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Preface

Why would anyone write yet another book about radar imaging? Although the field
is relatively specialised and little known to the general public, there is already a lot of
high quality literature available. We in fact have excellent reasons to do so.

The first is that the situation has changed due to new techniques and recent projects:
the availability of data from new and efficient space and airborne systems since the
1990s has led to rapid technical progress. These new techniques have also been boosted
by incredible progress in computing, which over the same period has allowed for both
easier and cheaper calculations for radar studies. The kind of processing that used
to require days of computation and an entire computer centre can now be done by
anybody on a desktop PC. This has radically changed both data processing possibilities
and the choice of algorithms. Our second reason was that we wanted to describe radar-
imaging techniques from a different viewpoint. Because there are so many different
technical fields in which radar techniques are used, there is a correspondingly wide
range of approaches. Specialists who have come to radar imaging with a background
in electromagnetic signal processing techniques are likely to prefer a purely formal
approach. Specialists in the use of radar images will see it as being derived from
real aperture radar. Specialists in other kinds of image processing such as optical
imaging or seismic tomography might prefer different approaches yet again. Our
intention in this book is to maintain as geometrical an approach as possible to radar
imaging. There are several different reasons for this. We believe that geometry enables
us to use a more universal language than any of the specialised approaches that we
have mentioned above. Although the geometrical approach may often seem naive,
it nonetheless remains very precise. We thus see it as the simplest possible way of
approaching the subject without sidestepping any of the difficulties and complexities
inherent in radar imaging. Lastly, the geometrical results produced by radar make
for the most spectacular applications. The most practical way of approaching this
technique is therefore directly via those aspects which enable the widest range of radar
imagery applications.

We have always noticed that our fellow radar specialists are particularly enthu-
siastic about their work. No one who has been involved with radar processing can ever
quite leave it behind, despite any change in career. Of course, attempts to explain this
must necessarily be partly arbitrary and personal. We believe however that this invol-

© 2008, First edition, EPFL Press



viii IMAGING WITH SYNTHETIC APERTURE RADAR

vement depends on two factors. First of all, there is almost a rite of passage involved
when confronting radar imaging, as it is necessary to make a leap of faith in order
to understand the complexity of images which are purely computer-generated. While
almost anybody can understand optical imagery, radar is harder to grasp; indeed, there
is a significant barrier posed both by the abstract nature of the signal phase, as well as
the elaborate reconstruction techniques employed. Those who then cross the barrier
find themselves part of an elite club. Naturally, we do not claim that radar imaging
is more complicated than other fields of observation techniques, at a specialist level,
but the fact there is this barrier makes it appear far more complex. Furthermore, radar
imaging has very fundamental links with the phenomena studied and the investigation
methods employed. There is a striking similarity between the ambiguity in position
and speed in radar imaging and Heisenberg’s principle of quantum mechanics, which
also implies complex-based formalisms. There are also several analogies between
radar polarimetry and quantum mechanics. It is precisely the fundamental concepts
used in radar imaging that lead to the variety of approaches we have mentioned above.
We have divided this book into five parts. The first chapter (A Theoretical Emergency
Kit for SAR Imagery) covers a few theoretical principles which by their very diversity
place radar imaging techniques at the cross-roads between electromagnetism, signal
processing and image processing. The propagation and polarisation of electromagnetic
waves, the radiation of microwave antennas, the physics of radar measurements and
the characteristics of the Fourier Transform are each dealt with in turn. The second
chapter (SAR Processing: At the Heart of the SAR Technique) has nonetheless been
written in such a way as to make it accessible to readers who are not familiar with
remote sensing and who do not have previous knowledge of signal processing or ra-
dar physics. It describes radar processing in terms of geometry. The attentive reader
should need no more than a basic scientific background. The third chapter (From SAR
Design to Image Quality) deals essentially with radiometry aspects. Referring to these
and to determination of the radar/target link budget it gives a detailed description of the
decisive trade-off between the geometrical (resolution) and the radiometry (amplitude
of the radar echo) features of a radar image. The fourth chapter (SAR Interferometry:
Towards the Ultimate Ranging Accuracy) explains the principles and the main appli-
cations of radar interferometry which generally produces two types of information,
most frequently combined in a single image: topographical information and informa-
tion about ground movements. Finally, the fifth and final chapter (SAR Polarimetry:
Towards the Ultimate Characterization of Targets) aims to explain the basics of pola-
rimetry, which extends the possibilities of radar measurements by varying the polari-
sation.

Toulouse, France, February 2008
Didier Massonnet and Jean-Claude Souyris
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CHAPTER 1

A THEORETICAL EMERGENCY KIT
FOR SAR IMAGERY

1.1 The propagation and polarization of electromagnetic waves

A friendly warning to the reader: this discussion on the propagation and polarization
of waves may bring back memories of school physics from another age as it does for
the authors. The wave phenomena were profusely described at the time with images
of ripples in water and skipping ropes. One day electromagnetic waves appeared on
the black board. Newtonian physics suddenly faded into insignificance in the light
of this new mysterious and infinite perspective. Indeed, for the first time, the teacher
had referred to Maxwell’s equations with the fascination of a geographer for uncharted
territories. According to him, they governed the behavior of this abstract universe,
bedecked in symmetry.

Now, many years later, they remain as attractive as ever. Associated with con-
stitutive equations and boundary conditions, they are the basis for this introduction.
Their resolution is described for a standard case of propagation in a vacuum with no
boundary conditions. An entirely deterministic plane wave structure is obtained, de-
scribed by its polarization state. However the beautiful flow of this perfect wave is
disrupted by the time or spatial fluctuations of the media it passes through. These per-
turbing encounters cause a depolarization effect and a dedicated formalism is needed
to characterize it. The ultimate aim of Sect.1.1 is to prepare the reader for Chapter 5
of this book, dedicated to SAR polarimetry.

1.1.1 Maxwell’s Equations

Maxwell’s equations govern the propagation of electromagnetic waves in any medium.
Defined by James Clerk Maxwell (1831–1879) in 1873, they confirmed the intuitions
of the self-taught genius Faraday (1791–1867), and were then experimentally validated
by Heinrich Hertz in 1888. The Berlin physicist characterized the propagation effects
of the induction force of an electric current, which partly cleared up the mystery of the
strange ‘effects of sparks occurring at a distance’ which had been observed by several
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2 IMAGING WITH SYNTHETIC APERTURE RADAR

investigators. Albert Einstein1 later built his special theory of relativity on Maxwell’s
equations. We shall limit ourselves here to a brief description:

∇ × �e(�r, t)+ ∂

∂t
�b(�r, t) = 0 (1.1)

∇ × �h(�r, t)− ∂

∂t
�d(�r, t) = �j(�r, t) (1.2)

∇ · �b(�r, t) = 0 (1.3)

∇ · �d(�r, t) = ρ(�r, t) (1.4)

This set of four equations brings into play the vector quantities �e(�r, t), �h(�r, t),
�d(�r, t), �b(�r, t) which are, respectively, the electric and magnetic fields, the electric
displacement and the magnetic induction. They are the unknowns of any propagation
problem. The terms appearing on the right-hand side of the equations, ρ(�r, t) and
�j(�r, t), known as source terms, represent the electric charge and current densities which
have to be generated locally in order to produce radiation. For example, a microwave
transmitter placed at the focus of a parabolic antenna induces currents �j(�r, t) on its
surface, causing radiation.

The electric and magnetic vectors depend on four parameters (three space param-
eters x, y and z constituting the space vector �r, and a time parameter t), and are subject
to a set of mathematical operators: the curl operator (∇×), the divergence operator
(∇·) and the partial time derivative (∂/∂t). The ∇× and ∇· operators act on the space
coordinates and the ∂/∂t on that of time. Equations (1.1) and (1.2), called Faraday’s
law and Ampere’s generalized law, reveal the way in which the space variations of
an electric field (respectively a magnetic field) generate time variations of magnetic
(respectively electric) induction. Equation (1.2) is the generalization of the electro-
static case of an infinite straight wire, carrying a direct current, which creates circular
magnetic field lines centered on the wire. Equations (1.3) and (1.4) are Gauss’s laws
for electric displacement and magnetic induction. They are deduced from Eqs. (1.1)
and (1.2), and from the equation of energy conservation during the spatio-temporal
ballet of electric and magnetic fields (by ∇ ·�j(�r, t)+j ·ω ·ρ(�r, t) = 0). For this reason,
Eqs. (1.3) and (1.4) do not provide any extra information about the unknown vectors
�e(�r, t), �h(�r, t), �d(�r, t), and �b(�r, t). To conclude, Maxwell’s equations limit the number
of independent scalar equations to six.

1.1.1.1 The constitutive equations
Since each of the unknown vectors is formed of three space and time-dependant com-
ponents, the problem expressed by Eqs. (1.1)–(1.4) includes 12 unknowns. Now,
Maxwell’s equations only provide six independent scalar equations. It is therefore
necessary to provide this system of equations with more information about the prop-
agation medium. For this purpose, we introduce constitutive equations, which are

1Biographers reported that Einstein had decorated his office with three portraits of illustrious predeces-
sors: Newton, Faraday and Maxwell, which probably indicated that he felt he had a scientific debt to the last
two who were pioneers of electromagnetism. The aim of his general theory of relativity was to reconcile
Newton’s theory of gravitation with Maxwell’s of electromagnetism altogether but this is another story.
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vector relations allowing us to express �d(�r, t) and �b(�r, t) as a function of �e(�r, t), �h(�r, t),
and the permittivity and permeability characteristics of the medium studied:

�d(�r, t) = ¯̄ε · �e(�r, t)+ ¯̄ξ · �h(�r, t) (1.5)

�b(�r, t) = ¯̄ς · �e(�r, t)+ ¯̄µ · �h(�r, t) (1.6)

Equations (1.5) and (1.6) refer to the ‘reaction’ of the medium to electromagnetic
illumination: the fields �e(�r, t) and �h(�r, t) of the incident wave create the displace-
ment �d(�r, t) and induction �b(�r, t), which become the relevant quantities for describing
propagation in the medium in question.

Readers wishing to delve further into the meaning of the tensors ¯̄ε, ¯̄ξ, ¯̄ς, and ¯̄µ can
refer to [Hallikainen, et al., 1985]. Let us just note that the very singular diffraction
phenomena observed in anisotropic, bi-anisotropic (such as plasma) or chiral-magnetic
media are due to their very particular specific constitutive equations.

Let us now assume that the wave emitted by the radar propagates in a vacuum.
Under these conditions the constitutive equations (1.5) and (1.6) take the simplified
form:

�d(�r, t) = ε0 · �e(�r, t) (1.7)

�b(�r, t) = µ0 · �h(�r, t) (1.8)

The vacuum is an isotropic medium (the vectors �d(�r, t) and �e(�r, t) are collinear,
as are �b(�r, t) and �h(�r, t)), characterized by the universal constants ε0 ≈ 8.85 × 10−12

Farad· m−1 (called the dielectric constant) and µ0 = 4π× 10−7Henry·m−1 (called the
permeability constant). Moreover in the vacuum:

�j(�r, t) = �0, ρ(�r, t) = 0 (1.9)

The hypothesis of a vacuum-like propagation of the electromagnetic wave assumes
that we neglect possible interactions of the incident wave with some of the atmosphere’s
component layers (troposphere and ionosphere) which lie between a space-based SAR
and its targets.

1.1.1.2 Boundary conditions
Finally, Maxwell’s equations are completed by boundary conditions characterizing
specific propagation cases. They express the need to impose a certain number of initial
conditions in order to ensure a unique solution for a differential equation of a given
order. An example of ‘academic’ boundary conditions is that of a perfectly conductive
surface subjected to electromagnetic radiation. In terms of Maxwell’s equations, the
electric field is locally orthogonal (perpendicular) to this surface, which is called an
‘electrical wall’. In the case of an electromagnetic interaction with a natural medium
(Sect. 1.3), these boundary conditions express the dielectric discontinuities imposed
on the incident wave when it ‘touches’ the natural medium.
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4 IMAGING WITH SYNTHETIC APERTURE RADAR

1.1.2 The polarization of electromagnetic waves

1.1.2.1 Structure of electromagnetic waves in the vacuum
The propagation equation derived from Maxwell’s equations relates the space and time
variations of the vectors �e(�r, t), �h(�r, t), �d(�r, t), and �b(�r, t) to the constitutive equations
for the vacuum:

∇2�e(�r, t)− ε0µ0 · ∂
2

∂t2
�e(�r, t) = 0 (1.10)

∇2· is the Laplace operator (also noted �·). Once expressed in a reference basis
(x̂, ŷ, ẑ), it is written as:

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(1.11)

In the absence of boundary conditions (an infinite vacuum), a solution for this
differential equation is given by Kong [1990]:

�e(�r, t) = � { �E0 · exp
[
j · (ω · t − kx · x− ky · y − kz · z ) ] }

= �
{

�E0 · exp
[
j · ( ω · t − �k · �r )

]}
(1.12)

where j is the classical imaginary unit equal to the square root of −1 : j = √−1. �
represents the real part; x, y, z and kx, ky, kz are the respective coordinates of the space
vector �r and the wave (or propagation) vector �k, whose components satisfy:

k2
x + k2

y + k2
z = ω2ε0µ0 (1.13)

The relationship (1.13) is better known as the equation of dispersion, with ω
related to the frequency fc of the wave by the expression ω = 2πfc. Finally, �E0

is a constant vector with complex components contained in a plane perpendicular to
�k, called the Jones vector (Sect. 1.1.2.2). The form of the electric field in Eq. (1.12)
characterizes a wave mechanism (both in space and time) that propagates along the
direction k̂ = �k/‖�k‖.

Equi-phase and equi-amplitude surfaces are planes that are orthogonal (perpen-
dicular) to the propagation direction of the energy represented by the vector k̂. For this
reason, the wave is called a plane wave. Finally turning again to Maxwell’s equations,
it is easy to calculate the magnetic field �h(�r, t). This gives:

�e(�r, t) = ξ · �h(�r, t)× k̂ (1.14)

where ξ = √
µ0/ε0 is the impedance of the wave in the vacuum (ξ ≈ 120π).

Equation (1.14) characterizes the structure of the plane wave propagating in the
vacuum: the vector triplet

[�e(�r, t), �h(�r, t), k̂] is right-handed. The wave has a trans-
verse electromagnetic structure in which the fields �e(�r, t) and �h(�r, t) are in the plane
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perpendicular to the propagation direction (Fig. 1.1). The transfer of electromagnetic
energy thus occurs in a direction perpendicular to the electric or magnetic vibrations,
similarly to waves rippling on a pond with local vertical displacements.2

Let us consider for example a plane wave propagating in the direction ẑ. Under
these conditions, the transversal (or orthogonal) plane containing the fields �e(�r, t) and
�h(�r, t) is the plane (x̂, ŷ), and the vector k̂ is parallel to ẑ (Fig. 1.1). During the propaga-
tion, the electromagnetic fields undergo a helical rotation centered around ẑ. Projected
onto the transversal plane, this helix is reduced to an ellipse called the polarization
ellipse.

Fig. 1.1 Structure of plane wave in free space.

1.1.2.2 The polarization ellipse
The wave’s polarization is defined by the projection of the curve traced by the leading
edge of the electric field �e(�r, t) onto the plane orthogonal to the propagation direction.
To define this concept more clearly, let us look again at Eq. (1.12), expressed according
to our simplifying hypotheses:

�e(x, y, z, t) = ex · x̂+ ey · ŷ = � { �E0 · exp
[
j · (ω · t − k · z) ] } (1.15)

in which the Jones vector �E0 is:

�E0 = E0x · x̂+ E0y · ŷ = ax · ejδx · x̂+ ay · ejδy · ŷ (1.16)

where ax (resp. ay), δx (resp. δy) are the amplitude and the phase of the Jones vector
coordinates along x̂ (resp. ŷ). The entity k = 2π / λ is called the wave number.

This representation of the electric field taken independently of its spatio-temporal
variations is also (incorrectly) called ‘wave polarization’. From Eq. (1.15) and Eq. (1.16),
this gives:

ex = ax · cos ( ω · t − k · z+ δx )

ey = ay · cos ( ω · t − k · z+ δy ) (1.17)

2The propagation of acoustic waves is different with respect to the fact that the transfer of energy occurs
in the same direction as that of the local variations of air pressure which cause the propagation.
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The variations of the components ex and ey only depend on the space-time term
(ω · t − k · z). From Eq. (1.17), we obtain:

(
ex

ax

)2

+
(
ey

ay

)2

− 2 · ex
ax

· ey
ay

· cos(δy − δx) = sin2(δy − δx) (1.18)

This results in an equation for a conic section whose determinant is ≥ 0: this is an
ellipse, called the ‘polarization ellipse’. Going back to the three-dimensional problem,
the tip of the electric-field vector describes a helix inscribed in a cylinder with an
elliptical cross-section (the cylindrical nature illustrates the principle of conservation
of energy during propagation).

To avoid possible confusion between variations in space and in time, we arbitrarily
choose a transversal reference plane from which we observe the movement of the
electric field, for example, the plane z = 0. In this plane (as in any other plane), the
polarization ellipse is characterized by two angular parameters: ψ and τ (Fig. 1.2). ψ
characterizes the orientation of the major axis of the ellipse with respect to the x̂ axis,
and τ is its ellipticity. The sign of τ (Sect. 1.1.2.3) indicates the direction in which
�e(x, y, 0, t) rotates around the polarization ellipse. Finally the value of the semi-major
axis of the ellipse is linked to the amount of energy carried by the wave.

ŷ

x̂ẑ

ψτ
ya.2

xa.2

propagation
direction

(approaching
wave)

Fig. 1.2 The polarization ellipse in the polarization plane.

Using trigonometry, it is possible to derive the values (ψ, τ) from the values
(ay/ax, δy − δx) [Born, 1970]: the orientation of the major axis of the polarization
ellipse, as well as its ellipticity, can be deliberately set given two orthogonal elementary
excitations for which we are able to control the ratio of amplitudes and the relative
phase offset. Given this, it follows that any wave with elliptical polarization may
be considered as a linear combination of two elementary waves with perpendicular
linear polarizations (along the directions x̂ and ŷ), to which are assigned respectively
the complex coefficients ax · ejδx and ay · ejδy . The complex nature of the weighting
coefficients expresses the concept of coherent summing defined below.
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(a) (b)

ĥ ĥ

v̂ v̂

k̂
k̂

Fig. 1.3 (a) Spatial variations of the electric field in the case of a horizontal linear polarization
(RADARSAT type); (b) Spatial variations of the electric field in the case of a vertical linear
polarization (ERS type).

The Jones vector described in Eq. (1.16) by means of ax , ay, δx, and δy can be
expressed in a more geometrical way as a function of ψ and τ:

�E0 = A ·
(

cosψ − sinψ
sinψ cosψ

)
·
(

cos τ j · sin τ
j · sin τ cos τ

)
·
(
e−jα 0

0 ejα

)
· x̂

= A ·
[ ¯̄U(ψ)

]
·
[ ¯̄U(τ)

]
·
[ ¯̄U(α)

]
· x̂ (1.19)

where A is the amplitude of �E0 and α is an absolute phase term. To within the complex
amplitude term A · ejα, Eq. (1.19) reveals the coexistence in the wave structure of two
vibrations in phase quadrature (term in j), respectively with amplitudes proportional
to cos τ and sin τ, in a basis which is rotated by an angleψ with respect to the reference
basis (x̂, ŷ). Moreover, the matrices

[ ¯̄U(ψ)], [ ¯̄U(τ)] and
[ ¯̄U(α)]have specific algebraic

properties: all three belong to the group of special unitary 2×2 complex matrices (SU2).
They satisfy the following expression:

det
[ ¯̄U
]

= 1
[ ¯̄U
]−1

=
[ ¯̄U
]T ∗

=
[ ¯̄U
]+

[ ¯̄U(x)
]−1

=
[ ¯̄U(−x)

]
(1.20)

where the superscripts ‘−1’, ‘T ’ and ‘*’ and ‘+’ stand for ‘inverse’ ‘transpose’, ‘con-
jugate’ and ‘conjugate transpose’, respectively.

The linear polarizations
These are characterized by a constant orientation of the electric field during propagation.
Following Eq. (1.17), this assumes a phase difference (δy −δx) equal to an integer
multiple of π, or to the value τ = 0 according to Eq. (1.19). In ordinary language,
a linear polarization for which the electric field remains parallel to the illuminated
surface (hence ‘horizontal’: Fig. 3(a)) is called horizontal and a linear polarization for

© 2008, First edition, EPFL Press



8 IMAGING WITH SYNTHETIC APERTURE RADAR

which the electric field is contained in the incident plane is called vertical3 (careful, this
does not mean that the electric field is vertical with respect to the illuminated surface:
cf. Fig. 3(b)).

The circular polarizations
Following Eq. (1.17), these require that two conditions be satisfied, namely that ay =
ax and that the phase difference (δy − δx) be equal to an odd multiple of π/2 (the
two elementary orthogonal excitations have the same amplitude and the same phase
quadrature, hence τ = ±π/4 in Eq. (1.19)). The corresponding Jones vectors are
written as (1, j)T and (1,−j)T , respectively. We shall see (Sect. 1.1.2.3) that (1,−j)T
is actually associated to with right-hand circular polarization.

The orthogonal polarizations
By definition, two polarizations are said to be orthogonal if their respective Jones vec-
tors �E0 and �E⊥

0 are orthogonal in terms of the Hermitian scalar product
( �ET0 · �E⊥∗

0 = 0). Returning to Eq. (1.19), the vector �E⊥
0 may be expressed in two

ways:

�E⊥
0 = A ·

[ ¯̄U(ψ)
]

·
[ ¯̄U(τ)

]
·
[ ¯̄U(α)

]
· ŷ

= A ·
[ ¯̄U(ψ + π/2)

]
·
[ ¯̄U(−τ)

]
·
[ ¯̄U(α)

]
· x̂ (1.21)

Two orthogonal polarizations always form a basis in polarization space.
The pairs of orthogonal polarizations consist of linear polarizations oriented in

orthogonal directions (ψ = ψ0 in one case, ψ = ψ0 + π/2 for the other), of circular
polarizations with opposite rotation directions (τ = π/4 in one case, τ = −π/4 for the
other), and, more generally, elliptical polarizations with the same ellipticity and with
major axes orthogonal, but with opposite rotation directions.

Waves that propagate in opposite directions
What is the relation between the Jones vectors �E0(k̂) and �E0(−k̂) of two waves with
the same polarization structure propagating in opposite directions? Propagation in an
opposite direction means (by definition) a change in the propagation term exp[ j · (ω ·
t − k · z)] of Eq. (1.15) to exp [j · (ω · t + k · z)]. Consequently it is necessary to
also conjugate the Jones vector �E0(k̂) to maintain the same spatio-temporal structure
�e(x, y, z, t). Thus, we can write:

�E0(−k̂) = �E∗
0(k̂) (1.22)

3The Canadian RADARSAT satellite operates with horizontal polarisation while the European ERS-
1/2 satellites operate with vertical polarisation. For this kind of mono-polarized instrument, the choice of
polarisation depends on the mission objectives. The RADARSAT mission which was designed to plot open
sea routes in the Artic area (by discriminating between water and ice) and to detect ships used horizontal
polarisation (which minimises the sea clutter signal).
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1.1.2.3 Direction of polarization
As has already been mentioned, the sign of τ determines the direction in which the
edge of the electric field rotates on the polarization ellipse. Depending on the direction
of this motion, it is referred to as right polarization or left polarization.

The terms ‘right’ and ‘left’ should be used with caution. Authors use different
conventions to define polarization directions. Thus in [Born, 1970] (p.28), an elliptical
polarization is said to be ‘right’ when the electric field �e(x, y, 0, t) that describes the
polarization ellipse turns in a clockwise direction for an observer looking towards
the source of the wave. On the contrary, the standard IEEE definition refers to right
polarization when this same field �e(x, y, 0, t) turns in a clockwise direction for an
observer looking in the direction of propagation. This is the case in Fig. 1.2, for a wave
which propagates along ẑ. These two definitions are contradictory; we shall adopt the
second which is in accordance with international standards.

This type of contradiction reveals a classic difficulty encountered when studying
radars with polarization diversity; it is easy to get lost in a labyrinth of signs and
conventions. There is an amusing anecdote, described in ref. [Pierce, 1974] referring
to the mishaps of the TELSTAR-1 mission, which was used for the first transatlantic
broadcast of television images (10/07/1962). During this historic rendezvous, the
English station of Goonhilly and the French station at Pleumeur-Bodou, both watching
out for signals emitted with circular polarization by the American satellite, did not
have the same success. The French managed to receive the signals as their polarization
direction was defined in the same way as that of the Americans, while the English, who
had adopted an opposite convention to that of their partners, sadly regretted that their
receivers remained mute.4

The diagram in Fig. 1.4 represents the polarization ellipse (as well as its track
direction over time) in the transversal plane z = 0, for given values of ax and ay and
variable phase difference δ = δy − δx.

1.1.2.4 Polarization basis
We shall see Section 5.5 that an advantage of radar polarimetry is the possibility of
synthesizing the response of a target to any given transmitted elliptical polarization.
Successful use of such a principle requires correctly using the algebra for changes in
polarization bases.

4The history of astrophysics tells us that two of the programme engineers from the Bell laboratories
at Holmdel, in New Jersey, were none other than Arno Penzias and Robert Wilson. They became famous
after having pointed a TELSTAR antenna towards the halo of our galaxy, which enabled them to detect
radiation which was not known to exist at the time, with properties which strangely enough were identical
in all directions. Was it an interference signal? No, without realizing it they had achieved the first radio
observation of radiation from the cosmological background, which led to their Nobel Prize in Physics in
1978. This famous background radiation, with a temperature of 2.7 K, is the foundation stone of the Big-
Bang theory and continues to excite researchers and engineers. Space agencies are currently considering
developing probes which will be able to measure its polarization properties, which brings us back to the
current subject.
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δ = 0 π / 2 < δ < πδ = π / 20 < δ < π / 2

propagation
direction
(leaving wave)

x̂

ŷ

π < δ < 3π / 2δ = π δ = 3π / 2 3π / 2 < δ < 2π

y

Fig. 1.4 The polarization ellipse in the plane which is transversal to the propagation plane, for
given values of ax and ay (with the exception of the specific cases δ = π/2, and δ = 3π/2 where
they are chosen equal), and a phase offset δ = δx − δy [Born and Wolf, 1970].

Let us consider any basis of orthogonal polarizations (â, b̂). We want to determine
E0a and E0b which satisfy:

�E0(x, y) = E0x · x̂+ E0y · ŷ = �E0(a, b) = E0a · â+ E0b · b̂ (1.23)

as a function of E0x and E0y. â and b̂ are defined via their characteristic parameters
(ψ, τ, α):

â =
[ ¯̄U(ψ)

]
·
[ ¯̄U(τ)

]
·
[ ¯̄U(α)

]
· x̂ and

b̂ =
[ ¯̄U(ψ)

]
·
[ ¯̄U(τ)

]
·
[ ¯̄U(α)

]
· ŷ (1.24)

which can be expressed via the transformation (transition) matrix:

[ ¯̄P
]

=
[
p11 p12

p21 p22

]
=
[ ¯̄U(ψ)

]
·
[ ¯̄U(τ)

]
·
[ ¯̄U(α)

]
(1.25)

The matrix
[ ¯̄P] expresses in a concise way the transition from the vector pair (x̂, ŷ) to

the vector pair (â, b̂):

â b̂[
p11 p12

p21 p22

]
x̂

ŷ

(1.26)

Finally:

(
E0a

E0b

)
=
[ ¯̄P(ψ, τ, α)

]−1
·
(
E0x

E0y

)
(1.27)
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It may be noted that
[ ¯̄P(ψ, τ, α)

]−1
=
[ ¯̄U(−α)

]
·
[ ¯̄U(−τ)

]
·
[ ¯̄U(−ψ)

]
(1.28)

based on the properties stated in Eq. (1.20).
[ ¯̄P(ψ, τ, α)] and

[ ¯̄P(ψ, τ, α)]−1
also belong

to the SU2 group.

1.1.3 Partially polarized waves

Up to now we have implicitly assumed that the parameters that define the polarization
of the wave (ψ and τ, or in a dual way ax · ejδx and ay · ejδy ) are independent of time
and space. We shall now consider the general case of partially polarized waves which
will cause these parameters to fluctuate.

The structure of Eq. (1.15) reveals only sinusoidal temporal variations of the elec-
tric field by means of the exp [j · ω · t] term. The wave is monochromatic. The terms
ax ·ejδx and ay ·ejδy are intrinsic complex amplitudes characteristic of the wave’s polar-
ization state (likewise for ψ and τ). We may nevertheless imagine a more general case
for which these terms are time dependent. Equation (1.15) may then be rewritten as:

�e(�r, t) = �e(x, y, z, t)
= �

{(
ax(t) · ejδx(t) · x̂+ ay(t) · ejδy(t) · ŷ ) · exp

[
j · (ω · t − k · z) ]

}

= �
{

�E0(t) · exp
[
j · (ω · t − k · z) ]

}
(1.29)

The term �e(x, y, z, t) may be due to the scattering from a time-varying point target or,
in a dual way, of an element of an extended static target which exhibits spatial fluctu-
ations. In the second case, the time t in the vector �E0(t) will be replaced by an index
identifying the element (i.e., the image pixel in radar imagery).

The temporal variations of �E0(t) are significant if the coherence time of the target
(duration below which it may be considered to be static) is less than the duration of
the measurement. Letting δ(t) = δy(t) − δx(t), the time variations of the quantities
ax(t), ay(t), and δ(t) lead to a spectrum spread �f of the initially monochromatic
wave. Assuming �f 
 fc, and writing the measurement duration as �t, the wave
will be considered to be polarized as long as�t 
 1/�f . If this condition is satisfied,
the time dependency of the polarization parameters may be neglected. Otherwise, the
fluctuation of the parameters ax(t) · ejδx(t) and ay(t) · ejδy(t) does not allow us to describe
the polarization state in a relevant way, and the wave is said to be partially polarized.
As the Jones vector is no longer useful, new parameters are needed to describe the
polarization.

1.1.3.1 The coherence matrix
An electric field propagating according to Eq. (1.29) is detected by an antenna pointing
in the direction of propagation (Fig. 1.5). The antenna is characterized by its receiving
polarization Êrec0 , which is the polarization of the field êrec(�r, t) it would transmit if it
were used as a transmitter (reciprocity theorem).
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Fig. 1.5 Configuration of the wave incident to the receiving antenna and of its polarization.

The coupling of the receiving antenna and the incident field produces, at the
antenna output, a detected voltage V(t), with an average power proportional to:

Pav = 〈V(t) · V ∗(t) 〉 =
〈 ∣
∣
∣ ÊrecT0 · �E0(t)

∣
∣
∣

2
〉

(1.30)

There are two points to be made about Eq. (1.30): (1) Êrec0 is a dimensionless unit
vector, independent of time. The projection of �E0(t) onto Êrec0 expresses the antenna
sensitivity to the polarization of the received field. (2) ÊrecT0 · �E0 (t) is a Hermitian
scalar product for which the second vector is conjugated twice. The first conjugation
is inherent in the mathematical formulation of the Hermitian product, while the second
is of physical origin: it expresses the coupling of two waves propagating in opposite
directions (Sect. 1.1.2.2).

The average detected power may be written as:

Pav = ÊrecT0 ·
[ ¯̄J
]

· Êrec∗0 (1.31)

where
[ ¯̄J] is known as the wave coherence matrix. It is a 2×2 Hermitian matrix (since

it is equal to its conjugated transposed matrix):

[ ¯̄J
]

=
[
Jxx Jxy
Jyx Jyy

]
=
[ 〈E0x · E∗

0x〉 〈E0x · E∗
0y〉

〈E0y · E∗
0x〉 〈E0y · E∗

0y〉
]

(1.32)

The degree of coherence
The degree of coherence characterizes the correlation between the electrical excitations
along directions x̂ and ŷ:

µxy = Jxy√
Jxx ·√Jyy

= 〈E0x · E∗
0y〉√〈

E0x · E∗
0x

〉 ·
√〈

E0y · E∗
0y

〉 (1.33)

Due to the Schwarz inequality, the magnitude of µxy is between 0 and 1. There
are two extreme cases:

(1) Polarized waves: This gives the ‘conventional’ formulation for which the po-
larization parameters are independent of time. One then obtains

∣
∣µxy

∣
∣ = 1 and

det (
[ ¯̄J] ) = 0.
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(2) Unpolarized waves: This is the case for natural light, for which there is no priv-
ileged polarization. The random relative phases δ(t) are uniformly distributed
between 0 and 2π. This means that the off-diagonal terms Jxy and Jyx of the
coherence matrix must be zero and that the diagonal terms Jxx and Jyy must be
equal. One then obtains

∣
∣µxy

∣
∣ = 0.

In other words, the coherence matrix of an unpolarized wave is proportional to the
identity matrix. In accordance with Eqs. (1.31) and (1.32), the average power generated
on a receiving antenna is thus independent of its polarization.

Between these two extreme cases (0 <
∣
∣µxy

∣
∣ < 1), the waves carry part of the

energy in polarized form (fixed polarization ellipse) with the remainder in an unpolar-
ized form. When polarization diversity is available, a radar system can fully exploit the
polarized component of the wave (maximum coupling), without however eliminating
a ‘polarization noise’ generated by its unpolarized part. The subject of the next section
will involve quantifying the proportion of each of these components in the composition
of the wave.

1.1.3.2 The wave decomposition theorem
The previous section intuitively led to the representation of a partially polarized wave
as the superposition of a polarized wave and an unpolarized wave. In [Born, 1970]
(p. 551), the reader may find both a demonstration supporting this intuition and a proof
of the uniqueness of this decomposition.

How do we proceed in practice for the ‘addition’ of two waves? Instinctively, we
would simply add the respective Jones vectors (i.e. their polarization states). However
this addition of electric fields (also known as the coherent sum) is only relevant if the
phase offset between the two waves is constant, which requires that they be polarized.
This is clearly not the case here because one of the two waves is unpolarized, which
means only the addition of the energy terms is meaningful. In order to carry this out,
we adopt the formalism of coherence matrices. According to Eq. (1.32), we see that
the simultaneous effect of two waves received at an antenna is the same as that of a
single wave whose coherence matrix is equal to the sum of the two coherence matrices.
In this context, the energy terms are added (i.e. the Jzt terms) and the sum is referred
to as incoherent.

Given the uniqueness of the decomposition,
[ ¯̄J] must be written as:

[ ¯̄J
]

=
[

¯̄Jupol
]

+
[

¯̄Jpol
]

=
[
A 0
0 A

]
+
[
B D

D∗ C

]
(1.34)

where A, B, C are real quantities and:

B · C − |D|2 = 0 (1.35)

The structure of
[ ¯̄Jupol] is characteristic of an unpolarized wave whereas condition

(1.35) expresses the polarized nature of the wave. By substitution, we obtain:

A = 1

2
· (Jxx + Jyy

)− 1

2
·
√(

Jxx + Jyy
)2 − 4 · ∣∣ ¯̄J∣∣
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14 IMAGING WITH SYNTHETIC APERTURE RADAR

B = 1

2
· (Jxx − Jyy

)+ 1

2
·
√(

Jxx + Jyy
)2 − 4 · ∣∣ ¯̄J∣∣

C = 1

2
· (Jyy − Jxx

)+ 1

2
·
√(

Jxx + Jyy
)2 − 4 · ∣∣ ¯̄J∣∣

D = Jxy (1.36)

with:
∣
∣ ¯̄J∣∣ = ∣

∣ Jxx · Jyy − Jxy · Jyx
∣
∣ (1.37)

Due to the Schwarz inequality,
∣
∣ ¯̄J∣∣ ≥ 0.

The degree of polarization
After decomposition of the coherence matrix, we introduce a parameter to quantify the
respective weights of the polarized and unpolarized components in the composition of
the wave: the degree of polarization Pw is defined as the ratio of the power density
contained in the polarized part of the wave to the total power density carried by the
wave. By construction, Pw is between 0 and 1. Based on Eqs. (1.32) to (1.36), it may
be shown that:

Pw =
√√
√
√1 − 4 · ∣∣ ¯̄J∣∣

(
Jxx + Jyy

)2 (1.38)

Only the determinant and the trace of the coherence matrix
[ ¯̄J] enter into the

degree of polarization Pw. These two quantities are independent of the choice of the
basis

[
x̂, ŷ

]
of the polarization plane, as is Pw. For this reason, Pw is thus said to be

‘polarimetric invariant’. This is not the case for the degree of coherence µxy.

1.1.3.3 The group of Pauli matrices and the Stokes parameters
The polarization state of a wave is given by its coherence matrix (Sect. 1.1.3.1). We
shall now express it in the Pauli matrices basis ([ ¯̄σ0],[ ¯̄σ1],[ ¯̄σ2],[ ¯̄σ3]). The advan-
tages of this approach will become obvious as we progress in our study of radar
polarimetry:

[σ̄0] = 1√
2

·
[

1 0
0 1

]
[ ¯̄σ1
] = 1√

2
·
[

1 0
0 −1

]

[ ¯̄σ2
] = 1√

2
·
[

0 1
1 0

]
[ ¯̄σ3
] = 1√

2
·
[

0 −1
1 0

]
(1.39)

[ ¯̄J] is then written in the form:

[ ¯̄J
]

= 1√
2

· {s0.
[ ¯̄σ0
]+ s1.

[ ¯̄σ1
]+ s2.

[ ¯̄σ2
]+ j.s3.

[ ¯̄σ3
]}

= 1

2
·
[

s0 + s1 s2 − j · s3
s2 + j · s3 s0 − s1

]
(1.40)
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The parameters si were introduced by Stokes at the end of the 19th century within the
context of his study of polarized light. They provide the four components of the Stokes
vector S̃:

S̃=

⎛

⎜
⎜
⎜
⎝

s0

s1

s2

s3

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Jxx + Jyy

Jxx − Jyy

Jxy + Jyx

j · (Jxy − Jyx)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

〈E0x · E∗
0x〉 + 〈E0y · E∗

0y〉
〈E0x · E∗

0x〉 − 〈E0y · E∗
0y〉

2.�〈E0x · E∗
0y〉

−2.〈E0x · E∗
0y〉

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(1.41)

The respective weights of the polarized and unpolarized components of the wave
may be evaluated by using the Stokes formalism. The positive nature of the determinant
of
[ ¯̄J] is expressed by the inequality:

s20 ≥ s2
1 + s2

2 + s2
3 (1.42)

The degree of polarization Pw (Sect. 1.1.3.2) is then written as:

Pw =
√
s2

1 + s2
2 + s2

3

s0
(1.43)

The particular cases encountered are:
(1) Pw = 1, the wave is polarized: s20 = s2

1 + s2
2 + s2

3;

(2) Pw = 0, the wave is unpolarized: s21 + s2
2 + s2

3 = 0.
Finally, the decomposition of waves into an incoherent sum of a polarized wave

and an unpolarized wave (Sect. 1.1.3.2) is now written as:

S̃ =

⎛

⎜
⎜
⎝

s0
s1
s2
s3

⎞

⎟
⎟
⎠ = S̃upol + S̃pol

=

⎛

⎜
⎜
⎜
⎝

s0 −
√
s2

1 + s2
2 + s2

3

0
0
0

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

√
s2

1 + s2
2 + s2

3

s1
s2
s3

⎞

⎟
⎟
⎟
⎠

(1.44)

By construction, the degree of polarization associated with S̃upol is zero (unpolarized
wave), while that associated with S̃pol satisfies the condition for the polarized wave
(Pw = 1).

1.1.3.4 The Poincaré sphere
The Poincaré sphere is used to characterize the polarization state of a partially polarized
wave described by a Stokes vector S̃ and a normalized power density (s0 = 1). The
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16 IMAGING WITH SYNTHETIC APERTURE RADAR

Fig. 1.6 The Poincaré sphere.

polarization state is represented by a point within a sphere of radius 1, with a reference
coordinate system [0, x̂, ŷ, ẑ] (Fig. 1.6). For this, s1, s2, s3 are expressed by means of
two angles ψ and τ such that:

s1 =
√
s2

1 + s2
2 + s2

3 . cos (2τ) · cos (2ψ)

s2 =
√
s2

1 + s2
2 + s2

3 . cos (2τ) · sin (2ψ)

s3 =
√
s2

1 + s2
2 + s2

3 . sin (2τ) (1.45)

In the context of the Poincaré sphere, the S̃ vector is associated with the internal
point MS̃ that has the azimuth and elevation angles 2ψ and 2τ respectively and that is
separated from the centre O of the sphere by a distance equal to its degree of polarization√
s2

1 + s2
2 + s2

3 ≤ 1.

In the specific case of a normalized polarized wave (s21 + s2
2 + s2

3 = s2
0 = 1), it can

easily be demonstrated that the parameters ψ and τ of Eq. (1.45) are those introduced
in the Sect. 1.1.2.2. to characterize the orientation of the major axis and the ellipticity
(including sign) of the polarization ellipse. The representative point of a wave of this
type is located on the surface of the Poincaré sphere. If the polarization of the wave is
only partial, ψ and τ then characterize the polarization ellipse of its polarized part, and
the wave’s representative point ‘sinks’ into the volume of the sphere to the extent that its
degree of polarization decreases. At the limiting value of 0, the point falls to the centre
O of the sphere characterizing an unpolarized wave. Moreover, the points associated
with linear polarizations (τ = 0) are located on the equator, the right polarizations in

© 2008, First edition, EPFL Press



A THEORETICAL EMERGENCY KIT FOR SAR IMAGERY 17

the Southern hemisphere (τ < 0) and the left polarizations in the Northern hemisphere
(τ > 0). Finally the North and South poles represent, respectively, the left circular and
right circular polarizations of perfectly polarized waves.

1.1.4 In passing: the elegant algebra of the SU(2)-O+(3)
homomorphism

It is not necessary to master the subject of this last section for the comprehension
of the general physics of our subject. It deals with the relation between the Jones
formalism and the Stokes formalism from an algebraic point of view which, will lead
to an interesting generalization for the study of polarimetric targets (Sect. 5.8.1.1). The
following development has been adapted from the excellent paper by Cloude [1986].

Equation (1.27) of Sect. 1.1.2.4 examines the transformation of the Jones vector
undergoing a change of basis:

�E(â,b̂) =
[ ¯̄U2

]
· �E(x̂,ŷ) (1.46)

where
[ ¯̄U2

]
is an SU(2) matrix, (Sect. 1.1.2.2).

There is a homomorphism5 of the SU(2) group towards the group of real 3×3
orthogonal matrices, and this homomorphism associates the basis transition matrix[ ¯̄O3

]
to any matrix

[ ¯̄U2

]
of SU(2), with

[ ¯̄O3

]
defined by:

[ ¯̄O3

]
(p,q) = Tr

{ [ ¯̄U2

] ∗T
.
[ ¯̄σp
]
.
[ ¯̄U2

]
.
[ ¯̄σq
]
}

(1.47)

where Tr {·} is the trace operator.
The transformation equation uses Pauli matrices (Sect. 1.1.3.3), with the indices

p and q varying from 1 to 3 (and not 0 to 3...). The equivalent of equation (1.46) in the
real 3-dimensional space transform any real vector �r into a real vector �r′ by:

�r′ =
[ ¯̄O3

]
· �r (1.48)

How can we now link the real vector �r, with dimension 3, to the initial complex
vector �E(x̂,ŷ), with dimension 2? For this, we simply return to the coherence vector
and the Stokes vector as defined by the Eqs. (1.32), (1.40) and (1.41). Even though the
Stokes vector is real and has dimension 4, its basis transition matrix is of the same type
as that operating on the �r vector. It can be shown that:

S̃′ =
[ ¯̄M

]
· S̃ (1.49)

5A homomorphism, φ, is an algebraic function relating two groups G (initial set) and G’ (resultant set),
with the operations “·” and “◦” respectively. For all elements x and y ∈ G, we obtain: φ(x, y) = φ(x)◦φ(y).
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18 IMAGING WITH SYNTHETIC APERTURE RADAR

with:
[ ¯̄M

]
(p,q) = Tr

{ [ ¯̄U2

] ∗T
.
[ ¯̄σp
]
.
[ ¯̄U2

]
.
[ ¯̄σq
]
}

(1.50)

for indices p and q varying now from 0 to 3.
[ ¯̄M

]
is an extended form of the matrix

[ ¯̄O3

]
:

[ ¯̄M
]

=

⎡

⎢
⎢
⎢
⎣

1 0 0 0
0

0
[ ¯̄O3

]

0

⎤

⎥
⎥
⎥
⎦

(1.51)

These formulations have a precise mathematical meaning consistent with the
results determined in the previous sections. They allow for the projection of a state
of ‘pure’ polarization into the real 3-dimensional space, represented by the surface
of the Poincaré sphere. Additionally, they include the case of partial polarization by
assigning a 4-dimensional vector represented by a point within the Poincaré sphere to
a Jones vector perturbed by space or time fluctuations.

1.1.4.1 On the Hermitian nature of the coherence matrix
The wave coherence matrix already described in Sect. 1.1.3.1, is Hermitian. Its eigen-
values λ1 and λ2 are thus positive, and its eigenvectors are orthogonal. It thus allows
us to write a decomposition of the following form:

[ ¯̄J
]

= λ1 ·
[ ¯̄J1

]
+ λ2 ·

[ ¯̄J2

]
(1.52)

where det (
[ ¯̄J1

]
) = det (

[ ¯̄J2

]
) = 0. The two matrices are said to have “rank 1”. The

decomposition (1.52) reveals an incoherent sum of two polarized orthogonal waves,
which offers an alternative decomposition to that described in Sect. 1.1.3.2. If λ1 = λ2,
the wave is unpolarized. If λ2 = 0 (the smallest of the eigenvalues), the wave is
polarized. The degree of polarization, expressed as a function of the eigenvalues λ1

and λ2, is given by:

Pw = λ1 − λ2

λ1 + λ2
(1.53)

an equation which is in accordance with Eq. (1.38).
Please note that we reconstruct the decomposition described in Sect. 1.1.3.2 by

rewriting Eq. (1.52) in the following form:
⌊ ¯̄J
⌋

= (λ1 − λ2) ·
⌊ ¯̄J1

⌋
+ λ2 ·

(⌊ ¯̄J1

⌋
+
⌊ ¯̄J2

⌋)

= (λ1 − λ2) ·
⌊ ¯̄J1

⌋
+ λ2 ·

⌊ ¯̄I
⌋

2
(1.54)

where
⌊ ¯̄I
⌋

2
is the 2×2 identity matrix.

⌊ ¯̄J1

⌋
and

⌊ ¯̄I
⌋

2
then represent the polarized

and unpolarized parts of the wave, respectively.
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Fig. 1.7 Radiation into space from distributed electromagnetic sources confined within a
volume V .

1.2 The electromagnetic radiation of microwave antennas

1.2.1 Introduction

The function of an antenna is to ensure the gradual transformation of electromagnetic
energy transmitted along a feeder (coaxial cable, waveguide, etc.) into radiation in free
space. In this section, we give the equations behind the principles of electromagnetic
radiation; these will be detailed for the specific case of rectangular plane aperture.
From these we can deduce the practical formulas that characterize its antenna pattern
(3 dB beam width or Half Power Beam Width (HPBW), level of the side lobes). These
are applied in the preliminary stages of SAR design. We then explain the principles
of array antennas and conclude this rapid overview with a look at the technology of
spaceborne SAR antennas.

1.2.2 The electromagnetic radiation equation

The Maxwell equations (Sect. 1.1.1), together with the constitutive equations in a
vacuum �d(�r, t) = ε0 · �ε(�r, t) and �b(�r, t) = µ0 · �h(�r, t), and the conservation equation
that link the charge density ρ(�r, t) and the current volume density �j(�r, t) (Sect. 1.1.1)
lead to the equation for electromagnetic radiation in an infinite medium including a
volume V (Fig. 1.7), where the full range of sources are distributed (�j(�r, t) = �0 and
ρ(�r, t) = 0 if �r /∈ V ):

∇2�e(�r, t)+ k2 · �e(�r, t) = j

ω · ε · (∇(∇ · �j(�r, t))+ k2 · �j(�r, t)) (1.55)

The radiated electric field �e(�r, t) is formed both by the intrinsic nature of the elec-
tromagnetic propagation (given by the structure of the differential equation on the left
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20 IMAGING WITH SYNTHETIC APERTURE RADAR

side), as well as by the distribution of the currents �j(�r, t) inside V , (the right side of this
differential equation). These source terms show how the current terms (�j(�r, t)) and the
charge terms (∇ · �j(�r, t), proportional to ρ(�r, t)) combine in the radiation process. For
antennas it is usually assumed that ρ(�r, t) = 0, given the metallic nature of the surfaces.

1.2.3 Resolving the electromagnetic radiation equation

The resolution of Eq. (1.55) for time-harmonic fields gives an expression for the radiated
field �e(�r, t) throughout space, even in the immediate vicinity of the antenna (known
as the near-field region) for which the expression �e(�r, t) can be developed much more
thoroughly [Kong, 1990]. The expression is less complex in the far field where the
wave takes on a spherical appearance and is therefore locally plane (Sect. 1.2.5.2).
Letting �k = k · k̂ (Fig. 1.7):

�e(�r, t) ≈ −j · exp
(− j · k · r)

4 · π · r · k · ξ · k̂

× [k̂ ×
∫

s

�j(�p, t) · exp
(
j · �k · �p) · d �p] (1.56)

with the wave impedance ξ ≈ 120 · π in the vacuum. Point O can be any point in
space, but is usually chosen as the center of a sphere centered on the antenna. Equation
(1.56) expresses the coherent contribution of elements on the surface of V (with their
respective currents �j(�p, t)) to the construction of �e(�r, t). For a given direction, the
complex amplitude of �e(�r, t) varies as exp

(− j · k · r)/r, which is characteristic of the
far-field radiation of a point source. It can also be shown that the electric field �e(�r, t),
and magnetic field �h(�r, t) of the radiated wave in a far field satisfy the relationship:
�e(�r, t) = ξ · �h(�r, t)× �k, which expresses the local plane structure of the radiated wave.
The complex Poynting vector (whose amplitude is equal to the power density per unit
of surface radiated by the wave) is given by:

�P = 1

2
· �e(�r, t)× �h∗(�r, t) = 1

2ξ
· ‖�e(�r, t)‖2 · k̂ (1.57)

1.2.4 Antenna pattern, directivity and gain

The ability of an antenna to ‘focus’ radiated energy in a given direction is characterized
with respect to the behavior of a theoretical isotropic antenna that transmits uniform
power density in all directions. If we rewrite Eq. (1.56) as �e(�r, t) = exp

(− j · k · r)/r ·
�F(�k), then the quantity ‖ �F(�k)‖2 represents the energy distribution law for energy
radiated into space. Its directional variations define the pattern of the antenna, with its
directivity given by:

D(�k) = 4π · ‖ �F(k̂)‖2

∫ 4π
0 ‖ �F(k̂)‖2 · d�

(1.58)
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where d� represents a differential solid angle element. In the specific case of an
isotropic antenna, ‖ �F(k̂)‖2 is constant and D(k̂) = 1. The antenna gain is given by:

G(k̂) = η ·D(k̂) (1.59)

where η is its efficiency. The gain and the directivity are identical only for a lossless
antenna.

1.2.5 The radiation of planar antennas

The exact resolution of Eq. (1.55) leads to Kottler’s integral formulas for planar anten-
nas. In the case of a SAR, the antenna is large compared to the wavelength (> 10 · λ,
which means that any perturbation created by the edge of the antenna can be ignored).6

The electric field radiated in the far field region is therefore given by Fresnel’s formula:

�e(�r, t) ≈ j · 1 + cos θ

2 · λ · r ·
∫

s

∫
�e(�p, t) · exp(−j · k · r′) · dS (1.60)

We shall consider only rectangular planar apertures. If we rewrite (60) using the
geometry shown in Fig. 1.8, we note that for the far field:

r′ ≈ r − p · cos(�p, �r) (1.61)

and thus:

�e(�r, t) ≈ j · 1 + cos θ

2 · λ · r · exp(−j · k · r) ·
∫

s

∫
�e(�p, t)

· exp[j · k · sin θ · (x · cosφ + y · sin φ)] · dx · dy (1.62)

Along the axis (θ = 0), the phase of the integral is zero at all points: all the ele-
ments of the antenna radiate in phase, producing a radiated field of maximum amplitude
in this direction (as long as the phase shift due to the illumination does not change the
direction of the beam, Sect. 1.2.6). For slightly off-axis (paraxial) directions, where
(1 + cos θ)/2 ≈ 1, Eq. (1.62) describes the radiated field �e(�r, t), characterized by the
direction variables k · sin θ · cosϕ and k · sin θ · sin ϕ, as the two dimensional Fourier
Transform (FT) of the illumination distribution �e(�p, t). This result is the basic law
of antenna radiation which is used to select an illumination law to obtain the desired
antenna pattern (the illumination law is the inverse Fourier transform of the pattern).
The specific case of a uniform illumination law leads to a cardinal sine function.

6Note that in the case of low frequency radars (VHF or P band, i.e., for a carrier frequency ranging
typically between 30 MHz and 600 MHz) the wavelength may not be much smaller than the antenna.
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Fig. 1.8 Radiation into space from a rectangular planar antenna.

1.2.5.1 Antenna pattern of a rectangular planar antenna
The antenna pattern is generally characterized by its principal planes ϕ = 0 (elevation
pattern) and ϕ = π/2 (azimuth pattern). Let us consider for example the azimuth
pattern and a uniform illumination with linear polarization along x̂: �e(�p, t) = e0(t) · x̂
(vertical polarization). Under paraxial conditions, Eq. (1.62) gives:

�e(�r, t) ≈ j · x̂ · e0(t) ·W ·D · exp(−j · k · r)
λ · r · sin c(k · θ ·D/2) (1.63)

where D and W are the antenna length and width, respectively, and sin c(x) = sin(x)/x.
The cardinal sine shape shows the effect of the FT (Sect. 1.4) for a uniform illumination
law. This is the basic pattern of a SAR antenna in the azimuth direction. This is why
it is necessary to account for the weight the echoes returned by a target T during radar
illumination (Sect. 2.2.5.1). From Eq. (1.63), we derive the antenna radiation features
needed for designing a SAR:

• The HPBW (Half Power Beam Width - or 3 dB beam width): The main lobe has
a width given by k · θw · D/2 = 2 · π, which also gives θw = 2 · λ/D. The HPBW,
defined by the angular sector (expressed in radians) in which the radiated power is
larger than one half of that transmitted along the antenna axis, is approximated by:

θ3dB
az ≈ α · λ/D (1.64)

whereα is a weighting coefficient (usually close to unity) dependent on the illumination
law. Equation (1.64) is the equivalent of the resolving power, equal to the ratio λ/D,
for an optical instrument with diameter D observing at a wavelength λ. The 3 dB
lobe determines the size of an antenna’s footprint.7 The larger the ratio of the antenna
size to the wavelength, the smaller the footprint. The HPBW in elevation will thus be
θ3dB
el ≈ α′ (λ/W). Space SAR antennas are much longer than they are wide, typically:
D ≈ 10 m,W ≈ 1 m. In C-band (λ ≈ 5.6 cm), θ3dB

az ≈ 5.7 mrad, or approximately

7When considering backscattering (the signals are received after a round trip journey of the wave between
the antenna and the target), the effect of the radiation pattern is applied twice: the HPBW corresponds, for
this configuration, to the angular domain in which the power attenuation does not exceed 6 dB with respect
to a round trip journey along the axis of the antenna.
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0.3◦ (as a first approximation, we take α = 1). At an altitude of 800 km, the size
of the footprint in the azimuth direction will therefore be approximately 5 km, and in
the transverse direction approximately 100 km (once the beam width has been ground
projected as we are considering a side-looking radar here, cf. Chapter 2).

• Gain: From Eq. (1.58), the gain of a rectangular planar antenna along its axis
is given by:

Gmax = η · 4π · D ·W
λ2

= η · 4π · Sant
λ2

= 4π · Seff
λ2

(1.65)

The maximum gain of a planar antenna is approximately given by the ratio of its surface
to the square of the wavelength multiplied by 4π (this approximation corresponds to
the case for η = 1, which leads to directivity being equal to gain, and Sant being equal
to the effective surface Seff ). This formula will be used when selecting the power to
be transmitted by radar imagers (Chapter 3).

• Side lobes: These are located in directions where the radiation from the various
elements of the antenna are again in phase. The amplitude of the first side lobe with
respect to that of the main lobe is given by sin c(k · θ · D/2) for k · θ · D/2 = 3π/2,
which leads to a radiated power approximately −13.5 dB below that radiated along the
main axis.8

If it becomes necessary to lower the level of the side lobes in order to improve
the image quality of the SAR (Sect. 3.12.3), then we will use a non-uniform illumina-
tion whose amplitude decreases from the axis to the edges of the antenna. However,
lowering the side lobes broadens the main lobe.

1.2.5.2 Defining the far-field zone
The far field of the antenna is the distance beyond which the radiated wave can be
considered to be spherical (i.e., it is locally plane). This leads to the following condi-
tions [Combes, 1997]:

r > 10 ·� (amplitude condition) (1.66a)

and :

r > 2 ·�2/λ (phase condition) (1.66b)

where � is the largest dimension of the antenna being considered (� =√
D2 +W2 for the rectangular antenna). Condition (1.66(b)) becomes more con-

straining than (1.66(a)) when� > 5 · λ, which is the case for radar imaging antennas.

Example: In a spaceborne case, for a rectangular antenna with dimensions ofD ≈ 10 m
and W ≈ 1 m, operating at C-band, (λ ≈ 5.6 cm) → 2 ·�2/λ ≈ 3.5 km.

Note: Be careful with the synthetic aperture antennas that we discuss in Chapter 2.
Imagine for a moment that you are using an antenna 5 km in length. SAR processing is
based on the principle of synthesizing the behavior of such an antenna, with its far field
more than a million kilometers away from the radar instrument! A synthetic antenna
always observes its target in its near field; we shall return to the implications of this
comment in Sect. 2.4.1.

8The value of the ratio in dB is 10 times the base 10 logarithm of this ratio.
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1.2.6 Array antennas

Array antennas are composed of radiating elements powered by a common microwave
source which distributes the available power in amplitude and in phase. Alternatively
the power sources can be separated by using a Transmitter/Receiver (T/R) module for
each element (active antenna) thus making the system more reliable.

By applying the law of energy distribution to the different radiating elements, we
can model the antenna pattern of the array (this is the beam forming technique used in
space telecommunications to cover a specific geographical area). When using SAR,
the array effect allows the main lobe of the antenna to be oriented in specific directions,
making such operating modes as SPOTLIGHT or SCANSAR possible.

We shall describe here the radiating principle of an array antenna for the specific
case of a one-dimensional linear array made up of regularly spaced identical elements,
as illustrated in Fig. 1.9. Each array element indexed i is powered uniformly with a
complex distribution factor aiexp(j · φi). Its contribution to the radiation is expressed
as �ei(�ri, t) · aiexp(j · φi), where �ei(�ri, t) is the radiated field and �ri the position vector
of the observation point with respect to the phase center of the radiating element.

Fig. 1.9 Radiation from an array antenna in far field conditions.

In the far field, the observation directions �r∞i are all parallel and the fields �ei(�ri, t)
are equal. If we take as a reference the distance r separating the observation point from
the phase center of element No.1, the complex amplitude of the total radiated field can
be written as:

�etot(�r, t) ≈ �e0(�r, t) ·
i=N∑

i=1

exp(j · ψi) · aiexp(j · φi) (1.67)

where �e0(�r, t) is the far field illuminated individually by any element of the array. If
we now look at the geometry of Fig. 1.9, we can conclude:

ψi = (i− 1) · k · δ · cosα = (i− 1) · ψ (1.68)
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1.2.6.1 Broadside arrays
When the energy is uniformly distributed among all the sources (ai = 1, φi = 0), and
if we note that:

i=N∑

i=1

exp(j · ψi) = 1 − exp(j ·N · ψ)
1 − exp(j · ψ)

= exp(j ·N · ψ/2)
exp(j · ψ/2) · sin(N · ψ/2)

sin(ψ/2)
(1.69)

the result is:

�etot(�r, t) = N · �e0(�r, t) · exp(j ·N · ψ/2)
exp(j · ψ/2) · 1

N
· sin(N · ψ/2)

sin(ψ/2)

= N · �e0(�r, t) · F(ψ) (1.70)

Equation (1.70) reveals that a radiating array antenna has a behavior that can
be described as the product of the number of radiating elements and the radiation
characteristics of one element of the array, weighted by the array factor F(ψ). Thus,
working with an array causes an increase in gain by a factor of N2 along the antenna
axis (resulting in coherent summing of the contributions for ψ = 0, i.e. α = π/2),
but it also increases undesirable ‘secondary effects’ such as the creation of array lobes
[Mailloux, 1994]. These appear when: ψ/2 = m · π, where m ∈ Z∗, i.e.:

cosα = m · λ
δ

(1.71)

Array lobes no longer exist when:

δ ≤ λ (1.72)

1.2.6.2 Offpointing the beam
The special SAR modes (SPOTLIGHT, Sect. 2.5.4.1 and SCANSAR, Sect. 2.5.4.2)
require that the beam of the antenna be offpointed with respect to one of its principal
planes (the azimuth or the elevation plane). The offpointing is achieved by introducing
a phase gradient between elements. In this way, a weighting law such as (an = 1, φn =
(i− 1) · φ0) leads to maximum radiation of the array in the direction α0 such that

cosα0 = −λ · φ0

2π · δ (1.73)

For this direction to exist:

|φ0| < 2π · δ
λ

(1.74)

The minus sign in Eq. (1.73) indicates that the beam is shifted towards the elements
with negative phase shifts. The array lobes are in the following directions:

cosα = m · λ
δ

− λ · φ0

2π · δ (1.75)
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They no longer exist when:

δ <
λ

1 + | cosα0| (1.76)

Apart from the off-pointing function, beam-forming techniques can be imple-
mented using more sophisticated weighting laws (in amplitude and in phase) when
associated with two-dimensional array geometries. The flexibility of this technique
can be seen in Combes [1997].

1.2.7 SAR antenna technology

The design of current and future space SAR antennas depends on a variety of technolo-
gies. Passive antennas (such as those of ERS-1 and ERS-2), consisting of radiating
elements whose role is limited to the energy transfer from a microwave source into
free space, suffer from a lack of flexibility (neither the swath width nor the incidence
angle can be changed).

If we seek better resolution (as in SPOTLIGHT mode), or a broader swath (as
in SCANSAR mode), then the beam must be agile. This can be achieved using an
array of phase-shifters at the interface between the power source and the radiating
elements in the plane containing the phase gradient. The beam can be offpointed by
50 ◦ to 60 ◦ without mechanically manipulating the antenna. RADARSAT-1, launched
in 1995, uses this technology in SCANSAR mode, for which the beam is offpointed
in elevation.

Active antennas, which are made up of T/R modules that can be steered in both
amplitude and phase, offer further advantages, such as reduced radiofrequency loss and
increased reliability due to the distribution of active elements over the entire surface of
the antenna. The ASAR/ENVISAT antenna uses this principle. It is composed of 320
T/R modules, allowing it to be offpointed in elevation (used for the SCANSAR mode).

The SPOTLIGHT mode, which aims to improve azimuth resolution, either by
changing the yaw of the space platform or by offpointing the beam in azimuth, has
been validated for use in the civil space field, specifically by TERRASAR-X and
COSMO-SKYMED missions.

1.3 Interaction between waves and natural surfaces - the basics of radar
measurement physics

1.3.1 Introduction

The purpose of this section is to make the reader familiar with the general principles of
the interaction of electromagnetic waves with natural environments. Any interpretation
of radar imagery, as well as the estimation of bio- or geophysical parameters on the
basis of the imagery, requires a precise understanding of these interactions.
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Electromagnetic radiation interacts with the natural environment causing surface
and/or volume effects. Surface effects are conditioned by surface roughness, while
volume effects are influenced by the density, the structure and the organization of the
scatterers, for example within vegetation or snow. In both cases, dielectric properties,
which reflect the water content of the observed media, play a key role. Finally, the
radar echo is modulated by the local ground slope, which causes strong radiometric
variations. In absolute terms, the use of interaction models is required to untangle the
skein of all these contributions, but their development quickly runs into the difficulty –
if not the impossibility – of simulating complex natural factors with mathematical mod-
els. Nevertheless, semi-empirical approaches inspired both by fundamental theoretical
behavior (basically first-order surface scattering and volume radiative transfer) and by
experimental observations, offer an alternative to the use of detailed models. We shall
limit the theoretical discussion to a brief description of these fundamental mechanisms.
We shall use a few examples to illustrate the main ‘physical’ effects observed in radar
imagery: roughness, water content, penetration of waves and slope effect.

Finally, it should be noted that conventional, single-polarized radar does not give
much information about the physical nature of artificial objects. They generally pro-
duce high-intensity signatures that are often saturated, thus spotting radar images with
‘bright points’. A more precise characterization of their structure requires polarization
diversity in the radar waveforms (Chap. 5).

