2.3 provides an example of two images
related by a rigid transformation. The middle image also shows that a trans-
formation will lead to the loss of some data from the original image and to

 

FIGURE 2.3 

 

Three 2D images related by a rigid rotation (left and middle) and horizontal scaling (left and
right).
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some regions where there is missing data. For 3D-to-3D registration, as stated
above, two positions of a rigid body can always be related to one another in
terms of three translations and three rotations, giving six degrees of freedom.
The particular conditions of imaging may mean that we do not know the
pixel or voxel sizes or the fields of view, in which case the registration algo-
rithm may need to determine these. This will lead to an extra two degrees of
freedom in 2D or three degrees of freedom in 3D, equating to scaling in each
direction, also illustrated in Figure 2.3. A particular distortion in 3D images
generated from CT results from a gantry tilt, often used to reduce x-ray dose
to the eyes. Without correction this will result in a 3D volume that is skewed,
akin to a leaning stack of sliced bread (see Chapter 10, Figure 10.2). If gantry
angle is unknown, we have another degree of freedom. This is a special case
of the “affine” transformation. In the affine transformation, any straight line
in one image will transform to a straight line in the other and parallel lines
are preserved, allowing a combination of rigid body motion, scaling, and
skew about any of the three axes. The affine transformation has 12 degrees of
freedom. A mathematical definition is given in the next chapter.

In 2D-to-3D rigid-body registration, matching a perspective projection
such as an optical image or x-ray image to a volume results in up to ten
degrees of freedom. Usually four of these can be determined from a one-off
calibration of the camera or x-ray set, provided the focal length of the camera
or the distance between the x-ray set and imaging device is fixed, leaving the
six parameters of the rigid-body transformation to be determined in the reg-
istration process. 

In nonrigid registration, many more degrees of freedom are required. Two
general categories of nonrigid registration occur: registration of images to an
atlas or images from another individual, so called “intersubject registration” or
registration of tissue that deforms over time, sometimes called “intrasubject
registration.” Figure 2.4 provides a 2D example of intersubject registration.

 

FIGURE 2.4 

 

An example of interindividual, nonrigid registration (in 2D) of a professor (left) to a mandrill
(center), resulting in the warped image (right). The transformation was achieved by iden-
tifying a number of corresponding point landmarks and transforming with the thin-plate
spline function described in Chapter 3.
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Constraints on the allowed deformation must be applied to make the prob-
lem computationally tractable and physically plausible. These constraints
will depend on the application. Examples range from the addition of a rela-
tively small number of extra degrees of freedom (typically five to ten) where
the variation across a population can be described by parameters derived from
principal component analysis as used in the active shape model

 

2

 

 to the many
tens of thousands implicit in the algorithm of Rueckert et al.

 

3

 

 In studies of soft
tissue deformation, understanding the physics of the deformation process
might reduce the number of degrees of freedom of the transformation (see
Chapter 15). Models based on the laws of physics have also been used to
reduce the degrees of freedom of the matching process in intersubject regis-
tration. The example in Figure 2.4 was generated using a “thin-plate spline”
deformation, a well known algorithm described in Chapter 3, that calculates
the deformation expected in a thin plate that is anchored at a number of tie
points or points of correspondence. As stated above, these quasi-physical mod-
els, unlike the biomechanical models discussed in Chapter 15, do not represent
any real physical process within the patient.

 

2.4  Image Registration Algorithms

 

Registration algorithms compute image transformations that establish corre-
spondence between points or regions within images, or between physical
space and images. This section briefly introduces some of these methods.
Broadly, these divide into algorithms that use corresponding points or corre-
sponding surfaces, or operate directly on the image intensities.

 

2.4.1 Corresponding Landmark-Based Registration

 

One of the most intuitively obvious registration procedures is based on iden-
tification of corresponding point landmarks or “fiducial markers” in the two
images. For a rigid structure, identification and location of three landmarks
will be sufficient to establish the transformation between two 3D image vol-
umes, provided the fiducial points are not all in a straight line. In practice it
is usual to use more than three. The larger the number of points used, the
more any errors in marking the points are averaged out. The algorithm for
calculating the transformation is well known and straightforward.

 

4

 

 It
involves first computing the average or “centroid” of each set of points. The
difference between the centroids in 3D tells us the translation that must be
applied to one set of points. This point set is then rotated about its new cen-
troid until the sum of the squared distances between each corresponding
point pair is minimized. The square root of the mean of this squared distance
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is often recorded by the registration algorithm. It is also referred to as the root
mean square (RMS) error, residual error or fiducial registration error (FRE).
The mathematical solution for calculating this transformation has been
known for many years, and is known as the solution to the orthogonal Pro-
crustes problem after the unpleasant practice of Procrustes, a robber in Greek
mythology, fitting his guests with extreme prejudice to a bed of the wrong
size. The mathematics of the solution are provided in Chapter 3 together with
the full story of the fate of Procrustes. 

Many commercial image registration packages and image guided-surgery
systems quote the FRE. Although this can be useful as a quick check of gross
errors in correspondence, FRE is not a direct measure of the accuracy with
which features of interest in the images are aligned. Indeed, it can be mislead-
ing, as changing the positions of the registration landmarks in order to
reduce FRE can actually increase the error in correspondence between other
structures in the images. A more meaningful measure of registration error is
the accuracy with which a point of interest (such as a surgical target) in the
two images can be aligned. This error is normally position-dependent in the
image, and is called the target registration error (TRE). In practical terms,
TRE, and how it varies over the field of view, is the most important parameter
determining image registration quality. Fitzpatrick

 

5

 

 has derived a formula to
predict TRE based on corresponding point identification. The formula com-
putes TRE from the distribution of fiducial points and the estimate of error in
identifying correspondence at each point, the fiducial localization error
(FLE). This formula has been verified by computer simulation and predicts
experimental results accurately (see Chapter 3). 

The point landmarks may be pins or markers fixed to the patient and vis-
ible on each scan. These may be attached to the skin or screwed into bone.
The latter can provide very accurate registration but are more invasive and
cause some discomfort and a small risk of infection or damage to underlying
tissue. Skin markers, on the other hand, can easily move by several millimeters
due to the mobility of the skin, and are difficult to attach firmly. Care must be
taken to ensure that the coordinate of each marker is computed accurately and
that the coordinate computed in each modality corresponds to the same point
in physical space. Subvoxel precision is possible, for example, by using the
intersection of two tubes containing contrast material visible in each modality,

 

6

 

the apex of a “V,”

 

7

 

 or the center of gravity of spherical or cylindrical markers
with a volume much larger than the voxel sizes.

 

8

 

 Markers like these can be
identified automatically in the images. Each of these systems was also de-
signed so that the corresponding point in physical space could be accurately
located. These are used widely in image-guided surgery as described in
Chapter 12.

Alternatively, corresponding internal anatomical landmarks may be identi-
fied by hand on each image. These must correspond to truly point-like ana-
tomical landmarks at the resolution of the images (such as the apical turn of
the cochlea), structures in which points can be unambiguously defined (such
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as bifurcations of blood vessels or the center of the orbits of the eyes), or sur-
face curvature features that are well defined in 3D. Several methods have
been reported to register clinical images using corresponding anatomical
landmarks that have been identified interactively by a skilled user.

 

9–11

 

Assuming all markers are identified with the same accuracy, registration
error as measured by TRE can be reduced by increasing the number of fidu-
cial markers. If the error in landmark identification or FLE is randomly dis-
tributed about the true landmark position, the TRE reduces as the square root
of the number of points identified, for a given spatial distribution of points.
TRE values of about 2 mm at the center rising to about 4 mm at the periphery
are to be expected when registering MR and PET images of the head using 12
anatomical landmarks well distributed over the image volume. For register-
ing MR and CT images, including the skull base, typical misregistration
errors (TRE values) will be about 1 mm at the center, rising to about 2 mm at
the periphery for 12 to 16 landmarks.

 

11

 

 Finding these landmarks automati-
cally and reliably is difficult and remains a research issue. 

Figure 2.5 shows an example of aligned and combined CT and MR volumes
of a patient with a large acoustic neuroma extending into the internal auditory
meatus. These images are useful for planning skull base surgery.

 

10

 

 Figure 2.6
depicts an aligned MR and PET image of the head showing that a suspicious
bright region seen on contrast-enhanced MR does not correspond to a region

 

FIGURE 2.5 

 

Slice (bottom) through a 3D volume formed by aligning and combining CT (top left) and MR
(top right) volumes. CT intensity is displayed when this corresponds to bone otherwise the
MR intensity is shown. This type of display has been useful in planning skull base surgery.

 

10
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of high uptake of 

 

18

 

FDG (2-[

 

18

 

F]–fluoro-2-deoxy-D-glucose) on PET and
therefore is unlikely to represent recurrent tumor. Figure 2.7 shows a
sequence of CT axial slices, with the corresponding aligned 

 

18

 

FDG PET
images overlaid in pale green, taken through the pelvis of a patient who had
received previous radiotherapy for cervical carcinoma. The images clearly
show increased uptake in the denser mass shown on CT. This is likely to rep-
resent recurrent tumor rather than radiation-induced fibrotic changes, and
this was confirmed at surgery. Figure 2.5 and Color Figures 2.6 and 2.7* were
aligned using manually identified landmarks assuming that the part of the
patient imaged could be represented as a rigid body. Now this process is
almost completely replaced by the fully automated registration method
based on voxel similarity and described in Section 2.4.3.

 

2.4.2 Surface-Based Registration

 

Corresponding surfaces may be identified and used for registration. In these
algorithms, corresponding surfaces are delineated in the two imaging
modalities and a transformation computed that minimizes some measure of
distance between the two surfaces.

 

12–15

 

 At registration this measure should be
minimum. The first widely used method was the “head and hat” algorithm,

 

13

 

but most methods are now based on the iterative closest point algorithm.

 

15

 

 

 

2.4.2.1 The “Head and Hat” Algorithm

 

In the “head and hat” algorithm, the contours of the surface are drawn on a
series of slices from one modality. This is called the head. A set of points that cor-
respond to the same surface in the other modality are identified. This set is
called the hat. The computer then attempts a series of trial fits of the hat
points on the head contours. The process of progressively refining these trial
fits is known as 

 

iteration

 

. At each iteration the sum of the squares of the dis-
tances between each hat point and the head is calculated, and the process con-
tinues until this value is minimized. The hat now fits on the head. As its name
implies, this was first used on images of the head and, in particular, the align-
ment of MR and PET images. Unfortunately, just as there are many ways of
placing a real hat on a head, this algorithm can be prone to choosing the
wrong solution. These types of algorithms tend to fail when the surfaces
show symmetries to rotation, which is often the case for many anatomical
structures. The head can be rotated cranio-caudally (nodding) with minimal
displacement of the skin surface in a direction perpendicular to the surface.
This problem is illustrated diagrammatically in 2D in Figure 2.8. Figure 2.9
provides orthogonal cuts of an MR image and an overlaid PET image of the
head that are grossly misregistered, yet the surfaces of the brain are surpris-
ingly well aligned over much of the volume.

 

* Color Figures follow page 22.
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2.4.2.2 Distance Transforms

 

Surface matching was made more computationally efficient by precomput-
ing the distance from every point in space to one of the surfaces to be regis-
tered. This is called a distance transform and makes the computation at each
iteration much faster.

 

FIGURE 2.8 

 

This illustrates in 2D how a contour-based method of alignment can produce multiple
solutions if the contour exhibits axes of symmetry, in this case cranio-caudal tilt. Both
alignments of the thick dotted line and thin continuous line will produce very similar mean
distances between the two contours. The same arguments apply to surfaces in 3D.

 

FIGURE 2.9 

 

An example of three orthogonal slices through a 3D MR volume overlaid with the PET

 

18

 

FDG
volume. The volume is grossly misregistered, yet the outline of the brain is surprisingly
well aligned. (C. Studholme, Ph.D. Thesis, University of London, 1997.)
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2.4.2.3 The Iterative Closest Point Algorithm

 

The iterative closest point algorithm,

 

15

 

 although originally devised for other
purposes, has been widely applied to surface-based registration of medical
images. In the most usual form of this algorithm, one surface is represented
by a set of points while the other is represented by a surface made up of many
triangular patches or “facets.” The algorithm proceeds by finding the closest
point on the appropriate triangular patch to each of the points in turn. The
closest points form a set, and these are registered using the corresponding
landmark-based registration and the residual error is calculated. The closest
points are found from this new position and the process is repeated until the
residual error drops by less than a preset value.

These methods are described in more detail in the next chapter. They use
more of the available data than landmark identification, and robust and
accurate methods have been reported for some applications. Unfortunately,
the technique is highly dependent on identification of corresponding sur-
faces, yet different imaging modalities can provide very different image
contrast between corresponding structures. The process of delineation is
hard to do accurately. Computer-assisted segmentation currently almost
always requires some manual editing or adjustment. The surface may also
exhibit natural symmetries to certain rotations, leading to poorly constrained
transformations. 

Other features, such as lines and tubes, as well as combinations of fea-
tures, have also been used.

 

16

 

 In principle, adjacent surfaces may be used
for registration incorporating knowledge of the spatial relationships of
different surfaces.

 

17

 

 

 

2.4.3 Registration Based on Voxel Intensities Alone — Voxel
Similarity Measures

 

In recent years a number of robust and accurate algorithms have been
devised that use the intensities in the two images alone without any require-
ment to segment or delineate corresponding structures. These are often col-
lectively referred to as voxel similarity-based registration. As these algorithms
have been so successful, it is worth spending a few words to describe their
historical development and to introduce a way of representing the image
intensities of a pair of images that are to be registered. This representation
is called the joint histogram or joint probability distribution. These terms will
be described shortly. Unlike the algorithms described above, these methods
use all (or a large proportion of) the data in each image and so tend to average
out any errors caused by the noise or random fluctuations of image intensity.
The simplest and earliest purely intensity-based registration method was
applied to images from the same modality and therefore the images are
unlikely to have changed very much.
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2.4.3.1 Registration of Multiple Images of the Same Patient
Acquired Using the Same Imaging Modality

 

There can be considerable clinical benefit in accurately aligning images of
the same subject acquired with the same modality at different times in order
to detect subtle changes in intensity or shape of a structure. This technique is
most widely used for aligning serial MR images of the brain, as discussed in
Chapter 7. Because the images are acquired using the same modality, an
approximately linear relationship will exist between the voxel intensities
in one image and voxel intensities in the other. In these cases the correla-
tion coefficient (CC)

 

18

 

 is a good measure of alignment. The formula for the
correlation coefficient is presented in the next chapter, but it basically
involves multiplication of corresponding image intensities. One image is
moved with respect to the other until the largest value of the correlation coef-
ficient is found. Statistically speaking, this is where there is the strongest lin-
ear relationship between the intensities in one image and the intensities at
corresponding locations in the other. Instead of multiplying corresponding
intensities, we may subtract them, which leads to another measure, the sums
of squared intensity differences (SSD). In this case, alignment is adjusted
until the smallest SSD is found.

 

19

 

 That which can be subtracted or multi-
plied can also be divided. If two images are very similar, their ratio will
be most uniform at registration. This is the basis of Woods

 

2

 

 ratio image
uniformity (RIU) algorithm in which the variance of this ratio is calculated.

 

20

 

Alignment is adjusted until the smallest variance is found. In early publica-
tions this was referred to as the variance of intensity ratios (VIR) algorithm.
While the details of the formulae used are different, these algorithms are
conceptually very similar. Performance, too, is similar except when the
underlying assumptions are violated due to changes in overall image bright-
ness, shading, etc.

As the small differences in very similar images may have clinical signifi-
cance, care must be taken to ensure that the computation of the transforma-
tion neither removes nor masks this important information. Rescaling of
either size or intensity, for example, must not mask real changes in volume.
This danger can be avoided if all images are rescaled and intensities nor-
malized by reference back to an image of a standard object or calibration
phantom.

 

21

 

 The most common technique for aligning these images is to find
a rigid-body transformation. Prior to carrying out the rigid-body registra-
tion, it is advisable to correct for any scaling or intensity errors in the images
(discussed in Chapter 5), and it may be necessary to carry out additional
preprocessing such as segmentation (discussed in Chapter 4). A promising
alternative approach is to register the images using a nonrigid transfor-
mation. In this case, the images after alignment should look virtually iden-
tical, and the calculated registration transformation provides quantitative
information on the parts of the images that have changed size between
images.
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2.4.3.2 Voxel Similarity Measures Applied to Images from Different 
Modalities—Entropy as a Measure of Alignment

 

In the past five years there has been significant progress, worldwide, in
using statistical relationships between voxel intensity values to align
images acquired from different modalities. This work stems from the obser-
vation that while images from different modalities exhibit complementary
information, there is usually also a high degree of shared information
between images of the same structures. For example, the human observer
is able to fuse stereoscopically very different images such as MR and CT of
the same structure provided the images’ brightness and contrast are adjusted
appropriately. 

Any algorithm that is used to register images from two different modalities
must be insensitive to modality-specific differences in image intensity associated
with the same tissue, and also accommodate differences in relative intensity
from tissue to tissue. The first successful application of a voxel similarity-based
algorithm to the registration of images from different modalities was that pro-
posed by Woods for MR-to-PET registration.

 

22

 

 We refer to this algorithm as par-
titioned intensity uniformity (PIU). The algorithm assumes that at each
intensity in the MR image the range of the corresponding PET intensities is
small. Implementation involved an almost trivial change to the original
source code of the program for VIR but proved to be robust for the registra-
tion of MR and PET images of the head, provided the scalp was first removed
from the MR images. Van den Elsen

 

23

 

 proposed another algorithm, this time
specific to MR-to-CT registration, in which the CT intensities were remapped
or transformed so that soft tissue was bright, while both bone and air were
dark. This had the effect of making a CT scan look a little like an MR image
so linear correlation of intensities could be used as a measure of alignment.
While effective in certain circumstances for aligning images of the head and
spine, it never really caught on. 

The initial success of these algorithms in specific applications inspired the
search for a more general registration algorithm that would work with mul-
timodality data. The required breakthrough came when a new way of look-
ing at the intensities of the two images was suggested.

 

24

 

 Each point in one
image will correspond to a point in the other, and these two points each have
an image intensity associated with them. We can generate a scatter plot of
these image intensities, point by point. These are two-dimensional plots of image
intensity of one image against corresponding image intensity of the other.
The resulting plot is a type of two-dimensional histogram. This is sometimes
called a joint intensity histogram and, when divided by the number of con-
tributing pixels, is equal to the joint probability distribution. For each pair of
image intensities in the two images, the joint probability distribution pro-
vides a number equal to the probability that those intensities occur together
at corresponding locations in the two images. Examples of this for a pair of
registered MR and PET images are given in Figure 2.9 (left). Interesting things
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happen if we now repeat these plots at different alignments. The distinctive
pattern in these two images starts to diffuse and disperse, as seen in Figure 2.10
(middle and right). Examples for two MR volumes and an MR and CT vol-
ume of the head are provided in Chapter 3, Figure 3.1. We can see from the
plots in Figure 2.10 why the PIU algorithm works for MR and PET registra-
tion. If we remove the scalp, i.e., everything below the dotted line on Figure 2.10,
then at registration there is only a narrow band of PET intensities for each MR
intensity. This band broadens with misregistration, thus increasing the PIU
measure. Likewise, we can see from the MR and CT plots in the next chapter
how the remapping of the CT intensity will produce a strong linear relation-
ship between MR and the remapped CT image intensities that will reduce
with misalignment. This linear relationship was exploited in the method pro-
posed by Van den Elsen.

 

23

 

 Of more importance, however, these plots provide
insight into an entirely new concept of image registration that is based on
image entropy and information theory.

Information theory dates back to the pioneering work of Shannon in the
1940s.

 

25

 

 Working at Bell Laboratories on how information is transmitted
along a noisy telephone line or radio link, he devised a theory around a new
measure of information. Its mathematical form was the same as the entropy
defined in statistical mechanics, so he called this measure entropy. Entropy is a
measure of disorder; a value for Shannon’s entropy can be calculated directly
from the joint probability distribution. Disorder (and entropy) increases with
increasing misregistration in both the joint probability distribution (the plots in
Figure 2.10 become more diffuse) and the visual appearance of the images
when overlaid with one another. This suggests entropy as a possible measure
of image alignment. Minimizing the joint entropy, calculated from the joint
intensity histogram, was proposed by Studholme et al.

 

26 

 

and Collignon

 

27

 

 as a
basis for a registration method. 

 

FIGURE 2.10 

 

The joint probability distributions of intensities for aligned MR and 

 

18

 

FDG PET volumes
(left), misaligned with a 2 mm translation (middle) and misaligned with a 5 mm translation
(right).

 

24

 

 Also indicated are the regions of the plot approximately corresponging to the scalp,
skull, gray matter, and white matter. The intensity values of the scalp will lie below the
dotted line.
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Unfortunately, joint entropy on its own does not provide a robust measure
of image alignment, as it is often possible to find alternative (mis)alignments
that result in much lower joint entropy. As an example, an alignment which
results in just the overlap of air surrounding the patient, with the image data
of the patient completely separated, will often produce a global minimum of
entropy. It seems plausible that an appropriate measure might be the differ-
ence between the information in the overlapping volume of the combined or
overlaid images and the information in the corresponding volumes of the
two original images. Such a measure is provided by mutual information,
which was proposed independently by Collignon et al.

 

27

 

 and the MIT
group.

 

28

 

 Mutual information is given by the difference between the sum of
the entropies of the individual images at overlap and the joint entropy of the
combined images. As an illustrative example, consider two images of the
same individual, each containing two eyes. Misaligned, the combined images
will contain four eyes, while at alignment there will only be two. There is,
therefore, less “information” in the conventional sense of the word in the
combined images at registration. The extra information at misalignment is
purely artifactual. This concept is explained diagrammatically in Figure 2.11.

At alignment we postulate that the joint entropy is minimized with respect
to the entropy of the overlapping part of the individual images, so that the
mutual information is maximized. Mutual information is a measure of how
one image “explains” the other. It makes no assumption of the functional
form or relationship between image intensities in the two images. Shannon
first presented the functional form of mutual information in 1948.

 

25

 

 He
defined it as the “rate of transmission of information” in a noisy communica-
tion channel between source and receiver.

The mutual information measure with modifications associated with norma-
lization

 

29

 

 has proved very robust

 

30,31

 

 and has resulted in fully automated 3D-to-
3D rigid-body registration algorithms that are now in widespread use. The
mathematical description of these measures is provided in the next chapter.

 

2.4.4 2D-3D Registration

 

Registration of x-ray or video images to a 3D-volume image involves estab-
lishing the pose of the x-ray or video image in relation to a previously
acquired CT or MR volume. This has potential applications in image-guided

 

FIGURE 2.11

 

Diagrammatic explanation in 2D that the superimposition of an aligned image pair contains
less information than a misaligned pair.
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interventions in the spine, pelvis, or head, or in endoscopic or microscopic
surgery. More details of potential applications are provided in Chapter 12. 

The two main classes of methods for 2D-3D registration are feature-based
and direct intensity-based. In feature-based methods of x-ray image align-
ment, silhouettes of bony structures are delineated in the x-ray image, and
the algorithm aligns the projections of these silhouettes with the surface of
the same structure delineated from a CT (or MR) volume. One algorithm
makes use of geometric properties of tangent lines of projected silhouettes
and tangent planes of 3D surfaces.

 

32

 

 This type of algorithm is fast, but is
highly dependent on the integrity of the segmentation in both images.

An alternative method is to match the pixel and voxel intensities directly.
The method is based on digitally reconstructed radiographs (DRRs), first pro-
posed for stereotactic neurosurgical applications.

 

18

 

 DRRs are computed by
integrating (summing intensities) along rays through the CT volume to sim-
ulate the process of perspective projection in x-ray imaging. New DRRs can
readily be calculated for trial poses and then compared with the true x-ray
image using an appropriate measure of similarity.

 

33,34

 

 The confounding effect
of soft tissue movement is minimized by removing the soft tissue from the CT
image by intensity thresholding. 

Video images may be used to register visible surfaces to MR or CT vol-
umes. Again there are two methods for establishing registration, those based
on matching a reconstructed surface and those that are intensity based. In the
first, a pattern of light (lines, random dots, etc.) is projected onto the visible
surface. Correspondence of the pattern in the two calibrated video images is
used to reconstruct the surface in 3D. This surface is then registered to the
corresponding MR or CT derived surface using an appropriate surface regis-
tration method such as the iterative closest point algorithm. Recently, alter-
native methods have been proposed which do not rely on the initial step of
reconstructing a surface. In these methods the voxel intensities are used
directly to match to the 3D surface derived from MR or CT. Viola has pro-
posed using the mutual information between optical image intensities and
directions of the MR or CT surface normals.35 An alternative approach uses
the observation that intensities of a given point on a surface appear very sim-
ilar or “photoconsistent” when viewed under the same lighting conditions
with two or more cameras.36 Trial registrations are iteratively tested until an
appropriate photoconsistency criterion is satisfied. 

2.5 Nonrigid Registration Algorithms

As already stated, the two main application areas where nonrigid registra-
tion algorithms are required are when establishing correspondence between
an image of one individual and atlas, computer model, or image of another
individual (intersubject registration), and when establishing correspondence
between images of tissues that have deformed, shrunk, or grown over time
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(intrasubject registration). As described above, the issues of correspon-
dence are rather different. 

2.5.1 Intersubject Registration

Establishing correspondence of an atlas with a set of images or a number of
images from a cohort of individuals requires a transformation that reflects the
variation in anatomy between the atlas and the individual patient. There will
be changes in shape and size as well as grosser changes in topology. This
remains an area of active research with several approaches under investiga-
tion. Approaches include extending the rigid-body method to incorporate
deformations that follow quadratic and higher order polynomial curves, or a
wide range of other, more complicated functions such as Fourier or wavelet
basis functions and splines, including radial basis functions such as the thin-
plate spline and B-splines. These methods are described in Chapter 13. 

Registration algorithms have been devised based on some approximation
to the physical process inducing the deformation, including the elastic prop-
erties of solids and the dynamics of viscous fluids. These transformations
produce physically plausible transformations and are possible to compute,
although they take some time. Such algorithms, however, do not directly
model the underlying causes for the differences in shape, and hence results
should be interpreted with care. 

In the optimization process used in all nonrigid algorithms, the goodness
of match is balanced against some constraint prohibiting implausible defor-
mations. This constraint may be provided by some estimate of the energy
required to physically induce the deformation, as if the structures to be reg-
istered were made of elastic material, or may be couched in probabilistic
terms. Multiscale approaches may be used in which a rigid-body transforma-
tion is computed for a coarse or blurry image, followed by multiple rigid-
body transformations for arrays of volume elements at progressively finer
detail with interpolation between these elements.37 One intriguing algorithm,
aptly named the “Demons” algorithm, models the deformation on the phys-
ical process of diffusion.38 The mathematics are analogous to Maxwell’s
demons in statistical physics. 

The problem might be made easier by using statistical shape models based
on principal component analysis of the variations observed across a popula-
tion of individuals.2 In these models the variation in shape of a structure
between one individual and another is captured by a small number of param-
eters or so called “modes of variation.” In the original paper by Cootes et al.,2

the outline of the hand is used as an example and the different modes corre-
spond to the individual movements of each finger. While somewhat con-
trived, this shows how a very small number of parameters can capture quite
complex variations in shape. In a study of fetal liver shape, only five modes
are required to capture 89% of the variation in shape.39 

In principle, a tissue growth model might be used to model differences
between different individuals. Study of tissue growth and links with gene
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expression and environmental factors is an exciting area of research, but it is
likely to be many years before such models can be used to align images from
different subjects.

2.5.2 Intrasubject Registration

Almost all registration work so far has been applied to the brain, which is
assumed to be held rigid by the confines of the skull, or to other bony structures.
We are beginning to see extension of registration algorithms to other structures
that deform over time. These deformations may either be due to natural invol-
untary motion (e.g., the heartbeat) or voluntary motion (e.g., change in body
position within the scanner), or may be induced by an intervention. In the
former, we need to align images to establish correspondence point by point. In
image-guided interventions, tissue can distort and deform between preopera-
tive scans and the intervention. Anatomical structures may move in relation to
each other. Intraoperative data in the form of point coordinates, optical images
from microscopes or endoscopes, ultrasound, or x-ray may provide updated
information on location and deformation of anatomical structures. This new
information might be used as a basis for predicting deformation of adjacent tis-
sues. The general problem, as in matching to an atlas described above, is often
poorly constrained, but in this case we may use the physical constraints of the
tissues involved. For example, bony structures will usually remain rigid, and
soft tissues will obey the laws of physics when deforming. Known information
about the tissue such as volume preservation or local rigidity might be incorpo-
rated to constrain what would otherwise be a wide range of possible solutions.
For example, the breast is unlikely to change in volume over the course of a
20-minute dynamic, contrast-enhanced MR sequence of acquisitions. 

While devising effective nonrigid registration methods remains a research
topic, there are a number of algorithms undergoing evaluation that show
great promise, e.g., Rueckert et al.3 Perhaps surprisingly, it appears that the
transformation mapping one individual’s anatomy to another might obey
rather similar smoothness constraints to that which occurs naturally in soft
tissue deformations. Algorithms tend to fall into two classes: those based on
modeling, if only approximately, some physical process such as viscous
fluid flow or elastic deformation, and those based on some interpolating or
approximating function. These issues are discussed in more detail in Chapter 13
along with an introduction to the mathematics involved in the more success-
ful approaches. 

2.6 Optimization

Only two regularly used algorithms directly calculate a transformation to
establish correspondence. The first is the Procrustes method based on point
correspondence, described earlier. The other is when two images have very
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similar intensities and the transformation required to establish correspon-
dence is small. In this case, the transformation can be approximated by the
first term in an expansion of the function relating one image to the other as a
series of terms, i.e., the Taylor series. An approximate transformation can be
calculated directly.40 These algorithms are described in more detail in Chapter 3.

In all other algorithms, a process of optimization is required. This means
that the algorithm takes a series of guesses from an initial starting position.
The starting position has to be sufficiently close for the algorithm to converge
to the correct answer, i.e., it has to be within what is known as its “capture
range.” This first guess can be set automatically or with a simple user inter-
action. The algorithm computes a number, known as the cost function or sim-
ilarity function, relating to how well the two images are registered. Mutual
information, correlation coefficient, and sum-of-squared-intensity differences
are all examples of cost functions. Some cost functions (e.g., the correlation
coefficient) increase as the images come into alignment; others (e.g., sum-of-
squared-intensity-differences) decrease. The registration algorithm pro-
ceeds by taking another guess and recalculating the cost function. Progres-
sion towards an optimal registration is then achieved by seeking
transformations that increase (or decrease) the cost function until a maxi-
mum (or minimum) of the cost function is found. The best registration that
can be achieved is defined by this maximum (or minimum). The strategy for
“optimization”, i.e., guessing subsequent alignment transformations, is an
important subdiscipline in the area of computing known as numerical meth-
ods. The next chapter contains a more detailed treatment of optimization of
cost functions. 

2.7 Transformation of Images

Registration algorithms are designed to establish correspondence. In many
applications this is sufficient. All that is required is an indication of what
point in one image corresponds to a particular point in the other. In some
applications, however, we need to transform an image into the space of the other.
This process requires resampling one image on the grid corresponding to the
voxels or pixels in the other. To do this, interpolation is required. The accu-
racy with which this interpolation is done depends on the motivation for reg-
istering the images in the first place. In most applications simple nearest
neighbor or trilinear interpolation will suffice. In nearest neighbor interpola-
tion, as the name suggests, the location of each voxel in the transformed
image is transformed back to the appropriate location in the original image
and the nearest voxel value is copied into the transformed voxel. In trilinear
interpolation the linearly weighted average of the eight nearest voxels is
taken. For the highest accuracy, sampling theory tells us that a sinc ((sin x)�x)
weighting function applied to all voxels should be used.19 This is particularly
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important when studying very subtle changes in the intensities or sizes of
structures from images taken over a period of time. Interpolation errors can
easily exceed the original image noise and can swamp subtle changes that
would otherwise be detectable in subtraction images. The mathematics of these
issues are addressed in Chapter 3, with applications described in Chapter 7.
Unfortunately, accurate sinc interpolation can be extremely time consuming
even on very fast computers, and can, therefore, limit applicability. Recent
innovations in this area such as shear transformations are making high qual-
ity interpolation much faster.

Some consideration needs to be given to the spatial resolution and pixel or
voxel sizes of the two images. Transforming from a high resolution modality
such as CT or MR with voxel sizes of perhaps 1 � 1 � 1 mm or finer onto a
voxel grid from, for example, PET with a voxel size of 3 � 3 � 3 mm will
result, inevitably, in loss of information. On the other hand, transforming a
PET image onto the grid of an MR or CT image will dramatically increase the
memory required to store the PET image (by a factor of 27 in this example),
unless some form of data compression is used. The choice of the final trans-
formed image-sampling grid will depend on the specific application.

2.8 Validation

Complex software has to be verified and validated. This is particularly impor-
tant in medical applications, where erroneous results can risk a patient’s health
or even life. Verification is the process by which the software is shown to do
what it is specified to do (e.g., maximize mutual information). The software
industry has developed standards, protocols, and quality procedures for veri-
fication. This is an important topic, but beyond the scope of this book. 

Validation is the process whereby the software is shown to satisfy the needs of
the application with accuracy and other performance criteria (e.g., register two
images within a certain tolerance, within a certain processing time, and with less
than a certain rate of failure). Validation of image registration algorithms will usu-
ally follow a sequence of measurements using computer-generated models
(software phantoms), images of physical phantoms of accurately known con-
struction and dimensions, and images of patients or volunteers. The process
must demonstrate both high robustness and high accuracy. Robustness
implies a very low failure rate and, if failure does occur, that this is commu-
nicated to the user. Assessment of accuracy requires knowledge of a “gold
standard” or “ground truth” registration. This is difficult to achieve with clin-
ical images, but several methods have recently been reported. These are
described in more detail in Chapter 6.

Finally, in any new technology applied to medicine we must evaluate
whether there is a clear benefit to the patient and, if so, that it is achieved
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in a cost-effective manner. This is the topic of health technology assessment.
It is touched on in application chapters but is largely beyond the scope of
this book. It is clear that image registration is invaluable in neurosciences
research and the clinical application of image-guided surgery. Many other
applications will undoubtedly be accepted as the technology matures.

2.9 Summary and Conclusion

This chapter has introduced the basic ideas that underlie image registration.
The concept of correspondence was discussed in some detail. A clear defini-
tion of correspondence is required in any new application (and many new
applications are being suggested all the time). This is particularly important
as the development of applications in nonrigid and intersubject registration
gathers pace. The chapter proceeds with a discussion of the dimensionality
of the data to be registered and the number of degrees of freedom of the trans-
formation. This book is primarily concerned with registering 3D images
assuming that the part of the body imaged can be treated as if it were a rigid
body. Image registration has also been successfully applied to 2D images,
between 2D and 3D images, and to time series. We are also beginning to see
progress in devising useful and practical algorithms that allow images to be
aligned in cases where the structure that is imaged deforms, or when aligning
images from different individuals.

A descriptive account of the more successful image registration algorithms
is provided. The intention in this chapter is to provide insight into the con-
cepts behind the algorithms, not to provide mathematical, algorithmic, or
implementation details. Our focus is on an understanding of how these algo-
rithms work that the nontechnical individual can understand. The descrip-
tion of the algorithms for the more mathematically inclined is left to the next
chapter. We describe the well known point-based and surface-based algo-
rithms, and, in more detail, the highly successful voxel intensity or voxel sim-
ilarity approaches. We touch on recent work on nonrigid registration
algorithms, which are dealt with in more detail in Chapter 13.

Very few registration algorithms provide a direct calculation of the trans-
formation. The computer has to search iteratively for the best solution. This
is the process of optimization described conceptually in Section 2.6. Finally,
we usually need to transform one of the images into the coordinate system or
“space” of the other. Some of the issues and pitfalls in transformation are dis-
cussed in Section 2.7. 

Finally, all complex computations must be validated. This is particularly
important in medical applications. This topic is introduced in Section 2.8 and
expanded throughout this book.
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3.1 Introduction

 

In the previous chapter, the concepts behind image registration were intro-
duced in a nonmathematical way. The aim of this chapter is to describe some
of the main algorithms used in image registration in greater detail, and to
compare their applicability. This requires a more mathematical approach.

This chapter uses three-dimensional (3D) rigid-body registration as an
exemplar. The algorithms described in most detail are those used for rigid-
body registration of 3D tomographic images of the same subject. Many of
the concepts and algorithms introduced here are also applicable to other
registration applications including registration of 2D and 3D images,
image-physical space registration, nonrigid intrasubject registration, and
intersubject registration.

The field of nonrigid registration for both intrasubject and intersubject
applications is an area of active current research, and is the topic of the
third part of this book.

 

3.2 Notation and Terminology

 

In order to align two images, we need to know the transformation that relates
the 

 

position 

 

of features in one image or coordinate space with the 

 

position

 

 of
the corresponding feature in another image or coordinate space. We use the
symbol 

 

T

 

 to represent this registration transformation.
Using the language of geometry, this transformation is a spatial map-

ping. We can consider the mapping 

 

T

 

, that transforms a position 

 

x

 

 from one
image to another, or from one image to the coordinate system of a treat-
ment device (image to physical registration).

 

T

 

 : 

 

x

 

B

 

 

 

� 

 

x

 

A

 

 

 

⇔

 

 

 

T

 

(

 

x

 

B

 

) 

 

� 

 

x

 

A

 

(3.1)

It is sometimes useful to also consider the inverse mapping  that
maps 

 

x

 

A

 

 to 

 

x

 

B

 

.* With image data we have to consider intensity values as
well as positions, and we refer to 

 

A

 

(

 

x

 

A

 

) as the intensity value at the location

 

x

 

A

 

, and similarly for image 

 

B

 

. It is important to remember that the medical
images 

 

A

 

 and 

 

B

 

 are derived from a real object, i.e., the patient. The images
have a limited field of view that does not normally cover the entire patient.
Furthermore, this field of view is likely to be different for the two images.

 

* Although rigid-body and affine transformations that form the focus of this chapter are invert-
ible, not all more complicated transformations are.

T �1
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We can usefully think of the two images as mappings of points in the
patient within their field of view (or 

 

domain

 

, 

 

�

 

) to intensity values.

 

A

 

 : 

 

x

 

A

 

 

 

� 

 

�

 

A

 

 

 

�

 

 

 

A

 

(

 

x

 

A

 

)

 

B

 

 : 

 

x

 

B

 

 

 

� 

 

�

 

B

 

 

 

�

 

 

 

B

 

(

 

x

 

B

 

)

Because the images are likely to have different fields of view, the domains

 

�

 

A

 

 and 

 

�

 

B

 

 will be different. This is a very important factor, which accounts
for a good deal of the difficulty in devising accurate and reliable registration
algorithms. We will return to this issue later in this section.

As the images 

 

A

 

 and 

 

B

 

 represent one object 

 

X

 

, imaged with the same or dif-
ferent modalities, there is a relation between the spatial locations in 

 

A

 

 and 

 

B

 

.
Image 

 

A

 

 is such that position 

 

x

 

 

 

�

 

 

 

X

 

 is mapped to 

 

x

 

A

 

, and images 

 

B

 

 maps 

 

x

 

 to

 

x

 

B

 

. The registration process involves recovering the spatial transformation 

 

T

 

which maps 

 

x

 

B

 

 to 

 

x

 

A

 

 over the entire domain of interest, i.e., that maps from 

 

�

 

A

 

to 

 

�

 

B 

 

within the overlapping portion of the domains. We refer to this overlap
domain as . This notation makes it clear that the overlap domain
depends on the domains of the original images 

 

A

 

 and 

 

B

 

, and also on the spa-
tial transformation 

 

T

 

. The overlap domain can be defined as:

(3.2)

Registration algorithms that make use of geometrical features in the
images involve identifying features such as sets of image points  and

 that correspond to the same physical entity visible in both images, and
calculating 

 

T

 

 for these features.
Registration algorithms that work directly on image intensity values work

differently. These algorithms nearly always iteratively determine the image
transformation 

 

T

 

 that optimizes some measure of the similarity between the
voxel intensities in the two images (a 

 

voxel similarity measure

 

). At each itera-
tion, they transform the image using the current estimate of 

 

T

 

 and recalculate
a voxel similarity measure. Unless 

 

T

 

 is simply a translation by an integer
number of pixels or voxels, the transformation carried out at each iteration
involves interpolation between sample points. For these algorithms, it is use-
ful to introduce new notation for the transformation T

 

 that maps both the
position and the associated intensity value at that position. In this chapter, we
use the notation 

 

T

 

 when mapping of position is all that is required, and T

 

when the intensity at a position is also taken into account. Any time that T

 

 is
used, the type of interpolation used by the algorithm is likely to alter the solu-
tion obtained. For example, throughout this chapter, we treat image 

 

A

 

 as the
reference, or target, image and image 

 

B

 

 as the iteratively transformed, or
source, image. We use the notation  to represent image 

 

B

 

 transformed,
using the current transformation estimate 

 

T

 

. This image  is defined at the
voxel coordinates of image 

 

A

 

. The voxel values in , of course, depend

�A ,B
T

�A ,B
T xA �A T �1 xA( ) �B��{ }�

xA{ }
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on the type of interpolation used, hence the use of T

 

 rather than 

 

T

 

 as the
superscript.

Many of these voxel similarity measures involve analyzing level sets, or
isointensity sets, within the images. For a single image 

 

A

 

, an isointensity
set with intensity value 

 

a

 

 is the set of voxels in 

 

A

 

, such that:

 

�

 

a

 

 

 

�

 

 (3.3)

Some algorithms do not work on isointensity sets corresponding to a sin-
gle intensity value but on isointensity sets corresponding to small groups,
or bins, of intensities. For example, a 12-bit image may have its intensities
grouped into 256 four-bit bins. We use 

 

a

 

 to mean either individual intensi-
ties or intensity bins, as appropriate.

It is important to remember that 

 

�

 

a

 

 is the isointensity set within all of image

 

A

 

 that is within the domain 

 

�

 

A

 

. As stated above, for registration using voxel
similarity measures, we work within the overlap domain  The level set
within this overlap domain is, of course, a function of 

 

T

 

. To emphasize this 

 

T

 

dependence, we define the isointensity set in image 

 

A

 

 with value 

 

a

 

 within
 as:

(3.4)

Similarly, we can consider an isointensity set in image 

 

B

 

. Image 

 

B

 

 is
always the image that we consider transformed, so the definition is slightly
different than for image 

 

A

 

. We consider the isointensity set to be the set of
voxels in the overlap domain  that have intensity 

 

b

 

 in image .

(3.5)

 

3.2.1 Image Field of View

 

For intrasubject registration, the object being studied is the same for both
images, but the domains 

 

�

 

A

 

 and 

 

�

 

B

 

 may be different in extent, and are always
different in position and

 

/

 

or orientation. The domain over which the transfor-
mation T

 

 is valid is . This domain is, in general, smaller than either 

 

�

 

A

 

 or

 

�

 

B

 

, and also is a function of the transformation 

 

T

 

. The latter point is impor-
tant and sometimes overlooked. It is true even if the images 

 

A

 

 and 

 

B

 

 have
identical fields of view, since any translation or rotation of image 

 

B

 

 with
respect to image 

 

A

 

 will alter the overlap domain. For registration algorithms
that make use of corresponding geometrical features, the difference in field
of view of images 

 

A

 

 and 

 

B

 

 can cause difficulties, as features identified in one
image may not be present in the second. The dependence of  on 

 

T

 

 is,
however, not especially important in these algorithms. For registration
algorithms that make use of image intensity values to iteratively determine 

 

T

 

,
greater difficulties arise. The isointensity sets used by these algorithms are the
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sets of fixed intensities within . Since  changes with 

 

T

 

, algorithms
that are too sensitive to changes in  may be unreliable.

The difficulty caused by the different fields of views of images 

 

A

 

 and 

 

B

 

is further illustrated by considering an approach to rigid-body registration
called the method of moments.

 

1

 

 When applying this to images of a part of
the body, e.g., the head, that part of the body is first delineated from images

 

A

 

 and 

 

B

 

 using a segmentation algorithm, giving the binary volumes 

 

O

 

A

 

and 

 

O

 

B

 

. The images can then be registered by first aligning the centroids
(from the first order moment) of 

 

O

 

A

 

 and 

 

O

 

B

 

, and then aligning the princi-
pal axes of 

 

O

 

A

 

 and 

 

O

 

B

 

 (from the second order moment). This approach is,
however, unsatisfactory for most medical image registration applications
because the first and second order moments are highly sensitive to change in
image field of view. In order for this method to work accurately, the object
used for the calculations must be entirely within , and it is frequently dif-
ficult to delineate structures with this property.

 

3.2.2 The Discrete Nature of the Images

 

Another important property of the medical images with which we work is
that they are discrete. That is, they sample the object at a finite number of
voxels. In general, this sampling is different for images 

 

A

 

 and 

 

B

 

, and while
the sampling is commonly uniform in a given direction, it may be anisotro-
pic; that is, it varies along the different axes of the images. Discretization has
important consequences for image registration, so it is useful to build this
concept into our notational framework.

We can define our domain 

 

�

 

 in the following way.

(3.6)

where  is a 

 

bounded

 

 continuous set defining the volume of the patient
imaged, and 

 

�

 

 is an infinite discrete grid. 

 

� 

 

is our 

 

sampling

 

 grid, which is char-
acterized by the anisotropic sample spacing 

 

 

 

The sampling
is normally different for the images 

 

A

 

 and 

 

B

 

 being registered, and we denote
this by introducing sampling grids  and  for the domains 

 

�

 

A

 

 and 

 

�

 

B

 

.
For any given 

 

T

 

, the intersection of the discrete domains 

 

�

 

A

 

 and 

 

�

 

B

 

 is
likely to be the empty set, because no sample points will exactly overlap.
In order, therefore, to compare the images 

 

A

 

 and 

 

B

 

 for any estimate of 

 

T

 

 it
is necessary to interpolate between sample positions and to take account
of the differences in sample spacing  and . This introduces two prob-
lems. First, fast interpolation algorithms are imperfect, introducing blur-
ring or ringing into the image. This changes the image histograms and
hence alters the isointensity sets discussed above. Second, we must be
careful when the image 

 

B

 

 being transformed has higher resolution sam-
pling than the reference image 

 

A

 

, or we risk aliasing when we resample 

 

B

 

from 

 

�

 

B

 

 to generate  in 

 

�

 

A

 

. In this case, we should first blur 

 

B

 

 with a fil-
ter of resolution  or lower before resampling.

�A ,B
T
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T
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T
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Because the transformation T maps both positions and intensities at
these positions, T (unlike the spatial mapping T) has to take account of the
discrete sampling.

3.3 Types of Transformation

The spatial mapping T describes the relationship between locations in one
image and corresponding locations in a second image. The images could be
two-dimensional (2D) or three-dimensional (3D), so the mapping may be from
2D space to 2D space, from 3D space to 3D space, or between 3D and 2D
space. In all cases, the object being imaged—all or part of a human subject—is
three-dimensional. There are consequently very few situations in which a
2D–2D mapping adequately aligns two images. The most common applica-
tions of image registration involve aligning pairs of 3D images. Another
important application is aligning 2D images with 3D images (2D–3D registra-
tion). In 2D–3D registration, T involves a 3D–3D mapping followed by pro-
jection of the 3D object onto a 2D plane.

If the images registered are of the same object that is merely in a different
position, then we can describe the required registration transformation
using just translations and rotations. This gives us a rigid-body transfor-
mation. In three dimensions, this has six degrees of freedom which can be
defined as translation in the x, y, and z directions, and rotations �, �, and �
about these three axes. From these unknowns, we can construct a rigid-
body transformation matrix Trigid that will map any point in one image to a
transformed point in the second. This transformation can be represented
as a rotation R followed by a translation t �  that can be applied
to any point x �  in the image:

Trigid (x) � Rx 	 t (3.7)

where the rotation matrix R is constructed from the rotation angles as follows:

(3.8)

For a 2D–3D rigid-body registration, we need to consider both the rigid-body
transformation and a projection of the transformed 3D object onto a plane.

When combining rigid-body transformations with projections, it can be
useful to combine the translational and rotational components of the
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rigid-body transformation into a single 4 
 4 matrix using homogeneous
coordinates:

(3.9)

It is common to consider projection of an object defined in (x, y, z) space along
the z axis onto the u, v plane. The projection can be characterized by the
intrinsic parameters of the imaging system (u0, v0, ku, kv). For projection x-ray,
we can interpret these as follows: u0 and v0 define the ray-piercing point (the
point in the (u, v) imaging plane from which a normal vector goes through
the x-ray source), and ku and kv equal the pixel sizes in the horizontal (u) and
vertical (v) directions, respectively, divided by the imaging-plane-to-focal-spot
distance. These intrinsic parameters can often be determined by calibration of
the imaging system. Alternatively, they can be considered as unknowns, add-
ing four degrees of freedom to the registration algorithm. This transformation
Tprojection can be represented as a 4 
 3 matrix which projects the 3D object
along the z axis:

(3.10)

A 3D point in homogeneous coordinates  is multiplied by
this matrix, giving a vector , and the resulting 2D point on the
projection plane  is obtained by dividing the first and second ele-
ments of the vector by the third element �, which is a scaling factor.

The transformation required for rigid-body 2D–3D registration, T2D–3D is
the composition of the projection and rigid-body transformations:

T2D–3D � TprojectionTrigid (3.11)

Further details about projection transformations and homogeneous
coordinates can be obtained from many books on graphics and computer
vision, including Foley et al.2

When we are considering structures made of bone or enclosed in bone,
this rigid-body transformation (or rigid-body transformation followed by
projection) can correctly align images of the same object in different posi-
tions. This assumption works remarkably well for images of the brain, as the
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bone of the skull restricts the movement of the brain to less than 1 mm.3*
Unfortunately, repositioning patients often results in changes in the position
of objects that cannot simply be described using translations and rotations.
We can extend the transformation a little, while still maintaining a single
matrix that will transform all points in the image, if we restrict the additional
changes to stretches and skews. This gives an affine transformation. Unfortu-
nately, soft tissue in the body tends to deform in more complicated ways, so an
affine transformation does not add greatly to the number of registration prob-
lems that can be solved. Whereas the rigid-body transformation preserves the
distance between all points in the object transformed, an affine transformation
preserves parallel lines. Two areas where affine transformations are useful
are in correcting for scanner errors (which can be errors in scale or skew) and
in approximate alignment of brain images from different subjects. These
applications are discussed in Chapters 5 and 14, respectively.

For most organs in the body, and for accurate intersubject registration,
many more degrees of freedom are necessary to describe the tissue deforma-
tion with adequate accuracy. These nonrigid (perhaps more correctly termed
nonaffine) registration transformations are discussed further in Chapter 13.

Linear transformations: Many authors refer to affine transformations as linear.
This is not strictly true, as a linear map is a special map L which satisfies:

(3.12)

The translational part of affine transformations violates this. An affine map is
more correctly described as the composition of linear transformations with
translations.

Furthermore, reflections are a linear transformation, but they are nor-
mally undesirable in medical image registration. For example, if a registra-
tion algorithm used in image-guided neurosurgery calculated a reflection
as part of the transformation, it might result in a patient having a craniot-
omy on the wrong side of his head. If there is any doubt about whether an
algorithm might have calculated a reflection, this should be checked prior
to use. Since affine transformations can be represented in matrix form, a
reflection can be detected simply from a negative value of the determinant
of this matrix.

The term nonlinear transformation is often used interchangeably with non-
rigid. Both terms are used in this book to refer to a transformation with more
degrees of freedom than an affine transformation. As stated previously, these
types of transformations are discussed in detail in Chapters 13 through 15.

One-to-one transformations: For intrasubject registration, the object imaged
with the same or different modalities is one patient. It would at first seem
likely that the desired transformation T should be one to one. This means that

* This is only valid provided the skull remains closed. In neurosurgery, for example, deformation
can be much greater.

L(�xA �x�A )	 �L xA( ) �L (x�A ) xA, x�A �
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each point in image A gets transformed to a single point in image B, and vice
versa. There are several situations in which this does not happen. First, if the
dimensionality of the images is different such as in the registration of a
radiograph to a CT scan, a one-to-one transformation is impossible. Second,
the issues of image field of view and sampling discussed above mean that
parts of the patient sampled in one image may not be present in the second
image, even if the patient has not changed.

For various types of nonaffine registration, a one-to-one transformation
is not desirable. For example, in registration of images from different sub-
jects, or of the same subject before and after surgery, there may be struc-
tures in image A that are absent from image B, or vice versa.

3.4 Registration Algorithms

The algorithms that find T given two images are called registration algo-
rithms. In this section we describe algorithms that use points identified in the
images (Section 3.4.1), surfaces delineated from the images (Section 3.4.2),
and voxel intensity values (Section 3.4.3).

As stated at the start of this chapter, we are using 3D rigid-body registra-
tion as the exemplar application. All these algorithms can straightforwardly
be extended to the case of affine transformations. These approaches can also
be extended to nonaffine registration transformations, but the extension is
quite different when using points, surfaces, or voxel intensity values. These
nonaffine approaches are discussed in Chapter 13.

3.4.1 Points and the Procrustes Problem

Point-based registration involves identifying corresponding 3D points in the
images to be aligned, registering the points, and inferring the image trans-
formation from the transformation determined from the points. The 3D
points used for registration are often called fiducial markers or fiducial points.
Using the notation introduced in section 3.2, we want to find points  in
image A and  in image B corresponding to the set of features  in the
object. The corresponding points are sometimes called homologous land-
marks, to emphasize that they should represent the same feature in the dif-
ferent images. The most common approach is then to find the least square
rigid-body or affine transformation that aligns the points. This transforma-
tion can subsequently be used to transform any arbitrary point from one
image to the other.

3.4.1.1 The Orthogonal Procrustes Problem

The orthogonal Procrustes problem draws its name from the Procrustes area
of statistics. Procrustes was a robber in Greek mythology. He would offer
travelers hospitality in his roadside house and the opportunity to stay the

xA{ }
xB{ } x{ }
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night in a bed that would perfectly fit each visitor. As the visitors discovered
to their cost, however, it was the guest who was altered to fit the bed, rather
than the bed to fit the guest. Short visitors were stretched to fit, and tall visitors
had suitable parts of their bodies cut off so they would fit. The result, it seems,
was invariably fatal. The hero Theseus put a stop to this unpleasant practice
by subjecting Procrustes to his own method. The term “Procrustes” became a
criticism for the practice of unjustifiably forcing data to look like they fit
another set. More recently, Procrustes statistics has lost its negative associa-
tions and is used in shape analysis.

The Procrustes problem is an optimal fitting problem of least square type:
given two configurations of N points in D dimensions P �  and Q �

, one seeks the transformation T which minimizes G(T) � .
The notation is P, Q are the N-by-D matrices whose rows are the coordinates
of the points pi, qi, and T(P) is the corresponding matrix of transformed
points. The standard case is when T is a rigid-body transformation.4,5 One
can additionally consider scaling, i.e., look for the minimum of similarity
transformations.4 If T is affine, we are faced with a standard least square.6

Solutions: The classical Procrustes problem, i.e., T � rigid-body transfor-
mations  has known solutions. A matrix representation of the rotational part
can be computed using Singular Value Decomposition (SVD).4,6–9

First replace P and Q by their demeaned versions

 

This reduces the problem to the orthogonal Procrustes problem in which we
wish to determine the orthogonal rotation R. Central to the problem is the
D-by-D correlation matrix K ��  as this matrix quantifies how much
the points in Q are “predicted” by points in P. If P �  is a
matrix of row vectors (and the same for Q), K � �iKi where Ki �� , then:

where K �  is the SVD of K.
It is essential for most medical registration applications that R does not

include any reflections. This can be detected from the determinant of ,
which should be 	1 for a rotation with no reflection, and will be �1 if there
is a reflection. In the above equation,  takes this into account.

Finally the translation t � 
This approach has been widely used in medical image registration, first for

intermodality registration,10,11 and more recently in image–guided surgery.12

The theory of errors has been advanced in the medical application domain
through the work of Fitzpatrick and colleagues.5,13
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The Procrustes algorithm is used for determining rigid-body or affine trans-
formations. Point landmarks can also be used to determine nonaffine transfor-
mations using algorithms such as the thin-plate spline described in Chapter 13.

3.4.1.2 Errors in Rigid-Body Point Registration

It is clear that the localization of the fiducial points is never perfect. This is
what Fitzpatrick et al.5 call the fiducial localization error (FLE). The least
square residual itself is called the fiducial registration error (FRE), and this
has a distribution described by Sibson.14 Fitzpatrick et al. stress that what
really matters is not the value of FRE, as the fiducials are not the points of
interest, but what they defined as the target registration error (TRE), i.e., the
error induced by FLE at a given target. Explicitly, if the FLE is �, the rotation
and translations which solve the Procrustes problem are going to be depen-
dent on � : T� �� (R�, t�). The TRE at the target x is then �T�(x) � T(x)�, and to
first order in �, this decreases as in  where N is the number of fiducial
points.5 This result can be summarized as follows. The squared expectation
value of TRE at position x, (coordinates (x1,…, xD) in D dimensions) is going
to be (to first order)

where � are the singular values of the marker locations, and are related to
the distribution of markers with respect to the principal axes of the point
distribution.

3.4.2 Surface Matching

Boundaries, or surfaces, in medical images are frequently more distinct
than landmarks, and various segmentation algorithms can successfully
locate high contrast surfaces. This is especially true of the skin surface—the
boundary between tissue and air—which is high contrast in most imaging
modalities, with the important exception of certain tracers in nuclear med-
icine emission tomography. If equivalent surfaces can be automatically seg-
mented from two images to be combined, then rigid-body registration can
be achieved by fitting the surfaces together. The surface matching algo-
rithms described below are normally only used for rigid-body registration.
An alternative approach that does not require automatic segmentation but
which can be thought of as an interactive version of surface matching, is to
provide the user with an interactive image transformation package that
allows the user to translate and rotate one image with respect to the other,
while displaying the edge-map from the image being transformed on top of
the intensity values of the reference image.15
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3.4.2.1 The Head and Hat Algorithm

Pelizzari and colleagues16, 17 proposed a surface fitting technique for registra-
tion of images of the head that became known as the “head and hat” algo-
rithm. Two equivalent surfaces are identified in the images. The first, from
the higher resolution modality, is represented as a stack of disks and is
referred to as the head. The second surface is represented as a list of uncon-
nected 3D points. The registration transformation is determined by itera-
tively transforming the (rigid) hat surface with respect to the head surface,
until the closest fit of the hat onto the head is found. The measure of closeness
of fit used is the square of the distance between a point on the hat and the
nearest point on the head, in the direction of the centroid of the head. The iter-
ative optimization technique used is the Powell method.18 The Powell opti-
mization algorithm performs a succession of one dimensional optimizations,
finding in turn the best solution along each of the six degrees of freedom, and
then returning to the first degree of freedom. The algorithm stops when it is
unable to find a new solution with a significantly lower cost (as defined by a
tolerance factor) than the current best solution. This algorithm has been used
with considerable success for registering images of the head,17 and has also
been applied to the heart.19 As first described, the head surface was derived
from MR data, and the hat surface from PET data. The surfaces most com-
monly used are the skin surface (from MR and PET transmission images) or
the brain surface (from MR images and PET emission images).

3.4.2.2 Distance Transforms

The performance of the head and hat algorithm was improved by using a dis-
tance transform to preprocess the head images. A distance transform is
applied to a binary image in which object pixels (or voxels) have the value 1,
and other voxels have the value 0. All voxels in this image are labeled with
their distance from the surface of the object. By prelabeling all image vox-
els in this way, the computational cost per iteration can be substantially
reduced (potentially to a single address manipulation and accumulation
for each transformed hat surface point). A widely used distance transform is
the chamfer filter proposed by Borgefors.20 This approach was used for rigid-
body medical image registration, e.g. by Jiang21 and van Herk.22 More recently,
exact Euclidean distance transforms have been used in place of the chamfer
transform.23

Given estimates for the six degrees of freedom of the rigid-body transfor-
mation, the hat points are transformed and their distances from the head
surface are calculated from the values in the relevant voxels in the distance
transform. These values are squared and summed to calculate the cost asso-
ciated with the current transformation estimate. The risk of finding local
optima can be reduced by starting out registration at low resolution and
gradually increasing the resolution to refine the accuracy, combined with
outlier rejection to ignore erroneous points.21
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3.4.2.3 Iterative Closest Point (ICP)

The ICP algorithm was proposed by Besl and McKay in  for the reg-
istration of 3D shapes. It was not designed with medical images in mind, but
has subsequently been applied to medical images with considerable success,
and is now probably the most widely used surface matching algorithm in
medical imaging applications.25–27 The original paper is written in terms of
registration of collected data to a model. The collected data, P, could come
from any sensor that provides 3D surface information, including laser scan-
ners, stereo video, and so forth. The model data, �, could come from a com-
puter-aided design model. In medical imaging applications, both sets of
surface data might be delineated from radiological images, or the model
might be derived from a radiological image and the data from stereo video
acquired during an operation. The algorithm is designed to work with seven
different representations of surface data: point sets, line segment sets
(polylines), implicit surface, parametric curves, triangle sets, implicit sur-
faces, and parametric surfaces. For medical image registration the most rele-
vant representations are likely to be point sets and triangle sets, as algorithms
for delineating these from medical images are widely available.

The algorithm has two stages and iterates. The first stage involves identi-
fying the closest model point for each data point, and the second involves
finding the least square rigid-body transformation relating these point sets.
The algorithm then redetermines the closest point set and continues until it
finds the local minimum match between the two surfaces, as determined by
some tolerance threshold.

Whatever the original representation of the data surface P, it is first con-
verted to a set of points . The model data remain in their original rep-
resentation. The first stage involves identifying, for each point pi on the
data surface P, the closest point on the model surface �. This is the point x
in � for which the distance d between pi and x is minimum.

The resulting set of closest points (one for each pi) is . For a triangulated
surface, which is the most likely model representation from medical image
data, the model � comprises a set of triangles . The closest model point to
each data point is found by linearly interpolating across the facets. If triangle
ti has vertices r1, r2, and r3, then the smallest distance between the point pi and
the triangle ti is

where u � [0, 1], v � [0, 1] and w � [0, 1]. The closest model point to the data
point pi is, therefore, qi � (ur1, vr2, wr3).

199224
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A least squares registration between the points  and  is then car-
ried out using the method* described in Section 3.4.1. The set of data points

 is then transformed to  using the calculated rigid-body transforma-
tion, and then the closest points once again identified. The algorithm ter-
minates when the change in mean square error between iterations falls
below a defined threshold.

The optimization can be accelerated by keeping track of the solutions at
each iteration. If there is good alignment between the solutions (to within
some tolerance), then both a parabola and straight line are fitted through
the solutions, and the registration estimate is updated using one of these
estimates based on a slightly ad-hoc method to be “on the safe side.”

As the algorithm iterates to the local minimum closest to the starting
position, it may not find the correct match. The solution proposed by Besl
and McKay24 is to start the algorithm multiple times, each with a different
estimate of the rotation alignment, and choose the minimum of the minima
obtained.

3.4.3 Voxel Similarity Measure

Registration using voxel similarity measure involves calculating the registra-
tion transformation T by optimizing some measure calculated directly
from the voxel values in the images rather than from geometrical structures
such as points or surfaces derived from the images. As stated in Section 3.2,
with voxel similarity measures we are iteratively determining T, whereas in
the case of point registration or surface matching we first identify corre-
sponding features, determine T directly or iteratively from these, and finally
infer T.

In Sections 3.4.1 and 3.4.2, we did not distinguish between registration
where images A and B are of the same modality and registration of A and B
when they are of different modalities. For registration using voxel similar-
ity measures this is an important distinction, as seen from the following
example. A common reason for carrying out same modality, or intramodal-
ity, registration is to compare images from a subject taken at slightly differ-
ent times in order to ascertain whether there have been any subtle changes
in anatomy or pathology. If there has been no change in the subject, we
might expect that after registration and subtraction there will be no struc-
ture in the difference image, just noise. Where there is a small amount of
change in the structure, we would expect to see noise in most places in the
images, with a few regions visible in which there has been some change. If
there were a registration error, we would expect to see artifactual structure
in the difference image resulting from the poor alignment. In this applica-
tion, various voxel similarity measures suggest themselves. We could, for
example, iteratively calculate T while minimizing the structure in the dif-
ference image on the grounds that at correct registration there will be either

* In fact, the authors used the equivalent quaternion method.24
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no structure or a very small amount of structure in the difference image,
whereas with increasing misregistration, the amount of structure would
increase. The structure could be quantified, for example, by the sum of
squares of difference values, the sum of absolute difference values, or the
entropy of the difference image. An alternative intuitive approach (at least
for those familiar with signal processing techniques) would be to find T

 

 by
cross-correlation of images 

 

A

 

 and 

 

B

 

.
With intermodality registration, the situation is quite different. There is, in

general, no simple relationship between the intensities in the images 

 

A

 

 and

 

B

 

. No simple arithmetic operation on the voxel values is, therefore, going to
produce a single derived image from which we can quantify misregistration.

There have been some interesting attempts to overcome this difficulty by
preprocessing the images to make them more alike. One approach is to
make one of the images being registered look like the other. This has been
applied to MR-CT registration by remapping the high CT intensities to low
intensities to make the CT images look more like MR images,

 

28

 

 and to MR
and PET registration by simulating a PET image from the MR image.

 

33

 

 A
second approach is to generate similar derived images from each modality,
e.g., by applying scale-space derivatives to both images in order to identify
intensity ridges, which, at an appropriate scale, should be similar between
modalities.

 

29

 

Recent algorithm developments have, perhaps surprisingly, resulted in
techniques applicable to both intermodality and intramodality registra-
tion, and which work well for a wide variety of applications without the
need for modality-specific preprocessing. The most successful of the current
approaches are based on ideas that come from information theory.

In Sections 3.4.4 to 3.4.8 we describe some of the most widely used voxel
similarity measures for medical image registration. With all these similar-
ity measures it is necessary to use an optimization algorithm to iteratively
find the transformation T

 

 that maximizes or minimizes the value of the
measure, as appropriate. It is also necessary to implement appropriate re-
sampling and interpolation techniques for use in each iteration, taking into
account the issues raised in Section 3.2.

 

3.4.4 Minimizing Intensity Difference

 

One of the simplest voxel similarity measures is the sum of squared intensity
differences (SSD) between images which is minimized during registration.
For voxel locations 

 

x

 

A

 

 in image 

 

A

 

, within an overlap domain  comprising

 

N

 

 voxels:

(3.13)

The measure, like other voxel similarity measures, needs to be normalized
so that it is invariant to the number of voxels 
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 in the overlap domain .
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It can be shown that this is the optimum measure when two images only
differ by Gaussian noise.

 

30

 

 For intermodality registration, this will never be
the case. This strict requirement is seldom true for intramodality registra-
tion either, as noise in medical images such as modulus MRI scans is fre-
quently not Gaussian, and also because there has likely been change in the
object being imaged between acquisitions or there would be little purpose
in registering the images!

The SSD measure is widely used for serial MR registration, for example
by Hajnal et al.,

 

31,32

 

 and by Friston’s statistical parametric mapping (SPM)
software.

 

33,34

 

 The SPM approach uses a linear approximation (often with
iterative refinement) based on the assumption that the starting estimate is
close to the correct solution and the image is smooth, rather than the iter-
ative approach used by other researchers.

The SSD measure is very sensitive to a small number of voxels that have
very large intensity differences between images 

 

A

 

 and 

 

B

 

. This might arise,
for example, if contrast material is injected into the patient between the
acquisition of images 

 

A

 

 and 

 

B,

 

 or if the images are acquired during an
intervention and instruments are in different positions relative to the sub-
ject in the two acquisitions. The effect of these “outlier” voxels can be
reduced by using the sum of absolute differences, SAD rather than SSD:

(3.14)

 

3.4.5 Correlation Techniques

 

The SSD measure makes the implicit assumption that after registration the
images differ only by Gaussian noise. A slightly less strict assumption would
be that at registration there is a linear relationship between the intensity values
in the images. In this case, the optimum similarity measure is the correlation
coefficient CC

(3.15)

where  is the mean voxel value in image 

 

A

 

 within the domain , and 
is the mean of  within . The correlation coefficient can be thought of as
a normalized version of the widely used cross correlation measure 

 

C

 

.

(3.16)

One interesting property of correlation techniques is that correlation can be car-
ried out in either the spatial domain or the spatial frequency domain (k-space).
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In k-space, rigid-body transformations have special properties due to the
properties of the Fourier transform.

 

35

 

 In particular, a spatial domain transla-
tion becomes a phase change in k-space. The modulus of k-space or power
spectrum of the image does not contain any phase information and is, there-
fore, invariant to translation. Rotations in the spatial domain are rotations by
the same angle in k-space. Rotation can be decoupled from translation by
computing the modulus of the data. By converting to a polar representation
of k-space, the rotation becomes a simple shift of angular coordinate, which
can be solved by correlation of the polar representation of the magnitude of
k-space. Once the rotation has been found, the translation can be determined
from the phase difference in the Cartesian k-space. This approach is not itera-
tive, so it can be fast. This type of approach has been applied to medical
images,

 

36,37

 

 but the applicability appears to be limited by the implicit assump-
tion that the objects of interest are in the fields of view of both images being reg-
istered, i.e., that all image features are contained in the overlap domain .
Since medical images almost invariably only sample part of the patient, seg-
mentation of features of interest that lie within  is necessary before this
approach can be reliably used.

 

37

 

3.4.6 Ratio Image Uniformity (RIU)

 

This algorithm was originally introduced by  for the registration of
serial PET studies, but has more recently been widely used for serial MR regis-
tration.

 

39

 

 The algorithm can be thought of as working with a derived ratio image
calculated from images 

 

A

 

 and 

 

B

 

. An iterative technique is used to find the trans-
formation T

 

that maximizes the uniformity of this ratio image, which is quanti-
fied as the normalized standard deviation of the voxels in the ratio image. The
RIU acronym was not introduced when the algorithm was first published, and
it is also frequently referred to as the variance of intensity ratios algorithm (VIR).
The RIU algorithm is most easily thought of in terms of an intermediate ratio
image 

 

R

 

 comprising 

 

N

 

 voxels within the overlap domain .

(3.17)

(3.18)

 

3.4.7 Partitioned Intensity Uniformity (PIU)

 

The first widely used intermodality registration algorithm that used a voxel
similarity measure was proposed by Woods for MR-PET registration soon after
he proposed his RIU algorithm.
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 Here, we refer to this intermodality algo-
rithm as partitioned intensity uniformity (PIU). This algorithm involved a
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fairly minor change to the source code of his previously published RIU tech-
nique (see section 3.4.6), but transformed its functionality. The RIU algo-
rithm is based on an idealized assumption that “all pixels with a particular
MR pixel value represent the same tissue type so that values of correspond-
ing PET pixels should also be similar to each other.” The algorithm therefore
partitions the MR image into 256 separate bins (or isointensity sets) based on
the value of the MR voxels, then seeks to maximize the uniformity of the PET
voxel values within each bin. Once again, uniformity within each bin is max-
imized by minimizing the normalized standard deviation.

In the discussion above, we have described the algorithm in terms of MR and
PET registration only. We can now formulate the algorithm more generally in
terms of images 

 

A

 

 and 

 

B

 

. It is important to note that the two images are treated
differently, so there are two different versions of the algorithm, depending on
whether image 

 

A

 

 or image 

 

B

 

 is partitioned.
For registration of the images 

 

A

 

 and 

 

B

 

, the PIU can be calculated in two
ways: either as the sum of the normalized standard deviation of voxel values
in 

 

B

 

 for each intensity 

 

a

 

 in 

 

A

 

 (PIU

 

B

 

) or the sum of the normalized standard
deviation of voxel values in 

 

A

 

 for each intensity 

 

b

 

 in 

 

B

 

 (PIU

 

A

 

).

(3.19)

where:

The PIU algorithm was widely used for MR-PET registration. It requires the
scalp to be first removed from the MR image to avoid a breakdown of the ide-
alized assumption described above. The technique was never widely used
for registration of other modalities, but its success inspired considerable
research activity aimed at identifying alternative voxel similarity measures
for intermodality registration.

 

3.4.8 Information Theoretic Techniques

 

Image registration can be described as trying to maximize the amount of
shared information in two images. In a very qualitative sense, we might say
that if two images of the head are correctly aligned, then corresponding struc-
tures will overlap so that we will have two ears, two eyes, one nose, and so
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forth. When the images are out of alignment, however, we will have dupli-
cate versions of these structures from A and B.

