
Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Preface
Dedication

Chapter 1‹Classical Cryptography
1.1 Introduction: Some Simple Cryptosystems

1.1.1 The Shift Cipher
1.1.2 The Substitution Cipher
1.1.3 The Affine Cipher
1.1.4 The Vigenere Cipher
1.1.5 The Hill Cipher
1.1.6 The Permutation Cipher
1.1.7 Stream Ciphers

1.2 Cryptanalysis
1.2.1 Cryptanalysis of the Affine Cipher
1.2.2 Cryptanalysis of the Substitution Cipher
1.2.3 Cryptanalysis of the Vigenere Cipher
1.2.5 Cryptanalysis of the LFSR-based Stream Cipher

1.3 Notes
Exercises

Chapter 2‹Shannon’s Theory
2.1 Perfect Secrecy
2.2 Entropy

2.2.1 Huffman Encodings and Entropy
2.3 Properties of Entropy
2.4 Spurious Keys and Unicity Distance
2.5 Product Cryptosystems
2.6 Notes
Exercises

Chapter 3‹The Data Encryption Standard
3.1 Introduction
3.2 Description of DES

3.2.1 An Example of DES Encryption
3.3 The DES Controversy
3.4 DES in Practice

3.4.1 DES Modes of Operation
3.5 A Time-memory Trade-off
3.6 Differential Cryptanalysis

3.6.1 An Attack on a 3-round DES
3.6.2 An Attack on a 6-round DES
3.6.3 Other examples of Differential Cryptanalysis

3.7 Notes and References
Exercises

Chapter 4‹The RSA System and Factoring
4.1 Introduction to Public-key Cryptography
4.2 More Number Theory

4.2.1 The Euclidean Algorithm
4.2.2 The Chinese Remainder Theorem
4.2.3 Other Useful Facts

4.3 The RSA Cryptosystem
4.4 Implementing RSA
4.5 Probabilistic Primality Testing
4.6 Attacks On RSA

4.6.1 The Decryption Exponent
4.6.2 Partial Information Concerning Plaintext Bits

4.7 The Rabin Cryptosystem
4.8 Factoring Algorithms

4.8.1 The p - 1 Method
4.8.2 Dixon’s Algorithm and the Quadratic Sieve
4.8.3 Factoring Algorithms in Practice

4.9 Notes and References
Exercises

Chapter 5‹Other Public-key Cryptosystems
5.1 The ElGamal Cryptosystem and Discrete Logs

5.1.1 Algorithms for the Discrete Log Problem
5.1.2 Bit Security of Discrete Logs

5.2 Finite Field and Elliptic Curve Systems
5.2.1 Galois Fields
5.2.2 Elliptic Curves

5.3 The Merkle-Hellman Knapsack System
5.4 The McEliece System
5.5 Notes and References
Exercises

Chapter 6‹Signature Schemes
6.1 Introduction
6.2 The ElGamal Signature Scheme
6.3 The Digital Signature Standard
6.4 One-time Signatures
6.5 Undeniable Signatures
6.6 Fail-stop Signatures
6.7 Notes and References
Exercises

Chapter 7‹Hash Functions
7.1 Signatures and Hash Functions
7.2 Collision-free Hash Functions
7.3 The Birthday Attack
7.4 A Discrete Log Hash Function

7.5 Extending Hash Functions
7.6 Hash Functions from Cryptosystems
7.7 The MD4 Hash Function
7.8 Timestamping
7.9 Notes and References
Exercises

Chapter 8‹Key Distribution and Key Agreement
8.1 Introduction
8.2 Key Predistribution

8.2.1 Blom’s Scheme
8.2.2 Diffie-Hellman Key Predistribution

8.3 Kerberos
8.4 Diffie-Hellman Key Exchange

8.4.1 The Station-to-station Protocol
8.4.2 MTI Key Agreement Protocols
8.4.3 Key Agreement Using Self-certifying Keys

8.5 Notes and References
Exercises

Chapter 9‹Identification Schemes
9.1 Introduction
9.2 The Schnorr Identification Scheme
9.3 The Okamoto Identification Scheme
9.4 The Guillou-Quisquater Identification Scheme

9.4.1 Identity-based Identification Schemes
9.5 Converting Identification to Signature Schemes
9.6 Notes and References
Exercises

Chapter 10‹Authentication Codes
10.1 Introduction
10.2 Computing Deception Probabilities
10.3 Combinatorial Bounds

10.3.1 Orthogonal Arrays
10.3.2 Constructions and Bounds for OAs
10.3.3 Characterizations of Authentication Codes

10.4 Entropy Bound
10.5 Notes and References
Exercises

Chapter 11‹Secret Sharing Schemes
11.1 Introduction: The Shamir Threshold Scheme
11.2 Access Structures and General Secret Sharing
11.3 The Monotone Circuit Construction
11.4 Formal Definitions
11.5 Information Rate
11.6 The Brickell Vector Space Construction
11.7 An Upper Bound on the Information Rate
11.8 The Decomposition Construction

11.9 Notes and References
Exercises

Chapter 12‹Pseudo-random Number Generation
12.1 Introduction and Examples
12.2 Indistinguishable Probability Distributions

12.2.1 Next Bit Predictors
12.3 The Blum-Blum-Shub Generator

12.3.1 Security of the BBS Generator
12.4 Probabilistic Encryption
12.5 Notes and References
Exercises

Chapter 13‹Zero-knowledge Proofs
13.1 Interactive Proof Systems
13.2 Perfect Zero-knowledge Proofs
13.3 Bit Commitments
13.4 Computational Zero-knowledge Proofs
13.5 Zero-knowledge Arguments
13.6 Notes and References
Exercises

Further Reading
Index

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Table of Contents

Dedication
To my children, Michela and Aiden

Table of Contents

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Table of Contents

Preface
My objective in writing this book was to produce a general, comprehensive textbook that treats all the
essential core areas of cryptography. Although many books and monographs on cryptography have been
written in recent years, the majority of them tend to address specialized areas of cryptography. On the
other hand, many of the existing general textbooks have become out-of-date due to the rapid expansion of
research in cryptography in the past 15 years.

I have taught a graduate level cryptography course at the University of Nebraska-Lincoln to computer
science students, but I am aware that cryptography courses are offered at both the undergraduate and
graduate levels in mathematics, computer science and electrical engineering departments. Thus, I tried to
design the book to be flexible enough to be useful in a wide variety of approaches to the subject.

Of course there are difficulties in trying to appeal to such a wide audience. But basically, I tried to do
things in moderation. I have provided a reasonable amount of mathematical background where it is
needed. I have attempted to give informal descriptions of the various cryptosystems, along with more
precise pseudo-code descriptions, since I feel that the two approaches reinforce each other. As well, there
are many examples to illustrate the workings of the algorithms. And in every case I try to explain the
mathematical underpinnings; I believe that it is impossible to really understand how a cryptosystem works
without understanding the underlying mathematical theory.

The book is organized into three parts. The first part, Chapters 1-3, covers private-key cryptography.
Chapters 4Œ9 concern the main topics in public-key cryptography. The remaining four chapters provide
introductions to four active research areas in cryptography.

The first part consists of the following material: Chapter 1 is a fairly elementary introduction to simple
"classical" cryptosystems. Chapter 2 covers the main elements of Shannon’s approach to cryptography,
including the concept of perfect secrecy and the use of information theory in cryptography. Chapter 3 is a
lengthy discussion of the Data Encryption Standard; it includes a treatment of differential cryptanalysis.

The second part contains the following material: Chapter 4 concerns the RSA Public-key Cryptosystem,
together with a considerable amount of background on number-theoretic topics such as primality testing
and factoring. Chapter 5 discusses some other public-key systems, the most important being the ElGamal
System based on discrete logarithms. Chapter 6 deals with signature schemes, such as the Digital
Signature Standard, and includes treatment of special types of signature schemes such as undeniable and
fail-stop signature schemes. The subject of Chapter 7 is hash functions. Chapter 8 provides an overview of
the numerous approaches to key distribution and key agreement protocols. Finally, Chapter 9 describes
identification schemes.

The third part contains chapters on selected research-oriented topics, namely, authentication codes, secret
sharing schemes, pseudo-random number generation, and zero-knowledge proofs.

Thus, I have attempted to be quite comprehensive in the "core" areas of cryptography, as well as to
provide some more advanced chapters on specific research areas. Within any given area, however, I try to
pick a few representative systems and discuss them in a reasonable amount of depth. Thus my coverage of
cryptography is in no way encyclopedic.

Certainly there is much more material in this book than can be covered in one (or even two) semesters.
But I hope that it should be possible to base several different types of courses on this book. An
introductory course could cover Chapter 1, together with selected sections of Chapters 2Œ5. A second or
graduate course could cover these chapters in a more complete fashion, as well as material from Chapters
6Œ9. Further, I think that any of the chapters would be a suitable basis for a "topics" course that might
delve into specific areas more deeply.

But aside from its primary purpose as a textbook, I hope that researchers and practitioners in cryptography
will find it useful in providing an introduction to specific areas with which they might not be familiar.
With this in mind, I have tried to provide references to the literature for further reading on many of the
topics discussed.

One of the most difficult things about writing this book was deciding how much mathematical background
to include. Cryptography is a broad subject, and it requires knowledge of several areas of mathematics,
including number theory, groups, rings and fields, linear algebra, probability and information theory. As
well, some familiarity with computational complexity, algorithms and NP-completeness theory is useful. I
have tried not to assume too much mathematical background, and thus I develop mathematical tools as
they are needed, for the most part. But it would certainly be helpful for the reader to have some familiarity
with basic linear algebra and modular arithmetic. On the other hand, a more specialized topic, such as the
concept of entropy from information theory, is introduced from scratch.

I should also apologize to anyone who does not agree with the phrase "Theory and Practice" in the title. I
admit that the book is more theory than practice. What I mean by this phrase is that I have tried to select
the material to be included in the book both on the basis of theoretical interest and practical importance.
So, I may include systems that are not of practical use if they are mathematically elegant or illustrate an
important concept or technique. But, on the other hand, I do describe the most important systems that are
used in practice, e.g., DES and other U. S. cryptographic standards.

I would like to thank the many people who provided encouragement while I wrote this book, pointed out
typos and errors, and gave me useful suggestions on material to include and how various topics should be
treated. In particular, I would like to convey my thanks to Mustafa Atici, Mihir Bellare, Bob Blakley,
Carlo Blundo, Gilles Brassard, Daniel Ducharme, Mike Dvorsky, Luiz Frota-Mattos, David Klarner, Don
Kreher, Keith Martin, Vaclav Matyas, Alfred Menezes, Luke O’Connor, William Read, Phil Rogaway,
Paul Van Oorschot, Scott Vanstone, Johan van Tilburg, Marc Vauclair and Mike Wiener. Thanks also to
Mike Dvorsky for helping me prepare the index.

Douglas R. Stinson

The CRC Press Series on Discrete Mathematics and Its Applications

Discrete mathematics is becoming increasingly applied to computer science, engineering, the physical
sciences, the natural sciences, and the social sciences. Moreover, there has also been an explosion of
research in discrete mathematics in the past two decades. Both trends have produced a need for many
types of information for people who use or study this part of the mathematical sciences. The CRC Press
Series on Discrete Mathematics and Its Applications is designed to meet the needs of practitioners,
students, and researchers for information in discrete mathematics. The series includes handbooks and other
reference books, advanced textbooks, and selected monographs. Among the areas of discrete mathematics
addressed by the series are logic, set theory, number theory, combinatorics, discrete probability theory,
graph theory, algebra, linear algebra, coding theory, cryptology, discrete optimization, theoretical
computer science, algorithmics, and computational geometry.

Kenneth H. Rosen, Series Editor
Distinguished Member of Technical Staff

AT&T Bell Laboratories
Holmdel, New Jersey

e-mail:krosen@arch4.ho.att.com

Advisory Board

Charles Colbourn
Department of Combinatorics and Optimization, University of Waterloo

Jonathan Gross
Department of Computer Science, Columbia University

Andrew Odlyzko
AT&T Bell Laboratories

Table of Contents

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Chapter 1
Classical Cryptography

1.1 Introduction: Some Simple Cryptosystems

The fundamental objective of cryptography is to enable two people, usually referred to as Alice and Bob,
to communicate over an insecure channel in such a way that an opponent, Oscar, cannot understand what
is being said. This channel could be a telephone line or computer network, for example. The information
that Alice wants to send to Bob, which we call "plaintext," can be English text, numerical data, or anything
at all ‹ its structure is completely arbitrary. Alice encrypts the plaintext, using a predetermined key, and
sends the resulting ciphertext over the channel. Oscar, upon seeing the ciphertext in the channel by
eavesdropping, cannot determine what the plaintext was; but Bob, who knows the encryption key, can
decrypt the ciphertext and reconstruct the plaintext.

This concept is described more formally using the following mathematical notation.

DEFINITION 1.1 A cryptosystem is a five-tuple , where the following conditions are
satisfied:

1. is a finite set of possible plaintexts

2. is a finite set of possible ciphertexts

3. , the keyspace, is a finite set of possible keys

4. For each , there is an encryption rule eK and a corresponding decryption rule

 . Each and are functions such that dK (eK (< I>x)) =

x for every plaintext

The main property is property 4. It says that if a plaintext x is encrypted using eK , and the resulting

ciphertext is subsequently decrypted using dK , then the original plaintext x results.

Alice and Bob will employ the following protocol to use a specific cryptosystem. First, they choose a

random key This is done when they are in the same place and are not being observed by
Oscar, or, alternatively, when they do have access to a secure channel, in which case they can be in
different places. At a later time, suppose Alice wants to communicate a message to Bob over an insecure
channel. We suppose that this message is a string

for some integer n ≥ 1, where each plaintext symbol , 1 ≤ i ≤ n. Each xi is encrypted using the

encryption rule eK specified by the predetermined key K. Hence, Alice computes yi = eK (xi < /I>), 1 ≤ i

≤ n, and the resulting ciphertext string

is sent over the channel. When Bob receives y1y2 . . . yn , he decrypts it using the decryption function dK ,

obtaining the original plaintext string, x1x2 . . .xn . See Figure 1.1 for an illustration of the communication

channel.

Figure 1.1 The Communication Channel

Clearly, it must be the case that each encryption function eK is an injective function (i.e., one-to-one),

otherwise, decryption could not be accomplished in an unambiguous manner. For example, if

where x1 ≠ x2 , then Bob has no way of knowing whether y should decrypt to x1 or x2 . Note that if

 , it follows that each encryption function is a permutation. That is, if the set of plaintexts and
ciphertexts are identical, then each encryption function just rearranges (or permutes) the elements of this
set.

1.1.1 The Shift Cipher

In this section, we will describe the Shift Cipher, which is based on modular arithmetic. But first we
review some basic definitions of modular arithmetic.

DEFINITION 1.2 Suppose a and b are integers, and m is a positive integer. Then we write a ≡ b (mod m)
if m divides b - a. The phrase a ≡ b (mod m) is read as "a is congruent to b modulo m." The integer m is
called the modulus.

Suppose we divide a and b by m, obtaining integer quotients and remainders, where the remainders are
between 0 and m - 1. That is, a = q1m + r1 and b = q2m + r2 , where 0 ≤ r 1 ≤ m - 1 and 0 ≤ r 2 ≤ m - 1.

Then it is not difficult to see that a ≡ b (mod m) if and only if r1 = r 2 . We will use the notation a mod m

(without parentheses) to denote the remainder when a is divided by m, i.e., the value r1 above. Thus a ≡ b

(mod m) if and only if a mod m = b mod m. If we replace a by a mod m, we say that a is reduced modulo
m.

REMARK Many computer programming languages define a mod m to be the remainder in the range -m +
1, . . . , m - 1 having the same sign as a. For example, -18 mod 7 would be -4, rather than 3 as we defined
it above. But for our purposes, it is much more convenient to define a mod m always to be nonnegative.

We can now define arithmetic modulo m: is defined to be the set {0, . . . , m-1}, equipped with two

operations, + and ×. Addition and multiplication in work exactly like real addition and
multiplication, except that the results are reduced modulo m.

For example, suppose we want to compute 11 × 13 in . As integers, we have 11 × 13 = 143. To
reduce 143 modulo 16, we just perform ordinary long division: 143 = 8 × 16 + 15, so 143 mod 16 = 15,

and hence 11 × 13 = 15 in .

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

These definitions of addition and multiplication in satisfy most of the familiar rules of arithmetic. We
will list these properties now, without proof:

1. addition is closed, i.e., for any

2. addition is commutative, i.e., for any , a + b = b + a

3. addition is associative, i.e., for any , (a + b) + c = a + (b + c)

4. 0 is an additive identity, i.e., for any , a + 0 = 0 + a = a

5. the additive inverse of any is m-a, i.e., a+(m-a) = (m-a)+a = 0 for any

6. multiplication is closed, i.e., for any

7. multiplication is commutative, i.e., for any , ab = ba

Figure 1.2 Shift Cipher

8. multiplication is associative, i.e., for any , (ab)c = a(bc)

9. 1 is a multiplicative identity, i.e., for any , a × 1 = 1 × a = a

10. multiplication distributes over addition, i.e., for any , (a+b)c = (ac) + (bc) and
a(b + c) (ab) + (ac).

Properties 1, 3-5 say that forms an algebraic structure called a group with respect to the addition
operation. Since property 2 also holds, the group is said to be abelian.

Properties 1-10 establish that is, in fact, a ring. We will see many other examples of groups and rings

in this book. Some familiar examples of rings include the integers, ; the real numbers, ; and the

complex numbers, . However, these are all infinite rings, and our attention will be confined almost
exclusively to finite rings.

Since additive inverses exist in , we can also subtract elements in . We define a - b in to be
a + m - b mod m. Equivalently, we can compute the integer a - b and then reduce it modulo m.

For example, to compute 11 - 18 in , we can evaluate 11 + 13 mod 31 = 24. Alternatively, we can first
subtract 18 from 11, obtaining -7 and then compute -7 mod 31 = 24.

We present the Shift Cipher in Figure 1.2. It is defined over since there are 26 letters in the English

alphabet, though it could be defined over for any modulus m. It is easy to see that the Shift Cipher

forms a cryptosystem as defined above, i.e., dK (eK (< I>x)) = x for every

REMARK For the particular key K = 3, the cryptosystem is often called the Caesar Cipher, which was
purportedly used by Julius Caesar.

We would use the Shift Cipher (with a modulus of 26) to encrypt ordinary English text by setting up a
correspondence between alphabetic characters and residues modulo 26 as follows: A ↔ 0, B ↔ 1, . . . , Z
↔ 25. Since we will be using this correspondence in several examples, let’s record it for future use:

A small example will illustrate.

Example 1.1

Suppose the key for a Shift Cipher is K = 11, and the plaintext is

 wewillmeetatmidnight.

We first convert the plaintext to a sequence of integers using the specified correspondence, obtaining the
following:

22 4 22 8 11 11 12 4 4 19

0 19 12 8 3 13 8 6 7 19

Next, we add 11 to each value, reducing each sum modulo 26:

 7 15 7 19 22 22 23 15 15 4

11 4 23 19 14 24 19 17 18 4

Finally, we convert the sequence of integers to alphabetic characters, obtaining the ciphertext:

 HPHTWWXPPELEXTOYTRSE

To decrypt the ciphertext, Bob will first convert the ciphertext to a sequence of integers, then subtract 11
from each value (reducing modulo 26), and finally convert the sequence of integers to alphabetic
characters.

REMARK In the above example we are using upper case letters for ciphertext and lower case letters for
plaintext, in order to improve readability. We will do this elsewhere as well.

If a cryptosystem is to be of practical use, it should satisfy certain properties. We informally enumerate
two of these properties now.

1. Each encryption function eK and each decryption function dK should be efficiently computable.

2. An opponent, upon seeing a ciphertext string y, should be unable to determine the key K that was
used, or the plaintext string x.

The second property is defining, in a very vague way, the idea of "security." The process of attempting to
compute the key K, given a string of ciphertext y, is called cryptanalysis. (We will make these concepts
more precise as we proceed.) Note that, if Oscar can determine K, then he can decrypt y just as Bob
would, using dK . Hence, determining K is at least as difficult as determining the plaintext string x.

We observe that the Shift Cipher (modulo 26) is not secure, since it can be cryptanalyzed by the obvious
method of exhaustive key search. Since there are only 26 possible keys, it is easy to try every possible
decryption rule dK until a "meaningful" plaintext string is obtained. This is illustrated in the following

example.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Example 1.2

Given the ciphertext string

 JBCRCLQRWCRVNBJENBWRWN,

we successively try the decryption keys d0 , d1 , etc. The following is obtained:

 jbcrclqrwcrvnbjenbwrwn
 iabqbkpqvbqumaidmavqvm
 hzapajopuaptlzhclzupul
 gyzozinotzoskygbkytotk
 fxynyhmnsynrjxfajxsnsj
 ewxmxglmrxmqiweziwrmri
 dvwlwfklqwlphvdyhvqlqh
 cuvkvejkpvkogucxgupkpg
 btujudijoujnftbwftojof
 astitchintimesavesnine

At this point, we have determined the plaintext and we can stop. The key is K = 9.

On average, a plaintext will be computed after trying 26/2 = 13 decryption rules.

Figure 1.3 Substitution Cipher

As the above example indicates, a necessary condition for a cryptosystem to be secure is that an
exhaustive key search should be infeasible; i.e., the keyspace should be very large. As might be expected,
a large keyspace is not sufficient to guarantee security.

1.1.2 The Substitution Cipher

Another well-known cryptosystem is the Substitution Cipher. This cryptosystem has been used for
hundreds of years. Puzzle "cryptograms" in newspapers are examples of Substitution Ciphers. This
cipher is defined in Figure 1.3.

Actually, in the case of the Substitution Cipher, we might as well take and both to be the 26-letter

English alphabet. We used in the Shift Cipher because encryption and decryption were algebraic
operations. But in the Substitution Cipher, it is more convenient to think of encryption and decryption as

permutations of alphabetic characters.

Here is an example of a "random" permutation, π, which could comprise an encryption function. (As
before, plaintext characters are written in lower case and ciphertext characters are written in upper case.)

Thus, eπ (a) = X, eπ (b) = N, etc. The decryption function is the inverse permutation. This is formed by

writing the second lines first, and then sorting in alphabetical order. The following is obtained:

Hence, dπ (A) = d, dπ (B) = l, etc.

As an exercise, the reader might decrypt the following ciphertext using this decryption function:

 MGZVYZLGHCMHJMYXSSFMNHAHYCDLMHA.

A key for the Substitution Cipher just consists of a permutation of the 26 alphabetic characters. The
number of these permutations is 26!, which is more than 4.0 × 1026, a very large number. Thus, an
exhaustive key search is infeasible, even for a computer. However, we shall see later that a Substitution
Cipher can easily be cryptanalyzed by other methods.

1.1.3 The Affine Cipher

The Shift Cipher is a special case of the Substitution Cipher which includes only 26 of the 26! possible
permutations of 26 elements. Another special case of the Substitution Cipher is the Affine Cipher ,
which we describe now. In the Affine Cipher , we restrict the encryption functions to functions of the form

 These functions are called affine functions, hence the name Affine Cipher . (Observe that
when a = 1, we have a Shift Cipher.)

In order that decryption is possible, it is necessary to ask when an affine function is injective. In other

words, for any , we want the congruence

to have a unique solution for x. This congruence is equivalent to

Now, as y varies over , so, too, does y - b vary over . Hence, it suffices to study the congruence

ax ≡ y (mod 26) .

We claim that this congruence has a unique solution for every y if and only if gcd(a, 26) = 1 (where the
gcd function denotes the greatest common divisor of its arguments). First, suppose that gcd(a, 26) = d > 1.

Then the congruence ax ≡ 0 (mod 26) has (at least) two distinct solutions in , namely x = 0 and x =
26/d. In this case e(x) = ax + b mod 26 is not an injective function and hence not a valid encryption
function.

For example, since gcd(4, 26) = 2, it follows that 4x + 7 is not a valid encryption function: x and x + 13

will encrypt to the same value, for any

Let’s next suppose that gcd(a, 26) = 1. Suppose for some x1 and x2 that

Then

and thus

We now make use of a property of division: if gcd(a, b) = 1 and a | bc, then a | c. Since 26| a(x1 - x2) and

gcd(a, 26) = 1, we must therefore have that

i.e., x1 ≡ x2 (mod 26).

At this point we have shown that, if gcd(a, 26) = 1, then a congruence of the form ax ≡ y (mod 26) has, at

most, one solution in . Hence, if we let x vary over , then ax mod 26 takes on 26 distinct values

modulo. 26. That is, it takes on every value exactly once. It follows that, for any , the
congruence ax ≡ y (mod 26) has a unique solution for y.

There is nothing special about the number 26 in this argument. The following result can be proved in an
analogous fashion.

THEOREM 1.1

The congruence ax ≡ b (mod m) has a unique solution for every if and only if
gcd(a, m) = 1.

Since 26 = 2 × 13, the values of such that gcd(a, 26) = 1 are a = 1, 3, 5, 7, 9, 11, 15, 17, 19, 21,

23, and 25. The parameter b can be any element in . Hence the Affine Cipher has 12 × 26 = 312
possible keys. (Of course, this is much too small to be secure.)

Let’s now consider the general setting where the modulus is m. We need another definition from number
theory.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

DEFINITION 1.3 Suppose a ≥ 1 and m ≥ 2 are integers. If gcd(a, m) = 1, then we say that a and m are

relatively prime. The number of integers in that are relatively prime to m is often denoted by φ(m)
(function is called the Euler phi-function).

A well-known result from number theory gives the value of φ(m) in terms of the prime power factorization
of m. (An integer p > 1 is prime if it has no positive divisors other than 1 and p. Every integer m > 1 can be
factored as a product of powers of primes in a unique way. For example, 60 = 22 × 3 × 5 and 98 = 2 ×
72 .) We record the formula for φ(m) in the following theorem.

THEOREM 1.2

Suppose

where the pi ′s are distinct primes and ei > 0, 1 ≤ i ≤ n. Then

It follows that the number of keys in the Affine Cipher over is mφ(m), where φ(m) is given by the
formula above. (The number of choices for b is m, and the number of choices for a is φ(m), where the
encryption function is e(x) = ax + b.) For example, when m = 60, φ(60) = 2 × 2 × 4 = 16 and the number of
keys in the Affine Cipher is 960.

Let’s now consider the decryption operation in the Affine Cipher with modulus m = 26. Suppose that
gcd(a, 26) = 1. To decrypt, we need to solve the congruence y ≡ ax + b (mod 26) for x. The discussion

above establishes that the congruence will have a unique solution in , but it does not give us an
efficient method of finding the solution. What we require is an efficient algorithm to do this. Fortunately,
some further results on modular arithmetic will provide us with the efficient decryption algorithm we seek.

We require the idea of a multiplicative inverse.

DEFINITION 1.4 Suppose . The multiplicative inverse of a is an element such
that aa-1 ≡ a-1 a ≡ 1 (mod m).

By similar arguments to those used above, it can be shown that a has a multiplicative inverse modulo m if
and only if gcd(a, m) = 1; and if a multiplicative inverse exists, it is unique. Also, observe that if b = a-1 ,

then a = b-1 . If p is prime, then every non-zero element of has a multiplicative inverse. A ring in which
this is true is called a field.

In a later section, we will describe an efficient algorithm for computing multiplicative inverses in for

any m. However, in , trial and error suffices to find the multiplicative inverses of the elements
relatively prime to 26: 1-1 = 1, 3-1 = 9, 5-1 = 21, 7-1 = 15, 11-1 = 19, 17-1 = 23, and 25-1 = 25. (All of
these can be verified easily. For example, 7 × 15 = 105 ≡ 1 mod 26, so 7-1 = 15.)

Consider our congruence y ≡ ax + b (mod 26). This is equivalent to

Since gcd(a, 26) = 1, a has a multiplicative inverse modulo 26. Multiplying both sides of the congruence
by a-1 , we obtain

Figure 1.4 Affine Cipher

By associativity of multiplication modulo 26,

Consequently, x ≡ a-1(y - b) (mod 26). This is an explicit formula for x, that is, the decryption function is

So, finally, the complete description of the Affine Cipher is given in Figure 1.4. Let’s do a small example.

Example 1.3

Suppose that K = (7, 3). As noted above, 7-1 mod 26 = 15. The encryption function is

and the corresponding decryption function is

where all operations are performed in . It is good check to verify that dK (eK (< I>x)) = x for all

 Computing in , we get

Figure 1.5 Vigenere Cipher

To illustrate, let’s encrypt the plaintext hot. We first convert the letters h, o, t to residues modulo 26. These
are respectively 7, 14, and 19. Now, we encrypt:

7 × 7 + 3 mod 26 = 52 mod 26 = 0

7 × 14 + 3 mod 26 = 101 mod 26 = 23

7 × 19 + 3 mod 26 = 136 mod 26 = 6.

So the three ciphertext characters are 0, 23, and 6, which corresponds to the alphabetic string AXG. We
leave the decryption as an exercise for the reader.

1.1.4 The Vigenere Cipher

In both the Shift Cipher and the Substitution Cipher, once a key is chosen, each alphabetic character is
mapped to a unique alphabetic character. For this reason, these cryptosystems are called monoalphabetic.
We now present in Figure 1.5 a cryptosystem which is not monoalphabetic, the well-known Vigenere
Cipher. This cipher is named after Blaise de Vigenere, who lived in the sixteenth century.

Using the correspondence A ↔ 0, B ↔ 1, . . ., Z ↔ 25 described earlier, we can associate each key K with
an alphabetic string of length m, called a keyword. The Vigenere Cipher encrypts m alphabetic characters
at a time: each plaintext element is equivalent to m alphabetic characters.

Let’s do a small example.

Example 1.4

Suppose m = 6 and the keyword is CIPHER. This corresponds to the numerical equivalent K = (2, 8, 15, 7,
4, 17). Suppose the plaintext is the string

 thiscryptosystemisnotsecure.

We convert the plaintext elements to residues modulo 26, write them in groups of six, and then "add" the
keyword modulo 26, as follows:

The alphabetic equivalent of the ciphertext string would thus be:

 VPXZGIAXIVWPUBTTMJPWIZITWZT.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

To decrypt, we can use the same keyword, but we would subtract it modulo 26 instead of adding.

Observe that the number of possible keywords of length m in a Vigenere Cipher is 26m , so even for
relatively small values of m, an exhaustive key search would require a long time. For example, if we take
m = 5, then the keyspace has size exceeding 1.1 × 107 . This is already large enough to preclude
exhaustive key search by hand (but not by computer).

In a Vigenere Cipher having keyword length m, an alphabetic character can be mapped to one of m
possible alphabetic characters (assuming that the keyword contains m distinct characters). Such a
cryptosystem is called polyalphabetic. In general, cryptanalysis is more difficult for polyalphabetic than
for monoalphabetic cryptosystems.

1.1.5 The Hill Cipher

In this section, we describe another polyalphabetic cryptosystem called the Hill Cipher . This cipher was

invented in 1929 by Lester S. Hill. Let m be a positive integer, and define . The idea
is to take m linear combinations of the m alphabetic characters in one plaintext element, thus producing the
m alphabetic characters in one ciphertext element.

For example, if m = 2, we could write a plaintext element as x = (x2 , x2) and a ciphertext element as y =

(y1 , y2). Here, y1 would be a linear combination of x1 and x2 , as would y2 . We might take

Of course, this can be written more succinctly in matrix notation as follows:

In general, we will take an m × m matrix K as our key. If the entry in row i and column j of K is k i,j , then

we write K = (k i,j). For x = (x1 , . . . , xm) and , we compute y = eK (x) = (y1 , . . . , ym)

as follows:

In other words, y = xK.

We say that the ciphertext is obtained from the plaintext by means of a linear transformation. We have to
consider how decryption will work, that is, how x can be computed from y. Readers familiar with linear
algebra will realize that we use the inverse matrix K -1 to decrypt. The ciphertext is decrypted using the
formula x = yK -1 .

Here are the definitions of necessary concepts from linear algabra. If A = (a i,j) is an matrix and

B = (b j,k) is an m × n matrix, then we define the matrix product AB = (c i,k) by the formula

for and 1 ≤ k ≤ n. That is, the entry in row i and column k of AB is formed by taking the ith
row of A and the kth column of B, multiplying corresponding entries together, and summing. Note that AB

is an matrix.

This definition of matrix multiplication is associative (that is, (AB)C = A(BC) but not, in general,
commutative (it is not always the case that AB = BA, even for square matrices A and B).

The m × m identity matrix, denoted by Im , is the m × m matrix with 1′s on the main diagonal and 0′s
elsewhere. Thus, the 2 × 2 identity matrix is

Im is termed an identity matrix since AIm = A for any matrix A and Im B = B for any m × n

matrix B. Now, the inverse matrix to an m × m matrix A (if it exists) is the matrix A -1 such that AA -1 =
A -1 A = Im . Not all matrices have inverses, but if an inverse exists, it is unique.

With these facts at hand, it is easy to derive the decryption formula given above: since y = xK, we can
multiply both sides of the formula by K -1 , obtaining

(Note the use of the associativity property.)

We can verify that the encryption matrix above has an inverse in

since

Remember that all arithmetic operations are done modulo 26.)

Let’s now do an example to illustrate encryption and decryption in the Hill Cipher .

Example 1.5

Suppose the key is

From the computations above, we have that

Suppose we want to encrypt the plaintext july. We have two elements of plaintext to encrypt: (9, 20)
(corresponding to ju) and (11, 24) (corresponding to ly). We compute as follows:

and

Hence, the encryption of july is DELW. To decrypt, Bob would compute:

and

Hence, the correct plaintext is obtained.

At this point, we have shown that decryption is possible if K has an inverse. In fact, for decryption to be
possible, it is necessary that K has an inverse. (This follows fairly easily from elementary linear algebra,
but we will not give a proof here.) So we are interested precisely in those matrices K that are invertible.

The invertibility of a (square) matrix depends on the value of its determinant. To avoid unnecessary
generality, we will confine our attention to the 2 × 2 case.

DEFINITION 1.5 The determinant of the 2 × 2 matrix A = (a i,j) is the value

REMARK The determinant of an m × m square matrix can be computed by elementary row operations: see
any text on linear algebra.

Two important properties of determinants are that det Im = 1; and the multiplication rule det(AB) = det A

× det B.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

A real matrix K has an inverse if and only if its determinant is non-zero. However, it is important to

remember that we are working over . The relevant result for our purposes is that a matrix K has an
inverse modulo 26 if and only if gcd (det K, 26) = 1.

We briefly sketch the proof of this fact. First suppose that gcd(det K, 26) = 1. Then det K has an inverse in

 Now, for ≤ i ≤ m, 1 ≤ j ≤ m, define K ij to be the matrix obtained from K by deleting the ith row and

the jth column. Define a matrix K* to have as its (i, j)-entry the value (-1)i+j det K ji . (K* is called the

adjoint matrix of K.) Then it can be shown that

Hence, K is invertible.

Conversely, suppose K has an inverse, K -1 . By the multiplication rule for determinants, we have

Hence, det K is invertible in

REMARK The above formula for K -1 is not very efficient computationally, except for small values of m
(say m = 2, 3). For larger m, the preferred method of computing inverse matrices would involve
elementary row operations.

In the 2 × 2 case, we have the following formula:

THEOREM 1.3

Suppose A = (a i,j) is a 2 × 2 matrix over such that det A = a1,1a2,2< /SUB> - a1,2a2,1< /SUB> is invertible. Then

Let’s look again at the example considered earlier. First, we have

Now, 1-1 mod 26 = 1, so the inverse matrix is

as we verified earlier.

We now give a precise description of the Hill Cipher over in Figure 1.6.

1.1.6 The Permutation Cipher
All of the cryptosystems we have discussed so far involve substitution: plaintext characters are replaced by different ciphertext characters. The idea of a permutation cipher is to keep
the plaintext characters unchanged, but to alter their positions by rearranging them. The Permutation Cipher (also known as the Transposition Cipher) has been in use for hundreds
of years. In fact, the distinction between the Permutation Cipher and the Substitution Cipher was pointed out as early as 1563 by Giovanni Porta. A formal definition is given in
Figure 1.7.

As with the Substitution Cipher, it is more convenient to use alphabetic characters as opposed to residues modulo 26, since there are no algebraic operations being performed in
encryption or decryption.

Here is an example to illustrate:

Figure 1.6 Hill Cipher

Figure 1.7 Permutation Cipher

Example 1.6

Suppose m = 6 and the key is the following permutation π:

Then the inverse permutation π-1 is the following:

Now, suppose we are given the plaintext

 shesellsseashellsbytheseashore.

We first group the plaintext into groups of six letters:

 shesel | lsseas | hellsb | ythese | ashore

Now each group of six letters is rearranged according to the permutation π, yielding the following:

 EESLSH | SALSES | LSHBLE | HSYEET | HRAEOS

So, the ciphertext is:

 EESLSHSALSESLSHBLEHSYEETHRAEOS.

The ciphertext can be decrypted in a similar fashion, using the inverse permutation π-1.

In fact, the Permutation Cipher is a special case of the Hill Cipher . Given a permutation of π of the set {1, . . . , m}, we can define an associated m × m permutation matrix Kπ =

(ki,j) according to the formula

(A permutation matrix is a matrix in which every row and column contains exactly one "1," and all other values are "0." A permutation matrix can be obtained from an identity matrix
by permuting rows or columns.)

It is not difficult to see that Hill encryption using the matrix Kπ is, in fact, equivalent to permutation encryption using the permutation π. Moreover,

 , i.e., the inverse matrix to Kπ is the permutation matrix defined by the permutation π-1. Thus, Hill decryption is equivalent to permutation

decryption.

For the permutation π used in the example above, the associated permutation matrices are

and

The reader can verify that the product of these two matrices is the identity.

1.1.7 Stream Ciphers
In the cryptosystems we have studied to this point, successive plaintext elements are encrypted using the same key, K. That is, the ciphertext string y is obtained as follows:

Cryptosystems of this type are often called block ciphers.

An alternative approach is to use what are called stream ciphers. The basic idea is to generate a keystream z = z1z2 . . . , and use it to encrypt a plaintext string x = x1x2 . . .

according to the rule

A stream cipher operates as follows. Suppose is the key and x1x2 . . . is the plaintext string. The function fi is used to generate zi (the ith element of the

keystream), where fi is a function of the key, K, and the first i - 1 plaintext characters:

The keystream element zi is used to encrypt xi , yielding . So, to encrypt the plaintext string x1x2, . . . , we would successively compute

Decrypting the ciphertext string y1y2 . . . can be accomplished by successively computing

Here is a formal mathematical definition:

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

DEFINITION 1.6 A Stream Cipher is a tuple , where the following conditions
are satisfied:

1. is a finite set of possible plaintexts

2. is a finite set of possible ciphertexts

3. , the keyspace, is a finite set of possible keys

4. is a finite set called the keystream alphabet

5. is the keystream generator. For i ≥ 1,

6. For each , there is an encryption rule and a corresponding decryption rule

 and are functions such that dz(ez(< I>x)) = x for every

plaintext .

We can think of a block cipher as a special case of a stream cipher where the keystream is constant: zi = K

for all i ≥ 1.