1.3.2 Surface scattering

Radar measurements can be used to evaluate ground-water content (by analyzing its
dielectric variations), but in practice the impact of roughness is a severe obstacle to this
estimation. This is one of the obstacles which has motivated the development of ran-
dom surface electromagnetic scattering models. We shall discuss here the theoretical
principles underlying these models.

1.3.2.1 Surface description
This refers to a dielectric surface separating two homogeneous semi-infinite media
(Fig. 1.10). The relative dielectric constant 9 εr of the lower layer characterizes the
resistance of the medium to wave penetration. For a ground layer this depends on its
free water content and, to a lesser extent, its texture. The roughness is characterized
by a random process z(x, y) reflecting local variations of the profile with respect to a
mean reference plane. The random process z(x, y) is usually assumed to be a stationary
Gaussian variable with zero mean.
In the vertical direction, the r.m.s. (root mean square) height s characterizes the standard
deviation of the rough surface with respect to the reference plane:10

s = 〈z2(x, y)〉 1
2 (1.77)

9The relative dielectric constant εr is given by the ratio between the dielectric constant of the medium
under study ε and that of the vacuum ε0 : εr = ε/ε0

10For cultivated surfaces, typical values of r.m.s. heights range between 1 and 2.5 cm for planted or
harrowed plots and from 2 to 7 cm for plowed plots.
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Fig. 1.10 Electromagnetic scattering from a rough surface.

In the horizontal plane, the surface auto-correlation function gives information on the
rate of roughness variations in a given direction; for example, for the direction x̂

K(τ) = 〈z(x+ τ, y) · z(x, y)〉
〈z2(x, y)〉 (1.78)

A similar formulation describes the rate of roughness variation for the direction ŷ by
interchanging the variables x and y in Eq. (1.78). The correlation length l is the value
for which:

K(l) = 1

e
(1.79)

Sudden variations in roughness (broken profile) lead to a rapidly decreasing auto-
correlation function, i.e. a short correlation length. The very nature of the auto-
correlation function (generally assumed to be Gaussian or exponential) has a significant
impact on the profile’s morphology. Figure 1.11 shows a profile with an r.m.s. height
s = 2 cm and a correlation length l = 12 cm (typical values), for the Gaussian case
(Fig. 1.11(a)) and the exponential case (Fig. 1.11(b)).
Comments:

(1) Mathematically, the auto-correlation function K(τ) is the spatial representation
of the surface roughness spectrum (its Fourier transform). A rough surface is to
some extent a superposition of randomly distributed periodic surfaces.

(2) Using Eq. (1.78), we implicitly accept that the profiles are stationary, which
means we can remove the space (x variable) dependence from the auto-correlation
function. More realistic rugosity statistics (such as fractal statistics) do not allow
for this type of simplification.

(3) The hypotheses of stationarity and a single roughness scale do not generally
match observations. An experimental soil profile of a cultivated surface (Fig. 1.12)
shows that the soil/air interface consists of an aggregation of clumps of different
scales and shapes, including numerous gaps and included volumes: excessive
simplification often leads to poor modeling of the reality (compare Fig. 1.11 and
Fig. 1.12!).
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Fig. 1.11 Ground profile with r.m.s. height s = 2 cm and correlation length l = 12 cm; (a)
Ground profile with Gaussian auto-correlation function; (b) Ground profile with exponential
auto-correlation function.

Fig. 1.12 Experimental ground profile acquired on cultivated land (Courtesy INRA).

The Rayleigh criterion
The effect of roughness on electromagnetic scattering depends on the transmitted wave-
length, as the same surface may, for example, appear smooth in L band (λ = 25 cm
and rough in X band λ = 3 cm). But is it possible, for a given wavelength, to distin-
guish between rough and smooth surfaces? The Rayleigh criterion stipulates that the
roughness effect is negligible when the phase offset �φ of the backscattered echoes
generated by the altimetric variations of the surface (Fig. 1.13) does not exceed π/2.
Taking into account the wave’s round-trip path, if h is the maximum altimetric variation,
one obtains:

h ≤ λ

8 · cos θ
(1.80)

© 2008, First edition, EPFL Press



30 IMAGING WITH SYNTHETIC APERTURE RADAR
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Fig. 1.13 Rayleigh criterion for a rough surface.

At an incidence angle of 45◦, theL(λ = 24 cm), C(λ = 5.7 cm) andX(λ = 3 cm)
bands lead to maximum altimetric variations of 4.2 cm, 1 cm and 0.5 cm, respectively.
Almost all natural surfaces thus behave as rough surfaces in X and C bands.

1.3.2.2 Calculation of electromagnetic scattering
Strictly speaking, this is governed by the Stratton-Chu equations, derived from Maxwell
equations when they are coupled with the boundary conditions shown in Fig. 1.10. The
field �Es(�r) scattered at a point �r located far from the surface is given by the integral
equation [Ulaby, 1986]:

�Es(�r) = α · n̂s ×
∫ ((

n̂× �Es(�r′))− ξ · r̂ × (n̂× �Hs(�r′)))

· exp(−j · �k · �r′) · dS′ (1.81)

whereα = − j·k
4πR ·exp(−j ·k ·R) is a propagation factor. The parameter n̂s characterizes

the propagation direction of the scattered wave, and n̂ is the normal to the exterior
surface at a point M ′ (located at �r′) on the surface. ξ is the wave impedance in the
medium (Sect. 1.1.2.1). Finally, n̂ × �Es(�r′) and n̂ × �Hs(�r′) represent the tangential
components of the electric and magnetic fields at the interface and are the unknowns
of the integral equation. Equation (1.81) should be compared to the radiation equation
for antennas – Eq. (1.56) of Sect. 1.2. There is nevertheless one difference: the ground
behaves like a dielectric antenna, whence the simultaneous contribution to its radiation
of electrical and magnetic components.

The integral equation (1.81) takes into account all of the scattering mechanisms,
whether single or multiple. This equation can only be resolved by using numerical
methods (e.g. the method of moments). In the field of remote sensing we generally
use asymptotic methods which are only valid for limited ranges of roughness.

Asymptotic method
The backscattering behavior11 of rough surfaces is described by making approximations
about the description of the interface and in the related electromagnetic calculations.
The descriptive part is based on a ‘standard’ representation of the interface (stationary
with no volume inclusions, most of the time with a single roughness scale), defined by
its r.m.s. height s and the correlation length l):

11Backscattering is the particular configuration for which the scattering is observed from the transmission
direction. This is the case when the same antenna is both the transmitter and the receiver.
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• The Physical Optics approximation (otherwise known as the Kirchhoff approx-
imation) [Ulaby, 1986] breaks the surface down into a succession of facets
(Fig. 1.14(a)). The validity condition12 is expressed by k·l > 6 and l2 > 2.76·s·λ.

• For very rough surfaces (k · s ≥ 3), the Geometric Optics approximation reduces
the interaction to the facets orthogonal to the incident wave (Fig. 1.14(b)).

• The Small Perturbations model is based on the exact resolution of Eq. (1.81)
to a given order. The first order is sufficient for characterizing backscattering
for direct polarization (e.g. horizontal transmission, horizontal reception). An
expansion up to the second order is necessary to evaluate cross polarization
terms (e.g. horizontal transmission, vertical reception). The small perturbations
method is only applied to surfaces that are slightly rough and that are not likely
to significantly alter the wave structure (Fig. 1.14(c)). The validity condition
depends on the r.m.s. of the slope (amounting to

√
2 · s/ l for a Gaussian auto-

correlation function) and the product k · s, with both being less than 0.3.

• The Integral Equation Model (IEM) [Fung, 1992] is more recent than the previous
methods, with a validity domain that includes those of physical optics and small
perturbations; 13 this extension was made possible by integrating geometric
specificities of the backscattering configuration into the calculation.

1.3.2.3 Experimental simulations and observations

The case of bare soils
Despite their limitations, asymptotic models reveal the main tendencies of the electro-
magnetic behavior of bare soils. Figure 1.15(a) shows the backscattering coefficient
σ0
vv, of the ERS configuration (C band, 23◦, VV ), simulated by the IEM model for differ-

ent vertical roughness states (r.m.s. height) and water content.14 The auto-correlation
function here has an exponential form while the correlation length is set to a typical
value of l = 8 cm (generally difficult to estimate since l is often used as an fitting
parameter).

For a given water content, we see an increase in the radar response when the
roughness increases: in a radar image, the bright surfaces are rough surfaces and the
dark surfaces are smooth surfaces as shown by the RADARSAT image (Fig. 1.15(b)),
indicating a clear break between a smooth surface (loam fragments) and rough surface
(limestone).

For a given roughness (fixed r.m.s. height), we see an increase in the radar
response as the water content increases (of the order of 7 dBm2/m2): moist soils
are ‘brighter’ than dry soils for comparable roughness values. In qualitative terms,
a RADARSAT image of a farming region in the state of Washington (United States)
(Fig. 1.15(c)) shows a collection of circular patches with variable radiometric content,

12k = 2π/λ is the wave number.
13This may be applied for k · s ≤ 3.
14The definition of σ0 and of its unity (dBm2/m2) is given in Sect. 3.3. At this stage of the discussion, let

us assume that it is a quantity proportional to the amount of energy returned to the radar.
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Fig. 1.14 (a) Physical Optics Approximation (or Kirchhoff approximation) for a rough surface;
(b) Geometric Optics Approximation for a rough surface; (c) Small perturbation approximation
for a rough surface.

each of which are an agricultural plot irrigated to a certain extent.15 Quantitatively, the
experimental ERS observations (Fig. 1.15(d)) confirm measurement dynamics of the
order of 6-7 dBm2/m2 for water contents ranging from 0 to 0.4 g/cm3.

In the light of these observations, attempts to estimate water content from radar
measurements appear to be fraught with difficulties. The nested effects of roughness
and water content lead to the same level of backscattering for a rough and dry surface
as for a smoother and damper surface. The need to decorrelate water content and

15To reach this conclusion, it is necessary to assume the similarity of roughness states between two plots
as well as the lack of vegetation.
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Fig. 1.15 (a) Theoretical backscattering coefficients for bare soils for the ERS configuration (C
band, 23◦, VV ) as a function of vertical roughness (r.m.s. height) and water content. The auto-
correlation function is exponential and the correlation length is set to 8 cm. (extract from [Le
Toan, 1993]); (b) Effect of roughness on the SAR imaging radar. RADARSAT image (C band,
45 ◦, resolution: 20 m) from: RADARSAT Geology Handbook (RADARSAT International),
1997; (c) Mode RSAT Stad 4, resolution 27 m, incidence angle 37°. Farming region in the state
of Washington, USA. c©Canada Copyright Canada Centre for Remote Sensing - Applications
in action!; (d) Experimental backscattering coefficient acquired by ERS (C band, 23 ◦, VV ) for
two types of bare soil as a function of water content (agricultural area in Gharb, Morocco). The
modeling (- - - -) is conducted with s = 1.2 cm and l = 10 cm for the first zone (�), s = 1.2
cm and l = 12 cm for the second (�). Exponential auto-correlation function (from [Le Toan,
1993]).

roughness effects in radar measurements means that the radar information has to be
diversified (for example, by using polarization diversity, Chap. 5).

Sea surfaces
At centimeter wavelengths, the sea is practically ‘impermeable’ to electromagnetic
waves.16 Its surface reveals several scales of roughness (waves of capillarity on small
scales, swell fields on larger scales, etc.). Relating wind speed and wave heights

16This is ignoring the effects of salinity likely to produce variations of the dielectric constant which are
particularly sensitive to low frequencies.
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reduces the surface description, in an overly simplified way, to a state information
figure (expressed as a coefficient ss, for ‘sea state’, with values between 0 and 8 on
the Sir Percy Henry Douglas scale (Head of the English Royal Navy Meteorological
Survey in 1917): calm sea, weak to moderate, agitated, etc.

For backscattering, the incidence angle range is broken down into three regions:
the specular zone (low incidence angles), the flat zone (average incidence angles) and
grazing incidence angles (high incidence angles) (Fig. 1.16(a)). For an average sea
state (ss = 3), the semi-empirical behavior [Morchin, 1990] of the backscattering co-
efficient σ0 (averaged with respect to polarization effects and wind direction) indicates
a preponderance of the specular component between 0◦ and 30◦, with the width and
amplitude of its lobe independent of the frequency. On the other hand, for the flat
zone (where there is a predominance of incoherent scattering), σ0 increases with the
frequency with a 1/λ dependence. High radiometric variations (of the order of 20
dBm2/m2) are thus likely between 20◦ and 50◦, corresponding to the junction between
the specular and the flat zones, i.e., within the range of incidence angles typically cov-
ered by SAR. Radiometric variations which match this pattern have been observed in
experiments with RADARSAT data (Fig. 1.16(b)), typically of the order of 10 dBm2/m2

for the swath of a Standard-S1 mode (20◦ to 27◦).
The wind direction with respect to the radar viewing axis also affects the sea

response. Compared to the ‘downwind’ configuration of the target (i.e., the wind
direction and the radar beam are heading in opposite directions), the upwind σ0 de-
creases on average by 7 to 8 dBm2/m2 (the wind direction and the observation direc-
tion are identical, and the sea has a smoother appearance) and by 3 to 4 dB with a
crosswind.

For polarization, finally, we expect a higher backscattering for vertical polarization
(VV ) than for horizontal polarization (HH). When the incidence angle increases, the

Fig. 1.16 (a) Semi-empirical behavior of the backscattering coefficient σ0 as a function of in-
cidence angle for an average sea state (Sea state ss=3 on the Douglas scale).; (b) Incidence
angle effect observed in a RADARSAT image, standard mode-1 (20 ◦ − 27 ◦), acquired over sea
(Ouessant rail, France, 09-03-1999), c©Radarsat international.
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Fig. 1.17 Radiative transfer theory for a cloud of particles.

difference between HH and VV increases in favor of VV , with predictions locating
σ0
HH at about 15 dBm2/m2 below the σ0

VV at a 60 ◦ incidence angle. The differences
in polarization behavior have an impact on system engineering choices. The ERS-1/2
missions, which were originally designed for oceanographic studies, selected the VV
polarization. The RADARSAT mission, on the other hand, chose the HH polarization
(which minimized the sea clutter response and was thus more suitable for ship routing
applications).

1.3.3 Volume scattering

The interaction of an electromagnetic wave with a cloud of scattering particles is
described by the radiative transfer function [Chandrasekhar, 1960]:

dS̃(�r, û)
du

= [ ¯̄κe] · S̃(�r, û)+
∫

4π

[ ¯̄R(�r, û, û′)
] · S̃(�r, û′) · d�′ (1.82)

Here we see the Stokes vector S̃ (Sect. 1.1.3.3) of a wave propagating in the direction
û simultaneously damped by the matrix ¯̄κe - the medium extinction matrix - (path 1)
and reinforced by the indirect radiation scattered by each particle in the propagation
direction (path 2 + 3) (Fig. 1.17). At �r, the phase matrix ¯̄R(�r, û, û′) governs the
deflection of energy beams from û′ to û. The combined effect of the damping and
reinforcing of S̃ results in backscattering behavior which is both difficult to predict
and dependent on several parameters: density, size, shape and scatterer arrangement,
dielectric properties, surface mechanisms, etc.

Moreover, the radiative transfer does not allow for coherent summing of the
contributions of different natures such as have been observed for a forest canopy
(Fig. 1.18(a)). Radiative transfer modeling requires the assumption that the medium
can be described as a stack of layers made of particles embedded in a host medium
(Fig. 1.18(b)). We then limit ourselves to characterizing the average behavior of the
wave within each layer, but the phase information is lost because of the averaging. This
imperfection can be corrected by ‘coherent’ methods approximating an exact calcula-
tion of the interaction (for amplitude and phase). Currently, aside from a few promising
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Fig. 1.18 (a) Interaction between radar incident beam and forest canopy: principal interaction
mechanisms; (b) Modeling of forest canopy in accordance with the radiative transfer approxi-
mation.

tests for low frequencies (fc ≈ 100 MHz), for which the number of scatterers to be
taken into account is limited, this approach requires too much computing time.

Stands of pinaster pines at different stages of development (i.e., with variable
biomass rates) (Fig. 1.19), illustrate the complexity of backscattering including both
surface and volume effects. In L band (fc = 1.25 GHz), vertical polarization
(Sect. 1.1.2) (Fig. 1.19(a)), the decreasing radar response of the sparsely populated
forest (ranging from 0 to 33 t/h), reveals progressive damping of the ground’s intrinsic
response (−10 dBm2/m2); this is due to the increasing extinction of the vegetation.
Beyond a critical volume of vegetation, multi-scattering mechanisms take over, aug-
menting the response from −12 dBm2/m2 to a saturation on the order of −10 dBm2/m2.
The L band HV signal (emission in H, reception in V ) (Fig. 1.19(c)) shows the very
high sensitivity of the radar response to the biomass level. This sensitivity is enhanced
in two respects: (1) HV is mainly generated by multi-scattering mechanisms, i.e. by
vegetation. (2) The ground contribution, dominated by surface effects, produces prac-
tically no cross-polarization.

Finally, with C band VV polarization (Fig. 1.19(b)), the intrinsic contribution of
the ground becomes highly preponderant (the roughness effects increase when the
frequency increases with an intrinsic level for C band of about −3 dBm2/m2), until
they wipe out the transition phase observed in L band: this is in stark contrast to the
commonly accepted idea that radar response increases with increasing biomass!

1.3.4 Penetration properties of electromagnetic waves

To what extent are electromagnetic waves able to penetrate observed surfaces and glean
information from the underlying structures? To reply to this question, let us return to

© 2008, First edition, EPFL Press



A THEORETICAL EMERGENCY KIT FOR SAR IMAGERY 37

-7

-6

) 4

-2

-10

-9

-8

vv
(d

B
m

2 /
m

2 )

-6

-4

v
(d

B
m

2 /
m

2 )

0 33 9565 130 150

bi ( /h )

-12

-11

v
σo

0 33 65 95 130 150
-10

-8

vv
σo

-14

biomass rate (tons/ha) 0 33 65 95 130 150

biomass rate (tons/ha)

-18

-16

dB
m

2 /
m

2 )

-24

-22

-20

hv
(d

σo

0 33 9565 130 150

biomass rate (tons/ha)

(a) (b)

(c)

Fig. 1.19 Behavior of forest stands of various ages. SIR-C data, Landes forest, France (Source:
CESBIO). Experimental data (�), interpolation (—-); (a) L band, VV polarization, 26 ◦; (b) C
band, VV polarization, 26 ◦; (c) L band, HV polarization, 26 ◦.

the equation for an electric field �e(z, t) propagating in the ẑ direction of a homogeneous
medium with a dielectric constant εr (Sect. 1.1.2.1):

�e(z, t) = �{�E0 · exp[j · (ω · t − k · z)]} (1.83)

Generally speaking, the dielectric constant εr is a complex quantity whose imag-
inary part expresses the attenuation of the wave during propagation. Extraction of its
square root leads to a sign ambiguity, which is resolved by physical considerations. By
letting the wave number k = α− j · β, we then get:

�e(z, t) = exp[−β · z] · �{ �E0 · exp[j · (ω · t − α · z)]} (1.84)

Because of Eq. (1.84), βmust be a real positive number (in the opposite case, the wave
would amplify during propagation).

By definition, the penetration depth is the depth δp beyond which the amplitude
of �e(z, t) is attenuated by a factor larger than 1/

√
e. From Eq. (1.84), it follows that:

δp = 1

2
· β = − 1

2 · k0 · m(√εr) (1.85)
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Fig. 1.20 (a) SIRC multi-frequency γ(L + C) radar image, Nile Valley. (From:
www.jpl.nasa.gov/radar/sircxsar.) c©Jet Propulsion Laboratory; (b) Infrared optical image of
the same area. From : www.jpl.nasa.gov/radar/sircxsar. c©Jet Propulsion Laboratory; (c) Pene-
tration depth for waves in bare soils as a function of their water content L band (×), C band (∗),
X band (�).

In the case of slightly dispersive media17 (|m(εr)| < 0.3 ∗ �e(εr)), the penetra-
tion depth δp is approximated by:

δp ≈ − λ
√�e(εr)

2 · π · m(εr) (1.86)

Comments:

1) The penetration depth increases with the wavelength: low frequencies (L, P)
penetrate better than higher frequencies (C, X), whence the interest of the sci-
entific community for very low frequency SARs (from several tens to a few
hundreds of MHz).

2) A total lack of dissipation m(εr) = 0 leads to an infinite penetration depth.
Conversely, infinite dissipation (|m(εr)| = ∞) prohibits any penetration, as
for a metal surface (or for a water surface with a high saline content). The effect
of radar wave penetration has been used to observe the former bed of the Nile
(Fig. 1.20(a)), buried under the sand, by means of SIR-C images acquired in C

17This is the case for most natural media except water.
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and L bands, while the corresponding infrared optical image (Fig. 1.20(b)) does
not reveal this underground trace.

Quantitatively, for bare soils, using the estimations of dielectric constants given by
Hallikainen [1985], Eq. (1.86) gives the penetration depth δp : at a given frequency, the
penetration depth decreases with increasing water content. X band hardly penetrates
soils with more than 15% water content (Fig. 1.20(c)), whereas theL band can penetrate
a few centimeters in ground with water content of up to 40%. InC band electromagnetic
waves penetrate ground with average water content to a depth of about 5 cm.

For areas with dense vegetation cover and more specifically for forests, typical
penetration values (EOS SAR Instrument Panel Report Figures, 1988) are 1 m for X
band, 6 m for C band, and up to 20 m for L band.

1.3.5 The effects of slope on radiometry

Finally, the local slopes of the ground produce significant radiometric variations in
radar imagery.18 Their impact may be observed on a ‘macroscopic’ scale in contrast
to the scale of the effects previously mentioned (roughness, water content, etc.). We
can consider the landscape as a succession of flat facets, each with a local orientation
that affects the level of the signal response. In this view, a facet is a passive antenna
which re-emits a signal whose power increases as the facet orientation approaches the
perpendicular to the incident ray. The comparison of Fig. 21a (actual ERS image)
and Fig. 21b (simulation of slope effects) shows how slope effects impact the global
radiometry of an image.

Fig. 1.21 (a) ERS image of a mountainous region; (b) Simulated ERS image.

18The slopes also affect the complex content of the radar signal in that they shift its frequency spectrum,
thus deteriorating interferometric capability (see Sect. 4.5.1).
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1.4 Elements of signal processing: the Fourier transform
and the sampling theorem

1.4.1 Introduction

The Fourier transform is used very frequently in radar technology, from antenna ra-
diation to SAR processing. The principle used is harmonic analysis in which any
physical signal is broken down into either a discrete or a continuous set of sine waves
with variable frequencies. We thus move the problem from a geometric domain into
the more abstract frequency domain. In this section, we shall present the mathemat-
ical background of the Fourier transform (FT) and its expression for some standard
functions and shall also review the principal features of real and complex signals
sampling.

1.4.2 Fourier series of real periodic functions

Any real deterministic, square integrable signal s(t), with period T , can be described by
superposing a set of discrete sine wave functions. Indeed, all harmonic functions of the
form exp(j ·2 ·π · k · t/T), where k is a positive or negative integer, form an orthogonal
basis of square integrable functions with period T . The resulting decomposition has
the form:

s(t) =
+∞∑

k=−∞
Xk · exp(j · 2 · π · k · t/T) (1.87)

with:

Xk = 1

T
·
∫ ∝+T

∝
s(t) · exp(−j · 2 · π · k · t/T) · dt (1.88)

The coefficient Xk represents the ‘strength’ of the harmonic component with
frequency fk = k/T in the composition of s(t), with α being any real number. As a
result of Eq. (1.87), the frequency representation is a simple series of rays separated
by 1/T .

1.4.3 Fourier transform

The concept of Fourier series can be extended to non-periodic real functions. For this,
we introduce a ‘gate’ function s(t, T) such that:

s(t, T) = s(t) · π(t/T) (1.89)

where π (t/T) = 1 for |t| ≤ T/2, and π(t/T) = 0 for |t| > T/2.
By taking the limit we obtain:

s(t) = lim
T→∞

s(t, T) · π(t/T) (1.90)
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If we focus now on the s(t, T) function in the interval
[ − T/2; T/2], we may

assume that it represents a pattern of a periodic function with period T , which can be
decomposed into Fourier series. The spectrum of rays becomes denser as T increases,
so that at the limit we end up with a continuous spectrum of rays. Thus the non-periodic
signal s(t) is described in the frequency domain by the superposition of an infinity of
sine waves. At the limit, the Fourier transform S(f) of s(t) is given by:

S(f) =
∫ +∞

−∞
s(t) · exp(−j · 2 · π · f · t) · dt (1.91)

and in an equivalent way :

s(t) =
∫ +∞

−∞
S(f) · exp(j · 2 · π · f · t) · df (1.92)

Equations (1.91) and (1.92) are the continuous forms of Eqs. (1.87) and (1.88).
The Fourier transform S(f ) of a real signal is a complex signal. Its modulus and its
phase are referred to as the modulus spectrum and phase spectrum of the signal, which
are, respectively, even and odd functions for real signals.

1.4.4 Properties of the Fourier transform (FT)

This is a review of the most widely used properties of the FT in the field of radar signal
processing. Let us consider two functions s(t) and u(t), with the FTs S(f) and U(f):

• The FT is a linear operator:

∀(α, β)∈ C2, α · s(t)+ β · u(t) → α · S(f)+ β · U(f) (1.93)

• A multiplication product in the time domain becomes a convolution product in
the frequency domain and reciprocally:

s(t) ·u(t) → S(f)∗U(f) (1.94)

s(t)∗u(t) → S(f) ·U(f) (1.95)

with: s(t) ∗ u(t) = ∫ +∞
−∞ s(t′) · u(t − t′) · dt′

• A translation in the time domain becomes a multiplication by a phase ramp in
the frequency domain and reciprocally:

s(t−a) → exp(−j ·2 ·π ·f ·a) ·S(f) (1.96)

exp(j ·2 ·π ·fd · t) ·s(t) → S(f −fd) (1.97)

Property (1.97) is of fundamental importance in SAR processing (Chap.2) because
its physical principle requires that radar echoes be phase locked in the time domain (it is
achieved by multiplication by phase ramps). In practice, implementation on computers
is based on translations in the frequency domain, using the equivalence (1.97).
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1.4.5 Fourier transforms of standard functions

1.4.5.1 The gate function
The envelope of a radar pulse, for example, can take the form of a gate function
(Fig. 1.22(a)):

s(t) = A ·�(t/T) → s(f)

= A · T · sin(π · f · T)
π · f · T = A · T · sin c(π · f · T) (1.98)

( )ts

A

TA⋅
)( fS

t

A

f2/T− 2/T
f

T

1
−

T

1

(a) (b)

Fig. 1.22 (a) Gate function; (b) Modulus of the FT of the gate function.

The Fourier transform of the gate function is a cardinal sine (Fig. 1.22(b)), whose
main lobe has a width of 2/T . In practice it is assumed that the unbounded frequency
representation barely exceeds the interval of the main lobe of the FT, thus limiting the
frequency description to a ‘bandwidth’ of 2/T (the 3 dB bandwidth is of the order of
1/T ).

Please note: The FT shows that some power density is transmitted at negative
frequencies. This mathematical curiosity is the result of decomposing the function in
the basis of complex functions with the form exp (j · 2 · π · k · t/T). From the even
and odd properties of the modulus and phase spectra, respectively, of S(f) it is possible
to reconstruct a real signal with the help of this negative frequency power density. It
is therefore only a mathematical trick with no real significance in physical terms.

1.4.5.2 The Dirac delta function
This is an ideal impulse, whose value is zero everywhere except at 0 (Fig. 1.23(a)).
The Dirac delta function δ(t) is only strictly defined in terms of distributions, i.e. using
an integral operator:

s(t0) =
∫ +∞

−∞
s(t) · δ(t − t0) · δt for any real t0. (1.99)

δ(t) can also be considered as the limiting case of a gate function of unit surface and
whose length tends towards 0:

δ(t) = lim
T→0

1

T
·�(t/T) (1.100)
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Consequently:

S(f) = lim
T→0

1

T
· T · sin(π · f · T)

π · f · T = 1 (1.101)

( )tδ )( fS

t f

1

f

(a) (b)

Fig. 1.23 (a) Dirac delta function; (b) Modulus of the FT of the Dirac delta function.

The frequency spectrum of the Dirac delta (Fig. 1.23(b)) is spread uniformly across
the entire range of frequencies: an infinitely precise location of the signal in the time
domain produces complete delocalisation in frequency domain.

Please note: Likewise the FT of a function which is constant and equal to 1 in
the time domain is δ(f). Therefore, accounting for the effect of multiplication by a
phase ramp on the FT operator, the FT of the harmonic function exp(j · 2 · π · fd · t) is
δ(f − fd), where fd is a constant frequency.

1.4.5.3 The Dirac comb
This is a periodic function δT (t) composed of an infinite number of Dirac functions
separated by a sampling interval T. It is of fundamental importance in sampling theory
(Fig. 1.24(a)):

δT (t) =
+∞∑

−∞
δ(t − k · T) (1.102)

Since it is a periodic function, the calculation of the FT of δT (t) is based on the
Fourier series. As a result of Eq. (1.88):

( )tδ

1
)( fS

t

1

f

T
1

T Tf sp 1=

(a) (b)

Fig. 1.24 (a) Dirac comb; (b) Modulus of the FT of the Dirac comb.
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Xk = 1

T
·
∫ T/2

−T/2
δt · exp(−j · 2 · π · k · t/T) · dt = 1

T
(1.103)

Substituting into Eq. (1.87) leads to:

δT (t) = 1

T
·

+∞∑

k=−∞
· exp(j · 2 · π · k · t/T) (1.104)

Consequently, considering Eq. (1.97):

TF {δT (t)} = 1

T
·

+∞∑

k=−∞
δ(f − k/T) = 1

T
· δ1/T (f) (1.105)

The Fourier transform of a Dirac comb with a sampling interval T and a modulus
of 1 is a Dirac comb with an interval and a modulus of 1/T (Fig. 1.24(b)).

1.4.5.4 Monochromatic functions cos(2 · π · f0 · t) and sin(2 · π · f0 · t)

Although these functions are not square integrable, a Fourier transform is nonetheless
possible. With the use of ‘distribution theory’ it can be shown that (Fig. 1.25)

FT {cos(2 · π · f0 · t)} = π · {δ(f − f0)+ δ(f + f0)} (1.106)
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Fig. 1.25 (a)f(t) = cos(2·π·f0 ·t); (b) Real part of the FT of (2·π·f0 ·t); (c)f(t) = sin(2·π·f0 ·t);
(d) Imaginary part of the FT of f(t) = sin(2 · π · f0 · t).
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and:

FT {sin(2 · π · f0 · t)} = j · π · {δ(f + f0)− δ(f − f0)} (1.107)

The frequency spectrum of a monochromatic wave is composed of two rays:
the infinitely precise location of a signal in the frequency domain produces complete
delocalisation in the time domain (a sine wave). The particular case of a function
constantly equal to 1, with FT δ(f), expresses this property when f0 equals zero
(constant signal).

1.4.5.5 The auto-correlation function of a stationary signal
Consider a stationary physical signal s(t). The fact that it is stationary means that
its statistics are independent of time. Its auto-correlation function K(τ) is therefore
defined by:

K(τ) =
∫ +∞

−∞
S(t + τ) · s∗(t) · dt (1.108)

The Wiener-Khintchine theorem states that the spectral density�(f) of the signal s(t),
i.e. the power contained in the part of the spectrum between frequencies f and f + df ,
is the FT of K(τ):

�(f) =
∫ +∞

−∞
K(τ) · exp(−j · 2 · π · f · τ) · dτ (1.109)

It can also be shown that the modulus|�(f)| is equal to |S(f)|2for any frequency
f . The Wiener-Khintchine theorem is used when estimating the mean Doppler fre-
quency (also called Doppler centroïd) of a radar signal from its auto-correlation func-
tion (Sect. 2.3.4).

1.4.6 Sampling real signals

The real physical analogue signal s(t), is defined by a continuous set of values. We
assume that the FT S(f) of s(t) (Fig. 26(a)) is band limited (Fig. 26(b)). To digitize
s(t), only discrete set of samples, separated by a constant interval T sp is needed
(Fig. 26(c)). For ideal sampling (i.e. the extraction of an instantaneous value of the
signal during an infinitesimally short time), the resulting signal is:

ssp(t) =
+∞∑

k=−∞
s(k · T sp) · δ(t − k · T sp) = s(t) · δT sp(t) (1.110)

If we consider Eqs. (1.94) and (1.105), we can see that:

FT {Ssp(t)} = S(f) ∗ f sp · δf sp(f) = f sp ·
+∞∑

k=−∞
S(f − f sp) (1.111)

© 2008, First edition, EPFL Press

-



46 IMAGING WITH SYNTHETIC APERTURE RADAR

( )( )ts )( fS

t fmaxfmaxf− B

( )
)( fS

( )tssp
)( fS

spT
1

t
spT

fmaxfmaxf− B

(a) (b)

(c) (d)

Fig. 1.26 (a) Continuous function s(t); (b) Modulus of the FT of s(t); (c) Sampling of s(t); (d)
Modulus of the FT of ssp(t).

with: f sp = 1/T sp· Using Eq. (1.104), we see that sampling in the time domain
produces a periodic spectrum S(f) (with period f sp), and reciprocally (Fig. 1.26(d)).
This is the underlying principle of the sampling theorem (also known as Shannon’s
theorem), which helps us avoiding aliasing, as described in the next section.

1.4.7 Sampling theorem (Shannon’s theorem)

The sampling theorem defines the conditions under which it is possible to correctly
reconstruct a continuous real signal from only a set of its sampled values. For a band
limited signal (i.e. there is a frequency fmax such that S(f) = 0 for|f | > fmax),
it is possible to isolate the frequency band by low-pass filtering of the signal as it
existed before sampling, as long as its successive periodic patterns do not overlap.
Under these conditions, low-pass filtering followed by an inverse FT allows the signal
to be completely rebuilt, while avoiding ‘frequency aliasing’. This is only possible
(Fig. 1.26(d)) if the sampling frequency f sp exceeds the signal bandwidthB = 2 ·fmax

(applies only to real signals). This result is known as Shannon’s theorem: a real signal
can be reconstructed from its sampled values if f sp is at least twice the maximum
frequency fmax of the frequency spectrum. In the specific case of a monochromatic
signal of frequency f0, whose frequency spectrum is composed of two rays (one located
at f0, the other at−f0 ); f sp must exceed 2 · f0.

Please note: Unfortunately, the Paley-Wiener theorem states that the frequency
spectrum of any physical signal is necessarily unbounded, with its envelope tending
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Fig. 1.27 (a) Sampled sine wave at f sp � 2 · f0; (b) Sampled sine wave at f sp = 2 · f0;
(c) Sampled sine wave at f sp < 2 · f0.

towards zero for high frequencies. However fine the sampling, it will therefore not be
possible, in practice, to completely avoid frequency aliasing.

1.4.7.1 A ‘naı̈ve’ interpretation of Shannon’s theorem
Let us observe the effect of the sampling frequencyf sp on the reconstruction of a pure
sine wave of frequency f0. If sampling at f sp provides knowledge of a sufficient
number of points per period (Fig. 1.27(a)) then it is possible to reconstruct the signal
intuitively: f sp >> 2·f0 . For f sp = 2·f0 (Fig. 1.27(b)), the reconstruction of the sine
wave is still possible, though here we are stretching Shannon’s theorem to the limits.
It is nonetheless necessary for the sine wave to be sampled at appropriate positions to
allow correct restitution in amplitude, phase and frequency (any offset of the sampling
relative to the maxima and minima will lead to a false estimation of amplitude and
phase). Lastly, if f sp < 2 · f0 (Fig. 1.27(c)), Shannon’s theorem no longer applies and
the footprint of the initial sine wave is definitively lost.
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1.4.7.2 Sampling of complex signals
As for real signals, avoiding frequency aliasing requires that f sp > B. Nonetheless,
Shannon’s theorem must be interpreted appropriately for complex signals. Let us
look at the behavior of a monochromatic signal s̃(t) = exp(j · 2 · π · f0 · t). Unlike
real monochromatic signals, with a frequency bandwidth B = 2 · f0 (and consisting
of positive and negative frequencies) the frequency bandwidth of s̃(t) is now in the
positive frequency interval [0; f0], with width f0. Does this mean that the sampling
theorem is only half as strict for the complex s̃(t) as for the real signals?

The way to resolve this apparent paradox is to visualize the vector s̃(t) by using
a black spot located on the rim of a wheel with unit radius; the wheel is then lit with
stroboscopic lighting (Fig. 1.28(a)). The fact that all the frequencies of s̃(t) have the
same sign indicates that the direction of wheel rotation is known. When f sp varies
(Fig. 1.28b), it is easy to determine the angular velocity of the wheel (since we know its
direction of rotation) as long as f sp > f0 . When f sp = 4/3 ·f0 , if we do not know the
direction of rotation, the impression given is that of a clockwise motion of frequency
f0/4. If the direction of rotation is known, then the observation reveals the exact an-
gular velocity. This is rather like the case of the wagon wheels seen on film which
seem to be turning backwards, but for which the context clearly indicates the actual
rotational direction. For f sp = f0, phasing between the illumination and the wheel
motion is perfect; this is the limit of Shannon’s theorem. Finally, for f sp = 4/5 ·f0, the
apparent direction of the wheel’s rotation is the actual direction, but with an apparent
frequency of f0/4: the frequency information is completely lost and the spectrum of
s̃(t) is aliased.

1.4.8 The Fast Fourier transform (FFT) algorithm

The computation of the FT , using sampled signals, is called the Discrete Fourier
Transform (DFT). It is usually implemented with the help of the Fast Fourier Transform
(FFT) algorithm. Because of its computational efficiency, most of the synthetic aperture
radar algorithms are applied in the frequency domain. Here, we to describe the principle
behind the FFT and determine the amount of calculation needed.

We first calculate the DFT of a function s(t) determined by a regular sampling
of N points, separated by the time sampling interval T sp. In this way we describe a
periodic pattern of width T = N ·T sp, the (N+ 1)th value being equal to the first. The
function s(t) is assumed to be periodic outside this interval:

sk = s(tk), with: tk = k · T sp
and: k = 0, 1, 2, · · · , N − 1 ∀t, s(t + T) = s(t) (1.112)

This description in the time domain results in a frequency spectrum composed of a
series of rays separated by a frequency interval 1/(N · T sp):

Sn = S(fn) (1.113)

with: fn = n/(N ·T sp) , and n = −N/2, · · · , N/2. Given Eqs. (1.112) and (1.113), the
DFT acts as a linear operator, transforming a vector of N values (the sk) into another
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Fig. 1.28 (a) Location of a black spot on a wheel with a unit radius whose direction of rotation
is known; (b) Effect of sampling on a wheel with a unit radius whose direction of rotation is
known.

vector of N values (the Sn), where the terms S−N/2 and SN/2 are equal (period of the
spectrum).

The DFT is expressed as a result of Eqs. (1.91), (1.112) and (1.113):

Sn=
∫ +∞

−∞
s(t) · exp(−j · 2 · π · fn · t) · dt ≈

n−1∑

k=0

s k · exp(−j · 2 · π · fn · tk) · T sp

(1.114)

© 2008, First edition, EPFL Press



50 IMAGING WITH SYNTHETIC APERTURE RADAR

or:

sn = T sp ·
N−1∑

k=0

Wnk · Sk (1.115)

where

W = exp(−j · 2 · π/N) (1.116)

It can be seen from Eq. (1.115) that the matrix transformation from the (sk) to
the (Sn) requires approximately N2 operations. The Fast Fourier transform (FFT)
performs this transformation with fewer operations, based on the work of Danielson
and Lanczos (1942) which was popularized by Cooley and Tukey (in the 1960s).19

Practically, if N is an even number, we can rewrite Sn as:

Sn = T sp ·
N/2−1∑

k=0

s2k · exp(−j · 2 · π · n · k · /(N/2))

+ T sp ·Wn ·
N/2−1∑

k=0

s2k+1 · exp(−j · 2 · π · n · k/(N/2)) = Sen +Wn · Son
(1.117)

A DFT applied to N points is therefore the sum of two DFTs, each applied toN/2
points. This operation can be iterated on the even and odd parts Sen and Son, for as long
as N can be divided by 2. The extreme limit of decomposition is reached when N is a
power of 2 (if this is not the case, it is a simple matter to correct). DeterminingSn [Press,
1988] requires calculations on the order of log2 N for a DFT with a length of 1 (i.e.
using identity operations), leading to an overall number of calculations proportional
to N · log2N (with the operation being repeated for the entire set of Sn). In practical
terms, passing from order N2 to order N log2N saves considerable computing time.
For an FT of a sample of 1000 points (a typical value in SAR processing), this results
in a reduction of about a factor of 100.

1.4.9 The two-dimensional Fourier transform

An image is by nature a two-dimensional mathematical entity, even though it is often
processed using one-dimensional algorithms. The two-dimensional extension of the
FT is as follows:

S(f1, f2) =
∫ +∞

−∞

∫ +∞

−∞
s(t1, t2) · exp[−j · 2 · π · (f1 · t1 + f2 · t2)] · dt1 · dt2

(1.118)

19The FFT algorithm has been ‘rediscovered’ several times over the years. The work of Gauss included
some very similar expressions as early as 1805.
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or

S(f1, f2) =
∫ +∞

−∞
{
∫ +∞

−∞
s(t1, t2) · exp[−j · 2 · π · f1 · t1] · dt1}

· exp[−j · 2 · π · f2 · t2] · dt2 (1.119)

This reduces to the calculation of two one-dimensional FTs, the first of which is applied
to the variable t1 and the second to the variable t2.
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CHAPTER 2

SAR PROCESSING: AT THE HEART
OF THE SAR TECHNIQUE

2.1 Introduction

In this chapter we will explore the basic and most significant features of radar imagery.
In a first part, we will introduce the general principles of synthetic aperture radar
(SAR), highlighting some specific effects strongly related to the physics and geometry
involved. In a second part, we will develop the key role of the frequency representation
with its manifold advantages: strong physical signification, access to more efficient
computing schemes, specific resampling procedures. In this part we will also show that
in some cases, working in the time domain remains preferable. In the third part we will
review the SAR synthesis algorithms in order to give their specific flavors rather than
going in full details: what is important is the understanding of the main architectural
choice attached to each design, together with its advantages and drawbacks. The fourth
part is devoted to the system constraints, which is the way to accommodate the many
geometric and time constraints in order to optimize such or such features of the radar
images. The fifth part will focus on the geometric properties of radar imagery and the
equations which govern the positioning of radar pixels on the ground. Some methods
for topography reconstruction are also briefly evoked in this part. Finally, we address
the specific processing and co-registration problems raised by bistatic systems, and we
propose a geometric modeling for bistatic observations.

In this Chapter, we pay very little attention to the source of our data: the radar
instrument. This is because, assuming its output is digital (now a very general situation),
very few parameters allow a full characterization of the instrument, for example specific
frequencies described in the first part of this Chapter or basic power budget figure. The
only option left as far as the nature of the data is concerned (disregarding the number of
bits per pixel or the possible use of compression/decompression schemes) is whether
the data are sampled as complex numbers or real numbers at doubled sampling rate.

Nevertheless, Figure 2.1 presents the typical block diagram of a radar instrument
(here with a complex sampling). The “pure” carrier frequency fc is provided by the

© 2008, First edition, EPFL Press
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local oscillator and mixed with the “chirp" signal (Sect. 2.3.7), which gives a certain
frequency span to the signal, inversely proportional to the desired range resolution. The
signal is then amplified and transmitted. The returned signal follows another path. The
main task of the circulator is to avoid leaks from the high energy output to the delicate
receiving electronics, designed for very weak signals only. After proper amplification
by the low noise amplifier, the signal is split into two parts mixed with replicas of the
carrier frequency, but with one of them shifted by π/2. The two paths are then sampled
into the real and imaginary parts (also called “in phase” and “in quadrature”) of the
complex radar signal using Analog to Digital Converters (ADC).

Fig. 2.1 Typical block diagram of a radar instrument (shown here with complex sampling).

2.2 General principles of Synthetic Aperture Radar

2.2.1 A different way of observing the Earth

When we try to observe the Earth using radio waves we immediately come up against
an obstacle inherent in the laws of physics. The resolving power of an instrument
with diameter D at a wavelength λ is given by the ratio λ/D (Sect.1.2.5.1), i.e., two
objects separated by a distance X and observed from a range R0 will only be seen by
the instrument as two distinct objects if the ratio X/R0 exceeds λ/D.

The pupil of the human eye with its 3-mm aperture and collecting wavelengths near
0.5µm, has a theoretical resolving power of 1/6000, with which it could distinguish
two objects 1 m apart at a range of 6 km. The radar antennas that we can deploy
in Space may be 10 m across, or even 15 m at their largest, but they use radiation
in the centimeter range with wavelengths 100,000 times longer than that of light. A
typical radar satellite, such as ERS-1 with its 10 m antenna and operating wavelength
of approximately 5 cm, orbiting some 1000 km from the region that it is observing, is
therefore not capable of resolving two points less than 5 km apart on the ground. The
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natural resolution of such an image (Fig. 2.2(a)) would therefore be 5 km. To overcome
this difficulty and create sufficiently detailed images (meaning with a resolution of a
few meters, Fig. 2.2(c)), we apply techniques specific to each direction in the image
which restore adequate resolution.

Fig. 2.2 (a) ERS image of raw echoes before SAR processing. Azimuth and range resolution:
5 km; (b) The same data after range processing. (Azimuth resolution: 5 km, range resolution:
20 m); (c) The same data after range processing and SAR synthesis. Azimuth resolution is: 5 m;
range resolution is: 20 m. Northridge area, California, 1992.

2.2.2 Range vision

The first technique, which we will call ‘range vision’, takes advantage of the fact that
the instrument is active—that is, it sends pulses—so that we can measure the round-trip
time between the radar and the region observed. We can therefore distinguish between
two points whose radar ranges differ by a few meters as long as the pulse duration is
sufficiently short and the sampling rate of the return echo is sufficiently high.

Since short powerful pulses can damage the radar, a pulse compression technique
is used to create short pulses from long coded pulses. Doing this also improves the
resolution in the direction perpendicular to the trajectory of the radar, also known as
‘the range direction’ (Fig. 2.2(b)). We shall deal with the way in which the pulses
are coded in Sect. 2.3.7 and Sect. 5.1.1. Using range to distinguish between objects
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places geometric constraints on image acquisition, however, because two objects at
an identical range are indistinguishable. This is why these radars cannot look directly
down (at the nadir), as points located near the vertical are almost all at the same
range from the radar. The instrument must therefore be side-looking so that the ground
distance of a point from the nadir of the radar can be sorted as a function of its range from
the radar. Ambiguous points located at the same ground distance from the vertical but
in the opposite direction are not illuminated by the antenna and thus do not contribute to
the return echo. With particularly steep terrain, a point with a greater ground distance
from the vertical than another point lower down the slope may actually be closer to the
radar itself, causing a layover effect (Sect. 6.1). The principal disadvantages of range
vision, particularly acute in difficult terrain, are shown in Fig. 2.3 and are analyzed in
detail in Sect. 6.1. Range vision is the basic principle behind all radar systems, even
those that do not create images.

Fig. 2.3 Mount Fuji observed by COSMO-Skymed. COSMO-skymed image (Copyright 2007
ASI, Italian Space Agency, all rights reserved).

2.2.3 The three fundamental radar frequencies

A radar observation system is basically defined by the following three frequencies,
described here from the highest to the lowest:

1. The radar’s carrier frequency fc is the frequency of the instrument’s oscillator.
This frequency defines the radar’s wavelength λ by: λ = c/fc, where c is the
speed of light.

2. The sampling frequency in range fd defines the size of the range pixel pd by
pd = c/(2 fd) where the factor 2 takes account of the fact that the difference
between two pixels includes the round trip. Naturally, to obtain the size of the
pixel in ground range (projection, Fig. 2.4(a)) pg, it must then also be divided
by the local incidence angle of the wave θ:

pg = c

2fd sin θ
= pd

sin θ
(2.1)
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Fig. 2.4 (a) Generation of an image row. Sampling echoes received at frequency fd ; (b) Gener-
ation of several image rows, by transmitting pulses at a repetition frequency of fa.

For the echo to be sampled correctly, fd must be larger than the pulse modulation
bandwidthBd which controls the range resolution of the instrument (Sect. 2.3.7.),
in order to satisfy Shannon’s sampling conditions (Sect. 1.46 and 1.47). The
length of a pixel in the range direction is thus determined by fd even if the
length c ·Tpulse of a pulse of duration Tpulse is usually much longer (Fig. 2.4(a)).
Practically, the recording of the echo starts at the gate number called the SWST
(Sampling Window Start Time).

3. The pulse repetition frequency fa defines the size of the azimuth pixel pa by
pa = ν/fa, where ν is the modulus of the instrument platform velocity, here
assumed to be linear (Fig. 2.4(b)). The relationship is more complicated when
the velocity of the instrument platform has a non-zero curvature (Sect. 2.2.5.3).
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Fig. 2.5 Synthetic aperture (a) geometric approach; (b) geometric approach, 2D representation.

In the case of a satellite in space, whose trajectory is necessarily curved, a good
approximation of pa is obtained by:

pa · Torb · fa = Cearth (2.2)
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where Torb is the orbital period, approximately 6000 s for ERS, whose ground-
track length is the circumference of the EarthCearth, i.e. approximately 40000 km.
This value is in fact slightly larger than the image ground-track because the
greater the radar’s incidence angle, the more the locus of the observed ground
differs from a terrestrial ‘great circle’. The low incidence angle of ERS makes it
point two hundred kilometers from the satellite ground-track, or 2◦ of a terrestrial
arc. The ‘circumference’ of the Earth as it is imaged is no longer 40000 km but
40000 × cos(2◦) km or 39976 km, a negligible difference in this case.

The sampling frequency and the pulse repetition frequencies may be adjusted in a
given instrument, using simple arithmetic that relates them to the carrier frequency, e.g.
by means of frequency divisions which can be programmed. As an example, on the
ERS-1 satellite, the carrier frequency fc is 5300 MHz (cf. Table 3.1). An intermediary
frequency is first derived by fi = fc/43, and then the sampling frequency by fd =
2fi/13 = 2fc/559. The pulse repetition frequency fa, is programmable using:

fa = fd

4 · (Npri + 2)
(2.3)

where Npri is an integer most often equal to 2820 or to 2822. On other satellites, such
as RADARSAT, there are several possibilities for fd (‘fine’ or ‘wide’ modes, cf. Table
3.1). For any satellite, all three frequencies form dimensionless fractions which we
shall find useful in subsequent chapters:

Q = fc

fd
and: χ = fd

fa
(2.4-ab)

For the ERS satellites, Q is exactly equal to 279.5 and χ is usually equal to 11200.

2.2.4 An intuitive geometrical approach to synthetic aperture

The technique used in the azimuth direction to restore resolution exploits a property
of radio signals. We can record both their amplitude and their phase and then process
them in a particular way to produce a purely geometric interpretation. Let us imagine
an antenna of length D illuminating a region whose width is L and which contains a
target A (Fig. 2.5(a)). We know that the wavelength λ, the observation range R0, and
the illuminated ground width L, are related by:

λ

D
≈ L

R0
(2.5)

where L is the ‘natural’ resolving power of the radar instrument. Now let us also
assume that the radar transmits a pulse each time it travels the distance pa, with pa
being less than L. We shall see under which conditions the final resolution of the
image can be pa, rather than L. If the distance pa is considerably less than L, a target
A is illuminated by several pulses as the radar instrument passes over. The number of

© 2008, First edition, EPFL Press



60 IMAGING WITH SYNTHETIC APERTURE RADAR

these pulses will be equal to the ratio L/pa. The target A will thus contribute to each
of these pulses by returning an echo composed of an amplitude, i.e., a measure of the
strength with which the target returns the wave towards the radar, and of a phase, which
indicates how the dielectric properties (such as conductivity) or geometric properties
of the target can modify the state of vibration of the wave (thus causing a phase shift).
This phase will also be offset by the wave’s round trip between the radar and the target.
Each time the wave travels one wavelength, its phase completes a full cycle. Each pulse
to which A contributes will have approximately the same amplitude, because the angle
from which A is observed varies little due to the low ratio L/R0. Compared to the
phase at the shortest distance, the phase of each pulse will be offset by the length of the
green lines in Fig. 2.5(a) (in fact it will be double this length because of the round trip ).

One simple solution is to modify the phase of the samples to which the target A
has contributed, so that they all have the same phase, and then to add all the samples
together. If they are all added together when in phase, the samples will reinforce each
other. However, each of these samples also includes, for a width of ground L, the
contribution of the other targets, for example target B. This is in the vicinity of A,
separated by a distance pa. In other words, B is the closest target to A that we want
to distinguish from A. The ranges traveled by the pulses from the radar to B differ
from those traveled to A by the lengths shown in red. Let us assume that the sum
of the lengthening in red on the furthest left and the shortening in red on the furthest
right is equal to one half of a radar wavelength. Taking into account the round trip,
the phase compensation algorithm, which we use to favor target A, will give regularly
distributed phase values to the contributions of target B. The sum of these contributions
will therefore be zero as they will cancel each other out! The next target after B, located
at a distance of 2pa from A, will undergo the same treatment. The only difference is
that the phases of the contributions of this third target will be spread over two cycles
instead of one for B. We have here a little mathematical miracle which shows us that
the processing applied to the contributions of A is ‘lethal’ for all the other targets
contributing to the same signals as A.

It can be seen from Fig.2.5(b) that target B is ‘cancelled out’ by the signal process-
ing matched to A if the relative offset of the horizontal bar of the red ‘T’ shape reaches
a quarter of a wavelength on either side (that is, one half of a wavelength in round trip).
We therefore have a condition for canceling out contributions from neighboring targets
(pa must exceed a certain value):

pa/R0 ≥ λ/4

L/2
(2.6-a)

and therefore:

pa ≥ λR0

2L
(2.6-b)

This relationship also ensures that the contributions of A’s immediate neighbors (re-
spectively 2, 3, etc.) are cancelled out because their phase shifts will also pass through
all possible values one or more times, in the azimuth processing window.
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What are the limitations of this technique? At some point, the red lines in
Fig. 2.5(a) will add half a wavelength between each sample. For a round trip, the
phases will therefore be the same as for target A, because a complete phase cycle does
not change the signal. This is why target C, which is called an ambiguous target, will
behave like A in the processing, as will any similarly located target on the other side of
A. We must therefore ensure that the antenna cannot see A and C simultaneously, i.e.
that the distance between A and C must be at least equal to L. This is the ‘ambiguity
shift’:

λ/2

pa
≥ L

R0
(2.7a)

or:

pa ≤ λR0

2L
(2.7b)

Lastly, if we consider the aperture ratio (2.5), it is easy to check that we must have:

λ

2pa
≈ L

R0
(2.8a)

and therefore:

pa ≈ D

2
(2.8b)

A pulse must therefore be transmitted every time the radar travels a distance equal
to one half of the length of its antenna. As a result, the resolution which can be obtained
from an antenna whose length is D is equal to D/2. This is contrary to everything we
know about antenna resolution because in this case the smaller the antenna, the better
the resolution! Stranger still, this ground resolution does not depend on the observation
range. A radar located at a distance ten times further away would have the same resolu-
tion. Since there is no such thing as a free lunch in this world, there is a price to pay for
these strange phenomena, in this case the amount of processing needed (there is also a
cost in terms of radiometry, shown in Chap. 3). The number of samples whose phase
we need to change before adding them together is equal toL/pa, or again to λR0/Dpa,
or expressed otherwise as 2λR0/D

2, so the amount of processing necessary is propor-
tional to the range. In Fig. 2.5(a), the amount of processing is for seven samples. In the
real life situation of a satellite in orbit, with a 10-m antenna, a 5 cm wavelength and an
observation range of 1000 km, the number of samples is 1000. There would therefore
be 1000 phase-change operations and additions for each point on the image. Since a
100-km by 100-km image contains hundreds of millions of points, hundreds of billions
of mathematical operations would be needed to restore proper resolution to a space
radar image. Fortunately, with the power of today’s computers, these operations do not
take too much time, considerably less than one hour, especially since signal processing
techniques like the Fast Fourier Transform (FFT) (Sect. 1.4), make it possible to reduce
the number of calculations. The memory of these computers is also large enough to
hold all the points of an image simultaneously while constructing it.
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Another factor that needs to be considered is the time needed for analyzing the
target. A radar with a 5 km antenna footprint in azimuth will take approximately one
second to observe the target at the typical velocity of satellites in orbit (≈ 7 km · s−1).
In some cases, the target does not ‘live’ as long as that. We might think, for example,
of waves on the sea or leaves shaking in the wind. The analysis time may therefore
limit the efficiency of synthetic aperture radar.

2.2.4.1 An intuitive but inaccurate image
The term ‘synthetic aperture’ seems to indicate that we create an antenna with length
L by azimuth processing. Indeed, if this antenna existed, it would not give us the
resolution that we just calculated (D/2); at the range R0 such an antenna theoretically
produces a resolutionR0λ/L equal to 2pa whereas we obtainpa. The traditional image
of the parabolic antenna drawn by the extremities of the green lines (Fig. 2.5(a)) is false
because usually the target is not located at the focal point of the antenna and because
the round-trip aspect of the observation is ignored. To use a vocabulary typical of the
world of antennas (Sect. 1.2.5.2), the target seen by an antenna of such a size is not in
the far field as defined by Fraunhofer’s condition:

R0 � 2L2

λ
(2.9)

We are thus in near field conditions despite the enormous observation range R0.
Indeed, because L is proportional to R0 by definition of azimuth processing, we will
never satisfy far field conditions! With a few simple substitutions, we can see that
fulfilling Fraunhofer’s condition would require:

pa �
√
R0λ

2
(2.10)

i.e., an azimuth resolution of far less quality than even that of unfocused processing
(also called ’beam sharpening’) (Sect. 2.4.7).

2.2.4.2 Velocity aberrations
In the same way that range vision produces strange (and undesirable) effects on image
geometry, synthetic aperture processing can create spectacular effects: the shifting of
mobile targets. In the above explanation, the targets were assumed to be fixed. What
happens when they are mobile? If target A is mobile and moves towards the radar, it
will add a phase change which will not be taken into account in our model. In particular,
the phase changes will not be correctly represented by the green lines in Fig. 2.5(a)
because of an extra contribution. Will target A disappear, however? No, because there
will be a point B on the same azimuth line as A (i.e. at the same range) whose phase
distribution will be precisely that of ‘mobile A’. In this case mobile A will be correctly
processed by the phase distribution planned for B. After processing, A will therefore
be superimposed on B!

More precisely, let v be the velocity of the satellite and vp the fraction of the
velocity of the target directed towards the orbit of the satellite (Fig. 2.5(b)). During
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analysis, the target’s motion creates an additional change in range,Lvp/v. The number
of unexpected phase shift cycles (compared to the phase shift created by a motionless
target) is, taking into account the round trip, 2Lvp/λv. The mobile target will there-
fore be satisfactorily handled with a processing offset by the same number of cycles
(appropriate for one of its neighbors) and will thus appear to be in the same position
as that neighbor. The azimuth distance from this neighbor is obtained by multiplying
the number of cycles by the size of the azimuth pixel pa : 2Lvppa/λv (we have seen
that a shift of pa created a phase shift of λ over a distance L). Taking Eq. (2.8a) into
account, the shift in azimuth of the mobile target can then be expressed simply as:

� = R0vp

v
(2.11)

Let us take a detailed example. Assume that target A is a ship sailing at 20 knots,
i.e. approximately 10 m·s−1 towards the ground track of the radar. Depending on the
incident angle, a fraction of this velocity (for example 4 m·s−1) is directed towards the
radar. For a radar velocity of ≈ 7 km·s−1 (v), at a range of 1000 km(R0), the phase
distribution for ‘mobile A’ will coincide with that for a target shifted by a value � of
approximately 600 m in our example!

This effect explains why, in radar images, ships are not necessarily found at the
front of their wakes, (Fig. 2.6) and why trains do not run exactly on their rails. The
wakes are almost immobile and are therefore in their proper place in the image, whereas
mobile elements are shifted to the left or right of their real trajectory, parallel to the
satellite ground track depending on whether they are receding from the instrument or

Fig. 2.6 Gibralter Straight observed by TERRASAR-X (stripmap image). Copyright 2007 DLR
– All rights reversed.
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moving towards it. This effect is very specific to radar, because the four meters traveled
by A in our example is less than the size of a pixel. It would not be seen in an optical
image with the same resolution and exposure time, typically one second.

2.2.5 Synthetic aperture, an analytic geometry formulation

After a first intuitive approach to azimuth radar processing, we will now formulate it
more rigorously. If we take A as the origin of an axis parallel to the ground track of
the radar, we can define a point B on the same axis by the number k of azimuth pixels
which separate it from A: AB = k ·pa (Fig. 2.7). Letting the range at the closest point
of approach between the radar and point A be R0, Pythagoras’ theorem tells us that,
when the radar is at its closest to B:

R(t) =
√
R2

0 + k2p2
a (2.12)

0R

A
•

•

B

v→

)(tR

L

apk ⋅

pv

û

H

D

W

α∆

→

Fig. 2.7 Synthetic aperture, analytical geometric formulation.

If we consider that, in general, R0 � kpa, we can expand this to:

R(t) ≈ R0 ·
(

1 + k2p2
a

2R2
0

+ . . .

)
(2.13)
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or, in terms of change in the round trip range �R(t):

�R(t) ≈ k2p2
a

R0
(2.14)

If we continue to expand the equation, the contribution to�R(t) of the next term
is −k4p4

a/4R
3
0. It can generally be considered negligible even for the highest values

of k. Even with a deviation equal to the width of the antenna radiation pattern, or
kpa = L, this term is equal to −L4/4R3

0, typically 0.2 mm in the case of ERS, which
is significantly less than the wavelength of 56 mm. This term may not be always be
negligible particularly in the case of airborne imagery.

The azimuth axis can be described using various coordinates. We have used the
number k in azimuth pixels (with size pa) relative to the origin A. We could also use
the time elapsed since the moment of closest point of approach to A, noted t. It then
becomes clear that:

k pa = vt = kv/fa (2.15)

where v is the scalar velocity of the radar on its trajectory and fa is the pulse repetition
frequency (PRF). This gives the equivalent equation:

�R(t) ≈ k2p2
a

R0
= v2t2

R0
= k2v2

f 2
a R0

(2.16)

The round trip distance �R(t) is the path lengthening of the radar wave, relative
to the reference round trip 2R0. This lengthening, after multiplying by 2π/λ results in
a phase difference �φ(t):

�φ(t) ≈ 2π · k
2p2

a

λR0
= 2π · v

2t2

λR0
= 2π · k2v2

λf 2
a R0

(2.17)

We will call the dimensionless factor the ’azimuth compression rate’, Na:

Na = λR0

2p2
a

= λR0f
2
a

2v2
(2.18)

Consequently:

�φ(k) ≈ π
k2

Na
(2.19)

Na represents the size of the azimuth processing window, or alternatively the
number of points used to ‘construct’ the target’s response. It is also the azimuth
distance between a point and its ambiguous location (ghost target). In mathematical
terms, in this context, Na is the solution to the equation:

�φ(k +Na + 1)−�φ(k +Na) = �φ(k + 1)−�φ(k) for any k (2.20)
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2.2.5.1 Coherent addition of radar echoes
A radar target C is generally characterized by the amplitude αc and the ‘natural’ phase
φc of its backscattered echo. Its complex expression is αcexp(jφc), where j is defined
by j2 = −1. The contribution of the target C to a radar echo such that the latter
is shifted by k azimuth pixels relative to the closest point of approach is therefore:
αc exp(jφc) exp(j�φ(k)).

In reality, the contribution of the target is also weighted by the azimuth antenna
radiation pattern (Sect. 1.2.5.1) which depends on the position of the target, and thus
on k (the index of azimuth pixels). The weighting coefficient will be set to 1 at the
center of the antenna radiation pattern (β(0) = 1), equal to β(k) elsewhere (usually in
the shape of a cardinal sine curve). Although the antenna radiation pattern is not band
limited, we assume that β(k) = 0 for |k| > N/2, where N is the number of samples
contained in the width of the radiation pattern.