Using this concept, registration can be thought of as reducing the amount of
information in the combined image, which suggests the use of a measure of
information as a registration metric. The most commonly used measure of infor-
mation in signal and image processing is the Shannon-Wiener entropy mea-
sure H, originally developed as part of communication theory in the 1940s.41, 42

(3.20)

H is the average information supplied by a set of i symbols whose probabili-
ties are given by p1, p2, p3,…, pi .

This formula, except for a multiplicative constant, is derived from three
conditions that a measure of uncertainty in a communication channel should
satisfy. These are

1. The functional should be continuous in pi ;
2. If all pi equal  where n is the number of symbols, then H should

be monotonically increasing in n; and 
3. If a choice is broken down into a sequence of choices, then the

original value of H should be the weighted sum of the constituent
H. That is H(p1, p2, p3) � H(p1, p2 	 p3) 	 (p2 	 p3)H

Shannon proved that the ��pi log pi form was the only functional form satis-
fying all three conditions.

Entropy will have a maximum value if all symbols have equal probabil-
ity of occurring (i.e., pn �  i), and have a minimum value of zero if the
probability of one symbol occurring is one, and the probability of all the
others occurring is zero.

Any change in the data that tends to equalize the probabilities of the
symbols p1, p2, p3,…, pi (i.e., that makes the histogram more uniform)
increases the entropy. Blurring the data reduces noise, and so sharpens the
histogram and results in reduced entropy. Registration algorithms often
iteratively transform images, and the interpolation algorithms used for
these transformations blur the data (as described more fully in Section 3.5).
The consequences of interpolation-induced entropy changes need to be
carefully considered.

3.4.8.1 Joint Entropy

In image registration we have two images, A and B, to align. We therefore
have two symbols at each voxel location for any estimate of the transforma-
tion T. Joint entropy measures the amount of information we have in the com-
bined images.41 If A and B are totally unrelated, then the joint entropy will be
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the sum of the entropies of the individual images. The more similar (i.e., less
independent) the images are, the lower the joint entropy compared to the
sum of the individual entropies.

H(A, B) � H(A) 	 H(B) (3.21)

The concept of joint entropy can be visualized using a joint histogram calcu-
lated from images A and B, examples of which are shown in Figure 3.1. For all

FIGURE 3.1
Example 2D histograms from Hill et al.43 for (a) identical MR images of the head, (b) MR
and CT images of the head, and (c) MR and PET images of the head. For all modality
combinations, the left panel is generated from the images when aligned, the middle panel
when translated by 2 mm, and the right panel when translated by 5 mm. Note that, while
the histograms are quite different for the different modality combinations, misregistration
results in a dispersion or blurring of the signal. Although these histograms are generated
by lateral translational misregistration, misregistration in other translation or rotation di-
rections has a similar effect.
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voxels 

 

x

 

A

 

 in the overlapping regions of the images , we plot the intensity
of this voxel in image 

 

A

 

, 

 

A

 

(

 

x

 

A

 

) against the intensity of the corresponding
voxel in image 

 

B

 

, (

 

x

 

A

 

). The joint histogram can be normalized by dividing
by the total number of voxels 

 

N

 

 in , and regarded as a joint probability
distribution function (PDF)  of images 

 

A

 

 and 

 

B

 

. We use the superscript T

 

to emphasize that  changes with T

 

. Due to the quantization of image
intensity values, the PDF is discrete, and the values in each element represent
the probability of pairs of image values occurring together. The joint entropy

 

H

 

(

 

A

 

, 

 

B

 

) is therefore given by:

(3.22)

The number of elements in the PDF can either be determined by the range
of intensity values in the two images or from a reduced number of intensity
“bins.” For example, MR and CT images registered could have up to 4096
(12 bits) intensity values, leading to a very sparse PDF with 4096 by 4096 ele-
ments. The use of 32 to 256 bins is more common. In the above equation, 

 

a

 

and 

 

b

 

 represent either the original image intensities or the selected intensity
bins.

As seen in Figure 3.1, as misregistration increases the brightest regions
of the histogram get less bright, and the number of dark regions is reduced.
If we interpret the joint histogram as a joint probability distribution, then
misregistration involves reducing the highest values in the PDF and reduc-
ing the number of zeros in the PDF; this will increase the entropy. Con-
versely, when registering images we want to find a transformation that
will produce a small number of PDF elements with very high probabilities
and give us as many zero probability elements in the PDF as possible,
which will minimize the joint entropy.

The simple form of the equation for joint entropy (Equation 3.22) can hide an
important limitation of this measure. As we have emphasized with the T

 

 super-
script on the joint probabilities, joint entropy is dependent on T

 

. In particular,
 is very dependent on  which is undesirable, and also on the interpola-

tion algorithm used to transform the image  at each iteration. The overlap
dependence can be made clear by the following example. A change in T

 

 may
alter the amount of air surrounding the patient overlapping in the images 

 

A

 

and 

 

B

 

. Since the air region contains noise that will tend to occupy the lowest
value intensity bins (e.g., 

 

a

 

 

 

�

 

 0, 

 

b

 

 

 

�

 

 0), changing this overlap will alter the joint
probability (0, 0). If the overlap of air increases, (0, 0) will increase,
reducing the joint entropy 

 

H

 

(

 

A

 

, 

 

B

 

). If the overlap of air decreases, (0, 0) will
reduce, increasing 

 

H

 

(

 

A

 

, 

 

B

 

). A registration algorithm that seeks to minimize
joint entropy will tend, therefore, to maximize the amount of air in , which
may result in an incorrect solution. The interpolation dependence of  is
clear if we remember that interpolation algorithms will tend to blur images,
which sharpens the corresponding image histogram, changing the joint histo-
gram and consequently joint probability distribution 
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3.4.8.2 Mutual Information

 

A solution to the overlap problem from which joint entropy suffers is to con-
sider the information contributed to the overlapping volume by each image
registered as well with the joint information. The information contributed by
the images is simply the entropy of the portion of the image that overlaps
with the other image volume:

(3.23)

(3.24)

where  and  are the marginal probability distributions, which can be
thought of as the projection of the joint PDF onto the axes corresponding to
intensities in images 

 

A

 

 and 

 

B

 

, respectively. It is important to remember that
the marginal entropies are not constant during the registration process.
Although the information content of the images being registered is constant,
the information content of the portion of each image that overlaps with the
other image will change with each change in estimated registration transfor-
mation 

 

T

 

. Furthermore, with each iteration, image 

 

B

 

 is transformed to 
which involves interpolation, further altering the probabilities. The super-
scripts on the formulae for the marginal probability distributions reflect this
dependence of the probability distribution on 

 

T

 

 (i.e., the change in overlap)
for image 

 

A

 

 and on T

 

 for image 

 

B

 

, which is resampled at each iteration.
Communication theory provides a technique for measuring the joint

entropy with respect to the marginal entropies. This measure, introduced
as “rate of transmission of information” by Shannon in his 1948 paper that
founded information theory,

 

41

 

 has become known as mutual information

 

I

 

(

 

A

 

, 

 

B

 

), and was independently and simultaneously proposed for intermo-
dality medical image registration by researchers in Leuven, Belgium,

 

44,45

 

 and
at Massachusetts Institute of Technology in the U.S.

 

30,46

 

(3.25)

Mutual information can qualitatively be thought of as a measure of how well
one image explains the other, and is maximized at the optimal alignment. We
can make our description more rigorous if we think more about probabilities.
The conditional probability 

 

p

 

(

 

b

 

|

 

a

 

) is the probability that 

 

B

 

 will take the value

 

b

 

 given that 

 

A

 

 has the value 

 

a

 

. The conditional entropy is therefore the average
of the entropy of 

 

B

 

 for each value of 

 

A

 

, weighted according to the probability
of getting that value of 

 

A

 

.

 (3.26)
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Using Equation 3.26, we can rewrite the equation for mutual information as:
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) (3.27)

The conditional entropy term in Equation 3.27 will be zero if knowing the
intensity 

 

A

 

(

 

x

 

A

 

) enables us to perfectly predict the corresponding intensity
value in  Registration by maximization of mutual information, therefore,
involves finding the transformation that makes image 

 

A

 

 the best possible
predictor for image  within the region of overlap.

Knowing the value of a voxel in image 

 

A

 

 reduces the uncertainty (and
hence entropy) for the value of the corresponding location in image 

 

B

 

 when
the images of the same object are correctly aligned. This can be thought of
as a generalization of the assumption made by Woods in his PIU measure.
The PIU measure assumes that, at registration, the uniformity of values in

 

B

 

 corresponding to a given value 

 

a

 

 in 

 

A

 

 should be maximum. The inform-
ation theoretic approaches assume that, at alignment, the value of a voxel
in 

 

A

 

 is a good predictor of the value at the corresponding location in 

 

B

 

. As
misregistration increases, one image becomes a less good predictor of the
second.

 

3.4.8.3 Normalized Mutual Information

 

Mutual information does not entirely solve the overlap problem described
above. In particular, changes in overlap of very low intensity regions of the
image (especially noise around the patient) can disproportionately contri-
bute to the mutual information. Alternative normalizations of joint entropy
have been proposed to overcome this problem.

Three normalization schemes have so far been proposed in journal arti-
cles. Equations 3.28 and 3.29 were mentioned in passing in the discussion
section of Maes et al.

 

45

 

(3.28)

(3.29)

Studholme has proposed an alternative normalization devised to overcome
the sensitivity of mutual information to change in image overlap.

 

47

 

(3.30)

The third version of normalized mutual information has been shown to be consi-
derably more robust than standard mutual information.
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be shown that the versions of normalized mutual information in Equations
3.28 and 3.30 are closely related.

(3.31)

3.4.9 Optimization and Capture Ranges

With the exception of registration using the Procrustes technique described
in section 3.4.1, and, under certain circumstances, the registration algorithm
in the SPM software,33 all the registration algorithms reviewed in this chapter
require an iterative approach in which an initial estimate of the transforma-
tion is gradually refined by trial and error. In each iteration, the current esti-
mate of the transformation is used to calculate a similarity measure. The
optimization algorithm then makes another (better, we hope) estimate of the
transformation, evaluates the similarity measure again, and continues until
the algorithm converges, at which point no transformation can be found that
results in a better value of the similarity measure, to within a preset tolerance.
A review of optimization algorithms can be found in Press et al.18

One of the difficulties with optimization algorithms is that they can con-
verge to an incorrect solution called a “local optimum.” It is sometimes useful
to consider the parameter space of values of the similarity measure. For rigid-
body registration, there are six degrees of freedom, giving a six-dimensional
parameter space, and for an affine transformation with twelve degrees of
freedom, the parameter space has twelve dimensions. Each point in the
parameter space corresponds to a different estimate of the transformation.
Nonaffine registration algorithms have more degrees of freedom (often many
hundreds or thousands), in which case the parameter space has correspond-
ingly more dimensions. The parameter space can be thought of as a high
dimensionality image in which the intensity at each location corresponds to
the value of the similarity measure for that transformation estimate. If we
consider dark intensities as good values of similarity and high intensities as
poor ones, an ideal parameter space image would contain a sharp low inten-
sity optimum with monotonically increasing intensity with distance away
from the optimum position. The job of the optimization algorithm would
then be to find the optimum location given any possible starting estimate.

Unfortunately, parameter spaces for image registration are frequently not
this simple. There are often multiple optima within the parameter space, and
registration can fail if the optimization algorithm converges to the wrong
optimum. Some of these optima may be very small, caused either by interpo-
lation artifacts (discussed further in Section 3.5), or a local good match
between features or intensities. These small optima can often be removed
from the parameter space by blurring the images prior to registration. In
fact, a hierarchical approach to registration is common: the images are first
registered at low resolution, then the transformation solution obtained at

Ĩ3 A, B( ) H A( ) H B( )	
H A, B( )

------------------------------------
I A, B( )
H A, B( )
--------------------- 1	

1
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this resolution is used as the starting estimate for registration at a higher res-
olution, and so on.48

Multiresolution approaches do not entirely solve the problem of multiple
optima in the parameter space. It might be thought that the optimization
problem involves finding the globally optimal solution within the parameter
space, and that a solution to the problem of multiple optima is to start the
optimization algorithm with multiple starting estimates, resulting in multi-
ple solutions, and choose the solution which has the best value of the similar-
ity measure. This sort of approach, called “multistart” optimization, can be
effective for surface-matching algorithms. For voxel similarity measures,
however, the problem is more complicated. The desired optimum when reg-
istering images using voxel similarity measures is frequently not the global
optimum, but is one of the local optima. The following example serves to
illustrate this point. When registering images using joint entropy, an
extremely good value of the similarity measure can be found by transforming
the images such that only air in the images overlaps. This will give a few pix-
els in the joint histogram with very high probabilities, surrounded by pixels
with zero probability. This is a very low entropy situation and will tend to
have lower entropy than the correct alignment. The global optimum in
parameter space will, therefore, tend to correspond to an obviously incorrect
transformation. The solution to this problem is to start the algorithm within
the ‘‘capture range” of the correct optimum; that is, within the portion of the
parameter space in which the algorithm is more likely to converge to the cor-
rect optimum than the incorrect global one. In practical terms, this requires
that the starting estimate of the registration transformation is reasonably
close to the correct solution. The size of the capture range depends on the fea-
tures in the images and cannot be known a priori, so it is difficult to know in
advance whether the starting estimate is sufficiently good. This is not, how-
ever, a very serious problem, as visual inspection of the registered images can
easily show convergence outside the capture range. In this case, the solution
is clearly and obviously wrong (e.g., relevant features in the image do not
overlap at all). If this sort of failure of the algorithm is detected, the registra-
tion can be restarted with a better starting estimate obtained, for example, by
interactively transforming one image until it is approximately aligned with
the other.

3.5 Image Transformation

Image registration involves determining the transformation T that relates the
domain of image A to image B. This transformation can then be used to trans-
form one image into the coordinates of the second within the region of over-
lap of the two domains  As discussed in section 3.2, this process
involves interpolation and needs to take into account the difference in sample
spacing in image A and B.

�A , B
T .
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3.5.1 A Consideration of Sampling and Interpolation Theory

The origins of the sampling theorem remain a matter of debate. According to
conventional wisdom, Shannon showed in  that a band-limited signal
sampled with an infinite periodic sampling function can be perfectly interpo-
lated using the sinc function interpolant previously proposed by the mathe-
matician Whittaker.49 According to Butzer and Stens,50 Shannon had first
written down this theorem in 1940, but the Russian Kotel’nikov had discov-
ered it independently in 1933. Furthermore, it appears that Ogura had formu-
lated the theorem even earlier, in 1920 in a Japanese publication, and
erroneously attributed his result to Whittaker.50 Many medical images are,
however, not band limited. For example, multislice datasets are not band lim-
ited in the through-slice direction, as the field of view is truncated with a top
hat function. Even in MR image volumes reconstructed using a 3D Fourier
transform, the condition is not usually satisfied because the image data pro-
vided by the scanner are often truncated to remove slices at the periphery of
the field of view. Also, data provided are modulus, and taking the modulus
is a nonlinear operation that can increase the spatial frequency content.*

Even if the images being transformed were band limited, it would not be
possible to carry out perfect interpolation using a sinc function, because a
sinc function is infinite in extent.

For many purposes, this problem is entirely ignored during medical
image analysis. The most widely used image interpolation function is prob-
ably trilinear interpolation, in which a voxel value in the transformed coor-
dinates is estimated by taking a weighted average of the nearest eight
neighbors in the original dataset. The weightings, which add up to one, are
inversely proportional to the distance of each neighbor from the new sample
point. For accurate comparison of registered images, for example by sub-
tracting one image from another, the errors introduced by trilinear interpo-
lation become important. It can be shown that trilinear interpolation applies
a low-pass filter to the image and introduces aliasing.52 For transformations
that contain rotations, the amount of low-pass filtering varies with position
in the image. If subtracting one image from another to detect small change,
for example in serial MR imaging, the low-pass filtering in this process can
lead to substantial artifacts. Subtracting a low-pass filtered version of an
image from the original is a well known edge enhancement method, so even
in the case of identical images differing only by a rigid-body transformation,
using linear interpolation followed by subtraction does not result in the
expected null result, but instead results in an edge-enhanced version of the
original.

Hajnal recently brought this issue to the attention of the MR image analysis
community31 and proposed that the solution is to interpolate using a sinc func-
tion truncated with a suitable window function such as a Hamming window.

* According to Butzer50 and Unser,51 more general versions of the sampling theory for functions
that are not necessarily band limited were published even earlier than the theorem for the classic
band-limited case; in 1927 by Whittaker, and even in 1908 by de la  Poussin.

194942
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Care must be taken when truncating the interpolation kernel to ensure that
the integral of the weights of the truncated kernel is unity, or an artifactual
intensity modulation can result.51,53

Various modifications to sinc interpolation have recently been proposed.
These fall into three categories: first, the use of sinc functions with various
radii truncated with various window functions;54 second, approximations
to windowed sinc functions such as cubic or B-spline interpolants;54,55 and
third, the shear transform, which involves transforming the image using a
combination of shears.56,57 This third approach is fast, though it does result
in artifacts in the corners of the image which must be treated with caution.

An assumption implicit in the discussion above is that the original data
being interpolated are uniformly sampled. This is not always the case in
medical images. MR physics researchers are used to the problem of nonuniform
sampling in the acquisition, or k-space domain,58,59 but this problem is less
often considered in the spatial domain. The most common circumstances
when nonuniform sampling arises are in free-hand 3D ultrasound acquisi-
tion, as discussed in Chapter 5, and in certain types of CT acquistion where
the slice spacing changes during the acquisition. The correct way of inter-
polating from nonuniformly sampled data onto a uniform grid is the
reverse of sinc interpolation. This methodology, sometimes used in k-
space regridding,60,61 involves calculating the sinc coefficients to go from
the desired uniform sampling points to the nonuniform locations acquired,
and inverting the matrix of coefficients in order to do the correct interpo-
lation. In the cases of 3D ultrasound and CT with variable slice spacing, the
data are a long way from being band limited, so the benefits of inverse sinc
interpolation may be small in any case.

3.5.2 Interpolation during Registration

Many registration algorithms involve iteratively transforming image B with
respect to image A while optimizing a similarity measure calculated from the
voxel values. Interpolation errors can introduce modulations in the similarity
measure with T. This is most obvious for transformations involving pure
translations of datasets with equal sample spacing, where the period of the
modulation is the same as the sample spacing.62 This periodic modulation of
the similarity measure introduces local optima that can lead to the incorrect
registration solution being determined.

The computational cost of “correct” interpolation is far too high for this
approach to be used in each iteration, so lower cost interpolation tech-
niques must be used. There are several possible approaches. The first is to
use low-cost interpolation, such as trilinear or nearest neighbor, until the
transformation is close to the desired solution, then carry out the final few
iterations using more expensive interpolation. An alternative strategy is to
take advantage of the spatial-frequency dependence of interpolation
errors. Trilinear interpolation low-pass filters the data, and therefore, if the
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images are blurred prior to registration (high spatial frequency compo-
nents are removed), the interpolation errors are smaller, so errors in the
registration are less. Although the loss of resolution that results from blur-
ring is a disadvantage, registration errors caused by interpolation errors
can be greater than the loss of precision resulting from blurring.

3.5.3 Transformation for Intermodality Image Registration

It should be emphasized that these interpolation issues are more critical for
intramodality registration, where accuracy of considerably better than a
voxel is frequently desired, than for intermodality image registration. In
intermodality registration, one image is frequently of substantially lower
resolution than the other, and the desired accuracy is of the order of a single
voxel at the higher resolution. Furthermore, it is common for the final regis-
tration solution to be used to transform the lower resolution image to the
sample spacing of the higher resolution modality. Interpolation errors are
still likely to be present if trilinear interpolation is used without care, and
may slightly reduce the registration accuracy or degrade the quality of the
transformed images.

3.6 Conclusions

In this chapter, notation for the image registration problem has been intro-
duced, emphasizing the importance of change in image overlap and image
resampling in the registration problem. Various image registration algo-
rithms based on corresponding features or image intensity values were then
described. Until recently, the great majority of image registration algorithms
was restricted to rigid-body or affine transformations, and the algorithms
described here reflect that emphasis. Recently, nonaffine registration to compen-
sate for tissue deformation or differences between subjects has become an area
of active research. Many of the similarity measures described in Section 3.4.3 can
also be applied to nonaffine registration problems by increasing the number of
dimensions in the search space. A more thorough treatment of nonaffine regis-
tration is given in Chapter 13.

For image-to-physical registration, points and surfaces are widely used for
registration because these can easily be identified on the patient in the oper-
ating room using a tracked localizer system (discussed in more detail in
Chapter 12). For image-to-image registration, the great majority of registra-
tion algorithms use intensity information. The most generally applicable of
these algorithms are currently based on information theory.

One appeal of these information theoretic approaches, apart from their suc-
cess, is the mystique that surrounds the word entropy. An interesting anec-
dote to emphasize this point comes from a conversation between Shannon
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and Von Neumann (quoted in Applebaum63 ). Apparently Shannon asked
Von Neumann which name he should give to his measure of uncertainty. Von
Neumann answered, “You should call it ‘entropy,’ and for two reasons: first,
the function is already in use in thermodynamics under that name; second,
and more importantly, most people don’t know what entropy really is, and if
you use the word ’entropy’ in an argument, you will win every time!”
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4.1 Introduction

 

Image registration entails combining information from two or more images.
Once images are no longer viewed in isolation, new constraints and require-
ments arise. Appropriate data must be acquired; various properties of the
data that are not normally prominent have consequences for subsequent data
processing and the results that can be achieved. Once the data have been
acquired they will frequently have to be transferred from the scanning system
(MRI, CT, US, etc.) to a separate computer for subsequent processing. This
may include data format conversion, coordinate transformation, distortion
correction, intensity correction, and so on, in order to achieve consistent
input data for the registration process. Finally, it may be necessary to prepro-
cess the data in some way, for example by image segmentation, to provide the
registration algorithms with appropriate input information.

These preparation steps form an essential prerequisite to successful com-
parison or fusion of image data. The purpose of this chapter is to introduce
the necessary concepts and terminology and provide information that can
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help in resolving difficulties in implementation of image registration. The
considerations of image acquisition and data preparation described here
are pertinent irrespective of the quality, calibration, state of repair, etc., of
the imaging hardware employed.  In addition, it is also frequently necessary
to take account of errors introduced in images as a result of deficiencies
in the image acquisition process.  These scanner errors are the subject of
Chapter 5.

Once the images have been registered and so share a common coordinate
system, they will usually need to be assessed or analyzed together, as well as
individually. Display of the images to facilitate comparison can present chal-
lenges, and a number of methods have been devised. Some common display
techniques are also reviewed. 

 

4.2 Image Acquisition

 

In general, registration of data representing a three-dimensional (3D) object,
such as a brain, requires full 3D data coverage.  However, many imaging
modalities produce individual 2D images analogous to slices through the
object, or projections of the 3D object onto a 2D plane (e.g., plain x-ray
images).  When individual 2D image slices are acquired, these can readily be
registered with one another, but the information they contain may be irrecon-
cilably mismatched because of movement of critical structures out of the plane.
When registering two 2D projection images, satisfactory registration is often
impossible because structures overlapping in one view do not overlap in the
second. Modalities such as MRI, CT, SPECT, and PET are frequently used to
provide 3D coverage, but this is often in the form of discrete slices which may
only provide partial information in the through-slice direction.  Such multislice
data may deliberately be obtained with gaps between slices to increase acqui-
sition efficiency and

 

�

 

or minimize cross talk between slices.  When such data are
resliced to a new set of image planes, the missing information at the edges of
the original slices results in errors in the final data.  Thus, the resliced images
are different from those that would have been obtained if a direct image
acquisition had been performed at the final slice location.  The impact of these
errors depends critically on the application and on their magnitude and loca-
tion. For example, in multimodal registration, where CT or MR images are
being used to provide contextual anatomical information, errors in intensity
or incorrect resolution of fine structural detail may be of little or no conse-
quence. By contrast, in single modality serial studies using rigid-body regis-
tration, such as fMRI, small local intensity errors produced by reslicing
incomplete data may be as large as the effects being studied and so may mask
true effects or produce false positive results. 

A key feature of errors introduced by reslicing incomplete data is that such
errors are local in the sense that individual pixels or groups of pixels get cor-
rupted, and the nature of the errors is related to the underlying structure and
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the missing information. To provide an objective assessment of the nature of
the coverage supported by the image data, it is instructive to follow the Fou-
rier space treatment by Noll This analysis is targeted at MRI data but
is applicable more generally to other medical images.  The key concept is
sampling density in the through-slice direction.

We consider the object being imaged (brain, breast, leg, etc.) and examine its
Fourier domain representation, which is a spectrum of spatial frequencies.
Since the object exists in 3D, its Fourier domain representation also has three
dimensions.  For simplicity, we will look in detail at one spatial direction,
namely the through-slice direction (see Figure 4.1a). Because the object has
structure down to microscopic scales, its native spatial frequency spectrum
extends over a large range (Figure 4.1b).

We now consider the process of slice definition, for example, by a selective
excitation in MRI, the beam of x-rays used in CT, or sonic beam profile in ultra-
sound, etc. (Figure 4.1c, d).  Selection of a single slice may be viewed as multi-
plication of the object by the slice sensitivity profile and summation or
projection in the through-slice direction. Slices can in principle be acquired at
any location, so to formulate the problem more generally we may consider
replacing each point on the object with the signal that would be achieved for a
slice centered at that point. The result is called a convolution of the slice profile
with the object (Figure 4.1e). Selection of any given slice is then simply a delta
function sample of the convolved distribution. Viewed from the Fourier
domain, convolution of the slice profile with the object is equivalent to multi-
plication of the object spectrum by the slice profile spectrum (Figure 4.1f).  In
general, the slice spectrum has a more limited frequency content than the object
spectrum, so the process reduces available spectral content (Figure 4.1f).
Selection of a set of regularly spaced slices with separation 

 

d

 

 can now be seen
as acquisition of a set of samples up to a frequency  in the Fourier repre-
sentation (Figures 4.1g, h).  The frequency content not sampled by the process
is lost and results in aliasing of information in the slice direction. The process
of reslicing resamples the data and redistributes the aliased signals along
with the correctly sampled signals to produce corrupted signal intensities
(Figure 4.1i, j).

To control the degree of aliasing requires choice of a slice profile, which
determines the bandwidth that must be sampled, and sampling with suffi-
cient density in real (object) space to cover the necessary frequency range.
This always necessitates overlapping slices, and the degree of overlap is
determined by the slice profile.  An idealized top hat profile would have a
large, potentially infinite spectrum, necessitating sampling at very closely
spaced intervals.  The implication is extensively overlapped slices and not the
intuitive starting point of contiguous slices.  Use of softer slice profiles (e.g.,
Gaussian profiles) degrades slice definition, but requires less dense sampling.

 

1

 

Many medical images are not acquired with uniform sampling; perhaps the
most striking example is freehand ultrasound. However, the concepts dis-
cussed above provide guiding principles for image acquisition with clear con-
clusions as to the results of undersampling. If data such as freehand ultrasound

et al.1

2�

d
-------
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FIGURE 4.1

 

(a) Real space profile through the object to be imaged. (b) Frequency spectrum obtained
from (a) by Fourier transformation. Note the broad wings of the spectrum, reflecting the
very wide range of frequencies required to characterize the object. (c) Slice profile used to
select a single slice from (a). Within the slice the sensitivity of the imaging system is unity,
whereas far from the slice there is zero sensitivity to the object. Gradual transitions exist at
the edges of the slice profile. (d) The frequency spectrum obtained for the slice profile by
Fourier transformation. Note that although the central maximum is broader than in (b), the
full spectrum occupies a much narrower frequency range. (e) The object profile convolved
with the slice profile. Selecting a slice corresponds to obtaining a point sample of this profile.
(f) The frequency spectrum obtained by Fourier transformation of (e), and equivalent to the
product of (b) and (d). Note that the broad wings in (b) have been suppressed, thus nar-
rowing the frequency range that must be sampled.
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are being deliberately acquired for the purposes of image registration, it may
be valuable to monitor spatial coverage and take steps to fill in sparsely sam-
pled regions. When insufficient sampling has been achieved, this can be
detected and the final results judged accordingly. A feature of sampling in the
real object space, as in slice selection, is that local undersampling results in
local vulnerability to intensity errors upon reslicing.

Slice overlap naturally comes at a price, which may be time and

 

�

 

or dose for
CT and ultrasound but is further complicated by saturation effects in MRI.

 

2

 

Conventional multislice MRI is not obtained with overlapping slices and so is
highly vulnerable to data corruption due to aliasing when resliced (Figure 4.2).
However, true 3D MRI data, in which Fourier encoding is applied in all three
spatial directions, are intrinsically adequately sampled, so are amenable to
reslicing without aliasing errors.

 

FIGURE 4.1 (continued)

 

(g) The convolved object sampled at regular intervals with spacing 

 

d

 

. The sampled values
lie exactly on the convolved object profile. (h) Selection of slices at spacing 

 

d

 

 results in
sampling of the spectrum in (f) up to a frequency of 2

 

�

 

�

 

d

 

. Frequencies outside this range
get folded back, resulting in aliasing (shaded regions). Note that the frequency scale (hori-
zontal axis) has been expanded for clarity. (i) Resampling the slices from the originally
acquired slice positions results in local signal intensity errors (The calculated sample values
no longer lie on the convolved object profile). (j) The process of resampling the slices alters
the frequency spectrum because the aliased frequencies interact with the interpolation
algorithm. (Note that the spectrum now extends beyond 2

 

�

 

�

 

d

 

. The horizontal frequency
scale is the same as in (h)). (Adapted from  with thanks to Dr. C. Triantyfallou).Noll 1( )
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When two datasets with different degrees of undersampling are to be aligned,
it may be valuable to consider keeping the least well sampled dataset static and
reslicing the other to match the former.  Related issues of missing data concern
the edges of the region of support of the data, where otherwise adequately sam-
pled images will nevertheless suffer from intensity errors upon reslicing.

Finally, in this context it is significant that MRI data are generally presented
and stored in magnitude form although they are intrinsically complex, so
that each pixel actually has both a signal magnitude and a phase associated
with it.  Use of magnitude reconstruction is expedient because it is both con-
gruent with the properties of most image display methods in that only one
scalar quality need be presented for each pixel, and because MRI phase varies
for instrumental and other reasons and is difficult to keep under control.  How-
ever, the nonlinear process of forming magnitude images generates aliased

 

FIGURE 4.2

 

Transverse T

 

2

 

 weighted multislice MRI images of the brain of a normal volunteer acquired
with a Gaussian slice profile and contiguous slices. (a) First examination; (b) second examination
displaced by approximately half the separation between adjacent slices; (c) image (b) resliced
after rigid-body registration to match (a); (d) subtraction image (c) minus (a); (e) as (d) but
using slices overlapped by 25%; (f) as (d), but using a 50% slice overlap. There are substantial
residual signals in (c) arising from incorrectly resliced pixel values because of undersampling
in the slice direction. These artifacts are reduced in (d) and virtually absent in (e).
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frequency components in the image data that again result in intensity errors
upon reslicing.  These errors occur on the dark side of bright edges and can
be very intrusive in data from test objects. Such errors are frequently much
less problematic with 

 

in vivo

 

 data. Another critical situation is with sign sen-
sitive data, such as produced by inversion recovery

 

3

 

 and some field echo
sequences,

 

4

 

 where signal cancellation, resulting in the so called rebound arti-
fact, is produced at the boundary between tissues that present with opposed
phases.  In these cases the use of phase-corrected real data

 

3

 

 solves the problem.
However, in the most general situation, where the full complex nature of the
data is essential, full complex data can be retained for the totality of the regis-
tration procedure.  This may require modification of some of the widely avail-
able registration algorithms or, more pragmatically, the necessary coordinate
transformations may be determined from magnitude data.  Final reslicing and
data comparison may then be performed with the underlying complex images.

A related property of image data is the point spread function (PSF),

 

5

 

 which
is the Fourier transform of the pass band of the imaging system if it has a linear
response. In medical imaging, the PSF is generally well defined and well
known, and it may be necessary to take it into account in subsequent process-
ing steps such as image interpolation.  The Gibbs fringes seen in MR images
and in diffraction-limited optical images are a manifestation of the PSF and
so are preserved when data are resliced with appropriate image interpolation
algorithms.  For images such as PET scans, where the intrinsic signal-to-noise
ratio is low, it is the practice of some researchers to filter the data and trade off
resolution for signal-to-noise ratio (see Chapter 5).  The manner in which this
is done clearly has a bearing on properties of the resulting data.  In general, fil-
tering of image data may be a necessary or desirable procedure which is only
problematic if the changes induced in the data structure, such as alteration of
the PSF, are not recognized and taken into account in subsequent analysis.

 

4.3 Image Format Conversion

 

Digital images are usually stored, displayed, and manipulated as streams of
individual intensity values, with one intensity associated with each pixel.  The
details of how the information is stored are known as image formats. It is essen-
tial that any software used to read in such data is programmed to recognize
and decode the appropriate format. In addition to the raw image information,
image files generally also contain associated information such as patient
details, how and when the data were acquired and, most importantly for image
registration, the size of the matrix of pixels (number of rows and columns,
numbers of slices), details of the spatial location, and length scales that relate
the pixel grid to the physical world. This contextual and calibration informa-
tion is usually stored as a single block of information known as an image
header.  The header may be part of the image file or stored as a separate file.  
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The minimum information required for image registration applications is
the matrix size and dimensions (or, equivalently, field of view and slice thick-
ness). Other voxel information may also be needed, such as the relationship
of the image coordinates to the absolute coordinate frame of the scanner.  This
may be required to correct for image distortion or other hardware limitations
(see Chapter 5).

In addition, the image or separate header file may contain patient-specific
information.  This can be convenient and can also be a useful check against
mistakes that may be introduced by copying files and modifying file names.
However, strict laws are now in place to protect the confidentiality of
patients, so that unless the data is held in an appropriately secure location, it
may be necessary to strip out any information that could be used to identify
the subject directly. 

Medical images are generally stored and may be archived in a proprietary
format that may not be disclosed to the user by the system manufacturer.
Subsequent processing requires the data to be exported from the scanner, and
this again may be achieved using a variety of data formats. Although manu-
facturers are sometimes reluctant, or at least slow, to provide information on
these file formats, much of this information is now in the public domain, as
many groups have “reverse engineered” these formats. Details of the formats
can be found on various locations on the Internet.* To deal with the require-
ment that images exported from equipment from one manufacturer may
need to be imported to that of another manufacturer, a medical image standard
known as DICOM3** has been devised and has now been widely adopted.
This allows data to be freely exchanged between a wide variety of medical
equipment including scanners and viewing consoles, as well as many pro-
prietary processing software packages intended for use with medical
images.  A disadvantage of the DICOM3 standard is that the need to give it
universal applicability makes it complex and unwieldy for many applica-
tions.  Also, like many “standards,” individual implementations of
DICOM3 can vary in detail, so incompatibilities still occasionally occur.
Another image format particularly widely used in the nuclear medicine
environment is interfile.***

At the other extreme, there are very simple image formats consisting sim-
ply of pixel intensity values or pixel intensity values combined with rudi-
mentary essential information such as the dimensions of the image pixel
matrix.  One popular format of this type is associated with the Analyse image

 

* Information about a wide range of formats used in medical imaging can be found at

 

http://www.cica.indiana.edu/graphics/image.formats.html.

 

** DICOM is an acronym for Digital Information and Communications in Medicine and is a stan-
dard for image transfer developed and sponsored by National Electrical Manufacturers Associ-
ation (NEMA). Information about DICOM standards can be found at

 

http://medical.nema.org/dicom.html.

 

*** Information about Interfile can be found at 

 

http://www.keston.com/Interfile/interfile.htm.

 

 
For general information see 

 

http://www.cica.indiana.edu/graphics/image.formats.html.
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analysis software,* which consists of a file containing only pixel values, usually
stored in binary as short (2-byte) integers, and a separate header file, which
contains a simple data structure of basic information.  

In addition, there is a variety of widely used image formats not specifically
designed for medical images. Common examples include tagged image file
format (TIFF), graphics interchange format (GIF), Microsoft window bitmap
(BMP), and a standard known as JPEG, developed by the Joint Photographic
Experts Group. A specialist digital format developed by the Moving Picture
Experts Group, known as MPEG, for storage of movie

 

�

 

video loops, is widely
available and useful for displaying medical images of dynamic processes
such as cardiac pulsations.  Each of these image formats stores data in self-
contained files that contain both the image data and header information
detailing color maps, use of data compression, etc. In general, these formats
do not have provision for integrated storage of patient, examination, or
image acquisition details. As with other medical image-specific formats,
information about file structures is widely available in the public domain.

 

†

 

Many proprietary software packages allow convenient import and export of
images in the commonly used formats and also, frequently, conversion from
one format to another.

A complicating factor in transferring data from one computer system to
another arises from low level details of data storage.  Key factors are the num-
ber of bytes used to store a given type of number format; for example, in most
modern computers floating point numbers are stored as 4, 8, or 16 bytes,
depending on the computer, operating system, and data precision.  Even if the
number of bytes per stored number matches or is corrected for, the order in
which multiple bytes are stored has two standard variants.  It may therefore
be necessary to pass the data through a byte reversing program prior to use on
another computer (see Figure 4.3).  Some image analysis programs will do this
automatically as required.  An advantage of the GIF file format is that it only
uses one byte per pixel intensity value and therefore does not suffer from this
problem. A disadvantage is that this limits the dynamic range of the informa-
tion that can be stored. In general, it is always prudent to check that the output
of one system or package can actually be successfully imported to another.

A final issue associated with image transfer, particularly if images from dif-
ferent sources are combined, is the choice of coordinate system.  The way that
human images are displayed is a matter of convention; for example, the North
American Radiological convention is to display transaxial images with right
of the patient at the left of the image and the posterior side at the bottom
regardless of how the subject was positioned in the scanner.  An on-the-fly
coordinate transformation is frequently performed in retrieving data from the
hard disk, or other archive, and displaying it on a computer screen. That coor-
dinate transformation may be user defined so that the same data may appear

 

* Analyse is a proprietry format developed at the Mayo Clinic (see 

 

http://www.mayo.edu/bir

 

).

 

†

 

See footnote on page 80.
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in different orientations depending on the current settings.  On-screen labels
are generally provided to remove any ambiguity.  However, image registra-
tion software may be required to align images originally stored with different
coordinate systems, so care is required to ensure consistency.  Use of images
from test objects in which left-right, head-foot, and anterior-posterior orien-
tations can be unambiguously determined provides a simple robust method
of ensuring that all data are presented to the registration algorithms and sub-
sequent display system with appropriate consistency.  An advantage of a
comprehensive format such as DICOM3 is that it retains image orientation
information that is likely to be lost in simpler formats.

 

4.4 Intensity, Size, and Skew Correction

 

Having achieved a consistent data format and a standardized convention
for the orientation of the data, it may still be necessary to manipulate the
images prior to image registration. Errors in scanner calibration or image
artifacts may need to be dealt with (see Chapter 5).  Even with ideal perfor-
mance, the acquisition techniques may have implications for subsequent
processing.  Examples include changes in global intensity scaling during
segmented acquisition with radiotracers, or variation of intensity across
images produced by the use of surface coils in MRI.  Algorithms designed to
register similar images such as those based on minimization of least-square-
intensity differences

 

6,7

 

 may not work robustly if the images have differently
scaled intensity maps.  This is easily corrected by manually or automatically
rescaling the images to matched intensity ranges.  Most current registration
algorithms are not robust in the presence of large intensity variations across
the images, so it may be necessary to apply intensity correction schemes prior
to registration. MR scanners as well as post processing packages frequently

 

FIGURE 4.3

 

When data is transferred from one computer to another of a different make it is often
necessary to reverse the byte order of the numbers stored for each pixel value. (a) An image
of the brain stored and displayed on a Sun workstation as an array of short integers with
two bytes per pixel, (b) the same image copied to a Compaq Alpha workstation, and (c) the
image in (b) after byte reversal again displayed in the Compaq computer.
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incorporate surface coil correction algorithms.  These are typically based on
low pass filtering of the data to suppress image structure and obtain an esti-
mate of the underlying spatial intensity variations, which can then be used
to normalize the intensity of the original images.  The result is a much more
homogeneous appearance, which is likely to avoid failures of registration
algorithms but does not preserve intensity relationships between tissues.
Recently, more sophisticated algorithms for image intensity corrections that
appear to produce a more faithful final intensity distribution have been
introduced.

 

8,9

 

 (See also Figures 14.2 and 14.4 in Chapter 14).
Another discrepancy between images that may need correcting is differ-

ences in size, skew, or scaling between images or as a result of drift in scanner
calibration with time.  It is advisable to calibrate the scanners to be used for
collection of images that will be registered both to check that the image
dimensions and, in the case of CT, the gantry tilt, are correctly recorded in the
header, and also to ensure that any file format conversion process correctly
preserves this information. Tilting the gantry is common in CT acquisitions
to reduce dose to the eyes or to generate a coronal slice orientation, but, since
the direction that the bed moves is not also rotated, this results in the images
being skewed (see Chapter 10, Figure 10.2).  Correcting skew involves a slice-
by-slice translation, which is normally carried out prior to registration.  If this
skew is not corrected, substantial errors can result. Spatial distortion of
images may also need to be addressed.  These factors are discussed in the
next chapter and may be corrected as part of the registration process or as a
preprocessing step.

 

4.5 Image Segmentation

 

Under some circumstances, it may be necessary or desirable to specifically
exclude some regions of the images from the registration process.  The pro-
cess of dividing images into different regions is known as image segmenta-
tion.  For example, in multimodality registration of PET and MR or CT images,
the Woods algorithm

 

10

 

 requires elimination of the skull and scalp from the ana-
tomical MRI or CT images in order to produce reliable results.  For rigid-body
registration of single-subject, single-modality data to subvoxel precision,
Hajnal et al.

 

11

 

 found it helpful to exclude mobile tissue of the face and scalp
in order to achieve the most precise results in the brain.  This is because,
although the brain is well approximated by a rigid body, other tissues may
change their shape or other spatial relationships, and so the final global posi-
tional match achieved is influenced by both (see Figure 4.4). Other authors
have found that, for the image data they considered, presegmentation was
unnecessary.

 

12,13

 

 In recent work on the spine, Little et al. used a composite
model in which vertebrae were treated as rigid body surrounded by plasti-
cally deforming soft tissue (Figure 4.5).

 

14

 

 This concept again requires image
segmentation (of the vertebrae) as a preparation step.
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FIGURE 4.4

 

Serial MRI examination of a patient with a mild head injury: (a) baseline scan; (b) follow-
up scan three days later; (c) difference image (b) minus (a); (d) difference image after
registration of (b) to align it with (a); (e) segmented version of (a) used to exclude extra-
cranial tissues; (f) subtraction image showing the result of registering (b) to (a) using only
the segmented data in (e). Residual signals in the brain in (d) result from an inability of the
registration algorithm to find a rigid-body transformation that accommodated both the brain
and the changed hematoma. Excluding the soft tissue changes using the segmented image
(e) allows the registration algorithm to determine a rigid-body transformation for the brain
alone. The difference image (f) reveals that the brain is unchanged.

 

FIGURE 4.5

 

Example of spine registration showing two scans of the patient in different positions: (a)
first position, (b) second position, (c) segmentation of vertebrae treated as rigid bodies by
the algorithm, and (d) first image transformed to the coordinates of the second using a
nonrigid registration algorithm.

 

14

 

 Note that although the images shown are all 2D, the
algorithm works on the 3D images.
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Computer algorithms for image segmentation are widely available and
range from simple intensity thresholding with or without manual interven-
tion to complex automated procedures that include a wide range of image
processing tools.

 

15

 

 The segmented images may be stored as gray scale images
with pixels in regions to be excluded reset to zero, or as coded masks used in
conjunction with the gray scale images. Examples of coding schemes include
labeling individual pixels or regions with a one for inclusion and a zero for
exclusion, or with numerical values that are associated with designated tis-
sue types.

 

4.6 Displaying Images

 

Many computer programs exist for displaying images in general and, in
some cases, medical images in particular. When displaying medical images it
is important that the images are correctly labeled. Confusion about the patient’s
identity or orientation (e.g., confusion over left and right in transverse sec-
tional images) or incorrect information about details of data acquisition (e.g.,
which nuclear medicine tracer or MR sequence was used) could lead to incor-
rect diagnosis or treatment. 

In addition to these usual concerns, a new set of display challenges arises
when dealing with registered images. Once the images are in a single data
space, it is natural to want to display them in a coherent way and explore
spatial relations within the images. Many methods have been devised to
achieve this, and the choice depends very much on the application. The fol-
lowing discussion is intended to introduce some frequently used methods
and is not a comprehensive review of the topic. More detailed treatments can
be found in numerous texts, for example, Bankman.

 

18

 

A much used early technique was to display the images side by side on a
workstation and employ a linked cursor so that the act of pointing to a loca-
tion in one image automatically locates the corresponding location in the reg-
istered second image. This is useful for initial exploration and for locating a
few localized features. For more global comparisons, image fusion has been
used, where data from both images can be viewed as one. Simple methods for
doing this include: 

1. Color overlay, in which the data sets each contribute to each pixel,
but in different colors, or one is coded in hue and the other in gray
scale intensity. If features from one image are segmented they may
be overlaid in isolation on another aligned image. For example,
blood vessels extracted from an angiographic acquisition could
simply be superimposed on an anatomical scan, so vessels can be
related to anatomical landmarks, even though at the site of the
vessels, none of the anatomic image can be seen (e.g., Chapter 10,
Color Figure 10.5).
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2. Interleaved pixel or checkerboard fusion, in which each pixel dis-
plays an intensity purely from one of the images being fused, with
the represented image alternating in a regular interleaved pattern. This
can be on a pixel-by-pixel basis, or in larger groups of pixels, forming
a blocked appearance (e.g., Chapter 11, Color Figure 11.2). This
method has the advantage of allowing extra colors to be displayed
on older computers which only have eight bit frame buffers. It also
provides a rapid means of manipulating color maps to fade one or
another image in and out. 

3. Dynamic alternating display, in which the computer switches rap-
idly from one image to the other either automatically or under user
control.

4. Split view displays place two images in the same location on the
screen with a movable dividing line, so that one image is seen on
one side of the line and the other is seen on the other side.

5. Subtraction images is a simple method that is particularly useful
in serial studies of the same subject. Subtraction of one registered
image from another provides a direct display of change, which can
then be related back to the source images. Subtraction images can
be viewed separately (see Chapter 7) or overlaid on a source image,
for example in color.

6. Displaying images in a standard space (e.g., an atlas such as that due
to Talairach

 

16

 

) can help in comparison of images from different
subjects. The data can be displayed directly, segmented features of
interest can be positioned within the standard space, or features
can be referred to simply by their coordinate locations within the
standard space (see Chapter 14 for examples).

7. Segmenting a surface from one modality, and generating a ren-
dered surface in which intensity is derived from the surface orien-
tation but hue comes from a second set of registered images.

When nonrigid registration methods have been used, critical information
may reside not just in the final images produced or difference images derived
from them, but also in the deformations required to transform one image into
the coordinates of the other. An example of this is a study of growth patterns
in the brain during childhood, where brain images from subjects acquired
serially over several years were aligned using transformations that included
spatial distortions. The pattern of distortions required to make an early scan
match a later one then reveals the pattern of growth in the intervening time.

 

17

 

Display of deformation fields is a major challenge because the deformations
are generally spatial distributions of displacements that may vary in magni-
tude and direction from point to point in the image space. Such vector distri-
butions, or in some cases tensor distributions (e.g., strain maps), are not
easily displayed on flat screens designed to display variations in intensity
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and

 

�

 

or color. To achieve useful displays, researchers have used arrow pic-
tures in which small variable length arrows are scattered over the display
plane, with the direction of each showing the local direction of shift, and the
length indicating the magnitude of the shift. Other methods include place-
ment of a regular grid on the original image and displaying the distorted
grid after registration is complete (see Chapter 13). Color coding of displace-
ment has also been tried. Techniques for displaying deformation informa-
tion are likely to develop further as applications for nonrigid registration are
explored and precise requirements for the information to be extracted are
defined.

 

4.7 Conclusion 

 

Marshaling the data required to register images can entail a number of steps,
ranging from file format conversion to image preparation by intensity correc-
tion, image segmentation, etc.  Careful data preparation is essential to avoid
errors that result in failed registration or data that are at risk of incorrect inter-
pretation.  However, the steps required are conceptually simple and, once
established, can be made automatic or at least quick and efficient to operate.
Such data preparation is likely to be required even when ideal scanner per-
formance is assumed. In practice it is often necessary also to take account of
imperfections in the data acquisition process itself. Such imperfections may
cause errors that it is essential to correct or at least be aware of. The nature
and consequences of these errors are the subject of Chapter 5. 

Once image registration becomes a core part of a medical imaging application,
it has consequences that have an impact on the whole imaging process, from the
way examinations are performed to data acquisition methods, to image han-
dling, image analysis, and, finally, on image presentation and interpretation.
Some of the factors discussed in this chapter have implications for data acqui-
sition efficiency, archiving, and processing strategies. It is the power of image
registration to enhance and add value to medical imaging that makes these
costs worth accommodating.
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5.1 Introduction

 

In this chapter we review image artifacts due to scanner errors relevant to
image registration, and describe methods available for correction. Our dis-
cussion is restricted to the 3D imaging modalities: computed tomography
(CT), magnetic resonance imaging (MRI), emission tomography (ET)
(positron emission tomography [PET] and single-photon emission computed
tomography [SPECT]), and ultrasound (US).

Three types of applications of medical imaging are particularly reliant on
accurate images: image-guided surgery, multimodality image registration, and
quantitative imaging. Generally, these are uses of images requiring calculation
and application of mathematical mapping between image space and physical
space or physical dimensions. Depending on the specific application, the reg-
istration mapping may be limited to determination of pixel dimensions or
encompass position, orientation, and dimensional scaling of the image relative
to real space. Applications in image-guided surgery are an example of the lat-
ter. Even if image registration can sometimes be limited to the relationship
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between respective image spaces alone, without reference to physical space,
the degree of spatial integrity of each dataset used for registration taken indi-
vidually is an important consideration in all cases. For example, in ET it is
often desirable, even essential, to place the reconstructed functional data
within an “anatomical framework.” Although image distortion in ET is not a
primary concern when registering with CT or MRI, a number of issues
related to image quality can affect image registration and therefore require
careful consideration. Another example is in longitudinal MRI studies, which
can also be impaired by variations in image characteristics (such as voxel
dimension), although mapping between image space and real space may not
be sought. In the following sections, we begin by considering the nature and
origin of artifacts in medical images, as this will allow us to define the scope
of the problem. We then review specific relevant artifacts and describe the
current state of the technology available to correct for these artifacts for each
imaging modality.

 

5.1.1 Image Artifacts, Geometric Distortions, and Their Origins

 

The ideal image acquisition process results in a representation of the imaged
object devoid of artifacts and noise. In other words, pixel intensities in the
ideal image have a spatial distribution that matches exactly, to within a global
dimensional scaling factor, that of the physical property(ies) of the object
imaged. Artifacts can therefore be seen as occurrences of signal intensities
that violate that correspondence. In the context of image registration, all arti-
facts are undesirable and can impair the registration process. However, the
most relevant artifacts are image features that violate the requirement for
an appropriately scaled, Cartesian mapping between image space and real
space,* i.e., geometric distortions. Artifacts that appear as features superim-
posed onto the image, such as coherent noise or signal nonuniformity (e.g.,
due to radiofrequency inhomogeneity in MRI), must also be considered, as
they may impede registration, although they do not represent geometric
distortions. No further discussion of random image noise is necessary, as it is
intrinsic to any data acquisition process, can originate in the imaged object or
imaging device and, therefore, cannot be classified as scanner error. These
considerations lead to discussion of the origin of image artifacts. Image arti-
facts can be categorized according to the location of their origin (either
imaged object or imaging device) and the generating mechanism. The possi-
ble mechanisms of artifact generation are multiple, but can be categorized as
either intrinsic or resulting from interactions between imaged object, envi-
ronment, and imaging device. Mechanisms of artifact generation intrinsic to
the imaged object include spontaneous movement and changes in its prop-
erties (e.g., temperature, mechanical properties, etc.). Mechanisms intrinsic

 

* For 3D imaging modalities. For projection methods, the mapping most often assumed is that
of a point perspective.
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to the imaging device* include physical or technical limitations of the imag-
ing process and suboptimal or variable performance levels. Interactions
between imaged object and imaging device, on the other hand, constitute an
inherent part of the imaging process and also often lead to artifacts. For
example, the imaging process may be optimized to capture accurately one
specific component or aspect of the imaged object to the detriment of another,
therefore leading to artifacts (e.g., chemical shift artifact in magnetic reso-
nance imaging). Furthermore, artifacts resulting from the interaction
between object and imaging device may also be unavoidable in certain cir-
cumstances (e.g., the streak artifact in CT; see Joseph

 

1

 

).
This chapter is concerned primarily with the issue of correcting image arti-

facts due to scanner errors, i.e., mechanisms intrinsic to the scanner or the
imaging process itself and, to a lesser extent, consideration of artifacts intrin-
sic to the imaged object.

 

5.2 Geometric Distortion in Computed Tomography

 

CT is the oldest 3D medical imaging modality and has probably been the sub-
ject of the largest amount of technical development and refinements among all
the modalities considered here. However, there is relatively little published
work on the issue of CT geometric distortions, particularly in the context of
image registration. This may be because CT is based on the absorption of radi-
ation that traverses the body in a straight line, resulting in a very low degree of
spatial distortion. Most artifacts in CT concern intensity, in particular the streak
artifacts which have a variety of sources (see Joseph

 

1

 

). However, we will not
discuss these in detail since most of these are either unavoidable, particularly
and most importantly streaking due to the presence of metalic objects (e.g., ste-
reotaxic frame) in the imaged volume, or do not constitute a significant prob-
lem for registration of images from modern scanners.

CT is closely linked to the development of frame-based stereotaxy for local-
ization and co-registration; see Kelly and Kall.

 

2

 

 Frame-based stereotaxy, by
providing an external coordinate system in each slice, insures a high degree of
robustness to images relative to scanner errors.

 

3

 

 However, the advent of frame-
less stereotaxy, discussed in detail in Chapter 12, requires a reassessment of the
sources of distortion and possible new methods to minimize these will need to
be devised. Nonetheless, CT is generally assumed not to necessitate distortion
correction in contrast to MRI.

 

4,5

 

 Studies on the accuracy of localization in CT
based on stereotactic frames have consistently reflected the low degree of geo-
metric distortion in CT, with in-plane errors less than 1 mm and effectively lim-
ited by voxel dimensions, in particular slice thickness and separation.

 

6–9

 

* We can also put into this category the factors related to the external environment (e.g., ambient
conditions that fall outside the specified operational range of the device).
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The main limitation to the spatial integrity of CT images lies in the mechan-
ical elements of the imaging process, i.e., movement of the radiation source
and detectors, as well as of the patient couch. Therefore, the following spe-
cific mechanisms can compromise the geometric integrity of images:

1. Error in the slice angle relative to the scanning axis due to uncer-
tainty in the gantry angle and

 

�

 

or table bending due to the patient
weight;

2. Error in the slice separation due to fluctuations in the couch speed
relative to the prescribed value;

3. Error in the dimensions of the field of view due to imperfections
and

 

�

 

or changes in the physical dimensions of the tube detector
assembly.

Zylka and Wischmann devised a method to measure and compensate for
all of the above sources of distortion in CT images.

 

10

 

 By modeling the distor-
tions as a second (or higher) degree polynomial and using an “N-shaped”
localization device fixed to the table, the authors were able to observe distor-
tions of the order of 2 mm, which depended on the gantry tilt angle. These
will also vary depending on the mechanical properties of each scanner and
the subject’s body weight.

 

5.3 Spatial Inaccuracies in Magnetic Resonance Imaging

 

From the point of view of geometric distortions, MRI differs greatly from CT
in at least three respects: first, the image acquisition process of MRI is funda-
mentally different, starting with the fact that it does not rely on any mechan-
ical device. Second, the problem of geometric distortions is much more
important in MRI, due to the fact that these are essentially unavoidable and
can be quite large (5 mm or more).

 

6,11,12

 

 Third, MR images obtained using dif-
ferent data acquisition schemes (conventional 2D and 3D Fourier transform
imaging, echo-planar imaging, spiral imaging) and hardware (e.g., birdcage,
surface coils) can be subject to substentially different image distortion effects.
Therefore, the importance of the problem of image distortions was recognized
in the early days of the application of MRI

 

11,13

 

 and has been the subject of
intense investigation over the past 20 years, resulting in a relatively large body
of literature. There have been major advances in this field in the past decade, in
particular improved main field homogeneity and the use of stronger readout
gradients, which has significantly helped to reduce the magnitude of the prob-
lem in most standard applications. However, the problem of image distortion
has not yet been resolved for all types of image acquisition sequences and
applications.
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MR image distortions can originate from limitations in the scanner or prop-
erties of the imaged object.

 

14–16

 

 The factors that are scanner-dependent, and
therefore of greatest interest here, are

1. Gradient field nonlinearity;
2. Static field inhomogeneity;
3. Error in the field-of-view or slice thickness due to variations in the

gradient field strengths;
4. Fields due to Eddy currents induced in scanner components by the

switching gradients;
5. Imperfect slice or volume selection pulses.

In most standard imaging applications, the two most important sources of
geometric distortion are gradient nonlinearity and field inhomogeneity,

 

14

 

although Schad et al.

 

12,17 

 

seem to attribute a large part of the distortions to the
effect of eddy currents. Gradient eddy currents have been much reduced in
modern scanners by the widespread use of self-shielded gradient coils.

Although signal nonuniformity due to RF inhomogeneity is not a geomet-
ric distortion, it can impede image registration in the most extreme cases
(e.g., images acquired using surface coils, see Studholme et al.

 

18

 

) and there-
fore merits discussion.

 

5.3.1 Magnitude of Geometric Distortions in MRI

 

The amount of geometric distortion can be measured using phantoms and

 

�

 

or
phantoms combined with stereotactic frames.

 

6,8,12,14,19,20

 

 The amounts of distor-
tion observed vary widely and reflect the design and performance of different
scanners (different manufacturers, levels of technological development,
design, etc.), the slice orientation and imaging sequence used, and the design
of the stereotactic frames. The magnitude of the distortion generally varies as
a function of position, being larger in the peripheral region. Bakker et al. in a
phantom study found localization errors of up to 7 mm and 4 mm in plane over
a 40 cm field of view due to static field inhomogeneity and gradient nonlinear-
ity, respectively.

 

14

 

 Michiels et al. concluded that the degree of localization accu-
racy achieved after optimization of the image acquisition and application of
correction for both field inhomogenity and gradient nonlinearity is adequate
for stereotactic neurosurgery.

 

21

 

 However, Alexander et al. found discrepancies
in stereotactic localization of the order of 4 mm between MRI and CT.

 

22 

 

They did
not attempt to correct the geometric distortions in MRI themselves, but rather
proposed image fusion with CT as a means of assuring spatial accuracy while
benefiting from the superior image contrast of MRI. In a frame-based localiza-
tion study, Walton et al. found that 3D (volumetric) acquisitions give more accu-
rate stereotactic localization.

 

23 

 

Ramsey and Oliver, in a recent study on modern
CT and MRI scanners, have found linear distortions in the range of 0 to 2 mm in
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MR images with 3 mm and 5 mm slice thicknesses.

 

9 

 

Although a direct compar-
ison is difficult, it is fair to say that localization accuracy of MRI has tended to
improve since its advent.

Specific characteristics of each artifact generation mechanism and some cor-
rection methods available will now be discussed. Some correction schemes are
designed to correct for both gradient nonlinearity and field inhomogeneity;
these are discussed in each respective section.

 

5.3.2  Geometric Distortion Due to Gradient Field Nonlinearity

 

Gradient field nonlinearity is a consequence of limitations and imperfec-
tions in the design of the gradient coils.

 

24

 

 Following the nomenclature pro-
posed by Sumanaweera, the geometric distortions resulting from gradient
field nonlinearity are the 

 

barrel

 

 distortion (2D and 3D), the 

 

potato chip

 

 effect
(slice selection, 2D) and the 

 

bow-tie

 

 effect (2D). As gradient field nonlinearity
is solely dependent on geometry of gradient coils, its effects are constant in
time and independent of the imaging sequence used (for a given gradient).
Furthermore, the barrel effect is independent of gradient strength.

 

14

 

 Walton

 

23

 

et al. have more recently shown that geometric distortions due to gradient
nonlinearity are smaller in 3D acquisitions than 2D, as predicted by
Sumanaweera.

 

24

 

 This is because a weak slice selection gradient is used to
excite the whole volume, therefore reducing considerably the magnitude of
the potato chip effect.

 

5.3.2.1 Correction

 

The distortions due to gradient nonlinearity, and in particular the barrel effect,
can be corrected by applying a theoretically or experimentally derived correc-
tion field.

 

12,14,17,22,25

 

 In practice, many modern scanners incorporate such a
scheme in an automatic image reconstruction mechanism, e.g., General Elec-
tric’s 

 

Gradwarp

 

; see reference 8 in Sumanaweera.

 

15

 

 In our experience with frame
based MRI stereotaxy, care must be taken as such correction schemes can fail
under specific circumstances; see Lemieux et al.

 

26

 

 and Figure 5.1. The details of
these correction schemes are generally not published and, depending on the
manufacturer, it may be possible to switch off the correction temporarily. Fur-
thermore, it is often impossible to determine when such correction schemes
were used in each specific study published. This would require, for example,
that the authors state the version of the scanner software used, which is rarely
the case (see also Sumanaweera et al.

 

24

 

).

 

5.3.3  Geometric Distortion Due to Field Inhomogeneity

 

Field inhomogeneity has three possible origins: imperfection of the field gen-
erated by the magnet, eddy currents induced in the conducting structures of
the scanner by the switching gradients, and spatial variations in the magnetic
susceptibility within the imaged volume.

 

4,15 

 

Although the latter cannot be
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described as “scanner error,” its effect is physically indistinguishable from
the others and is present in virtually all images. Furthermore, the presence of
metalic objects (stereotactic frame, surgical instruments, surgical implants,
etc.) within the field of view will generally result in severe distortions. The
geometric distortions due to susceptibility differences can be extremely
complex due to field inhomogeneity dependency on both the material and
shape of the imaged object, as well as its orientation relative to the static
field. On the other hand, distortions resulting from magnet imperfections
and eddy currents can often be modeled. Field inhomogeneity causes local
variations in resonance frequency and therefore is sometimes referred to as
an off-resonance effect. The consequence of this is that the resulting distor-
tion is inversely proportional to gradient strength (bandwidth per pixel)
and therefore can be minimized by proper selection of gradient strength
and field of view. In standard spin warp imaging, the effect is limited to the
frequency encode direction. In echo-planar imaging (EPI), the effect is
present in both the read and phase encode (“blip”) directions, the latter
dominating because the bandwidth per pixel is lowest in the phase encode
direction.

 

27

 

 Geometric distortion in the phase encode direction in EPI can
be very large and is still an important problem in many applications, such
as diffusion-weighted imaging (DWI) and functional MRI; see Figure 5.2
for an illustration of the distortions in EPI. Another important source of
distortions in EPI-DWI is eddy currents,

 

28

 

 which are particularly problem-
atic because the size of the distortion is a function of the amplitude of the
diffusion-sensitizing gradients; therefore, it can vary during the acquisi-
tion process.

 

FIGURE 5.1

 

Illustration of geometric distortion due to gradient non linearity in MRI. On the left, the
automatic correction scheme (“Gradwarp,” see reference 8 in Moerland et al.

 

25

 

) has not
worked properly following the selection of a rectangular field of view (24 cm 

 

�

 

 18 cm).
This is reflected in the apparent displacement of the middle fiducial markers of a stereo-
tactic frame away from the imaginary lines joining the superior and inferior fiducials; the
red lines have been superimposed to emphasize this point. The distortion was so severe
as to render the surgical procedure unsafe. On the right, the distortion is significantly
reduced following the selection of a square field of view (24 cm 

 

�

 

 24 cm). See reference
26 for more details.
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5.3.3.1 Correction

 

Correction schemes can be categorized into two groups: double acquisition
with inverted gradients and phase unwarping based on field maps. Bakker
et al.

 

14

 

 and Chang and Fitzpatrick

 

29

 

 described methods based on two acquisi-
tions identical except for inverted gradients. This approach requires the iden-
tification of corresponding points in the two images. Using this approach, a
reduction in the stereotactic localization error from 3.8 to 2 mm was obtained.
Moerland et al. found a similar improvement using Bakker’s method.

 

25

 

 Maurer
et al.

 

5

 

 measured the effect of applying the method by Chang and Fitzpatrick

 

29

 

on the accuracy of CT-MRI registration and found an improvement in the
range of 30 to 40%.

Sekihara et al. were the first to propose field mapping to correct for static
field inhomogeneity.

 

13

 

 Sumanaweera et al.’s approach is based on a field map
(requiring two volume acquisitions) followed by the application of a phase
unwarping algorithm to correct for positional errors throughout the imaged
volume 

 

in vivo

 

.

 

15

 

 In a later development, Sumanaweera et al. extended their
technique to remove the need for connectivity, which makes it applicable to
images containing stereotactic frames.

 

19

 

 This method results in an improve-
ment of localization accuracy from 3.7 to 1.1 mm. The field mapping approach

 

FIGURE 5.2 

 

Illustration of image distortions in EPI: (a) conventional spin-echo; (b) single-shot EPI;
(c) eight-shot EPI. TR

 

 � 

 

2600 msec, TE 

 

�

 

 80 msec. Both signal loss (dephasing) and geometric
distortions can be seen in the EPI. The distortions are drastically reduced in multi-shot vs.
single-shot EPI due to shorter echo train and resulting reduced accumulated phase error
(images taken from 

 

http://www.nmr.ion.ucl.ac.uk/

 

~

 

marks/epi/shots.html

 

 with permission). 
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was used by Jezzard and Balaban to correct (“unwarp”) EPI data.

 

27

 

 Reber et al.
use field maps obtained using high signal-to-noise ratio (SNR) EPI data for
increased robustness.

 

30

 

 Kadah and Hu propose an algebraic approach to the
problem of identifying the optimal inhomogeneity distortion operator.

 

31

 

Ernst et al. propose coregistration with a reference (undistorted, non-EPI)
image dataset as a correction method for EPI distortion.

 

32

 

 The method is
based on matching the brain surface to correct for global scaling and shearing
errors in the EPI data. However, it cannot correct for distortion and signal loss
due to local field inhomogeneity.

 

5.3.4 Error in Field of View (Voxel Dimensions) Due to Variations 
in Gradient Strength

 

Important fluctuations in imaging gradient amplitudes from prescribed values
are common.

 

33

 

 Furthermore, system calibration tolerances are typically much
larger than stability effects. In frame-based stereotaxy, such fluctuations are
largely irrelevant since the scaling factors can be derived from the frame. In the
absence of a frame, the impact of uncertainty in the voxel dimensions is poten-
tially important in certain applications of image registration, in particular lon-
gitudinal studies of morphological changes in the brain, image-guided
neurosurgery combining CT and MRI, and radiotherapy planning.

 

5.3.4.1 Correction

 

Registration methods that incorporate linear scaling factors can compensate
for such differences assuming that the dimensions of features used for match-
ing have not varied in the interscan interval. To this effect the skull can be
used as such an invariant structure and Freeborough and Fox have been able
to observe very small changes in brain volumes by this means.

 

34

 

 Alternatively
a method based on the registration of a test object as part of a QA schedule
has been proposed.

 

35

 

 In particular, it has been observed that recalibration
during normal servicing can introduce important variations in the scaling
factors. The derived scaling factors can then be used as fixed factors in a rigid-
body registration of head scans. Hill et al. proposed a method to measure the
actual errors in the voxel dimensions based on scanning a purpose-built test
object and registering the resulting images with a computerized version of
the phantom.

 

36

 

 The method was devised for application in image-guided neu-
rosurgery using MRI and CT. A significant improvement in registration accu-
racy was obtained when using the scaling factors derived from the phantom
when compared with the “free,” nine-degrees-of-freedom registration.

 

5.3.5 Signal Nonuniformity Due to RF Inhomogeneity

 

Signal nonuniformity can be present in all MR images and in particular
those acquired with smaller RF coils, such as surface coils.

 

37

 

 Although RF
inhomogeneity does not give rise to geometric distortions, the ensuing
signal nonuniformity can be a significant problem for image registration.
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In most modern volumetric images of the head acquired with a birdcage
head coil, the level of nonuniformity is such that it does not affect rigid-body
registration significantly, although it is still problematic for image segmenta-
tion.

 

38

 

 However, images acquired with surface coils generally suffer from a
high degree of signal nonuniformity, which can hamper registration severely.

 

5.3.5.1 Correction

 

In the context of image registration, this problem can be addressed in two pos-
sible ways: first, by correcting images prior to coregistration and, second, by
using a registration method that is less sensitive to signal nonuniformity.

 

18

 

 RF
nonuniformity correction methods can be classified into two main categories:
experimentally derived correction field maps and purely postprocessing. The
first approach is based on the assumption that the nonuniformity field is solely
dependent on geometry of the coil and therefore that a nonuniformity map
obtained by scanning a uniform test object can be applied to all images
acquired with the same coil.

 

37,39

 

 This requires registration of the correction
matrix with the image, which usually relies on the image position and orienta-
tion information supplied by the scanner (geometric prescription). This
approach assumes that the effect is independent of the geometry and electrical
properties of the imaged object, which is generally not the case.

 

40

 

Postprocessing methods, on the other hand, usually rely on the assump-
tion that signal nonuniformity due to RF inhomogeneity is restricted to low
spatial frequencies.

 

41 

 

A number of correction methods are available that
require expert supervision.

 

42,43

 

 Other methods have been proposed that
form an integral part of segmentation algorithms.

 

44–46 

 

This integrated
approach is potentially extremely powerful, if complete segmentation of
tissues within the region of interest is the desired outcome (otherwise the
segmentation represents an unnecessary computational burden). Also,
these methods currently either require expert supervision or are applicable
to a single part of the anatomy. Sled et al. proposed a fully automated, non-
parametric method that solely derives the intensity bias field and gives
good results for whole-head data, providing input data of sufficient quality
to allow subsequent precise segmentation of the brain.

 

47,48

 

 Another nonpara-
metric automatic postprocessing method has been applied successfully to
standard brain images as well as images acquired using surface coils.

 

49

 

5.4 Spatial Inaccuracies in Emission Tomography

 

Emission tomography (ET) is a technique for externally measuring radioac-
tivity distributions 

 

in vivo

 

 in cross section. In contrast to the other modali-
ties discussed in this chapter (apart from functional MRI), the data
produced by emission tomography are 

 

functional

 

 images. These represent
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the biodistribution of a radioactively labeled pharmaceutical, which may have
been introduced into the body by injection, inhalation, or ingestion. Emission
tomography with radionuclide tracers is divided into two categories depending
on the physics of the nuclear decay and detection process. In the first and
most common form, SPECT (single photon emission computed tomography),
photons emitted by the nucleus as a result of an energy transition or nuclear
decay are detected by a gamma camera in a single event counting mode. The
other form of emission tomography, PET (positron emission tomography),
counts pairs of photons that arise from the annihilation of a positron with an
electron. The feature that distinguishes PET from SPECT is that the radioactive
nuclei decay by emitting a positron (a positively charged electron) rather than
directly emitting a photon; the positron annihilates with an electron in the
imaged body and produces two photons in exactly opposite directions.

SPECT systems have a lead collimator that defines lines of response, stored
as projections on the crystal face for a given rotational angle. Gamma cameras
commonly have one, two, or three detector heads. The heads rotate in a cir-
cular motion to acquire projection data at sufficient angles for reconstruction.

In PET detection, coincident events are recorded when two photons are
detected on opposing sides of a circular array of detectors. A line of response is
ascribed to the chord joining the locations where both photons were detected.
The detector configurations common in PET vary.

 

50–55 

 

In recent years many
dual-head gamma cameras have become available with the ability to work in a
coincidence mode, thereby permitting them to perform both PET and SPECT.

 

56

 

An interesting recent development in “integrated imaging” has been to
combine emission tomography and CT scanners into a single device.