Here are some special types of stream ciphers together with illustrative examples. A stream cipher is
synchronous if the keystream is independent of the plaintext string, that is, if the keystream is generated as
a function only of the key K. In this situation, we think of K as a "seed" that is expanded into a keystream
z1z2

A stream cipher is periodic with period d if Zi+d = zi for all integers i ≥ 1. The Vigenere Cipher with

keyword length m can be thought of as a periodic stream cipher with period m. In this case, the key is K =
(k1 , . . . , km). K itself provides the first m elements of the keystream: zi = ki , 1 ≤ i ≤ m. Then the

keystream just repeats itself from that point on. Observe that in this stream cipher setting for the Vigenere
Cipher, the encryption and decryption functions are identical to those used in the Shift Cipher: ez(x) = x

+ z and dz (y) = y - z.

Stream ciphers are often described in terms of binary alphabets, i.e., . In this
situation, the encryption and decryption operation are just addition modulo 2:

and

If we think of "0" as representing the boolean value "false" and "1" as representing "true," then addition
modulo 2 corresponds to the exclusive-or operation. Hence, encryption (and decryption) can be
implemented very efficiently in hardware.

Let’s look at another method of generating a (synchronous) keystream. Suppose we start with (k1 , . . . ,

km) and let zi = ki , 1 ≤ i ≤ m (as before), but we now generate the keystream using a linear recurrence

relation of degree m:

where c0 , . . . , are predetermined constants.

REMARK This recurrence is said to have degree m since each term depends on the previous m terms. It is
linear because zi+m is a linear function of previous terms. Note that we can take c0 = 1 without loss of

generality, for otherwise the recurrence will be of degree m - 1.

Here, the key K consists of the 2m values k1 , . . . , km, c0 , . . . , cm-1 . If

then the keystream consists entirely of 0’s. Of course, this should be avoided, as the ciphertext will then be
identical to the plaintext. However, if the constants c0 , . . . , cm-1 are chosen in a suitable way, then any

other initialization vector (k1 , . . . , km) will give rise to a periodic keystream having period 2m - 1. So a

"short" key can give rise to a keystream having a very long period. This is certainly a desirable property:
we will see in a later section how the Vigenere Cipher can be cryptanalyzed by exploiting the fact that the
keystream has short period.

Here is an example to illustrate.

Example 1.7

Suppose m = 4 and the keystream is generated using the rule

(i ≥ 1). If the keystream is initialized with any vector other than (0, 0, 0, 0), then we obtain a keystream of
period 15. For example, starting with (1, 0, 0, 0), the keystream is

Any other non-zero initialization vector will give rise to a cyclic permutation of the same keystream.

Another appealing aspect of this method of keystream generation is that the keystream can be produced
efficiently in hardware using a linear feedback shift register, or LFSR. We would use a shift register with
m stages. The vector (k1 , . . . , km) would be used to initialize the shift register. At each time unit, the

following operations would be performed concurrently:

1. k1 would be tapped as the next keystream bit

2. k2 , . . . , km would each be shifted one stage to the left

3. the "new" value of km would be computed to be

(this is the "linear feedback").

Figure 1.8 A Linear Feedback Shift Register

Figure 1.9 Autokey Cipher

Observe that the linear feedback is carried out by tapping certain stages of the register (as specified by the
constants cj having the value "1") and computing a sum modulo 2 (which is an exclusive-or). This is

illustrated in Figure 1.8, where we depict the LFSR that will generate the keystream of Example 1.7.

An example of a non-synchronous stream cipher that is known as the Autokey Cipher is given in Figure
1.9. It is apparently due to Vigenere.

The reason for the terminology "autokey" is that the plaintext is used as the key (aside from the initial
"priming key" K). Here is an example to illustrate:

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Example 1.8

Suppose the key is K = 8, and the plaintext is

 rendezvous.

We first convert the plaintext to a sequence of integers:

17 4 13 3 4 25 21 14 20 18

The keystream is as follows:

8 17 4 13 3 4 25 21 14 20

Now we add corresponding elements, reducing modulo 26:

25 21 17 16 7 3 20 9 8 12

In alphabetic form, the ciphertext is:

 ZVRQHDUJIM.

Now let’s look at how Alice decrypts the ciphertext. She will first convert the alphabetic string to the
numeric string

25 21 17 16 7 3 20 9 8 12

Then she can compute

Next,

and so on. Each time she obtains another plaintext character, she also uses it as the next keystream
element.

Of course, the Autokey Cipher is insecure since there are only 26 possible keys.

In the next section, we discuss methods that can be used to cryptanalyze the various cryptosystems we
have presented.

1.2 Cryptanalysis

In this section, we discuss some techniques of cryptanalysis. The general assumption that is usually made
is that the opponent, Oscar, knows the cryptosystem being used. This is usually referred to as Kerckhoff’s
principle. Of course, if Oscar does not know the cryptosystem being used, that will make his task more
difficult. But we do not want to base the security of a cryptosystem on the (possibly shaky) premise that
Oscar does not know what system is being employed. Hence, our goal in designing a cryptosystem will be
to obtain security under Kerckhoff’s principle.

First, we want to differentiate between different levels of attacks on cryptosystems. The most common
types are enumerated as follows.

Ciphertext-only
The opponent possesses a string of ciphertext, y.

Known plaintext
The opponent possesses a string of plaintext, x, and the corresponding ciphertext, y.

Chosen plaintext
The opponent has obtained temporary access to the encryption machinery.
Hence he can choose a plaintext string, x, and construct the corresponding ciphertext string, y.

Chosen ciphertext
The opponent has obtained temporary access to the decryption machinery. Hence he can choose
a ciphertext string, y, and construct the corresponding plaintext string, x.

In each case, the object is to determine the key that was used. We note that a chosen ciphertext attack is
relevant to public-key cryptosystems, which we discuss in the later chapters.

We first consider the weakest type of attack, namely a ciphertext-only attack. We also assume that the
plaintext string is ordinary English text, without punctuation or "spaces." (This makes cryptanalysis more
difficult than if punctuation and spaces were encrypted.)

Many techniques of cryptanalysis use statistical properties of the English language. Various people have
estimated the relative frequencies of the 26 letters by compiling statistics from numerous novels,
magazines, and newspapers. The estimates in Table 1.1 were obtained by Beker and Piper.

On the basis of the above probabilities, Beker and Piper partition the 26 letters into five groups as follows:

1. E, having probability about 0.120
2. T, A, O, I, N, S, H, R, each having probabilities between 0.06 and 0.09
3. D, L, each having probabilities around 0.04
4. C, U, M, W, F, G, Y, P, B, each having probabilities between 0.015 and 0.028

5. V, K, J, X, Q, Z, each having probabilities less than 0.01.

It may also be useful to consider sequences of two or three consecutive letters called digrams and
trigrams, respectively. The 30 most common digrams are (in decreasing order) TH, HE, IN, ER, AN, RE,
ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, AR, TE, SE, HI, and OF.
The twelve most common trigrams are (in decreasing order) THE ING, AND, HER, ERE, ENT, THA,
NTH, WAS, ETH, FOR, and DTH.

letter probability letter probability

A .082 N .067

B .015 O .075

C .028 P .019

D .043 Q .001

E .127 R .060

F .022 S .063

G .020 T .091

H .061 U .028

I .070 V .010

J .002 W .023

K .008 X .001

L .040 Y .020

M .024 Z .001

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

1.2.1 Cryptanalysis of the Affine Cipher

As a simple illustration of how cryptanalysis can be performed using statistical data, let’s look first at the
Affine Cipher . Suppose Oscar has intercepted the following ciphertext:

Example 1.9

Ciphertext obtained from an Affine Cipher

 FMXVEDKAPHFERBNDKRXRSREFMORUDSDKDVSHVUFEDK
 APRKDLYEVLRHHRH

The frequency analysis of this ciphertext is given in Table 1.2.

There are only 57 characters of ciphertext, but this is sufficient to cryptanalyze an Affine Cipher . The
most frequent ciphertext characters are: R (8 occurrences), D (7 occurrences), E, H, K (5 occurrences
each), and F, S, V (4 occurrences each). As a first guess, we might hypothesize that R is the encryption of
e and D is the encryption of t, since e and t are (respectively) the two most common letters. Expressed
numerically, we have eK (4) = 17 and eK (19) = 3. Recall that eK (x) = ax + b, where a and b are

unknowns. So we get two linear equations in two unknowns:

letter frequency letter frequency

A 2 N 1

B 1 O 1

C 0 P 2

D 7 Q 0

E 5 R 8

F 4 S 3

G 0 T 0

H 5 U 2

I 0 V 4

J 0 W 0

K 5 X 2

L 2 Y 1

M 2 Z 0

This system has the unique solution a = 6, b = 19 (in). But this is an illegal key, since gcd(a, 26) = 2
> 1. So our hypothesis must be incorrect.

Our next guess might be that R is the encryption of e and E is the encryption of t. Proceeding as above, we
obtain a = 13, which is again illegal. So we try the next possibility, that R is the encryption of e and H is
the encryption of t. This yields a = 8, again impossible. Continuing, we suppose that R is the encryption of
e and K is the encryption of t. This produces a = 3, b = 5, which is at least a legal key. It remains to
compute the decryption function corresponding to K = (3, 5), and then to decrypt the ciphertext to see if
we get a meaningful string of English, or nonsense. This will confirm the validity of (3, 5).

If we perform these operations, we have dK (y) = 9y - 19 and the given ciphertext decrypts to yield:

 algorithmsarequitegeneraldefinitionsofarit
 hmeticprocesses

We conclude that we have determined the correct key.

1.2.2 Cryptanalysis of the Substitution Cipher

Here, we look at the more complicated situation, the Substitution Cipher. Consider the following
ciphertext:

letter frequency letter frequency

A 0 N 9

B 1 O 0

C 15 P 1

D 13 Q 4

E 7 R 10

F 11 S 3

G 1 T 2

H 4 U 5

I 5 V 5

J 11 W 8

K 1 X 6

L 0 Y 10

M 16 Z 20

Example 1.10

Ciphertext obtained from a Substitution Cipher

 YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ
 NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ
 NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ
 XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

The frequency analysis of this ciphertext is given in Table 1.3.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Since Z occurs significantly more often than any other ciphertext character, we might conjecture that
dK (Z) = e. The remaining ciphertext characters that occur at least ten times (each) are C, D, F, J, M, R, Y.

We might expect that these letters are encryptions of (a subset of) t, a, o, i, n, s, h, r, but the frequencies
really do not vary enough to tell us what the correspondence might be.

At this stage we might look at digrams, especially those of the form -Z or Z-since we conjecture that Z
decrypts to e. We find that the most common digrams of this type are DZ and ZW (four times each); NZ
and ZU (three times each); and RZ, HZ, YZ, FZ, ZR, ZV, ZC, ZD, and ZJ (twice each). Since ZW occurs
four times and WZ not at all, and W occurs less often than many other characters, we might guess that
dK (W) = d. Since DZ occurs four times and ZD occurs twice, we would think that DK (D) ∈ { r, s, t}, but it

is not clear which of the three possibilities is the correct one.

If we proceed on the assumption that dK (Z) = e and dK (W) = d, we might look back at the ciphertext and

notice that we have ZRW and RZW both occurring near the beginning of the ciphertext, and RW occurs
again later on. Since R occurs frequently in the ciphertext and nd is a common digram, we might try
dK (R) = n as the most likely possibility.

At this point, we have the following:

 ------end---------e----ned---e------------
 YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ

 --------e----e---------n--d---en----e----e
 NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ

 -e---n------n------ed---e---e--ne-nd-e-e--
 NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ

 -ed-----n-----------e----ed-------d---e--n
 XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

Our next step might be to try dK (N) = h, since NZ is a common digram and ZN is not. If this is correct,

then the segment of plaintext ne - ndhe suggests that dK (C) = a. Incorporating these guesses, we have:

 ------end-----a---e-a--nedh--e------a-----
 YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ

 h-------ea---e-a---a---nhad-a-en--a-e-h--e
 NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ

 he-a-n------n------ed---e---e--neandhe-e--
 NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ

 -ed-a---nh---ha---a-e----ed-----a-d--he--n
 XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

Now, we might consider M, the second most common ciphertext character. The ciphertext segment RNM,
which we believe decrypts to nh-, suggests that h- begins a word, so M probably represents a vowel. We
have already accounted for a and e, so we expect that dK (M) = i or o. Since ai is a much more likely

digram than ao, the ciphertext digram CM suggests that we try dK (M) = i first. Then we have:

 -----iend-----a-i-e-a-inedhi-e------a---i-
 YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ

 h-----i-ea-i-e-a---a-i-nhad-a-en--a-e-hi-e
 NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ

 he-a-n-----in-i----ed---e---e-ineandhe-e--
 NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ

 -ed-a--inhi--hai--a-e-i--ed-----a-d--he--n
 XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

Next, we might try to determine which letter is encrypted to o. Since o is a common letter, we guess that
the corresponding ciphertext letter is one of D, F, J, Y. Y seem to be the most likely possibility, otherwise,
we would get long strings of vowels, namely aoi from CFM or CJM. Hence, let’s suppose dE (Y) = o.

The three most frequent remaining ciphertext letters are D, F, J, which we conjecture could decrypt to r, s,
t in some order. Two occurrences of the trigram NMD suggest that dE (D) = s, giving the trigram his in the

plaintext (this is consistent with our earlier hypothesis that dE (D) ∈ { r, s, t}). The segment HNCMF could

be an encryption of chair, which would give dE (F) = r (and dE (H) = c) and so we would then have dE (J)

= t by process of elimination. Now, we have:

 o-r-riend-ro--arise-a-inedhise--t---ass-it
 YIFQFMZRWQFYVECFMDZPCVMRZWNMDZVEJBTXCDDUMJ

 hs-r-riseasi-e-a-orationhadta-en--ace-hi-e
 NDIFEFMDZCDMQZKCEYFCJMYRNCWJCSZREXCHZUNMXZ

 he-asnt-oo-in-i-o-redso-e-ore-ineandhesett
 NZUCDRJXYYSMRTMEYIFZWDYVZVYFZUMRZCRWNZDZJJ

 -ed-ac-inhischair-aceti-ted--to-ardsthes-n
 XZWGCHSMRNMDHNCMFQCHZJMXJZWIEJYUCFWDJNZDIR

It is now very easy to determine the plaintext and the key for Example 1.10. The complete decryption is
the following:

Our friend from Paris examined his empty glass with surprise, as if evaporation had taken place while
he wasn’t looking. I poured some more wine and he settled back in his chair, face tilted up towards
the sun.1

1P. Mayle, A Year in Provence. A. Knopf, Inc., 1989.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

1.2.3 Cryptanalysis of the Vigenere Cipher

In this section we describe some methods for cryptanalyzing the Vigenere Cipher. The first step is to
determine the keyword length, which we denote by m. There are a couple of techniques that can be
employed. The first of these is the so-called Kasiski test and the second uses the index of coincidence.

The Kasiski test was first described by Friedrich Kasiski in 1863. It is based on the observation that two
identical segments of plaintext will be encrypted to the same ciphertext whenever their occurrence in the
plaintext is x positions apart, where x ≡ 0 mod m. Conversely, if we observe two identical segments of
ciphertext, each of length at least three, say, then there is a good chance that they do correspond to
identical segments of plaintext.

The Kasiski test works as follows. We search the ciphertext for pairs of identical segments of length at
least three, and record the distance between the starting positions of the two segments. If we obtain several
such distances d1 , d2 , . . . , then we would conjecture that m divides the greatest common divisor of the

di ′s.

Further evidence for the value of m can be obtained by the index of coincidence. This concept was defined
by Wolfe Friedman in 1920, as follows.

DEFINITION 1.7 Suppose x = x1x2 . . . xn is a string of n alphabetic characters. The index of

coincidence of x, denoted Ic(x), is defined to be the probability that two random elements of x are

identical. Suppose we denote the frequencies of A, B, C, . . . , Z in x by f0 , f1 , . . . , f25 (respectively). We

can choose two elements of x in ways.2 For each i, 0 ≤ i ≤ 25, there are ways of choosing both
elements to be i. Hence, we have the formula

2The binomial coefficient = n!/(k!(n - k)!) denotes the number of ways of choosing a subset of k objects from a set
of n objects.

Now, suppose x is a string of English language text. Denote the expected probabilities of occurrence of the
letters A, B, . . . , Z in Table 1.1 by p0 , . . . , p25.

Then, we would expect that

since the probability that two random elements both are A is p0
2 , the probability that both are B is p1

2 ,

etc. The same reasoning applies if x is a ciphertext obtained by means of any monoalphabetic cipher. In
this case, the individual probabilities will be permuted, but the quantity

will be unchanged.

Now, suppose we start with a ciphertext y = y1y2 . . . yn that has been constructed by using a Vigenere
Cipher. Define m substrings y1 , y2 , . . . , ym of y by writing out the ciphertext, by columns, in a

rectangular array of dimensions m × (n/m). The rows of this matrix are the substrings y i , 1 ≤ i ≤ m. If this

is done, and m is indeed the keyword length, then each I c(y i< /SUB>) should be roughly equal to 0.065. On

the other hand, if m is not the keyword length, then the substrings y i will look much more random, since

they will have been obtained by shift encryption with different keys. Observe that a completely random
string will have

The two values 0.065 and 0.038 are sufficiently far apart that we will often be able to determine the
correct keyword length (or confirm a guess that has already been made using the Kasiski test).

Let us illustrate these two techniques with an example.

Example 1.11

Ciphertext obtained from a Vigenere Cipher

 CHREEVOAHMAERATBIAXXWTNXBEEOPHBSBQMQEQERBW
 RVXUOAKXAOSXXWEAHBWGJMMQMNKGRFVGXWTRZXWIAK
 LXFPSKAUTEMNDCMGTSXMXBTUIADNGMGPSRELXNJELX
 VRVPRTULHDNQWTWDTYGBPHXTFALJHASVBFXNGLLCHR
 ZBWELEKMSJIKNBHWRJGNMGJSGLXFEYPHAGNRBIEQJT
 AMRVLCRREMNDGLXRRIMGNSNRWCHRQHAEYEVTAQEBBI
 PEEWEVKAKOEWADREMXMTBHHCHRTKDNVRZCHRCLQOHP
 WQAIIWXNRMGWOIIFKEE

First, let’s try the Kasiski test. The ciphertext string CHR occurs in five places in the ciphertext, beginning
at positions 1, 166, 236, 276 and 286. The distances from the first occurrence to the other three
occurrences are (respectively) 165, 235, 275 and 285. The gcd of these four integers is 5, so that is very
likely the keyword length.

Let’s see if computation of indices of coincidence gives the same conclusion. With m = 1, the index of
coincidence is 0.045. With m = 2, the two indices are 0.046 and 0.041. With m = 3, we get 0.043, 0.050,
0.047. With m = 4, we have indices 0.042, 0.039, 0.046, 0.040. Then trying m = 5, we obtain the values
0.063, 0.068, 0.069, 0.061 and 0.072. This also provides strong evidence that the keyword length is five.

Proceeding under this assumption, how do we determine the keyword? It is useful to consider the mutual
index of coincidence of two strings.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

DEFINITION 1.8 Suppose x = x1x2 . . . xn′ and y = y1y2 . . . yn′ are strings of n and n′ alphabetic

characters, respectively. The mutual index of coincidence of x and y, denoted MIc(x, y), is defined to be

the probability that a random element of x is identical to a random element of y. If we denote the
frequencies of A, B, C, . . . , Z in x and y by f0 , f1 , f25 and f′0 , . . . , f′1 , . . . , f′25, respectively, then

MI c(x, y) is seen to be

Now, given that we have determined the value of m, the substrings y i are obtained by shift encryption of

the plaintext. Suppose K = (k1 , k2 , . . . , km) is the keyword. Let us see if we can estimate MI c(yi < /I>,

yj). Consider a random character in y i and a random character in y j . The probability that both

characters are A is , the probability that both are B is , etc. (Note that
all subscripts are reduced modulo 26.) Hence, we estimate that

Observe that the value of this estimate depends only on the difference ki - kj mod 26, which we call the

relative shift of y i and y j . Also, notice that

so a relative shift of yields the same estimate of MIc as does a relative shift of 26 - .

We tabulate these estimates, for relative shifts ranging between 0 to 13, in Table 1.4.

relative shift expected value of MIc

 0 0.065

 1 0.039

 2 0.032

 3 0.034

 4 0.044

 5 0.033

 6 0.036

 7 0.039

 8 0.034

 9 0.034

10 0.038

11 0.045

12 0.039

13 0.043

The important observation is that, if the relative shift is not zero, these estimates vary between 0.031 and
0.045; whereas, a relative shift of zero yields an estimate of 0.065. We can use this observation to

formulate a likely guess for , the relative shift of y i and y j , as follows. Suppose we fix y i ,

and consider the effect of encrypting y j by e0 , e1 , e2 , Denote the resulting strings by , etc. It

is easy to compute the indices , 0 ≤ g ≤ 25. This can be done using the formula

When g = , the MIc should be close to 0.065, since the relative shift of yi and is zero. However, for

values of g ≠ , the MIc should vary between 0.031 and 0.045.

By using this technique, we can obtain the relative shifts of any two of the substrings yi . This leaves only

26 possible keywords, which can easily be obtained by exhaustive key search, for example.

Let us illustrate by returning to Example 1.11.

Example 1.11 (Cont.)

We have hypothesized that the keyword length is 5. We now try to compute the relative shifts. By

computer, it is not difficult to compute the 260 values , where 1 ≤ i ≤ j ≤ 5, 0 ≤ g 25. These

values are tabulated in Table 1.5. For each (i, j) pair, we look for values that are close to
0.065. If there is a unique such value (for a given (i, j) pair), we conjecture that

it is the value of the relative shift.

Six such values in Table 1.5 are boxed. They provide strong evidence that the relative shift of y1 and y2 is

9; the relative shift of y1 and y5 is 16; the relative shift of y2 and y3 is 13; the relative shift of y2 and y5

is 7; the relative shift of y3 and y5 is 20; and the relative shift of y4 and y5 is 11. This gives us the

following equations in the five unknowns k1 , k2 , k3 , k4 , k5 :

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

This allows us to express the five ki ′s in terms of k1 :

So the key is likely to be (k1 , k1 + 17, k1 + 4, k1 + 21, k1 + 10) for some Hence, we suspect

that the keyword is some cyclic shift of AREVK. It now does not take long to determine that the keyword
is JANET. The complete decryption is the following:

The almond tree was in tentative blossom. The days were longer, often ending with magnificent
evenings of corrugated pink skies. The hunting season was over, with hounds and guns put away for
six months. The vineyards were busy again as the well-organized farmers treated their vines and the
more lackadaisical neighbors hurried to do the pruning they should have done in November.3

3P. Mayle, A Year in Provence, A. Knopf, Inc., 1989.

1.2.4 A Known Plaintext Attack on the Hill Cipher

The Hill Cipher is more difficult to break with a ciphertext-only attack, but it succumbs easily to a known
plaintext attack. Let us first assume that the opponent has determined the value of m being used. Suppose
he has at least m distinct pairs of m-tuples, xj = (x1,j , x2,j , . . . , xm,j) and yj = (y1,j , y2,j , . . . , ym,j) (1 ≤ j

≤ m), such that yj = eK (xj < /I>), 1 ≤ j ≤ m. If we define two m × m matrices X = (xi,j) and Y = (yi,j), then

we have the matrix equation Y = XK, where the m × m matrix K is the unknown key. Provided that the
matrix X is invertible, Oscar can compute K = X-1Y and thereby break the system. (If Y is not invertible,
then it will be necessary to try other sets of m plaintext-ciphertext pairs.)

Let’s look at a simple example.

Example 1.12

Suppose the plaintext friday is encrypted using a Hill Cipher with m = 2, to give the ciphertext PQCFKU.

We have that eK (5, 17) = (15, 16), eK (8, 3) = (2, 5) and eK (0, 24) = (10, 20). From the first two

plaintext-ciphertext pairs, we get the matrix equation

Using Theorem 1.3, it is easy to compute

so

This can be verified by using the third plaintext-ciphertext pair.

What would the opponent do if he does not know m? Assuming that m is not too big, he could simply try m
= 2, 3, . . . , until the key is found. If a guessed value of m is incorrect, then an m × m matrix found by
using the algorithm described above will not agree with further plaintext-ciphertext pairs. In this way, the
value of m can be determined if it is not already known.

1.2.5 Cryptanalysis of the LFSR-based Stream Cipher

Recall that the ciphertext is the sum modulo 2 of the plaintext and the keystream, i.e., yi = x i + zi mod 2.

The keystream is produced from z1 , . . . , zm using the linear recurrence relation

where (and c0 = 1).

Since all operations in this cryptosystem are linear, we might suspect that the cryptosystem is vulnerable
to a known-plaintext attack, as is the case with the Hill Cipher. Suppose Oscar has a plaintext string
x1x2 . . . xn and the corresponding ciphertext string y1y2 . . . yn . Then he can compute the keystream

bits zi = x i + y i mod 2, 1 ≤ i ≤ n. Let us also suppose that Oscar knows the value m. Then Oscar needs

only to compute c0 , . . . , cm-1 in order to be able to reconstruct the entire keystream. In other words, he

needs to be able to determine the values of m unknowns.

Now, for any i ≥ 1, we have

which is a linear equation in the m unknowns. If n ≥ 2m, then there are m linear equations in m unknowns,
which can subsequently be solved.

The system of m linear equations can be written in matrix form as follows:

If the coefficient matrix has an inverse (modulo 2), we obtain the solution

In fact, the matrix will have an inverse if m is the degree of the recurrence used to generate the keystream
(see the exercises for a proof). Let’s illustrate with an example.

Example 1.13

Suppose Oscar obtains the ciphertext string

101101011110010

corresponding to the plaintext string

011001111111000.

Then he can compute the keystream bits:

110100100001010.

Suppose also that Oscar knows that the keystream was generated using a 5-stage LFSR. Then he would
solve the following matrix equation, which is obtained from the first 10 keystream bits:

It can be checked that

This yields

= (1, 0, 1, 1, 0).

Thus the recurrence used to generate the keystream is

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

1.3 Notes

Much of the material on classical cryptography is covered in textbooks, for example Beker and Piper
[BP82] and Denning [DE82]. The probability estimates for the 26 alphabetic characters are taken from
Beker and Piper. As well, the cryptanalysis of the Vigenere Cipher is a modification of the description
given in Beker and Piper.

A good reference for elementary number theory is Rosen [Ro93]. Background in elementary linear algebra
can be found in Anton [AN91].

Kahn’s book "The Codebreakers" [KA67] is an entertaining and informative history of cryptography up to
1967. In it, Kahn states that the Vigenere Cipher is incorrectly attributed to Vigenere.

The Hill Cipher was first described in [HI29]. Much information on stream ciphers can be found in the
book by Rueppel [RU86].

Exercises

1.1 Below are given four examples of ciphertext, one obtained from a Substitution Cipher, one
from a Vigenere Cipher, one from an Affine Cipher , and one unspecified. In each case, the task is
to determine the plaintext.

Give a clearly written description of the steps you followed to decrypt each ciphertext. This should
include all statistical analysis and computations you performed.

The first two plaintexts were taken from "The Diary of Samuel Marchbanks," by Robertson Davies,
Clarke Irwin, 1947; the fourth was taken from "Lake Wobegon Days," by Garrison Keillor, Viking
Penguin, Inc., 1985.

(a) Substitution Cipher:

 EMGLOSUDCGDNCUSWYSFHNSFCYKDPUMLWGYICOXYSIPJCK
 QPKUGKMGOLICGINCGACKSNISACYKZSCKXECJCKSHYSXCG
 OIDPKZCNKSHICGIWYGKKGKGOLDSILKGOIUSIGLEDSPWZU
 GFZCCNDGYYSFUSZCNXEOJNCGYEOWEUPXEZGACGNFGLKNS
 ACIGOIYCKXCJUCIUZCFZCCNDGYYSFEUEKUZCSOCFZCCNC
 IACZEJNCSHFZEJZEGMXCYHCJUMGKUCY

HINT F decrypts to w.

(b) Vigenere Cipher:

 KCCPKBGUFDPHQTYAVINRRTMVGRKDNBVFDETDGILTXRGUD
 DKOTFMBPVGEGLTGCKQRACQCWDNAWCRXIZAKFTLEWRPTYC
 QKYVXCHKFTPONCQQRHJVAJUWETMCMSPKQDYHJVDAHCTRL
 SVSKCGCZQQDZXGSFRLSWCWSJTBHAFSIASPRJAHKJRJUMV
 GKMITZHFPDISPZLVLGWTFPLKKEBDPGCEBSHCTJRWXBAFS
 PEZQNRWXCVYCGAONWDDKACKAWBBIKFTIOVKCGGHJVLNHI
 FFSQESVYCLACNVRWBBIREPBBVFEXOSCDYGZWPFDTKFQIY
 CWHJVLNHIQIBTKHJVNPIST

(c) Affine Cipher :

 KQEREJEBCPPCJCRKIEACUZBKRVPKRBCIBQCARBJCVFCUP
 KRIOFKPACUZQEPBKRXPEIIEABDKPBCPFCDCCAFIEABDKP
 BCPFEQPKAZBKRHAIBKAPCCIBURCCDKDCCJCIDFUIXPAFF
 ERBICZDFKABICBBENEFCUPJCVKABPCYDCCDPKBCOCPERK
 IVKSCPICBRKIJPKABI

(d) unspecified cipher:

 BNVSNSIHQCEELSSKKYERIFJKXUMBGYKAMQLJTYAVFBKVT
 DVBPVVRJYYLAOKYMPQSCGDLFSRLLPROYGESEBUUALRWXM
 MASAZLGLEDFJBZAVVPXWICGJXASCBYEHOSNMULKCEAHTQ
 OKMFLEBKFXLRRFDTZXCIWBJSICBGAWDVYDHAVFJXZIBKC
 GJIWEAHTTOEWTUHKRQVVRGZBXYIREMMASCSPBNLHJMBLR
 FFJELHWEYLWISTFVVYFJCMHYUYRUFSFMGESIGRLWALSWM
 NUHSIMYYITCCQPZSICEHBCCMZFEGVJYOCDEMMPGHVAAUM
 ELCMOEHVLTIPSUYILVGFLMVWDVYDBTHFRAYISYSGKVSUU
 HYHGGCKTMBLRX

1.2

(a) How many 2 × 2 matrices are there that are invertible over ?

(b) Let p be prime. Show that the number of 2 × 2 matrices that are invertible over is (p2 -
1)(p2 - p).

HINT Since p is prime, is a field. Use the fact that a matrix over a field is invertible if and
only if its rows are linearly independent vectors (i.e., there does not exist a non-zero linear
combination of the rows whose sum is the vector of all 0′s).

(c) For p prime, and m ≥ 2 an integer, find a formula for the number of m × m matrices that are

invertible over .
1.3 Sometimes it is useful to choose a key such that the encryption operation is identical to the
decryption operation. In the case of the Hill Cipher , we would be looking for matrices K such that K
= K -1 (such a matrix is called involutory). In fact, Hill recommended the use of involutory matrices

as keys in his cipher. Determine the number of involutory matrices (over) in the case m = 2.

HINT Use the formula given in Theorem 1.3 and observe that det A = ±1 for an involutory matrix

over .

1.4 Suppose we are told that the plaintext

 breathtaking

yields the ciphertext

 RUPOTENTOSUP

where the Hill Cipher is used (but m is not specified). Determine the encryption matrix.

1.5 An Affine-Hill Cipher is the following modification of a Hill Cipher : Let m be a positive

integer, and define . In this cryptosystem, a key K consists of a pair (L, b),

where L is an m × m invertible matrix over , and . For x = (x1 , . . . , xm)

and K = (L, b) , we compute y = eK (x) = (y1 , . . . , ym) by means of the formula y = xL + b.

Hence, if and b = (b1 , . . . , bm), then

Suppose Oscar has learned that the plaintext

 adisplayedequation

is encrypted to give the ciphertext

 DSRMSSIOPLXLJBZULLM

and Oscar also knows that m = 3. Compute the key, showing all computations.

1.6 Here is how we might cryptanalyze the Hill Cipher using a ciphertext-only attack. Suppose that
we know that m = 2. Break the ciphertext into blocks of length two letters (digrams). Each such
digram is the encryption of a plaintext digram using the unknown encryption matrix. Pick out the
most frequent ciphertext digram and assume it is the encryption of a common digram in the list
following Table 1.1 (for example, TH or ST). For each such guess, proceed as in the known-plaintext
attack, until the correct encryption matrix is found.

Here is a sample of ciphertext for you to decrypt using this method:

 LMQETXYEAGTXCTUIEWNCTXLZEWUAISPZYVAPEWLMGQWYA
 XFTCJMSQCADAGTXLMDXNXSNPJQSYVAPRIQSMHNOCVAXFV

1.7 We describe a special case of a Permutation Cipher. Let m, n be positive integers. Write out the
plaintext, by rows, in m × n rectangles. Then form the ciphertext by taking the columns of these
rectangles. For example, if m = 4, n = 3, then we would encrypt the plaintext "cryptography" by
forming the following rectangle:

 cryp
 togr
 aphy

The ciphertext would be "CTAROPYGHPRY ."
(a) Describe how Bob would decrypt a ciphertext (given values for m and n).
(b) Decrypt the following ciphertext, which was obtained by using this method of encryption:

 MYAMRARUYIQTENCTORAHROYWDSOYEOUARRGDERNOGW

1.8 There are eight different linear recurrences over of degree four having c0 = 1. Determine

which of these recurrences give rise to a keystream of period 15 (given a non-zero initialization
vector).
1.9 The purpose of this exercise is to prove the statement made in Section 1.2.5 that the m × m
coefficient matrix is invertible. This is equivalent to saying that the rows of this matrix are linearly

independent vectors over .

As before, we suppose that the recurrence has the form

(z1 , . . . , zm) comprises the initialization vector. For i ≥ 1, define

Note that the coefficient matrix has the vectors v1 , . . . , vm as its rows, so our objective is to prove

that these m vectors are linearly independent.

Prove the following assertions:
(a) For any i ≥ 1,

(b) Choose h to be the minimum integer such that there exists a non-trivial linear combination
of the vectors v1 , . . . , vh which sums to the vector (0, . . . , 0) modulo 2. Then

and not all the αj′s are zero. Observe that h ≤ m + 1, since any m + 1 vectors in an
m-dimensional vector space are dependent.

(c) Prove that the keystream must satisfy the recurrence

for any i ≥ 1.

(d) Observe that if h ≤ m, then the keystream satisfies a linear recurrence of degree less than m,
a contradiction. Hence, h = m + 1, and the matrix must be invertible.

1.10 Decrypt the following ciphertext, obtained from the Autokey Cipher, by using exhaustive key
search:

 MALVVMAFBHBUQPTSOXALTGVWWRG

1.11 We describe a stream cipher that is a modification of the Vigenere Cipher. Given a keyword
(K1 , . . . , Km) of length m, construct a keystream by the rule z i = K i (1 ≤ i ≤ m), z i + m = z i + 1

mod 26 (i ≥ m + 1). In other words, each time we use the keyword, we replace each letter by its
successor modulo 26. For example, if SUMMER is the keyword, we use SUMMER to encrypt the first
six letters, we use TVNNFS for the next six letters, and so on.

Describe how you can use the concept of index of coincidence to first determine the length of the
keyword, and then actually find the keyword.

Test your method by cryptanalyzing the following ciphertext:

 IYMYSILONRFNCQXQJEDSHBUIBCJUZBOLFQYSCHATPEQGQ
 JEJNGNXZWHHGWFSUKULJQACZKKJOAAHGKEMTAFGMKVRDO
 PXNEHEKZNKFSKIFRQVHHOVXINPHMRTJPYWQGJWPUUVKFP
 OAWPMRKKQZWLQDYAZDRMLPBJKJOBWIWPSEPVVQMBCRYVC
 RUZAAOUMBCHDAGDIEMSZFZHALIGKEMJJFPCIWKRMLMPIN
 AYOFIREAOLDTHITDVRMSE

The plaintext was taken from "The Codebreakers," by D. Kahn, Macmillan, 1967.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Chapter 2
Shannon’s Theory
In 1949, Claude Shannon published a paper entitled "Communication Theory of Secrecy Systems" in the
Bell Systems Technical Journal. This paper had a great influence on the scientific study of cryptography.
In this chapter, we discuss several of Shannon’s ideas.

2.1 Perfect Secrecy

There are two basic approaches to discussing the security of a cryptosystem.

computational security
This measure concerns the computational effort required to break a cryptosystem. We might
define a cryptosystem to be computationally secure if the best algorithm for breaking it requires
at least N operations, where N is some specified, very large number. The problem is that no
known practical cryptosystem can be proved to be secure under this definition. In practice,
people will call a cryptosystem "computationally secure" if the best known method of breaking
the system requires an unreasonably large amount of computer time (but this is of course very
different from a proof of security). Another approach is to provide evidence of computational
security by reducing the security of the cryptosystem to some well-studied problem that is
thought to be difficult. For example, it may be able to prove a statement of the type "a given
cryptosystem is secure if a given integer n cannot be factored." Cryptosystems of this type are
sometimes termed "provably secure," but it must be understood that this approach only provides
a proof of security relative to some other problem, not an absolute proof of security.1

1This is a similar situation to proving that a problem is NP-complete: it proves that the given problem is at
least as difficult as any other NP-complete problem, but it does not provide an absolute proof of the
computational difficulty of the problem.

unconditional security
This measure concerns the security of cryptosystems when there is no bound placed on the
amount of computation that Oscar is allowed to do. A cryptosystem is defined to be
unconditionally secure if it cannot be broken, even with infinite computational resources.

When we discuss the security of a cryptosystem, we should also specify the type of attack that is being
considered. In Chapter 1, we saw that neither the Shift Cipher, the Substitution Cipher nor the Vigenere
Cipher is computationally secure against a ciphertext-only attack (given a sufficient amount of
ciphertext).

What we will do in this section is to develop the theory of cryptosystems that are unconditionally secure
against a ciphertext-only attack. It turns out that all three of the above ciphers are unconditionally secure if
only one element of plaintext is encrypted with a given key!

The unconditional security of a cryptosystem obviously cannot be studied from the point of view of
computational complexity, since we allow computation time to be infinite. The appropriate framework in
which to study unconditional security is probability theory. We need only elementary facts concerning
probability; the main definitions are reviewed now.

DEFINITION 2.1 Suppose X and Y are random variables. We denote the probability that X takes on
the value x by p(x), and the probability that Y takes on the value y by p(y). The joint probability p(x, y) is
the probability that X takes on the value x and Y takes on the value y. The conditional probability p(x|y)
denotes the probability that X takes on the value x given that Y takes on the value y. The random variables
X and Y are said to be independent if p(x, y) = p(x)p(y) for all possible values x of X and y of Y.

Joint probability can be related to conditional probability by the formula

Interchanging x and y, we have that

From these two expressions, we immediately obtain the following result, which is known as Bayes’
Theorem.

THEOREM 2.1 (Bayes’ Theorem)

If p(y) > 0, then

COROLLARY 2.2

X and Y are independent variables if and only if p(x|y) = p(x) for all x, y.

Throughout this section, we assume that a particular key is used for only one encrypion. Let us suppose

that there is a probability distribution on the plaintext space, . We denote the a priori probability that

plaintext x occurs by . We also assume that the key K is chosen (by Alice and Bob) using some
fixed probability distribution (often a key is chosen at random, so all keys will be equiprobable, but this

need not be the case). Denote the probability that key K is chosen by . Recall that the key is
chosen before Alice knows what the plaintext will be. Hence, we make the reasonable assumption that the
key K and the plaintext x are independent events.