As a general rule, the signal s(l), associated with the pulse number l, is made up of
the full set of target contributions αkexp(jφk) present in the antenna radiation pattern
at position k, weighted by the latter and modified by the phase distribution �φ(k):

s(1) =
k=l+ N

2∑

k=l− N
2

β(k − 1) · αkexp(jφk)exp(j�φ(k − l)) (2.21)

The processing, when matched to the target whose closest point of approach to the
radar is located at indexm, involves adding the signals acquired when M is illuminated
by the antenna. The signals are corrected for their respective phase distributions and
radiation pattern weightings. The output sf (m) of this process is given by:

sf (m) =
k′=m+ N

2∑

k′=m− N
2

β(k′ −m) · s(k′) · exp(−j�φ(k′ −m)) (2.22)

In the particular case where there is a single target with amplitude αmexp(jφm),
assumed to be located at m then s(k′) = β(k′ −m) · αmexp(jφm) · exp(j�φ(k′ −m)),
and applying Eq. (2.22) leads to:

sf (m) =
k′=m+ N

2∑

k′=m− N
2

β2(k′ −m) · αmexp(jφm) = ξ · αmexp(jφm) (2.23)

where ξ is a constant of the system.
In order to evaluate to what extent this processing favors the target m, let us

consider the results of the processing for a target in the vicinity ofm, located atm+h.
It contributes the quantity β(k′ − m − h) · αm+hexp(jφm+h) · exp(j�φ(k′ − m − h))

to the signals found between k′ = m+ h−N/2 and k′ = m+ h+N/2, which leaves
a residual r(h) such that:
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r(h) = sf (m+ h) = αm+hexp(jφm+h)·
k′=m+ N

2∑

k′=m+h− N
2

β(k′ −m) · β(k′ −m− h)

× exp(j�φ(k′ −m− h)) · exp(−j�φ(k′ −m))

(2.24)

If we let n = k′ −m, we finally get:

r(h) = αm+hexp(jφm+h) ·
n= N

2∑

n=h− N
2

β(n) · β(n− h) · exp(j�φ(n− h))·

exp(−j�φ(n))
(2.25)

Given Eq. (2.19), by expanding Eq. (2.25) and replacing the lower limit n =
h−N/2 by n = −N/2 (since the additional values of β(n− h) are null), the result is:

r(h) = exp

(
jπ
h2

Na

)
·
n= N

2∑

n=− N
2

β(n) · β(n− h) · exp

(
−jπ2nh

Na

)
(2.26)

By choosing fa such that the compression rate Na is equal to N (a correctly sampled
system, cf. Sect. 3.7.2), for h = 1 (immediate vicinity), the phase term −π2nh/Na
varies between π and π on the interval [−N/2;N/2]. Here again the contributions
cancel each other out.

2.2.5.2 Synthesis of mobile targets
Let us again consider the problem of mobile targets, treated here from an analytical
point of view. Consider a moving target whose velocity includes a component �vp
directed towards the radar (Fig. 2.7). If we take the entire round trip into account, the
actual phase distribution between the target and the radar will be:

�φ(t) ≈ 2π
v2t2

λR0
+ 4π

vp · t
λ

= 2πv2

λR0

(
t2 + 2R0

vp

v2
t
)

= 2πv2

λR0

(
(
t + R0

vp

v2

)2
− R2

0 · v
2
p

v4

) (2.27)

In addition to the constant phase −2πR0 ·v2
p/(λv

2), everything happens as though
the time t had undergone a shift tp = R0vp/v

2, i.e. a displacement along the azimuth
axis. This displacement can be expressed as the length xp or as a number of samples kp
by multiplying by the appropriate proportionality factor, recovering the results found
in Sect. 2.2.4.2:

xp = R0 · vp
v

and: kp = fa·R0 · (vp/v2) (2.28)
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2.2.5.3 Effect of the radar’s trajectory on the processing
The linear-trajectory hypothesis that we have been applying is not completely accurate.
When a radar is installed on an aircraft, the trajectory can be perturbed by atmospheric
turbulence or piloting. These can cause shifts in the trajectory which are greater than
a fraction of the radar’s wavelength. In this case, we can reconstruct the trajectory bit
by bit if we have precise data on the trajectory, obtained from a navigation system.

When a radar is carried by a satellite, the trajectory is very regular, but it is
curved as a result of acceleration forces. At its closest point of approach to a target
A, the satellite’s position is expressed by a vector �s, its velocity by a vector �v and its
acceleration by a vector �γ; this last variable includes accelerations caused by gravity,
the centrifugal force and the Coriolis force (we are assuming a non-inertial reference
frame in which the Earth is fixed). If we assume that �a designates the vector giving
the position of the target, the range R between the satellite and the target will vary
according to:

R(t) =
∥
∥
∥
∥�a− �s− �v · t − 1

2
· �γ · t2

∥
∥
∥
∥ (2.29)

If we expand this in the same way as for Sect. 2.2.5, we then get:

R(t) ≈ ‖�a− �s‖ ·
(

1 + (�s− �a) · �v
‖�a− �s‖2

· t + (�s− �a) · �γ + ‖�v‖2

2 · ‖�a− �s‖2
· t2

)
(2.30)

For the closest point of approach (�s− �a) · �v = 0, we obtain:

R(t) ≈ ‖�a− �s‖ ·
(

1 + (�s− �a) · �γ + ‖�v‖2

2 · ‖�a− �s‖2
· t2

)
(2.31)

Let û be the unit vector pointing from the target towards the satellite where û =
(�s − �a)/R0. The shortest range between the target and the satellite is R0 = ‖�a − �s‖.
In terms of variation in the round-trip range �R(t), we have (Fig. 2.7):

�R(t) ≈
(
û · �γ + ‖�v‖2

R0

)
· t2 (2.32)

If we apply Eq. (2.32) to Eqs. (2.16)–(2.18), we obtain a new expression for the
compression rate Na, which takes into account the satellite’s acceleration:

Na = λR0f
2
a

2(R0û · �γ + v2)
(2.33)

In the case of the ERS satellite, where R0 = 850 km and at a latitude of 40◦, û · �γ
and ‖�v‖2/R0 have values of −7.7 m·s−2 and 67 m·s−2 respectively. Lastly, in the event
that the target should have its own velocity �Vp, the component �vp directed towards the
radar is �vp = û · �Vp.
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2.3 Frequency representation

It is also possible to represent the data in terms of frequency. The frequency of a periodic
phenomenon is given by the number of phase cycles per second. If the phase is a linear
function of time, and if its duration is infinite, the phenomenon is characterized by
one single, perfectly determined frequency. Even if the phenomenon does not possess
these properties, we can define an instantaneous frequency equal to the derivative of
the phase of the phenomenon, normalized by 2π, which is the value of one phase cycle.
We can therefore write:

f = − 1

2π

dφ

dt
(2.34)

Frequency representation has numerous theoretical and practical advantages. Many
natural phenomena are best expressed in terms of frequency, and many filters are best
characterized by their frequency response (low-pass and high-pass filtering, etc.). We
can all recall those simple electrical setups that demonstrate these functions, using coils
and condensers. The main practical advantage arises from a fundamental property of
frequency representation, namely, the possibility of applying a stationary (i.e. not
changing in time) filter by simple multiplication in the frequency domain. Let s(t) be
the complex signal to be processed and sr(t) the reference signal. The convolution that
leads to the processed complex signal sf (t) = s(t) ∗ sr(t) = ∫ +∞

−∞ s(τ) · sr(t− τ) · dτ is
obtained by applying the frequency transformation (i.e. the direct Fourier Transform
Sect. 1.4) to the signals s(t) and sr(t), which produces the signals S(f) and Sr(f). Mul-
tiplying these two signals point by point, results in the transform Sf (f) of the desired
output. We then apply the inverse Fourier transform to obtain sf (t).

The practical advantage of this method lies in its computational efficiency. The
Fourier Transform of a signal with N samples requires N · log2N operations using the
Fast Fourier Transform (FFT) (Sect. 1.4.8). If we assume that the reference signal is
transformed once and for all, or that it is produced directly in the frequency domain,
N · log2N operations will be necessary to transform the signal, N operations for the
point by point multiplication and lastlyN · log2N operations for the inverse transform.
Neglecting edge effects, the number of operations per point processed is usually about
1 + 2log2N, whereas it is close to N for direct correlation.

On the other hand, a condition necessary for this efficiency is that the number of
points N of the Fourier transform be significantly greater than the number of points
Na required by the processing. This minimizes the inconvenience of losing the incom-
pletely correlated N − Na points. It is necessary that the correlation processing, i.e.
the reference signal sr(t), remain stable ( stationary) over this lengthN. This condition
is not always fulfilled by airborne radar systems, because the phase distribution for the
reconstruction is frequently perturbed by flight irregularities, which often exceed the
scale of a wavelength.
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2.3.1 Phase distribution expressed in the frequency domain

Equations (2.17) and (2.34) can be used to derive the instantaneous frequency of the
signal at time t:

f(t) = −2v2t

λR0
= − tf

2
a

Na
(2.35)

For the radar signals that we are discussing, the instantaneous frequency is there-
fore proportional to time. (2.35) shows that the frequency span (the Doppler bandwidth
Bdop) is proportional to the duration of the target’s illumination. When the closest point
of approach to the radar is located in the middle of the zone illuminated by the antenna
(Fig. 2.8a), this Doppler bandwidth is centered on the zero Doppler frequency, giv-
ing what is called the ‘zero mean Doppler’; we then have a ‘zero Doppler centroid’,
acquisition.

Fig. 2.8 (a) Deviation of the Doppler frequency in the case of an acquisition with zero mean
Doppler (zero Doppler centroid); (b) Deviation of the Doppler frequency in the case of a Doppler
acquisition with non-zero mean Doppler (non zero Doppler centroid).

We can correct the phase distribution�φ(t) of the signal after it has been converted
into frequency. Since:

t = −λR0f

2v2
(2.36)

we can express the phase distribution in the frequency domain:

�φ(f) = π ·Na · f
2

fa2
(2.37)
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Using the reduced frequency fr defined by fr = f/fa we can obtain equations in
an even more compact form. The phase distribution in reduced frequency then becomes:

�φ(f) = π ·Na · f 2
r (2.38)

Please note: a result of Eq. (2.36) is that: Bdop = 2v2T ill/(λR0), where T ill is the
duration of illumination of the target. Since we also have: T ill = λR0/(Dv) (whereD
is the width of the antenna), the final result is:

Bdop = 2v/D (2.39)

The corresponding azimuth spatial resolution is given by ra = D/2 as already estab-
lished in Sect. 2.2.4.

2.3.2 Non-Zero Mean Doppler

Up until now, we have assumed that the closest point of approach of the radar was
located in the middle of the zone illuminated by the antenna (Fig. 2.8(a)). In reality,
this condition is never fully satisfied (Fig. 2.8(b)). Often, the closest point of approach
is not illuminated at all by the antenna. Does this affect the complementarity between
range and azimuth that we have mentioned previously? Not necessarily. For instance,
an angle ζ of 80◦, (i.e. 10◦ off-perpendicular), between the direction of the flight path
and the radar to-target line of sight still allows us to process the raw data correctly in
the two directions. We simply find that the two one-dimensional impulse responses
(one in the range direction and the other in the azimuth direction, Sect. 3.12) can be
non-perpendicular or ‘skewed’. The shift between the actual pointing and the pointing
perpendicular to the flight path may exceed the width of a typical azimuth antenna
radiation pattern. For ERS-1, this value is close to 0.3◦, which is much smaller than
the 10◦ skew.

For different radar satellite projects, the engineers may or may not seek to satisfy
the condition of perpendicular pointing. In the case of the ERS-1 and ALMAZ satellites
(Table 3.1), the attitude of the instruments is controlled in such a way as to minimize
the deviation from perpendicular pointing. This minimization requires an attitude law
that varies according to the satellite’s position on its orbit. The apparent velocity of the
target observed by the radar is a combination of the velocity of the Earth’s rotation and
the orbital velocity of the satellite. Observation satellites never follow an equatorial
orbit; they cross the equator and ascend as far North as the inclination of their orbit
will take them (the inclination of an orbit is roughly equal to the maximal latitude
reached by ground projection of the satellite’s trajectory, whether to the North or to
the South). They then fly back down to the equator, crossing it with an angle opposite
to that of the northbound trajectory, before arriving at their extreme Southern point
and starting the cycle again. To simplify, let us imagine a satellite whose inclination
is 90◦ (a purely North-South trajectory). This satellite crosses the equator at a right
angle when climbing towards the North. Its orbital velocity (�v), of approximately
7000 m·s−1 is combined with the rotational velocity of the Earth at the equator (�vrot),
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which is 463 m·s−1. To achieve pointing perpendicular to the resultant velocity, the
antenna must be pointed slightly forward, with an angle αp of 3.8◦ (whose tangent is
equal to the ratio of the velocities) (Fig. 2.9). When crossing the equator southbound,
the antenna will have to be pointed at the same angle but backwards. It is only when
crossing the poles that the pointing will be perpendicular to the plane of the orbit. For
non-equatorial orbits, maintaining perpendicular pointing requires the use of an attitude
control law for the entire orbit. For most satellites, this law is based on an estimate
of the satellite’s attitude provided by dedicated sensors. This method is limited by the
accuracy of the attitude sensors. Alternatively, the attitude can be controlled by the
radar. In this case the attitude is maintained through a real-time estimation of the ‘mean
Doppler’1 calculated from the radar data. This was the system used for the ALMAZ
satellite. The mean Doppler effect perceived by the antenna should be zero when it
is observing homogenous terrain perpendicularly to its flight path. Even if the radar
data have not been azimuth processed at this stage, the positive Doppler effects from
the leading edge of the zone illuminated by the antenna are compensated for by the
negative Doppler effects created in the trailing part of this zone.

Fig. 2.9 Forward antenna off-pointing to compensate for the effect of the Earth’s rotation to
ensure zero mean Doppler acquisition (case of an ascending orbit).

The effect of the spacecraft’s attitude on the perpendicularity of the observation
depends principally on two of the three attitude angles (Fig. 2.9): the yaw (motion in
the plane (x̂, ŷ), on either side of ŷ) and the pitch (motion in the plane (ŷ, ẑ) on either
side of ŷ). The influence of roll (motion in the plane (x̂, ẑ) on either side of ẑ) is usually
negligible. The relative importance of yaw and pitch depends on the radar’s incidence
angle. The importance of pitch increases with the verticality of the line of sight. A

1‘mean Doppler’ and ‘Doppler centroid ’ are equivalent expressions.
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horizontal line of sight is not possible in space borne radar; airborne radar, however,
can come close to achieving a horizontal line of sight and, in this case, only yaw is
significant. The value of mean Doppler fm is given by:

fm = 2(�s− �a) · �v
λR0

(2.40)

where �a is the vector representing the central position targeted by the antenna when
the satellite is at position �s with velocity �v. We can obtain a value for a dimensionless
mean ‘reduced’ Doppler fmr, after dividing by the azimuth frequency fa:

fmr = 2(�s− �a) · �v
λR0fa

(2.41)

This is the value that we seek to extract from the radar data.

2.3.3 Doppler locking

Synthetic aperture radar processing requires the central azimuth position, which corre-
sponds to the maximum of the antenna pattern. As we saw in Sect. 2.2.5, the azimuth
phase distribution can be expressed in several ways – as a function of the time, of
the position on the azimuth axis, of the azimuth sample number or of the reduced
frequency, where the last two are dimensionless. To the small angle approximation
(Fig. 2.7), the angle�α ≈ kpa/R0 = λfafr/2/v is also a potential description variable
along the track. We thus have:

�φa ≈ 2π · v
2t2

λR0
= 2π · x2

λR0
= π · k

2

Na
= π ·Naf 2

r (2.42)

In addition, we need to know in which interval the phase distribution will be
applied, either {t1; t2}, {x1; x2}, {k1; k2} or {fr1; fr2}. For example, for centered pro-
cessing (zero mean Doppler), and using sample number representation, the interval is
(cf. Sect.2.2.5.1): {−Na/2;Na/2}. In the general case, the antenna beam is not strictly
perpendicular to the relative motion of the targets on the ground. In order to determine
the azimuth orientation of the antenna (i.e., the angle ζ of Fig. 2.8(b)), and conse-
quently the position of the center of processing, we can use the radar data expressed in
the frequency domain. The goal is to obtain the shape of the antenna radiation pattern,
which gives a weighting to the targets as a function of their distance from the center
of the radiation pattern (where gain is maximal). To obtain the shape of the antenna
radiation pattern, we cannot use variables in the time domain, because for every target
at the maximum point of the radiation pattern there are others which enter or leave and
all these contributions are merged. In other words, each sample in the time domain
contains contributions from targets in every possible position of the radiation pattern.
In contrast, if we apply a Fourier transform to the azimuth data, the data will be ranked
by frequency, meaning that they will be distributed according to the derivative of their
instantaneous phase. Even if two targets have not crossed the antenna radiation pattern
at the same time, their contributions to a given point on the antenna radiation pattern
will be located at the same point in the frequency analysis. The amplitude of this point
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must therefore reflect the shape of the antenna radiation pattern. This can be seen in
Fig. 2.10, where several lines of data, after conversion into azimuth frequency, have
been summed quadratically. We can also see the disadvantage of representation by fre-
quency: its ambiguity. The position of the maximum of the response is only known to
an integer multiple of the azimuth sampling frequencyfa (the pulse repetition frequency
in the time domain leads to periodicity in the frequency spectrum, Sect. 1.4.6). At the
point of minimum amplitude in Fig. 2.10 the aliased edges of the antenna radiation
pattern, actually separated by fa , overlap and combine with a ‘floor’ of white noise.

Fig. 2.10 Doppler azimuth spectrum of a SAR image (case of a non-zero mean Doppler).

2.3.4 Mean Doppler (or Doppler centroid ) estimation

A classic procedure for establishing the mean Doppler consists in calculating the
quadratic mean of Fourier transforms in azimuth, with lengths greater than the number
of points necessary for synthesis. This precaution is taken to ensure that the contri-
butions of the majority of targets involved are complete. Otherwise, there is the risk
of a very powerful target biasing the measurements. (This could occur if it was only
in the field of vision for a part of its passage through the antenna radiation pattern).
We then determine the maximum of the resulting spectrum, which provides the mean
fractional reduced frequency fmrf , located between −0.5 and +0.5, whereas the real
mean reduced frequency is equal to fmr = fmrf + n, where n is an integer.2

2The azimuth frequency bandwidth generally corresponds to a width of several kilometers on the ground
(i.e. the beamwidth in the azimuth direction). It is possible to determine n from the satellite’s attitude, if its
accuracy induces a pointing error that is less than this beamwidth. We will see, however (Sect. 3.3.5), that
the integer n can also be determined from the radar data alone.
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However there is a faster and simpler method for measuring the mean Doppler by
calculating the correlation between neighboring points. Let I(m, n) be the complex
number representing sample n from the raw data resulting from pulse number m (m
represents the line number, n the column number). The correlation τ is approximated
by:

τ =
i=long∑

i=1

I(m, i) · I∗(m+ 1, i)
√
I(m, i)2 · I(m+ 1, i)2

(2.43)

The value of long may be lower than the number of samples of the pulse, depending
on whether the correlation is estimated locally or globally in range, and on the accuracy
required: the accuracy of the estimate will depend on the number of points used. Hence,
the correlation can include the contribution of neighboring lines, i.e. by line m + 1
combined with m+ 2, m+ 2 combined with m+ 3, etc. This way of calculating the
correlation is much faster than calculating a Fourier transform because it is proportional
to the number of points of raw data processed.

We shall now show that the phase φτ of τ is the estimation of the mean reduced
Doppler frequency of the data multiplied by 2π: fmr = θτ/2π. At the same time, its
modulus |τ| is characteristic of the degree of similarity between neighboring lines.
This modulus contains information about the noise affecting the signal.

To calculate the azimuth data spectrum, we perform the Fourier transform in
azimuth of the raw data and then calculate the square of the modulus (possibly averaged
over several lines). This modulus squared is none other than the Fourier transform of
the auto-correlation of the raw signal in azimuth (cf. Sect. 1.4.5.5). Fig. 2.10 shows an
example of this result. It can be almost perfectly modeled by adding a constant and a
cosine function whose period equals the length of the spectrum. In terms of frequency,
the constant represents the zero frequency and the cosine the first frequency (i.e. the
lowest). The constant will therefore be the first term of the Fourier transform of the
spectrum and the amplitude of the cosine, the second. But since the spectrum is itself
the Fourier transform of the auto-correlation, the second term of the auto-correlation,
which corresponds to a shift of 1, describes the cosine. More precisely, if wn is the
level of the noise andws that of the signal, the amplitude of the cosine is α ·ws, where α
is a coefficient which depends only on the azimuth oversampling selected by the radar
design. α is therefore constant if the antenna’s geometry, the kinematics of the image
acquisition and the frequency fa do not change. Under these conditions:

|τ| ≈ α · ws
wn + ws

(2.44)

A typical value of α is 0.3.
Finally, the phase of τ expresses the way in which the cosine function is phased

in Fig. 2.10, and is therefore characteristic of the mean reduced Doppler frequency:

fmr ≈ φτ

2π
(2.45)
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The accuracy of the estimation of this frequency is a function of the similarity of
neighboring lines and therefore of the value of |τ|. If this latter is close to its nominal
value (≈ 0.3), the estimation is highly reliable. If not, then either the signal to noise
ratio is poor (for example, wn ≥ ws), or the lines used are not in fact neighbors. The
algorithm can therefore also be used to detect missing lines in the raw data. When
even a single line is missing, we actually compare a line to a neighbor offset by two
pulses. The similarity measured by |τ| therefore becomes very low (the lines are almost
independent). This makes it impossible to distinguish between one missing line and
two or more missing lines.

2.3.5 Mean reduced Doppler estimation (integer part)

It is possible to calculate the integer n (Sect. 2.3.4) using only the radar data. We use
a process involving two sub-images (also called sub-looks) created from the edges
of the antenna radiation pattern (sub-look generation is explained in Sect. 3.2.5). To
make this clear, let us assume that the fractional mean reduced frequency is fmrf . In
the frequency domain, the two sub-looks are centered on the reduced frequencies:
fmrf − 0.25 and fmrf + 0.25. Each sub-look is processed on a quarter of the available
azimuth frequency range, i.e. between fmrf − 0.375 and fmrf − 0.125 in the case of
the first sub-look.

If the integer part of the mean reduced frequency is n1, the sub-looks will be
corrected for range so that they appear to be at the range of ‘zero Doppler’. This
correction, which is assumed to be constant within an entire sub-look, will be:

µ1 = Na

2Q
(fmrf − 0.25 + n1)

2 (2.46-a)

and:

µ2 = Na

2Q
(fmrf + 0.25 + n1)

2 (2.46-b)

After these corrections, the two sub-looks will appear to be at the same range,
that of the closest point of approach. However, if the processing is carried out with an
erroneous integer part n2 of the mean reduced frequency, the corrections will also be
erroneous and will be:

µ′
1 = Na

2Q
(fmrf − 0.25 + n2)

2 (2.47-a)

and :

µ′
2 = Na

2Q
(fmrf + 0.25 + n2)

2 (2.47-b)

The sub-looks will therefore be shifted in range by a number of pixels �k equal to:

�k = (µ1 − µ′
1)− (µ2 − µ′

2) (2.48)
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or:

�k = Na

2Q
(n2 − n1) (2.49)

In the case of ERS-1, the coefficient Na/2Q is usually 2.5, so that a shift of one
in the estimation of n produces a shift of the sub-looks of 2.5 pixels in range. This
is easily detected by correlating the sub-looks as it is only necessary to distinguish
between cases where the shift is −5,−2.5, 0, 2.5 etc, (since n2 − n1 can only be
an integer). It may seem that since the integer part of the reduced frequency is not
known when the sub-looks are being processed, their image quality will be poor. In
reality however, the sub-looks are perfectly acceptable because of the narrowed azimuth
processing window. If we take the case of sub-look 1, the values of the range offset
(called migration) at the edges of the processed bandwidth are, with the value n1:

µinf1 = Na

2Q
(fmrf − 0.375 + n1)

2 (2.50-a)

and:

µsup1 = Na

2Q
(fmrf − 0.125 + n1)

2 (2.50-b)

and with the value n2:

µ′
inf1 = Na

2Q
(fmrf − 0.375 + n2)

2 (2.51-a)

and:

µ′
sup1 = Na

2Q
(fmrf − 0.125 + n2)

2 (2.51-b)

If we process the n1 case using n2, the sub-look 1 will be spread in range by a
number of pixels �k equal to:

�k = µinf1 − µ′
inf1 − (µsup1 − µ′

sup1) = Na

4Q
(n2 − n1)

2 (2.52)

The sub-look will therefore be spread over a range corresponding to a degradation in
range resolution less than the range offset between the two sub-looks. In our example
with ERS-1, the spread in range is equal to 1.2 range pixels.

We have created two sub-looks separated by one half of the frequency bandwidth,
each made up of one quarter of the frequency bandwidth available in the data. We
could have chosen a larger offset between the central frequencies of the sub-images,
in order to maximize the offset in range between the two sub-looks caused by an error
of n. We could also decrease the frequency width used to process the sub-looks, in
order to reduce their spread in range. Each of these possibilities may introduce more
disadvantages than advantages. If we separate the sub-looks any further in frequency,
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they will appear on parts of the antenna radiation pattern where the ambiguity is very
high (cf. Sects.3.7 and 3.13) and where the signal to noise ratio is low (Fig. 2.10). If
we reduce the frequency width of the sub-looks, we will force the algorithm to function
with a smaller fraction of the energy of the data, which may degrade the correlation
between the sub-looks.

2.3.6 Range migration

Range and azimuth processing are not as independent of each other as we might hope.
Variations in range between the target and the radar produce not only the phase distri-
bution that we use for the processing, but also an offset in range that can reach several
pixels. In other words, after range compression processing (Sect. 2.3.7), the different
contributions in azimuth of a given target do not fall in exactly the same range cell
(Fig. 2.11). The azimuth phase distribution can tell us the extent of this effect if we
divide it by 2π and by Q, the ratio of the radar carrier frequency fc to its sampling
frequency fd . More precisely from Eq. (2.42), which expresses the variation of the
round trip phase as a function of the position of sample k relative to the closest point
of approach, we can determine the corresponding variation in range by:

�R(mig) = λ

2
· k

2

Na
(2.53)

Fig. 2.11 Position of the different contributions of a given target after range compression (case
of an acquisition with zero mean Doppler).
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By definition, the migration µ(k), expressed as a number of pixels, is equal to the
ratio of �R(mig) to twice3 the length of a range pixel pd (sect. 2.2.3.):

µ(k) = �R(mig)

2pd
= λ

2pd
· k2

2Na
= fd

fc
· k2

2Na
= k2

2QNa
(2.54)

or, as a function of reduced frequency:

µ(fr) = Naf
2
r

2Q
(2.55)

These equations provide a very simple way of obtaining the order of magnitude
of migrations. A typical example from the ERS-1 satellite, whose antenna is turned
slightly forward and which observes between the reduced frequencies 0 and 1, leads to a
migration range comprised between 0 and 2.5 range pixels (for this we take a realistic
value of Na = 1400). Considerable migration can occur in a satellite which is not
maintained at zero Doppler. In the case of the J-ERS satellite (for which Q = 74.67),
observation between the reduced frequencies 1 and 2, withNa = 3850, gives migration
between 25.8 and 103. Even if we only consider the variation of the migrations across
the width of the azimuth processing we still obtain 77 range pixels.

Fig. 2.12 Linear and parabolic parts of the range migrations.

A distinction is sometimes made between linear and parabolic migrations (Fig. 2.12).
This distinction between two components of the same phenomenon comes from the
processing algorithm. The linear part of the migrations can be dealt with during the

3The factor 2 takes account of the round trip, which is already incorporated in �R(mig).
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range processing, whereas the parabolic part must wait until the azimuth processing
begins. The amplitude of the parabolic part is usually much lower than that of the lin-
ear part. In the case of our example with the J-ERS satellite, the maximum parabolic
amplitude is given by the value of the migration at the center of the azimuth analysis
window (fr = 1.5 for our example) less the average value of the extreme migrations,
resulting in a value of −19 pixels. In the general case, the strictly parabolic part µp of
the migrations can be calculated by:

µp = Na

2Q
·
[(

fr1 + fr2

2

)2

− f 2
r1 + f 2

r2

2

]

(2.56)

Qualitatively speaking, what is the impact of an error in migration processing?
There is an effect in range and in azimuth. In range, there is a spreading effect:
during azimuth processing, if an incorrect migration leaves the contribution of a point
spread across five range pixels: the range resolution will clearly be degraded by a
factor approximately equal to five. What is more surprising is the fact that the azimuth
resolution will also be degraded by a factor of five. This is because of the actual
bandwidth ‘seen by the target’ in azimuth: instead of remaining on the same line
during azimuth processing, the contribution of the badly compensated target will drift
across five azimuth lines. The frequency width of this contribution on each azimuth line
will therefore only be one fifth of the azimuth processing frequency width, resulting in
a degradation of the azimuth resolution by a factor of five.

2.3.7 Range processing

The range of targets is obtained by sorting the echo of each pulse as a function of its
time of return. It is therefore linked to the sampling frequency of this echo fd . The
pulse duration also needs to be approximately the same as the sampling period4 1/fd .
In the world of signal processing, we know that a short pulse with a typical duration of
1/fd has a typical frequency bandwidth fd (Sect. 1.4.5.1). It leads to a spatial resolu-
tion in range of rd = c/2/fd . For technical reasons however, it is difficult to create a
very short pulse (whose duration should be approximately 50 ns for a radar like ERS-
1) that has the quantity of energy necessary to distinguish the targets from thermal
noise, a quantity defined by the radar equation (Sect.3.2). It is therefore preferable to
create a much longer pulse, which contains a frequency bandwidth at least equal to
fd (the sampling frequency must remain slightly greater than this bandwidth, in order
to satisfy the conditions of Shannon sampling, Sect.1.4.7). This long pulse includes
a phase modulation (Sect.3.5.1.1), known as a ’chirp’ which is very similar to that of
the radar signal in azimuth, with the difference that it has a constant amplitude and
that it is ’artificial’, whereas the phase modulation is ’natural’ since it is caused by the
kinematics of the image acquisition.

4 pulse creates uncer-
tainty about the measurement of the duration of the round trip and consequently makes it pointless to have
any sampling period finer than Tpulse.
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More precisely, this gives a pulse phase distribution:

�φd(t) = πρt2 (2.57)

where ρ is a frequency rate expressed in Hz· s−1 (or in a similar manner in Hz2). In
other words, if Bd is the modulation bandwidth and Tpulse the duration of the long
pulse, ρ is given by ρ = Bd/T

pulse.
As in azimuth processing, it is preferable to use dimensionless coefficients based

on the number k of range samples, which are the values which will actually be manip-
ulated. We shall call this dimensionless factor, which is characteristic of the quadratic
phase distribution, the ‘range compression rate’ and note it Nd . Unlike Na, which is
always positive, Nd can be either positive or negative depending on the choice of the
radar’s designer. Starting from Nd = f 2

d /ρ , it follows that:

�φd(k) = π · k
2

Nd
and thus : �φd(f) = π ·Nd · f 2

rd (2.58)

The quantity f is now the frequency variable of the FT applied to the radar signal
in the range direction, and frd is its reduced frequency (frd = f/fd). As in azimuth
processing, the length of the pulse, expressed as a number of samples, is usually Nd .
In the case of the ERS-1 satellite, Nd equals 704.

Range compression introduces an extra calculation stage in the processing of raw
data but this disadvantage is now negligible as computers progress. The use of a long
frequency-coded pulse has other benefits because it increases the convolution of the
image. The filtering core, which is restricted to a few thousand points in azimuth
processing (1300 for ERS-1), is more than a million (1500 times 704) with range
compression. It also limits the risk of a powerful target saturating the raw data. A
source would need to have more energy than the approximately one million neighboring
targets, rather than just a few thousand (Sect. 2.3.9). Since it is more convoluted, the
raw data is less sensitive to transmission losses or to interference from ground sources.

The ALMAZ satellite is a notable exception to the principle of range compression.
The engineers succeeded in making it transmit 60-ns pulses with peak power of 270
kW. This technical tour de force meant that range compression was no longer necessary.
Despite their quality, images from ALMAZ are much more difficult to re-sample be-
cause of the on-board pre-processing, which makes it difficult to exploit them through
further processing, in particular for coherent applications such as interferometry.

2.3.8 Saturation effects

Radar data can only be recorded over a certain dynamic range. If a target is exception-
ally powerful, it can saturate the receiver, meaning that it pushes the radar amplitude
to the maximum of the ADC receiver. Beyond this maximum amplitude, the receiver
will remain blocked at plus or minus that value. The powerful target will therefore
be recorded as a ’bang-bang’ phenomenon, with the detected signal swinging from
the maximum positive value to the maximum negative value on the real and imaginary
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parts according to the value of the phase. This recording is the equivalent of a recording
on one bit. It reduces the quality of this powerful signal after processing, because the
phase is only known to modulo π/4 . For targets sharing the data with the saturating
target however, this saturation is more dramatic. These targets have no influence on
the raw data and therefore disappear from the final image. After processing, the satu-
rating target seems to lie in the center of a black line in azimuth, if the pulses are not
chirp-coded (an unusual case arising more frequently in airborne than in space borne
radar). This phenomenon can be seen in the series of images shown in Fig. 3.28 of
Chap. 3 (the dark slightly parabolic arc), and is discussed in Sect. 3.15.4. If the pulses
are chirp-coded, the saturating target seems to lie at the center of a dark halo, because
it ‘extinguishes’ all the targets that share its raw data in azimuth or range.

2.3.9 Interference effects

As we shall see in Sect. 3.2, a radar’s link power budget is proportional to the fourth
power of the observation range. If an active instrument on the ground transmits energy
in the frequency band observed by the radar, this energy will be attenuated by only the
square of the observation range. The energy situation therefore favors the interfering
agent. This property is exploited by transponders, which are active instruments used in
radar calibration. In energy terms, it is easy to jam imaging radar however. Space borne
systems can be easily jammed if the spacecraft orbit is known because the jamming
device can be pointed straight at it if the radar’s frequency band is known. Then all the
jamming energy can be transmitted into the frequency window used by the radar. The
fact that jamming is relatively simple is a major problem for military radar observation
systems. We shall not pursue this issue here, as is it outside the scope of this book, other
than to say that partial technical solutions exist which are both complex and costly.
We shall, however, look at a few cases where the interference is not malicious but the
result of unintentional radio pollution from ground instruments.

Fig. 2.13 (a) SIR-B image of Saudi Arabia corrupted by an interfering signal from the ground;
(b) Restored SIR-B image.

A typical example of interference in raw data is illustrated in Fig. 2.13(a). The
influence of the ’alien’ signal can clearly be seen imprinted on this extract of an echo.
The sample comes from the SIR-B system which samples in the real domain. As the
polluting signal has a completely different shape from the signal expected by the radar
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processing algorithm, the interfering energy has spread through the image in the form
of characteristic bands or lines as a result of the processing. If we do not have enough
knowledge of the interfering signal to be able to subtract it, we can simply eliminate
those parts of the signal that contain the interference, which can be easily identified
using the results of local statistical analysis (such as the value of the signal’s standard
deviation over a few dozen points). The parts that are eliminated can be replaced either
by noise-like random values or by zeros (Fig. 2.13(b)). Since the number of samples
influenced by the interference is usually very small in the raw data, their elimination
has no influence on the quality of the final image, which is completely restored. As
an example, some of the heavily corrupted images in the SIR-B data are fully restored
after destruction of only about 0.2% of the raw data chosen on simple statistical crite-
ria. Visual inspection showed that only 0.1% of the data were actually affected. It is
preferable to destroy a few ‘not guilty’ data than to risk leaving corrupted data.

2.3.10 Motionless radar approximation

Throughout this book, we shall deal with radar as though it were stationary. This
‘stop and go’ hypothesis supposes that the radar instrument does not move between
the moment when the pulses are transmitted, and when echoes are received by the
instrument after being backscattered from the ground. In an airborne system traveling
at 100 m·s−1 observing targets at a range of 20 km, the aircraft can only advance
by 13 mm during the time necessary for the round trip by the wave traveling at the
speed of light. This approximation is therefore fully justified because the movement
of the aircraft is considerably less than the size of an azimuth pixel. In the case of
a space borne system, the observation range can be as long as a thousand kilometers
and the velocity of the satellite about 7 km·s−1. The return time is so great that the
echo received just after the pulse transmission does not come from that pulse but from
one that was transmitted several cycles earlier (Sect. 2.5.2). For the ERS satellite, ob-
servation from 850 km implies a round trip lasting 5.7 ms, whereas the time elapsed
between each pulse transmission is about 0.6 ms. The echo of the first pulse trans-
mitted is therefore received after the transmission of the tenth! Right after the radar is
switched on, this characteristic can be used to measure noise before the return of the first
echo.

Let us look at some of the consequences of this stationary radar hypothesis. Com-
pared to the position of the satellite at the moment the pulse is transmitted, the zero
Doppler position of the target (meaning its line of sight perpendicular to the velocity
of the satellite or its closest point of approach) will occur further along the satellite’s
path. If we draw a very long triangle formed by the target C seen at the closest point
of approach and the positions A and B of the satellite at the moments of transmission
and reception for a given pulse, we can see that the position of the target corresponds
to AC = BC and that it can therefore be calculated in a plane that includes the middle
I of segment AB and perpendicular to the velocity of the satellite at I.

To put it another way, the delay τ of a target located at a range R relative to the
position A of the satellite at the moment of transmission is equal to 2 R/c . The number
of pixels in azimuth crossed during this period is 2faR/c. Unfortunately, the number is
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not constant across the width of the image because it depends on R1. It is therefore not
just a question of bias or shift of the origin of time but of image distortion. If we consider
this effect as a bias at the first observation range R1, we will obtain a slanted image
whose deviation at the last observation range R2 will have become 2fa(R2 − R1)/c ,
measured in number of pixels in azimuth.

Now, the range ambiguity condition (Sect. 3.7.1) gives us a mathematical inequal-
ity: fa ≤ c/2(R2 − R1) or, equivalently, χ/fd ≥ 2(R2 − R1)/c. Distortion arising
from the stationary radar hypothesis will therefore always be less than the value of one
azimuth pixel. In the case of ERS, the useful listening time corresponds to 5000 range
pixels, so the distortion is 5000/χ , or 0.44 pixels. This distortion is similar to that of
an additional Doppler effect and can be corrected in the same way.

2.4 SAR Synthesis algorithms

In this section, we discuss the commonest processing techniques, whether high-quality
or simplified, with an explanation of their architectural choices. Each processing
technique accepts a different trade-off between quality of result and investment in cal-
culation. The processes which aim for the highest quality make advanced applications
such as interferometry possible because they preserve the signal’s phase.

2.4.1 A common preliminary step, range compression

The first step in radar processing is usually range compression. The goal is to obtain
an adequate range resolution using the frequency content of long coded pulses. The
processing is straightforward as it is (1) one-dimensional, with the lines processed
independently from each other, (2) sequential, because the lines are processed in their
order of arrival and the computer only needs enough memory to store one line at a
time (and the various products of intermediate calculations) and (3) stationary, because
the range compression filter, also known as the ’range replica’ has the shape of the
transmitted pulse, and remains absolutely identical for all points on a line and for all
the lines.

Given these conditions, the best processing technique uses the Fast Fourier Trans-
form (Sect. 1.4.8). The signal of a line s(t) is transformed, resulting in its Fourier
transform S(f), which is then multiplied either by the conjugate of the Fourier trans-
form of the chirp, (the chirp is characterized by its phase distribution and a generally
constant amplitude), or directly by the frequency expression of the chirp (Sect. 3.5.1).

It is worth noting that chirp responses are available in the telemetry data of certain
radar satellites. It is possible to use them for range processing but as far as we know
there is no advantage in doing so. Some satellites (such as ALMAZ) and airborne radar
systems do not use range compression or perform it on board using analog systems
(surface acoustic wave frequency mixers) or digital systems, while others (such as
ERS) give a range of choices. In Sect. 2.3.8 we have seen the advantages of processing
from range uncompressed raw data.
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It is possible to determine the mean Doppler of the data before performing the
range compression. It is then possible to predict the amplitude of the range migrations
that the processing will need to take into account. The migrations depend on the
range and thus vary across the image. They cannot be fully corrected during the range
processing but their amplitude can be reduced. Indeed, the average value of the linear
shift from one line to the next can be compensated for by a shift applied during the
range processing. Let us look again at the J-ERS example in Sect.2.3.6 and assume
that the azimuth rate of the image Na changes from 3,700 to 4,000 from the near
range to the far range. Pursuing our previous example, when we process between
the reduced frequencies 1 and 2, the value of the migration (range offset during the
azimuth processing) at near range will increase from 24.77 to 99.1 cells, whereas this
increase will be from 26.78 to 107 at far range. Scaled to the respective length of the
azimuth responses, the linear part of the migrations will be 0.0200 of a range cell per
azimuth cell crossed at near range and 0.0206 at far range. We can compensate for
part of this shift during the range processing: in this example using the mean shift
corresponding to the median range of the image, or 0.0203 range cells per azimuth
cell crossed. In order to implement this more easily we choose a shift value that will
produce an integer rapidly (in this example, 1/50), so that the number of different shift
values will be limited. The integer shifts are easy to perform during range compression
as the fractional shifts are obtained by applying an extra phase ramp in the frequency
domain. To achieve a shift of one range pixel after every m azimuth pixels, we will
apply a phase distribution gradient:

2πφ(k) = 2π
k

Nm
(2.59)

whereN is the length of the Fourier transform used, and k is the range sample number
in the frequency domain (cf. Sect.1.4.4). This gradient or its multiples can be applied
repeatedly to obtain any given shift.

2.4.2 Time or ‘naive’ processing

The most natural kind of radar processing consists in adding the appropriate raw data on
each final point of the desired image, applying phase correction as necessary. For each
position of the satellite or aircraft at the moment of pulse transmission, we calculate
the range and angle relative to the plane illuminated by the antenna. If the range is
between the minimum and maximum range of the radar, and if the point is in the
zone illuminated by the antenna, then the pulse under consideration participates in
constructing the point. We can then resample the raw data locally to create a sample
located exactly at the range of the point (after correcting for the migration). Then we
compensate for the phase of the samples relative to that of the closest point of approach
of the radar (by using the azimuth phase distribution). Aside from the tests that we
have mentioned earlier (which are negligible in terms of computing time), each point
on the ground usually requires that the group of operations (resampling and phase
compensation) be performed N2

a times (Na is the azimuth compression rate).
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Although azimuth time processing is not very efficient, it does have certain advan-
tages which have led us here at CNES to develop a ‘modern’ version of this technique,
whose specific characteristic is that the points are created directly on a geographic grid
with appropriate phase compensation. The final product is therefore a complex image
corrected geometrically in both position and phase. The raw data can be entered into
the application, one file giving the positions of the radar instrument for each line, a
second file giving the attitude of the antenna for each line (the pointing file) and the
geographic grid on which the image will be reconstructed. The advantages are:

• Easy interferometric combination (see Chap. 4) of the results produced by such
processing is possible. Since the phase distributions specific to each orbital track
have been compensated for in their corresponding images, the interferogram is
simply produced by the difference of the phases between the two images. If
the geographic grid includes elevation information, most topographical effects
are also removed from the interferogram. It then contains only the possible
effect of meteorological propagation, effects of displacement, and/or residual
topographical information resulting from imperfect knowledge of the elevation
in the geographic grid used. The number of two by two combinations of radar
scenes increases rapidly with the number of scenes (190 combinations for 20
scenes for instance). It may therefore be more efficient, on sites with a large
number of scenes, to devote more time to processing each scene in order to easily
combine them later.

• All types of super-resolution, whether in azimuth or in range (Sect. 2.7), are
also easily obtained by simply adding two or more images. It is only necessary
to correct the phase of the added images by adding point-by-point the phase
difference observed between each of them and the reference image.

• The special modes are processed with the same software as the standard mode, in
particular for ‘Spotlight’ processing (Sect. 2.5.4.1) which consists in extending
the phase distribution correction to the appropriate number of azimuth samples.

• Data from airborne instruments are processed in exactly the same way as satellite
data because time processing does not require the stationary hypothesis assumed
by the Fourier transform. The processing is capable of dealing with lines of data
stored in random order provided we have correct information on the trajectory
and pointing.

The disadvantages of the time domain architecture are its large requirement for pro-
cessing power and memory. But considering the constant progress in the computing
industry, we are confident that this architecture has a promising future.

2.4.3 Range-azimuth or ‘classic’ processing

Range-azimuth processing is the standard technique for computationally efficient radar
processing. The first stage is range compression, which may involve the total or partial
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elimination of the linear part of the range migration. Azimuth processing starts by
transforming the data into frequencies in azimuth. Azimuth phase distribution is then
applied in the frequency domain before performing range resampling in order to com-
pensate for any remaining migrations. The resampling can be performed using spline
functions or any other classic interpolation tool working on three or four successive
points. These interpolators resample the complex data by working separately on the
real and imaginary parts of the data.

Alternatively, an additional conversion to the range frequency domain and back,
would allow resampling by ‘phase ramping’.

2.4.4 An alternative technique, the �k processor

Observation of the frequency ‘map’ of the raw radar data suggests a different way
of rearranging the data to facilitate processing [Prati, 1992]. We do not intend to go
into the physical paradigm developed by the authors, which is rather complicated, and
comes from processing seismic data. Briefly, this type of processing rescales the data
in the azimuth frequency domain so as to obtain the same parabolic shape regardless of
the range coordinates. Migration correction can then be performed in a single shifting
operation because the parabolic shift value is the same for each azimuth frequency
value.

2.4.5 Subtle distortion, chirp scaling

Another way of managing migration variation as a function of range consists in using
a ‘twisted’ deviation principle by applying a preliminary phase distribution before
transforming to range frequency coordinates [Raney, 1994]. Migration compensation
that varies linearly from the minimum to the maximum range provides a perfect first
order correction. To obtain this, the range data are first multiplied by a phase distribution
having the form πak2 in the time domain (where k is the sample number). As explained
in Sections 1.4.4 and 2.3.1, this quadratic phase distribution has the effect of altering
the frequency distribution of the data. When the data are translated into frequency in
the range direction, this alteration causes a change of scale that makes it possible to
correct the linear part of the variation of the parabolic migration as a function of range.
Range compression is carried out in the same operation, but with a phase distribution
whose coefficient must differ slightly from the nominal coefficient of the range phase
distribution. Once back in the time domain, the data are corrected for a residual phase
distribution resulting from the preceding operations.

Despite these extra steps, the scaling process has significant advantages as a variant
of the range-Doppler algorithm, because it corrects first-order migrations perfectly,
while it only involves multiplications by phase ramps and Fourier transforms, both
of which are simple operations that are optimized for rapid processing in computer
software libraries.
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2.4.6 PRISME architecture, a multistage processing technique

The principle behind PRISME architecture [Massonnet, 1994], developed by CNES,
is based on two observations:

(1) In the azimuth frequency domain, the quality of the contributions to the final
image depends heavily on their offset from the central frequency. Fig. 2.10
shows clearly that the data located at the center of the antenna radiation pattern
has a significant signal to noise ratio (the noise, which we can assume to be
white noise, makes an equal contribution throughout the spectrum). The data
close to the center frequency are not very corrupted by mixing with ambiguous
contributions (Sect. 3.7.4). However, the data located at the frequency transition,
which corresponds to the minimum on Fig. 2.10, shows a signal to noise ratio that
is much lower and which, most significantly, is made up of equal parts of useful
and ambiguous signals. The compensation of parabolic migrations is specific to
each of these contributions. This gives a slight advantage to the useful part by
not fully focusing the ambiguous signal. However, the energy contribution of
the latter is not reduced (Sect. 4.9).

(2) Migration compensation does not require the highest level of azimuth sampling
because, unlike the case with phase, azimuth migrations vary only slowly. The
Q factor (cf. Sects. 2.2.3, and 2.3.6) indicates that we shift much more quickly
from one phase cycle to the next than from one range pixel to the next. Since the
migration and the phase compensation follow the same geometric law, an azimuth
sampling much lower than Shannon’s requirement is sufficient for migration
correction;

These two observations encouraged us to adopt the following architecture (Fig. 2.14):

• The first step is to transform the raw data into the azimuth frequency domain
using a much smaller number of azimuth points than the length of the azimuth
radar response (for example, we would perform a Fourier transform on 128
points). We then choose the half of the azimuth spectrum containing the most
interesting contribution, i.e. the half centered on the maximum of the spectrum
(64 points in our example).

• We then transform the selected data into the range frequency domain, using
range windows of a size compatible with maximum computational efficiency
(for example, windows of 2048 points which each produce one quarter of the
swath in the case of ERS-1.).

• We then perform range compression and migration compensation simultane-
ously. This involves applying the opposite of the range phase distribution ex-
pressed in the frequency domain (Eq. (2.58)), i.e., multiplying the range fre-
quency response by the term exp(−j πNdf 2

rd), modified by the appropriate phase
ramp which will shift the response to the migration value (Eqs. (2.55) and (2.59)).
This operation is possible because we are still in the azimuth frequency domain.
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Fig. 2.14 General diagram of PRISME architecture.

The coarse azimuth sampling is not a problem because working on 128 azimuth
samples rather than 2048 is the equivalent of giving the same range shift value to
16 neighboring samples in azimuth. Since this correction is stationary, the same
migration correction is applied to the whole range being processed (a quarter of
the swath, for instance, in our example).

• We then bring the data back into the time domain by inverse Fourier transform
in range and in azimuth. We now only have half as many azimuth points as in
the raw data. All these operations are called the pre-summing stage.

• We then still have to perform the azimuth compression. This operation is made
easier because we have half the azimuth density which in turn, as a result of
Eq. (2.18), divides the length of the azimuth processing window by four (340
instead of 1360 for ERS data).

This architecture can be adapted by modifying the parameters, such as retain-
ing only a quarter of the azimuth spectrum and thus dividing by sixteen the azimuth
compression rate to be applied. We can also apply a pre-summing stage for range.
When PRISME was being designed, only Fourier transforms with lengths of an exact
power of 2 were used. The use of transforms on different decompositions gives greater
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flexibility for choosing the factor to be used in pre-summing stages, which can be
for instance adjusted to one third or two thirds. PRISME architecture is used in the
Diapason interferometry processing software developed at CNES.

This architecture is very economical in terms of processing power despite an ad-
ditional conversion into the azimuth frequency domain and back. It is also economical
in memory because of the reduced size of the memory block used for the pre-summing
stage and the small size of the final azimuth response.

The disadvantages of this architecture are:

• The use of the same migration compensation value on an azimuth sector equal
to Na/128 (if we assume an azimuth buffer of 128 points).

• The use of the same migration compensation value for a range sector equal to a
quarter of the swath (if we continue the case of our example), which amounts to
accepting a maximum error corresponding to the range migration change on of
the swath.

• The discarding of part of the useful data (Fig. 2.10).

2.4.7 Unfocussed processing, a special case

As we have seen, full radar processing includes range compression, azimuth phase
distribution compensation and migration compensation. In contrast, unfocussed pro-
cessing is a technique for very rapidly obtaining a radar image with lower quality. It
consists in summing a batch of successive echoes for which the phase distribution of the
echo being added is not too far from that of the central echo of the batch whatever the
range. This addition may not include a phase correction since if the phase distribution
differs from an ideal distribution by less than π/2 , we can consider that an addition is
still ’constructive’ for the processing; the scalar product of two vectors separated by
an angle belonging to [−π/2,+π/2] is still positive. The result of this condition is:

�φ(t) ≤ π

2
(2.60)

Or, using Eq. (2.42):

|k| ≤
√
Na

2
(2.61)

2.4.8 A practical example of the unfocussed processing technique

The unfocussed processing technique described in the previous paragraph is not use-
ful for processing real data as these are rarely centered on ’zero Doppler’. We
will now describe an unfocussed processing technique that can be used in all cir-
cumstances. We know that rapid algorithms allow calculation of mean Doppler (or
Doppler centroïd) by analyzing only a few echoes (Sect. 2.3.4). These algorithms
can be used to establish which ’Doppler quarter’ is closest to the mean Doppler,
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i.e. whether the mean Doppler is closest to 0, to 0.25, to 0.5 or to −0.25 in terms
of reduced frequency. Once this is done we process the data, summing the echoes
four by four before any range processing. Let A, B, C, D be four points at the
same range in four successive echoes. If the mean Doppler is close to 0, we sim-
ply form A + B + C + D. If we wish to filter in the neighborhood of 0.5, we form
A − B + C − D. For a Doppler value close to 0.25 we form A + jB − C − jD
and finally, for −0.25, we form A − jB − C + jD. These linear combinations ap-
ply phase ramps to the data in the time domain, so that their azimuth spectrum is
translated while the summation downfilters them. In the preceding operations, there
is no multiplication. Indeed, multiplying a complex point by j is achieved by sim-
ply interchanging the real part and the imaginary part, and changing the sign of the
latter.

We can then apply the simple azimuth processing described in the previous para-
graph to the filtered and zero-Doppler centered data, and the number of points to be
summed, originally equal to

√
2Na , is actually divided by four because of the prelim-

inary grouping described above.
We only perform the range compression at the very end, so that it only needs to

be applied to a reduced number of echoes. Performing the processing in this order
is acceptable here because the simplified azimuth processing changes very little with
range. It is therefore legitimate to apply it even though the data are still spread over
the width of the range pulse. We will therefore only compress one range line every
fifty lines (a typical value for ERS-1), with which we can create an image with reduced
resolution: approximately 200 m in azimuth, and 20 m or more in range (depending
on the amplitude of the migrations, which are not compensated for in this type of
processing). In terms of computing time, it costs only one or two operations per point
of raw data on average.

2.4.9 Another special case, deramping processing

Radar processing by deramping (also called Specan processing) is based on differential
processing with respect to a reference point A. The raw data are then corrected according
to the phase values of this reference point.

The time phase distribution (Sect. 2.2.5) corresponding to the target crossing the
antenna beam is given by the Eq. (2.17), expressed in time, in along-track distance or
in terms of the number of echoes counted from the point of closest approach. These
phase distributions can also be expressed in the frequency domain (Eq. (2.38)).

As we have seen, Eq. (2.38) governs the synthesis when conducted in the frequency
domain, which consists in (1) transforming the raw data into azimuth frequency using
the Fast Fourier Transform, (2) applying the opposite of the initial phase distribution
law, i.e. multiplying the frequency response by the term exp(−jπ · Naf 2

r ), which
eliminates the data’s phase coding and lastly (3) returning to the time domain using
the inverse Fourier Transform.

What would happen if we processed the raw data by first correcting the phase
in the time domain, using a particular target as a reference? Let us take a standard
target A with phase distribution�φ(f), whose point of closest approach gives the time
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origin. Now let us take a second target B whose range at its point of closest approach
is identical to that of the first target, and whose time at its point of closest approach
we will call tc . This time represents a shift along the track with respect to the original
target that we can express as a number of azimuth pixels kc : kc = tc · fa. Equation
(2.17) shows that the phase distribution of target B is therefore:

�φ = 2π
v2(t + tc)

2

λR0
(2.62)

If we assume that the antenna radiation pattern is infinite (meaning that we ignore
any edge effect), we can easily predict the residual phase distribution of target B, if the
phase of the raw data is corrected in the time domain according to the phase values of
the reference target A:

�φr = 2π
v2(t + tc)

2

λR0
− 2π

v2t2

λR0
= 2π

v2(2ttc + t2c )

λR0
(2.63)

If we ignore the fixed phase term (2πv2t2c /(λR0)), which behaves like a constant
offset applied to target B’s own phase (which we may nevertheless have to take it into
account, especially when performing interferometry or polarimetry), we obtain the
distribution:

�φr = 2π
2v2ttc

λR0
(2.64)

If we then apply a Fourier transform to the raw data corrected in this way, we will
obtain for the second target a reduced frequency:

fr = − 1

2πfa
d(�φr)dt = − 1

2πfa

d(2π2v2ttc/(λR0))

dt
= − 2v2tc

λR0fa
(2.65)

This reduced frequency is actually constant, and can be expressed as:

fr = − 2v2tc

λR0fa
= −fatc

Na
= − kc

Na
(2.66)

Since target B’s contribution ’sits’ on a clearly defined frequency sample, as would any
other target, the processing is completed!

The reduced frequency fr is fractional. The Fourier transform is generally per-
formed on N samples, with N ≈ Na. The samples from the Fourier transform have
the same order and spacing as in the time domain. What are the advantages and
disadvantages of deramping?

The main advantage is the shorter calculating time, which is only about half as long
because there is only one Fourier transform. However, there are several disadvantages.
To start with, the domains of targets A and B are not exactly the same, because some
samples of raw data contain contributions from target A and not from target B and
vice-versa. Since the shift between points A and B causes B’s azimuth response to be
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recorded incompletely, the shift must be small with respect to Na. We end up with
a much smaller number of points after this operation than after standard filtering by
Fourier transform, where the only points rejected correspond to the length of the filter.
This disadvantage essentially cancels out the gain in computing time that the method
provides. In addition, the method is non-stationary by nature. Image quality therefore
varies as a function of the azimuth distance between a given point in the image and its
‘deramping reference point’. The corresponding variation in image quality is called
scalloping. Lastly, since the deramping process does not require expressing the data
in the frequency domain, the operations usually carried out in this domain (calculating
mean Doppler, correcting migrations, etc.) must be either abandoned or performed
with other methods.

Why should deramping therefore still be considered when computation costs are
no longer an issue and we have alternative methods? Because in the Scansar mode
(Sect. 2.5.4.2), which is based on collecting discontinuous batches of echoes, the dis-
advantages of deramping are inherent: non-stationary image quality (scalloping) and
partial impulse responses.

2.4.10 A radar processing technique without approximations

Just as nothing prevents us from using the exact form of the range distribution between
the radar and the target, rather than stopping at second order, we can produce a frequency
distribution without approximations. The exact form of the range variation is (Fig. 2.7):

2 · (R(t)− R0) = 2 ·
(
R2

0 + k2p2
a − R0

)
(2.67)

which gives the exact phase distribution:

�φ(k) = 4π

λ
·
(√

R2
0 + k2p2

a−R0

)
(2.68)

that, when expressed as frequency, gives:

f(k) = − 1

2π

d

dt
{�φ(k)} = − 1

2π

d

dk
{�φ(k)}dk

dt
(2.69)

We find that the quantity dk/dt is fa, the pulse repetition frequency. Hence:

f(k) = −fa d
dk

{
2

λ
·
(√

R2
0 + k2p2

a−R0

)}
= −2fa

λ
· kp2

a√
R2

0 + k2p2
a

(2.70)

With this formula we can find k corresponding to the frequency f(k) by:

λ2R2
0f

2(k)+ λ2k2p2
af

2(k) = 4f 2
a k

2p4
a (2.71)

Or:

k2 = λ2R2
0f

2(k)

4f 2
a p

4
a − λ2p2

af
2(k)

(2.72)
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We can therefore compensate for the phase distribution �φa(k) = π · k2/Na
in the frequency domain for any frequency f(k) by substituting the corresponding
frequency for k2 . Finally, in terms of reduced frequency we have to compensate for
the distribution:

�φa(fr) = πλ2R2
0f

2
r (k)

[4p4
a − λ2p2

af
2
r (k)] ·Na (2.73)

Note: The quantity λ2p2
af

2
r (k) appears as the correcting factor compared 4p4

a to in
the equations laid out in Sect. 2.2.5, where the approximation 2·(R(t)−R0) ≈ k2p2

a/R0

is made. This is fully justified for ERS-1, but may not be valid in other contexts (for
example in the case of very high resolution imaging or for acquisition modes using a
large off-pointing angle).

2.5 System constraints

2.5.1 Radar system design

Radar system design must respect strict limitations which taken together leave very
little freedom to the designer. These constraints include legal issues concerning the
choice of authorized frequencies and the corresponding bandwidths, geometry issues
linked to the physical dimensions of the antennas, dynamic issues linked to the laws of
mechanics for orbiting bodies (in the case of satellites) and power issues which govern
the strength of the signal relative to the different sources of noise.

The legal issues are decided at international conferences which fix the wavelength
authorized for radar and their bandwidth as well as the frequencies authorized for
transmitting the data to the ground. These authorizations also cover power flux limits.
These legal decisions tend to change as new techniques are developed, or as different
groups of users gain or lose influence. At the time of writing, synthetic aperture radars
can be designed in the Ku band on 500 MHz around 13.5 GHz, in the X band on
300 MHz around 9.65 GHz (a possibility of extension to over 500 MHz is currently
under discussion), in the C band on 320 MHz around 5.41 GHz, in the S band on
200 MHz around 3.2 GHz (this frequency has the limitation that a narrow bandwidth
must be left untouched in the middle of the permitted band because it is very useful
in radio astronomy) and lastly in the L band on 85 MHz around 1.26 GHz. There
is also the possibility of using in the P band a very small 6 MHz bandwidth around
435 MHz. The bandwidths allocated to each of the frequencies govern the maximum
range resolution that they can attain in range (cf. Sects. 2.3.7, and 3.12.1).

2.5.2 Timing constraints

Optical systems usually possess an array or matrix of detectors for simultaneous ac-
quisition of data from several points on the ground. Radar systems however, with
some exceptions, are intrinsically one-dimensional. They can therefore only listen to
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the specific stream of echoes received by their antenna. This property is the cause of
considerable geometric constraints. The resulting chronology of events linked to the
pulses is called the chronogram.

In the first place, a radar cannot listen while it is transmitting, in order to preserve
its highly sensitive amplifier, designed to detect very faint signals which cannot be
exposed to the kilowatts needed for the transmission. Furthermore, the radar cannot
listen to the echoes of two pulses simultaneously. When it is listening to a given echo,
it is therefore necessary that the echoes from preceding or following pulses concern
points which are outside of the antenna’s ground footprint (the swath width), in the
range direction. In some cases the following pulses may all be in free space where
they produce no echoes (Sect. 3.7.1).

We have here a big difference between airborne and space-borne radar. Airborne
radar, even long range (for example 50 km), receives the most distant response of a
pulse only 0.33 ms after transmitting it. Even if the velocity of the aircraft is 300 ms−1,
it only travels 10 cm during the return trip. There is then no rush about transmitting the
following pulse after completing reception of the first. The only requirement is that
the antenna must be at least 20-cm long.

A satellite 750 km from its target has to wait 5 ms for the return echo, during which
it travels 30 m. As a radar satellite can certainly not carry a 60-m antenna it transmits
several pulses before receiving the first. On the ERS satellite, just after the radar is
switched on, the spare time before receiving the return of the first pulse is exploited for
measuring the noise, because the lines are recorded in each listening period but cannot
yet contain echoes.

For a satellite the antenna range radiation pattern enables us to distinguish between
the contributions of successive pulses, as is done for targets with azimuth ambiguity.
We then speak of targets with range ambiguity.

The range difference of targets observed at the same moment by two successive
pulses is, for the round trip:

�R = c

2fa
(2.74)

Hence, the number of range pixels (of size c/2fd) separating the real image from
the ambiguous image is equal to the ratio between the range sampling frequency and
the azimuth sampling frequency fa. This is the χ factor defined in Sect. 2.2.3.

For any target observed at range R, the radar listens to the echoes of the other
pulses located at ranges R + n�R , where n is an integer. So that these ambiguous
targets make only a negligible contribution to the signal, the antenna radiation pattern
must illuminate only the ground footprint corresponding to a range shift no greater
than �R . This is the range ambiguity condition (Sect. 3.7.1). Expressed as ground
range and supposing that the mean incidence angle is θ, this condition becomes:

�Rs = c

2fa sin θ
(2.75)

This condition about the width of the zone illuminated on the ground (the swath)
goes hand in hand with a phasing condition. Care must be taken that the echo does not
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arrive back at the radar during a transmission period. We could for example require
that the central observation range R corresponds to a time equal to a integer number of
pulse cycles plus a half-cycle, or:

R = c · n+ 1/2

2fa
(2.76)

where n is an integer number and c the speed of light. This condition may require fa
to be changed slightly.

The chronogram is usually designed to exclude the echo from the nadir point
(vertical echo) from the listening window. Although the nadir is generally located
outside the main lobe of the antenna, its echo is very powerful because the radar wave
reaches the ground perpendicularly and is mirrored back to the radar (Sect. 3.7.1). This
can more than compensate for the weak antenna gain in the vertical direction. If H
is the radar’s altitude (Fig. 2.7), the vertical echo appears in the chronogram at time
2H/c−k/fa, where k is the largest integer such that the difference is positive. We might,
for example, decide to force the vertical echo to return at the moment when a pulse is
being transmitted: fa = kc/2H . Alternatively, if this solution is not compatible with
the other constraints, we could design the antenna gain so that it is very small in the
vertical direction (creating a ‘hole’ in the antenna pattern) while also adjusting fa so
that the nadir echo does not merge with the useful echo.

2.5.3 The different types of radar data

There are two main types of numerical representation of radar data, complex or real,
the latter being oversampled by a factor of 2. They correspond to two slightly different
ways of handling the backscattered signal. This signal has a frequency bandwidth Bd
that can be no larger than the range sampling frequency fd and is centered on the carrier
frequency fc. In the first case, the signal is mixed with the carrier, the component at
twice the carrier frequency is discarded, and the remaining baseband signal is sampled
in phase and in quadrature. This gives a series of complex samples whose real part
corresponds to the in-phase sampling while the imaginary part corresponds to the in-
quadrature sampling. Most radar systems use this scheme. For the case of real types,
however, the backscattered signal is mixed with the carrier after its frequency is offset
by one quarter of the frequency bandwidth. This single channel is then sampled, but at
twice the rate (i.e., 2fd whereas complex sampling is performed at fd , Sect. 1.4.7). For
the processing, a real-to-complex Fourier Transform is used to return to the complex
domain. There is therefore very little difference for the user. Concerning system
design, the choice is between one sampler running at twice the speed or two samplers.
Different calibration precautions may also be required.