 

57–59

 

SPECT

 

�

 

CT and PET

 

�

 

CT devices should be commercially available within the
next few years. This approach obviously minimizes some of the problems of
registration between modalities by using the same scanning couch and
patient positioning, as well as making further use of anatomical data in atten-
uation, scatter, and partial volume correction of emission tomography data.
Similar efforts have been made to combine PET and MRI or MRS.

 

60,61

 

5.4.1 Sources of Spatial Inaccuracies and Measures to Prevent
or Minimize Them

 

The data recorded by ET systems often require processing to compensate for a
variety of effects before quantitatively accurate image reconstruction using
methods such as conventional filtered backprojection can be employed. These
include: photon attenuation 

 

in vivo

 

; photon scattering 

 

in vivo

 

; distortions intrin-
sic to the acquisition geometry; differences in performance within as well as
between individual detector elements (uniformity); “gaps” in the projections,
e.g., between the edges of flat detectors where the detectors meet. In addition,
spatial distortions can arise at high counting rates (“pulse pileup”).

Particularly problematic for image registration techniques are effects which
lead to spatial and, to a lesser extent, intensity distortions. The main features
which potentially limit the ability to coregister data from ET with anatomical
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modalities are due to the vastly different nature of the data: anatomy and high
(

 

�

 

1 mm) resolution for MRI and CT compared with physiological function
and intermediate resolution (4 to 15 mm) for emission tomography.

Registration of SPECT or PET data with anatomical data alone (i.e., without
fiducial markers), often has the fundamental problem of trying to match dis-
similar data. Functional data from emission tomography may contain insuf-
ficient anatomical detail for many algorithms. It is therefore imperative that
systematic sources of error be minimized.

 

5.4.1.1 Geometric and Alignment Effects

 

5.4.1.1.1 Center of Rotation Errors

 

SPECT systems produce distortions in the reconstructed data if alignment of
the detector heads and electronic alignment of the center of the data acquisi-
tion matrix are not carefully measured and corrected prior to reconstruction.
The effect of this is to produce halo-like artifacts, which spatially distort the
true distribution. Similarly, nonuniformities in detector response lead to “ring
artifacts”: circular intensity distortions in the reconstructed image. The rea-
son for this is the use of a single (or very few) detector which is moved or
rotated to various positions about the subject to acquire all of the data. Thus
a nonuniform area will trace out a consistent, circular path at a set radius
from the center of the acquisition matrix.

 

5.4.1.1.2 Nonuniform Sampling Effects

 

The sampling in emission tomography systems is usually greater towards the
center of the field of view, and therefore any nonuniformity is greatly enhanced
the closer it is to the center of the field of view. It has been calculated that a 2%
nonuniformity at the center of the field of view can give an apparent 50% non-
uniformity in the reconstructed image. This falls off rapidly with radius.

 

62

 

 An
example of nonuniformity “ring” artifacts is shown in Figure 5.3.

Full ring PET systems have a varying distance between adjacent parallel
projections, decreasing towards the edge of the field of view, due to its circu-
lar geometry. This effect would cause spatial distortions if ignored; however,
these are usually corrected prior to reconstruction. One effect that is not usu-
ally corrected by the reconstruction algorithm, though, is variation in the res-
olution of the system towards the edge of the field of view. The lines of
response towards the edge of the field are measured at an increasing angle
relative to the face of the crystals, thus decreasing the accuracy of localiza-
tion. This leads to an ellipsoidal point response function as this degradation
occurs preferentially for those lines of response at higher incidence angles to
the detectors. 

 

5.4.1.1.3 Voxel Dimensions

 

An important issue for accurate coregistration is the accurate measurement
of the reconstructed voxel dimensions. In PET, for example, it is often assumed
that the detector radius, which determines the dimensions of the coordinate
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system for the reconstruction algorithm, is simply the distance from the center
of the tomograph to the crystal face. However, the mean free path (i.e., the
average distance traveled) of the 0.511 MeV photons in the detector is around
1 cm for BGO scintillators (density(�) � 7.13 g · cm�3). Therefore, the effective
radius of the PET system is increased by this amount, and this affects the
voxel spatial dimensions. In practice, a suitable method to avoid this effect is
to measure the dimensions accurately with a calibrated test object. A circular
disk of perspex which contains an array of fine holes drilled very accurately
can be used. Into this tubing containing a radioactive solution is introduced.
An example from a CT scan is shown in Figure 5.4. The same test object can be
used in SPECT, PET, CT, and MRI with appropriate contrast (99mTc in SPECT,
18F in PET, air in CT, and CuSO4 for MRI) for the same purpose.

5.4.1.2 Physical Effects Causing Intensity Artifacts
and Spatial Distortions

5.4.1.2.1 Attenuation Effects

Some physical effects cause changes in the spatial distribution of the recon-
structed signal. Neglecting to correct for attenuation, for example, renders the
projection data inconsistent at different radial angles, and this causes a num-
ber of distortions in the data. First, as the attenuation is greatest towards the
center of the body, the reconstructed concentration in a homogenous structure

FIGURE 5.3
SPECT nonuniform artifacts resulting from poor uniformity correction are shown. The
gamma camera was a dual-headed device with the heads opposed at 180� to each other.
The reconstructed images show a 20 cm diameter cylinder which has been filled with water
containing 99mTc and uniformly mixed. The nonuniformities exhibit as a “hot-spot” in the
center of the image matrix (not the center of the object) seen in all images in the top row
and the two right-most images in the bottom row, and a number of “cold” ring artifacts in
the other images at varying radii. Note that the nonuniformities are centerd on the image
matrix, not on the object. The object center is displaced above the image center.
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will artifactually decrease towards the center of the object. Second, the
inconsistency between projections will often cause “streaking” artifacts in
areas of high contrast of radioactivity concentration (see Figure 5.5). This
may cause difficulties for any registration algorithm that optimizes a voxel
similarity measure. Attenuation may be corrected by multiplying the emis-
sion data with a correction factor file based on transmission measurements

FIGURE 5.4
One slice from a CT scan of the test object used to measure voxel dimensions accurately is
shown. The holes are precision drilled at 10 mm intervals in a solid cylinder of perspex
(� � 1.1g · cm�3). Fine tubing can be inserted into the holes and filled with radioactive or
paramagnetic contrast.

FIGURE 5.5
Distortion caused by not correcting the projection data for attenuation is shown. The image
on the left is a PET reconstruction of an [18F]-deoxyglucose (FDG) scan of the thorax. The patient
has a single pulmonary nodule, seen in the right hilum, with high FDG uptake. The image
in the center is the corresponding PET attenuation scan that is used for correcting the projec-
tions prior to reconstruction. It is, in effect, a low resolution CT scan. The image on the right
shows the effect of applying attenuation correction to the emission data. The uptake in the
nodule is now not distorted, especially in the anterior-posterior axis and the physiological
distribution in the low-attenuation lungs is now more accurate. Both of these effects are
errors caused by not applying attenuation correction to the projection data. (Image courtesy
of Ms. Bernadette Cronin, Clinical PET Centre, Guy’s & St Thomas’ Hospital, London.)
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(for a review of transmission scanning in emission tomography, see Bailey63).
The transmission data are similar to that measured in a CT scan, except that
in emission tomography a gamma emitter is used for the source rather than
an x-ray tube. Ideally, the data are acquired simultaneously with the emission
data to reduce scanning duration and ensure accurate registration. The cor-
rections are applied before reconstruction in PET and either before, during,
or after reconstruction in SPECT.

5.4.1.2.2 Reconstruction Artifacts

The reconstruction algorithm may also produce artifacts, especially where
there are extreme differences in the radioactive concentration between adja-
cent structures. An example often seen is when a radiotracer is excreted via
the kidneys, and the bladder may contain high concentrations of urine com-
pared with the concentration of the radiotracer in surrounding tissues. Itera-
tive reconstruction methods deal with this situation better, in general, than
analytical filtered back projection.

5.5 Spatial Inaccuracies in 3D Ultrasound Imaging

When performing an ultrasound scan, the transducer is moved so that a 3D
image of the tissue structure is built up in the brain of the operator. However
in order to analyze this information or for anybody else to visualize it, meth-
ods for the acquisition and display of 3D ultrasound (3D-US) images have
been developed. An additional benefit of 3D-US is the display of image
planes which are not accessible in 2D ultrasound; i.e., those corresponding to
transducer positions and orientations which are physically unrealizable. This
might include, for instance, looking down the neck of a patient as if the head
had been chopped off! 

A 3D ultrasound image is created by moving an ultrasound beam through a
volume of tissue and acquiring a series of 2D images (slices) at a fixed time inter-
val. For each slice, the position and orientation of the transducer is recorded.
There are two principal acquisition methods used, which will be referred to as
freehand and fixed geometry. In freehand scanning the transducer movement is
controlled by the operator in the same way as for conventional 2D ultrasound.
The position and orientation of the transducer is recorded by a position sensor
attached to the transducer. In fixed geometry scanning the transducer move-
ment is partially or completely controlled by the scanner or other device con-
trolling the acquisition. In this case a position sensor is not used.

After acquisition has completed, the ultrasound data must be reconstructed
so that a series of parallel slices is produced. The algorithm used for reconstruc-
tion depends on the acquisition method as well as a number of other factors.
More information on acquisition and reconstruction methods is contained in
Barry et al.64
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The main interest here is in artifacts that give rise to position errors in the
reconstructed data. Because of the way 3D-US data is acquired, a discussion
of image inaccuracies in 3D-US must cover inaccuracies encountered in each
of its constituents, namely: conventional 2D ultrasound scan acquisition,
transducer position measurement, and the 3D acquisition process proper
where 2D slice and position data are acquired dynamically.

5.5.1 Sources of Geometric Inaccuracies and Measures to Prevent
or Minimize Them

5.5.1.1 Conventional 2D Ultrasound Scanning

The 2D ultrasound image acquisition process relies on the following two
assumptions: 1) the ultrasound pulse travels in a straight line and 2) the
speed of sound is constant. Departures from these assumptions will give rise
to refraction and depth errors, both of which may have an impact on regis-
tration. A comprehensive description of 2D ultrasound artifacts is given in
Cosgrove et al.65

5.5.1.1.1 Refraction

If an ultrasound pulse strikes a tissue interface at an oblique angle, the direc-
tion of travel will be changed if the speed of sound is different on either side of
the interface. For most soft tissue interfaces the effect is small. However, if the
propagation path includes fluid (such as in pelvic scans by the transabdominal
route), the effect can be significant. The effect of refraction is to deviate the path
of the ultrasound beam. Since the ultrasound image is built up by assuming
that sound travels in straight lines, regions of tissue which are affected by
refraction will be displayed incorrectly (see Figure 5.6).

It is very difficult to correct for refraction, since it is a fundamental property
of ultrasound imaging. The effect can be reduced by avoiding large angles of
incidence in regions of tissue where refraction is likely to be a problem. 

5.5.1.1.2 Depth Errors 

Depth is calculated by assuming a fixed speed of sound. Variations in the
speed of sound will give rise to depth errors, which tend to be small for most
soft tissue interfaces. However sound propagates in fat 10 to 15% more slowly
than in most other soft tissues and prosthetic materials show a more marked
deviation. The effect of this artifact can be reduced by avoiding regions in
which it is significant.

5.5.1.1.3 Spatial Resolution

Refraction and depth errors will result in geometric distortion, i.e., image pix-
els will be displayed at incorrect locations. In contrast, variations in spatial res-
olution will change the volume of tissue that corresponds to each image pixel.
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The tissue volume corresponding to an image pixel is determined by three
components of spatial resolution, each of which is dependent on depth and,
possibly, on the lateral position within the image. To a first approximation,
the spatial resolution is determined by the width of the ultrasound beam in
each of three directions: axial (along the beam), lateral (perpendicular to the
beam and in the plane of the image), and slice (perpendicular to the image
plane). Since the scan lines used to form an ultrasound image are not nec-
essarily parallel, these three components may not correspond to conven-
tional Cartesian axes. Each of these components can now be considered in
turn:

1. Axial resolution is determined by the pulse width, which tends to
broaden with depth due to frequency-dependent attenuation.
However this is a small effect and in most cases the variation of
axial resolution with distance along the beam can be neglected.

FIGURE 5.6
Geometric distortion resulting from ultrasound depth and refraction errors. In the upper
figures, outlines of a circular reflector of radius 50 mm at a depth (to center) of 100 mm
have been drawn. Superimposed on these are the new outlines due to propagation through a
uniform low velocity layer (left) and high velocity layer (right) using a linear array trans-
ducer; i.e., parallel scan lines. In the lower figures, the horizontal lines represent a plane
reflector of length 50 mm at a depth of 30 mm in a uniform medium. The curves represent
the appearance of this plane reflector when the medium has two layers of different velocities
separated by a horizontal interface when using a sector transducer. The ratio between the
velocity of the upper layer and that of the lower layer is 0.9 (left) and 1.1 (right). The
geometric distortion has been exaggerated for illustrative purposes—the maximum varia-
tion of the velocity of sound is only a few percent.
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2. Lateral resolution is determined by the beamwidth within the scan
plane, which will vary with distance along the beam according to
the type of electronic focusing applied by the scanner. This results
in good lateral resolution within a focal zone and poor lateral reso-
lution elsewhere. There can be one or more focal zones applied to a
given image. Multiple focal zones will give a more uniform lateral
resolution over a greater distance along the beam than for a single
focal zone. This is at the expense of frame rate.

3. Slice resolution is determined by the beamwidth perpendicular
to the scan plane and this will be fixed by the transducer geom-
etry. (It is possible to provide some control over slice focusing,
but this requires 2D transducer arrays which are still at an early
stage of development.) The transducer geometry will produce a
point at which the slice beamwidth is a minimum; this point will
not necessarily coincide with the minimum lateral beamwidth.
The variation in slice beamwidth changes the slice component of
the resolution cell. 

The preceding description has looked at the variation of resolution with
distance along the beam. This will not in general be the same as depth, so
there will be lateral variations of resolution as a natural consequence of vari-
ation in beam angle. The only exception to this is for rectilinear scanning pat-
terns. It is not generally possible to correct for variations in spatial resolution,
although in recent years manufacturers have attempted to do so by using
techniques such as dynamic focusing and aperture control.

5.5.1.2 Position Measurement

For freehand acquisition, a position sensor, which provides information on
the position and orientation of the transducer, needs to be attached to it. Var-
ious technologies have been developed for position measurement: magnetic,
optical, acoustic, and mechanical linkage being the main ones. Some error
sources will apply to all sensor technologies and some will be specific to cer-
tain types. These are described in turn.

5.5.1.2.1 Sensor Design-Independent Errors

5.5.1.2.1.1 Latency This is the time delay between acquiring an ultrasound
slice and making the position measurement. Since in freehand acquisition the
transducer is moving fairly continuously, this latency means that the position
measurement will never correspond exactly to the ultrasound slice.

The effect on the image is to cause an incorrect interpretation of the slice
position, which will be manifested as spatial distortion (see Figure 5.7). The
latency will be fairly constant for a particular position sensor and so this
effect is systematic and spatial distortion will be in slice direction, i.e., along
a line perpendicular to the image plane.
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The effect of the artifact can be minimized by ensuring that the latency is
significantly less than the interslice time interval. In most freehand scanning
the slice acquisition rate will be equal to the scanner frame rate and most
probably 20 to 40 Hz. In this case the interslice time interval will be 25 to 50 ms.
Provided the latency is no more than a few milliseconds, the degree of spatial
distortion is relatively small (a few percent of the interslice time interval). In
principle, an approximate correction could be carried out for the effect of the
latency if the transducer movement can be approximated by a simple func-
tion. However, given that the effect is likely to be relatively small, it is argu-
able whether it is worthwhile.

5.5.1.2.1.2 Uncertainty in Position Sensors All position sensors will have a
quoted accuracy for both position and orientation measurements. These place
a fundamental limitation on the ultimate spatial resolution of the reconstructed
data and cause nonlinear distortion and blurring. Orientation errors cause an
increase in translation error with depth, since all pixels within a slice are subject
to the same angle error, i.e., depth-dependent blurring�distortion. For a typical
orientation error of 0.5�, the resulting translation error at a depth of 100 mm
will be approximately 1 mm. This will be in addition to the sensor position
error, which is typically 1 mm, so this effect can be significant.

FIGURE 5.7
Reconstruction of a circular reflector for a simulated freehand ultrasound scan with increas-
ing latency values. The upper images are a synthesized circular reflector (left) and a simu-
lated freehand scan with zero latency (right). The lower figures show the effect of nonzero
latency with the figure on the right having a larger latency than the left. The black streaks
on the images are gaps in the data that are a consequence of using a simple nearest neighbor
interpolation method. The highest latency value used was chosen in order to illustrate what
could happen in an extreme situation. It is for illustrative purposes only and should not be
regarded as a typical situation.
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5.5.1.2.1.3 Calibration of Sensor In order to optimize sensor accuracy, a rela-
tionship must be established between the position of the sensor on the trans-
ducer and the ultrasound data. This is referred to as calibration and if done
properly will mean that a given feature in the scanned volume will appear at
the same position relative to a fixed reference point wherever the transducer
is. The accuracy obtainable with the transducer-sensor system should equal
that of the sensor alone. Any errors in the calibration process will degrade the
sensor accuracy and therefore give rise to artifacts described above. A review
of calibration methods is given in Prager et al.66

5.5.1.2.2 Sensor Design-Specific Errors

5.5.1.2.2.1 Electromagnetic Position Sensors These devices function by mea-
suring the strength of magnetic fields generated by sending current through
three small wire coils which are mutually orthogonal. There are two distinct
types using a.c. and d.c. fields.

Birkfellner et al.67 investigated errors introduced by transducers and metal
objects for both a.c. (Isotrak II, Polhemus Inc., Colchester, Vermont, U.S.)
and dc (Flock of Birds, Ascension Inc., Burlington, Vermont, U.S.) sensors.
They found that the Isotrak was affected by all metal placed within the use-
ful range of the sensor and also by mounting it directly on the transducer
casing. The Flock of Birds sensor was only affected by ferromagnetic metal
and was relatively unaffected by directly mounting it on the transducer cas-
ing. However, the fundamental accuracy of the Isotrak was better than that
of the Flock of Birds. In a clean environment, both devices performed
according to the manufacturers’ specifications. Errors can be minimized by
removing all metal (Isotrak) or ferrous metal (Flock of Birds) from the sen-
sor and mounting the sensor on an insulating rod attached to the trans-
ducer, rather than on the transducer casing itself (Isotrak). According to
manufacturers’ specifications, the fundamental accuracy of the Isotrak is
about 0.75 mm and for the Flock of Birds is about 1.8 mm. The maximum
measurement rate for the Isotrak is 120 measurements per second and for
the Flock of Birds is 144 measurements per second. The average latency is
approximately equal to half the minimum measurement interval. This
equates to 4 ms for the Isotrak and 3.5 ms for the Flock of Birds.

Further information on errors produced by electromagnetic sensors may
be found in references 68 through 71.

5.5.1.2.2.2 Optical Position Sensors These devices function by tracking the
position of a number of infrared markers on the transducer. The accuracy is
greater than for electromagnetic systems and there are no errors introduced by
electromagnetic interference, but the system tends to be more bulky. The main
problem with optical systems is that line of sight must be maintained at all times,
which places a restriction on the type of scanning with which they can be
used. Sato et al. describe a system based around the OPTOTRAK optical sen-
sor (NDI Inc., Waterloo, Ontario, Canada).72 The latency of optical systems

0064_frame_C05.fm  Page 107  Wednesday, May 16, 2001  10:16 AM



108 Medical Image Registration

will increase with the number of markers that are tracked. When the
OPTOTRAK system is used for tracking probe plus object, the latency will be
40 to 50 ms.

5.5.1.2.2.3 Acoustic Position Sensors These are broadly the same as the opti-
cal devices with the infrared markers replaced by acoustic receivers. Since
the speed of sound is very much less than that of light, the latency is much
greater. King et al. describe a system based on the GP 8-3D acoustic sensor
(Science Accessories Corporation, Stratford, Connecticut, U.S.) in which
they evaluate accuracy of linear, angular, and volume measurements.73 Hata
et al. describe a system for US�CT registration based on a homemade acous-
tic sensor.74

5.5.1.2.2.4 Mechanical Arms A system which uses a robot arm (Faro Medi-
cal Technologies, Lake Mary, Florida, U.S.) has recently been described.75

They quote a “sub-mm” accuracy that yields a patient-image coordinate
mapping accuracy of 2 to 3 mm. With such a mechanical system there are
restrictions imposed in the scanning process due to the physical connection
between the transducer and scanner. However no errors due to electromag-
netic interference occur nor is line of sight required.

5.5.1.3 3D Acquisition Process

The 3D acquisition process consists of moving an ultrasound beam through
a tissue volume which itself may be moving. Errors are therefore introduced
by both the transducer and tissue motion. Also, freehand acquisition tech-
niques introduce geometric distortions by collecting voxels in a spatially
irregular fashion.

5.5.1.3.1 Transducer Motion

When a 3D ultrasound image is being acquired, the transducer is moving
continuously. Therefore the position of the transducer when a pulse is trans-
mitted is not the same as when the pulse is received. This causes the image
plane to become distorted, since the transmitter positions (which are fired in
sequence) will not lie on a straight line. If the slices are approximately paral-
lel, the effect of these distortions is small, provided the interslice spacing is
less than the slice beam width. However, for scanning geometries which have
a rotational element, the effect may be more significant. Such scanning geom-
etries could be a freehand acquisition where the transducer is “rocked” (i.e.,
rotated about a fixed point on the skin surface) or a transducer rotating under
computer control. Rotating transducer systems have been described.76,77 The
magnitude of these errors can be calculated for particular scanning condi-
tions and their effects can be determined.

Slices produced by the freehand scanning process will have a variable spac-
ing and are unlikely to be parallel. This can cause a significant increase in the
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interslice distance with depth, especially if the acquisition involves “rocking”
the transducer. One possible solution is to employ a technique called “spatial
compounding,” where tissue volume is repeatedly scanned from different
directions. This reduces coherent noise (speckle) and increases the pixel den-
sity, thus reducing the interslice distance. Spatial compounding has been
described in Rohling et al.78

5.5.1.3.2 Tissue Motion

Ultrasound is a contact scanning method and therefore a small amount of tis-
sue compression will always occur, causing a greater degree of spatial distor-
tion for more superficial scanning. Clearly the degree of compression can be
minimized by using as little pressure as possible.

5.5.1.3.3 Nonuniform Sampling

In general, 3D ultrasound images which have been obtained by moving the
ultrasound beam through a tissue volume will have nonuniform sampling.
For images produced by moving the transducer under computer control (i.e.,
fixed geometry), the slices will be parallel and therefore the interslice sam-
pling interval will be fixed. However different sampling intervals in the three
directions are likely. For images that have been produced by a freehand
sweep, the slices will not, in general, be parallel and the interslice sampling
interval will not be fixed. Each of these types of nonuniform sampling will be
considered in turn.

5.5.1.3.3.1 Fixed Geometry Here the sampling interval is constant, but has
a different value in each of the three directions. This occurs frequently, since
the interslice separation is often much larger than either of the in-plane
sampling intervals. Provided the interslice separation is small enough to
sample the tissue volume adequately, there are no special problems with
this type of data. Precisely what constitutes “adequate sampling” will
depend on the minimum size of the structure which needs to be resolved.
For data display, it may be necessary to interpolate the data to give a cubic
voxel. 

5.5.1.3.3.2 Freehand Geometry There are two effects to consider here: the aver-
age interslice separation will vary and adjacent slices will not be parallel. The
combination of these two effects produces a 3D dataset where the separation
between data points varies in all three directions. Since the effect of a small
change in transducer orientation increases with depth, large separations
between data points will occur at large depths. Some degree of oversampling
will therefore be necessary at smaller depths to compensate for this effect, in
which case the acquisition method known as spatial compounding78 can be used.

It is generally necessary to interpolate the data to a regular voxel array so
that it can be displayed and�or compared with other imaging modalities; a
number of different algorithms have been proposed.79 
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5.6 General Conclusions

We have described image distortions in CT, MRI, ET, and US that can influence
image registration, both within and across modalities. The nature of each effect
varies between modalities, reflecting the image generation mechanisms.

The problems of image distortion in CT are relatively minor when com-
pared with MRI or 3D-US. This is why CT is often considered the spatial gold
standard in multimodality registration and image-guided intervention
studies. The problems of image distortion in MRI are multiple: geometric dis-
tortions due to imperfections in the scanner fields (static, gradients, and RF)
and to interactions between the imaged object and the scanner fields. Scanner
technology is constantly evolving, allowing the acquisition of images of
increasing quality. However, new MR scanners, imaging sequences, and
applications are constantly being developed, often giving rise to worse or
even new artifacts, or to new demands on the accuracy of the images. Inter-
ventional MRI is a case in point; although the artifacts encountered generally
belong to the categories described above, their importance is enhanced by the
greater presence of instruments in the field of view and the need for a high
degree of geometric accuracy. The constant expansion of MRI means that the
issues of image artifacts in general and distortions in particular will remain
an active area of research for many years to come. We also note that the use
of postprocessing methods to correct for spatial inaccuracies in MRI is greater
than in all other modalities. This may reflect both the magnitude of the prob-
lem and the desire to make MRI the superior modality to visualize and quan-
tify structure. In ET, distortions generally result from fundamental physical
or electronic limitations in the image formation process and often from a
compromise between sensitivity and accuracy. In US, the great complexity of
the interactions between the sound waves and the imaged tissue, resulting in
the sometimes dramatic breakdown of the assumptions on which the method
relies, imposes fundamental limitations on the achievable faithfulness of the
reconstructed image. The amplitude of these geometric inaccuracies com-
pared to other undesirable effects or limitations has resulted in a relative lack
of interest in possible correction methods for US.

Using spatial resolution as a criterion, CT and MRI are generally superior
to ET and US. On the other hand, distortions are the most important in MRI
in relative terms, while CT and ET are often considered distortion free. Fur-
thermore, one could argue that the magnitude of the distortions in US
matches its spatial resolution. The implication of these observations is that
the achievable quality of image registration will depend on the modalities
involved and the aim of the registration. For maximum precision, relative dif-
ferences in distortion can be modeled and integrated in the registration pro-
cess. In general, such a model will be used to correct the most distorted
modality. For applications involving an external coordinate system, the need
to transform between image and world coordinates is likely to be a determin-
ing factor and may require distortion modeling for each modality.
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6.1 Introduction

 

The goal of image registration is to find a geometrical transformation that
aligns points in one view of an object with corresponding points in another
view of an object. In medical applications one of these views will typically be
a tomographic image such as CT, MR, SPECT, or PET, but may include x-ray
or even video images. The other view may be chosen from one of these
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modalities or may be a physical view of the anatomy in space, a view which
we treat here as merely another “imaging” modality. An object in medical
applications is some portion of anatomy such as the brain, a limb, the chest,
the liver, etc. Each view will always include approximately the same anatom-
ical region. Typically the two views will be taken from the same patient, in
which case the problem is that of intrapatient registration, but interpatient
registration has application as well. Because most research on registration
has focused on intrapatient three-dimensional images and rigid-body regis-
tration, this chapter likewise concentrates the most attention on this problem.

To be useful in any application, registration must be embedded in some
larger system. The need for the embedding system arises because the trans-
formation that the registration step produces as output is a mathematical
mapping function, which is ill-suited for direct human use, particularly
when three dimensions are involved. In rigid-body registration, the transfor-
mation itself is of little clinical relevance. In some nonrigid registration appli-
cations, however, the mapping can provide information about change in
structures over time, or variability between individuals. In either case, the
registration transformation serves as input to some other component of a
larger system that leads ultimately to patient benefit. That next component
may be an image viewer that presents resliced volumes or surface renderings
to a physician during diagnosis or to a surgeon during image-guided treat-
ment. It may be part of a robotically controlled treatment system, such as a
bone drill in orthopedic surgery or a linear accelerator in radiotherapy, or it
may be a segmentation algorithm that requires two or more modalities to dis-
tinguish among various tissue types. In every case, the job of the registration
component is simply to deliver an aligning transformation. It is the job of the
embedding system to make that transformation clinically useful.

Regardless of the combination of views, the next component in the embed-
ding system, or the particular application, success or failure for the registra-
tion component of the system hinges on the quality of alignment of
homologous points provided by the transformation that it produces. The
alignment need not be perfect, but it must be adequate for the problem at
hand. In order to determine whether a given registration system is indeed
adequate for a given problem, or to determine whether it has performed ade-
quately for a given pair of views, it is necessary to measure the degree of
alignment. That measurement is the subject of this chapter.

 

6.2 Measures of Success

 

Our choice of the quality of alignment as the measure of success follows
directly from our definition of registration, which is the determination of
a transformation that aligns points in one view of an object with corre-
sponding points in another view of an object. We note that other aspects
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of the performance of a registration system may also be considered in deter-
mining its success. Maintz and Viergever, for example, in a thorough anno-
tated survey of papers on registration (through 1996) list precision, accuracy,
robustness

 

 �

 

stability, reliability, resource requirements, algorithm complexity,
assumption verification, and clinical use as the items to consider as part of the
assessment.

 

1

 

 Our choice of the degree of alignment as the single measure of
success simplifies assessment of registration methods and comparisons
among them. A major benefit is that no patient outcomes are involved in this
measure of success. Measuring registration success on the basis of patient
outcomes necessarily convolves the quality of the alignment with the quality
of the operation of each component of the embedding system through the
chain from registration to diagnosis or treatment. In fact, such derived mea-
sures of success, in which improvement in registration accuracy is deduced
from improved output of some subsystem further along the chain, may be all
that is available when alignment cannot be measured directly. This derivative
approach has been applied, for example, in the registration of bilateral
mammograms by assessing the visual detection of abnormalities.

 

2

 

 Such val-
idations, which are capable of certifying a registration system as acceptable
or of ranking systems, replace the problem of registration assessment with
a different assessment problem. They are, however, to be avoided, if possi-
ble, in favor of the direct measure. The resulting simplification of the assess-
ment report and sharper definition of registration quality are well worth the
effort.

Most of the work and much of the literature on the subject of registration
inevitably focuses on the quest for registration methods that produce a better
alignment for some combination of modalities. The success of the registra-
tion, which we are relating monotonically to the quality of the alignment, has
been estimated in published work by visual inspection, by comparison with
a gold standard, or by means of some self-consistency measure. Although the
great majority of studies of registration quality have been carried out for
rigid-body registration algorithms, the same concepts are also applicable for
nonrigid registration. The estimates of registration quality are employed in
two distinct notions of success and, concomitantly, of failure. The first is suc-
cess for a class of image pairs; the second is success for a given image pair.
The former measure is useful when determining whether a method is appli-
cable for a given clinical problem, while the second is useful as a safeguard
against harmful errors for a given patient. In either case it is necessary to
determine alignment error.

 

6.2.1 Alignment Errors

 

The measurement of registration success, whether for a class of images or for a
given pair of images, will be some statistical estimate of some geometrical mea-
sure of alignment error. Many such measurements have been used to measure
the quality of registration, but not all are of equal value. An understanding of
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their meanings is crucial to understanding and evaluating claims of registra-
tion accuracy.

 

6.2.1.1 Target Registration Error

 

A common geometrical measure, which we will call target registration error (TRE),
is the displacement between two corresponding points after registration, i.e.,
after one of the points has been subjected to the registering transformation. The
word “target” in the name of this error measure is meant to suggest that the error
is being measured at an anatomical position that is the target of some interven-
tion or diagnosis. Such errors would be expected to be more meaningful than
errors measured at points with no intrinsic clinical significance. We let 

 

p

 

 repre-
sent a point in the first image of a pair to be registered, and 

 

q

 

 a point in the second
image. A registration method applied to this pair leads to a transformation 

 

T

 

that, without loss of generality, registers the first image to the second. The differ-
ence between the two vectors representing the transformed point and the corre-
sponding point gives the target registration error. Thus,

TRE 

 

�

 

 

 

T

 

(

 

p

 

) 

 

�

 

 

 

q

 

. (6.1)

If the direction of the error is important, the vector quantity must be
reported; normally, however, only the magnitude TRE of the error is reported.

 

6.2.1.2 Fiducial Registration Error

 

An example of an error measure that lacks the intrinsic clinical meaning asso-
ciated with TRE is fiducial registration error (FRE). This error is sometimes
reported for systems that achieve registration by aligning pairs of points
associated with specially selected “fiducial” features that are visible in both
spaces. Both this error and TRE are illustrated in Figure 6.1. Fiducial features
are selected not because of their clinical significance, but because of their
locatability. They may be part of some easily visible anatomical features or
they may be the centroids of specially designed fiducial markers that have
been affixed to the anatomy before imaging. In either case the word “fidu-
cial” is meant to suggest reliability. The reliability of anatomical points is
enhanced by restricting their choice to clearly visible features; the reliability
of the marker derives from its design, which typically insures that it is bright
enough and large enough to render a consistent centroid in each image. The
reliability of a point used in any point-based registration system is directly
related to the consistency with which the identical geometrical location
within the fiducial feature can be identified in each image space. An error
in this localization step, which is commonly called the fiducial localization
error

 

 

 

(FLE) as illustrated in Figure 6.2, will propagate throughout the regis-
tration process, but if the magnitude of FLE is small, it can be expected that a
transformation that aligns fiducial points will align less visible target points
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FIGURE 6.1

 

Schematic of point-based registration illustrating two measures of error. Black circles rep-
resent positions 

 

q

 

i

 

 in one space. The unfilled circles represent positions 

 

p

 

i

 

 in the other space
after they have been mapped by the registering transformation 

 

T

 

. The numbered positions
are points used in the registration. Target registration error

 

 

 

(TRE) is the registration error at a
point not used to effect the registration fiducial registration error

 

 

 

(FRE) is the alignment
error between points used to effect the registration.

 

FIGURE 6.2

 

Schematic of point-based registration illustrating fiducial localization error

 

 

 

(FLE). Black circles
represent positions 

 

q

 

i 

 

at which points are localized in one of two spaces involved in the regis-
tration process. The dashed circles represent the actual positions. The black circles represent the
position chosen by the localization process.
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accurately as well. Fiducial registration error is typically reported as a mean,
commonly in the root-mean-square (RMS) sense of the distance between cor-
responding fiducial points after a point-based registration has been effected.
Thus,

(6.2)

where 

 

N 

 

equals the number of fiducials used in the registration process and

 

p

 

i

 

 and 

 

q

 

i

 

 are positions of fiducial 

 

i

 

 in the two image spaces.
TRE is more meaningful as a measure of registration success than FRE for

two reasons. First, as pointed out above, TRE can be measured at clinically
relevant points, whereas FRE is by definition limited to fiducial features
whose positions are clinically relevant only by coincidence. Second, FRE may
overestimate or underestimate registration error. The clinical relevance of
TRE makes it dominant over FRE as a general measure of meaningful error,
but if FRE were itself a good estimate of TRE, then it could serve as an easily
measurable surrogate.

Unfortunately, it is not. The first problem is underestimation. Some compo-
nents of registration error will not be reflected in FRE because the registration
system uses these same fiducial point locations in its determination of the
registering transformation. These hidden errors come about because the sys-
tem does its best, within the limits of the set of transformations at its disposal,
to align fiducial points pairs identified as corresponding, regardless of
whether they do indeed correspond. For example, if the transformations
being considered by the registration system are limited to rigid-body motion,
then fiducial localization errors of the same magnitude and direction for
every fiducial in a given image space will make no contribution to FRE. As a
specific simple case, suppose FLE is exactly 3 mm in the 

 

x

 

 direction for all 

 

N

 

fiducial points in the first image space and 4 mm in the 

 

z

 

 direction for all fidu-
cials in the second. Because there exists a rigid transformation that will bring
each of these purportedly corresponding pairs into perfect alignment, namely
a translational motion of the first image of 

 

�

 

3 mm in 

 

x

 

 and 4 mm in 

 

z

 

, relative
to the second, the resulting FRE for this case will be zero, while TRE will be
displacement whose magnitude is 5 mm at all points. In general, for all
rigid-body registration systems, to the extent that a given set of fiducial
localization errors can be duplicated by means of a rigid-body motion, the
registration error will be underestimated by FRE.

For nonrigid motion the situation may be worse. Any set of point pairs,
however badly localized in either or both spaces, can be perfectly aligned,
given a sufficiently versatile set of geometrical transformations. The FLE at
each of the fiducial points will be interpolated exactly or approximately at
all other points. Thus, by overfitting the fiducials in one space to their posi-
tions in the other space, the transformation may produce an FRE smaller
than the true TRE. This problem is less insidious if the set of transformations

FRE2 T pi( ) qi�
2,

i

N

��
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is justified on physical grounds, meaning that the transformations include
only those physically possible between the two spaces. For example, if two
images of the same head are acquired, then for multimodality registration,
where the desired accuracy is of the order of one mm, only a rigid transforma-
tion is justified (unless there is intervening surgical resection).* For nonrigid
anatomy or intrapatient registration, the “registering” transformation may
not reflect the physical transformation in regions where no points are avail-
able. It is helpful to view the problem of underestimation in terms of a null
space. Regardless of the set of transformations, for sufficiently small errors
FRE can be expected to be an approximately linear function of the 

 

N

 

 fiducial
localization errors. The input space of FRE, as function of the FLEs, will
always include a null subspace, which is the space of patterns of FLEs that
can be completely compensated by one of the transformations in the set. If
the localization error pattern has a component in that null space, then FRE
will underestimate TRE.

The second problem is overestimation. This situation is common when random
components to FLE are uncorrelated among the 

 

N

 

 fiducials used in the regis-
tration. In that case, the influence on the transformation by the localization
error of some fiducials will tend to be cancelled by the influence of others.
Here again rigid transformations provide a simple example. Suppose that in
one image space FLE for half of the fiducials is 3 mm in the 

 

x

 

 direction, while
for the other half it is 3 mm in the 

 

�

 

x

 

 direction. The optimal registration
transformation will be the identity. For that transformation FRE will be 3 mm,
while the resultant TRE will be zero at all points. In more realistic situations
the cancellation is less complete.

The relationship between the expected FLE and the expected TRE depends
on both the number and placement of the fiducial points. For uncorrelated
FLEs, the relationship for rigid-body registration has been subject to conjec-
ture for many years but is now well understood in the RMS sense for isotro-
pic error patterns.

 

4,5

 

 The relationship between FRE and FLE, which is due to
Sibson,

 

6

 

 is surprisingly simple,

(6.3)

where 

 

N

 

 is again the number of fiducial points used in the registration. This
equation is of great importance because it provides a means to bridge the gap
from self-consistency to accuracy. (See also Section 6.3.2 for another means.)
Here FRE represents self-consistency, and TRE, whose statistics can be deter-
mined from those of FLE, represents accuracy. Equation 6.3 makes it possible
to validate the accuracy of the system without resorting to comparison with
any other system. This method for “bootstrapping” its accuracy gives the
point-based, rigid-body system a special place in the arena of validation.

A caveat should be given here regarding the problem of the null space of FRE
mentioned above. To the extent that there is a consistent, rigid displacement of

 

* The brain does pulsate within the closed skull by about 0.5 mm with the cardiac cycle.

 

3
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the fiducial markers in a given space relative to the object to be registered, the
use of Equation 6.3 will underestimate FLE, and hence TRE.* Such consistency
will be negligible for displacements caused by the effects of noise or voxeliza-
tion on the marker localization algorithm. There may be a consistent effect
from spatially nonuniform brightness, such as that caused in MR by radiofre-
quency (RF) inhomogeneity, but such an effect will be negligible because of the
small extent of the typical fiducial feature. It may well be appreciable, however,
for geometrical distortion resulting from static field inhomogeneity in MR
scanners. Such distortion patterns may, for example, produce a consistent
translation of a marker’s image relative to the head image when it is located
just external to the head. Scaling and skewing errors in the image, which,
for example, may be caused by errors in MR gradient strength or CT gantry
angle, will invalidate the relationship in Equation 6.3, with both over- and
underestimation of FLE possible. Image distortion is discussed at greater
length in Chapter 5.

 

6.2.1.3 Other Error Measures

 

Other measures of alignment error may be used as well. Distances between
lines and, more commonly, between surfaces may be clinically relevant in
some cases, but they reveal only part of the displacement error. Distances
between lines are insensitive to displacements in either space parallel to the
line in the respective space; distances between surfaces are similarly insensi-
tive to displacements parallel to the surfaces. Distances between surfaces,
used in some systems as cues for registration, are known to be poorly related
to TRE for such systems

 

7

 

 but are still used for validation when no other
means is available.

 

8,9

 

 Combinations may be used also with distances mea-
sured between points and lines, points and surfaces, or lines and surfaces.

For rigid-body registration, error reports may include angular displace-
ment. Angular displacements specified relative to the directions of the coor-
dinate axes are independent of the positions of those axes and the origin of
the coordinate system. (The translational components of the error do, how-
ever, depend on the origin when there are nonzero rotational components.) It
is also possible to identify for any rigid motion a single axis of rotation such
that rigid motion is completely specified by a single angular displacement
about that axis along with a single translational component in the direction of
that axis. Since the inverse of a rigid transformation is rigid and the composition
of any two rigid transformations is likewise rigid, any error in the determina-
tion of a rigid transformation has itself the form of a rigid transformation.
Thus, an angular displacement would appear to be a simple, convenient
method for specifying alignment error. Unfortunately, its meaning is severely
limited by two factors: it is a global measure that cannot be focused on a clin-
ically important region, and the magnitude of local displacement that results
from rotation depends on the distance from an axis of rotation that has no

 

* To be precise, the problem only occurs if the rigid displacement relative to the object is different
in the two spaces to be registered.

 

0064_frame_C06.fm  Page 124  Wednesday, May 16, 2001  10:19 AM



 

Detecting Failure, Assessing Success

 

125

clinical meaning. Thus, the significance of angular motion is typically diffi-
cult to interpret clinically.

 

6.2.2 Statistics

 

As mentioned earlier, registration success may be determined for a class of
image pairs or a given image pair. The former measure is useful when
determining whether a registration system is appropriate for a given clini-
cal problem, while the latter is useful as a safeguard against harmful errors
during subsequent routine clinical use. Once a measure of alignment error
is chosen, it can be measured and reported, but because of the complex vari-
ation among images, it will be necessary to perform many registrations and
make many measurements before a clear picture of system accuracy can
emerge. The accuracy report is therefore necessarily statistical. Common,
meaningful statistics include the mean and standard deviation, the root-
mean-square, which is often used for Euclidean distance measures, the
median, which may be more meaningful than either of the former measures
in the face of outliers, and other order statistics, such as 90 or 95% thresh-
olds. Such statistics, gathered in experiments on a well-defined class of
images, can be used in predictions of clinical performance on future data
sets of the same class. Indeed, the primary purpose of gathering statistics
on experimentally measured image registration accuracy is the prediction
of clinical success or failure. For example, statistics gathered from experi-
mental measurements of TRE on a system for registering CT or MR with
specified imaging parameters (e.g., slice thicknesses, field-of-view, pulse
sequence, contrast administration, etc.) for a given anatomy (e.g., head,
liver, etc.) and given pathology (e.g., tumor, diffuse white matter lesions,
etc., or normals), can be used to predict the expected value of TRE, or pref-
erably its distribution, in a similar clinical situation. If the distribution is
available, then the probability of success can be stated as the probability
that TRE will fall below the acceptable threshold.

Except in rare cases, TRE will vary with position. Thus, the location, or
locations, at which TRE is measured is a critical part of the description of the
experimental situation as well. For example, if the clinical target is near the
optic nerve, then the value of TRE at the center of the cerebellum is not a reli-
able predictor of clinical success or failure. The mean TRE throughout the
brain is a valuable statistic but is still inferior to a point-by-point accounting,
even when it is supplemented by the variance. A maximum value provides
more protection against disaster, but such a conservative measure may pre-
clude the use of a system that would in fact benefit the patient for a particular
target point. It should perhaps be emphasized that experimental error statis-
tics are meaningful predictors of clinical error only when the clinical situation
is sufficiently similar to the experimental situation. We discuss this notion of
similarity further below.

A second, and equally important, purpose of gathering registration statis-
tics is detection of clinical failure. A successful registration need not mean
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that the alignment is perfect, but it does mean that the alignment error is
below some threshold. While registration accuracy cannot be determined
directly for a given clinical case (otherwise, there must be a superior registra-
tion method available), there may be some measurement that can be made for
a given case to indicate whether the accuracy is likely to be acceptable. The
relationship between that measurement and a clinically meaningful measure
of accuracy, such as TRE, will be statistical and must be verified experimentally.
The function that is optimized during the registration process can serve this
purpose, but its statistics must be carefully established to give it predictive
power. The primary example is FRE for a point-based rigid-body system.
Experimental measurements of FRE can be used to determine the distribution
of FRE values for a properly working point-based system.

 

6

 

 During a clinical
registration, FRE can be reported and compared with that distribution. If the
value is very large, at or above the 95% level observed experimentally, for
example, the system may not be working properly.

 

6.3 Methods for Estimating Error

 

The most straightforward method for estimating registration error is to com-
pare a given registration transformation with a “ground truth” transforma-
tion, one whose accuracy is high. Ground truth may be obtained from some

 

gold standard

 

 registration system, which we define as any registration system
whose accuracy is known to be high. We devote most of this section to these
gold standard methods.

 

6.3.1 Gold Standards

 

Gold standards may be based on computer simulations, phantoms or cadavers,
or patients, where the latter category is understood to include normals as well.
Phantoms may range from rectangular blocks of plastic to realistic anthropo-
morphic models

 

10

 

 and are second only to computer simulations in providing
known transformations. They are inferior, however, to patient images and
computer simulations in image fidelity. For this reason they cannot be con-
sidered seriously in registration validation except for development work or
as applied to the stereotactic frame, whose accuracy can be expected to be
largely unaffected by differences between the phantom and a patient. For
that reason we will discuss only this single application of phantom validation
(see Section 6.3.1.2). Similarly, because of physiological changes at death,
cadaver studies have limited use but are also appropriate for validating ster-
eotactic frames and, to a certain extent, any systems based on bone-
implanted marker systems. Gold standards based on patients are the most
difficult to establish. They may be based on target features, fiducial marker
systems, visual inspection, or other methods.
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6.3.1.1 Computer Simulations

 

Computer simulations are image pairs generated by computer. While it is
possible to model the anatomy and imaging process to produce both images
to be registered, computer simulations are typically produced by modifying
one acquired image to produce a second simulated image that has been
modified by a known geometrical transformation. The second image may be
of the same or different modality. Simulations have the primary advantage
that the transformation is known exactly, and the secondary advantage that
any transformation is readily available. They are especially apt for development
work, but they lack the realism arising from the sometimes subtle anatomical
changes that accompany respiration, the cardiac cycle, and involuntary or vol-
untary motion during image acquisition. Such motion can cause warping in
CT, in which slices are acquired serially, and blurring and other reconstruc-
tion artifacts in MRI, PET, or SPECT, in which information is gathered from
multiple slices in parallel. Motion can cause other artifacts such as changes
in magnetic susceptibility patterns in MR or scatter patterns in the other
modalities, each of which is difficult to predict and varies with patient posi-
tion and orientation. Validations based on simulations can, however, provide
an upper bound on success, which can be of great value when a registration
system is under development.

The simplest application of computer simulation is intramodality registra-
tion. If the second image is to be of the same modality as the first, the modi-
fication that produces it is purely one of geometrical transformation. Because
a transformed voxel position will rarely fall on an integral voxel position,
interpolation is necessary (see Chapter 3). If the resolution in the first image
is strongly nonisotropic, the simulated image interpolation artifacts may be
unacceptable in the generated image. For this reason, computer simulation
for registration validation is typically based on MR volume acquisitions,
whose resolution can be made virtually isotropic.

 

11–13 

 

For intermodality reg-
istration it is necessary to identify tissue types and generate new gray level
values (in addition to the new values resulting from interpolation) according
to the physical processes of the second imaging modality. Collins et al.

 

13

 

 have
produced one high-resolution image of the head segmented into four tissue
types and background expressly for this purpose.*

For intrapatient registration, it is most common to determine rigid-body
transformations which, as stated above, are appropriate in most cases for the
brain. In other intrapatient applications, nonrigid transformations may be
more appropriate than model changes in soft tissue due to natural motion,
resection, growth, atrophy, or other physical changes (see Chapters 13 and 15).
For interpatient registration the transformation is either affine or a nonrigid
transformation with additional degrees of freedom, and must model human
variation. Such transformations are discussed in Chapters 13 and 14. Simu-
lated images for validation in the nonrigid regime must be approached with

 

* This image and simulated images generated from it are available at http:/ / www.bic.mni.
mcgill.ca/brainweb/.
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great care. Simulation of intrapatient motion should be based on tissue
mechanics or growth models, and simulation of interpatient variation must
be anatomically sound. Models based on splines and other convenient math-
ematical formulations will tend to favor registration systems that employ
transformations with similar formulations, and therefore are highly suspect
as standards for nonrigid validation. The overriding problem is that, unless
constraints of some kind are placed on the motion, the number of parameters
necessary to specify the physical transformation of a continuous, nonrigid
object, or between two such objects, is large. In fact, absent such constraints, the
number is infinite. When the constraints of rigidity are inappropriate, then the
choice of constraints becomes the overriding issue in the registration.

 

6.3.1.2 Target Features

 

Rigorous attempts to use experimental statistics to predict clinical registra-
tion accuracy were first applied to the stereotactic frame.

 

14

 

 The frame, which
is rigidly attached to bone, usually the skull, is used to effect a registration
between the physical patient and an image of that patient, typically for guiding
biopsy needles or radiation beams to lesions within the head. In these applica-
tions the head is held motionless in the scanner and (optimally) in the same ori-
entation relative to gravity as during treatment. Furthermore, major resection
is not involved. Thus the relationship between skull and brain remains rigid.
The frame is in fact appropriate only for rigid anatomy because all positioning
is measured relative to the frame, a (removable) part of which is visible in the
image. The rigid combination of frame and anatomy makes the registration
problem much easier than the general one and potentially more accurate,
because registration cues can be taken from a device that is built expressly to
provide such cues.

Use of the frame for registration also makes the job of validating accuracy
easier and potentially more reliable. Because neither the anatomy nor the
pathology are involved in frame-based registration, its accuracy is largely
unaffected by them and can be determined by means of carefully controlled
experiments on phantoms. In 1992, Maciunas et al. carried out a large scale
experiment of this kind on several frames.

 

14

 

 They employed a phantom to
which, in addition to the frame, imageable markers were attached. These
markers served as 

 

target features,

 

 meaning that they played the role of the tar-
gets of therapy. By localizing a given target both in image space and physical
space, applying the transformation determined by the frame to the localized
point, and then measuring the disparity between the registered point and the
physical point, TRE can be estimated. It can thus be seen that the target fea-
ture is in effect a gold standard that provides a transformation at only one
point. Using this gold standard, the study found that a mean TRE of 2 mm
was possible.

Maurer et al. in 1997

 

15

 

 also used the target-feature approach to estimating
TRE for a registration system based on specially designed, skull-implanted
fiducial markers. The accuracy of any marker-based system can be expected
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to share some of the stereotactic frame’s independence of anatomy and
pathology. Maurer et al. demonstrated this independence by showing that
the differences between measurements of TRE on 100 patients and measure-
ments on a phantom were statistically insignificant.

 

15

 

 The target feature was
a marker identical in design to the fiducial marker and implanted in the skull,
but it was not used in the registration process. The mean measured TRE was
found to be 1.0 mm for registrations of CT (3 mm slices) to physical space,
and 1.4 mm for registrations between MR (3 mm slices) and either of these
modalities.

To achieve this accuracy, a considerable effort was expended both in the
design of the markers and the design of algorithms to localize them. The
resulting FLE for this system is about 0.3 to 0.4 mm in CT images with 3 mm
slices, in MR images with 1 to 5 mm slices, and in physical space.

 

15–17

 

 A simi-
lar study, also based on a skull-attached marker as target feature, has been
carried out for a similar skull marker system. The mean TRE for registrations
of CT (2 mm slices) to physical space was measured for 20 neurosurgical
patients and found to be 1.7 mm.

 

18

 

 The theoretical dependence of TRE on posi-
tion suggests that attachment to the skull in each of these studies should pro-
vide an upper bound on RMS (TRE) (see Chapter 3), but the possibility of brain
motion, which is not reflected in these measures, limits the reliability of these
systems for validation to nonsurgical applications and skull base surgery.

 

19, 20

 

Target features are also appropriate for validation in nonrigid registration for
both intrapatient and interpatient applications. Miga et al., for example, used
an array of implanted target markers in a porcine model,

 

21

 

 and Edwards et al.
used implanted electrodes

 

22

 

 to validate their respective models of brain
deformation during surgery. Naturally occurring features may be used as
targets for validation as well. Woods et al., for example, employed cortical
landmarks comprising prominent gyri and sulci to validate a method for inter-
subject registration of PET and MR images.

 

23

 

 Because these latter target features
are not point objects, their measure of error was the smallest distance between
voxels in the features. A similar method has been used in a cadaveric study to
validate rigid systems.

 

24

 

 It is difficult to translate such measures into TRE.

 

6.3.1.3 Fiducial Marker Systems

 

A fiducial marker system can provide an excellent gold standard for both
intramodality and intermodality rigid registration. The transformations
some of these systems produce can provide submillimetric accuracy, and
actual patient images can be used. The primary disadvantage is that high
accuracy comes at the price of high invasiveness. Thus, the availability of
such images may be rare, and the set of available transformations is typically
limited.

The stereotactic frame provides such a system and has been used, for exam-
ple, to validate retrospective algorithms for PET-to-MR

 

25,26

 

 and a point-based
system for neurosurgery based on skull-implanted markers.

 

18

 

 Point-based
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fiducial systems have the advantage over the frame in that they do not rely
on maintaining a prescribed shape among the fiducials. Thus, errors caused
by subtle bending of the 

 

N

 

-bars or head ring of a frame are not a problem for
fiducial systems. Fiducial systems are, however, like the frame, subject to
errors caused by relative motion of the marker and anatomy between image
acquisitions, or between image acquisition and physical localization. Such
problems may be severe for skin-attached markers. The use of large numbers
of skin markers enhances their accuracy only marginally because of corre-
lated FLEs as they ride together on moving skin. Bone-implanted fiducial
marker systems are far less prone to consistent motion and therefore gain the
advantage of the bootstrapping feature, explained above, in which accuracy
can be inferred without independent validation. Thus, point-based valida-
tion systems based on bone-implanted markers provide self validation as
well. This benefit derives from the known statistical relationships among
FLE, FRE, and TRE, as described above, which follow from the independence
of FLE among the markers. Thus, while FRE is untrustworthy as a direct mea-
sure of registration accuracy, it can be exploited as an indirect measure if the
theoretical chain is followed correctly from its experimental measurement via
the estimate of the distribution of FLE to the prediction of the distribution of TRE
(see Chapter 3). With this theory in hand, it is possible to provide statistical
error bounds on the estimate of accuracy provided by point-based validation.
The point-based standard is superior to the target-marker approach because
it provides a dense set of TRE estimates, one at every point in space, whereas
the target-feature approach provides an estimate at only the points occupied
by features. Thus, for rigid-body registration in 

 

M

 

 dimensions, if there are 

 

M

 

or more features available, it makes sense to use the point-based registration
approach. This approach also typically interpolates feature localization
errors by incorporating a single-least-squares fit for all of them.

 

6.3.1.4 Other Standards

 

Because a gold standard is simply a system whose accuracy is known to be
high, any registration system with a known error may in principle be used as
a gold standard. Wong et al., for example, used a mutual information method
as a gold standard for validating accuracy of the human visual system in the
detection of PET-to-MR misregistration.  The visual system has been used in
countless reports as a gold standard for evaluating automatic registration
methods.  It can play an important role during the development stages
of any automatic registration system as a means to assess its potential and
guide its refinements. It is also clearly applicable whenever the goal of the
system is to produce automatic registrations that are on par with those that
could be done manually. The purpose of the automatic registration in that
case is to substitute inexpensive computer time for expensive expert time.

Visual inspection for validation can perhaps serve best by providing qual-
ity assurance in clinical use as a safeguard against harmful errors for a given
patient. Because visual inspection has the last word on accuracy when used

27

23,28–33
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in quality control, it may appear that automatic registration followed by
visual inspection is no better than direct, interactive registration. A useful
advantage, however, in this division of duties is that the human visual system
appears to be good at recognizing a very bad registration, but not so good at
finding a very good one.

 

34

 

 Many registration systems rely on optimization pro-
cedures that will perform properly for the large majority of patients but will
occasionally fall into a nonglobal optimum that produces a bad result. The
distribution of this latter mode is typically far wider than that of the properly
working system, thus greatly increasing the overall variance in TRE. Visual
inspection can detect very bad registrations, effectively truncating the distri-
bution at some detection level. By catching these large outliers, visual inspec-
tion can return a system nearly to its correctly working state. As a result of
efforts to quantify the accuracy of visual inspection as a means of failure detec-
tion in intermodality registration, it appears that when suitable interactive
image viewing software is available, the human visual system can be relied on
to detect a TRE greater than 4 mm for MR-to-PET

 

27,35

 

 and 2 mm for MR-to-
CT.

 

34

 

 Thus, for automatic systems that tend to remain below these levels
when working properly, the benefit of visual inspection should be well worth
the effort.

 

6.3.2 Registration Circuits

A simple consistency measure has recently been proposed when at least three
images of the same modality, A, B, and C, are to be registered.36–38 By indepen-
dently registering A to B, B to C, and C to A in what might be called a regis-
tration “circuit,” it is possible to follow a target point from A to B to C, and
back to A. If the TREs for the three registration processes are uncorrelated,
then the RMS (TRE) for a single registration will be equal to RMS (TRE) / 
for the circuit. For an n-image circuit the ratio is . Here, in analogy to Equa-
tion 6.3, the relationship between the circuit error and the error for a single
registration provides a bridge between consistency (circuit TRE) and accu-
racy (single-registration TRE) when registration errors are uncorrelated. This
approach has been proposed for serial MR registration problems, where it may
be important to measure TRE values as small as 0.2 mm38 or even 0.05 mm.12

The circuit may be the only approach available for such applications in view
of the difficulty of producing a gold standard with this extreme accuracy. The
same approach can be used for intermodality registration if two images of
each modality are available. One needs only to arrange the images so that
modalities alternate around the circuit.

While this approach is reasonable when no gold standard is available, a
potentially serious weakness lies in its assumption that the errors between
registrations are uncorrelated. The assumption will inevitably be violated
because of the fact that successive registrations, A to B and B to C, say,
share a common image. Noise or imaging artifacts in B will tend to cause B
to be shifted in the same direction relative to A in the A-B registration as it is

3
n
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relative to C in the B-C registration. These two displacements, while they con-
tribute to each of the two single-registration TREs, will tend to cancel in the
circuit, erroneously reducing their contribution to the TRE of the circuit.
Thus, dividing the TRE of the circuit by  can be expected to underestimate
TRE for a single registration. To compute RMS values, many sets of n reg-
istrations would need to be made, but these correlated errors will not be
reduced in the mean. The problem does not occur for the point-based, rigid-
body problem when data are gathered for Equation 6.3 because no image
contributes to more than one registration.

6.4 Accounting for Error in the Standard

Comparison with a standard introduces the error of the standard into the
validation. The target feature, for example, even when it is based on a marker
designed to be accurately localizable, will not provide a perfect estimate of
TRE. The effect of its localization error can be seen in Figure 6.3. Here the
white and gray circles with dashed borders represent positions in space two.
T(p) is the transformed position arising from p in space one. The black circle
with solid border represents the erroneously localized position q � TLEq in
space two as determined by the localization process, and the white circle
with solid border represents the transformed position in space two of the

FIGURE 6.3
Schematic of registration error measurement based on a target feature. Because of target
localization error (TLE), the measured target registration error (TREm) differs from the true
target registration error (TRE). p and q represent the true positions of the marker in the two
spaces; T is the registering transformation.

n
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erroneously localized position in space one. For rigid-body transformations,
this latter transformed position is T(p) � T(TLEp).

The true TRE will, in general, be different from the measured value, TREm,
because of the error in localization, which we will call target localization error
(TLE) in analogy with fiducial localization error. In a given measurement,
either TRE or TREm may be larger in magnitude, but we should expect the
true error TRE to be smaller in the RMS sense than the measured error TREm.
This expectation is based on the assumption that the localizations of the target
are uncorrelated with the registration error, a reasonable assumption because
the target feature is not used in the registration process. If we make the further
common assumption that there is no bias in the errors (i.e., the mean of each
Cartesian component is zero), then the RMS errors are related in this simple
way,

(6.4)

If the target localization error can be estimated, then Equation 6.4 should be
used in estimating RMS (TRE); otherwise RMS (TREm) serves as an upper bound.

A similar situation holds when TRE is determined by comparison with
another registration system used as a gold standard. Since the errors of the
two systems are likely to be uncorrelated, the relationship between actual
TRE and the measured value TREm is similar,

(6.5)

where TREg is the target registration error for the gold standard.

6.5 Independent Validation

System developers have used point-based methods to validate their own reg-
istration systems,30,39 but there has been only one large-scale effort to carry
out independent validations of many methods. An international effort to val-
idate retrospective registrations of the head by using a set of patient images
with a point-based method as a gold standard was undertaken in 1995 by 12
institutions in the U.S., Belgium, England, France, and The Netherlands.  In
this project, coordinated by researchers in the U.S. at Vanderbilt University, a
set of CT, MR, and PET images of patients was acquired at Vanderbilt and made
available via the Internet to researchers at the other institutions. The patients
were part of a separate, independent study in which skull-implanted mark-
ers were being used for image-guided surgery—the same markers as those
used in the marker-based validation documented by Maurer et al.15 A subset

RMS TRE( ) RMS TREm( )2 RMS TLEp( )2
� RMS TLEq( )2

� .�

RMS TRE( ) RMS TREm( )2 RMS TREg( )� ,�
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of the patients was also outfitted with stereotactic frames. All traces of the
markers and the frame N-bar were erased from the images before their post-
ing on the Internet, and the experimental situation was carefully documented
with regard to image acquisition. The anatomy included an approximately
consistent region of the heads of tumor patients. The frame, when present,
was used as a calibration device to correct for scaling errors in MR and, for
some patients, corrections were made for distortion arising from static field
inhomogeneity.41 Retrospective systems were then applied to the images by
researchers at the institutions outside Vanderbilt and the resulting transfor-
mations were communicated, again via the Internet, back to Vanderbilt for
comparison with the gold standard transformations, which were sequestered
throughout the evaluations.

Erasure of the markers and sequestering of the standard transformations
blinds the user of the retrospective method to the correct transformations.
This feature is an important aspect of the study. It produces an assessment
more likely to predict clinical performance, because the system assessed can-
not be given inadvertent “hints” by the operator based on known answers.
The results of the study revealed that a median TRE below one millimeter is
possible for MR-to-CT rigid registration of head images, and a median of 3 mm
is possible for MR-to-PET. The study also showed that large errors sometimes
occur without warning, suggesting that some standard of quality assurance,
such as visual inspection, should be employed in clinical use.

These are important results, but they must be applied with care because of lim-
itations in the data set. The images came from a limited patient population
(patients with tumors that were about to be surgically resected) and include only
a limited variety of image acquisition protocols and scanners. Nevertheless, the
study has been of value in establishing with some certainty a benchmark for ret-
rospective registration accuracy, and the data set has been, and continues to be,
of value as a tool for developers. The evaluation service has been in continual use
since the original posting of the data set on the Internet in early 1996, both to sup-
port the work of developers42 and to provide a means of independent validation
in published accounts of new methods.43–46* New patient data sets including
other regions of the anatomy, with new and better gold standards, would doubt-
less be welcomed by the image registration community.

6.6 Conclusions

Validation is an essential part of the registration process. It infers agreement
on the goal of registration, which we have taken to be the alignment of points
in one view of an object with corresponding points in a second view of an
object. The objects in these views are typically the same, usually a patient or

* Available at http://cswww.vuse.vanderbilt.edu/~image/registration/.
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some part of a patient’s anatomy. We have focused on three-dimensional
views and adopted a generalized notion of a “view” which includes not only
images acquired with imaging systems (for example, CT, MR, PET, or SPECT),
but also the physical view of the anatomy (for example, the view during sur-
gery). This notion of views accommodates both intramodality and intermo-
dality registration, and intrapatient and interpatient registration as well. We
define several measures of error including target registration error, or TRE,
which is the disparity in the positions of two corresponding points after reg-
istration. Regardless of the views, our definition of registration leads to a rec-
ommendation of TRE as the quantity of choice to be reported in the validation
process.

TRE can be expected to vary with the registration situation, which comprises
the imaging modalities, anatomy, and pathology. Also, for a given registra-
tion situation TRE can be expected to vary with position within a view.
Experimental validation of a registration system should thus be extended to
a clinical situation only to the extent that the clinical situation matches the
experimental one. The degree of the required match will vary with the regis-
tration system, but the same modality pair should always be used.

The most commonly accepted strategy for validation is to compare the sys-
tem to be validated against a gold standard, which we define as any system
whose accuracy is known to be high. Gold standards may be based on com-
puter simulations (typically by acquiring one image and generating a second
with a known geometrical transformation, phantom images), cadavers, or
patient images. Computer simulations provide arbitrarily accurate geometrical
transformations but, like phantoms, are less realistic than cadaver or patient
images. Simulations should also be approached with great care in nonrigid
validations because of the bias of such validations in favor of registration
methods that employ similar nonrigid transformations, whether or not they
are physically meaningful. Validations based on pairs of acquired patient
images represent the most desirable class of standards because of the inclu-
sion of all the physical effects of the patient on image acquisition, but suffer
from the difficulty of establishing the true transformation between acquired
(as opposed to simulated) images.

The simplest method for establishing the transformation between acquired
images, effective both for phantoms and patients, is based on the target fea-
ture, which is any object that can be localized independently in each view. The
root-mean-square (RMS) disparity in the two localizations of the target fea-
ture after registration provides an upper bound on the RMS of TRE at the
location of the feature. A more desirable method for rigid-body registration
is based on a registration system that employs several fiducial features as reg-
istration cues. The major advantage of this type of system as a validation
standard is that its accuracy can be determined without reference to other
standards. This is accomplished by exploiting theoretically established statis-
tical relationships among fiducial localization error (FLE), fiducial registration
error (FRE), and TRE to translate self-consistency into accuracy. FRE plays an
important role in this translation, but is a poor measure of registration error.

0064_frame_C06.fm  Page 135  Wednesday, May 16, 2001  10:19 AM



136 Medical Image Registration

Visual assessment has often been used as a standard and has recently been
subjected to validation. A self-consistency method is considered based on the
registration circuit, in which a set of three or more images are registered in
pairs. One major effort at validation is described. It involves intrapatient,
intermodality, rigid-body registration of the head for CT, MR, and PET images
and is based on a gold standard that employs bone-implanted fiducial markers.

Most validation efforts have been concentrated primarily in rigid registra-
tion. While not all the problems in this field are solved, progress has been
substantial, and considerably more is known about rigid registration than
nonrigid registration. Improved validation for rigid systems is still of vital
importance, but the greatest challenges in assessing the success of registra-
tion systems will lie in the nonrigid regime.

Improving registration accuracy is an important goal, but without a means
of validation no registration method can be accepted as a clinical tool. It is
hoped that this discussion of accuracy assessment will lead others to work to
improve available methods and to find new methods for assessing accuracy.
Such methods will accelerate progress towards improved registration sys-
tems and will make existing methods accessible to physicians and surgeons
and, ultimately, to their patients.
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7.1 Introduction 

 

Various methods of aligning MR images with images from other medical imag-
ing modalities or other MR images have been described in previous chapters.
Clinical applications of registration of MR images to other MR images are cur-
rently almost exclusively directed at detecting change in the brain and allied
structures. Even with this restriction, relatively few examples in which clinical
applications dominate over technical or methodological issues can be found. In
this chapter, we will discuss our experience in applying image registration meth-
ods to clinical problems. With the increasing availability of MR scanners, more
and more patients have repeat examinations, and radiologists are frequently
asked to report on changes that reflect the subject’s progression or regression
and may require a change in existing treatment or the start of new treatment. We
have employed a rigid-body registration technique to monitor change in the
brain in individual subjects who underwent serial MRI examinations. This
approach allows disease progression and response to treatment to be monitored
with great sensitivity. It fits naturally with the noninvasive nature of MRI. 

A feature of serial studies of individual subjects is that the images obtained at
each examination are likely to show the same anatomic regions with the same
or similar contrast properties. This makes the problem of determining the trans-
formation (

 

T

 

; see Chapter 3) that maps one image to the next in the series much
easier to solve. However, similarity of images and the requirement to detect
change with maximum sensitivity means that the spatial match can and must
be to subvoxel precision, and the voxel intensity values in the final registered
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images must have minimal interpolation errors. A closely related topic is image
registration as applied to fMRI (see Chapter 8), in which a sequence of similar
images is generally acquired at intervals of a few seconds, and changes in sub-
ject position with time are corrected by retrospective image alignment. In clini-
cal applications, a wider range of sequence types may be required and images
may be acquired weeks or months apart, rather than seconds or minutes.

The similarity of the images and the requirement of subvoxel precision
favors registration algorithms based on voxel similarity measures rather
than landmark or fiducial systems. Virtually all currently available registra-
tion algorithms using voxel similarity measures have been successfully
applied to single subject serial studies (see Chapter 3 for technical details).
Methods by Woods

 

1

 

 and Friston

 

2

 

 have found wide application in fMRI.
Those by Hajnal,

 

3

 

 Lemieux,

 

4

 

 Freeborough and Fox,

 

5

 

 and Studholme et al.

 

6

 

have also been used for more medically oriented studies.
A critical issue in serial MRI studies is the threshold for detection of

change, which is the level of change that must occur for it to be detected
against background noise and artifacts. In our experience, artifacts are usually
the limiting factor in MRI. In addition to the full range of MRI acquisition
artifacts, artifacts associated directly with the registration process are impor-
tant. To control the latter it is necessary to match the data processing involved
with registration to the properties of the original MRI data and vice versa.
Serial MRI studies typically employ either (a) three-dimensional (3D) data
sets or (b) two-dimensional (2D) multislice data sets. Since the subjects
occupy three spatial dimensions, the data and registration algorithms must
also reflect this. Data requirements for 3D coverage have been discussed in
Chapter 4. While the necessary conditions are satisfied for true 3D se-
quences, this is frequently not achieved with 2D slice methods.

 

7

 

 
Comparing precisely registered images acquired at different times is

greatly facilitated by generating subtraction images derived from position-
ally registered scans. On these images, signals from unchanged structures
cancel out, producing a neutral background against which real differences
can be identified more clearly. These registered subtraction images require
a different approach to interpretation than conventional images.

 

3,8–10

 

 This
chapter describes a formalism for analyzing them and shows examples of the
application of image registration and subtraction, as well as how quantifica-
tion can be applied to various problems.

 

7.2 Methods

 

Three-dimensional images were acquired with true 3D radiofrequency (RF)
spoiled T1-weighted pulse sequences on a 1.0T Marconi HPQ plus scanner
(Marconi Medical Systems, Cleveland, Ohio). For whole head studies, a non-
selective RF excitation pulse was employed (TR 21 msec, TE 6 msec, flip angle
35

 

�

 

) and images were acquired in the sagittal plane with frequency-encoding
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direction head to foot to avoid aliasing. Data matrices of 152 

 

�

 

 256 

 

�

 

 114 with
two NEX or 192 

 

�

 

 256 

 

�

 

 140 and one NEX were acquired in a volume of 25 

 

�

 

 25

 

�

 

 18 cm to produce nominally isotropic phase-encoded resolution of 1.6 mm

 

3

 

 or
1.3 mm

 

3

 

, respectively.
Two-dimensional multislice images were acquired with a Gaussian slice

profile at a TR of 6140 msec and a TE of 80 msec for 64 slices. Slice thickness
(full width at half maximum) was 4.4 mm with a 50% overlap, yielding a slice
separation of 2.2 mm. A 25 cm field of view with a 125 

 

�

 

 125 matrix was used
to provide approximately isotropic sampling.

 

8,11,12

 

Registration proceeded in the order segmentation, translation, rotation
and interpolation, chi-squared test, and reformatting (STRICTER). The stages
are illustrated in Figure 7.1.