The two probability distributions on and induce a probability distribution on . Indeed, it is not

hard to compute the probability that y is the ciphertext that is transmitted. For a key ,
define

That is, C(K) represents the set of possible ciphertexts if K is the key. Then, for every , we have
that

We also observe that, for any and , we can compute the conditional probability,

 (i.e., the probability that y is the ciphertext, given that x is the plaintext) to be

It is now possible to compute the conditional probability (i.e., the probability that x is the
plaintext, given that y is the ciphertext) using Bayes’ Theorem. The following formula is obtained:

Observe that all these calculations can be performed by anyone who knows the probability distributions.

We present a toy example to illustrate the computation of these probability distributions.

Example 2.1

Let with . Let with

 . Let , and suppose the

encryption functions are defined to be ;

 ; and . This cryptosystem can be
represented by the following encryption matrix:

We now compute the probability distribution . We obtain

Now we can compute the conditional probability distributions on the plaintext, given that a certain
ciphertext has been observed. We have:

We are now ready to define the concept of perfect secrecy. Informally, perfect secrecy means that Oscar
can obtain no information about plaintext by observing the ciphertext. This idea is made precise by
formulating it in terms of the probability distributions we have defined, as follows.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

DEFINITION 2.2 A cryptosystem has perfect secrecy if for all .
That is, the a posteriori probability that the plaintext is x, given that the ciphertext y is observed, is
identical to the a priori probability that the plaintext is x.

In Example 2.1, the perfect secrecy property is satisfied for the ciphertext 3, but not for the other three
ciphertexts.

We next prove that the Shift Cipher provides perfect secrecy. This seems quite obvious intuitively. For, if

we are given any ciphertext element , then any plaintext element is a possible
decryption of y, depending on the value of the key. The following theorem gives the formal statement and
proof using probability distributions.

THEOREM 2.3

Suppose the 26 keys in the Shift Cipher are used with equal probability 1/26. Then for any plaintext
probability distribution, the Shift Cipher has perfect secrecy.

PROOF Recall that , and for 0 ≤ K ≤ 25, the encryption rule eK is eK (x) = x +

K mod 26 . First, we compute the distribution . Let ; then

Now, for fixed y, the values y - K mod 26 comprise a permutation of , and is a probability
distribution. Hence we have that

Consequently,

for any .

Next, we have that

for every x, y, since for every x, y the unique key K such that eK (x) = y is K = y - x mod 26. Now, using

Bayes’ Theorem, it is trivial to compute

so we have perfect secrecy.

So, the Shift Cipher is "unbreakable" provided that a new random key is used to encrypt every plaintext
character.

Let us next investigate perfect secrecy in general. First, we observe that, using Bayes’ Theorem, the

condition that for all is equivalent to for all

 . Now, let us make the reasonable assumption that for all

 , then ciphertext y is never used and can be omitted from). Fix any . For

each , we have . Hence, for each , there must be at least one key K

such that eK (x) = y. It follows that . In any cryptosystem, we must have since each

encoding rule is an injection. In the boundary case , we can give a nice characterization
of when perfect secrecy can be obtained. This characterization is originally due to Shannon.

THEOREM 2.4

Suppose is a cryptosystem where . Then the cryptosystem provides

perfect secrecy if and only if every key is used with equal probability , every , and every

 , there is a unique key K such that eK (x) = y.

PROOF Suppose the given cryptosystem provides perfect secrecy. As observed above, for each

and there must be at least one key K such that eK (x) = y. So we have the inequalities:

But we are assuming that . Hence, it must be the case that

That is, there do not exist two distinct keys K1 and K2 such that . Hence, we have

shown that for any and , there is exactly one key K such that eK (x) = y.

Figure 2.1 One-time Pad

Denote . Let and fix a . We can name the keys K1 , K2 ,..., Kn ,

in such a way that . Using Bayes’ theorem, we have

Consider the perfect secrecy condition . From this, it follows that

 , for 1 ≤ i ≤ n. This says that the keys are used with equal probability (namely,).

But since the number of keys is , we must have that for every .

Conversely, suppose the two hypothesized conditions are satisfied. Then the cryptosystem is easily seen to
provide perfect secrecy for any plaintext probability distribution, in a similar manner as the proof of
Theorem 2.3. We leave the details for the reader.

One well-known realization of perfect secrecy is the Vernam One-time Pad, which was first described by
Gilbert Vernam in 1917 for use in automatic encryption and decryption of telegraph messages. It is
interesting that the One-time Pad was thought for many years to be an "unbreakable" cryptosystem, but
there was no proof of this until Shannon developed the concept of perfect secrecy over 30 years later.

The description of the One-time Pad is given in Figure 2.1.

Using Theorem 2.4, it is easily seen that the One-time Pad provides perfect secrecy. The system is also
attractive because of the ease of encryption and decryption.

Vernam patented his idea in the hope that it would have widespread commercial use. Unfortunately, there
are major disadvantages to unconditionally secure cryptosystems such as the One-time Pad. The fact that

 means that the amount of key that must be communicated securely is at least as big as the
amount of plaintext. For example, in the case of the One-time Pad, we require n bits of key to encrypt n
bits of plaintext. This would not be a major problem if the same key could be used to encrypt different
messages; however, the security of unconditionally secure cryptosystems depends on the fact that each key
is used for only one encryption. (This is the reason for the term "one-time" in the One-time Pad.)

For example, the One-time Pad is vulnerable to a known-plaintext attack, since K can be computed as the
exclusive-or of the bitstrings x and eK (x). Hence, a new key needs to be generated and communicated over

a secure channel for every message that is going to be sent. This creates severe key management problems,
which has limited the use of the One-time Pad in commercial applications. However, the One-time Pad
has seen application in military and diplomatic contexts, where unconditional security may be of great
importance.

The historical development of cryptography has been to try to design cryptosystems where one key can be
used to encrypt a relatively long string of plaintext (i.e., one key can be used to encrypt many messages)
and still maintain (at least) computational security. One such system is the Data Encryption Standard,
which we will study in Chapter 3.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

2.2 Entropy

In the previous section, we discussed the concept of perfect secrecy. We restricted our attention to the
special situation where a key is used for only one encryption. We now want to look at what happens as
more and more plaintexts are encrypted using the same key, and how likely a cryptanalyst will be able to
carry out a successful ciphertext-only attack, given sufficient time.

The basic tool in studying this question is the idea of entropy, a concept from information theory
introduced by Shannon in 1948. Entropy can be thought of as a mathematical measure of information or
uncertainty, and is computed as a function of a probability distribution.

Suppose we have a random variable X which takes on a finite set of values according to a probability
distribution p(X). What is the information gained by an event which takes place according to distribution
p(X)? Equivalently, if the event has not (yet) taken place, what is the uncertainty about the outcome? This
quantity is called the entropy of X and is denoted by H(X).

These ideas may seem rather abstract, so let’s look at a more concrete example. Suppose our random
variable X represents the toss of a coin. The probability distribution is p(heads) = p(tails) = 1/2. It would
seem reasonable to say that the information, or entropy, of a coin toss is one bit, since we could encode
heads by 1 and tails by 0, for example. In a similar fashion, the entropy of n independent coin tosses is n,
since the n coin tosses can be encoded by a bit string of length n.

As a slightly more complicated example, suppose we have a random variable X that takes on three
possible values x1 , x2 , x3 with probabilities 1/2, 1/4, 1/4 respectively. The most efficient "encoding" of

the three possible outcomes is to encode x1 , as 0, to encode x2 as 10 and to encode x3 as 11. Then the

average number of bits in an encoding of X is

The above examples suggest that an event which occurs with probability 2-n can be encoded as a bit string
of length n. More generally, we could imagine that an event occurring with probability p might be encoded
by a bit string of length approximately - log2 p. Given an arbitrary probability distribution p1 , p2 , ..., pn

for a random variable X, we take the weighted average of the quatities - log2 pi to be our measure of

information. This motivates the following formal definition.

DEFINITION 2.3 Suppose X is a random variable which takes on a finite set of values according to a
probability distribution p(X). Then, the entropy of this probability distribution is defined to be the quantity

If the possible values of X are xi , 1 ≤ i ≤ n, then we have

REMARK Observe that log2 pi is undefined if pi = 0. Hence, entropy is sometimes defined to be the

relevant sum over all the non-zero probabilities. Since limx →0 x log2 x = 0, there is no real difficulty

with allowing pi = 0 for some i. However, we will implicitly assume that, when computing the entropy of

a probability distribution pi , the sum is taken over the indices i such that pi ≠ 0. Also, we note that the

choice of two as the base of the logarithms is arbitrary: another base would only change the value of the
entropy by a constant factor.

Note that if pi = 1/n for 1 ≤ i ≤ n, then H(X) = log2 n. Also, it is easy to see that H(X) ≥ 0, and H(X) = 0

if and only if pi = 1 for some i and pj = 0 for all j ≠ i.

Let us look at the entropy of the various components of a cryptosystem. We can think of the key as being a

random variable K that takes on values according to the probability distribution , and hence we can
compute the entropy H(K). Similarly, we can compute entropies H(P) and H(C) associated with plaintext
and ciphertext probability distributions, respectively.

To illustrate, we compute the entropies of the cryptosystem of Example 2.1.

Example 2.1 (Cont.)

We compute as follows:

Similar calculations yield H(K) = 1.5 and .

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

2.2.1 Huffman Encodings and Entropy

In this section, we discuss briefly the connection between entropy and Huffman encodings. As the results
in this section are not relevant to the cryptographic applications of entropy, it may be skipped without loss
of continuity. However, this discussion may serve to further motivate the concept of entropy.

We introduced entropy in the context of encodings of random events which occur according to a specified
probability distribution. We first make these ideas more precise. As before, X is a random variable which
takes on a finite set of values, and p(X) is the associated probability distribution.

An encoding of X is any mapping

where {0, 1}* denotes the set of all finite strings of 0’s and 1’s. Given a finite list (or string) of events x1

... xn , we can extend the encoding f in an obvious way by defining

where || denotes concatenation. In this way, we can think of f as a mapping

Now, suppose a string x1 ... xn is produced by a memoryless source such that each x i occurs according to

the probability distribution on X. This means that the probability of any string x1 ... xn is computed to be

p(x1) × . . . × p(xn). (Notice that this string need not consist of distinct values, since the source is

memoryless. As a simple example, consider a sequence of n tosses of a fair coin.)

Now, given that we are going to encode strings using the mapping f, it is important that we are able to
decode in an unambiguous fashion. Thus it should be the case that the encoding f is injective.

Example 2.2

Suppose X = {a, b, c, d}, and consider the following three encodings:

It can be seen that f and g are injective encodings, but h is not. Any encoding using f can be decoded by
starting at the end and working backwards: every time a 1 is encountered, it signals the end of the current
element.

An encoding using g can be decoded by starting at the beginning and proceeding sequentially. At any
point where we have a substring that is an encoding of a, b, c, or d, we decode it and chop off the
substring. For example, given the string 10101110, we decode 10 to b, then 10 to b, then 111 to d, and
finally 0 to a. So the decoded string is bbda.

To see that h is not injective, it suffices to give an example:

From the point of view of ease of decoding, we would prefer the encoding g to f. This is because decoding
can be done sequentially from beginning to end if g is used, so no memory is required. The property that
allows the simple sequential decoding of g is called the prefix-free property. (An encoding g is prefix-free
if there do not exist two elements x, y ∈ X, and a string z ∈ {0, 1}* such that g(x) = g(y) || z.)

The discussion this point has not involved entropy. Not surprisingly, entropy is related to the efficiency of
an encoding. We will measure the efficiency of an encoding f as we did before: it is the weighted average

length (denoted by) of an encoding of an element of X. So we have the following definition:

where |y| denotes the length of a string y.

Now, our fundamental problem is to find an injective encoding, f, that minimizes . There is a
well-known algorithm, known as Huffman’s algorithm, that accomplishes this goal. Moreover, the
encoding f produced by Huffman’s algorithm is prefix-free, and

Thus, the value of the entropy provides a close estimate to the average length of the optimal injective
encoding.

We will not prove the results stated above, but we will give a short, informal description of Huffman’s
algorithm. Huffman’s algorithm begins with the probability distribution on the set X, and the code of each
element is initially empty. In each iteration, the two elements having lowest probability are combined into
one element having as its probability the sum of the two smaller probabilities. The smaller of the two

elements is assigned the value "0" and the larger of the two elements is assigned the value "1." When only
one element remains, the coding for each x ∈ X can be constructed by following the sequence of elements
"backwards" from the final element to the initial element x.

This is easily illustrated with an example.

Example 2.3

Suppose X = {a, b, c, d, e} has the following probability distribution: p(a) = .05, p(b) = .10, p(c) = .12,
p(d) = .13 and p(e) = .60. Huffman’s algorithm would proceed as indicated in the following table:

This leads to the following encodings:

x f(x)

a 000

b 001

c 010

d 011

e 1

Thus, the average length encoding is

Compare this to the entropy:

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

2.3 Properties of Entropy

In this section, we prove some fundamental results concerning entropy. First, we state a fundamental
result, known as Jensen’s Inequality, that will be very useful to us. Jensen’s Inequality involves concave
functions, which we now define.

DEFINITION 2.4 A real-valued function f is concave on an interval I if

for all x, y ∈ I. f is strictly concave on an interval I if

for all x, y ∈ I, x ≠ y.

Here is Jensen’s Inequality, which we state without proof.

THEOREM 2.5 (Jensen’s Inequality)

Suppose f is a continuous strictly concave function on the interval I,

and ai > 0, 1 ≤ i ≤ n. Then

where xi ∈ I, 1 ≤ i ≤ n. Further, equality occurs if and only if x1 = ... = xn .

We now proceed to derive several results on entropy. In the next theorem, we make use of the fact that the
function log2 x is strictly concave on the interval (0, ∞). (In fact, this follows easily from elementary

calculus since the second deriviative of the logarithm function is negative on the interval (0, ∞).)

THEOREM 2.6

Suppose X is a random variable having probability distribution p1 , p2 , pn , where pi > 0, 1 ≤ i ≤ n. Then

H(X) ≤ log2 n, with equality if and only if pi = 1/n, 1 ≤ i ≤ n.

PROOF Applying Jensen’s Inequality, we have the following:

Further, equality occurs if and only if pi = 1/n, 1 ≤ i ≤ n.

THEOREM 2.7

H (X, Y) ≤ H(X) + H(Y), with equality if and only if X and Y are independent events.

PROOF Suppose X takes on values xi , 1 ≤ i ≤ m, and Y takes on values yj , 1 ≤ j ≤ n. Denote pi = p(X =

xi), 1 ≤ i ≤ m, and qj = p(Y = yj), 1 ≤ j ≤ n. Denote r ij = p(X = xi , Y = yj), 1 ≤ i ≤ m, 1 ≤ j ≤ n (this is the

joint probability distribution).

Observe that

(1 ≤ i ≤ m) and

(1 ≤ j ≤ n). We compute as follows:

On the other hand,

Combining, we obtain the following:

(Here, we apply Jensen’s Inequality, using the fact that the r ij ’s form a probability distribution.)

We can also say when equality occurs: it must be the case that there is a constant c such that pi qj /r<

SUB>ij = c for all i, j. Using the fact that

it follows that c = 1. Hence, equality occurs if and only if r ij = pi qj , i.e., if and only if

1 ≤ i ≤ m, 1 ≤ j ≤ n. But this says that X and Y are independent.

We next define the idea of conditional entropy.

DEFINITION 2.5 Suppose X and Y are two random variables. Then for any fixed value y of Y, we get a
(conditional) probability distribution p(X|y). Clearly,

We define the conditional entropy H(X|Y) to be the weighted average (with respect to the probabilities
p(y)) of the entropies H(X|y) over all possible values y. It is computed to be

The conditional entropy measures the average amount of information about X that is revealed by Y.

The next two results are straightforward; we leave the proofs as exercises.

THEOREM 2.8

H(X, Y) = H(Y) + H(X|Y).

COROLLARY 2.9

H(X|Y) ≤ H(X), with equality if and only if X and Y are independent.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

2.4 Spurious Keys and Unicity Distance

In this section, we apply the entropy results we have proved to cryptosystems. First, we show a
fundamental relationship exists among the entropies of the components of a cryptosystem. The conditional
entropy H(K |C) is called the key equivocation, and is a measure of how much information about the key is
revealed by the ciphertext.

THEOREM 2.10

Let be a cryptosystem. Then

PROOF First, observe that H(K , P, C) = H(C|K , P) + H(K , P). Now, the key and plaintext determine the
ciphertext uniquely, since y = eK (x). This implies that H(C|K , P) = 0. Hence, H(K , P, C) = H(K , P). But

K and P are independent, so H(K , P) = H(K) + H(P). Hence,

In a similar fashion, since the key and ciphertext determine the plaintext uniquely (i.e., x = dK (y)), we

have that H(P|K , C) = 0 and hence H(K , P, C) = H(K , C).

Now, we compute as follows:

giving the desired formula.

Let us return to Example 2.1 to illustrate this result.

Example 2.1 (Cont.)

We have already computed and . Theorem 2.10 tells

us that . This can be verified directly by applying the
definition of conditional entropy, as follows. First, we need to compute the probabilities p(K i |j), 1 ≤ i ≤ 3,

1 ≤ j ≤ 4. This can be done using Bayes’ Theorem, and the following values result:

Now we compute

agreeing with the value predicted by Theorem 2.10.

Suppose the cryptosystem being used, and a string of plaintext

is encrypted with one key, producing a string of ciphertext

Recall that the basic goal of the cryptanalyst is to determine the key. We are looking at ciphertext-only
attacks, and we assume that Oscar has infinite computational resources. We also assume that Oscar knows
that the plaintext is a "natural" language, such as English. In general, Oscar will be able to rule out certain
keys, but many "possible" keys may remain, only one of which is the correct key. The remaining possible,
but incorrect, keys are called spurious keys.

For example, suppose Oscar obtains the ciphertext string WNAJW, which has been obtained by encryption
using a shift cipher. It is easy to see that there are only two "meaningful" plaintext strings, namely river
and arena, corresponding respectively to the possible encryption keys F (= 5) and W (= 22). Of these two
keys, one will be the correct key and the other will be spurious. (Actually, it is moderately difficult to find
a ciphertext of length 5 for the Shift Cipher that has two meaningful decryptions; the reader might search
for other examples.)

Our goal is to prove a bound on the expected number of spurious keys. First, we have to define what we
mean by the entropy (per letter) of a natural language L, which we denote HL . HL should be a measure of

the average information per letter in a "meaningful" string of plaintext. (Note that a random string of

alphabetic characters would have entropy (per letter) equal to log2 .) As a "first-order"

approximation to HL , we could take H(P). In the case where L is the English language, we get

 by using the probability distribution given in Table 1.1.

Of course, successive letters in a language are not independent, and correlations among successive letters
reduce the entropy. For example, in English, the letter "Q" is always followed by the letter "U." For a
"second-order" approximation, we would compute the entropy of the probability distribution of all
digrams and then divide by 2. In general, define Pn to be the random variable that has as its probability
distribution that of all n-grams of plaintext. We make use of the following definitions.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

DEFINITION 2.6 Suppose L is a natural language. The entropy of L is defined to be the quantity

and the redundancy of L is defined to be

REMARK HL< /SUB> measures the entropy letter of the language L. A random language would have

entropy log2 . So the quantity RL measures the fraction of "excess characters," which we think of as

redundancy.

In the case of the English language, a tabulation of a large number of digrams and their frequencies

would produce an estimate for H(P2). is one estimate obtained in this way. One could
continue, tabulating trigrams, etc. and thus obtain an estimate for HL . In fact, various experiments have

yielded the

empirical result that 1.0 ≤ HL ≤ 1.5. That is, the average information content in English is something like

one to one and a half bits per letter!

Using 1.25 as our estimate of HL gives a redundancy of about 0.75. This means that the English language

is 75% redundant! (This is not to say that one can arbitrarily remove three out of every four letters from
English text and hope to still be able to read it. What it does mean is that it is possible to find a Huffman
encoding of n-grams, for a large enough value of n, which will compress English text to about one quarter
of its original length.)

Given probability distributions on and , we can define the induced probability distribution on
, the set of n-grams of ciphertext (we already did this in the case n = 1). We have defined Pn to be a
random variable representing an n-gram of plaintext. Similarly, define Cn to be a random variable
representing an n-gram of ciphertext.

Given y ∈ Cn , define

That is, K(y) is the set of keys K for which y is the encryption of a meaningful string of plaintext of length
n, i.e., the set of "possible" keys, given that y is the ciphertext. If y is the observed sequence of ciphertext,
then the number of spurious keys is |K(y)| - 1, since only one of the "possible" keys is the correct key. The

average number of spurious keys (over all possible ciphertext strings of length n) is denoted by . Its
value is computed to be

From Theorem 2.10, we have that

Also, we can use the estimate

provided n is reasonably large. Certainly,

Then, if , it follows that

Next, we relate the quantity H(K|Cn) to the number of spurious keys, . We compute as follows:

where we apply Jensen’s Inequality (Theorem 2.5) with f(x) = log2 x. Thus we obtain the inequality

Combining the two inequalities (2.1) and (2.2), we get that

In the case where keys are chosen equiprobably (which maximizes H(K)), we have the following result.

THEOREM 2.11

Suppose is a cryptosystem where and keys are chosen equiprobably. Let RL

denote the redundancy of the underlying language. Then given a string of ciphertext of length n, where n

is sufficiently large, the expected number of spurious keys, , satisfies

The quantity approaches 0 exponentially quickly as n increases. Also, note that the
estimate may not be accurate for small values of n, especially since H(Pn)/n may not be a good estimate
for HL if n is small.

We have one more concept to define.

DEFINITION 2.7 The unicity distance of a cryptosystem is defined to be the value of n, denoted by n0 ,

at which the expected number of spurious keys becomes zero; i.e., the average amount of ciphertext
required for an opponent to be able to uniquely compute the key, given enough computing time.

If we set in Theorem 2.11 and solve for n, we get an estimate for the unicity distance, namely

As an example, consider the Substitution Cipher. In this cryptosystem, and !. If
we take RL = 0.75, then we get an estimate for the unicity distance of

This suggests that, given a ciphertext string of length at least 25, (usually) a unique decryption is possible.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

2.5 Product Cryptosystems

Another innovation introduced by Shannon in his 1949 paper was the idea of combining cryptosystems by
forming their "product." This idea has been of fundamental importance in the design of present-day
cryptosystems such as the Data Encryption Standard, which we study in the next chapter.

For simplicity, we will confine our attention in this section to cryptosystems in which :

cryptosystems of this type are called endomorphic. Suppose and

 are two endomorphic cryptosystems which have the same plaintext (and
ciphertext) spaces. Then the product of S1 and S2 , denoted by S1 × S2 , is defined to be the cryptosystem

A key of the product cryptosystem has the form K = (K1 , K2), where and . The

encryption and decryption rules of the product cryptosystem are defined as follows: For each K = (K1 ,

K2), we have an encryption rule eK defined by the formula

and a decryption rule defined by the formula

That is, we first encrypt x with , and then "re-encrypt" the resulting ciphertext with .
Decrypting is similar, but it must be done in the reverse order:

Recall also that cryptosystems have probability distributions associated with their keyspaces. Thus we

need to define the probability distribution for the keyspace of the product cryptosystem. We do this in a
very natural way:

Figure 2.2 Multiplicative Cipher

In other words, choose K1 using the distribution , and then independently choose K2 using the

distribution .

Here is a simple example to illustrate the definition of a product cryptosystem. Suppose we define the
Multiplicative Cipher as in Figure 2.2.

Suppose M is the Multiplicative Cipher (with keys chosen equiprobably) and S is the Shift Cipher (with
keys chosen equiprobably). Then it is very easy to see that M × S is nothing more than the Affine Cipher
(again, with keys chosen equiprobably). It is slightly more difficult to show that S × M is also the Affine
Cipher with equiprobable keys.

Let’s prove these assertions. A key in the Shift Cipher is an element , and the corresponding

encryption rule is eK (x) = x + K mod 26. A key in the Multiplicative Cipher is an element

such that gcd(a, 26) = 1; the corresponding encryption rule is ea (x) = ax mod 26. Hence, a key in the

product cipher M × S has the form (a, K), where

But this is precisely the definition of a key in the Affine Cipher . Further, the probability of a key in the
Affine Cipher is 1/312 = 1/12 × 1/26, which is the product of the probabilities of the keys a and K,
respectively. Thus M × S is the Affine Cipher .

Now let’s consider S × M . A key in this cipher has the form (K, a), where

Thus the key (K, a) of the product cipher S × M is identical to the key (a, aK) of the Affine Cipher . It
remains to show that each key of the Affine Cipher arises with the same probability 1/312 in the product
cipher S × M . Observe that aK = K1 if and only if K = a -1K1 (recall that gcd(a, 26) = 1, so a has a

multiplicative inverse). In other words, the key (a, K1) of the Affine Cipher is equivalent to the key

(a -1K1< /SUB>, a) of the product cipher S × M . We thus have a bijection between the two key spaces. Since each key is equiprobable,

we conclude that S × M is indeed the Affine Cipher .

We have shown that M × S = S × M . Thus we would say that the two cryptosystems commute. But not all pairs of cryptosystems commute;
it is easy to find counterexamples. On the other hand, the product operation is always associative: (S1 × S2) × S3 = S1 × (S2 × S3).

If we take the product of an (endomorphic) cryptosystem S with itself, we obtain the cryptosystem S × S, which we denote by S2. If we

take the n-fold product, the resulting cryptosystem is denoted by Sn . We call Sn an iterated cryptosystem.

A cryptosystem S is defined to be idempotent if S2 = S. Many of the cryptosystems we studied in Chapter 1 are idempotent. For example,
the Shift, Substitution, Affine, Hill, Vigenere and Permutation Ciphers are all idempotent. Of course, if a cryptosystem S is idempotent,
then there is no point in using the product system S2, as it requires an extra key but provides no more security.

If a cryptosystem is not idempotent, then there is a potential increase in security by iterating several times. This idea is used in the Data
Encryption Standard, which consists of 16 iterations. But, of course, this approach requires a non-idempotent cryptosystem to start with.
One way in which simple non-idempotent cryptosystems can sometimes be constructed is to take the product of two different (simple)
cryptosystems.

REMARK It is not hard to show that if S1 and S2 are both idempotent and they commute, then S1 × S2 will also be idempotent. This

follows from the following algebraic manipulations:

(Note the use of the associative property in this proof.)

So, if S1 and S2 are both idempotent, and we want S1 × S2 to be non-idempotent, then it is necessary that S1 and S2 not commute.

Fortunately, many simple cryptosystems are suitable building blocks in this type of approach. Taking the product of substitution-type
ciphers with permutation-type ciphers is a commonly used technique. We will see a realization of this in the next chapter.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

2.6 Notes

The idea of perfect secrecy and the use of entropy techniques in cryptography was pioneered by Shannon
[SH49]. Product cryptosystems are also discussed in this paper. The concept of entropy was defined by
Shannon in [SH48]. Good introductions to entropy, Huffman coding and related topics can be found in the
books by Welsh [WE88] and Goldie and Pinch [GP91].

The results of Section 2.4 are due to Beauchemin and Brassard [BB88], who generalized earlier results of
Shannon.

Exercises

2.1 Let n be a positive integer. A Latin square of order n is an n × n array L of the integers 1, ..., n
such that every one of the n integers occurs exactly once in each row and each column of L. An
example of a Latin square of order 3 is as follows:

1 2 3

3 1 2

2 3 1

Given any Latin square L of order n, we can define a related cryptosystem. Take

 . For 1 ≤ i ≤ n, the encryption rule ei is defined to be ei (j) = L(i, j).

(Hence each row of L gives rise to one encryption rule.)

Give a complete proof that this Latin square cryptosystem achieves perfect secrecy.

2.2 Prove that the Affine Cipher achieves perfect secrecy.
2.3 Suppose a cryptosystem achieves perfect secrecy for a particular plaintext probability
distribution p0 . Prove that perfect secrecy is maintained for any plaintext probability distribution.

2.4 Prove that if a cryptosystem has perfect secrecy and , then every ciphertext is
equally probable.
2.5 Suppose X is a set of cardinality n, where 2k ≤ n < 2k+1, and p(x) = 1/n for all x ∈ X.

(a) Find a prefix-free encoding of X, say f, such that .

HINT < /SMALL> Encode 2k+1 - n elements of X as strings of length k, and encode the remaining elements as
strings of length k + 1.

(b) Illustrate your construction for n = 6. Compute and H(X) in this case.
2.6 Suppose X = {a, b, c, d, e} has the following probability distribution: p(a) = .32, p(b) = .23, p(q) = .20, p(d) = .15 and
p(e) = .10. Use Huffman’s algorithm to find the optimal prefix-free encoding of X. Compare the length of this encoding to
H(X).
2.7 Prove that H(X, Y) = H(Y) + H(X|Y). Then show as a corollary that H(X|Y) ≤ H(X), with equality if and only if X
and Y are independent.
2.8 Prove that a cryptosystem has perfect secrecy if and only if H(P|C) = H(P).
2.9 Prove that, in any cryptosystem, H(K |C) ≥ H(P|C). (Intuitively, this result says that, given a ciphertext, the
opponent’s uncertainty about the key is at least as great as his uncertainty about the plaintext.)

2.10 Consider a cryptosystem in which .
Suppose the encryption matrix is as follows:

Given that keys are chosen equiprobably, and the plaintext probability distribution is

 , compute H(P), H(C), H(K), H(K |C) and H(P|C).

2.11 Compute H(K |C) and H(K |P, C) for the Affine Cipher .
2.12 Consider a Vigenere Cipher with keyword length m. Show that the unicity distance is 1/RL , where RL is the

redundancy of the underlying language. (This result is interpreted as follows. If n0 denotes the number of alphabetic

characters being encrypted, then the "length" of the plaintext is n0/m, since each plaintext element consists of m

alphabetic characters. So, a unicity distance of 1/RL corresponds to a plaintext consisting of m/RL alphabetic characters.)

2.13 Show that the unicity distance of the Hill Cipher (with an m × m encryption matrix) is less than m/RL (Note that

the number of alphabetic characters in a plaintext of this length is m2/RL< /I>.)

2.14 A Substitution Cipher over a plaintext space of size n has Stirling’s formula gives the following
estimate for n!:

(a) Using Stirling’s formula, derive an estimate of the unicity distance of the Substitution Cipher.
(b) Let m ≥ 1 be an integer. The m-gram Substitution Cipher is the Substitution Cipher where the plaintext (and
ciphertext) spaces consist of all 26m m-grams. Estimate the unicity distance of the m-gram Substitution Cipher if
RL = 0.75.

2.15 Prove that the Shift Cipher is idempotent.
2.16 Suppose S1 is the Shift Cipher (with equiprobable keys, as usual) and S2 is the Shift Cipher where keys are

chosen with respect to some probability distribution (which need not be equiprobable). Prove that S1 × S2 = S1.

2.17 Suppose S1 and S2 are Vigenere Ciphers with keyword lengths m1, m2 respectively, where m1 > m2.

(a) If m2 | m1, then show that S2 × S1 = S1.

(b) One might try to generalize the previous result by conjecturing that S2 × S1 = S3, where S3 is the Vigenere
Cipher with keyword length lcm(m1, m2). Prove that this conjecture is false.

HINT If mod m2, then the number of keys in the product cryptosystem S2 × S1 is than the number

of keys in S3.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Chapter 3
The Data Encryption Standard

3.1 Introduction

On May 15, 1973, the National Bureau of Standards published a solicitation for cryptosystems in the
Federal Register. This lead ultimately to the development of the Data Encryption Standard, or DES,
which has become the most widely used cryptosystem in the world. DES was developed at IBM, as a
modification of an earlier system known as LUCIFER. DES was first published in the Federal Register of
March 17, 1975. After a considerable amount of public discussion, DES was adopted as a standard for
"unclassified" applications on January 15, 1977. DES has been reviewed by the National Bureau of
Standards (approximately) every five years since its adoption. Its most recent renewal was in January
1994, when it was renewed until 1998. It is anticipated that it will not remain a standard past 1998.

3.2 Description of DES

A complete description of DES is given in the Federal Information Processing Standards Publication 46,
dated January 15, 1977. DES encrypts a plaintext bitstring x of length 64 using a key K which is a bitstring
of length 56, obtaining a ciphertext bitstring which is again a bitstring of length 64. We first give a
"high-level" description of the system.

The algorithm proceeds in three stages:

1. Given a plaintext x, a bitstring x0 is constructed by permuting the bits of x according to a (fixed)

initial permutation IP. We write x0 = IP (x) = L0R0 , where L0 comprises the first 32 bits of x0 and

R0 the last 32 bits.

2. 16 iterations of a certain function are then computed. We compute L i Ri ,

Figure 3.1 One round of DES encryption

1 ≤ i ≤ 16, according to the following rule:

where ⊕ denotes the exclusive-or of two bitstrings. f is a function that we will describe later, and K1 ,

K2 , . . . , K16 are each bitstrings of length 48 computed as a function of the key K. (Actually, each

K i is a permuted selection of bits from K.) K1 , K2 , . . . , K16 comprises the key schedule. One round

of encryption is depicted in Figure 3.1

3. Apply the inverse permutation IP-1 to the bitstring R16L16< /SUB>, obtaining the ciphertext y. That is, y =

IP-1(R16L< /I> 16). Note the inverted order of L16 and R16.

The function f takes as input a first argument A, which is a bitstring of length 32, and a second argument J that is a bitstring of length 48,
and produces as output a bitstring of length 32. The following steps are executed.

1. The first argument A is "expanded" to a bitstring of length 48 according to a fixed expansion function E. E(A) consists of the 32
bits from A, permuted in a certain way, with 16 of the bits appearing twice.

Figure 3.2 The DES f function

2. Compute E(A) ⊕ J and write the result as the concatenation of eight 6-bit strings B = B1B2< I>B 3B4< I>B5B6<

I>B7B8 .

3. The next step uses eight S-boxes S1 , . . . , S8 . Each Si is a fixed 4 × 16 array whose entries come

from the integers 0 - 15. Given a bitstring of length six, say Bj = b1b2< I>b3b4< I>b5b6 , we

compute Sj (Bj) as follows. The two bits b1b6 determine the binary representation of a row r of Sj (0

≤ r ≤ 3), and the four bits b2b3< I>b4b5 determine the binary representation of a column c of Sj (0

≤ c ≤ 15). Then Sj (Bj) is defined to be the entry Sj (r, c), written in binary as a bitstring of length

four. (Hence, each Sj can be thought of as a function that accepts as input a bitstring of length two

and one of length four, and produces as output a bitstring of length four.) In this fashion, we compute
Cj = Sj (Bj < /I>), 1 ≤ j ≤ 8.

4. The bitstring C = C1C2< I>C 3C4< I>C5C6< I>C7C8 of length 32 is permuted according to a

fixed permutation P. The resulting bitstring P(C) is defined to be f(A, J).

The f function is depicted in Figure 3.2. Basically, it consists of a substitution (using an S-box) followed
by the (fixed) permutation P. The 16 iterations of f comprise a product cryptosystem, as described in
Section 2.5.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

In the remainder of this section, we present the specific functions used in DES.

The initial permutation IP is as follows:

IP

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

This means that the 58th bit of x is the first bit of IP(x); the 50th bit of x is the second bit of IP(x), etc.

The inverse permutation IP-1 is:

IP -1

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

The expansion function E is specified by the following table:

E bit-selection table

32 1 2 3 4 5

 4 5 6 7 8 9

 8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

The eight S-boxes and the permutation P are now presented:

S 1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S 2

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S 3

10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S 4

 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S 5

 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S 6

12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S 7

 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1

13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6

 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2

 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S 8

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

P

16 7 20 21

29 12 28 17

 1 15 23 26

 5 18 31 10

 2 8 24 14

32 27 3 9

19 13 30 6

22 11 4 25

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Finally, we need to describe the computation of the key schedule from the key K. Actually, K is a bitstring
of length 64, of which 56 bits comprise the key and 8 bits are parity-check bits (for error-detection). The
bits in positions 8, 16, . . . , 64 are defined so that each byte contains an odd number of 1’s. Hence, a single
error can be detected within each group of 8 bits. The parity-check bits are ignored in the computation of
the key schedule.

1. Given a 64-bit key K, discard the parity-check bits and permute the remaining bits of K according
to a (fixed) permutation PC-1. We will write PC-1 (K) = C0D0 , where C0 comprises the first 28 bits

of PC-1(K) and D0 the last 28 bits.

2. For i ranging from 1 to 16, compute

and K i = PC-2(C i D i). LS i represents a cyclic shift (to the left) of either one or two positions,

depending on the value of i: shift one position if i = 1, 2, 9 or 16, and shift two positions otherwise.
PC-2 is another fixed permutation.

The key schedule computation is depicted in Figure 3.3.

The permutations PC-1 and PC-2 used in the key schedule computation are as follows:

PC-1

57 49 41 33 25 17 9

 1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

 7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

Figure 3.3 Computation of DES key schedule

PC-2

14 17 11 24 1 5

 3 28 15 6 21 10

23 19 12 4 26 8

16 7 27 20 13 2

41 52 31 37 47 55

30 40 51 45 33 48

44 49 39 56 34 53

46 42 50 36 29 32

We now display the resulting key schedule. As mentioned above, each round uses a 48-bit key comprised
of 48 of the bits in K. The entries in the tables below refer to the bits in K that are used in the various
rounds.

Round 1

10 51 34 60 49 17 33 57 2 9 19 42

 3 35 26 25 44 58 59 1 36 27 18 41

22 28 39 54 37 4 47 30 5 53 23 29

61 21 38 63 15 20 45 14 13 62 55 31

Round 2

 2 43 26 52 41 9 25 49 59 1 11 34

60 27 18 17 36 50 51 58 57 19 10 33

14 20 31 46 29 63 39 22 28 45 15 21

53 13 30 55 7 12 37 6 5 54 47 23

Round 3

51 27 10 36 25 58 9 33 43 50 60 18

44 11 2 1 49 34 35 42 41 3 59 17

61 4 15 30 13 47 23 6 12 29 62 5

37 28 14 39 54 63 21 53 20 38 31 7

Round 4

35 11 59 49 9 42 58 17 27 34 44 2

57 60 51 50 33 18 19 26 25 52 43 1

45 55 62 14 28 31 7 53 63 13 46 20

21 12 61 23 38 47 5 37 4 22 15 54

Round 5

19 60 43 33 58 26 42 1 11 18 57 51

41 44 35 34 17 2 3 10 9 36 27 50

29 39 46 61 12 15 54 37 47 28 30 4

 5 63 45 7 22 31 20 21 55 6 62 38

Round 6

 3 44 27 17 42 10 26 50 60 2 41 35

25 57 19 18 1 51 52 59 58 49 11 34

13 23 30 45 63 62 38 21 31 12 14 55

20 47 29 54 6 15 4 5 39 53 46 22

Round 7

52 57 11 1 26 59 10 34 44 51 25 19

 9 41 3 2 50 35 36 43 42 33 60 18

28 7 14 29 47 46 22 5 15 63 61 39

 4 31 13 38 53 62 55 20 23 37 30 6

Round 8

36 41 60 50 10 43 59 18 57 35 9 3

58 25 52 51 34 19 49 27 26 17 44 2

12 54 61 13 31 30 6 20 62 47 45 23

55 15 28 22 37 46 39 4 7 21 14 53

Round 9

57 33 52 42 2 35 51 10 49 27 1 60

50 17 44 43 26 11 41 19 18 9 36 59

 4 46 53 5 23 22 61 12 54 39 37 15

47 7 20 14 29 38 31 63 62 13 6 45

Round 10

41 17 36 26 51 19 35 59 33 11 50 44

34 1 57 27 10 60 25 3 2 58 49 43

55 30 37 20 7 6 45 63 38 23 21 62

31 54 4 61 13 22 15 47 46 28 53 29

Round 11

25 1 49 10 35 3 19 43 17 60 34 57

18 50 41 11 59 44 9 52 51 42 33 27

39 14 21 4 54 53 29 47 22 7 5 46

15 38 55 45 28 6 62 31 30 12 37 13

Round 12

 9 50 33 59 19 52 3 27 1 44 18 41

 2 34 25 60 43 57 58 36 35 26 17 11

23 61 5 55 38 37 13 31 6 54 20 30

62 22 39 29 12 53 46 15 14 63 21 28

Round 13

58 34 17 43 3 36 52 11 50 57 2 25

51 18 9 44 27 41 42 49 19 10 1 60

 7 45 20 39 22 21 28 15 53 38 4 14

46 6 23 13 63 37 30 62 61 47 5 12

Round 14

42 18 1 27 52 49 36 60 34 41 51 9

35 2 58 57 11 25 26 33 3 59 50 44

54 29 4 23 6 5 12 62 37 22 55 61

30 53 7 28 47 21 14 46 45 31 20 63

Round 15

26 2 50 11 36 33 49 44 18 25 35 58

19 51 42 41 60 9 10 17 52 43 34 57

38 13 55 7 53 20 63 46 21 6 39 45

14 37 54 12 31 5 61 30 29 15 4 47

Round 16

18 59 42 3 57 25 41 36 10 17 27 50

11 43 34 33 52 1 2 9 44 35 26 49

30 5 47 62 45 12 55 38 13 61 31 37

 6 29 46 4 23 28 53 22 21 7 63 39

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Decryption is done using the same algorithm as encryption, starting with y as the input, but using the key
schedule K16, . . . , K1 in reverse order. The output will be the plaintext x.