2.5.4 Tricks for cheating nature

Radar system designers are never short of a trick or two and have conceived several
solutions for getting around the harsh limitations dictated by geometry, physics and
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orbital dynamics. These solutions are very tempting as long as they represent a good
trade-off between the added capacities and the added complexities.

2.5.4.1 ‘Spotlight’ mode
To improve azimuth resolution it is necessary to reduce the length of the antenna (re-
sulting in a corresponding increase in the azimuth antenna crossing time and therefore
Doppler bandwidth) and to increase the frequency fa proportionately (in order to sat-
isfy the Shannon conditions for proper sampling). But this would force us to reduce the
swath to avoid range ambiguities, and therefore to increase the height of the antenna.
In order to conserve the entire swath while improving azimuth resolution, we could
follow the target with the antenna for a longer time than that needed for crossing the
azimuth lobe of a fixed antenna. For this we can either move the antenna so that we aim
at the target well before its point of closest approach and long after we have crossed
it, or get the same result with electronic pointing using programmed phase shifters on
an active antenna (Sect. 1.2.6.1). This procedure is commonly known as ‘Spotlight’
mode (Fig. 2.15(a)), recalling the way an actor can be followed across the stage by a
theatre spotlight.

The signal budget for a given target in Spotlight mode has a significantly larger ob-
served Doppler bandwidth than that resulting from simply crossing the antenna’s lobe.
The overall Doppler bandwidth is approximately proportional to the time during which
the target is observed, because of the time/frequency proportionality (Sect. 2.3.1).
However, this overall Doppler bandwidth remains compatible with the sampling fre-
quency fa because the instantaneous observed Doppler frequency bandwidth is still
tied to the antenna’s lobe which leads to a nearly constant instantaneous frequency
bandwidth. Processing such data requires either the use of ‘time-domain’ architecture
which will naturally take into account the way the signal changes, or a preliminary
stage of ‘spectral rearrangement’ (Fig. 2.15b). After this stage, the data are equivalent
to the data which would have been obtained with a frequency higher than fa (in this
case a magnitude close to 3fa). During spectral rearrangement, each sub-spectrum is
nested inside a ‘larger’ one, around its own mean Doppler, fml when approaching the
target, 0 at the closest point of approach and fmd when leaving the target (left to right
in the diagram). A slight attenuation of the signal may result from this off-pointing,
due to the less than optimal antenna gain in these observation conditions.

The disadvantage of ‘Spotlight’ mode is that it does not allow continuous and/or
stationary data acquisition because the antenna footprint is delayed on the ground
relative to the satellite. It is necessary to stop the observation in order to point the
antenna ahead of the satellite. Thus, long stretches of continuous data can no longer
be acquired.

Far from ‘breaking the mold’ of satellite radar design, Spotlight mode involves
trading one resource, the orbital arc that is used, against another, the available azimuth
resolution for a given antenna geometry and swath. It therefore grants increased flex-
ibility. This mode also has consequences concerning image quality, since ambiguous
azimuth contributions are strongly affected and dispersed by the spectral rearrangement
(Fig. 2.15(b)). They are less focused but lose none of their overall energy. The same
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Fig. 2.15 (a) Principles of Spotlight mode; (b) Spotlight mode spectral recording.
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is true of ambiguous range contributions, because of the increased azimuth compres-
sion rate Na, which more efficiently defocuses points that are not at the appropriate
range.

2.5.4.2 ‘Scansar’ mode
In order to increase the swath width, it would be necessary to increase the antenna
length so as to decrease the frequency fa proportionally. This illustrates a trade-off
between azimuth resolution and swath width. However, most designers want to keep
the possibility of high resolution which requires a relatively small antenna length. The
solution is to use ‘Scansar’ mode, which was put into operation for the first time on
the Canadian satellite RADARSAT, launched in 1995.

This mode consists in processing several sub-swaths simultaneously (Fig. 2.16(a)),
which is achieved by sending successive ‘bursts’ of pulses to each of them, making
sure that a complete sequence of sub-swath illumination does not exceed the lengthNa
of the azimuth processing window. For example, for a four fold ‘Scansar’ (i.e. treating
four sub-swaths) with a mean value of 2000 for the azimuth compression rate, a burst
of 500 pulses will be sent to each of these sub-swaths before restarting the cycle. Since
each sub-swath is revisited after an interval which is less than the time taken to cross
the azimuth antenna lobe, each target contributes to the signal and can therefore be
reconstructed through processing. On the other hand, each target in a sub-swath will
only be seen under a Doppler bandwidth equal to one quarter of the nominal Doppler
bandwidth. This means that the azimuth resolution will be reduced proportionally. In
addition, depending on its phasing with respect to the bursts, the Doppler frequencies
seen by the target will comprise only a portion of the Doppler bandwidth. For example,
a target whose point of closest approach occurs when a burst of pulses is directed at
its sub-swath will see the quarter of the Doppler spectrum around zero Doppler. A
target located between two bursts will see a frequency bandwidth split between 0.5 and
−0.5 reduced Doppler. This difference in configuration causes ‘scalloping’ which can
produce bands of variable radiometry on the image.

There are several basic differences between ‘Spotlight’ and ‘Scansar’ modes
even though both share the principle of a trade-off between resolution and cover-
age. ‘Scansar’ mode has already shown its usefulness in operation. Fig. 2.16(b)
shows a SCANSAR image acquired by RADARSAT over the Mediterranean. The
swath obtained is close to 500 km (compared to 100 km for ERS). Extending the use
of SCANSAR to the field of interferometry is possible, but it requires special precau-
tions, such as making sure that the batches of pulses are phased the same way in the
two images. ‘Spotlight’ mode has only been tested on a small scale with a radar carried
on board the Shuttle (during the SIR-C mission in 1994). More recently, ‘Spotlight’
images have been delivered by TERRASAR-X and Cosmo - Skymed missions. As far
as the technology is concerned, ‘Scansar’ mode requires very rapid commutation of the
antenna in elevation which can only be obtained electronically. ‘Spotlight’ mode only
requires an attitude sweep that can be performed by a traditional antenna. This differ-
ence may become less significant if the use of electronic antennas expands. Finally,
for image quality, ‘Scansar’ mode, like the deramping method, is subject to scalloping.
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Fig. 2.16 (a) Principles of Scansar mode (with 3 subswaths); (b) Scansar/Radarsat image of
Corsica-Sardinia (500 km wide).

2.5.4.3 Other ideas
It is not our intention to discuss in detail all of the ideas that have been suggested for
facilitating the design of radar systems. However, one promising idea is to use an
antenna with rapid-pointing capability to follow the backscattered signal in the swath.
More precisely, a sufficiently wide antenna illuminates the swath without working at
maximum resolution during the transmission of each pulse. The angular position of the
echo as a function of the return time can be known approximately, ignoring topography-
induced variations. This angular position can be followed with full resolution using
permanent and rapid repointing of the antenna. Such a system would certainly be
considerably more complex but would have the potential of higher gain and much
better protection against range ambiguities.

We could also alternate the sign of the range compression rate Nd for each pulse.
Doing this would cause the pulse preceding or immediately following the processed
pulse to be ‘spread’. The first order range ambiguities would therefore be totally
unfocussed (but their energy would remain in the data in the form of ‘noise’). The
second order ambiguities would be processed normally but would be much weaker. In
certain favorable cases, the nadir echo would also be spread, depending on its ambiguity
rank.

Lastly, if we had heavy digital computation on the ground, and large telemetry
capabilities, we can imagine recording the contributions of different parts of the an-
tenna separately, bypassing the ‘natural’ analog combination performed by the antenna.
During ground processing, these different contributions can be reorganized into beams
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pointing at different places, which would break up the ‘one- dimensional’ aspect of the
radar signal that we underlined in Sect. 2.5.2. This ‘computed synthetic beam antenna’
would significantly increase the quantity of recorded data, however, and complicate
on-ground processing. TERRASAR-X, launched in June 2007, offers some of these
capacities as it is able to record independently the data on two sub-apertures.

2.6 Geometry characteristics

2.6.1 A practical example of the effect of range on images

One of the most obvious characteristics of radar imaging is the distortion caused by
range sampling which we have already mentioned in Sect. 2.2.2. In order to explain
this more clearly, we shall evaluate an example in quantitative terms in Fig. 2.17(a)
and the blown-up extract in Fig. 2.17(b).

This image shows the amplitude of a radar image acquired over Paris by the
Russian ALMAZ system, built by the NPO Mashinostroyeniye Company. A study
of this system carried out by CNES in 1991 [3] was fascinating for several reasons.
ALMAZ worked at an unusual wavelength (S band, λ = 9.6 cm ) and the image of
Paris was taken from an unusually high incidence angle of 50◦ on 6 June, 1991. A
satellite like Radarsat is now capable of doing this, but at that time data available from
SEASAT as well as data expected from ERS-1 featured a low incidence angle of 23◦.

The radar observation system was also very original, because it used no range
compression, which required it to transmit an ultra-short pulse (T pulse ≈ 40 ns) with
an extremely high peak power of 270 kW (as compared to 4.8 kW for ERS-1)! Another
technical innovation was that the instrument was carried on board a pressurized orbital
module with a mass of some twenty tonnes, designed to be used as an element of a space
station. Since the instrument was designed for operating in pressurized atmospheric
conditions, it was very different from its Western equivalents. Lastly, the platform
was directly servo-controlled to ‘zero Doppler’ using the data acquired by the radar, an
original attitude control system. This radar system, which fell back into the atmosphere
in 1992, has unfortunately had no successor.

We can take advantage of this nice image of Paris to analyze the radar signal of the
Eiffel Tower. The Tower is made of metal positioned at various angles. It is clearly vis-
ible as a small bright triangle, sharply contrasted, in the middle of the Champ de Mars,
which is darker (Fig. 2.17(b)). It is worth recalling that in an optical image the tower’s
brown color gives much lower contrast. The tower is almost vertical and is subject to
the layover effect described in diagrams given in Figs. 2.18(b) and 2.19. Layover is
the extreme case of ‘foreshortening’, which can be observed on slopes facing towards
the radar (Fig. 2.18(a)). The radar sees the summit of the tower before its base and the
tower seems to lean towards the radar. This effect can reveal the direction from which
the radar is illuminating the target.

The size of a range pixel is equal to pd = c/2/fd (Sect. 2.2.3) where fd is the
range sampling frequency, which is 28.8 MHz for ALMAZ. The range pixel length
is therefore 5.2 m. Since we know the scale of the reproduction of Fig. 2.17(b), we
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Fig. 2.17 (a) ALMAZ image of Paris (overall view) (b) Image of Paris aquired by ALMAZ
(detail, Eiffel Tower area).
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Fig. 2.18 (a) Foreshortening effect; (b) Layover effect.

Fig. 2.19 Layover effect. (a) Modeling the phenomenon on a ‘theoretical tower’; (b) Layover
effect on the Eiffel Tower. Airborne SAR ‘Sethi’ image, C band (resolution: 3 m).

can deduce that the length of the tower is 45 pixels or LT = 234 m. Considering the
diagram on Fig. 2.19(a) and taking into account the incidence angle of θ = 48◦, we
find a height of HT = LT / cos θ or 350 m, fairly close to the actual value of 312 m.

Finally, the image of the same area observed by the airborne ONERA/CNES/Sethi
radar, with a resolution of 3 m (Figs. 2.19(b) and 2.20), helps show Paris in a more
familiar way, and allows us to conduct similar calculations. Apart from the resolution
difference we notice differences in image quality (cf. Sects. 3.13, and 3.14.) to the
advantage of the airborne image.

2.6.2 Equations for geometric positioning

In order to place a point �P of a radar image correctly on the surface of the Earth, three
equations are used:
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Fig. 2.20 ONERA/CNES Sethi image, Paris (resolution: 3 m).

• The range equation which indicates that the range between point �P and position
�S of the satellite is known and equal to R:

| �P − �S| = R (2.77)

• The Doppler equation which indicates that point �P is seen with the Doppler
centroid fm. If �v is the velocity of the satellite and λ is the wavelength used,
then this can be expressed as

fm = 2
(�S − �P) · �v

λR
(2.78)

• The equation for the shape of the Earth giving the norm of �P as the local radius
RE, modified if necessary by the local elevation:

| �P | = RE (2.79)

The geometric interpretation of the combination of these equations is the in-
tersection of a sphere of radius R centered on the satellite, a hyperboloid and
another sphere centered on the Earth (or the center of the osculating sphere used
to describe the surface of the Earth). The intersection of the two spheres, when it
exists, usually gives a circle. The intersection of this circle with the hyperboloid
generally gives two points of intersection located on either side of the satellite
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ground track, i.e. the projection (over time) onto the surface of the Earth of the
vector �S (see Fig. 3.26 for clarification).

The choice between these two solution points therefore depends on whether the
satellite is right-looking or left-looking. Certain satellites such as SEASAT or ERS-1
and ERS-2 were always side-looking (right) in the same direction. The need for
maximum flexibility will lead increasingly to radar satellites offering the possibility of
looking on either one side or the other (as is the case with RADARSAT-2). To indicate
the pointing direction, we introduce the scalar value ε which is 1 if the projection of
vector �P onto the vector �S × �v is positive, meaning it is left-looking. The scalar ε will
equal −1 if it is right-looking.

Once this has been established, we can express the vector �P as a combination of
vectors �S, �v and �S × �v. These vectors are always linearly independent (a satellite is
never traveling straight down!), even if �S and �v are not usually strictly orthogonal. We
therefore have:

�P = α�S + β�v+ γ �S × �v (2.80)

In order to find the vector �P we only need to calculate the coefficients (α, β and γ). By
substitution into the range equation (2.77), we have:

|(α− 1)�S + β
⇀
v + γ �S × �v| = R (2.81)

or:

(α− 1)2S2 + β2v2 + γ2(S2v2 − (�S · �v)2)+ 2(α− 1)β�S · �v = R2 (2.82)

By substitution into the range equation (2.79), we have:

|α�S + β�v+ γ �S × �v| = RE (2.83)

or:

α2S2 + β2v2 + γ2(S2v2 − (�S · �v)2)+ 2αβ�S · �v = R2
E (2.84)

We can subtract Eq. (2.82) from Eq. (2.84) to obtain a simple result:

αS2 + β�S · �v = R2
E − R2 + S2

2
(2.85)

The Doppler equation (2.78) gives the following result:

−λRfm = (�P − �S) · �v (2.86)

or:

−λRfm = ((α− 1)�S + β�v+ γ �S × �v) · �v,
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which is equivalent to:

α�S · �v+ βv2 = �S · �v = −λRfm (2.87)

Equations (2.85) and (2.87) can be used to resolve the system into α and β:

α(S2v2 − (�S · �v)2) = R2
E − R2 + S2

2
v2 − �S · �v(�S · �v− λRfm) (2.88)

−β(S2v2 − (�S · �v)2) = R2
E − R2 + S2

2
�S · �v− S2(�S · �v− λRfm) (2.89)

We can therefore find the value of γ by substitution, using Eq. (2.84), which can
be rewritten:

α(αS2 + β�S · �v)+ β(α�S · �v+ βv2)+ γ2(S2v2 − (�S · �v)2) = R2
E (2.90)

Given equations (2.85) and (2.87), we get:

α

(
R2
E − R2 + S2

2

)
+ β(�S · �v− λRfm)+ γ2(S2v2 − (�S · �v)2) = R2

E (2.91)

Since A = S2v2 − (�S · �v)2, B = (R2
E − R2 + S2)/2 and C = �S · �v − λRfm,

Eq. (2.91) becomes after multiplying both sides by A:

αAB + βAC + γ2A2 = AR2
E (2.92)

Incorporating conditions (2.88) and (2.89), the result is:

(Bv2 − �S · �vC)B − (B�S · �v− S2C)C + γ2A2 = AR2
E (2.93)

B2v2 − 2�S · �vBC + S2C2 + γ2A2 = AR2
E (2.94)

From this we can calculate γ with the help of scalar ε, as a function of the pointing
direction:

γ = ε

A

√
AR2

E − B2v2 + 2�S · �vBC − S2C2 (2.95)

We now know α, β, γ . We have therefore fully calculated the value of �P with the
help of the preceding results, which can also be expressed in condensed form:

α = Bv2 − C�S · �v
A

(2.96(a))

and:

β = CS2 − B�S · �v
A

(2.96(b))
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This process may require iterations when the Earth’s radius RE needs correcting
for a local elevation which itself could be strongly dependent on the position.

Zero Doppler geometry is intellectually simpler. We only need to imagine the
intersection of two spheres and the plane (the plane perpendicular to the flight path
and containing the position of the satellite, Fig. 3.26). This plane is the same as the
degenerate version of the preceding hyperboloid. In practice however we do no more
than simplify the expression for C which does not affect the calculations much.

Instead of finding the direct geometric solution, it is much simpler to solve the in-
verse geometric problem, that is to say: “Given a point P, what are the range/time coordi-
nates in the image?" Using the ‘zero Doppler’ formulation, we only have to find the posi-
tion of the satellite at its point of closest approach to P. This is a ‘classic’ orbital problem
for which solutions have existed for a long time outside of the field of radar imaging.

The equations in the previous section are considerably simpler when Doppler
is zero because the surface of the iso-Doppler is a plane. We can easily reproduce
this situation without error even if the Doppler is not zero. This is because, in radar
coordinates (azimuth and range), the trajectory of any given point forms a parabola.
From our departure point (the mean Doppler used for processing) and the focus (the
processing rate), we can deduce the position of the summit of this parabola and perform
the azimuth and range shifts which will place the processed point at this position. This is
the same position it would have had if it had been observed at zero Doppler by the radar.

Poor knowledge of the Doppler never leads to azimuth and range errors, because
the Doppler used by the processing and not the ‘natural’ Doppler, determines the
position of the target. We can exclude the possibility of an integer rank error on the
Doppler which would have produced a poor quality image and would have been easily
detected due to the resulting major geometric error (equal to the width of the azimuth
processing window). The error therefore comes solely from uncertainty about the
compression rate.

2.6.3 Perpendicular radargrammetry

Two radar images taken from different orbits will generally have different incidence
angles relative to a given point of the terrain. Their respective range pixels, sharing the
same size, will be projected onto the ground with different sizes (Fig. 2.21). Even on
flat terrain, the images will therefore have a different scale. In the event of a change
in elevation, the slope of the terrain will modulate this difference in scale and lead to
a stereoscopic or ‘radargrammetric’ effect, allowing us to reconstruct the topography
from a detailed analysis of the images’ geometric distortions.

2.6.4 Radargrammetry and interferometry

In geometrical terms, radargrammetry is strictly identical to interferometry. Both tech-
niques detect and measure the same geometrical deviations. Interferometry however
(cf. Chap. 4) is less robust and more difficult to implement particularly because the
conditions on incidence angle and Doppler similarity are stringent. It also leads to
an ambiguous result because of fringe wrapping. It is, however, more precise than
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Fig. 2.21 Principles of radargrammetry.

radargrammetry because the phase measurement, which can be significant down to a
millimeter, is more precise than the correlation measurement since the precision of the
latter is typically limited to one tenth of a pixel. This difference in geometric efficiency
generally compensates for the very small stereoscopic baseline in interferometry, com-
pared to that permitted by radargrammetry. One argument in favor of radargrammetry
is that it is unaffected by atmospheric influence. Atmospheric activity (Sect. 4.6.1) on
radar imagery is obviously the same whether we use the image in radargrammetry or
in interferometry. However, its order of magnitude (a few centimeters) is similar to the
path differences measured in interferometry and considerably less than those measured
in radargrammetry. Atmospheric activity is therefore very harmful for the former but
not for the latter.

Let us attempt a more quantitative comparison between the two techniques. Con-
sider a radar observation with incidence angle θ, wavelength λ and a ratio Q = fc/fd
(Sect. 2.2.3). In interferometry, the maximum tolerable deviation between viewpoints
�θ is such that (Sect. 4.5):

tan(�θ) = tan(θ)

Q
(2.97)

whereas in radargrammetry the difference can be on the order of θ. To first order, the
two techniques should have similar results, if the range pixel offset can be sliced as
precisely as the phase offset.
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2.6.5 Oblique radargrammetry

Generally speaking, two radar images taken from different viewpoints will display not
only local range difference but also local azimuth differences. This second effect, which
can be seen even if the two radar scenes are referenced at zero Doppler, may result
from the angle of orbital paths. One might think intuitively that this is an effect very
similar to the backward-forward looking stereoscopic effect created by some optical
instruments, but this would be incorrect. In zero Doppler geometry, any point on the
ground is located in a plane perpendicular to the velocity at a given range, and therefore
on a circle. Each plane corresponds to the time t when the point is at its closest to the
radar. With a single view, we cannot tell where the point is on the circle. With two
views, however, we can if the trajectories, and therefore the planes, are parallel and
if the circles are not concentric (meaning that there must be a stereoscopic baseline,
either for radargrammetry or interferometry). In the current example, the paths are not
parallel. A variation in elevation e of a point on the radar image taken as the reference,
will shift it on the circle of this image (from A to B on the time t plane) but on the
second image, the point will not remain on the same time plane. This means that
the point will change its corresponding time on the second image as a function of its
elevation. In other words, the change in elevation will be detected as an azimuth shift
as (Fig. 2.22).

Fig. 2.22 Geometry of oblique radargrammetry.
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In the case of interferometric processing, the shift in azimuth is not exploited,
but we must compensate for it anyway in order to obtain two perfectly co-registered
images before interferometric combination.

2.6.6 Radar clinometry

An uncommon technique for calculating relief is clinometry, which consists in inter-
preting variations in backscatter on a single radar image as resulting solely from local
terrain slopes. The aim is to derive a topographic map from estimates of the slopes.
This technique has the advantage of only needing a single image. Nonetheless there
are several disadvantages, the first of which is oversimplification in its hypotheses:

• The orientation of the terrain relative to the incident wave depends not only on the
its rotation component in the azimuth direction, the one used by this technique
as the slope in the cross-track direction, but also on the rotation component in the
line of sight direction (where the direction of the rotation is the direction around
which the terrain rotates).

• The reconstruction of the topography from its derivative (the slope) must be
treated cautiously as it is subject to noise.

• Variations in backscatter can arise from factors other than slope (soil moisture,
vegetation cover, etc.).

In short, clinometry gives something like an ‘artist’s impression’ of elevation as a
result of examining the image. Considering that the overall topography of the Earth is
already available, with greater precision than that which clinometry could provide, this
technique is now something of an historic curiosity or, at best, an empirical technique
to be used when only one set of data is available (such as in planetary studies).

2.7 An introduction to super-resolution

Two radar images taken under slightly different incidence angles can be combined into a
single image with better resolution. In order to understand how this is possible, we shall
use a simple diagram in which we see the cross-section of a radar pixel perpendicular
to the flight path of the radar instrument. Let us imagine that this pixel contains two
‘elementary targets’ A and B in any configuration, but not in the same half of the pixel
(Fig. 2.23). These targets, illuminated by two passes of the radar instrument, return
their signals during the first pass along the line of the full arrows, where we assume that
they are summed ‘in phase’ (i.e. their difference in round-trip range 2δR is an integer
multiple of the radar’s wavelength). For the pixel in question, the radar will therefore
receive the signal ‘A +B’. If on its second pass, the radar listens in the direction of the
dotted lines, the distance between A and B will differ from the previous pass by one
quarter of a wavelength, and therefore half a wavelength for the round trip. Targets A
and B will be received ‘in phase opposition’ and, in this case, the value of the pixel
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will be ‘A − B’. If the corresponding pixels for the two passes are added together,
we obtain twice the contribution of A. If they are subtracted, twice the contribution
of ‘B’ is obtained. We have therefore succeeded in distinguishing targets A and B by
creating these two new pixels. This means that we have improved the resolution by up
to a factor of two. We can calculate the typical angular offset�θ corresponding to the
angle between the full and dotted arrows. In the case of the ERS-1 radar satellite, flying
at an altitude of 785 km, twice the size of the range pixel is 279.5 times the wavelength
(5.6 cm in this case), with an incidence angle of 23◦. A and B may be separated by 140
times the wavelength at 23◦. At an angle of 23.043◦ the range would be 140.25 times
the wavelength while at an angle of 22.957◦ it would be 139.75 times. The difference
is 0.087 degrees. At the range of the satellite, this angle corresponds to a separation
known as the critical perpendicular baseline. In the case that we have just calculated,
the observation range is approximately 850 km and the critical perpendicular baseline
is 1300 m (this limit applies to the interferometric technique, Sect. 4.1.6).

The reality is more complicated because most pixels are covered with many ran-
domly distributed elementary targets. Nonetheless, the value of the critical baseline
that we have defined remains valid and marks the limit beyond which the two images
received are completely independent. It then becomes difficult, or even impossible, to
combine them. We will therefore try to stay below the critical baseline, while at the
same time trying to maximize the baseline if we seek extreme super-resolution or high
sensitivity to topography.

There is another notion of critical baseline which sets the limits of the image
independence in the direction parallel to the flight path of the radar instrument. In this
direction, images may be subject to various Doppler effects, depending on the way the
orbiting velocity is projected along the pointing directions of the passes (for example,
the pointing could shift slightly backwards and forwards).

Fig. 2.23 Principles of super-resolution.
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The combination of these two critical baselines makes it possible to define an
‘interferometric surface’ for each radar pass. The size of the intersection of these
surfaces reflects what the data have in common, and to what extent they can be used
for interferometric comparison (Sect. 4.7.4.1). The union of these surfaces reflects the
total amount of information that can be used to improve the resolution.

2.8 Radar processing and geometric specificity of bistatic data

A system such as the interferometric cartwheel (Sect. 4.7.4) is a case of bistatic (even
multistatic) system. Bistatic systems, for which the transmitting and receiving antennas
are not colocated, raise specific processing and co-registration problems, due to the high
squint angle typical of bistatic operations. The a priori knowledge of the topography is
an asset for efficient processing in terms of autonomy and speed. It can be appropriate to
use this knowledge very early, for example during the processing from raw to resolved
data.

Fig. 2.24 gives a general geometric layout of the bistatic acquisition: we observe a
pointP with cartesian coordinates �P . The origin of time t is chosen when the transmit-
ter is at its closest distance (R0T ) to P . At t = 0, the transmitter T is characterized by
its position �T0, its velocity vector �vT and its acceleration �γT . The situation summarizes
as follows:

�T (t) = �T0 + t · �vT + t2

2
�γT (2.98a)

(�T0 − �P) · �vT = 0 (2.98b)

(�T0 − �P)2 = R2
OT (2.98c)

For convenience, we also introduce the following scalars: FT = (�T0 − �P) · �γT +
�v2
T , vγT = �vT · �γT , and γsT = �γ2

T /4. The transmitter T generally illuminates close
to, but not necessarily at zero Doppler. The scalar FT is directly proportional to the
azimuth compression factor Na (Sect. 2.2.5).

Let us assume that a bistatic receiver R follows at a distance. With similar con-
ventions and obvious notations, we have :

�R(t) = �R0 + t2 · �vR + t22

2
�γR (2.99a)

(�R0 − �P) · �vR = 0 (2.99b)

(�T0 − �P)2 = R2
0R (2.99c)

As previously, we introduce the scalars FR = (�R0 − �P) · �γR + �v2
R, vγR = �vR · �γR,

and γsR = �γ2
R/4. The origin of time t2 corresponds to the crossing of P by the receiver

R. We have : t2 = t− t0 where t0 is the delay between the transmitter and the receivers
at P crossing.
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Fig. 2.24 Geometry of the bistatic acquisition. The sign of the frequency depends whether we
consider the reconstruction frequency or the signal frequency.

The distance between T and P as a function of time is given by
DTP =

√
(�T (t)− �P)2, which develops into:

DTP =
√
R2

0T + FT t2 + vγT t3 + γsT t4 (2.100)

Similarly, the distance between R and P is:

DRP =
√
R2

0R + FRt
2
2 + vγRt

3
2 + γsRt

4
2 (2.101)

The bistatic range D is given by D = DTP +DRP . The bistatic zero Doppler is
obtained when the bistatic range derivative is cancelled, i.e.

dD

dt
= dDTP

dt
+ dDRP

dt
= 0 (2.102)
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Given Eq. (2.101), we have:

dDRP

dt
= 2FRt2 + 3vγRt22 + 4γsRt32

2DRP

(2.103)

A very interesting condition arises when dDTP/dt is null, indicating the illumi-
nation is made at zero Doppler. By definition, the corresponding time is t0, and the
corresponding instantaneous Doppler is derived by substituting t0 to t2 in Eq. (2.103).

Once it has been divided by the azimuth sampling frequency fa, the so-called
Transmitter-Based Zero Doppler (TBZD) is given by:

forT = 1

λfa

dDRP

dt
= 2FRt0 + 3vγRt20 + 4γsRt30

2(D− R0R)λfa
(2.104)

As in the monostatic case (Sect. 2.4.3), the processing of the data will provide
an observed reduced azimuth Doppler frequency fr. Instead of translating the data to
zero Doppler, as we would do for a monostatic observation, we will move them to the
TBZD. The observed Doppler sets the time of emission by the transmitter by solving:

fr = 1

λfa

(
dDRP

dt
+ dDTP

dt

)
(2.105)

leading to

fr=2FR(t − t0)+ 3vγR(t − t0)
2 + 4γsR(t − t0)

3

2DRPλfa
+2FT t + 3vγT t2 + 4γsT t3

2DTPλfa
(2.106)

Once t has been determined, the rest follows.

2.8.1 Direct echo

Here we assume that the conditions allowing the detection of the direct echo are met,
and that this one is recorded in the data. The advantages of detecting the direct echo
from the transmitter are threefold: (1) The direct echo is received at a very low Doppler,
thanks to the very small difference of modulus between �vT and �vR. Summing a few
ten of pulses gives a very accurate measurement of this difference. (2) The direct echo
provides a timing reference for the sampling by the receivers. Disregarding some minor
corrections, the delay is very close to t0 and the sampling of the receivers can be based
on this starting time, which can also be used for selecting the SWST (Sect. 2.2.3).
(3) Finally, a minor advantage is in having a copy of the transmitted pulse for the
optimization of the pulse compression.

2.8.2 Triangular resolution

A given point in the receiver’s data stream is characterized by its instantaneous reduced
Doppler frequency fr (observed on the raw data) and its timing compared to the arrival
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of the direct echo. A processing choice can be to use the zero Doppler of the transmitter
as a geometric reference. It is particularly interesting when there are several receivers,
such as for the Cartwheel (Sect. 4.7.4). Under this assumption, the correction in azimuth
and range will move the target from the position where the bistatic range is minimal
to the plane perpendicular to the transmitter’s orbit, at an appropriate time and range
(for instance the time and range of closest approach of the target with respect to the
transmitter). However, this operation depends on the knowledge of the topography.

We can quantify this dependency by assessing the increase of altitude which
offsets the real position in azimuth by one pixel, with reference to the transmitter’s
zero Doppler plane. The inaccuracy of the preliminary topography must be such as to
create an offset in azimuth less than the accuracy required for further pixel superposition
in azimuth.

In case of high squint angle, which is likely to be the rule for cartwheel operations,
we must use a distance law without approximation (Sect. 2.4.10) instead of a square
law approximation, without modifying the general principle.

We have described here some of the geometric features of bistatic radar observa-
tions. These configurations cause azimuth offsets that are very similar to the offsets
found with non-parallel orbits (Sect. 2.6.5, Fig. 2.22). These effects could be used
per se as an mean of computing topography. In this case, the distance between the
passive system and the transmitter must be sufficient for proper accuracy. Otherwise
it must remain below the threshold set by the accuracy of the a priori knowledge of the
topography.
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CHAPTER 3

FROM SAR DESIGN TO IMAGE QUALITY

3.1 Introduction

In this chapter, we shall first look at SAR design from a radiometric perspective. The
preceding chapter dealt with a geometrical approach to radar processing. It seemed
to leave us with a paradox (Sect. 2.2.4): if D is the length of the radar antenna in
the azimuth direction, the azimuth resolution obtained after SAR synthesis is D/2,
which seems to contradict the common understanding of the separating power of a
microwave antenna (Sect. 1.2.5.1). This is not really so surprising: if D is reduced,
the azimuth radiation pattern is broadened, which increases the illumination time for
a target, and thus the width of the Doppler spectrum. Hence the azimuth resolution
is naturally improved. So, why should we try to give imaging radars long antennas?
There are several reasons. A ‘geometrical’ reason, discussed in Sects. 3.7.1 and 3.7.2,
concerns the conditions under which ambiguities appear in the image. But there is also
a ‘radiometric’ reason: the shorter the antenna, the lower its directivity and thus the
weaker its gain. The amplitude of the radar echo is attenuated proportionally to the
square of the antenna’s gain (because the wave crosses the antenna’s main lobe twice).
It is thus necessary to be careful when designing the antenna to ensure an adequate
level of collected power, which requires a minimal value for D. In these few words
we have just described the trade-off between the image’s geometric qualities (i.e., its
resolution) and its radiometric qualities (which depend on the amplitude of the radar
echo). This is the central issue in system design. We shall keep this in mind when
considering essentially radiometric issues in the following sections.

We shall first write the radar equation in its simplest theoretical form. This will
allow us to define the concept of Radar Cross Section (RCS), both for point targets
(Sect. 3.2) and extended targets (Sect. 3.3). From this, we infer the signal-to-noise
ratio (SNR) of the radar antenna (Sect. 3.4). We shall then discuss how the SNR
of the radar antenna affects the image produced and how this SNR is transformed
during SAR synthesis (Sect. 3.5). We shall see that we need to distinguish between the
behavior of point targets and extended targets. Finally, the ‘noise floor’ of the resolved
image (NEσ0tot) includes a contribution from the radar antenna (NEσ0inst , Sect. 3.6),
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increased by the azimuth and range ambiguity contributions (Sect. 3.7). To complete
the characterization of the link budget, we must calculate the volume of data generated
(Sect. 3.8) and the corresponding telemetry dataflow (Sect. 3.9).

Now that the SAR sensor has been designed, and we are acquainted with the link
budget, we can ask if we can determine the nature of a radar sensor and the processing
applied to its data by carefully examining the resulting image. Does the product reveal
the secrets of the instrument? This is one aspect of Image Quality (IQ) assessment.

Determining the quality of a SAR image involves evaluating radiometric and
geometric aspects which affect each other. We shall first refer to the calibration of
radar images in Sect. 3.10. This is an important part of SAR analysis. We have
chosen to deal with it before other aspects of image quality. Speckle noise is covered
in Sect. 3.11. After first investigating its physical origin, it is described statistically.
We refer briefly to the traditional speckle filtering algorithms. We shall not go into
detail as this has been extensively covered in the literature. Readers may refer to
[Touzi, 2002] who gives a thorough review of filter basics and enhancements. Section
3.12 considers IQ analysis in detail. The radiometric part is addressed first, even
though it is impossible to fully separate radiometric and geometric aspects of image
quality. Image quality parameters are generally described as being the effect of a
double weighting. The first one comes from the antenna pattern (Sect. 3.7.2) and leads
toNEσ0tot , the other is applied to the digitized radar data. We shall be discussing here
the ‘downstream’ weighting applied to the radar data in the frequency domain. This
weighting affects the resolution of the image via the ‘impulse response’ but it also
affects the level of radiometric pollution from the nearby environment. The geometric
part (Sect. 3.13) briefly reviews concepts of resolution and pixel size and then addresses
the evaluation of distortion and localization accuracy characterizing the image products.
Finally, in Section 3.14, we present a practical example based on a series of images
which illustrates the amount of information accessible through in-depth radar photo-
interpretation.

3.2 Radar equation, Radar Cross Section (RCS) of a point target

The Radar Cross Section (RCS) of a point target characterizes the ‘strength’ of its
echo in the radar signal. The interaction between the incident wave and the target is
expressed by the radar equation, which summarizes a sequence of three events:

(1) The radar transmits a pulse with peak power Pe, amplified by the antenna gainG
(Sect. 1.2.5.1). When located at a rangeR from the radar, the target is illuminated
by a power density dPinc (expressed in W/m2) equal to:

dPinc = Pe ·G
4 · π · R2

(3.1)
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This equation treats the antenna’s radiation as isotropic, that is, in all directions
the radiation is the same as that along the radar line of sight.1 The quantity Pe ·G
is known as the effective isotropic radiated power (EIRP).

(2) Illuminated by the radar, the target now behaves as an isotropic radiating element
returning to the radar a power density dPs of

dPs = dPinc · σ

4 · π · R2
(3.2)

which suggests that dPinc has been intercepted and reflected by a surface σ
(the RCS, expressed in m2) which behaves isotropically and independently of
the observation range. If the target actually radiates isotropically (as would
be the case for a conducting sphere whose radius Rs is much larger than the
wavelength), the RCS is exactly the surface seen by the radar (here its actual
geometric cross-section π · R2

s ) (Fig. 3.1(b)). In all the other cases, a target
radiating preferentially in the backscatter direction has an RCS greater than its
geometric cross-section (Fig. 3.1(a)), whereas a target ‘evacuating’ energy in a
direction other than the backscatter direction has a lower RCS (Fig. 3.1(c)).

Fig. 3.2 gives some typical values for the RCS of point targets, as well as their
scattering beam width along the main axes. For example, the corner reflector
made up of three orthogonal triangular plates, gives a maximum RCS of

σtriehedral = 4π · a4

3 · λ2
(3.3)

where a is the vertex length and λ the transmitted wavelength. For a 1-m corner
reflector, the RCS is 1289 m2 at C band, whereas the equivalent sphere in RCS
terms would have a radius of 20 m! This powerful signature combined with its
very open radiation pattern makes it a widely used radar calibrator2.

(3) Finally, the power Prec collected by the receiving antenna with an effective area
Seff (Sect. 1.5.1) is given by:

Prec = dPs · Seff (3.4)

Equations (3.1), (3.2) and (3.4), combined with the relationship linking effective
area and antenna gain (Sect. 1.2.5.1), lead to the radar equation (assuming that
antenna gain is identical for transmission and reception):

Prec = Pe · λ2

(4π)3
· G

2

R4
· σ (3.5)

1In reality, the antenna’s radiation is not isotropic at all! However, erroneous hypotheses formulated for
other directions than that along the radar’s line of sight have no effect on the final result.

2In the military field on the other hand, electromagnetic discretion requires that structures be designed
with the lowest RCS possible: when seen from the front, the F-104 Starfighter has an RCS equivalent to
5 m2 between 1 and 10GHz and in the same conditions, theMIG−21 has an RCS of about 3 m2 [Morchin,
1990]. The figures given here show how different the perception can be between the eye and radar when
target radiation is no longer isotropic!

© 2008, First edition, EPFL Press



120 IMAGING WITH SYNTHETIC APERTURE RADAR

Fig. 3.1 Comparing RCS and actual surfaces in standard situations; (a) actual surface = a · b;
RCS > actual surface; (b) actual surface = π · Rs2; RCS = actual surface; (c) actual surface
= a · b · cos θ; RCS < actual surface.

The power received increases in direct proportion to the square of the antenna
gain. Another element in the link budget is the term λ2/R4, which expresses the
fact that attenuation increases as frequency increases. This attenuation is also in
direct proportion to R4.

Equation (3.5) predicts the expected echo signal levels reaching the radar. For
example, a 1-m2 parabolic antenna transmitting 1-kW peak power at C band (λ ≈
5.7 cm) towards a 1 m radius conducting sphere at a range of 1 km will receive a peak
power of the order of 10−8 W!

3.2.1 Loss terms

Up until now, we have assumed that the radar/target link has no losses. In reality, the
power received is less than what might be expected. Losses have several causes, which
we list here in order of decreasing magnitude:

• Losses in the transmitting and receiving devices (antenna, preamplifier, Radio-
Frequency losses and encoding losses): because of these losses, it is necessary
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Fig. 3.2 Examples of the RCSs of standard targets (after [Ruck, 1970]). The indicated values
correspond to configurations generating maximum signatures. θaz3dB and θel3dB represent 3-dB
apertures for azimuth and elevation radiation patterns respectively.

to distinguish between the radiated power Pe (which is an element in the radar
equation) and the power actually produced by the high power amplifiers with an
efficiency of the order of 50%.3

• Losses during atmospheric propagation: Propagation models predict low atten-
uations in the atmosphere, though certain situations may lead to higher atmo-
spheric loses, for example when short wavelengths (X band;Ku band) encounter
rain. This effect could become more critical for the Ka band, around 35 GHz.
In addition, the troposphere creates losses that affect frequencies in X band and
beyond. All these atmospheric losses (from atmospheric gases, clouds, rain and

3The microwave source used on the ERS-1 and 2 satellites (C band,VV polarization, 23◦) was a Travelling
Wave Tube (T.W.T.) with an output power of 4800W for a radiated power of 2524W . A more complete
energy budget for the platform would require taking into account the efficiency of the T.W.T. and of its power
source (about 40 % overall). However, this efficiency does not affect the link budget, which begins with the
amplifier output, but only the design of the power sub-system. For an active antenna the efficiency of Solid
State Power Amplifiers (SSPA) is less than that of a T.W.T. (∼ 25 to 30 %), but propagation losses within the
receiver are reduced, as the SSPAs are located in the immediate vicinity of the radiating elements.
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122 IMAGING WITH SYNTHETIC APERTURE RADAR

ionospheric scintillation) are also influenced by the geographic location. Varia-
tions of 0.1 dB to 0.3 dB can be found in C band and 0.3 dB to more than 1 dB
in X band.

• Losses linked to polarization effects: There are two types, firstly the possible
rotation of the wave’s polarization during propagation (the Faraday effect when
crossing the ionosphere). This effect can be critical for frequencies lower than
1 GHz. secondly, Depolarization effects (Sect. 1.1.3).

All these losses together are combined in the Loss factor which is included in the
denominator of the radar equation. These losses can have a magnitude of 2 to 3 dB for
each one way trip of the wave.

3.2.1.1 Noise factor
The noise factor F is the parameter characterizing noise of electronic origin affecting
receiving devices. A receiver whose ambient temperature is T0 behaves as though the
temperature of its electronics was Tn = F · T0. The temperature Tn = F · T0 is called
the ‘noise equivalent temperature’. The noise factor F is approximately 0.5 to 1.5 dB
depending on the frequency and the bandwidth.

Finally, the term expressing overall Loss (losses + noise factor) is of the order of
6 to 9 dB. This is the value usually used for a first approximation when designing SAR
systems.

3.3 Radar signature for extended targets - the backscatter coefficient σ0

How can we adapt the concept of RCS to extended targets? If these are stationary,
they backscatter towards the radar an amount of energy proportional to their physical
surface S. In order to get around the backscatter’s dependency on S, a normalized
signature is introduced :

σ0(dB) = 10 · log10(dσ/dS) ≈ 10 · log10(σ/S) (3.6)

σ0 is the radar backscatter coefficient expressed in m2/m2 (the exponent 0, indicates
that the RCS is normalized).4 Most natural surfaces have negative σ0 (when expressed
on a logarithmic scale, i.e. in dB m2/m2): therefore 1 m2 of their physical surface has
an RCS of less than 1 m2.

4Measurements are usually expressed on a logarithmic scale because of the large range of dynamics
involved.
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3.4 Signal to noise ratio (SNR) of the radar-target link before SAR
synthesis

This SNR, hereafter denoted SNRraw, is calculated from the radar equation and from
the thermal noise equation Pn:

Pn = k · Tn.Bn (3.7)

where k is Boltzmann’s constant (= 1.38 × 10−23 J/K) and Bn is the receiver’s band-
width (in Hz). From Eqs. (3.5) and (3.7), we get:

SNRraw = Prec

Pn
= Pe · λ2

(4π)3
· G

2

R4
· 1

Loss
· 1

k · Tn · Bn · σ (3.8)

σ is either the RCS of a point target or the product σ0 · S for the RCS of a stationary
extended target with physical surface S. In the latter case it is necessary to determine
the surface area S to be included in the link budget:

• In the azimuth direction, the surface’s length is tied to the azimuth HPBW, which
gives a length of approximately R · λ/D (D being the length of the antenna), to
within a coefficient which is close to 1 and depends on the antenna’s illumination
law (Section 1.2.5).

• In the range direction, Tpulse being the duration of the pulse transmitted by the
radar, any signal received at time t0 was generated by the portion of the pulse
transmitted between t = τt and t = τt + δτt , then reflected by a strip of terrain
located between range r and range r + δr, such that τt + 2r/c = t0. If we now
consider the entire pulse duration, we collect at the same time the contributions
from a strip of terrain (located at a mean rangeR), with width c ·Tpulse/(2·sin θ),
where θ is the local incidence angle.

Thus, at a given time, the surface which has contributed to the response is S =
R · λ · c · T pulse/(2 · D · sin θ). This is by definition the surface area of the raw data
resolution cell. Knowing S, we deduce the SNR for an extended target before SAR
synthesis:

SNRrawext = Pe ·
(

λ

4πR

)3

·G2 · 1

Loss
· 1

k · Tn · Bn · σ
0 · c · T pulse

2 ·D · sin θ
(3.9)

3.5 Modifying the SNR during SAR synthesis

Apart from its effect on resolution (Sects. 2.2.4 and 2.2.5), SAR synthesis modifies
the SNR significantly (at least for point targets, as we shall see). Its impact can be
explained by means of the adaptive filter theory: by ‘intelligently’ summingN samples

© 2008, First edition, EPFL Press



124 IMAGING WITH SYNTHETIC APERTURE RADAR

of the same measurement (i.e. by giving them all the same phase, as is done in SAR
synthesis, Sect. 2.5.1) with independent noise samples, the SNR is improved by a factor
of N.

We can illustrate this geometrically. The first four sketches in Figure 3.3 show
the breakdown of a radar pixel into a ‘useful’ component, represented by an unbroken
line, whose length is 1, and an ‘unstable’ component represented by a dotted line
with a mean of 1. The real and imaginary parts of the unstable components have
a Gaussian distribution. The phase of the overall contribution inside a pixel (useful
component plus unstable component, in broken line) differs from zero as a result of
this random contribution. In the fifth sketch, we show the coherent addition of the
vectors from the four previous sketches. The modulus of the ‘useful’ contribution has
a value of four. Because of the inefficiency of the incoherent additions, the random
contributions do not alter the phase of the coherent contributions as strongly as before
the summing. It should be noted that though this is true for the phase, it is not true
for the modulus, which is significantly altered by the summing. The summing of
complex numbers gives very different results depending on whether the contributions
are coherent or non-coherent. The modulus of the sum of N coherent vectors with the
same magnitude is N times the modulus of one of them alone. The resulting power
(the square of the modulus) in this case is amplified by a factor of N2. On the other
hand, the power of the sum of N random vectors is N times the mean power of one
of them, i.e. a gain of only

√
N on the modulus. The end result is an improvement of

the final ratio between coherent and incoherent modulus of
√
N, and thus of N for the

SNR. In our illustration, the improvement factor is 4. In practice, it is of the order of
1500, and it is called the compression rate (Sect. 2.2.5). We would need 1500 sketches
to visualize what actually happens!

We now turn our attention towards the impact of SAR synthesis on both point and
extended targets.

3.5.1 Point targets

3.5.1.1 The effect of pulse compression
Every 1/fa the radar transmits a pulse sinc(t) of length Tpulse (Fig. 3.4(a)). fa is the
pulse repetition frequency (Sect. 2.2.3). The echo srec(t), assumed to come from a single
point target at rangeR, is received (and sampled) after a lapse of time�tprop = 2 ·R/c
giving:

srec(t) = ξ · sinc(t −�tprop)+ n(t) (3.10)

ξ is an attenuation coefficient which will be defined later (Sect. 3.10). The quantity
n(t) is a zero mean Gaussian thermal noise. The SNR at reception is thus

SNRraw = ξ2 · 〈sinc(t) · sinc∗(t)〉
〈n(t) · n(t)∗〉 (3.11)

where 〈·〉 denotes an averaging process over several samples. The quantity srec(t) is
then filtered with what is known as an ‘adaptive filter’:
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Fig. 3.3 The effect of adaptive filtering on the coherent and incoherent components of a radar
pixel.

sout(t) =
∫ +∞

−∞
h(t − τ) · srec(τ) · dτ (3.12)

with

h(t) = sinc
∗
(−t) (3.13)

sout is the filter output. Equations (3.12) and (3.13) express the correlation between the
received signal and the replica of the transmitted one (this is discussed in Eqs. (3.12)
and (3.13)). The integration (3.12) involves a weighted addition of the samples srec(τ)
collected at regular intervals dτ. This weighting has the effect of putting the respective
useful parts of the samples in phase. Since the condition of independence for the cor-
responding noise samples requires: dτ ≥ 1/Bn, the maximum number of independent
noise samples is equal to Bn · Tpulse. This is also the gain in SNR:

SNRout = Bn · Tpulse · SNRraw (3.14)

where SNRout is the SNR at the filter output. Next, the receiving bandwidth Bn is
assumed to be equal to the bandwidth Bd of the transmitted signal. Consequently, if
the transmitted signal was not frequency modulated, thenBd ≈ 1/T pulse and SNRout ≈
SNRraw. However, in practice, it is frequency modulated (i.e., by a ‘chirp’, Sect. 2.3.7):
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Fig. 3.4 The structure of the transmitted radar signal; (a) transmission of a carrier without
modulation; (b) chirp modulation of the carrier (bandwidth Bd); (c) equivalent transmitted
signal.

sinc(t) = 

(

exp

[
j · 2π ·

(
fc · t + ρ · t2

2

)])
= 
(exp[j · φ(t)]) (3.15)

with ρ = Bd/T
pulse, fc is the carrier frequency and t ∈ [−Tpulse/2; Tpulse/2]. We

will assume here that transmitting a chirp and then using an adaptive filter on reception
is equivalent to transmitting a monochromatic pulse whose duration is τ = 1/Bd
(Fig. 3.4(b)-(c)). Since Bd is in practice much larger than 1/T pulse, the ‘compressed’
pulse is much shorter than the real one (called the long pulse). This leads to a significant
improvement in range resolution and in SNR, hence the name ‘pulse compression’.
The associated maximum gain (or compression rate)5 is given byGrange = Tpulse/τ =
Bd · Tpulse. Please note: Applying strictly Shannon condition (Sects. 1.4.6 and 1.4.7)
in range gives Bd = fd (where fd is the range sampling frequency of the echoes,
Sect. 2.2.3). We then obtain Grange = Nd (Sect. 2.3.7).

3.5.1.2 The effect of SAR synthesis
In the same way, SAR synthesis is based on the weighted sum of independent echo
samples located at the same range from the radar (after correction for migration ef-
fects, Sect. 2.3.6). These independent samples are acquired successively during the
illumination period T ill (Sect. 2.3.1). The number on independent samples is given by

5In the case of the ERS-1 satellite [Tab.I], Grange is approximately 575, which corresponds to a short
(compressed) pulse duration of approximately τ ≈ 65 ns.
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Table 3.1 Characteristics of past and present civilian SAR Space missions.

SEASAT ALMAZ ERS-1/2 JERS-1 SIR-C/XSAR RADARSAT-1 ASAR/ENVISAT

Origin USA/JPL Russia ESA Japan USA/JPL Canada ESA

Launch year 1978 1991 1991/1995 1992 1994 (Space
Shuttle)

1995 2002

Freq. band
(Central freq.
in GHz)

L (1.275) S (3.125) C (5.3) L (1.275) L (1.276)
C (5.17)
X ( 9.68)

C (5.3) C (5.331)

Polarization HH HH VV HH Full pol. L− C,
X-VV

HH HH , VV image and Global
Monitoring mode HH/VV ,
HH/HV , VV/VH in AP
mode

Incidence 23◦ 30◦–60◦ 23◦ 35◦ 17◦–63◦ 20◦–50◦ 15◦–45◦

Swath width (km) 100 32–65 100 75 15–90 (L and C)
15–40 (X)

35 (fine) 100
(standard) 500
(SCANSAR)

100 image and AP mode
400 Global Monitoring
mode

Resolution (m) 25 × 25,
4 looks

15 × 15 20 × 20,
3 looks

18 × 18,
3 looks

Typically
30 × 30

10 × 10 fine mode
25 × 28 standard 100
SCANSAR

20 × 20, 3 looks (image
mode) 30 × 30 AP mode

NEσ0(dB· m2/m2) – 18 — -21 –20 — –21 –20

Bandwidth (MHz) 19 10–15 15.5 15 10, 20, 40 30 (fine mode) 11
(standard)

16

PRF (Hz) 1500 — 1679 1500, 1600 1395, 1736 1270 or 1390 1680 or 2100

fd (MHz) (range) 19 28.8 18.96 17 32 (fine) / 14 (std)

Continued
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Table 3.1 Continued

SEASAT ALMAZ ERS-1/2 JERS-1 SIR-C/XSAR RADARSAT-1 ASAR/ENVISAT

Pulse length (µs) 33 0.5 37 35 33.8, 16.9,
8.5 (L) 33.8,
16.9, 8.5 (C) 40
(X)

42 22 to 41

Altitude (km) /
Inclination (◦)

800 / 108 240–292 /
72.7

780 / 98 570 / 97.6 225 / 60 790 /98.6 800 / 98

Antenna size (m) 10.7 × 2.16 15 × 1.5 10 × 1 11.9 × 2.4 12 × 4 (for the 3
frequencies)

15 × 1.5 10 × 1.3

Peak / Mean
power transmitted

3 kW peak
1200 W mean

190 kW / - 5 kW peak
1245 W
mean

1.3 kW
peak

3 kW to 9 kW
mean

5 kW peak 2500 W
mean

320 modules with 8 W
peaks 1200 W mean (SSPA)

TM data rate
(MB · s−1)

110 — 105 60 90 (L, C) 45 (X) 85 to 105 100
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Bdop ·T ill, where Bdop is the azimuth Doppler bandwidth and T ill the illumination time
(Sect. 2.3.1). As before, the gain in SNR, Gazi, equals this number of independent
samples. When the entire Doppler bandwidth is processed:6

Gazi = Bdop · T ill ≈ 2 · R0 · λ
D2

(3.16)

R0 is the range for the point of closest approach (Sect. 2.2.5).
Please note: Applying strictly Shannon’s condition in azimuth (D/2 = v/fa), leads
to Gazi = λ · R0 · f 2

a /2/v
2: this is nothing other than the equation for the azimuth

compression rate Na (Sect. 2.2.5).

3.5.1.3 SNR on point targets after range compression and SAR synthesis
As a consequence of Eqns. (3.15) and (3.16), complete processing (in range and in
azimuth) for a point target produces an overall increase in SNR of the quantityGrange ·
Gazi (≈ 58 dB for ERS-1, Table 3.1). Let SNRslcpoint be the SNR of the resolved image
on a point target (SLC stands for single look complex). Then:

SNRslcpoint = SNRraw · Bd · Tpulse · 2 · R0 · λ
D2

(3.17)

or, if we expand it further:

SNRslcpoint = Pe · λ3

(4π)3
· G

2

R3
0

· 1

Loss
· 1

k · Tn · Tpulse · 2

D2
· σ (3.18)

Applying Shannon’s condition in azimuth (v/fa = D/2), we finally obtain:

SNRslcpoint = Pav ·
(

λ

4πR0

)3

·G2 · 1

Loss
· 1

k · Tn · fa
2v2

· σ (3.19)

where Pav is the mean power radiated by the radar:7

Pav = Pe · Tpulse · fa = E · Fa (3.20)

and E is the pulse energy. Equation (3.19) is valid when the entire Doppler bandwidth
is processed. If this is not the case, fa in the equation v/fa = D/2 is replaced by the
actual value of the azimuth bandwidth processed. The SNR of point targets includes
a term in 1/R4

0 before SAR synthesis and 1/R3
0 after, since the further a point is from

the antenna, the longer it is observed.
Adaptive filtering on point targets has some side effects. They result from the

fact that the imaging system is unable to focus all their contributions inside a single
pixel because the range and azimuth bandwidths are finite. SNRslcpoint is consequently
attenuated by a factor depending on the shape of the impulse response (Sect. 3.12).

6The calculations developed below will generally address the case where the entire Doppler bandwidth
is considered. Similar calculations can nonetheless be applied to a portion of the entire Doppler bandwidth.

7For ERS-1, Pav = 157 W. Note the low value: the mean radiated power of a space imaging radar is
hardly more than the power of a light bulb!
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Please note: Because the Earth is a sphere, we ought, strictly speaking, to distinguish
between the speed at which the radar spot travels along the ground (vground) and the
velocity v. Generally, v and vground differ by about 10 %. For the sake of simplicity,
we do not take this difference into account as it does not modify the link budget
significantly.

3.5.2 Extended targets

Radar processing is not naturally capable of distinguishing between point targets and
extended targets. Azimuth and range compression offer the same advantages in both
cases.

However, the SNR of extended targets before processing, SNRrawext , was determined
with respect to the resolution cell of the raw data, namely S = R0 · λ · c · T pulse/(2 ·
D · sin θ). After synthesis, the same procedure as that described in Sect. 3.4 is applied,
but to a different reference surface. This surface is now the resolution cell of the SLC
data, i.e. the image pixel under Shannon’s condition (v/fa = D/2, Bd = fd).

Consequently, after processing, the SNR improvement (proportional to
Grange · Gazi) is counterbalanced by a ‘shrinking’ of the reference surface which is
inversely proportional toGrange ·Gazi! The SNR of an extended target, SNRslcext , is thus
unchanged after complete SAR synthesis. From Eqs (3.3)-(3.9), it can be seen that:

SNRrawext = SNRslcext = Pav ·
(

λ

4πR0

)3

· G2 · σ0 · c
Loss · k · Tn · Bn · 4v sin θ

= Pav ·
(

λ

4πR0

)3

· G2 · σ0 · rd
Loss · k · Tn · 2v

(3.21)

where rd is the ground range resolution (c/2/Bd/ sin θ). Equation (3.21) is in accor-
dance with the literature [Curlander, 1991].

In the case of ERS-1, for a backscatter coefficient of −7 dBm2/m2 (e.g. for
forest cover) and a loss coefficient of 5 dB, SNRrawext = SNRslcext ≈ 12 dB. Using the
values in Tab. 3.1a and 3.1b, we can perform similar numerical applications for other
Space missions, using standard values for the unspecified parameters (the antenna gain
G is calculated from the empirical formula in Sect. 1.2, loss is between 4 and 6 dB,
the noise factor F is between 0.5 and 1.5 dB and satellite velocities are all close to
7 km· s−1).

Lastly, the dependency on R0 and on λ after SAR synthesis (which is in fact the
same as it was before the process) is identical to that described in the preceding section.
The rest of this chapter will be devoted to extended targets.
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Table 3.2 Characteristics of future civilian SAR Space missions.

ALOS/PALSAR RADARSAT-2 TERRASAR-X COSMO-
SKYMED

RISAT SENTINEL-1 (specifica-
tions)

Origin Japan Canada Germany Italy India ESA
Launch date 09/2005 End 2007 06/2007 2007 2006–2008 2008 – 2009
Freq. band
(Central freq. in
GHz)

L (1.270) C X X (9.6 GHz) C C

Polarization HH or VV (fine, 28)
HH +HV or
VV + VH (fine, 14)
HH or VV
(SCANSAR) Full pol.
(14)

Nominal HH Full
polarization
(experimental
mode)

HH ,VV ,HV , VH HH ,VV Single, Co+Cross, Quad HH +HV or VV + VH

Incidence angle 8◦–60◦ 20◦–58◦ 20◦–55◦ 20◦–55◦ 20◦–49◦ 20◦–45◦ (IWS) 23◦
(SW1)-45◦ (SW6)
20◦-48◦ (extra wide)

Swath width (km) 40-70 (fine mode)
250-350 (SCANSAR)

50 (fine) 170
(standard) 500
(SCANSAR)

10 (spotlight)
40–60 (standard)
100–200
(SCANSAR)

40 (fine) 100–200
(standard) 250
(scansar)

30 km (FRS-1) 30 km
(FRS-2) 120 km (MRS)
240 km (CRS)

> 80 km (strip map) > 240
km (interferometric wide
swath) > 400 km (extra
wide)

Resolution (m) 7–44 (fine, 28 MHz)
14–88 (fine, 14 MHz)
100 (multi-look
SCANSAR, odes)
24–89 (full
polarization)

3m (ultra-fine) 10 m
(fine) 100 m
(SCANSAR) 25 ×
28 (full polar.)

1–3m (spotlight)
3–15 m (strip
map) 15–30 m
(SCANSAR)

1 (spotlight) 3
(stripmap)

3 (FRS-1) 12 (FRS-2) 25
(MRS) 50 (CRS)

< 5m × 4m (1 view, strip
map) < 20 m × 5 m
(interferometric wide
swath) < 80 m × 25 m
(extra wide, 3 looks )

Continued
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Table 3.2 Continued

ALOS/PALSAR RADARSAT-2 TERRASAR-X COSMO-
SKYMED

RISAT SENTINEL-1 (specifica-
tions)

NEσ0(dBm2/m2) <−23 (fine,
swath<70) <−25
(fine, swath<70)
<−29 (polarimetry)

−21 −19 −22 − <−25 (objective) < −30
dB (wave mode)

Bandwidth (MHz) 14, 28 (fine) 14, 28
(SCANSAR) 14 (full
polarization)

100 150 (nominal) 300
experimental
mode)

> 100 18.75 (CRS) 37.5 (FRS-2)
75 (FRS-1) 225 (HRS)

100MHz

PRF (Hz) — — 2000-6000 — 3000-3500 —
fd (MHz) (range
scale)

— — — — 21 (CRS) 42 (FRS-2) 83
(FRS-1) 250 (HRS)

—

Pulse length (µs) — — — — 20 —
Altitude (km) / In-
clination (◦)

691/98.1 798/98.6 660 620/98 609 / polar -
sun-synchronous

693 / sun-synchronous

Antenna size (m) 8.9 × 3.1 15 × 1.37 4.8 × 0.8 5.74 × 1.4 6 × 2 10 × 1.33
Peak / Mean
power transmitted

25 W / 1 W 10 W / 0.5 W 6W / 1.1 W 4 W / 1.2 W 2880 KW peak (active
antenna)

5 kW peak

TM data rate
(Mb · s−1)

240 (fine) 120 or 240
SCANSAR) 240
(polarimetry)

— 2 x 130 — 640 Mbits/s (X band)
Storage : 240 Gbits

640 Mbits/s
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3.6 Instrument Noise Equivalent σ0(NEσ0inst)

TheNEσ0inst is the value for σ0 giving SNRslcext = 1: this is the weakest of the signatures
located above the image noise of thermal origin. According to Eq. (3.21), this gives:

NEσ0inst =
(

4πR0

λ

)3

· Loss · k · Tn · 2v

Pav ·G2 · rd =
(

4πR0

λ

)3

· Loss · k · Tn · L
E ·G2 · rd

(3.22)

We can deduce from Shannon’s condition that the second and third terms are
equal. For ERS-1 for example, NEσ0inst ≈ −21 dBm2/m2.

3.6.1 Energy cost for improving resolution

Equation (3.22) helps us to determine the energy required if we wish to improve
the resolution while keeping the same NEσ0inst . Under Shannon’s condition, the
improvement of the range resolution (rd → rd/2), obtained by doubling Bd , also
doubles the value of NEσ0inst . To compensate for this degradation, it is necessary to
double the energy content of a pulse (E → 2E) and consequently to double the mean
power consumption Pav = E · PRF .

Improving azimuth resolution requires a reduction in the lengthD of the antenna
by a factor of two. The Doppler bandwidth is doubled, which requires doubling fa
to satisfy Shannon’s condition. To protect against range ambiguities (Sect. 3.7.1.), the
swath width must be reduced by a factor of two, by doubling the antenna widthW . The
antenna gain (which is proportional to the product W · D) thus remains unchanged.
The end result is that the NEσ0inst is divided by 2! But at the same time, Pav is
doubled. Keeping the same NEσ0inst reduces the pulse’s energy E by half and so
avoids increasing the mean power consumption (though at the cost of a swath width
reduction).

In Spotlight mode (Sect. 2.5.4.1.), it is possible to avoid reducing the swath width,
but the illumination duration must be increased. Azimuth resolution is improved by
‘sticking together’ adjacent Doppler bands whose width is fa. This means that all key
parameters for the design (antenna size, fa and mean power) remain the same.

3.7 Impact of image ambiguities on the NEσ0inst - total image noise
(NEσ0tot)

The NEσ0inst defined in the preceding section refers to the noise in the image caused
by the instrument itself (due to the receiving devices and algorithms used to compress
the raw data). How much do range and azimuth radar image ambiguities increase the
image noise? We shall review the origin of these ambiguities, quantify the increase in
image noise and deduce the total image noise (NEσ0tot). Visually, this noise reduces
the contrast of the image, turning true black into grey in the darkest parts of an image.
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Thus, it will be estimated on a zone assumed to backscatter zero power to the radar
(such as airport runways, calm water, shaded areas, etc.).

Fig. 3.5 Geometric configuration and timing analysis of range ambiguities.

3.7.1 Range ambiguities

Since the transmission is made up of pulses (at frequency fa), two echoes arriving at
the radar at the same instant, may be separated in range by c/2 · fa, which is called
range ambiguity (Fig. 3.5). The antenna widthW is chosen so that the main lobe cannot
simultaneously contain two targets separated by the range ambiguity. In other words,
A and B are not in the same swath8 Sw (Fig. 3.6(a)):

Sw ≈ λ · R0

W · cos θ
<

c

2 · fa · sin θ
(3.23)

Even though the shape of the main lobe of the antenna protects the signal against
ambiguity, the side lobes may favor ambiguous targets. The total range ambiguity noise
is characterized by the ratio of the energy returned by the adjacent echoes (rankN −
1 andN + 1) to that of the useful signal (rank N). The time window of the latter is
2 · Sw · sin θ/c + T pulse.