This procedure produces an optimal global match for brain tissues. The
inclusion of a segmentation step, by which the skull and all extracranial tis-
sues are excluded from the process of determining the spatial transformation
from one image to another (the transformation T in Chapter 3), ensures that
the correct global transformation for the brain is found. This is a precautionary
measure ensureing that extraneous tissue changes, which can be substantial
with some disease processes or over long periods of time, do not influence the

 

FIGURE 7.1

 

Implementation of registration (STRICTER). The first image obtained is shown on the left
and is shaded black (a). The second image (shaded gray) is obtained at a different position
in the same coordinate system (c). Segmentation (S) removes the skull and scalp from the
first image (a) to give (b). Translation (T) Rotation (R) and sinc Interpolation (I) of voxel
values are used to produce image (d) which is matched with the segmented version of the
first images (b). A Chi-squared (C) Test (TE) is used to asses the accuracy of this match.
Following this first attempt as a match, more accurate values for the translation and rotation
are chosen in order to reduce the value of 

 

�

 

2

 

 and the process is repeated. When the optimal
match has been found in this way the second image is Reformatted (R) into the same position
as the first image. The original, unsegmented first image (a) can now be compared with the
reformatted second image (e) which is precisely aligned.

(a) (b) (c) (d) (e)

S T,R,l

C-TE
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registration process. Thus the brain is precisely aligned, irrespective of other
changes. Provided the rigid-body approximation is valid, accuracy of the spatial
match for an unchanged brain determined using a voxel similarity measure is
limited by the signal-to-noise ratio (SNR) of the images. For the sum of squared
differences (Chapter 3), labeled Chi squared, this is conceptually straightfor-
ward and easily demonstrated

 

3

 

 (see also Chapter 6). Typical matching accura-
cies of less than 0.01 mm in each axis and less than 0.01 of a degree in each
rotation angle were routinely achieved and validated with phantoms. 

If the brain has changed, the definition of a position of spatial match
becomes less certain. The concept of a null hypothesis is adopted to deal with
this situation. In this case our null hypothesis is that the brain is an unchanged
rigid body that has simply been imaged in slightly different poses. Under these
conditions, after image registration, voxel intensity values in regions of the
images that represent brain must differ only by noise (see Figures 4.2 and 4.4
in Chapter 4). This can be achieved to any desired degree of precision, pro-
vided the properties of the data and the data processing are appropriately
matched.

 

3

 

 Neglecting image artifacts for a moment, residual voxel intensity
differences can now be unambiguously viewed as evidence of brain change
(in shape, size, signal intensity, etc). The registration process used minimizes
these differences in a least-squares sense. The pattern of changes detected
after image registration is an unbiased measure of brain change as referenced
to the null hypothesis.

To visualize the pattern of change, difference images were produced by
subtracting baseline images from registered follow-up images or by subtract-
ing an earlier registered follow-up image set from a later one. Although the
registered images and difference images were acquired in the sagittal planes,
reformatting images into the transverse and coronal planes, or any plane
when required was possible.

The process of reformatting the images to achieve the fully registered data
from which subtraction images are formed requires image interpolation (see
Chapter 3). In order to ensure that, after realignment, voxel intensities in the
reformatted images were what they would have been if the scan had been
acquired in the final position, sinc interpolation was employed.

 

3

 

 This allowed
the null hypothesis condition, in which voxels in regions of unchanged brain
subtract to leave only noise, to be achieved.

An example of two 3D T1-weighted images acquired a month apart and the
subtraction image derived from them is shown in Figure 7.2.

 

7.3 Image Interpretation—General

 

The information provided by subvoxel registration was utilized at three
different levels. First, accurate alignment of images alone made detection
of differences easier, since change in precisely corresponding anatomical
areas could be properly attributed to genuine differences in the tissues or
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fluids being studied. Second, it was possible to use the precisely registered
images to produce subtraction images for direct visualization of change,
and, third, precise registration provided a basis for accurate serial measure-
ments either directly from the images or through the use of computerized
algorithms.

The overall approach was to examine baseline, registered follow-up, and
subtraction images simultaneously. Collateral information was obtained
from regions apart from those of immediate interest, including tissues
other than the brain. This provided a means of recognizing artifacts and
checking the fidelity of the registration. On each image, validation of the
registration process was assessed by examining regions where there were
boundaries between tissues that produced steep changes in signal inten-
sity and checking that these were reduced to the noise level of the differ-
ence image. The large amount of data acquired and the ability to review
the images in different planes ensured that this could be performed at
many different locations.

Interpretation of accurately aligned baseline and follow-up images follows
established principles. In this study, the sequences used were mainly sensi-
tive to tissue mobile proton density, T1 and T2. Disease processes which
increased mobile proton density T1 and T2 included inflammation, demyeli-
nation, edema, and most tumors. Diseases that tend to decrease proton den-
sity T1 and T2 included late scar formation, calcification, and subacute
hemorrhage. The effect that these changes produce on image signal intensity
can be determined using simple models.

 

13–15

 

FIGURE 7.2

 

Astrocytoma grade III: Registered contrast-enhanced T1-weighted RF spoiled images
before (a) and four weeks after (b) treatment with Temozolamide. The difference image
[(b) 

 

�

 

 (a)] is shown (c). The white line around the right lateral ventricle (large arrow) is
largely due to an interplateau shift (c) of the ventricles towards the midline. There are
also increases in signal intensity in (c) due to increased contrast enhancement (arrowed).
Border zone shifts are also seen in the right hemisphere where the tumor is present (small
arrows) (c).
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7.4 Interpretation and Registered Subtraction Images

 

Interpretation of precisely registered difference images involves additional
considerations. Once residual changes due to artifacts and misregistration of
deformed or displaced extracerebral tissues have been discounted, changes
on the difference images can be attributed to (a) change in the intrinsic signal
intensity of one or more tissues or fluids; (b) change in site, shape, or size of one
or more tissues or fluids; or (c) a combination of (a) and (b). These changes can
generate either positive or negative signals on difference images. In order to
understand the type of change present and to locate the anatomical context
in which the change has occurred, one must refer to the source image from
which the difference image has been generated.

 

7.4.1  Interpretation of Pure Changes in Signal Intensity 

 

When changes in signal intensity of a tissue or tissues occur, individual or
groups of voxels will have different intensity values, which can be detected
provided the change dominates over the level of artifact and noise in the
images. The detection of changes in signal intensity is usually simpler on dif-
ference images than on source images because signals from unchanged tis-
sues and fluids are reduced to a common background level (shown
schematically in Figure 7.3). This can be particularly useful for detecting

 

FIGURE 7.3

 

Profiles of the signal intensities of tissue and

 

�

 

or fluid with distance demonstrates the effect of
a local change in signal intensity on the difference image. The follow-up scan (b) shows a
small change in one region. The difference in this region is more clearly shown by subtracting
(a) from (b) to give (c). This shows the local increase in signal intensity.

signal
intensity

distance

(a)    baseline

(b)    follow up

(c)    difference
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changes in regions where the anatomy is complex and where there are vari-
able partial volume effects (such as in boundary regions). Difference images
are also useful for recognizing signal changes in tissues with intensities at the
extremities of the image intensity range. Whereas on source images these are
at the top or bottom of the gray scale, on difference images they are referred
to the neutral (zero change) level. Global changes in signal intensity may only
become obvious on difference images where the brain has a nonzero signal in
relation to the noise on the image outside the scalp.

Image registration can be useful in ensuring that pre- and postcontrast
images are precisely matched. In most circumstances it is unlikely that any
structure in the brain will significantly change in site, shape, or size in the
time between the pre- and postscans, so differences on registered images are
almost always due to pure changes in signal intensity (Figure 7.4).

Normal enhancement occurs in tissues such as the meninges or cortical veins.
These areas are subject to considerable partial volume effect from adjacent tis-
sues, such as brain and CSF, producing variable baseline intensity values. By
performing accurate registration it is possible to ensure the same set of partial
volume effects on pre- and postcontrast images. As a result, more uniform
enhancement of meninges, cortical veins, and ependyma is seen on difference
images than on conventional images. It is possible to perform double subtrac-
tions (i.e., the difference between the contrast enhancement with time from
one examination to the next).

On T1-weighted images, the facts that the contrast agent normally only gives
positive enhancement and that there should be no change in brain site, shape,
or size, provide an additional check on the fidelity of the registration proce-
dure. Under these circumstances, immediate post- minus pre-enhancement
difference images should only show positive changes, whereas a misregistra-
tion artifact typically shows both positive and negative effects. In some cases
we have found that the image differences introduced by the contrast agent

 

FIGURE 7.4

 

Contrast enhancement: Normal volunteer aged 63 years. Registered T1-weighted RF spoiled
images before (a) and after (b) intravenous gadolinium DTPA with difference image [(b) 

 

�

 

(a)] shown in (c). Enhancement is seen in the meninges (arrows), vascular layer of the scalp,
skin, veins, sinuses, and nasal mucosa in (c).
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appear to be partially offset by a very slight positional mismatch when 

 

�

 

2

 

 is
minimized. This results in weak negative signals that tend to follow high con-
trast boundaries. This can be avoided by modifying the definition of 

 

�

 

2

 

 to
include only those voxels for which the postcontrast scan has lower intensity
than the precontrast scan. This ensures that the pattern of enhancement does
not influence the spatial match. Algorithms that employ mutual information
as a voxel similarity measure are also likely to achieve correct alignment
when there is signal change due to contrast enhancement.

 

7.4.2 Interpretation of Pure Changes in Site, Shape, or Size

 

Changes in site, shape, or size are manifest as a local shift in position of at
least some part of the brain and its surrounding tissues or fluids. The size and
distribution of these local shifts provide information about the nature of the
overall change (i.e., whether it has been one of site, shape, size, or a combina-
tion of these).

 

7.4.2.1 Model for Analyzing Shifts

 

The effects of shifts can be analyzed using a simple model of two tissues
(and

 

�

 

or fluids), one with a higher plateau of signal intensity, the other with a
lower plateau, and a border zone (region of partial volume effects) between
them (Figure 7.5a). (Although Figure 7.5a is shown in one spatial dimension,
the model is used in three dimensions). At the ventricular margin with a typical
T1-weighted pulse sequence, white matter or central gray matter forms a
higher plateau, and CSF a lower one. Likewise, within the brain, white matter
forms a higher plateau and gray matter a lower one. With a heavily T2-
weighted pulse sequence, the central white matter has a low signal intensity
(lower signal plateau) and the CSF has a high signal intensity (higher signal
plateau). The principles outlined later are the same, but because of the rever-
sal in sign of the gray and white matter and CSF, the polarity of changes for
the same shift is reversed.

It is sometimes useful to regard the cortex as part of a composite (or double)
border zone between central white matter and CSF. Shifts can be thought of
as larger, in which one plateau crosses the border zone so that it overlays the
other plateau, and smaller, in which the displacement is less than the width
of the border zone.

Larger (interplateau) shifts produce a high and constant (full scale) central
signal change on difference images (Figures 7.5b, 7.5c). The full scale signal
change on the difference image is locally monophasic. It is positive when the
high signal plateau has shifted into the region of the low signal plateau (e.g.,
Figure 7.2, lateral margin of right lateral ventricle), and vice versa. The inter-
mediate regions on either side of the full scale change correspond to the two
border zones on the source images. The origin of interplateau shifts is usually
clear from the source images. The size of the shift in the direction of the
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maximum signal intensity gradient is equal to the width of the full scale
region plus a fraction of the width of the border zone region (see later).

Smaller shifts (where higher and lower plateaus do not overlap) primarily
involve border zones. On difference images they produce smaller changes
in signal intensity than the full scale changes seen with interplateau shifts
(Figures 7.5d, 7.5e and Figure 7.2, right hemisphere). The precise effect
depends on the size and direction of the local signal intensity gradient and
the shift. 

 

7.4.2.2 Effect of Signal Intensity Gradient Size

 

In the limit of a vertical slope (idealized maximum signal intensity gradient)
there is a step function change in signal intensity on the difference image
over the width of the shift. (It is really an interplateau shift; see Figure 7.6.)
With smaller signal intensity gradients (less than vertical slopes) the same
shift results in a rise that is more gradual and to a lower height, but over a
wider area. The area under the difference curve is the same in each case (i.e., the

 

FIGURE 7.5

 

Plateaus and border zones showing interplateau and border zone shifts. A tissue or fluid
with a higher signal intensity in shown in plateau 1 and one with a lower signal intensity
is shown in plateau 2 (a). This is appropriate for central white matter (plateau 1) and CSF
(plateau 2) using a T1-weighted pulse sequence. There is a border zone (region of partial
volume effects) between them, in which signal intensity changes with distance. A larger,
interplateau shift of the image is shown in (b) and subtraction of (a) from (b) is shown in
the difference profile (c). This has a central full scale change (plateau 1 minus plateau 2)
with two intermediate zones on either side. A smaller border zone shift, which is less than
the border zone in width is shown in (d). This results in a difference profile (e) which is
smaller than (c) in both amplitude and width.

(a)  baseline

plateau 1

plateau 2

border zone

(b)  follow up
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area of a parallelogram, base 

 

�

 

 height). The steep gradient produces the
highest contrast to noise value; eventually as the slope decreases, the change
on the difference image becomes so slight that it merges into the noise of the
image and is not detectable.

 

7.4.2.3 Effects of Signal Intensity Gradient Direction

 

At the junction between the higher signal tissue plateau (e.g., white matter)
and the border zone, it is possible to draw an iso-intensity contour (a line of
constant signal intensity and hence zero signal intensity gradient). The local
direction of maximum signal intensity gradient is perpendicular to this
(Figure 7.7). The same applies to the junction between the border zone and the
lower signal intensity plateau. The size of the gradient generally decreases as
the width of the border zone increases, since the two plateaus have a constant
signal intensity difference. An iso-intensity contour divides the image into vox-
els of higher signal intensity on one side and lower signal intensity on the other.
It is convenient to indicate the signal intensity gradient direction with an arrow
showing the direction of 

 

decreasing

 

 signal intensity across a contour because
then, if the shift has a component parallel to the direction shown, there will be
an 

 

increase

 

 in signal on the difference image. If the shift has a parallel compo-
nent, but in the opposite direction, there will be a decrease in signal on the dif-
ference image. A high signal intensity gradient inplane generally corresponds
to a low signal intensity gradient throughplane and vice versa. 

 

FIGURE 7.6

 

Profiles of two plateaus and a border zone showing the effect of change in signal intensity
gradient size for a constant border zone shift. Initial image profile (a), shifted image profile
(b), overlay (c) of (b) on (a), and subtraction of (a) from (b) is shown in (d) for vertical signal
change (infinite slope) [i] and decreasing slopes [ii], [iii], and [iv]. As the slope is decreased,
the width of the difference profile is increased and the height decreases after image [ii]. This
makes the change less easy to detect against background noise (not shown). The area under
the curves (d) is the same in each case for the constant shift which is illustrated.

(a) baseline

(b) follow up

(c) overlay

(d) difference

[i] [ii] [iii] [iv]
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7.4.2.4 Effects of Size of Shift 

 

As shown in Figure 7.8 the initial effect of a shift is to show a small change on
the difference image (i.e., a border zone shift). If the shift is increased, a peak
is reached when one plateau just crosses the boundary zone to reach the other
plateau. This peak is maintained in intensity and widens as the shift is
increased further (i.e., an interplateau shift). The area under the curve on the
difference image increases in direct proportion to the size of the shift (i.e.,
area of a parallelogram) and is independent of the magnitude of the signal
intensity gradient. Using the plateau model, the size of the component of a
shift parallel to the local gradient direction will be the width shown on the
difference image multiplied by the mean difference signal as a fraction of the
full scale signal intensity.

 

7.4.2.5 Effects of Shift Direction 

 

Shifts are usually both inplane and throughplane, but may be thought of as
predominantly one or the other. With inplane shifts it is possible to visualize
on the same image the tissue or fluid which has shifted (or will shift; e.g.,
Figure 7.2), whereas with throughplane shifts the tissue or fluid moving into
the slice comes from adjacent slices. In order to visualize plateaus and border
zones in three dimensions it is therefore necessary to consider adjacent slices
(which are one voxel apart with 3D acquisitions).

 

FIGURE 7.7

 

Plan (a) and profiles (b) of two plateaus and a border zone showing signal intensity
gradients in different directions. The profiles (PP, QQ, and RR) show the signal intensity
changes in passing from one plateau across the border zone to the other plateau. The
contour (CC) marks the edge of the high signal plateau. At each point on CC the
maximum signal intensity gradient is perpendicular to the contour. The direction of
the gradient defined as being from high to lower signal intensity is indicated by the
arrows. An estimate of the slope of the signal intensity gradient through PP, QQ, and
RR can be obtained by noting that the slope is inversely related to the distance between
the two plateaus.
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The effect of inplane shifts is shown in Figure 7.9. There is an increase in
signal intensity on the side to which the high signal tissue or fluid has shifted
on the difference image. The difference is maximal at the point of the maxi-
mum signal intensity gradient in the direction of the shift. When the displace-
ment is perpendicular to the local intensity gradient, no signal intensity
change is seen. This effect is seen in the right lateral ventricle in Figure 7.2c,
where a positive change is seen at the lateral margin and a negative change
at the medial margin. 

The effect of rotation is to produce differential shifts. These produce
changes on the difference images where there is a radial edge, since this has
a circumferential intensity gradient component that is parallel to the local
shift direction. The displacement increases with radial distance from the cen-
ter of rotation.

The mechanism for signal change produced by throughplane shifts is the
same as for inplane shifts, i.e., changes are produced on difference images
whenever the shift has a component parallel to the local signal intensity gra-
dient. However, the visual appearance of difference signals produced by
throughplane shifts is more heterogeneous than that produced by inplane
shifts (Figure 7.10).

The practical effects of both inplane and throughplane shifts for a transverse
and a coronal slice taken from the same 3D data set are shown in Figures 7.11
and 7.12. The images were produced by shifting the volume data by a single
voxel (approximately 0.97 mm) in each of the principal matrix directions in
turn and then subtracting the original images from the displaced images.

 

FIGURE 7.8

 

Effect of shift size. Baseline image profiles (a), successively displaced image profiles (b),
overlays (c) of (b) on (a), and differences (d) for increasing shifts [i]-[iv]. As the shift is increased,
the height of the difference increases to a maximum and the width of this maximum then
increases. The area under the difference curve is directly proportional to the shift difference.

[i] [ii] [iii] [iv]
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Figure 7.11a shows a transverse slice taken from the volume set, and Figure 7.11b
shows the adjacent slice. The difference images in Figures 7.11c–7.11e show
the effect of left-right, postero-anterior, and head-foot shifts, respectively, of
just one voxel. The inplane shifts in Figures 7.11c and 7.11d produce predict-
able results in which edges (border zones) in Figure 7.11a are accentuated
as high or low signal according to the pattern of the local signal intensity
gradients. 

The result of the throughplane displacement (Figure 7.11e) is more com-
plex. The origin of individual regions of positive or negative signal difference
can be determined by careful comparison of Figures 7.11a and 7.11b, since
Figure 7.11e is simply Figure 7.11b minus Figure 7.11a. However, while some reg-
ions contain curvilinear changes of the same type seen with inplane shifts, in
many areas the overall effect does not correspond overtly to the anatomic
structures visible in Figure 7.11a or 7.11b. This is because the regions on the

 

FIGURE 7.9

 

Effect of the shift direction (inplane). Profiles (left) and plans (right) of an object are shown
in the initial position (a) with shift to the right (b) and on the corresponding difference image
(c). Difference image profiles along the lines AA and plans are shown for an upward inplane
displacement (d) and counter-clockwise rotation (e). The changes in signal on the difference
images can be directly related to the signal intensity gradients and shifts. A shift that is
perpendicular to the local signal intensity gradient produces no change on the difference
image (e.g., c, arrow).
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difference image where the largest signal intensity changes occur are those
with the maximum 

 

throughplane

 

 signal intensity gradient. These are just the
places which tend to have the smallest 

 

inplane

 

 signal intensity gradients
because they arise where tissue boundaries are parallel or nearly parallel to
the slice plane (cf. Figure 7.10[iii]). Small inplane gradients imply a relatively
uniform appearance in the source image with little hint of the throughplane
differences.

A similar effect is seen in Figure 7.12, but this time it is the postero-anterior
shift (Figure 7.12d) which produces throughplane differences from the slice
in Figure 7.12a to that in Figure 7.12b. Note that simply by reformatting to the
coronal plane, the head-foot displacement that was difficult to interpret in
Figure 7.11e is transformed to the anatomically linked pattern in Figure 7.12e.

A throughplane shift in a case of cerebral atrophy is shown in Figure 7.13.
The movement of the upper surface of the corpus callosum upwards into the
region of the pericallosal sulcus and gray matter produces an increase in sig-
nal on the transverse difference image (Figure 7.13c).

 

FIGURE 7.10

 

Effects of inplane and throughplane shifts. Three objects with differently oriented boundaries
between regions of high and low signal are shown (a[i]-[iii]). The position of a transverse
slice through each object is also shown (a, dotted lines). The corresponding images are shown
(b[i]-[iii]). For an inplane shift to the right the difference image shows a linear change in
both (c[i]) and (c[ii]) but no change in c(iii). For a throughplane shift a variety of patterns
are seen. There is no change in (d[i]), change along a line in (d[ii]) and a change within the
whole plane in (d[iii]). In the last case there is a steep gradient throughplane which is not
apparent from the image (b[iii]). Inplane shifts produce predictable difference signals where
there are inplane edges (c[i]) and c[ii]). However, throughplane shifts, which reveal the presence
of throughplane intensity gradients, can produce either linear or regional difference patterns
(d[ii-iii]). In this diagram white indicates positive signal, gray is zero, and black is a negative
signal.
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7.4.2.6 Effects of Change in Shape (without Change in Signal Intensity)

 

Change in shape involves change in site of at least some of the tissue or fluid,
but it does not necessarily produce a change in size. A change in shape will in
general be accompanied by corresponding shifts elsewhere in the image. Rec-
ognition of these may be straightforward for simple structures and larger
changes, but difficult for complex structures and smaller changes. It requires an
overview of the site and direction of the shifts at different locations in the brain.

 

7.4.2.7 Effect of Change in Size (without Change in Signal Intensity)

 

This will also involve change in site and possibly shape. The associated
shifts may be focal or general. The focal changes may be centered on a par-
ticular region while general changes are centered on the structure itself.

 

FIGURE 7.11

 

Simulated effects of inplane and throughplane shifts on anatomic images: a volume data set
with cubic voxels (0.97 mm on each side) was copied, displaced by one voxel in each of three
orthogonal directions, and then the original data was subtracted from it. A transverse slice
from the volume set (a), the adjacent slice (b), and difference images for left-right (c), postero-
anterior (d), and head-foot (e) displacements are shown. Image (e) results from subtracting
(a) from (b). The differences produced by inplane shifts (c, d) show monophasic and mul-
tiphasic curvilinear changes that can easily be related to the anatomy in (a). Intense signals
with a simple geometry can be seen around the skull and scalp (c, d). The pattern of through-
plane changes (e) is less clearly related to the anatomy shown in (a). The ventricular system
produces curvilinear features as expected from Figures 7.9a[ii]-7.9d[ii]. However, there are
more widespread changes that are patchy or mottled rather than curvilinear. These arise from
throughplane differences between (a) and (b) that have little or no inplane component. Close
inspection is necessary to relate the differences in (e) to the source images (a) and (b).
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Change in size is typically not associated with compensatory (i.e., equal
and opposite) changes in the corresponding regions. Recognition of change
in size also requires an overall assessment of the site, size, and direction of
shifts.

 

7.4.2.8 Etiology

 

Changes in site (as well as shape and size) are typically due to mass effects.
The latter term includes displacement of otherwise normal tissue by a dis-
ease process. Mass effects are typically associated with tumors but may be
seen with many other diseases such as abscesses, hematomas, trauma,
edema, and demyelination. The effects may be local or general. Reduction
in size may take the form of localized or generalized atrophy. This occurs
typically in degenerative conditions but also in cerebral infarction,
trauma, etc. 

 

FIGURE 7.12

 

The same image data as in Figure 7.11 are shown, but reformatted into the coronal plane.
Anatomic image (a), adjacent slice (b), and differences produced by a one voxel shift in the left-
right (c), postero-anterior (d), and head-foot (e) directions are displayed. Note that the
throughplane direction is now postero-anterior (d) and this image shows nonspecific changes
in signal intensity as well as monophasic and multiphasic curvilinear changes. 
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7.4.3 Interpretation of Changes in Signal Intensity Combined
with Changes in Site, Shape, or Size on Difference Images 

 

Changes in signal intensity and shifts frequently occur together. In many
pathologies, the areas of abnormal tissue have increased T1 and T2 and may
also produce mass effects. The increase or decrease in signal intensity may take
it beyond the plateau levels in the model used to describe shifts. As a result,
shifts may produce signal differences which are beyond the ‘‘full scale’’ of the
model. Using the T1-weighted 3D volume sequences described here, this
occurred with very short T1 lesions due either to subacute hemorrhage or
contrast enhancement. A lesion involving the higher plateau (e.g., white
matter) that lengthens its T1 decreases the size of the difference between the
two plateaus so the interplateau difference is less than full scale.

When the changes in signal intensity and shifts are at different sites, they
can be treated independently (as with displaced but otherwise normal tissue
around a space-occupying lesion). When they occur together, some further

 

FIGURE 7.13

 

Throughplane shift: Registered transverse T1-weighted RF spoiled images prior to bone
marrow transplantation (a) and eight months later (b). The difference image is shown in (c).
The corresponding registered difference images in the sagittal (d) and coronal (e) plane are
also shown. With the cerebral atrophy the corpus callosum has shifted superiorly and its
superior surface encroaches on the region previously occupied by the pericallosal sulcus
and gray matter giving the high signal in (c) (arrow). The small size of shift is apparent in
(d) and (e) (arrows). Cerebral atrophy has developed and this produces low signal margins
around the ventricular system and the external surface of the brain.

 

0064_frame_C07.fm  Page 160  Wednesday, May 16, 2001  10:22 AM



 

Registration and Subtraction of Serial Magnetic Resonance Images

 

161

consideration is necessary. The key concept is that a difference in signal inten-
sity of a tissue or fluid in the boundary zone not only produces a change in
its own right, but also changes the signal intensity gradient so that the effect
of a shift may be increased or decreased. The detailed change depends on the
pulse sequence being employed. For example, with a T1-weighted sequence, a
lesion with increased T1 would decrease its signal intensity and also decrease
the gradient at its interface with CSF. The decreased signal intensity would pro-
duce a negative signal on the difference image and the effect of any shift in pro-
ducing a change on the difference image would be reduced.

When a lesion is characterized only by an increase or decrease in its sig-
nal intensity relative to the surrounding normal tissue (and has no mass
effect) it may be difficult or impossible to distinguish a change in its signal
intensity from a change in its size. The change in signal intensity usually
changes the signal intensity gradient in the border zone, and this deter-
mines the threshold for detecting the border of the lesion in relation to the
image noise and artifact level. In this situation, a decrease in signal inten-
sity difference between the lesion and its surroundings usually appears to
be accompanied by a decrease in size, but if the signal intensity gradient in
the border zone is maintained the lesion size may appear unchanged. A
‘‘pure’’ change in signal intensity may thus be inextricably linked to a
change in size of the lesion.

 

7.5 Regional and Tissue-Specific Appearances
on Difference Images

 

In this section, specific anatomical regions are considered in more detail and
a wider range of tissues and fluids is discussed.

 

7.5.1 The Ventricular System

 

The boundaries of the ventricles are smooth, continuous, and regular; their
signal intensity gradients are predictable both inplane and over adjacent
slices (Figures 7.12 and 7.13). The border zone for shifts in certain directions
is quite narrow. In this situation, full scale changes due to relatively small
interplateau shifts are readily seen when the shift is parallel to the maximum
signal intensity gradient. Locally monophasic curvilinear changes are typi-
cally seen with smaller border zone shifts.

Changes within the ventricles may be complicated by the presence of the
choroid plexus and other structures which may produce multiphasic
effects. Large shifts may lead to complete overlap of the ventricular system
with the brain, and there may be changes in the shape of the ventricles as
well as size.
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7.5.2 The Brainstem and Cerebellum

 

The brainstem also presents continuous and predictable boundaries,
although the cerebellar folia show a more complex, but still regular, pattern.
The signal intensity gradients associated with the cerebellar folia sensitize
them to shifts in the superior-inferior and postero-anterior directions. 

 

7.5.3 The Cerebral Cortex

 

In contrast to the ventricular system and brainstem, the cerebral cortex is con-
voluted and the signal intensity gradients are highly variable in both magni-
tude and direction. The sulci are generally wider in the frontal lobes than in
the occipital lobes. The major fissures (central and lateral) are wider again.
Because of the many different gradient directions, the cortex is sensitive to
shifts in many different directions. It can be divided into (a) a superficial part
representing the external surface and including the tips of the gyri and (b) a
deeper part consisting of infolded cortex below the external surface. The
superficial gyri form part of the general external shape of the brain and have
a reasonable degree of regularity about their position. Their signal intensity
gradients reflect this, and it is possible to recognize shifts of the superficial
cortex using the simple plateau model, although the plateaus are not so well
defined as with the ventricular system. 

The deeper infolded cortex is notable for the fact that there are frequently two
border zones in close proximity, with signal intensity gradients that are opposed
(‘‘reverse slopes’’) or obliqued. The cortex is subject to shifts which may move
both of these border zones in the same direction producing biphasic changes
(i.e., Figure 7.2, right hemisphere). There are also other processes which move
the sulcal border zones in opposite directions, either towards one another (as in
generalized brain swelling) or apart (as in cortical atrophy, i.e., Figure 7.13).
Combinations of the different signal intensity gradients and different inplane
shifts in both border zones within sulci (and fissures) of different widths result
in a variety of appearances, some of which are illustrated in Figure 7.14.

Adjacent to the cortex are blood vessels as well as meninges; shifts which
involve these may result in more complex multiphasic changes. 

 

7.5.4 Global Change in Brain Size

 

When there is a global change in brain size, the matching process effectively
aligns the central portion of the two volume images of the brain. As a result,
the more peripheral regions are progressively displaced from their original
positions. If slices are imaged perpendicular to a radius from the center out
to the periphery, there will be a progressive throughplane shift which reaches
a maximum at the outer surface. This effect will generally be greatest for
transverse slices at the superior aspect of the brain and at the inferior aspect
of the cerebellum. For parasagittal slices, the largest changes are at the lateral
extremities of the hemisphere, since these are furthest from the center of the
brain. The effect is reversed for generalized reduction in size. To obtain more
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accurate images of local changes, the matching process can be restricted to
smaller volumes around the area of interest.

 

7.5.5 Blood Vessels and Venous Sinuses

 

With the T1-weighted sequence used in most of this study, only minimal
inflow effects were seen in proximal arteries, but changes in signal intensity
were more obvious with angiographic sequences. The signal intensity in
many vessels reflected the T1 of blood which is intermediate between brain
and CSF. The blood vessels may be circular, elliptical, or triangular in cross
section, and subtraction of these following an increase or decrease in size
may produce different effects that can be predicted from the plateau model
(Figure 7.15). There may also be positional shifts of blood vessels.

 

7.5.6 Meninges

 

Because the images are matched to the brain, shift of the brain within the
cranial cavity may appear as a shift of the dura and skull into the subarach-
noid space surrounding the brain. This shift then shows up along the
smooth outline of the dura and adjacent skull rather than the convolutions
of the cortex. 

 

7.5.7 Other Extracerebral Tissues and Fluids

 

The process of registering the brain also aligns tissues and fluids surrounding
it, as long as these are in fixed relation to the brain. If they are not in fixed rela-
tion, differences will be seen on the subtraction images. Such tissues may
undergo changes in their own right, and these need to be interpreted with

FIGURE 7.14
Intensity profiles showing effects of shifts on sulci and fissures. Wedge [i] and trough [ii]
profiles are shown in (a). A displacement is shown in (b) and the corresponding differences
in (c). Effects of sulci moving together (d) and apart (e) are also shown.

(a) baseline

(b) follow up
with shift

difference:

difference:

difference:

(c)

(d)

(e)

[i] [ii]
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reference to the brain. Susceptibility effects from air in the nasal sinuses may
impact on brain signal with T2-weighted sequences. The scalp shows changes
in most subtraction images consistent with differences in blood distribution
within it. Changes are seen in the neck due to changes in the relative position
of the head and neck at the craniovertebral junction. Marked contrast enhance-
ment is seen in blood vessels, the nasal mucosa, scalp, and the skin.

7.6 Artifacts and Failed Registration

Difference images are subject to all of the artifacts present on the source
images, and subtraction usually makes these more obvious. Artifacts may be
produced by global motion of the subject as well as more localized motion of
structures such as the eyes and the pharynx. The use of phase encoding in
two directions as required by the 3D acquisition increases the vulnerability of
the sequence-to-motion artifact in different directions. In addition, phase
wrap artifacts, in which signals from outside the defined field of view or at
the edges of the excited slab get aliased to appear within the images, can be
intrusive but are usually easily recognized. For the 2D multislice acquisitions
fully interleaved single sequences were used, with all slices being excited
within each TR. This ensured a coherent data set, even if artifacts were present.

FIGURE 7.15
Views of blood vessels (inplane and throughplane) and surrounded by CSF for a T1-weighted
image are shown in (a). The difference for an inplane shift is shown in (b) and the effects
of expansion (c) and contraction (d) on difference images are also shown.

Vessel through
plane

Vessel in
plane

(a)

(b) Difference:
inplane shift

Difference:
expansion

Difference:
contraction

(c)

(d)

Baseline images
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However, it is not uncommon to use serially interleaved methods, in which,
for example, every second slice is obtained in one complete acquisition, fol-
lowed by a separate, repeat run to acquire the omitted slices. With this latter
approach, subject motion can result in spatially inconsistent data, so that the
two scans cannot be treated as one, but neither component scan has full
enough spatial coverage to be reformatted without error.

Susceptibility artifacts may be very largely replicated if the patient is in vir-
tually the same position on both examinations. However they are inherently
anisotropic with respect to B0 and may not therefore be correctable by rigid
body translation and rotation. The problem is likely to be greater with T2-
weighted sequences than the T1-weighted sequences and the T2-weighted
spin echo sequences used in this study.

The difference images provide an inbuilt check of the fidelity of registra-
tion. If the program fails to obtain a satisfactory match, monophasic or mul-
tiphasic changes will be seen in border zones. Interplateau shifts may also be
seen. The changes may be widespread and generally will have the character
of a whole brain shift superimposed on any underlying changes. Unregis-
tered images provide a useful guide in this context. 

Difference images tend to reveal artifacts more strongly than the original
anatomical images. This is because subtraction of registered images cancels
out the signal from unchanged anatomy, whereas the artifacts present in the
source images are likely to be different for each acquisition and so do not
cancel. A notable feature of many difference images is biphasic changes along
strong edges that run perpendicular to the primary or secondary phase
encode directions. These are often caused by patient motion at a level that is
insufficient to produce overt artifacts on the source images, but which has the
effect of slightly reducing the image resolution by making the extreme edges
of the raw k-space data inconsistent.10

Changes in scanner calibration can also often readily be detected on differ-
ence images. For example, changes in gradient scaling, which alter the appar-
ent size of imaged objects, are manifest as progressively increasing difference
signals from edges perpendicular to the scaled axis. Methods for correcting
calibration errors are discussed in Chapter 5.

7.7 Approach to Diagnosis of Changes to the Brain
on Difference Images

It is necessary to relate the causes of changes on difference images (i.e., pure
changes in signal intensity, throughplane and inplane border zone shifts, and
interplateau shifts) to the appearances they produce, i.e., (a) nonspecific
changes in signal intensity; (b) monophasic curvilinear changes; (c) mul-
tiphasic curvilinear changes, and (d) interplateau changes. Changes of differ-
ent types may be present on the same image. Their relation to underlying
causes is summarized in Table 7.1. A formal approach to image interpretation
is described in Table 7.2.
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7.8 Clinical Applications—General

There are many potential uses for this technique and the applications described
merely constitute a starting point that reflects local interest. The monitoring of
physiological changes of the brain was necessary to establish a baseline for rec-
ognition of changes in disease. The importance of radiographic positioning and

TABLE 7.2

Approach to Image Interpretation

1) Review source images
Define any signal intensity changes and shifts.

2) Review difference images
Define significant abnormalities (i.e., non artifactual areas of increased or decreased signal 
intensity). These should fit into one or more of the four categories described in Table 7.1, 
i.e., nonspecific change in signal intensity, monophasic curvilinear change, multiphasic 
curvilinear change, or interplateau change.

3) Assess interplateau shifts
For interplateau changes determine the shift direction (inplane or throughplane) by direct 
reference to the source images including different slices. The shift size is equal to the 
width of the full scale region on the difference image plus a fraction of the width of the 
associated border zone region (see later).

4) Assess signal intensity gradients
In the regions of other changes on the difference images, use the source images to define 
the inplane contours and signal intensity gradients (which are perpendicular to the 
contours), noting the direction of decreasing signal. Define the throughplane signal in-
tensity gradients in the slice of interest (these tend to be reciprocally related to the inplane 
gradients). Define the throughplane signal intensity gradients between slices by compar-
ison of adjacent source images in the relevant areas.

5) Assess border zone shifts
Determine shifts in the border zones by noting
(a) signal on the difference image is produced by a shift with a component parallel to 

the maximum signal intensity gradient;
(b) the difference image signal is positive when the shift is in the direction of decreasing 

gradient and vice versa;
(c) the size of the shift in the direction of the maximum gradient is equal to the width of 

the change on the difference image multiplied by the average fraction of the full scale 
signal intensity;

(d) local changes in signal intensity may exaggerate or minimize the signal difference 
produced by a shift;

(e) profiles from source and difference may help resolve shift direction and size; and
(f) reformatting the images into a perpendicular plane may transform a nonspecific 

change in signal intensity due to a throughplane shift to the curvilinear change of an 
inplane shift.

6) Assess overall pattern of shifts
Review the overall pattern of shifts for changes in brain site, shape, or size on a focal or 
general basis.

7) Assess pure changes in signal intensity 
Note that with a pure change in signal intensity no shift is detectable. (A pure change 
in signal intensity may, however, be accompanied by an inseparable change in lesion size).
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its effects on changes to the shape of the brain were studied. Also the appear-
ance of growth and development in children needed to be identified. 

Another unexpected finding was a reduction in brain size (atrophy rather
than edema) during the third trimester in patients with pre-eclampsia. Also
observed were atrophic change and swelling in first episode schizophrenia
over a 6 to 12 month period. Many other applications of this technique are
possible and results are awaited with considerable interest.

7.9 Physiological Changes

7.9.1 Effect of Head Position

Figure 7.16 shows interplateau and border zone shifts produced by changing
head orientation from right-side down to left-side down. The image shows
shift of the ventricular system and changes in many gyri. These changes may
provide a basis for measuring brain compliance in health and disease, includ-
ing quantification of the elastic properties of the brain.

7.9.2 Menstrual Cycle

In the four females studied, registration of repeated examinations showed
very small changes. The most consistent finding on the difference images was
a border zone shift related to the lateral ventricles consistent with an increase
in their size at the end of the second half of the menstrual cycle. This change

FIGURE 7.16
Change in the superior sagittal and straight sinuses with head flexion: Sagittal T1-weighted
images in upright position (a) and with head flexion (b). The registered difference image
[(b) � (a)] is shown in (c). The signal from the inferior sagittal sinus has increased, probably as
a result of an increase in size. The superior sagittal sinus shows a more complex change poste-
riorly (c). Border zone shifts are noted in the region of the superior cerebral sulci (c) (arrows).
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is consistent in sign, but may be smaller in size than the previously reported
finding of increase in CSF volume later in the menstrual cycle detected with
a volume measurement technique. 

7.9.3 Pregnancy

During normal pregnancy, the brain decreases in size, reaching a maximum
reduction at term. After delivery it regains its original size over a period of
four to six months (Figure 7.17). 16,17

7.10 Contrast Enhancement

Normal enhancement in the meninges, diplocic veins, scalp, skin, and other
structures was more clearly demonstrated than with conventional unregistered
images.18 In addition, abnormal enhancement was more clearly demon-
strated in patients with meningeal disease and other conditions (Figure 7.18).

Registration and subtraction were of particular value in the following
situations:

(a) Recognition of small degrees of enhancement: When the level of change
was small, differences may be much less than those produced by
misregistration, particularly when the changes are at boundaries.
Diffuse generalized enhancement may also be more readily recog-
nized on subtraction images in relation to the noise level of the
surrounding images. This type of change may be missed with
conventional display strategies.

(b) Enhancement in tissues of fluids with very high or very low baseline
signals: The usual window level and width settings may place the
changes due to enhancement off the top or the bottom of the display
gray scale, and so render changes difficult to recognize. Subtraction
reduces all tissues and fluids to a common baseline and makes
changes of this type easier to visualize.

(c) Enhancement at interfaces, boundaries, and other regions of complex
anatomy: In these situations there are frequently partial volume
effects, and even a small displacement of the brain between pre-
and postcontrast images produces a difference in these effects,
resulting in spurious changes in signal intensity. Precise registra-
tion provides the same partial volume effects on the before and
after images, so that enhancement can be readily recognized.

(d) Assessment of enhancement when thin slices are used: While use of thin
slices reduces partial volume effects, it may increase problems due
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FIGURE 7.17
Pregnancy: T1-weighted baseline images taken prior to pregnancy (a). Subtraction im-
ages from prior to delivery minus baseline (b), six weeks after delivery minus prior to
delivery (c), and six months after delivery minus baseline (d). The brain decreases in
size before delivery and increases after delivery back to its normal size. Figure (e) shows
change in brain volume, and Figure (f) shows change in ventricular volume with time.
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to overt misregistration. The same absolute displacement may ap-
pear as only a slight difference in position of a thick slice, and so
permit valid image interpretation, but when a narrow slice thick-
ness is used, the same displacement may take the region of interest
into a completely different slice and create uncertainty in interpre-
tation. Precise registration enables the patient position to be main-
tained, and allows the advantage to thin slices to be utilized.

(e) Follow-up studies. Assessing changes in the degree of enhancement
between examinations may be rendered difficult by misregistration
between examinations. This problem can be overcome by accurate
alignment of images on serial examinations.

The technique may also be used to provide angiography.
In a number of conditions, such as detection of metastases and demonstra-

tion of enhancement in multiple sclerosis (MS) plaques, scans delayed by one
or two hours may be more useful than immediate postinjection scans. Mis-
registration problems are usually increased in this situation, since the patient
is taken out of the scanner and positioned back again later. Results from this

FIGURE 7.18
Contrast enhancement Wegener’s disease: T1-weighted spin echo images (SE 720/20) before
(a) and after (b) contrast enhancement; T1-weighted volume images before (c) and after (d)
contrast enhancement, with subtraction image, (d) � (c), shown in (e). The tentorial enhance-
ment is best seen on the registered volume and subtraction images (e) (arrows).
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technique may be improved by registration. It may also be possible to reduce
the dosage of contrast enhancement if subtraction is used routinely. The need
for triple dose enhancement may also be reduced.

A limitation of the technique in contrast studies is that of increased acqui-
sition times because of the need to produce isotropic volume data sets. Even
slab imaging takes 2–30 s. As a result, the technique is not particularly suited
to the timescale of dynamic studies.

7.11 Pediatrics

In children physiological, pathological, and therapeutic changes of the type
described above may be present.19 These may be complicated by growth
and development, which may be normal or abnormal. Growth and devel-
opment includes not only increase in size of the brain, but also cortical fold-
ing, myelination, and decrease in brain proton density, T1 and T2. The
surrounding tissues and fluids may also change. Growth of the skull means
that much larger changes are generally seen in children than in adults,
where the skull generally imposes rigid limits on changes in brain size.
Because of the large changes in children, it is often useful to match exami-
nations in successive pairs so that the differences between any two image
sets are minimized (Figure 7.19). The small subarachnoid space over the cor-
tex also makes segmentation more difficult than in adults.

Changes in children may be quite complex, with, for example, the ventri-
cular system showing changes due to expansion and contraction at different
phases of growth (Figure 7.20).

In the late phase of neonatal infarction (one to nine months) increased
growth can be seen atthe margins of the lesion (Figure 7.20). The rapidly pro-
liferating tissue  seen in the late phase of infarction did not have the features

FIGURE 7.19
Growth and development in a child aged 10 months (a) and 14 months (b) on registered
T1-weighted images with subtraction images (c) = (b) � (a). The white line around the gyral
tips of the brain in (c) indicates growth of the brain. 
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of gliosis (long T1 and T2), and followed the configuration of the brain. It may
provide an anatomical substrate for neurological plasticity. 

7.12 Adult Infarction

Registration can be used to detect subclinical infarction20 and show atrophic
changes associated with the lesion. The development of an infarct with adja-
cent ventricular dilatation is shown in Figure 7.21. The technique may also be
of value in distinguishing infarction from low-grade glioma and in serial
studies.21

FIGURE 7.20
Neonatal infarction: T1-weighted scan at 4 weeks (a) and at 14 weeks (b), with registered
difference image (c). The highlighted area in (c) (arrow) shows that growth in the brain
adjacent to the infarction has been more rapid than elsewhere.

FIGURE 7.21
Adult infarction: T1-weighted scans 1 week after infarction (a) and 12 months after (b). The
registered difference image (c) shows the infarct (arrow) as a low signal area and dilatation
of the adjacent lateral ventricles.
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7.13 Multiple Sclerosis

There is considerable interest in monitoring the progress of multiple sclerosis
(MS) with and without treatment; some cohorts have now been studied for
several years. The expected annual change in lesion burden is about 5 to 10%.
This is of the same order as misregistration errors inherent with conventional
techniques, thus assessing the effectiveness of new therapies such as inter-
feron may be difficult in short term studies.

Twelve patients were studied on two or more occasions. Registration not
only allowed changes to be identified in specific lesions, but also separation of
differences in contrast enhancement from other changes using ‘‘difference of
difference’’ images (i.e., difference of post-minus precontrast enhancement
scans at two different times). Changes in unenhanced lesion T1 were much
more readily recognized with the subtraction images, including effects due to
both increased and decreased T1. Obvious changes were seen in the T1 of areas
where no enhancement was observed. Decreased brain size was observed in
patients who had treatment with steroids and others who did not have this
treatment.

Subvoxel registration revealed that many lesions are more complicated
than they appear at first sight, with some undergoing remission and others
in very close proximity undergoing exacerbation with both parallel and dis-
cordant contrast enhancement. Also observed was shortening (as well as
lengthening) of T1 in the acute phase.

For example, a 31-year-old woman with MS was examined with and without
contrast enhancement on two occasions six months apart. Many contrast-
enhancing lesions were either much better seen or only seen on the registered
images. There were changes in lesion signal intensity and the degree of
enhancement, as well as evidence of decreased brain size on the follow-up
scans (Figure 7.22). This may have been due to brain swelling at the time of
the initial examination that had been partly or completely resolved when the
follow-up study was performed. It may also have been due to progressive
atrophy. The patient did not receive steroids. Registration and quantification
may also be used to detect and monitor atrophic change in MS.21

7.14 Tumors

On the registered difference images, increased tumor size was manifest as
encroachment on the ventricular system and subarachnoid space.22,23 Figure
7.23 (a) shows an astrocytoma grade III before treatment. After one month,
the registered difference image (Figure 7.23 (c)) shows tumor expansion in
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spite of treatment. Differences in contrast enhancement were also demon-
strated by comparison of the subtracted (post-minus precontrast) images on
each examination.

In tumor regression following treatment, T1 may be decreased. This pro-
duces an increased signal on the difference image. Decreased mass effect can
also be demonstrated (Figure 7.24).

Registration may allow earlier recognition of tumor growth and response
to therapy than conventional techniques. A cohort of inoperable and par-
tially resected meningiomas has been studied to assess their rate of growth
(Figure 7.25).

T2-weighted images may also be used for registration.11 Figure 7.26 shows
a mixed pattern of response to progression.

FIGURE 7.22
Multiple Sclerosis: A 31-year-old female with MS: initial unenhanced (a), enhanced (b), and
registered subtraction (c) images. A repeat pre- and postenhancement scan was performed
six months later. The difference image on the unenhanced scans six months apart is shown
in (d), and the difference between the earlier ‘‘post minus pre’’ scans and the later “post minus
pre” scans is shown in (e). The enhancing lesions are see better in (c) (arrows). The ventricular
system has increased in size in (d), and there is evidence of decreased brain size. Some
lesions appear bright because they have shortened their T1 time (d). Lesions that were
enhancing in (b) now appear dark on (e); they no longer enhance (arrows). 
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7.15 Schizophrenia

The first study with CT showing ventricular enlargement in schizophrenia
was published 20 years ago. It was a cross-sectional study. Longitudinal
studies without registration have shown no change in the brain with CT, and
increase in size of the caudate nucleus in patients treated with antipsychotics.
Using registration, atrophic changes were demonstrated in the five first-
episode schizophrenics who were studied six months apart (Figure 7.27).

FIGURE 7.23
Astrocytoma grade III in a 42-year-old male examined with IV Gadodiamide (a) and again
one month later (b), with subtraction of (a) from (b) shown in image (c). The increase in
image size can be seen on the aligned source images, but the extent of the mass effect is
better seen in (c) (arrow). Positive and negative interplateau shifts are seen around the right
lateral ventricle. Border zone shifts are seen on the right hemisphere. Smaller negative
interplateau shifts are seen at the ventricular margins on the left, as well as more subtle
border zone shifts anteriorly and posteriorly within the left hemisphere.

FIGURE 7.24
Astrocytoma: T1-weighted scans before (a) and six weeks after (b) treatment with Temozo-
lamide; (c) difference image. Most of the tumor has decreased in size and shortened its T1
following treatment (long arrow) but some has progressed (short arrow). 
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FIGURE 7.25
Meningioma: Contrast-enhanced T1-weighted images from volume acquisition obtained
initially (a) and 13 months later (b). Subtraction of (a) from (b) in image (c) shows by the
white and dark lines (arrows) that the tumor has grown between the scans. 

FIGURE 7.26
Astrocytoma: T2-weighted images before (a) and after (b) treatment. Subtraction of (a) from
(b) is shown in (c). The responding areas appear dark in (c) but the more anterior white
area has progressed (arrow).

FIGURE 7.27
Schizophrenia: Registered subtraction image, showing differences that developed over six
months after first admission. The ventricles have increased in size, and abnormalities
(biphasic changes) are seen in the left temporal lobe.
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Another three patients showed evidence of brain swelling, two studies were
equivocal, and one was negative. These changes may reflect difference
phases of the first episode of this illness.24,25

7.16 Alzheimer ’s Disease

Fox, Freeborough, and Rosser5,26,27 have used registration, subtraction,
and quantification to demonstrate atrophic changes in Alzheimer ’s dis-
ease. They found marked changes compared with controls (Figure 7.28).
Some pre-symptomatic patients also had early changes detectable with
registration and quantification.

7.17 Postoperative Changes

Although three published serial studies of the brain following coronary
artery bypass surgery (CABS) have been negative except in patients who had
clinical evidence of strokes, registration of serial scans has shown abnormal-
ities in most patients studied to date.28

FIGURE 7.28
Alzheimer’s disease: Plot of percentage change in ventricular size for patients with Alz-
heimer’s Disease (squares) and normal controls (circles). The patients show a greater increase
in ventricular volume than controls.
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In monitoring the effect of treatment, effects of drugs on brain size need to
be recognized. In particular, steroids and ACTH may produce a change in
brain size due to treatment, not the primary pathologic process. Likewise,
alcohol and states of hydration may affect brain size.

7.18 Bone Marrow Transplantation

In order to determine the nature and frequency of changes to the brain in
patients undergoing chemoradiotherapy and BMT, we performed registered
serial MRI studies in 15 patients with CML (13 allografts and 2 autografts).29

Repeated studies performed 4 to 339 days after transplantation showed
ventricular enlargement and cortical atrophy in all of the 13 patients who had
allografts. The changes were evident at 4 to 6 days, and became more obvious
in later follow-up cases. Similar changes were seen in one patient with an
autograft, but no significant change was seen in other autografted patients or
in the normal controls.

Cerebral atrophy has been described following long term administration of
steroids, and reversibility of the findings may follow decrease or cessation of
steroid use. The appearances are typically described with long term use (six
months to five years) and cumulative doses of 4000 to 58,000 mg of pred-
nisone. Assessing the potential effect of steroids is complex. All 15 patients in
this study had steroids at some stage in their illness. The total dosage for
allograft patients varied from the equivalent of 100 to 20,250 mg of predniso-
lone. There was no evidence of reversibility of ventricular size in any
patients. This might have been expected in patients having a reduction in
their dosage or stopping treatment with steroids. The onset of brain changes
occurred at the same time as treatment with steroids, cyclophosphamide, and
TBI, but there did not appear to be a particular association with steroids
given in the previous 48 hours.

7.19 Quantitation of Brain Change

Quantified measurement of the size of various brain structures and patholo-
gies can readily be achieved from MR images. A number of examples have
been cited in this chapter and many computerized tools are now available for
such measurements including some designed specifically for use in conjunc-
tion with registered images.25,30,31 Although there may be technical problems
in achieving reliable quantitation for some structures, for example, due to
complexity of shape or ambiguity in the precise location of a boundary, in
many scientific and clinical serial studies a key prerequisite to measurement
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is identification of the nature or pattern of change to be quantified. An illus-
trative example is provided by Figure 7.26, which shows a case of an astrocy-
toma that was monitored before and after treatment. An intuitively natural
measurement to make might be the total tumor volume, which might then be
correlated with outcome. However, as shown in the subtraction image,
Figure 7.26c, although the tumor responds to the treatment, that response is
heterogeneous. Thus measurement of a global volume decrease would fail to
capture a critical factor of localized lack of response, which then acts as a
locus for future tumor growth and can result in poor final outcome. The reg-
istered subtraction technique allows the pattern of change to be identified
and can be used to guide measurement as required. This is a powerful feature
of the registration methodology.

7.20 Conclusion

Use of image registration allows changes to be detected on serial examination
in many diseases when conventional approaches produce equivocal or neg-
ative results. This is likely to increase the sensitivity of MRI for many neuro-
logical applications. Effects due to treatment may also be monitored with this
technique. Pediatrics is notable for the fact that there are also changes due to
growth and development, and these may be affected by disease and treat-
ment. The technique appears likely to have many applications.

The work described in this chapter has exclusively employed rigid-body
registration for serial studies of the brain. Rigid-body registration may also
have clinical applications in other organs or body parts, most notably for nor-
mally rigid structures such as bones. In addition to monitoring disease pro-
gression or regression, other emerging applications are perfusion imaging
and dynamic contrast-enhanced angiography. In both these methods, images
are acquired in quick succession following contrast administration, and
uncorrected changes in subject position during the examination can cause
problems. Finally, recent developments in nonrigid registration methods are
likely to have clinical applications when combined with serial MRI examina-
tions. These are outside the scope of this chapter, but various examples of
early work are discussed in Section III. 
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8.1 Introduction to fMRI

 

Functional magnetic resonance imaging, or fMRI, is a noninvasive imaging
technique used to investigate physiological function. It is most commonly used
to study brain function by measuring blood oxygenation level, although other
organs (e.g., kidneys) and other quantities (e.g., perfusion) can be studied. This
chapter concentrates on using fMRI for blood oxygenation-related imaging
of the brain, as image registration has become an indispensible part of the
analysis of these data for research and clinical purposes.
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fMRI allows the experimenter to determine which parts of the brain are
activated by different types of sensory stimulation, motor activity, or cogni-
tive activity. For instance, fMRI can be used to study responses related to
visual or auditory stimulation, the movement of a subject’s fingers, or the
imagined rotation of 3D objects.

The subject in an fMRI experiment will lie within the magnet, and a partic-
ular form of stimulation is applied or task performed. For example, the subject
may wear special glasses so that pictures can be shown during the experiment.
Then, MR images of the subject’s brain are taken, starting with a single high
resolution scan. This is used later as an anatomical substrate for overlaying
the brain areas which were activated by the stimulus. Next, a series of low res-
olution scans (the raw functional images) are taken, one every few seconds;
normally, 100 or more such scans are obtained. During some of these scans,
the stimulus (in this case the moving picture) will be presented, and during
others the stimulus will be absent. These images are sensitive to changes in
blood flow and

 

�

 

or blood oxygenation in the brain caused by brain activity.
The fMRI images taken during activation can be compared with those taken
during rest in order to see which parts of the brain were activated by the stim-
ulus or activity.

Other functional neuroimaging methods exist, such as PET (positron emis-
sion tomography), EEG (electroencephalography), and MEG (magnetoen-
cephalography). These differ from fMRI in their temporal and spatial
resolutions as well as the type of physiological response measured. For
instance, fMRI measures local blood oxygenation changes, PET measures
either blood flow or metabolic activity (a more direct measure of activity
than blood flow), EEG measures induced electrical signals on the scalp, and
MEG measures induced electrical currents within the cortex. EEG and MEG
have very high temporal resolution (milliseconds) but poor spatial resolu-
tion (centimeters); PET has poor temporal resolution (tens of seconds) and
intermediate spatial resolution (many millimeters), while fMRI has an inter-
mediate temporal resolution (seconds) and good spatial resolution (millime-
ters). PET also requires that a radioactive agent be injected into the subject,
while the other methods are relatively non-invasive.

 

8.1.1 BOLD Contrast and Brain Function

 

Activity in a certain brain area causes an increase in both local blood flow rate
and relative proportion of oxyhemoglobin to deoxyhemoglobin (in local
blood vessels). A T2-weighted MR sequence is sensitive to this change in
blood oxygenation; this is known as the BOLD (blood oxygenation level
dependent) effect

 

9,12 

 

and is dependent on field strengths as well as physiolog-
ical and other factors. Therefore, as blood flow and oxygenation levels
increase in metabolically active regions, the MR signal increases; this is used
to infer neuronal activity. It is important to use an MR method which can
acquire T2-weighted images very rapidly. The most commonly used method
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in fMRI is echo planar imaging (EPI),

 

10

 

 which is capable of acquiring a full brain
image every few seconds, with a typical within-slice resolution of 2 to 4 mm, and
slice thickness of 3 to 8 mm.

The change in MR signal induced by the BOLD response to brain activity is
typically 0.5 to 5 percent of the average image intensity within the brain. In addi-
tion, there is considerable change in the signal that is unrelated to the processes
of interest (that is, not related to the given stimulus). Therefore, separation of the
signal of interest from this “noise” requires sensitive statistical analysis.

To illustrate the type of statistical analysis required, consider a simple
“block-design” fMRI experiment. In this example, a visual stimulation (e.g.,
a flashing checkerboard) is shown to the subject for a period of 10 image
acquisitions followed by an equal period of “rest,” where a reference stimu-
lation (or no stimulation) is shown. This 10 ON, 10 OFF pattern is repeated
several times to enable the signal-to-noise ratio (SNR) in the following statis-
tical analysis to be large enough for activation to be detected. Given that a
typical image acquisition takes 3 seconds, such a session might last 10 min-
utes in total.

A particular location in the brain is considered “activated” if the intensity
variation follows the same pattern as the stimulus. More precisely, the inten-
sity for each voxel, as a function of time, is compared with the stimulus func-
tion (which is 1 in the ON condition and 0 in the OFF condition) by some
method, such as correlation. If the intensity and stimulus functions have a
high correlation (that is, they are similar), this voxel will be classed as
“active.” This is quantified by converting the correlation score into a proba-
bility of the observed intensity signal occurring purely by chance (the null
hypothesis); the regions with very low probability of having occurred by
chance are considered “active.”

 

8.1.2 fMRI Analysis Overview

 

In fMRI analysis a large number of processing stages are required before the
final activation results are obtained. In-depth coverage of these stages is
beyond the scope of this chapter (see Reference 11 for more detail), but it is
helpful to have a broad understanding of the full analysis to appreciate the
general context for the issues of motion correction and registration in fMRI.

Although no standard analysis protocol is universally accepted, a typical
sequence of analysis steps for a single-session fMRI experiment is:

1. Acquire and reconstruct the individual images.
2. Phase-correct all time series for variations in timings of scanning

slices within the volume scan time (TR).
3. Apply motion correction to correct for head motion.
4. Spatially smooth the data to increase SNR and precondition later

statistics.
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5. Filter each voxel’s time series, to remove slow temporal drifts and
high frequency noise.

6. Perform the statistical analysis (creating a statistical parametric
map—an SPM).

7. Threshold the SPM to find the “significant activated regions.”

Therefore, at the end of such an analysis, the result is a map showing the
“activated” voxels or clusters of voxels (for example, see Color Figure 8.6*).
These activation maps are often then subject to some higher-level analysis,
such as combining the low resolution results with the subject’s high resolu-
tion image or combining results across a group of subjects.

To combine images effectively, an accurate linear or nonlinear (warping)
registration method is required. The transformations involved in linear reg-
istration (rigid–body or affine) have been described in Chapters 2 and 3 of
this book, and nonlinear, or nonrigid, transformations are described in
Chapter 13. Registration is necessary for combining low resolution statisti-
cal images with a high resolution structural image, for combining statistical
results across several subjects in a group, or for transforming the results
into a standard coordinate system. Moreover, for best results, the fMRI
images should be corrected for geometric distortion that occurred during
the functional experiment, prior to registration. In general, as the raw func-
tional images do not have particularly good spatial resolution or contrast,
accurately registering these images with standard anatomical images is
quite a challenging problem.

 

8.2 Motion Correction

 

The first and most important registration issue associated with fMRI is
motion correction, which attempts to eliminate intensity changes in an fMRI
data set that are the result of subject motion during the experiment. This is
particularly important, as all subsequent analysis requires that each voxel
corresponds to a fixed location in the brain at every point in time. Since sub-
jects often move in the scanner during the course of an experiment (which
can take as long as an hour) the position of the head varies from image to
image. This is particularly true for clinical patients (as opposed to “normal”
subjects). Consequently, all images need to be registered to a consistent co-
ordinate system to enable further analysis.

The motion can vary over time from small, subvoxel motion to large, obvi-
ous motion. However, even subvoxel motion has a detrimental effect on the
statistical analysis—especially for smaller activations. Therefore, motion cor-
rection is required for almost all fMRI experiments.

 

* Color figures follow page 22.
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As all images in an fMRI experiment are taken a few seconds apart, with the
same settings, on the same scanner, and with the same subject, it is an almost ideal
intrapatient, intramodality registration scenario. Consequently, rigid-body trans-
formations with intramodal similarity measures, as described in Chapter 3, are
almost universally used to model the change between one image and the next.

In addition to rigid-body motion, there are also some sources of nonrigid
motion usually present. For example, pulsatile motion of the soft brain tis-
sues occurs during the cardiac cycle. Even bulk motion of major chest organs
during respiration will change the magnetic field distribution throughout the
body (including the head) and will therefore affect the geometry of the scans,
inducing nonrigid motion. It is possible to reduce the extent of some of these
motions by using methods such as cardiac gating of the images (acquiring at
the same point in the cardiac cycle each time). However, the major compo-
nent of motion is due to rigid movement of the head in the scanner, and the
correction of this motion will be discussed in the following sections. For more
detail on physiological noise, see Hu et al. and Jezzard.

 

5,6

 

8.2.1 A Multiple Registration Problem

 

The basic problem of motion correction is to align each image in the series
to a consistent orientation (by registering each one to some fixed target image).
Therefore, motion correction is simply a series of registrations. However,
there are typically more than a hundred images to register, so speed is
quite important. For instance, if each registration took 30 minutes and
there were 200 images, the total motion correction time would be more
than 4 days.

The standard approach taken in motion correction is to use an intramodal-
ity voxel similarity measure, such as sum of squares of differences or mean-
absolute-difference, together with some optimization algorithm. The registration
can be performed quite rapidly, since the resolution of the images is relatively
low, the motion is usually small (so that simple local optimization will suf-
fice), and only 6 degrees-of-freedom (DOF) transformations are used (i.e.,
rigid-body). For instance, a 200-image series can typically be motion corrected
in less than 30 minutes—that is, less than 10 seconds per image.

The method of minimizing the cost function while varying the translation
and rotation parameters is usually a standard optimization technique (such as
gradient descent, Powell’s method, or a simplex method—see Reference 13 for
more details) or a customized version of these. It is assumed that any activation
in the images does not affect the estimation of motion, and since the intensity
changes due to activation are relatively low, this is probably a safe assumption.

It is necessary to choose a “target” image for motion correction. Normally
this is simply an arbitrary single image from the original data. However, care
needs to be exercised when choosing the target, as the first image from the
sequence probably looks quite different from all subsequent images, due to
MR saturation effects. Therefore, if this is used as a target, the cost function
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should be able to cope with the resulting changes in intensity and contrast
between the target and the images registered to this target.

A more sophisticated choice of target is to take some kind of average image
from across the time series. For example, re-registering ten images (selected
from equally spaced points along the time series) to the first, taking the aver-
age spatial “position” of these ten images, creating an average image in this
position, and then reregistering all ten to this average image results in a
motion correction target which is in the “average position” for the whole time
series and contains representative “average intensities.” This has the benefit
of minimizing the average “distance” by which all images are transformed
(and therefore minimizing interpolation related blurring—see below).

 

8.2.2 Interpolation

 

After the registration phase has determined the transformation parameters
required to correct for head motion, it is then necessary to transform the
images to this new, consistent orientation. This requires (subvoxel) interpola-
tion of the intensities; a critical step in motion correction, since the intensities
contain the information regarding physiological response. Therefore, it is
important to ensure that the least amount of artifact is introduced into the
data by the interpolation stage. Consequently, choice of interpolation method
is significant and, for the reasons described in Section 3.5 of Chapter 3, simple
methods such as nearest neighbor or trilinear are not optimal, as they intro-
duce unwanted blurring (spatial autocorrelation) into the data.

In contrast, the interpolation used within the initial transformation-finding
phase is not particularly critical, as usually the gross features such as brain

 

�

 

background boundaries principally determine the transformations. Since the
existence of these features is robust to the amount of blurring introduced by
interpolation, the transformation parameters found are not usually very sen-
sitive to the interpolation method chosen.

There are many different potential choices for interpolation, as discussed in
Chapter 3. This also includes methods such as the use of multiple shears
applied in Fourier space,

 

2

 

 which are only valid for the small rigid-body trans-
formations typical of motion correction. However, at present there is no con-
sensus as to which method is best.

One related implementational issue worth mentioning is how areas outside
the image are treated. When estimating motion parameters, this “data” out-
side the image should be treated as nonexistent and not of zero intensity;
otherwise, the estimated parameters will be biased. However, when the end
slices are of interest (i.e., they contain brain) the final applied transformation
will be sensitive to the choice of outside values used by the interpolation
method. It is sensible in this circumstance to “pad” (to a small extent) with a
copy of the end slice. If this is not done, the slightest out-of-slice motion
(including any rotation) results in unnecessary loss of information in the end
slices. With padding, this problem is substantially reduced.
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8.2.3 Spin History and Stimulus-Correlated Motion

 

Even when “perfect” alignment of the images has taken place, some motion
artifact still remains in the images.

 

4

 

 This is because out-of-slice movement
of the brain during a scan causes nuclei in a given slice to move away from
their initial slice position, changing the relative timings between the RF exci-
tations they receive. Such timing changes are significant as they depart from
the stable saturation cycle of the nuclei when there is no motion. Therefore,
the signal will be artifactually increased or decreased (depending on the
direction of motion), displaying saturation-like effects similar to those seen
in the first few images of a scanning sequence. This is known as the spin his-
tory effect.

In the presence of such motion, the measured signal contains motion-
related effects that cannot be simply corrected by spatially transforming the
image. This movement of nuclei outside the slice leads to loss (or gain) of sig-
nal in some regions, typically in the order of a few percent of the mean signal.
Even though these signal changes are not large, the spin history artifacts can
still impair the later statistical analysis, especially when the movement is
related to the stimulus. In this case the artifact induced can have a significant
correlation with the stimulus input, producing artifactual statistical parame-
ter estimates which can be much higher or much lower than expected. Even
if there is no significant correlation between these residual motion-related
intensity variations and the stimulus, the spin history effects will add to the
noise in the model fitting process, thus reducing the significance of possible
activations.

One way to deal with these unwanted intensity variations is to remove all
trends from the time series that have the same form as the voxel displacement
(as measured during the transformation estimation stage in motion correc-
tion). This assumes that the spin history-related artifact will be proportional
to some low-order polynomial function of the displacement of the voxel from
its usual position. Removal of the trend is achieved with an initial decorrela-
tion of the data using the displacement estimates, or carried out in the later
statistical analysis by using these displacements as a confound (a parameter
whose estimate is not used for calculating activation) in the general model
fitting procedure.

 

1,3

 

Note that for strongly stimulus-correlated motion, the removal of these
trends can drastically reduce the amount of both true and false activation. At
present there is no perfect general solution to this dilemma—without much
more sophisticated modeling of the physical processes involved, it is not pos-
sible to clearly disambiguate between spin history-related effects and true
activation, if the motion itself is correlated with the stimulation.

In Figures 8.1 and 8.2, examples are shown of significant activation clusters
resulting when different motion correction methods are used. In each figure,
the top row is the result when no motion correction is applied, the middle
row when standard motion correction is applied, and the bottom row when
motion correction is applied, along with spin-history correction, using the
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method described by Friston et al.

 

3

 

 In all cases, statistical thresholding was
carried out using the same significance threshold.

Figure 8.1 shows results derived from data taken during periods of
auditory activation (a conversational radio program) interleaved with
periods of “silence.” Each row shows three consecutive slices from one of
the original 3D fMRI brain images, overlaid with significant activation
areas. The top row shows clear tell-tale signs of uncorrected motion
around parts of the ventricles and little activation in the auditory cortex
(this is the area shown as activated within the circles in the bottom row).
The middle row shows the improvement in reported activation, but much
“noise” remains—i.e., presumed activation well outside the auditory cortex.
The bottom row shows that the spin history correction has completely
removed this noise but has also greatly reduced the apparent amount of
“true” activation.

Figure 8.2 shows two consecutive slices resulting from an fMRI experiment
during which brief periods of painful heat were applied to the hand. There was
much less overall head motion during the experiment than in the previous
case; therefore there is less difference among the three sets of results. However,
it is still possible (particularly within the marked circles) to see areas of activation

 

FIGURE 8.1

 

Significant auditory activation clusters (

 

Z

 

 

 

�

 

 2.3, 

 

P

 

 

 

�

 

 0.01) with no motion correction (top
row), standard motion correction (middle row), and motion correction with spin history
correction (bottom row).
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which have increased in size after basic motion correction and then decreased
after motion correction with spin history correction. Figure 8.3 shows the clear
correlation between the stimulation-derived model (regular peaks corre-
sponding to time points when pain was applied) and the time series of esti-
mated values for rotation about the 

 

x

 

 axis (thus mainly corresponding to
“nodding” head movements). Given this correlation, it is to be expected that
the bottom row would show less activation than the middle row, as explained
above.

 

FIGURE 8.2

 

Significant painful heat activation clusters (

 

Z

 

 

 

�

 

 2.3, 

 

P

 

 

 

�

 

 0.01) with no motion correction (top
row), standard motion correction (middle row), and motion correction with spin history
correction (bottom row). (Original data courtesy of R. Wise and I. Tracey.)
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8.2.4 Nonrigid Motion Correction

 

Of course, head motion does not just occur between fMRI (multi-slice) images
but also during their production, resulting in distortion of the ima-ges, as dis-
cussed in Chapter 5. Thus rigid-body motion correction is imperfect,
although it is widely accepted, since the combination of the low resolution of
the images and the relative speed of their capture makes the nonrigid com-
ponent small. Some initial work has been undertaken

 

8

 

 where each slice is reg-
istered separately to the target, but such approaches are not widely used at
present. These nonrigid correction schemes are likely to become more viable
as the resolution of fMRI images increases in the future.

A secondary point to note here is that if non-rigid-body motion correction
is to be applied, then it is desirable to integrate the slice-timing correction
(normally applied before motion correction) into this procedure. Thus, rigid-
body motion, nonrigid distortions, and slice-timing effects could all be
corrected at the same time.

 

8.3 Geometric Distortion

 

The acquisition of MR images is imperfect for a number of physical reasons. In
particular, the magnetic field inside the head is usually inhomogeneous, even
after careful shimming, and this results in geometric distortion of the image.
The magnitude of distortion depends upon the parameters of the imaging

 

FIGURE 8.3

 

Time series plots of stimulation model (dotted line, arbitrary units) against estimated rota-
tion about the 

 

x

 

 axis (solid line, arbitrary units).
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sequence used, where these parameters are chosen as a compromise between
speed, contrast, and other factors. Unfortunately, EPI sequences, which are
commonly used to acquire fMRI time series, are particularly susceptible to
this form of geometric distortion. This is most notable near regions where
there is a tissue

 

�

 

air interface, such as near the temporal lobes and the sinuses
(see Figure 8.4).