3.2.1 An Example of DES Encryption

Here is an example of encryption using the DES. Suppose we encrypt the (hexadecimal) plaintext

0123456789ABCDEF

using the (hexadecimal) key

133457799BBCDFF1.

The key, in binary, without parity-check bits, is

< TT>00010010011010010101101111001001101101111011011111111000.

Applying IP, we obtain L0 and R0 (in binary):

The 16 rounds of encryption are then performed, as indicated.

Finally, applying IP-1 to R16L16< /SUB>, we obtain the ciphertext, which (in hexadecimal form) is:

85E813540F0AB405.

3.3 The DES Controversy
When DES was proposed as a standard, there was considerable criticism. One objection to DES concerned the S-boxes. All computations in
DES, with the exception of the S-boxes, are linear, e.g., computing the exclusive-or of two outputs is the same as forming the exclusive-or
of two inputs and then computing the output. The S-boxes, being the non-linear component of the cryptosystem, are vital to its security (We
saw in Chapter 1 how linear cryptosystems, such as the Hill Cipher, could easily be cryptanalyzed by a known plaintext attack.) However,
the design criteria of the S-boxes are not completely known. Several people have suggested that the S-boxes might contain hidden
"trapdoors" which would allow the National Security Agency to decrypt messages while maintaining that DES is "secure." It is, of course,
impossible to disprove such an assertion, but no evidence has come to light that indicates that trap-doors in DES do in fact exist.

In 1976, the National Security Agency (NSA) asserted that the following properties of the S-boxes are design criteria:

P0 Each row of each S-box is a permutation of the integers 0, . . . , 15.
P1 No S-box is a linear or affine function of its inputs.
P2 Changing one input bit to an S-box causes at least two output bits to change.
P3 For any S-box and any input x, S(x) and S(x ⊕ 001100) differ in at least two bits (here x is a bitstring of length 6).

Two other properties of the S-boxes were designated as "caused by design criteria" by NSA.

P4 For any S-box, for any input x, and for e, f ∈ {0, 1}, S(x) ≠ S(x ⊕ 11ef00).
P5 For any S-box, if one input bit is fixed, and we look at the value of one fixed output bit, the number of inputs for which this
output bit equals 0 will be "close to" the number of inputs for which the output bit equals 1. (Note that if we fix the value of either the
first or sixth input bit, then 16 inputs will cause a particular output bit to equal 0 and 16 inputs will cause the output to equal 1. For
the second through fifth input bits, this will not be true, but the resulting distribution will be "close to" uniform. More precisely, for
any S-box, if the value of any input bit is fixed, then the number of inputs for which any fixed output bit has the value 0 (or 1) is
always between 13 and 19.)

It is not publicly known if further design criteria were used in the construction of the S-boxes.

The most pertinent criticism of DES is that the size of the keyspace, 256, is too small to be really secure. Various special-purpose machines
have been proposed for a known plaintext attack, which would essentially perform an exhaustive search for the key. That is given a 64-bit
plaintext x and corresponding ciphertext y, every possible key would be tested until a key K such that eK (x) = y is found (and note that

there may be more than one such key K).

As early as 1977, Diffie and Hellman suggested that one could build a VLSI chip which could test 106 keys per second. A machine with
106 chips could search the entire key space in about a day. They estimated that such a machine could be built for about $20,000,000.

At the CRYPTO ’93 Rump Session, Michael Wiener gave a very detailed design of a key search machine. The machine is based on a key
search chip which is pipelined, so that 16 encryptions take place simultaneously. This chip can test 5 × 107 keys per second, and can be
built using current technology for $10.50 per chip. A frame consisting of 5760 chips can be built for $100,000. This would allow a DES key
to be found in about 1.5 days on average. A machine using 10 frames would cost $1,000,000, but would reduce the average search time to
about 3.5 hours.

3.4 DES in Practice
Even though the description of DES is quite lengthy, it can be implemented very efficiently, either in hardware or in software. The only
arithmetic operations to be performed are exclusive-ors of bitstrings. The expansion function E, the S-boxes, the permutations IP and P, and
the computation of K1, K2, . . . , K16 can all be done in constant time by table look-up (in software) or by hard-wiring them into a circuit.

Current hardware implementations can attain extremely fast encryption rates. Digital Equipment Corporation announced at CRYPTO ’92
that they have fabricated a chip with 50K transistors that can encrypt at the rate of 1 Gbit/second using a clock rate of 250 MHz! The cost of
this chip is about $300. As of 1991, there were 45 hardware and firmware implementations of DES that had been validated by the National
Bureau of Standards.

One very important application of DES is in banking transactions, using standards developed by the American Bankers Association. DES is
used to encrypt personal identification numbers (PINs) and account transactions carried out by automated teller machines (ATMs). DES is
also used by the Clearing House Interbank Payments System (CHIPS) to authenticate transactions involving over $1.5 × 1012 per week.

DES is also widely used in government organizations, such as the Department of Energy, the Justice Department, and the Federal Reserve
System.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

3.4.1 DES Modes of Operation

Four modes of operation have been developed for DES: electronic codebook mode (ECB), cipher
feedback mode (CFB), cipher block chaining mode (CBC) and output feedback mode (OFB).

ECB mode corresponds to the usual use of a block cipher: given a sequence x1x2 . . . of 64-bit plaintext

blocks, each x i is encrypted with the same key K, producing a string of ciphertext blocks, y1y2

In CBC mode, each ciphertext block y i is x-ored with the next plaintext block x i+1 before being encrypted

with the key K. More formally, we start with a 64-bit initialization vector IV, and define y0 = IV. Then we

construct y1 , y2 , . . . from the rule y i = eK (y i-1< /SMALL> ⊕ x i), i ≥ 1. The use of CBC mode is depicted in Figure 3.4.

Figure 3.4 CBC mode

Figure 3.5 CFB mode

In OFB and CFB modes, a keystream is generated which is then x-ored with the plaintext (i.e., it operates as a stream cipher, cf. Section
1.1.7). OFB is actually a synchronous stream cipher: the keystream is produced by repeatedly encrypting a 64-bit initialization vector, IV.
We define z 0 = IV, and then compute the keystream z 1z 2 . . . from the rule z i = e K (z i-1< /SMALL>), i ≥ 1. The plaintext sequence

x 1x 2 . . . is then encrypted by computing y i = x i ⊕ z i , i ≥ 1.

In CFB mode, we start with y 0 = IV (a 64-bit initialization vector) and we produce the keystream element z i by encrypting the previous

ciphertext block. That is, z i = e K (y i-1), i≥ 1. As in OFB mode, y i = x i ⊕ z i , i ≥ 1. The use of CFB is depicted in Figure 3.5 (note that

the DES encryption function e K is used for both encryption and decryption in CFB and OFB modes).

There are also variations of OFB and CFB mode called k-bit feedback modes (1 ≤ k ≤ 64). We have described the 64-bit feedback modes
here. 1-bit and 8-bit feedback modes are often used in practice for encrypting data one bit (or byte) at a time.

The four modes of operation have different advantages and disadvantages. In ECB and OFB modes, changing one 64-bit plaintext block,
x i , causes the corresponding ciphertext block, y i , to be altered, but other ciphertext blocks are not affected. In some situations this might be

a desirable property. For example, OFB mode is often used to encrypt satellite transmissions.

On the other hand, if a plaintext block x i is changed in CBC and CFB modes, then y i and all subsequent ciphertext blocks will be affected.

This property means that CBC and CFB modes are useful for purposes of authentication. More specifically, these modes can be used to
produce a message authentication code, or MAC. The MAC is appended to a sequence of plaintext blocks, and is used to convince Bob that
the given sequence of plaintext originated with Alice and was not tampered with by Oscar. Thus the MAC guarantees the integrity (or
authenticity) of a message (but it does not provide secrecy, of course).

We will describe how CBC mode is used to produce a MAC. We begin with the initialization vector IV consisting of all zeroes. Then
construct the ciphertext blocks y 1, . . . , y n with key K, using CBC mode. Finally, define the MAC to be y n . Then Alice transmits the

sequence of plaintext blocks, x 1 . . . x n , along with the MAC. When Bob receives x 1, . . . x n , he can reconstruct y 1, . . . , y n using the

(secret) key K, and verify that y n is the same as the MAC that he received.

Note that Oscar cannot produce a valid MAC since he does not know the key K being used by Alice and Bob. Further, if Oscar intercepts a
sequence of plaintext blocks x 1 . . . x n , and changes one or more of them, then it is highly unlikely that Oscar can change the MAC so that

it will be accepted by Bob.

It is often desirable to combine authenticity and secrecy. This could be done as follows: Alice first uses key K 1 to produce a MAC for x 1 .

. . x n . Then she defines x n+1 to be the MAC, and she encrypts the sequence x 1 . . . x n+1 using a second key, K 2, yielding y 1 . . . y n+1.

When Bob receives y 1 . . . y n+1, he first decrypts (using K 2) and then checks that x n+1 is the MAC for x 1 . . . x n using K 1.

Alternatively, Alice could use K 1 to encrypt x 1 . . . x n , obtaining y 1 . . . y n , and then use K 2 to produce a MAC y n+1 for y 1 . . . y n .

Bob would use K 2 to verify the MAC, and then use K 1 to decrypt y 1 . . . y n .

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

3.5 A Time-memory Trade-off

In this section, we describe an interesting time-memory tradeoff for a chosen plaintext attack. Recall that
in a chosen plaintext attack, Oscar obtains a plaintext-ciphertext pair produced using the (unknown) key K.
So Oscar has x and y, where y = eK (x), and he wants to determine K.

A feature of this time-memory trade-off is that it does not depend on the "structure" of DES in any way.
The only aspects of DES that are relevant to the attack are that plaintexts and ciphertexts have 64 bits,
while keys have 56 bits.

Figure 3.6 Computation of X (i, j)

We have already discussed the idea of exhaustive search: given a plaintext-ciphertext pair, try all 256

possible keys. This requires no memory but, on average, 255 keys will be tried before the correct one is
found. On the other hand, for a given plaintext x, Oscar could precompute yK = eK (x) for all 256 keys K,

and construct a table of ordered pairs (yK , K), sorted by their first coordinates. At a later time, when Oscar

obtains the ciphertext y which is an encryption of plaintext x, he looks up the value y in the table,
immediately obtaining the key K. Now the actual determination of the key requires only constant time, but
we have a large memory requirement and a large precomputation time. (Note that this approach would
yield no advantage in total computation time if only one key is to be found, since constructing the table
takes at least as much time as an exhaustive search. The advantage occurs when several keys are to be
found over a period of time, since the same table can be used in each case.)

The time-memory trade-off combines a smaller computation time than exhaustive search with a smaller
memory requirement than table look-up. The algorithm can be described in terms of two parameters m and
t, which are positive integers. The algorithm requires a reduction function R which reduces a bitstring of
length 64 to one of length 56. (R might just discard eight of the 64 bits, for example.) Let x be a fixed

plaintext string of length 64. Define the function for a bitstring K0 of length

56. Note that g is a function that maps 56 bits to 56 bits.

In the pre-processing stage, Oscar chooses m random bitstrings of length 56, denoted X (i, 0), 1 ≤ i ≤ m.
Oscar computes X(i, j) for 1 ≤ j ≤ t according to the recurrence relation X(i, j) = g (X(i, j - 1)), 1 ≤ i ≤ m, 1
≤ j ≤ t, as indicated in Figure 3.6.

Then Oscar constructs a table of ordered pairs T = (X(i, t), X(i, 0)), sorted by their first coordinate (i.e.,
only the first and last columns of X are stored).

At a later time, Oscar obtains a ciphertext y which is an encryption of the chosen plaintext x (as before).
He again wants to determine K. He is going to determine if K is in the first t columns of the array X, but he
will do this by looking only at the table T.

Figure 3.7 DES time-memory trade-off

Suppose that K = X (i, t -j) for some j, 1 ≤ j ≤ t (i.e., suppose that K is in the first t columns of X). Then it is
clear that g j (K) = X (i, t), where g j denotes the function obtained by iterating g, j times. Now, observe
that

Suppose we compute y j , 1 ≤ j ≤ t, from the recurrence relation

Then it follows that y j = X(i, t) if K = X(i, t - j). However, note that y j = X(i, t) is not sufficient to ensure

that K = X(i, t - j). This is because the reduction function R is not an injection: The domain of R has
cardinality 264 and the range of R has cardinality 256, so, on average, there are 28 = 256 pre-images of
any given bitstring of length 56. So we need to check whether y = eX(i,t - j) (x), to see if X(i, t - j) is indeed

the key. We did not store the value X(i, t - j), but we can easily re-compute it from X(i, 0) by iterating the g
function t - j times.

Oscar proceeds according to the algorithm presented in Figure 3.7.

By analyzing the probability of success for the algorithm, it can be shown that if ,
then the probability that K = X(i,t - j) for some i, j is about 0.8mt/N. The factor 0.8 accounts for the fact

that the numbers X(i,t) may not all be distinct. It is suggested that one should take and
construct about N1/3 tables, each using a different reduction function R. If this is done, the memory
requirement is 112 × N2/3 bits (since we need to store 2 × N2/3 integers, each of which has 56 bits). The
precomputation time is easily seen to be O(N).

The running time is a bit more dificult to analyze. First, note that step 3 can be implemented to run in
(expected) constant time (using hash coding) or (worst-case) time O(log m) using a binary search. If step 3
is never satisfied (i.e., the search fails), then the running time is O(N2/3). A more detailed analysis shows
that even when the running time of steps 4 and 5 is taken into account, the expected running time increases

by only a constant factor.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

3.6 Differential Cryptanalysis

One very well-known attack on DES is the method of "differential cryptanalysis" introduced by Biham
and Shamir. This is a chosen-plaintext attack. Although it does not provide a practical method of breaking
the usual 16-round DES, it does succeed in breaking DES if the number of rounds of encryption is
reduced. For instance, 8-round DES can be broken in only a couple of minutes on a small personal
computer.

We will now describe the basic ideas used in this technique. For the purposes of this attack, we can ignore
the initial permutation IP and its inverse (it has no effect on cryptanalysis). As mentioned above, we
consider DES restricted to n rounds, for various values of n ≤ 16. So, in this setting, we will regard L0R0

as the plaintext, and LnRn as the ciphertext, in an n-round DES. (Note also that we are not inverting

LnRn .)

Differential cryptanalysis involves comparing the x-or (exclusive-or) of two plaintexts to the x-or of the

corresponding two ciphertexts. In general, we will be looking at two plaintexts L0R0 and with a

specified x-or value . Throughout this discussion, we will use prime
markings (′) to indicate the x-or of two bitstrings.

DEFINITION 3.1 Let Sj be a particular S-box (1 ≤ j ≤ 8). Consider an (ordered) pair of bitstrings of

length six, say . We say that the input x-or (of Sj) is and the output x-or (of Sj) is

 .

Note that an input x-or is a bitstring of length six and an output x-or is a bitstring of length four.

DEFINITION 3.2 For any , define the set to consist of the ordered pairs

having input x-or .

It is easy to see that any set contains 26 = 64 pairs, and that

For each pair in , we can compute the output x-or of Sj and tabulate the resulting distribution.

There are 64 output x-ors, which are distributed among 24 = 16 possible values. The non-uniformity of
these distributions will be the basis for the attack.

Example 3.1

Suppose we consider the first S-box, S1 , and the input x-or 110100. Then

For each ordered pair in the set ∆(110100), we compute output x-or of S1 . For example, S1(000000) =

E16 = 1110 and S1(110100) = 916 = 1001, so the output x-or for the pair (000000, 110100) is 0111.

If this is done for all 64 pairs in ∆(110100), then the following distribution of output x-ors is obtained:

In Example 3.1, only eight of the 16 possible output x-ors actually occur. This particular example has a

very non-uniform distribution. In general, if we fix an S-box Sj and an input x-or , then on average, it

turns out that about 75 - 80% of the possible output x-ors actually occur.

It will be convenient to have some notation to describe these distributions and how they arise, so we make
the following definitions.

DEFINITION 3.3 For 1 ≤ j ≤ 8, and for bitstrings of length six and of length four, define

and

Figure 3.8 Possible inputs with input x-or 110100

 counts the number of pairs with input x-or equal to which have output x-or equal to for
the S-box Sj . The actual pairs having the specified input x-ors and giving rise to the specified output x-ors

can be obtained from the set . Observe that this set can be partitioned into

pairs, each of which has (input) x-or equal to .

Observe that the distribution tabulated in Example 3.1 consists of the values

 . The sets are listed in Figure 3.8.

For each of the eight S-boxes, there are 64 possible input x-ors. Thus, there are 512 distributions which
can be computed. These could easily be tabulated by computer.

Recall that the input to the S-boxes in round i is formed as B = E ⊕ J, where E = E(Ri-1) is the expansion

of Ri-1 and J = K i consists of the key bits for round i. Now, the input x-or (for all eight S-boxes) can be

computed as follows:

It is very important to observe that the input x-or does not depend on the key bits J. (However, the output
x-or certainly does depend on these key bits.)

We will write each of B, E and J as the concatenation of eight 6-bit strings:

and we write B* and E* in a similar way. Let us suppose for the moment that we know the values Ej and

 for some j, 1 ≤ j ≤ 8, and the value of the output x-or for . Then it must be
the case that

where .

Suppose we define a set testj as follows:

DEFINITION 3.4 Suppose Ej and are bitstrings of length six, and is a bitstring of length four.

Define

where .

That is, we take the x-or of Ej with every element of the set .

The following result is an immediate consequence of the discussion above.

THEOREM 3.1

Suppose Ej and are two inputs to the S-box Sj , and the output x-or for Sj is . Denote

 . Then the key bits Jj occur in the set testj .

Observe that there will be exactly bitstrings of length six in the set testj ; the

correct value of Jj must be one of these possibilities.

Example 3.2

Suppose . Since N1 (110100, 1101) = 8, there will

be exactly eight bitstrings in the set test1 (000001, 110101, 1101). From Figure 3.8, we see that

Hence,

If we have a second such triple , then we can obtain a second set test1 of possible values for

the keybits in J1 . The true value of J1 must be in the intersection of both sets. If we have several such

triples, then we can quickly determine the key bits in J1 . One straightforward way to do this is to maintain

an array of 64 counters, representing the 64 possibilities for the six key bits in J1 . A counter is

incremented every time the corresponding key bits occur in a set test1 for a particular triple. Given t

triples, we hope to find a unique counter which has the value t; this will correspond to the true value of the
keybits in J1 .

3.6.1 An Attack on a 3-round DES

Let’s now see how the ideas of the previous section can be applied in a chosen plaintext attack of a
3-round DES. We will begin with a pair of plaintexts and corresponding ciphertexts:

 and . We can express R3 as follows:

 can be expressed in a similar way, and hence

Now, suppose we have chosen the plaintexts so that , i.e., so that

Figure 3.9 Differential attack on 3-round DES

Then and so

At this point, is known since it can be computed from the two ciphertexts, and is known since it

can be computed from the two plaintexts. This means that we can compute
from the equation

Now, f(R2 , K3) = P(C) and , where C and C*, respectively, denote the two

outputs of the eight S-boxes (recall that P is a fixed, publicly known permutation). Hence,

and consequently

This is the output x-or for the eight S-boxes in round three.

Now, R2 = L3 and are also known (they are part of the ciphertexts). Hence, we can compute

and

using the publicly known expansion function E. These are the inputs to the S-boxes for round three. So,
we now know E, E*, and C′ for the third round, and we can proceed, as in the previous section, to
construct the sets test1 , . . ., test8 of possible values for the key bits in J1 , . . . , J8 .

A pseudo-code description of this algorithm is given in Figure 3.9. The attack will use several such triples
E, E*, C′. We set up eight arrays of counters, and thereby determine the 48 bits in K3 , the key for the third

round. The 56 bits in the key can then be computed by an exhaustive search of the 28 = 256 possibilities
for the remaining eight key bits.

Let’s look at an example to illustrate.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Example 3.3

Suppose we have the following three pairs of plaintexts and ciphertexts, where the plaintexts have the
specified x-ors, that are encrypted using the same key. We use a hexadecimal representation, for brevity:

plaintext ciphertxt

748502CD38451097 03C70306D8A09F10

3874756438451097 78560A0960E6D4CB

486911026ACDFF31 45FA285BE5ADC730

375BD31F6ACDFF31 134F7915AC253457

357418DA013FEC86 D8A31B2F28BBC5CF

12549847013FEC86 0F317AC2B23CB944

From the first pair, we compute the S-box inputs (for round 3) from Equations (3.2) and (3.3). They are:

The S-box output x-or is calculated using Equation (3.1) to be:

From the second pair, we compute the S-box inputs to be

and the S-box output x-or is

From the third pair, the S-box inputs are

and the S-box output x-or is

Next, we tabulate the values in the eight counter arrays for each of the three pairs. We illustrate the

procedure with the counter array for J1 from the first pair. In this pair, we have and

 . The set

Since E1 = 000000, we have that

Hence, we increment the values 0, 7, 40, and 47 in the counter array for J1 .

The final tabulations are now presented. If we think of a bit-string of length six as being the binary
representation of an integer between 0 and 63, then the 64 values correspond to the counts of 0, 1, . . . , 63.
The counter arrays are as follows:

J 1

1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0

0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

J 2

0 0 0 1 0 3 0 0 1 0 0 1 0 0 0 0

0 1 0 0 0 2 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0

0 0 1 1 0 0 0 0 1 0 1 0 2 0 0 0

J 3

0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0

0 0 0 3 0 0 0 0 0 0 0 0 0 0 1 1

0 2 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0

J 4

3 1 0 0 0 0 0 0 0 0 2 2 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 1

1 1 1 0 1 0 0 0 0 1 1 1 0 0 1 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 2 1

J 5

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0

0 0 0 0 2 0 0 0 3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0 1 0 0 0 0 2 0

J 6

1 0 0 1 1 0 0 3 0 0 0 0 1 0 0 1

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0

J 7

0 0 2 1 0 1 0 3 0 0 0 1 1 0 0 0

0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1

0 0 2 0 0 0 2 0 0 0 0 1 2 1 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1

J 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1

0 3 0 0 0 0 1 0 0 0 0 0 0 0 0 0

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

In each of the eight counter arrays, there is a unique counter having the value 3. The positions of these
counters determine the key bits in J1 , . . . , J8 . These positions are (respectively): 47, 5, 19, 0, 24, 7, 7, 49.

Converting these integers to binary, we obtain J1 , . . . , J8 :

J1 = 101111

J2 = 000101

J3 = 010011

J4 = 000000

J5 = 011000

J6 = 000111

J7 = 000111

J8 = 110001.

We can now construct 48 bits of the key, by looking at the key schedule for round 3. It follows that K has
the form

0001101 0110001 01?01?0 1?00100

0101001 0000??0 111?11? ?100011

where parity bits are omitted and "?" denotes an unknown key bit. The complete key (in hexadecimal,
including parity bits), is:

1A624C89520DEC46.

3.6.2 An Attack on a 6-round DES

We now describe an extension of these ideas to a probabilistic attack on a 6-round DES. The idea is to
carefully choose a pair of plaintexts with a specified x-or, and then to determine the probabilities of a
specified sequence of x-ors through the rounds of encryption. We need to define an important concept
now.

DEFINITION 3.5 Let n ≥ 1 be an integer. An n-round characteristic is a list of the form

which satisfies the following properties:

1. .

2. Let 1 ≤ i ≤ n, and let Li-1 , Ri-1 and be chosen such that

and . Suppose Li , Ri and are computed by applying one round of

DES encryption. Then the probability that and is precisely pi .

(Note that this probability is computed over all possible 48-tuples J = J1 . . . J8 .)

The probability of the characteristic is defined to be the product p = p1 × . . . × pn .

REMARK Suppose we choose L0 , R0 and so that and and

we apply n rounds of DES encryption, obtaining L1 , . . . , Ln and R1 , . . . ,Rn . Then we cannot claim that

the probability that and for all i (1 ≤ i ≤ n) is p1 × . . . × pn . This is

because the 48-tuples in the key schedule K1 , , Kn , are not mutually independent. (If these n

48-tuples were chosen independently at random, then the assertion would be true.) But we nevertheless
expect p1 × . . . × pn to be a fairly accurate estimate of this probability.

We also need to recognize that the probabilities pi in a characteristic are defined with respect to an

arbitrary (but fixed) pair of plaintexts having a specified x-or, where the 48 key bits for one round of DES
encryption vary over all 248 possibilities. However, a cryptanalyst is attempting to determine a fixed (but
unknown) key. He is going to choose plaintexts at random (such that they have specified x-ors), hoping
that the probabilities that the x-ors during the n rounds of encryption agree with the x-ors specified in the
characteristic are fairly close to p1 , . . . pn , respectively.

As a simple example, we present in Figure 3.10 a 1-round characteristic which was the basis of the attack
on the 3-round DES (as before, we use hexadecimal representations). We depict another 1-round
characteristic in Figure 3.11.

Let’s look at the characteristic in Figure 3.11 in more detail. When f (R0 , K1) and are

computed, the first step is to expand R0 and . The resulting x-or of the two expansions is

Figure 3.10 A 1-round characteristic

Figure 3.11 Another 1-round characteristic

So the input x-or to S1 is 001100 and the input x-ors for the other seven S-boxes are all 000000. The

output x-ors for S2 through S8 will all be 0000. The output x-or for S1 will be 1110 with probability

14/64 (since it can be computed that N1 (001100, 1110) = 14). So we obtain

with probability 14/64. Applying P, we get

which in hexadecimal is 0080820016. When this is x-ored with , we get the specified with

probability 14/64. Of course always.

The attack on the 6-round DES is based on the 3-round characteristic given in Figure 3.12. In the 6-round

attack, we will start with , L6R6 and , where we have chosen the plaintexts so

that and . We can express R6 as follows:

Figure 3.12 A 3-round characteristic

 can be expressed in a similar way, and hence we get

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

(Note the similarity with the 3-round attack.)

 is known. From the characteristic, we estimate that and
with probability 1/16. If this is in fact the case, then the input x-or for the S-boxes in round 4 can be
computed by the expansion function to be:

The input x-ors for S2 , S5 , S6 , S7 and S8 are all 000000, and hence the output x-ors are 0000 for these

five S-boxes in round 4. This means that we can compute the output x-ors of these five S-boxes in round 6
from Equation (3.4). So, suppose we compute

where each C i is a bitstring of length four. Then with probability 1/16, it will be the case that

 and are respectively the output x-ors of S2 , S5 , S6 , S7 and S8 in round 6. The

inputs to these S-boxes in round 6 can be computed to be E2 , E5 , E6 , E7 and E8 , and

 and , where

and

can be computed from the ciphertexts, as indicated in Figure 3.13.

We would like to determine the 30 key bits in J2 , J5 , J6 , J7 and J8 as we did in the 3-round attack. The

problem is that the hypothesized output x-or for round 6 is correct only with probability 1/16. So 15/16 of
the time we will obtain random garbage rather than possible key bits. We somehow need to be able to
determine the correct key from the given data, 15/16 of which is incorrect. This might not seem very
promising, but fortunately our prospects are not as bleak as they initially appear.

DEFINITION 3.6 Suppose and . We say that the pair of plaintexts

L0R0 and is right pair with respect to a characteristic if and

 for all i, 1 ≤ i ≤ n. The pair is defined to be a wrong pair, otherwise.

Figure 3.13 Differential attack on 6-round DES

We expect that about 1/16 of our pairs are right pairs and the rest are wrong pairs with respect to our
3-round characteristic.

Our strategy is to compute E j , , and , as described above, and then to determine

, for j = 2, 5, 6, 7, 8. If we start with a right pair, then the correct key bits for each J j will be included in

the set test j . If the pair is a wrong pair, then the value of will be incorrect, and it seems reasonable to

hypothesize that each set test j will be essentially random.

We can often identify a wrong pair by this method: If |test j | = 0, for any j ∈ {2, 5, 6, 7, 8}, then we

necessarily have a wrong pair. Now, given a wrong pair, we might expect that the probability that |test j | =

0 for a particular j is approximately 1/5. This is a reasonable assumption since and, as

mentioned earlier, the probability that is approximately 1/5. The probability that all five

test j ’s have positive cardinality is estimated to be , so the probability that at least one test j

has zero cardinality is about .67. So we expect to eliminate about 2/3 of the wrong pairs by this simple
observation, which we call the filtering operation. The proportion of right pairs that remain after filtering
is approximately

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Example 3.4

Suppose we have the following plaintext-ciphertext pair:

plaintext ciphertext

86FA1C2B1F51D3BE 1E23ED7F2F553971

C6F21C2B1B51D3BE 296DE2B687AC6340

Observe that and . The S-box inputs and outputs for round 6
are computed to be the following:

Then, the sets test j are as follows:

We see that both test5 and test7 are empty sets, so this pair is a wrong pair and is discarded by the

filtering operation.

Now suppose that we have a pair such that |test j | > 0 for j = 2, 5, 6, 7, 8, so that it survives the filtering

operation. (Of course, we do not know if the pair is a right pair or a wrong pair.) We say that the bitstring
J2J5< I>J6J7< I>J8 of length 30 is suggested by the pair if J j ∈ test j for j = 2, 5, 6, 7, 8. The number of

suggested bitstrings is

It is not unusual for the number of suggested bitstrings to be quite large (for example, greater than 80000).

Suppose we were to tabulate all the suggested bitstrings obtained from the N pairs that were not discarded
by the filtering operation. For every right pair, the correct bitstring J2J5< I>J6J7< I>J8 will be a

suggested bitstring. This correct bitstring will be counted about 3N/16 times. Incorrect bitstrings should
occur much less often, since they will occur essentially at random and there are 230 possibilities (a very
large number).

It would get extremely unwieldy to tabulate all the suggested bitstrings, so we use an algorithm that
requires less space and time. We can encode any test j as a vector T j of length 64, where the ith coordinate

of T j is set to 1 (for 0 ≤ i ≤ 63) if the bitstring of length six that is the binary representation of i is in the set

test j ; and the ith coordinate is set to 0 otherwise (this is essentially the same as the counter array

representation that we used in the 3-round attack).

For each remaining pair, construct these vectors as described above, and name them , j = 2, 5, 6, 7, 8, 1
≤ i ≤ N. For I ⊆ {1, . . . , N}, we say that I is allowable if for each j ∈ {2, 5, 6, 7, 8}, there is at least one
coordinate equal to |I| in the vector

If the ith pair is a right pair for every i ∈ I, then the set I is allowable. Hence, we expect there to be an
allowable set of size (approximately) 3N/16, which we hope will suggest the correct key bits and no other.
It is a simple matter to construct all the allowable sets I by means of a recursive algorithm.

Example 3.5

We did some computer runs to test this approach. A random sample of 120 pairs of plaintexts with the
specified x-ors was generated, and these were encrypted using the same (random) key. We present the 120
pairs of ciphertexts and corresponding plaintexts in hexadecimal form in Table 3.1.

When we compute the allowable sets, we obtain n i allowable sets of cardinality i, for the following

values:

The unique allowable set of size 10 is

In fact, it does arise from the 10 right pairs. This allowable set suggests the correct key bits for J2 , J5 , J6 ,

J7 and J8 and no others. They are as follows:

Figure 3.14 Another 3-round characteristic

Note that all the allowable sets of cardinality at least 6, and all but three of the allowable sets of cardinality

5, arise from right pairs, since and for 6 ≤ i ≤ 10.

This method yields 30 of the 56 key bits. By means of a different 3-round characteristic, presented in
Figure 3.14, it is possible to compute 12 further key bits, namely those in J1 and J4 . Now only 14 key bits

remain unknown. Since 214 = 16384 is quite small, an exhaustive search can be used to determine the
remaining 14 key bits.

The entire key (in hexadecimal, including parity-check bits) is:

34E9F71A20756231.

As mentioned above, the 120 pairs are given in Table 3.1. In the second column, a * denotes that a pair is
a right pair, while a ** denotes that the pair is an identifiable wrong pair and is discarded by the filtering
operation. Of the 120 pairs, 73 are identified as being wrong pairs by the filtering process, so 47 pairs
remain as "possible" right pairs.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

3.6.3 Other examples of Differential Cryptanalysis

Differential cryptanalysis techniques can be used to attack DES with more than six rounds. An 8-round
DES requires 214 chosen plaintexts, and 10-, 12-, 14- and 16-round DESs can be broken with 224, 231,
239 and 247 chosen plaintexts, respectively. The attacks on more than 10 rounds are probably not
practical at this time.