In the timing analysis, particular care must be taken to avoid superposing the
nadir echo onto the useful signal. This is done by adjusting fa [Elachi, 1988]. In

8Equation (3.23) implies an “all or nothing” illumination law for the antenna. In reality, the illumination
law is weighted in order to reduce the level of the side lobes, which in turn broadens the main lobe.
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Fig. 3.6 (a) Configuration of the antenna pattern; (b) range ambiguities generated by the side
lobes. Range to Ambiguity Side Lobe Ratio (RASR).

Fig. 3.6(b) H is the altitude of the satellite, and the frequency fa is chosen so that the
receiving window for the useful echo (spread between 2H/(c ·cos θ) and 2H/(c ·cos θ)
+ 2 ·Sw · (sin θ)/c+Tpulse)) does not overlap that of the nadir echo (which is between
2H/c + n/fa and 2H/c + n/fa + Tpulse)), where n is an integer. The frequency fa
must also be chosen so that the radar does not transmit while the useful echo is being
received by the antenna, that is, in an interval between n′/fa and n′/fa + Tpulse, where
n′ is an integer. These two conditions make it difficult to choose fa particularly in
situations where the imaging radar features incidence agility.

© 2008, First edition, EPFL Press



136 IMAGING WITH SYNTHETIC APERTURE RADAR

Fig. 3.7 Generation of azimuth ambiguities and the effect of distant radiometric pollution on the
image.

The ratio between ambiguity power and useful power is called the Range Ambi-
guity to Signal Ratio (RASR) (Fig. 3.6(b)).

3.7.2 Azimuth ambiguities

Range variations between target and radar during the illumination time T ill produce a
frequency spread of the signals received whose maximum extent (Sect. 2.3.1) is:

Bdop = Bdop max = 2 · v2 · T ill
λ · R0

≈ 2 · v
D

(3.24)

Pulse transmission at a rate of fa here causes aliasing (Sect. 1.4.7): all elements
of the signal separated in the frequency domain by an integer multiple of fa clump
together. As long as Shannon’s condition is satisfied (fa ≥ 2 · v/D), aliasing is
avoided if we ignore the side lobes in azimuth. In reality, they widen the azimuth
spectrum, consequently generating ambiguities. For processing that includes a pre-
summing phase (Sect. 2.4.6) reducing the processed bandwidth to Bdop−r, the level
of azimuth ambiguities is given by the Azimuth Ambiguity to Signal Ratio (AASR)
(Fig. 3.7):9

9For simplicity, only the first order side lobes are shown.

© 2008, First edition, EPFL Press



FROM SAR DESIGN TO IMAGE QUALITY 137

AASR ≈
+∞∑

m = −∞
m �= 0

Bdop−r/2∫

−Bdop−r/2

G2(f +m · fa)df/
Bdop−r/2∫

−Bdop−r/2

G2(f)df (3.25)

The AASR expresses the cumulative effect on the SNR of the full range of ambigu-
ous directions (separated in the time domain by an integer multiple of the compression
rate Na). They are weighted by the square of the radiation pattern.10. The entire az-
imuth antenna pattern is thus taken into account when determining the impact of the
ambiguities. A value of less than −20 dB is generally targeted for AASR. To obtain
this, we give a specific weighting to the azimuth antenna pattern in order to lower the
level of the side lobes, a key contributor to the AASR, but this broadens the main lobe
(Sect. 1.2.5). Another way of lowering the AASR is to increase the value of fa, while
taking the necessary precautions concerning range ambiguities.

3.7.3 Combined processing of range and azimuth ambiguities

It can be seen from Sects. 3.7.1 and 3.7.2 that reducing range and azimuth ambiguities
together requires placing limits on the value of fa (fa must be reduced to limit range
ambiguities and increased to limit azimuth ambiguities). Condition (3.23) together
with the Shannon condition (fa ≥ 2 ·v/D) thus leads to a lower bound of the antenna’s
surface area:

W ·D ≥ 4 · v
c

· λR0 · tan θ (3.26)

This condition depends only on the orbit, the carrier frequency (fc = c/λ) and the
incidence angle. Once these preliminary choices have been specified, the designer still
has some flexibility as to the choice of the antenna’s actual shape (the swath depends
on its width W and the azimuth resolution on its length D), as long as its surface area
exceeds a critical threshold accordingly to Eq. (3.26). Most popular designs suggest
choices for fa, the illumination law and the W/D ratio in order to ensure that azimuth
and range ambiguities remain at least 20 dB below the useful signals.

3.7.4 Total NEσ0(NEσ0tot)

Total image noiseNEσ0tot is made up of instrument image noise (NEσ0inst), increased
by range and azimuth ambiguities (Fig. 3.7). In particular, in azimuth, they have the
effect of superimposing on useful signatures (σ0loc) those coming from far zones σ0far,
separated from the useful target by a number of azimuth cells equal to the compression
rate Na, and sharing essentially the same range cells. These ambiguous contributions
are weighted by the RASR (range) and AASR (azimuth) rates as previously defined. The
NEσ0tot is a fundamental parameter for assessing image quality. Instrument design
uses standard profiles of radar signatures [Ulaby, 1989], which ensure that NEσ0tot is

10Equation (3.25) assumes that σo is stationary between the useful zone and the ambiguous zones.
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typically kept 10 to 15 dB below the expected radar signatures in standard conditions.
However, ambiguities can always be increased locally by strong radiometric contrasts
(σ0far/σ0loc � 1)). This phenomenon can be observed for example in coastal areas
with calm sea conditions where ghost images of building can be seen in the sea (Fig. 3.8).

Fig. 3.8 An example of radiometric pollution linked to azimuth ambiguities, due to high radio-
metric contrast between a calm sea and an urban environment. Standard RADARSAT S6 image,
Brest harbor, France. (NB: the impact of the azimuth ambiguities is amplified here because of
problems occurring during SAR synthesis.)

We can see from Fig. 3.7 that azimuth ambiguity is reduced when the processed
band Bdop−r is lower than the maximum Doppler band. In this case, spatial reso-
lution is deteriorated but the radiometric image is ‘cleaner’. Once again there is a
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geometry/radiometry trade-off.
There are other sources of noise contributing toNEσ0tot linked to the quantification

of radar echoes and the bit error rate when transmitting data to the ground. The telemetry
aspect of the link budget is addressed in Sect. 3.8, although we will not discuss its impact
on the NEσ0tot .

3.7.4.1 Behavior of point targets
What is the influence of point targets located in ambiguous zones? They produce
an azimuth ambiguity located on the same range gate, but separated by precisely Na
azimuth lines (locating a bright point and its ambiguity is one way of estimating Na
accurately).11 Such ambiguities are known as ‘ghost targets’ of which an example can
be clearly seen in Fig. 3.18 (for Fd = −2.5). The peak amplitude of the ambiguity is
reduced in two ways: (1) By the antenna pattern, through the Peak Side Lobe Ratio
(PSLR), Sect. 3.12.3; and (2) by resolution degradation due to badly compensated
parabolic migration during SAR synthesis (Sect. 2.3.6). The resulting target spreading
reduces the peak intensity of the ghost target proportionally. A specific ambiguity rate
for point targets is designed by taking into account these effects. This rate is usually
around −30 to −35 dB, and is generally less constraining than that for extended targets.

3.8 Volume of data generated onboard

The telemetry data rate is a critical consideration when designing a Spaceborne SAR.
It is calculated from the time window of the radar echo (Fig. 3.6(b)):

�ts = Tpulse + 2 · Sw · sin θ

c
(3.27)

The collected echo, sampled at a frequency fd , produces an image line made up
of fd · (T pulse + 2 · Sw · sin θ/c) pixels. The transmission of pulses at the rate fa thus
generates a number of pixels per second given by:

Nbpix/s = fd · fa ·
(
Tpulse + 2 · Sw · sin θ

c

)
(3.28)

Raw data are stored in the mass memory after conversion by an analog-to-digital
converter (ADC) which quantifies the real parts (I) and imaginary parts (Q) of the
collected signal ontoNq bits.12 The resulting data output rate from the ADC (in bits/s)
is given by:

Rateboard = 2 ·Nq · fd · fa ·
(
Tpulse + 2 · Sw · sin θ

c

)
(3.29)

11Strictly speaking, the real target and its azimuth ambiguity are very slightly shifted by range. This effect
is ignored here.

12This quantification stage generates a noise proportional to the number of bits to be quantified. For a
typical quantification on 2 ∗ 8 bits, it is approximately -35 dB (and thus considerably below the usual value
of NEσ0tot).
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3.9 Telemetry data rate

Receiving stations are only visible for relatively short periods (approximately 12 min-
utes for ERS-1, which is on a quasi-circular sun-synchronous orbit13 with an inclination
of 98◦ relative to the equator). The receiving station network must be able to receive all
the data that the satellite is capable of generating, which depends on its power through
the maximum duration for image acquisition per orbit. The storage capacity onboard
the satellite14 helps to manage this flux.

Fig. 3.9 shows the data acquisition and restitution chain. Coding is divided into
two parts (source coding and channel coding). Source coding reduces the volume of
data transmitted to the ground with the help of compression algorithms adapted to the
physics of radar measurements. Channel coding, sometimes called commercial coding
(we shall not discuss this here), produces an artificial redundancy which protects the
signal from transmission errors or losses. For comparable efficiency (same resolu-
tion, same swath width) the telemetry data rates are generally more voluminous for
radar systems (105 Mbits·s−1 for ERS-1) than for optical systems (48 Mbits·s−1 for
SPOT4 after image compression). The new generations of satellite (TERRASAR-X
and RADARSAT-2) have telemetry data rates of approximately 300 Mbits·s−1 (the
value for TERRASAR-X) for resolutions ranging from 1 to 3 m and swath widths of
approximately 30 km (Table 3.2).

Fig. 3.9 Data processing chain, from onboard sampling of raw echoes to ground segment SAR
synthesis processing.

13A ‘sun-synchronous’ orbit is one that carries a satellite over a given latitude at the same local time
for each pass. Most optical observation missions use sun-synchronous orbits (10:30-22:30), which ensure
optimum conditions for image acquisition in descending orbits (daytime). The orbit of the ERS-1 satellite is
of this type and it has the same platform as the optical satellite SPOT. For radar missions however it seems
preferable to use ‘dawn-dusk’ sun-synchronous orbits such as that of RADARSAT (6:00 - 18:00), which
simplifies the management of solar panels (constant orientation) and limits the time in eclipse.

14Technical advances in solid state mass memories has removed practically all onboard data storage
constraints.
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3.9.1 Source coding

The object here is to compress the volume of raw data generated onboard the satellite
while preserving the information contained. The choice of the coding algorithm de-
pends on the physical nature of the signals. For radar raw data, the natural resolution
is very poor (a few kilometers), and thus varies smoothly and exhibits a small dynamic
range. They can thus be coded on a lower number of bits than optical data.

At their output from the ADC, radar signals are usually sampled on 2∗8 bits
(the real part and the imaginary part). After source coding, the number of bits of the
coded signal varies: 2∗ 5 bits for ERS, 2∗ 3 bits for JERS, 2∗4 bits for RADARSAT.
The ENVISAT chain includes a Flexible Block Adaptive Quantization coder (FBAQ)
which allows the number of bits for coding to vary between 3 and 8 depending on the
SAR’s acquisition mode [McLeod, 1998]. For the Magellan mission15, the telemetry
and storage constraints imposed coding on 2∗ 2 bits: in this radical simplification, the
raw signal is reduced to one sign bit indicating positive or negative and one value bit
(giving four levels of restitution).

Source coding [Lebedeff, 1995] requires defining a quantifierQ atL levels, which
attributes to each sample x found in a ‘decision interval’ [tl−1; tl[, a ‘reproduction level’
yl chosen from a set of L values16:

Q(x) = y1 if: tl−1 ≤ x < tl for: l = 1, 2, ..., L

with:

t0 = −∞ and: tl = +∞ (3.30)

The gap between tl−1 and tl is the quantification step. Coding quality criteria, for
example the Root Mean Square Error (RMSE) ε(L), are based on various assessments
of the difference between the initial image and the restituted image:

ε(L) =
L∑

l=1

∫

Cl

(x− yl)
2 · f(x) · dx (3.31)

where Cl is the set of samples x attributed to the reproduction level yl and f(x) is the
probability density of the variable x.

The coding parameters (decision intervals and reproduction levels) are usually
adapted to the variations of the signal statistics, and updated with an appropriate time
constant.

Coding involves a reduction of information, and thus contributes to the level of
noise, which adds to the value ofNEσ0tot defined previously. Nevertheless, apart from
extreme situations such as Magellan (coding on 2∗2 bits), this contribution to overall
noise usually remains negligible compared to the other contributions.

We shall now introduce two algorithms: the BAQ and the BFPQ algorithms.

15The Magellan mission produced a radar map of 70 % of the planet Venus, with 150-m resolution, in
1990.

16Strictly speaking, source coding is applied to a signal which has already been sampled, but very precisely
(2∗8 bits). To keep things clear, we have assumed here a signal whose input is analog.
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3.9.1.1 The Block Adaptive Quantization (BAQ) algorithm
This algorithm was developed by the Jet Propulsion Laboratory [Kwok, 1989] for
the Magellan mission. It adapts decision levels and quantification reproduction lev-
els locally in order to minimize the RMSE. Under this constraint, the threshold and
restitution levels satisfy the Max-Lloyd equation [Max, 1960]:

tl = (yl+1 + yl)/2 (3.32-a)

and :

yl =
∫ tl

tl−1

x · f(x) · dx/
∫ tl

tl−1

f(x) · dx (3.32-b)

for l = 1, .., L − 1. The optimum decision levels tl are positioned at an equal dis-
tance from two consecutive restitution levels, the restitution level yl being the barycen-
ter of the interval [tl−1; tl[. The quantification steps are not equidistant from each
other: the BAQ algorithm samples zones with a high density of data more precisely
(Fig. 3.10(a)).

Fig. 3.10 (a) A representation of the decision levels of a 3 bit BAQ; (b) a representation of the
decision levels of a 3 bit BFPQ.

Since the statistics for the real part I and the imaginary part Q of the radar
signal are known (zero mean Gaussian variables, with variance σ2/2), we can com-
pile them into tables (tl and yl are given as a function of the number of coding bits
(Table 3.2)). Peskova [1999] has evaluated the efficiency of BAQ coding in different
cases, whether applied to raw or slc images, as well as for Cartesian representations (real
part and imaginary part) or polar representation (modulus and phase) of the radar signal.

3.9.1.2 The Block Floating Point Quantization (BFPQ) algorithm
This algorithm (Fig. 3.10(b)) works with a uniform quantization step. For a given
number of bits, ε(L) is minimized by this constraint (Table 3.3). The principal advan-
tage of the BFPQ algorithm is that it is easy to implement, as it requires no more than
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Table 3.2 BAQ coding: decision level tl and restitution level yl (relative to the standard deviation
σ) as a function of the number of coding bits (from [Lebedeff, 1995]).

1 bit / pixel 2 bits / pixel 3 bits / pixel
(2 output levels) (4 output levels) (8 output levels)

tl yl tl yl tl yl
0.0000 0.7979·σ 0.0000 0.4528·σ 0.0000 0.2451·σ

0.9816·σ 1.5104·σ 0.5006·σ 0.7561·σ
1.0500·σ 1.3440·σ
1.7480·σ 2.1520·σ

Table 3.3 BFPQ coding: value of the quantization step (relative to the standard deviation σ) as
a function of the number of coding bits (from [Lebedeff, 1995]).

Number of coding bits Optimum quantization step

1 bit / pixel (2 output levels) 1.596·σ
2 bits / pixel (4 output levels) 1.224·σ
3 bits / pixel (8 output levels) 0.996·σ

integer division (i.e. without taking the remainder into account) by the value of the
optimum quantization step, usually rounded to the closest power of 2. The division
is thus reduced to a simple bit shift. Since the decision and restitution levels do not
conform to the terms of the Max-Lloyd equations, the BFPQ is less efficient than the
BAQ.

3.10 Calibration and corresponding image quality requirements

The purpose of calibration is to associate each image pixel with an absolute radiomet-
ric content which is directly related to the measurement physics. Many applications
(cartography, interferometry, photo-interpretation, etc.) do not however require prior
calibration,17 unlike those which are specifically based on inverting radar measure-
ments into bio-geophysical parameters (for estimating soil moisture, surface roughness,
biomass rate, etc.).

The aim of calibration is to correct for spatial and temporal fluctuations in the
link budget. To achieve this, using in situ standard reference targets with a known
radar signature is the ideal situation. In addition, this facilitates later analysis of the
impulse response. This procedure, called external calibration, completes the internal
calibration, which compensates for the drift of the instrument transfer functions by
using feedback loops applied to the transmitted signals. We shall briefly describe these
two steps below before reviewing their requirements.

17The images from the first Spaceborne SAR mission SEASAT (1978) were never calibrated.
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Ideally, each pixel is assigned a complex coefficient s(x, y) characterizing its
backscatter signature:

Es = exp[−j · k · R]

k · R · s(x, y) · Einc (3.33)

Einc and Es are respectively the incident and backscattered fields18, k is the wave
number (Sect. 1.1.2.2), R is the range. In reality, s(x, y) is subject to the combined
effects of the instrument’s impulse response h(x, y) (Sect. 3.12), the gain Ks and the
phase shift φs of the acquisition chain and the measurement noise n(x, y) (amplified
by Kn). The pixel is assigned the quantity [Freeman, 1992]:

srest(x, y) =
√
Ks.exp[j · φs] · s(x, y) ∗ h(x, y)+

√
Kn · n(x, y) (3.34)

where ∗ is the convolution operator.

3.10.1 Internal calibration

After SAR synthesis, the power attached to a pixel is written as (Sect. 3.5):

Pfinal = Pe · λ2

(4π)3
· G(θ, φ)

2

R4
· 1

Loss
·Gazi ·Grange ·Gelec · σ (3.35)

Gelec is an amplification gain applied to the received signal19. The purpose of internal
calibration is to evaluateKs, at any point (x, y)of the image. This assumes that we know
the product of the transmitted power Pe and electronic gain Gelec, the antenna pattern
G(θ, φ), the range R between the target and the radar, the synthesis gain Gazi ·Grange,
and the Loss factor.

The product Pe · Gelec is controlled by a coupling device between the input cir-
cuit and the radar output, which is very stable with respect to temperature and ageing.
However as it is difficult to estimate the term for losses Loss = Lsys · Lfs, which
combines the attenuating effect of the instrument hardware (Lsys) and the loss of prop-
agation in free space (Lfs), the internal calibration must be complemented with external
calibration.

3.10.2 External calibration

This requires a standard reference target in the image, with a known SER σcal. If Pcal

is its pixel radiometry, the SER σ of any target with radiometry P is deduced from
the rule of three (σtar = P · σcal/Pcal). This implicitly assumes that the reference
target (also called calibrator) and the actual target are located at the same range from
the radar instrument. Rigorous calibration of the image would thus require deploying

18The corresponding SER σ (Sect. 3.2) is given by: σ = 4π · |s(x, y)|2.
19Gelec does not appear in the link budget if we assume to first order that there is an identical amplification

effect on the signal and on the noise.
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reference targets across the swath width. When determining Pcal of the reference point
σ(x, y) = σcal · δ(x) · δ(y), we need to take into account the ‘diluting’ effect of the
impulse response [Gray, 1990], which distributes this power over a cross-shaped area
centered on the actual target location (Sect. 3.12).

The main factors to be taken into account when selecting a calibrator are: (1) the
value of its SER, preferably as high as possible; and (2) the angular width of its radiation
pattern–the wider the pattern, the lower the accuracy required for its orientation and
the stability of its signature during radar illumination. As a result, the trihedral corner
reflector (Fig. 3.2) is the most used standard target for calibration.

The ‘visibility’ of the calibrator is defined by the SCR (Signal-to-Clutter Ra-
tio) [Freeman, 1992], which characterizes the power of the signal coming from the
calibrator, with respect to that of its environment:

SCR = σcal

σ0
clutter · pa · pg

(3.36)

σ0
clutter is the clutter backscatter coefficient, pa and pg are the azimuth and ground

projected range pixel sizes, respectively. A typical value of SCR greater than 20 dB is
recommended for satisfactory extraction of the calibrator response. For ERS-1/2, and
for a clutter of about −12 dB m2/m2, a 1-m vertex trihedral corner reflector is sufficient
(SCR = 23 dB).
Please Note: TheSCR strongly depends on the SAR observation mode. For RADARSAT
(C band), a 1-m vertex trihedral corner reflector observed in fine modeF1(pa ≈ 4.5 m,
pg ≈ 10 m) produces an SCR of 24 dB. The same target observed in SCANSAR mode
(pa ≈ 100 m, pg ≈ 100 m) gives an SCR of 1 dB. Maintaining the SCR at 24 dB
requires a 3.8-m vertex trihedral corner reflector.

3.10.3 Calibration requirements and expected scientific results

The requirements for the calibration quality depend on the scientific application in
question and the precision sought for the parameters of interest. The calibration coef-
ficient in Eq. (3.34) depends on a series of factors which are subject to temporal and/or
spatial fluctuations. There are temporal fluctuations both during an orbital revolution
(due to cyclic temperature variations affecting electronic circuits), and throughout the
lifetime of the satellite. Platform attitude variations, orbital drift, and drifting of the
radiation pattern are all sources of instability. Therefore, calibration requires several
space and time scales.

Ulaby [1998] emphasizes the progress made in the calibration field since the 1970s
when a quality calibration then meant a relative measurement precision of the order
of ±2 dB, and an absolute precision of the order of ±3 dB. To appreciate the progress
made, we should note the exceptional radiometric stability of ERS-1/2 with an absolute
precision of the order of ±0.25 dB. Calibration is more critical for multi-mode imaging
radars, due to uncertainty arising from incidence angle and resolution agility. For
example , the standard RADARSAT-1 mode has the following calibration requirements:
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relative measurement precision20 within an image: < ±1 dB, relative precision on an
orbit: < ±1.5 dB, relative precision over 3 days: < ±2 dB, absolute radiometric
precision21: < ±3 dB. Feedback from experience indicates that performances are
usually better than the requirements.

Finally, the Table 3.4 gives the calibration requirements for a series of scientific
objectives relating to the continental biosphere. Most of them are extremely constrain-
ing both for absolute level (of the order of ±1 dB), and relative level (from ±0.5 to
±1 dB for the short term, of the order of ±1 dB for the long term): an imaging radar
is still difficult to use as a quantitative measuring instrument.

Table 3.4 Calibration requirements for several continental biosphere scientific objectives (from
[Freeman, 1992]).

Relative Relative
Absolute calibration calibration

Geophysical theme Required precision calibration (short term) (long term)

Classification of ice into
three classes (winter)

Correct classification rate
> 80%

±2.0 dB ±0.5 dB ±2.0 dB

Ice motion Detection probability
> 95%

– ±0.5 dB –

Snow cover water
equivalent

For layer < 20 cm and
for snow mantle depth
> 20 cm

±1.0 dB ±1.0 dB ±1.0 dB

Ground moisture
(5 levels)

20% of variation per level
(< ±0.3 g/cm3)

±1 dB < ±0.5 dB ±1 dB

Surface roughness – ±1 dB – –

Cartography/vege- tation
monitoring

Biomass density to within
25%.
0 < LeafAreaIndex

(LAI) < 2 (to within 0.5)

±1 dB < ±0.5 dB ±0.5 dB

Age of lava Precise classification of 3
age classes

±3 dB ±1 dB ±1 dB

3.11 Speckle noise and image statistics

3.11.1 Physical origin

The coherent nature of radar illumination (Sect. 1.1) causes the speckle effect, which
gives the SAR image its noisy appearance, which is uncomfortable for an untrained

20A relative precision of ±1 dB means that the estimate of the differences of the σ0 of two pixels will not
differ by more than ±1 dB from the actual value.

21The absolute radiometric accuracy characterizes the largest possible difference between the estimate of
σ0 and its actual value.
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eye (Fig. 3.11). For example, let us imagine a natural fairly ‘regular’ surface so that
the human eye would perceive it as a regular surface (Fig. 3.12(a)). Seen by a radar,
each image pixel from this surface contains a large number of elementary scatterers,
which add their contributions to the field radiated by the pixel in a coherent way. This
addition accounts for the relative phase shift �ϕ arising from their respective ranges
from the radar. The total pixel response in amplitude and in phase is the result of vector
addition of these contributions in the complex plane.

Fig. 3.11 Speckle in a single look radar image. Fine mode RADARSAT extract (C band) of
an airport zone (resolution of 5 m in azimuth and 9 m in range). The multiplicative nature of
speckle can be seen in the image.

From a statistical point of view, the complex amplitude Ãpixof the pixel is modeled
as the sum of a ‘large number’ Ndiff of complex elementary contributions αk · ej·φk ,
where αk is the amplitude of the elementary field coming from the kth scatterer, φk is
its intrinsic phase signature increased by �ϕ:

Ãpix = X+ j · Y =
Ndiff∑

k=1

αk · ej·φk (3.37)

Even though adjacent pixels are created by similar conditions at a macroscopic
scale, their internal structures at the scale of a wavelength (a few centimeters), differ
enough to result in independent phase rearrangements. Differences in range as small as
λ/4, which are equivalent to phase shifts of π reshuffle the phases between scatterers.
If, within the pixel, the contributions interfere constructively (e.g. in pixel No. 1), this
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pixel will inherit a high radiometry. For the opposite case (destructive interference), the
pixel will have a low radiometry (e.g. in pixel No. 4). These uncontrolled radiometric
variations create the speckle effect (Fig. 3.12(b)). This mechanism is not random, but
is unpredictable and will later be assumed to be a multiplicative noise.

Fig. 3.12 (a) Physical origin of speckle: effect of the coherent nature of radar illumination. The
combination of elementary contributions within each pixel; (b) Radiometric distribution of the
resulting SAR image.

3.11.2 Statistics of fully developed speckle

The speckle is said to be fully developed [Goodman, 1976] when (1) the responses
of each scatterer are independent of the others; (2) the amplitude αk and the phase φk
are independent; (3) the variables αk are distributed according to the same probability
density function (PDF), in other words, all scatterers produce comparable intensity
responses (we are not considering here the specific case of a predominant scatterer
within a cell); and (4) The phases φk are uniformly distributed between −π and π.
Given these hypotheses, the radiometric distribution of a surface with uniform texture
is deduced from Eq. (3.37).

In terms of the central limit theorem, the real and imaginary parts, X and Y
respectively, of the complex amplitude Ãpix are independent random Gaussian variables
with a zero mean and the same standard deviation σ. Their respective PDF are given
by:
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⎧
⎪⎪⎨

⎪⎪⎩

p(X = x) = 1
σ·√2·π · exp

(
− x2

2·σ2

)

p(Y = y) = 1
σ·√2·π · exp

(
− y2

2·σ2

)

E(X · Y) = 0

(3.38)

The PDF of the intensity I = X2 + Y 2 is deduced from Eq. (3.38). Writing
E(I) = R = 2σ2, one then obtains the PDF of I, knowing R:

p(I = i|R) = 1

2σ2
· exp

(
− i

2σ2

)
= 1

R
· exp

(
− i

R

)
i ≥ 0 (3.39)

This is an exponential distribution with moments of order m equal to E(Im) =
m!(2 · σ2)m.

The PDF p(A = a|R) of the amplitude A = √
I is obtained from the equation:

p(A = a|R) · dA = p(I = i|R) · dI = 2 · p(I = i|R) · A · dA (3.40)

i.e.,

p(A = a|R) = a

σ2
· exp(− a2

2 · σ2
) = 2 · a

R
· exp(−a

2

R
) a ≥ 0 (3.41)

The amplitude A is distributed according to a Rayleigh distribution22, with mo-
ments: E(A) = σ · √

π/2 and E(A2) = 2 · σ2, and standard deviation σA =√
E(A2)− [E(A)]2 = σ · √

2 − π/2.

3.11.3 Speckle noise: multiplicative nature and modeling

For a stationary zone of fixed reflectivity R, the speckle effect is created by the am-
plitude distribution as in Eq. (3.40). When E(A) increases (Fig. 3.13), its RMS σA
increases proportionally. This proportionality between mean and standard deviation
gives speckle the behavior of a multiplicative noise. This can be seen in an extract of
a RADARSAT image acquired over an airfield (Fig. 3.11): the calm river, with very
low radiometry, has no speckle, unlike the higher radiometry zone, on the edge of the
landing strips. Let

I = R · n (3.42)

where n is the random variable representing speckle. We assume in addition that n and
R are independent variables and that n has a unit mean:

E(I) = E(R · n) = E(R) · E(n) = R (3.43)

22Following Eq. (3.39), the PDF of I is maximum at 0, whereas following Eq. (3.41), that ofA = √
I is null

at 0! This apparent paradox reminds us that we should not confuse a probability density and a probability...
The differential form Eq. (3.40) expresses the equality of probabilities of events A = a and I = a2.
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Fig. 3.13 Probability density function (PDF) of the amplitude of fully developed speckle. The
mean radiometry value R is 10 or 100.

The equality between E(I) and R indicates the possibility of reducing speckle by
averaging nearby pixels, in a trade-off with spatial resolution.

The speckle ‘power’ is quantified by means of the intensity variation coefficient
(or radiometric contrast):

CI = σI/E(I) (3.44)

where σI is the R.M.S. of the intensity. In the case of a single look complex image,
CI = 1 for a fully developed speckle. Speckle is reduced when CI is lower than 1.

3.11.4 Texture effect

In addition to the radiometric dispersion due to speckle, the spatial evolution of the
landscape causes its own radiometric variations which result in a texture effect. The
image of a tropical environment (Fig. 3.14) shows variable texture zones. To account
for radiometric variations due to different textures, we introduce a dedicated random
variable (t) in the equation for I:

I = t · E(R) · n (3.45)

We assume that t and n are independent variables and that t is of unit mean, as is
n. Under these conditions, the variation coefficients of the intensity CI , of the texture
Ct , and of the speckle Cn are related by:

C2
I = C2

t + C2
n + C2

t · C2
n (3.46)

If there is no texture (t = 1 andCt = 0), we then get CI = Cn.
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Fig. 3.14 Surface of variable texture. Tropical forest zone observed by ERS (C band, 23◦, VV ).

3.11.5 Speckle noise in multi-look images

The generation of multi-look images is based on incoherent sums of SLC image samples
which reduces its speckle while degrading its spatial resolution. Moreover the phase
information is lost during this operation due to the incoherent nature of these additions.

• The ‘spatial’ multi-looking associates a unique pixel to any batch of na azimuth
pixels and nd range pixels. The intensity of this pixel:

Iml = 1

na · nd ·
na·nd∑

k=1

Ik (3.47)

where Ik is the intensity of the kth pixel. The number of looks is given by
L = na · nd , if spatial correlation between nearby pixels is ignored. Yet spatial
correlation does occur, as the radar signal is always oversampled to some extent.

The intensity variation coefficient for the multi-look image (also equal to the
speckle variation coefficient Cn if we assume no texture) is given by:

CIml = Cn = σIml

E(Iml)
= 1√

na · nl · σIk

E(Ik)
= 1√

L
· CI = 1√

L
(3.48)

where σIml and σIk are the RMS of Iml and Ik, respectively. The decrease in the
variation coefficient by a factor

√
L expresses the amount of speckle reduction.

The visual effect of speckle reduction based on multi-looking and the corre-
sponding deterioration of spatial resolution are shown in Figures 15(a)-15(c).
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• With equivalent radiometric performances, ‘frequency’ multi-looking reduces
the computing time if applied during synthetic aperture processing. For the
sake of simplicity, let us consider multi-look processing limited to the azimuth
direction (Fig. 3.16). The variations in target-radar range during the illumination
time T ill produce a frequency spread in the response (Sect. 2.3.1, Fig. 3.16(a)
and Fig. 3.16(b)). After applying a FFT in the azimuth direction, the frequency
spectrum is divided into several parts (Fig. 3.16(c)). For each one, we then
generate an image (or look) using inverse FFTs. Then the looks are summed
incoherently (Fig. 3.16(d)). The effective number of looks equals the actual
number of looks as long as their spectra do not overlap.

Please note: The frequency approach is appropriately called ‘multi-look’: the Doppler
behavior (Fig. 3.16(a)) assigns to each look the energy in the radar echoes acquired
under specific viewing conditions (e.g., backward vision, central vision, forward vi-
sion). The multi-look image is none other than a merger of the different looks of a
given target.

3.11.5.1 Statistics for multi-look image
For an image made up of L independent looks, the image intensity is distributed ac-
cording to a gamma distribution [Lee, 1994]:

p(I = i|R) = LL · IL−1

(L− 1)!

1

RL
· exp

(
−L · i

R

)
i ≥ 0 (3.49)

The mean (equal to R) remains unchanged with regard to the SLC image, but its
standard deviation is reduced by the factor

√
L.

Fig. 3.15 Multi-look processing applied to an image acquired by the ONERA Sethi airborne
radar (C band, 3-m resolution) of Paris (zone showing the Eiffel tower and the champ de Mars).
(a) original one-look image; (b) 2 × 2 multi-look images (2 azimuth looks; 2 range looks); (c)
3 × 3 multi-look images.
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Fig. 3.16 Azimuth multi-look processing: (a) doppler spectrum in the time domain; (b) modulus
of frequency azimuth spectrum (c) decomposition of azimuth spectrum into three sub-looks; (d)
separate synthesis of the three sub-looks and incoherent summing of resulting images.

The amplitude is distributed according to a Rayleigh-Nakagami distribution (or
generalized gamma distribution):

p(A = a|R) = 2 · LL
(L− 1)!RL

α2L−1 · exp

(
−L · a2

R

)
a ≥ 0 (3.50)

For a fully developed speckle, the PDF of a multi-look image amplitude (Fig. 3.17)
shows that there is less speckle as the number of looks increases (narrowing of profiles
around their mean value).

3.11.5.2 Estimating the number of looks in an image
The number of looksL is the image quality parameter which characterizes radiometric
resolution Sect. 3.13. To estimate it, we select a homogenous part of the image with no
apparent texture (t = 1 andCt = 0). According to Eq. (3.48), the intensity variation
coefficient gives an estimate of the number of equivalent looks. Subsequently, this
estimate enables us to determine the texture coefficient for any part of the image using
Eq. (3.46).
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Fig. 3.17 Probability density function (PDF) of the amplitude of fully developed speckle for a
multi-look image with a variable number of looks L. The mean radiometry R is equal to 10.

In spite of a simple formulation, the number of looks is a difficult parameter to
estimate, particularly if it is low. We recommend renewing the estimation for several
homogenous parts of the image. Moreover, the slight oversampling of the image (pixel
size < spatial resolution) leads to a spatial correlation between neighboring pixels,
which results in a lower number of equivalent looks than expected.

Finally, we should keep in mind that the previous distributions were determined
with the fully developed speckle hypothesis. With the advent of high-resolution sensors
(≤ 1 m), which make it more likely to have a limited number of scatterers inside a
resolution cell (and not the ‘large number’ required for satisfying the fully developed
speckle conditions), the formalism described in the previous sections is becoming
less adequate. Alternative distributions are then used for the statistical description of
radiometry (K, Weibull, Fisher distributions), depending on the nature of the media
observed [Tison, 2004].

3.11.6 Speckle reduction filters

Their function is to produce an estimate R̂ of the local reflectivity R, on the basis of
a multiplicative noise model. The ideal adaptive filter smoothes most of the homoge-
nous part of an image but on the other hand maintains its singularities, which reveal
the presence of unusual structures (point targets, buildings, edges of roads, etc.). A
comparison of filtered and unfiltered images invariably leads to a discussion on the
relevance of filtering. Even though filtering improves the appearance of images (a very
subjective criterion), it does not improve levels of detail seen in the original image: a
trained eye is the best anti-speckle ‘filter’ for radar images as it changes neither the
statistics nor the image resolution.
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Below we shall give the characteristic equations for the most widely used speckle
reduction filters without considering the many refinements described in the literature
(contour detection, introduction of decision thresholds, etc.) [Lee, 1994], [Touzi, 2002].

• The box filter: The estimate R̂ of R is the mean of the intensity E(I) estimated
over an analysis window centered on the pixel under consideration:

R̂ = E(I) (3.51)

This non-adaptive filter is optimal for fully developed speckle but cannot be used
for point targets or fine structures.

• The Kuan and Lee filters: R̂ is modeled as a linear combination of the value I of
the intensity at the center of the analysis window and of the meanE(I) estimated
over the entire analysis window:

R̂ = α · E(I)+ β · I (3.52)

The coefficients α and β satisfy a maximum likelihood criterion (minimizing of
E[(R− R̂)2]) which leads to:

R̂ = E(I)+ (I − E(I)) · C2
t

C2
t + C2

n + C2
t · C2

n

(3.53)

The Lee filter (which does not include the term C2
t · C2

n) is a variation of the
Kuan23 filter. Equation (3.53) expresses the adaptive properties of the filter:
for fully developed speckle (Ct = 0), the filter reduces to a simple box filter.
When the statistic becomes locally more complex (texture, point targets, etc.),
Ct increases and R̂moves closer to I: the local structures in the image are mostly
preserved.

• The Frost filter: we assume that the auto-correlation function of the image sat-
isfies a decreasing exponential distribution. In this context, R is estimated by
filtering I with a Wiener filter:

R̂ = I ∗m(z) (3.54)

The symbol ∗ is the convolution operator and z is a translation in the analysis
window. The functionm(z) is designed so that R̂ is the best estimate of R using
a least square criterion. After a few simplifications, this gives [Bruniquel, 1996]:

m(z) = k1 · α · exp(−α · |z|) (3.55a)

23Elimination of the term C2
t ·C2

n implicitly assumes that 1 +C2
n ≈ 1, with Cn decreasing as the number

of looks increases. In the extreme case of a single look image (Cn = 1), this hypothesis is no longer relevant.
In practice, this simplification can be used only for a number of looks greater than 3 [Bruniquel, 1996].
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where:

α2 = k · C2
I (3.55b)

k1 is an fitting coefficient used to correct bias introduced by the filtering (it can
be chosen equal to 1 if the data does not have to be calibrated). The weighting
distribution envelope narrows as CI increases, thus giving the central pixel an
increased weight. Moreover, the coefficient k offers the possibility of ‘adjusting’
the ‘strength’ of the filtering.24

• The Maximum A Posteriori (MAP) filter: Here, the estimate of R requires
knowledge of the PDF of R,p(R). It is moreover necessary to make an hypoth-
esis about the PDF of the intensity given the reflectivity p(I|R). According to
Bayes law, we then derive the PDF of the reflectivity given the intensity p(R|I) :

p(R|I) = p(I|R) · p(R)
p(I)

(3.56)

R̂ is the value ofRwhich maximizes p(R|I). The ‘statistics reversal’ (transition
from p(I|R) to p(R|I)), combined with the search for a maximum explains the
name ‘Maximum a posteriori’. It is generally assumed that p(I|R) satisfies
a gamma distribution. The hypotheses concerning p(R) are more varied. An
alternative to the classic hypothesis of a Gaussian distribution is the gamma
distribution which has the twofold advantage of being more realistic and which
strangely enough simplifies the calculations for determining R̂ [Lopes, 1990].
This then leads to the ‘Gamma-Gamma MAP’ filter ( p(R) and p(I|R) are both
gamma distributed), which provides an analytical equation for R̂:

R̂ = E(I) · (α− L− 1)+
√
E2(I) · (α− L− 1)2 + 4α · L · I · E(I)

2 · α (3.57)

Unlike the previous filters, this estimator is biased (i.e., it does not converge
towards the true value of R). L is the number of looks. α = 1/C2

t is called the local
heterogeneity coefficient. If the scene is very homogenous, α → ∞ and R̂ → E(I)

and Gamma-Gamma MAP behaves as a box filter. Finally, we should note that the
MAP filter is flexible enough to integrate various types of distribution laws p(R) for
radiometry (Fisher, ...) [Nicolas, 2003].

3.11.6.1 Use of speckle reduction filters
A sliding analysis window is necessary to estimate local statistics: E(I), C2

t and C2
t .

The two first quantities are estimated directly from the pixel radiometric contents inside

24Equation (3.54) implicitly assumes that the speckle is uncorrelated which is incorrect as images are
generally slightly oversampled. It should be noted here that there is a difference between the correlation of
a scene (which is a physical concept) and the correlation of the speckle. The Frost filter takes the first into
account while assuming that the second is zero.
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Fig. 3.18 Extract from an over-sampled, fine mode RADARSAT image (SGX) of the Salon de
Provence air base. Resolution: 6 m (azimuth) × 8.9 m (range). Pixel: 3.125 m (azimuth) ×
3.125 m (range). (a) unfiltered initial image (1 look); (b) image filtered with Frost filter (9 × 9
window). k = 0.75.

the window. Once the number of looks L has been estimated (Sect. 3.11.5.2), we then
deduce the value of C2

t from Eq. (3.44) and Eq. (3.46).25 All of the filter parameters
are now known.

By comparing an extract from a RADARSAT image (Fig. 3.18(a)), and the output
from a Frost filter (window 9 × 9, k = 0.75) (Fig. 3.18(b)), we observe a strong
speckle reduction over homogenous areas (on the right side of the image) but also a
good restitution of the building contours (e.g., central area at the top of the image)
thus confirming the adaptive nature of the Frost filter. The performances of the various
filters are compared (Fig. 3.19(a) to 3.19(e)), for an extract of the previous image
(buildings in the form of combs with variable orientations, at the bottom left). The
box filter (Fig. 3.19(b)) flattens the high frequencies of the image (contours of the
buildings). After comparison, the Frost filter, the Gamma-Gamma MAP filter, and to
a lesser extent the Kuan filter, demonstrate their adaptive properties.

The quality of the filtering may be evaluated by means of various criteria. The
a posteriori estimate of the number of equivalent looks quantifies the level of speckle
reduction. We need to evaluate how much we paid for this reduction in terms of
image quality. The trade-off between spatial resolution and radiometric resolution
(Sect. 4.5.3) leads to the use of ‘medium’ size analysis windows (e.g., 15×5 for ERS).
A filter generally comes with peripheral tools which are designed to minimize the
negative effects: detectors of contours and structures, preliminary segmentation, higher
order statistics, Markov processes, multi-scale analyses, etc. The ability of these filters
to preserve textures must be evaluated, using most subjective criteria based on an
operator’s perception of the scene observed. Finally, computer criteria such as the

25This type of procedure may yield a negative value due to a limited number of independent samples
within the analysis window. In this case, the filter is not applied to the point in question.
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Fig. 3.19 Extract from an over-sampled, fine mode RADARSAT image (SGX) of Salon de
Provence air base. Resolution: 6 m (azimuth) × 8.9 m (range). Pixel: 3.125 m (azimuth) ×
3.125 m (range). (a) initial one-look image, without filtering; (b) medium filter, 7 × 7 window;
(c) Kuan filter, 7 × 7 widow; (d) Frost filter, 7 × 7 window, k = 0.75; (e) MAP Gamma-Gamma
filter, 7 × 7 window.

complexity of the implementation or computing time required have to be taken into
account. [Lee, 1994] has made a thorough comparative analysis of all these filters.

3.11.6.2 Speckle reduction by information diversity
The merging of radar information by incoherently summing images acquired at differ-
ent times (or with different polarizations) leads to a synthetic product with improved
radiometric resolution, while preserving the spatial resolution (unlike the multi-look
product). This may be seen by comparing Fig. 3.20(a) (ERS PRI image on one date)
and Fig. 3.20(b) (merging of eight ERS PRI dates). This approach implicitly assumes
the stability in time of the information of interest (e.g. determining building contours,
extracting networks, etc.) and a contrario the instability in time of the speckle.26 The
speckle will be reduced pro rata according to the number of available images if we
assume that it is totally uncorrelated in time.

3.12 The impulse response (IR)

The impulse response (IR) is a key indicator of the image quality. It characterizes the
‘reaction’ of the radar instrument / processing algorithm system to a point target. The
IR describes the dispersion of the energy coming from this single point in the image.
In an ideal system, all its energy would be deposited on one pixel.

26Inter-correlation of speckle from one time to another may be taken into account by using a weighted
sum of the images (algorithm from [Bruniquel, 1996]).
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Fig. 3.20 Multi-temporal ERS analysis of Paris-Roissy airport: (a) ERS PRI image corresponding
to one date, courtesy SERTIT; (b) Co-registration of 8 dates. In the sub-image, the airport and
its terminals, courtesy SERTIT.

3.12.1 Range impulse response (RIR)

The RIR is ‘embedded’ in a single echo (i.e., a single image line). At the time of the
transmission, the corresponding pulse is written (Sect. 3.5.1.1.)27

sinc(t) = exp(jπBdt
2/T) ·�T (t) (3.58)

Bd is the chirp modulation band, �T (t) is gate function of width T = Tpulse (uncom-
pressed pulse duration, also called long pulse duration) and unit amplitude. By ignoring
the receiving noise, the signal coming from a point target at a range r0 = c · �t/2 is
written as

srec(t) = α · sinc(t −�t) (3.59)

where α is a coefficient related to the propagation and to the wave interaction with the
target. During reception, srec(t) undergoes adaptive filtering described in Sect. 3.5.1.1:

sout(t) = α ·
∫ +∞

−∞
sinc∗(τ − t) · sinc(τ −�t) · dτ =

∫ +∞

−∞
sinc∗(τ) · sinc(τ − u) · dτ

with:

27Such a representation is written here in complex form and does not include the term tied to the carrier,
as shown in the expression of Sect. 3.5.1.1.
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u = �t − t (3.60)

After substitution and expanding:

sout(t) = α · exp(jπBdu
2/T) ·

∫ +∞

−∞
exp(2jπBduτ/T) ·�T (t) ·�T (t − u) · dτ

(3.61)

Noting that the non-zero domains of�T (t) and�T (t−u) have a non-zero intersection
only when −T ≤ u ≤ T , we then get

sout(t) = α · T · exp(2jπBdu
2/T) · sin[πBd |u|(1 − |u|/T)]

πBd |u| ·�2T (t − u)

(3.62)

Let r be the range variable and r0 the range of the point target (|r−r0| = c·|u|/2)).
Letting pd be the size of the range pixel (≈ c/2Bd), we then get

|u|/T ≈ 1

Bd · T · |r − r0|
pd

(3.63)

As already said, the term Bd · T = Bd · Tpulse is the range compression rate.
It is much larger than 1. Under these conditions we can neglect the term |u|/T in
Eq. (3.62). The shape of the impulse response thus varies according to sinc[πBd |u|]
(sin c represents the cardinal sine), or in an equivalent way according to sinc[π|r −
ro|/pd]. The main lobe with a width of 2pd , determines the resolution (HPBW or 3 dB
beamwidth) around pd .

3.12.2 Azimuth impulse response (AIR)

Whereas the footprint of the range impulse response is included in one single echo,
that of the azimuth impulse response spansNa echoes (Na is the azimuth compression
rate, Sect. 2.2.5.) By setting the time origin at the point of closest approach to the target
and ignoring the effect of range migrations, the part of the signal returned in a given
range gate is written as

srec(taz) = α · weight(taz) · exp(jπBdopt2az/T
ill) ·�Till (taz) (3.64)

Bdop is the Doppler bandwidth generated during the illumination time T ill. The function
weight(taz) is the weighting of the azimuth antenna pattern. This weighting prevents
analytical development. By acting in the frequency domain, the response can be
‘unweighted’ in order to come up with an impulse response shape in sinc[πBdoptaz], or
in an equivalent way in sinc[π|x − x0|/pa], pa ≈ D/2, (where D is the length of the
radar antenna) being the best achievable azimuth resolution.

More generally the shape of the IR is affected by natural weighting (such as that
from the azimuth antenna pattern) or artificial weighting applied to azimuth and range
frequency spectra. Their effects are quantified by means of two parameters, the ISLR
and the PSLR, discussed in the following section.
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Fig. 3.21 Power distribution of the impulse response in a given direction (azimuth or range).
The dark area represents the energy contained in the side lobes, the light area, that of the main
lobe. The ratio of the two gives the ISLR. The PSLR is the ratio of the maximum signal level
observed in the side lobes to that observed in the main lobe.

3.12.3 Complex image spectrum, ISLR, PSLR, weighting effect

The shape of the IR (expressed as power) is characterized by the Integrated Side Lobe
Ratio (ISLR) and the Peak Side Lobe Ratio (PSLR) (Fig. 3.21). The ISLR is the ratio
between two quantities: the energy contained in a width of ten resolutions excluding
a central band with a width of two resolutions (which models the side lobes), and the
energy contained in the central band (which models the main peak). The PSLR is the
ratio between the maximum intensity peak observed in the side lobes over a width of
20 resolutions and the maximum peak of the central band. These parameters affect the
level of radiometric interactions between nearby pixels.

What effect do the azimuth and range frequency spectra of the SLC image have on
the IR? Analyzing these spectra is part of basic image quality analysis. One particularity
of radar imagery is that it has two kind of frequency spectra features, one linked
to its amplitude image alone, the other including the entire radar image (amplitude
and phase). The latter does not yield landscape characteristics but information on
the instrument itself. The envelope of this complex image spectral signature is the
aliased antenna main lobe radiation pattern (Fig. 3.22(a)). This envelope can be further
modified by applying additional weighting to the data in the frequency domain. This
is the case for Fig. 3.22(a). In our example, the complex image frequency spectrum
moreover reveals the oversampling applied to the radar signal. The central gap has a
width linked to the rate of oversampling (about 60% in azimuth and 30% in range).

The additional weighting applied to the data changes the IR shape. The spatial
resolution (see definition in Sect. 3.12) is favored by uniform weighting (Fig. 3.22(b)),
for instance obtained by ‘unweighting’ the natural image frequency spectrum. The side
lobes of the IR are higher for the ‘unweighted’ case, with the point targets ‘spilling’
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more onto their environment. The weighted image offers in return better protection
from speckle (Sect. 3.11). This type of analysis illustrates again the trade-offs between
spatial and radiometric resolution through spectral weighting.

To conclude, the IQ parameters are, simply speaking, the result of a double weight-
ing, one (physical) affecting the antenna pattern, the other (artificial) applied to the
radar data. The ‘upstream’ weighting applied by the antenna illumination distribution,
affects the radiometric pollution coming from the remote environment, via image am-
biguities. The ‘downstream’ weighting, in addition to its effects on spatial resolution,
sets the level of radiometric pollution from the nearby environment via the side lobes
of the IR.

3.13 Radiometric elements of Image Quality

3.13.1 Estimating and analysing NEσ0tot

Section 3.7.4 highlighted the joint contribution of the instrument and processing to total
image noiseNEσ0tot . This key parameter in image quality is visually tied to the ‘more
or less black’ nature of the darkest areas of the image. It is estimated over a surface
which is assumed not to backscatter any energy towards the radar such as airport strips,
calm water, shadowed areas, etc. However, the image noise is often measured together
with a radar signature of the ground, which though weak, may dominate the noise.
The estimate ofNEσ0tot is thus by nature overestimated (hence biased). This bias may
be removed by using multiple observations, thus providing independent noise samples
and various background situations. An example will be given in the chapter on radar
polarimetry (Sect. 5.8).

Fig. 3.23(a) to 3.23(c) illustrate the rendering of a series of urban radar images
(X band, single look, 1 m) with varying image noise levels. This example, with a value
typical for an airborne acquisition (Fig. 3.23(a), NEσ0tot = −35 dBm2/m2) shows a
huge contrast between the brightest zones (buildings) and their shadows. In the case
of satellite acquisition from a ‘standard’ platform (ERS type), the contrast is necessar-
ily degraded (Fig. 3.23(b), NEσ0tot = −22 dB m2/m2). Finally preliminary studies
conducted on ‘micro-satellite’ platforms (150 kg class) show that NEσ0tot increases
to a value of approximately −18 dB m2/m2 (Fig. 3.23(c)). For the last case, it would
be difficult to work directly on a single-look image, hence prior multi-look filtering is
desirable.

3.13.2 Estimating the ambiguity level

The ambiguity level for extended targets (e.g. AASR for azimuth, Sect. 3.7.2) and
point targets (APSLR, Sect. 3.7.4.1) may be estimated only by taking advantage of
specific conditions. For the AASR, this means for example finding an extended target
whose ‘ghost’ falls in an area with very weak radiometry, and then computing the ratio
of its intensity compared that of the real target (e.g., Fig. 3.8). For the APSLR, we
would need to pair a target and its ambiguity. This particular situation is shown in
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Fig. 3.22(a) One-look radar image. Weighted and over-sampled azimuth spectrum. Weighted
and over-sampled range spectrum.

Fig. 3.22(b) One-look radar image. Unweighted (whitened) and over-sampled azimuth spectrum.
Unweighted (whitened) and over-sampled range spectrum.
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Fig. 3.23 ONERA/RAMSES one-look radar image, X band, 1-m resolution, including variable
levels of image noise (NEσ0tot). (a) NEσ0tot = −35 dB m2/m2; (b) NEσ0tot = −22 dB m2/m2;
(c) NEσ0tot = −18 dB m2/m2

the example of an ASAR/ENVISAT image (Fig. 3.24) including a transponder (active
calibration target) which backscatters enough energy to enable easy identification of
its main ambiguities.

3.13.3 Radiometric resolution:

This characterizes the radiometric stability of a stationary part of the image (with
constant σ0 andNEσ0tot). The radiometric resolution depends on the speckle intensity
(Sect. 3.11), i.e. the number of looks L (Sect. 3.11.5.2) and the level of image noise.
It is defined by:

γ = 10 · log10(1 + SD(σ̂0)/σ̂0) (3.65)

where SD is the standard deviation and σ̂0 the estimated value of σ0. Using a multi-
plicative speckle model, we show that:

γ = 10 · log10

(
1 + 1 + 1/SNR√

L

)
(3.66)

where SNR is σ0/NEσ0tot . A one ‘look’ (L = 1) SLC image, for which speckle noise
is maximum, has a radiometric resolution larger than the value of 3 dB (limiting case
for SNR = ∞). As the number of looks increases γ also increases while the spatial
resolution is degraded, leading to a trade-off.28

28For example, the leading product of the ERS mission, the Precision Image (PRI) is an azimuth 3-look
image with a resolution of 20 m.
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Fig. 3.24 Radar signature of a transponder and its two main azimuth ambiguities
(ASAR/ENVISAT S4 HH , of Edam, Holland, Oct. 02). Copyright ESA.

3.14 Geometric elements of image quality

3.14.1 Spatial resolution and pixel size

We should first distinguish between resolution and pixel size. The pixel size (Sect. 2.2.3)
only depends on the radar signal sampling. It does not change during standard SAR
synthesis, unlike spatial resolution. The latter is defined by the 3 dB cut-off (of energy)
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of the main lobe in the Impulse Response (IR) (Fig. 3.21). Due to the slight over-
sampling of the radar signal (typically 15 to 20% higher than the sampling frequency
required by the Shannon condition), the geometric resolution will be greater than the
pixel size in proportion. As for IR, it also depends on the frequency weighting applied
to the data (Sect. 3.12.3).

3.14.2 Geometric distortion

Range vision, which is specific to radar imagery, causes specific artefacts which have
been described in Sect. 2.6.1, i.e. the effects of foreshortening and layover. Fig. 3.25
shows foreshortening, layover and shadow effects observed over a mountainous area.

Fig. 3.25 Foreshortening, layover and shadow effect in mountainous area, Copyright
RADARSAT International, from Geology manual RADARSAT.

Range vision produces another type of artifact, that occurs even for flat ground,
which is tied to compression or expansion of an image line. In the range direction
the pixel size pd is given by pd = c/2 · fd , where fd is the sampling frequency
of the received echoes. Once projected onto the ground, the pixel size depends on
the local incidence angle θl, i.e., pg = c/2 · fd/ sin θl. This projection introduces
a compression/expansion process for the image which gradually decreases the pixel
size when moving along the image line from near range to far range,29 even without
significant relief in the topography.

As we have already seen, there is geometric distortion due to the “stop-and-go”
assumption (Sect. 2.3.10), which is not as important as the previous effects. It remains

29For ERS (central incidence angle of 23◦) the incidence angle along the swath varies from 19◦ to 26◦
for flat ground, leading to an additional compression in the pixel size of about 26% in the far range, with
respect to the near range. This effect will be greater for an airborne observation, typically ranging between
20◦ and 50◦.
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less than a half-pixel in relative value between near range and far range, due to the
design constraints related to range ambiguities.

3.14.3 The image location

Due to the range vision principle, the SAR image location is independent of the ori-
entation of the platform. Of course, it still depends on the platform’s position. In
the geometric positioning equation set developed in Sect. 2.6.2 the range measurement
localizes a point on an iso-range curve (the range reference is the near range, associated
with the echo sampling-window-start-time, SWST). For azimuth, location is based on
time-tagging the transmitted pulses (the time reference is that of the point of closest
approach). Ultimately, locating thus depends on two parameters (one for range and
one for time) which are subject to various types of errors: imprecise orbit knowledge,
lack of knowledge of the terrain’s relief, unknown or varying electronic delays, and
atmospheric effects. To attain the final location, the time-tagging and the range must be
completed by introducing a reference surface for the ground, such as a plane, an ellip-
soid, the local geoïd, a digital elevation model, etc., which is assumed to contain all of
the points to be located.30 Finally we need to remove the residual right/left geometric
ambiguity as there are generally two points that satisfy the conditions. However, only
one is illuminated by the antenna. Fig. 3.26 illustrates the location problem.

3.14.3.1 Imprecision in range
The range location is determined from the satellite’s position on its orbit (in the radial
and cross-track directions), and the near range measurement. Orbital accuracy varies
according to the direction in question but also depends on the type of orbital product
(predicted orbit, instantaneous orbit or filtered orbit). The radial direction (between
the satellite and the center of the Earth) has the greatest precision followed by the
cross-track direction.31

Near range estimates consist of expressing the sampling window start time (SWST)
as range information (Sect. 2.2.3). This conversion is affected by the delay of elec-
tronic systems during transmission (time elapsed between the transmission command
and the effective transmission) and also for reception (time elapsed between reception
of the wave and response of the system). These reaction times are cumulative and
produce (in the case of ERS), a range offset of approximately 740 m, which is deter-
mined empirically during the calibration process. A residual dispersion εNR tied to
atmospheric propagation (smaller than ± 10 m), subsists around this offset value and
causes a planimetric location uncertainty (Fig. 3.27) given by:

�xNR = εNR/ sin θl (3.67)

where θl is the local incidence angle.

30There are different ways of attaining absolute location (use of ground control points, crossing of as-
cending and descending orbits) which are not described here.

31For example, a filtered ERS orbit offers radial precision to within one centimeter.
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Fig. 3.27 Localization errors related to lack of precision in the orbit, terrain and near range
measurements.

Uncertainties linked to the radial position of the satellite (altitude) and to the value
of the Digital Elevation Model (DEM) in turn affect near range location on the ground
(the wave ‘hits’ the Earth sooner or later than expected). The cumulative uncertainty
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εH+DEM causes a planimetric location uncertainty (Fig. 3.27) given by:

�xH+DEM = εH+DEM/ tan θl (3.68)

For ERS, an altimetric uncertainty of 15 m leads to a mean location uncertainty
of 35 m. This error is not uniform for the whole image as the incidence angle amplifies
it less at higher incidence angles.

Finally the atmosphere is taken into account in the error budget as a range dilatation
effect. Tropospheric effects32 predominate beyond the C band (X,Ku, etc.). Total
dilatation while crossing the atmosphere consists of a ‘stable’ component (of the order
of 2 m vertically in C band) and an unstable component (of about ± 0.2 m for C band),
corresponding to an uncertainty.

3.14.3.2 Imprecision in azimuth
This is governed by knowledge of the satellite’s orbit (in the longitudinal direction, i.e.
azimuth axis) and the time-tagging of the image data, from which the acquisition time
of the first image line is determined. In addition to orbital accuracy which is critical
in the longitudinal direction, offsets between clocks aboard the satellites may come
into play. The orbit trajectory is referenced in relation to the platform clock while the
radar data is referenced in relation to the payload clock. Finally data acquisition with
a non-zero Doppler centroïd does not affect the precision for azimuth location as long
as one knows the value of the integer part of the Doppler centroïd. In these conditions
it is possible to restitute the image for a zero Doppler, i.e. for the point of closest
approach. In this respect, the yaw control of ERS which makes it possible to maintain
the Doppler centroïd below fa/2, is a good example of a safety margin.

3.15 Radar image interpretation

As we have already seen in previous sections, radar imaging systems must comply with
very tight design constraints. The choice of a few parameters is sufficient to determine
the whole system. These parameters also govern the particularities of radar images
such as ambiguities, the level of saturation and the range and azimuth compression
rates. We shall now analyze in detail a set of radar images by imagining that we are
analyzing a radar about which we know nothing at all. The purpose of this section is
to show to what extent these radar parameters affect image characteristics.

3.15.1 Description of data

The series of images in Fig. 3.28 was produced from a single acquisition by the E-SAR
airborne radar belonging to the Deutsche Zentrum f ür Luft- und Raumfahrt (DLR),
whose raw data was processed by CNES. The E-SAR radar, which flew on a Dornier

32Below that, ionosphere effects become significant.
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228, has a multi-frequency and multi-polarization capability as well as various possi-
bilities for onboard processing. In this old image (1990) taken when this radar was
still being developed, the data were taken in C band (λ = 5.6 cm) with a sampling
frequency fd of 100 MHz and horizontal polarization.

The site observed is close to the Oberpfaffenhoffen airfield in the suburbs of
Munich; an important DLR center. The site is of interest due to the variety of natural
and artificial targets found within a few kilometers. There are forests, fields, isolated
trees, roads and highways, a parking lot which is partially filled, buildings, railway
tracks, bridges, a lake, fences, an air strip and various infrastructures.

How were several different images obtained from the same radar acquisition?
By varying the Doppler processing centroïd and selecting only a part of the azimuth
spectrum for each processing. Each of the images corresponds to processing one eighth
of the available Doppler bandwidth. This radar has a small antenna, about D = 0.2 m
along the flight path of the aircraft. As the aircraft typically flies at a speed of v = 80 m·
s−1, the signal is sampled at a frequency of about fa = 1000 Hz (fa is the pulse
repetition frequency or PRF) so that the aircraft will not cover more than half of the
length of the antenna between each pulse or, in other words, that Shannon’s condition is
respected (v/fa < D/2). Here each pulse is transmitted every 8 cm under normal flight
conditions, which corresponds to the width of an azimuth pixel. The best resolution that
can be obtained from these data is thus of the order of 10 cm in azimuth (i.e.D/2) and
1.5 m in range, due to the fd = 100 MHz range sampling. However it is unrealistic to
expect this resolution since the antenna observes an angular sector of about 15◦ (≈ λ/D

in radians). Even if the observation range is small, for exampleR = 5 km, the width of
processing will be greater than 1 km (R · λ/D), and will thus include more than 10000
azimuth samples. Moreover, the aircraft will take about 15 s to cross the width of the
processing zone. The high resolution processing thus requires an enormous amount of
computing but more importantly, knowledge of the relative position of the aircraft to
within one millimeter (we are working in C band with a wavelength of 56 mm) during
15 s ! This exceeds the capabilities of the navigation systems that were used on aircraft
at the time. On the other hand we know that if we select an eighth of the azimuth
spectrum we decrease the observation time by 8, and the width of processing by 64
using the equations in Chapter 2.33 Then estimating the aircraft displacement for 1
or 2 s and focusing on a few hundreds of samples become more feasible. Thus, we
can create 8 independent images which each correspond to one eighth of the spectrum.
The images in Fig. 3.28 are respectively centered on −2.5,−1.5,−0.5, 0.5, 1.5 and
2.5. These dimensionless figures represent the position of the center of the part of
the bandwidth processed, expressed as eighths of the total bandwidth. In these units,
the azimuth sampling frequency (PRF) fa is 8 and the bandwidth of the simplified
processing is 1. Fig. 3.28 does not include images centered on −3.5 and 3.5 whose
quality is even more degraded than for images −2.5 and 2.5.

The radar acquisition consists of 100,000 echoes, each one containing 2000 range
samples. Given the range sampling frequency, the range swath width is 3 km. The

33The width of the processing Na is indeed equal to λR0f
2
a /2v

2. By taking into account 1/8 of the
Doppler bandwidth it is possible to reduce fa in the same proportion and to reduce Na by a factor of 64.
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Fig. 3.28 Series of images acquired by the DLR E-SAR sensor over the Oberpfaffenhoffen
airfield (Germany). The FD parameter is the Doppler centroïd value for the sub-look in question,
expressed as heights of the total azimuth bandwidth.
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azimuth sampling frequency is actually 1200Hz. The data thus correspond to about
80 s of imaging, i.e. a little more than 6 km given the aircraft’s speed. To facilitate
interpretation, each image was multi-looked (Sect. 3.2.5) by merging 2 range samples
and 8 azimuth samples. The images, still represented in radar range, thus consist of
pixels of 3 m in range and about 4 m in azimuth. Indeed, the elementary azimuth pixel
equal to the speed v of the aircraft divided by fa was first multiplied by 8 due to the
frequency selection or ‘pre-summing’ (Sect. 2.4.6), which only keeps 150 Hz out of
the initial 1200 Hz, then again by 8 due to the multi-look filtering. With comparable
pixel dimensions in both directions, the images are quite readable, especially since the
aircraft is flying at a relatively low altitude; hence the incidence angle is a grazing angle
which will be confirmed by the image analysis. This minimizes the effects of geometric
distortion in range. Finally, to complete the description of the processing applied to this
series of images, the azimuth geometric representation does not use the zero Doppler
convention. The points here are not focalized on a position corresponding to the point
of closest approach of the satellite since images with variable Doppler centroïds cannot
be co-registered.