Fortunately, a simple method is available which reduces this geometric dis-
tortion to low levels.

 

7

 

 It involves acquiring a field map by appropriately com-
bining additional images taken using different gradient echo weightings.
That is, an image is produced that shows the strength of the deviation in mag-
netic field at each voxel. This field deviation is proportional to the amount of
distortion, which principally occurs along the phase encode direction for EPI
data. Therefore, by calculating the magnitude of the distortion, the image can
be transformed by “warping” the distorted voxel positions to the nondis-
torted voxel positions.

It is also necessary to correct the intensity of unwarped voxels, as the original
geometric distortion affects intensities: compressed regions get brighter and
expanded regions get darker. By applying the concept of “conservation of
intensity,” an unwarped image can be intensity-corrected. However, there can
also be a severe loss of signal associated with magnetic field inhomogeneities,
due to local gradients causing spin dephasing; it is not a straightforward mat-
ter to recover this signal loss. The above considerations should ideally be taken
into account when generating statistical inference during fMRI analysis, as the
spatio-temporal noise structure of the images is affected by both the original
distortion and the correction methods.

The resulting images then contain minimal distortion and can be better
aligned with images taken with other, less distorting sequences (such as a
T1-weighted structural image). Figure 8.5 shows an example of unwarping,
using the field map shown in Figure 8.4; on the left is the original distorted
image, and on the right is the corrected image. Note the large effect that the
unwarping has on the frontal lobe. Using such geometric distortion correction,
any later combination of fMRI statistics with either the same subject’s high res-
olution scan or with other subjects’ data will give more accurate results.

 

FIGURE 8.4

 

A field map showing typical static magnetic field vari-
ations inside the brain. Dark areas represent fields less
than the external field, while bright areas represent
fields higher than the external one. The total range
corresponds to approximately 

 

�

 

0.5 ppm.
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Finally, there is the issue of interactions between head motion and geomet-
ric distortion—any head motion relative to the magnetic field will modulate
the geometric distortions over time, relative to the head images. Thus, the
perfect motion correction scheme would not only model rigid and nonrigid
motion and slice-timing effects, but would also integrate geometric distortion
modelling into the corrections.

 

8.4 Structural Registration

 

Once an activation map has been obtained, the next stage in fMRI analysis is
to find out more about the nature of the activation, especially its spatial loca-
tion. The activation map shares the same coordinate system as the motion-
corrected raw functional images, but since these show a minimal amount of
anatomical detail it is useful to register the raw functional image with
another, more informative image.

Registration of the raw functional image to another image allows the infor-
mation at corresponding physical locations to be compared, effectively com-
bining the information contained in both. For instance, the location of an
activation can be compared to the anatomy by registering the raw functional
image to an anatomical scan of that individual. Similarly, the raw functional
image can be registered to a standard template in order to assign common
coordinates (such as those defined by Talairach and Tournoux

 

14

 

). Alternatively,
the fMRI results from one subject can be registered to those of other subjects
for multisubject statistical analysis. All of these applications will be discussed
in the following sections.

 

8.4.1 Functional to Anatomical

 

The simplest application of registration for an activation map is to register it
with an anatomical (structural) image of the same subject. This involves some

 

FIGURE 8.5

 

An example application of the unwarping transformation to remove geometric distortion.
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or all of the following steps:

1. Preprocess one of the motion-corrected raw functional images, cor-
recting for distortion (if not already done), removing bias field
and

 

�

 

or nonbrain structures
2. Preprocess a structural image (of the same subject) to remove bias

field and

 

�

 

or nonbrain structures
3. Register the raw functional image with the structural image
4. Apply the transformation found in the previous step to the activa-

tion image

Note that the raw functional image is registered to the structural image
rather than the activation image itself. This is because the activation image
only contains color “blobs” of activation (see Color Figure 8.6) which do not
resemble a brain, so it is unsuitable for direct registration. However, since it
shares the same coordinate system as the raw functional image, it can be
transformed to the new coordinate system using the same transformation as
estimated for the raw functional image.

This registration is intrasubject but intermodality. Therefore, a low DOF
transformation (e.g., affine or affine plus restricted nonlinear registration,
such as a few low frequency spatial basis functions) can normally be used,
and is in fact desirable, since the resolution and contrast are poor in the EPI
images, making them unsuitable for less restrained high DOF nonlinear
registrations.

Figure 8.6 shows the results of an experiment in which both visual and
auditory stimulation were applied. Because the two stimulation types
were applied with different timings, statistical analysis can separate acti-
vation due to visual stimulation (red-yellow areas) from activation due to
auditory stimulation (blue). The top row shows several consecutive slices
from the original data with activation overlaid. This is the original resolu-
tion of the fMRI data. However, since the anatomical detail in the raw
functional images is poor, it is useful to render the activation (resampled
to high resolution after registration, as described above) onto the subject’s
high resolution structural image. This greatly assists in locating the pre-
cise anatomical regions of the activations, as shown in two example slices
in the bottom row of the figure.

 

8.4.2 Functional to Standard Template

 

Another common application of registration in fMRI is the registering of
activation images with a template in order to assign standard coordinates.
This topic is treated in considerable detail in Chapter 14. These standard
coordinates are particularly useful, as they allow the spatial locations of
the activations to be reported and interpreted in a consistent, objective
way. (An example of a standard coordinate system is the one proposed by
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Talairach and Tournoux.

 

14

 

) Also, if a template coordinate system is associ-
ated with atlas information such as coordinate-dependent brain structure
labels (e.g., “cerebellum”) or functional labels (e.g., “visual area V1”), this
allows automatic estimation of which brain areas have been activated.
However, due to subject-subject variability and registration errors, this
type of activation reporting is generally less safe than looking “by eye” at
the combined activation and same-subject high resolution images,
described in the previous section.

This type of registration is both an intersubject and intermodality problem.
However, for fMRI, the problem can be broken down into three stages:

1. Register the raw functional image with the structural image (as
above)

2. Register the structural image with the template
3. Combine the two transforms and apply to the original functional

 

�

 

activation images

The reason for using a two-step registration with the structural image as
the intermediary, rather than a one-step registration of the raw functional
image directly to the template, is that functional images typically have poor
anatomical detail, as the sequence is tuned to be fast and give good bold con-
trast. This, together with the fact that the raw functional images are usually
low resolution, means that registrations with the template are often not very
accurate, especially when large DOF transformations are used. However,
when registering with the structural image of the same subject, a low DOF trans-
formation is sufficient (usually 6 to 12 DOF), as the anatomy should be exactly
the same (provided geometric scanning distortions are minimized). The struc-
tural image, which has higher resolution and better anatomical contrast, can then
be registered to the template with a high DOF transformation (12 DOF or more).
This allows a good match to be found despite the difference in anatomy between
the individual and the template, since there is sufficient detail for the registration
to utilize in the structural images.

Finally, the reason the two transforms are combined in the last step into a
single transform (which takes functional data into template space) rather than
applying two separate transforms is that any errors due to interpolation then
occur only once rather than twice. This transformation is applied to statistical
activation maps (which are originally in the same coordinate system as the
functional image) so that they can be combined with structural information
in standard (template) space; this allows the locations of activation sites to be
reported in this standard space.

 

8.4.3 Group Analysis

 

To answer many questions about brain function, it is common to ask about acti-
vation in a group of subjects rather than in an individual. This may be in order
to increase SNR, as the amount of data is increased, or, more likely, for the
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results to be more applicable to the population in general. In addition, it is com-
mon to use two different groups to contrast behavior, such as schizophrenics
and healthy volunteers. In either case, combining results for a group analysis
requires that the results from each individual be registered to a common space.

The standard image used for this registration can either be a selected mem-
ber of the group, some group average, or a general template (like a Talairach-
space template). Once this standard image is chosen, each of the individuals’
structural images are registered to the standard, and then the activation
results transformed into this space. All activation maps are then in the same
coordinate system, and the locations, sizes, and statistical values of the activa-
tions can be compared across or between groups.

 

8.5 Conclusion

 

fMRI is a powerful, noninvasive imaging technique for investigating brain
function. Registration plays a very important part in the analysis of fMRI
experiments. First, it is used for correction of subject motion during the scan-
ning sequence. This application is critical for avoiding detection of false,
motion-related activations, which can be considerable even when the motion
is subvoxel. Second, registration is used after statistical analysis to register
the activation map to individual structural scans or standard spaces like
Talairach space.

Since the raw functional images are tuned to be fast and give good BOLD
contrast, they tend to have relatively low spatial resolution (compared to ana-
tomical images) and poor anatomical contrast. Consequently, registration
involving these images is an important and challenging task that has consid-
erable scope for research into new methods as well as for improving and
extending the existing methods.
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9.1 Introduction

 

Positron emission tomography (PET) and magnetic resonance imaging (MRI)
are prominent examples of functional and morphological imaging modalities,
respectively. The imaging concepts of PET and MRI are quite different, as are the
images. MRI and PET are useful in conjunction precisely because they are com-
plementary. While PET is able to provide information about a specific function

 

* Part of this work was done while the author was at the Max-Planck Institute of Neurological
Research, Cologne, Germany.
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such as cerebral blood flow or the density of a receptor in a certain  area, MRI
defines different structures or tissue types, and thus provides information
about morphology and the topology of structures. Both imaging modalities
are useful for clinical studies as well as for basic scientific investigations.

Once the respective images from PET and MRI have been realigned and
registered, they can be fused for an integrated display, offering the opportu-
nity to delineate function and morphology at the same time. In addition,
enhanced display options can be applied to generate three-dimensionally
rendered images, like the surface of the human cortex (extracted from the MR
images) with activated sites (extracted from the PET images) superimposed.

 

1

 

The clinical applications of PET-MRI registration will be discussed in this
chapter with a focus on practical issues, such as methods and procedures for
performing image registration with PET and MRI. Related subject matter is
treated in a complementary manner in Chapter 11. The relevant question is
which techniques and protocols have been shown to be applicable in a clini-
cal setting with its specific requirements on robustness, practicability, and
patient handling. While image registration has been an essential and, hence,
accepted step in the analysis of multimodal brain images, especially for
research purposes, only a relatively small number of publications deal with
applications to other parts of the body. Limitations experienced during
attempts to register nonbrain images will be outlined, as well as suggested
procedures for harnessing the advantages of image registration to support
the decision making process in a clinic before the start of therapy. Before
images from PET and MRI are discussed in detail within the framework of
image registration, the most important properties of the images from both
modalities are summarized. 

 

9.2 Properties of PET Images

 

Positron emission tomography employs the main features of tracer tech-
niques developed to study the underlying mechanisms of physiological and
biochemical processes in a living organism (see also Chapter 11). Labeling is
obtained by exchanging one of the tracer molecule’s atoms by its radioactive
analogue. The radioactively labeled substance is injected intravenously and
can be traced through the body using external detectors. In the case of PET,
the tracer is labeled with an isotope that emits a positron. Such isotopes are
available for a number of biologically relevant atoms, namely oxygen (as
O-15, t
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 2.05 min), carbon (as C-11, t
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 20.4 min), and nitrogen (as N-13,
t
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10 min). In addition, fluorine (F-18, t
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=

 

 109.7 min) can be used to replace
an OH-group in a molecule. Labeling with a radioactive nuclide allows the syn-
thesis of specific tracers, which are used to determine, for example, cerebral
blood flow or glucose consumption in the human brain. Hence, PET is repre-
sentative of a functional imaging modality, and the primary interest in the
development of PET was to quantify the three-dimensional distribution of
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the radioactive tracer with subsequent interpretation in a framework of phys-
iological models.

The physical phenomenon underlying the positron emission limits the res-
olution of PET principally to 2 to 3 mm. During practical applications of PET
imaging, the resolution is further reduced due to the limited detector size and
the smoothing applied during image reconstruction. The latter is necessary
to maintain sufficient signal and limit the influence of statistical noise. For
further details the reader is referred to excellent reviews (see, for example,
Eriksson et al.

 

2

 

) and to Chapter  5 of this book for a discussion on the influ-
ence of scanner errors.

Image registration most often relies on specific features detectable in the
images, i.e., characteristic tracer uptake patterns in an organ or part of the
human body. This is especially important when retrospective registration
techniques are employed. PET images are stored with standard image orien-
tation transverse to the patient’s head-foot axis. A pixel represents a measure-
ment of radioactivity concentration at a particular position inside the field of
view (i.e., the volume covered by the detector system). These pixel values can
be related to a physiological variable by means of an appropriate model. Usu-
ally, the radioactive tracer does not have a uniform distribution but shows a
tracer-dependent-specific pattern with increased uptake, for instance, in the
brain’s gray matter compared to white matter, or in the heart compared to
lung tissue. Different physiological processes in various organs can be inves-
tigated, such as the distribution of blood flow, oxygen utilization, protein
synthesis, receptor binding, or glucose consumption. For patients with
pathologies like tumors or areas of reduced perfusion due to infarction, these
uptake patterns will deviate from those of normal subjects, a fact which is uti-
lized to draw diagnoses. It must be pointed out, however, that pathologies
like metastases may  be missed in cases where they are not delineated from
surrounding normal tissue due to similar activity concentration.

 

3

 

From the first images produced with PET, it was obvious that PET images
did not show details of anatomical structures with high resolution, if at all.
This is even true for the brain when using

 

18

 

 F-FDG (2-[

 

 18

 

F]-fluoro-2-deoxy-
D-glucose) to determine the local glucose consumption. With FDG, PET
images show patterns with considerable resemblance to the underlying
structures known from anatomy as shown in Figure 9.1. This fact was also
explored in creating a registered brain atlas based on PET and MR images.

 

4

 

There is pronounced uptake in gray matter structures compared to white
matter. High uptake in the cortex, the prominent structure, with its typical
irregular folding, marks the outline of the brain’s surface and hence, with its
easily recognizable substructures, establishes a collection of natural internal
landmarks. Other important landmarks can also be identified in the central
brain and correlated to anatomical structures. Similar observations can be
made with tracers of cerebral blood flow.

The identification of distinct anatomical structures or landmarks can be
much more difficult in cases when the tracer used during PET studies only
exhibits focal uptake in a smaller part of the imaged volume. Figure 9.2 (top)
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shows such an example in which C-11-methionine was used to detect increased
protein synthesis indicating areas where tumor tissue develops. Compared
with the tumor region, C-11-methionine uptake in the remaining brain tissue is
considerably lower. There are no clear outlines of the cortex or other structures
as with FDG, rendering the identification of landmarks more difficult.

A similar situation is found using 6-[

 

18

 

F]-fluoro-L-DOPA to study the pre-
synaptic dopaminergic system. There is a clear concentration of the tracer accu-
mulation in the center structures of the brain (i.e., striatum) as shown in Figure 9.2
(bottom), with some nonspecific binding of the tracer in the remaining brain
tissue. Again, the outline of the outer brain surface is rather limited and not as

 

FIGURE 9.1

 

Example of PET-FDG brain images shown as transverse, coronal, and sagittal cuts. Although
these are primarily functional tomograms, some anatomical structures are visible and this
facilitates the application of automated and visual interactive registration techniques.

 

FIGURE 9.2 

 

Example of C-11-Methionine (top) and F-18-DOPA (bottom) PET studies. Compared to
Figure 9.1, much less anatomical detail is visible.  These images are, however, extremely
helpful for delineating pathologic areas caused by tumors (arrow, top row) or the evaluation
of the dopaminergic system (arrow, bottom row). This type of image is a challenge for image
registration algorithms, but can have high diagnostic utility.
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distinct as with FDG. However, for many patients there is also tracer uptake in
the skin, providing an important landmark which can be exploited during the
registration process. Despite the limitations outlined above, techniques are
available to cope with difficulties in correlating brain images from PET with
those from MRI, as will be discussed.

For PET images from nonbrain regions (neck, thorax, heart, etc.) the task is
even more complicated in regard to identification of anatomical structures.
The most widely used tracer is FDG, since in oncological studies where tumors
or metastases are searched for, this tracer yields the most valuable results. It has
been shown, however, that reliability in tumor detection can be improved by
image registration with CT or MRI.

 

5

 

 The reason lies in the discriminative
power between normal and pathological uptake, with clues coming from
functional imaging with PET and anatomical confirmation from MRI that
high PET tracer uptake in a particular structure should be interpreted as nor-
mal or pathologic. Color Figure 9.3* shows an example of a PET study with
some focal uptake in the thorax. The precise localization cannot be deduced
without anatomical correlation. There are further limitations in registration of
PET and MR images from regions other than the brain, because the thorax or
the abdomen cannot be regarded as rigid bodies. Special acquisition protocols
that might help in these cases and other related issues are discussed below.

 

9.3 Properties of Magnetic Resonance Images

 

Magnetic Resonance Imaging (MRI) is a primary diagnostic tool for generat-
ing structural images of the living human body. In contrast to PET, it does not
involve ionizing radiation but instead applies electromagnetic radiation with
wavelength of approximately 0.3 m, hence with much lower energy than that
used with x-ray computed tomography (CT) or emission tomography like
PET. For obtaining tomograms, the nuclear magnetic resonance of the hydro-
gen nuclei (i.e., protons) is mainly used because of its intrinsic sensitivity
combined with the fact that the human body is primarily composed of H

 

2

 

O.
Together these ensure a sufficiently strong signal. The key to MR imaging is
the design of pulse sequences, which are applied in order to obtain images
with desired contrast. A long list of contributions from many researchers

 

6

 

 with
ever more refined pulse sequences and detection techniques has led to faster
image acquisition and reconstruction, providing high-resolution images of
the brain or other parts of the body, with a wide variety of tissue contrasts. 

An example of brain images of the same anatomy showing different con-
trast is given in Figure 9.4. Here the selection of appropriate echo time (TE)
and repetition time (TR) changes the sequence’s sensitivity to tissue properties
such as T1 and T2 relaxation times, producing a differentiation among cere-
bral gray matter, white matter, and cerebral spinal fluid (CSF), respectively.

 

* Color Figures follow page 22.
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The first image in Figure 9.4 is T1-weighted and shows a high resemblance to
a histological section and, therefore, is the first choice to obtain images with
predominantly anatomical information. T2-weighted images (the second
image in Figure 9.4), however, are preferred in order to detect subtle pathol-
ogies because they exhibit changes in intensity in abnormal tissues, espe-
cially in brain images. In nonbrain imaging, many pathologies are detected
because of their abnormal intensity pattern or deviation from normal anat-
omy. In contrast to PET imaging, MRI monitors tumors by size and structural
changes rather than by metabolic activity.

 

3

 

With modern magnetic resonance imaging systems, multiple planes at arbi-
trary orientations can be acquired (transverse, coronal, sagittal, and oblique
orientation), permitting an optimal positioning of slices relative to a particular
organ or region of the body. This feature is not available with most of the other
imaging techniques like PET or CT, whose primary images come in transverse
orientation. Other orientations are available only by means of interpolation
and reslicing of the primary images. Another predominant feature of MR
images is their much higher resolution compared with PET images. This
allows highly detailed morphological information to be obtained.

 

9.4 Problems and Solutions in MRI-PET Registration

 

9.4.1 General Considerations for Accurate Registration 
of MR and PET Images

 

In order to successfully perform MRI-PET registration, some specific features
of each modality should be borne in mind, since a number of requirements
for successful image registration procedures have to be considered. These
include, among others, good image quality (resolution, contrast, no artifacts)

 

FIGURE 9.4

 

Example of T1 (left) and T2 (right) weighted MR images. There is an obvious difference in the
contrast between these images. The left image is preferred for image registration since it shows
more  anatomical detail and hence establishes the basis for functional-anatomical correlation.
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with fields of view providing sufficient coverage of the relevant part of the
body in both image sets. MR images are usually reconstructed to 256 

 

�

 

 256 pixel
matrices with pixel size of 1 mm or less and with variable slice thickness
between 1 and 10 mm, depending on the organ of investigation. Often matri-
ces of 512 

 

�

 

 512 pixels are available. In addition, the image resolution (1 mm
or less) which is primarily not hardware-dependent, may be optimized for a
specific task by selecting the most appropriate pulse sequence. For clinical
purposes often only a rather limited number of slices is acquired, so that the
total measurement time is kept short, partly with the aim of avoiding  the risk
of motion artifacts. In these cases the slice thickness is chosen to be 4 to 6 mm
for brain studies and 4 to 8 mm for nonbrain studies. The volume effectively
covered by all images can be adjusted by varying the slice thickness or number
of slices acquired. Also, the image orientation can be selected by the operator
and adapted to obtain the best imaging result. Transverse, coronal, sagittal, and
even oblique slices can be obtained. For brain studies, transverse orientation is
often preferred, whereas for the thorax mostly coronal images are acquired.

Most of these properties are quite different in PET imaging: PET images are
typically reconstructed into matrices with 128 

 

�

 

 128 pixels of size of 2 to 4 mm
or even greater, with resolution of 4 to 8 mm, depending on the type of scan-
ner. The slice thickness and number of slices are generally defined by the
hardware. Also, the primary image orientation is restricted to transverse slices.
The axial field of view of modern PET scanners is rather limited (16 to 25 cm),
and so most of the systems offer the option to acquire a series of scans, each
at a different offset of the patient bed relative to the scanner gantry. Studies
with multiple bed positions thus provide image sets that may even cover the
whole body, but are frequently limited to only 3 to 5 sequential positions cov-
ering up to 80 cm of the body.

The fact that PET and MR images contain different information and have
different resolution, representation, and orientation complicates  their com-
parison and interpretation. If accurate spatial registration is to be performed,
pixel size and interslice distance have to be precisely known prior to starting
the registration process. (It should be noted that a large pixel size leads to
images prone to higher partial volume effect, i.e., averaging of signal intensi-
ties across a larger volume, leading to images with lower contrast.) It may
also be necessary to correct possible geometrical distortions introduced by
the imaging devices as described in Chapter 5. Another prerequisite is that
the primary orientation of the images should be similar. Consider the case of
coronal MR images with good in-plane resolution (pixel size 0.5 mm) but
with a large slice thickness (6 mm). MR images with these properties are cer-
tainly more difficult to register to PET images, which have nearly isotropic
resolution of 4 to 5 mm, than using a volumetric MR image set of 1 mm pixel
size in all dimensions, or transverse images instead of coronal. Since the reg-
istration procedure usually involves reslicing of an image set by interpola-
tion, the quality of the original coronal MR images would certainly be
degraded, which might cause problems for certain image registration algo-
rithms or for sufficient accuracy of the registration.
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There also has to be sufficient commonality in the parts of the body or
organ covered by the field of view of both modalities. Sometimes image sets
have to be reformatted to obtain the most appropriate range of both image
sets. This might, for instance, be the case when registering a multiple bed
PET study covering the whole thorax with an MR image set which covers
only a certain fraction of the PET volume. In brain imaging there might be
excess slices acquired with MRI containing part of the neck, which is not
covered with PET.

Artifacts due to unintentional patient movement cause one of the most
severe problems in registration of PET and MR images. The signatures of
motion artifacts are different for PET and MRI. In PET, patient movement
between different steps of an acquisition protocol might, in the worst case,
corrupt the images completely. Also, certain corrective steps like the correc-
tion for photon absorption based on a separate measurement, but assuming
identical patient positioning, might no longer be feasible (see also Chapter 5).
Patient movement of a lesser degree will cause a loss in contrast and reso-
lution of smaller areas with enhanced intensity amplitudes of the activity
distribution. A solution to this problem often applied is the splitting of the
acquisition into smaller time frames, with subsequent registration and
summation of individual frames and exclusion of frames where motion is
evident.

The situation with motion artifacts in MR imaging is different, as it
depends on the pulse sequence as to which artifacts are visible and what
effect they might have. If slices are acquired sequentially, as in certain rapid
imaging  sequences, and the subject moves during imaging, the spatial rela-
tionship between the individual slices will be lost and the data cannot be
regarded as a complete regular volume anymore. With fast, true 3D gradi-
ent echo sequences that sample a whole volume, any motion during the
acquisition will tend to produce artifacts throughout the image volume,
which may make the image unusable for registration. One of the pertinent
motion artifacts, occurring frequently during thorax scans, is blurring and
motion-induced ‘‘ghosting’’ caused by respiratory motion of the chest.
Many MR acquisition and postprocessing techniques have been proposed
to deal with the motion problem, but motion artifact remains an important
source of error in the many clinical images. Therefore, one of the main
efforts in designing new sequences is to achieve fast and short acquisitions
covering the whole volume to be imaged.

In a clinical setting one often has to deal with a small number of slices
arising from the fact that the scanning time cannot be easily prolonged
without the risk of motion artifacts. This results in a tradeoff between a
lower number of slices, (i.e., coarser sampling of the volume) and less
motion artifacts, or very high sampling density with many slices but the
risk of motion artifacts. Under clinical conditions the intention is to
assure detection and precise localization of pathologies, rather than pro-
viding high-resolution morphological imaging with a large number of
thin slices.
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9.4.2 Techniques and Procedures Used in Clinical Applications

 

During the course of developing solutions to the problem of image registration
many techniques have been presented, some of which are suitable for applica-
tion only in very specific situations, i.e., connected to specific hardware, imple-
mented in an exotic computing environment, or requiring very high
performance computer systems. Hence, not all techniques developed to regis-
ter medical images are currently optimal for usage in a clinical setting. If image
registration is to be applied on a routine basis during the diagnostic decision-
making process, the techniques employed have to be robust against imaging
artifacts, reliable, fast, easy to use, and at least partly automated, i.e., avoiding
too much user interaction and with little or no preprocessing. As will be dis-
cussed later, the technique to be chosen depends on the specific application.
The main distinction concerning the techniques applied in a clinically ori-
ented environment is again between handling brain and extracranial images.
Furthermore, it is the specific application that defines the demand on precision
and accuracy. For example, radiation therapy planning requires different meth-
ods than neuroscience research and development applications. Other aspects
of presurgical diagnostics need a much higher accuracy than image correlation
in the thorax would reasonably ask for. The former application requires an
accuracy of about 1 mm or less. Based on the results from the registration step,
a stereotactic intervention (the placing of a radioactive implant) is performed
or the site and path of a biopsy needle is defined. A failure to accurately register
the respective studies could cause unwanted damage of healthy  tissue or vas-
cular structures. In the thorax, the circumstances of image acquisition in sep-
arate scanners, using different patient beds with a different shape, and the risk
of respiratory artifacts make it much more difficult to achieve an accuracy of
1 mm or less.

From a clinical point of view the techniques useful for MRI-PET registration
can be classified into two main groups.
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 Some of these have been applied also to
work with other types of tomographic modalities, whereas other registration
techniques are dedicated developments for the registration of PET to MRI. The
intention of most of these developments has been to register brain images. Unless
otherwise stated, the following explanations will assume these types of images.

The first group of registration techniques represents prospective proce-
dures designed with the intention of performing both studies (PET and MRI)
following a strict dedicated protocol. An example is the application of a ster-
eotactic head frame

 

8

 

 prepared with appropriate markers visible in both
modalities, and designed from materials like wood, in order to be applicable
for both PET and MRI. A variety of head holders or face masks have been
considered to establish a common coordinate system for both studies (e.g.,
Bettinardi et al.

 

9

 

). These prospective techniques focus mainly on brain imag-
ing, although there have also been attempts to develop similar utilities for
nonbrain imaging. However, these approaches tend to be demanding on both
subject and operator. Depending on the patient, a face mask might not be
well tolerated. Since face masks are mounted externally to the patient’s head
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and skin, the exact placement of the devices during the imaging session has
to be carefully maintained, because subsequent processing is likely to assume
a fixed relationship of the marker positions with respect to the patient’s head
or brain. This can be problematic to achieve.

An advantage of using external markers with PET is that the markers are
directly visible and so do not depend on the activity distribution of a partic-
ular tracer. As pointed out previously, PET images may display  abnormal
focal uptake  with major anatomical landmarks much less pronounced.
However, external markers can introduce imaging artifacts in the reconstruc-
tion, especially with filtered backprojection, if they have a relatively high
radioactivity concentration compared to the activity of the normal tissue.

The application of external marker devices in MRI may be hampered by the
fact that these devices could interfere with the standard head coils necessary
for imaging. In addition, external markers are usually placed some distance from
the head, where possible distortions might be largest. In any case, the position of
the markers has to be accurately deduced from the images, requiring strict com-
pliance with the imaging protocol to be adopted. The field of view must be
large enough for the markers to be included in both scans, and the images
must have sufficient sampling in all three dimensions to accurately locate the
markers. This might be in conflict with the standard protocols, especially
with MRI, when the slice thickness is usually preset to a larger value (4 to
6 mm) for practical reasons. Registration algorithms based on point markers
are further discussed in Chapter 3, Section 3.4.1 and Chapter 6.

The second group of registration algorithms encompasses a variety of post-
acquisition techniques with less stringent requirements in patient handling.
These retrospective techniques, in general, rely solely on the information con-
tent within the images, with each pixel representing an intensity value or a
physiological parameter at each particular location inside the image volume.
Although both measurements (with PET and MRI) are performed indepen-
dently (i.e., no special hardware enforces identical patient positioning), it is
advisable to design the acquisition protocol appropriately in order to ease the
subsequent registration step. This includes the proper selection of primary
image orientation, pixel size, and slice thickness, whenever this is at the oper-
ator’s discretion (see also Section 9.4.1 for further details).

Two subgroups of retrospective algorithms can be identified. One com-
prises techniques which perform the registration in an automated manner
with the optimization step to find the best transformation based on similarity
measures described in the literature (see Studholme et al.

 

10

 

 for a recent review
and discussion, and Chapters 2 and 3). Utilizing a similarity measure assumes
that the images to be registered bear sufficient similarity to each other. A simi-
larity can be based on a wide variety of properties, which need not be linearly
correlated. Gray matter structures with medium intensity values on T1-
weighted MR images are bound to correlate with areas of higher uptake in
FDG PET images, while white matter structures (with higher intensity values
on this type of MRI) correlate with relatively lower values in the PET images.
This relation does not hold any longer when other tracers with a different
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uptake pattern are used, or when the MR pulse sequence is altered. Hence, the
similarity measure has to be very robust but still sophisticated enough to cope
with this problem, i.e., detect similarity without making strict assumptions
about the intensity distribution in the two modalities. Other approaches
explore geometrical features, such as outlines of surfaces of the head or the
brain, and minimize the distance between contours extracted from the two
types of image.
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 To do this, the images should allow a precise definition of sur-
faces; this may not be possible for certain types of images which do not allow
a clear structural definition.

The alternative subgroup encompasses interactive techniques which incor-
porate the selection of multiple internal landmarks, the interactive definition of
contours, or a combination of both.

 

12

 

 Similar prerequisites regarding image ori-
entation, image quality, etc. apply for interactive techniques as for automated
registration methods. Landmark-based techniques assume the ability to define
intrinsic landmarks in both image sets to be registered. Again, the situation
tends to be more difficult for PET images with tracers other than FDG. As
shown in Figure 9.2, images of these types pose a challenge to the operator,
with the task of unambiguously identifying landmarks. When suitable features
can be identified, techniques utilizing overlay and exchange of contours have
been shown to be very robust for detecting even subtle misregistrations.
During interactive registration the operator will use visual criteria like matching
of contours around morphological structures. Multiple simultaneously con-
trolled cursors can be applied in three dimensions to check proper alignment
of isolated intrinsic landmarks. Color Figure 9.5* shows an example of a typical
display used during interactive registration. Figure 9.5a displays the initial
state with unregistered studies and Color Figure 9.5b shows the result after
registration has been completed. It also provides an impression of what can
be achieved with image registration and what forms the basis for further
image analysis.

The advantage of interactive techniques is that they are widely applicable in
various situations combining imaging modalities of different types and with
arbitrary combinations. Also, they are not restricted to brain images, but can
be applied to whole-body studies as well. Hybrid procedures are also available
which draw on the strengths of  both automated and interactive techniques.

 

13

 

9.5 Discussion of Applications in a Clinical Setting

 

9.5.1 Introductory Remarks; Definitions

 

Image registration of PET and MRI is feasible and provides important additional
information often not available from a single modality alone. To date, most
applications have taken place under research protocols. There is, however, also

 

* Color Figures follow page 22.
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an emerging trend towards accepting image registration for clinical conditions.
In the scientific literature there exist different approaches both to combining
images and to the interpretation of what is technically satisfactory. Therefore
some preliminary definitions are required.

The terms 

 

combination

 

 and 

 

correlation

 

 of images are often used in the sense
that the images have entered a combined analysis. This could mean that both
studies were simply available either on radiological film or digitally on a
computer network, but were not manipulated by any computer program.
The physician mentally has to fuse the images and draw conclusions based
on the visual interpretation of the signals evident in the images. The terms

 

registration

 

, 

 

matching

 

, 

 

alignment,

 

 and (sometimes) 

 

fusion

 

 are generally used to
signify  that data sets were processed to obtain images that correspond spa-
tially, i.e., on a pixel-by-pixel basis. Technically, this is most frequently solved
by applying computerized algorithms and, thus, it requires the images to be
readily available in digital form. Once the images are aligned, they can be
fused into a single display by various techniques (overlay, checkerboard
fusion, etc. — see Chapter 4).

 

9.5.2 Registration of PET and MR Images of the Brain

 

To date PET-MR image registration has been used mostly for brain images.
Because of the lack of anatomical details in the images provided by the early
PET systems, which had very poor spatial resolution, any aid from morpho-
logical images in defining the underlying anatomy was welcome. Image reg-
istration has entered clinical application in quite specialized areas such as
presurgical workup of brain tumors, in computerized treatment planning for
biopsies, open surgery, or radiation therapy, and in follow-up studies after
surgery or treatment. Although not performed for strict clinical purposes,
mapping of human brain function as visualized by O-15-water PET definitely
required registration of PET and MR images. In fact, such activation studies
may be part of the presurgical diagnosis of a patient with a tumor, for
instance, in the neighborhood of areas responsible for language generation.
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Figure 9.6 shows an example for MRI-PET registration employing a combina-
tion of retrospective techniques (interactive and automated).

 

9.5.3 Registration of Extracranial PET and MR Images

 

While the task of defining an accurate and robust protocol for registration
of brain images appears relatively straightforward, the situation for other
images seems to be more difficult. Usually a rigid-body transformation is
the simplest approach, but certainly not the best and most accurate for
body images, where exact repositioning of patients in the respective scan-
ners is limited and motion caused by the heart cycle and by breathing may
complicate the application of algorithms successfully introduced for brain
images. Yet, it has been frequently noted in the literature that combining the
signals from both PET and MRI may improve the interpretation of the findings
and increase sensitivity and specificity in comparison to analyzing the images
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of both modalities independently.

 

5

 

 Typical examples in which  different levels
of technical effort have been employed for comparing images are listed below,
classified according to the definitions outlined in Section 9.5.1. 

Basic combination or correlation has been performed by Braams et al.,

 

3

 

Laubenbacher et al.

 

15

 

 and Jabour et al.

 

16

 

 for extracranial head and neck carcino-
mas. The authors pointed out the definite advantage in staging the tumors
although no full spatial registration was performed. In spite of the unavailabil-
ity of full integration and fusion, simple visual comparison was found to be of
benefit for patient treatment. Ratib et al.

 

17

 

 focused on cardiac images. They did
not perform exact registration, but argued that the generation of standard
views based on planes oriented according to the cardiac geometry can provide
a practical means to compare the images with reasonable accuracy.

Only a few groups have dealt with the problem of exact registration, (i.e., pre-
cise computerized positional matching) of PET and MRI extracranial images.
Compared to neurological imaging of the brain, the exact registration of cardiac
images is hampered because the heart is a nonrigid moving organ. Possible pro-
cedures for multimodal cardiac imaging have been reviewed by Gilardi et al.,

 

18

 

among them a protocol suggested by Sinha et al.,

 

19

 

 who performed PET and

 

FIGURE 9.6

 

Result from MRI-PET registration employing automated and interactive techniques. Top
row: PET-FDG study with overlaid contours derived from MRI (bottom) after interactive
realignment. Middle row: result from a O-15-water PET activation study shown within the
contours of the PET-FDG study after automated registration via similarity measures. Bottom
row: MRI study with overlaid contours derived from activation study after interactive
registration via mean image from activation study.
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MRI registration of gated images by transforming to reference images acquired
in the same temporal phase. They employed a surface- fitting iterative tech-
nique developed by Pelizzari et al.

 

11

 

 Nekolla et al.

 

20

 

 also based their registration
technique on the heart surface extracted from both PET and MR images.

Other protocols for  registering images from head and neck,

 

21,22

 

 breast, and
parts of the abdomen

 

23

 

 employ interactive point-based registration tech-
niques,

 

21

 

 multiple interactive steps supported by reference to the normal
tracer distribution of FDG,

 

22

 

 or have relied on external and internal land-
marks. Wahl et al.

 

23

 

 used reconstructed transmission images from the PET
examination (see Chapters 5 and 11) in the registration procedure. Indeed,
Kuhl et al. had already pointed out the usefulness of transmission images for
the interpretation of emission images in 1966.

 

24

 

 Transmission data are rou-
tinely acquired in order to correct for photon absorption. The absorption
coefficients can be reconstructed into images which resemble low-resolution
x-ray CT images. Despite the relatively low resolution and the reduced
sensitivity of the 511 keV photons to small variations in tissue type and den-
sity, the images show a clear body outline and gross anatomical details, espe-
cially in the thorax. They can provide the physician with enough details to
help him orient the emission images obtained in the same examination, even
when only a few spots with high tracer uptake scattered across the imaged
volume are visible. These transmission images can provide a means to ease
registration of whole body images.

Recently, Pietrzyk et al.

 

25

 

 used transmission images during 3D rendering
processes when no complementary morphological imaging in an appropriate
orientation was available. A limitation in the combined analysis of PET emis-
sion and MR images is the absence of a body outline on most PET images. This
may be overcome by including transmission images in the analysis. Figure 9.7
shows an example of such an application for images from the head and neck
region, and Color Figure 9.8* shows an example in the thorax.

A further complication in combining PET and MR images is differences
in the shape of the patient bed and positioning. This is not a problem for
brain imaging, but is a major limitation in body imaging, where different
bed shapes can lead to different positioning of the patient’s spine. Also,
organs under study do not remain in the same position with respect to each
other once the patient has left the scanning bed or has to be moved to
another imaging modality. This is demonstrated in Figure 9.7 and Color
Figure 9.8. In each of these examples the range covered by the two imaging
modalities is different, that of the MRI being considerably smaller. Also,
as shown in Figure 9.7, the positioning of the neck may be different in the
two devices, leaving the registration with some remaining systematic
uncertainty. It has been recently shown by Theissen et al.

 

26

 

 that a carefully
designed clinical protocol can lead to successfully registered PET and MR
images even in the case of extracranial images. Special care has been taken
to assure identical positioning of arms in both modalities. This assumes that

 

* Color Figures follow page 22.
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the desire to register the data from PET and MRI was known prior to both
scans, which is not always the case. The actual registration was performed
in an interactive fashion based on the registration of PET transmission with
MR images, which were obtained as transverse slices, with subsequent
image fusion of PET emission and MR images.

 

9.6 Conclusions 

 

Registration of MR and PET images was one of the earliest applications of
medical image registration; registration of brain images has proven to be a
valuable method to enhance the diagnostic value of PET and MRI through
combined analysis. This is because MR images provide detailed information
about anatomical structures, and PET measures physiological parameters like
glucose consumption or cerebral blood flow. Image registration has already

 

FIGURE 9.7

 

Images from a head and neck study  of a patient with thyroid cancer. MR images acquired
in the transverse plane (top), PET emission images (middle), and PET transmission images
(bottom). In each row contours obtained from the PET transmission images are used as an
overlay to guide the registration process. No external markers were used. There is an
obvious difficulty in the fact that the range covered by the MRI is much less than that
covered by the PET images. Also, the differences in positioning of the neck during the two
respective studies in different devices introduce a systematic uncertainty. (Data: courtesy
of Drs. Eschner, Scheidhauer, and Theissen, Nuclear Medicine, University of Cologne).
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entered clinical protocols to support  radiation therapy or special surgical
interventions with complementary PET/MRI information. With interactive
registration techniques and automated methods based on appropriate algo-
rithms, even PET images obtained with special tracers like [

 

11

 

C]-methionine,
which contain little anatomical detail, can be combined with MRI for clinical
diagnosis or treatment planning. There are, however, many potential difficul-
ties in the registration of MR and PET brain images, and this chapter has
emphasized the importance of careful image acquisition as well as the use of
a suitable algorithm for aligning the images.

For extracranial studies, exact registration is frequently hampered by the fact
that many current algorithms employ rigid-body transformations, which can
fail when organs move between measurements or because of cardiac or respira-
tory motion. However, registration of clinically acceptable accuracy seems fea-
sible when restricted to a relatively small coverage of the body, like thorax
studies. For head and neck studies, with careful positioning in both modalities,
registration looks promising. PET transmission imaging has an interesting role
as a link between PET emission and MR images. Little effort is involved in
obtaining transmission images, since their information is needed for attenua-
tion correction of the emission images. Recent progress in nonrigid registration
algorithms, as discussed in Chapters 13 through 15 of this book, may lead to the
availability of better algorithms for extracranial MR-PET registration. Such
progress in combination with increasing availability of both PET and MRI in
clinical settings is likely to lead to widespread application of medical image reg-
istration as a vital link in maximizing the diagnostic value of these complemen-
tary modalities in the future. In the scientific realm, the improvements in
sensitivity and resolution that have been achieved for PET imaging have led to
widespread use of image registration as a core component in fusing functional
and anatomical data in single subjects. This increases study power by explicitly
accommodating individual anatomical variability directly in functional studies.

Increasing availability and reductions in costs of the computing facilities
required for image registration are also helping to stimulate more extensive
use of the technique. A critical issue in all clinical applications is the valida-
tion of proposed techniques and a clear demonstration of their utility, effi-
ciency, and cost effectiveness. The past two decades have seen extensive
development of and experimentation with candidate methods and applica-
tions. The next phase of development is likely to include commercialization
of standard packages and larger scale studies to provide the evidence neces-
sary for their adoption in clinical practice.
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10.1 Introduction

 

During the 1980s, the tomographic imaging modalities of magnetic resonance
(MR) imaging and x-ray computed tomography (CT) entered widespread clini-
cal use, especially for imaging the brain. These two modalities are based on very
different physical principles, and the images they produce have different prop-
erties. MR imaging generates images showing the distribution of protons in

 

0064_frame_C10.fm  Page 217  Wednesday, May 16, 2001  10:30 AM



 

218

 

Medical Image Registration

 

mobile molecules (water and fat), with the contrast between structures in the
images determined by the visible proton density and the relaxation times of
excited spins in the tissues and, in some cases, also by flow, diffusion, and
other parameters. X-ray CT provides a map of x-ray attenuation within the
body.

MR and CT scanners both produce images of anatomical structure, but
the images they generate look quite different. One of the most striking dif-
ferences is that cortical bone has high x-ray attenuation, so is bright in CT,
whereas cortical bone contains virtually no MR visible protons, so is black
in MR. MR images also tend to have better soft tissue contrast than CT.
When imaging the brain, for example, MR images tend to have much higher
contrast between gray matter, white matter, and cerebrospinal fluid (CSF)
than do CT images. This contrast in the MR image can be manipulated in
many ways by changing the timing and strength of the various radiofre-
quency and gradient pulses.

Although there have always been arguments for the inherent superiority of
one or the other of these modalities, it has been the case for many years that
both are considered essential in a well equipped modern hospital, because
the information they provide is complementary. As a result, patients are fre-
quently imaged with both for the purpose of diagnosis, or during the workup
for treatment. The complementary nature of MR and CT images and the reg-
ular use of both modalities to acquire images from the same patient resulted
in the combination of MR and CT images as one of the first applications of
medical image registration.

 

1–3 

 

All the early applications of MR-CT registra-
tion were within the head, and this remains the predominant application.
Early registration methods required considerable user interaction, but MR and
CT images of the head can now be registered automatically in a matter of sec-
onds or minutes.

In this chapter, the technical issues associated with acquiring MR and CT
images for registration are described, and clinical applications in which reg-
istration has been shown to have benefit are discussed. The majority of this
chapter relates to registration of MR and CT images of the head, with other
applications described in Section 10.3.4.

 

10.2 Technical Issues

 

10.2.1 Image Acquisition

 

10.2.1.1 Field of View

 

MR and CT images of a region in a patient frequently have quite different
fields of view in the direction perpendicular to the slice plane (the “through–
slice direction”). Due to the risks associated with the ionizing radiation
used in CT acquisitions, the number of slices collected is kept to a minimum.
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In MR, however, there is negligible risk associated with the acquisition, and
modern imaging provides techniques for acquiring large numbers of slices in
a short time. As a result of these differences, it is common for an MR image to
have a much larger field of view in the through-slice direction than the CT
image to which it is being registered.

Another important difference between MR and CT imaging is that,
although MR scanners can acquire images in arbitrary slice orientations, CT
scanners are limited to axial acquisitions or, by careful patient positioning
and maximum tilting of the gantry, to images of the head in the coronal plane.
It may, therefore, be desirable to align images acquired in different planes
with the two modalities; for example, to register sagittal MR images with
axial CT images. In this case, the overlapping portion of the image field of
view may be considerably smaller than either image. An example set of MR
and CT images of the head is shown in Figure 10.1.

The difference in field of view of MR and CT images and the restricted vol-
ume of overlap of the two images present considerable challenges to image
registration algorithms. In many early applications of MR-CT registration it
was essential, in order to get good registration accuracy, to acquire both images
using a similar field of view and as similar as possible a slice orientation.

 

FIGURE 10.1

 

Example MR and CT images of the head before registration. Note the difference in field of
view in the through-slice direction.
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This restricted the application of MR-CT registration to small subsets of
patients for whom the decision to register the image was made in advance of
the acquisitions, and for whom it was acceptable to alter the image acquisi-
tion for the purposes of registration. In practice, this was rarely the case out-
side a small number of centers.

In the last few years, the difficulties caused by field of view have been
reduced because of the widespread use, first, of spiral (or helical) CT scanning
and, more recently, multislice* CT scanning. This has increased the number
of slices routinely acquired. Furthermore, it is becoming more common to carry
out 3D volume acquisitions with MR. These volume images tend to have
larger fields of view than the multislice acquisitions and have approximately
isotropic resolution, although they also tend to have fewer good contrast
characteristics. As a consequence, the volume of overlap between routinely
acquired MR and CT images of the same subject tends to be larger now than
it was ten years ago. Despite changes in image acquisition, it is still necessary
for a clinically usable MR-CT registration algorithm to be able to accurately
register images with different fields of view and slice orientations.

 

10.2.1.2 Resolution

 

The in-plane resolution of CT images tends to be higher than that of MR
images, as CT images are routinely acquired with an image matrix of 512 

 

�

 

512 pixels, whereas MR images most commonly have a 256 

 

�

 

 256 image
matrix. Also, techniques used to speed up MR acquisition frequently result in
lower resolution in one in-plane direction (the phase encode direction) than
this matrix size suggests. In the through-plane direction, however, the situa-
tion is often reversed, with MR having higher through-plane resolution than
CT. The desire to minimize radiation dose in CT often results in the use of
fewer, thicker slices than are used in MR. In traditional multislice (one slice
at a time) CT acquisitions, the slice spacing can be changed part of the way
through an acquisition to minimize dose. For example, slices through the
skull base might be acquired with 3 mm slices and 3 mm slice spacing, but
slices higher in the head where less detail is required might be acquired with
5 mm slices and 5 mm slice spacing.

These resolution factors have important implications for MR-CT registration.
First, algorithms used for registration need to work with these differences in
resolution. Second, care needs to be taken when combining the registered
images, for example with a color overlay display. It is not possible to trans-
form the MR image to the coordinates of the CT scan, nor the CT image to
the coordinates of the MR scan, without degrading the resolution of the
transformed image. Given the effort put into the original data acquisition,
it seems wasteful if the registration process requires that one or another

 

* The latest generation of CT scanners can acquire about two or four slices simultaneously, rather
than acquiring multiple slices one at a time; the number of slices that can be acquired simulta-
neously is likely to increase as the technology matures over the next few years.
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image has its resolution degraded. Software for viewing the registered
images needs to take this into account by providing tools for viewing the
combined images in a variety of ways. For example, giving the user a choice
of overlaying MR on CT (or vice versa) or allowing the images to be com-
bined to form a new image that has higher resolution than either modality.

 

10.2.1.3 Image Distortion

 

A detailed discussion of scanner distortion is provided in Chapter 5. It is
worthwhile here, however, to consider the main causes of distortion in MR-CT
registration.

MR images can have distortion resulting either from errors in the gradient
systems or as a result of field inhomogeneity introduced at the boundary
between tissues with different magnetic susceptibility properties, such as
between soft tissue and air and, to a lesser extent, between soft tissue and bone.
This second type of distortion is common in the head, for example in the fron-
tal lobe of the brain near the frontal sinus or the temporal lobes of the brain
near the maxilliary and sphenoid sinuses. While methods to correct for this
distortion are available,

 

4,5

 

 they are seldom used clinically. Object-dependent
distortion in common diagnostic MR sequences (excluding echo planar
imaging) is greatest in the readout gradient direction and can be reduced, at
the expense of signal-to-noise ratio, by increasing the readout gradient
strength (which is under user control for scanners from some manufacturers).

Distortion in CT is quite different. While it is true that x-rays invariably
travel in straight lines, the same cannot be said for the patient couch. The
patient couch can bend (especially with heavy patients) as it is extended,
which can lead to a variable skew distortion with slice position. There can be
additional skew errors due to poorly calibrated gantry tilt. These skew errors
can be substantial, leading to errors of several millimeters in some parts of
the images. Another cause of distortion in spiral CT can be errors in bed
speed that lead to errors in slice spacing. Errors caused by these distortions
can be quite obvious in registered images, even if they are not at all apparent
when viewing the images on radiographic film on a light box. Figure 10.2
shows sagittally reformatted images through a CT volume before and after
correction of a 22° gantry skew. If the skew had not been corrected (for exam-
ple if the file transfer process had lost this information), or if the skew were
incorrectly corrected due to inaccuracies in the scanner’s measurement of
gantry tilt, substantial registration errors would result.

 

10.2.1.4 Patient Motion

 

Patient motion during either MR or CT acquisition makes image registration
harder. Subject motion during the acquisition of a CT slice results in streak-
ing which degrades the diagnostic quality. Patient motion between CT slice
acquisitions may not reduce the diagnostic quality of the images, but motion
either during or between slices can make accurate registration more difficult.
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If the patient changes position during the acquisition, then for all slices
acquired before the motion the subject is in one position, and for all slices
acquired after the motion the subject is in a second position. There are, there-
fore, two registration transformations between this CT acquisition and an
MR acquisition: one for each patient position. A registration algorithm
might find either transformation or some average transformation, depend-
ing on the way the algorithm works. If the patient moves multiple times dur-
ing an acquisition, this problem gets worse. In general, patient motion
during a CT acquisition will result in reduced registration accuracy; depend-
ing on the amount of movement, this misregistration could be a centimeter
or more.

Motion during MR acquisition is more complicated. If the acquisition is 2D
multislice, like most spin-echo acquisitions, it is normal for the scanner to
acquire several slices essentially simultaneously. When the desired number of
slices exceeds the number the scanner can collect simultaneously, multiple sets
of interleaves are acquired. Patient motion during an MR scan of this type can
result in one interleave being transformed with respect to the other. As in the
CT case, this will result in degraded registration accuracy, for example by
calculating a transformation that is some sort of average of the required
transformation for the patient in the two positions.

Motion during a CT acquisition or multislice MR acquisition can quite
easily be identified by reformatting the images in a perpendicular plane.

 

FIGURE 10.2

 

Reformatted sagittal view through a CT volume before (left) and after (right) correction of
a 22° gantry tilt. Any CT gantry tilt must be corrected either before or during the registration
process, or substantial errors result.
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For example, by reformatting axial images in the coronal or sagittal plane,
motion during the scan can be easily identified. Figure 10.3 shows an example
of MR image with motion between the interleaves.

Motion during a 3D volume MR acquisition will result in a ghost artifact
throughout the images which will be spread out in the phase-encoded directions
of the images. This is likely to be clear from inspection of any slice from the
volume. Ghost artifacts in 3D acquisitions can make it hard to accurately delin-
eate points or surfaces in the images, if these are needed for registration.

For imaging the head, the sort of motion that causes problems is normally
a nodding or rolling of the head, which causes a rotation. In the abdomen or
chest, breathing during the scan can cause similar problems.

For images that are to be registered, it is important to check for signs of
motion as part of the routine quality assurance process; if this is not done,
clinically significant errors may arise.

 

10.2.1.5 Data Transfer

 

An essential step prior to registration of MR and CT images is the transfer of
both images onto the same computer. With increased use of picture archiving
and communication systems (PACS), image transfer is becoming more
straightforward. There are, however, many hospitals where the relevant
scanners are not all networked, or compatible file formats or network proto-
cols are not used. In these cases, the logistics of data transfer can be compli-
cated. It may be necessary to transfer images from one computer to another
using tape or removable disks, and dedicated software may be needed to
convert the data to compatible formats prior to registration. This process can

 

FIGURE 10.3

 

In this multislice spin-echo T1-weighted MR image, slices in the axial plane of acquisition
are motion free (left), but motion during the study has resulted in jagged boundaries of
tissues in the reformatted coronal slice (right). Motion of this type might not reduce the
diagnostic value of the MR scans but can introduce unacceptably large errors into registered
volumes. It is advisable always to view reformatted MR and CT images prior to registration
to check for the presence of motion artifacts of this type.
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be very time consuming, and important data can be lost during the transfer.
For example, information in the image header about whether the patient is
prone or supine, or head first or feet first must be accurately transferred along
with the image pixel values, if the patient’s orientation within the scanner is
to be known. Errors in this process can result in the left and right sides of the
patient being flipped, which is potentially disastrous. The topic of data trans-
fer is treated in more detail in Chapter 4.

 

10.2.2 Registration Methods

 

Many algorithms have been proposed for registration of MR and CT images
of the head. As described in Chapter 3, these methods can be categorized into
those that make use of geometrical features in the images (such as points or
surfaces) and those that make use of voxel intensity values.

 

10.2.2.1 Registration Using Geometrical Features

 

The earliest techniques for registration of MR and CT images of the head
were use of point landmarks

 

1

 

 or stereotactic frames.

 

2,6,7 

 

Point landmarks can
either be point-like anatomical structures within the images visible in both
modalities

 

1,8

 

 or they can be external fiducial markers rigidly affixed to the
skull

 

9

 

 or attached to the skin.

 

10–12 

 

Whether the points are anatomical features
or external markers, the most common registration approach is to find the
rigid-body transformation that aligns the points in the least-squares sense,
as described in Chapter 3. When using external fiducial markers, the mark-
ers need to be visible in both modalities and must not introduce artifacts in
the images. Fatty markers appear very bright in MR, but are a poor choice
because protons in fat have a different resonant frequency from protons in
water; therefore they appear displaced (in the readout direction) relative to
their true position as compared to soft tissues of interest. The amount of
displacement depends on the readout gradient strength, as discussed in
Chapter 5. A mixture of MR contrast material and CT contrast material is a
better choice,

 

9

 

 but care must be taken to ensure that the markers are visible
in all MR sequences of interest. Certain types of inversion recovery
sequences can make features with particular relaxation times virtually invis-
ible in the images, and if the markers have this relaxation time, they will not
be visible in the images.

External fiducial markers rigidly attached to the skull have considerable
advantages over point-like anatomical features for registration. First, they
can appear sufficiently bright in the images to be easily identified by a user
or computer algorithm. Second, it is possible to calculate the position of
these features with an accuracy better than the voxel dimensions by using
a center of gravity calculation,

 

13

 

 provided the markers are large enough to
appear in multiple voxels in all dimensions. Skin-attached markers can be
identified accurately in the images, but they can move relative to features
of interest in the patient, which degrades the accuracy. The identification of
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point-like anatomical features is more user dependent and will depend on
the points selected. The disadvantage of bone-affixed external markers is that
they are invasive. Also, the markers tend to be in the periphery of the MR
image field of view, where distortion is likely to be greatest (see Chapter 5 for
further discussion of MR distortion). 

An alternative to using points in the image is to use surfaces.

 

3,14–16 

 

These
algorithms are described in detail in Chapter 3 and have been used for MR-CT
registration for many years. For registration of MR and CT images of the head,
the easiest surface to define in both modalities is the skin surface. The skin,
however, tends to deform between scans as a result of differences in the shape
of the head rest and head restraint between modalities. The skin surface, there-
fore, is not a very accurate surface to use. A better alternative would be either
the inner or outer table of the skull. Both these surfaces are easy to identify in
CT images, but because cortical bone is not visible in MR scans, the position of
the skull surface must be inferred from adjacent structures. For T2-weighted
MR images, CSF is bright, so the inner table of the skull can easily be found as
the boundary of bright CSF and dark cortical bone. For T1-weighted MR
images, however, CSF is dark like cortical bone, so the inner table of the skull
is difficult to identify, especially in patients with atrophic brains. In this case, an
alternative surface to delineate is the outer table of the skull. In T1-weighted
images, the fat of the scalp is bright, so the boundary between scalp and cortical
bone can be identified quite well. The problem here is that, because of the high
fat content of scalp, the scalp can appear displaced in the MR image readout
direction relative to structures of interest in the brain, just as fat-filled markers
can be displaced. Images acquired with high readout gradient strength have
less fat-water shift, so errors introduced by this can be reduced.

When registering images using surfaces, it is desirable to have as much sur-
face visible in both images as possible. Preferably, for registration of the head,
the great majority of the skull should be visible in both modalities. The skull
has quite a lot of rotation symmetry, so without sufficient coverage, surface
matching algorithms can easily converge to an incorrect local minimum. It is
possible to increase registration accuracy in these situations by combining
the use of surfaces and points.

 

16

 

10.2.2.2 Registration Using Voxel Intensity Values

 

Since the mid-1990s, fully automatic algorithms have been available for regis-
tration of MR and CT images of the head by optimizing voxel similarity mea-
sures.

 

17–22

 

 Van den Elsen proposed an algorithm based on correlation, in which
an intensity remapping algorithm was used to make the bone in CT dark, as it
is in MR.

 

17

 

 An alternative approach is to correlate ridge images extracted from
both MR and CT images, rather than the images themselves.

 

18

 

 More recently,
it has been shown that theoretical approaches such as mutual information can be
used for MR-CT registration, as well as for other registration applications.

 

19–22

 

These algorithms are all described in Chapter 3. A blind multicenter study
recently found that these measures based on voxel intensity values are more
accurate than surface-based methods for MR-CT registration.

 

23
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Care must still be taken with these voxel similarity measure techniques.
Although they can be fully automatic and have an accuracy comparable to
bone-implanted markers,

 

24

 

 they can also fail. One common cause of failure
can be that the images are poorly aligned at the start. For example, if the
patient is positioned very differently in the image volume for the two
scans, or if the images have different slice orientations (e.g., sagittal MR
and axial CT), the algorithms can fail unless a user provides a reasonably
good starting estimate. A further problem for some of these algorithms is
their sensitivity to the volume of overlap in the images. If one image has a
much larger field of view than the other, or if the overlap between images
at correct registration is a relatively small amount of the field of view of one
or both original images, the algorithms can fail, even with a very good start-
ing estimate. A solution to this problem is to use a normalized version of
mutual information, which is much less sensitive to image overlap,

 

22 

 

as
described in Chapter 3.

 

10.2.2.3 Assessing Registration Accuracy

 

In a blind study of registration accuracy, it was shown that MR and CT
images can be registered with an accuracy of better than 1 mm but algo-
rithms can fail, resulting in errors of 1 cm or more.

 

24

 

 It is, therefore, clearly
important for a method of quality assurance to be used to ensure that only
well-registered images are used for clinical decision making. The accuracy
required for most applications of MR-CT registration is about 2 mm, as nei-
ther surgery nor radiotherapy is likely to justify better accuracy. Visual
assessment of registered images can be used to check for errors, and it has
been shown that trained observers can effectively distinguish between regis-
tration errors below or above accuracy thresholds of 2 to 6 mm.

 

25

 

 The sensi-
tivity and specificity of the observers to misregistration is additionally a
function of the distribution of errors produced by the registration algorithm.
The problem of ensuring good quality registration accuracy is discussed fur-
ther in Chapter 6.

 

10.2.3 Viewing the Combined Images

 

Once the images have been registered, the combined images can be viewed in a
variety of ways. These include displaying corresponding slices side by side with
a linked cursor identifying corresponding points in the slices, using color over-
lays, or segmenting bone from the CT scan and overlaying it on the MR image to
produce a combined image that has the soft tissue contrast of MR and also con-
tains bony detail. Combined display examples are shown in Color Figure 10.4.*

It is also possible to use volume visualization techniques to render an image
that combines features from the MR and CT images. An example of a ren-
dered image is shown in Color Figure 10.5.*

 

* Color Figures follow page 22.
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10.3 Applications

 

10.3.1 Planning Surgery of the Brain and Skull Base

 

The combination of MR and CT images of the head can be useful in planning
certain types of neurosurgical and ENT surgical procedures. In particular, the
relationship between the soft tissue contrast provided by MRI and bone
detail provided by CT can be useful where a single modality is insufficient.
One example is planning procedures within the posterior fossa, where CT can
usefully provide information about the most suitable approach but MR is needed
for soft tissue detail, because beam-hardening artifacts in the CT lead to streaks
that can degrade the quality of soft tissue information. Another example appli-
cation is lesions that involve bone, such as cysts in the petrous apex and glomus
jugulare tumors, where soft tissue detail and bone contrast are both desir-
able.

 

8,26,27

 

 The clinical motivation of registration is to provide the surgeon with
an improved understanding of the relationship among the lesion, adjacent crit-
ical structures, and possible surgical approaches. This can result in better posi-
tioning of craniotomies, reduced craniotomy size, quicker operations with less
time under anesthetic, and, consequently, improved patient outcomes.

Figures 10.4 and 10.5 show example combined MR and CT images used in
planning resection of skull-base tumors. The benefits of combining multi-
modality information can be even greater for guiding surgical procedures, as
discussed in Chapter 12.

 

10.3.2 Localizing Electrodes in the Brain

 

Functional neurosurgical procedures include implantation of mat electrodes
over the surface of the brain or depth electrodes into brain parenchyma to
localize an epileptogenic region or focus by subsequent neurophysiological
recording in patients with intractable epilepsy. This is done to plan surgical
resection of the epileptogenic area of the brain. Good anatomical localization
of the electrode shown to be closest to the focus is crucial, as this will deter-
mine the success of the operation. Another type of functional neurosurgical
procedure is the implantation of electrodes into the subthalamic nucleus (a
small structure) in patients with Parkinson’s disease, to alleviate tremor.
Assessment of success of the procedure is dependent on knowing that the
electrodes are satisfactorily positioned. The localization of electrodes can be
achieved using CT scans, but the soft tissue contrast is relatively poor, and
streak artifact from the electrodes degrades the images. While MR can be
obtained with the electrodes in place, there is a potential risk from electrical
current generation from changing magnetic gradients and heating from the
use of electrical conductors while applying radiofrequency pulses with the
MR scanner. For many patients, the risk of ionizing radiation from a CT scan
may be more acceptable than the less well understood risk of an MR scan
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with electrodes in place. The electrodes also cause some distortion of the MR
image.

Figure 10.6 shows an example coronal MR slice acquired post-implantation
of depth electrodes alongside a pre-implantation MR image in the same posi-
tion with the outline of the bone and electrodes imaged in post-implantation
CT overlaid.

A difficulty in registration of pre-implantation MR scans to post-implantation
CT scans is that the brain can deform substantially between these proce-
dures,

 

28

 

 as it does during other neurosurgical procedures.

 

12,29,30

 

 Brain defor-
mation remains poorly understood, but it is likely that deformation will be
greater if a large craniotomy is required (e.g., for insertion of electrode mats
on the surface of the brain), or if large amounts of CSF are lost during a pro-
cedure. When deformation of more than about 1 mm arises, a rigid-body reg-
istration algorithm is insufficient for accurately aligning the MR and CT
images. In this case a nonrigid algorithm could be used. Nonrigid registra-
tion algorithms are described in Chapter 13, but these are primarily used for
intramodality applications; reliable nonrigid registration of images from very
different modalities has not yet been demonstrated.

 

10.3.3 Radiotherapy Planning

 

The recent development of 3D CT-based radiotherapy planning has involved
the use of multiple CT slices to show a tumor in all three dimensions.

 

31

 

 This
allows “conformal” radiotherapy to be planned, where multiple radiation
beams are used, configured as tightly as possible to the contour of a tumor to
spare adjacent potentially radiosensitive normal tissues from damage. This
technique has been of most use in the head and skull base and to preserve
brain and optic nerves, and has also been applied to the prostate. MR images
would seem ideal for the purposes of planning. The much greater soft tissue
contrast of MR allows better definition of the boundaries of a tumor from

 

FIGURE 10.6

 

A coronal slice through an MR volume dataset acquired from a patient with a motor disorder to
undergo functional surgery (note motion artifact), together with a registered post-implantation
MR scan (center) and the pre-implantation MR overlaid with high density features (bone
and electrodes) from a post-implantation CT scan (right). The combined pre-implantation
MR and CT avoids the susceptibility artifacts and potential risk to the patient resulting from
post-electrode implantation MR scanning.
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adjacent normal tissues and structures.

 

32

 

 In the brain, MR techniques such as
functional studies or perfusion imaging can also provide information about
eloquent areas of the brain which would have significant consequences for
the patient if damaged, or the physiology of an already treated tumor, which
may influence whether further treatment is required. When a tumor is irradi-
ated, the margins of the radiation beams carefully and precisely calculated on
the planning images must correspond exactly spatially to the beams used to
irradiate the patient. The images used for planning purposes must be geo-
metrically accurate or as free from distortion as possible. MR is subject to dis-
tortions to a greater extent than CT as described in Chapter 5. CT has a
further important advantage over MR in that the intensities of image voxels
(measured in Hounsfield units) represent electron density and can be used to
calculate dose distributions directly. These two factors have limited the use
of MR scans so far for radiotherapy planning. Registration of CT and MR
images provides one way of overcoming these problems and utilizing the dif-
ferent information from both modalities to optimize treatment.

 

6,26,33,34

 

10.3.4 Applications outside the Head

 

Techniques for registering MR and CT images are almost invariably restricted
to finding a rigid-body or affine transformation. Outside the head, a nonrigid
transformation is normally necessary because of soft tissue deformation result-
ing from change in patient positioning, respiration, etc. When registering MR or
CT images with PET or SPECT images, some parts of the body such as the pelvis
can be treated as rigid bodies because careful patient positioning can make
tissue deformation smaller than the resolution of the PET or SPECT images. For
MR-CT registration, this assumption is not valid. There is nevertheless consid-
erable interest in registration of MR and CT outside the head for staging cancer
and planning radiotherapy; for example, in the spine and prostate.

 

10.4 Conclusions

 

The registration of MR and CT images was one of the first applications of
medical image registration. Despite a large number of algorithms devised for
MR and CT registration, these algorithms are not used routinely outside a
small number of highly specialized centers. Furthermore, the applicability of
MR-CT registration is restricted primarily to the head by current algorithms
that can only determine rigid-body or affine transformations. MR-CT regis-
tration is likely to become more widely used in the future. The driving factors
are fully digital x-ray departments that make access to the data more straight-
forward, increasing use of image-guided surgery and stereotactic radiosurgery
systems that include registration software, and greater use of MRI and CT as
interventional modalities. When MR or CT is used as an interventional
modality, it can nevertheless be desirable to have access to accurately registered
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pre-intervention images of other modalities; incorporating registration algo-
rithms into the workstation controlling the interventional modality can make
this straightforward. Future developments in nonrigid registration algo-
rithms, discussed elsewhere in this book, are likely to make these applicable
to MR-CT registration, which will open up many new applications, including
planning of surgery and radiotherapy outside the head.
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11.1 Introduction

 

Nuclear medicine is a functional imaging modality. It uses radionuclides
labeled to target molecules, or 

 

radiotracers

 

, for diagnostic studies and for
delivering 

 

in vivo

 

 radiation therapy. The biodistribution of a radiotracer in the
body depends on the delivery to and functional uptake by the organ or path-
way under examination. The great advantage of nuclear medicine lies in the
premise that functional changes precede anatomical changes in all cases
apart from trauma. Thus, appropriate radiotracers are able to demonstrate
changes due to disease long before there are macroscopic manifestations. 

Phelps and Coleman

 

1

 

 recently characterized the fundamental principles of
diagnostic nuclear medicine as:

• The development and use of radiolabeled molecules to image or
measure the molecular basis of disease for early detection, accurate
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characterization, treatment planning, and assessment of therapeutic
outcomes

• The design and development of radionuclide imaging and measure-
ment devices for performing molecular examinations of patients

• The use of the tracer technique to perform these procedures with
minimal or no mass effects that could alter the biological process being
imaged or measured

• The ability to measure molecular concentrations and rates of bio-
logical processes involving substrate concentrations down to micro-
moles to femtomoles per gram of tissue

Nuclear medicine images demonstrate function, rather than anatomy. Some
of the limitations of nuclear medicine imaging studies include limited spatial
resolution, poor signal-to-noise ratio, and frequently poor uptake of the
radiotracer in the diseased condition. Registration with a structural or ana-
tomical image can be useful in addressing a number of these issues. The main
applications at present are

•

 

Intramodality and intermodality spatial registration

 

—intramodality
registration in positron emission tomography (PET) and single
photon emission computed tomography (SPECT), e.g., PET-PET,
SPECT-SPECT, and intermodality registration with other func-
tional or structural data such as from x-ray CT and magnetic res-
onance imaging (MRI), e.g., PET-MRI

•

 

Correcting nuclear medicine emission data

 

—correction for pho-
ton attenuation and scattering, partial volume correction to compen-
sate for limited spatial resolution, and guiding image reconstruction
algorithms where anatomical priors can be used to “encourage” a
reconstruction towards a particular solution, based on the known
biodistribution of the radiotracer

•

 

Intersubject registration (spatial normalization)

 

—standardizing
the geometric conformation of uptake in an organ for comparisons
with normal databases or for use in cohort studies

The methods used to achieve the above, and examples of their use, are the
subject of this chapter. Some discussion of MR-PET registration is included
here, but this topic is treated in more detail in Chapter 9.

 

11.2 Early Uses of Image Registration in Nuclear Medicine

 

Functional images do not necessarily follow anatomy, and therefore nuclear
medicine studies have often benefited from the use of patient or organ out-
lines from other imaging devices as anatomical guides. As long ago as 1966,
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Kuhl et al. reported using a chest x-ray and a [ ]-sulphur colloid liver
scan to detect pleural effusions. By overlaying the gamma camera image with
the x-ray and drawing the boundaries of the diaphragm they could identify
the fluid collections.

 

2

 

 Similarly, Anger and McRae used chest x-rays in con-
junction with liver and lung scans to demonstrate discrepancies which would
indicate a subphrenic collection between the liver and the diaphragm. They
also detected pericardial effusions by overlaying a gamma camera transmis-
sion image (analogous to a low resolution x-ray) on the nuclear medicine
blood pool image.

 

3,4

 

 These are some of the earliest uses of image registration
as a complement to the conventional nuclear medicine scan. An example is
shown in Figure 11.1. From the late 1960s, nuclear medicine devices have had
the ability to measure transmission as well as the emission distribution of the
radiotracer.

 

5–10

 

 This is now standard, with sophisticated transmission systems
using scanning line sources

 

11

 

 or stationary sources

 

12,13

 

 available on most
gamma cameras. More recently, dedicated purpose-built dual imaging
devices incorporating x-ray CT with either PET or SPECT detectors in a single
scanner have been developed and will be discussed later.

 

14,15

 

11.3 Spatial Registration of Nuclear Medicine Images

 

Possibly the best known application of image registration in nuclear med-
icine today is that of spatially coregistering nuclear medicine emission
scans with other radionuclide scans or with anatomical images. This can

 

FIGURE 11.1

 

An early example of coregistration of anatomical and functional data in nuclear medicine.
The scan shows the intracerebral ventricular system after an intrathecal injection of 

 

131

 

I-HSA
superimposed on a lateral skull x-ray. Both imaging systems produced life-size images,
making alignment relatively straightforward. (Image courtesy of Professor Henry N. Wagner,
Jr., Johns Hopkins School of Hygiene and Public Health, Baltimore).

Tc99m
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be performed on two-dimensional planar or three-dimensional volumetric
data. A simple example shown in Color Figure 11.2* is of an x-ray of the
hand coregistered with the corresponding bone scan. In this example the
bone scan was performed to detect sites of increased radiotracer accumula-
tion in the small bones of the hand, and to localize this as accurately as pos-
sible.