Several substitution-permutation product ciphers other than DES are also susceptible (to varying degrees)
to differential cryptanalysis. These cryptosystems include several substitution-premutation cryptosystems
that have been proposed in recent years, such as FEAL, REDOC-II, and LOKI.

pair right pair? plaintext ciphertext

1 ** 86FA1C2B1F51D3BE
C6F21C2B1B51D3BE

1E23ED7F2F553971
296DE2B687AC6340

2 ** EDC439EC935E1ACD
ADCC39EC975E1ACD

0F847EFE90466588
93E84839F374440B

3 ** 9468A0BE00166155
D460A0BE04166155

3D6A906A6566D0BF
3BC3B236398379E1

4 ** D4FF2B18A5A8AAC8
94F72B18A1A8AAC8

26B14738C2556BA4
15753FDE86575A8F

5 09D0F2CF277AF54F
49D8F2CF237AF54F

15751F4F11308114
6046A7C863F066AF

6 CBC7157240D415DF
8BCF157244D415DF

7FCDC300FB9698E5
522185DD7E47D43A

7 0D4A1E84890981C1
4D421E848D0981C1

E7C0B01E32557558
912C6341A69DF295

8 ** 6CE6B2A9B8194835
2CEEB2A9BC194835

75D52E028A5C48A3
6C88603B48E5A8CE

9 ** 799F63C3C9322C1A
399763C3CD322C1A

A6DA322B8F2444B5
6634AA9DF18307F4

10 ** 1B36645E381EDF48
5B3E645E3C1EDF48

1F91E295D559091B
D094FC12C02C17CA

11 85CA13F50B4ADBB9
C5C213F50F4ADBB9

ED108EE7397DDE0A
3F405F4A3E254714

12 ** 7963A8EFD15BC4A1
396BA8EFD55BC4A1

8C714399715A33BA
C344C73CC97E4AC4

13 7BCFF7BCA455E65E
3BC7F7BCA055E65E

475A2D0459BCCE62
8E94334AEF359EF8

14 0C505CEDB499218C
4C585CEDB099218C

D3C66239E89CC076
9A316E801EE18EB1

15 6C5EA056CDC91A14
2C56A056C9C91A14

BC7EBA159BCA94E6
67DB935C21FF1A8D

16 ** 6622A441A0D32415
262AA441A4D32415

35F8616FEBA62883
4313E1925F5B64BC

17 C0333C994AFF1C99
803B3C994EFF1C99

D46A4CF1C0221B11
D22B42DB150E2CE8

18 9E7B2974F00E1A6E
DE732974F40E1A6E

172D286D9606E6FE
2217A91F8C427D27

19 ** CF592897BFD70C7E
8F512897BBD70C7E

FB892B59E7DCE7EC
C328B765E1CC6653

20 E976CF19124A9FA1
A97ECF19164A9FA1

905BF24188509FA6
9ADDBA0C23DD724F

21 ** 5C09696E7363675D
1C01696E7763675D

92D60E5C71801A99
DD90908A4FE8168F

22 ** A8145AB3C1B2C7DE
E81C5AB3C5B2C7DE

F68FC9F80564847B
51C041B5711B8132

23 47DF6A0BB1787159
07D76A0BB5787159

52E36C4CA22EA5A2
373EAFD503F68DE4

24 * 7CE65464329B4E6D
3CEE5464369B4E6D

832A9D7032015D9F
85E2CE665571E99C

25 ** 421FB6AD95791BA7
0217B6AD91791BA7

D1E730BA1DB565E7
188E61735FA4F3CE

26 ** C58E9A361368FFD6
85869A361768FFD6

795EB9D30CAE6879
26D37AC4867ACC61

27 ** DD86B6C74C8EA4E2
9D8EB6C7488EA4E2

CC3B6915C9A348DF
104C2394555645F0

28 ** 43DB9D2F483CA585
03D39D2F4C3CA585

E3E4DA503D1B9396
4EA02C0061332443

29 * 855A309F96FEA5EA
C552309F92FEA5EA

85AD6E9E352AFAFA
929D22370ACAB80D

30 * AB3CA25B02BD18C8
EB34A25B06BD18C8

0F7D768E9203F786
A1313BC26A99D353

31 ** A9F7A6F4A7C00E06
E9FFA6F4A3C00E06

F26B385E6BA057FD
203D8384F8F54D19

32 ** 688B9ACD856D1312
28839ACD816D1312

C41D99C107B4EF76
6CC817CA025A7DAC

33 ** 76BF0621C03D4CD9
36B70621C43D4CD9

BBE1F95AFC1E052A
561F4801F2EB0C63

34 ** 014CF8D1F981B8EE
4144F8D1FD81B8EE

D27091C4314CBFE8
B7976D6A80E3DB61

35 ** 487D66EDE0405F8C
087566EDE4405F8C

8136325C0AEB84CE
8C638BC4495B69A0

36 ** DDCA47093A362521
9DC247093E362521

51040CF16B600FAA
7FC75515AC3CAAF9

37 ** 45A9D34A3996F6D9
05A1D34A3D96F6D9

F2004B854AE6C46C
546825016B03D193

38 ** 295D2FBFB00875EA
69552FBFB40875EA

A309DF027E69C265
4F633FFB95A0C11E

39 964C8B98D590D524
D6448B98D190D524

1FF1D0271D6F6C18
8CF2D8D401EBFC0F

40 60383D2BAF0836BC
20303D2BAB0836BC

10A82D55FC480640
602346173581EF79

41 ** 5CF8D539A22A1CAD
1CF0D539A62A1CAD

92685D806FBE8738
17006DAB2D28081C

42 F95167CAB6565609
B95967CAB2565609

C52E2EB27446054E
0C219F686840E57A

43 49F1C83615874122
09F9C83611874122

2680C8ECDF5E51CD
5022A7B69B4E75EF

44 ** ACB2EC1941B03765
ECBAEC1945B03765

D6B593460098DEC5
D3190A0200FC6B9B

45 CCCC129D5CB55EC0
8CC4129D58B55EC0

3AD22B7EF59E0D5E
A48C92CBEC17E430

46 ** 917FF8E2EE6B78D5
D177F8E2EA6B78D5

EF847E058DB71724
F243F0554A00E4C5

47 ** 51DBCF028E96DE00
11D3CF028A96DE00

574897CA1EE73885
9F0FD0A5B2C2B5FD

48 * 2094942E093463CE
609C942E0D3463CE

59F6A018C6A0D820
799FE001432346C0

49 ** 50FB0723D7CD1081
10F30723D3CD1081

16AF758395EA3A7D
CDCB23392D144BED

50 * 740815A4F6CDCABB
340015A4F2CDCABB

4A84D2ED4D9351AB
5923D04CE94D6111

51 ** EDA46A1AE93735DC
ADAC6A1AED3735DC

0B302A51B7E5476A
5F817F0ABC770E75

52 * 08BC39B766B2C128
48B439B762B2C128

DFB5F3F500BC0100
B7B9FED8AC93EBFA

53 ** A74E29BBA98F2312
E74629BBAD8F2312

A2B352B7F922E8DA
D6BC4B89CED2DEAC

54 ** D6F50D31EE4E68AB
96FD0D31EA4E68AB

4D464847065C0938
7554D87AEDCE5634

55 * 06191AA594891CF5
46111AA590891CF5

649C1D084F920F9E
BE12A10384365E19

56 5EA7EFD557946962
1EAFEFD553946962

15E664293F4D77EE
E23396A758DC9CE6

57 ** 41FB7704781CC88A
01F377047C1CC88A

8ABD385C441FD6CE
06DE8D55777AB65C

58 ** 9689B9123F7C5431
D681B9123B7C5431

E1E63120742099BB
1AF88A2CF6649A4A

59 6F25032B4A309BFE
2F2D032B4E309BFE

48FE50DE774288D7
47950691260D5E10

60 ** D8C4B02D8E8BF1E9
98CCB02D8A8BF1E9

F34D565E6AE85683
A4D2DB548622A8E8

61 ** F663E8CCEE86805B
B66BE8CCEA86805B

51BD62C9D5D0F0BB
D2ABB03CF9D26C0A

62 ** 428B29BFDFA838DB
028329BFDBA838DB

006D62A65761089F
9FD73EF6124B0C11

63 ** 04BE2D22D81EDC66
44B62D22DC1EDC66

26D99536D99B5707
94144EBDA0CDEB55

64 ** 667B779123A3EF80
2673779127A3EF80

5D09CBF2CE7E5A69
5EFF8BFCA7BAA152

65 ** BC86D401D6572438
FC8ED401D2572438

E05572AAA5F6C377
3C670BC455144F61

66 ** 6FE5E9547659E401
2FEDE9547259E401

2C465BF6F52F864C
B71D106444F95F31

67 ** 27D3BAC6453BE3DE
67DBBAC6413BE3DE

8F160E29000461CD
2A6660F46487F885

68 ** 1D864E7642A7023A
5D8E4E7646A7023A

65F91EEBFD8A9C05
84761791B3C36661

69 ** 5256CA6894707CBA
125ECA6890707CBA

91527F9349ABCF15
30F28F06A7B0A35A

70 ** C05383B8EFCD2BD7
805B83B8EBCD2BD7

710B6EC61BF63E9C
53AC029D8E0179D5

71 50EB21CA13F9A96E
10E321CA17F9A96E

26D95BA4DE4C85CF
8F01A90F638AFFF6

72 ** 60EB1229ACD90EDC
20E31229A8D90EDC

3890EE8567782F96
EE404DF7BE537589

73 8E9A17D17B173B99
CE9217D17F173B99

885C3933627EDEF0
B7ABB6DF5835E962

74 6EC8CD0802C98817
2ECDCD0806C98817

A985ADFB1FEE013C
0428DE024B7E4604

75 ** 1E81712FF1145C06
5E89712FF5145C06

417E667A99B3CFA5
5C24AA056EB1ADBA

76 ** DF3C5C13311AEC7C
9F345C13351AEC7C

BF01675096F1C48A
243D99BCE12DB864

77 ** 7C34472994127C2D
3C3C472990127C2D

713915DA311A7CF4
E9733D11D787E20B

78 ** 37304DABA75EAFB3
77384DABA35EAFB3

EFB5C37FA0238ADF
A728F7407AF958B3

79 D03A16E4C2D8B54B
903216E4C6D8B54B

423FC0AC24CEFEDD
047D8595DB4D372E

80 ** 8CED882B5D91832E
CCE5882B5991832E

0006E2DE3AF5C2B5
00F6AA9ED614001B

81 ** 1BB0E6C79EFBEC41
5BB8E6C79AFBEC41

E9AED4363915775A
655BC48F1FFB5165

82 D41B8346DA9E2252
94138346DE9E2252

34F5E0BCC5B042EA
702D2C48CDBE5173

83 * 02A9D0A0A91F6304
42A1D0A0AD1F6304

E2F1C10E59AF07C5
BDEE6AA00F25F840

84 ** 841B3E27C8F0A561
C4133E27CCF0A561

2B288E554D712C92
FF8609C9E7301162

85 ** CDF0A8D6EE909185
8DF8A8D6EA909185

5D661834D1C76324
22034D57D21FFB56

86 ** 4C31AC854F44EA34
0C39AC854B44EA34

BD016309AEDB9BB1
C72EEDC4FA1D9312

87 DB3FC0703C972930
9B37C07038972930

296ABCFBF01DF991
CA4700686F9F83A2

88 E4B362BFD6A7CFD1
A4BB62BFD2A7CFD1

20FDAF335F25B1DA
008C24D75E14ACBD

89 F234232A0E0A4A28
B23C232A0A0A4A28

90CFD699F2DEC5BD
2918D3DE0C1B689C

90 ** 71265345A5874004
312E5345A1874004

3052CE3CE88710AE
38F0FC685DF30564

91 ** 3E6364548C857110
7E6B645488857110

0E8581E42C9FEC6F
4DD1751861EC5529

92 * 464FBEDBD78900A7
0647BEDBD38900A7

90F5F9ADEDED627A
2EF4C540425E339B

93 ** 373B75F847480BB0
773375F843480BB0

5408B964F8442D16
805287D52599E9F0

94 ** D714E87810DE97AC
971CE87814DE97AC

4EC4D623108FA909
0AA0725CED10D6A3

95 B9B5932EF54B2C60
F9BD932EF14B2C60

4B438B3CCF36DEC9
054C6A337709280D

96 ** 2F283C38D2E4E1DD
6F203C38D6E4E1DD

83515FB6DFEA90B8
09BCC4FF38C78C23

97 ** 1EB8ADAA43BBD575
5EB0ADAA47BBD575

21A1E04813616E42
D044BA3F25DFD02A

98 ** 3164AA5454D9F991
716CAA5450D9F991

9382C6C1883F1038
5CDFED4FF2117DEC

99 D78C1C5C6F2243D2
97841C5C6B2243D2

1CCEB091E030E6A6
4DA2CD67CC449B21

100 BBE212A7D3CE3D14
FBEA12A7D7CE3D14

2917C207B4D93E0D
A01D50E5A2B902D8

101 ** 104917795E98D0FB
504117795A98D0FB

40916A71385C2803
413FD26EF671F46D

102 ** 4DDA114D6EFEEEB4
0DD2114D6AFEEEB4

2E2C65E1D5CBAC31
A16FF03BC0913ED6

103 E0BED7B285BF0A77
A0B6D7B281BF0A77

5D9EFEFF0AD10490
4C6CA1FAC36A8E5B

104 ** 0AE1555FA1716214
4AE9555FA5716214

378400BCED39EB81
A1E0C758BD8912C2

105 ** 4657C26790FCB354
065FC26794FCB354

588BA079B2E7ED20
DA90827AEED7A41F

106 ** 32BD719B0DC1B091
72B5719B09C1B091

F3477C7552BCB05D
EFF444449D66BE9E

107 ** 0992F8C8C73A9BFE
499AF8C8C33A9BFE

9F3FFD0F158295F6
C138358DCECC8FC7

108 02C3F061A237BBEB
42CBF061A637BBEB

AC28B0307127EA7C
3FF1DAED9E0FCBC5

109 ** 80E529E69EDE6827
C0ED29E69ADE6827

1DF1DB7B66BA1AF1
15700151A5804549

110 B55E84630067B8D5
F55684630467B8D5

88321611FF9DA421
90649DTEACF91F9A

111 2749C2EBC603BFF2
6741C2EBC203BFF2

A62B23A7348E2C3A
EB760A09C7FF5153

112 ** C4C5E14D4C5D9FF5
84CDE14D485D9FF5

ABC2312FBFD94DF5
D2BB5954E5062D53

113 ** 1566BA21F2647E18
556EBA21F6647E18

A247ED988457CB78
5E99F231005F5249

114 ** 2D093D426D922F92
6D013D4269922F92

5DF62030B9F23AE9
5D92DA1FA3D07BA1

115 004518468E0C96C3
404D18468A0C96C3

F28D85FF7E84F38F
52541B0443053C57

116 ** 437B70A98AE03344
037370A98EE03344

04B3FBF9823B4CF7
14EBEC79DAD3093E

117 2D01F1073D3E375B
6D09F107393E375B

F10B3E1EE356226C
6FF26DA5E3525B62

118 * 66573DD7E0D7F110
265F3DD7E4D7F110

F2F26204C29FE51E
083A4ECE57E429AC

119 0846DB9538155201
484EDB953C155201

F120D0D2AE788057
00CC914A33034782

120 ABB34FC195C820D1
EBBB4FC191C820D1

5F17AE066B50FC81
2858DD63A2FA4B53

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

3.7 Notes and References

A nice article on the history DES is by Smid and Branstad [SB92]. Federal Information Processing
Standards (FIPS) publications concerning DES include the following: description of DES [NBS77];
implementing and using DES [NBS81]; modes of operation of DES [NBS80]; and authentication using
DES [NBS85].

Some properties of the S-boxes are studied by Brickell, Moore, and Purtill [BMP87].

The DEC DES chip is described in [EB93]. Wiener’s key search machine was described at CRYPTO ’93
[WI94].

The time-memory trade-off for DES is due to Hellman [HE80]. A more general time-memory trade-off is
presented by Fiat and Naor in [FN91].

The technique of differential cryptanalysis was developed by Biham and Shamir [BS91] (see also [BS93A]
and their book [BS93], where cryptanalysis of other cryptosystems is also discussed). Our treatment of
differential cryptanalysis is based largely on [BS93].

Another new method of cryptanalysis that can be used to attack DES and other similar cryptosystems is
the linear cryptanalysis of Matsui [MA94, MA94A].

Descriptions of other substitution-permutation cryptosystems can be found in the following sources:
LUCIFER [FE73]; FEAL [MI9 1]; REDOC-II [CW91]; and LOKI [BKPS90].

Exercises

3.1 Prove that DES decryption can be done by applying the DES encryption algorithm to the
ciphertext with the key schedule reversed.
3.2 Let DES(x, K) represent the encryption of plaintext x with key K using the DES cryptosystem.
Suppose y = DES (x, K) and y′ = DES (c(x), c(K)), where c(⋅) denotes the bitwise complement of its
argument. Prove that y′ = c(y) (i.e., if we complement the plaintext and the key, then the ciphertext is
also complemented). Note that this can be proved using only the "high-level" description of DES ‹
the actual structure of S-boxes and other components of the system are irrelevant.
3.3 One way to strengthen DES is by double encryption: Given two keys, K1 and K2 , define

 (of course, this is just the product of DES with itself). If it happened that the

encryption function was the same as the decryption function , then K1 and K2 are said

to be dual keys. (This is very undesirable for double encryption, since the resulting ciphertext is
identical to the plaintext.) A key is self-dual if it is its own dual key.

(a) Prove that if C0 is either all 0’s or all 1’s and D0 is either all 0’s or all 1’s, then K is

self-dual.
(b) Prove that the following keys (given in hexadecimal notation) are self-dual:

0101010101010101
FEFEFEFEFEFEFEFE< BR>1F1F1F1F0E0E0E0E

E0E0E0E0F1F1F1F1

(c) Prove that if C0 = 0101 . . . 01 or 1010 . . . 10 (in binary), then the x-or of the bitstrings Ci

and C17-i is 1111 . . . 11, for 1 ≤ i ≤ 16 (a similar statement holds for the D i ’s).

(d) Prove that the following pairs of keys (given in hexadecimal notation) are dual:

E001E001F101F101
FE1FFE1FFE0EFE0E
E01FE01FF10EF10E

01E001E001F101F1
1FFE1FFE0EFE0EFE
1FE01FE00EF10EF1<
/TT>

3.4 A message authentication code (MAC) can be produced by using CFB mode, as well as by using
CBC mode. Given a sequence of plaintext blocks x1 . . . xn , suppose we define the initialization

vector IV to be x1 . Then encrypt x2 . . . xn using key K in CFB mode, obtaining y1 . . . yn-1 (note

that there are only n - 1 ciphertext blocks). Finally, define the MAC to be eK (yn-1< /I>). Prove that

this MAC is identical to the MAC produced in Section 3.4.1 using CBC mode.
3.5 Suppose a sequence of plaintext blocks, x1 , . . . xn , is encrypted using DES, producing ciphertext

blocks y1 . . . yn . Suppose that one ciphertext block, say yi , is transmitted incorrectly (i.e., some 1’s

are changed to 0’s and vice versa). Show that the number of plaintext blocks that will be decrypted
incorrectly is equal to one if ECB or OFB modes were used for encryption; and equal to two if CBC
or CFB modes were used.
3.6 The purpose of this question is to investigate a simplified time-memory trade-off for a chosen

plaintext attack. Suppose we have a cryptosystem in which , which attains perfect

secrecy. Then it must be the case that implies K = K1 . Denote

 . Let x be a fixed plaintext. Define the function g : Y → Y by the rule g(y) =
ey(x). Define a directed graph G having vertex set Y, in which the edge set consists of all the directed

edges of the form (yi , g(yi)), 1 ≤ i ≤ N.

(a) Prove that G consists of the union of disjoint directed cycles.
(b) Let T be a desired time parameter. Suppose we have a set of elements Z = {z1 , . . . , zm} ⊆

Y such that, for every element yi ∈ Y, either yi is contained in a cycle of length at most T, or

there exists an element zj ≠ yi such that the distance from yi to zj (in G) is at most T. Prove

that there exists such a set Z such that

so |Z| is O(N/T)

(c) For each zj ∈ Z, define g-T (zj) to be the element yi such that gT (yi) = zj , where gT is

the function that consists of T iterations of g. Construct a table X consisting of the ordered pairs
(zj , g-T (zj)), sorted with respect to their first coordinates.

A pseudo-code description of an algorithm to find K, given y = eK (x), is presented in Figure

3.15. Prove that this algorithm finds K in at most T steps. (Hence the time-memory trade-off is
O(N).)

Figure 3.15 Time-memory trade-off

Figure 3.16 Differential attack on 4-round DES

(d) Describe a pseudo-code algorithm to construct the desired set Z in time O(NT) without
using an array of size N.

3.7 Compute the probabilities of the following 3-round characteristic:

3.8 Here is a differential attack on a 4-round DES. It uses the following characteristic, which is a
special case of the characteristic presented in Figure 3.10:

(a) Suppose that the following algorithm presented in Figure 3.16 is used to compute sets test2 ,

. . . test8 . Show that Jj ∈ testj for 2 ∈ j ∈ 8.

(b) Given the following plaintext-ciphertext pairs, find the key bits J2 , . . . , J8 .

plaintext ciphertext

18493AC485B8D9A0 E332151312A18B4F

38493AC485B8D9A0 87391C27E5282161

482765DDD7009123 B5DDD8339D82D1D1

682765DDD7009123 81F4B92BD94B6FD8

ABCD098733731FF1 93A4B42F62EA59E4

8BCD098733731FF1 ABA494072BF411E5

13578642AAFFEDCB FDEB526275FB9D94

33578642AAFFEDCB CC8F72AAE685FDB1

(c) Compute the entire key (14 key bits remain to be determined, which can be done by
exhaustive search).

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Chapter 4
The RSA System and Factoring

4.1 Introduction to Public-key Cryptography

In the classical model of cryptography that we have been studying up until now, Alice and Bob secretly
choose the key K. K then gives rise to an encryption rule eK and a decryption rule dK . In the

cryptosystems we have seen so far, dK is either the same as eK , or easily derived from it (for example,

DES decryption is identical to encryption, but the key schedule is reversed). Cryptosystems of this type
are known as private-key systems, since exposure of eK renders the system insecure.

One drawback of a private-key system is that it requires the prior communication of the key K between
Alice and Bob, using a secure channel, before any ciphertext is transmitted. In practice, this may be very
difficult to achieve. For example, suppose Alice and Bob live far away from each other and they decide
that they want to communicate electronically, using e-mail. In a situation such as this, Alice and Bob may
not have access to a reasonable secure channel.

The idea behind a public-key system is that it might be possible to find a cryptosystem where it is
computationally infeasible to determine dK given eK . If so, then the encryption rule eK could be made

public by publishing it in a directory (hence the term public-key system). The advantage of a public-key
system is that Alice (or anyone else) can send an encrypted message to Bob (without the prior
communication of a secret key) by using the public encryption rule eK . Bob will be the only person that

can decrypt the ciphertext, using his secret decryption rule dK .

Consider the following analogy: Alice places an object in a metal box, and then locks it with a
combination lock left there by Bob. Bob is the only person who can open the box since only he knows the
combination.

The idea of a public-key system was due to Diffie and Hellman in 1976. The first realization of a
public-key system came in 1977 by Rivest, Shamir, and Adleman, who invented the well-known RSA
Cryptosystem which we study in this chapter. Since then, several public-key systems have been proposed,
whose security rests on different computational problems. Of these, the most important are the following:

RSA
The security of RSA is based on the difficulty of factoring large integers. This system is described in
Section 4.3.

Merkle-Hellman Knapsack
This and related systems are based on the difficulty of the subset sum problem (which is
NP-complete1); however, all of the various knapsack systems have been shown to be insecure (with
the exception of the Chor-Rivest Cryptosystem mentioned below). See Chapter 5 for a discussion of
this cryptosystem.

1The NP-complete problems are a large class of problems for which no polynomial-time algorithms are known.

McEliece
The McEliece Cryptosystem is based on algebraic coding theory and is still regarded as being
secure. It is based on the problem of decoding a linear code (which is also NP-complete). (See
Chapter 5.)

ElGamal
The ElGamal Cryptosystem is based on the difficulty of the discrete logarithm problem for finite
fields. (See Chapter 5.)

Chor-Rivest
This is also referred to as a "knapsack" type system, but it is still regarded as being secure.

Elliptic Curve
The Elliptic Curve Cryptosystems are modifications of other systems (such as the ElGamal
Cryptosystem, for example) that work in the domain of elliptic curves rather than finite fields. The
Elliptic Curve Cryptosystems appear to remain secure for smaller keys than other public-key
cryptosystems. (See Chapter 5.)

One very important observation is that a public-key cryptosystem can never provide unconditional
security. This is because an opponent, on observing a ciphertext y, can encrypt each possible plaintext in
turn using the public encryption rule eK until he finds the unique x such that y = eK (x). This x is the

decryption of y. Consequently, we study the computational security of public-key systems.

It is helpful conceptually to think of a public-key system in terms of an abstraction called a trapdoor
one-way function. We informally define this notion now.

Bob’s public encryption function, eK , should be easy to compute. We have just noted that computing the

inverse function (i.e., decrypting) should be hard (for anyone other than Bob). This property of being easy
to compute but hard to invert is often called the one-way property. Thus, we desire that eK be an

(injective) one-way function.

One-way functions play a central role in cryptography; they are important for constructing public-key
cryptosystems and in various other contexts. Unfortunately, although there are many functions that are
believed to be one-way, there currently do not exist functions that can be proved to be one-way.

Here is an example of a function which is believed to be one-way. Suppose n is the product of two large

primes p and q, and let b be a positive integer. Then define to be

(For a suitable choice of b and n, this is in fact the RSA encryption function; we will have much more to
say about it later.)

If we are to construct a public-key cryptosystem, then it is not sufficient to find a one-way function. We do
not want eK to be a one-way function from Bob’s point of view, since he wants to be able to decrypt

messages that he receives in an efficient way. Thus, it is necessary that Bob possesses a trapdoor, which
consists of secret information that permits easy inversion of eK . That is, Bob can decrypt efficiently

because he has some extra secret knowledge about K. So, we say that a function is a trapdoor one-way
function if it is a one-way function, but it becomes easy to invert with the knowledge of a certain trapdoor.

We will see in Section 4.3 how to find a trapdoor for the function f defined above. This will lead to the
RSA Cryptosystem.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

4.2 More Number Theory

Before describing how RSA works, we need to discuss some more facts concerning modular arithmetic
and number theory. Two fundamental results that we require are the Euclidean algorithm and the Chinese
remainder theorem.

4.2.1 The Euclidean Algorithm

We already observed in Chapter 1 that is a ring for any positive integer n. We also proved there that

 has a multiplicative inverse if and only if gcd(b, n) = 1, and that the number of positive
integers less than n and relatively prime to n is φ(n).

The set of residues modulo n that are relatively prime to n is denoted . It is not hard to see that
forms an abelian group under multiplication. We already have stated that multiplication modulo n is

associative and commutative, and that 1 is the multiplicative identity. Any element in will have a

multiplicative inverse (which is also in). Finally, is closed under multiplication since xy is
relatively prime to n whenever x and y are relatively prime to n (prove this!).

At this point, we know that any has a multiplicative inverse, b -1 , but we do not yet have an
efficient algorithm to compute b -1 . Such an algorithm exists; it is called the extended Euclidean
algorithm.

First, we describe the Euclidean algorithm, in its basic form, which is used to compute the greatest
common divisor of two positive integers, say r0 and r1 , where r0 > r1 . The Euclidean algorithm consists

of performing the following sequence of divisions:

Then it is not hard to show that

Hence, it follows that gcd(r0 , r1) = rm .

Since the Euclidean algorithm computes greatest common divisors, it can be used to determine if a
positive integer b < n has a multiplicative inverse modulo n, by starting with r0 = n and r1 = b. However,

it does not compute the value of the multiplicative inverse (if it exists).

Now, suppose we define a sequence of numbers t0 , t1 , . . ., tm according to the following recurrence

(where the q j ’s are defined as above):

Then we have the following useful result.

THEOREM 4.1

For 0 ≤ j ≤ m, we have that r j ≡ t j r1< /SUB> (mod r0), where the q j ’s and r j ’s are defined as in the Euclidean algorithm, and

the t j ’s are defined in the above recurrence.

PROOF The proof is by induction on j. The assertion is trivially true for j = 0 and j = 1. Assume the assertion is true for j = i - 1 and i - 2,
where i ≥ 2; we will prove the assertion is true for j = i. By induction, we have that

and

Now, we compute:

Hence, the result is true by induction.

The next corollary is an immediate consequence.

COROLLARY 4.2

Suppose gcd(r0, r1) = 1. Then tm = r1 -1 mod r0.

Now, the sequence of numbers t0 , t1, . . . tm can be calculated in the Euclidean algorithm at the same time as the q j ’s and the r j ’s. In

Figure 4.1, we present the extended Euclidean algorithm to compute the inverse of b modulo n, if it exists. In this version of the algorithm,
we do not use an array to keep track of the q j ’s, r j ’s and t j ’s, since it suffices to remember only the "last" two terms in each of these

sequences at any point in the algorithm.

In step 10 of the algorithm, we have written the expression for temp in such a way that the reduction modulo n is done with a positive
argument. (We mentioned earlier that modular reductions of negative numbers yield negative results in many computer languages; of
course, we want to end up with a positive result here.) We also mention that at step 12, it is always the case that tb ≡ r (mod n) (this is the
result proved in Theorem 4.1).

Here is a small example to illustrate:

Example 4.1

Suppose we wish to compute 28-1 mod 75. The Extended Euclidean algorithm proceeds as follows:

Hence, 28-1 mod 75 = 67.

Figure 4.1 Extended Euclidean algorithm

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

4.2.2 The Chinese Remainder Theorem

The Chinese remainder theorem is really a method of solving certain systems of congruences. Suppose
m1 , . . . , mr are pairwise relatively prime positive integers (that is, gcd (mi , mj) = 1 if i ≠ j). Suppose a1 ,

. . ., ar are integers, and consider the following system of congruences:

The Chinese remainder theorem asserts that this system has a unique solution modulo M = m1 × m2 × . . .

× mr . We will prove this result in this section, and also describe an efficient algorithm for solving systems

of congruences of this type.

It is convenient to study the function , which we define as follows:

Example 4.2

Suppose r = 2, m1 = 5 and m2 = 3, so M = 15. Then the function π has the following values:

Proving the Chinese remainder theorem amounts to proving that this function π we have defined is a
bijection. In Example 4.2 this is easily seen to be the case. In fact, we will be able to give an explicit
general formula for the inverse function π -1 .

For 1 ≤ i ≤ r, define

Then it is not difficult to see that

for 1 ≤ i ≤ r. Next, for 1 ≤ i ≤ r, define

(This inverse exists since gcd(M i , mi) = 1, and it can be found using the Euclidean algorithm.) Note that

for i ≤ i ≤ r.

Now, define a function follows:

We will show that the function ρ = π -1 , i.e., it provides an explicit formula for solving the original system
of congruences.

Denote X = ρ(a1 , . . ., ar), and let 1 ≤ j ≤ r. Consider a term ai M i y< SMALL>i in the above summation,

reduced modulo mj : If i = j, then

since

On the other hand, if i ≠ j, then

since mj | M i in this case. Thus, we have that

Since this is true for all j, 1 ≤ j ≤ r, X is a solution to the system of congruences.

At this point, we need to show that the solution X is unique modulo M. But this can be done by simple
counting. The function π is a function from a domain of cardinality M to a range of cardinality M. We
have just proved that π is a surjective (i.e., onto) function. Hence, π must also be injective (i.e.,
one-to-one), since the domain and range have the same cardinality. It follows that π is a bijection and π -1

= ρ. Note also that π -1 is a linear function of its arguments a1 , . . . , ar .

Here is a bigger example to illustrate.

Example 4.3

Suppose r = 3, m1 = 7, m2 = 11 and m3 = 13. Then M = 1001. We compute M1 = 143, M2 = 91 and M3

= 77, and then y1 = 5, y2 = 4 and y3 = 12. Then the function is the

following:

For example, if x ≡ 5 (mod 7), x ≡ 3 (mod 11) and x ≡ 10 (mod 13), then this formula tells us that

This can be verified by reducing 894 modulo 7, 11 and 13.

For future reference, we record the results of this section as a theorem.

THEOREM 4.3 (Chinese Remainder Theorem)

Suppose m1 , . . ., mr are pairwise relatively prime positive integers, and suppose a1 , . . ., ar are integers.

Then, the system of r congruences x ≡ ai (mod mi) (1 ≤ i ≤ r) has a unique solution modulo M = m1 × . . .

× mr , which is given by

where M i = M/mi and yi = M i
-1 mod mi , for 1 ≤ i ≤ r.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

4.2.3 Other Useful Facts

We next mention another result from elementary group theory, called Lagrange’s Theorem, that will be
relevant in our treatment of the RSA Cryptosystem. For a (finite) multiplicative group G, define the order
of an element g ∈ G to be the smallest positive integer m such that gm = 1. The following result is fairly
simple, but we will not prove it here.

THEOREM 4.4 (Lagrange)

Suppose G is a multiplicative group of order n, and g∈ G. Then the order of g divides n.

For our purposes, the following corollaries are essential.

COROLLARY 4.5

If , then bφ(n) ≡ 1 (mod n).

PROOF is a multiplicative group of order φ(n).

COROLLARY 4.6 (Fermat)

Suppose p is prime and . Then bp ≡ b (mod p).

PROOF If p is prime, then φ(p) = p - 1. So, for (mod p), the result follows from Corollary 4.5. For
b ≡ 0 (mod p), the result is also true since 0p ≡ 0 (mod p).

At this point, we know that if p is prime, then is a group of order p - 1, and any element in has

order dividing p - 1. However, if p is prime, then the group is in fact cyclic: there exists an element

 having order equal to p - 1. We will not prove this very important fact, but we do record it for
future reference:

THEOREM 4.7

If p is prime, then is a cyclic group.

An element α having order p - 1 is called a primitive element modulo p. Observe that α is a primitive
element if and only if

Now, suppose p is prime and α is a primitive element modulo p. Any element can be written as β
= α i , where 0 ≤ i ≤ p - 2, in a unique way. It is not difficult to prove that the order of β = α i is

Thus β is itself a primitive element if and only if gcd(p - 1, i) = 1. It follows that the number of primitive
elements modulo p is φ(p - 1).

Example 4.4

Suppose p = 13. By computing successive powers of 2, we can verify that 2 is a primitive element modulo
13:

The element 2i is primitive if and only if gcd(i, 12) = 1; i.e., if and only if i = 1, 5, 7 or 11. Hence, the
primitive elements modulo 13 are 2, 6, 7 and 11.

Figure 4.2 RSA Cryptosystem

4.3 The RSA Cryptosystem

We can now describe the RSA Cryptosystem. This cryptosystem uses computations in , where n is
the product of two distinct odd primes p and q. For such n, note that φ(n) = (p - 1) (q - 1).

The formal description of the cryptosystem is given in Figure 4.2. Let’s verify that encryption and
decryption are inverse operations. Since

we have that

for some integer t ≥ 1. Suppose that ; then we have

as desired. We leave it as an exercise for the reader to show that (xb)a< /SUP> ≡ x (mod n) if

Here is a small (insecure) example of the RSA Cryptosystem.

Example 4.5

Suppose Bob chooses p = 101 and q = 113. Then n = 11413 and φ(n) = 100 × 112 = 11200. Since 11200 = 26527, an integer b can be used
as an encryption exponent if and only if b is not divisible by 2, 5 or 7. (In practice, however, Bob will not factor φ(n). He will verify that
gcd(φ(n), b) = 1 using the Euclidean algorithm.) Suppose Bob chooses b = 3533. Then the Extended Euclidean algorithm will yield

Hence, Bob’s secret decryption exponent is a = 6597.

Bob publishes n = 11413 and b = 3533 in a directory. Now, suppose Alice wants to send the plaintext 9726 to Bob. She will compute

and send the ciphertext 5761 over the channel. When Bob receives the ciphertext 5761, he uses his secret decryption exponent to compute

(At this point, the encryption and decryption operations might appear to be very complicated, but we will discuss efficient algorithms for
these operations in the next section.)

The security of RSA is based on the hope that the encryption function eK (x) = xb mod n is one-way, so it will be computationally
infeasible for an opponent to decrypt a ciphertext. The trapdoor that allows Bob to decrypt is the knowledge of the factorization n = pq.
Since Bob knows this factorization, he can compute φ(n) = (p - 1)(q - 1) and then compute the decryption exponent a using the Extended
Euclidean algorithm. We will say more about the security of RSA later on.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

4.4 Implementing RSA

There are many aspects of the RSA Cryptosystem to discuss, including the details of setting up the
cryptosystem, the efficiency of encrypting and decrypting, and security issues. In order to set up the
system, Bob follows the steps indicated in Figure 4.3. How Bob carries out these steps will be discussed
later in this chapter.

One obvious attack on the cryptosystem is for a cryptanalyst to attempt to factor n. If this can be done, it is
a simple manner to compute φ(n) = (p - 1)(q - 1) and then compute the decryption exponent a from b
exactly as Bob did. (It has been conjectured that breaking RSA is polynomially equivalent2 to factoring n,
but this remains unproved.)

2Two problems are said to be polynomially equivalent if the existence of a polynomial-time algorithm for either problem
implies the existence of a polynomial-time algorithm for the other problem.

Figure 4.3 Setting up RSA

Hence, if the RSA Cryptosystem is to be secure, it is certainly necessary that n = pq must be large enough
that factoring it will be computationally infeasible. Current factoring algorithms are able to factor numbers
having up to 130 decimal digits (for more information on factoring, see Section 4.8). Hence, it is
recommended that, to be on the safe side, one should choose p and q to each be primes having about 100
digits; then n will have 200 digits. Several hardware implementations of RSA use a modulus which is 512
bits in length. However, a 512-bit modulus corresponds to about 154 decimal digits (since the number of
bits in the binary representation of an integer is log2 10 times the number of decimal digits), and hence it

does not offer good long-term security.

Leaving aside for the moment the question of how to find 100 digit primes, let us look now at the
arithmetic operations of encryption and decryption. An encryption (or decryption) involves performing
one exponentiation modulo n. Since n is very large, we must use multiprecision arithmetic to perform

computations in , and the time required will depend on the number of bits in the binary representation
of n.

Suppose n has k bits in its binary representation; i.e., k = [log2 n] + 1. Using standard "grade-school"

arithmetic techniques, it is not difficult to see that an addition of two k-bit integers can be done in time
O(k), and a multiplication can be done in time O(k2). Also, a reduction modulo n of an integer having at
most 2k bits can be performed in time O(k2) (this amounts to doing long division and retaining the

remainder). Now, suppose that (where we are assuming that 0 ≤ x, y ≤ n - 1). Then xy mod n
can be computed by first calculating the product xy (which is a 2k-bit integer), and then reducing it modulo
n. These two steps can be peformed in time O(k2). We call this computation modular multiplication.

Figure 4.4 The square-and-multiply algorithm to compute xb mod n

We now consider modular exponentiation, i.e., computation of a function of the form xc mod n. As noted
above, both the encryption and the decryption operations in RSA are modular exponentiations.
Computation of xc mod n can be done using c - 1 modular multiplications; however, this is very
inefficient if c is large. Note that c might be as big as φ(n) - 1, which is exponentially large compared to k.

The well-known "square-and-multiply" approach reduces the number of modular multiplications required
to compute xc mod n to at most , where is the number of bits in the binary representation of c. Since

 , it follows that xc mod n can be computed in time O(k3). Hence, RSA, encryption and
decryption can both be done in polynomial time (as a function of k, which is the number of bits in one
plaintext (or ciphertext) character).

Square-and-multiply assumes that the exponent, b say, is represented in binary notation, say

where . The algorithm to compute z = xb mod n is presented in Figure
4.4. It is easy to count the number of modular multiplications performed by the square-and-multiply
algorithm. There are always squarings performed (step 3). The number of modular multiplications in step
4 is equal to the number of 1’s in the binary representation of b, which is an integer between 0 and .
Thus, the total number of modular multiplications is at least and at most .

We will illustrate the use of square-and-multiply by returning to Example 4.5.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Example 4.5 (Cont.)

Recall that n = 11413, and the public encryption exponent is b = 3533. Alice encrypts the plaintext 9726
by computing 97263533 mod 11413, using the square-and multiply algorithm, as follows:

i b i z

11 1 12 × 9726 = 9726

10 1 97262 × 9726 = 2659

 9 0 26592 = 5634

 8 1 56342 × 9726 = 9167

 7 1 91672 × 9726 = 4958

 6 1 49582 × 9726 = 7783

 5 0 77832 = 6298

 4 0 62982 = 4629

 3 1 46292 × 9726 = 10185

 2 1 101852 × 9726 = 105

 1 0 1052 = 11025

 0 1 110252 × 9726 = 5761

Hence, as stated earlier, the ciphertext is 5761.

It should be emphasized that the most efficient current hardware implementations of RSA achieve
encryption rates of about 600 Kbits per second (using a 512 bit modulus n), as compared to 1 Gbit per
second for DES. Stated another way, RSA, is roughly 1500 times slower than DES.

At this point we have discussed the encryption and decryption operations for RSA. In terms of setting up
RSA, the generation of the primes p and q (Step 1) will be discussed in the next section. Step 2 is
straightforward and can be done in time O((log n)2). Steps 3 and 4 involve the Euclidean algorithm, so
let’s briefly consider its complexity.

Suppose we compute the greatest common divisor of r 0 and r 1 , where r 0 > r 1 . In each iteration of the

algorithm, we compute a quotient and remainder, which can be done in time O((log r 0)2). If we can

obtain an upper bound on the number of iterations, then we will have a bound on the complexity of the
algorithm. There is a well-known result, known as Lamé’s Theorem, that provides such a bound. It asserts
that if s is the number of iterations, then fs+2 ≤ r 0 , where f i denotes the ith Fibonacci number. Since

it follows that s is O(log r 0).

This shows that the running time of the Euclidean algorithm is O((log n)3). (Actually, a more careful
analysis can be used to show that the running time is, in fact, O((log n)2).)

4.5 Probabilistic Primality Testing

In setting up the RSA Cryptosystem, it is necessary to generate large (e.g., 80 digit) "random primes." In
practice, the way this is done is to generate large random numbers, and then test them for primality using a
probabilistic polynomialtime Monte Carlo algorithm such as the Solovay-Strassen or Miller-Rabin
algorithm, both of which we will present in this section. These algorithms are fast (i.e., an integer n can be
tested in time that is polynomial in log2 n, the number of bits in the binary representation of n), but there

is a possibility that the algorithm may claim that n is prime when it is not. However, by running the
algorithm enough times, the error probability can be reduced below any desired threshold. (We will
discuss this in more detail a bit later.)

The other pertinent question is how many random integers (of a specified size) will need to be tested until
we find one that is prime. A famous result in number theory, called the Prime number theorem, states that
the number of primes not exceeding N is approximately N/ln N. Hence, if p is chosen at random, the

probability that it is prime is about 1/ln p. For a 512 bit modulus, we have . That is, on
average, of 177 random integers p of the appropriate size, one will be prime (of course, if we restrict our
attention to odd integers, the probability doubles, to about 2/177). So it is indeed practical to generate
sufficiently large random numbers that are "probably prime," and hence it is practical to set up the RSA
Cryptosystem. We proceed to describe how this is done.

A decision problem is a problem in which a question is to be answered "yes" or "no." A probabilistic
algorithm is any algorithm that uses random numbers (in contrast, an algorithm that does not use random
numbers is called a deterministic algorithm). The following definitions pertain to probabilistic algorithms
for decision problems.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

DEFINITION 4.1 A yes-biased Monte Carlo algorithm is a probabilistic algorithm for a decision
problem in which a "yes" answer is (always) correct, but a "no" answer may be incorrect. A
no-biased Monte Carlo algorithm is defined in the obvious way. We say that a yes-biased Monte
Carlo algorithm has error probability equal to ∈ if, for any instance in which the answer is "yes," the
algorithm will give the (incorrect) answer "no" with probability at most ∈. (This probability is computed
over all possible random choices made by the algorithm when it is run with a given input.)

The decision problem called Composites is described in Figure 4.5.

Note that an algorithm for a decision problem only has to answer "yes" or "no." In particular, in the case of
the problem Composites, we do not require the algorithm to find a factorization in the case that n is
composite.

We will first describe the Solovay-Strassen algorithm, which is a yes-biased Monte Carlo algorithm for
Composites with error probability 1/2. Hence, if the algorithm answers "yes," then n is composite;
conversely, if n is composite, then the algorithm answers "yes" with probability at least 1/2.