3.15.2 Assessment of the Doppler spectrum

Let us now look at these images in detail. They vary in quality. The indexed image
‘FD = −2.5’, i.e., that for which the processed Doppler centroïd corresponds to
−375 Hz, is the poorest one. It appears to be covered by a fuzzy veil. This loss of
quality is related to the high level of azimuth ambiguity. The processing is applied
at the same time to a band of 150 Hz centered on −375 Hz and to a band of 150 Hz
centered on 825 Hz, which is the first ambiguity repetition when fa = 1200 Hz. The
loss of quality is related to the co-registration of distinct images, the real image and
the ambiguous image, whose amplitudes are of the same order of magnitude. This
co-registration prevents a precise analysis of the ambiguities, unless the target in the
normal image is particularly weak, as is the case for the small lake, or if the target
which produces the ambiguity is particularly strong as is the case with one of the
airfield hangars, whose ‘ambiguous’ targets are found higher up in the image (‘ghost
targets’). In the first case, the ambiguity has no competition from the normal target,
as a surface of calm water is a ‘non-target’ for the radar instrument. The landscape
lower down in the image (which is outside the area in our images) is thus projected
in place of the lake. The ‘pollution’ from the lake can already be seen in the image
‘FD = −1.5’ even though it is affected by a lower ambiguity ratio. In the second case,
the enormous power of the normal target (the aviation hangar, a big building probably
made of metal and with lots of sharp edges) results in an ambiguity level greater than
the level of the normal target which means it can occult the latter. Why do we not
find as great a level of ambiguity in the symmetrical image ‘FD = 2.5’? Because the
aircraft antenna was not observing perpendicular to the velocity but rather towards the
positive Doppler signals. If we want to deduce the Doppler centroïd from this series of
images, we need to identify two images whose levels of ambiguity appear to be similar.
The ‘hangar’ ambiguity can still be seen slightly at ‘FD = −0.5’. We start seeing it
at ‘FD = 2.5’, it is then naturally located on the other side of the hangar, close to the
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road lined with trees. If we assume that the levels at ‘FD = −0.5’ and ‘FD = 2.5’
are equivalent, then the mean antenna Doppler should be located close to ‘FD = 1’
(another intermediate image which we did not produce), i.e. close to a value of 150 Hz,
which we can of course also calculate from the raw data using (Sect. 2.3.4).

3.15.3 Platform position

More information can be deduced from the ambiguous targets. In Section 2.2.5, we
saw that the separation in azimuth between the real target and the ambiguous target
corresponds to the processing width34 expressed as a number of samples,Na. By using
the ratio of the length separating the hangar from its ambiguity in the image, to the
length of the image and knowing that the image was produced with 100,000 raw data
lines, we find thatNa is equal to 24, 000. This is the azimuth compression rate that we
would have to apply if we had processed the image for high resolution. At the range
of the hangar, the rate applied to the data pre-summed by a factor of eight is 64 times
lower, i.e. 375. Curiously, the calculation of Na enables us to determine the position
of the aircraft! Indeed, if we identify another ambiguous target closer to the left edge
of the image, we could evaluate the variation of the rate across the image, which is
essentially proportional to the range, assuming that all other factors remain constant.
We find another hangar for which the distance between the ambiguities is only 12%
of the length of the image. Since in range the two hangars are located respectively at
21% and 66% of the swath width of the image, we conclude that the aircraft is located
at −24% of the swath width of the image. That is where the rate is reduced to zero ...
on the antenna!

We therefore know that the image was taken from an aircraft with a near range
just equal to a quarter of the image swath width. In fact, the 2000 range pixels in the
image correspond to 3 km at the sampling frequency of 100 MHz. The aircraft is thus
approximately 700 m from the beginning of the image. Since the near range is not
in free space (as we cannot see the ground echo), the aircraft was flying lower than
700 m. Consequently, the image was observed from a grazing angle as confirmed by
the length of the trees shadows especially at far range.

3.15.4 Saturation effects

Another effect is shown by the series of images: the saturation of raw data. A dark
parabolic arc can be seen in all the images in the series. It is roughly aligned with the
flight path and we can see a bright point whose position on the arc varies according to the
Doppler centroïd selected for each image. This darkening is related to the elimination
of all targets sharing raw data with the target represented by the bright point. The shape
of the saturated zone indicates that the saturation took place after range compression
of the data. Otherwise, the saturated zone would extend not only along the azimuth
impulse response but also along the range impulse response. We would have had a
vast dark zone extending over a typical number of elementary pixels of Na in azimuth

34The target and its azimuth ambiguity are also separated by a slight difference in range which is neglected
here.
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and Nd in range (Sect. 2.3.7). The saturation effect is thus more spectacular when it
occurs before compression as it involves a very large surface. On the other hand, it is
more difficult to obtain since the saturating target must itself have an amplitude much
greater than the usual amplitude expected by the radar for the combination of all targets
from this large surface. Space radars are sometimes saturated before compression. To
do this purposefully for a satellite, we would have to build a corner reflector whose
edges would be about five or six meters long. Of course, the length of the saturated arc
corresponds to the length of the impulse response. It is almost identical to that of the
second example of the ambiguous target (discussed just above). This is to be expected
as the saturating target has the same range as the ambiguous target. The position of
the bright point on the dark arc reveals the Doppler centroïd used for processing the
image. The bright point is located near one of the ends of the arc for extreme Doppler
centroïds.

3.15.5 Directional effects

Finally, another interesting effect is illustrated by the series of images. We can again
observe the high sensitivity of the radar image to variations, albeit slight, in the obser-
vation angle. We can thus see that going from image ‘FD = 0.5’ to image ‘FD = 1.5’,
part of the airfield fence which is very bright in one is darker in the other. Inversely, the
track of the regional metro line, which can only be detected by the hole that it makes
in the landscape in the first image (a cut in a forested area), becomes very bright in
the second image. We can calculate the angular difference between the two images.
Using, for example, the proportionality between the angular range�α and the reduced
azimuth frequency variation �fr we have (Sect. 2.3.3) :

�α = fa · λ
2 · v ·�fr (3.69)

As the reduced frequency in question represents one eighth of the bandwidth at a
wavelength of 56 mm and a speed of 80 m· s−1, we obtain an angular range of only 3◦.
The image in which the railway line is very visible thus corresponds to an observation
with a viewing angle of 4.5◦ between the normal to the flight path and the radar line
of sight (i.e. �α · 1.5, since in the image at ‘FD = 1.5’, the railway line exhibits the
strongest response). This angle is very close to the angle between the flight path and
the railway line. The brightness of the track is probably related to a dihedral effect
formed by the rails and their supporting base. The angular sensitivity in these images
illustrates the difficulty encountered when making a long synthesis (i.e. across a wide
angular sector) in order to obtain high-resolution images. The assumption that the
target’s amplitude in stable during the synthesis is obviously wrong here. The bright
contribution of the fence, which is effective for only one eighth of the bandwidth would
indeed give an image whose resolution would not be better than eight times the best
resolution. Some targets, in particular corner reflectors, might benefit from a complete
synthesis because they have a stable response over a wide angular domain.
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3.15.6 Is it possible to fully characterize a radar instrument only
from an image?

Let us now imagine that we received these raw data without knowing anything about the
radar which produced them. We would have understood that the azimuth compression
rate needs to be very high and we would have used a massive pre-summing around
the mean Doppler determined by applying the algorithm in Sect. 2.3.4. We would
also have used an unfocussed processing described in Sect. 2.4.7, which would have
provided us (at a range of 5 km and in C band) with a poor resolution of the order of
20 m, nevertheless sufficient for identifying the landscape. The number of samples to
be summed in azimuth (about 200) can be deduced by tests. The range compression
rate to be applied can be determined from tests or by applying the autofocus algorithm
[Jakowatz, 1996]. In this case, the data were already compressed for range which is
confirmed by the presence and shapes of the areas subjected to saturation. We could
thus have processed the series of images to deduce that they were taken from an aircraft,
and also all of their characteristics. Recognition of a few objects in the image whose
size is approximately known (air strip, isolated trees, highway apron, parking lots...)
would have enabled us to determine the scale of the image and hence the wavelength
used as well as the observation range, etc.
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CHAPTER 4

SAR INTERFEROMETRY: TOWARDS THE
ULTIMATE RANGING ACCURACY

4.1 Principles and limitations of radar interferometry

4.1.1 A specific use for radar

Radar imaging can be used for applications for which optical imaging cannot, because
of its two defining characteristics: amplitude and phase. These applications reveal
however that, contrary to what we might expect from its traditional ‘all-weather’ rep-
utation, radar imagery is somewhat affected by cloud cover, which is one of the main
limitations in applying the technique we are going to discuss here: radar interferometry
[Massonnet, 1997], [Massonnet, 1998].

This technique chiefly produces two types of information, usually combined in
the same image: topographical information [Zebker, 1986] and information on ground
displacement. The results can also include unwelcome contributions due to variations
in the state of the atmosphere during image acquisition. It is important to be able to
detect these in order to avoid interpretation errors.

We shall explain the principles of interferometry as a technique for comparing
radar images, the limitations on its use, and the systematic contributions which have
to be eliminated. We shall then look in more detail at topographical calculations us-
ing interferometry which, under optimal circumstances with data from current civilian
satellites, can attain an altimetric accuracy of better than one or two meters on geograph-
ical cells with sides of typically 30 m. We shall then look in detail at the calculation
of displacements of the Earth’s surface, for which accuracy on the order of 2 mm has
been achieved.

We shall explain the practical aspects for obtaining interferometry products from
radar data, whether or not the said data are already in image form. We shall also
discuss the problem of ambiguity interpretation and how to resolve it, the availabil-
ity of space-borne or airborne systems, radar-data archives and software-processing
resources.
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Lastly we will compare interferometry with competing techniques, listing its ad-
vantages and disadvantages before concluding with the perspectives for space missions
designed specifically for this technology.

4.1.2 A brief history of interferometry

The use of radar signal phase for comparing two images acquired simultaneously goes
back to the 1970s [Graham, 1974]. This practice was extended to pairs of images
taken from space at different moments at the beginning of the 1980s [Caves, 2002].
The idea of using interferometry for measuring ground displacements was suggested
in the middle of the 1980s. It was several years before the technique was actually
demonstrated, with varying success, because of the slow rate at which new space data
became available at that time.

Current radar data can be processed without loss of quality by standard computers
in a very reasonable time, which will be further reduced as processing power increases.
Unlike earlier implementation that used analogue devices (such as film), in digital
processing, images with calculated phase differences can be used easily and reliably.

The number and quality of civilian radar satellite systems commissioned since the
1990s has allowed coherent techniques to be tested extensively, thanks to the intrinsic
regularity of satellite trajectories. At the same time, several airborne systems have
partly solved the problems due to the more irregular trajectories of aircraft, by acquiring
two radar images simultaneously. With these images, interferometry can be used for
topographical applications without worrying about atmospheric artifacts. Some of
these systems are currently used operationally.

4.1.3 Interferometry and the physical properties of radar images

Let us quickly review the two techniques used for getting around the low resolving
power of radar. The first is range imagery (Sect. 2.2.2), with which it is possible to
distinguish separate points on the ground by comparing the time that the radar wave
takes to complete the round trip. This wave is sampled at a rate of several tens of
megahertz corresponding to a resolution of some tens of meters on the ground. Each
sample includes both the amplitude and the phase of the wave. The second technique
is Doppler imagery (Sect. 2.3.2) which can distinguish the points along the direction
of the radar’s flight path by detailed analysis of the phases of the successive radar
signals.

The synthesized radar image has two levels of information: (1) amplitude which
measures the strength of the radiation, or backscatter, returning from a given point
on the ground (Sect. 1.3); and (2) phase which indicates the state of vibration of the
wave at the instant that it is received by the radar. The wave comes back in the same
state of vibration each time it completes a journey comprising an integer number of
wavelengths. The phase therefore contains geometrical information. For example,
with the satellite at a range of 1000 km from a bright point and working at a 5 cm
wavelength (i.e. a frequency of 6 GHz), the phase would be unchanged after a round
trip of 2000 km, covering a very large but integer number of wavelengths. If the point’s
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range is greater by a single centimeter, those two centimeters of the round trip would
imply a phase offset amounting to 40 % of a cycle, which the radar could easily detect.
In mathematical terms, radar data is made up of complex numbers (amplitude and phase
or, to put it another way, a real part and an imaginary part). The complex nature of
radar images is the key factor allowing high resolution images to be synthesized from
the low resolution image naturally acquired by the radar (Sect. 2.2.5). What interests
us here is the fact that after the synthesizing process, the high resolution image is still
complex, meaning that it still possesses amplitude and phase.

The naive range measurement that we have just described is impossible in practice
however. One pixel of a radar image usually represents a surface of several tens of
square meters, containing numerous elementary targets (stones, branches, etc.). These
targets all contribute to the signal and are located at different ranges from the radar.
Since the wavelength is much smaller than the size of the pixel, the phase of a given
target may be shifted by any value. The combination of these targets further randomizes
the phase of the pixel. Clearly, no one value is statistically more significant than another.
As far as amplitude is concerned, the contributions of two identical targets found in the
same pixel can reinforce each other if their phases are identical or cancel each other
out if they are opposite. The summing of the random phase values of these various
targets produces the phenomenon known as ‘speckle’ (Sect. 3.11). If the same targets
were arranged differently in another pixel they might produce a significantly different
amplitude and an unpredictably different phase.

If we want to use the phase of the signal as a measuring technique, the trick is above
all to fully comprehend what is meant by ‘random’. A pixel phase is random because
we do not know where the elementary targets are located within it. But on a second
pass over the same pixel in exactly the same conditions we would of course obtain the
same phase. Interferometry depends on the idea that, instead of using the phase of a
radar image to measure the ranges, we can use the difference of phase between two
radar images to measure differences or geometric distortions in range between these
two images. We therefore count on the fact that the complex contribution depending
on the particular arrangement of elementary targets in each pixel will be cancelled by
combining the two images.

4.1.4 Phase difference between radar images

The phase of a radar image is therefore only meaningful when compared with that of
a second one. The two images which are merged point by point to form the image
of their phase differences, called an interferogram, usually have different viewpoints
because they were not taken from exactly the same place, and a time shift because they
were not taken at the same moment. These two differences are almost always found
in an interferogram. There may be no time difference in the case of systems with two
radar antennas which can create two images simultaneously. In certain circumstances
there may be no difference in viewpoint, if a satellite repasses at almost exactly the
same point when acquiring the second image. These two differences are the source
of the two types of information provided by interferometry. The difference of view-
point provides the topographical information in the interferogram. The time difference
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provides information on displacement. Each of these differences also limits the way
this technique can be used.

In practice, if we assume that the landscape is described by a digital elevation
model (with a regular grid of elevation values), we can determine the Cartesian coor-
dinates for each point relative to the center of the Earth. This operation requires no
particular knowledge because it is based on a geographic ‘black box’ (a sub-routine).
Once the coordinates have been determined in this way, we can define the trajectory
point and the time when a satellite is the closest to each point of the landscape. Here
again we are using knowledge in the form of a sub-routine ‘borrowed’ from orbit de-
termination specialists. For each landscape point we can then calculate the range of
the round trip when the satellite is at its point of closest approach and scale it to the
wavelength. We then consider the fraction part of the result as the phase that the signal
ought to have. This phase difference is then predicted point by point. In parallel, we
obtain the experimental value of this phase difference by calculating the difference of
the phases of the radar images acquired by the satellites.

4.1.5 Robustness of the phase signal in interferometry

One of the strong points of interferometry is the way coherent signals can ultimately
dominate incoherent signals. Phase basically acts as a sign change of the magnitude
of a physical signal.

When an incoherent signal such as noise (phase φn uniformly distributed between
0 and 2π (Fig. 4.1(a)) is combined with a coherent signal with the same amplitude
(SNR = 1), the standard deviation of the phase difference between the resulting signal
and the coherent signal (i.e., the phase error φt) is only ±13 % of a cycle. When the
amplitude of the incoherent contribution is equal to one half of the coherent contribution
(giving an advantage of only 6 dB), the standard deviation becomes ±6 % (Fig. 4.1(b)).
If the incoherent perturbation has an amplitude of 10 %, the standard deviation on the
error drops to ±1 % (Fig. 4.1(c)). These results are characteristic of the noise effect
at the scale of one image pixel: summing samples in which coherent and incoherent
contributions are mixed always results in a reduction of this phase error.

In interferometry it is necessary to bear in mind the ultimate size of the pixel or
geographic cell that we are aiming to acquire. If we wish to move from an elementary
pixel of 30 m2 to a horizontal sampling of the 30 m × 30 m DEM, a surface 30 times
larger, the ratio between coherent signal and incoherent signal will increase by a factor
of

√
30, after coherent summing of the signals associated with each pixel. A geometric

interpretation of this result can be found in Section 3.5.

4.1.6 Limitations due to geometric and surface changes

There should not be too great a difference between the viewpoints of two images. Let
us take two distinct targets A and B (Fig. 4.2), located at opposite edges of the same
pixel in a reference image (one near the radar, the second further away). Targets A and
B are indistinguishable within the pixel. Any elementary target in the pixel is subject
to phase variations when passing from one image to another. These two images are
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Fig. 4.1 Phase shift produced on a coherent signal by a noise. (a) S/N=1; (b) S/N=0.5;
(c) S/N=0.1.

known respectively as the master (M) and slave (S). The phase difference of the same
pixel in M and S should not depend too much on the position of the target within the
pixel. For instance, the phase difference itself should vary by much less than a full
cycle between A and B. The overall phase difference resulting from the mixing of
points P at various locations in the pixel will be significant at the scale of the pixel as
long as the difference in δ (called the horizontal baseline) remains less than a limiting
value. If this is not the case, the phase difference between the two images will again
be the result of contributions which are random since they can vary within the pixel
itself by more than a cycle. It will then be impossible to exploit this phase difference.

For the limiting case where the targets are located at opposite edges of the pixel,
the stability of the phase difference will be guaranteed by the stability of the incidence
angle of the wave between the two images. Should this change too much, the path
difference between the two targets in one image will differ from the path difference
in the other image by more than a wavelength, resulting in a pure random difference
of phase. For example, a 10-m ground pixel observed from an incidence angle of 30◦

implies a round trip path difference of 10 m between two targets at opposite edges of
the pixel. If we wish to limit the variation of this path difference to a fraction of the
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Fig. 4.2 Geometry of SAR interferometry.

wavelength, for example 1 cm, then the incidence angle in the second image must
be between 29.967◦ and 30.033◦! A clearer way of quantifying this condition is to
express the maximum acceptable horizontal distance δ between the points from which
the images are acquired (also called the horizontal critical baseline, and deduced from
the critical orthogonal baseline, Sect. 4.5). For a satellite like ERS orbiting at an altitude
of approximately 1000 km, this distance δ is about 1 km (Fig. 4.2). In practice, we can
only combine images separated by an integer number of satellite orbital cycles. The
satellite is supposed to return to exactly the same position after each cycle. In most
cases, it is actually less than 1 km away.

We can also explain this result in more visual terms (Fig. 4.3). The ground-
projected coverage of a pixel, whose limits are shown by the black arrows, corresponds
to the points A and B. Elementary targets can be found anywhere between A and B.
Interferometry can be applied if the phase difference of a given elementary target is
nearly constant regardless of its position within the pixel. This is not the case in the
left-hand image where we display the wave fronts corresponding to the two satellite
passes in green and red respectively. Considering the different incidence angles, the
wave fronts intersect several times within the pixel and an elementary target can have
any phase difference value depending on its position. In the right-hand image on
the other hand, the wave fronts hardly intersect within the pixel and the difference is
more or less stable for the whole pixel. In fact, in the right-hand image, the variation
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in incidence angle between images must be very small, because there are generally
several hundred wave fronts in a pixel (and not just a few as drawn). Their number is
equal to the factor Q(Sect. 2.1.3).

Fig. 4.3 Fringe effects at pixel level as a function of the difference in viewpoint.

4.1.7 Eliminating systematic contributions

Even if the interferometry condition described in Sect. 4.1.6 is satisfied, which results in
less than a phase cycle being produced across a pixel, the slight difference in incidence
angle between the two images will show a progressive shifting of many cycles across
the swath width from one image to the other (Fig. 4.4). For example, even if this
difference only creates one tenth of a phase cycle on one pixel, it will create an entire
cycle every ten pixels and several hundreds of cycles across the swathwidth of an
image. Interference fringes of this type, called ‘orbital fringes’, can be modeled and
eliminated using knowledge of the trajectories. Uncertainties about these trajectories
can still leave a few fringes even after this correction (Fig. 4.5). These fringes are used
for refining knowledge of the trajectories in the same way that mirrors are aligned in
an optical interferometer (Sect. 4.2.3).

4.2 Implementing interferometry processing

The processing stages are (1) synthesizing radar images from raw radar data (Sect. 2.2),
alternatively, already-synthesized images (SLC) are available on the market; (2) point
by point registration of the two images to be combined by appropriate resampling; (3)
calculating the phase differences; and (4) finishing tasks which include fine adjustment
to the orbit and projecting the product into the desired map geometry.
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Fig. 4.4 Progressive shifting of a slave image relative to a master image. The grey areas represent
the shifting in ground projection.

Fig. 4.5 Better trajectory determination using residual fringe count. The topology of the fringes
in the left hand image (quasi-linear fringe array) is characteristic of orbital fringes.
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4.2.1 Radar image co-registration

There are two steps in image co-registration. First comes the diagnosis: the geometri-
cal difference between the images must be modeled very precisely, at the ‘sub-pixel’
level, which implies that matching between corresponding pixels must be almost per-
fect. Only the properly matched portion contributes to the coherent combination; the
remainder behaves like noise. How important is the quality of the co-registration?
Fig. 4.6 shows how interferometric coherence (Sect. 4.2.2.) varies as a function of
the relative shift between the two images. Compared to optimum co-registration with
maximum coherence, a registration error of 0.4 pixels causes coherence to drop by
10 % whereas an error of 0.8 pixels reduces coherence by half.

Fig. 4.6 Evolution of coherence as a function of the precision of co-registration. ERS images
from the Dniepr basin (Ukraine).

It will then be necessary to stretch one of the images so that it can be registered
on the other. This operation must preserve the phase content of the deformed image.
Otherwise, bias would be introduced in the interferometric measurements.

4.2.2 Calculating phase differences between images

On co-registered images, calculating phase differences consists in forming the complex
quantity I(m, i):

I(m, i) =
∑

cell

M(m, i) · S∗(m, i) · exp(j2πQG(m, i))

(
∑

cell

|M(m, i)|2
)1/2

·
(

∑

cell

|S(m, i)|2
)1/2 (4.1)
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M (for Master) and S (for slave) represent the two radar images whose pixels are
indexed m and i for line and column, while cell is the analysis window, that is, the
number of adjacent pixels included in the averaging.

The phase image of I(m, i) or the interferogram itself is usually coded on eight
bits. The phases are multiplied by 256/2π in order to benefit from the entire dynamic
range available. The functionG(m, i) summarizes what is already known about range
stretching. It incorporates the model of the geometrical difference between the images,
possibly including a digital elevation model (DEM) if one is available. It is expressed
in phase by multiplying by 2πQ (with Q = fc/fd , Sect. 2.2.3). G(m, i) is used to
remove the majority of the phase variations in the image and to ensure that a complex
mean can be properly calculated (i.e. the phases only rotate very slightly inside the
analysis window).

A very useful by-product of this interferometric calculation is the coherence im-
age, which is the modulus of the complex image I(m, i), called the ‘interferometric
coherence’. In practice this product is multiplied by 256 to take full advantage of
the eight-bit coding given that this modulus is between 0 and 1. The coherence is a
self-validating indicator of the phase measurement, which depends on the proportion
of ‘useful’ signal to ‘non-useful’ signal. Intuitively, if neighbor pixels “agree” on an
average phase value, it is proof that the phase is not random. In this case, the complex
values add efficiently, and the coherence is high. If σs is the standard deviation of the
signal’s amplitude and σn the standard deviation of the noise amplitude, the uncertainty
ε of the range measurement by the phase is of the order of:

ε = ± λ

4π
·
(
σn

σs

)
(4.2)

assuming that σs is much larger than σn (λ represents the wavelength).
The coherence is mainly destroyed by the modifications of surfaces between ac-

quisitions, but it may also indicate some amount of “volume scattering” (i.e., targets
with a radar penetration depth such as forests), which is more demanding in terms
of incidence angle variation between images. In this case, coherence may become a
physical measurement by itself (Sect. 5.9.1.1).

4.2.2.1 Eliminating geometric effects using only radar images
We have discussed the elimination of geometric effects using auxiliary information,
such as DEM. An alternative to this method has been developed [Gabriel, 1989], in
which radar images alone are used to eliminate topographic contributions and reveal
contributions related to ground displacements. At least three radar images are neces-
sary. We will label themM (‘master’ image, used as a geometrical reference), S (‘slave’
image, geometrically dependant on the master image) andC (for another ‘slave’ image
known as the complementary image). Letting the range pixel number in the master
image be i, we have (Fig. 4.7):

H − ei = Rm · cos(γi − θ) (4.3)

Applying Pythagoras’s theorem to the triangle SMT , we get:
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R2
e = δ2

SM + R2
m + 2δSMRm sin γi (4.4)

whence:

sin γi = R2
e − δ2

SM − R2
m

2δSMRm
(4.5)

Fig. 4.7 Definition of a fringe image from knowledge of the relief and vice-versa.

We shall now express all the lengths by introducing the size of the range pixel pd
(Sect. 2.2.3). If RN represents the near range of the master image, we can write:

Rm(i) = RN + ipd (4.6)

Rs(i) = RN + ipd + tpd + ni

Q
· pd (4.7)

where t is the difference between the near ranges of the slave and master images
expressed in units of range pixels (t was obtained previously by correlation of the
images) and finally ni is the number of fringes observed in the interferogram from the
near range to pixel i. Therefore ni/Q is the number of corresponding pixels (unlike t,
ni and γi are functions of i). For a single image line, Equation (4.5) becomes:

sin γi = (RN + ipd + tpd + (ni/Q)pd)
2 − δ2

SM − (RN + ipd)
2

2δSM(RN + ipd)
(4.8)
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The altitude of ambiguity (Sect. 4.3.1) can be calculated from Eqs. (4.8) and (4.3):
it is the elevation variation that causes a shift of one fringe. It is therefore equal to
ea = dei/dni (which is a less than satisfactory notation because actually all we are
trying to calculate is the elevation variation when ni varies by one unit) which can be
expanded as:

dei

dni
= Rm

dγi

dni
sin(γi − θ) (4.9)

or:

dei

dni
= Rm

d(sin γi)

dni

sin(γi − θ)

cos γi
(4.10)

or:

ea ≈ λ

2
· RN + ipd + tpd + λni

2

δ
(tan γi cos θ − sin θ) (4.11)

If the value of γi is known, we can deduce ni from Eq. (4.8):

ni

Q
pd=

√
(RN + ipd)2 + δ2

SM + 2δSM(RN + ipd) sin γi− (RN+ipd+tpd) (4.12)

which relates the fringe network (expressed as ni/Q) to the topography (expressed
through γi). This equation also makes it possible to predict the fringe network of one
interferogram from that of a first interferogram (as long as the second one reflects only
topographic effects) using the following procedure:

(1) Using Eq. (4.8), we calculate γs(i) as a function of ts, ns(i) and δSM , which
are the values for the first interferogram (Master-Slave). In the complementary
interferogram, the look angle γc(i) − θc is equal to the look angle γs(i) − θs,
because both interferograms are based on the same master scene. In practice, it
is only necessary to know the difference θc − θs for this operation.

(2) We reconstitute sin γc(i) and then, with the help of δc and tc, we calculatenc(i)/Q
which gives nc(i). We can then subtract the calculated fringes from the second
interferogram which may reveal possible phase shifts due to a differential effect.

It is necessary to remove phase ambiguities from the first interferogram (phase
unwrapping) before this operation because the number ns must be absolute. The
manipulation that we have just described often produces significant artifacts because
of the difficulties of the unwrapping operation, which may generate errors, and also
because an interferogram hardly ever contains purely topographical information (except
for simultaneous acquisitions).

4.2.3 Finishing tasks

Raw phase differences between two images are chiefly caused by orbital effects, such
as a slight closing in between two orbits during acquisition (a closing in of 28mm is
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enough to create a fringe in the case of ERS). We can remove most of this contribution
from the interferogram by modeling the orbits. When the uncertainty of this differ-
ential knowledge is more than a few centimeters, unmodeled ‘orbital’ fringes remain
which can be removed by ‘adjusting’ one of the orbits as follows: on the left-hand
image in Fig. 4.5, 15 fringes can be counted from point A to point B, meaning that
the distance between satellite S1 and B must be increased (or reduced) by 15 times
one half wavelength. Let us assume that the phase sign indicates that this distance
should be increased. If the distance between A and S1 is taken as a reference, the
satellite’s corrected position is at the intersection of the two arcs. After removing the
fringes between A and C, and keeping A as a reference, we find that the distance DS2

needs to be increased by 7 cycles and the distance CS2 shortened by 5 cycles, which
gives the new position of the satellite on the other side of the image. These quantities
may be conveniently determined by locating the point I where the fringe containing
A intersects with the segment CD. The refined trajectory S′

1S′
2 now enables us to re-

move all the ‘orbital’ fringes, which may reveal the underlying phenomena, such as
the effect of a small magnitude earthquake in the right-hand image. This process is
similar to adjusting the parallelism of mirrors for optical interferometry except that the
adjustment here is virtual, being obtained by calculation.

4.3 Application for topography

4.3.1 Set of equations and error budget

After orbital fringes have been removed ‘topographic fringes’ usually dominate the
interferogram. In Fig. 4.2, we notice that if there is an elevation variation e for the terrain
in a pixel, and keeping the range of the master image as a reference (RmA = RmC),
at point C the range RsC will be modified to RsA + r. This modification will take the
form of an additional signal path difference revealing the relief. The path difference
will be observed as a phase difference between two neighboring pixels. The entities e
and r are linked by the following first order equation [Massonnet, 1993]:

e ≈ rDARsA

Hδ
(4.13)

To avoid having to manipulate complicated geometrical equations, a practical
solution is to combine all the parameters involved in measuring the elevation such
as orbital separation, wavelength or incidence angle in a single significant quantity,
the altitude of ambiguity. This is defined by the elevation variation which causes one
topographic fringe. It usually varies relatively little within a given interferogram which
makes it a simple and practical quantity. If we assume a purely horizontal separation
δ between viewpoints, an incidence angle of θ, an observation range of Rm and a
wavelength of λ, the altitude of ambiguity ea is approximated by [Massonnet, 1993]:

ea ≈ Rmλ tan θ

2δ
(4.14)
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The altitude of ambiguity is often expressed as a function of the perpendicular
or orthogonal baseline Borth, which is the separation between orbits projected onto a
direction perpendicular to the viewing direction (Fig. 4.2). We then have:

ea = Rmλ sin θ

2Borth
(4.15)

Fig. 4.8(c) shows an example of a topographic interferogram acquired over Awaji
Island (Japan) by the JERS-1 satellite (Table 3.1). The mean amplitude of the M and
S images is also shown in Fig. 4.8(a), and Fig. 4.8(b) displays the interferogram before
removal of the orbital fringes.

Please note:

(1) As the baseline increases, the altitude of ambiguity decreases, which corresponds
to an increase in the topographic sensitivity of the interferogram, such as in
(Fig. 4.9).

Fig. 4.8 Example of a topographic interferogram obtained from JERS over Awaji Island (Japan);
(a) mean amplitude image; (b) interferogram before elimination of the orbital fringes; (c) topo-
graphic interferogram.
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Fig. 4.9 Simulation of a topographic interferogram over Etna (Italy), in ERS configuration; (a)
altitude of ambiguity: 500 m; (b) altitude of ambiguity: 250 m.

(2) Passive interferometric systems, in which one antenna both transmits and re-
ceives and the other only receives, can also be formulated in this way. The
Shuttle Radar Topography Mission (SRTM) was based on a similar concept
[Jordan, 1996]. For such systems, the reasoning developed here applies but the
condition concerning the critical baseline (defined in Sect 4.1.6 and calculated
in Sect. 4.5) is multiplied by 2 because the signal path difference only applies to
the return path. The 60 m extendable beam separating the two antennas carried
by the Shuttle for the SRTM mission is therefore equivalent to only 30 m for an
active system such as ERS.

(3) For ERS, the altitude of ambiguity can vary from ten meters (corresponding to
the greatest authorized horizontal separation of one kilometer) to infinity (in the
unlikely case where both images are acquired from exactly the same point). It
may seem strange that such a difference in altitude (at least ten meters) should
be necessary to create a viewpoint difference equivalent to only one wavelength.
The reason is that topographical error is observed in almost the same way on the
two images, since their parallax is very low due to the interferometry condition.

4.3.2 Eliminating measurement ambiguity

In mountainous terrain, after eliminating orbital fringes, an interferogram will look like
a series of interference fringes very similar to contour lines, separated in elevation by the
local value of the altitude of ambiguity. In the example in Fig. 4.10, the interferogram
was produced from two radar images of Mount Etna taken by the space shuttle in
1994 at a one-day interval. Fig. 4.10(a) shows the mean amplitude of image M-S and
Fig. 4.10(b) the interferogram. The altitude of ambiguity was 500 m. We assume here
that no ground displacement or changes in the atmosphere perturbed the topographical
measurement. The essential difference between an interferogram like this one and a
topographical map is that the ‘contour lines’ present in the form of fringes are not
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Fig. 4.10 Example of a topographic interferogram obtained from SRTM over Etna (Italy). The
altitude of ambiguity is 500 m; (a) mean amplitude image M-S; (b) topographic interferogram
after elimination of the fringes.

numbered. In fact the radar signal cannot assign any order to the fringes because each
one corresponds to geometrical differences between the images which are generally
less than one hundredth of the size of the pixel. These differences are so small that
the correlation measurements cannot resolve the fringe rank ambiguity. The only way
of numbering the fringes, an operation commonly called ‘phase unwrapping’, is to
analyze the continuity of the interferogram. This is what we do instinctively when
we analyze a topographic map. The noisy areas in the interferogram, and also areas
where the topographical fringes are too close together, create serious problems for the
automatic phase unwrapping algorithms, for which several designs have been suggested
[Ghiglia, 1998]. Phase measurement provides a very good precision within λ. But
ambiguity occurs whenever range offsets exceed a wavelength. Image correlation
measurements are capable of taking over phase measurements for greater offsets of
range. An important parameter that we have already discussed (Sect. 2.2.3) is the ratio
Q between the carrier frequency fc and the range sampling frequency fd . This is
also twice the number of wavelengths which can fit into a range pixel. For the ERS-1
radar, Q is equal to 279.4. If a precision of 3 % of the size of a pixel can be obtained
through correlation, a typical ambiguity would span approximately ten wavelengths
(the ambiguity rank would then be limited to ten).

4.4 Application for displacement measurement

4.4.1 Set of equations and error budget

If we assume that orbital effects and relief effects have been compensated for, an
interferogram will highlight any range variations occurring during the elapsed time
between acquisitions. Although these variations can also be caused by atmospheric
effects (Sect. 4.6.1), they are basically useful for measuring ground displacements. If
part of the terrain observed in an image has shifted, the shift will show up as fringes in
the interferogram. If the displacement at point A is represented by a vector �D and the
position of the satellite is �S in a given coordinate system, the displacement will involve
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a number of fringes n equal to:

n = 2 �D · (�S − �A)
λ‖�S − �A‖ (4.16)

where the factor 2 accounts for the round trip and where the operator ‘·’ represents the
scalar product. The precision of such a measurement will then depend on the direction
of the displacement and on the smallest part of a phase cycle which remains significant
with respect to noise. Displacements along the radar line of sight are most efficiently
observed. From Eq. (4.16), we can deduce that they produce a fringe in the interfero-
gram for a displacement of λ/2. For a displacement along the satellite track, however,
where �D is perpendicular to (�S − �A), the interferogram is not modified. The vector,
(�S− �A) once it has been normalized and expressed in geographical terms (for example:
North, East and Vertical), gives the sensitivity of the measurement. For example, a typ-
ical value in the mid-latitudes for a satellite like ERS-1 would be (−0.08, 0.35, 0.93).
The signal-to-noise ratio in the interferogram determines what fraction of a phase cy-
cle is significant. It depends on the power of the radar signal (Sect. 3.4), and even
more on the way in which the configuration of the elementary targets (which creates
speckle, Sect. 4.3.11) has been maintained during the time elapsed between the two
acquisitions. From this point of view, a desert, rocky or urban landscape will be very
favorable, water (ocean, river or marsh) will give no result and terrain with vegetation
will give a medium result depending on the time elapsed and the extent to which the
radar waves can pass through the vegetation and attain ‘solid’ targets on the ground.
Longer wavelengths can do this more easily. An interferogram’s signal-to-noise ratio is
therefore essentially experimental data. Displacement measurements with a precision
less than 2 mm have been obtained in several cases.

The precision also depends on how well the other components of the interfero-
metric information have been removed. For example, if the interferogram used for the
measurement of the displacement has an altitude of ambiguity of 100 m and if the
elevation model used for removing the topographic contribution can have errors of 20
m, one fifth of a topographic fringe can remain. For a wavelength of 5 cm, a ‘noise’
corresponding to half a centimeter (i.e. λ/2 × 1/5) of a round trip, or a 5 mm error in
range, may remain in the interferogram.

4.4.2 Examples of use

Interferometry has more to offer for the measurement of ground displacement than
for topographical measurement because it really has no competitors (Sect. 4.8). The
technique suffers from three limitations: (1) the ambiguous nature of the measure-
ment, which requires unwrapping; (2) geometric sensibility which varies according
to the direction of the displacement; and (3) the efficiency of the application depends
on the kind of terrain observed. These limitations have not prevented spectacular de-
velopments when measuring deformations caused by earthquakes [Massonnet, 1993],
glaciers [Rignot, 1997], volcanoes [Massonnet, 1995] and even phenomena with much
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smaller amplitudes such as post-seismic displacements [Massonnet, 1996], [Peltzer,
1996] or continental drift [Vadon, 1997].

Fig. 4.11 shows a case study of the Gulf of Aqaba (Jordan). Fig. 4.11a shows the
amplitude of one of the radar images. Fig. 4.11(c) shows the uncorrected interferogram
including the orbital errors. Fig. 4.11(d) shows the interferogram after correcting the
positions (using the method shown in Fig. 4.5). Here we can distinguish two ‘layers’
with very different meanings: the series of fringes alongside the Gulf of Aqaba was
caused by an earthquake. Each fringe corresponds to approximately 3-cm offset in
the line of sight. The remaining fringes represent the topography of the region and
have not been removed here. There is only slight topographical sensitivity (the orbits
are very close together and the altitude of ambiguity reaches several hundred meters).
Fig. 4.11(b) shows the coherence (Sect. 4.2.2). This is found by mathematical mea-
surement of the local similarity of the values in the interferogram. If there is strong
similarity we can conclude that the measurement is valid (ground displacements or
topography are generally continuous). If not, the measurement is dominated by noise,
as on the Gulf of Aqaba itself, where it is purely noise. The coherence gives informa-
tion about the local reliability of the measurements and also about the ‘lifetime’ of the
targets and their volume signature. This constitutes a measurement by itself that we
will not go into here.

Fig. 4.11 Example of an interferogram obtained from ERS over the Gulf of Aqaba (Jordan);
(a) mean amplitude image; (b) coherence; (c) interferogram before elimination of the orbital
fringes; (d) interferogram.
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Fig. 4.12 shows the distortion field of the earthquake at Landers, California (1992),
observed by the European ERS-1 satellite [Massonnet, 1993]. In this case the topo-
graphic contribution has been removed from the interferogram leaving only the distor-
tion field of the terrain created during the 18 months that passed between the acquisi-
tions of the radar images composing the interferogram. The region represented covers
approximately 60 km. Each color cycle corresponds to a difference in range between
the images of one 56 mm wavelength. As the ground displacements are observed
from the round trip of the wave however, 28 mm of deformation causes a complete
phase cycle. In order to know how much displacement was caused by the earthquake at
point A we simply count the number of fringes between a point where displacement is
assumed to be zero (here point O) far from the epicenter, and point A. In this case there
are 5 fringes representing 15 cm. Close to the rupture line, the fringes become too
dense to be properly read. Actually, above the rate of one fringe per pixel, we exit the
interferometric domain, not because is of a difference of viewpoint (Sect. 4.1.6), but
because of the physical extension or contraction of the pixel area between acquisitions.
During those 18 months several earthquakes left their mark on the region. The small
earthquake indicated in the figure caused a depression of 12 cm in a small area of a
few kilometers, producing one thousand times less energy than the big one.

Fig. 4.12 Distortion field caused by the Landers earthquake in California (1992) observed by the
European ERS-1 satellite.
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The high precision of interferometry measurements is shown in the example in
Fig. 4.13(b) where a fault has shifted 10 mm, i.e. one third of a fringe as can be seen
from the color legend, over a distance of 22 km. It would almost seem that it is easier
to detect such a displacement from 800 km away in space while traveling at 7.5 km
per second, than when standing right on it. The two images used for this comparison
were acquired by ERS-1 two years apart. As can be seen from the amplitude of one of
the images (Fig. 4.13(a)), part of the landscape is used for agriculture. Over two years,
this surface has obviously been profoundly remodeled and interferometry is of no use
in this case.

In the field of hydrology (Fig. 4.14), interferometry has been used to measure the
quantity of water pumped by a geothermal plant. This example (near Mesa, California,
Fig. 4.14(a)) shows the ground subsidence due to a geothermal plant. In the course
of the two years between the image acquisitions by ERS, this plant has pumped 100
million m3 of hot water from aquifers located at a depth of 2200 m in order to generate
electricity and has re-injected 95 millions m3. Fig. 4.14(c) shows a sunken area 18 km
by 10 km, at most three fringes or 9 cm deep, representing a volume of 4 million m3,
approximately the missing volume acknowledged by the plant. The central interfero-
gram (Fig. 4.14(b)) shows that if the time lag is sufficiently short (here only 6 days), we
can make legible interferograms of agricultural areas. We observe an example of the
direct effect of irrigation on phase [Massonnet, 1998] which can be caused by either
changing geometry (swelling) or changes in permittivity.

In the example in Fig. 4.15, researchers have used images from the ERS satellite to
observe the hinge areas due to glacier bending caused by tidal displacements [Rignot,
1997]. The bending area is shown by a few visible fringes on three Greenland glaciers.

Fig. 4.13 Displacement of a fault line observed on an ERS interferogram. Superstition Hill,
California, 1992. The second image was acquired two years after the first; (a) Mean amplitude
image; (b) Interferogram.
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Fig. 4.14 (a) ERS radar image of the Mesa region, California; (b) 6-day interferogram;
(c) 2-year interferogram.

Fig. 4.15 Areas of bending on three Greenland glaciers caused by tidal displacement, observed
by ERS interferometry from [Rignot, 1997]

The bending area is much farther from the mouth of the glacier than was previously
thought and the sea, which is under the glacier for a considerable distance, contributes
to its melting. This study has revealed that glaciers are melting at a faster rate than had
been previously thought.

4.5 How slope effects limit interferometry

The effect of slopes in interferometry is shown in Fig. 4.2 as well as the corresponding
relationships of ‘pixel distortion’. However, a small model can be useful for express-
ing the geometric limitations in a way that is easier to manipulate even though it is
approximate (Fig. 4.16(a)).
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Fig. 4.16 (a) Interferometry limitations due to slopes; (b) Geometric limit conditions for inter-
ferometry.

Let us take two satellites separated by a baseline, which may or may not be
orthogonal, with an angle 	θ between their two viewpoints. The scene is observed
with an incidence angle θ and the slope of the terrain has an angle a which may be
positive or negative as shown in Fig. 4.16(a).

The entity p indicates the range resolution cell (very close to the size of a range
pixel pd ). The pixel’s ‘orthogonal width’ L (meaning the extent of the terrain covered
by a given pixel) is equal to:

L = p · cot(θ − a) (4.17)

The ‘interferometry limit’ is reached when the variation between the one-way signal
path differences for the two extremes of the pixel exceeds one half of the radar’s
wavelength (the interferometry phase then evolves by more than one round trip between
the two edges of the pixel) (Fig. 4.16(b)). Interferometry can therefore be used when:

L · tan(	θ) < λ/2 (4.18)

Angle 	θ, which is very small, can be approximated by its tangent. The condition
governing the range pixel size can therefore be written as:

p ·	θ · cot(θ − a) < λ/2 (4.19)

2p/λ is in fact the carrier to sampling frequency ratioQ (Sect. 2.2.3), of the radar. Our
condition then becomes:

Q ·	θ < tan(θ − a) (4.20(a))

or:

a < θ − Arc tan(Q ·	θ) (4.20(b))
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which is the slope condition sought. From this equation we can find the limit on flat
ground using θ = Arc tan(Q ·	θ), which gives:

	θmax = tan θ

Q
(4.21)

From Eq. 4.14, and noting that δ ≈ R · 	θ/ cos θ, the topographic sensitivity of the
image pair expressed using its altitude of ambiguity is equal to:

ea = λ sin θ

2	θ
(4.22)

For 	θmax, the altitude of ambiguity is therefore:

λQ cos θ

2
= p cos θ (4.23)

This is the smallest altitude of ambiguity that is achievable.
Please note: From Eq. (4.20(b)) we can establish the equation for the critical

orthogonal baseline Bcritorth as defined in Sect. 4.1.6. From Fig. 4.16(a) and using the
value for 	θmax corresponding to a local slope a, we obtain:

Bcritorth = B · R · tg(θ − a)

fc
(4.24)

Let us now give a few numerical applications. For ERS, θ = 23◦ . For an angle of
	θ of 0.02◦, which corresponds to about one quarter of the maximum interferometry
baseline allowed on flat ground, the steepest observable slope is 17.4◦(Q = 280). If
ERS had five times more resolution, Q would be 56 and the steepest observable slope
would be 21.9◦. It should be noted that in this last case, angle 	θ would represent a
much smaller proportion of the maximum baseline for interferometry.

Let us now assume that θ = 45◦ while 	θ keeps the same value. If ERS were to
use this look angle, the steepest observable slope would be 40.4◦ whereas for a satellite
with five times more resolution it would be 43.9◦.

Let us now assume that we wish to create an elevation model with a precision of
1 m RMS on the ERS resolution cell (which we estimate to be 80 m2). We only need
to work with an altitude of ambiguity of 10 m as long as we can ‘divide the phase into
ten’ meaning if the phase noise level is 10 % of a cycle. This can be obtained even if
the ratio between the incoherent and coherent signals is close to 0 dB (Sect. 4.1.5). If
the geographic cell being considered is 30 m by 30 m (i.e. 11 times the surface of
the ERS cell), the added coherent gain in power would be 3.35, meaning that we could
even work with an incoherent level higher than the coherent.

Working at three times the minimum value of the altitude of ambiguity, in the
‘topographic’ mission we are describing, means choosing:

	θ = 	θmax

3
(4.25-a)
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therefore:

Q ·	θ = Q ·	θmax

3
= tan θ

3
= 1

3
(4.25-b)

The steepest observable slope is then θ − Arc tan(1/3) or 26.5◦. Fortunately, such
slopes are fairly unusual.

4.5.1 Frequency interpretation of the slope effect

Conditions limiting the use of interferometry can also be expressed in the frequency
domain. They relate to the equivalence between viewpoint diversity and frequency
shift (Fig. 4.17): projected onto the ground, a monochromatic wave with frequency fc
transmitted at an incidence angle θ, produces the same wave fronts as a monochromatic
wave at frequency fc + δf with incidence angle θ + δθ, if δf and δθ are sufficiently
small. In other words, let us consider the frequency offset δf to be applied to the carrier
frequency fc which would keep the same phase difference between A and B. In this
case, δf satisfies the equation:

c

(fc + δf) · sin(θ + δθ − a)
= c

fc · sin(θ − a)
(4.26)

which leads to:

δf ≈ − fc · δθ
tan(θ − a)

≈ − fc · Borth
R. tan(θ − a)

(4.27)

Fig. 4.17 Ground projection of the wavelengths associated with a monochromatic transmission
whose frequency is fc from Master (M) and Slave (S) images.

In reality, the wave transmitted is not monochromatic but is modulated by a chirp
whose width is Bd (Sect. 3.3.7). The interferometry coherence between the images M
and S will be lost if their respective frequency spectra become separated as a result of
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the shift δf (the two waves’ spectra no longer overlap; they are totally incoherent), i.e.
when |δf | > Bd . This condition is equivalent to the equation for the critical orthogonal
baseline in Eq. (4.24).

The equivalence principle that we have just described is known as the wavenumber
shift. It was first formalized by Gatelli [Gatelli, 1994] in the context of use for super-
resolution (Sect. 2.7).

4.6 Interpreting the results

4.6.1 Typical signatures of different contributions

Phase signatures may be logically classified for correct interpretation if several inter-
ferograms are available. Particular examples are:

• Signatures related to orbital separation: These are phase signatures found in
several interferograms with an amplitude proportional to the topographic sen-
sitivity of the pairs which itself depends on the separation of the orbits. This
behavior is characteristic of uncompensated or badly corrected residual topo-
graphic data. Such topology is similar to that shown in Figures 4.5 and 4.8(b)
before correction.

• Atmospheric artifacts: This term covers the signatures that occur with the same
amplitude in all the interferometry combinations of a given image. This behavior
is characteristic of heterogeneous conditions of propagation in the atmosphere
at the time of this image acquisition. Since the responsible image has been
identified, the sign of the artifact is known. Artifacts which lengthen the signal
path can be attributed to humidity content, pressure waves or tropospheric tur-
bulences. Those which shorten the path are due to local neutralizations in the
ionosphere (Fig. 4.18).

• Time-dependant signatures: These are phase signatures observed with the same
amplitude in several combinations of interferometry images, for which the ac-
quisition times of the component images bracket a particular time. This behavior
is found in geophysical events such as earthquakes.

We could continue this list, for example with phase signatures observed in in-
terferograms whose amplitude is proportional to the time elapsed between the two
component images. This behavior is found in geophysical deformations which are
progressive over time.

4.6.2 Methods for improving interpretation

There are several simple methods for improving the appearance or content of inter-
ferograms. Several filtering methods have been suggested. The simplest consists in
combining the phases of an interferogram with the corresponding amplitude of the
source radar images and then averaging the complex numbers thus formed in a given
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Fig. 4.18 Examples of atmospheric artifacts observed in interferograms; (a) clouds (cumulus);
(b) cloud chains; (c) hole in the ionosphere.

neighborhood (Sect. 4.2.2). The phase of the mean complex number thus formed will
have much less noise than the initial phases at the cost of a degradation of the image’s
spatial resolution. This method assumes that the densest fringes of the interferogram
have previously been removed, in particular the orbital fringes because otherwise cal-
culating the mean would spoil the results.

Hardly more sophisticated processing methods than the averaging described in
the previous section are less intuitive. The human brain does not seem capable of fully
grasping the images formed by series of fringes commonly found in interferograms.
Fig. 4.19 is an example. Fig. 4.19(a) is an array of ‘almost’ horizontal fringes. It is
therefore tempting to model it as an image of horizontal fringes of identical frequency,
as in Fig. 4.19(b). But, if we subtract 19(a) from 19(b) we obtain a single vertical fringe
Fig. 4.19(c). It is very difficult to conceive this as being the straightforward difference
between the two first images. This counter-intuitive result is in fact very useful for the
so-called integer combination technique.

An interferogram is an ambiguous signal because the fringes are not numbered.
The real value of the interferogram is unknown as long as the integer number of
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Fig. 4.19 Strange phenomenon observed in the ‘arithmetic’ of fringe arrays. Array (c) is the
result of the difference between array (a) and array (b).

wavelengths concealed behind each fringe is unknown. This means that we cannot
multiply an interferogram by a non-integer number, for example 1.3, because each
fringe would then become 1.3 fringes (with new transitions located three quarters of
the way across each fringe) and the unknown integer behind each fringe would become
some non-integer unknown number. If we multiply an interferogram by an integer
on the other hand, 2 for example, each fringe (or cycle) will become two, with new
intermediate fringes in between. The integers hidden behind each fringe will become
even numbers and the ‘new numbers’ behind the ‘new fringes’ will be odd numbers.
An interferogram thus multiplied by an integer is always a ‘normal’ interferogram,
except that the altitude of ambiguity is divided by 2, which means that each fringe
retains only half of the initial geometric value.

Using this principle, we can also use the logical characterization of the content of
interferograms to attenuate or amplify a given contribution. For example, let us assume
that an interferogram, because of the orbital separation of the viewpoints that make
it up, has a topographic sensitivity of 100 m of difference in elevation per fringe (in
other terms an altitude of ambiguity of 100 m), whereas another interferogram shows
only 50 m, then the combination of twice the first interferogram minus the second
will remove all topographical effects. Interferograms can be combined by multiplying
with integer coefficients, and this can be done before any phase unwrapping. Let us
illustrate the efficiency of the method in a real case, where the altitude of ambiguity ratio
is not necessary close to an integer. We subtract an interferogram with an altitude of
ambiguity ea2 = 98 m (Fig. 4.20(a)) from another with an altitude of ambiguity ea1 =
71 m (Fig. 4.20(b)), in order to obtain a synthesized interferogram, which is practically
devoid of topographical effects (Fig. 4.20(c)).1 Subtracting one interferogram from

1It can be seen that the resulting interferogram has an altitude of ambiguity ea such that 1/ea = 1/71 −
1/98, i.e. ea = 258 m. The amplitude of ground displacements along the radar line of sight is visible here
through a series of fringes separated by λ/4 (and not λ/2), which is here 14 mm.
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another produces a new interferogram whose altitude of ambiguity ea is given by:

1

ea
= 1

ea1
− 1

ea2
(4.28)

Fig. 4.20 Integer combinations of interferograms. Eureka Valley earthquake (California, 17 May
1993) observed by ERS-1; (a) interferogram S1, altitude of ambiguity: 98 m; (b) interferogram
S2, altitude of ambiguity: 71 m; (c) interferogram by synthesis of S2-S1 (altitude of ambiguity
equivalent to 258 m).

In the case under discussion, ea ≈ 260 m, which results in far lower sensitivity
to topography. This very straightforward method can be used in a variety of situa-
tions, such as removing or reducing topographic contributions, subtracting absolute
geophysical models from wrapped interferograms, etc. This method, the so-called
interferometric integer combination, radically changes the use of phase unwrapping
[Massonnet, 1996].

4.6.3 Interferometry interpretation in practice

One of the main limitations on interferometry measurement is that several types of
geometric information are mixed in the same signal. This means that the precision of
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the measurements does not depend only on the properties of the radar system (power,
resolution, etc.). The physical nature of the ground observed and our ability to distin-
guish between the various contributions to the signal also play an important role. The
raw capability of the measurements is dictated by the physical nature of the ground
and its stability on the scale of the observation wavelength. The standard deviation
of the measurement depends directly on the ratio between the mean amplitudes of the
coherent and incoherent contributions to the signal. Finally, the potential precision
of the data will only be meaningful in our final measurement if we can correctly ac-
count for the contributions from other types of geometric measurements, or at least
place an upper bound on these effects, hopefully less than the precision desired for our
measurement.

Precision of the data can be improved if filters are applied to the signal after
interferometry processing. The most important of these filters is complex summing,
which increases the ratio of the coherent to incoherent contributions to the signal
proportional to the square root of the ratio of the integrated surface to the elementary
surface (Sect. 4.1.5). It is possible to discriminate between different effects merged in
the same measurement either through parametric error analysis, which depends on the
viewing conditions or as a result of logical analysis of several interferograms of the
same site. We shall now illustrate these mechanisms with the help of several scenarios
based on the series of images in Fig. 4.21.

This series is made up of the superposition of a signal with a circular shape
and a background which is typical of the residues in an interferogram, coming from
meteorological effects, poorly compensated topographic effects, or other sources of
spurious effects. This background has been extracted from an actual interferogram.
The artificial signal with a circular shape, however, has been added with variable
amplitude to form the different interferograms in the series. A color representation
of fringes has the advantage of being very easy to read, and of making the gradient
of levels stand out more clearly than in black and white because of the eye’s greater
sensitivity to colors than to shades of grey. We should note however, that whereas the
sign of the representation in black and white is not ambiguous, the color representation
has an arbitrary sign depending on the color table used. In the last image of the series
(Fig. 4.21(h)), which is identical to the first but in black and white, we can clearly see
that the phase increases from the exterior to the interior. The boundary between one
ambiguity and the next is shown by the sudden transition from a maximum value (in
white) to a minimum value (in black). This is not as easy to see on the color image
because the table could just as easily be organized with the sequence ‘Red-Yellow-
Blue’ as ‘Red-Blue-Yellow’. We therefore have to compare the phase variation either
with the color table, or with phenomena whose sign is known because they have been
processed with an identical procedure. This last method is in fact the most reliable, for
several phenomena can change the sign of an interferogram. One of the phenomena
that can cause such a change is the inversion of the real and imaginary in raw or
processed data. The inversion of the pair formed by the master and slave images when
the interferogram is created will also change the sign of the result.

As can be seen on this series of images, it is not always a simple matter to count
the number of fringes which make up a signature, even if the latter is as elementary
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Fig. 4.21 Series of interferograms ‘Practical interpretation of interferometry’.

as our example with concentric fringes. Fig. 4.21(a) shows three circular fringes.
From the yellow point at the center we pass through two other yellow circles before
arriving at the background yellow. It is easy to see that the background yellow is ‘the
same’ throughout and that there is no phase transition. Fig. 4.21(b) shows no fringe.
Fig. 4.21(c) shows a single fringe but the progression of colors is inverted relative to that
in the first image. If the first image contains three fringes we should interpret the third
as containing ‘minus one fringe’. Fig. 4.21(d) contains two fringes and Fig. 4.21(e) has
minus five concentric fringes. Fig. 4.21(f) has a single fringe and Fig. 4.21(g) ‘minus
three fringes’. These examples show how difficult it can be to recognize signatures
when there is background noise. The artificial signal introduced into the interferograms
is strictly circular in shape with no noise. Only its amplitude varies.
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We shall now discuss some fictional scenarios whose measurement results can be
found in the interferograms in the series. To interpret them, we shall restrict ourselves
to the following phenomena that we shall attempt to characterize:

(1) Atmospheric artifacts, which can be recognized because they are tied to a given
acquisition time (thus a specific image). They create the same number of fringes
in each interferogram using this image, although possibly with a change of sign
depending on whether the ‘faulty’ image is used as master or as slave,

(2) Poorly compensated topographic contributions, characterized in each interfer-
ogram by a number of fringes that is inversely proportional to the altitude of
ambiguity of the said interferogram

(3) Sudden ground deformation characterized by a date, for example an earthquake.
Each interferogram whose dates for the images bracket the date of the event
will have the same number of fringes, although possibly with a change of sign
depending on whether or not the master image is the first of the pair in time.
Otherwise, there will not be any fringes.

(4) We shall consider deformations which evolve at a constant rate over time, whose
number of fringes in each interferogram will be proportional to the time elapsed
between the acquisitions of the two images.

This is not an exhaustive list of such phenomena. We could add deformations
whose behavior is more complex over time, and even phenomena which are partially
reversible (swelling and subsiding of volcanoes and aquifers, etc.).

• Scenario 1: In this first scenario we have combined images taken from orbits
n◦5222, 10232 and 11234 of the ERS-1 satellite. We should bear in mind that
an Earth observation satellite typically performs about five thousand orbits per
year. The differences between the numbers of the orbits are multiples of 501,
which is the number of orbits performed by ERS-1 in the course of its 35-day
orbital cycle. The combination of the orbits 10232 and 11234 produced the
interferogram in Fig. 4.21(g) (−3 fringes). The analysis of these orbits indicates
an altitude of ambiguity ea of 70 m for this interferogram. The combination
of orbits 11234 and 5222 produces the interferogram of Fig. 4.21(a) (3 fringes).
The altitude of ambiguity is here equal to −120 m.

When it comes to interpretation, it is usually practical to proceed by elimination.
If the phenomenon observed results from faulty topographic correction, the result
will be a different number of fringes in the two interferograms, because of the
significant difference (almost double) between the values of the altitudes of
ambiguity. A regular displacement over time is also excluded, because the time
elapsed corresponds respectively to 1000 orbits (almost two months) and 6000
orbits (more than a year). The number of fringes of the signatures is, however,
identical. Better still, the period covered by the first interferogram is completely
included in the period covered by the second. The change of sign in the number of
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fringes can be explained by the ‘time inversion’ of the second interferogram, the
first image of which is not the oldest. This scenario is therefore compatible with a
distortion of ‘−3 fringes’ created between the dates of orbits 10232 and 11234,
which will obviously also be true of the pair 11234 and 5222, with inversion
of the sign. But is our explanation the only possible explanation? The set
of measurements are also compatible with an atmospheric effect on the image
which is common to both interferograms (i.e. the image of the orbit 11234),
characterized by three fringes. It will create three fringes in the interferogram
11234 and 5222 (the phases of 11234 minus the phase of 5222) and −3 fringes in
interferogram 10232 and 11234 (the phases of 10232 minus the phase of 11234).
The three orbits available to us do not allow us to reach a firm conclusion as to
the nature of the phenomenon.

• Scenario 2: In a second scenario, we combine images taken from orbits num-
ber 5044 and 8050 of the ERS-1 satellite in an interferogram represented by
Fig. 4.21(g) (−3 fringes), whose topographic sensitivity ea is 30 m. Two other
orbits from the same satellite, 9052 and 7549, produce the interferogram repre-
sented in Fig. 4.21(a) (3 fringes), with a topographic sensitivity ea of
−250 m.

In this case, we cannot invoke atmospheric effects because the interferograms do
not share a single image and it is most unlikely that a signature of atmospheric
origin could appear twice in identical form. The very great difference in altitude
of ambiguity rules out topographical interpretation, as the two interferograms
have the same number of fringes in absolute value. A constant rate of deformation
over time is unacceptable because the number of fringes in the interferograms is
the same whereas one of the time intervals is twice as long as the other. The only
remaining hypothesis is that of a sudden displacement, with an amplitude of −3
fringes, which must have taken place during the time interval common to both
interferograms, i.e. between the dates of the orbits 7549 and 8050. The sign
inversion can be explained by the time inversion of the second interferogram. The
four available orbits, which led to the same interferograms as for the first scenario,
now allow us to draw firm conclusions about the nature of the phenomenon. It
is worth noting that the timing of the event can be determined more accurately
than from any of the interferograms taken separately.

• Scenario 3: In this scenario, we shall use the five ERS-1 orbits numbered
5001, 5502, 6003, 7005 and 7506, which we shall combine as follows: 5001 and
7506 give the interferogram in Fig. 4.21(e) (−5 fringes), for which ea = 100 m;
7005 and 6003 give Fig. 4.21(d) (2 fringes), for which ea = 90 m; and 5502 and
6003 give the interferogram in Fig. 4.21(c) (−1 fringe), for which ea = 50 m.

If we reason in the same way as previously, we can deduce that we are dealing
here with a displacement which is constant over time and which will create
approximately one fringe per month, or more exactly every 35 days.

© 2008, First edition, EPFL Press



SAR INTERFEROMETRY: TOWARDS THE ULTIMATE RANGING ACCURACY 209

• Scenario 4: The ERS-1 images used in this scenario are taken from seven or-
bits (numbers 4530, 5031, 5532, 6033, 7035, 8037 and 12546). The first five
correspond to the minimum time interval between images in interferometric
conditions, i.e. one orbit every 501 orbits, or 35 days. Naturally, the site could
also be observed by a different interferometric series, either from a different di-
rection (ascending instead of descending for example), or more generally from
an image with a non-zero geographic intersection with ours. Such images could
be interleaved, over time, with our chosen images, but they would still only give
measurements for 35 day intervals. The use of another time series may better
constrain the data of a single date event. The interferograms used are repre-
sented in Fig. 4.21(b) (no fringe) for the pair 4530 and 12546, with ea = 1000 m,
Fig. 4.21(d) (2 fringes) for the pair 5031 and 5532, with ea = 60 m, Fig. 4.21(g)
(−3 fringes) for the pair 7035 and 8037, with ea = −40 m, Fig. 4.21(f) (1 fringe)
for the pair 6033 and 4530, with ea = 120 m.