 

16

 

 Small fractures may be present and detected in this way when they
are not apparent on x-ray alone. To perform such a registration, the patient’s
hand is placed in a rigid frame for both the radiograph and the gamma cam-
era images. Fiducial markers, visible on both the x-ray and gamma camera,
are incorporated into the frame thus allowing the 

 

retrospective

 

 realignment
and scaling of the data, which, for these purposes, are taken to be a rigid
object. The registration in this case is relatively straightforward: the operator
uses an interactive computer program to identify the corresponding mark-
ers in the two images and the registration algorithm determines the scaling,
translation, and rotation degrees of freedom to align the markers (see the
description of the Procrustes algorithm in Chapters 2 and 3 for more details
of this approach). Once registered, any bone which has abnormal uptake can
be accurately localized. Most registration tasks, however, are more compli-
cated than this example. The majority of registrations involve three-dimen-
sional volumetric data, often between different modalities. Many of the
early algorithms developed for spatial registration were intended for use
with different modalities, e.g., PET and MRI.

 

17

 

 
Spatial registration provides an anatomical framework in which to inter-

pret the functional emission data arising from SPECT and PET. Combining
functional PET data with structural MRI data in neuroscience research was
one of the first applications for PET-MRI registration that achieved wide-
spread routine use. In a paper in 1993, Watson et al. demonstrated, for the first
time in man accurate spatial localization of the functional locus of an area of the
brain outside the primary visual cortex which was predominantly interested in
visual motion alone

 

18

 

 known as “V5.” Given the limited spatial resolution of
the PET blood flow studies, it would have been difficult to localize, as pre-
cisely as was done in this paper, the exact location of the functional area V5
in the parieto-occipital cortex without the aid of accurately registered MRI.
The data were registered with an automated algorithm where the parameter
that was optimized, also known as 

 

cost function

 

, was the partitioned image
uniformity (PIU) measure,

 

17

 

 described in Chapter 3. Today it is standard to
represent areas of change in cerebral activity measured with PET or func-
tional MRI (fMRI) superimposed with a high resolution structural MRI scan.
This approach also has application in coregistering brain scans containing
lesions with, for example, -DG (PET) or [ ]-HmPAO (SPECT) scans.
The registration problem in the case of the human brain is simplified in that
it can be treated as a rigid body, and therefore a transformation allowing
only for six degrees of freedom (three translations and three rotations) plus

 

* Color Figures follow page 22.
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scaling, in some cases, is all that is usually required. Two examples of inter-
modality automated registrations are shown in Color Figure 11.3*.

Figure 11.4 shows an example of an MRI scan of the head and neck coreg-
istered with SPECT reconstructions of the uptake of [ ]-octreotide,
which maps somatostatin receptors on certain types of cancer cells, and
[ ]-DMSA(V) which can demonstrate calcification in medullary
tumors. The registration problem in this case is not a trivial one, as the recon-
structed volumes are vastly different in nature. The registration was done
with a point-landmark method using fiducial markers visible on both the
SPECT and MRI scans. In the absence of the MRI, it would be difficult to
interpret precisely where the uptake is localized on the SPECT scan. The MRI
scan, of course, gives no indication of the functional status of the receptors
expressed by this cancer. An alternative method for registration would be to
use the transmission scans acquired simultaneously with the SPECT scans,
automatically coregister the reconstructed anatomical scans to the MRI to
derive the transformation matrix, and apply these transformations to the
SPECT emission data.

 

19

 

Coregistration between PET or SPECT and anatomical modalities outside
the brain has been less accurate. This is mainly due to the range of different
conformations the body can assume on a scanning bed, as well as internal
movement of organs within the chest and abdomen. For example, x-ray CT
scans of the chest are usually taken with a breath-holding maneuver. This
raises the diaphragm and affects not only the thoracic contents but abdominal
contents as well. By contrast, nuclear medicine scans are usually acquired over
minutes or tens of minutes, and therefore the patient will normally breath tid-
ally. This tends to blur the organ boundaries and will cause an intrinsic misreg-
istration internally even if the outside boundary of the patient were exactly

 

FIGURE 11.4 

 

MRI (left), [

 

111

 

In]-Octreotide (center), and [

 

99m

 

Tc]-DMSA(V) (right) coregistration. The SPECT
studies were aligned to the MRI scan by using fiducial markers, which were visible on both
the MRI and SPECT studies. The fiducial markers are not visible in the MR slice shown, as
they lie in a different plane.

 

* Color Figures follow page 22.

In111
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matched. Registration in this example requires not just translations and rota-
tions but also additional degrees of freedom to take account of tissue deforma-
tion. An example of a large deformation is seen in Figure 11.5. Methods for
nonrigid registration of images are described in Chapter 13, but this remains an
area of intense investigation, especially for intermodality registration.

There is growing interest in the development of multimodality devices com-
bining structural and functional measurements. These include human scan-
ners capable of PET or SPECT with x-ray CT,

 

14,15

 

 small animal scanning
combining PET and MRI,

 

20

 

 and a functional spectroscopic device combining
PET and nuclear magnetic resonance spectroscopy (NMRS) for studying acute
changes in an isolated rat heart model.

 

21

 

 The appeal of these devices is that
they acquire the different data at the same time, or at least in the same scanning
session, and therefore minimize the problems of tissue deformation and any
other sources of variation. When using dynamic scanning, simultaneous acqui-
sition also provides temporal registration of the image sequences, which may
be extremely difficult to achieve retrospectively. The PET-CT

 

14

 

 and SPECT-CT

 

15

 

scanners for human use provide structural data from the CT scan that can be
used for attenuation and scatter correction of the emission data, resolution
recovery operations (discussed in the next section), and, of course, correlative
imaging. It has also been suggested that they will have a future role in radio-
therapy treatment planning and interventional procedures such as CT-guided
biopsy. An example of a PET-CT scan performed with a prototype dual modailty
scanner at the University of Pittsburgh is shown in Color Figure 11.6*.

Another application of image registration is in quantitative evaluation of serial
scans. PET studies using [

 

18

 

F]-labeled deoxyglucose ([

 

18

 

F]-DG) are becoming
increasingly available as PET scanners and gamma cameras modified to

 

FIGURE 11.5

 

CT scan of the same subject acquired on a conventional fast scanner with breath hold (left)
and low dose CT scan on newly developed multi-modality SPECT

 

�

 

PET CT device acquired
over 14 seconds (GE Medical Systems, Hawkeye, right). The images demonstrate the large
differences in the body shape between the different studies. Note that the subject’s arms are
resting at the side in the Hawkeye image. As the image on the right will match the corre-
sponding emission scan far more closely, this image emphasises the intrinsic difficulties in
coregistering scans from different devices under the different conditions. (Images courtesy
of Professor Ora Israel, Rambam Medical Centre, Israel).

 

* Color Figures follow page 22.
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operate in coincidence mode, so called gamma camera PET (GC-PET), are
more widely installed. [

 

18

 

F]-DG is an analogue of glucose which is potentially
useful for monitoring the response of tumors to anticancer therapy. The [

 

18

 

F]-
DG scans permit the assessment of any change in the pattern of uptake by the
tumors in response to the therapy. To do so in a quantitative manner, it is desir-
able to realign the patient’s scans so that regions of interest placed over the
tumors on the initial study can be used to assess the change in [

 

18

 

F]-DG uptake
over time in subsequent studies. Typical time courses for these studies are to
scan the subject before treatment (baseline) and in the weeks and months after
therapy. [

 

18

 

F]-DG is particularly promising, as early changes in uptake may
indicate the efficacy (or not) of a particular therapy regimen. The alternatives
to [

 

18

 

F]-DG scans are x-ray CT or MRI, where change in tumor size is taken as
the measure of efficacy of treatment. Change in size, however, may take many
months to occur and therefore the nuclear medicine scan can give a much ear-
lier indication of the treatment’s effectiveness.

In a collaborative study with the Oncology Imaging Group from the Royal
Free Hospital in London, image registration techniques have been employed
to half-body, attenuation-corrected [

 

18

 

F]-DG scans acquired with a gamma cam-
era PET system in patients with advanced cancers undergoing novel anticancer
therapy.

 

22

 

 The aim of the work is to assess changes in [

 

18

 

F]-DG uptake. The
patients are scanned at baseline and at 28 and 56 days after treatment. The first
step in the processing is to correct each data set for differences in the injected
amount of radioactivity and variations in normal physiological uptake. This is
done by normalizing the reconstructed data to a reference tissue which is taken
as being invariant over the different studies. As this is a study using antibody-
directed therapy, the liver has been chosen as the reference tissue against which
to normalize all [

 

18

 

F]-DG uptake in the body. After this normalization the data
are realigned to the baseline scan using the mutual information algorithm of
Studholme et al.,

 

23

 

 described in Chapter 3. This fully automated algorithm
operates on the volumetric half-body [

 

18

 

F]-DG scan and produces coregistered
data for further analysis. Regions of interest placed over the tumors on the
baseline scan are then transferred to the subsequent studies in the identical
locations to provide an objective assessment of the change in [

 

18

 

F]-DG uptake.
This removes any operator bias in defining regions of interest on individual
studies. The assessment will, of course, be complicated if the tumor has
changed in size over this time; however, in this approach an attempt has been
made to assess objectively the quantitative uptake by the tumors in the same
region. An example of one of these studies is shown in Figure 11.7. 

 

11.4 Image Registration for Correction of Nuclear 
Medicine Emission Data

 

Nuclear medicine images suffer from a number of degrading effects. These
include limited resolution, poor signal-to-noise ratio, and spatially varying
loss or corruption of signal due to photon interaction with matter. Anatomical
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images can help to correct a number of these processes and are discussed in
this section.

 

11.4.1 Scatter and Attenuation Correction

 

Photons emitted from radionuclides 

 

in vivo

 

 have a relatively high likelihood
of undergoing attenuation or scattering within the body. In emission tomo-
graphy, where the task is to reconstruct a three-dimensional volume from
multiple one- or two-dimensional projections, photon attenuation and scat-
tering are confounding factors in the projection data which need to be cor-
rected in order to produce accurate, distortion-free quantitative images. The
origin of attenuation and scattering is the interaction of the photons with the
tissues of the body, and this is dependent in part on the electron density of
the tissues. Electron density can be measured with x-rays or gamma rays.
Consequently, many investigators have used planar, line, or point sources of
radionuclides and the gamma camera or PET camera to measure photon
transmission

 

7,9,10,24,25

 

 to provide correction factors to be used with the emission
data. The use of x-ray CT scans has also been suggested.

 

26

 

 Fleming et al. used
x-ray CT images to produce attenuation correction factors for attenuation
correction of SPECT emission data.

 

27

 

 For a recent review of transmission
scanning in nuclear medicine, see Bailey.

 

28

 

FIGURE 11.7

 

An example of coregistration of [

 

18

 

F]-DG scans obtained with a gamma camera PET system is
shown. The top row shows the raw, reconstructed data before realignment and the bottom
row shows the studies on days 28 and 56 realigned to the baseline scan. The data were realigned
with a fully automated algorithm using mutual information criteria for matching.

 

23

 

 The patient
had a primary cancer of the bowel with a large (2 cm) secondary lesion in the left lung (indicated
by the crosshairs on the baseline scan). The lung lesion showed a 20% increase in [

 

18

 

F]-DG
uptake at day 28 compared with the baseline study and 50% increase at day 56. Note the
differences in the images in the bladder (days 28 and 56) and the starting and stopping points
for the scans. In spite of these differences, the automated routine performed extremely well.

 

0064_frame_C11.fm  Page 240  Wednesday, May 16, 2001  10:33 AM



 

Image Registration in Nuclear Medicine

 

241

The structural images of electron density and the emission data need to
be spatially coregistered before correcting for attenuation and scattering. If
the transmission data are acquired on the gamma camera simultaneously
with the emission data, registration is virtually guaranteed. However, data
from x-ray CT will usually be recorded by a separate scanner on a different
occasion and therefore needs to be registered to the emission data before
generating the correction factors to be applied to the emission data. In
addition, as x-rays are (a) usually of lower energy than the gamma rays
used in nuclear medicine imaging, and (b) polychromatic (i.e., composed
of a continuum of photon energies rather than a discrete single energy),
some adjustments are needed to scale the attenuation coefficent (

 

�

 

) to the
appropriate energy for the emission nuclide.

 

29

 

 Once the data have been
spatially registered and scaled to the appropriate 

 

�

 

 value they can be incor-
porated into the reconstruction process. An example of simultaneously
acquired SPECT emission and transmission data is shown in Figure 11.8.
The transmission scan not only provides a means for generating attenuation
correction factors, but also an anatomical framework to aid interpretation of
the emission data.

More recently, attenuation data have been incorporated into scatter cor-
rection techniques in both PET and SPECT. Coregistered SPECT attenua-
tion and emission projection data have been used to estimate the amount of
scatter (

 

scatter fraction

 

) with which to scale the scatter distribution estimate
(the emission projections convolved with an appropriate scatter kernel).

 

30,31

 

The data are usually acquired in a simultaneous emission-transmission scan.
A similar approach has been used with reconstructed emission and attenuation
data.

 

32

 

 The use of information about the body density as well as the distri-
bution of the radiotracer permits more sophisticated estimations of the scat-
ter, including methods based on Monte Carlo realizations

 

33

 

 or direct
calculation of the scatter using the physics of photon scattering cross-sections

 

FIGURE 11.8

 

Simultaneous structural (transmission) and functional (emission) cardiac scan on a modern
SPECT camera using scanning line sources of 

 

153

 

Gd for the transmission scan and [

 

99m

 

Tc]-
tetrofosmin for the emission scan.
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(Klein-Nishina equation). In PET, Ollinger

 

34

 

 and Watson

 

35

 

 used the recon-
structed emission and attenuation data to directly calculate the scatter that
would be expected given the object density and radiotracer distribution.
These methods have been shown to be highly accurate. All of these meth-
ods, of course, rely on spatially registered data sets. The dual-modality
PET-CT and SPECT-CT systems also can use the x-ray CT data in scatter
correction algorithms. 

The attenuation data from simultaneous emission-transmission scans have
uses beyond providing attenuation and scatter correction factors. They have
been used in respiratory research in SPECT to define differences between
lung volume and distribution patterns of radioactively labeled aerosols.

 

36–38

 

In the heart, Iida et al. used the reconstructed attenuation images to estimate
tissue bulk in an effort to correct for resolution limitations in PET myocardial
perfusion studies to produce a ‘‘perfusable tissue index,’’ a measure of the via-
ble tissue.

 

39

 

 More sophisticated methods for partial volume correction are dis-
cussed in the next section.

 

11.4.2 Partial Volume Correction

 

Nuclear medicine images do not exhibit the same high spatial resolution that is
seen in x-ray CT or MRI. Generally, the main reasons for this are limited photon
flux (to minimize the radiation dose to the patient) and restrictions imposed by
the physical limitations in detecting high energy gamma radiation with scintil-
lation crystals. The typical spatial resolution in emission tomography varies
from 2 to 4 mm for high resolution PET scanners to approximately 12 to 18 mm
for SPECT systems. This leads to a characteristic known as the partial volume
effect. This “blurring,” due to limited spatial resolution, causes an object to
appear larger than it is if its true size is less than approximately three times
the system resolution.

 

40

 

 While the 

 

total

 

 reconstructed counts within the object
are conserved, the count 

 

density

 

 is decreased from the true value because the
data are ‘‘smeared’’ over a larger area. A simple method to estimate the true
count density is to take the total counts in the “blurred” representation of
the object (organ, tumor, etc.) and normalize the count density to the actual
area of the object as measured by x-ray CT or MRI. More sophisticated
approaches use the anatomical data to perform a pixel-by-pixel correction of
the emission data, with 

 

a priori

 

 knowledge of the expected biodistribution
patterns.

 

41

 

 An example is shown in Figure 11.9.
These procedures work, in general, in the following way. The structural

and functional data are first coregistered to the same space with a suitable
algorithm. Next, the structural scan is segmented into a number of dis-
crete, homogeneous compartments between which radiotracer uptake is
known to differ (e.g., differences between gray and white matter uptake in
the brain reflecting differences in glucose metabolism, blood flow, or receptor
density). A probability is then assigned to a photon arising from each of the dif-
ferent compartments (say 4:1:0 for gray matter:white matter:CSF, skull or
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outside the brain in this example), and the relative “spill-in” and “spill-out” for
each compartment calculated. This process may be performed iteratively using
updated estimates of the radiotracer distribution at each step. There are many
variations on this general approach (see, for example, Rousset et al.

 

42

 

).

 

11.4.3 Anatomically Guided Reconstruction

 

New developments in reconstruction algorithms, which apply partial vol-
ume correction in an earlier step in the processing sequence, incorporate
knowledge of the object’s boundaries into the reconstruction in an attempt
to improve upon the limited spatial resolution by restoration of the emis-
sion data during reconstruction.

 

43–45

 

 Much prior information can be built into
iterative reconstruction schema, such as photon attenuation, scattering, and
an intrinsic correction for the blurring or limited spatial resolution of the
measuring systems.

 

46

 

 The underlying idea behind so called ‘‘anatomically
guided reconstruction’’ is that the functional image is strongly correlated
with the anatomical distribution of known sites of radiopharmaceutical
uptake, e.g., receptors, tumors, boundaries of organs, the cerebral gray

 

�

 

white
matter interface, etc. These algorithms produce a probabilistic estimate of the
likely distribution which has given rise to the two-dimensional projection
data measured, test this against the actual measured projection data, modify
the estimated reconstruction in some deterministic way, and then again test

 

FIGURE 11.9

 

Partial volume effect correction in an iterative reconstruction algorithm. The images show
A) segmented MRI scan, B) extracted gray matter compartment, C) FDG PET scan, D) partial
volume corrected FDG PET scan, and E) the partial volume corrected PET scan superim-
posed on the structural MRI scan. (Images courtsey of Dr Claire Labbé, University Hospital
of Geneva and CERMEP.)
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it against the measured projection data. This procedure is performed itera-
tively until a match between the measured and the estimated data is
achieved. The simplest example of such a guide is to use the outline of the
patient’s body, which can be measured in a variety of ways (Compton scatter
window,

 

47

 

 transmission scan, CT scan, etc.). By ‘‘encouraging’’ the solution to
match in some prescribed way the known anatomical boundaries of the
object, higher resolution reconstructions can be achieved.

 

48,49

 

 To do this it is
necessary to have coregistered, segmented data which have been classified
according to the expectation of their functional uptake of the radiotracer.

 

50

 

 An
example of the improvement achievable using anatomically guided recon-
struction is shown in Figure 11.10.

 

11.5 Spatial Normalization

 

Spatial normalization refers to a type of intersubject registration involving the
transformation of images into a common, predefined standard space, which
often implies a distortion of the original organ. The purpose of doing this is to
be able to compare data from one subject with those from the same subject
studied at a different time, or against other subjects. An important applica-
tion for this is to compare a patient scan against a database of normals having
the same scan. For this application, the data need to be transformed into a
standard representation. 

One of the first uses of spatial normalization applied to nuclear medicine
images was in the analysis and display of myocardial perfusion scans. This is
one of the most frequently performed diagnostic tests in clinical nuclear med-
icine. The aim of the test is to assess areas of compromised blood flow in the

 

FIGURE 11.10

 

One slice of a PET [

 

18

 

F]-DG scan of the brain is shown. The image on the left was recon-
structed with a conventional iterative reconstruction algorithm and the image on the right
was reconstructed using anatomical priors (gray matter, white matter, skull, CSF, and sub-
rachnoid space segmentation). The improvement in resolution can be seen in the “guided”
reconstruction. (Image courtesy of Dr Babek Ardekani, University of Technology, Sydney).
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left ventricular myocardium. The scan is usually performed in two parts:

a. A scan at resting work rate and therefore basal myocardial perfu-
sion, and

b. A scan at peak stress where the radiotracer is injected as the patient
is undergoing a paradigm designed to increase myocardial perfusion,
either by physical exertion or pharmacological stress on the heart.

A common clinical question asked of this scan is whether areas of decreased
blood flow at stress are normally perfused at rest: this ‘‘reversibility’’ indi-
cates compromised blood flow in the arteries supplying the myocardium, but
normal underlying myocardial tissue. This may be improved by surgical
intervention. The fact that the rest scan is normal indicates that the underly-
ing myocardium is still functionally viable. In this example, therefore, the
study at stress and the study at rest need to be realigned to detect differences.
Visual inspection of the aligned images is often sufficient to report the scan.
However, a valuable tool to assess the change quantitatively is to compare
both the stress and rest studies with normal databases from subjects who
have undergone the same scan but with proven low likelihood of any myo-
cardial perfusion deficit. As the shape and size of different individuals’ hearts
will vary, a spatial normalization step is required to “transform” each heart
to a standardized representation. 

To illustrate this, a pair of stress

 

�

 

rest scans of a subject are shown in Figure 11.11.
The data are from a SPECT study using -tetrofosmin. The top rows
show the stress and rest scans coregistered using an automated routine.

 

51

 

Next, myocardial perfusion throughout the left ventricle is determined and
plotted as a function of angle around the circular sections of the myocar-
dium seen in the scan. In an idealized scan, a profile generated over 360

 

�

 

around the myocardium in the short axis views would produce a constant
count. Due to normal variations in myocardial thickness and perfusion the
profile is not necessarily constant. This process is repeated for all of the
slices through the short axis projections and therefore the entire left ventric-
ular myocardium is mapped to a series of profiles of perfusion. A common
method for displaying these profiles in a compressed manner is the so
called “polar plot” display.

 

52 

 

Each profile is mapped from the base of the
heart to the apex onto a series of concentric rings as if the three-dimensional
ellipsoid of the left ventricle has been “squashed.” Once in this format, the
data are now represented in a standard, spatially normalized space and can
be compared against other individuals’ scans. These can be seen in the lower
pair of images in Figure 11.11. Some larger clinical centers have generated nor-
mal databases in this manner which consist of a series of subjects’ count
profiles.

 

53 

 

Individual subjects can be compared statistically against the normal
population profiles to objectively assess changes which may be outside the nor-
mal range. This is one of the first examples in nuclear medicine of the use of spatial
transformations for cohort studies. By virtue of the simplification of a three-
dimensional ellipsoidal distribution into a single image, the polar plot has

Tc99m[ ]
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FIGURE 11.11

 

A SPECT stress

 

�

 

rest myocardial perfusion study (upper rows), spatially normalized and
displayed as a polar plot (lower two images) for all slices, is shown. The top two rows show
reconstructed sections through the left ventricle of the heart when the tracer was injected
while the heart was being stressed. The sections are sliced from apex towards the base of
the heart (the valve plane). The next two rows show the same heart after the tracer has been
injected at rest. The polar plots on the bottom for stress (left) and rest (right) condense the
multiple slices into a single display, where the apical slices are located in the center of the
image and the basal slices are at the edges. There is a small “notch” of decreased perfusion
at stress in the upper section of the reconstructions (labeled 7–10, top row) which corre-
sponds to the anterior myocardial wall, and which is normal at rest. This is seen in the top
half, center, of the polar plots. Once the data are in this standard representation, they can
be compared with a data base of ”normals” to assess the significance of the defects. The
large dark area at the lower right half of the polar plots corresponds to the valve plane of
the heart where there is little myocardium, and is a normal appearance.
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achieved popularity. It has been used widely in myocardial imaging in both
SPECT (perfusion) and PET (myocardial blood flow, -DG uptake, adreno-
receptors). The method has also been applied for the comparison of PET and
SPECT cardiac data in the same subject.54

Spatial normalization is not only used in myocardial scanning. A common
application in neuroscience research is to assess the change in a functional
parameter (cerebral perfusion, cerebral glucose metabolism) in response to
some challenge or stimulation such as a motor, cognitive, or sensory task.
These “cerebral activation” studies demonstrating functional anatomy have
been widely reported in both the scientific and popular literature and are dis-
cussed in Chapter 14. As in the case of myocardial perfusion scanning, the
data need to be spatially normalized to a standard space to permit compar-
isons with scans from other individuals. Friston et al. chose a neuro-ana-
tomical atlas of a normal brain published by Talaraich and Tournoux55 as the
standard space for their PET scan analysis.56 Much effort has gone into pro-
ducing high quality standard atlases for neuroimaging,57–59 and much of this
work continues. Functional anatomical studies of the brain now employ such
diverse measurement devices as SPECT, PET, functional MRI (fMRI), ERP
(event-related potential measured using EEG), and magneto-encephalography
(MEG). Standardization of the space for reporting the data from all of these
devices is necessary to provide a common platform for discussing results in
this new, emerging field. A standard model has also been developed for the
airways of the lung,60 which has application in the modeling of the distribu-
tion of inhaled radioactively labeled particles throughout the airways.61 The
aim of standardization in these applications is to aid in targeting drugs to
specific generations of the airways.

11.6 Conclusions and Future Directions

Coregistration with images from complementary modalities has been
employed in nuclear medicine for many decades. It acts as an adjunct to
interpretation of the functional nuclear medicine images, as well as offering
the ability to overcome some intrinsic limitations in nuclear medicine images.
We are currently witnessing an increasing convergence in the combination of
structural and functional data, most notably in the development of dual
modality imaging devices. Even with single modality devices, we will see
further developments of algorithms and software to enhance the information
provided in combination with other complementary data.

The applications and use of image registration in nuclear medicine in the
near future will include:

• Correlative image interpretation
• Attenuation correction

F18[ ]
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• Scatter correction
• Correction for limited resolution
• Improving reconstruction accuracy in emission tomography
• Coregistration of serial functional studies
• Transformation to standard space for comparison with normal studies
• Transformation to standard space for comparison with data from

other modalities (multiparametric functional imaging)
• Conformal radiotherapy treatment planning
• Functionally guided biopsy

There will, no doubt, be many more applications as the devices and algo-
rithms become more widely available and researchers and clinicians
develop innovative approaches to diagnosing and treating human disease.
The future will see developments in the use of multiparametric mapping
combining functional and structural data from a wide variety of measuring
systems. Nuclear medicine can only benefit from such evolving integration,
in which image registration plays a central role.
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12.1 Introduction

 

Just over two months after the discovery of x-rays, a bromide print was used
to aid in the surgical removal of a needle from a woman’s  In conven-
tional clinical practice today, the wide range of medical imaging modalities
available are largely used for diagnosis or monitoring the progression of dis-
ease. During an intervention, images showing the pathology and surrounding
anatomy may be displayed on a light box, but the correspondence between
image and patient is established entirely in the mind of the clinician, using
knowledge of anatomy and surgical appearance accrued over many years of
training. In many procedures it would be desirable if this correspondence
between image and patient could be achieved by some more accurate and
ergonomic method, providing the interventionist with aligned radiological
data showing the position of the target and surrounding critical structures.
The goal is to make procedures less invasive, faster, and safer.

Alignment of therapeutic equipment to the patient using radiological data
has long been a routine part of radiotherapy and frame-based stereotactic
neurosurgery. With the advent of 3D volume imaging techniques there has
been increasing interest in wider application of image guidance using more
flexible alignment processes and improved visualization to enhance the data
available to the interventionist. Here, rather than registering different imag-
ing modalities, the technical aim is to take preoperative images and align
them to the physical space of the patient.

The use of imaging during a procedure has created the discipline of inter-
ventional radiology. In this scenario both the target and the therapeutic
device are visible in the real-time images. Examples of this include fluoro-
scopic guidance of stent placement and ultrasound-guided breast biopsy.
Endoscopic procedures, such as laparoscopic surgery, also have the target
and the surgical tool visible in the same optical image. Though these inter-
ventions may be termed “image-guided,” there is no registration issue, and as
such we will not consider these procedures in this chapter. We are interested
in the incorporation of images taken before an intervention, which must be
aligned to the patient. Real-time imaging may have a role in this process,
however, with preoperative images enhancing the real-time view or the intra-
operative images aiding in the registration process.

hand.1
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The registration problem can be stated as follows. We have a detailed 3D
description of patient anatomy and perhaps physiology from preoperative
imaging modalities. In the treatment room we have a position measurement,
imaging, or treatment device which defines a coordinate system in 3D
physical space. We wish to align the preoperative images to physical space in
order to present the clinician with the preoperative data correctly aligned to
the patient.

It would be impossible to cover in depth the full range of existing and
potential clinical applications of image guidance in a single chapter. Our
account will be confined to the more common applications in which we have
some experience, and those that raise particular algorithmic problems. We
start by examining methods employed in the more conventional tracked
pointer systems and then move on to consider areas of research in intraoper-
ative registration using real-time imaging such as ultrasound, fluoroscopy,
video, and MRI. Applications in both improving rigid registration and com-
pensating for tissue deformation are discussed. Finally, we look at visualiza-
tion and interaction of the therapist with the guidance data.

 

12.2 Technical Issues

 

A number of technical problems must be solved to provide image guidance.
First, a 3D coordinate system in the treatment room must be defined. The
patient must then be immobilized or tracked with respect to this coordinate sys-
tem. Finally, corresponding features need to be identified in the preoperative
image, and physically on the patient.

If an intraoperative or perioperative imaging device is to be used to find
these features on the patient, there are further technical considerations. The
imaging device must be calibrated to relate the image coordinates to 3D
space. The registration problem then becomes that of alignment of the intra-
operative and preoperative images. This can be achieved either by extraction
of salient features or using a voxel intensity-based method.

The term 

 

perioperative imaging

 

 is sometimes used to describe imaging imme-
diately prior to the procedure or immediately after its completion. It also cov-
ers procedures where the operation must stop while imaging takes place. The
term 

 

intraoperative

 

 will be used to cover all imaging at the time of the operation.

 

12.2.1 Defining the Operating Room Coordinate System

 

To align images to the patient, it is first necessary to define a coordinate system
within the operating room (OR). A number of coordinate measuring devices
have been developed for this purpose. Errors in tracking will first be consid-
ered, and then each of these devices will be briefly described.
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12.2.1.1 Error in Registration of Images to Physical Space

 

The clinical accuracy requirement of image guidance is one of the most
important criteria when deciding which technology to apply to a particular
application. Engineers use the word “error” to define the limits to accuracy
of a system. Surgeons prefer “accuracy” because of the wider connotation of
the word “error” in surgery. Some insist that their system never introduces
any error. In this chapter we stick with the engineers’ definition.

Different definitions of registration error have caused some confusion in the
past, so before introducing the different technologies it is worth defining the
relevant measures of error. The terms used here were introduced in Section
3.4.1.2 of Chapter 3, and discussed in detail in Section 6.2.1 of Chapter 6.
Image-guided surgery relies on identifying corresponding features both in
preoperative images and the physical space of the patient in the operating
room or interventional suite. An error will be associated with locating these
features in the images. There will also be an error in identifying the physical
location of these points in the patient. If these features are defined as points in
both, such as the centers of spheres or cylinders

 

2,3

 

 or intersection of two lines,

 

4

 

the error in correspondence is often referred to as the fiducial localization error
 The corresponding features are used to compute a coordinate transfor-

mation between the images and physical space. This coordinate transforma-
tion is then used to predict where a point in physical space—the “target,”
indicated, for example, with a hand-held pointer—is located in the preopera-
tive images.

The error in predicting location of the target in the preoperative image is
often referred to as target registration error (TRE). Fitzpatrick et al. have
derived a formula for TRE from the point distribution in fiducial point-based
registration assuming that the FLE is isotropic and randomly distributed.

 

5

 

Point-based registration using the orthogonal Procrustes method also com-
putes a residual root-mean-square (RMS) error on aligning the points, which
is sometimes termed the fiducial registration error (FRE). It is important to
remember that FRE does not estimate TRE. In particular, discarding points
until the FRE drops below some threshold is a very poor way of ensuring a
good TRE.

A number of sources of error contribute to the overall system error of any
surgical navigation system. These include:

• Error in locating features for registration in the images. This is
determined by the size and shape of the features and the spatial
and contrast resolution of the images.

• Scaling errors and other geometric distortions in the images.
• Error in locating the same features in the physical space of the patient.
• Any relative movement of these features between imaging and

intervention. For example, skin is mobile, so skin markers can
move.

FLE( ).5
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• The breakdown of assumptions inherent in the type of transforma-
tion used. Almost all image guidance assumes a six degree of free-
dom rigid-body transformation between images and physical space,
so any tissue deformation, voluntary or involuntary, by the patient,
or tissue distortion caused by the intervention itself will lead to error.

 

12.2.1.2 Mechanical Localizers

 

The first frameless neuronavigation device to be widely used was the Faro arm
(Faro Technologies Inc., Florida, U.S.), a mechanical device that is attached to
the side of the surgical table. Encoders on each of the axes of the arm enable cal-
culation of the tip position. Problems with such a device are that range of
movement is somewhat limited, and any movement of the head clamp
requires reregistration. Moreover, the inherent accuracy was found to be some-
what lower than other methods. Marketed as the ISG Viewing Wand, this
mechanical localizer started the regular use of frameless image guidance, find-
ing applications in ear, nose, and throat (ENT) surgery

 

6

 

 and neurosurgery.

 

7–10

 

12.2.1.3 Ultrasound Transducers in Air

 

The first example of frameless navigation was the system developed by Roberts
et al.

 

11

 

 This system used a microscope to register the images to the patient and
provide the guidance information. The localization system was based on
ultrasonic “spark-gap” transducers attached to the microscope. These emit a
very short ultrasound pulse which can be detected by three or more micro-
phones in the operating room. The time delay for the sound pulse to reach
each microphone gives a measure of distance and hence localizes the spark
gap. Others have developed this technology for conventional pointer-based
guidance,

 

12

 

 where the transducers are attached to a wand. Some problems have
been encountered due to variations of the speed of sound with temperature
and air flow which led to a significant fiducial localization error of several
millimeters, but research is still being carried out to refine the method.

 

13

 

12.2.1.4 Radio Frequency Tracking

 

Another technology that has been proposed for surgical tracking is radio fre-
quency (RF) coils. Three large orthogonal coils are used to transmit a signal
that is picked up by three smaller orthogonal coils inside a tracker attached
to the patient or pointing device. The signal received by each of the receiver
coils can be used to calculate the position and orientation of the tracker.
These devices suffer from inaccuracies when brought close to metal due to
distortion of the RF field. This distortion can lead to FLEs of several centime-
ters, and there is usually no way of knowing that the accuracy has been com-
promised in this way. For neurosurgery, a wooden or plastic operating table
needs to be constructed. Interference with other devices in the operating the-
ater has also been reported.
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12.2.1.5 Active/Passive Optical Tracker

 

With three linear cameras or two 2D cameras, if a point can be located in
each view, the 3D position of the point relative to the cameras can be calcu-
lated. This is the basis of a number of tracking systems. The localized points
are either active (bright infrared-emitting diodes, IREDs) or passive (highly
reflecting spheres). In smaller camera systems such as the Polaris from
Northern Digital Inc. (Ontario, Canada) or Flashpoint from Image-Guided
Technologies (Colorado, U.S.), each IRED or reflecting sphere can be local-
ized with a FLE of 0.2 to 0.4 mm. With the Optotrak, a larger and more
expensive version from Northern Digital, accuracy is 0.1 to 0.2 mm. The
main difficulty with optical tracking is that line of sight between the cam-
eras and tracked objects must be maintained. An additional possible error
source with the reflecting sphere system is partial obscuration of the sphere
or contamination with blood, which may shift the measured location. Nev-
ertheless, the high accuracy and stability of these systems has meant that
optical tracking is now the technology of choice for most commercial
image-guided surgery systems.

 

12.2.2 Immobilization Techniques

 

Having defined a coordinate system for the room, we now want to describe
physical points inside the patient. To define accurate coordinates within a
patient, the subject must be rigidly fixed with respect either to a tracker or the
coordinate measurement device itself.

 

12.2.2.1 Stereotactic Frames

 

Stereotactic frames have been used in neurosurgery since the 1950s.
These devices are rigidly attached to the patient’s skull prior to imaging.
High contrast imaging markers relate the frame to a trajectory and target
defined from the images. The therapeutic device, usually a biopsy needle
or electrode, is then mounted on the frame, for example via an isocentric
arc system. The angles on the arc are calculated to give the required tra-
jectory. Since the frame inherently defines a coordinate system, there is
no need for any of the tracking technologies described in the previous
section.

Stereotactic frames have the advantage that they have been used for many
years and are well understood by surgeons. They are also considered by
many clinicians to be the most accurate guidance method and have been
measured as providing registration accuracies of better than 1 mm.

 

14

 

 There
have, however, been some suggestions that the accuracy is overstated.

 

15

 

 The
disadvantages are that only a single point target and trajectory can be defined,
the frame is invasive and uncomfortable for the patient as the device has to
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remain fixed to the patient’s skull from imaging to surgery, and the bulky
device hampers any kind of complex surgical approach. These factors limit
the application of stereotactic frames primarily to biopsies and placement of
cannulae or electrodes.

 

12.2.2.2 Head Clamp

 

The most common method of immobilization recommended by commercial
systems is to attach a tracker to a head clamp, such as the Mayfield head
clamp (Ohio Medical Instrument Company Inc., Cincinnati, Ohio). These
clamps are often used in neurosurgery and have the advantage over stereo-
tactic frames that they are not required during imaging and allow much
freer access to the patient for open surgery. With a Mayfield clamp or similar
device, a process of registration is required at the beginning of the proce-
dure. A tracking device can be attached to the clamp when the patient is
positioned to track any movement of the clamp and, hence, the head during
the procedure.

 

12.2.2.3 Molded Devices

 

An alternative method to screwing a device firmly into the bone of the
patient’s skull during imaging and therapy is to use a patient-specific mold
that can be accurately removed and replaced. In radiotherapy, for example,
a cast of the patient’s head is taken and a plastic mold is made. This device
is used to ensure that the patient is immobilized and placed correctly in a
simulator room where the images are taken that will be used to plan the treat-
ment. The same mold is then used to position the patient in the treatment
room.

The accuracy of guidance using these devices is determined by the repeat-
ability and stability of the patient position with respect to the mold. A head
mold covers the skin of the face and accuracy is therefore limited by move-
ment of the patient’s skin. Such masks are generally considered to give ther-
apy accurate to 3 to 5 mm.

 

16

 

 For surgery guidance, a significantly higher
accuracy is needed. Blocks molded to fit the patient’s upper teeth have been
proposed as a more accurate method.

 

17,18

 

 Such blocks allow free movement
of the patient’s head, which is desirable in ENT surgery, and also place the
tracker close to the target volume. Target registration errors of 1 to 2 mm RMS
have been achieved with such devices.

 

18

 

In spinal surgery, a mold of the relevant vertebra may be made by stero-
lithography from a CT scan of the patient. The desired trajectory of pedicle
screws in the spinous processes can be marked as part of the planning pro-
cess and, guide holes made in the prototyped block. During surgery this
block is simply clipped into place on the correct vertebra and the screws
inserted through the guide holes.

 

19
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12.3 3D Image-to-Physical Space Registration

 

Having defined a coordinate system within the patient, it is now necessary to
align the preoperative images to this space. The process essentially consists
of identifying features in the preoperative images which can also be found on
the patient using the localization device.

While there are some similarities between image-to-image registration and
image-to-physical registration, there are specific problems associated with
image acquisition and identifying the physical features on the patient in the
operating room.

 

12.3.1 Preoperative Image Preparation and Planning

 

Care has to be taken in the acquisition of images for image guidance. The
images must be acquired with sufficient spatial resolution for the guid-
ance task. In practice, for CT and MRI this means that the slice thickness
must be sufficiently small. It is not unusual to need a slice thickness of 3 mm
or less in CT or MRI. The slice thicknesses of 5 mm or more in diagnos-
tic imaging will make it hard, if not impossible, to identify features
with the submillimetric accuracy necessary for certain image guidance
applications.

Geometric image calibration is required as part of the quality assurance of
the imaging device, and steps may need to be taken to reduce geometric dis-
tortions in MRI. CT gantry tilt should be known accurately and compensated
for if nonzero. Image guidance is one of the most demanding applications for
the geometric integrity of medical images. A 2% error in scaling over 200 mm
will result in a relative displacement of 4 mm, well outside the accuracy of
modern localizing devices. While CT and MRI manufacturers still quote
accuracies worse than this figure in their formal specifications, methods exist
to calibrate scanners with a high degree of accuracy.

 

20

 

While there are advantages in terms of reduced cost, radiation dose, and
time in using previously acquired images, in practice lack of access to the digital
data and the problems in image quality outlined above often mean that
repeat scans are required specifically for image guidance. This adds signifi-
cantly to the cost of image-guided procedures. Issues of image preparation
and artifact reduction are covered in more detail in Chapters 4 and 5.

Most image guidance entails a planning step, which may be as simple as
identifying a single target or may involve delineation and labeling of complete
structures such as a tumor in neurosurgery or individual bones in computer-
assisted orthopedic surgery. This process of segmentation is one of the weakest
links in image-guided-surgery. Software tools are improving, but fast and
accurate image segmentation software that requires minimal intervention is
still not available for most applications.
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The software may also allow some planning or even rehearsal of the sur-
gical procedure. Craniotomies and trajectories in neurosurgery can be
planned to avoid critical structures. In image-guided total hip replacement,
a computer-assisted orthopedic surgical procedure, implant size and orien-
tation and acetabular cup orientation can be defined by manipulation of the
preoperative images.

 

21

 

 In maxillofacial surgery, the surgeon may rehearse
the cutting and movement of segments of bone to achieve the desired surgical
outcome.

 

12.3.2 Point-Based Registration

 

The most common method used in commercial systems to perform registra-
tion is to find corresponding point landmarks in the images and on the
patient. Such points are generally termed fiducials. These may be anatomical
landmarks, skin-affixed markers, or bone-implanted fiducials. The algorithm
normally used is the orthogonal Procrustes solution described in Chapter 3,
Section 3.4.

Our experience suggests that anatomical landmarks can be found with a
FLE of 3 to 5 mm. Published data suggest that skin-affixed fiducials can be
accurate to around 2 mm if used with care, the main source of inaccuracy
being the fact that the skin can move.

 

22

 

 Bone-implanted markers are by far the
most accurate fiducials, allowing each marker to be located both in the image
and on the patient to within 0.7 mm.

 

2,3

 

12.3.3 Contour Registration

 

Linear features of an object could be used to provide registration. These could
be specific geometric features such as lines of maximum curvature, water-
shed, or crest lines.

 

23

 

 Marking linear features with a tracked pointer would be
rather difficult, so such contour registration has only been proposed for use
in conjunction with an intraoperative imaging device (see Section 12.4.2).

 

12.3.4 Surface Registration

 

A further method implemented in most commercial systems is to match a
number of points on the surface of the patient’s skin to the same surface
extracted from the preoperative scans. Physical points are marked by drag-
ging a hand-held pointer over the skin. Unfortunately, skin is soft and may
deform. Brainlab (Munich, Germany) uses a laser point light source swept
over the skin surface, which avoids skin distortion due to physical contact.
However, there may still be some deformation due to muscle movement or
changes in patient positioning between scanning and intervention. To get
accurate rigid registration it is therefore desirable to mark points on the bone
surface and match this to the bone surface extracted from CT. These surface
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points can be registered to the image surface using one of the surface-matching
algorithms described in Chapter 3, such as the iterative closest point (ICP)
algorithm.

 

24

 

Rigid movement can occur within a surface of nearly constant curvature
without any penalty to a cost function that minimizes the distance of phys-
ical points to the surface. It is therefore important to include points on
surfaces which have variable and high curvature to provide a good regis-
tration. Combination of both landmark and surface points has been sug-
gested as a way of overcoming this difficulty. It has been shown that a single
landmark improved multiple surface registration accuracy from 1.5 to 1.0 mm
(mean).

 

25

 

12.3.5 Intensity-Based Registration

 

Algorithms that register two images based solely on the gray level intensity
of corresponding voxels, such as maximization of mutual information, have
become the method of choice for 3D-to-3D image alignment. If an intraopera-
tive image is available, such methods may also be applicable to therapy guid-
ance. The relevance of intensity-based registration to intraoperative images
will be examined in the next section.

 

12.4 Intraoperative Imaging

 

The value of using a tracked pointer or similar device is limited in that only a
single point is marked at any one time, and any points must be on the surface of
the patient. However, a wealth of potential information is available from real-
time imaging in the operating room that does not suffer from these limitations.
The imaging modalities and methods of alignment to preoperative images will
be considered in this section.

With intraoperative imaging, one needs to address two technical issues—
calibration and registration. Calibration of the imaging device relates the image
data to 3D space. It is important to consider the spatial integrity of the image data
and the accuracy with which calibration can be achieved. A reference object of
known dimensions is generally used to perform calibration. The device may
be tracked by one of the methods described in Section 12.2.1, or may define
the intraoperative coordinate system itself.

For alignment, data extraction is required if features such as landmark points
or lines are to be identified in the intraoperative image. Direct intensity-based
methods circumvent the need for such segmentation, as alignment is achieved
using the image data directly.

With any method, it is important to consider the speed of the algorithm.
Results must be obtained within a few seconds, or at least a minute or two,
to be useful during a surgical procedure. For the intraoperative imaging
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modalities described in this section we will look at calibration, registration,
and the accuracy and computational efficiency with which these can be
achieved.

 

12.4.1 Video

 

Video provides real-time images of the exposed surface of the patient. This
may be skin surface or exposed bone or soft tissue. Though the data in a sin-
gle camera image is 2D, 3D information is potentially available from the use
of perspective. By taking multiple camera images from different positions, a
better estimation of 3D location can be achieved.

 

12.4.1.1 Perspective Calibration

 

The camera gives a perspective projection of 3D space into a 2D image. It is
standard to use the pinhole camera model (Figure 12.1). Calibration generally
involves taking a camera image of an object with high-contrast markings at
known 3D positions. The image is then transferred to a computer for analysis
using a framegrabber. The 2D positions of the markers are usually found
automatically. The corresponding 2D and 3D points are used as the input
data for the calibration.

In this section only the full perspective model will be discribed. Simpler
projection models have been proposed, such as weak or parallel projection,
which enable easier mathematical formulation at the expense of some inac-
curacy. The full perspective model is accurate in the presence of negligible
geometric distortion.

 

FIGURE 12.1

 

The general perspective projection model. The effective pinhole of the camera is at 
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A general perspective projection can be described by (see Chapter 3):

(12.1)

where the vectors  and  are the homogeneous coordi-
nates of a 3D point and its 2D projection. The term 
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 represents the distance
from the effective pinhole along the optical axis (the 
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 axis in the above for-
mulation). Division by 
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of more distant objects being smaller. There are ten camera parameters, four
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the perpendicular projection of the origin—and the six extrinsic parameters
of the rigid-body transformation. A general 3 
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 4 matrix can be decomposed
into these ten parameters.
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 The most widely used calibration method is that
developed by Tsai,

 

27

 

 where an iterative scheme is used to calculate the ten
parameters. Tsai also incorporates a polynomial radial distortion model.

 

12.4.1.2 Video Registration

 

The use of calibrated stereo video with patterned light, either a regular grid
from a laser or a speckled pattern to provide high frequency details and high
contrast, can rapidly produce a large number of surface points. These can
then be matched to the same surface from the preoperative scan.

 

4

 

A method which can potentially match a single video image to a preoperative
scan surface was originally proposed by Viola and Wells.

 

28

 

 A rendering of the
3D surface is produced and compared to the video image. The 3D rigid trans-
formation of the preoperative surface is iteratively updated, and the mutual
information (MI) between the normal vectors in the model and the video frame
calculated. Tracking with such a method can be enhanced by the use of texture
mapping

 

29

 

 and has improved efficiency by rendering using OpenGL.

 

30

 

Single view algorithms invariably suffer from inaccuracies along the optical
axis of the camera. While it is possible to resolve to better than 1 mm perpen-
dicular to the optical axis, errors increase to 3–5 mm at best along the line of
sight.

 

28

 

 Using two or more cameras enables must better 3D resolution.

 

31

 

A new method which can be used with two or more video images has been pro-
posed by Clarkson et al.

 

32

 

 This method requires the surface visible in the video
images, such as a skin or bone surface, to be segmented from the preoperative
image. The algorithm uses a similarity measure termed photoconsistency.
The measure takes each point on the segmented surface and calculates the
image intensity where this point projects in each video image. Assuming a
fixed light source and a Lambertian reflectance, the intensity value in each
video image should be the same at registration. The photoconsistency mea-
sure is based on the variance of the difference between the intensity values in
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both video images. Minimizing this cost function to solve for the pose of the
modeled object gave an accurate (1.27 mm) and robust registration for four
images of a volunteer’s face.

Video can provide tracking and registration without attaching any device to
the patient, though this requires a large area of skin to be visible. As a result,
the method is probably most applicable to initial registration for surgery
before draping, or for radiotherapy.

 

12.4.2 X-ray Fluoroscopy

 

A fluoroscopy set provides real-time x-ray images of the patient. The pers-
pective geometry is the same as that of a camera, except the patient is placed
between the pinhole (x-ray source) and the imaging plane. Also, x-rays
project through the patient, so fluoroscopy images contain information about
internal structure in particular bony detail.

 

12.4.2.1 Calibration

 

The projection geometry of an x-ray set is essentially the same as that of a
video camera and hence the methods of calibration are the same. The only
difference is that the 3D calibration object must have x-ray visible markers,
usually lead or aluminium balls, placed in known relative positions. These
positions can be defined during manufacture or measured using a CT scan.

 

12.4.2.2 Registration

 

Several methods for registration of a 3D preoperative scan to the 2D x-ray
projection have been proposed. Contour-based algorithms have been pro-
posed in which the projection of a segmented surface from the preoperative
scan is matched to the outline of the same structure in the x-ray image.

 

33–35

 

These algorithms tend to use physical measurements, such as the mean dis-
tance between the 2D x-ray projection and a projection of the 3D segmented
surface, as a similarity measure. Such algorithms are efficient to run after fea-
ture extraction has occurred. However, automatic, fast, and accurate feature ex-
traction from a complex scene, such as an interventional fluoroscopy image, is
a difficulty task

 

35

 

 and the final registration result is susceptible to errors in
segmentation.34,36

Algorithms based on image intensity require little or no feature extraction
but rely on production of digitally reconstructed radiographs (DRRs) from
the preoperative CT scan.36,37 The similarity measures used by these algo-
rithms compare the pixel intensities in the fluoroscopy image and the DRR.
They are usually statistically based, e.g., cross correlation.37 Recent devel-
opment of the similarity measure has resulted in cost functions such as pat-
tern intensity38 or gradient difference,39 that have been shown to be robust
to both low frequency intensity gradients caused by overlying soft tissue
structures and the presence of interventional instruments such as a catheter
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or needle.39 Figure 12.2 illustrates registration of fluoroscopy and CT images
from a patient with an aortic aneurysm.

The accuracy of registration from a CT image to a single x-ray has similar
problems to video, i.e., translations along the source-detector axis of the flu-
oroscopy set are poorly resolved. Tests on a spine phantom showed that
translation accuracy of 1 mm is achieved parallel to the imaging plane, rising
to 10 mm along the optical axis and rotational errors below 1�.39 However, by
using biplanar x-rays it is possible to register all six rigid-body degrees of
freedom accurately.

12.4.3 Ultrasound Imaging

Ultrasonic imaging uses high frequency sound waves, typically 3 to 10 MHz
(cf. � 100 KHz for coordinate defining ultrasound in air). A short pulse is
produced and reflections from tissue boundaries are measured. Real time
1D (A-mode) or 2D (B-mode) information can be provided. An ultrasound A-
mode trace can be used to identify an interface between two tissue types, for
example the external bone surface. Ultrasound B-mode provides a 2D slice
through the patient’s anatomy. A calibrated probe can be used to provide 3D
data when tracked by one of the methods described in Section 12.2.1. The cal-
ibration process will be considered first.

12.4.3.1 Calibration

Figure 12.3 shows the requirements for ultrasound calibration. For A-mode,
we want to find a mapping from time along the A-mode trace, t, to a 3D point,
P, with respect to the tracker on the probe:

FIGURE 12.2
Registration of preoperative CT to intraoperative fluoroscopy. A fluoroscopy image of the
lumbar spine showing a measurement catheter and a ruler which is used to define positions
during the intervention (a), a DRR produced from the CT volume at the final registration
position (b), and overlay of the segmented aorta from the CT scan (c).
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where u is the speed of sound in tissue, P0 is the position of the transducer,
and  is the unit vector along the beam direction. The calibration process
involves finding P0 and  A method to achieve this using multiple scans of
a steel ball is described by Maurer et al.40

B-mode calibration relates a 2D image pixel, (u, v), to a 3D point, P, with
respect to a tracker on the probe. Prager41 describes the transformations as
follows:

P � TC ←T TT←R TR←P x (12.2)

where x �  TR ←P is the rigid transformation from x to the
probe tracker, TT ←R is from probe tracker to tracking device coordi-
nates, and TC ←T transforms tracking coordinates to the reconstruction or

FIGURE 12.3
Ultrasound calibration. A tracked A-mode probe (a) has an associated 3D coordinate system.
The calibration challenge is to relate the position along the A-mode time axis (b) to a point
in 3D. For the B-mode probe (c), we want to relate 2D coordinates (u, v) in the B-mode scan
(d) to 3D space.

n̂
n̂.

suu, svv, 0, 1( )T,

0064_frame_C12.fm  Page 267  Wednesday, May 16, 2001  10:34 AM



268 Medical Image Registration

calibration volume. The pixel scalings (in mm) of the B-scan are given by
su and sv .

For the calibration we are interested in calculating eight parameters, six for
the rigid-body transformation TR ←P plus su and sv . A number of phantoms
have been proposed, which have an associated constrained set of P coordi-
nates. The simplest is a crosswire.42 The origin of the calibration volume is set
to be at the crosswire, so P �  in homogeneous coordinates. The
position of the crosswire in the B-scan and the tracking of the probe are mea-
sured for a number of scans giving measurements of (u, v) and TT ←R. An iter-
ative search can then give the desired parameters. A crosswire is a rather
laborious calibration phantom, since holding the probe still is awkward and
the position in the B-mode scan usually needs to be marked manually. A flat
plane can also be used, however. In this case P �  if we define
the plane as perpendicular to the z axis. With an ingeniously manufactured
device known as the Cambridge phantom, Prager manages to create a vir-
tual plane with a surface that remains largely perpendicular to the probe
throughout the range of required movements.41 This provides a quick and
accurate calibration.

A further method is to use a 3D calibration object with multiple features
of known shape. These could either be measured using 3D scan of the phan-
tom or accurately manufactured. Taking a number of B-scans of the phan-
tom and their associated tracking matrices, it is possible to iterate over the
eight calibration parameters to achieve the best match between the 3D
model and the set of B-scans. Using normalized mutual information (NMI)43

described in Section 3.4.8 of Chapter 3, as a similarity measure and employ-
ing a hierarchical search strategy, this approach has been shown to provide
accurate calibration.44 Advantages of this method include the fact that no
segmentation of the B-scans is required and that the phantom can be made
from tissue-equivalent gel rather than using water. Both this method and
the Cambridge phantom have provided calibration accuracy of better than
1 mm on a 10 MHz probe.

12.4.3.2 Ultrasound Registration

A-mode ultrasound can provide a number of points on the interface between
two tissue types. These can be matched to the same interface from a preoper-
ative scan using a points-to-surface matching algorithm such as iterative
closest point.24 The proposed application of a calibrated A-mode probe is
location of points on the skull surface for noninvasive registration to bone for
image-guided neurosurgery.40

A calibrated B-mode probe can also provide points on the interface
between bone and soft tissue if this surface is segmented from the B-mode
scans. These points can be matched to a preoperatively segmented dataset in
the same way. This has been proposed as a method of registration for pedicle
screw implantation in the spine.45,46

0, 0, 0, 1( )T

x, y, 0, 1( )T
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These methods of matching to bone assume the rigid-body transformation.
Ultrasound also provides potentially useful data about the position of soft
tissue structures deep below the operative surface that have deformed since
the preoperative scan (see Section 12.5).

12.4.4 Interventional MRI

With interventional MRI (iMRI) a fast-imaging modality with 3D capabilities
is available in the operating room. One may ask why registration is necessary
if we have an instant 3D image of the patient. There can be, however, much
information in preoperative scans unlikely to be available from iMRI, for
example functional data or the precise location of bone. Also, the quality of
preoperative images from a diagnostic scanner is likely to be much higher in
terms of contrast, signal-to-noise ratio, and geometric distortion.

Tracking of instruments relative to the most recent iMRI scan is also an issue
that may involve a registration process. The iMRI scans could be taken at reg-
ular intervals throughout the procedure, with real time tracking of a pointer
or tool to provide guidance in between the scans. This would most likely
include marking of fiducials or surface points as described in Section 12.3. If
the procedure is performed entirely within the scanner and the patient does
not move, it is also possible that such alignment could be achieved by scanner
calibration.

Volumetric intensity-based registration, especially with the use of mutual
information as a similarity measure, has become the most popular and robust
method for alignment of multiple 3D images.43 It seems likely that such
methods will also prove useful in the operating theater for alignment of pre-
operative scans to iMRI.47 iMRI should prove particularly useful in generat-
ing updated 3D images which compensate for soft tissue motion during
interventions (see Section 12.5).

12.5 Tissue Deformation Correction

Nonrigid registration is the subject of Chapters 13 to 15. Image to physical
registration for therapy guidance poses specific problems in this area. If the
surgery or treatment plan is created using a preoperative image, this should
ideally be updated according to any movement of the patient, whether rigid
or nonrigid.

One way of tackling this problem is to create a physical model that closely
matches the tissue properties, measure only the required physical parameters
to constrain this model, and update the registration accordingly. Use of the
finite element method to create approximations to tissue mechanics, for
example by using linear elastic elements, has been attempted.48 Up to 70% of
the deformation of the brain could be recovered merely by using the direction
of gravity as input. This approach is described in greater detail in Chapter 15.
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To achieve results in a time frame that is useful during surgery, how-
ever, a simpler model is likely to be required. For spinal surgery, a method
which provides a smooth deformation between the rigid vertebrae has
been proposed.49,50 To incorporate fluid regions we have also proposed a sim-
plified tissue model with rigid, fluid, and deformable components.51

In this active area of research, it is important to consider the clinical applica-
tion when developing an algorithm. The tissue model does not necessarily
have to be physically accurate. Intraoperative imaging can provide much
input data about the current position and shape of the patient’s anatomy, and
this information may be sufficient to constrain a much simplified tissue
model. The model also needs to be only as accurate as the application requires.

An algorithm based on approximating B-splines52 has been used to align
immediate pre- and post-intervention MR images for a range of neurosurgical
procedures. The resulting deformation fields have been used to determine how
much brain tissue has distorted or moved as a result of the intervention.53

Ultrasound is being developed as less expensive alternative intraoperative
imaging modality to update preoperative images. A method has been pro-
posed that involves extraction of contours from the B-scans, which are con-
verted to deformation vectors that are linearly interpolated throughout the
volume.54 This method provided registration accuracies of better than 2 mm
on a phantom designed to mimic the brain and ventricular structures for
image-guided neurosurgery. King et al.55 have recently proposed a Bayesian
method to use intraoperative ultrasound to update the location of contours
of structures delineated in preoperative MR images.

12.6 Clinical Applications

Registration of images to the patient in the treatment room provides the
clinician with accurately aligned data to ensure that treatment is given in
accordance with the preoperative plan. Benefits to the patient include
smaller entry wounds (e.g., craniotomies), lower failure rate (e.g., pedicle
screw placement), and less morbidity, due to avoidance of critical struc-
tures. Current applications of preoperative image alignment to the patient
tend to assume the rigid-body transformation. The registration accuracy is
limited by the amount of soft tissue deformation. This limits surgical appli-
cations to those near bone, such as skull base surgery,56 spinal surgery,45,46

or orthopedics.21

Alignment of images to the patient using stereotactic frames has long been
a part of neurosurgery. It is in the field of neurosurgery that the first frameless
surgical navigation device was developed.11 The first system in regular
clinical use was the mechanical version of the ISG viewing wand. A range of
commercial systems is now available, most of which use optical tracking.
A number of clinical trials have established the efficacy of image guidance in
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adult neurosurgery,7–9,22,57 pediatric neurosurgery,10 and ENT.6 The method is
rapidly gaining acceptance.

Image-guided surgery is also well established in computer-assisted ortho-
pedic surgery. Systems are available for image-guided reconstructive hip
surgery, knee reconstruction and ligament surgery, trauma surgery, and
spinal surgery. In total hip replacement, image guidance allows accurate
alignment of the femoral head implant and orientation of the acetabular cup
using a computer model of the pelvis derived from CT. This is the basis of
the HipNav™ system.21 Either bone-implanted markers visible on CT or the
surface of the bones of the pelvis are used for intraoperative registration. In
the latter, a pointer is used to palpate the bone during surgery, and an algo-
rithm similar to the ICP algorithm described in Chapter 3 is used for registra-
tion. The results of total hip replacements in 100 patients show improved
clinical outcomes and reduced soft tissue damage and incision length.58 The
KneeNav™ system for total knee replacement and anterior cruciate ligament
reconstruction has been developed using the same principles as HipNav.

Robotic devices such as the ROBODOC™ 59are being introduced to provide
good registration, greater stability during cutting of the bone, and improved
accuracy of cutting. The ROBODOC pinless system uses a thin pointer to
collect bone surface points percutaneously on the distal femur60 and the
exposed proximal surface. The ROBODOC system drills the bone very accu-
rately according to the plan. As of April 1999, 2000 ROBODOC operations
had been undertaken successfully at BGU, Frankfurt, and as of September
2000 over two dozen systems were in operation in Germany.

In spinal surgery, image guidance methods allow accurate pedicle screw
placement. The pedicle is the strongest part of the vertebrae and therefore
ideal for screw type anchoring. Unfortunately, insertion of screws without
guidance has a high risk (10 to 40%) of incorrectly placed screws. One hundred
consecutive patients were randomly assigned to image-guided pedicle screw
insertion or the conventional manual method. For those with image guid-
ance, 0.4% (1/219) had pedicle perforation, compared with 11.5% (32/277)
using the conventional method.

Interventional radiology attempts to provide surgery that is minimally
invasive by using small approach incisions and accurate guidance by intra-
operative imaging. If the guidance is by fluoroscopy, there may be features
visible in a preoperative CT scan that are not readily visible in the x-ray
image. These data can be overlaid on the fluoro image to aid the interventionist.
This process is shown in Figure 12.2, where an overlay of the aorta can be
used to help guide a catheter.

Radiotherapy does not require interactive display for the therapist, but
accurate alignment to the patient is vital for treatment to be given in accor-
dance with the plan. Immobilization in a molded plastic mask is the most
common technique to ensure that the patient is in the same position as he
was in the simulator room. Accuracy becomes even more important when
planning is performed using 3D scans in conjunction with techniques such as
conformal therapy or radiosurgery. Video registration may provide a means
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to track the patient without the need for immobilization. This is only relevant
if we have a treatment machine capable of adjusting for small movements.
In the meantime, tracking methods may be able to detect patient movement
and abort treatment when necessary.

For surgery away from bone, it will be necessary to solve the problem of
nonrigid tissue movement. For surgery of the thorax or abdomen there will
be considerable movement of tissue, and this must be compensated for. The
use of surface registration techniques has been proposed to allow preopera-
tive CT images to help guide liver resections.62 Tracked ultrasound, by pro-
viding real time image data about underlying structures, may become a
significant tool for this purpose. Interventional MRI, which gives volumetric
data in close to real time, will also play a useful role as the cost of this emerg-
ing technology comes down.

12.6.1 Clinical Accuracy Requirements

It is important to consider what accuracy is required for a given application.
It has become the holy grail of neurosurgical guidance that the accuracy of
any system should be �1 mm. The accurate placement of a small cranio-
tomy, however, probably does not require accuracy much better than about
5 mm,57 and for some procedures in the thorax and abdomen it may be possi-
ble to tolerate even larger errors.

12.6.2 Visualization

Alignment of the preoperative images to the patient is not the end of the story
for image-guided therapy. The preoperative data still need to be presented to
the clinician in a useful way. In standard commercial neuronavigation sys-
tems, image guidance is provided using a tracked pointer or probe, and the
position of this is shown as orthogonal slices, or perhaps surface-rendered
view on a computer monitor (Figure 12.4a). This has the disadvantage that

FIGURE 12.4
Pointer based guidance (a) showing the need to look away from the surgical field, and
augmented reality guidance (b) with overlays directly on the surgical view.
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information about only one point is provided, and the surgeon needs to look
away from the surgical field to a computer screen.

A better method is to provide overlays directly on the surgical view (Figure
12.4b). For neurosurgery, the use of the operating microscope for this purpose
was originally proposed by Kelly63 and continued by Roberts.11 Simple out-
lines or trajectories in one eyepiece have now become standard. The use of
separate overlays in the left and right eyepieces can further enhance the sur-
geon’s ability to relate preoperative image data to the intraoperative scene.
We have demonstrated such a stereo system in which segmented structures
from a preoperative scan can be perceived by most people to be sitting
beneath the viewed surface as though the tissue is transparent.56

An alternative approach is to place a reflecting screen over the patient. A
system proposed in 1938 used x-rays to place a small light source opposite a
bullet or fragment of shrapnel so that the reflection in a half-silvered mirror
could guide the surgeon to the target.64 Peuchot has developed this method
to incorporate two reflecting surfaces at slightly different angles to enable
projection of stereo graphics onto the patient for spinal surgery.65 Stereo-
scopic graphics can also be produced using a polarized light, switched by an
active filter screen over the monitor or glasses, to direct a different view to
each eye. Such screens have been proposed for use in preoperative planning66

and surgical guidance.67

With any image guidance application it is important to consider how the
therapist will view and interact with the data. Treatment room ergonomics is
an important factor, especially in the already crowded operating room. With
interactive image guidance it is vital not only that the information is pre-
sented in a simple and easy to interpret manner, but also that the clinician is
made aware of possible inaccuracies in the system.

12.7 Conclusions

The applications of therapy guidance using data from images taken before an
intervention have been examined. Simple tracking of pointers or tools has
been presented, along with the enhancement of registration using readily
available intraoperative imaging modalities—video, fluoroscopy, ultrasound,
and iMRI.

As the abundance and quality of data available from intraoperative imag-
ing increases, one may wonder whether alignment of preoperative images to
the patient has a future. However, images from diagnostic scanners are also
developing apace, with higher resolution, better contrast, and more func-
tional data becoming feasible. Applications such as functional MRI, where
considerable scanning and processing time is required, provide information
that cannot currently be acquired in real time during treatment, and which
may more appropriately be obtained prior to treatment when the patient is
alert and there is sufficient time for a comprehensive set of functional tests.
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To provide the best available information to an interventionist, the problem
must be tackled from both ends: developing intraoperative imaging technology
to provide immediate data, and improving registration with pretreatment
images, particularly in the presence of tissue deformation. Therapy guidance
will continue to provide challenges to the medical image analysis community
for some years to come.
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13.1 Introduction

 

The previous chapters in this book have focused on rigid transformations for
image-to-image and image-to-physical space registration. In many applica-
tions a rigid transformation is sufficient to describe the spatial relationship
between two images. For example, brain images of the same subject can be
related by a rigid transformation since the motion of the brain is largely
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constrained by the skull. However, there are many other applications where
nonrigid transformations are required to describe the spatial relationship
between images adequately. For example, in intrasubject registration non-
rigid transformations are required to accommodate any tissue deformation
due to interventions or changes over time. Similarly, in intersubject registra-
tion, nonrigid transformations are often required to accommodate the sub-
stantial anatomical variability across individuals.

In contrast to rigid registration techniques, nonrigid registration tech-
niques are still the subject of significant ongoing research activity. The goal of
this chapter is to give an overview of the different nonrigid registration tech-
niques and the current state of the art in this fast-moving area. A recent over-
view of hierarchical approaches to nonrigid registration can be found in
Lester and Arridge.

 

1

 

13.2 Techniques

 

Any nonrigid registration technique can be described by three components: a
transformation which relates the target and source images (images 

 

A

 

 and 

 

B

 

 as
defined in Chapter 3), a similarity measure which measures the similarity
between target and source image, and an optimization which determines the opti-
mal transformation parameters as a function of the similarity measure. The
main difference between rigid and nonrigid registration techniques is the
nature of the transformation. The goal of rigid registration is to find the six
degrees of freedom (three rotations and three translations) of transformation
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) which maps any point in the source image into the cor-
responding point in the target image. An extension of this model is the affine
transformation model which has twelve degrees of freedom and allows for
scaling and shearing:

(13.1)

These affine or linear transformation models are often used for the registra-
tion of images for which some of the image acquisition parameters are unknown,
such as voxel sizes or gantry tilt,

 

2,3

 

 or to accommodate a limited amount of shape
variability.

 

4

 

 By adding additional degrees of freedom (DOF), such a linear
transformation model can be extended to nonlinear transformation models.
Figure 13.1 shows some examples of the different types of transformations com-
monly used for image registration.
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For example, the quadratic transformation model is defined by second
order polynomials

(13.2)

whose coefficients determine the 30 degrees of freedom of the transforma-
tion. In a similar fashion this model can be extended to higher order polyno-
mials such as third (60 DOF), fourth (105 DOF), and fifth-order polynomials
(168 DOF).

 

5

 

 However, their ability to recover anatomical shape variability is
often quite limited since they can model only global shape changes and cannot
accommodate local shape changes. In addition, higher order polynomials
tend to introduce artifacts such as oscillations;

 

6

 

 therefore, they are rarely used
for nonrigid registration.

 

13.2.1 Registration Using Basis Functions

 

Instead of using a polynomial as a linear combination of higher order terms,
one can use a linear combination of basis functions 

 

�

 

i

 

 to describe the defor-
mation field:

(13.3)

A common choice is to represent the deformation field using a set of (orthonor-
mal) basis functions such as Fourier (trigonometric) basis functions

 

7,8

 

 or wavelet

 

FIGURE 13.1

 

Example of different types of transformations of a square: (a) identity transformation,
(b) rigid transformation, (c) affine transformation, and (d) nonrigid transformation.
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basis functions.

 

9

 

 In the case of trigonometric basis functions this corresponds
to a spectral representation of the deformation field where each basis func-
tion describes a particular frequency of the deformation. Restricting the
summation in Equation (15.3) to the first 

 

N

 

 terms (where 1 
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n

 

) has the
effect of limiting the frequency spectrum of the transformation to the 

 

N

 

 low-
est frequencies.

 

13.2.2 Registration Using Splines

 

The term spline originally referred to the use of long flexible strips of wood
or metal to model the surfaces of ships and planes. These splines were bent
by attaching different weights along their length. A similar concept can be
used to model spatial transformations. For example, a 2D transformation can
be represented by two separate surfaces whose height above the plane corre-
sponds to the displacement in the horizontal or vertical direction. An exam-
ple of such a transformation is shown in Figure 13.2.

Many registration techniques using splines are based on the assumption
that a set of corresponding points or landmarks can be identified in the
source and target images. This is analagous to the use of point landmarks for
rigid or affine registration using the Procrustes method described in Chapter 3.
These corresponding points are often referred to as 

 

control points

 

. At these
control points, spline-based transformations either interpolate or approxi-
mate the displacements which are necessary to map the location of the con-
trol point in the target image into its corresponding counterpart in the source
image. Between control points, they provide a smoothly varying displace-
ment field. The interpolation condition can be written as

(13.4)

 

FIGURE 13.2

 

An example of a nonrigid transformation required to warp a square into a circle. The corres-
ponding transformation is shown as two separate surfaces defining (a) the displacement in
the horizontal direction and (b) the displacement in the vertical direction.
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where �i denotes the location of the control point in the target image and 
denotes the location of the corresponding control point in the source image.
There are a number of different ways to determine the control points. For
example, anatomical or geometrical landmarks which can be identified in
both images can be used to define a spline-based mapping function, which
maps the spatial position of landmarks in the source image into their corre-
sponding position in the target image.10 In addition, Meyer et al.11 suggested
updating the location of control points by optimization of a voxel similarity
measure such as mutual information. Alternatively, control points can be
arranged with equidistant spacing across the image, forming a regular
mesh.12 In this case the control points are only used as a parameterization of
the transformation and do not correspond to anatomical or geometrical land-
marks. Therefore they are often referred to as pseudo- or quasi-landmarks.

13.2.2.1 Thin-Plate Splines

Thin-plate splines are part of a family of splines that are based on radial basis
functions. They have been formulated by Duchon13 and Meinguet14 for the
surface interpolation of scattered data. In recent years they have been widely
used for image registration.10,15,16 Radial basis function splines can be defined
as a linear combination of n radial basis functions �(s).