Figure 4.5 Composites

Figure 4.6 Quadratic Residues

Although the Miller-Rabin algorithm (which we will discuss later) is faster than Solovay-Strassen, we
begin by looking at the Solovay-Strassen algorithm because it is easier to understand conceptually and
because it involves some number-theoretic concepts that will be useful in later chapters of the book. We
begin by developing some further background from number theory before describing the algorithm.

DEFINITION 4.2 Suppose p is an odd prime and x is an integer, 1 ≤ x ≤ p - 1. x is defined to be a

quadratic residue modulo p if the congruence y2 𕟁 x (mod p) has a solution . x is

defined to be a quadratic non-residue modulo p if (mod p) and x is not a quadratic residue
modulo p.

Example 4.6

The quadratic residues modulo 11 are 1, 3, 4, 5 and 9. Note that (±1)2 = 1, (±5)2 = 3, (±2)2 = 4, (±4)2 =

5 and (±3)2 = 9 (where all arithmetic is in).

The decision problem Quadratic Residues is defined in Figure 4.6 in the obvious way.

We prove a result, known as Euler’s criterion, that will give rise to a polynomialtime deterministic
algorithm for Quadratic Residues.

THEOREM 4.8 (Euler’s Criterion)

Let p be an odd prime. Then x is a quadratic residue modulo p if and only if

PROOF First, suppose x ≡ y2 (mod p). Recall from Corollary 4.6 that if p is prime, then xp-1 ≡ 1 (mod p)

for any (mod p). Thus we have

Conversely, suppose x(p-1)/2 ≡ 1 (mod p). Let b be a primitive element modulo p. Then x ≡ bi (mod p) for
some i. Then we have

Since b has order p - 1, it must be the case that p - 1 divides i(p - 1)/2. Hence, i is even, and then the square
roots of x are ±bi/2 .

Theorem 4.8 yields a polynomial-time algorithm for Quadratic Residues, by using the
"square-and-multiply" technique for exponentiation modulo p. The complexity of the algorithm will be
O((log p)3).

We now need to give some further definitions from number theory.

DEFINITION 4.3 Suppose p is an odd prime. For any integer a ≥ 0, we define the Legendre symbol
as follows:

We have already seen that a(p-1)/2 ≡ 1 (mod p) if and only if a is a quadratic residue modulo p. If a is a
multiple of p, then it is clear that a(p-1)/2 ≡ 0 (mod p). Finally, if a is a quadratic non-residue modulo p,
then a(p-1)/2 ≡ -1 (mod p) since ap-1 ≡ 1 (mod p). Hence, we have the following result, which provides an
efficient algorithm to evaluate Legendre symbols:

THEOREM 4.9

Suppose p is an odd prime. Then

Next, we define a generalization of the Legendre symbol.

DEFINITION 4.4 Suppose n is an odd positive integer, and the prime power factorization of n is

 . Let a ≥ 0 be an integer. The Jacobi symbol is defined to be

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Example 4.7

Consider the Jacobi symbol . The prime power factorization of 9975 is 9975 = 3 × 52 × 7 × 19.
Thus we have

Suppose n > 1 is odd. If n is prime then (mod n) for any a. On the other hand, if n is

composite, it may or may not be the case that (mod n). If this equation holds, then n is
called an Euler pseudo-prime to the base a. For example, 91 is an Euler pseudo-prime to the base 10, since

However, it can be shown that, for any odd composite n, n is an Euler pseudo-prime to the base a for at
most half of the integers a such that 1 ≤ a ≤ n - 1 (see the exercises). This fact shows that the
Solovay-Strassen primality test, which we present in Figure 4.7, is a yes-biased Monte Carlo algorithm
with error probability at most 1/2. At this point it is not clear that the algorithm is a polynomial-time
algorithm. We already know how to evaluate a (n-1)/2 mod n in time O((log n)3), but how do we compute

Jacobi symbols efficiently? It might appear to be necessary to first factor n, since the Jacobi symbol is
defined in terms of the factorization of n. But, if we could factor n, we would already know if it is prime,
so this approach ends up in a vicious circle.

Fortunately, we can evaluate a Jacobi symbol without factoring n by using some results from number
theory, the most important of which is a generalization of the law of quadratic reciprocity (property 4
below). We now enumerate these properties without proof:

Figure 4.7 The Solovay-Strassen primality test for an odd integer n

1. If n is an odd integer and m1 ≡ m2 (mod n), then

2. If n is an odd integer, then

3. If n is an odd integer then

In particular, if m = 2k t, where t is odd, then

4. Suppose m and n are odd integers. Then

Example 4.8

As an illustration of the application of these properties, we evaluate the Jacobi symbol as follows:

Notice that we successively apply properties 4, 1, 3, and 2 in this computation.

In general, by applying these four properties, it is possible to compute a Jacobi symbol in polynomial
time. The only arithmetic operations that are required are modular reductions and factoring out powers of
two. Note that if an integer is represented in binary notation, then factoring out powers of two amounts to
determining the number of trailing zeroes. So, the complexity of the algorithm is determined by the
number of modular reductions that must be done. It is not difficult to show that at most O(log n) modular
reductions are performed, each of which can be done in time O((log n)2). This shows that the complexity
is O((log n)3), which is polynomial in log n. (In fact, the complexity can be shown to be O((log n)2) by
more precise analysis.)

Suppose that we have generated a random number n and tested it for primality using the Solovay-Strassen
algorithm. If we have run the algorithm m times, what is our confidence that n is prime? It is tempting to
conclude that the probability that such an integer n is prime is 1 - 2-m . This conclusion is often stated in
both textbooks and technical articles, but it cannot be inferred from the given data.

We need to be careful about our use of probabilities. We will define the following random variables: a
denotes the event

"a random odd integer n of a specified size is composite,"

and b denotes the event

"the algorithm answers ‡n is prime’ m times in succession."

It is certainly the case that prob(b|a) ≤ 2-m . However, the probability that we are really interested is
prob(a|b), which is usually not the same as prob(b|a).

We can compute prob(a|b) using Bayes’ theorem (Theorem 2.1). In order to do this, we need to know
prob(a). Suppose N ≤ n ≤ 2N. Applying the Prime number theorem, the number of (odd) primes between
N and 2N is approximately

Since there are odd integers between N and 2N, we will use the estimate

Then we can compute as follows:

Note that in this computation, denotes the event

Figure 4.8 Error probabilities for the Solovay-Strassen test

"a random odd integer n is prime."

It is interesting to compare the two quantities (ln n - 2)/(ln n - 2 + 2m+1) and 2-m as a function of m.

Suppose that , since these are the sizes of primes that we seek for use in RSA. Then
the first function is roughly 175/(175 + 2m+1). We tabulate the two functions for some values of m in
Figure 4.8.

Although 175/(175+2m+1) approaches zero exponentially quickly, it does not do so as quickly as 2-m . In
practice, however, one would take m to be something like 50 or 100, which will reduce the probability of
error to a very small quantity.

We conclude this section with another Monte Carlo algorithm for Composites which is known as the
Miller-Rabin algorithm (it is also known as the "strong pseudo-prime test"). This algorithm is presented in
Figure 4.9. It is clearly a polynomial-time algorithm: an elementary analysis shows that its complexity is
O((log n)3), as in the case of the Solovay-Strassen test. In fact, the Miller-Rabin algorithm performs better
in practice than the Solovay-Strassen algorithm.

We show now that this algorithm cannot answer "n is composite" if n is prime, i.e., the algorithm is
yes-biased.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

THEOREM 4.10

The Miller-Rabin algorithm for Composites is a yes-biased Monte Carlo algorithm.

PROOF We will prove this by assuming the algorithm answers "n is composite" for some prime integer n,

and obtain a contradiction. Since the algorithm answers "n is composite," it must be the case that
(mod n). Now consider the sequence of values b tested in the algorithm. Since b is squared in each

iteration of the for loop, we are testing the values . Since the algorithm answers "n
is composite," we conclude that

for 0 ≤ i ≤ k - 1.

Figure 4.9 The Miller-Rabin primality test for an odd integer n

Now, using the assumption that n is prime, Fermat’s theorem (Corollary 4.6) tells us that

since n - 1 = 2km. Then is a square root of 1 modulo n. Since n is prime, there are only two
square roots of 1 modulo n, namely, ±1 mod n. This can be seen as follows: x is a square root of 1 modulo
n if and only if

Since n is prime, either n | (x - 1) (i.e., x ≡ 1 (mod n)) or n | (x + 1) (i.e., x ± 1 (mod n)).

We have that

so it follows that

Then must be a square root of 1. By the same argument,

Repeating this argument, we eventually obtain

which is a contradiction, since the algorithm would have answered "n is prime" in this case.

It remains to consider the error probability of the Miller-Rabin algorithm. Although we will not prove it
here, the error probability can be shown to be, at most, 1/4.

4.6 Attacks On RSA

In this section, we address the question: are there possible attacks on RSA other than factoring n? Let us
first observe that it is sufficient for the cryptanalyst to compute φ(n). For, if n and φ(n) are known, and n is
the product of two primes p, q, then n can be easily factored, by solving the two equations

for the two "unknowns" p and q. If we substitute q = n/p into the second equation, we obtain a quadratic
equation in the unknown value p:

The two roots of this equation will be p and q, the factors of n. Hence, if a cryptanalyst can learn the value
of φ(n), then he can factor n and break the system. In other words, computing φ(n) is no easier than
factoring n.

Here is an example to illustrate.

Example 4.9

Suppose the cryptanalyst has learned that n = 84773093 and φ(n) = 84754668. This information gives rise
to the following quadratic equation:

This can be solved by the quadratic formula, yielding the two roots 9539 and 8887. These are the two
factors of n.

4.6.1 The Decryption Exponent

We will now prove the very interesting result that any algorithm which computes the decryption exponent
a can be used as a subroutine (or oracle) in a probabilistic algorithm that factors n. So we can say that
computing a is no easier than factoring n. However, this does not rule out the possibility of breaking the
cryptosystem without computing a.

Notice that this result is of much more than theoretical interest. It tells us that if a is revealed, then the
value n is also compromised. If this happens, it is not sufficient for Bob to choose a new encryption
exponent; he must also choose a new modulus n.

The algorithm we are going to describe is a probabilistic algorithm of the Las Vegas type. Here is the
definition:

DEFINITION 4.5 Suppose 0 ≤ ∈ < 1 is a real number. A Las Vegas algorithm is a probabilistic
algorithm such that, for any problem instance I, the algorithm may fail to give an answer with some
probability ∈ (i.e., it can terminate with the message "no answer"). However, if the algorithm does return
an answer, then the answer must be correct.

REMARK Las Vegas algorithm may not give an answer, but any answer it gives is correct. In contrast, a
Monte Carlo algorithm always gives an answer, but the answer may be incorrect.

If we have a Las Vegas algorithm to solve a problem, then we simply run the algorithm over and over
again until it finds an answer. The probability that the algorithm will return "no answer" m times in
succession is ∈m. The average (i.e., expected) number of times the algorithm must be run in order to
obtain an answer is in fact 1/(1 - ∈) (see the exercises).

Suppose that A is a hypothetical algorithm that computes the decryption exponent a from b and n. We will
describe a Las Vegas algorithm that uses A as an oracle. This algorithm will factor n with probability at
least 1/2. Hence, if the algorithm is run m times, then n will be factored with probability at least 1 - 1/2m.

The algorithm is based on certain facts concerning square roots of 1 modulo n, where n = pq is the product
of two distinct odd primes. Recall that the congruence x2 ≡ 1 (mod p) has two solutions modulo p, namely
x = ±1 mod p. Similarly, the congruence x2 ≡ 1 (mod q) has two solutions, namely x = ±1 mod q.

Now, since x2 ≡ 1 (mod n) if and only if x2 ≡ 1 (mod p) and x2 ≡ 1 (mod q), it follows that x2 ≪ 1
(mod n) if and only if x2 ≡ 1 mod p and x = ±1 mod q. Hence, there are four square roots of 1 modulo n,
and they can be found using the Chinese remainder theorem. Two of these solutions are x = ±1 mod n;
these are called the trivial square roots of 1 modulo p. The other two square roots are called non-trivial,
and they are negatives of each other modulo n.

Here is a small example to illustrate.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Example 4.10

Suppose n = 403 = 13 × 31. The four square roots of 1 modulo 403 are 1, 92, 311 and 402. The square root
92 is obtained by solving the system x ≡ 1 (mod 13), x ≡ -1 (mod 31) using the Chinese remainder
theorem. Having found this non-trivial square root, the other non-trivial square root must be 403 - 92 =
311. It is the solution to the system x ≡ -1 (mod 13), x ≡ 1 (mod 31).

Suppose x is a non-trivial square root of 1 modulo n. Then we have

but n divides neither factor on the right side. It follows that gcd(x + 1, n) = p or q (and similarly, gcd(x - 1,
n) = p or q). Of course, a greatest common divisor can be computed using the Euclidean algorithm,
without knowing the factorization of n. Hence, knowledge of a non-trivial square root of 1 modulo n
yields the factorization of n with only a polynomial amount of computation. This important fact is the
basis of many results in cryptography.

In Example 4.10 above, gcd(93,403) = 31 and gcd(312,403) = 13.

In Figure 4.10, we present an algorithm which, using the hypothetical algorithm A as a subroutine,
attempts to factor n by finding a non-trivial square root of 1 modulo n. (Recall that A computes the
decryption exponent a corresponding to the encryption exponent b.) We first do an example to illustrate
the application of this algorithm.

Example 4.11

Suppose n = 89855713, b = 34986517 and a = 82330933, and the random value w = 5. We have

In step 6, v = 85877701, and in step 10, v = 1. In step 12, we compute

This is one factor of n; the other is n/9103 = 9871.

Let’s now proceed to the analysis of the algorithm. First, observe that if we are lucky enough to choose w
to be a multiple of p or q, then we can factor n

Figure 4.10 Factoring algorithm, given the decryption exponent a

immediately. This is detected in step 2. If w is relatively prime to n, then we compute w r , w2r , w4r , . . . ,
by successive squaring, until

for some t. Since

we know that (mod n). Hence, the while loop terminates after at most s iterations. At the

end of the while loop, we have found a value v0 such that (mod n) but (mod n). If v0 ≡ -1

(mod n), then the algorithm fails; otherwise, v0 is a non-trivial square root of 1 modulo n and we are able

to factor n (step 12).

The main task facing us now is to prove that the algorithm succeeds with probability at least 1/2. There are
two ways in which the algorithm can fail to factor n:

1. w r ≡ 1 (mod n) (step 7)

2. (mod n) for some t, 0 ≤ t ≤ s - 1 (step 11)

We have s + 1 congruences to consider. If a random value w is a solution to at least one of these s + 1
congruences, then it is a "bad" choice, and the algorithm fails. So we proceed by counting the number of
solutions to each of these congruences.

First, consider the congruence w r ≡ 1 (mod n). The way to analyze a congruence such as this is to
consider solutions modulo p and modulo q separately, and then combine them using the Chinese
remainder theorem. Observe that x ≡ 1 (mod n) if and only if x ≡ 1 (mod p) and x ≡ 1 (mod q).

So, we first consider w r ≡ 1 (mod p). Since p is prime, is a cyclic group by Theorem 4.7. Let g be a
primitive element modulo p. We can write w = gu for a unique integer u, 0 ≤ u ≤ p - 2. Then we have

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Let us write

where p1 is odd, and

where q1 is odd. Since

we have that

Hence

and

Now, the condition (p - 1) | [ur becomes 2i p1 | ur. Since p1 | r and r is odd, it is necessary and sufficient

that 2i | u. Hence, u = k2i , 0 ≤ k ≤ p1 - 1, and the number of solutions to the congruence wr ≡ 1 (mod p)

is p1 .

By an identical argument, the congruence wr ≡ 1 (mod q) has exactly q1 solutions. We can combine any
solution modulo p with any solution modulo q to obtain a unique solution modulo n, using the Chinese
remainder theorem. Consequently, the number of solutions to the congruence wr ≡ (mod n) is p1q1 .< /P>

The next step is to consider a congruence (mod n) for a fixed value t (where 0 ≤ t ≤ s - 1).

Again, we first look at the congruence modulo p and then modulo q (note that (mod n) if and

only if (mod p) and (mod q). First, consider (mod p). Writing w =

gu , as above, we get

Since g(p-1)/2 ≡ -1 (mod p), we have that

Since p - 1 = 2i p1 , we get

Taking out a common factor of p1 , this becomes

Now, if t ≥ i, then there can be no solutions since 2i+1 | 2t+1 but . On the other hand, if t ≤ i - 1,
then u is a solution if and only if u is an odd multiple of 2i-t-1 (note that r/p1 is an odd integer). So, the

number of solutions in this case is

By similar reasoning, the congruence (mod q) has no solutions if t ≥ j, and 2tq1 solutions if t

≤ j - 1. Using the Chinese remainder theorem, we see that the number of solutions of (mod
n) is

Now, t can range from 0 to s - 1. Without loss of generality, suppose i ≤ j; then the number of solutions is
0 if t ≥ i. The total number of "bad" choices for w is at most

Recall that p - 1 = 2i p1 and q - 1 = 2j q1 . Now, j ≥ i ≥ 1 so p1q1 < n/4. We also have that

Hence, we obtain

Since at most (n - 1)/2 choices for w are "bad," it follows that at least (n - 1)/2 choices are "good" and
hence the probability of success of the algorithm is at least 1/2.

4.6.2 Partial Information Concerning Plaintext Bits

The other result we will discuss concerns partial information about the plaintext that might be "leaked" by
an RSA encryption. Two examples of partial information that we consider are the following:

1. given y = eK (x), compute parity(y), where parity(y) denotes the low-order bit of x

2. given y = eK (x), compute half(y), where half(y) = 0 if 0 ≤ x < n/2 and half(y) = 1 if n/2 < x ≤ n - 1.

We will prove that, given y = eK (x), any algorithm that computes parity(y) or half(y) can be used as an

oracle to construct an algorithm that computes the plaintext x. What this means is that, given a ciphertext,
computing the low-order bit of the plaintext is polynomially equivalent to determining the whole
plaintext!

First, we prove that computing parity(y) is polynomially equivalent to computing half(y). This follows
from the following two easily proved identities (see the exercises):

and from the multiplicative rule eK (x1)< I>eK (x2) = eK (x1x2< /SUB>).

We will show how to compute x = dK (y), given a hypothetical algorithm (oracle) which computes half(y). The algorithm is presented in

Figure 4.11. In steps 2-4, we compute

for 0 ≤ i ≤ log2 n. We observe that

and so on. Hence, we can find x by a binary search technique, which is done in steps 7-11. Here is a small example to illustrate.

Figure 4.11 Decrypting RSA ciphertext, given an oracle for computing half(y)

Example 4.12

Suppose n = 1457, b = 779, and we have a ciphertext y = 722. eK (2) is computed to be 946. Suppose, using our oracle for half, that we

obtain the following values yi in step 3 of the algorithm:

Then the binary search proceeds as shown in Figure 4.12. Hence, the plaintext is x = [999.55] = 999.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

4.7 The Rabin Cryptosystem

In this section, we describe the Rabin Cryptosystem, which is computationally secure against a
chosen-plaintext attack provided that the modulus n = pq cannot be factored. The system is described in
Figure 4.13.

Figure 4.12 Binary search for RSA decryption

We will show that the encryption function eK is not an injection, so decryption cannot be done in an

unambiguous fashion. In fact, there are four possible plaintexts that could be the encryption of any given

ciphertext. More precisely, let w be one of the four square roots of 1 modulo n. Let . Then, we
can verify the following equations:

(Note that all arithmetic is being done in , and division by 2 and 4 is the same as multiplication by 2-1

and 4-1 modulo n, respectively.)

The four plaintexts that encrypt to eK (x) are x, -x - B, ω(x + B/2) - B/2 and -ω(x + B/2) - B/2, where ω is a

non-trivial square root of 1 modulo n. In general, there will be no way for Bob to distinguish which of
these four possible plaintexts is the "right" plaintext, unless the plaintext contains sufficient redundancy to
eliminate three of these four possible values.

Figure 4.13 Rabin Cryptosystem

Let us look at the decryption problem from Bob’s point of view. He is given a ciphertext y and wants to
determine x such that

This is a quadratic equation in the unknown x. We can eliminate the linear term by making the substitution
x1 = x + B/2, or equivalently, x = x1 - B/2. Then the equation becomes

or

If we define C == B2 /4 + y, then we can rewrite the congruence as

So, decryption reduces to extracting square roots modulo n. This is equivalent to solving the two
congruences

and

(There are two square roots of C modulo p and two square roots modulo q. Using the Chinese remainder
theorem, these can be combined to yield four solutions modulo n.) We can use Euler’s criterion to
determine if C is a quadratic residue modulo p (and modulo q). In fact, C will be a quadratic residue
modulo p and modulo q if encryption was performed correctly. But Euler’s criterion does not help us find
the square roots of C; it yields only an answer "yes" or "no."

When p ≡ 3 (mod 4), there is a simple formula to compute square roots of quadratic residues modulo p.
Suppose C is a quadratic residue and p ≡ 3 (mod 4). Then we have that

Here we again make use of Euler’s criterion, which says that if C is a quadratic residue modulo p, then
C (p-1)/2 ≡ 1 (mod p). Hence, the two square roots of 7 modulo P are ±C (p+1)/4 mod p. In a similar
fashion, the two square roots of 7 modulo q are ±C (q+1)/4 mod q. It is then straightforward to obtain the
four square roots x1 , of C modulo n using the Chinese remainder theorem.

REMARK It is interesting that for p ≡ 1 (mod 4) there is no known polynomial-time deterministic
algorithm to compute square roots of quadratic residues modulo p. There is a polynomial-time Las Vegas
algorithm, however.

Once we have determined the four possible values for x1 , we compute x from the equation x = x1 - B/2 to

get the four possible plaintexts. This yields the decryption formula

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Example 4.13

Let’s illustrate the encryption and decryption procedures for the Rabin Cryptosystem with a toy example.
Suppose n = 77 = 7 × 11 and B = 9. Then the encryption function is

and the decryption function is

Suppose Bob wants to decrypt the ciphertext y = 22. It is first necessary to find the square roots of 23
modulo 7 and modulo 11. Since 7 and 11 are both congruent to 3 modulo 4, we use our formula:

Figure 4.14 Factoring a Rabin modulus, given a decryption oracle

and

Using the Chinese remainder theorem, we compute the four square roots of 23 modulo 77 to be ±10, ±32
mod 77. Finally, the four possible plaintexts are:

It can be verified that each of these plaintexts encrypts to the ciphertext 22.

We now discuss the security of the Rabin Cryptosystem. We will prove that any hypothetical decryption
algorithm A can be used as an oracle in a Las Vegas algorithm that factors the modulus n with probability
at least 1/2. This algorithm is depicted in Figure 4.14.

There are several points of explanation needed. First, observe that

so a value x will be returned in step 3. Next, we look at step 4 and note that (mod n). It follows
that x1 ≡ ±r (mod n) or x1 ≡ ±ωr (mod n), where ω is one of the non-trivial square roots of 1 modulo n. In

the second case, we have

but n does not divide either factor on the right side. Hence, computation of gcd(x1 + r, n) (or gcd(x1 - r,

n)) must yield either p or q, and the factorization of n is accomplished.

Let’s compute the probability of success of this algorithm, over all n - 1 choices for the random value r.
For two non-zero residues r1 and r2 , define

It is easy to see that r ~ r for all r; r1 ~ r2 implies r2 ~ r1 ; and r1 ~ r2 and r2 ~ r3 together imply r1 ~

r3 . This says that the relation ~ is an equivalence relation. The equivalence classes of all have

cardinality four: the equivalence class containing r is the set

where ω is a non-trivial square root of 1 modulo n.

In the algorithm presented in Figure 4.14, any two values r in the same equivalence class will yield the
same value y. Now consider the value x returned by the oracle A when given y. We have

If r = ±y, then the algorithm fails; while it succeeds if r = ±ωy. Since r is chosen at random, it is equally
likely to be any of these four possible values. We conclude that the probability of success of the algorithm
is 1/2.

It is interesting that the Rabin Cryptosystem is provably secure against a chosen plaintext attack.
However, the system is completely insecure against a chosen ciphertext attack. In fact the algorithm in
Figure 4.14, that we used to prove security against a chosen plaintext attack, also can be used to break the
Rabin Cryptosystem in a chosen ciphertext attack! In the chosen ciphertext attack, the oracle A is
replaced by Bob’s decryption algorithm.

4.8 Factoring Algorithms

There is a huge amount of literature on factoring algorithms, and a careful treatment would require more
pages than we have in this book. We will just try to give a brief overview here, including an informal
discussion of the best current factoring algorithms and their use in practice. The three algorithms that are
most effective on very large numbers are the quadratic sieve, the elliptic curve algorithm and the number
field sieve. Other well-known algorithms that were precursors include Pollard’s rho-method and p - 1
algorithm, Williams’ p + 1 algorithm, the continued fraction algorithm, and of course, trial division.

Throughout this section, we suppose that the integer n that we wish to factor is odd. Trial division consists

of dividing n by every odd integer up to . If n < 1012, say, this is a perfectly reasonable factorization
method, but for larger n we generally need to use more sophisticated techniques.

Figure 4.15 The p - 1 factoring algorithm

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

4.8.1 The p - 1 Method

As an example of a simple algorithm that can sometimes be applied to larger integers, we describe
Pollard’s p - 1 algorithm, which dates from 1974. This algorithm, presented in Figure 4.15, has two inputs:
the (odd) integer n to be factored, and a "bound" B. Here is what is taking place in the p - 1 algorithm:
Suppose p is a prime divisor of n, and q ≤ B for every prime power q | (p - 1). Then it must be the case that

At the end of the for loop (step 2),

so

since p | n. Now,

by Fermat’s theorem. Since (p - 1) | [B!, we have that

(in step 3). Thus, in step 4,

and

so

The integer d will be a non-trivial divisor of n (unless a = 1 in step 3). Having found a non-trivial factor d,
we would then proceed to attempt to factor d and n/d if they are composite.

Here is an example to illustrate.

Example 4.14

Suppose n = 15770708441. If we apply the p - 1 algorithm with B = 180, then we find that a =
11620221425 in step 3, and d is computed to be 135979. In fact, the complete factorization of n into
primes is

in this case, the factorization succeeds because 135978 has only "small" prime factors:

Hence, by taking B ≥ 173, it will be the case that 135978 | B!, as desired.

In the algorithm, there are B - 1 modular exponentiations, each requring at most 2log2 B modular

multiplications using square-and-multiply. The gcd computation can be done in time O((log n)3) using the
Euclidean algorithm. Hence, the complexity of the algorithm is O(B log B(log n)2 + (log n)3). If the
integer B is O((log n) i) for some fixed integer i, then the algorithm is indeed a polynomial-time algorithm;
however, for such a choice of B the probability of success will be very small. On the other hand, if we

increase the size of B drastically, say to , then the algorithm will be successful, but it will be no faster
than trial division.

Thus, the drawback of this method is that it requires n to have a prime factor p such that p - 1 has only
"small" prime factors. It would be very easy to construct an RSA modulus n = pq which would resist
factorization by this method. One would start by finding a large prime p1 such that p = 2p1 + 1 is also

prime, and a large prime q1 such that q = 2q1 + 1 is also prime (using one of the Monte Carlo primality

testing algorithms discussed in Section 4.5). Then the RSA modulus n = pq will be resistant to
factorization using the p - 1 method.

The more powerful elliptic curve algorithm, developed by Lenstra in the mid-1980’s, is in fact a
generalization of the p - 1 method. We will not discuss the theory at all here, but we do mention that the
success of the elliptic curve method depends on the more likely situation that an integer "close to" p has

only "small" prime factors. Whereas the p - 1 method depends on a relation that holds in the group , the
elliptic curve method involves groups defined on elliptic curves modulo p.

4.8.2 Dixon’s Algorithm and the Quadratic Sieve

Dixon’s algorithm is based on a very simple idea that we already saw in connection with the Rabin
Cryptosystem. Namely, if we can find (mod n) such that x2 ≡ y2 (mod n), then gcd(x - y, n) is
a non-trivial factor of n.

The method uses a factor base, which is a set "small" primes. We first obtain several integers x such

that all the prime factors of x2 mod n occur in the factor base . (How this is done will be discussed a bit
later.) The idea is to then take the product of several of these x’s in such a way that every prime in the
factor base is used an even number of times. This then gives us a congruence of the desired type x2 ≡ y2

(mod n), which (we hope) will lead to a factorization of n.

We illustrate with a carefully contrived example.

Example 4.15

Suppose n = 15770708441 (this was the same n that we used in Example 4.14). Let

 . Consider the three congruences:

If we take the product of these three congruences, then we have

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Reducing the expressions inside the parentheses modulo n, we have

Then we compute

finding the factor 115759 of n.

Suppose is the factor base. Let C be slightly larger than B (say C = B + 10), and
suppose we have obtained C congruences:

for 1 ≤ j ≤ C. For each j, consider the vector

If we can find a subset of the a j ’s that sum modulo 2 to the vector (0, . . . , 0), then the product of the

corresponding x j ’s will use each factor in an even number of times.

We illustrate by returning to Example 4.15, where there exists a dependence even though C < B in this
case.

Example 4.15 (Cont.)

The three vectors a1 , a2 , a3 are as follows:

It is easy to see that

This gives rise to the congruence we saw earlier that successfully factored n.

Observe that finding a subset of the C vectors a1 , . . . , aC that sums modulo 2 to the all-zero vector is

nothing more than finding a linear dependence (over) of these vectors. Provided C > B, such a linear
dependence must exist, and it can be found easily using the standard method of Gaussian elimination. The
reason why we take C > B + 1 is that there is no guarantee that any given congruence will yield the
factorization of n. Approximately 50% of the time it will turn out that x ≡ ±y (mod n). But if C > B + 1,
then we can obtain several such congruences (arising from different linear dependencies among the a j ’s).

Hopefully, at least one of the resulting congruences will yield the factorization.

It remains to discuss how we obtain integers x j such that the values x j
2 mod n factor completely over the

factor base . There are several methods of doing this. One common approach is the Quadratic Sieve due

to Pomerance, which uses integers of the form The name "quadratic
sieve" comes from a sieving procedure (which we will not describe here) that is used to determine those

x j ’s that factor over :

There is, of course, a trade-off here: if is large, then it is more likely that an integer x j factors

over . But the larger B is, the more congruences we need to accumulate before we are able to find a
dependence relation. The optimal choice for B is approximately

and this leads to an expected running time of

The number field sieve is a more recent factoring algorithm from the late 1980’s. It also factors n by
constructing a congruence x2 ≡ y2 (mod n), but it does so by means of computations in rings of algebraic
integers.

4.8.3 Factoring Algorithms in Practice

The asymptotic running times of the quadratic sieve, elliptic curve and number field sieve are as follows:

The notation o(1) denotes a function of n that approaches 0 as n → ∞, and p denotes the smallest prime
factor of n.

In the worst case, and the asymptotic running times of the quadratic sieve and elliptic curve
algorithms are essentially the same. But in such a situation, quadratic sieve generally outperforms elliptic
curve. The elliptic curve method is more useful if the prime factors of n are of differing size. One very

large number that was factored using the elliptic curve method was the Fermat number in 1988
by Brent.

For factoring RSA moduli (where n = pq, p, q are prime, and p and q are roughly the same size), the
quadratic sieve is currently the most successful algorithm. Some notable milestones have included the
following factorizations. In 1983, the quadratic sieve successfully factored a 69-digit number that was a
(composite) factor of 2251 - 1 (this computation was done by Davis, Holdridge, and Simmons). Progress
continued throughout the 1980’s, and by 1989, numbers having up to 106 digits were factored by this
method by Lenstra and Manasse, by distributing the computations to hundreds of widely separated
workstations (they called this approach "factoring by electronic mail").

More recently, in April 1994, a 129-digit number known as RSA-129 was factored by Atkins, Graff,
Lenstra, and Leyland using the quadratic sieve. (The numbers RSA-100, RSA-110, . . . , RSA-500 are a
list of RSA moduli publicized on the Internet as "challenge" numbers for factoring algorithms. Each
number RSA-d is a d-digit number that is the product of two primes of approximately the same length.)
The factorization of RSA-129 required 5000 MIPS-years of computing time donated by over 600
researchers around the world.

The number field sieve is the most recent of the three algorithms. It seems to have great potential since its
asymptotic running time is faster than either quadratic sieve or the elliptic curve. It is still in
developmental stages, but people have speculated that number field sieve might prove to be faster for
numbers having more than about 125-130 digits. In 1990, the number field sieve was used by Lenstra,

Lenstra, Manasse, and Pollard to factor into three primes having 7, 49 and 99 digits.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

4.9 Notes and References

The idea of public-key cryptography was introduced by Diffie and Hellman in 1976. Although [DH76A] is
the most cited reference, the conference paper [DH76] actually appeared a bit earlier. The RSA
Cryptosystem was discovered by Rivest, Shamir and Adleman [RSA78]. The Rabin Cryptosystem was
described in Rabin [RA79]; a similar provably secure system in which decryption is unambiguous was
found by Williams [WI80]. For a general survey article on public-key cryptography, we recommend Diffie
[DI92].

The Solovay-Strassen test was first described in [SS77]. The Miller-Rabin test was given in [MI76] and
[RA80]. Our discussion of error probabilities is motivated by observations of Brassard and Bratley
[BB88A, §8.6] (see also [BBCGP88]). The best current bounds on the error probability of the Miller-Rabin
algorithm can be found in [DLP93].

The material in Section 4.6 is based on the treatment by Salomaa [SA90, pp. 143-154]. The factorization
of n given the decryption exponent was proved in [DE84]; the results on partial information revealed by
RSA is from [GMT82].

As mentioned earlier, there are many sources of information on factoring algorithms. Pomerance [PO90] is
a good survey on factoring, and Lenstra and Lenstra [LL90] is a good article on number-theoretic
algorithms in general. Bressoud [BR89] is an elementary textbook devoted to factoring and primality
testing. Cryptography textbooks that emphasize number theory include Koblitz [KO94] and Kranakis
[KR86]. Lenstra and Lenstra [LL93] is a monograph on the number field sieve.

Exercises 4.7-4.9 give some examples of protocol failures. For a nice article on this subject, see Moore
[MO92].

Exercises

4.1 Use the Extended Euclidean algorithm to compute the following multiplicative inverses:
(a) 17-1 mod 101
(b) 357-1 mod 1234
(c) 3125-1 mod 9987.

4.2 Solve the following system of congruences:

4.3 Solve the following system of congruences:

HINT First use the Extended Euclidean algorithm, and then apply the Chinese remainder theorem.

4.4 Here we investigate some properties of primitive roots.

(a) The integer 97 is prime. Prove that x ± 0 is a primitive root modulo 97 if and only if

(mod 97) and (mod 97).
(b) Use this method to find the smallest primitive root modulo 97.
(c) Suppose p is prime, and p - 1 has prime power factorization

where the p i ’s are distinct primes. Prove that x ± 0 is a primitive root modulo p if and only if

 (mod p) for 1 ≤ i ≤ n.
4.5 Suppose that n = pq, where p and q are distinct odd primes and ab ≡ 1 (mod (p -1)(q - 1)). The
RSA encryption operation is e(x) = xb mod n and the decryption operation is d(y) = ya mod n. We

proved that d(e(x)) = x if . Prove that the same statement is true for any .

HINT Use thr fact that x1 ≡ x2 (mod pq) if and only if x1 ≡ x2 (mod p) and x1 ≡ x2 (mod q). This

follows from the Chinese remainder theorem.

4.6 Two samples of RSA ciphertext are presented in Tables 4.1 and 4.2. Your task is to decrypt
them. The public parameters of the system are n = 18923 and b = 1261 (for Table 4.1) and n = 31313
and b = 4913 (for Table 4.2). This can be accomplished as follows. First, factor n (which is easy
because it is so small). Then compute the exponent a from φ(n), and, finally, decrypt the ciphertext.
Use the square-and-multiply algorithm to exponentiate modulo n.

In order to translate the plaintext back into ordinary English text, you need to know how alphabetic

characters are "encoded" as elements in . Each element of

12423 11524 7243 7459 14303 6127 10964 16399

9792 13629 14407 18817 18830 13556 3159 16647

5300 13951 81 8986 8007 13167 10022 17213

2264 961 17459 4101 2999 14569 17183 15827

12693 9553 18194 3830 2664 13998 12501 18873

12161 13071 16900 7233 8270 17086 9792 14266

13236 5300 13951 8850 12129 6091 18110 3332

15061 12347 7817 7946 11675 13924 13892 18031

2620 6276 8500 201 8850 11178 16477 10161

3533 13842 7537 12259 18110 44 2364 15570

3460 9886 8687 4481 11231 7547 11383 17910

12867 13203 5102 4742 5053 15407 2976 9330

12192 56 2471 15334 841 13995 17592 13297

2430 9741 11675 424 6686 738 13874 8168

7913 6246 14301 1144 9056 15967 7328 13203

796 195 9872 16979 15404 14130 9105 2001

9792 14251 1498 11296 1105 4502 16979 1105

56 4118 11302 5988 3363 15827 6928 4191

4277 10617 874 13211 11821 3090 18110 44

2364 15570 3460 9886 9988 3798 1158 9872

16979 15404 6127 9872 3652 14838 7437 2540

1367 2512 14407 5053 1521 297 10935 17137

2186 9433 13293 7555 13618 13000 6490 5310

18676 4782 11374 446 4165 11634 3846 14611

2364 6789 11634 4493 4063 4576 17955 7965

11748 14616 11453 17666 925 56 4118 18031

9522 14838 7437 3880 11476 8305 5102 2999

18628 14326 9175 9061 650 18110 8720 15404

2951 722 15334 841 15610 2443 11056 2186

 represents three alphabetic characters as in the following examples:

You will have to invert this process as the final step in your program.

The first plaintext was taken from "The Diary of Samuel Marchbanks," by Robertson Davies, 1947,
and the second was taken from "Lake Wobegon Days," by Garrison Keillor, 1985.

4.7 This exercise exhibits what is called a protocol failure. It provides an example where ciphertext
can be decrypted by an opponent, without determining the key, if a cryptosystem is used in a careless
way. (Since the opponent does not determine the key, it is not accurate to call it cryptanalysis.) The
moral is that it is not sufficient to use a "secure" cryptosystem in order to guarantee "secure"
communication.

Suppose Bob has an RSA Cryptosystem with a large modulus n for which the factorization cannot
be found in a reasonable amount of time. Suppose Alice sends

6340 8309 14010 8936 27358 25023 16481 25809

23614 7135 24996 30590 27570 26486 30388 9395

27584 14999 4517 12146 29421 26439 1606 17881

25774 7647 23901 7372 25774 18436 12056 13547

7908 8635 2149 1908 22076 7372 8686 1304

4082 11803 5314 107 7359 22470 7372 22827

15698 30317 4685 14696 30388 8671 29956 15705

1417 26905 25809 28347 26277 7897 20240 21519

12437 1108 27106 18743 24144 10685 25234 30155

23005 8267 9917 7994 9694 2149 10042 27705

15930 29748 8635 23645 11738 24591 20240 27212

27486 9741 2149 29329 2149 5501 14015 30155

18154 22319 27705 20321 23254 13624 3249 5443

2149 16975 16087 14600 27705 19386 7325 26277

19554 23614 7553 4734 8091 23973 14015 107

3183 17347 25234 4595 21498 6360 19837 8463

6000 31280 29413 2066 369 23204 8425 7792

25973 4477 30989

a message to Bob by representing each alphabetic character as an integer between 0 and 25 (i.e., A ↔
0, B ↔ 1, etc.), and then encrypting each residue modulo 26 as a separate plaintext character.