In this scenario, the hypothesis of a geophysical ground deformation was ex-
cluded from the outset because the first interferogram did not reveal one, even
though its dates bracket the entire series. For the same reason, it cannot be due
to a constant displacement over time. Since the interferograms of these series
do not share images (they are made up of independent images), it cannot be a
question of atmospheric effects. We may note that the number of fringes is in-
versely proportional to the altitude of ambiguity, which indicates a topographic
error of 120 meters. Why is this not visible in the first interferogram? Because
its amplitude of only one tenth of a fringe is practically undetectable against a
background of such poor quality as in these examples.

• Scenario 5: In this last scenario we use the JERS satellite (Table 3.1), whose
orbits numbered 10032 and 10691 provide a single interferogram shown in
Fig. 4.21(e) (−5 concentric fringes). We may note that the difference between
the orbit numbers is 659, which is the number of orbits covered by JERS in
the course of one 44-day orbital cycle. The interferogram has an altitude of
ambiguity of 250 meters.

Although we only have a single interferogram to work with, it can still be fully
interpreted. If there were a topographic error, it would reveal a hole 1250-m deep.
The existence of any such hole, not filled with water, would be known (a giant
open-pit mine for example). With JERS, we are in L band (λ = 23.5 cm ), so that
the five fringes represent about 60 cm. There is no tropospheric phenomenon that
can create heterogeneity equal to one quarter of the propagation delay effect of
the atmospheric column (slightly more than two meters). Although ionosphere
phenomena are capable of attaining this amplitude inL band, the effect would not
be as localized as these circular fringes. If it were a case of regular displacement
over time that would also imply extraordinary orders of magnitude (40 cm of
swelling per month). It can therefore only be an earthquake or a volcano during
a very active phase.
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These five scenarios have helped us understand that there is neither absolute rule
nor a minimum or maximum number of images for correctly interpreting an interfero-
metric sequence -though we do need at least two radar images! As a general rule, four
images capable of forming two completely independent interferograms can provide
matter for useful discussion concerning atmospheric artifacts. The other combinations
of these four images (there are six paired combinations in all) usually allow conclusions
to be drawn as long as the kinematics of the displacements are not too complicated.

4.7 Availability and mission perspectives

4.7.1 Availability of archived radar data

Space radar images that can be combined must come from the same satellite, or from
two identical satellites occupying approximately the same position (typically within
one kilometer) at different times. The satellites repeat their position after covering a
complete orbital cycle. Among the available satellites, we have ERS-1 (1991-2000),
which followed two distinct 3-day orbital cycles for specific mission phases and a 35-
day cycle which took up most of the rest of its mission. The ERS-2 satellite has an
identical radar system to that of ERS-1 and is therefore compatible. It follows the same
35-day cycle but 24 hours later (an orbital combination called ‘tandem mission’). By
combining data from ERS-1 and ERS-2, we can therefore obtain intervals of 35, 34 or 1
day. The data are inC band (wavelength of 5.6 cm). The ENVISAT satellite (launched
in 2002) also gives excellent results in C band, which are partially compatible with the
ERS archive (the compatibility is not complete, because of the slightly different central
frequency, 5.331 GHz instead of 5.300 GHz for ERS). The orbit is the same as that for
ERS but ENVISAT’s many modes of image acquisition means that it can hardly create
a homogenous archive such as the ERS-like archive (23◦, VV polarization). Also in
C band, but incompatible with ERS because of orbital and instrument differences, we
have data from RADARSAT-1 (1995-present), a Canadian satellite with a 24-day cycle,
which can acquire images from different incidence angles. In L band (λ = 23.5 cm),
we can use data from the Japanese JERS satellite (1992-1997), which describes an orbit
with a cycle of 44 days, or ALOS, also in L band (launched in 2006). Although it is
intrinsically less precise thanC band, L band can obtain better results over terrain with
vegetation cover, because the longer wavelength can penetrate vegetation and reach
the ground.

ern Los Angeles in 1994, and gave an opportunity to compare ERS and JERS. The

half a wavelength, or about 11.5 cm. There is also a noticeable projection effect, as
the two satellites were observing from different sides of the image. We can see that
the fringes remain clearly visible even though the quality is lower in the Northern part
of the image. More fringes were produced by ERS Fig. 4.22(b), as they each represent
about 3 cm. They are illegible in the Northern part of the image. This results in the
fringe-count ratio between two given points in the images being different from the
ratio of four expected from the wavelengths. There are three possible explanations for

© 2008, First edition, EPFL Press

Japanese satellite produced few fringes (Fig. 4.22(a)) because each one represents about

One example of this is the Northridge earthquake, which caused damage to North-



SAR INTERFEROMETRY: TOWARDS THE ULTIMATE RANGING ACCURACY 211

Fig. 4.22 Northridge earthquake, California. The white arrows show the pointing direction of
the radar; (a) Distortion field mapped by JERS -1 (L band, NASDA) between 30 April 1993 and
14 July 1995 (one fringe: 115 mm of line-of-sight displacement); (b) Distortion field mapped
by ERS-1 (C band, ESA) between 4 October 1993 and 5 April 1995 (one fringe: 28 mm of
line-of-sight displacement).

this, as the time interval between the image acquisitions was similar in each case (and
longer than a year): (1) vegetation which would have changed during the interval but
which the L band could have crossed to reach the hard ground while the C band could
not; (2) A degree of soil erosion at a scale thatC band can detect but too small to affect
L band; and (3) The effect of slopes which are significant in this region and which
would have interfered with the ERS images taken at an incidence angle of 23◦ because
of the layover effect (Sect. 2.6.1), but not the JERS images taken at 35◦. This last ex-
planation seems the most probable though we cannot exclude the others. Experiments
over shorter periods have also been conducted with radars onboard the Space Shuttle
(SIR-A, SIR-B and SIR-C missions).

4.7.2 Availability of processing resources

The use of radar images for calculating topography and ground displacements is
widespread and not restricted just to radar specialists. So it is important that non-
specialist users with ambitious measurement goals, or in search of subtle effects, be
able to master the different processing stages involved in radar imagery.

Such processing has become accessible to non-radar specialists through the use
of scientific or commercial software. These can work on standard workstations or
even personal computers. It is recommended that radar data be processed from the
raw data. The disadvantage is the large volume of calculations to be performed, but
although these take a long time, they are controlled by simple parameters and do not
cause any real difficulties. On the other hand, raw data are easier to concatenate than
processed data (in the event that a site should extend beyond the length of a single
image). Interferometry works best when the processing parameters of the scenes to be
combined are identical rather than optimized for each scene, which would be the case
for scenes processed by the usual method. Anyone using raw data for interferometry
can impose a compromise for the processing parameters, taken from the optimal values
recommended for each scene. Lastly it may be less costly to purchase scenes in raw
data format.
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4.7.3 Principles of data selection

The choice of radar images to be combined by interferometry depends on the measure-
ment objectives and the nature of the terrain to be observed. For studying topography,
it is best to have very short time intervals (simultaneous images are ideal) and altitudes
of ambiguity which are compatible with the type of relief observed. For example, if
the scene includes elevation differences of a thousand meters, it is preferable to choose
an altitude of ambiguity of 100 m rather than an altitude of ambiguity of 10 m, even if
this means starting again with a lower altitude of ambiguity after the first pair of images
has ‘approximated’ the topography. It is also always necessary to confirm the elevation
map with several sets of data, in order to identify atmospheric artifacts. In the case of
measurements of displacements that are regular over time, it may be necessary to wait
until the displacement has reached a measurable amplitude. In the event of instanta-
neous displacements (such as an earthquake), it is only necessary that the images be
acquired at dates that bracket the date of the event. For measuring displacement, it is
preferable to choose data with a high altitude of ambiguity, in order to make it easier to
eliminate topographic contributions. Climatic conditions must always be considered.
For work over Iceland, the images must always be acquired in summer to avoid the
snow [Vadon, 1997]. It may seem like a paradox, but it is sometimes preferable to
work with images acquired at an interval of a year rather than an interval of six months
because of seasonal variations. We can take advantage of radar’s night-time capabil-
ity. Being an active instrument, it is its own source of illumination and night offers
more stable atmospheric and vegetation conditions [Massonnet, 1995], [Massonnet,
1998]. With dense vegetation cover, it is preferable to use data acquired in L band.
The best choice of data therefore depends on circumstances and on the know-how of
the specialists for whom the measurements are intended and on the knowledge of the
sites.

4.7.4 Possibilities for future dedicated space missions

Interferometry has produced some spectacular results using data from satellite radar
systems which were not designed for this purpose. It has developed very rapidly since
the launch of the ERS satellite, although isolated experiments had taken place in the
United States with SEASAT data or data from radar instruments carried on the Space
Shuttle. Development so far has been largely fortuitous and initially, no radar satellite
had been designed specifically to exploit the functions of this technology. Interferom-
etry has however benefited from the excellent orbital stability of radar satellites, which
revisit in good conditions for interferometry (typically at less than one kilometer from
the planned position) as a matter of routine. Also interferometry can be described as a
robust technology because it can exploit data with less than perfect image quality.

Fig. 4.23, however, shows a circumstance for which the capacities of current radar
satellites seem inadequate. In this example, a segment over two thousand kilometers
long was processed in interferometry mode. The terrain is not very mountainous, so
we should not see any fringes after correction for orbital uncertainties. Some of the
fringes visible here can be attributed to the lack of stability of the radar’s oscillator,
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Fig. 4.23 Interferometry processing of a long ERS segment (2000 km) showing clock drift.

i.e. the clock that beats out the wavelength inside the radar instrument. This clock
is theoretically designed to maintain a stable rhythm during the image synthesis, i.e.
approximately one second. For this segment, acquired over 300 seconds, the clock
has drifted (with an amplitude considerably less than what it is supposed to provide,
so this is not a quality issue) actually interfering with itself by creating beats, several
days later, when the second image was acquired.

Interferometry has been so successful than we can expect any future radar mission
to take its particular requirements into account. Before planning one or more space
missions dedicated to interferometry however, they must first offer definite advantages.
We shall now distinguish between missions whose objective is topography mapping
and those intended for monitoring displacements of land over time.
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4.7.4.1 Topography
Radar interferometry has aroused great interest for calculating topography. Interfer-
ograms are so sensitive to other factors, such as variations in the thickness of the
atmosphere as discussed in Section 4.6.1, that the preferred systems take simultaneous
images, which allow such contributions to the two images to be cancelled out.

The principal limitation when interpreting the interferometric signal is the ambi-
guity caused by the different ‘layers’ of information that make it up. Several systems
have been designed to simplify this interpretation. One way is to eliminate the ‘point
of view’ components by keeping the orbit within a small distance to the average orbit,
thus canceling the stereoscopic baseline almost entirely. Another way is to make it
easier to eliminate the atmospheric component (the ionosphere effect) by integer com-
bination using two frequencies whose ratio is either an integer or a simple fraction,
like 2/3 [Massonnet, 1999]. Most of the work has involved topographic restitution
however, which benefits greatly from the elimination of the ‘time’ factor and of the
corresponding effects, in particular the influence of the atmosphere.

Spaceborne radar systems could conceivably carry two antennas but this has
mostly been implemented on airborne systems. Some of these systems offer com-
mercial resources for topography computation and advantageous operational charac-
teristics. When an aircraft is used, since it is much closer to its target than a satellite,
the critical distance between the antennas is a few meters at most, and not a kilometer.
It is therefore possible to install the two antennas on the same aircraft, separated either
horizontally or vertically. The separation between the two antennas is thus very ac-
curately known. The principal difficulty is how to precisely take into account the roll
experienced by the aircraft, which can ‘tip’ the observation baseline.

The SRTM mission
As a general rule, it is difficult to persuade decision makers of the need to invest in
optimized interferometry systems: why should they spend a lot to do a perfect job
when you can do an approximate job with radar systems which are neither optimized
nor even designed for interferometry?

A two-antenna space system is only of use specifically for interferometry, and its
precision is limited by the difficulty in constructing a mast long enough to separate the
two antennas sufficiently. However, when strategic interest and political will coincide,
all obstacles are removed and this was how the Space Shuttle mission was able to
map a large part of the Earth in February 2000 for the United States Department of
Defense as part of the Shuttle Radar Topography Mission (SRTM) [Jordan, 1996]. A
degraded version of this map has been made available to civilians throughout the world
(Fig. 4.24), although access to the most precise data with typical vertical accuracy of
10 m remains restricted.

The American authorities were therefore able to have their cake and eat it too by
having an efficient product available for their own security with a vertical precision
of about ten meters while offering the world at large a lower resolution product that
was nonetheless considerably better than existing maps and also entirely free. This
ambitious mission also involved risk and boldness, as the Shuttle can only fly for about
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Fig. 4.24 Example of low resolution SRTM DEM, Turkey. The horizontal posting is 90 m and
the relative vertical resolution of the order of 10 m RMS.

ten days and it was necessary to cover the entire Earth in that period of time. The
mission required that a sixty-meter mast be deployed so that the two radar images
could be acquired simultaneously: one of the antennas was installed in the hold and
the other at the end of the mast. These operational constraints affected the results.
The Shuttle’s orbit covered latitudes up to 60◦. The coverage requirements made it
necessary to use the SCANSAR mode (Sect. 2.5.4.2) and a wide range of angles, which
compromised the angular homogeneity of the product and its radiometric quality. The
mechanical link between the two antennas was subject to complex oscillations which
had to be analyzed in order to eliminate their effects. The mission was nonetheless
very successful. In addition, the German and Italian space agencies had installed a pair
of radar antennas in X band (whereas the principal mission was operating in C band).
These X band data had more limited coverage because they did not use SCANSAR,
but they produced more accurate elevation results.

Solutions with two satellites and the interferometric cartwheel
In the case of a solution using two satellites, the system itself may not be dedicated ex-
clusively to interferometry but may simply take advantage of two compatible satellites.
In order to eliminate atmospheric effects, one of the satellites must follow the other
within a few seconds so that the atmosphere does not have time to change. The ESA
experiment which consisted in flying the ERS-1 and ERS-2 satellites at an interval of
one day did not satisfy this condition. It would also be possible to make one of the
two satellites passive so that it only needed to receive the signal which would make it
cheaper, but would restrict it to the interferometry experiment.
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Europe is certainly a strong contender in the global topography stakes which are
of such importance in every field; by taking part in the Shuttle mission, Germany
and Italy were able to gain access to a part of global coverage. The SPOT5’s HRS
instrument [Baudoin, 1999], [Baudoin, 2003] also has a very high operational capability
for topographic calculation, using optical stereoscopy.

More ambitious projects are being designed in Europe to make topography more
precise, more global and less costly. This is the case with the Interferometric Cartwheel,
based on three receiver satellites which only have to receive the signal from a conven-
tional satellite (Fig. 4.25), which calls for less expensive resources (no transmitter) and
high precision: the baseline is not limited by the length of a physical mast.

Fig. 4.25 Artist’s impression of the Interferometry Cartwheel concept.

When a mission involves more than one satellite, they can be flown with a time
interval such that the atmospheric effect is negligible. This was considered very se-
riously in 1994 when the launch of ERS-2 was being prepared while ERS-1 was in
operation and in the early 2000s between the planned Radarsat-2 and Radarsat-3 satel-
lites [Caves, 2002]. Although these projects were finally dropped, this idea is currently
embodied by the Terrasar tandem [Moreira, 2004]. There are also some disadvantages
however, which up to now have prevented such missions being put into practice. We
shall list some of them here:

• Thematic risk: what is the maximum time interval that guarantees the absence
of atmospheric effects? A cloud can travel at 100 km/h and a few tens of seconds
can be enough to create a differential effect.
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• Loss of lifetime: a second satellite is usually intended to prolong a mission’s
lifetime. A tandem mission may involve the second satellite being launched
earlier, thus reducing the overall mission duration.

• Lower rate of observation: having two satellites in flight usually means doubling
the number of passes and halving the revisit time for a given zone. If the satellites
are acting in tandem, this advantage is lost.

• Insufficient reception capacity without significant ground investments: it is often
not possible to use a second satellite because the ground stations can neither
receive telemetry from two satellites simultaneously without halving the data
rate, nor aim at two satellites at the same time with a single antenna. Besides,
interference problems often lead to making one satellite passive during tandem
operations, which means defining a specific operating mode for it.

• Slight heterogeneity of the products: it is impossible to guarantee a stable inter-
ferometry baseline throughout the orbit, which is one of the obvious advantages
of solutions using a mast like SRTM.

Nevertheless, at the time of printing a new mission is being launched in X-band based
on this concept (the German Terrasar X tandem mission).

Alternatively, the concept of the Interferometric Cartwheel [Massonnet, 2001],
a set of receive-only microsatellites, has been suggested as a compromise between
economy and efficiency. The economy is realized because the system does not need to
illuminate the target; this is left to an existing standard radar satellite called the partner.
Each individual receiver only requires low power which makes it possible for each
one to be carried on a microsatellite with a typical mass of 100 kg. Moreover, it is
not necessary to fly this microsatellite in tandem with the partner, which would entail
the risk of collision and of degraded product quality due to the difference in receiving
systems. The Interferometric Cartwheel involves flying a set of microsatellites at a
safe distance from the partner and creating the interferometry products by combining
only the images from the microsatellites. This scheme would work even if the partner
satellite does not actually record any data.

One of the most important aspects of the Cartwheel concept is the stability of the
interferometry baselines throughout the orbit. The trick is to use three microsatellites
placed on orbits that are synchronized with each other and with the partner’s orbit.
Each of the receivers has the same degree of additional eccentricity with respect to the
partner’s orbit, and their perigees are evenly distributed throughout the orbit. Relative to
the partner’s orbit, the three microsatellites could be said to dance a ballet (Fig. 4.26) and
to describe a relative ellipse during their orbital period, whose semi-major axis is twice
the semi-minor axis (r). It can then be shown that whatever the phase in this rotation,
the choice of the two best-placed microsatellites (S1 and S3 in the case of Fig. 4.26)
results in an interferometric baseline which is never more than 7.5 % from a mean
value determined by the size of the ellipse, which is itself a function of the additional
eccentricity [Massonnet, 2001]. We have in fact created a virtual mast, whose length
is not strictly fixed, but which does not oscillate like the one on the Shuttle. Its length
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Fig. 4.26 Configuration of the 3 receivers of the wheel in the orbital plane.

is not limited, which means it can be adjusted to the optimum length for topography
calculation. The figure shows the rectangles within which each microsatellite can move
without exceeding the critical separation beyond which the interferometric effect would
disappear either due to the difference in incidence angle in a vertical direction or to
a difference in Doppler in the horizontal direction. The rectangles must therefore
always overlap to a reasonable extent, so that the microsatellites, at their center, are
interferometrically compatible.

In terms of quality, the trade-off chiefly concerns the microsatellite’s antenna,
whose azimuth footprint covers more ground than the partner’s antenna does, and
therefore cannot properly eliminate ambiguities (ghost images, Sect. 3.15.2). We thus
accept that ambiguities will only be attenuated by the partner’s antenna and not on the
return trip. It can be shown however that the ambiguities, even though they are higher
in Cartwheel images than in partner images, do not contribute coherently to the inter-
ferograms. They behave like a noise which does not bias the measurement (Sect. 4.9).

From the point of view of cooperation, this concept is quite innovative: cooper-
ation is very real because the Cartwheel can produce nothing without its partner, and
the partner cannot achieve the same quality of products without the Cartwheel. The
necessary close cooperation is very simple to implement however, because the partner
simply has to warn the Cartwheel in advance of its acquisition programme. Even closer
cooperation programmes are possible of course, such as illumination modes specifi-
cally designed for Cartwheel operations, joint launches with the partner, all telemetry
data being first transmitted and recorded in the partner’s memory, etc.
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Several studies have shown that the concept of the Interferometry Cartwheel is
capable of producing a DEM of greater precision than one meter for the entire land
surface observable by the partner satellite, i.e. almost the entire globe in the general
case of a sun-synchronous radar [Amiot, 2004]. The concept would also seem to open
up a wide range of other possibilities, some of which we list here:

• A horizontal baseline is available in the same way as the vertical baseline with
the same stability conditions (it is simply twice as long). It should therefore be
possible to perform interferometry along the satellite ground track for mapping
ocean currents for example.

• The production of images from different ranges would allow new possibilities
for characterizing mobile targets, whatever their velocity, by correlating the
receivers’ images.

• The existence of two other interferograms produced with the help of the ‘third
satellite’, i.e. the one which is not part of the stable baseline currently being used,
would help to eliminate elevation ambiguities in urban terrain characterized by
sudden variations in elevation, through multi-baseline processing.

• As there is no time interval between acquisitions, coherence measurement is di-
rectly related to the volume properties of the targets (Sect. 5.14). The Cartwheel
makes it possible to use the coherence as a new measurement of these proper-
ties which is particularly suitable for studying the biomass, usually from three
simultaneous observation baselines.

• Lastly, the Cartwheel concept is perhaps a precursor of new designs for radar
systems. Fig. 4.26 shows the critical vertical and horizontal baselines which
can also be represented in frequency terms. For example, the critical vertical
baselines are the frequency equivalent of the bandwidth of the chirp while the
horizontal baselines are the equivalent of the Doppler bandwidth in azimuth. To
use the vocabulary of frequency specialists, these two baselines are inversely
proportional to the range and azimuth resolutions respectively of the individual
receivers and also the partner’s. In this way, the size of the smaller rectangle
created by the intersection of two of the rectangles surrounding the receivers
is related to the resolution of the interferometry product that the receivers can
produce. Inversely, if we consider the ‘frequency surface’ covered by all the
rectangles of the three receivers, it is possible to create an image product with
a better resolution than that of the partner. The Cartwheel makes it possible
to test these principles so that afterwards plans might be made for embedded
concentric wheels by means of which numerous microsatellites could ‘pave’ the
frequency plane and consequently considerably increase the nominal resolution
of the partner satellite in both azimuth and range. Ultimately, the partner could
cease recording altogether!
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4.7.4.2 Ground displacements
In applications related to ground displacements, the added value of a specific system
lies mainly in its ability to reuse old radar archives, so as to reveal slow displacements
through pairs of images whose time interval is very large. Other technical elements
are significant, but less specific: precise trajectory repetition so that topographic con-
tributions are minimized, auxiliary instruments to give simultaneous information on
the state of the atmosphere, pointing capability at multiple angles, capability for using
various wavelengths. Archives can only be used if strict technical specifications are
imposed on the future satellite, which must follow the same orbit as its predecessor,
use the same wavelength and maintain the same orientation. Several mission concepts
have been put forward. Their selection will depend on their being significantly more
adapted to the task than future conventional radar satellites, which will all have an
interferometric capability.

4.8 Comparison of interferometry with other methods

4.8.1 Comparison with optical stereoscopy for topographic
measurement

In optical stereoscopy, relief can be calculated using the distortion caused by the differ-
ence of viewpoint between images. The critical parameters of the method are (1) the
size of the pixel and (2) the ‘base to height’ ratio. The smaller the pixel, the better the
distortion measurement. Depending on the measurement methods used, it is possible
to detect distortion with a precision equal to a fraction of the size of the pixel, depend-
ing on the signal’s characteristics. Over given terrain, the distortion is a function of
the ‘base to height’ ratio. In optical stereoscopy, it is possible to have a ratio of one,
meaning that the distance between the points from where the images were taken is
equal to the altitude of the image acquisition. Under these conditions, a difference of
elevation in the terrain observed reveals a distortion of the same magnitude between
the images. The elevation precision is then equal to a fraction of the size of the pixel,
typically a few meters.

In radar interferometry, the base to height ratio is necessarily very low, as we
have seen in Section 4.1.6, and is unlikely to exceed one thousandth. Even though the
equations for geometric sensitivity to altitude difference are different from those used
in optics, we may conclude that for a given topography, the distortion between two
radar images that can be combined by interferometry is typically one thousand times
less than that for stereoscopic images. On the other hand, the measurement is based
on the phase difference which, depending on the wavelength and the signal power, can
allow precision of the order of a centimeter. This precision compensates for the poor
baseline and helps us to understand why the results of the two methods are comparable
in quantitative terms. They both achieve precision of a few meters when measuring
elevation. Qualitatively however, they remain very different: interferometry allows
all-weather access and therefore guarantees a result. The result must be confirmed by
several attempts however in order to eliminate the contribution of atmospheric effects.
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Besides, certain surfaces like forests will only give mediocre results. In comparison,
stereoscopy performed with an optical satellite using lateral off-pointing will have a
low success probability in the event of heavy cloud cover. For example, if a region
is cloud-free only 10 % of the time, the probability of obtaining a pair of cloudless
images is only 1 %. If the satellite can acquire the two images when observing first
forwards and then backwards (stereoscopy along the ground track), the probability will
remain close to 10 % in our example. This is the case for the HRS instrument carried
on SPOT-5.

Interferometry is more efficient on flat terrain with little contrast, for which it
is difficult to correlate optical images. It is also more efficient with less noisy back-
ground: for weak topographic patterns, interferometry produces relatively smooth
results whereas correlation residuals are noisier. Optical stereoscopy on the other hand
is more efficient in mountainous terrain, where the different types of surface and illumi-
nation provide good contrast. In these regions, the geometrical disadvantages of radar
such as overlapping and foreshortening have a major impact. It is also difficult to count
and unwrap the fringes in these zones, as they will be numerous and possibly broken.

Each of these techniques leads to very different types of errors: for optics, atmo-
sphere is ‘all or nothing’. If there are clouds, no measurement is possible. For radar
interferometry, atmosphere introduces a measurement bias which can only be detected
by comparing several results for the same site. In radar, error is therefore trickier to
handle.

4.8.2 Comparison with GPS for measuring displacement

At the time of writing, no other technology can compare with interferometry for mea-
suring ground displacement from space. Although displacement can be measured by
comparing optical images acquired before and after events, it is unlikely that mea-
surements could be taken with better resolution than the decimeter level using current
civilian optical satellites. High precision instantaneous measurements can be obtained
using specific ground equipment, particularly differential GPS technology.

The advantages of GPS technology or positioning systems in general are (1) it
depends very little on the nature of the ground on which the receiver is installed,
as long as the ground is stable and the site is relatively clear, and (2) it is capable
of taking measurements in three dimensions, even if the vertical component gives a
less precise measurement than the other components. Depending on conditions and
the time available for integration, measurement accuracies can be much better than a
centimeter. A final advantage worth mentioning is since measurements are continuous,
atmospheric effects harmful to interferometry can be filtered out.

The advantages of interferometry are (1) lower cost (in both cases, GPS and radar,
we can exclude satellite costs, because missions involving each of these space systems
go beyond geodesy studies), and (2) very high spatial density for the measurements,
generally at least one point per hectare, allowing for greater understanding of phenom-
ena with complex morphology.

An analysis of post-seismic distortion at Landers in California (Fig. 4.27) clearly
shows how interferometry can complement GPS-type measurements. The 5-km scale
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Fig. 4.27 Analysis of post-seismic displacement, on the Landers site (California), based on
complementarity between interferometry and GPS.

shows that the typical measurement density of which interferometry is capable is com-
pletely inaccessible to GPS, because it would be necessary to cover the region with
GPS receivers to give a full account of the complexity of the displacements which have
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affected the terrain. However, if GPS measurements are performed correctly, they
should not be affected by changes in ground surface features. Most of these displace-
ments occur during the month following the earthquake and interferometry is the only
method that records them correctly. In this example, two post-seismic interferograms
have been added, which means that each fringe represents 14 mm, and not the 28 mm
that are usual for ERS.

4.9 Robustness of coherent processing when faced with ambiguities

We now take a look at the way interferometry processing handles image ambiguities
(Sects. 2.2.4, 2.52, and 3.7). Protecting images from radar ambiguities in both range
and azimuth is a critical parameter for radar image quality, which strongly influences
the design of radar systems. Purely as an intellectual exercise combining both radar
processing characteristics and coherent combination techniques, we will now show
that under certain conditions, ambiguities do not contribute to coherent combination.
After all, coherent image combination assumes the co-registration of the images. The
parameters of the co-registration are selected over the entire image, and therefore are
optimized for the dominant, non-ambiguous targets.

‘Ghost’ images corresponding to range ambiguities are not properly co-registered,
They come either from the echo of the preceding pulse (further away perpendicular to
the satellite’s ground track) or from the beginning of the echo of the following pulse
(on targets closer to the satellite’s ground track), In order to produce topographical
information, both radar passes must observe from slightly offset viewpoints. The
variation in incidence angle resulting from this offset must not exceed a critical value
such that the progressive shift of the two images remains less than one wavelength per
pixel (Sect 4.5) as a rule. The relative shift must therefore remain inferior to the ratio
between the sampling frequency and the carrier frequency (1/Q), i.e. usually between
0.3 % and 1 % depending on the satellite. The lower limit of the offset depends on
the necessity of creating a sufficient topographic effect. Assuming that this requires a
baseline that is at least one tenth of the critical perpendicular baseline, we conclude that
the relative shift between the images is at least 0.03 % to 0.1 %. In geometrical terms,
this is the same as equating the base to a tenth of the ‘critical perpendicular baseline’.
What is the effect of this progressive shift on images containing range ambiguities?
The number of range pixels separating the real image from the ambiguous image is
equal to the ratio of the range sampling frequency fd to the pulse repetition frequency
fa (Sect. 2.5.2). This ratio is typically equal to 10, 000 (which is the case for ERS-1). If
we take realistic lower values of the relative shift, the ambiguous images remain shifted
by several tens of pixels in range when the real images coincide. Range ambiguities
do therefore not usually give coherent combinations.

Azimuth ambiguities are characterized by degraded resolution relative to the nom-
inal images because their parabolic migrations have been improperly compensated for.
Even in the case of a satellite such as ERS, which produces particularly small parabolic
migrations, the range spread corresponds to 2.5 pixels. This spread in range causes a
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degradation of a similar magnitude in azimuth (see below). Since the resolution cell is
larger, the critical perpendicular and horizontal baselines are reduced (by a factor of 2.5
in the case of ERS). Hence, if the baseline reaches 40 % of the critical perpendicular
value, azimuth ambiguities can no longer be coherently combined, as their perceived
baseline exceeds the critical baseline.

Under these conditions, the degradation of the interferograms is only the result
of the incoherent contribution of ambiguities. Even if these ambiguities are as high as
−10 dB of the real image (Sect. 3.7.2), they cannot corrupt the phase of the real image
with a standard deviation of more than 5 % of a cycle. Under no circumstances can
they bias the result. They can only add noise.

Let us review the underlying mathematics using the radar carrier frequency fc,
the range sampling frequency fd and the pulse repetition frequency fa. Referring to
the range ambiguity shift, let us assume we have a configuration that creates α times
the critical perpendicular baseline (0 < α < 1). We therefore have a shift in range of
one pixel for every n pixels with: n = fc/(αfd). The interval in pixels between two
successive pulses is equal tom = fd/fa. If we have a perfect co-registration, the range
offset remaining between the ambiguous contributions is a number of pixels, which
depends on the three typical frequencies of SAR: m/n = αf 2

d /(fcfa).
In the case of ERS, this term has a value of 40 and therefore, even if the baseline

is one tenth of the critical baseline, the shift is as much as 4 pixels for the ambiguous
contributions. For a satellite using L band, this term can easily reach 150.

Now let us look again at the azimuth ambiguity shift. A radar observing at zero
Doppler (perpendicular to the ground track), analyzes an azimuth frequency range from
−fa/2 to fa/2. This range of observations corresponds to the increasing distance, rel-
ative to the point of closest approach, proportional to the square of the frequency,
namely βf 2

a /4, where β is a geometric factor specific to the radar system for express-
ing increased distances (i.e. range migrations) in units of range pixel.2 The azimuth
ambiguity, produced by the same frequency bandwidth shifted by fa, i.e. from fa/2
to 3fa/2, spreads between the increased ranges βf 2

a /4 and 9βf 2
a /4. Since the ambi-

guity is processed in the same way as the real image, the real image’s migrations are
compensated, up to βf 2

a /4. The ambiguous targets thus experience uncompensated
migrations between 0 and 2βf 2

a , resulting in a ‘range spread’ of the ambiguous tar-
get (8βf 2

a /4). This corresponds to a degradation of the range resolution by a factor
which is eight times the maximum value of the parabolic migration, which in turn
decreases the critical interferometric baseline by the same factor. For the ERS satel-
lite, the amplitude of the migrations is 2.5 range pixels. For a satellite working in L
band, such as JERS, the spread can be as high as 150 pixels. Range spread leads to
the same order of spread in azimuth, measured in numbers of pixels (Sect. 2.3.6). The
ambiguous target therefore shows a much wider impulse response (the widening factor
is 2.5 for ERS and 150 for JERS) which rapidly makes it unsuitable for interferom-
etry as it narrows the critical baseline by the same factor. For example, the azimuth
ambiguities of a satellite using L band become incoherent before the perpendicular

2We have seen (Sect. 2.3.6) that µ(fr) = Naf
2
r

2Q = λR0
2ν2 · 1

2Q · f 2
r f

2
a = βf 2

r f
2
a . For a non-ambiguous

signal, −1/2 ≤ fr ≤ 1/2, the maximum migration is therefore indeed βf 2
a /4.
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baseline reaches 1 % of the critical perpendicular baseline. In the same way, the degra-
dation of the azimuth resolution prohibits the ambiguous targets from taking part in
the interferometric processing because they ‘see’ a much reduced horizontal critical
baseline.

The explanations in Section 4.9 are further developed in [Massonnet, 2001] and
[Fjørtoft, 2004].

4.10 Permanent reflectors

One of the most difficult aspects of interferometry is maintaining the ground surface
characteristics between acquisitions separated by a time interval. There are several
kinds of terrain that produce interferograms that are partially or totally incoherent.
However, while we understand why a field, a forest or a marsh gives incoherent results,
we also know that within this instability there are always stable targets to be found
(rocky outcrops in forests, separation walls between agricultural fields, etc.). The
problem is that the quality of the fringes always depends on the continuity of the results,
which is also required for reconstructing the number of fringes by phase unwrapping.
Coherence is no more or less than a measure of the continuity. Without continuity, how
can we know whether a pixel has a valid phase value when its neighbors are giving
random results?

It is very important to identify these stable pixels or ‘permanent reflectors’ because
in the absence of a clear interferogram, a few dozens of these points may be sufficient
to characterize for example the evolution of regional ground displacements. The chief
difficulty is to identify them because once that has been done, the very high consistency
of the geometry of radar images will make it easy to find them again from one image
to the next.

Several techniques have been suggested to find and exploit these reflectors. The
earliest and most successful [Elachi, 1982], [Ferretti, 2000] have been mostly applied
to urban landscapes which are intrinsically stable and therefore not typical of the areas
where such techniques are the most wanted. However in these conditions the technique
called ‘permanent scatterers’ has lead to very interesting results and, in particular, very
accurate down to the millimeter scale or even below. The method relies on the analysis
of a very long series of images, typically a few dozens. All the images are “slaved” and
combined to the same master, which limits the number of interferograms to the number
of images minus one. Since the stable ‘permanent scatterers’ (PS) are likely to be point-
like features not necessarily subject to speckle, interferograms with baselines higher
than the critical baseline are kept in the process. However with the largest baselines,
the more difficult geometric conditions are very demanding for permanent scatterers
candidates, which reduces the number of appropriate points. A typical collection of
PS is generally sparse and not evenly distributed.

The first selection criterion is the consistency. Then the conditions to be observed
by the would-be PS are expressed as a non-linear equation linking the observed phases
in the series with the conditions (such as the baseline) and several unknowns (such as
a constant phase offset linked to each image, phase slopes along azimuth and range, or
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geophysical hypotheses such as a sinking rate). The non-linear nature of the equations
is linked to the fact that, at this stage, the phases are still wrapped (i.e. 2π ambiguous).
The equations can then be solved iteratively if the signal to noise ratio is sufficient and
assuming some additional and likely hypotheses, such as modeling the impact of the
atmosphere by an “atmospheric phase screen” consisting of a phase plane associated
with each interferogram. A key aspect of the process is the exploitation of the specific
behavior of the components of the signal: the atmosphere is characterized by low spatial
frequencies and high time frequencies (at the scale of satellite passes). Using adapted
filtering, residuals end up by being attributed to atmosphere, topographic errors, orbital
offsets etc.

Although this method lead to very spectacular results and raised hopes for further
improvements, the discovery of a method for detecting permanent reflectors in natural
landscapes is of critical importance for the future of differential interferometry. Possi-
ble methodological improvements may include the use of all the interferograms possible
from a series of images, or only part of them but with a different selection scheme, for
example making sure the same atmospheric contribution is not seen twice in the series
[Mouelic, 2005]. These improvements are likely to make a more thorough exploitation
of auxiliary data on a given site (geophysical models, atmospheric measurements
assimilated in a model, etc).
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CHAPTER 5

SAR POLARIMETRY: TOWARDS THE
ULTIMATE CHARACTERIZATION OF TARGETS

5.1 Introduction

Polarization diversity has been uncommon in spaceborne SAR of the last century. Most
civilian systems were designed to transmit a single waveform in terms of polarization,
such as the ERS-1 and ERS-2 satellites (vertical linear polarization), or RADARSAT-1
and JERS (horizontal linear polarization). New space missions however all include ex-
perimental polarimetric modes to various extents. For the first time, ASAR/ENVISAT
(launched in March 2002) was given a limited polarization diversity. The current situa-
tion has changed rapidly with the launch of full polarimetry payloads (RADARSAT-2,
TERRASAR-X and ALOS), using C band, X band and L band respectively.

The earliest work in radar polarimetry is found in the early 1950s [Sinclair, 1950].
The theory was inspired by the work of Stokes [Stokes, 1852] and of the ‘last univer-
sal genius’Poincaré [1989], both of whom laid the basis for a unified formalism for
electromagnetic waves, regardless of their state of polarization. Sinclair defined the
scattering matrix, which expresses the ‘ability’ of a target to modify the polarization
of the waves that illuminate it. Over the following years more scientists reinforced
the theory underlying radar polarimetry, for example [Deschamps, 1951], [Kennaugh,
1952] and [Graves, 1956].

During the 1960s, interest in radar polarimetry waned. Then in 1970 the publica-
tion of Phenomenological Theory of Radar Targets [Huynen, 1970], in conjunction with
rapid technical progress, renewed interest in such research. In the 1980s and 1990s sev-
eral airborne radar instruments were deployed (JPL/AIRSAR, DLR/ESAR, EMISAR,
ONERA/RAMSES, TNO/PHARUS, CCRS/CONVAIR, JAXA/PISAR etc.). Many
applications were developed from these exploratory campaigns, further enriched by the
SIR-C/XSAR mission on the Space Shuttle. Among these are the classification of land
surface [Lee, 2001], forest parameters [Le Toan, 1992], soil moisture [Dubois, 1995]
surface roughness [Mattia, 1997], lava [Zebker, 1987], sea ice [Drinkwater, 1993]
snow [Shi, 2000], topographical measurements [Schuler, 1996], ana target detection
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[Novak, 1990], [Souyris, 2003]. More recently, the combination of interferometry
and polarimetry techniques (PolInSAR) [Cloude, 1998] has opened up a new range
of applications. The contributions described in references [Ulaby, 1990], [Cloude,
1996], [Boerner] and [Touzi, 2004] exhaustively review radar polarimetry techniques
and applications. In parallel, polarimetry toolbox became available, such as the one of
the University of Rennes [Pottier, 2002]. Some of the results developed in this chapter
were obtained using it.

The purpose of this chapter is to give the necessary keys for understanding polari-
metric measurements. This choice forces us to address a number of different topics,
without necessary detailing them as much as they would deserve. For a full understand-
ing it is strongly recommended to first read Sect. 1.1 of this book on the propagation
and polarization of electromagnetic waves. Here, we shall start with a discussion
of the operating principles of polarimetric radar and its very specific timing analysis
(Sect. 5.2). We introduce the scattering matrix in Sect. 5.3. Its expression in the mono-
static case (in which transmitting and receiving antennas share the same location) is
developed for single-bounce scattering, double-bounce scattering and diffractions in
Sect. 5.4. The rest of the chapter is restricted to this monostatic geometry. In this case,
the scattering matrix becomes the backscattering matrix. The principles of polarization
synthesis are developed in Sect. 5.5, characteristic polarizations and Euler parameters in
(Sect. 5.6).

We shall then see that there are basically two approaches for decomposing po-
larimetric measurements, i.e. coherent and incoherent. Coherent decompositions
(Sect. 5.7) ignore the effects of depolarization caused by wave-surface interactions.
When these are taken into account, the Stokes formalism, the Mueller matrix (Sect. 5.8),
and the covariance or coherence matrices (Sect. 5.9) are used instead of the backscatter-
ing matrix formalism. In this context, the polarimatric measurements are decomposed
using so-called ‘incoherent’ techniques (Sect. 5.10). In Sect. 5.11 examples of inco-
herent analyses of satellite- and airborne images are used to illustrate the theoretical
development from the previous section and to underline certain of its limitations. An
original method for visualizing polarimetric information is presented in Sect. 5.12.

We evaluate various architectures for compact polarimetry instruments in Sect. 5.13,
which could facilitate the development of polarimetry for spaceborne systems on
smaller and cheaper platforms. In the final section (Sect. 5.14), we address the merging
of polarimetry and interferometry (PolInSAR). We draw conclusions in Sect. 5.15.

5.2 Radar polarimetry: operating principle

Its operating principle (Fig. 5.1) is based on the quasi-simultaneous transmission of two
linear orthogonal waves (Sect. 1.1.2) (quasi-simultaneous with respect to the coherence
time of the observed targets). In reception, the collected echoes are received on two
linear orthogonal polarizations which have the same phase reference.

More precisely, let us assume that at a given instant the radar transmits along

direction ˆkinc a pulse whose polarization (Jones vector, Sect. 1.1.2) ˆEinc10 is directed
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Fig. 5.1 Principle of radar polarimetry.

along the x̂ axis. The target backscatters along direction k̂s an electric field �Es10 whose
direction1 is unknown. However, two components of this scattered field, namely ẑ · �Es10
and t̂ · �Es10 (where "·" represents the dot product), will be collected on the two receiving
polarizations directed along the ẑ and t̂ directions. A moment later, a pulse with Jones
vector Êinc20 oriented along the ŷ axis is transmitted. Similarly, the components ẑ · �Es20
and t̂ · �Es20 are collected.

5.2.1 Timing analysis - impact on system design

The main constraint in polarimetric measurements comes from the need to transmit two
phase-locked waveforms with orthogonal polarizations. It requires to transmit inter-
leaved pulses, alternating the polarization after each transmitted pulse (x̂, ŷ, x̂, ŷ etc).
Each echo collected requires the recording of two signals, each one associated with
one of the receiving polarizations. What are the consequences of this double polariza-
tion agility (both in transmission and in reception)? Regarding the timing analysis, if
we want to maintain, on each polarization channel, performances comparable to that
of a single polarized radar with an azimuth sampling frequency fa (Sect. 2.2.3), the
polarimetric radar must operate at 2fa. As a consequence of the doubling of both sam-
pling frequency and reception modes, the volume of data generated per image pixel is
increased by a factor of four. Another consequence of doubling fa is that the radar’s
swath width is reduced by a factor of two, in order to protect the receiver against range
ambiguities (Sects. 2.5.2 and 3.7.1). The antenna width is multiplied by a factor of two
(and thus so is its surface), while the total transmitted power may remain the same. In
conclusion, the polarimetry option involves multiplying the volume of data per image
pixel by four and halving the swath width, which are heavy constraints that tend to

1For the sake of clarity, we assume here that the target is not depolarizing. It is important to be aware
of the difference between ‘polarization change’ (i.e., modifying the orientation of the electric field) and
‘depolarization’ (i.e., creating an incoherent component in the scattering). Depolarization mechanisms are
not introduced until the second part of this chapter (Sect. 5.8).
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argue against polarimetry. We shall see later that compact polarimetric architectures
can relieve these intrinsic constraints (Sect. 5.13).

5.3 The scattering matrix

The acquisition strategy described above associates a batch of information stored in
matrix form for each pixel according to Eq. (5.1):

[ ¯̄S
]

=
[
Sxz Syz

Sxt Syt

]

=
[
ẑ · �Es10 ẑ · �Es20

t̂ · �Es10 t̂ · �Es20

]

(5.1)

where [ ¯̄S] is called the target scattering matrix. The indices i and j of the complex
coefficients Sij refer respectively to the transmission modes (x or y) and reception
modes (z or t).2,3 The polarization basis in the transverse planes (x̂, ŷ) and (ẑ, t̂) are
oriented according to the Back Scattering Alignment convention (BSA), which makes
the reception vector triplet (ẑ, t̂, k̂s) left-handed (Fig. 5.1). The advantage of BSA is
that (x̂, ŷ) and (ẑ, t̂) are identical in a monostatic configuration (Sect. 5.3.1).

From the matrix [ ¯̄S], the response of the target to any elliptical polarization of
Jones vector Êinc0 can be computed immediately. Êinc0 is indeed the linear combination
of two waves with linear orthogonal polarizations x̂ and ŷ (Sect. 1.1.2.2)4:

Êinc0 = (x̂ · Êinc0 ) · x̂+ (ŷ · Êinc0 ) · ŷ = Einc0x · x̂+ Einc0y · ŷ (5.2)

from which, assuming the linearity of the measurement process described in Sect. 5.2:

[
Es0z

Es0t

]

=
[
Sxz Syz

Sxt Syt

]

·
[
Einc0x

Einc0y

]

(5.3)

Einc0x and Einc0y are the components of the incident field (i.e., the incident Jones vector)

Êinc0 expressed in the transmission basis (x̂, ŷ); Es0z et Es0t are those of the scattered
field (i.e. the scattered Jones vector) �Es0x expressed in the reception basis (ẑ, t̂) (the
propagation terms in exp(−jkr)/r are omitted here).

Equation (5.3) thus links the Jones vectors of the transmitted and scattered waves,
meaning that the target is characterized here by its ‘ability’ to modify the polarization
of the illumination wave. What we have just described very broadly is the so-called
polarization synthesis technique, which we will look at in more detail in Sects. 5.5 and
8.1.3.

2The coupling of the reception polarization with the scattered field is explained in Sect. 1.1.3.1
3For a single polarized radar, (such as ERS-1 (VV ) or RADARSAT-1 (HH)) only one term of the scattering

matrix is measured, for example ẑ · �Es10 when transmission is along x̂ and reception is along ẑ.
4Our choice to represent polarization Êinc0 with a magnitude of 1 implies that (Einc0x )

2 + (Einc0y )
2 = 1.
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5.3.1 The monostatic singularity - the backscattering matrix

Although references to multistatic SAR systems are beginning to appear, current sys-
tems function in a monostatic configuration, in which the same antenna transmits and
receives. As a result, we can write (Fig. 5.1):

ẑ = x̂ t̂ = ŷ k̂rec = k̂inc = −k̂s (5.4)

where k̂rec is the wave vector (Sect. 1.1.2) of the receiving polarization. If the observed
media do not contain non-reciprocal material and if the wave propagation between the
radar and the ground does not involve non-reciprocal phenomena (such as when low
frequencies cross the ionosphere), then applying the reciprocity theorem [Kong, 1990]

to the target-radar system implies that the off-diagonal terms of [ ¯̄S], renamed here the
backscattering matrix, are equal:

Syx = Sxy (5.5)

The backscattering matrix is consequently a complex diagonal square matrix,
defined by six parameters, three amplitude terms and three phase terms. If we factor
out a term of absolute phase (for example that of Sxx) the number of independent
parameters is reduced to five, namely three amplitude terms and two phase difference
terms:

[ ¯̄S
]

=
[
Sxx Sxy

Sxy Syy

]

= exp[j.φxx] ·
[ |Sxx| |Sxy| · exp[j(φxy − φxx)]

|Sxy| · exp[j(φxy − φxx)] |Syy| · exp[j(φyy − φxx)]

]

(5.6)

This is the configuration we shall now retain. The term x̂ is replaced by ĥ (for horizontal
direction) and ŷ by v̂ (for vertical direction): Sxx = Shh, Syy = Svv, Sxy = Shv.

5.3.2 Target vector

It may sometimes be useful to ‘vectorize’ the matrix [ ¯̄S], by transforming it into a
vector �κ = (κ0, κ1, κ2)

T by:

κi = Tr
(

[ ¯̄S] · [ ¯̄�]i
)

(5.7)

The entity T is the transpose operator, and the operator Tr([ ¯̄A]) sums the diagonal

terms of the matrix [ ¯̄A]. There are two options for choosing the structure of [ ¯̄�]i, from
either the �L or the �P families:

�L : �L0

[
1 0
0 0

]
; �L1 =

[
0 0√
2 0

]
;�L2 =

[
0 0
0 1

]
(5.8)
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�P : �P0 = 1√
2

·
[

1 0
0 1

]
; �P1 = 1√

2
·
[

1 0
0 −1

]
;

�P2 = 1√
2

·
[

0 1
1 0

]
(5.9)

Equation (5.9) has a structure similar to the Pauli matrix group (Sect. 1.1.3.3). �L and
�P respectively lead to:

�κL = [Shh,
√

2 · Shv, Svv]T (5.10)

�κP = 1√
2

· [Shh + Svv, Shh − Svv, 2 · Shv]T (5.11)

5.4 Standard forms of backscatter

We shall now describe three examples of backscattering matrices representing
basic non-depolarizing mechanisms: odd-bounce scattering, even- and dipole diffrac-
tion.

5.4.1 Odd-bounce (single, triple) scattering

Single-bounce scattering (or single scattering) corresponds to a unique interaction
between a wave and a dielectric or conducting surface (Fig. 5.2(a)). This surface is
locally approximated by its tangent plane containing the tangent t̂ and cotangent ĉ.
At first order, this surface has a polarimetric behavior similar to the one of an infinite
perfectly conducting plane illuminated under normal incidence (Fig. 5.2(b)). When
the transmitted electric fields reflected5 from this plane they undergo a phase offset
of π : �Es10 = −Êinc10 and �Es20 = −Êinc20 . When the phase term of the coefficient

Shh = −1 is factored out, the normalized backscattering matrix [ ¯̄S]SS can be written,
as Eq. (5.12):

[ ¯̄S
]

SS
=

[
1 0
0 1

]
(5.12)

Single-bounce scattering has two features: (1) it preserves the polarization ori-
entation when linear polarizations are transmitted, resulting in the off diagonal terms

of [ ¯̄S]SS being zero; and (2) the terms Shh and Svv are equal. In practice, they can
differ because of incidence effects (the Fresnel coefficients) and surface irregularities

5In the theoretical case shown in Fig. 5.2(b), reflection is total and the backscattering coefficient has a
modulus of 1. This is not the case when the incidence angle is oblique. However, the behavior in both cases
is similar as far as their ability to modify the polarization of the transmitted wave is concerned.
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Fig. 5.2 (a) Single-bounce scattering mechanisms: general case; (b) special case of normal
incidence on a perfectly conducting plate; (c) backscattering on a trihedral corner reflector.

(soil roughness and moisture, Sect. 1.3.2). Although these effects may lead to slight
modifications, they do not alter the main features of the polarimetric signature.

The behavior described in points (1) and (2) will be the same for any kind of
odd-bounce scattering, such as third order scattering (triple-bounce) occurring on a
trihedral corner reflector, (Fig. 5.2(c)).

Please note: The Jones vector of a circularly polarized incident wave (e.g. right-
handed) expressed in the basis [ĥ, v̂, k̂inc] is (1,−j)T (Sect. 1.1.1.2). If we apply
Eq. (5.12), the Jones vector of the backscattered wave is also (1,−j)Twhen expressed
in the basis [x̂, ŷ, k̂s] with k̂s = −k̂inc (BSA convention). Beware however! Despite
appearances, the polarization of the backscattered wave is now orthogonal to that of
the transmitted wave: since they are propagating in opposite directions (Sect. 1.1.2.2),
the interaction of the two waves is given by the Hermitian product 〈Êinc0 · �Es∗0 〉 =
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(1,−j) · (1,−j)∗∗T , which is zero. The sphere or the perfectly conducting plane there-
fore backscatters all the energy of an incident circularly polarized wave in its orthogonal
polarization: this shows us that polarization change does not only depend on the target,
but also on the polarization of the transmitted wave.

5.4.2 Even-bounce (double) scattering

Double-bounce scattering (or double scattering) is the result of two successive single
scattering events (Fig. 5.3(a)). If the two surfaces are locally orthogonal, they will
create two successive specular reflections, which scatters the incident energy back
to the transmitter (this is known as the dihedral or double-bounce effect). Double-
bounce effects are extremely common in urban areas, which explains the high level of
urban backscatter.

Even-bounce scattering occurs in particular when two orthogonal perfectly con-
ducting planes are illuminated by an incident wave perpendicular to their vertex line.

Fig. 5.3 (a) Double-bounce scattering mechanisms: general case; (b) special case of an illu-
minated dihedral corner reflector made up of two perfectly conducting perpendicular plates
(orthogonal illumination); (c) double-bounce scattering mechanisms in a configuration where
the vertex of the dihedral corner reflector makes an angle δ with the axis ĥ of the polarization
basis.
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Let us look at the situations where either the electric field or the magnetic field of
the incident wave is parallel to the vertex (Fig. 5.3(b)). In the first case, the electric
field Êinc10 parallel to the vertex is affected twice by a scattering coefficient equal to 1,
so that the double-bounce mechanism has no effect on the phase of the electric field.
When Êinc20 is transmitted, it is easier to deal with the corresponding magnetic field,
which remains parallel to the vertex. This is affected twice by a scattering coefficient
of 1 (since a perfectly conducting surface causes no phase offset on a magnetic field
parallel to it). Therefore the phase of the corresponding electric field will be offset by
π, since the structure of an electromagnetic wave forces the vector triplet made up of
the electric field, the magnetic field and the propagation direction to be right-handed
(Sect. 1.1.2.1). The double-bounce therefore has different effects on the phase in the
two situations described above. In other words: �Es10 = Êinc10 and �Es20 = −Êinc20 . The

resulting normalized backscattering matrix [ ¯̄S]DS is:
[ ¯̄S

]

DS
=

[
1 0
0 −1

]
(5.13)

Double-bounce scattering causes a phase offset of π between the backscattered

components of two orthogonal incident linear polarizations. From [ ¯̄S]DS , we can show
that when the vertex of the dihedral corner reflector forms an angle δ with the x̂ axis

of the polarization basis (Fig. 5.3(c)), the expression for [ ¯̄S]δDS becomes:
[ ¯̄S

]δ

DS
=

[
cos 2δ sin 2δ
sin 2δ − cos 2δ

]
(5.14)

This configuration retains the phase-offset property highlighted in Eq. (5.13), but
distributes the backscattered energy between the direct polarization (also called co-
polarized) channels ( Shh Svv and ) and the cross-polarized (Shv) channel. When
δ = 45 ◦, all the energy is backscattered on the cross-polarized channel. This ‘45 ◦’
technique is sometimes used for calibrating cross-polarization channels in polarimetric
systems.

5.4.3 Diffraction or dipole mechanisms

Diffraction effects are usually caused by sharp edges (Fig. 5.4(a)), which in the case
of polarimetric behavior is similar to infinite straight wires or dipoles (Fig. 5.4(b)). If
we assume that these wires are only sensitive to the electric field component parallel
to them, we then get:

[ ¯̄S
]

Dip
=

[
cos2 α cosα · sin α

cosα · sin α sin2 α

]

(5.15)

The main feature of dipole backscattering is that it filters out part of the transmitted
polarization (to that extent, it is considered to be a polarizer). The special case α = 0 ◦

leads to:
[ ¯̄S

]α=0 ◦

Dip
=

[
1 0
0 0

]
(5.16)
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Fig. 5.4 (a) Diffraction mechanisms: general case; (b) special case of diffraction on infinitely
long perfectly conducting wire.

5.5 Polarization synthesis

One major advantage of the polarimetric technique is that it enables the determination
of the target response to any transmitted elliptical polarization, from the knowledge of
its response to two orthogonal linear polarizations. This principle is already expressed
by Eq. (5.3).

We can however establish a general expression for the backscattering matrix in
any polarization basis (â, b̂). From Sect. 1.1.2.4, we have the relationship between the
Jones vector expressed in (â, b̂) and its expression in a reference basis (ĥ, v̂).

If we apply this relationship to the incident wave, we obtain:

Êinc0 (a, b) =
[ ¯̄P(�, τ, α)

]−1
· Êinc0 (h, v) (5.17)

where "−1 " is the inverse operator, �, τ, α are the characteristic parameters of the

basis (â, b̂) (the matrix
[ ¯̄P(�, τ, α)

]
of the group SU2 was defined in Sect. 1.1.2.4).

Can we use the same equation for the backscattered field? Not really, because of the
need for conjugating the Jones vector of a wave propagating in the opposite direction
(Sect. 1.1.2.2.). We must therefore conjugate the transition matrix linking the fields
�Es0(a, b) and �Es0(h, v):

�Es0(a, b) =
[ ¯̄P(�, τ, α)

]−1∗
· �Es0(h, v) =

[ ¯̄P(�, τ, α)
]T

· �Es0(h, v)

=
[ ¯̄P(�, τ, α)

]T
·
[ ¯̄S

]
· �Einc0 (h, v) (5.18)

This is a result of the relations that apply to the SU2 matrices (Sect. 1.1.2.2). Under
these conditions:
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�Es0(a, b) =
[ ¯̄P(�, τ, α)

]T
·
[ ¯̄S

]
·
[ ¯̄P(�, τ, α)

]
· �Einc0 (a, b) (5.19)

Finally, for the backscattering matrix expressed in the basis (â, b̂) we get:

[ ¯̄S
]

(âb̂)
=

[ ¯̄P(�, τ, α)
]T

·
[ ¯̄S

]
·
[ ¯̄P(�, τ, α)

]
(5.20)

A matrix transform of the type shown in Eq. (5.20) was first introduced to radar
polarimetry by Ernst Luneburg [Luneburg, 1996]. It is called a con-similarity trans-
form.

For example, let us now express the backscattering matrix in a right-hand (r̂)
- left-hand (l̂) circular polarization basis. From (Sect. 1.1.2.2), the transition matrix
from a linear polarization basis (ĥ, v̂) to a circular polarization basis (r̂, l̂) is defined by
τ = −π/4 (to simplify the calculations we will chose� = α = 0) and a multiplicative
coefficient A such that its determinant is equal to 1, leading to:

[ ¯̄P(� = 0, τ = −π/4, α = 0)
]

= 1√
2

·
(

1 −j
−j 1

)

(5.21)

And consequently, applying Eq. (5.20):
(
Srr Srl

Srl Sll

)

= 1

2
·
(
Shh − Svv − 2jShv −j(Shh + Svv)

−j(Shh + Svv) Svv − Shh − 2jShv

)

(5.22)

An example of circular polarization synthesis is given in Sect. 5.8.1.

5.5.1 Polarimetric signatures

In addition to matrix representation, we can also represent polarimetric behavior
‘visually’. For any polarization basis, the polarimetric signature displays the varia-
tions in intensity collected by a virtual receiving antenna whose polarization is either
identical (co-polarized response) or orthogonal (cross-polarization response) to that of
the receiving antenna. The mean detected power on reception is proportional to:

P(�, τ) = V(�, τ) · V(�, τ)∗ (5.23)

where V(�, τ) (analogous to a detected voltage) equals ÊincT0 · [ ¯̄S] · Êinc0 for a

co-polarized response and Êinc⊥T0 · [ ¯̄S] ·Êinc0 for a cross-polarized one (Êinc⊥0 represents
the orthogonal polarization of Êinc0 , that propagates in the same direction).

The expression V(�, τ) is the result of the following process: first, Êinc0 is trans-

mitted, then the target backscatters a wave with a polarization [ ¯̄S] · Êinc0 . We then apply
the coupling principle for two waves propagating in opposite directions (Sect. 1.1.2.2.
and Sect. 1.1.3.1); finally we get (for example for T̂ rec0 = T̂ inc0 ) the scalar quantity

Êinc T0 ·[ ¯̄S]·Êinc0 . Fig. 5.5(a) and Fig. 5.5(b) show, respectively, the variations ofP(�, τ)
in co- and cross-polarization for a dihedral corner reflector. We identify the maximiza-
tion of the cross-polarized response for � = 45 ◦or� = 135 ◦.
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Fig. 5.5 (a) Polarimetric signature of co-polarized double-bounce scattering; (b) Polarimetric
signature of cross-polarized double-bounce scattering.

5.6 Characteristic polarization and Euler parameters

For any matrix [ ¯̄S], there are special polarizations for which the co- or cross-polarized
signals defined in the previous section reach minima or maxima [Huynen, 1970].

To identify these specific polarizations we must first look for so-called pseudo-
eigen transmission polarizations, for which the polarization is not modified by the
backscattering process in other words, for which the cross-polarization signature is
null. The Jones vectors of these special polarizations satisfy:

Êinc⊥0 · [ ¯̄S] · Êinc0 = 0 (5.24)

Expressed differently, there is a complex scalar λ such that [ ¯̄S] · Êinc0 =
λ · Êinc∗0 . The conjugation of the right-hand term expresses the fact that the two
waves under consideration propagate in opposite directions (which explains why we
speak of pseudo-eigenvectors rather than eigenvectors).

Equation (5.24) gives two solutions (noted X-POL Null), ÊXNP1
0 and ÊXNP2

0 , which
are associated with the pseudo-eigenvalues v1 and v2 respectively. They form an or-
thogonal basis of the polarization space. When expressed in the basis (ÊXNP1

0 , ÊXNP2
0 ),

the backscattering matrix is diagonal:

[ ¯̄S
]

(ÊXNP1
0 ·ÊXNP2

0 )
=

[
v1 0

0 v2

]

= m ·
[

exp[j2v] 0

0 tg2(γ) · exp[−j2v]

]

(5.25)

where:

m is an amplitude parameter (strength of the target).
γ is the characteristic angle of the target. Its values are between 0 and
π/4 (ÊXNP1

0 is the eigenvector associated with the eigenvalue of greatest
amplitude): γ = 0 for an infinite straight wire and γ = π/4 for single-
bounce and double-bounce scattering.

v defines the degree of double-bounce. It has a maximum value of π/4 for
pure double bounce scattering.
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It can be shown that the polarization ÊXNP1
0 (associated with the characteristic pa-

rameters�XNP1 and τXNP1, Sect. 1.1.2.2) leads to a maximum co-polarized backscatter
signal. It is therefore an X-POL Null but also a ‘CO-POL Max’. The set of parameters
[γ, v, τXNP1, �XNP1,m] form the Euler parameters.

5.6.1 The Huynen fork

Apart from X-POL Null, other specific polarizations can be defined for the target:
• The CO-POL Max and CO-POL Null polarizations which lead to maximum

(respectively null) co-polarized backscattering;

• X-POL Max polarizations which lead to maximum cross-polarized back-
scattering.

J.R. Huynen provides a graphic method for visualizing these specific polarizations,
by plotting the points representing the X-POL Null and CO-POL Null pairs on the
Poincaré sphere (Sect. 1.1.3.3). We can then draw the four lines through the center of
the sphere from each of these points obtaining a shape resembling a fork. Its aperture
and its orientation on the Poincaré sphere are tied to the Euler parameters. Neither
the Huynen fork nor Euler parameters have been used very much by the polarimetric
community for the past two decades. However, this may change in the future with the
advent of high resolution polarimetric systems.

5.7 Coherent decomposition of the polarimetric measurement

Until now the matrix [ ¯̄S] has been considered as an ‘indivisible’ entity, revealing the en-
tire backscattering process. The decomposition algorithms consider the backscattering
process as resulting from the coherent summation of elementary mechanisms:

[ ¯̄S] =
k∑

i=1

αi · [ ¯̄S]i (5.26)

Each of these mechanisms is characterized by a backscattering matrix [ ¯̄S]i, weighted
by a complex coefficient αi. This decomposition is not unique, which means that
there are in fact a series of algorithms, divided into two categories: those that perform
decomposition into standard target contributions (planes, dihedral corner reflectors,
helices etc.), and those which extract components with particular algebraic properties
(reciprocity, symmetry etc.).

5.7.1 Decomposition into standard mechanisms - the group of Pauli
matrices

We have already encountered the group of Pauli matrices ([ ¯̄σ0], [ ¯̄σ1], [ ¯̄σ2], [ ¯̄σ3])
(Sect. 1.1.3.3). We shall see here how they are used in the Pauli decomposition of the
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matrix [ ¯̄S]:

[ ¯̄S
]

=
3∑

i=0

αi ·
[ ¯̄σi

] = α0√
2

·
[

1 0

0 1

]

+ α1√
2

·
[

1 0

0 −1

]

+ α2√
2

·
[

0 1

1 0

]

+ α3√
2

·
[

0 −1

1 0

]

(5.27)

If we assume a monostatic configuration with reciprocal interaction mechanisms, then

α3 = 0, as the component of [ ¯̄S] along [ ¯̄σ3] is the only non reciprocal one. The other
parameters are:

α0 = Shh + Svv√
2

α1 = Shh − Svv√
2

α2 =
√

2 · Shv (5.28)

The [ ¯̄σ0] matrix characterizes odd-bounce scattering (Sect. 5.4.1) from smooth
surface, plane, sphere or trihedral reflectors. The [ ¯̄σ1] matrix involves double-bounce
scattering (Sect. 5.4.2) from a dihedral corner reflector whose vertex is either parallel
or perpendicular to the incident wave (δ = 0 or δ = π/2 in Eq. (5.14)). [ ¯̄σ2] also refers
to double-bounce scattering, but from a dihedral corner reflector with a 45 ◦ vertex
orientation (δ = 45 ◦).