(13.5)

Defining the transformation as three separate thin plate spline functions
T �  yields a mapping between images in which the coefficients a
characterize the affine part of the spline-based transformation, while the
coefficients b characterize the nonaffine part of the transformation. The inter-
polation conditions in Equation (13.4) form a set of 3n linear equations. To
determine the 3(n � 4) coefficients uniquely, 12 additional equations are
required. These 12 equations guarantee that the nonaffine coefficients b sum
to zero and that their crossproducts with the x, y and z coordinates of the con-
trol points are likewise zero. In matrix form this can be expressed as

(13.6)

Here a is a 4 � 3 vector of the affine coefficients a, b is a n � 3 vector of the non-
affine coefficients b, and � is the kernel matrix with 	ij � �(��i 
 �j�). Solving
for a and b using standard algebra yields a thin-plate spline transformation
which will interpolate the displacements at the control points.

The radial basis function of thin-plate splines is defined as

(13.7)
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A wide number of alternative choices for radial basis functions including
multiquadrics and Gaussians exists.17,12 Modeling deformations using thin-
plate splines has a number of advantages. For example, they can be used to
incorporate additional constraints such as rigid bodies18 or directional
constraints19 into the transformation model, and they can be extended to
approximating splines where the degree of approximation at the landmark
depends on the confidence of the landmark localization.20

13.2.2.2 B-Splines

In general radial basis functions have infinite support. Therefore each basis
function contributes to the transformation and each control point has a global
influence on the transformation. In a number of cases the global influence of
control points is undesirable since it becomes difficult to model local defor-
mations. Furthermore, for a large number of control points the computational
complexity of radial basis function splines becomes prohibitive. An alterna-
tive is to use freeform deformations (FFDs) which have been widely used for
animations in computer graphics. FFDs based on locally controlled functions
such as B-splines are a powerful tool for modeling 3D deformable objects21

and have been used successfully for image registration.22–24 The basic idea of
FFDs is to deform an object by manipulating an underlying mesh of control
points. The resulting deformation controls the shape of the 3D object and pro-
duces a smooth and  continuous transformation. In contrast to radial basis
function splines which allow arbitrary configurations of control points, spline-
based FFDs require a regular mesh of control points with uniform spacing.

A spline-based FFD is defined on the image domain � � {(x, y, z) � 0 � x �
X, 0 � y � Y, 0 � z � Z} where  denotes an nx � ny � nz mesh of control
points �i,j,k with uniform spacing �. In this case the displacement field u
defined by the FFD can be expressed as the 3D tensor product of the familiar
1D cubic B-splines:25

(13.8)

where i �  
 1, j �  
 1, k �  
 1, u � , v � , w � ,
and �l represents the l-th basis function of the B-splines:25

 

As mentioned previously, FFDs are controlled locally, which makes them com-
putationally efficient even for a large number of control points. In particular,
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the basis functions of cubic B-splines have a limited support, i.e., changing
control point �i,j,k affects the transformation only in the local neighborhood
of that control point.

13.2.3 Elastic Registration

Elastic registration techniques were proposed by Bajcsy et al.26 for matching
a brain atlas with a CT image of a human subject. The idea is to model the
deformation of the source image into the target image as a physical process
which resembles the stretching of an elastic material such as rubber. This
physical process is governed by two forces. The first term is the internal force
which is caused by the deformation of elastic material (i.e., stress) and coun-
teracts any force which deforms the elastic body from its equilibrium shape.
The second term corresponds to the external force which acts on the elastic
body. As a consequence, the deformation of the elastic body stops if both forces
acting on it form an equilibrium solution. The behavior of the elastic body is
described by the Navier linear elastic partial differential equation (PDE):

(13.9)

Here u describes the displacement field, f is the external force acting on the
elastic body, � denotes the gradient operator, and  denotes the Laplace
operator. The parameters � and � are Lamé’s elasticity constants which
describe the behavior of the elastic body. These constants are often inter-
preted in terms of Young’s modulus E1, which relates the strain and stress of
an object, and Poisson’s ratio E2, which is the ratio between lateral shrinking
and longitudinal stretching:

(13.10)

The external force f is the force which acts on the elastic body and drives the
registration process. A common choice for the external force is the gradient of
a similarity measure such as a local correlation measure based on intensities,26

intensity differences,27 or intensity features such as edge and curvature.28 An
alternative choice is the distance between the curves29 and surfaces30 of corre-
sponding anatomical structures.

The PDE in Equation (13.9) may be solved by finite differences and succes-
sive over relaxation (SOR).31 This yields a discrete displacement field for each
voxel. Alternatively, the PDE can be solved for only a subset of voxels which
correspond to the nodes of a finite element model.28,32 These nodes form a set
of points for which the external forces are known. The displacements at other
voxels are obtained by finite element interpolation. An extension of the elas-
tic registration framework has been proposed by Davatzikos33 to allow for
spatially varying elasticity parameters. This enables certain anatomical struc-
tures to deform more freely than others.
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13.2.4 Fluid Registration

Registration based on elastic transformations is limited by the fact that highly
localized deformations can not be modeled, since the deformation energy
caused by stress increases proportionally with the strength of the deformation.
In fluid registration these constraints are relaxed over time, which enables the
modeling of highly localized deformations including corners. This makes fluid
registration especially attractive for intersubject registration tasks (including
atlas matching) which have to accommodate large defor-mations and large
degrees of variability. At the same time the scope for misregistration increases,
as fluid transformations have a vast number of degrees of freedom.

Elastic deformations are often described in a Lagrangian reference frame,
i.e., with respect to their initial position. In contrast to that, fluid deforma-
tions are more conveniently described in a Eulerian reference frame, i.e., with
respect to their final position. In this Eulerian reference frame, the deforma-
tions of the fluid registration are characterized by the Navier-Stokes partial
differential equation,

(13.11)

similar to Equation (13.9) except that differentiation is carried out on the
velocity field v rather than on the displacement field u and is solved for each
time step. The relationship between the Eulerian velocity and displacement
field is given by:

(13.12)

Christensen et al.34 suggested to solve Equation (13.11) using successive over
relaxation (SOR).31 However, the resulting algorithm is rather slow and requires
significant computing time. A faster implementation has been proposed by
Bro-Nielsen et al.35 Here, Equation (13.11) is solved by deriving a convolution
filter from the eigenfunctions of the linear elasticity operator. Bro-Nielsen et al.35

also pointed out that this is similar to a regularization by convolution with a
Gaussian as proposed in a nonrigid matching technique by Thirion36 in which
the deformation process is modeled as a diffusion process. However, the solu-
tion of Equation (13.11) by convolution is only possible if the viscosity is
assumed constant, which is not always the case. For example, Lester37 has pro-
posed a model in which the viscosity of the fluid is allowed to vary spatially,
and therefore allows for different degrees of deformability for different parts of
the image. In this case Equation (13.11) must be solved using conventional
numerical schemes such as SOR.31

13.2.5 Registration Using FEM and Mechanical Models

As mentioned previously, the PDE for elastic deformations can be solved by
finite element methods (FEM) which also form the topic of Chapter 15. A sim-
plified version of an FEM model has been proposed by Edwards et al.38 to
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model tissue deformations in image-guided surgery. They propose a three-
component model to simulate the properties of rigid, elastic, and fluid struc-
tures. For this purpose the image is divided into a triangular mesh with n
connected nodes �i . Each node is labeled according to the physical properties
of the underlying anatomical structures: for example, bone is labeled as rigid,
soft tissues as elastic, and CSF as fluid. While nodes labeled as rigid are kept
fixed, nodes labeled as elastic or fluid are deformed by minimizing an energy
function. Edwards et al.38 proposed a number of different energy terms to
constrain deformations: for example, nodes labeled as elastic can be con-
strained by a tension energy

where  corresponds to the relaxed distance between two nodes. An alter-
native choice for nodes labeled as elastic is a stiffness energy term:

Nodes labeled as fluid do not have any associated tension or stiffness energy.
Instead they have an associated folding energy

where A0 is the area of the undeformed triangle, A is the area of the deformed
triangle, and � is a threshold for the triangular area above which the energy
contribution is constant. This energy term prevents the development of sin-
gularities in the transformation, i.e., the collapsing or folding over of triangles.
In the implementation proposed by Edwards et al.38 the registration is
driven by a similarity measure which minimizes the distance between cor-
responding landmarks, but other similarity measures can be easily integrated
into the energy function.

13.2.6 Registration Using Optical Flow

A well known registration technique which is equivalent to the equation
of motion for incompressible flow in physics is the so-called optical flow.39

The concept of optical flow was originally introduced in computer vision
in order to recover the relative motion of an object and the viewer in
between two successive frames of a temporal image sequence. Its funda-
mental assumption is that the image brightness of a particular point stays
constant, i.e.,

I(x, y, z, t) � I(x � �x, y � �y, z � �z, t � �t). (13.13)
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Using a Taylor expansion of the right side and ignoring higher-order terms,
the optical flow equation (13.13) can be rewritten as

(13.14)

Alternatively this can be written as

�I � �I � u � 0 (13.15)

where �I is the temporal difference between the images, �I is the spatial gra-
dient of the image, and u describes the motion between the two images. In
general, additional smoothness constraints are imposed on the motion field
u in order to obtain a reliable estimate of the optical flow. These smoothness
constraints are discussed in more detail in the following section.

13.2.7 Registration as an Optimization Problem

Like many other problems in computer vision and image analysis, registra-
tion can be formulated as an optimization problem whose goal is to minimize
an associated energy or cost function. The most general form of such a cost
function is

C � 
Csimilarity � Cdeformation (13.16)

where the first term characterizes the similarity between the source and target
image and the second term characterizes the cost associated with particular
deformations. Most of the nonrigid registration techniques discussed so far
can be formulated in this framework. From a probabilistic point of view, the
cost function in Equation (13.16) can be explained in a Bayesian framework.40

In this context, the similarity measure can be viewed as a likelihood term
which expresses the probability of a match between source and target image.
The second term can be interpreted as a prior which represents a priori knowl-
edge about the expected deformations.

The first term is the driving force behind the registration process, and aims
to maximize the similarity between both images. The different similarity mea-
sures can be divided into two main categories: point based and voxel based
similarity measures (a detailed discussion of those can be found in Chapter 3).
Point-based similarity measures minimize the distance between features such
as points, curves, or surfaces of corresponding anatomical structures and
requires prior feature extraction. In recent years, voxel-based similarity measures
such as sums of squared differences, cross correlation, or mutual information
described in Chapter 3 have become increasingly popular. These voxel-based
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similarity measures have the advantage that they do not require any feature
extraction process.

The second term is often referred to as the regularization or penalty func-
tion which can be used to constrain the transformation relating the source
and target images. In the case of rigid or affine registration this term is nor-
mally ignored and only plays a role in nonrigid registration. For example, in
elastic or fluid registration the regularization term (linear elasticity model)
forms an integral part of the registration. Other regularization models are the
Laplacian or membrane model:7,41

and the biharmonic or thin-plate model:16,42

Both models have an intuitive physical interpretation. While the Laplacian
model approximates the energy of a membrane (such as a rubber sheet)
which is subjected to elastic deformations, the biharmonic term approxi-
mates the energy of a thin plate of metal which is subjected to bending defor-
mations.43 For example, Rueckert et al.22 combine a similarity function based
on mutual information with thin-plate regularization.

13.3 Applications

There are a large number of applications for nonrigid registration. Areas of
considerable interest for nonrigid registration are the applications discussed
in more detail in Chapter 5, in which the geometry during image acquisition is
unknown or distorted, and include correction for scaling,2 gantry tilt,3 and
magnetic field inhomogeneity.44 Other areas of nonrigid registration can be
classified into either the registration of deformable structures of the same indi-
vidual (intrasubject registration) or the registration across individuals (inter-
subject registration). Due to the different nature of these registration tasks, the
algorithms developed to solve them have quite different characteristics.
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13.3.1 Intrasubject Registration

The goal of intrasubject registration is the matching and fusion of images of
the same subject acquired at different times and�or with different imaging
modalities. The need for nonrigid registration arises from the fact that most
tissues are far from rigid and can deform considerably. This tissue deforma-
tion may be caused by patient motion, cardiac motion, or respiratory
motion. For example, nonrigid registration plays an important role for con-
trast enhanced MR imaging of the breast. Here, the difference between the
rate of uptake of contrast agent in healthy and cancerous tissue can be used
to identify cancerous lesions. The rate of uptake of contrast agent is esti-
mated as the difference between pre- and postcontrast images, and any
motion between both images complicates its estimation. Due to the highly
deformable nature of the breast tissue, Rueckert et al.22 have developed a
nonrigid registration technique to correct for this motion. An example of
this is shown in Figures 13.3 and 13.4. A clinical evaluation in comparison

FIGURE 13.3
A contrast-enhanced MR mammography: (a) precontrast, (b) postcontrast and after subtrac-
tion (c) without registration, and (d) with nonrigid registration.22
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with rigid and affine registration techniques has demonstrated the superior
performance of the nonrigid registration technique for contrast-enhanced
MR mammography.45

For a number of other registration tasks it is necessary to model rigid as well
as nonrigid deformations. For example, in the registration of images of the
spine, the vertebrae of the spine are rigid and do not deform, while the sur-
rounding tissue can deform in a nonrigid fashion. Little et al.18 have recently
shown how the constraints of rigid bodies can be incorporated into a spline
based transformation using radial basis functions. This results in an interpo-
lating solution that is a summation of a linear term corresponding to the rigid
bodies, and a basis function which smoothly tends to zero at the surface of the
rigid bodies. The resulting transformation is exact at rigid bodies, given the
rigid body transformation, and provides smooth interpolation elsewhere.

Other reasons for tissue deformation may be changes over time such as
tumor growth or tissue deformation due to external forces. For example, in
many image-guided surgery applications it is necessary to align preoperatively
acquired images with intra- or postoperative images. To model soft tissue
deformation in a physically more plausible way, Edwards et al.38 developed a
three-component model, described in Section 13.2.5. This model incorporates
the different deformation characteristics of rigid, elastic, and fluid structures,
and has been tested on CT and MR slices of the brain acquired before and after
surgery for placement of electrode mats on the brain surface prior to excision of
areas of focal activity in the treatment of epilepsy.

Other applications of nonrigid registration for intrasubject registration
include the monitoring of temporal changes in serial MR images46,47 and
the analysis of rest and stress cardiac SPECT images.23

FIGURE 13.4
A maximum intensity projection (MIP) of a contrast-enhanced MR mammography: (a) without
registration and (b) with nonrigid registration.22

0064_frame_C13.fm  Page 293  Wednesday, May 16, 2001  10:36 AM



294 Medical Image Registration

13.3.2 Intersubjection Registration

In contrast to intrasubject registration where nonrigid registration is largely
used to account for the deformation of anatomical structures, the motivation
for the use of nonrigid matching techniques in intersubject registration is
quite different. Here, the aim of nonrigid registration is not to account for the
physical deformation of the underlying anatomical structures but rather to
account for the variability of these structures across different individuals. As
a result, the transformations used for intersubject registration usually have a
larger number of degrees of freedom and are less tightly constrained than
those used for intrasubject registration.

An important application for intersubject registration is the construction
and matching of computerized atlantes (also called atlases), which also forms
the topic of Chapter 14. Traditional medical atlantes contain information
about anatomy and function from a single individual, focusing primarily on
the human brain.48,49 Such an atlas can be made subject-specific by transform-
ing its coordinate system to match that of another individual. This transfor-
mation removes any subject specific shape variations and allows subsequent
comparison of structure and function between individuals. Consequently, a
number of different elastic26,40 and fluid35,50,51 warping techniques have been
developed for this purpose. Even though the individuals selected for these
atlantes may be considered normal, they may represent an extreme of a nor-
mal distribution. To address this problem, researchers have developed prob-
abilistic atlantes which include information from a set of subjects making
them more representative of a population. These atlantes have been success-
fully used to investigate structural and functional differences in the human
brain as part of the International Consortium for Brain Mapping (ICBM).52 A
prominent example of such a probabilistic atlantes of the human brain is the
atlas developed at the Montreal Neurological Institute (MNI).4 In this exam-
ple MR images from 305 subjects were mapped into stereotactic space, inten-
sity normalized, and averaged on a voxel-by-voxel basis.

Mapping data sets into normalized space not only accounts for anatomic and
functional variations and idiosyncrasies of each individual subject, but also
offers a powerful framework which facilitates comparison of anatomy and
function over time, between subjects, between groups of subjects, and across
sites. Another aspect of deformable atlantes is that the characteristics of the
displacements required to warp the atlas onto the subject provide a method for
assessing local and global shape differences and can produce valuable infor-
mation about abnormalities53 or determine gross morphometric variability.54

An example of an MR atlas of the brain of seven normal subjects is shown in
Figure 13.5. This atlas has been computed by using one subject to define a ref-
erence space and registering all other subjects to this reference space. The atlas
was then constructed by averaging all MR images after they had been mapped
into the reference space. This is illustrated in Figure 13.5: The top row shows
the resulting atlas if a rigid transformation is used to align the images. The
middle row shows the resulting atlas if an affine transformation is used to
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align the images. The bottom row shows the atlas obtained by using a non-
rigid transformation based on freeform deformations.

Another important area of application which requires the matching of
computerized atlantes is the automated segmentation and labeling of com-
plex structures of the brain.55,56 Many of these approaches are based on the
understanding that only the use of statistical models of shape and intensity
enables automatic identification of complex structures such as the human brain.

FIGURE 13.5
An example of intersubject registration: an atlas of the brain is constructed by averaging
the MR images of seven normal subjects (top row) after rigid registration, (middle
row) after affine registration, and (bottom row) after nonrigid registration using free form
deformations.22
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A fundamental advantage of probabilistic atlantes is that they allow for the
calculation of statistical probability anatomy maps which can be used to
derive statistical knowledge about the spatial position and variability of ana-
tomical structures.

13.3.3 Analysis of Motion and Deformation Using 
Nonrigid Registration

In the case of rigid registration the recovered transformation itself has no clin-
ical significance. It merely expresses the difference between the position and
orientation in two images. However, in the case of nonrigid registration the
recovered transformation may have clinical significance. In particular, the
transformation may be used for the quantification of changes between
images. In these cases the primary goal is not only the transformation which
maps points in one image into their corresponding counterparts in the sec-
ond image, but also the motion and deformation characteristics exhibited by
this transformation.

One such example is the work of Maurer et al.,57,58 who have used a non-
rigid registration algorithm to detect and quantify intraoperative brain defor-
mation. In this application, pre- and postoperative MR images from patients
undergoing neurosurgery have been acquired using an interventional MR
scanner. After rigid registration of the pre- and postoperative MR images, the
images have been aligned by a nonrigid registration algorithm which maxi-
mizes the normalized mutual information between the pre- and postopera-
tive images. The resulting deformation field can be used to calculate the
volume change throughout the brain on a voxel-by-voxel basis. An example
of this is shown in Figure 13.6.

In a similar effort, Thirion et al.59 and Rey et al.47 used a nonrigid registra-
tion algorithm to identify multiple sclerosis lesions and characterize their
change over time. Finally, Thompson et al.60 have shown that growth patterns
in the developing brain can be studied and analyzed using the deformation
fields obtained by nonrigid registration. From these deformation fields local
rates of tissue dilation, contraction, and shear are calculated.

13.4 Conclusions

Rigid registration techniques have become widely accepted in a variety of
clinical applications. In contrast, nonrigid registration is very much an area
of ongoing research, and most algorithms are still in the stage of develop-
ment and evaluation. One of the main reasons for the successful impact of
rigid registration techniques is the fact that these techniques can be assessed
and validated against a gold standard (see Chapter 6). The lack of a gold stan-
dard for assessing and evaluating the success of nonrigid registration algo-
rithms is one of their most significant drawbacks. Currently, the only
accepted method for assessing nonrigid registration is based on manually
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identifying the position of anatomical or artificial landmarks in the source
and target image and comparing those to the position predicted by the non-
rigid registration algorithm.5 In carrying out validation, it is important to
consider the correspondence issues introduced in Chapter 2. An algorithm

FIGURE 13.6
An example of motion and deformation analysis from intraoperative MR images using
nonrigid registration:22 (a, b) preoperative MR images, (c, d) postoperative MR images, and
(e, f) the deformation field calculated by the algorithm (for better clarity the deformation
vectors have been scaled by a factor of two).
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could appear to match perfectly the source image to the target image, such
that all features overlap, but the transformation calculated may be com-
pletely wrong. For example, in intrasubject registration, a transformation
might stretch some parts of the image and compress others to make struc-
tures appear to line up even if the underlying tissue is incompressible. In
intersubject registration, an algorithm might warp structures in one image
so they appear to line up with corresponding structures in a second image
of a different subject, but the calculated transformation might be inappropri-
ate for comparing functional regions identified from the two subjects. At its
current stage of maturity, nonrigid registration algorithms should be used
with care, especially where it is desirable to use the calculated transforma-
tion for secondary purposes such as understanding tissue deformation or
studying variability between subjects.
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14.1 Introduction

 

The past ten years, known as the 

 

decade of the brain, 

 

have been marked by
advances in medical tomographic imaging technology that have made it
possible to acquire highly detailed volumes of human anatomy in three
dimensions (3D) with magnetic resonance imaging (MRI). Such technol-
ogy has facilitated the explosion of human brain mapping research,
where anatomical MRI is combined with positron emission tomography
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(PET) or functional magnetic resonance imaging (fMRI) to correlate
structure and function in normal and diseased subjects. The combination
of 

 

in vivo

 

 imaging data with interactive computerized visualization tools
has significantly improved the understanding of gross anatomy in the
living brain. Even with these new tools, traditional technical and practi-
cal difficulties have conditioned many neuroscientific studies to extrapo-
late findings from a relatively small sample of the population. In this chapter,
our research program at the Brain Imaging Centre (BIC) of the Montreal
Neurological Institute (MNI) will be used as an exemplar of the work in
this field and will illustrate our perspective on this fast moving area of
research.

A significant part of our research program has concentrated on the devel-
opment of computerized algorithms for automated analysis of large ensem-
bles of anatomical and functional data. These data arise from cohort studies
where the number of subjects is counted in the hundreds, if not thousands.
These tools are the result of our participation in the International Consor-
tium for Brain Mapping (ICBM

 

1

 

) where the goal has been to address certain
weaknesses associated with classical brain atlases (or atlantes). Such atlases
are derived from a single brain, or brains from a small number of subjects.

 

2–6

 

Even though the brains selected for use in this atlas may be considered nor-
mal, they may still represent an extreme of the normal distribution. Com-
parison of a given subject’s brain is achieved by aligning the brain with the
atlas, and then using simple scaling factors in an attempt to account for
variability in brain size. Unfortunately, the limited number of examples
used to create the atlas prohibits quantification or representation of normal
anatomical morphometric or functional variability. Thus, it is difficult to
judge the degree of normalcy of a brain under study by comparison with
one of these atlases.

In keeping with the goals of the Human Brain Project,

 

7

 

 the thrust of the
ICBM project is to characterize normal anatomy and function by building
normative databases and the tools required for interaction with these data-
bases. The primary aim of the first phase of the ICBM project was to quan-
tify the normal range of morphometric variability and to build a probabilistic
atlas of structural anatomy. In the second phase, similar tools are now
being developed to capture and characterize variability of functional
regions.

The methods developed in the context of the ICBM project are directly
applicable to cohort studies where the goal may be to characterize the brain
anatomy of a specific group of subjects or to quantify differences between
two groups. For example, one might be interested in using subtle anatomi-
cal differences, such as differential rates of cerebral atrophy, to discriminate
between groups of patients treated with different medications. For many of
these studies, data such as blood volume, blood flow, glucose utilization, or
tracer uptake must be estimated for a particular region of interest from the data
set corresponding to each subject. Traditional manual definition of such regions
is difficult, time consuming, and potentially unsuitable if inter- and intraobserver
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variability is large when compared to the size of a subtle signal difference that
is to be detected.

Two basic paradigms have been proposed in the literature to replace man-
ual segmentation methods and automate the analysis process, making it as
objective as possible. The first is based on segmentation and the second is
based on registration.

There have been a number of attempts at developing semiautomated

 

8–15

 

segmentation procedures that are able to identify the borders of structures of
interest, with differing levels of success for different tasks. These methods
require some level of manual intervention to align predefined atlas structures
onto the volumetric image data. A hierarchical system is normally used,
where the entire atlas is fitted with a global transformation, followed by cus-
tomization of individual atlas structures. Fully automated techniques
attempt to match atlas structures to the image data directly, thus obviating
the need for user input, with different levels of success.

 

16–23

 

Registration-based comparison techniques examine the data on a voxel-by-
voxel basis, and thus require data to be placed into correspondence spatially
to replace the aforementioned structure-by-structure comparison tech-
niques.

 

24–29

 

 

 

These techniques have the advantage of permitting exploratory
analysis of the whole brain volume without specifically identifying particu-
lar regions in each volume. The first half of this chapter will concentrate on
the technical aspects of anatomical registration. The second half will summa-
rize a number of example cohort studies that have been carried out in the BIC
at the MNI.

 

14.2 Technical Issues

 

Registration-based comparison methods are based on spatial normalization
where a spatial transformation is found to map similar structures (or homol-
ogous points) from different data sets to same spatial position. While the gen-
eral case must concern itself with the mapping of data from different imaging
modalities (intermodality registration), we deal here only with the specific
case of intramodality registration of MRI data.

Four aspects of the normalization procedure must be identified and well
defined before continuing:

•

 

Reference space: 

 

Which data set and coordinate system defines the
reference frame used for comparisons?

 

•

 

Spatial mapping function: 

 

How will brain data from a given subject
be mapped or transformed from the native (original scan) representation
to the reference frame?

 

•

 

Similarity measure: 

 

How will a brain volume be compared to the target
data set to determine value (goodness) of a given mapping function?
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•

 

Optimization procedure: 

 

What algorithm will be used to search the
space of possible spatial mapping functions to determine which one yields
the maximum similarity?

 

These aspects will be discussed in the following sections.

 

14.2.1 The Reference Space

 

The ideal 

 

reference space

 

 should minimize the positional variability of homol-
ogous anatomical (or functional) features after mapping data from different
subjects into the space. This frame of reference should arise directly from
a simple statistical analysis of the features. However, determination of this
space is dependent on the features selected in addition to the four aforemen-
tioned aspects of the spatial normalization procedure. This said, we will
describe a well known, practical reference space used for neuroscientific
research. Other reference spaces will be discussed in Section 14.2.5.

 

14.2.1.1 Talairach Stereotaxic Space

 

Within the brain mapping community, the 

 

de facto

 

 standard reference frame is
based on the brain-based coordinate system first described by the French neuro-
surgeon Talairach.

 

2,30 

 

This reference system provides a method for identifying
the location of a structure so that regions of interest can be compared between
brains using standard coordinates. Although originally developed to target
deep brain structures for stereotaxic neurosurgical procedures using pneu-
moencephalography, the Talairach stereotaxic system has become an interna-
tional standard for reporting the coordinates of brain locations obtained in
functional activation studies. This system has facilitated the development of
BrainMap, a database of spatially indexed functional brain data.

 

31

 

The 

 

stereotaxic space 

 

defined by Talairach is based on the identification of a
midplane line passing through the superior aspect of the anterior commis-
sure (AC) and the inferior aspect of the posterior commissure (PC), thus
defining the so-called AC-PC line. The origin of the space is defined by the
intersection of a vertical perpendicular line with the AC-PC line, passing
through the posterior aspect of the AC. This perpendicular is in the mid-
plane and is known as the VAC line. The coordinate system follows the con-
vention that the 

 

x

 

-axis is in the left-right (LR) direction (positive towards the
right), the 

 

y

 

-axis is in the posterior-anterior (PA) direction (positive anteri-
orly), and the 

 

z

 

-axis is in the caudo-cranial (CC) direction (positive superiorly).
Individual data sets can be compared with the Talairach atlas by identify-

ing the AC-PC and VAC lines within the given volume so that they can be
aligned with the atlas (thus defining the 

 

Talairach spatial mapping function

 

). In
order to account for different brain sizes, proportional scaling is used to par-
tition the brain into three piecewise linear components in the PA direction
(pre-AC, AC-PC, post-PC), two in the CC direction (above

 

�

 

below AC-PC),
and two in the LR direction (one for each hemisphere).

 

0064_frame_C14.fm  Page 306  Wednesday, May 16, 2001  10:40 AM



 

Use of Registration for Cohort Studies

 

307

When image volumes are transformed into this space and resampled on the
same voxel grid such that all brains have the same orientation and size,
voxel-by-voxel comparisons across data volumes from different populations
are possible, since each voxel (

 

i

 

, 

 

j

 

, 

 

k

 

) corresponds to the same (

 

x

 

, 

 

y

 

, 

 

z

 

) points in
the brain-based coordinate system. The transformation to this coordinate sys-
tem also provides a means for enhancement of functional signals by averag-
ing images in this space.

 

32

 

 This paradigm allows information (anatomical,
metabolic, electrophysiological, chemical, cytoarchitectonic) from different
brains to be spatially organized and cataloged by mapping all brains into the
same coordinate system.

 

31

 

 Finally, in the original Talairach spirit, the coordi-
nate corresponding to a particular structure, as defined by an atlas in this
coordinate system, can be used to 

 

predict

 

 its location in a subject’s brain volume
when mapped into the same space. The accuracy of prediction depends
greatly on the residual anatomical variability remaining after mapping a
brain into this coordinate system. For thalamus and basal ganglia structures,
this mapping and the corresponding prediction are quite accurate because
anatomical variability of these structures in this frame of reference is low. The
predictive accuracy is lower

 

 

 

for cortical structures, mainly due to the signifi-
cantly higher anatomical variability in this space.

When used for interpretation of cortical regions, there are a number of diffi-
culties associated with the Talairach atlas. (Note the distinction between the ste-
reotaxic 

 

atlas

 

 and the stereotaxic 

 

space

 

.) The atlas is derived from a single
cadaver brain of a right-handed, 60-year-old European female, and thus may
suffer from postmortem artifacts. The atlas is defined on one hemisphere and
reflected to the other hemisphere, making it completely symmetric and ignor-
ing well known left-right hemispheric differences. With the exception of the
upper midbrain, the atlas excludes the brainstem and cerebellum. It has variable
slice separation, up to 4 mm. While it contains transverse, coronal, and sagittal
slices, it is not contiguous in 3D nor is it entirely consistent among the three rep-
resentations.

 

33

 

 Finally, and perhaps most importantly, it is derived from a single
subject, and thus it cannot represent statistical models of anatomical variability.

Despite the difficulties associated with the Talairach atlas, there are a num-
ber of significant advantages to using stereotaxic space for brain imaging
studies, the most important of which is that this space provides a conceptual
framework for the completely automated 3D analysis across subjects in cohort
studies. In particular, registration of brain image volumes to this space:

• Facilitates comparisons 1) across time points for an individual sub-
ject, 2) between subjects, 3) between different groups of subjects,
and 4) across acquisition sites

• Permits voxel-to-voxel averaging between subjects to detect sub-
tle signals by increasing the signal-to-noise ratio

 

32

 

• Allows the use of spatial masks for postprocessing

 

34

 

• Allows the use of spatial priors (e.g., for classification)
• Allows the use of anatomical models (e.g., for segmentation)
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• Provides a framework for statistical analysis with well-established
random field models

 

35

 

• Allows the rapid reanalysis of ensembles of data using different
processing criteria

The uncertainties associated with the atlas, the advantages of stereotaxic
space, and the availability at the MNI of a large database of MRI volumes obtai-
ned from young, normal subjects have lead our group to construct a 3D probabi-
listic atlas of gross neuroanatomy. This atlas is described in the next section.

 

14.2.1.2 MNI Stereotaxic Space

 

Significant morphometric variability exists between individuals.

 

36,37

 

 Rather than
using a single brain, we have established a model from more than 300 MRI data
sets from young normals.

 

38,39

 

 Our model was defined in a coordinate system
similar to that proposed by Talairach;

 

2

 

 however, we use a single linear trans-
formation instead of 12 piecewise linear transformations to map a brain into
stereotaxic space.

In order to build the stereotaxic space model, we proceeded with a two-
stage procedure. In the first stage, each MRI volume was manually regis-
tered with the stereotaxic coordinate system using the method described by
Evans et al.

 

36

 

 The line defined by the AC-PC line was manually estimated
by identifying the following points defined on the midsagittal plane: the
occipital pole, the superior aspect of the cerebellum, the inferior aspect of the
splenium of the corpus callosum, the posterior commissure, the inferior
aspect of the thalamus, the anterior commissure, and the inferior aspect of the
genu of the corpus callosum. A line was fitted through these points and the
most anterior and most posterior aspects of the brain identified. A vertical
perpendicular bisector of the AC-PC line was drawn to identify the most
superior aspect of the cortex. Lateral perpendicular bisectors were drawn to
identify the most lateral points of the cerebral volume. These points were
used to define a 

 

single

 

 linear transformation required to bring each data set
into stereotaxic space. Note that this is a significant difference from the
method originally described by Talairach. Each volume was resampled onto
a 1 mm voxel grid according to this transformation and was subsequently
normalized for mean image intensity. The entire ensemble of MRI data sets
was averaged to create the first-pass mean MRI brain, which was then avail-
able as a target for registration.

This first-pass mean MRI brain was degraded by random errors introduced
in the alignment of each subject’s AC-PC line by manual identification. A sec-
ond stage was then initiated, using the first-pass mean average as the target
for an automated 3D image-matching algorithm.

 

28

 

 Each individual brain was
again transformed from its native space to the stereotaxic space by mapping it,
again with a single linear transformation (rigid body plus three scaling para-
meters), to the target volume. This process reduced the effect of random align-
ment errors and increased the contrast of the averaged result. The entire
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ensemble of 305 MRI data sets was averaged to create the second-pass mean
MRI brain known as MNI305,

 

36,38,39

 

 which has been made publicly available as
a standard stereotaxic registration target within the MNI_Autoreg package*
and within the statistical parametric mapping (SPM**) package developed at
the Wellcome Department of Cognitive Neurology.

 

14.2.2 The Spatial Mapping Function

 

The 

 

spatial mapping function 

 

is used to transform coordinates from the native
image volume into the reference space. There are a number of desirable char-
acteristics for such a function. It should be continuous, unique, invertible,
simple to compute, and straightforward to apply. Generally, mapping functions
are divided into linear and nonlinear models. 

The simplest case of linear spatial normalization involves a rigid-body
transformation (translations and rotations only, no change in size or shape)
and is normally applicable only for within-subject alignment. In order to
account for differing head sizes, a nonrigid component of scaling can be
included while maintaining shape invariance. A single scaling factor is used
in the classical Procrustes mapping

 

40

 

 (other Procrustes mappings are des-
cribed in Chapter 3), whereas the more general use of three scaling factors
yields a total of nine parameters (three translations, three rotations, and three
scaling factors). These linear models are continuous, unique, invertible, sim-
ple to compute, and easy to apply when resampling data for comparisons. A
variety of methods exist to compute the linear spatial mapping based on
landmark matching,

 

36,41,42

 

 surface matching,

 

43–45

 

 

 

or volume density match-
ing.

 

28,46,47

 

 See Chapters 2 and 3 for more detailed information on registration
algorithms, in addition to the excellent reviews of van den Elsen,

 

48 

 

Maintz,

 

49

 

or Hawkes.

 

50

 

The strict piecewise linear mapping of Talairach has been implemented by
Lemoine

 

51

 

 using manual identification of the AC and PC landmark and by
Verard

 

52

 

 with automated landmark localization. This mapping method is rela-
tively straightforward to compute, and it is easy to apply. However, it is not con-
tinuous and is only piecewise invertible. Most groups have moved to a nonlinear
spatial mapping function to account for anatomical variability by allowing more
degrees of freedom in the mapping function. Many of the nonrigid registration
algorithms that are appropriate for intersubject registration (or spatial nor-
malization) are described in Chapter 13.

Among the different nonlinear mapping methods, that developed by
Friston et al.

 

53,54

 

 

 

is constrained to consist of a weighted linear combination of
smooth basis warps that are defined by discrete cosine transforms. A similar
mapping technique has been developed by Woods

 

55,56

 

 except that polynomial
basis functions are used. In these two methods a limited number of parame-
ters (say, 

 

n

 

 

 

�

 

 10

 

3

 

) is used to define the mapping. Bookstein has promoted a
method to interpolate the 3D mapping between sparse landmarks (such as

 

* 

 

http:

 

��

 

www.bic.mni.mcgill.ca

 

�

 

software

 

�

 

mni_autoreg

 

** 

 

http:

 

��

 

www.fil.ion.ucl.ac.uk

 

�

 

spm
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homologous points or surfaces) based on the mechanical properties of a thin
metal plate with minimum bending energy.

 

57

 

 Nonlinear mappings can also
be constrained with elastic material properties

 

18,19,58,59

 

 

 

or the dynamics of a
viscous fluid.

 

60

 

 It is important to note that the underlying physical model is
used only to constrain the spatial mapping function in order to yield the
desired properties mentioned above. These mappings are not meant to model
the true physical properties of brain tissue deformation since we are not actu-
ally physically deforming one brain into the shape of another.

 

14.2.3 The Similarity Measure

 

Ideally, the spatial mapping function will align all features of interest between a
given brain volume with the corresponding features of the target in the refer-
ence space. We term the mapping that puts homologous features into corre-
spondence 

 

homology function. 

 

The 

 

similarity measure 

 

is the practical
implementation of the homology function and is used to measure the goodness
of alignment between two brain volumes (for more information, see the similar-
ity measure concept introduced in Chapter 3).

The actual definition of the homology function is highly task dependent
since it relies completely on the features of interest, and many different fea-
tures can be selected. For example, one might be interested only in the align-
ment of gross anatomical structures such as the cerebral lobes, or in the detail
of particular gyri. Anatomists may be interested in the alignment of cytoar-
chitectonic regions across subjects. Some neuropsychologists are interested in
alignment of functional regions. Even when the features have been selected,
the homology function may be impossible to define in certain situations, e.g.,
when a certain brain region (like Heschl’s gyrus) may be represented by one
gyrus in one subject and by two gyri in another subject.

It is important to note that the similarity measure is only an approximation
to the homology function. For example, in brain mapping, the goal is to align
both anatomical and functional regions. In practice, cross-correlation,

 

28

 

 a cor-
relation ratio,

 

61

 

 or mutual information

 

62

 

 may be used to measure similarity
between brain volumes. Since it is only an approximation, a successful regis-
tration (i.e., one that maximizes the similarity measure) may not represent the
best mapping for the homology function.

 

14.2.4 The Optimization Procedure

 

The goal of the optimization procedure is to find the global maximum of the
similarity measure given the domain of possible mapping functions. While
not as important as the reference space, mapping function, or similarity
measure, the optimization procedure must be nonetheless practical and
robust—especially when one takes into account the complex shape of the
similarity measure. The different procedures trade off speed, robustness,
and reliability. We have found that hierarchical methods that function with
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data at different scales are the most robust. These methods start by blurring
the data volumes, both in the given brain and the target data set, to remove
detail before estimating an initial registration. This first result is used as a
starting point for a second registration procedure using slightly less blurred
data to refine the initial fit. When this procedure is repeated a number of times,
reducing the data blur and refining the spatial mapping function, the result is
both reliable and robust. This strategy has the added benefit of reducing the
computational time required to compute a registration at high resolution,
since the initial stages can be computed quickly on highly blurred data and
the initial fits target the result and reduce the effective search space.

 

14.2.5 Other Brain-Based Reference Spaces

 

It is important to note that while versions of the Talairach coordinate system
have become the 

 

de facto 

 

standard in much of the brain mapping field, other
reference spaces exist that are applied for specific types of analysis.

In some studies, a single brain is selected as the target for registration and
standardization. This method suffers from the problems associated with
using a single brain (mentioned in Section 14.2.1.1) without the advantages
of an atlas-based coordinate space (see Roland and Zilles for an overview of
the uses of brain atlases as a research tool

 

63

 

). In neurosurgical planning of
stereotactic interventions, the reference space most often used is that of the
Schaltenbrand and Wahren atlas,

 

4

 

 used to derive the coordinates of deep
brain targets.

In contrast to 3D registration, 2D methods concentrate on registering
pairs of surfaces by finding a mapping between the surfaces. Structures on
the surface are used to constrain the mapping. The surface most commonly
used is the outer cortical surface, i.e., the gray-matter

 

�

 

CSF interface. How-
ever, one could equally well use the white-matter

 

�

 

gray-matter boundary or
a medial surface inside the gray matter. Sandor,

 

64

 

 Thompson,

 

65

 

 and
Davatzikos

 

66

 

 each developed methods that begin by automatically extract-
ing the cortical surface followed by manual identification of a small number
of sulci that are used to constrain the registration. While these techniques
usually maintain the 3D geometry of the 2D surface, the methods devel-
oped by Van Essen and Drury at Washington University can be used to
extract and 

 

flatten

 

 the cortex onto a 2D surface where one can apply surface-
based coordinate systems to analyze structure and function.

 

15

 

 The main dif-
ficulty with this type of technique is the spatial distortion incurred by flat-
tening a 3D surface. The Washington University group has minimized
distance and area errors by inserting 

 

cuts

 

 into the surface. They have
applied the technique mostly to the visual system. The group at Harvard
has also developed a 2D coordinate system to identify regions of interest
based on automated surface extraction and flattening methods.

 

67,68

 

 The
extracted surface has a sphere topology, so a spherical coordinate system
can be used. This method has been used to generate an average cortical
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folding pattern of normal anatomy.

 

69

 

 

 

Thompson and Toga have created an
atlas of subjects with Alzheimer ’s Disease based on the surface registration
of manually identified curves on the cortex.

 

70

 

 Work is currently ongoing to
determine which space (2D surface in 3D, flattened 2D surface, or original
3D space) is best for mapping regions of interest.

 

14.3 Applications

 

The demand for the automatic quantitative analysis in cohort studies (i.e.,
analysis of large medical-image data sets with hundreds or thousands of
scans) has been growing over the past few years, particularly in the brain
mapping community. Typical examples are the construction of probabilistic
atlases of the adult and pediatric brain,

 

71,72

 

 the analysis of pathology in the
context of clinical research and clinical trials,

 

73

 

 and the statistical analysis of
functional imaging studies.

 

35

 

 To address the complexities of large computer
processing requirements, we have developed a production control system
(PCS) that allows the rapid implementation and parallel execution of an
analysis 

 

pipeline,

 

 a term used here to describe a sequence of processing
stages applied to a collection of input data. A pipeline consists of a sequence
of elementary operations that together make up a complex image analysis
task. The PCS ships individual processing steps (a program with its associ-
ated data) to a free CPU on the network, monitors its progress, and reports
results. This is completed for all steps in the pipeline and for all data sets in
the cohort.

At the BIC, we have developed a number of pipelines to analyze large
ensembles of data. Our typical pipeline for 3D brain image analysis includes a
number of preprocessing steps including image intensity nonuniformity cor-
rection,

 

74

 

 volume-to-target intensity normalization,

 

75 and noise reduction.76

Once preprocessing is completed, the pipeline combines linear registration28

and resampling into stereotaxic space, cortical surface extraction,77,78 tissue
classification,79 automatic sulcal extraction,80 and atlas matching using non-
linear registration.19 Linear registration is achieved by maximization of the cross
correlation ratio between an individual volume to be registered and average
MNI305 target volume already registered to stereotaxic space.28,36,38,39 The non-
linear registration is estimated by computing a 3D nonlinear deformation field
in a piecewise linear fashion, fitting cubical neighborhoods in sequence.19 Each
data cube in one volume is translated to achieve an optimal match within the
other volume. Cubes are arranged in a 3D grid to fill the volume, and each cube
moves within a range defined by a grid spacing. The algorithm is applied in a
multiscale hierarchy. At each step, the image volumes are preconvolved with a
3D Gaussian kernel where blurring and cube size are reduced after each stage.
Initial fits are obtained rapidly since, at lower scales only gross distortions are
considered, but later iterations at finer scales accomodate local differences at
the price of increasing computational burden.
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After running through this basic pipeline, a subject’s MRI volume can be
visualized in stereotaxic space with its corresponding tissue labels, anatomi-
cal structure labels, cortical surface, and sulcal ribbons—all in 3D. As a stan-
dard procedure, a number of composite verification images are produced
during processing to allow the rapid visual inspection of the results for a
large number of data sets (see Figure 14.1).

The following sections describe the application of pipeline processing in
cohort studies for the analysis of brain data from (1) a collection of normal
young adults within the ICBM project, (2) an ensemble of children five to eigh-
teen years of age, and (3) a group of patients suffering from multiple sclerosis.

14.3.1 Registration-Based Analysis of Normal Brain Anatomy

Figure 14.2 shows the pipeline designed for the automatic analysis of normal
human brain, which has so far been applied to brain MRIs (T1-weighted 3D
spoiled gradient echo acquisition with sagittal volume excitation, TR � 18,
TE � 10, flip angle � 30°, 140–180 sagittal slices) obtained from 152 healthy adults
(86 male, 66 female, age 24.6 � 4.8)1,82 and 111 healthy children and adolescents.83

FIGURE 14.1
Example of a single-subject pipeline verification image, obtained from analysis of the brain
of a healthy child. Each column shows a different slice through stereotaxic (Talairach) space,
while each row shows different intermediate and final products of the automatic analysis.
Top row: T1-weighted volume with several contours, showing the axes of Talairach space,
the outline of the MNI 305 average brain, and a low- and high-resolution cerebral surface.78

Second row: 3-class INSECT classification.73 Third row: smoothed (FWHM � 10) gray matter
classification.81 Fourth row: T1-weighted image, nonlinearly deformed at low resolution to
match a model brain, shown with its cerebral and ventricular contours.
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After the data have been registered and resampled into stereotaxic space,
they are available for processing. As a first step, voxel-by-voxel intensity aver-
ages can be computed for each group studied. Figure 14.3 shows a trans-
verse slice through three different group averages. While useful as a
qualitative indicator of local anatomical variability for the different groups,
the composite MRI intensity averages are insufficient as a quantitative tool.
For this purpose, the MRI intensity for each voxel must be identified with a
tissue label or structure label. The former requires automated classification,
while the latter requires segmentation. Figure 14.4 shows an incarnation of
INSECT (intensity normalized stereotaxic environment for classification of
tissues73), a pipeline designed for the classification of tissues in MRI. This
pipeline was applied to the 152 brain volumes in the ICBM data base, clas-
sifying each voxel into gray matter, white matter, and cerebrospinal fluid.
Figure 14.5 shows statistical probability anatomy maps (SPAMs) that were

FIGURE 14.2
Flow diagram of the ICBM1 pipeline. All MRI data is processed through the pipeline shown
above. After preprocessing and stereotaxic registration, the cortical surface is extracted and
the MRI data is classified into gray matter, white matter, and cerebrospinal (CSF) components.

FIGURE 14.3
Average T1-weighted MRIs of, from left to right, a pediatric population (n � 130), healthy
adults (n � 151), and MS patients (n � 460).

FIGURE 14.4
Flow diagram of the INSECT73 pipeline.
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created by voxelwise averaging of the 152 classified volumes. In these images,
the voxel intensity is directly proportional to the probability of the given tis-
sue type at that voxel location. These tissue SPAMs can therefore be used as
priors for automated (Bayesian, among others) classification methods.

The classified data have been used to study structural asymmetries in the
human brain84 where the binary mask for each tissue class was smoothed
with a 10 mm full width at half maximum (FWHM) Gaussian filter to produce
a tissue density map. These maps were then flipped about the x � 0 axis (i.e.,
the longitudinal fissure) and the mirror images were subtracted from the
original map. After correcting for multiple comparisons, a voxelwise t-test
analysis of the difference images confirmed known existing asymmetries for
the planum temporale and for frontal and occipital petalias. The technique
has also demonstrated interesting differences for other regions such as the
head of the caudate nucleus (r � l).

To study brain development we have used voxelwise regression analysis
to investigate relationships between structural features and a combination
of independent variables. Three examples are described here. In the first, we
were interested in characterizing age-related changes in local white matter
signal throughout the brain using an MRI data base of children and adolescents
aged 4 to 17 years (66 boys, age 10.7 � 3.8 years; 45 girls, age 11.5 � 3.7 years).85

The significance of the relation between age and white matter density was
assessed for each voxel in the volume by means of simple linear regression.
T-values were computed by dividing the voxel slope estimate by its standard
deviation. The presence of regions that were significantly correlated with
age was determined using the 3D Gaussian random field theory developed
by Worsley.35 This analysis showed significant regions in the internal capsule
(see Figure 14.6) and the posterior portion of the left arcuate fasciculus.

In the second example of regression analysis, we were interested in the
anatomy of the hippocampus. Eighty subjects were selected from the ICBM
data base (41 females, 39 males, 25 � 4.9 years old). Their hippocampi
were manually segmented and averaged to create hippocampal SPAMs.86

Even though it is generally believed that the age-related decline in hippocam-
pal volume occurs in late adulthood and is independent of gender, we found

FIGURE 14.5
SPAMs of white matter, gray matter, and CSF automatically derived from 151 healthy adults.
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a significant negative correlation with age for both left and right hippocam-
pal volume in men (r � −.46 and r � −.43, respectively) but not in women
(r � .01 and r � .02, respectively) in this group of young adults. Voxel-based
regression analysis was used to determine which part of the hippocampus is
correlated with age. Here, the subject’s age acts as independent variable and
the MR image signal intensity of each voxel as dependent variable in the
regression. After statistical analysis (as described above), the regression anal-
ysis revealed that the volume loss occurred mostly in the head and tail of the
hippocampus (see Color Figure 14.7*).

The last example does not use image data in the regression analysis.
Instead, age is correlated with deformation vectors (a byproduct of a nonlin-
ear registration procedure). Previous work has suggested that the size of the
brain changes little after the age of five years.72 We sought to address the pos-
sibility that after this age the human brain continues to grow, albeit in a region-
specific fashion.82 Each of the brains in the children �adolescent MRI data base
described above was registered with a nonlinear transformation to match a
single “template” volume resident in stereotaxic space. The deformation
fields represent the local difference at each voxel between the subject and
template, and as such are indicators of individual anatomical variability.
These fields were used in voxelwise linear regression analysis to identify
regions in which age correlated with a local change in X, Y, and �or Z vectors.
Hotelling’s F statistic was employed to evaluate statistical significance of
such correlations; F � 9 was deemed significant after correcting for multiple
comparisons. Significant correlations (30 � F � 60) between age and the local
vectors around both the temporal lobes and the ventral aspects of the frontal
lobes were found. Analysis of the X, Y, and Z vectors indicates a possible
overall growth of the temporal lobes and �or their downward and lateral
“movement.” In contrast, no significant correlations were observed around

FIGURE 14.6
Voxelwise regression analysis: The maps of t-statistic values are superimposed on an axial
MR section from a single subject. The image depicts the exact locations in the internal capsule
(indicated by the arrow) that showed statistically significant correlations between white
matter density and the subject’s age.

* Color Figures follow page 22.
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the corpus callosum, basal ganglia, thalamus, or lateral ventricles. These
findings suggest that in the range between 5 and 18 years, the brain continues
to change its shape locally. It remains to be determined what underlies such
changes in the brain’s gross anatomy.

14.3.2 Segmentation-Based Analysis of Normal Brain Anatomy

The previously described procedures do not rely on a priori regional identifica-
tion in each volume. Therefore, localization of the results must be interpreted
with respect to the blurred anatomy visible in the average MRI volumes in con-
junction with brain atlases registered within the same space. Region of interest
(ROI) analysis, respecting specific anatomical boundaries in each subject’s
brain, requires segmentation of regions (or volumes) of interest within each
MR image volume.

Segmentation can be accomplished using manual tools that allow the user to
identify the voxels of a given structure by voxel painting using Display, a com-
puter program developed in our laboratory87 that shows four 2D orthogonal
slices (transverse, coronal, sagittal, and user defined oblique) through the vol-
ume with arbitrary pan, zoom, and intensity mapping on each slice. Display
also includes a 3D graphics window capable of displaying 3D geometric
objects such as the cortical surface. The cursor can be placed in any of the 2D or
3D windows, and its position is simultaneously updated in the other views.
Voxel labels are painted on any of three orthogonal views with simultaneous
update in all other views. Within our group at the MNI, this painting technique
has been used to characterize the normal anatomy of the cingulate and para-
cingulate sulci in 105 subjects,88 the corpus callosum in 100 subjects,  the
planum temporale in 50 subjects,90 the hippocampus and amygdala in 80 sub-
jects,86 the lobes and fissures of the cerebellum in 12 subjects,  as well as the
distribution of frontal and lateral gyri,92 orbitofrontal gyri,93 and the region of
the parieto-temporo-occipital cortex.94 The manual method has also been used
to identify and then compare the frontal lobe anatomy of patients with schizo-
phrenia with age-matched control subjects.95

Since manual labeling is prohibitively time consuming and error prone, we
have designed an automated procedure called ANIMAL (automatic nonlin-
ear image matching and anatomical labeling) to segment objectively gross
anatomical structures from 3D MRIs of normal brains.19,96 Automatic segmen-
tation is achieved by estimating the nonlinear spatial transformation
required to register all voxels from a subject’s MRI volume with an average
MRI brain that is coregistered with a SPAM atlas in a Talairach-like stereo-
taxic space.71 The atlas’ 90 average gross anatomical structures are mapped
through the inverse transform to effectively define customized masks on the
subject’s MRI for the most-likely region for each structure. Tissue classes such
as gray matter, white matter, and CSF, identified by a minimum distance clas-
sifier, are masked by these regions to complete the segmentation. This method-
ology was applied to the collection of 152 MRI brains in the ICBM data base.82

Since each structure has been segmented, it is possible to compute its
native volume (reported in cm3 in Figure 14.8 and Table 14.1). Table 14.1

89

91
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shows volumes for structures not visible in the surface renderings of Figure
14.8. Significant hemispheric left-right differences ( p � 0.01, two-tailed stu-
dent’s t-test with Bonferoni correction) were found for the precentral gyrus
(left smaller than right), postcentral gyrus (left larger than right), middle tem-
poral gyrus (left smaller than right), angular gyrus (left smaller than right),

TABLE 14.1

Structure Volumes: in cm3 (mean � sd) for 
Structures Not Visible in Figure 14.8

Structure
Left

Mean(sd)
Right

Mean(sd)

Insula 8.8(1.1) 8.8(1.1)
Caudate 5.4(0.7) 5.1(0.6)
Putamen 5.4(0.7) 5.5(0.7)
Globus pallidus 0.9(0.2) 1.4(0.2)
Thalamus 8.3(0.9) 9.0(1.0)
Nucleus accumbens 0.3(0.1) 0.4(0.1)
Subthalamic nucleus 0.1(0.0) 0.1(0.0)
Anterior internal capsule 3.3(0.5) 3.0(0.6)
Posterior internal capsule 1.6(0.3) 1.6(0.3)
Lateral ventricle 8.9(3.6) 8.0(3.4)
Corpus collosum 10.9(1.5)
Fornix 0.3(0.1)

FIGURE 14.8
Structure volumes: These images show different views of the SPAM atlas with the volumes
in cm3 (mean � sd) for each structure. Structures with a significant (p � 0.01) left-right difference
are indicated with a ‘�’. The isosurface of each SPAM was extracted at the 50% probability level.
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and inferior occipital gyrus (left larger than right). The left-right volume dif-
ference for temporal (left larger than right) and parietal (left smaller than
right) lobes are significant at the p � 0.05 level (see Table 14.2). The method
presented here is completely automatic, fully objective, and has been applied
to a large ensemble of brain volumes. The resulting volume statistics will
prove useful as a normative data base for comparisons in future studies of nor-
mal or pathological brains. Figure 14.9 compares the average segmentations
of the ICBM young adult brains with the child �adolescent MRI data base.

14.3.3 Analysis of Normal Anatomical Variability

Besides segmentation, ANIMAL has been applied to nonrigid registration and
to the analysis of morphometric variability. To quantify anatomical variability, it
is necessary to identify homologous features between the source and target
volumes and to measure the difference in position between them, within the

TABLE 14.2

Lobe Volumes: in cc3 (mean � sd). Only 
Temporal (Left Larger Than Right) and 
Parietal (Left Smaller Than Right) Lobe 
Volume Differences are Significant (p � 0.05)

Lobe
Left 

Mean(sd)
Right

Mean(sd)

Frontal 175.0(25.3) 174.0(25.0)
Temporal 119.3(18.1) 109.8(16.4)
Parietal 95.0(13.7) 99.3(14.3)
Occipital 44.8(7.9) 45.9(8.2)

FIGURE 14.9
3D renderings of structure SPAMs, automatically generated from (top) 152 healthy adults
(age 24.6 � 4.8) and (bottom) 110 children and adolescents (age 11.2 � 3.6). From left to
right: top view, lateral view of left hemisphere, medial view of right hemisphere.
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stereotaxic space. This identification can be achieved automatically by ANI-
MAL, since the recovered deformation field essentially establishes correspon-
dence between homologous points. The field can be interpreted as a map of
“positional differences” between individual source (after affine transformation)
and target volumes. In other words, for every 3D coordinate in the target
space, the registration procedure yields a vector-valued estimate of the dif-
ference in position between the two data sets.

This information derived from the deformation fields, and when averaged
over a large number of individual�target pairs, can yield estimates of normal
anatomical variability. The standard deviation at each voxel position (for 17
subjects from the ICBM data base) is computed separately for each of the x, y,
and z components. These values are combined to yield a single number for
each voxel measuring intersubject variability (ISV), equivalent to a 3D FWHM

measure. For a Gaussian distribution: 

The 17 deformation fields were used to compute the anatomical variability
map shown in Figure 14.10. The regions of largest neuroanatomical variabil-
ity were posterior poles of the lateral ventricles, the region near the fourth
ventricle, the cingulate sulcus (slightly more on the left than the right), the
inferior frontal lobe, and the area just above the splenium of the corpus callo-
sum. The anatomical variability map is not symmetric on left and right sides.
The left frontal lobe and right parieto-occipital lobe appear to be more vari-
able than their counterparts. These data have been partially validated with
manual estimates of intersubject anatomical variability (regression coeffi-
cient of 0.867) demonstrating good correlation between both automatic and
manual methods at the 1% significance level.97

FIGURE 14.10
Variability Map
The images show the average intensity volume of 17 ICBM subjects mapped into stereotaxic
space nonlinearly along with the corresponding slices through the average variability map.
The cross marker (x � �44 mm, y � �37 mm, z � 14 mm) is near the planum temporale
on the left side, a region known to be variable, measured here to be 6.3 mm 3-D FWHM, and
appearing more variable than the right.

fwhm 2.35 �x
2

�y
2

�z
2
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14.3.4 Analysis of Brain Anatomy in Multiple Sclerosis

 

Besides applications which are primarily research-oriented, automatic anal-
ysis of medical image data is becoming increasingly important in the evalu-
ation of drug therapies. Especially in phase II

 

�

 

III clinical trials, accurate and
reproducible quantification of disease-specific features in MRI data is key to
the acceptance of new treatments.

For example, the quantification of total lesion load (TLL), sometimes
referred to as “burden of illness,” in T2-weighted MRI scans of patients with
multiple sclerosis (MS) has become a standard surrogate endpoint in clinical
trials. To date, a modified version of the INSECT pipeline has been used to
quantify TLL in two large-scale, multicenter clinical trials in MS: (i) phase III,
600 patients, scanned 3 times on a yearly basis using T1-, T2-, and PD-weighted
MRI; and (ii) phase II, 150 patients, scanned 6 times on a monthly basis using
T1-, T2-, PD-weighted, and FLAIR MRI. The MRI acquisiton protocol used in
these studies was uniform accross centers and the resulting image data were
carefully controlled for quality.

The version of INSECT used for the quantification of MS lesion volume dif-
fers somewhat from the one used for the study of normal brain. First, a stan-
dard stereotaxic brain mask is used to eliminate false positive lesions
possibly detected outside the brain area, and stereotaxic SPAMs of WM, GM,
and CSF are included as extra features in the classification process to sup-
press false positive lesions inside the brain based on their (stereotaxic) loca-
tion. Second, the MRI data volumes are all intensity-normalized to a standard
brain model in stereotaxic space, allowing for the use of a once-trained, fixed
classifier across all acquisitions in the study. The classifier used is an artificial
neural network, trained to separate MS lesion from other tissues on a limited
number of hand-labeled volumes. The resulting output is a binary map of MS
lesions for each patient scan. The accuracy of INSECT-obtained MS lesion
measurements has been validated against those obtained manually by
experts.

 

98

 

 Figure 14.11 shows the MS lesion SPAM generated from a total of
460 automatically segmented patient data sets.

 

FIGURE 14.11

 

Average MS T1-weighted data and lesion SPAM (

 

n

 

 

 

�

 

 460), shown in transverse cross-section
and rendered with the CSF SPAM shown in Figure 14.5.
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14.3.5 Analysis of Brain Metabolism in Multiple Sclerosis

Metabolite images generated from magnetic resonance spectroscopy imag-
ing (MRSI) are often difficult to interpret because of low signal-to-noise ratio
(SNR) and imaging artifacts. SNR is increased with spatial standardization
and image averaging as is done with PET data,24 and may thus reveal subtle
consistent changes when comparing images from two groups. Our strategy
has been to define the transformation that best maps a subject’s MRI into the
standardized stereotaxic brain space, and then apply the same transforma-
tion to the inherently registered MRSI. Once in stereotaxic space, MRSIs from
different subjects can be directly compared on a voxel-to-voxel basis.

Proton MRSIs (90° - 180° - 180° sequence, TR 2 sec, TE 272 msec, 32 
 32 vox-
els, 25 cm field of view, 2 cm slice thickness) were acquired of a 10 
 10 
 2 cm
volume of interest that was roughly parallel to the AC-PC line and centered on
the corpus callosum. Post processing was applied to correct for residual field
inhomogeneity, phase roll, and eddy currents.99 Metabolite concentration
images for N-acetylaspartase (NAA), choline (Cho), and creatine (Cr) were
reconstructed by integration between automatically chosen frequency limits
surrounding each peak. To correct for remaining Bo and radio frequency inho-
mogeneities, ratio images were also created. After registration, resampling, and
averaging in stereotaxic space, the average metabolite images for normal sub-
jects show a decrease in NAA signal intensity corresponding to the partial vol-
ume effect due to the lateral ventricles. Although not apparent on individual
MRSIs, comparison of average metabolite images in stereotaxic space enables
us to determine that Cho and Cr are not uniformally distributed in periventric-
ular region. This nonuniformity is due not only to the presence of the ventricles,
but also to metabolic specific differences in distribution in periventricular tissues.
Figure 14.12 shows an average ratio image of Naa �(Cho 	 Cr).

FIGURE 14.12
Stereotanic average MRSI of NAA�(Cho 	 Cr) for seven normals; contours of scalp, cortex,
and ventricles from matched MRI.
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14.4 Conclusion

The production control system that we have developed allows the rapid imple-
mentation and efficient parallel execution of processing pipelines on large
amounts of data. PCS has shown its usefulness in a number of application areas
as shown by the examples, and it is currently in routine use at the BIC for the
automatic analysis of MRI data in a multicenter, mass production setting. The
use of stereotaxic space combined with automated image processing tools
yields a powerful qualitative and quantitative data analysis paradigm that facil-
itates comparisons over time for an individual, between subjects, between
different groups of subjects, and between acquisition sites. Furthermore, the
brain-based coordinate system permits anatomically-based processing and
hypothesis testing, such as using spatial masks to limit processing to a specific
region or using anatomical information as spatial priors. The combination of
stereotaxic space with the collection of automated image processing tools makes
it possible to embark on a myriad of studies that were previously impractical.
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15.1 Introduction

 

The majority of the chapters of this book discuss methods for rigid-body reg-
istration and applications (especially of the brain in the closed skull) where
these methods can be used for intermodality, intramodality, or image to
physical space registration. There is increasing interest now in nonrigid reg-
istration, which is more generally applicable. Chapter 13 reviewed the main
approaches to nonrigid registration. These methods are almost invariably
used for intramodality registration of images from the same or different sub-
jects. Chapter 14 discusses the intersubject registration of brain images in detail.
For image-to-physical registration, as used for image-guided surgery and also
for intermodality applications, nonrigid registration is a harder problem
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because of the difference in the information available in the spaces being
aligned. In these cases, biomechanical models of the sort described in this
chapter have the potential to provide model-based registration techniques
that can align an image collected on one occasion with a very different image
or the coordinates of a surgical instrument at a later time. These models can
take into account the mechanical properties of the tissue, the operative con-
ditions, and the presence of surgical instruments such as retractors. Further-
more, sparse intraoperative information, such as photographs of the site of
resection or ultrasound images, can be used as constraints on the models to
improve accuracy.

Modeling activities associated with surgical simulation have been explored
for a number of years, and important progress continues to be reported.

 

1,2

 

The goal of these virtual reality experiences is to produce a video-like visual-
ization of a deforming tissue that appears to be real. For these simulations,
there is a fundamental shift from the traditional emphasis on predictive mod-
eling with secondary interest in computational speed to a situation where
these priorities are exactly reversed—the primary interest is speed of compu-
tation to enable real-time interaction, and physical accuracy is of less concern.
In contrast, the modeling efforts described in this chapter are intended to
impact intraoperative clinical decision making within the image-guided
framework; hence, there is an emphasis not only on modeling accuracy and
speed (although not at the real-time or video refresh rate) but also on the use
of both preoperative and intraoperative data to define

 

�

 

confine model param-
eters and outcomes.

The motivation for the deployment of such physically defined deformation
models of brain tissue has been the recognition and recent characterization
and quantification of brain motion during surgery. A number of studies have
tracked both surface and subsurface points in the brain and reported that
movements on the order of a centimeter or more can occur intraoperatively.

 

3,4

 

During image-guided procedures this motion manifests as a dynamic regis-
tration error which erodes the effectiveness of image guidance when the
operating room (OR) is registered with the statistically defined preoperative
image space. While it is clear that intraoperative brain motion is significant
and can severely compromise the added advantage of image-based surgical
navigation, strategies to address this source of error intraoperatively are in
early stages of development. One intriguing approach is to employ compu-
tational methods based on physical models of tissue deformation to compen-
sate for intraoperative brain motion.

A conceptually powerful paradigm would be to:

• Update preoperative images intraoperatively by generating a patient-
specific computational model based on segmentation of high res-
olution preoperative scans

• Collect readily accessible but incomplete intraoperative informa-
tion relevant to brain motion with low cost tracking technology
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• Modify the model based on this data coupled to a mathematical
description of tissue deformation

• Update (i.e., deform) the preoperatively obtained high resolution
images according to the computed three-dimensional deformation
field

This approach exploits the wealth of high resolution preoperative data which
is routinely available on a case-by-case basis, while taking advantage of
incomplete intraoperative information and low-cost, high-performance com-
puting to reduce registration errors which develop concurrent with surgery.
If this form of preoperative image compensation can be developed, it may be
possible to address the problem of tissue motion during image-guided pro-
cedures in many instances without involving volumetric intraoperative
imaging, which, while intuitively appealing, can be both expensive and cum-
bersome within the traditional OR environment. Even in the setting where
high resolution intraoperative MR is available,

 

5,6

 

 computational estimates of
volumetric tissue displacement are likely to be useful, for example, as an
intermediate update path between full intraoperative image acquisitions as
in the case of a twin operating theater (surgery + imaging), or when preoper-
ative information cannot be duplicated in the OR as in the case of functional
studies (e.g., fMRI). Hence, there is considerable rationale for and interest in
developing computational models of tissue deformation for improving
image guidance.

Interestingly, the potential of using model-based computations in the con-
text of image registration has been recognized for a number of years. There is
a significant body of literature associated with the matching of medical
images when deformation is involved, which are reviewed in Chapter 13.
Typically, pre- and postcondition images exist which need to be matched or a
patient-specific image is conformed to a reference atlas. Approaches for elas-
tically matching two existing images usually involve the optimization of a
prescribed cost function, and a variety of techniques have been developed
(e.g., see references 7 and 8, among others). In all of these efforts, the primary
task has been to transform one known image into the shape of another known
image without any knowledge of the physical driving forces involved. Intra-
operatively, one has the luxury of being able to model the physical events
which take place during surgery in order to account for tissue motion.

This chapter focuses on these later models. It provides an abbreviated
historical perspective on brain tissue mechanical modeling and some of
the mathematical options that are available for representing brain tissue
mechanical response to surgical interventions. Of these options, consolida-
tion theory is followed as an example framework for discussing computa-
tional implementation and validation. Discussion of the types of model
parameters and sources of data input needed for model computations is
highlighted. Examples of updated images from 

 

in vivo

 

 modeling, including
in the human OR, are described. The focus here is modeling for neurosurgical
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image guidance, but many of the principles presented could be adapted to
other applications where tissue motion may compromise the value of image-
guided surgery when preoperative scans form the only basis for image-to-
patient registration.

 

15.2 Brain Tissue Modeling: An Abbreviated Review

 

The literature contains a number of physical descriptions of the brain as a
mechanical medium. Hakim et al. made the important observation that
brain tissue acts like a sponge, providing impetus to consider the brain as a
porous biphasic system.

 

9

 

 While quantitative information on the brain’s
mechanical properties is sparse, especially 

 

in vivo

 

, its mechanical behavior
has been qualitatively studied and recently reviewed.

 

10

 

 Typically, gray mat-
ter is regarded as stiffer and less porous than white matter. According to
Doczi, gray matter can increase its water content by approximately 1.5%
while white matter can increase by as much as 10%. In addition, the number
of capillaries in gray matter exceeds that of white, which can influence brain
osmotics causing volume changes by fluid transport through the vascula-
ture. Typically, volume regulation is maintained by lymphatic drainage and
plasma-to-tissue exchange. When compressed, brain tissue responds by dis-
placing fluid from its veins and extracellular space which comprise 3% and
20% of the cranial tissue volume, respectively.

 

10

 

 Doczi also points out that
when the blood brain barrier is compromised, the driving force for fluid
movement becomes hydrostatic pressure, which lends itself nicely to mod-
eling hydrocephalus and edema.

With respect to the physics involved, several different continuum descrip-
tions have found their way into mathematical forms which could serve as the
basis for modeling tissue motion during surgery. In general these have fallen
into two classes: (1) single-phase viscoelastic and (2) biphasic elastic repre-
sentations. For example, Mendis et al.

 

11

 

 developed a single phase nonlinear
viscoelastic model for brain tissue experiencing large deformation. Their
approach is based on the strain energy density function which is assigned a
polynomial form with time dependent coefficients, making it particularly
applicable to high strain rate loading conditions associated with traumatic
injury. A related formulation has been developed by Miller and Chinzei
which has been demonstrated to be an appropriate description of brain tissue
deformation under compression at the much slower strain rates that would
be expected to occur during surgery.

 

12

 

Poroelastic biphasic prescriptions of soft tissue mechanics have been pop-
ular as well.

 

13,14

 

 In particular, adaptations of Biot’s consolidation theory

 

15

 

have found their way into the brain modeling literature. Nagashima and col-
leagues have demonstrated that a wide range of pathophysiologies can be
simulated from this perspective, including hypdrocephalus and vasogenic
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edema;

 

16,17

 

 this approach continues to appear as the mathematical model of
choice in many cases,

 

18

 

 in large part because of its linearity, which translates
into computational advantages that are lost when complex constitutive rela-
tionships are modeled.

Very recently, brain deformation modeling has appeared in the context of
image-guided neurosurgery as a vehicle for estimating tissue motion during
surgical intervention.

 

19, 20

 

 The study by Edwards et al.

 

21

 

 represented the brain
as a three-compartment system consisting of bone, fluid, and soft tissue where
rigid-body transformations were applied to bone, fluid regions were uncon-
strained, and smooth deformation was applied to the parenchyma. Several
energy models were compared in 2D with data from an epilepsy patient
where preoperative MR and postoperative CT were available for analysis. The
Skrinjar et al.

 

20

 

 study modeled the brain as a homogeneous linear viscoelastic
medium with finite elements on relatively coarse discretizations of the tissue
continuum (

 

�

 

250 nodes in 2D, 1000 nodes in 3D). Simulations of an artificial
parietal craniotomy were reported in two and three dimensions, illustrating
time sequences of the computed deformation field which showed settling
effects due to gravity that cause not only posterior movements near the cran-
iotomy but also motion in the superior and inferior directions.