(a) Describe how Oscar can easily decrypt a message which is encrypted in this way.
(b) Illustrate this attack by decrypting the following ciphertext (which was encrypted using an
RSA Cryptosystem with n = 18721 and b = 25) without factoring the modulus:

4.8 This exercise illustrates another example of a protocol failure (due to Simmons) involving RSA;
it is called the common modulus protocol failure. Suppose Bob has an RSA Cryptosystem with
modulus n and decryption exponent b1 , and Charlie has an RSA Cryptosystem with (the same)

modulus n and decryption exponent b2 . Suppose also that gcd(b1 , b2) = 1. Now, consider the

situation that arises if Alice encrypts the same plaintext x to send to both Bob and Charlie. Thus, she

computes mod n and mod n, and then she sends y1 to Bob and y2 to Charlie.

Suppose Oscar intercepts y1 and y2 , and performs the computations indicated in Figure 4.16.

(a) Prove that the value x1 computed in step 3 of Figure 4.16 is in fact Alice’s plaintext, x. Thus,

Oscar can decrypt the message Alice sent, even though the cryptosystem may be "secure."
(b) Illustrate the attack by computing x by this method if n = 18721, b1 = 43, b2 = 7717, y1 =

12677 and y2 = 14702.

4.9 We give yet another protocol failure involving RSA. Suppose that three users in a network, say
Bob, Bart and Bert, all have public encryption exponents b = 3.

Figure 4.16 RSA common modulus protocol failure

Let their moduli be denoted by n1 , n2 , n3 . Now suppose Alice encrypts the same plaintext x to send

to Bob, Bart and Bert. That is, Alice computes y i = x3 mod n i , 1 ≤ i ≤ 3. Describe how Oscar can

compute x, given y1 , y2 and y3 , without factoring any of the moduli.

4.10 A plaintext x is said to be fixed if eK (x) = x. Show that, for the RSA Cryptosystem, the number

of fixed plaintexts is equal to gcd(b - 1, p - 1) × gcd(b -1, q - 1).

HINT Consider the system of two congruences eK (x) ≡ x (mod p), eK (x) ≡ x (mod q).

4.11 Suppose A is a deterministic algorithm which is given as input an RSA modulus n, an
encryption exponent b, and a ciphertext y. A will either decrypt y or return no answer. Supposing that
there are ∈(n - 1) ciphertexts which A is able to decrypt, show how to use A as an oracle in a Las
Vegas decryption algorithm having success probability ∈.

HINT Use the multiplicative property of RSA that eK (x1)< I>eK (x2) = eK (x1< I>x2), where all

arithmetic operations are modulo n.

4.12 Write a program to evaluate Jacobi symbols using the four properties presented in Section 4.5.
The program should not do any factoring, other than dividing out powers of two. Test your program
by computing the following Jacobi symbols:

4.13 For n = 837, 851 and 1189, find the number of bases 6 such that n, is an Euler pseudo-prime to
the base b.
4.14 The purpose of this question is to prove that the error probability of the Solovay-Strassen

primality test is at most 1/2. Let denote the group of units modulo n. Define

(a) Prove that G(n) is a subgroup of . Hence, by Lagranges theorem, if , then

(b) Suppose n = pk q, where p and q are odd, p is prime, k ≥ 2, and gcd(p, q) = 1. Let a = 1 +
pk-1 q. Prove that

HINT Use the binomial theorem to compute a (n-1)/2.

(c) Suppose n = p1 , . . . p s , where the p i ’s are distinct odd primes. Suppose a ≡ u (mod p1) and

a ≡ 1 (mod p2p3 . . . p s), where u is a quadratic non-residue modulo p1 (note that such an a

exists by the Chinese remainder theorem). Prove that

but

so

(d) If n is odd and composite, prove that |G(n)| ≤ (n - 1)/2.
(e) Summarize the above: prove that the error probability of the Solovay-Strassen primality test
is at most 1/2.

4.15 Suppose we have a Las Vegas algorithm with failure probability ∈.
(a) Prove that the probability of first achieving success on the nth trial is pn = ∈n-1(1 - ∈).

(b) The average (expected) number of trials to achieve success is

Show that this average is equal to 1/(1 - ∈).

(c) Let δ be a positive real number less than 1. Show that the number of iterations required in
order to reduce the probaility of failure to at most δ is

4.16 Suppose Bob has carelessly revealed his decryption exponent to be a = 14039 in an RSA
Cryptosystem with public key n = 36581 and b = 4679. Implement the probablistic algorithm to
factor n given this information. Test your algorithm with the "random" choices w = 9983 and w =
13461. Show all computations.
4.17 Prove Equations 4.1 and 4.2 relating the functions half and parity.
4.18 Suppose p = 199, q = 211 and B = 1357 in the Rabin Cryptosystem. Perform following
computations.

(a) Determine the four square roots of 1 modulo n, where n = pq.
(b) Compute the encryption y = eK (32767).

(c) Determine the four possible decryptions of this given ciphertext y.
4.19 Factor 262063 and 9420457 using the p - 1 method. How big does B have to be in each case to
be successful?

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Chapter 5
Other Public-key Cryptosystems
In this chapter, we look at several other public-key cryptosystems. The ElGamal Cryptosystem is based
on the Discrete Logarithm problem, which we will have occasion to use in numerous cryptographic
protocols throughout the rest of the text. Thus we devote a considerable amount of time to discussion of
this important problem. In later sections, we give relatively brief treatments of some other well-known
public-key cryptosystems. These include ElGamal-type systems based on finite fields and elliptic curves,
the (broken) Merkle-Hellman Knapsack Cryptosystem and the McEliece Cryptosystem.

5.1 The ElGamal Cryptosystem and Discrete Logs

The ElGamal Cryptosystem is based on the Discrete Logarithm problem. We begin by describing this

problem in the setting of a finite field , where p is prime, in Figure 5.1. (Recall that the multiplicative

group is cyclic, and a generator of is called a primitive element.)

The Discrete Logarithm problem in has been the object of much study. The problem is generally
regarded as being difficult if p is carefully chosen. In particular, there is no known polynomial-time
algorithm for the Discrete Logarithm problem. To thwart known attacks, p should have at least 150
digits, and p - 1 should have at least one "large" prime factor. The utility of the Discrete Logarithm
problem in a cryptographic setting is that finding discrete logs is (probably) difficult, but the inverse
operation of exponentiation can be computed efficiently by using the square-and-multiply method
described earlier. Stated another way, exponentiation modulo p is a one-way function for suitable primes
p.

ElGamal has developed a public-key cryptosystem based on the Discrete Logarithm problem. This
system is presented in Figure 5.2.

The ElGamal Cryptosystem is non-deterministic, since the ciphertext depends on both the plaintext x and
on the random value k chosen by Alice. So there will be many ciphertexts that are encryptions of the same
plaintext.

Figure 5.1 The discrete logarithm problem in

Figure 5.2 ElGamal Public-key Cryptosystem in

Informally, this is how the ElGamal Cryptosystem works. The plaintext x is "masked" by multiplying it
by βk , yielding y2 . The value αk is also transmitted as part of the ciphertext. Bob, who knows the secret

exponent a, can compute βk from βk . Then he can "remove the mask" by dividing y2 by βk to obtain x.

A small example will illustrate.

Example 5.I

Suppose p = 2579, α = 2, a = 765, and hence

Now, suppose that Alice wishes to send the message x = 1299 to Bob. Say k = 853 is the random integer
she chooses. Then she computes

and

When Bob receives the ciphertext y = (435, 2396), he computes

which was the plaintext that Alice encrypted.

5.1.1 Algorithms for the Discrete Log Problem

Throughout this section, we assume that p is prime and a is a primitive element modulo p. We take p and
α to be fixed. Hence the Discrete Logarithm problem can be phrased in the following form: Given

 , find the unique exponent a, 0 ≤ a ≤ p - 2, such that αa ≡ β (mod p).

Clearly, the Discrete Logarithm problem can be solved by exhaustive search in O(p) time and O(1) space
(neglecting logarithmic factors). By precomputing all possible values αa , and sorting the ordered pairs (a,
αa mood p) with respect to their second coordinates, we can solve the discrete log problem in O(1) time
with O(p) precomputation and O(p) memory (again, neglecting logarithmic factors). The first non-trivial
algorithm we describe is a time-memory trade-off due to Shanks.

Figure 5.3 Shanks’ algorithm for the discrete logarithm problem

Shanks’ Algorithm

Denote . Shanks’ algorithm is presented in Figure 5.3. Some comments are in order. First,
steps 1 and 2 can be precomputed, if desired (this will not affect the asymptotic running time, however).
Next, observe that if (j, y) ∈ L1 and (i, y) ∈ L2 , then

so

as desired. Conversely, for any β, we can write

where 0 ≤ j,i ≤ m - 1. Hence, the search in step 5 will be successful.

It is not difficult to implement the algorithm to run in O(m) time with O(m) memory (neglecting
logarithmic factors). Note that step 5 can be done with one (simultaneous) pass through each of the two
lists L1 and L2 .

Here is a small example to illustrate.

Example 5.2

Suppose p = 809, and we wish to find log3 525. So we have α = 3, β = 525 and . Then

First, we compute the ordered pairs (j, 99j mod 809) for 0 ≤ j ≤ 28. We obtain the list

(0, 1) (1, 99) (2, 93) (3, 308) (4, 559)

(5, 329) (6, 211) (7, 664) (8, 207) (9, 268)

(10, 644) (11, 654) (12, 26) (13, 147) (14, 800)

(15, 727) (16, 781) (17, 464) (18, 632) (19, 275)

(20, 528) (21, 496) (22, 564) (23, 15) (24, 676)

(25, 586) (26, 575) (27, 295) (28, 81)

which is then sorted to produce L1 .

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

The second list contains the ordered pairs (i, 525 × (3i) -1 mod 809), 0 ≤ j ≤ 28. It is as follows:

(0, 525) (1, 175) (2, 328) (3, 379) (4, 396)

(5, 132) (6, 44) (7, 554) (8, 724) (9, 511)

(10, 440) (11, 686) (12, 768) (13, 256) (14, 355)

(15, 388) (16, 399) (17, 133) (18, 314) (19, 644)

(20, 754) (21, 521) (22, 713) (23, 777) (24, 259)

(25, 356) (26, 658) (27, 489) (28, 163)

After sorting this list, we get L2 .

Now, if we proceed simultaneously through the two sorted lists, we find that (10, 644) is in L1 and (19,

644) is in L2 . Hence, we can compute

As a check, it can be verified that indeed 3309 ≡ 525 (mod 809).

The Pohlig-Hellman Algorithm

The next algorithm we study is the Pohlig-Hellman algorithm. Suppose

where the P i ’s are distinct primes. The value a = logα β is determined (uniquely) modulo p - 1. We first

observe that if we can compute a mod for each i, 1 ≤ i ≤ k, then we can compute a mod (p - 1) by the
Chinese remainder theorem. So, let’s suppose that q is prime,

and

We will show how to compute the value

where 0 ≤ x ≤ qc - 1. We can express x in radix q representation as

where 0 ≤ a i ≤ q - 1 for 0 ≤ i ≤ c - 1. Also, observe that we can express a as

for some integer s.

The first step of the algorithm is to compute a0 . The main observation is that

To see this, note that

so it suffices to show that

This will be true if and only if

However, we have

which was what we wanted to prove.

Hence, we begin by computing β (p-1)/q mod p. If

then a0 = 0. Otherwise, we successively compute

until

for some i. When this happens, we have a0 = i.

Now, if c = 1, we’re done. Otherwise c > 1, and we proceed to determine a1 . To do this, we define

and denote

It is not hard to see that

Hence, it follows that

So, we will compute β1
(p-1)/q2 mod p, and then find i such that

Then we have a1 = i.

If c = 2, we are now finished; otherwise, we repeat this process c - 2 more times, obtaining a2 ,..., ac-1 .

A pseudo-code description of the Pohlig-Hellman algorithm is given in Figure 5.4. In this algorithm, α is a
primitive element modulo p, q is prime,

and

The algorithm calculates a0 ,..., ac-1 , where

We illustrate the Pohlig-Hellman algorithm with a small example.

Figure 5.4 Pohlig-Hellman algorithm to compute logα β mod qc

Example 5.3

Suppose p = 29; then

Suppose α = 2 and β = 18, so we want to determine a = log2 18. We proceed by first computing a mod 4

and then computing a mood 7.

We start by setting q = 2 and c = 2. First,

and

Next,

Hence, a0 = 1. Next, we compute

and

Since

we have a1 = 1. Hence, a ≡ 3 (mod 4).

Next, we set q = 7 and c = 1. We have

and

Then we would compute

Hence, a0 = 4 and a ≤ 4 (mod 7).

Finally, solving the system

using the Chinese remainder theorem, we get a ≡ 11 (mod 28). That is, we have computed log2 18 in

 to be 11.

The Index Calculus Method

The index calculus method for computing discrete logs bears considerable resemblence to many of the
best factoring algorithms. We give a very brief overview in this section. The method uses a factor base,

which, as before, is a set of "small" primes. Suppose . The first step (a
preprocessing step) is to find the logarithms of the B primes in the factor base. The second step is to
compute a discrete log of a desired element β, using the knowledge of the discrete logs of the elements in
the factor base.

In the precomputation, we construct C = B + 10 congruences modulo p, as follows:

1 ≤ j ≤ C. Notice these congruences can be written equivalently as

1 ≤ j ≤ C. Given C congruences in the B "unknowns" logα p i (1 ≤ i ≤ B), we hope that there is a unique

solution modulo p - 1. If this is the case, then we can compute the logarithms of the elements in the factor
base.

How do we generate congruences of the desired form? One elementary way is to take a random value x,

compute ax mod p, and then determine if ax mod p has all its factors in (using trial division, for
example).

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Now, given that we have already successfully carried out the precomputation step, we compute a desired
logarithm logα β by means of a Las Vegas type probabilistic algorithm. Choose a random integer s (1 ≤ s

≤ p - 2) and compute

Now attempt to factor γ over the factor base . If this can be done, then we obtain a congruence of the
form

This can be written equivalently as

Since everything is now known except logα β, we can easily solve for logα β.

Here is a small, very artificial, example to illustrate the two steps in the algorithm.

Example 5.4

Suppose p = 10007 and α = 5 is the primitive element used as the base of logarithms modulo p. Suppose

we take as the factor base. Of course log5 5 = 1, so there are three logs of factor base

elements to be determined.

Some examples of "lucky" exponents that might be chosen are 4063, 5136 and 9865.

With x = 4063, we compute

This yields the congruence

Similarly, since

and

we obtain two more congruences:

and

We now have three congruences in three unknowns, and there happens to be a unique solution modulo
10006, namely log5 2 = 6578, log5 3 = 6190 and log5 7 = 1301.

Now, let’s suppose that we wish to find log5 9451. Suppose we choose the "random" exponent s = 7736,

and compute

Since 8400 = 243152< /SMALL>71 factors over , we obtain

To verify, we can check that 56087 = 9451 (mod 10007).

Heuristic analyses of various versions of the algorithm have been done. Under reasonable assumptions, the asymptotic running time of the

precomputation is , and the time to find an individual discrete phase log is

 .

5.1.2 Bit Security of Discrete Logs

We now look at the question of partial information about discrete logs. In particular, we consider whether individual bits of a discrete
logarithm are easy or hard to compute. To be precise, consider the problem presented in Figure 5.5, which we call the ith Bit problem.

Figure 5.5 ith bit of discrete logarithm

We will first show that computing the least significant bit of a discrete logarithm is easy. In other words, if i = 1, the ith Bit problem can be
solved efficiently. This follows from Euler’s criterion concerning quadratic residues modulo p, where p is prime.

Consider the mapping defined by

Denote by QR(p) the set of quadratic residues modulo p; then

First, observe that f(x) = f(p - x). Next note that

if and only if

which happens if and only if

It follows that

for every y ∈ QR(p), and hence

That is, exactly half the residues in are quadratic residues and half are not.

Now, suppose a is a primitive element of . Then α a ∈ QR(p) if a is even. Since the (p - 1)/2 elements α 0 mod p, α 2 mod p,..., α p-3

mod p are all distinct, it follows that

Hence, β is a quadratic residue if and only if logα β is even, that is, if and only it L 1(β) = 0. But we already know, by Euler’s criterion,

that β is a quadratic residue if and only if

So we have the following efficient formula to calculate L 1 (β):

Let’s now consider the computation of L i (β) for values of i exceeding 1. Suppose

where t is odd. Then it can be shown that it is easy to compute L i (β) if i ≤ s. On the other hand, computing L s+1 (β) is (probably) difficult,

in the sense that any hypothetical algorithm (or oracle) to compute L s+1 (β) could be used to find discrete logarithms in .

We shall prove this result in the case s = 1. More precisely, if p ≡ 3 (mod 4) is prime, then we show how any oracle for computing L 2(β)

can be used to solve the Discrete Log problem in .

Recall that, if β is a quadratic residue in and p ≡ 3 (mod 4), then the two square roots of β modulo p are ± β (p+1)/4 mod p. It is also
important that, for any β ≠ 0,

if p ≡ 3 (mod 4). We see this as follows. Suppose

then

Since p ≡ 3 (mod 4), the integer (p - 1)/2 is odd, and the result follows.

Now, suppose that β = α a for some (unknown) even exponent a. Then either

or

We can determine which of these two possibilities is correct if we know the value L 2 (β), since

This fact is exploited in our algorithm, which we present in Figure 5.6.

At the end of the algorithm, the x i ’s comprise the bits in the binary representation of logα β; that is,

We will work out a small example to illustrate the algorithm.

Figure 5.6 Computing discrete logs in for p ≡ 3 (mod 4), given an oracle for L 2(β)

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Example 5.5

Suppose p = 19, α = 2 and β = 6. Since the example is so small, we can tabulate the values of L1 (γ) and

L2 (γ) for all . (In general, L1 can be computed efficiently using Euler’s criterion and L2 is

an oracle.) These values are given in Table 5.1. The algorithm now proceeds as shown in Figure 5.7.

Hence, log2 6 = 11102 = 14, as can easily be verified.

It is possible to give formal proof of the algorithm’s correctness using mathematical induction. Denote

For i ≥ 0, define

Also, define β0 to be the value of β in step 2 of the algorithm; and, for i ≥ 1, define β i to be the value of β
in step 11 during the ith iteration of the while loop. It can be proved by induction that

γ L1(γ) L2(γ) γ L1(γ) L2(γ) γ L1(γ) L2(γ)

1 0 0 7 0 1 13 1 0

2 1 0 8 1 1 14 1 1

3 1 0 9 0 0 15 1 1

4 0 1 10 1 0 16 0 0

5 0 0 11 0 0 17 0 1

6 0 1 12 1 1 18 1 0

Figure 5.7 Computation of log2 6 in

Figure 5.8 The discrete logarithm problem in

for all i ≥ 0. Now, with the observation that

it follows that

i ≥ 0. Since

the algorithm is correct. The details are left to the reader.

5.2 Finite Field and Elliptic Curve Systems

We have spent a considerable amount of time looking at the Discrete Logarithm problem and the
factoring. We will see these two problems again and again, underlying various types of cryptosystems and
cryptographic protocols. So far, we have considered the Discrete Logarithm problem in the finite field

 , but it is also useful to consider the problem in other settings. This is the theme of this section.

The ElGamal Cryptosystem can be implemented in any group where the Discrete Log problem is

intractible. We used the multiplicative group , but other groups are also suitable candidates. First, we
phrase the Discrete Logarithm problem in a general (finite) group G, where we will denote the group

operation by . This generalized version of the problem is presented in Figure 5.8.

It is easy to define an ElGamal Cryptosystem in the subgroup H in a similar fashion as it was originally

described in . This is done in Figure 5.9. Note that encryption requires the use of a random integer k
such that 0 ≤ k ≤ |H| - 1. However, if Alice does not know the order of the subgroup H, she can generate an
integer k such that 0 ≤ k ≤ |G| - 1, and encryption and decryption will work without any changes. Also note
that the group G need not be an abelian group (of course H is abelian since it is cyclic).

Figure 5.9 Generalized ElGamal Public-key Cryptosystem

Let’s now turn to the "generalized" Discrete Log problem. The subgroup H generated by any α ∈ G is of
course a cyclic group of order |H|. So any version of the problem is equivalent, in some sense, to the
Discrete Log problem in a cyclic group. However, the difficulty of the Discrete Log problem seems to
depend in an essential way on the representation of the group that is used.

As an example to illustrate a representation where the problem is easy to solve, consider the additive

cyclic group , and suppose gcd(α, n) = 1, so α is a generato, of . Since the group operation is
addition modulo n, an "exponentiation" operation, αa , corresponds to multiplication by a modulo n.
Hence, in this setting, the Discrete Log problem is to find the integer a such that

Since gcd(α, n) = 1, α has a multiplicative inverse modulo n, and we can compute α -1 mod n easily using
the Euclidean algorithm. Then we can solve for a, obtaining

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

We previously discussed the Discrete Log problem in the multiplicative group , where p is prime.

This group is a cyclic group of order p - 1, and hence it is isomorphic to the additive group . By the
discussion above, we know how to compute discrete logs efficiently in this additive group. This suggests

that we could solve the Discrete Log problem in by "reducing" the problem to the the easily solved

formulation in .

Let us think about how this could be done. The statement that is isomorphic to
means that there is a bijection

such that

It follows easily that

so we have that

Hence, solving for a as described above, we have that

Consequently, if we have an efficient method of computing the isomorphism φ, then we would have an

efficient algorithm to compute discrete logs in . The catch is that there is no known general method to
efficiently compute the isomorphism φ for an arbitrary prime p. Even though we know the two groups in
question are isomorphic, we do not know an efficient algorithm to explicitly describe the isomorphism.

This method can be applied to the Discrete Log problem in any group G. If there is an efficient method of

computing the isomorphism between H and , then the discrete log problem in G described above can
be solved efficiently. Conversely, it is not hard to see that an efficient method of computing discrete logs

yields an efficient algorithm to compute the isomorphism between the two groups.

This discussion has shown that the Discrete Log problem may be easy or (apparently) difficult, depending
on the representation of the (cyclic) group that is used. So it may be useful to look at other groups in the
hope of finding other settings where the Discrete Log problem seems to be intractible.

Two such classes of groups are

1. the multiplicative group of the Galois field GF(pn)
2. the group of an elliptic curve defined over a finite field.

We will discuss these two classes of groups in the next subsections.

5.2.1 Galois Fields

We have already discussed the fact that is a field if p is prime. However, there are other examples of
finite fields not of this form. In fact, there is a finite field with q elements if q = pn where p is prime and n
≥ 1 is an integer. We will now describe very briefly how to construct such a field. First, we need several
definitions.

DEFINITION 5.1 Suppose p is prime. Define to be the set of all polynomials in the indeterminate
x. By defining addition and multiplication of polynomials in the usual way (and reducing coefficients
modulo p), we construct a ring.

For , we say that f(x) divides g(x) (notation: f(x) | g(x)) if there exists
such that

For , define deg(f), the degree of f, to be the highest exponent in a term of f.

Suppose f(x), g(x), , and deg(f) = n ≥ 1. We define

if

Notice the resemblance of the definition of congruence of polynomials to that of congruence of integers.

We are now going to define a ring of polynomials "modulo f(x)" which we denote by . The

construction of from is based on the idea of congruences modulo f(x) and is

analogous to the construction of from .

Suppose deg(f) = n. If we divide g(x) by f(x), we obtain a (unique) quotient q(x) and remainder r(x), where

and

This can be done by usual long division of polynomials. Hence any polynomial in is congruent
modulo f(x) to a unique polynomial of degree at most n - 1.

Now we define the elements of to be the pn polynomials in of degree at most n - 1.

Addition and multiplication in is defined as in , followed by a reduction modulo

f(x). Equipped with these operations, is a ring.

Recall that is a field if and only if m is prime, and multiplicative inverses can be found using the

Euclidean algorithm. A similar situation holds for . The analog of primality for polynomials
is irreducibility, which we define as follows:

DEFINITION 5.2 A polynomial is said to be irreducible if there do not exist

polynomials such that

where deg(f1) > 0 and deg (f2) > 0.

A very important fact is that is a field if and only if f(x) is irreducible. Further,

multiplicative inverses in can be computed using a straightforward modification of the
(extended) Euclidean algorithm.

Here is an example to illustrate the concepts described above.

Example 5.6

Let’s attempt to construct a field having eight elements. This can be done by finding an irreducible

polynomial of degree three in . It is sufficient to consider the polynomials having constant term
equal to 1, since any polynomial with constant term 0 is divisible by x and hence is reducible. There are
four such polynomials:

Now, f1 (x) is reducible, since

(remember that all coefficients are to be reduced modulo 2). Also, f4 is reducible since

However, f2(x) and f3(x) are both irreducible, and either one can be used to construct a field having eight

elements.

Let us use f2(x), and thus construct the field . The eight field elements are the eight

polynomials 0, 1, x, x + 1, x2 , x2 + 1, x2 + x and x2 + x + 1.

To compute a product of two field elements, we multiple the two polynomials together, and reduce
modulo x3 + x + 1 (i.e., divide by x3 + x + 1 and find the remainder polynomial). Since we are dividing
by a polynomial of degree three, the remainder will have degree at most two and hence is an element of
the field.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

For example, to compute (x2 + 1)(x2 + x + 1) in , we first compute the product in

 , which is x4 + x3 + x + 1. Then we divide by x3 + x + 1, obtaining the expression

Hence, in the field , we have that

Below, we present a complete multiplication table for the non-zero field elements. To save space, we write
a polynomial a2x2 + a1 x + a0 as the ordered triple a2a1 a0 .

Computation of inverses can be done by using a straightforward adaptation of the extended Euclidean
algorithm.

Finally, the multiplicative group of the non-zero polynomials in the field is a cyclic group of order seven.
Since 7 is prime, it follows that any non-zero field element is a generator of this group, i.e., a primitive
element of the field.

For example, if we compute the powers of x, we obtain

which comprise all the non-zero field elements.

It remains to discuss existence and uniqueness of fields of this type. It can be shown that there is at least

one irreducible polynomial of any given degree n ≥ 1 in . Hence, there is a finite field with pn

elements for all primes p and all integers n ≥ 1. There are usually many irreducible polynomials of degree

n in . But the finite fields constructed from any two irreducible polynomials of degree n can be
shown to be isomorphic. Thus there is a unique finite field of any size pn (p prime, n ≥ 1), which is

denoted by GF(pn). In the case n = 1, the resulting field GF(p) is the same thing as . Finally, it can be
shown that there does not exist a finite field with r elements unless r = pn for some prime p and some
integer n ≥ 1.

We have already noted that the multiplicative group (p prime) is a cyclic group of order p - 1. In fact,
the multiplicative group of any finite field is cyclic: GF(pn)\{0} is a cyclic group of order pn - 1. This
provides further examples of cyclic groups in which the discrete log problem can be studied.

In practice, the finite fields GF(2n) have been most studied. Both the Shanks and Pohlig-Hellman discrete
logarithm algorithms work for fields GF(2n). The index calculus method can be modified to work in these
fields. The precomputation time of the index calculus algorithm turns out to be

and the time to find an individual discrete log is

However, for large values of n (say n > 800), the discrete log problem in GF(2n) is thought to be
intractible provided 2n - 1 has at least one "large" prime factor (in order to thwart a Pohlig-Hellman
attack).

5.2.2 Elliptic Curves

We begin by defining the concept of an elliptic curve.

DEFINITION 5.3 Let p > 3 be prime. The elliptic curve y2 = x3 + ax + b over , is the set of solutions

 to the congruence

where a, are constants such that 4a3 + 27b2 ≠ 0 (mod p), together with a special point O called
the point at infinity.1

1Equation 5.1 can be used to define an elliptic curve over any field GF(p n), for p > 3 prime. An elliptic curve over
GF(2n) or GF(3n) is defined by a slightly different equation.

An elliptic curve E can be made into an abelian group by defining a suitable operation on its points. The
operation is written additively, and is defined as follows (where all arithmetic operations are performed in

 : Suppose

and

are points on E. If x2 = x1 and y2 = -y1 , then ; otherwise P + Q = (x3 , y3), where

and

Finally, define

for all P ∈ E. With this definition of addition, it can be shown that E is an abelian group with identity

element (most of the verifications are tedious but straightforward, but proving associativity is quite
difficult).

Note that inverses are very easy to compute. The inverse of (x, y) (which we write as -(x, y) since the
group operation is additive) is (x, -y), for all (x, y) ∈ E.

Let us look at a small example.

Example 5.7

Let E be the elliptic curve y2 = x3 + x + 6 over . Let’s first determine the points on E. This can be

done by looking at each possible , computing x3 + x + 6 mod 11, and then trying to solve
Equation 5.1 for y. For a given x we can test to see if z = x3 + x + 6 mod 11 is a quadratic residue by
applying Euler’s criterion. Recall that there is an explicit formula to compute square roots of quadratic
residues modulo p for primes p ≡ 3 (mod 4). Applying this formula, we have that the square roots of a
quadratic residue z are

The results of these computations are tabulated in Table 5.2.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Thus E has 13 points on it. Since any group of prime order is cyclic, it follows that E is isomorphic to

 , and any point other than the point at infinity is a generator of E. Suppose we take the generator α =
(2, 7). Then we can compute the

x x3+x+6 mod 11 in QR(11)? y

0
1
2
3
4
5
6
7
8
9
10

6
8
5
3
8
4
8
4
9
7
4

no
no
yes
yes
no
yes
no
yes

yes< BR>no
yes

4,7
5,6
2,9
2,9
3,8
2, 9

"powers" of α (which we will write as multiples of α, since the group operation is additive). To compute
2α = (2, 7) + (2, 7), we first compute

Then we have

and

so 2α (5, 2).

The next multiple would be 3α = 2α + α = (5, 2) + (2, 7). Again, we begin by computing λ, which in this
situation is done as follows:

Then we have

and

so 3α = (8, 3).

Continuing in this fashion, the remaining multiples can be computed to be the following:

α = (2,7) 2α = (5,2) 3α = (8,3)

4α = (10,2) 5α = (3,6) 6α = (7,9)

7α = (7,2) 8α = (3,5) 9α = (10,9)

10α = (8,8) 11α = (5,9) 12α = (2, 4)

Hence α = (2.7) is indeed a primitive element.

An elliptic curve E defined over (p prime, p > 3) will have roughly p points on it. More precisely, a
well-known theorem due to Hasse asserts that the number of points on E, which we denote by #E, satisfies
the following inequality

Computing the exact value of #E is more difficult, but there is an efficient algorithm to do this, due to
Schoof. (By "efficient" we mean that it has a running time that is polynomial in log p. School’s algorithm
has a running time of O((log p)8) bit operations and is practical for primes p having several hundred
digits.)

Now, given that we can compute #E, we further want to find a cyclic subgroup of E in which the discrete
log problem is intractible. So we would like to know something about the structure of the group E. The
following theorem gives a considerable amount of information on the group structure of E.

THEOREM 5.1

Let E be an elliptic curve defined over , where p is prime, p > 3. Then there exist integers n1 and n2

such that E is isomorphic to . Further, n2 | n1 and n2 | (p - 1).

Hence, if the integers n1 and n2 can be computed, then we know that E has a cyclic subgroup isomorphic

to that can potentially be used as a setting tot an ElGamal Cryptosystem.

Note that if n2 = 1, then E is a cyclic group. Also, if #E is a prime, or the product of distinct primes, then

E must be a cyclic group.

The Shanks and Pohlig-Hellman algorithms apply to the elliptic curve logarithm problem, but there is no
known adaptation of the index calculus method to elliptic curves. However, there is a method of exploiting
an explicit isomorphism between elliptic curves and finite fields that leads to efficient algorithms for
certain classes of elliptic curves. This technique, due to Menezes, Okamoto and Vanstone, can be applied
to some particular examples within a special class of elliptic curves called supersingular curves that were
suggested for use in cryptosystems. If the supersingular curves are avoided, however, then it appears that
an elliptic curve having a cyclic subgroup of size about 2160 will provide a secure setting for a
cryptosystem, provided that the order of the subgroup is divisible by at least one large prime factor (again,
to guard against a Pohlig-Hellman attack).

Let’s now look at an example of ElGamal encryption using the elliptic curve of Example 5.7.

Example 5.8

Suppose that α = (2, 7) and Bob’s secret "exponent" is a = 7, so

Thus the encryption operaton is

where x ∈ E and 0 ≤ k ≤ 12, and the decryption operation is

Suppose that Alice wishes to encrypt the message x = (10, 9) (which is a point on E). If she chooses the
random value k = 3, then she will compute

and

Hence, y = ((8, 3), (10, 2)). Now, if Bob receives the ciphertext y, he decrypts it as follows:

Hence, the decryption yields the correct plaintext.

There are some practical difficulties in implementing an ElGamal Cryptosystem on an elliptic curve.

This system, when implemented in (or in GF(pn) with n > 1) has a message expansion factor of two.
An elliptic curve implementation has a message expansion factor of (about) four. This happens since there
are approximately p plaintexts, but each ciphertext consists of four field elements. A more serious problem
is that the plaintext space consists of the points on the curve E, and there is no convenient method known
of deterministically generating points on E.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

A more efficient variation has been found by Menezes and Vanstone. In this variation, the elliptic curve is
used for "masking," and plaintexts and ciphertexts are allowed to be arbitrary ordered pairs of (nonzero)
field elements (i.e., they are not required to be points on E). This yields a message expansion factor of
two, the same as in the original ElGamal Cryptosystem. The Menezes-Vanstone Cryptosystem is
presented in Figure 5.10.

If we return to the curve y2 = x3 + x + 6 over , we see that the Menezes-Vanstone Cryptosystem
allows 10 × 10 = 100 plaintexts, as compared to 13 in the original system. We illustrate encryption and
decryption in this system using this same curve.

Example 5.9

As in the previous example, suppose that α = (2, 7) and Bob’s secret "exponent" is a = 7, so

Suppose Alice wants to encrypt the plaintext

(note that x is not a point on E), and she chooses the random value k = 6. First, she computes

and

so c1 = 8 and c2 =3.

Next, she calculates

and

Figure 5.10 Menezes-Vanstone Elliptic Curve Cryptosystem

The ciphertext she sends to Bob is

When Bob receives the ciphertext y, he first computes

and then

Figure 5.11 Subset summ problem

Hence, the decryption yields thee correct plaintext.

5.3 The Merkle-Hellman Knapsack System

The well-known Merkle-Hellman Knapsack Cryptosytem was first described by Merkle and Hellman
in 1978. Although this cryptosystem, and several variants of it, were broken in the early 1980’s, it is still
worth studying for its conceptual elegance and for the underlying design technique.

The term "knapsack" is actually a misnomer2 .; the system is based on the Subset Sum problem which is
presented in Figure 5.11.

2The Knapsack problem, as it is usually defined, is a problem involving selecting objects with given weights and profits
in such a way that a specified capacity is not exceeded and a specified target profit is attained

The Subset Sum problem, as phrased in Figure 5.11, is a decision problem (i.e., we are required only to
answer "yes" or "no"). If we rephrase the problem slightly, so that in any instance where the answer is
"yes" we are required to find the desired vector x (which may not be unique), then we have a search
problem.

Figure 5.12 Algorithm for solving a superincreasing instance of the subset sum problem

The Subset Sum (decision) problem is one of the so-called NP-complete problems. Among other things,
this means that there is no known polynomial-time algorithm that solves it. This is also the case for the
Subset Sum search problem. But even if a problem has no polynomial-time algorithm to solve it in
general, this does not rule out the possibility that certain special cases can be solved in polynomial time.
This is indeed the situation with the Subset Sum problem.

We define a list of sizes, (s1 , . . . , sn) to be superincreasing if

for 2 ≤ j ≤ n. If the list of sizes is superincreasing, then the search version of the Subset Sum problem can
be solved very easily in time O(n), and a solution x (if it exists) must be unique. The algorithm to do this is
presented in Figure 5.12.

Suppose s = (s1 , . . . , sn) is superincreasing, and consider the function

defined by the rule

Is es a possible candidate for an encryption rule? Since s is superincreasing, es is an injection, and the

algorithm presented in Figure 5.12 would be the corresponding decryption algorithm. However, such a
system would be completely insecure since anyone (including Oscar) can decrypt a message that is
encrypted in this way.

The strategy therefore is to transform the list of sizes in such a way that it is no longer superincreasing.
Bob will be able to apply an inverse transformation to restore the superincreasing list of sizes. On the other
hand Oscar, who does not know the transformation that was applied, is faced with what looks like a
general, apparently difficult, instance of the subset sum problem when he tries to decrypt a ciphertext.

One suitable type of transformation is a modular transformation. That is, a prime modulus p is chosen
such that

as well as a multiplier a, where 1 ≤ a ≤ p - 1. Then we define

1 ≤ i ≤ n. The list of sizes t = (t1 ,...,tn< /I>) will be the public key used for encryption. The values a, p

used to define the modular transformation are secret. The complete description of the Merkle-Hellman
Knapsack Cryptosystem is given in Figure 5.13.

The following small example illustrates the encryption and decryption operations in the Merkle-Hellman
Cryptosystem.

Example 5.10

Suppose

is the secret superincreasing list of sizes. Suppose p = 2003 and a = 1289. Then the public list of sizes is

Now, if Alice wants to encrypt the plaintext x = (1, 0, 1, 1, 0, 0, 1, 1, 1), she computes

When Bob receives the ciphertext y, he first computes

Then Bob solves the instance I = (s, z) of the Subset Sum problem using the algorithm presented in Figure
5.12. The plaintext (1, 0, 1, 1, 0, 0, 1, 1, 1) is obtained.

Figure 5.13 Merkle-Hellman Knapsack Cryptosystem

By the early 1980’s, the Merkle-Hellman Knapsack Cryptosystem had been broken by Shamir. Shamir
was able to use an integer programming algorithm of Lenstra to break the system. This allows Bob’s
trapdoor (or an equivalent trapdoor) to be discovered by Oscar, the cryptanalyst. Then Oscar can decrypt
messages exactly as Bob does.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

5.4 The McEliece System

The McEliece Cryptosystem uses the same design principle as the MerkleHellman Cryptosystem:
decryption is an easy special case of an NP-complete problem, disguised so that it looks like a general
instance of the problem. In this system, the NP-complete problem that is employed is decoding a general
linear (binary) error-correcting code. However, for many special classes of codes, polynomial-time
algorithms are known to exist. One such class of codes, the Goppa codes, are used as the basis of the
McEliece Cryptosystem.

We begin with some essential definitions.

DEFINITION 5.4 Let k, n be positive integers, k ≤ n. An [n, k] code, C, is a k-dimensional subspace of

 , the vector space of all binary n-tuples.

A generating matrix for an [n, k] code, C, is a k × n binary matrix whose rows form a basis for C.

Let x, , where x = (x1 , . . . , xn) and y = (y1 , . . . , yn). Define the Hamming distance

i.e., the number of coordinates in which x and y differ.

Let C be an [n, k] code. Define the distance of C to be the quantity

An [n, k] code with distance d is denoted as an [n, k, d] code.

The purpose of an error-correcting code is to correct random errors that occur in the transmission of
(binary) data through a noisy channel. Briefly, this is done as follows. Let G be a generating matrix for an
[n, k, d] code. Suppose x is the binary k-tuple we wish to transmit. Then Alice encodes x as the n-tuple y =
xG, and transmits y through the channel.