The physical interpretation of Pauli decomposition is as follows: the backscatter
process is the result of the coexistence of 3 coherent elementary mechanisms: single
scattering; double-bounce scattering with no polarization change; and double-bounce
scattering ‘at 45 ◦’, which backscatters the entire signal on the cross-polarized chan-
nel. This latter component will be dominant for any interaction process that creates
significant cross-polarization, such as volume scattering (Sect. 5.10.2).

Pauli decomposition has been applied to the L band SIR-C image of the Flevoland
area, the Netherlands. Fig. 5.6(a) displays a color composite of the radiometric chan-
nels6 HH (red), HV (green) and VV (blue), primarily filtered by a Lee polarimetric
speckle filter [Lee, 1999]. Fig. 5.6(b) displays the corresponding Pauli decomposition
(averaged over neighbor pixels to reduce speckle effects). The dominance of blue
and red tones expresses the overwhelming presence of single and double scattering
(horizontally or vertically oriented). In the latter case, we can interpret double-bounce
effects as interactions between the ground and the vertical stalks of certain plants. The
local greenish tones suggest volume effects.

5.7.1.1 Krogager’s approach
The algorithm of Krogager [Krogager, 1990] is based on an approach similar to the Pauli
approach (decomposition into elementary mechanisms) but here the decomposition is
into single scattering, oriented double scattering (for any δ) and ‘helix’ scattering.

6For sake of clarity, the 〈|Spq|2〉1/2quantities, where 〈·〉 is the average operator over neighbor pixels, and
p,q=h or v are hereafter denoted "PQ" (e.g.〈|Shh|2〉1/2 = HH ).
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Fig. 5.6 (a) Color composite polarimetric image by JPL/AIRSAR, L band, Flevoland, Nether-
lands: HH (R), HV (G), VV (B), image after Lee polarimetric speckle filtering (courtesy J.S.
Lee, US Naval Research Laboratory); (b) Pauli decomposition: single-bounce scattering (B),
double-bounce scattering 0 ◦ (R), double-bounce scattering 45 ◦ (G), averaged over a 3 × 3 win-
dow (POLSAR-PRO result); (c) Krogager decomposition, using POLSAR-PRO: |Srl| (B), max
(|Sll|, |Srr|) (R), (|Sll − Srr|) (G), averaged on a 3 × 3 window.

This latter type of scattering creates non-symmetrical behavior according to whether
the illumination is left- or right-handed circular:

[ ¯̄S
]

helix
=

[
1 ±j

±j −1

]

(5.29)

The ± sign expresses the handedness of the helix. We shall not delve any further into
this method. Note nevertheless that this decomposition is usually expressed in a cir-
cular polarization basis, which simplifies the formalism. Fig. 5.6(c) shows Krogager’s
decomposition of the Flevoland image, displaying the signature |Srl| (see Eq. (5.22)) on
the blue channel, the maximum of |Sll| and of |Srr| on the red channel and |Sll−Srr| on
the green channel. As expected, surface scatter (in blue) strongly modifies the polariza-
tion of the incident waves when expressed in a circular polarization basis (Sect. 5.4.1).

5.7.2 Algebraic decomposition: the Cameron approach

We shall now look at a radically different approach. The decomposition is first
considered geometrically and then expressed in algebraic terms.
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The Cameron approach [Cameron, 1996] ‘tracks down’ behavior suggesting par-
ticular properties of reciprocity and symmetry in the backscattering process. It is a
subtle approach and its mathematical meaning may be difficult to grasp.

As in the previous cases, we eliminate the non-reciprocity hypothesis (we assume

Svh = Shv, Sect. 5.3.1). The projection of [ ¯̄S] onto the group of Pauli matrices therefore
leads to α3 = 0 as shown in Eq. (5.27); this can be rewritten as

[ ¯̄S
]

= α0√
2

·
[

1 0

0 1

]

+ 1√
2

·
[
α1 α2

α2 −α1

]

(5.30)

The parameters α0, α1, α2 are calculated from Eq. (5.28).
We can now focus on symmetry properties. What exactly do we mean by this?

A backscattering process is called ‘symmetrical’ when the target that creates it has an
axis of symmetry contained in the plane perpendicular to the radar-target line of sight
[Nghiem, 1992]. If this is the case, let us imagine that the target is rotated in this plane,
so that its axis of symmetry is brought into the incident plane (e.g. a dihedral corner
reflector ‘at 45 ◦’ rotated so that it is located ‘at 0 ◦’ or ‘at 90 ◦’). In its new position, the
target can no longer return a cross-polarized component. (Why should it? This would
only ruin the symmetry of the situation!) The backscattering matrix of the target in its
new position is therefore diagonal.

However, when the target has no particular symmetry, there is no reason to suspect

that a certain rotation could completely eliminate the cross-polarized term in [ ¯̄S]. Rather
than wiping it out completely we can try to minimize it, creating a sort of ‘pseudo-

diagonalization’ for [ ¯̄S]. Since the component of [ ¯̄S] along [ ¯̄σ0] is unaffected by
rotation, there is no point in maintaining it in the calculations. Once it has been
removed, the off diagonal term obtained after applying Eq. (5.20) to the remaining
matrix components for τ = 0 and α = 0 and for any angle � is given by:

Shh(�) = 1/
√

2 · (α1 · cos 2� + α2 · sin 2�)

Svv(�) = 1/
√

2 · (−α1 · cos 2� − α2 · sin 2�)

Shv(�) = 1
√

2 · (−α1 · sin 2� + α2 · cos 2�)

(5.31)

The value of � which minimizes the modulus of Shv(�) satisfies:

d

d�
|Shv(�)|2 = 0 (5.32)

A straightforward calculation leads to:

tan(4�) = α∗
1 · α2 + α∗

2 · α1

|α1|2 − |α2|2 (5.33)

giving the angle � that limits the production of cross-polarized energy. Using [ ¯̄S] =
α0 · [ ¯̄σ0] + α1 · [ ¯̄σ1] + α2 · [ ¯̄σ2], and applying Eq. (5.31), we obtain the full expression
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of the matrix [ ¯̄S] in a basis (â, b̂) which has been rotated by the angle � with respect
to the reference basis (ĥ, v̂). Thus:

[ ¯̄S] = α0 · [ ¯̄σ0] + [α1 · cos(2�)+ α2 · sin(2�)] · [ ¯̄σ1] − [α1 · sin(2�)

−α2 · cos(2�)] · [ ¯̄σ2] (5.34)

The first two terms of [ ¯̄S] indicate symmetrical behavior. Let us note:

[ ¯̄S]max
sym = α0 · [ ¯̄σ0] + [α1 · cos(2�)+ α2 · sin(2�)] · [ ¯̄σ1]

= α0 · [ ¯̄σ0] + ε · [ ¯̄σ1] (5.35)

which is by construction a diagonal matrix. The term in [ ¯̄σ2] expresses the ‘stretch-

ing of [ ¯̄S]’ with respect to completely symmetrical behavior. Cameron quantifies this
‘stretching’ using an angle parameter τ, once the backscatter matrices have been vec-
torized (Sect. 5.3.2).

5.7.2.1 Projection onto standard symmetry mechanisms
We shall now build a classification algorithm from the [ ¯̄S]max

sym component of [ ¯̄S]. Since
it is diagonal, we rewrite it as follows:

[ ¯̄S]max
sym = a · exp(jϕ) ·

[
1 0

0 z

]

(5.36)

To within the amplitude term a, an equivalent representation can be given by a unit
vector:

̂(z) = 1
√

1 + |z|2 ·
[

1
z

]
(5.37)

Finally, Cameron introduces a distance value based on the scalar product between ̂ and
a series of reference vectors ̂(zref ) = (1, zref )T associated with standard symmetry
mechanisms:

d(z, zref ) = 1
√

1 + |z|2 · 1
√

1 + |zref |2 · |1 + z∗.zref | (5.38)

The following standard behaviors are considered: single scattering (planes, spheres,
trihedral corner reflectors) with zref = 1; dihedral corner reflectors with zref = −1;
dipoles with zref = 0; cylinders with zref = 1/2; narrow dihedral corner reflectors with
zref = −1/2; and quarter wave dipole with zref = j. The nature of the target being
studied is identified by determining the shortest distance, determined by maximizing
the scalar product d(z, zref ).

Cameron decomposition may provide rather unsatisfactory results, giving an im-
pression of disorder, when applied to an image ‘pixel by pixel’. The algorithm probably
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Fig. 5.7 Cameron decomposition using a pre-filtering of point targets: single-bounce scatter-
ing (blue), double-bounce scattering (red), diffractions (green), and quarter wavelength dipole
(cyan).

fails as a result of excessively fine ‘granularity’, due to insufficient resolution of the
available images. The fact that depolarization effects are not taken into account is also
prejudicial (even though this is also true for the other coherent approaches). To over-
come this failing, Touzi suggests the Symmetric Scattering Characterization Method
(SSCM), a sort of ‘adjustable’ Cameron decomposition which takes full account of
the polarization state of the backscattered wave [Touzi, 2004]. In Fig. 5.7 we illustrate
an approach similar to that of Touzi, in which a mask for detecting coherent pixels
is applied before Cameron analysis (the criterion used here is the invariability of the
backscattered signal during illumination, [Souyris, 2003]). The example given here
uses L band and 5 m resolution in an airport environment (Sect. 5.11). The result shows
the dominance of diffraction effects (green) on the corners of buildings, and also the
local effects of single and double scattering.

Until now, coherent decomposition methods have been little used by the sci-
entific community, principally because of the lack of high resolution polarimetric
data. Improvements in sensor design technology will undoubtedly increase the ef-
ficiency of this type of approach. Until recently, data processing has concentrated
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principally on incoherent decompositions and their aptitude for taking depolarization
into account.

5.8 Taking depolarization into account

The interaction process described by the backscattering matrix [ ¯̄S] has no way of re-
vealing the possible creation of depolarization during interactions between the incident
wave and the environment (Sect. 1.1.3). However, since it is likely that some scatterers
will fluctuate in time or space, we may assume that a change will occur in the po-
larization state. These fluctuations also produce speckle (Sect. 3.11), which must be
reduced.

The most common speckle reduction technique consists in ‘averaging’ the infor-
mation of nearby pixels, resulting in a multi-look polarimetric image. For this, we
calculate an ‘incoherent’ average of the target vectors �κL or �κP (Sect. 5.3.2). This
incoherent average is the source of the depolarization mentioned above. The com-
plete wave/surface interaction (including this average) cannot be described without the
formalism of the Mueller matrix and the Stokes vector.

5.8.1 Stokes formalism and Mueller matrix

The Stokes vector provides a complete description of the polarization state of a partially
polarized wave (Sect. 1.1.3.3.). When this description replaces the Jones vector, the
backscatter process is expressed using the Mueller matrix [ ¯̄M] , which describes the
transition from the Stokes vector of the fully polarized incident wave Ŝinc to that of the
partially polarized backscattered wave S̃s:7

S̃s = [ ¯̄M] · Ŝinc (5.39)

[ ¯̄M] is a 4 × 4 real symmetric matrix. It is defined a priori by 10 parameters which
have the same units as energy terms, but they are linked by a ‘trace condition’:

M11 = M22 +M33 +M44 (5.40)

thus reducing the number of independent parameters from 10 to 9.
Hence in place of the 5 parameters characteristic of polarimetric backscattering

from a pure target, we now have 9 parameters to account for possible depolarization
during the backscatter. In the special case of a non-depolarizing target (called a pure
target), these nine parameters are linked by 4 relationships (called target equations,

Sect. 5.10.1), from which we can reconstruct an equivalent [ ¯̄S] matrix.

7The little hat over Ŝincindicates that the Stokes vector of the incident wave has a norm of 1. Moreover,
as it is a fully polarized wave: S2

0 = S2
1 + S2

2 + S2
3 = 1, where S0, S1, S2, S3 are the components of Ŝinc.

© 2008, First edition, EPFL Press



248 IMAGING WITH SYNTHETIC APERTURE RADAR

5.8.1.1 Transition from the scattering matrix to the Muller matrix
Before any time or space averaging is performed, each image sample remains tied to

its own backscattering matrix [ ¯̄S]. If we generalize the result obtained from Eq. (5.50)

in Sect. 1.1.4, the equivalent [ ¯̄M] matrix associated with this [ ¯̄S] matrix (without any
depolarizing effect) is given by :

[ ¯̄M](p,q) = Tr
{

[ ¯̄S]∗T · [ ¯̄σp] · [ ¯̄S] · [ ¯̄σq]
}

(5.41)

The target equations mentioned in the previous paragraph (and detailed in Sect. 5.10.1)
come from this equation. We can also calculate the [ ¯̄M] matrix, which reveals the
average polarimetric behavior of a group of nearby pixels, by averaging the equivalent
[ ¯̄M] matrices. Once the averaging has been performed, generally we can no longer
return to the formalism of the backscattering matrix to describe the behavior of this
group of pixels.

5.8.1.2 Parametric form of Huynen
Huynen’s parametric form of [ ¯̄M] is written as [Huynen, 1970]:

[ ¯̄M] =

⎡

⎢
⎢
⎢
⎣

A0 + B0 C� H� F�

C� A0 + B� E� G�

H� E� A0 − B� D�

F� G� D� −A0 + B0

⎤

⎥
⎥
⎥
⎦

(5.42)

The terms with index � depend on the target’s orientation about the radar-target line
of sight (Fig. 5.8). The other terms (with index 0) are independent of this orientation,
which leads to some interesting possibilities for analysis. For example, as a boat
rides the waves, its orientation fluctuates about the radar-target line of sight. This
fluctuation has no effect on A0 and B0. For this reason, they are called polarimetric
roll-invariants. The concept of polarimetric invariance will be seen again in incoherent
algebraic decompositions.

The Mueller matrix is considered to be ‘oriented’ with respect to an arbitrary
reference orientation� = 0, from which nine Huynen parameters are extracted, namely
A0, B0, B, C,D,E, F,G, and H :

• A0 is the symmetry generator. For single-bounce scattering, onlyA0 is non-zero.

• B0 − B is the non-symmetry generator (correlated with the signature in cross-
polarization).

• B0 +B is an indicator of irregularity: B0 +B = 0 for single-bounce scattering.

• C is a shape factor for targets that are predominantly symmetrical. Its value is
maximum for dipole-like targets.

• D is a local shape indicator, depending on the difference in the radii of curvature
for convex surfaces. It is zero for single scattering.
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Fig. 5.8 Rotating the target around the radar-target line of sight.

• E is a torsion parameter.

• F is a helicity parameter.

• G is an indicator of coupling between contributions from symmetrical and non-
symmetrical parts of the target.

5.8.1.3 Polarization synthesis in the Stokes formalism
The polarization of the fully polarized virtual incident wave is expressed using the
Stokes formalism (Sect. 1.1.3.4):

ŜincT = [1, cos 2τ · cos 2�, cos 2τ · sin 2�, sin 2τ] (5.43)

For a receive polarization Ŝrec, the captured power density is proportional to:

Prec(�, τ) = ŜrecT · [ ¯̄M] · Ŝinc (5.44)

There are morphological similarities between the co- and cross-polarized po-
larimetric signatures of a built-up area (Fig. 5.9(a) and (b)), and those displayed in
Fig. 5.5(a) and (b). These similarities are explained by the preponderance of double-
bounce effects in the backscatter from the built-up area. However, a pedestal is present
in Fig. 5.9(a) and Fig. 5.9(b), revealing the contribution of unpolarized energy (which
is independent of the receive polarization). The amplitude of this pedestal is correlated
with the degree of polarization of the wave (Sect. 1.1.3.2).

5.8.1.4 Polarimetric contrast enhancement
The search for transmit and receive polarizations giving maximum polarimetric contrast
between two targets with respecting Mueller matrixes [ ¯̄M1] and [ ¯̄M2] can be broken
down into two steps [Kostinski, 1988]: (1) The incident polarization Ŝinc is selected in
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Fig. 5.9 Polarimetric signatures of co-polarization (a) and cross-polarization (b) of an urban area
(extracted from [Zebker, 1987]).

order to give the largest ratio of free-space backscatter power densities coming from
each target; and (2) the receive polarization Ŝrec is then adjusted so as to be orthogonal
to the polarized part of the free-space power density backscattered by one of these
targets. An alternative method is found in [Van Zyl, 1987], leading in practice to
analogous results.

For example, the projection of polarimetric measurements on to optimized po-
larizations can reinforce the radar signal sensitivity to the bio-geophysical parameters
under study. For example, circular polarizations increase radar-signal sensitivity to sur-
face roughness (e.g. for bare ground, lava fields, etc.) [Zebker, 1987], [Mattia, 1997],
while orthogonal linear polarizations (horizontal transmission, vertical reception) are
the most sensitive to forest biomass, as shown in Fig. 5.10(a) and Fig. 5.10(b). The areas
outlined in full line and dash line are respectively bare ground with variable roughness
and patches of forest at different stages of development. The polarimetric measure-
ment projected onto circular polarization (right hand circular transmission, right hand
circular reception) (Fig. 5.10(a)) reveals a very marked texture over bare ground. On
the other hand, projection onto linear polarization (horizontal transmission, vertical
reception) (Fig. 5.10(b)), clearly separates the wooded area into two distinct stands.

Please note: Polarimetric contrast enhancement can also be applied to single-look
images (using the backscattering matrix formalism), but it is not yet very common, due
to the disturbing effect of speckle.

5.9 Covariance matrix - coherence matrix

Although in the 1970s the Mueller formalism was central to the work of Huynen, its
use is now rare. Today, expressions more closely related to radar measurements are
preferred.
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Fig. 5.10 Effect of polarization synthesis on wooded zones and bare soil. SIR-C image, Landes,
France, L band, 24 ◦: (a) projection of polarimetric data onto a circular polarization basis (trans-
mission: right-hand circular; reception: right-hand circular); (b) projection of polarimetric data
onto a linear polarization basis (transmission: horizontal reception: vertical).

5.9.1 Covariance matrix

The covariance matrix is constructed from the average of �κL over nearby pixels
(Sect. 5.3.2):

[ ¯̄C] = 〈�κL · �κ∗T
L 〉 =

⎡

⎢
⎢
⎣

〈Shh · S∗
hh〉

√
2 · 〈Shh · S∗

hv〉 〈Shh · S∗
vv〉√

2 · 〈Shv · S∗
hh〉 2 · 〈Shv · S∗

hv〉
√

2〈Shv · S∗
vv〉

〈Svv · S∗
hh〉

√
2 · 〈Svv · S∗

hv〉 〈Svv · S∗
vv〉

⎤

⎥
⎥
⎦

(5.45)

= σhh ·

⎡

⎢
⎢
⎣

1
√

2 · η · √
e ρ · √

g
√

2 · η∗ · √
e 2 · e √

2 · ξ · √
e · g

ρ∗ · √
g

√
2 · ξ∗ · √

e · g g

⎤

⎥
⎥
⎦ (5.46)
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where 〈·〉 is the averaging operator over neighbor pixels. The parametric form Eq. (5.46)
includes 9 parameters: an energy parameter (σhh = 〈Shh · S∗

hh〉), two real parameters
(e and g) and three complex numbers (thus six real parameters) ρ, η and ξ:

g = 〈Svv · S∗
vv〉

〈Shh · S∗
hh〉

e = 〈Shv · S∗
hv〉

〈Shh · S∗
hh〉

ρ = 〈Shh · S∗
vv〉√〈Shh · S∗

hh〉 · 〈Svv · S∗
vv〉

η = 〈Shh · S∗
hv〉√〈Shh · S∗

hh〉 · 〈Shv · S∗
hv〉

ξ = 〈Svv · S∗
hv〉√〈Svv · S∗

vv〉 · 〈Shv · S∗
hv〉

(5.47)

where e and g characterize the ratios of co-polarized energies. The entities ρ, η, and ξ
are complex degrees of coherence, with modulus between 0 and 1 due to the Schwartz
inequality. They quantify the level of similarity of responses backscattered by a target
under variable transmission and reception conditions (horizontal or vertical).

From a theoretical point of view, the references [Borgeaud, 1987] and [Nghiem,
1992] have shown that the degree of coherence between co and cross-polarization terms
(i.e., parameters η and ξ) are zero for backscattering from layers made up of randomly
oriented ovoid particles. These layers realistically model most natural environments8

in interaction with an impinging electromagnetic wave. The [ ¯̄C] matrix can then be
expressed as:

[ ¯̄C] = σhh ·

⎡

⎢
⎣

1 0 ρ · √
g

0 2 · e 0

ρ∗ · √
g 0 g

⎤

⎥
⎦ (5.48)

The only remaining correlation term is ρ, which expresses the degree of coherence
between the co-polarized signals Shh and Svv.

5.9.1.1 Behavior of the degree of coherence between co-polarized signals
Plotting the modulus of the degree of coherence between Shh and Svv(|ρ|) (Fig. 5.11(a))
reveals a sharp contrast between wooded areas and other surfaces (|ρ| can be used for
distinguishing between forest and non-forest cover). Radiometric data (Fig. 5.11(b))
(such as the C band backscattering coefficient σ0

vv) are subject to strong variations due
to varying ground moisture and roughness (see the area at top right of Fig. 5.11(b)).
In areas with no ground cover, |ρ| is close to 1. The wooded area in the center of the
image also shows large radiometric variations, and a degree of coherence stabilized
around |ρ| ≈ 0.35. Also, note the high level of |ρ| returned from water (bottom center
of image).

8Most polarimetric calibration procedures rely on the hypothesis that η and ξ are zero (known as the
reflection symmetry hypothesis) for specific areas of the image (for example dense vegetation) [Zyl, 1990].
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Fig. 5.11 (a) Coherence between Shh and Svv(|ρ|),C band, 26.4 ◦, Landes forest, France. Esti-
mated coherence on a sliding 3 × 3 window from an 8-look image (4 range looks × 2 azimuth
looks); (b) simulation of an ERS image (C band, polarization VV, 23 ◦). SIR-C data, C band,
26.4 ◦. Backscattering coefficient estimated using sliding 3 × 3 window on an 8-look image (4
range looks × 2 azimuth looks).

The degree of coherence mainly depends on the nature of the dominant backscat-
tering mechanisms (surface backscattering or volume backscattering) which is not very
sensitive to changes in roughness and moisture. In addition, the fact that it is a normal-
ized parameter makes it robust with respect to possible drift due to calibration errors
and slope effects.

5.9.2 Coherence matrix

The Coherence matrix is constructed from the spatial average of �κP :

[ ¯̄T ] = 〈�κP · �κ∗T
P 〉 = 1

2

[〈(Shh + Svv) · (Shh + Svv)
∗〉 〈(Shh + Svv) · (Shh − Svv)

∗〉 2〈(Shh + Svv) · S∗
hv

〉
〈(Shh − Svv) · (Shh + Svv)

∗〉 〈(Shh − Svv) · (Shh − Svv)
∗〉 2〈(Shh − Svv) · S∗

hv
〉

2〈Shv · (Shh + Svv)
∗〉 2〈Shv · (Shh − Svv)

∗〉 4〈Shv · S∗
hv

〉

]

(5.49)

The covariance matrix [ ¯̄C] and the coherence matrix [ ¯̄T ] are both semi-definite
positive Hermitian matrices (i.e., they are equal to their transpose conjugate), thus their

eigenvalues are positive and their eigenvectors are orthogonal. [ ¯̄C] and [ ¯̄T ] have iden-
tical eigenvalues. However, the structure of the [ ¯̄T ] eigenvectors is more appropriate
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for polarimetric analysis than that of the [ ¯̄C] eigenvectors. From now on, we will use
the [ ¯̄T ] formalism unless otherwise specified.9

5.10 Incoherent decomposition of polarimetric measurements

Incoherent polarimetric measurements are decomposed for the same reasons as coher-
ent ones (Sect. 5.7), i.e., to represent the interaction as the sum of elementary effects.
However, unlike the coherent case, here the summing is incoherent and is conducted
using matrices representing energy rather than electric fields:

[ ¯̄T ] =
I∑

i=1

ti · [ ¯̄T ]i (5.50)

The polarization state of the backscattered wave, which was not used in coher-
ent decomposition algorithms, is now taken into account in incoherent decomposition
algorithms. We now have three categories of algorithms to ‘play with’: those that
separate the polarized from the unpolarized parts of the backscatter wave, those that
decompose it into standard backscattering mechanisms (simple, double and volume
scattering) and lastly algebraic approaches, based on eigenvalue and eigenvector anal-
ysis of the coherence matrix. A review of these algorithms can be found in [Cloude,
1996]10 and [Touzi, 2004].

5.10.1 Decomposition into polarization states: the Huynen approach

Any partially polarized wave can be decomposed into the incoherent sum of a fully
polarized wave and a fully unpolarized wave (Sect. 1.1.3.2). This dichotomy [Huynen,
1970] is transposed onto the Mueller matrices (the same reasoning can be applied to
the covariance and coherence matrices):

[ ¯̄M] = [ ¯̄Mpol

] + [ ¯̄Mupol

] (5.51)

The polarized part is characteristic of a dominant fully polarized mechanism cre-
ated by a ‘pure’ target. The unpolarized part reveals the contribution of residual targets
that Huynen calls symmetrical. On reception, the unpolarized scattering generates a
signal whose mean power is insensitive to the receiving polarization (Sect. 1.1.3.1). In
particular, its behavior does not depend on the rotation around the radar-target line of
sight, thus justifying the term ‘symmetrical’.11

9Warning ! The “coherence matrix” [ ¯̄T ] is not the "wave coherence matrix" found in Sect. 1.3.3.1.
10[Cloude, 1996] credits J.R. Huynen as the pioneer who developed target decomposition theorems for

radar, while stressing that his approach was inspired by the work of Chandrasekhar (Sect. 1.3.3) on the
scattering of light off of anisotropic particles.

11Cameron uses the word ‘symmetrical’ to mean something different (Sect. 5.7.2).
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The polarized part [ ¯̄Mpol

] is constrained by the four relationships characteristic
of pure targets (which reduces the number of independent parameters to 5 and conse-
quently allows us to go back to the backscattering matrix formalism if necessary):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2 · A0 · (B0 + B) = C2 +D2

2 · A0 · E = C ·H −D ·G
2 · A0 · (B0 − B) = G2 +H2

2 · A0 · F = C ·G+D ·H

(5.52)

In algebraic terms, the rank12 of [ ¯̄Mpol

] is 1, while that of [ ¯̄Mupol

] is 3.

5.10.2 Decomposition into standard mechanisms - the Freeman
approach

The backscatter is considered to be generated by three incoherent elementary mech-
anisms [Freeman, 1998]: first-order Bragg scattering (i.e., single-bounce scattering),
double-bounce scattering and volume scattering.

The backscattering matrix for first-order Bragg scattering (an extension of the
odd-bounce scattering discussed in Sect. 5.4.1) is given by:

[ ¯̄S]s =
[
Sshh 0

0 Ssvv

]

(5.53)

If we apply Eq. (5.45), the corresponding covariance matrix is written as follows:

[ ¯̄C]s = fs ·

⎡

⎢
⎣

β2 0 β

0 0 0

β 0 1

⎤

⎥
⎦ (5.54)

with fs = 〈|Ssvv|2〉 and β2 = 〈|Sshh|2〉/fs. Here, the term 〈Sshh · Ss∗vv〉 = β · fs is actually

a real number. The fact that [ ¯̄C] has rank 1 means that the backscattering mechanism
can be considered as created by a pure target.

The backscattering matrix of a double-bounce response produced by a dielectric
dihedral corner reflector (an extension of the metal case described in Sect. 5.4.2.) is
given by:

[ ¯̄S]d =
[
Sdhh 0

0 Sdvv

]

=
[

exp(j.2φhh) · Rghh · Rthh 0

0 exp(j.2φvv) · Rgvv · Rtvv

]

(5.55)

12The rank of a matrix [ ¯̄A] is the maximal number of linearly independent columns (or rows) [ ¯̄A]. For a
square matrix, the rank is also the number its non-null eigenvalues.

© 2008, First edition, EPFL Press



256 IMAGING WITH SYNTHETIC APERTURE RADAR

The g and t indices refer to echoes reflected by horizontal surfaces (ground) and vertical
surfaces (like tree trunks). φhh and φvv are phase terms, the R reflection coefficients
are real. The corresponding covariance matrix is given by:

[ ¯̄C]d = fd ·

⎡

⎢
⎣

|α|2 0 α

0 0 0

α∗ 0 1

⎤

⎥
⎦ (5.56)

with fd = 〈R2
gvv · R2

tvv〉 and α = 〈(Rghh · Rthh/Rgvv · Rtvv) · exp(2j(φhh − φvv))〉. The

rank 1 of [ ¯̄C]d recalls the conclusions of the previous case. Finally, if we consider the
backscattering matrix of a thin infinite dipole (Sect. 5.4.3), the covariance matrix for
volume scattering, considered as a collection of isotropically directed dipoles is given
by:

[ ¯̄C]v = fv ·
⎡

⎣
1 0 1/3
0 2/3 0

1/3 0 1

⎤

⎦ (5.57)

with fv = 〈|Svvv|2〉 = 〈|Svhh|2〉. Unlike the previous cases, the covariance matrix now
has rank 3, which prevents us from treating the backscattering process as similar to
that of a pure target. It is also the only one of the three mechanisms that creates a
cross-polarized signal.

Freeman decomposition considers the covariance matrix as the sum of the three
independent mechanisms just described:

[ ¯̄C] = [ ¯̄C]s + [ ¯̄C]d + [ ¯̄C]v (5.58)

or, by substitution:

〈|Shh|2〉 = fs · β2 + fd · |α|2 + fv

〈|Svv|2〉 = fs + fd + fv

〈Shh · S∗
vv〉 = fs · β + fd · α+ fv/3

〈|Shv|2〉 = fv/3

(5.59)

Unfortunately this leads us to an under-determined system, consisting of 4 equa-
tions with five unknowns. Looking at the sign of the real part of {〈Shh ·S∗

vv〉− 〈|Shv|2〉}
resolves this ambiguity. When it is positive, we assume that surface backscattering
predominates over double bounce and thus α = −1. System (5.59) can therefore be
solved with fs, fd, fv and β. When the sign is negative, β = 1 and the system is solved
with fs, fd, fv and α. We can now determine the power contributions of the different

mechanisms considered, by substituting into [ ¯̄C]s, [ ¯̄C]d and [ ¯̄C]v:

Ps = fs · (1 + β2)

Pd = fd · (1 + |α|2)
Pv = 8 · fv/3

(5.60)

© 2008, First edition, EPFL Press



SAR POLARIMETRY: TOWARDS THE ULTIMATE CHARACTERIZATION OF TARGETS 257

Fig. 5.12 Freeman decomposition, Flevoland, L band. Ps (surface) in blue; Pv (volume) in
green; Pd (double-bounce scattering) in red (POLSAR-PRO result).

Freeman decomposition applied to the Flevoland example (Fig. 5.12) shows clear
segmentation of the regions according to the mechanisms given in Eq. (5.60). Plotting
|ρ| the coherence (Fig. 5.13(a)) reveals high values for surface scatter and low values
for volume scatter. Areas colored in violet also present low values of |ρ| indicating a
mixture of surface and volume effects.

5.10.3 Algebraic decomposition - The (H,α) approach

Algebraic decomposition of the covariance and coherence matrices is based on the fact
that these matrices are Hermitian. Thus, they can be diagonalized, their eigenvalues are
positive and their eigenvectors are orthogonal to each other. Hence, when expressed
in the basis of the eigenvectors, the backscattering process has a diagonal covariance
or coherence matrix, expressing the coexistence of three independent backscattering
mechanisms. In the next section, we will expand this decomposition better known
as (H,α) ‘decomposition’, when using the coherence matrix [Cloude, 1997]. It has
become the standard method for incoherent decomposition over the last few years.

5.10.3.1 Diagonalization of the coherence matrice
Since the coherence matrix [ ¯̄T ] is Hermitian, it can be diagonalized via a unitary13

transition matrix [ ¯̄U]3:

13The definition of a unitary matrix given in Sect 1.1.2.2 in the 2D case, can be generalized to 3D unitary
matrices.
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Fig. 5.13 (a) Coherence between Shh and Svv (ρ), Flevoland, L band; (b) entropy H ; (c) coher-
ence between Srr and Sll (right-hand circular, left-hand circular);(d) average α coefficent; (e)
anisotropy A, Flevoland, using POLSAR-PRO. Low values on the blue, high values on the red;
(f) IHS decomposition, Flevoland.
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[ ¯̄T ] = [ ¯̄U3] ·

⎡

⎢
⎣

λ1 0 0

0 λ2 0

0 0 λ3

⎤

⎥
⎦ · [ ¯̄U3]∗T (5.61)

The orthonormal eigenvectors [v̂1 v̂2 v̂3] making up the transition matrix [ ¯̄U3] are
written as:

[ ¯̄U3] = [v̂1 v̂2 v̂3]

=

⎡

⎢
⎣

cosα1 cosα2 cosα3

sin α1 · cosβ1 · ej·δ1 sin α2 · cosβ2 · ej·δ2 sin α3 · cosβ3 · ej·δ3

sin α1 · sin β1 · ej·γ1 sin α2 · sin β2 · ej·γ2 sin α3 · sin β3 · ej·γ3

⎤

⎥
⎦

(5.62)

[ ¯̄T ] still has only 9 independent parameters (as before) instead of 12, as suggested by
the parametrization (5.62). The dependency relationships linking the real parameters
αi, βi, δi, and γi result from the orthogonality of vectors v̂1, v̂2 and v̂3.

In the basis [v̂1 v̂2 v̂3] the decomposition of [ ¯̄T ] becomes:

[ ¯̄T ] = λ1·v̂1·v̂∗T
1 +λ2·v̂2·v̂∗T

2 +λ3·v̂3·v̂∗T
3 = λ1·[ ¯̄T 1]+λ2·[ ¯̄T 2]+λ3·[ ¯̄T 3] (5.63)

The backscattering mechanism is here considered as the incoherent sum of three el-
ementary independent mechanisms ([ ¯̄T 1], [ ¯̄T 2] and [ ¯̄T 3]). They are fully polarized
(because each of the coherence matrices is defined from a pure target vector, respec-
tively v̂1, v̂2 and v̂3). From a mathematical point of view, the fully polarized nature of
these elementary mechanisms is expressed by the rank 1 of [ ¯̄T 1], [ ¯̄T 2] and [ ¯̄T 3], i.e.
each of these has only one non-zero eigenvalue (respectively λ1, λ2 and λ3).

5.10.3.2 Entropy
The entropy H is an indicator of the respective weights of the polarized and unpolar-
ized components in the make-up of the backscattered wave. H in fact indicates the
local ‘degree of disorder’ (entropy) of the polarimetric response. H is defined as the
logarithmic sum of the normalized eigenvalues of [ ¯̄T ]:

H = −
3∑

i=1

Pi · log3(Pi) (5.64)

where Pi is given by:

Pi = λi
∑3

j=1 λj
(5.65)
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Entropy H lies between 0 and 1. There are two extreme cases:
(1) The backscattering mechanisms are fully polarized (pure target): only one

of the eigenvalues is non-zero (for example λ1), P1 = 1 and P2 = P3 = 0. Conse-
quently, H = 0 (since: x · log3(x) → 0 as x → 0). The entropy of a fully polarized
backscattering mechanism is zero.

(2) The backscattering mechanisms are fully unpolarized (polarimetric noise):
in this case, it is impossible to extract a dominant fully polarized signature from the
measurements. The three contributions of equal energy merge randomly, P1 = P2 =
P3 = 1/3, which results in H = 1. The entropy of a fully unpolarized backscattering
mechanism is equal to one.

Between these two extreme cases, the target behaves like a mixture of three pure
targets with comparable intensities, whose effects are summed incoherently, and whose
probability for existence is Pi.

Please note: The Entropy H is to some extent a measure of the ‘polarimetric
quality’, providing information about how efficient polarimetric analysis can be locally.
There is a clear analogy with the interferometric degree of coherence, which gives
information about the quality of phase measurements (Sect. 4.2.2).

Figure 5.13(b) displays the entropy of the Flevoland area. As a first approximation,
entropy relates inversely to |ρ| coherence (Fig. 5.13(a)) (low entropy ≈ high coherence)
and as such conveys the same type of information (also related to the ratio between the
fully polarized and unpolarized backscattered energies). However the entropy indicates
a wider contrast than coherence. The entropy has algebraic properties that make it in-
sensitive to the wave’s decomposition basis (in particular the angle� of Fig. 5.8). This
is also true for the degree of polarization Pw (Sect. 1.1.3.2), and also for the Huynen
parameters A0 and B0. The coherence |ρ| does not fall into this category of so-called
"polarimetric invariant". To demonstrate this dependency of the degree of coherence
on the choice of the polarization basis, let us for example show the degree of coherence
Srr − Sll between the co-polarization signals expressed in a basis of circular polar-
izations, Srr and Sll (Fig. 5.13(c)). The result is very different to that given by the |ρ|
coherence (and nicer!). Different fields which could not be distinguished in Fig. 5.13(a)
stand out clearly on, Fig. 5.13(c) and vice versa. In addition, circular coherence gives
better textural information than |ρ| coherence, in accordance with [Mattia, 1997].

5.10.3.3 Dominant/average backscattering mechanism
The dominant pure backscattering mechanism is determined from the eigenvector as-
sociated with the highest eigenvalue of [ ¯̄T ]. Its coherence matrix is:

[ ¯̄T ]dom = λ1 · v̂1 · v̂∗T
1 (5.66)

This recalls the Huynen approach (which also filters out a dominant pure mech-
anism). However, the reduction of backscatter to its dominant mechanism may be
deceiving if its level is hardly above noise. For example, if entropy is close to H = 1
(the three eigenvalues are almost equal), the dominant mechanism derived in this way
is not representative.
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[Cloude, 1997] overcame this objection by introducing the average backscattering

mechanism: each of the parameters of [ ¯̄U3] expressed using Eq. (5.62) (α for instance)
is considered to be the result of a random sequence such as α1, α3, α2, α2, α1, α2,

α3, α3, α1 · ·· for which the probabilities of α1, α2, α3 are P1, P2 and P3, respectively.
The maximum likelihood of α is then:

ᾱ = P1 · α1 + P2 · α2 + P3 · α3 (5.67)

This principle is extended to the full set of parameters, so that the target vector associ-
ated with the average backscattering mechanism is given by:

v̂av = [cos ᾱ, sin ᾱ · cos β̄ · ej.δ̄, sin ᾱ · sin β̄ · ej·γ̄ ]T (5.68)

The parameter ᾱ (Fig. 5.13(d)) is of particular interest. It varies between 0 and
π/2. ᾱ ≈ 0 characterizes single-bounce scattering, ᾱ ≈ π/2 double-bounce scattering,
ᾱ ≈ π/4 dipole-like scattering (often dominant in volume scattering). A classification
algorithm is then derived using the ‘double identity’ (H, ᾱ) to classify various kinds
of backscatters. This extends the family of standard mechanisms listed in Sect. 5.4. A
physical interpretation of the other parameters of v̂av is given in [Cloude, 1997]. We
should also mention that the parameters ᾱ, β̄, δ̄ and γ̄ , are practically insensitive to
perturbing parameters such as surface roughness, the moisture of vegetation cover or
certain calibration artifacts. The quality of their estimation is correlated with the local
value of entropy.

5.10.3.4 Anisotropy
For classification purposes an additional parameter is added to the pair (H, ᾱ), the
anisotropy A:

A = λ2 − λ3

λ2 + λ3
(5.69)

The entities λ2 and λ3 are the second and third eigenvalues of [ ¯̄T ], in decreasing
order. A expresses the dissimilarity between the secondary eigenvalues of [ ¯̄T ]. For an
unpolarized wave, H = 1 and A = 0. For a fully polarized wave, H = 0 and A is
undetermined. Elsewhere, for low values ofH , λ2 and λ3 are noisy and the usefulness
of anisotropy is reduced. Anisotropy is most appropriate for entropy values between
0.7 and 0.9, i.e. when two backscattering mechanisms are prevalent. Fig. 5.13(e) gives
some examples of these unusual situations. Overall, the anisotropy is low and noisy
except for certain plots, which return a mixture of single- and double-bounce scattering,
as shown by the corresponding Freeman analysis (Fig. 5.12).

5.10.3.5 (H,α) decomposition
Of all the parameters of v̂av, only ᾱ can always be determined. It can also be used to
discriminate among standard backscattering mechanisms discussed previously. Cloude
and Pottier [Cloude, 1997] propose a classification algorithm based on partitioning the
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Fig. 5.14 Partition of the [H, ᾱ] plane into backscattering mechanisms

[H, ᾱ] plane into nine zones named z1 to z9 (Fig. 5.14). However, all regions of this
plane are not equally accessible. We may grasp intuitively that as the entropy increases,
the normalized eigenvalues of [ ¯̄T ] tend towards the value 1/3. The result of this is that
ᾱ tends towards a value close to 60 ◦ (the limit value is reached when the wave is
unpolarized).

In the opposite case, for zero entropy (fully polarized wave), ᾱ can take any value
between 0 and π/2. We have thus described a ‘forbidden’ area (shaded gray in the Fig.
5.14) which cannot contain any measurement point.

Within the authorized area, two main sub-areas can be distinguished: (z9, z8, z7)
and (z6, z5, z4, z3, z2, z1) separated by the boundary H = 0.5. The average backscat-
tering mechanisms associated with each of these zones are discussed in reference
[Cloude, 1997].

5.11 Practical cases of polarimetric analysis

The following analyses are conducted on an image acquired by the experimental,
polarimetric, multi-frequency (L and C band) SIR-C instrument onboard the Space
Shuttle Endeavour (April and October 1994), with 10 m resolution and on a data-take
from the airborne RAMSES/ONERA L band instrument with 5-m resolution.

5.11.1 Radiometric analysis

Figures 5.15(a) to 5.15(c) display HH , HV and VV radiometric images (SIR-C L

band, incidence angle 24 ◦) from the Ulan-Ude region, a vast agricultural valley on
the edge of the Bouryates mountain range, close to Lake Baikal (Southeast Russia).
The relative gain of the HV channel has been enhanced for display purposes, because
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Fig. 5.15 SIR-C image (L band, 24 ◦), over Ulan-Ude, Russia, 1994. (a) HH ; (b) HV ; (c) VV ;
(d) Color compositeHH (R),HV (G), VV (B); (e) entropyH ; (f) Average ᾱ coefficient; (g) IHS
composite, intensity (span), hue (average ᾱ mechanism), saturation (1−H).

its mean radiometry is actually about 8 dB below that of co-polarized signatures. It
is difficult to grasp the complementarity of the different radiometric channels when
they are examined separately. This complementarity is obvious in the color composite
obtained by overlaying the three images (Fig. 5.15(d)). Using selected gains, the shades

© 2008, First edition, EPFL Press



264 IMAGING WITH SYNTHETIC APERTURE RADAR

of green (e.g. the range of mountains at the bottom at the image) indicate comparable
radiometric levels between the channels. A broader palette of colors is visible in
the central part of the image, which is irrigated by the Selenga River; this chromatic
richness is evidence of high sensitivity to polarization. The areas where blue dominates
indicate a deficit in theHH signal relative to VV , linked to dominant Bragg scattering
(surface scattering on bare ground). We can also recognize certain saturated portions
in the image, caused principally by slopes facing the radar.

The RAMSES image from the airborne instrument (Fig. 5.16(a)) shows an airport
environment, made up of buildings which saturate the radar signal, vegetation that is
generally close-cropped and strips of tarmac with weak radiometry.

Fig. 5.16 ONERA/RAMSES image L band, resolution 5 m, acquired over an airport; (a) Color
composite HH (R), HV (G), VV (B); (b) Entropy H ; (c) Average ᾱ mechanism; (d) IHS com-
posite: intensity (span), hue (average ᾱ mechanism), saturation (1−H).

5.11.2 Entropy analysis

Fig. 5.15(e) shows entropy of the SIR-C image estimated on a sliding window of 7×7
pixels. The high-entropy areas (e.g., the mountain at the bottom of the image) backscat-
ter almost fully unpolarized waves. These high-entropy values generally reflect dom-
inant volume scattering. This hypothesis is confirmed by the high values of the HV
signal. Moreover the fact that the HH , VV and HV radiometric values are evenly
distributed (Fig. 5.15(d)) indicates that the signal received is practically insensitive to
transmission and reception polarizations. Similar results can be observed at C band,
although entropy is in average slightly higher than at L band, which makes C band
polarimetric analysis less fruitful.
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The lowest levels of entropy in the airborne image (Fig. 5.16(b)) are mainly found
in a portion of the runway and in built-up areas. An entropy gradient, due to significant
variations in incidence angle over the swath, stretches across the image from left to
right (i.e., from the near range to the far range): low incidence angles maintain the
coherence of the transmitted wave better than high incidence angles, which produce
a more diffuse and less polarized signal. A break in the entropy cuts across part
of the diagonal runway (it is invisible in the radiometric data of Fig. 5.16(a)). It is
likely that this does not have a physical origin but is the result of an incidence angle
effect: in near range, the signal returned by the tarmac, although weak, remains above
the threshold of image noise NEσ0tot (Sect. 3.7.4) and can therefore imprint its own
polarimetric signature, i.e. a dominant polarized component (weak H). The intensity
of the tarmac’s signature decreases as we leave the near range until it reaches the level
of image noise. Beyond this limit, the polarimetric analysis applies to the image noise
itself, which by nature is unpolarized and therefore highly entropic. It is therefore
possible to evaluate image noise NEσ0tot using polarimetry!

5.11.3 Average backscattering mechanism

The coefficient ᾱ of the SIR-C image (Fig. 5.15(f)) is strongly correlated with entropy.
For low entropy, the backscattered signal is highly polarized, with significant comple-
mentarity between the different polarization channelsHH , VV andHV (see the range
of colors at the center of the image in Fig. 5.15(d)). The areas concerned correspond
principally to surfaces that produce a dominant single-bounce scattering, associated
with a low value of ᾱ .

In the airborne image, the coefficient ᾱ (Fig. 5.16(c)) also shows strong correlation
with the entropy H . The low values of H are also linked to low values of ᾱ (surface
scattering). When there is a volume component in the backscattering this causes an
increase in H , but also in ᾱ. At the boundary (H = 1), ᾱ converges towards an attrac-
tor (close to 60 ◦) whose physical significance is difficult to explain (Sect. 5.10.3.5).
A notable exception to the identical behaviors of H and ᾱ concerns strongly polar-
izing mechanisms other than single-bounce scattering, such as double-bounce scat-
tering on buildings (ᾱ ≈ π/2). However, there are not enough of them in statistical
terms to counter the impression of similarity between H and ᾱ observed on numerous
images.

5.12 Synoptic representation of polarimetric information

Since polarimetric information is multi-dimensional, with more than three dimen-
sions, it is impossible to display a complete representation of it. However, for high
entropy, complete representation of polarimetric information is superfluous (i.e., the
phase information is useless). An adaptive display inspired by interferometry proposed
in [Imbo, 1999] is based on a decomposition into Intensity-Hue-Saturation (IHS).14

14The intensity of an image pixel is related to its radiometric content (i.e. the ‘black and white’ component),
saturation refers to its level of coloring and hue to the color itself. IHS representation is an alternative to
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This system automatically reduces the representation of the polarimetric information
to its radiometric part whenever the signal is strongly unpolarized.

• The Intensity channel carries a layer of radiometric information, for example
the image span, i.e., the incoherent sum of the radiometric signatures |Shh|2 +
|Svv|2 + 2|Shv|2 = HH +VV + 2HV , or possibly the output from a polarimetric
whitening filter [Novak, 1990]. The image background is consequently in black
and white and with reduced speckle thanks to incoherent summing.

• The Saturation channel is controlled by the local entropy H (Sect. 5.10.3.2.).
The law governing saturation is usually linear (S = 1 − H), although refined
relationships may be involved. High entropy leads to low saturation (and vice
versa); in other words, it results in an image which is locally black and white,
which displays only radiometric information.

• Lastly, since the decreasing entropy colors the image gradually, the Hue channel
will attribute to each pixel a color related to the local polarimetric behavior (e.g.
via the coefficient ᾱ), but only when this is meaningful, i.e. when the backscatter
wave is properly polarized.

This method makes it easier to distinguish between polarized and unpolarized
areas. In the SIR-C image (Fig. 5.15(g)) in the heart of the unpolarized maelstrom at the
bottom of the image, only the peaks of the mountains retain some wave coherence. The
central part of the image, on the contrary, includes mostly polarized surface scattering.
In the airborne case (Fig. 5.13(f)) and (Fig. 5.16(d)), the IHS representation emphasizes
the incidence angle effect on the entropy of backscattered waves. The blue-tinted
points of Fig. 5.16(d) show behavior that is both low in entropy and high in ᾱ, in other
words polarized double-bounce backscattering created by built-up areas. Lastly, the
IHS representation of an X band RAMSES image with 1.5 m resolution (Fig. 5.17)
including a strip of tarmac marked out with artificial point targets (dihedral and trihedral
corner reflectors) shows to what extent high frequencies (even under high resolution
conditions) can prejudice the overall degree of polarization of backscattered waves.
Only a few points resist ‘entropic overflow’, including the point targets (whose nature
is determined by their hue value, i.e. their color) and the buildings.
Please note: A similar representation is useful for interferometry (intensity is the
amplitude image, hue is phase, and coherence is saturation). The advantage is if the
phases are meaningless (i.e., low coherence), the corresponding landscape appears in
black and white.

5.13 Future compact polarimetric systems

Although current spaceborne programmes seem favorable to polarimetry (Sect. 5.1), it
is still difficult to implement full polarimetry in space: antenna technology, telemetry

the trichromic red-green-blue decomposition in a color image.
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Fig. 5.17 Extract from ONERA/RAMSES image, X band, resolution of 1.5 m, acquired over an
airport. IHS composition: Intensity (span), Hue (average mechanism), Saturation (1-H).

data rates, swath sizes and power consumption are all critical factors. It is interesting
to evaluate strategies for partial acquisition of polarimetric information. This approach
also seems attractive due to the above-mentioned partial redundancy, of the information
coming from the different channels (redundancy betweenHH , VV andHV intensities,
between H entropy and ρ coherence, etc.).

There are two usual areas of investigation, which have been studied in the past
[Imbo, 2000], [Lee, 2001]: (1) measurements reduced to incoherent acquisition from
co- and cross-polarized channels e.g., |Shh| and |Shv|; and (2) measurements reduced
to coherent acquisition from only co-polarized channels (e.g. Shh and Svv). Each of
these acquisition modes produces three real values per pixel, reducing the volume of
useful data to 3/5 of what is necessary for full polari-break metry.

The first strategy requires only one single transmission polarization for recep-
tion on two orthogonal channels (the co- and cross-polarized transmission channels).
ASAR/ENVISAT’s Alternating Polarization (AP) mode falls into this category. The
use of a single polarization considerably simplifies system design. The pulse repeti-
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tion frequency fa remains at its standard value, as does the instrument swath width
(Sect. 5.2.1). However, in order to guarantee acceptable signal-to-noise ratio
(Sect. 3.7.4) for measurement of the cross-polarization signal, the transmission power
must be increased by a few dB relative to the power budget for co-polarization ac-
quisition. The efficiency of this mode was shown to be limited for thematic applica-
tions.

The second strategy relies on the coherent acquisition of complex backscattering
coefficients Shh and Svv. There is no cross-polarization measurement here, which re-
laxes the constraint on the instrument power budget. This mode gives access to the
measurement of the degree of coherence between the Shh and Svv signals (Sect. 5.9.1).
The polarization agility in transmission leads to a choice of fa and a swath width reduc-
tion as described in Sect. 5.2.1. The efficiency of this mode for thematic applications is
excellent, but it requires instrument design of a complexity comparable to that needed
for full polarimetry.

5.13.1 Another idea: compact polarimetry and the π/4 mode

In order to take advantage of the previous options without suffering from their draw-
backs, a compact polarization design based on mixed transmission and reception po-
larization measurements has been proposed [Souyris, 2005]. The single transmission
polarization is chosen either circular or linear but oriented at π/4 with respect to the
horizontal. Reception is made on two linear orthogonal polarizations, horizontal and
vertical. It is then possible to reconstruct full polarimetric information with some addi-
tional physical hypotheses. One of them involves the reflection symmetry of the media
observed [Nghiem, 1992]; the other is an empirical relationship linking backscattering
coefficients and the degree of coherence ρ (Sect. 5.9.1). This empirical relationship
obeys the theoretical developments of the Freeman approach (Sect. 5.10.2). The π/4
mode efficiency is assessed at two levels: first by considering how well the polarimetric
information (for point and distributed targets) is preserved relative to full polarimetry;
and second by considering system parameters (swath width, telemetry, link budget).
Since this mode (known as the π/4 mode) uses only one transmission polarization, the
azimuth sampling frequency fa and the swath width can be maintained at their nominal
value, while the telemetry data rate is halved.

The π/4 mode acquisition can be totally and rigorously simulated from a full
polarimetric data set. It led to encouraging results in theLband, in the field of land cover
classification and target analysis. This is shown by comparing a Landes forest color
composite (Fig. 5.18(a)) taken from SIR-C full polarimetry, and the corresponding π/4
simulation (Fig. 5.18(b)). More detailed analysis of the π/4 mode has shown its ability
to return the ρ, H and α parameters as cleanly [Souyris, 2005].

Bi-static missions using constellations of micro-satellites would be suitable for
implementing the π/4 mode. As an example, a radar constellation with two micro-
satellites (for its most economical configuration) can use this principle to reconstruct
polarimetric information and therefore open up the possibility of PolInSAR processing
[Sect. 5.14]. In this case one of the micro-satellites transmits and receives with circular
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polarization, while the other micro-satellite is passive and collects two linear polar-
izations (horizontal and vertical). The interferometric cartwheel (Sect. 5.7.4) could
provide a framework for this kind of implementation. Finally, low frequency mission
concepts (P band) could also take advantage of the π/4 mode under the circular po-
larization transmission option. The circular option is actually preferred in this case
because it partially protects from Faraday effects.

Fig. 5.18 (a) Multi-look polarimetric image, Landes forest, France, L band: color composite
HH (R), HV (G), VV (B); (b) Multi-look π/4 image, same color composite.

5.14 Merging polarimetry and interferometry: PolInSAR

The merging of polarimetry and interferometry, usually called PolInSAR, is a ma-
jor factor behind the growing interest of the radar community towards polarimetric
techniques. PolInSAR consists in acquiring polarimetric data under interferometric
conditions (Chap.4), i.e. under slightly different viewing configurations. The advan-
tages of PolInSAR are two-fold: (1) thanks to polarization tuning, the polarimetric
acquisitions can be optimally combined so as to maximize their interferometric degree
of coherence (Sect. 4.4.2), and consequently to improve the quality of the interfero-
grams produced [Cloude, 1998]; and (2) using a vegetation height inversion algorithm
[Cloude, 2003], the extraction of a topographic information becomes feasible, even in
the presence of a vegetation cover. Hereafter, we briefly summarize the main aspects
of PolInSAR with respects to the above-mentioned assets, before discussing some of
its current extensions.

© 2008, First edition, EPFL Press



270 IMAGING WITH SYNTHETIC APERTURE RADAR

5.14.1 Interferometric coherence optimization

Let us consider the targets vectors �κP1 and �κP2 (Sect. 5.3.2) of two polarimetric data
takes acquired under interferometric conditions. We wish to calculate an interferogram
between �κP1 and �κP2. In the formulation (1) of Sect. 4.2.2, the interferogram I(m, i) is
calculated from complex scalar value products. In order to extent this formulation to
vector combinations, two 3D normalized complex vectors ŵ1 and ŵ2 are introduced.
They are interpreted as being the target vectors of unknown scattering mechanisms. The
scattering coefficientsM(m, i) and S(m, i) introduced in Sect. 4.4.2, are now replaced
by the scattering coefficients µ1 and µ2, defined as the projections of the scattering
vectors �κP1 and �κP2 onto ŵ1 and ŵ2, respectively :

µ1 = ŵ+
1 · �κP1 (5.70-a)

µ2 = ŵ+
2 · �κP2 (5.70-b)

where the operator ‘+’ stands for ‘transpose conjugate’. Applying the standard inter-
ferogram formulation to µ1and µ2, we have :

Iŵ1·ŵ2(m, i) = 〈µ1 · µ∗
2〉√〈µ1 · µ∗

1〉 · √〈µ2 · µ∗
2〉

(5.71)

where Iŵ1,ŵ2(m, i) is the interferogram obtained at line m and column i. It develops
into:

Iŵ1,ŵ2(m, i) = ŵ+
1 · [ ¯̄�12] · ŵ2

(ŵ+
1 · [ ¯̄�11] · ŵ1)1/2 · (ŵ+

2 · [ ¯̄�22] · ŵ2)1/2
(5.72)

where [ ¯̄�11] = 〈�κP1 · �κ+
P1〉, [ ¯̄�22] = 〈�κP2 · �κ+

P2〉, [ ¯̄�12] = 〈�κP1 · �κ+
P2〉. The matrix

[ ¯̄�12] is a non-Hermitian 3 × 3 inter-correlation matrix. Alternatively, [ ¯̄�11] and [ ¯̄�22]
represent the Hermitian coherence matrices (Sect. 5.9) for each data take.

The magnitude of Iŵ1,ŵ2(m, i), i.e. the coherence of Iŵ1,ŵ2(m, i) can be maximized
by tuning ŵ1 and ŵ2 locally. It is performed by introducing a Lagrangian operator
[Cloude, 1998]. The phase of Iŵ1,ŵ2(m, i) is given by Eq. (5.73):

�ŵ1,ŵ2(m, i) = Arg(ŵ+
1 · [ ¯̄�12] · ŵ2) (5.73)

In the particular case where ŵ1 = ŵ2, i.e. the two data takes forming the inter-
ferogram are projected onto the same scattering mechanism, the resulting phase will
be closely connected to a topographic information. Therefore, the search for the opti-
mal value ŵ1 max that maximizes |Iŵ1,·ŵ1(m, i)| leads to the best quality topographical
interferogram (Sect. 4.4.2). When ŵ1 
= ŵ2, the phase behavior is more difficult to
interpret, as �ŵ1,ŵ2(m, i) jointly depends on an interferometric and on a polarimetric
correlation.
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5.14.2 Application to the inversion of vegetation height

One of the most encouraging applications of PolInSAR is the inversion of vegeta-
tion height using the so-called Random Volume over Ground model (RVoG) [Cloude,
2003], which removes the uncertainty in the phase center positioning due to the wave
penetration in the volumetric observed media (Sect. 4.4.1).

In the RVoG model, the signal backscattered from the forest is modelled as the
combination of a ground (surface or double-bounce) contribution and a random volume
contribution. At first order (i.e., by neglecting the image noise effect), the ground
contribution is assumed to have a coherence value of 1 (i.e., a perfect surface as far
as the interferometric behaviour is concerned) regardless of the values of ŵ1 and ŵ2

selected, and a pure topographic phase ϕg linked to the local ground surface elevation.
Moreover the propagation and extinction through the random volume are assumed to
be polarisation independent. This independence leads to a coherence value for the
volume contribution which is also free of polarisation effects.

When both volume and ground contributions participate in the backscatter (and
that they are independent from each other), the interferogram Iŵ1,2̂2

is assumed to
be a linear combination of a pure ‘ground’ interferogram Ig (i.e. an interferogram
between pure ground contributions embedded in each data take) and a pure ‘volume’
interferogram Iv (with a similar interpretation):

Iŵ1,ŵ2 ≈ σ
g
0 (ŵ1, ŵ2)

σ
g
0 (ŵ1, ŵ2)+ σv0(ŵ1, ŵ2)

· Ig + σv0(ŵ1, ŵ2)

σ
g
0 (ŵ1, ŵ2)+ σv0(ŵ1, ŵ2)

· Iv (5.74)

where both Ig and Iv are independent of ŵ1 and ŵ2. Reversely, the ground and
volume backscattering coefficients (Sect. 3.3), σg0 (ŵ1, ŵ2)and σv0(ŵ1, ŵ2), indicate a

Fig. 5.19 Locus of PolInSAR interferogram in the polar representation plane.
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dependency on polarization (Sects.3.2, and 3.3 ). As a consequence, the locus of Iŵ1,ŵ2

in the polar representation plane (Fig. 5.19) is a line segment joining the two points
characteristic of Ig (for σv0(ŵ1, ŵ2) ≈ 0) and Iv(σg0 (ŵ1, ŵ2) ≈ 0).

Assuming the polarization behavior described in Eq. (5.74), a PolInSAR mea-
surement inversion scheme has been proposed [Cloude, 2003]. Using a radiative
transfer approach (Sect. 1.3.3), RVoG allows to infer the ground topography, the veg-
etation height and the attenuation through the canopy from the geometric parame-
ters of the line segment obtained when ŵ1 and ŵ2 vary. The inversion scheme can
be decomposed into four steps: (1) synthesize many interferometric coherences by
varying the projections onto the scattering mechanisms ŵ1 and ŵ2 in order to deter-
mine the coherence line segment; (2) identify the two intersection points A and B
between the coherence line and the circle, then select the one which is the closest to
the point representative of Iĥ,ĥ, i.e. the interferogram obtained when the HH chan-
nels of each data takes are combined (the reason is that ground-trunk interaction is
generally strongest in HH than in VV ). The ground phase is then estimated by ϕg
(Fig. 5.19); (3) select the interferometric coherence furthest from the ground coherence
as Iv. This assumes that there is a polarisation state of the transmit and receive antenna
such that no contribution from the ground occurs; and (4) from the estimated Iv and
the line segment parameters, the vegetation height and the attenuation are finally in-
verted by using the radiative transfer equation of the ‘ground + vegetation’ backscatter
[Cloude, 2003].

5.14.3 PolInSAR extensions

Since the arrival of PolInSAR, several extensions were proposed in the literature.
• The first one concerns the frequency band under use. So far, theL band has been

preferred, as it allows a good balance between ground and volume contributions
(see the typical behaviour of backscatter in Fig. 5.19(a), Sect. 1.3). This good
balance insures that the extreme points of the line segments generated in the polar
representation plane by varying ŵ1 and ŵ2 are reached and properly separated,
which then allows for an accurate determination of the coherence line segment,
and subsequently of the vegetation canopy parameters.

Concurrent frequencies can be considered, such as X and P band, although the
balance between ground and volume contributions may become more question-
able. The reduced penetration capabilities (Sect. 1.3.4) of X band may lead to
a more critical estimation of the coherence line segment, due to the trouble in
capturing a pure ground contribution. The locus of coherence points will be less
extended than for the L band reference case. Reversely, the increased penetra-
tion capabilities of P band will presumably lead to an opposite conclusion, i.e.
the difficulty to capture a pure volume contribution.

• The PolInSAR algorithm can be applied between sub-looks of a polarimetric
image (giving the so-called ‘internal PolInSAR’), with applications in target
detection and analysis [Souyris, 2003].
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• Finally, compact polarimetry leads naturally to the development of compact
PolInSAR algorithms in order to ease the compliance of PolInSAR missions
with spaceborne mission constraints [Dubois], especially at low frequency.

5.15 Conclusion

Polarimetry is now considered systematically in designs for space SARs, but to differ-
ent degrees. ASAR/ENVISAT features an Alternating Polarization (AP) mode with
30-m resolution in C band, but simultaneous acquisition of only two of the three
radiometry channels HH,HV and VV . In C band RADARSAT II’s 10-m full po-
larimetric mode was launched in December 2007. PALSAR/ALOS, launched by the
Japanese Space Agency, JAXA, in January 2006 is applying polarimetry in L band,
while TERRASAR-X, launched in June 2007 does the same in X band. In such a
favorable context, it is increasingly important to understand polarimetry, to be familiar
with its workings and to be aware of its limitations. The intention behind this chapter
was to help the reader grasp all of these aspects.

The physics behind SAR polarimetry can chiefly be broken down into two stages:
first, a fixed and isolated point scatterer returns an echo that modifies the polarization
of the wave that illuminates it. This polarization change occurs without creating any
depolarization. Next, we can derive average polametric behavior when a variable
number of scatterers combine locally. The averaging process causes depolarization
and consequently reduces the efficiency of polarimetry, by increasing the redundancy
of information carried by the different polarization channels. To reduce these negative
effects we must reduce the number of scatterers inside a radar image pixel. Low
frequencies (L orP band) and high resolutions (in the meter range) both help reduce this
number, which means that the spaceborne missions discussed above do not necessarily
possess the features needed for high quality polarimetry.

It is difficult to estimate the extent to which the efficiency of polarimetric systems
decreases when polarimetric measurements are only partially acquired. A great deal
of work remains to be done to finely evaluate the potential of compact polarimetry in
specific thematic applications, such as biosphere studies, planetology, detection and
identification of point targets, etc. and also the necessary trade-offs between system
costs and performance.

To conclude, although polarimetry–whether full or compact–does not replace high
resolution, it nonetheless complements it. Far from competing with interferometry, it
promises to improve it throughout PolInSAR.
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