The remainder of this chapter focuses on the work of Paulsen and Miga

 

19,22,23

 

as representative of the state of the art in biomechanical modeling with finite
elements for intraoperative use during image guidance. These investigators
have developed a 3D computational framework based on consolidation
which exploits high resolution meshes derived from high definition preoper-
ative medical images. Studies of the performance of both the computational
mathematics and the computational physics have been undertaken through
benchmark problem analysis and 

 

in vivo

 

 experiments in animal and human
brains. As such, this work can be used to illustrate many of the issues associ-
ated with this type of modeling which are generic to the concept of intraop-
erative updating of preoperative images with deformation models driven by
the physical events occurring in the OR. It is worth noting that finite element
models are also being exploited in the more conventional image registration
and segmentation contexts.

 

24,25

 

15.3 Brain Tissue Model Description

 

In the neurosurgery setting, consolidation theory represents the brain as a
linearly elastic biphasic medium consisting of a solid matrix with interstitial
fluid saturating the intramatrix spaces. Tissue motion is characterized by an
instantaneous displacement at the site of mechanical loading followed by addi-
tional deformation resulting from hydrodynamic changes from prescribed or
strain-induced pressure gradients in the interstitial fluid. The equations of
motion can be written as coupled partial differential equations (PDEs)
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involving a force balance and conservation statement

(15.1a)

(15.1b)

where 

 

G

 

 is the shear modulus, 

 

�

 

 is Poisson’s ratio, 

 

u

 

 is the displacement vector,

 

p

 

 is the pore fluid pressure, 

 

�

 

 is the ratio of fluid volume extracted to volume
change of tissue under compression, 

 

k

 

 is the hydraulic conductivity, 1

 

�

 

S

 

 is the
amount of fluid which can be forced into tissue under constant volume, 
and are the densities of tissue and surrounding fluid, respectively, and 

 

g

 

 is
the gravitational acceleration vector.

In Equation (15.1a), the first two terms are the classic PDE describing
mechanical equilibrium in a linearly elastic solid, i.e., the stress of the solid
matrix is linearly proportional to the strain. The third term reflects an applied
body force which is a function of interstitial pressure gradients arising from
hydraulic loading conditions, e.g., cerebrospinal fluid drainage, hyperos-
motic drugs, capillary transport, etc. The last term in Equation (15.1a)
approximates the effects of gravity on brain tissue. Here, a reduction in buoy-
ancy forces is modeled by changes in the density of the fluid surrounding tis-
sue which has become exposed to air (i.e.,  becomes the density of air).

In Equation (15.1b), the first term reflects the time rate of dilatational
changes of the solid matrix. The second term in the equation is a conservation
of mass statement. It contains (within the divergence operator) Darcy’s law,
which linearly relates the movement of interstitial fluid to the pressure gra-
dient acting across the tissue, i.e.,  where 

 

v

 

 is the velocity of the
interstitial fluid. These first two terms taken together state that volumetric
changes correlate directly with the transport of fluid into and out of a control
volume. The last term in (15.1b) represents an accumulation of pressure
which allows compressibility of the interstitial fluid. This term may be used
in cases where the tissue is not completely saturated with fluid, i.e., small
voids of air or gas are present. Generally, the brain is considered to be a fully
saturated medium which sets 

 

�

 

 to unity and eliminates the time rate of
change of pressure from (15.1b).

To first order, this characterization of brain tissue would seem to be a rea-
sonable starting point for modeling, especially under the acute loading condi-
tions associated with surgery and given that the mechanical properties for
brain tissue are not agreed to universally. As an aid to better understanding
the physical behavior associated with Equations (15.1a–b), Figure 15.1 shows
a fully saturated porous medium undergoing compression by a perforated
piston. In this example, the material is placed under compression 

 

�

 

P

 

 and drain-
age is allowed through the holes in the piston face. Figure 15.2 illustrates the
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FIGURE 15.1

 

Illustrative example to demonstrate deformation
and hydraulic behavior of porous medium.

 

FIGURE 15.2

 

Consolidation of a column of porous medium under top surface compression; (a) time course
of interstitial pressure along the column, (b) time course of absolute vertical displacement
along the column.
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time course of displacement and pressure experienced in the column. Ini-
tially, there is instant drainage and deformation at the surface, with the load
supported by the interstitial fluid at depth. This generates a pressure gradient
acting directionally opposite to the deformation source (i.e., high pressure at
depth and low pressure at the surface). Over time as more fluid drains (i.e.,
gradual reduction in the gradient over time), the load is transferred from the
interstitial fluid to the solid matrix (i.e., gradual increase in deformation at
depth). The behavior exemplified here is often compared to that of deforming
a saturated sponge.

There is little doubt that the microscale events occurring during surgical
loading of the brain are complex. However, consolidation theory provides a
framework which captures the bulk deformation and hydraulic behavior
associated with surgical deformations. Although a viscoelastic response was
not explicitly incorporated in the above description, alteration of the consti-
tutive equations can be readily accomplished to include these effects. How-
ever, further investigation in the context of surgical loading is needed to
better understand which modeling terms are most important for nonrigid
intraoperative registration of preoperative data. In the next section, we
briefly discuss the issues involved in solving equations such as (15.1a-b) on
complex spatial domains.

 

15.4 Finite Element Methodology

 

The finite element (FE) method is a classical engineering analysis technique
that produces solutions to PDEs which describe complex systems and pro-
cesses and are spatially distributed. It has been widely used in structural
and continuum mechanics, and has become very popular in biomedical
applications as well. In essence, the FE strategy divides the domain of inter-
est (e.g., the brain) into an interconnected set of subregions or elements
which fill the volume of interest. Discrete approximations to the PDEs that
govern the physical processes to be simulated (e.g., consolidation theory)
are developed on each element which can possess its own local properties
(e.g., gray versus white matter), thereby allowing complicated geometries
and tissue heterogeneties to be represented through a simple building block
structure. In the limit of vanishingly small elements, the FE approximation
to the PDE solution converges to its analytical continuum, provided that the
principles of numerical consistency and stability are satisfied (e.g., see ref-
erence 26). Thus, given sufficient resolution of the geometry of interest, FE
methods produce highly accurate solutions to complex equations under
realistic conditions.

Following the development by Paulsen et al.,

 

19

 

 Galerkin weighed resid-
ual discretization of Equation (15.1) begins with volume integration after
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multiplication by a suitable, spatially continuous weighting function 

 



 

i

 

(15.2a)

(15.2b)

where indicates integration over the problem space. Here, 

 



 

i

 

 is the 

 

i

 

th
member of a complete set of scalar functions of position (which is ultimately
truncated as part of the discretization process), in particular, the standard 

 

C

 

°

 

locally defined Lagrange polynomial interpolants associated with finite ele-
ments. Applying divergence and gradient integral theorems to the second
derivative terms in Equation (15.2) leads to

(15.3a)

(15.3b)

where 

 

�

 

 denotes integration over the boundary which encloses the brain vol-
ume and  is the outward pointing normal direction to this boundary. Spatial
discretization of Equation (15.3) is completed by expanding the unknown
displacement vector, 

 

u

 

, and fluid pressure, p, as sums of time-varying (but
spatially constant) coefficients multiplied by known (time-invariant) func-
tions of position which produces the coupled set of ordinary differential
equations.

(15.4a)

(15.4b)

Equation (15.4) can be integrated in time using a simple two-point weighting

(15.5)
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where �t � tn	1� tn and 0 � � � 1. This generates a two-time-level, fully dis-
crete system that is expressible as matrix equation

(15.6)

where the entries matrices A and B and column vector C are constructed from
spatial integrations of known functions as defined in references 19 and 27 for
Cartesian coordinates. Provided tissue material property coefficients do not
vary in time, matrices A and B are stationary and can be constructed once.
Because the weighting functions, i , and, correspondingly, the solution basis
functions have local support, A and B are extremely sparse relative to their
overall rank (four times the number of sample positions or nodes used to rep-
resent the brain geometry) which lends them to sparse storage methods and
iterative solution schemes that become essential in 3D problems. Hence, the
displacement vector and pressure field evolve by one time increment
through iterative matrix solution to the sparse linear system described sym-
bolically in Equation (15.6).

15.5 Model Validation

The process of model validation involves answering two questions: (1) does the
discrete model represent the continuum mathematics as posed, and (2) does the
discrete model emulate physical reality? The first question is relatively
straightforward to answer, and a number of analysis tools and techniques are
available. One of the keys to this form of validation is to exercise the model
under a number of different conditions where known solutions exist. For
example, benchmark problems of increasing complexity ranging from a rela-
tively simple 1D column consolidation problem to a 3D concentric sphere
case intended to correspond to infusion-induced brain swelling have been
considered in Paulsen et al.19 There, computational accuracies of 1 to 2% in
both displacement and pressure fields have been readily achieved with mod-
erate levels of finite element discretization.

Another aspect of examining the mathematical integrity of computed
results involves investigation of the propagation of errors during time evolu-
tion of the solution, since numerical convergence on vanishingly small ele-
ment sizes requires numerical stability. Miga et al. have conducted a Fourier
analysis of the spectrum of modes which are sustainable by the discrete FE
equations of consolidation on an infinite mesh having uniform node-to-node
sample spacing.28 This so-called Von Neumann stability analysis shows that
two dimensionless groups along with the time integration weighting used in
Equation (15.5) control the stability of error propagation for changes in phys-
ical property and mesh discretization parameters. The results indicate that the

AUn	1 BUn Cn	�
	�
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presence and persistence of stable spurious oscillations in the pore pressure
which have been attributed to incorrect initial incompressibility constraints29,30

are in fact controlled by the ratio of time-step size to the square of the space-
step for fixed time integration weightings and physical property selections. In
general, increasing the time-step or decreasing the mesh spacing has a smooth-
ing effect on the discrete solution; however, special cases exist that violate this
generality which can be readily identified through the Von Neumann
approach.28 The analysis also reveals that explicitly dominated schemes
(� � 0.5 in Equation 15.5) are not stable for saturated media (� � 1, 1�S � 0) and
only become possible through a decoupling of the mechanical equilibrium
(Equation 15.1a) and continuity (Equation 15.1b) equations. In the case of
unsaturated media, a breakdown in the Von Neumann results has been dem-
onstrated to occur due to boundary conditions which also influence numeri-
cal stability.28

In practice, meshes are not uniform and problem geometries are irregular
and complex; hence, a useful approach for determining the computational
integrity of numerical solutions is to perform a mesh convergence study where
the finite element grid is successfully refined for the actual problem of interest.
This type of study would fall into the category of demonstrating that the finite
element model solutions are mathematically robust. An example of a mesh
convergence study reported by Miga et al. is described later in this section.23

The second, more important, and difficult question of model validation is to
determine the extent to which the model equations (e.g., the consolidation
Equations (15.1a) and (15.1b)) represent enough of the physics involved in brain
tissue deformation to be useful intraoperatively. Model validation in this con-
text is often confounded by the fact that the rationale for using a computational
model in the first place is that detailed measurements are difficult to obtain in
the setting of interest. Hence, a dilemma often arises and two approaches
emerge: (1) simplify the setting of interest to the point where detailed measure-
ments become possible and assume that the findings extrapolate to the actual
situation, or (2) obtain limited, often less accurate measurements in the setting
of interest and assume that agreement with a sparsely sampled response is
indicative of results that would be obtained throughout the volume if detailed
measurement maps were possible. An example of the former approach is nicely
illustrated by the recent work of Miller.12,31 Here, ex vivo pig brain specimens
were prepared and micromechanical manipulations performed in order to
develop a multiparametered viscoelastic constitutive relationship as a means of
defining and validating a computational model for robotic surgery and virtual
reality surgical systems.

Fortunately, the availability of volumetric noninvasive imaging makes pos-
sible model validation studies which can be carried out in vivo in both animal
and human brains where detailed measurement maps of tissue displacements
can be obtained. As a result, there is a rich opportunity to complete model
validation studies in the actual setting of interest. An interesting example of
an initial phase of in vivo model validation has been provided in previous
work.23, 32 A representative quantitative result is presented in Figure 15.3, which
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shows a set of point-by-point comparisons of the Cartesian components of com-
puted and measured displacement vectors in the porcine brain in vivo. These
investigators opted to develop an experimental animal system where point
displacement vectors could be measured as a strategy for beginning the model
validation process in the neurosurgery setting. They chose to implant tem-
plates of small (1 mm) stainless steel beads through stereotactic technique in
the closed cranium and then to insert some form of displacement source to
impart a mechanical load. Figure 15.4 is a fluoroscope film illustrating a com-
pleted bead implant. Preprocedure MR scans were used to define a finite ele-
ment mesh of the pig brain for modeling purposes. Issues related to anatomical
mesh generation from high resolution preoperative scanning are discussed in
the next section. Tissue deformation and concomitant bead movement were
tracked with intraoperative CT which allowed detailed 3D maps of bead
motion to be deduced from a series of CT scans. Several different types of loads

FIGURE 15.3
Trajectory and total displacement comparisons between experimental and calculated values of
bead movement for the pig brain under a 12 mm piston-induced displacement in the temporal
lobe (i.e., shown are Dx (top left), Dy (top right), Dz (bottom left), and total displacement
(bottom right)). A good correspondence is achieved when the distance between measured
displacement (X) and predicted displacement (O) is small (i.e., line connecting (X) and (O) at
each point is small).
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have been used, including a temporally mounted piston32 and temporally and
intraparenchymally located balloon catheters.33 These deformation sources
were moved incrementally in a controlled fashion with full CT image acquisi-
tions occurring between each intervention event. Rigid-body image registra-
tion was maintained from scan to scan by the stereotactic frame which was in
place and the fact that the animal’s position was not changed once inside the
CT scanner.

Interestingly, this group chose to use MR images to define their computa-
tional model, but CT scans to track deformation events. MR scanning for
model construction is a logical choice because of its superior soft tissue contrast,
allowing computational models which differentiate gray and white matter to
be employed. In terms of deploying the CT for deformation tracking, they have
clearly traded off the error induced by having to coregister the model (con-
structed from MR) with the CT images obtained during an experiment with
the fast image acquisition and artifact reduction (around the small metallic
tissue markers) afforded by the CT. The investigators have quantified the
impact of registration error on model validation by randomly perturbing the
starting location of each bead in the model (i.e., the uncertainty of bead
location resulting from potential registration error) up to 5 mm, and con-
cluded that model comparisons vary no more than 10%. Figure 15.5 shows a

FIGURE 15.4
Examples of an experiment in progress with a fluoroscopic film illustrating a complete implant.
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FIGURE 15.5
Total displacement variations in computed bead position from 0 mm, 2 mm, and 5 mm
randomly applied displacement offsets to initial bead positions which simulate CT/MR
registration errors. These induced offsets resulted in less than a 10% change in the overall
data-model match. A good correspondence is achieved when the distance between measured
displacement (X) and predicted displacement (O) is small (i.e., line connecting (X) and (O)
at each point is small).
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sample comparing total bead displacement with 0 mm, 2 mm, and 5 mm ran-
dom perturbations on starting bead locations. The most striking feature of
Figure 15.5 is the fact that the bead trajectories are very similar across these
cases.

A mesh convergence study has also been performed on these pig brain cal-
culations in order to ensure that numerical discretization error is sufficiently
small that differences between predicted and measured bead locations can be
assigned to data model mismatch associated with physical conditions.
Shown in Figure 15.6 are results from a study involving computations in a pig
brain model where solutions are compared under increasing levels of discret-
ization with the goal of defining a solution-independent mesh resolution.
Figure 15.6 displays changes in displacement and pressure at several dis-
tances from the deformation source under increasing mesh discretization.
These surface plots are quite informative and indicate that the calculations
which produced the results in Figure 15.3 can be considered well resolved. In
these plots, six levels of mesh discretization are reported which illustrate a
maximum solution variance of 1 mm in displacement and 2 mm Hg in pres-
sure at the coarsest mesh scale (less than 5000 nodes) and less than 0.1 mm
and 0.3 mmHg at mesh resolutions of more than 16,000 nodes. The computa-
tions reported by Miga and colleagues have typically used meshes with res-
olutions in the 18,000 to 20,000 range, making them highly accurate from the
point of view of numerical discretization error. 

Once valid model calculations have been obtained, their intraoperative value
depends on whether they can be utilized in a form that is familiar to the neuro-
surgeon. Towards this end, the Dartmouth group has developed a strategy to
deform the preoperative MR images based on the volumetric displacement field
computed with their model. Figure 15.7 dramatically illustrates the point by
showing a set of preoperative MR slices adjacent to their model-deformed coun-
terparts for a pig brain experiment where significant intraoperative tissue
motion has been induced. The algorithm in place is conceptualized in Figure 15.8
which shows that the displacement is computed at each image voxel using the
finite element basis functions expressed in the coordinate frame of the
deformed finite element mesh. These points are then undeformed to the origi-
nal image space in order to define the voxel intensity value, which should be
assigned to each image voxel in the deformed image space.

Within this framework, these investigators have defined a percent recap-
ture metric in order to quantify the accuracy of the model in the image-
guided setting. The percent recapture is the difference between the remaining
absolute total bead displacement error (difference between measured and
computed displacements) and the average total bead displacement, which
can be viewed as the amount of motion recovered by the model which would
have been unaccounted for if preoperative images were used as the basis for
image guidance. Across the series of in vivo pig brain experiments reported
by Miga et al.,32 this percentage has ranged from 75 to 85% which is quite
encouraging, especially given that there are many ways in which the model-
ing can be enhanced.
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More surgically relevant simulations of pig brain interventions are also
under way. Figure 15.9 illustrates the sequence of events needed to model tis-
sue retraction. First, the geometry of the retractor blade is predefined as a wire-
frame description which can be inserted into the model in an arbitrary location

FIGURE 15.6
Mesh convergence study where the solution for displacement and pressure is compared at
several distances from the deformation source at increasing mesh resolutions. The goal is to
define a solution independent mesh resolution which ensures numerical fidelity.
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(Figure 15.9a). Once inserted, brain model nodes nearest the retractor are
moved onto the defining surface and duplicated to create two coincident
nodal positions that will represent independent degrees of freedom once the
blade begins to move (Figure 15.9b). Movement of the blade (Figure 15.9c)
occurs by applying boundary conditions, either fixed displacements or normal
stresses in the direction of retraction, for one set of the coincident nodes defining
the blade geometry while the second set of nodes become stress free and able to
move according to the equations of consolidation. Once the boundary condi-
tions are applied and the calculations completed, the tissue deformation map

FIGURE 15.7
Model-updated images of a pig brain experiencing a 1 cm piston-induced displacement of
the temporal lobe: (a) volumetric segmented brain surface, (b) coronal cross-sectional image,
and (c) axial cross-sectional image. Notice the visible collapsing of ventricular space as well
as the compression of white matter tracks in the deformed image volume.
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can be used to update the undeformed preoperative images. Implementation in
3D is reasonably straightforward, as illustrated in Color Figure 15.10.* These
calculations show an interesting tissue bulge in the retraction direction. Figure
15.11a presents an intraoperative CT image of the in vivo pig brain under retrac-
tion. The motion of the blade and implanted bead markers is evident along with
a bulging of tissue in the retraction direction as suggested by the model. Note
that in this case tissue on the “back side” of the retractor appears to adhere to

FIGURE 15.8
Intraoperative image updating algorithm based on model calculated deformation.

* Color Figures follow page 22.
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the blade, whereas in the simulation it separates. Clearly, boundary conditions
on both sides of the blade-tissue interface require further study. Figure 15.11b
contains additional data acquired by placing a small pressure sensor on the
face of the retractor blade which could be helpful in this regard and easily
deployed in the human OR as well. The recordings show a pressure spike
immediate to the initialization of a retraction event followed by a period of
transient decay until the next retraction occurs. This information could be use-
ful for defining appropriate boundary conditions for retraction on a case-by-
case basis. If both displacement and normal stresses at the retractor surface can
be measured, the opportunity also exists to estimate local mechanical proper-
ties in vivo. 

Interestingly, the pressure measurements at the retractor surface in Figure
15.11b are similar in character to interstitial pressure measurements which

FIGURE 15.9
Computational procedure to simulate intraoperative retraction: (a) the retractor blade is
described by a patch description inserted into the model, (b) the patch description guides
the splitting of the finite element mesh, (c) the retraction occurs with the application of
boundary conditions separating the tissue.

0064_frame_C15.fm  Page 349  Wednesday, May 16, 2001  10:44 AM



350 Medical Image Registration

FIGURE 15.11
Experimental techniques to validate computational procedures for tissue retraction: (a) porcine
system for characterizing in vivo retraction, and (b) sensored retractors to measure forces applied.
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are potentially important determinants of brain tissue mechanical response.
Studies performed by Wolfla et al.34,35 have shown that significant pressure
gradients can occur when the brain is subjected to large displacements.
Under conditions of acute mass expansion in the porcine brain, their inter-
stitial pressure curves exhibited a characteristic spike in interstitial pressure
corresponding to expansion followed by a period of exponential decay
between expansions, with a gradual accumulation of strain-induced gradi-
ents across the brain. These measurements are very similar to Figure 15.11b
and other data �calculations obtained in the pig brain for the types of load-
ing conditions used by Miga et al.23 In additional pig experiments, pressure
sensors are implanted in the brain and monitored while the subject is
undergoing a temporally located load. Figure 15.12 shows the pressure
time traces measured in the pig brain at several locations in the cranium
under two successive piston displacements of 4 mm and 8 mm, respec-
tively, which mimic the behavior noted by Wolfla et al.35 Comparable pres-
sure responses have been produced with a consolidation model approach,
although the computed absolute peak pressure levels have generally
exceeded those measured experimentally, depending on the tissue prop-
erty and cortical surface boundary condition assumptions that have been
invoked.23

FIGURE 15.12
Interstitial pressure traces over time recorded during a deformation experiment.
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15.6 Model Inputs

One of the intriguing aspects of employing a computational model to update
images during image-guided neurosurgery is the opportunity to maximize
the utility of both preoperative and intraoperative data for neuronavigation.
This seems important at the present time given the wealth of preoperative
information and planning which accompanies most neurosurgical cases, yet
there is the potential for loss of or de-emphasis on this information with adop-
tion of intraoperative MR imaging. Preoperatively, image scans can be
employed to define the patient-specific computational model to be deformed
intraoperatively. The possibility of using additional MR sequences to derive
patient specific brain tissue properties through the emerging techniques of
diffusion tensor imaging36, 37 and elastography  also exists. Once in the OR,
several forms of reduced or incomplete data (short of volumetric imaging
with CT and MR) are also available for incorporation within the model. Spe-
cifically, cortical surface motion can be monitored with automated surface
digitalization techniques such as laser scanning. Coregistered ultrasound
provides another information source on the movement of some subsurface
structures; for example, the ventricular system, which can provide internal
constraints on the computed deformation field. In this section, examples of
model inputs available from both preoperative and intraoperative data are
briefly illustrated.

15.6.1 Preoperative Data

Prior to surgery, high resolution MR imaging is routinely acquired and is ideal
for model discretization purposes. Following this image series, a 3D represen-
tation can be constructed from the MR slices by segmenting the brain from the
cranium using an image manipulation platform such as Analyze AVW (Bio-
medical Imaging Resource—Version 2.5, Mayo Foundation, Rochester, MN).
After the extraction, each voxel within the volume can be saturated to a con-
stant intensity value and a marching cubes algorithm40 used to generate a sur-
face description characterized by triangular patches. Armed with the
resulting patch description, a 3D tetrahedral mesh can be generated.41 If inter-
nal structures are to be preserved, the process of image segmentation and
boundary generation can be employed for each constituent of interest in
order to define a composite wire-frame boundary to guide the mesh genera-
tion process.

An alternate strategy which is particularly helpful for incorporating com-
plex structures such as gray�white matter boundaries is to use an image-to-
grid segmentation scheme. In this case, the average voxel intensity from the
MR image volume can be determined for each individual element within
the finite element mesh. An intensity-to-material-property map can then be

38,39
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defined by the user. For example, a strict binary thresholding can be
employed to discriminate gray from white matter. The beauty of this
approach is that alternate intensity-to-property maps can be identified by
the user, depending on problem requirements. Figure 15.13 shows an exam-
ple of mesh generation at several stages of completion, including wireframe
descriptions with and without internal boundaries which define model
geometry, and image-to-grid segmentations based on gray�white matter
intensity thresholding. The figure makes it clear that high resolution com-
putational models which faithfully capture patient-specific geometry and
tissue types can be routinely produced.

Utilizing preoperative MR data to estimate tissue elastic properties may
also become a reality in the near future. Computational models of tissue
deformation play an important role here as well. By imparting small
amplitude (10 �m) displacement to tissue at low frequencies (100 Hz) syn-
chronized with specialized MR pulse sequences, it is possible to measure
3D displacement fields at the MR voxel level. These displacement pat-
terns are a complex synthesis of dilatational and shear waves that are
functions not only of the local tissue properties, but also of the boundary
conditions and stimulation forces that are applied. Hence, estimation
algorithms are needed to infer intrinsic tissue mechanical properties from
the MR-measured displacements. An example of a recently reported finite
element technique is illustrated in Figure 15.14.42 The reconstruction of an
elastic property map is based on a simulation, but is none-theless quite
impressive, especially given the fact that the synthetic measurements
have been corrupted with 10% added noise, yet detailed discrimination
of differences in modulus between gray and white matter is quite clear.
If this technology can be developed, it is quite conceivable that patient-
specific, spatially resolved mechanical property maps would be available for
modeling purposes in the OR to improve the ability to account for intraoper-
ative tissue motion through a model-based approach.

15.6.2 Intraoperative Data

Tracking of instruments and cortical surface movement in the OR can be
accomplished with a variety of tools. Figure 15.15 illustrates one option
which consists of an operating microscope attached to a ceiling-mounted
robotic platform which maintains knowledge of a coordinate system in the
OR. The realization in Figure 15.15 is the Surgiscope System manufactured
by Elekta AB (Stockholm, Sweden). It offers a number of precision tracking
functions including a continuous readout of microscope location and orien-
tation, memorization of a particular location (and orientation) which can
be returned to at any time, and laser beam positioning within the optics of
the microscope convergent at its focus. Coregistered digital photographs
can be acquired of the surgical field and used to capture cortical motion as
illustrated in Figure 15.16, which shows two photographs recorded at different
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FIGURE 15.13
Steps in computational model generation: (a, b) coronal and sagittal MR cross sectional
images, (c) segmented region of interest surface, (d) marching cubes boundary patch de-
scription of region of interest, (e, f) generation of volumetric tetrahedral mesh with and
without boundary-defined internal structures, (g, h) coronal and sagittal cross sections of
material property heterogeneity pattern using image-to-grid thresholding.
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times from the same location that have been processed to extract feature move-
ment within the image pair.

Intraoperative ultrasound is a low-cost imaging technology which can also be
registered in the OR coordinate system and potentially provide control points
as model constraints during intraoperative image updating.43–46 Figure 15.17
illustrates how this might function. At the start of a case, ultrasound image
sweeps can be recorded (Figure 15.7a), echogenic structures (e.g., ventricles,

FIGURE 15.14
Simulated reconstruction of Young’s Modulus in a coronal brain cross section where (a) is the
original Young’s Modulus distribution provided by image-to-grid segmentation as described
in Figure 15.13 and (b) is the reconstructed modulus distribution from synthetic displacement
measurements having 10% noise.
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tumor) segmented (Figure 15.17b) and overlayed (Figure 15.17d) with the pre-
operative MR (Figure 15.17c), and also registered in OR coordinates in order to
define baseline conditions and estimate registration errors. From this estab-
lished state, subsequent movements in these boundaries can be followed with
the ultrasound and supplied to the model as known data. The model is

 

FIGURE 15.15

 

Surgiscope System manufactured by Elekta AB (Stockholm, Sweden) which can be used for
the tracking of instruments and cortical surface movement in the OR.

 

FIGURE 15.16

 

Using high-resolution digital photographs captured in the OR (left two images), cortical
surface patterns can be manipulated with image morphing techniques (right image) to
generate a spatial distribution of cortical surface movement that can subsequently be used
as input for model updates.
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FIGURE 15.17
Low-cost imaging modalities can serve as a source of incomplete intraoperative data. For
example, (a) spatially registered intraoperative ultrasound image acquisition in the OR can
be employed to: (b) display an ultrasound image, (c) define the spatially equivalent preop-
erative MR image, and (d) generate an overlay superimposing the intraoperative ultrasound
on the preoperative MR to monitor tissue motion at selected subsurface locations.
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deformed by this and other OR inputs (e.g., cortical surface motion) in order to
create the volumetric update of the preoperative MR images as surgery
progresses.

To complete this illustration, an example of a clinical update of gravity-
induced deformation performed retrospectively to the actual surgery is
shown in Figure 15.18. These results are discussed more fully in references 27
and 47. They are important because they indicate how the finite element

FIGURE 15.18
A finite element intraoperative update based on gravity-induced shift during a clinical case:
overlay of undeformed and deformed finite element mesh boundaries for (a) axial and (b) sagittal
orientations. Preoperative orthogonal cross sections of the image volume are shown in (c) with
their intraoperatively updated counterpart presented in (d). Model predictions show an approx-
imate 6 mm shift of the lateral ventricle tip highlighted by the cursor cross-hairs in these images.
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models of Figure 15.13 which are unfamiliar to the neurosurgeon can provide
deformation data that can be used to update image formats which are the
basis of navigation for the surgeon. In addition, they show that volumetric
motion of tissue structures can be many millimeters, making the static pre-
operative MR images of less value for navigational decisionmaking as the
surgery progresses.

15.7 Conclusions

The opportunity to exploit computational models of tissue deformation in
the OR as an aid to updating preoperative image information to reflect tissue
motion that occurs during surgery appears to be quite promising. This is an
appealing approach because it integrates the high resolution preoperative
images which are routinely available in all image-guided surgeries with the
acquisition of incomplete intraoperative data that can be recorded at low cost
and modest inconvenience within the traditional OR environment. Many of
the basic building blocks necessary to implement such a strategy already
exist or have been recently developed. Undoubtedly, there is much more
work to be done to advance the modeling to include more complex surgical
interventions, (for example, tissue resection) and questions of the value-
added by model updating and the degree to which high resolution, 3D com-
putations can be performed directly in the OR still persist. Issues related to
the most appropriate mathematical description to use and whether patient
specific mechanical properties can be deduced or are even necessary are
important as well. Increased research activity can be expected to occur over
the coming years in order to sort out many of the remaining questions and
hopefully demonstrate that a model-based methodology is one viable solu-
tion to the image registration problem which results from intraoperative
brain tissue motion. 
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16.1 Introduction

 

Over the past 15 years image registration has been a very successful topic in
the application of computer technology to medical image processing and anal-
ysis. In terms of satisfying the technical requirements of robustness and accu-
racy with minimal user interaction, rigid-body registration is considered by
many working in the field to be a solved problem. Despite the technical suc-
cess and widespread use in medical research, image registration has had less
impact on routine healthcare than many proponents expected. 

This situation is beginning to change. Rigid-body registration is now used
routinely in image-guided surgery systems for neurosurgery and orthopedic
surgery. Well validated algorithms are beginning to appear in radiology
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workstations for rigid-body intermodality registration and serial MR regis-
tration. One factor holding up routine use of this technology has been that
many medical images, although intrinsically digital in origin for some time,
continue to be stored and reviewed in analog form, usually as “radiographic
films.” Fast and convenient access to digital image data is now rapidly becom-
ing feasible with the increase in use of digital image archiving and communi-
cation. This provides the necessary infrastructure for combining images from
different modalities or images taken at widely separated time intervals.
Another factor is that image registration is often only one component in an
image processing and analysis package directed to a specific clinical problem.
Progress needs to be made in other areas, most notably image segmentation,
before a wide range of image analysis protocols can enter routine clinical use.

 

16.2 Future Application of Image Registration

 

Below are a few personal observations and predictions on where this exciting
technology will lead in the next few years, and where to expect significant
progress.

 

16.2.1 Perfusion Studies

 

Rigid and nonrigid registration are essential enabling technologies for per-
fusion imaging because patients cannot be relied on to stay sufficiently still
during dynamic studies lasting many minutes. (This is especially relevant
in MRI.) Perfusion imaging is likely to have many clinical applications.
Cardiac MR imaging is progressing fast, and interest in tumor metabolism
and angiogenesis is driving advances in MR imaging for oncology. 

 

16.2.2 Registration in Multimedia Electronic Patient Records

 

Multimedia electronic patient record systems will soon be widely used in hospi-
tals. These incorporate radiological images as well as much other nontext-based
information about patients. Integrating this information and relating it to atlas
data could be achieved transparently with the potential for improved diagnosis
and decision support.  Indeed, once such systems are established, it will seem
strange not to align all the images acquired from a patient. 

 

16.2.3 The Role of Deformation Fields Generated 
by Nonrigid Registration

 

Medical image registration, and nonrigid registration in particular, have great
potential beyond simply lining up images. Some of these applications have
already been discussed in this book, but it is worth highlighting them again here.
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As discussed in Chapter 13, the deformation field produced by nonrigid intra-
subject registration algorithms can quantify normal development and contribute
to an understanding of disease processes and aging.  The nonrigid registration
algorithms used in these applications will soon be reliable enough to enter clinical
use, providing valuable tools for diagnosis and monitoring disease progression. 

 

16.2.4 Group Differences and Postgenomic Registration 

 

When nonrigid intersubject registration algorithms are applied to cohorts of
patients and matched normals, the calculated deformation field has the
potential to provide a very sensitive measure of structural differences
between the groups. Much work has already been done in the study of
schizophrenia, but deformation fields might reveal effects in other disorders
that interfere with structure. This should contribute to a better understanding
of disease and perhaps even provide a link between genes, structure, and
function. Integrating imaging information obtained 

 

in vivo

 

 may provide
direct and powerful insights into gene function and genetic control in whole
functioning organisms as opposed to model systems or 

 

ex vivo

 

 specimens.
Postgenomic registration studies are beginning to be applied to the study of
gene expression in mice, and intersubject registration of human subjects cor-
related with sequenced genomes could be even more revealing. This is likely
to be a key tool in studying gene-environment interactions.

 

16.2.5 Registration for and Combined with Image Segmentation

 

The difficult problem of image segmentation has traditionally been thought of
as quite a different research topic to image registration, but several groups have
now demonstrated that good segmentation can be achieved by lining up a sub-
ject’s images to an atlas using a nonrigid registration algorithm (e.g., Dawant
et al.

 

1

 

).  Labeled structures in the atlas can then be used to split up the images
into anatomical and pathological components for visualization or quantifica-
tion. A related use of image registration is to fuse functional and metabolic
information obtained by methods that reveal little of the structural information
onto segmented anatomical images, or vice versa. For example, high resolution
data segmented by tissue classification may allow much more subtle changes
in metabolism or perfusion to be detected. Several applications of this general
type have been discussed in this book, but further developments and wide-
spread use are likely to allow much more effective use of the data.

 

16.2.6 Registration to Improve Image Acquisition

 

Registration is beginning to be used to improve image acquisition. For exam-
ple, on-the-fly registration can be used to dynamically adjust slice position in
MR scans to compensate prospectively for subject motion (e.g., Thesen et al.

 

2

 

)
Registration of previously acquired images could also be used to reduce the
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field of view when using ionizing radiation, and hence reduce patient dose.
Spectroscopic or perfusion acquisitions can be defined to interrogate spe-
cific tissues of interest, delineated in a previously acquired high resolution
image, rather than a fixed region relative to the scanner. Specific tissue
regions could be followed as the patient moves or is repositioned. These
applications are likely to grow as algorithms become faster and scanner
computing power increases.

Another set of applications relates to use of registration methods to
improve image quality or reduce acquisition time by aligning new data with
previously obtained calibration data or patient-specific information.

 

16.2.7 Registration of Intraoperative and Preoperative Images in Image-
Guided Interventions

 

Commercially available image-guided surgery systems are currently
restricted to applications in which patient anatomy can be treated as a rigid-
body, yet this technology has great potential in soft tissues away from bone,
where there is frequently considerable deformation. Several imaging modal-
ities are being developed with interventional applications in mind. These
include MR, CT, x-ray fluoroscopy, and ultrasound as well as optical images
from endoscopes, microscopes, and arrays of free-standing cameras. Regis-
tration methods could be used to update the spatial information in accurate
and detailed representations of the patient generated from preoperative
images using often incomplete and much lower quality information from
intraoperative images.

 

16.3 Remaining Research Challenges

 

For all these exciting potential applications of image registration to be real-
ized, several challenges remain, including:

• Developing a validation methodology for nonrigid registration
algorithms

• Devising faster and more accurate algorithms (especially non-
rigid). For on-the-fly registration, run times of hundreds of milli-
seconds are desirable

• Inventing similarity measures that are more robust to image arti-
facts including intensity shading, ghosting, streaking, etc., that can
be applied to more modality combinations

• Devising algorithms that can distinguish between situations where
tissue volume is preserved or changing, where some structures
are rigid and others are not, and change in one subject over time
compared to differences between subjects
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• Developing novel display techniques that make it easy to relate
information in different images with very different resolutions, and
for nonrigid registration, to provide intuitive visualization of the
deformation field which may have scalar, vector, or tensor values,
depending on the application

• Developing and validating complete applications. Registration is
but one component in what may be a sophisticated chain of pro-
cessing tasks. Solving the whole image processing and analysis task
for specific clinical applications will be an important focus

In thinking about future image registration development, it is important to
return to the topic of correspondence introduced in Chapter 2. Image regis-
tration is about establishing point-by-point correspondence between two
images (or an image and physical space). While the basic definition of corre-
spondence is clear, its meaning in particular applications may not be. For
example, when tracking change in one subject over a short time interval, cor-
respondence refers to a specific element of tissue within the patient. This is
less clear when comparing one subject with another where correspondence
could be related to shape, histological characteristics, or metabolic function.
Correspondence between images of a patient who has changed position
(where no tissue is gained or lost) is different from studying images of a
patient over time, where tissue may grow, shrink, or be surgically removed.
It is not yet clear whether these different registration problems will be solved
by quite different algorithms, or whether an underlying unified approach
will be successful. The next few years will be very interesting in the field of
image registration as greater clinical use is made of techniques that have
become established in research literature, and as new techniques are devised,
in particular for different applications of nonrigid registration. 
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protocols for registering images from,

212
surgery of, 272

Absolute total bead displacement error, 345
Acoustic position sensors, 108, 257
Acquisition geometry, distortions intrinsic 

to, 98
Activation

image, 195
maps, 197

Active/passive optical tracker, 107, 258
Adult

infarction, 173
neurosurgery, 227, 271, 332

Affine transformation, 19, 46, 282, 320
AIR algorithm (

 

see

 

 ratio image uniformity)
Algorithm(s)

AIR (

 

see

 

 ratio image uniformity)
automated 3D image-matching, 308
head and hat, 23, 50
intensity remapping, 53, 225
iterative closest point, 25, 51
nonrigid registration, 30
partitioned intensity uniformity, 28, 56
point registration, 47
ratio image uniformity, 26, 56
SPM, 54
variance of intensity ratios, 26

Alignment errors, 49, 119, 124
Alzheimer’s disease, 178, 312
Anatomically guided reconstruction, 243
Angiography, dynamic contrast-enhanced, 

180
ANIMAL, see Automatic nonlinear image 

matching and anatomical labeling
Artifact(s)

failed registration and, 164
generation mechanisms, 89, 93
ghost, 223
misregistration, 150
motion, 206
susceptibility, 165

Astrocytoma, 148, 176, 177

Attenuation effects, 100
Auditory activation clusters, 190
Automatic nonlinear image matching and 

anatomical labeling (ANIMAL), 317, 319
Axial resolution, 104

 

B

 

Background noise, 145
Baseline images, interpretation of, 148
Basis functions, registration using, 283
BIC, see Brain Imaging Centre
Biharmonic model, 291
Biomechanical modeling, for image 

registration, 331–362
brain tissue modeling, 334–335
brain tissue model description, 335–338
finite element methodology, 338–340
model inputs, 352–359

intraoperative data, 353–359
preoperative data, 352–353

model validation, 340–351
Biopsy(ies)

application of stereotactic frames to, 259
functionally guided, 248

Blade-tissue interface, 349
Blood

flow, distribution of, 201
oxygenation level dependent (BOLD) 

effect, 184
vessels, 163

Blurring
/distortion, depth-dependent, 106
due to limited spatial resolution, 242
interpolation related, 188

BMP, see Microsoft window bitmap
BOLD effect, see Blood oxygenation level 

dependent effect
Bone marrow transplantation, 179
Bonferoni correction, 318
Bootstrapping, 123
Border zone shifts, 152, 167
Bow-tie effect, 93
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Brain
anatomy

analysis of in multiple sclerosis, 321
registration-based analysis of 
normal, 313

segmentation-based analysis of
normal, 317

-based reference spaces, 311
blood oxygenation-related imaging 

of, 183
change, quantitation of, 179
function, BOLD contrast and, 184
images, 281

analysis of multimodal, 200
MR, 214
PET, 214
3D fMRI, 190

localizing electrodes in, 227
model nodes, 347
motion of, 281
MR techniques in, 229
neurological imaging of, 211
planning surgery of, 227
size, global change in, 162
structure labels, coordinate-dependent, 

196
tissue(s)

characterization of, 336
mechanical modeling, 333
model description, 335
modeling, 334
optimal global match for, 146

Brain, registration and subtraction of serial 
magnetic resonance images of, 143–182

adult infarction, 173
Alzheimer’s disease, 178
artifacts and failed registration, 164–165
bone marrow transplantation, 179
clinical applications, 167–168
contrast enhancement, 169–172
diagnosis of changes to brain on 

difference images, 165–167
image interpretation, 147–148
interpretation and registered subtraction 

images, 149–161
interpretation of changes in signal 
intensity combined with changes in 
site, shape, or size on difference 
images, 160–161

interpretation of pure changes in
signal intensity, 149–151

interpretation of pure changes in site, 
shape, or size, 151–159

methods, 145–147
multiple sclerosis, 174

pediatrics, 172–173
physiological changes, 168–169

effect of head position, 168
menstrual cycle, 168–169
pregnancy, 169

postoperative changes, 178–179
quantitation of brain change, 179–180
regional and tissue-specific appearances 

on difference images, 161–164
blood vessels and venous sinuses, 
163

brainstem and cerebellum, 162
cerebral cortex, 162
global change in brain size,
162–163

meninges, 163
other extracerebral tissues and 
fluids, 163–164

ventricular system, 161
schizophrenia, 176–178
tumors, 174–176

Brain Imaging Centre (BIC), 304
Brainlab, 261
Brainstem, 162
Breast, protocols for registering images 

from, 212
B-splines, 65, 286
Byte

number format, 78
reversing, 79

 

C

 

CABS, see Coronary artery bypass surgery
Capillary transport, 336
Capture ranges, 62
Cardiac imaging, multimodal, 211
Cardiac motion, 292
Cartesian mapping, 89
CC, see Correlation coefficient
Center of rotation errors, 99
Cerebellum, 162
Cerebral activation studies, 247
Cerebral atrophy, 179
Cerebral blood flow, 213
Cerebral cortex, 162
Cerebral infarction, 159
Cerebrospinal fluid (CSF), 218, 314, 336
Cervical carcinoma, radiotherapy for, 23
Chemical shift artifact, in magnetic resonance 

imaging, 90
Chest, CT scans of, 237
Child growth and development, 172
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Cohort studies, use of registration for, 303–329
applications, 312–322

analysis of brain anatomy in multiple 
sclerosis, 321

analysis of brain metabolism in
multiple sclerosis, 322

analysis of normal anatomical 
variability, 319–320

registration-based analysis of normal 
brain anatomy, 313–317

segmentation-based analysis of 
normal brain anatomy, 317–319

technical issues, 305–312
optimization procedure, 310–311
other brain-based reference spaces, 
311–312

reference space, 306–309
similarity measure, 310
spatial mapping function, 309–310

Color overlay, 83
Compton scatter window, 244
Computed tomography (CT), 1, 88, 135, 217, 

see also MR and CT images, registration of 
for clinical applications

acquisition, motion during, 222
distortion in, 90, 110, 221
gantry tilt, 260
image registration, see MR and CT 

images, registration of for clinical 
applications

interventional, 18
radiation dose in, 220
scanning, helical, 220
streak artifact in, 90

Computer
algorithms, for image segmentation, 83
-assisted segmentation, 25
simulations, 127
technology

advances in, 5
application of to medical image
processing, 363

Conformal radiotherapy, 228, 248
Consolidation theory, 338
Contour registration, 261
Contrast

agents, 1
BOLD, 184
enhancement, 150, 169

Coronary artery bypass surgery (CABS),
178

Correlation
coefficient (CC), 26

techniques, 54
Correspondence

process of establishing, 14
spatial, 13

Cortical surface motion, 358
Craniotomies, 261, 270
CSF, see Cerebrospinal fluid
CT, see Computed tomography

 

D

 

Data
format conversion, 71
fusion, 14
transfer, 223

Deformation
model calculated, 348
soft tissue, 31, 228, 292
tracking, 343

Degrees-of-freedom (DOF), 12, 18, 
283

nonlinear registrations, 195
transformation, 187, 196

Depth errors, 103
Diagnostic nuclear medicine, 233
DICOM3, 80
Difference images (

 

see also

 

 subtraction 
images), 164, 167

appearances of changes on, 166
approach to diagnosis of changes to brain 

on, 165
production of, 147
tissue-specific appearances on, 161

Diffusion
tensor imaging, 352
-weighted imaging (DWI), 94

Digitally reconstructed radiographs (DRRs), 
30, 265

Digital storage, 3
Displacement vector, 336
Display(s)

dynamic altering, 84
split view, 84

Distance transforms, 24, 50
DOF, see Degrees-of-freedom 
Doppler ultrasound, 2
DRRs, see Digitally reconstructed radiographs
DWI, see Diffusion-weighted imaging
Dynamic altering display, 84
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E

 

Ear, nose, and throat (ENT) surgery, 257, 259, 
271

Echo-planar imaging (EPI), 91, 94, 95, 185
EEG, see Electroencephalography
Elastic registration, 287
Electroencephalography (EEG), 184
Electromagnetic position sensors, 107
Electromagnetic spectrum, 1
Electron density

measurement of, 240
structural images of, 241

Embedding system, need for, 118
Emission tomography (ET), 88, 97, 99, 242
Endoscopy, 2
Engineering analysis technique, 338
Entropy, 28, 67
ENT surgery, see Ear, nose, and throat surgery
EPI, see Echo-planar imaging
ERP, see Event-related potential
Error(s)

absolute total bead displacement, 345
alignment, 119, 124
center of rotation, 99
depth, 103
fiducial localization, 21, 49, 120, 121
fiducial registration, 21, 49, 120, 121
interpolation, 34, 66
measures, 124
methods for estimating, 126
registration, 122
reports, for rigid-body registration, 124
residual, 21
root-mean-square, 21, 256
scanner, 94
sensor design-independent, 105
sensor design-specific, 107
slice angle, 91
slice separation, 91
in standard, 132
target localization, 132
target registration, 21, 49, 120, 121, 132, 

135
typical misregistration, 22

ET, see Emission tomography
Euclidean distance measures, 125
Eulerian reference frame, 288
Event-related potential (ERP), 247
External markers, 208

 

F

 

Failed registration, 164
Failure, detection of and assessment of 

success, 117–139
accounting for error in standard, 132–133
independent validation, 133–134
measures of success, 118–126

alignment errors, 119–125
statistics, 125–126

methods of estimating error, 126–132
gold standards, 126–131
registration circuits, 131–132

FEM, see Finite element method
FFDs, see Freeform deformations
Fiducial localization error (FLE), 21, 49, 120, 

121, 135
Fiducial marker(s)

skull-implanted, 128
systems, 128

Fiducial registration error (FRE), 21, 49, 120, 
121, 135

Field
inhomogeneity, geometric distortion due 

to, 93
map, 193

Finite element method (FEM), 
288, 338

Fixed geometry, 109
FLE, see Fiducial localization error
Flock of Birds sensor, 107
Fluid registration, 288
Fluoroscopy

guidance by, 271
image, pixel intensities in, 265

fMRI, see Functional magnetic resonance 
imaging

Folding energy, 289
Fourier domain representation, 73
Fourier encoding, 75
Fourier transformation, 74
Fourier transform imaging, 91
Frame-based stereotaxy, 90
FRE, see Fiducial registration error
Freeform deformations (FFDs), 286
Freehand geometry, 109
Frequency spectrum, 74
Functional images, 97
Functional magnetic resonance imaging 

(fMRI), 15, 145, 183, 236, 333
Functional magnetic resonance imaging, role 

of registration in, 183–198
BOLD contrast and brain function, 

184–185
fMRI analysis overview, 185–186
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geometric distortion, 192–194
motion correction, 186–192

interpolation, 188
multiple registration problem, 
187–188

nonrigid motion correction, 192
spin history and stimulus-correlated 
motion, 189–191

structural registration, 194–197
functional to anatomical, 194–195
functional to standard template, 
195–196

group analysis, 196–197

 

G

 

Galerkin weighed residual discretization, 338
Gamma camera(s), 98

PET (GC-PET), 239
transmission image, 235

Gated acquisitions, 18
Gaussian noise, 54
Gaussian profiles, 73, 76
GC-PET, see Gamma camera PET
Geometric distortion, 89, 192, 194
Ghost artifacts, in 3D acquisitions, 223
GIF, see Graphics interchange format
Glucose consumption, 201, 213
Gold standard, 126, 135
Gradient field in MRI

inhomogeneity, 92
nonlinearity, geometric distortion 

due to, 93
Graphics interchange format (GIF), 79
Gray matter, 311, 334, 353
Ground truth

registration, 34
transformation, 126

Growth models, 128

 

H

 

Hamming window, 64
Head

clamp, 259
example MR and CT images of before 

registration, 219
motion, 185
position, effect of, 168
protocols for registering images from, 212

Head and hat algorithm, 23, 50

Health technology assessment, 35
Helical CT scanning, 220
Hip replacement, total, 271
Historical background, 4–6
Homogeneous coordinates, 45
Homology function, 310
Human visual system, 131
Hyperosmotic drugs, 336

 

I

 

ICBM, see International Consortium for Brain 
Mapping

ICP, see Iterative closest point
Image(s)

acquisition, 72, 218, 365
activation, 195
artifacts, 89
discrete nature of, 43
displaying, 83
distortion, 87, 90, 91, 106, 221
entropy, 28, 67
field of view, 42
format conversion, 77
functional, 97
-guided interventions, 3, 5, 254
-guided surgery, 21, 35
-to-image registration, 66
intensity values, quantization of, 59
interpretation, 147, 167
overlap, 61
preparation, preoperative, 260
registration, see also Image registration, 

future application of 
algorithms, 20
biomechanical modeling for, see 
Biomechanical modeling, for
image registration

development, future, 367
early uses of in nuclear medicine, 234
goal of, 117
in nuclear medicine, see Nuclear 
medicine, image registration in

validation, 34
segmentation, 81

computer algorithms for, 83
registration for and combined, 365

structural, 195
transformation, 33, 63
viewing combined, 226

Image data, preparation and display of, 71–86
displaying images, 83–85
image acquisition, 72–77
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image format conversion, 77–80
image segmentation, 81–83
intensity, size, and skew correction, 80–81

Image registration, future application of, 
364–366

group differences and postgenomic 
registration, 365

perfusion studies, 364
registration for and combined with image 

segmentation, 365
registration to improve image 

acquisition, 365–366
registration of intraoperative and 

preoperative images in image-guided 
interventions, 366

registration in multimedia electronic 
patient records, 364

role of deformation fields generated by 
nonrigid registration, 364–365

Imaging
diffusion tensor, 352
intraoperative, 262
-plane-to-focal-spot distance, 45

Immobilization techniques, 258
iMRI, see Interventional MRI
Infarction, 173
Information

mutual, 29, 60
normalized mutual, 61
theoretic techniques, 56
theory, 28
voxel, 78

Infrared-emitting diodes (IREDs), 258
Inplane

resolution, 205, 220
shifts, effect of, 155
signal intensity gradient, 157

Intensity
based registration, 25, 52, 262
conservation of, 193
remapping algorithm, 225
variations, unwanted, 189

Intermodality image registration, transforma-
tion for, 66

International Consortium for Brain Mapping 
(ICBM), 294, 304, 313, 320

Internet, reverse engineered format details 
found on, 78

Interplateau shifts, 167
Interpolation, 188

computational cost of correct, 65
during registration, 65
errors, 34, 66
theory, 64

Intersubject registration (see also spatial nor-
malization), 19, 31, 294, 303

Intersubject variability (ISV), 320
Interventional MRI (iMRI), 18, 269
Intraoperative data, 353
Intraoperative imaging, 255, 262
Intrasubject registration, 32, 42, 292
Inversion recovery, 77
IREDs, see Infrared-emitting diodes
Isointensity sets, 42, 43
ISV, see Intersubject variability
Iteration, 23
Iterative closest point (ICP), 25, 51, 262

 

J

 

Joint entropy, 29, 57, 58, 59
Joint Photographic Experts Group (JPEG), 79
JPEG, see Joint Photographic Experts Group

 

L

 

Lagrangian reference frame, 288
Landmark

-based registration, 20
localization, 286

Laplacian model, 291
Lateral resolution, 105
Lateral translational misregistration, 

generation of histograms by, 58
Linear registration, 312
Linear transformation, 46
Linked cursors, 14
Local optimum, 62
Low-pass filtering, 64

 

M

 

Magnetic resonance (MR), 135, 217, see also 
MR and CT images, registration of for 
clinical applications, MRI

acquisition, motion during, 222
brain images, 214
-CT registration, 27
image(s)

problem in registration of, 206
properties of, 203
registration of extracranial, 210
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registration of PET transmission 
with, 213

serial, see Brain, registration and 
subtraction of serial magnetic 
resonance images of

mammography, contrast-enhanced, 293
monitoring of breast postmenopause 

with, 15
-PET registration, 56
photographic subtraction used with, 4
sequences, object-dependent distortion 

in, 221
Magnetic resonance imaging (MRI), 1, 88, 199, 

234, 303, see also MRI and PET images, 
registration of for clinical applications

chemical shift artifact in, 90
data base, children/adolescent, 316
examinations, serial, 82, 144, 145, 180
functional, see Functional magnetic 

resonance imaging, role of registration in
interventional, 18, 269
magnitude of geometric distortions in, 92
motion artifacts in, 206
prior to surgery, 352
radiofrequency inhomogeneity in, 89
spatial inaccuracies in, 91

Magnetic resonance spectroscopy imaging 
(MRSI), 322

Magnetoencephalography (MEG), 184, 247
Mammography, contrast-enhanced MR, 293
Mapping

methods, nonlinear, 309
spline-based, 285

Markers
erasure of, 134
external fiducial, 129, 224
skin-attached, 130, 224
skull-implanted, 128

Mass effects, 159
Matrix, 44, 45
Maxillofacial surgery, 261
Mayfield clamp, 259
Mechanical localizers, 108, 257
Medical image registration, evolution of, 2
MEG, see Magnetoencephalography
Meninges, 163
Meningioma, 177
Menstrual cycle, 168
Mesh convergence study, 345
Microsoft window bitmap (BMP), 79
Misregistration artifact, 150
MNI, see Montreal Neurological Institute
Model(s)

affine transformation, 282
biharmonic, 291

brain tissue, 335
calculated deformation, 348
growth, 128
Laplacian, 291
quadratic transformation, 283
thin-plate, 291
tissue growth, 31
tissue retraction, 346
validation, 340, 341

Monte Carlo realizations, 241
Montreal Brain Atlas, 5
Montreal Neurological Institute (MNI), 294, 

304
Morphing, 16
Motion

artifacts, 206
cardiac, 292
correction, 186

nonrigid, 192
target image for, 187

during CT acquisition, 222
during MR acquisition, 222
out-of-slice, 188
-related intensity variations, 189
stimulus-correlated, 189

Moving Picture Experts Group (MPEG), 79
MPEG, see Moving Picture Experts Group
MR, see Magnetic resonance
MR and CT images, registration of for clinical 

applications, 217–232
applications, 227–229

applications outside head, 229
localizing electrodes in brain, 
227–228

planning surgery of brain and skull 
base, 227

radiotherapy planning, 228–229
technical issues, 218–226

image acquisition, 218–224
registration methods, 224–226
viewing of combined images, 226

MRI, see Magnetic resonance imaging
MRI and PET images, registration of for 

clinical applications, 199–216
discussion of applications in clinical

setting, 209–213
definitions, 209–210
registration of extracranial PET and 
MR images, 210–213

registration of PET and MR images 
of brain, 210

problems and solutions in MRI-PET
registration, 204–209

accurate registration of MR and PET 
images, 204–206
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techniques and procedures used in 
clinical applications, 207–209

properties of magnetic resonance images, 
203–204

properties of PET images, 200–203
MRSI, see Magnetic resonance spectroscopy 

imaging
MS, see Multiple sclerosis
Multiple registration problem, 187
Multiple sclerosis (MS), 171, 174, 175, 321
Multislice data, 72
Multistart optimization, 63
Mutual information, 29, 60, 225, 262, 290
Myocardial perfusion, 245, 246

 

N

 

Neonatal infarction, 172, 173
Neurosciences research, 35
Neurosurgery

adult, 227, 271, 332
brain deformation, 227, 269, 292, 334
frame-based stereotactic, 254
image-guided, 5, 268
pediatric, 271
stereotactic, 4

NMRS, see Nuclear magnetic resonance 
spectroscopy

Nonaffine registration, 66
Nonlinear transformation, 46
Nonrigid motion, 122, 192
Nonrigid registration, 19, 40, 281–301

algorithms, 30
analysis of motion and deformation 

using, 296
applications, 291–296

analysis of motion and deformation 
using nonrigid registration, 296

intersubjection registration, 294–296
intrasubject registration, 292–293

role of deformation fields generated
by, 364

techniques, 282–291
elastic registration, 287
fluid registration, 288
registration as optimization prob-
lem, 290–291

registration using basis functions, 
283–284

registration using FEM and
mechanical models, 288–289, 353

registration using optical flow, 
289–290

registration using splines, 284–287

Nonuniform sampling, 109
Normalized mutual information, 61
Nuclear magnetic resonance spectroscopy 

(NMRS), 238
Nuclear medicine, image registration in, 

233–252
early uses, 234–235
image registration for correction of 

nuclear medicine emission data, 
239–244

anatomically guided reconstruction, 
243–244

partial volume correction, 242–243
scatter and attenuation correction, 
240–242

spatial normalization, 244–247
spatial registration of nuclear medicine 

images, 235–239

 

O

 

Oncology, advances in MR imaging for, 364
One-to-one transformations, 46
On-the-fly registration, 366
Operating room coordinate system, 255, 355
Optical flow, registration using, 289
Optical position sensors, 107, 258
Optimization, 32, 62

problem, registration as, 290
procedure, 306, 310

Orthogonal Procrustes problem, 47
Orthopedic surgery, 270, 363
Overestimation, 123
Oxygen utilization, 201

 

P

 

PACS, see Picture archiving and communica-
tion systems

Painful heat activation clusters, 191
Partial differential equation (PDE), 287, 335, 

338
Partitioned intensity uniformity (PIU), 27, 55
Patient

motion, 221
movement, 206
positioning, 219
records, registration in multimedia 

electronic, 364
PCS, see Production control system
PDE, see Partial differential equation
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PDF, see Probability distribution function
Pediatric neurosurgery, 271
Pediatrics, 172
Perfusable tissue index, 242
Perfusion studies, 364
Perioperative imaging, 255
Perspective calibration, 263
PET, see Positron emission tomography
Photon

attenuation, 243
scattering, 241

Picture archiving and communication systems 
(PACS), 223

PIU, see Partitioned intensity uniformity
Pixels, 3, 13, 84
Point-based registration, 20, 47, 120, 212, 261
Pointer based guidance, 272
Point spread function (PSF), 77
Poisson’s ratio, 336
Polar plot display, 245
Position sensors, uncertainty in, 106
Positron emission tomography (PET), 88, 98, 

135, 184, 199, 234, 304, see also MRI and PET 
images, registration of for clinical 
applications

advantage of using external markers 
with, 208

brain images, 214
image(s)

memory required to store, 34
problem in registration of, 206
properties, 200, 205
registering MR or CT images with, 
229

registration of extracranial, 210
reconstruction, 101
system, effective radius of, 100

Postgenomic registration, 365
Postprocessing methods, 97
Potato chip effect, 93
Prednisolone, 179
Pre-eclampsia, 168
Pregnancy, 169, 170
Preoperative data, 352
Pressure sensors, 351
Presurgical diagnostics, 207
Probability distribution function (PDF), 27, 59
Procrustes problem, 47, 48
Production control system (PCS), 312
Projection transformations, 45
Protein synthesis, 201
Pseudo-landmarks, 285
PSF, see Point spread function
Pulse pileup, 98
Pure changes, interpretation of, 151

 

Q

 

Quadratic transformation model, 283
Quasi-landmarks, 285

 

R

 

Radiation therapy

 

in vivo

 

, 233
planning, 207

Radiofrequency (RF), 124
inhomogeneity in MRI, 96, 124
tracking, 257

Radiographic films, 364
Radionuclides, photons emitted from, 240
Radiopharmaceuticals, 2
Radiotherapy, 271

conformal, 228, 248
planning, 96, 228

Radiotracers, 233, 244
Ratio image uniformity (RIU) (see also AIR 

algorithm), 26, 55
Ray-piercing point, 45
Real object space, sampling in, 75
Real space profile, through object, 

74
Receptor binding, 201
Reconstruction artifacts, 102
Reference space, 305, 306, 311
Refraction, 103
Region of interest (ROI), 317
Registering transformation, 123
Registration

accuracy, 270
assessing, 226
improving, 136

algorithm(s), 41, 47, 59
classes of, 12
MR-CT, 220

circuits, 131
contour, 261
elastic, 287
error, 122, 343
failed, 164
fidelity of, 165
fluid, 288
ground truth, 34
image-to-image, 66
image to physical space, 331
implementation of, 146
to improve image acquisition, 365
intensity based, 262
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interpolation during (see also Interpola-
tion), 65

intersubject, 19, 31, 294
intramodality, 2
intrasubject, 32, 42, 292
landmark-based (see point-based)
linear, 312
methodology, concepts and algorithms, 

types of transformation, 44–47
MR-CT, 27
MR-PET, 56
in multimedia electronic patient records, 

364
nonaffine, 66
nonrigid, 19, 40

analysis of motion and deformation 
using, 296

role of deformation fields generated 
by, 364

on-the-fly, 366
as optimization problem, 290
point-based, 20, 47, 120, 212, 261
postgenomic, 365
rigid-body, 6, 180

errors in, 49, 124
2D-3D, 19, 44

spine, 82
structural, 194
subvoxel, 174
success, measurement of, 119
surface, 261
transformation, 50
2D-3D, 29
ultrasound, 268
use of to detect subclinical infarction, 173
using basis functions, 283
using optical flow, 289
using splines, 284
video, 264
volumetric intensity-based, 269

Registration methodology, 11–38
correspondence, 13–17
image registration algorithms, 20–30

corresponding landmark-based 
registration, 20–23

ratio image uniformity (see also AIR 
algorithm), 55

registration based on voxel 
intensities alone, 25–29

surface-based registration, 23–25
surface matching, 49–52
2D-3D registration, 29–30

nonrigid registration algorithms, 
30–32

intersubject registration, 31–32

intrasubject registration, 32
optimization, 32–33
transformation of images, 33–34
types of transformation, 17–20

degrees of freedom of 
transformation, 18–20

dimensionality transformations, 
17–18

validation, 34–35
Registration methodology, concepts and 

algorithms, 39–70
image transformation, 63–66

sampling and interpolation theory, 
64–65

interpolation during registration, 
65–66

transformation for intermodality 
image registration, 66

notation and terminology, 40–44
discrete nature of images, 43–44
image field of view, 42–43

registration algorithms, 47–63
correlation techniques, 54–55
information theoretic techniques, 
56–62

minimizing intensity difference, 
53–54

optimization and capture ranges, 
62–63

partitioned intensity uniformity, 
55–56

points and Procrustes problem, 
47–49

ratio image uniformity (see also AIR 
algorithm), 55

surface matching, 49–52
voxel similarity measure, 52–53

Regression analysis
example of, 315
voxel-based, 316

Research challenges, 366–367
Residual error, 21
Resolution

axial, 104
in-plane, 205, 220
lateral, 105
slice, 105
spatial, 103

Retractor surface, pressure measurements 
at, 349

Reverse engineered format, 78
RF, see Radiofrequency
Rigid-body motion, 122
Rigid-body registration, 6, 180

errors in, 49, 124
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2D-3D, 19, 44
Rigid-body transformation

degrees of freedom of, 50
least square, 51

RIU, see Ratio image uniformity or AIR algo-
rithm

RMS, see Root mean square
Rotation matrix, 44
ROBODOC system, 271
ROI, see Region of interest
Root mean square (RMS), 21, 122, 125

disparity, 135
error, 256

Rotation
effect of, 155
matrix, 44

 

S

 

Sampling
effects, nonuniform, 99
grid, 43
theory, 64

Scanner errors, correcting for in CT, MRI, 
SPECT, and 3D ultrasound, 87–115

image artifacts, geometric distortions, 
and origins, 89–90

geometric distortion in computed 
tomography, 90–91

spatial inaccuracies in emission 
tomography, 97–102

geometric and alignment effects, 
99–100

physical effects causing intensity 
artifacts and spatial distortions, 
100–102

spatial inaccuracies in magnetic 
resonance imaging, 91–97

error in field of view due to 
variations in gradient strength, 96

geometric distortion due to field 
inhomogeneity, 93–96

geometric distortion due to gradient 
field nonlinearity, 93

magnitude of geometric distortions 
in MRI, 92–93

signal nonuniformity due to RF 
inhomogeneity, 96–97

spatial inaccuracies in 3D ultrasound 
imaging, 102–109

conventional 2D ultrasound 
scanning, 103–105

position measurement, 105–108
3D acquisition process, 108–109

Scatter
correction, 248
fraction, 241

Schizophrenia, 168, 176, 177
Segmentation, translation, rotation and 

interpolation, chi-squared test, and refor-
matting (STRICTER), 146

Sensor(s)
acoustic position, 108
calibration, 107
design-independent errors, 105
design-specific errors, 107
electromagnetic position, 107
Flock of Birds, 107
optical position, 107

Serial magnetic resonance images, see Brain, 
registration and subtraction of serial 
magnetic resonance images of

Shannon-Wiener entropy measure, 57
Shift(s)

direction, effect of, 154, 156
effects of size of, 154
model for analyzing, 151

Signal intensity
change in, 158, 160
global changes in, 150
gradient

direction, effects of, 153
inplane, 157
size, effect of, 152
throughplane, 157

interpretation of pure changes in, 149
pure changes in, 167

Signal-to-noise ratio (SNR), 96, 147
Similarity measure, see Voxel simularity mea-

sure
Single-photon emission coupled tomography 

(SPECT), 88, 98, 135, 234
-CT systems, 242
images, registering MR or CT images 

with, 229
respiratory research in, 242
stress/rest myocardial perfusion study, 

246
Singular Value Decomposition (SVD), 48
Skew correction, 80, 81
Skin-attached markers, 130, 224
Skull

base surgery, 22, 270
growth, 172
-implanted fiducial markers, 128

Slice
angle, error in, 91
definition, 73
imperfect, 92
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overlap, 76
resolution, 105
separation error, 91
thickness, 125

SNR, see Signal-to-noise ratio
Soft tissue mechanics, poroelastic biphasic 

prescriptions of, 334
Software, verified and validated, 34
Somatostatin receptors, 237
SOR, see Successive over relaxation
SPAMs, see Statistical probability anatomy 

maps
Spatial correspondence, 13
Spatial discretization, 339
Spatial inaccuracies, sources of, 98
Spatial mapping function, 305, 309
Spatial normalization, (see also intersubject 

registration), 244
Spatial resolution, 103
SPECT, see Single-photon emission coupled 

tomography
Spine

registration, 82
surgery, 270

Spin history, 189, 191
Spiral imaging, 91
Splines

B-splines, 65, 286
registration using, 284
thin-plate, 285

Split view displays, 84
SPM, see Statistical parametric mapping
SSD, see Sum of squared intensity differences
Static field inhomogeneity, 92
Statistical parametric mapping (SPM), 54, 186
Statistical probability anatomy maps (SPAMs), 

314, 315, 321
Statistics

meaningful, 125
primary purpose of gathering, 125

Stereotactic neurosurgery, 4
Stereotaxy, frame-based, 90
Steroids, 179
Stimulus-correlated motion, 189
Streak artifact, in CT, 90
STRICTER, see Segmentation, translation, 

rotation and interpolation, chi-squared test, 
and reformatting

Structural image, 195
Structural registration, 194
Subclinical infarction, registration used to 

detect, 173
Subtraction images (see also difference 

images), 84, 149
Subvoxel registration, 174

Success, assessing, see Failure, detection of 
and assessment of success

Successive over relaxation (SOR), 287, 288
Sum of squared intensity differences (SSD), 26, 

33, 53
Surface

-based registration, 23, 261
matching, 49
segmenting, 84

Surgery
abdominal, 272
ear, nose, and throat, 257, 259, 271
image-guided, 21, 35, 331
maxillofacial, 261
neuro, 227, 271, 332
orthopedic, 363
skull base, 22, 270
spinal, 270
thorax, 272

Surgical microscopy, 2
Susceptibility artifacts, 165
SVD, see Singular Value Decomposition

 

T

 

Tagged image file format (TIFF), 79
Talairach

atlas, difficulties associated with, 307
-space template, 197
stereotaxic space, 306
strict piecewise linear mapping of, 309

Target
features, 128
localization error (TLE), 132, 133
registration error (TRE), 21, 49, 120, 121, 

256
 circuit, 131
 single-registration, 131, 132

Taylor expansion, 290
Tension energy, 289
Therapeutic procedures, guiding, 253–278

clinical applications, 270–273
clinical accuracy requirements, 272
visualization, 272–273

intraoperative imaging, 262–269
interventional MRI, 269
ultrasound imaging, 266–269
video, 263–265
x-ray fluoroscopy, 265–266

technical issues, 255–259
defining operating room coordinate 
system, 255–258

immobilization techniques, 258–259
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3D image to physical space registration, 
269–262

contour registration, 261
intensity based registration, 262
point-based registration, 261
preoperative image preparation and 
planning, 260–261

surface registration, 261–262
tissue deformation correction, 269–270

Thin-plate
model, 291
splines, 285

Thorax
studies, 214
surgery of, 272

3D acquisition process, 108
Throughplane

displacement, result of, 156
shift, 160
signal intensity gradient, 157

Thyroid cancer, images from head and neck 
study of patient with, 213

TIFF, see Tagged image file format
Tissue

classification, 312
deformation, 31, 227, 269, 292, 333, 342

computational models of, 353
correction, 269
models, 353

density map, 315
growth model, 31
mechanics, 128
motion, 109
retraction model, 346

TLE, see Target localization error
TLL, see Total lesion load
Total lesion load (TLL), 321
Tracer techniques, features of, 200
Transducer

motion, 108
rocking of, 109
-sensor system, 107

Transformation(s)
2D-3D, 17, 44
affine, 19, 46
degrees of freedom of, 18
Fourier, 74
ground truth, 126
nonlinear, 46
one-to-one, 46
projection, 45
registration, 50
rigid body, 44
types of, 17, 44

Trauma, 159
TRE, see Target registration error
Tumor(s), 201, 243

growth, 15
irradiated, 229
monitoring of by MRI, 204
regression, 175
search for, 203
size, increase in, 174

Typical misregistration error, 22

 

U

 

Ultrasound (US), 75, 88
acquisition, free-hand 3D, 65, 102, 255
B-mode, 18
calibration, 107, 267
Doppler, 2
imaging, 102, 266
intraoperative, 355
registration, 268, 352
scan, simulated freehand, 106
transducers, in air, 257
2D, 103

Underestimation, 122
US, see Ultrasound

 

V

 

Validation
image registration, 34
independent, 133
visual inspection for, 130

Variance of intensity ratios (VIR), 26
Venous sinuses, 163
Ventricular system, 161
Video registration, 264
VIR, see Variance of intensity ratios
Virtual reality experiences, 332
Visible Human datasets, 5
Visual inspection, for validation, 130
Von Neumann stability analysis, 340, 341
Voxel(s)

activated, 186
dimensions, 99
information, 78
intensity values, 144, 147, 225
similarity measure, 25, 41, 52, 151, 305, 

310
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W

 

Wegener ’s disease, contrast enhancement, 
171

White matter, 334, 353

 

X

 

x-ray(s)
discovery of, 254
fluoroscopy, 265
projection, 44, 265
registration with nuclear medicine, 17, 

234
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