Now, suppose Bob receives the n-tuple r , which may not be the same as y. He will decode r using the
strategy of nearest neighbor decoding. In nearest neighbor decoding, Bob finds the codeword y′ that has
minimum distance to r . Then he decodes r to y′, and, finally, determines the k-tuple x′ such that y′ = x′G.
Bob is hoping that y′ = y, so x′ = x (i.e., he is hoping that any transmission errors have been corrected).

It is fairly easy to show that if at most (d - 1)/2 errors occurred during transmission, then nearest neighbor
decoding does in fact correct all the errors.

Let us think about how nearest neighbor decoding would be done in practice. |C| = 2k , so if Bob compares
r to every codeword, he will have to examine 2k vectors, which is an exponentially large number
compared to k. In other words, this obvious algorithm is not a polynomial-time algorithm.

Another approach, which forms the basis for many practical decoding algorithms, is based on the idea of a
syndrome. A parity-check matrix for an [n, k, d] code C having generating matrix G is an (n - k) × n 0 - 1
matrix, denoted by H, whose rows form a basis for the orthogonal complement of C, which is denoted by
C⊥ and called the dual code to C. Stated another way, the rows of H are linearly independent vectors, and
GHT is a k × (n - k) matrix of zeroes.

Given a vector , we define the syndrome of r to be HrT . A syndrome is a column vector with
n - k components.

The following basic results follow immediately from linear algebra.

THEOREM 5.2

Suppose C is an [n, k] code with generating matrix G and parity-check matrix H. Then is a
codeword if and only if

Further; if , and r = x + e, then Hr T = HeT .

Think of e as being the vector of errors that occur during transmission of a codeword x. Then r represents
the vector that is received. The above theorem is saying that the syndrome depends only on the errors, and
not on the particular codeword that was transmitted.

This suggests the following approach to decoding, known as syndrome decoding: First, compute s = Hr T .
If s is a vector of zeroes, then decode r as r . If not, then generate all possible error vectors or weight 1 in
turn. For each such e, compute HeT . If, for any of these vectors e, it happens that HeT = s, then decode r
to r - e. Otherwise, continue on to generate all error vectors of weight 2, . . . , (d - 1)/2. If at any time
HeT = s, then we decode r to r - e and quit. If this equation is never satisfied, then we conclude that more
than (d - 1)/2 errors have occurred during transmission.

By this approach, we can decode a received vector in at most

steps.

This method will work on any linear code. For certain specific types of codes, the decoding procedure can
be speeded up. However, a decision version of nearest neighbor decoding is in fact an NP-complete
problem. Thus no polynomial-time algorithm is known for the general problem of nearest neighbor
decoding (when the number of errors is not bounded by (d - 1)/2).

As was the case with the subset sum problem, we can identify an "easy" special case, and then disguise it
so that it looks like a "difficult" general case of the problem. It would take us too long to go into the theory
here, so we will just summarize the results. The "easy" special case that was suggested by McEliece is to
use a code from a class of codes known as the Goppa codes. These codes do in fact have efficient
decoding algorithms. Also, they are easy to generate, and there are a large number of inequivalent Goppa
codes with the same parameters.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

The parameters of the Goppa codes have the form n = 2m , d = 2t + 1 and k = n - mt. For a practical
implementation of the public-key cryptosystem, McEliece suggested taking m = 10 and t = 50. This gives
rise to a Goppa code that is a [1024, 524, 101] code. Each plaintext is a binary 524-tuple, and each
ciphertext is a binary 1024-tuple. The public key is a 524 × 1024 binary matrix.

Figure 5.14 McEliece Cryptosystem

A description of the McEliece Cryptosystem is given in Figure 5.14.

We present a ridiculously small example to illustrate the encoding and decoding procedures.

Example 5.11

The matrix

is a generating matrix for a [7, 4, 3] code, known as a Hamming code. Suppose Bob chooses the matrices

and

Then, the public generating matrix is

Now, suppose Alice encrypts the plaintext x = (1, 1, 0, 1) using as the random error vector of weight 1 the
vector e = (0, 0, 0, 0, 1, 0, 0). The ciphertext is computed to be

When Bob receives the ciphertext y, he first computes

Next, he decrypts y1 to get x1 = (1, 0, 0, 0, 1, 1, 0) (note that e1 ≠ e due to the multiplication by P -1).

Next, Bob forms x0 = (1, 0, 0, 0) (the first four components of x1).

Finally, Bob calculates

This is indeed the plaintext that Alice encrypted.

5.5 Notes and References

The ElGamal Cryptosystem was presented in [EL85]. The Pohlig-Hellman algorithm was published in
[PH78], and the material concerning individual bits of the Discrete Logarithm problem is based on
Peralta [PE86]. For further information on the Discrete Logarithm problem, we recommend the articles
by LaMacchia and Odlyzko [LO91] and McCurley [MC90].

The main reference book for finite fields is Lidl and Niederreiter [LN83]. McEliece [MC87] is a good
textbook on the subject, and a research monograph on applications of finite fields was published by
Menezes et al. [MBGMVY93]. A recent article on the Discrete Logarithm problem in GF(2n) is Gordon
and McCurley [GM93].

The idea of using elliptic curves for public-key cryptosystems is due to Koblitz [KO87] and Miller [MI86].
Menezes [ME93] is a monograph on elliptic curve cryptosystems. See also Menezes and Vanstone
[MV93] and Koblitz [KO94]. For an elementary treatment of elliptic curves, see Silverman and Tate
[ST92]. The Menezes-Okamoto-Vanstone reduction of discrete logarithms from elliptic curves to finite
fields is given in [MOV94] (see also [ME93]).

The Merkle-Hellman Cryptosystem was presented in [MH78]. This system was broken by Shamir
[SH84], and the "iterated" version of the system was broken by Brickell [BR85]. A different
knapsack-type system, due to Chor and Rivest [CR88], has not been broken. For more information, see the
survey article by Brickell and Odlyzko [BO92].

The most important reference book for coding theory is MacWilliams and Sloane [MS77] There are many
good textbooks on coding theory, e.g., Hoffman et al. [HLLPRW91] and Vanstone and van Oorschot
[VV89]. The McEliece Cryptosystem was first described in [MC78]. A recent article discussing the
security of this cryptosystem is by Chabaud [CH95].

Exercises

5.1 Implement Shanks’ algorithm for finding discrete logarithms in , where p is prime and α is a

primitive element. Use your program to find log106 12375 in and log6 248388 in .

5.2 Implement the Pohlig-Hellman algorithm for finding discrete logarithms in , where p is prime

and α is a primitive element. Use your program to find log5 8563 in and log10 12611 in

 .

5.3 Find log5 896 in using the algorithm presented in Figure 5.6, given that L2(β) = 1 for β
= 25, 219 and 841, and L2(β) = 0 for β = 163, 532, 625 and 656.

5.4 Decrypt the ElGamal ciphertext presented in Table 5.3. The parameters of the system arc p =

31847, α = 5, a = 7899 and β = 18074. Each element of represents three alphabetic characters as
in Exercise 4.6.

The plaintext was taken from "The English Patient," by Michael Ondaatje, Alfred A. Knopf, Inc.,
New York, 1992.

5.5 Determine which of the following polynomials are irreducible over .

5.6 The field GF(25) can be constructed as . Perform the following
computations in this field.

(a) Compute (x4 + x2) × (x3 + x + 1).
(b) Using the extended Euclidean algorithm, compute (x3 + x2) -1
(c) Using the square-and-multiply algorithm, compute x25.

5.7 We give an example of the ElGamal Cryptosystem implemented in GF(33). The polynomial

x3+2x2< /SUP>+1 is irreducible over and hence is the field GF(33). We can associate the 26
letters of the alphabet with the 26 nonzero field elements, and thus encrypt ordinary text in a convenient way. We will use a
lexicographic ordering of the (nonzero) polynomials to set up the correspondence. This correspondence is as follows:

Suppose Bob uses α = x and a = 11 in an ElGamal system; then β = x + 2. Show how Bob will decrypt the following string of
ciphertext:

(K, H) (P X) (N, K) (H,R) (T,F) (V, Y) (E, H) (F, A) (T, W) (J, D)(U, J)

(3781, 14409) (31552, 3930) (27214, 15442) (5809, 30274)

(54000, 31486) (19936, 721) (27765, 29284) (29820, 7710)

(31590, 26470) (3781, 14409) (15898, 30844) (19048, 12914)

(16160, 3129) (301, 17252) (24689, 7776) (28856, 15720)

(30555, 24611) (20501, 2922) (13659, 5015) (5740, 31233)

(1616, 14170) (4294, 2307) (2320, 29174) (3036, 20132)

(14130, 22010) (25910, 19663) (19557, 10145) (18899, 27609)

(26004, 25056) (5400, 31486) (9526, 3019) (12962, 15189)

(29538, 5408) (3149, 7400) (9396, 3058) (27149, 20535)

(1777, 8737) (26117, 14251) (7129, 18195) (25302, 10248)

(23258, 3468) (26052, 20545) (21958, 5713) (346, 31194)

(8836, 25898) (8794, 17358) (1777, 8737) (25038, 12483)

(10422, 5552) (1777, 8737) (3780, 16360) (11685, 133)

(25115, 10840) (14130, 22010) (16081, 16414) (28580, 20845)

(23418, 22058) (24139, 9580) (173, 17075) (2016, 18131)

(198886, 22344) (21600, 25505) (27119, 19921) (23312, 16906)

(21563, 7891) (28250, 21321) (28327, 19237) (15313, 28649)

(24271, 8480) (26592, 25457) (9660, 7939) (10267, 20623)

(30499, 14423) (5839, 24179) (12846, 6598) (9284, 27858)

(24875, 17641) (1777, 8737) (18825, 19671) (31306, 11929)

(3576, 4630) (26664, 27572) (27011, 29164) (22763, 8992)

(3149, 7400) (8951, 29435) (2059, 3977) (16258, 30341)

(21541, 19004) (5865, 29526) (10536, 6941) (1777, 8737)

(17561, 11884) (2209, 6107) (10422, 5552) (19371, 21005)

(26521, 5803) (14884, 14280) (4328, 8635) (28250, 21321)

(28327, 19237) (15313, 28649)

5.8 Let E be the elliptic curve y 2 = x 3 + x + 28 defined over .
(a) Determine the number of points on E.
(b) Show that E is not a cyclic group.

(c) What is the maximum order of an element in E? Find an element having this order.

5.9 Let E be the elliptic curve y 2 = x 3 + x + 13 defined over . It can be shown that #E = 34 and (9, 10) is an element of

order 34 in E. The Menezes-Vanstone Cryptosystem defined on E will have as its plaintext space . Suppose
Bob’s secret exponent is a = 25.

(a) Compute β = aα.
(b) Decrypt the following string of ciphertext:

((4, 9), 28, 7), ((19, 28), 9, 13), ((5,22), 20, 17), ((25, 16), 12, 27).
(c) Assuming that each plaintext represents two alphabetic characters, convert the plaintext into an English word. (Here we
will use the correspondence A ↔ 1, . . . , Z ↔ 26, since 0 is not allowed in a (plaintext) ordered pair.)

5.10 Suppose the Merkle-Hellman Cryptosystem has as its public list of sizes the vector

Suppose Oscar discovers that p = 2503.
(a) By trial and error, determine the value a such that the list a -1t mod p is a permutation of a superincreasing list.
(b) Show how the ciphertext 5746 would be decrypted.

5.11 It can be shown that the matrix H shown below is a parity-check matrix for a [15, 7, 5] code called a BCH code.

Decode, it possible, each of the following received vectors r using the syndrome decoding method.
(a) r = (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).
(b) r = (1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0).
(c) r = (1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0).

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Chapter 6
Signature Schemes

6.1 Introduction

In this chapter, we study signature schemes, which are also called digital signatures. A "conventional"
handwritten signature attached to a document is used to specify the person responsible for it. A signature
is used in everyday situations such as writing a letter, withdrawing money from a bank, signing a contract,
etc.

A signature scheme is a method of signing a message stored in electronic form. As such, a signed message
can be transmitted over a computer network. In this chapter, we will study several signature schemes, but
first we discuss some fundamental differences between conventional and digital signatures.

First is the question of signing a document. With a conventional signature, a signature is physically part of
the document being signed. However, a digital signature is not attached physically to the message that is
signed, so the algorithm that is used must somehow "bind" the signature to the message.

Second is the question of verification. A conventional signature is verified by comparing it to other,
authentic signatures. For example, when someone signs a credit card purchase, the salesperson is supposed
to compare the signature on the sales slip to the signature on the back of the credit card in order to verify
the signature. Of course, this is not a very secure method as it is relatively easy to forge someone else’s
signature. Digital signatures, on the other hand, can be verified using a publicly known verification
algorithm. Thus, "anyone" can verify a digital signature. The use of a secure signature scheme will prevent
the possibility of forgeries.

Another fundamental difference between conventional and digital signatures is that a "copy" of a signed
digital message is identical to the original. On the other hand, a copy of a signed paper document can
usually be distinguished from an original. This feature means that care must be taken to prevent a signed
digital message from being reused. For example, if Bob signs a digital message authorizing Alice to
withdraw $100 from his bank account (i.e., a check), he only wants Alice to be able to do so once. So the
message itself should contain information, such as a date, that prevents it from being reused.

A signature scheme consists of two components: a signing algorithm and a verification algorithm. Bob
can sign a message x using a (secret) signing algorithm sig. The resulting signature sig(x) can subsequently
be verified using a public verification algorithm ver. Given a pair (x, y), the verification algorithm returns
an answer "true" or "false" depending on whether the signature is authentic.

Here is a formal defintion of a signature scheme.

DEFINITION 6.1 A signature scheme is a five-tuple , where the following conditions
are satisfied:

1. is a finite set of possible messages

2. is a finite set of possible signatures

3. , the keyspace, is a finite set of possible keys

4. For each , there is a signing algorithm and a corresponding verification

algorithm . Each sigK : and verK : → {true, false} are

functions such that the following equation is satisfied for every message and for every

signature :

For every , the functions sigK and verK should be polynomial-time functions. verK will be a

public function and sigK will be secret. It should be computationally infeasible for Oscar to "forge" Bob’s

signature on a message x. That is, given x, only Bob should be able to compute the signature y such that
ver(x, y) = true. A signature scheme cannot be unconditionally secure, since Oscar can test all possible
signatures y for a message x using the public algorithm ver, until he finds the right signature. So, given
sufficient time, Oscar can always forge Bob’s signature. Thus, as was the case with public-key
cryptosystems, our goal is to find signature schemes that are computationally secure.

As our first example of a signature scheme, we observe that the RSA public-key cryptosystem can be used
to provide digital signatures. See Figure 6.1.

Thus, Bob signs a message x using the RSA decryption rule dK . Bob is the only person that can create the

signature since dK = sigK is secret. The verification algorithm uses the RSA encryption rule eK . Anyone

can verify a signature since eK is public.

Note that anyone can forge Bob’s signature on a "random" message x by computing x = eK (y) for some y;

then y = sigK (x). One way around this difficulty is to require that messages contain sufficient redundancy

that a forged signature of this type does not correspond to a "meaningful" message x except with a very
small probability. Alternatively, the use of hash functions in conjunction with signature schemes will
eliminate this method of forging (cryptographic hash functions will be discussed in Chapter 7).

Figure 6.1 RSA Signature Scheme

Finally, let’s look briefly at how we would combine signing and public-key encryption. Suppose Alice
wishes to send a signed, encrypted message to Bob. Given a plaintext x, Alice would compute her
signature y = sig Alice (x), and then encrypt both x and y using Bob’s public encryption function eBob,

obtaining z = eBob (x, y). The ciphertext z would be transmitted to Bob. When Bob receives z, he first

decrypts it with his decryption function dBob to get (x, y). Then he uses Alice’s public verification

function to check that ver Alice (x, y) = true.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

What if Alice first encrypted x, and then signed the result? Then she would compute

Alice would transmit the pair (z, y) to Bob. Bob would decrypt z, obtaining x, and then verify the signature
y on x using ver Alice . One potential problem with this approach is that if Oscar obtains a pair (z, y) of this

type, he could replace Alice’s signature y by his own signature

(Note that Oscar can sign the ciphertext z = eBob(x) even though he doesn’t know the plaintext x.) Then, if

Oscar transmits (z, y′) to Bob, Oscar’s signature will be verified by Bob using verOscar, and Bob may infer

that the plaintext x originated with Oscar. Because of this potential difficulty, most people recommend
signing before encrypting.

Figure 6.2 ElGamal Signature Scheme

6.2 The ElGamal Signature Scheme

We now describe the ElGamal Signature Scheme, which was described in a 1985 paper. A modification
of this scheme has been adopted as a digital signature standard by the National Institute of Standards and
Technology (NIST). The ElGamal Scheme is designed specifically for the purpose of signatures, as
opposed to RSA, which can be used both as a public-key cryptosystem and a signature scheme.

The ElGamal Signature Scheme is non-deterministic, as was the ElGamal Public-key Cryptosystem.
This means that there are many valid signatures for any given message. The verification algorithm must be
able to accept any of the valid signatures as authentic. The description of the ElGamal Signature Scheme
is given in Figure 6.2.

If the signature was constructed correctly, then the verification will succeed, since

where we use the fact that

Bob computes a signature using both the secret value a (which is part of the key) and the secret random
number k (which is used to sign one message, x). The verification can be accomplished using only public
information.

Let’s do a small example to illustrate the arithmetic.

Example 6.1

Suppose we take p = 467, α = 2, a = 127; then

Suppose Bob wants to sign the message x = 100 and he chooses the random value k = 213 (note that
gcd(213, 466) = 1 and 213-1 mod 466 = 431). Then

and

Anyone can verify this signature by checking that

and

Hence, the signature is valid.

Let’s look at the security of the ElGamal Signature Scheme. Suppose Oscar tries to forge a signature for
a given message x, without knowing a. If Oscar chooses a value γ and then tries to find the corresponding
δ, he must compute the discrete logarithm logγ αx β -γ< /SMALL> . On the other hand, if he first chooses δ and then tries

to find γ, he is trying to "solve" the equation

for the "unknown" γ. This is a problem for which no feasible solution is known; however, it does not seem to be related to any well-studied
problem such as the Discrete Logarithm problem. There also remains the possibility that there might be some way to compute γ and δ
simultaneously in such a way that (γ, δ) will be a signature. No one has discovered a way to do this, but conversely, no one has proved that
it cannot be done.

If Oscar chooses γ and δ and then tries to solve for x, he is again faced with an instance of the Discrete Logarithm problem, namely the
computation of logα β γ γ δ< /SUP>. Hence, Oscar cannot sign a "random" message using this approach. However, there is a method by

which Oscar can sign a random message by choosing γ, δ and x simultaneously: Suppose i and j are integers, 0 ≤ i ≤ p -2, 0 ≤ j ≤ p - 2, and
gcd(j, p - 1) = 1. Then perform the following computations:

where j-1 is computed modulo (p - 1) (this is where we require that j be relatively prime to p - 1).

We claim that (γ, δ) is a valid signature for the message x. This is proved by checking the verification condition:

We illustrate with an example.

Example 6.2

As in the previous example, suppose p = 467, α = 2 and β = 132. Suppose Oscar chooses i = 99 and j = 179; then j-1 mod (p - 1) = 151. He
would compute the following:

Then (117, 41) is a valid signature for the message 331, as may be verified by checking that

and

Hence, the signature is valid.

Here is a second type of forgery, in which Oscar begins with a message previously signed by Bob. Suppose (γ, δ) is a valid signature for a
message x. Then it is possible for Oscar to sign various other messages. Suppose h, i and j are integers, 0 ≤ h, i, j ≤ p - 2, and gcd(hγ - jδ, p -
1) = 1. Compute the following:

where (hγ - jδ)-1 is computed modulo (p - 1). Then, it is tedious but straight-forward to check the verification condition:

Hence (λ, µ) is a valid signature for x′.

Both of these methods produce valid forged signatures, but they do not appear to enable an opponent to forge a signature on a message of
his own choosing without first solving a discrete logarithm problem. Hence, they do not seem to represent a threat to the security of the
ElGamal Signature Scheme.

Finally, we mention a couple of ways in which the ElGamal Scheme can be broken if it is used carelessly (these are further examples of
protocol failures, some of which were discussed in the exercises of Chapter 4). First, the random value k used in computing a signature
should not be revealed. For, if k is known, it is a simple matter to compute

Of course, once a is known, then the system is broken and Oscar can forge signatures at will.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Another misuse of the system is to use the same value k in signing two different messages. This also
makes it easy for Oscar to compute a and hence break the system. This can be done as follows. Suppose
(γ, δ1) is a signature on x1 and (γ, δ2) is a signature on x2 . Then we have

and

Thus

Writing γ = αk , we obtain the following equation in the unknown k:

which is equivalent to

Now let d = gcd (δ1 - δ2 , p - 1). Since d | (p - 1) and d | (δ1 - δ2), it follows that d | (x1 - x2). Define

Then the congruence becomes:

Since gcd(δ′, p′) = 1, we can compute

Then value of k is determined modulo p′ to be

This yields d candidate values for k:

for some i, 0 ≤ i ≤ d - 1. Of these d candidate values, the (unique) correct one can be determined by testing
the condition

6.3 The Digital Signature Standard

The Digital Signature Standard (or DSS) is a modification of the ElGamal Signature Scheme. It was
published in the Federal Register on May 19, 1994 and adopted as a standard on December 1, 1994
(however, it was first proposed in August, 1991). First, we want to motivate the changes that are made to
ElGamal, and then we will describe how they are accomplished.

In many situations, a message might be encrypted and decrypted only once, so it suffices to use any
cryptosystem which is known to be secure at the time the message is encrypted. On the other hand, a
signed message could function as a legal document such as a contract or will, so it is very likely that it
would be necessary to verify a signature many years after the message is signed. So it is important to take
even more precautions regarding the security of a signature scheme as opposed to a cryptosystem. Since
the ElGamal Scheme is no more secure than the Discrete Logarithm problem, this necessitates the use of
a large modulus p. Certainly p should have at least 512 bits, and many people would argue that the length
of p should be 1024 bits in order to provide security into the foreseeable future.

However, even a 512 bit modulus leads to a signature having 1024 bits. For potential applications, many
of which involve the use of smart cards, a shorter signature is desirable. DSS modifies the ElGamal
Scheme in an ingenious way so that a 160-bit message is signed using a 320-bit signature, but the

computations are done using a 512-bit modulus p. The way that this done is to work in a subgroup of
of size 2160. The assumed security of the scheme is based on the belief that finding discrete logarithms in

this specified subgroup of is secure.

The first change we make is to change the "-" to a "+" in the definition of δ, so

This changes the verification condition to the following:

If gcd(x + aγ,p - 1) = 1, then δ -1 mod (p - 1) exists, and we can modify condition (6.1), producing the
following:

Now here is the major innovation in the DSS. We suppose that q is a 160-bit prime such that q | (p - 1),

and α is a qth root of 1 modulo p. (It is easy to construct such an α: Let α0 be a primitive element of ,

and define α = α0
(p-1)/q< /SMALL> mod p.) Then β and γ will also be qth roots of 1. Hence, any exponents of α, β and γ can be

reduced modulo q without affecting verification condition (6.2). The tricky point is that γ appears as an exponent on the left side of (6.2),
and again ‹ but not as an exponent ‹ on the right side of (6.2). So if γ is reduced modulo q, then we must also reduce the entire left side of
(6.2) modulo q in order to perform the verification. Observe that (6.1) will not work if the extra reductions modulo q are done. The complete
description of the DSS is given in Figure 6.3.

Notice that is necessary that (mod q) since the value δ -1 mod q is needed to verify the signature (this is analogous to the
requirement that gcd(δ, p-1) = 1 when we modified (6.1) to obtain (6.2)). If Bob computes a value δ ≡ 0 (mod q) in the signing algorithm, he
should reject it and construct a new signature with a new random k. We should point out that this is not likely to cause a problem in practice:
the probability that δ ≡ 0 (mod q) is likely to be on the order of 2-160, so for all intents and purposes it will almost never happen.

Figure 6.3 Digital Signature Standard

Here is a small example to illustrate.

Example 6.3

Suppose we take q = 101 and p = 78q + 1 = 7879. 3 is a primitive element in , so we can take

Suppose a = 75; then

Now, suppose Bob wants to sign the message x = 22 and he chooses the random value k = 50, so

Then

and

The signature (94, 97) on the message 22 is verified by the following computations:

Hence, the signature is valid.

When the DSS was proposed in 1991, there were several criticisms put forward. One complaint was that the selection process by NIST was
not public. The standard was developed by the National Security Agency (NSA) without the input of U. S. industry. Regardless of the
merits of the resulting scheme, many people resented the "closed-door" approach.

Of the technical criticisms put forward, the most serious was that the size of the modulus p was fixed at 512 bits. Many people would prefer
that the modulus size not be fixed, so that larger modulus sizes could be used if desired. In reponse to these comments, NIST altered the
description of the standard so that a variety of modulus sizes are allowed, namely, any modulus size divisible by 64, in the range from 512
to 1024 bits.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Another complaint about the DSS was that signatures can be generated considerably faster than they can
be verified. In contrast, if RSA is used as a signature scheme and the public verification exponent is very
small (say 3, for example), then verification can be performed much more quickly than signing. This leads
to a couple of considerations concerning the potential applications of the signature scheme:

1. A message will only be signed once. On the other hand, it might be necessary to verify the
signature many times over a period of years. This suggests that a faster verification algorithm would
be desirable.

Figure 6.4 Lamport Signature Scheme

2. What types of computers are likely to be doing the signing and verifying? Many potential
applications involve smart cards, with limited processing power, communicating with a more
powerful computer. So one might try to design a scheme so that fewer computations are likely to be
done by a card. But one can imagine situations where a smart card would generate a signature, and
other situations where a smart card would verify a signature, so it is difficult to give a definitive
answer here.

The response of NIST to the question of signature generation/verification times is that it does not really
matter which is faster, provided that both can be done sufficiently quickly.

6.4 One-time Signatures

In this section, we describe a conceptually simple way to construct a one-time signature scheme from any
one-way function. The term "one-time" means that only one message can be signed. (The signature can be
verified an arbitrary number of times, of course.) The description of the scheme, known as the Lamport
Signature Scheme, is given in Figure 6.4.

Informally, this is how the system works. A message to be signed is a binary k-tuple. Each bit is signed
individually: the value z i,j corresponds to the ith bit of the message having the value j (j = 0, 1). Each z i,j

is the image of y i,j under the one-way function f. The ith bit of the message is signed using the preimage

y i,j of the z i,j corresponding to the ith bit of the message. The verification consists simply of checking that

each element in the signature is the preimage of the appropriate public key element.

We illustrate the scheme by considering one possible implementation using the exponentiation function
f(x) = αx mod p, where α is a primitive element modulo p.

Example 6.4

7879 is prime and 3 is a primitive element in . Define

Suppose Bob wishes to sign a message of three bits, and he chooses the six (secret) random numbers

Then he computes the images of the y’s under the function f:

These z’s are published. Now, suppose Bob wants to sign the message

The signature for x is

To verify this signature, it suffices to compute the following:

Hence, the signature is valid.

Oscar cannot forge a signature because he is unable to invert the one-way function f to obtain the secret
y’s. However, the signature scheme can be used to sign only one message. For, given signatures for two
different messages, it is (usually) an easy matter for Oscar to construct signatures for further messages
(different from the first two).

For example, suppose the messages (0, 1, 1) and (1, 0, 1) are both signed using the same scheme. The
message (0, 1, 1) would have as its signature the triple (y1,0, y2,1, y3,1), and the message (1, 0, 1) would

be signed with (y1,1, y2,0, y3,1). Given these two signatures, Oscar can manufacture signatures for the

messages (1, 1, 1) (namely, (y1,1, y2,1, y3,1)) and (0, 0, 1) (namely, (y1,0, y2,0, y3,1)).

Even though this scheme is quite elegant, it is not of great practical use due to the size of the signatures it
produces. For example, if we use the modular exponentiation function, as in the example above, then a
secure implementation would require that p be at least 512 bits in length. This means that each bit of the
message is signed using 512 bits. Consequently, the signature is 512 times as long as the message!

We now look at a modification due to Bos and Chaum that allows the signatures to be made somewhat
shorter, with no loss of security. In the Lamport Scheme, the reason that Oscar cannot forge a signature
on a (second) message, given a signature on one message, is that the y’s corresponding to one message are
never a subset of the y’s corresponding to another (distinct) message.

Suppose we have a set of subsets of a set B such that only if B1 = B2 , for all B1 ,

. Then is said to satisfy the Sperner property. Given a set B of even cardinality 2n, it is known that the

maximum size of a set of subsets of B having the Sperner property is . This can easily be obtained
by taking all the n-subsets of B: clearly no n-subset is contained in another n-subset.

Now suppose we want to sign a k-bit message, as before, and we choose n large enough so that

Let |B| = 2n and let denote the set of n-subsets of B. Let be a publicly known injection.

Then we can associate each possible message with an n-subset in . We will have 2n y’s and 2n z’s, and
each message will be signed with n y’s. The complete description of the Bos-Chaum Scheme is given in
Figure 6.5.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

The advantage of the Bos-Chaum Scheme is that signatures are shorter than with the Lamport Scheme.

For example, suppose we wish to sign a message of six bits (i.e., k = 6). Since 26 = 64 and , we
can take n = 4. This allows a six-bit message to be signed with four y’s, as opposed to six with Lamport .
As well, the key is shorter, consisting of eight z’s as opposed to twelve with Lamport .

Figure 6.5 Bos-Chaum Signature Scheme

The Bos-Chaum Scheme requires an injective function φ that associates an n-subset of a 2n-set with each
possible binary k-tuple x = (x1 , ..., xk). We present one simple algorithm to do this in Figure 6.6.

Applying this algorithm with x = (0, 1, 0, 0, 1, 1), for example, yields

In general, how big is n in the Bos-Chaum Scheme as compared to k? We need to satisfy the inequality

 . If we estimate the binomial coefficient

using Stirling’s formula, we obtain the quantity . After some simplification, the inequality
becomes

Figure 6.6 Computation of φ in the Bos-Chaum Scheme

Asymptotically, n is about k/2, so we obtain an almost 50% reduction in signature size by using the
Bos-Chaum Scheme.

6.5 Undeniable Signatures

Undeniable signatures were introduced by Chaum and van Antwerpen in 1989. They have several novel
features. Primary among these is that a signature cannot be verified without the cooperation of the signer,
Bob. This protects Bob against the possibility that documents signed by him are duplicated and distributed
electronically without his approval. The verification will be accomplished by means of a
challenge-and-response protocol.

But if Bob’s cooperation is required to verify a signature, what is to prevent Bob from disavowing a
signature he made at an earlier time? Bob might claim that a valid signature is a forgery, and either refuse
to verify it, or carry out the protocol in such a way that the signature will not be verified. To prevent this
from happening, an undeniable signature scheme incorporates a disavowal protocol by which Bob can
prove that a signature is a forgery. Thus, Bob will be able to prove in court that a given forged signature is
in fact a forgery. (If he refuses to take part in the disavowal protocol, this would be regarded as evidence
that the signature is, in fact, genuine.)

Thus, an undeniable signature scheme consists of three components: a signing algorithm, a verification
protocol, and a disavowal protocol. First, we present the signing algorithm and verification protocol of the
Chaum-van Antwerpen Undeniable Signature Scheme in Figure 6.7.

Figure 6.7 Chaum-van Antwerpen Undeniable Signature Scheme

We should explain the roles of p and q in this scheme. The scheme lives in ; however, we need to be

able to do computations in a multiplicative subgroup G of of prime order. In particular, we need to be
able to compute inverses modulo |G|, which is why |G| should be prime. It is convenient to take p = 2q + 1
where q is prime. In this way, the subgroup G is as large as possible, which is desirable since messages
and signatures are both elements of G.

We first prove that Alice will accept a valid signature. In the following computations, all exponents are to
be reduced modulo q. First, observe that

Since

we have that

Similarly,

implies that

Hence,

as desired.

Here is a small example.

Example 6.5

Suppose we take p = 467. Since 2 is a primitive element, 22 = 4 is a generator of G, the quadratic residues
modulo 467. So we can take α = 4. Suppose a = 101; then

Bob will sign the message x = 119 with the signature

Now, suppose Alice wants to verify the signature y. Suppose she chooses the random values e1 = 38, e2 =

397. She will compute c = 13, whereupon Bob will respond with d = 9. Alice checks the response by
verifying that

Hence, Alice accepts the signature as valid.

We next prove that Bob cannot fool Alice into accepting a fradulent signature as valid, except with a very
small probability. This result does not depend on any computational assumptions, i.e., the security is
unconditional.

THEOREM 6.1

If (mod p), then Alice will accept y as a valid signature for x with probability 1/q.

PROOF First, we observe that each possible challenge c corresponds to exactly q ordered pairs (e1 , e2)

(this is because y and β are both elements of the multiplicative group G of prime order q). Now, when Bob
receives the challenge c, he has no way of knowing which of the q possible ordered pairs (e1 , e2) Alice

used to construct c. We claim that, if (mod p), then any possible response d ∈ G that Bob might
make is consistent with exactly one of the q possible ordered pairs (e1 , e2).

Since α generates G, we can write any element of G as a power of α, where the exponent is defined

uniquely modulo q. So write c = α i , d = α j , x = αk , and , where and all
arithmetic is modulo p. Consider the following two congruences:

This system is equivalent to the following system:

Now, we are assuming that

so it follows that

Hence, the coefficient matrix of this system of congruences modulo q has non-zero determinant, and thus
there is a unique solution to the system. That is, every d ∈ G is the correct response for exactly one of the
q possible ordered pairs (e1 , e2), Consequently, the probability that Bob gives Alice a response d that will

be verified is exactly 1/q, and the theorem is proved.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

We now turn to the disavowal protocol. This protocol consists of two runs of the verification protocol and
is presented in Figure 6.8.

Steps 1-4 and steps 5-8 comprise two unsuccessful runs of the verification protocol. Step 9 is a
"consistency check" that enables Alice to determine if Bob is forming his responses in the manner
specified by the protocol.

The following example illustrates the disavowal protocol.

Example 6.6

As before, suppose p = 467, α = 4, a = 101 and β = 449. Suppose the message x = 286 is signed with the
(bogus) signature y = 83, and Bob wants to convince Alice that the signature is invalid.

Figure 6.8 Disavowal protocol

Suppose Alice begins by choosing the random values e1 = 45, e2 = 237. Alice computes c = 305 and Bob

responds with d = 109. Then Alice computes

Since 149 ≠ 109, Alice proceeds to step 5 of the protocol.

Now suppose Alice chooses the random values f1 = 125, f2 = 9. Alice computes C = 270 and Bob

responds with D = 68. Alice computes

Since 25 ≠ 68, Alice proceeds to step 9 of the protocol and performs the consistency check. This check
succeeds, since

and

Hence, Alice is convinced that the signature is invalid.

We have to prove two things at this point:

1. Bob can convince Alice that an invalid signature is a forgery.
2. Bob cannot make Alice believe that a valid signature is a forgery except with a very small
probability.

THEOREM 6.2

If (mod p), and Alice and Bob follow the disavowal protocol, then

PROOF Using the facts that

and

we have that

A similar computation, using the facts that (mod p) and β ≡ αa

(mod p), establishes that

so the consistency check in step 9 succeeds.

Now we look at the possibility that Bob might attempt to disavow a valid signature. In this situation, we
do not assume that Bob follows the protocol. That is, Bob might not construct d and D as specified by the
protocol. Hence, in the following theorem, we assume only that Bob is able to produce values d and D
which satisfy the conditions in steps 4, 8, and 9 of the protocol presented in Figure 6.8.

THEOREM 6.3

Suppose y ≡ xa (mod p) and Alice follows the disavowal protocol. If

and

then the probability that

is 1 - 1/q.

PROOF Suppose that the following congruences are satisfied:

We will derive a contradiction.

The consistency check (step 9) can be rewritten in the following form:

where

is a value that depends only on steps 1-4 of the protocol.

Applying Theorem 6.1, we conclude that y is a valid signature for d0 with probability 1 - 1/q. But we are

assuming that y is a valid signature for x. That is, with high probability we have

which implies that x = d0 .

However, the fact that

means that

Since

we conclude that x ≠ d0 and we have a contradiction.

Hence, Bob can fool Alice in this way with probability 1/q.

6.6 Fail-stop Signatures

A fail-stop signature scheme provides enhanced security against the possibility that a very powerful
adversary might be able to forge a signature. In the event that Oscar is able to forge Bob’s signature on a
message, Bob will (with high probability) subsequently be able to prove that Oscar’s signature is a
forgery.

In this section, we describe a fail-stop signature scheme constructed by van Heyst and Pedersen in 1992.
This is a one-time scheme (only one message can be signed with a given key). The system consists of
signing and verification algorithms, as well as a "proof of forgery" algorithm. The description of the
signing and verification algorithms of the van Heyst and Pedersen Fail-stop Signature Scheme is
presented in Figure 6.9.

It is straightforward to see that a signature produced by Bob will satisfy the verification condition, so let’s
turn to the security aspects of this scheme and how the fail-stop property works. First we establish some
important facts relating to the keys of the scheme. We begin with a definition. Two keys (γ1 , γ2 , a1 , a2 ,

b1 , b2) and are said to be equivalent if and . It is easy to see that

there are exactly q2 keys in any equivalence class.

We establish several lemmas.

LEMMA 6.4

Suppose K and K′ are equivalent keys and suppose that verK (x, y) = true. Then verK′ (x, y) = true.

PROOF Suppose K = (γ1 , γ2 , a1 , a2 , b1 , b2) and K′ = (), where

and

Suppose x is signed using K, producing the signature y = (y1 , y2), where

Now suppose that we verify y using K′:

Thus, y will also be verified using K′.

Figure 6.9 van Heyst and Pedersen Fail-stop Signature Scheme

LEMMA 6.5

Suppose K is a key and y = sigK (x). Then there are exactly q keys K′ equivalent to K such that y = sigK′

(x).

PROOF Suppose γ1 and γ2 are the public components of K. We want to determine the number of 4-tuples

(a1 , a2 , b1 , b2) such that the following congruences are satisfied:

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Since α generates G, there exist unique exponents such that

and

Hence, it is necessary and sufficient that the following system of congruences be satisfied:

This system can, in turn, be written as a matrix equation in , as follows:

Now, the coefficient matrix of this system can be seen to have rank 1 three: Clearly, the rank is at least

three since rows 1, 2 and 4 are linearly independent over . And the rank is at most three since

1 the rank of a matrix is the maximum number of linearly independent rows it contains

where r i denotes ith row of the matrix.

Now, this system of equations has at least one solution, obtained by using the key K. Since the rank of the
coefficient matrix is three, it follows that the dimension of the solution space is 4 - 3 = 1, and there are
exactly q solutions. The result follows.

By similar reasoning, the following result can be proved. We omit the proof.

LEMMA 6.6

Suppose K is a key, y = sigK (x), and verK (x′, y′) = true, where x′ ≠ x. Then there is at most one key K′
equivalent to K such that y = sigK′ (x) and y′ = sigK′ (x′).

Let’s interpret what the preceding two lemmas say about the security of the scheme. Given that y is a valid
signature for message x, there are q possible keys that would have signed x with y. But for any message x′
≠ x, these q keys will produce q different signatures on x′. Thus, the following theorem results.

THEOREM 6.7

Given that sigK (x) = y and x′ ≠ x, Oscar can compute sigK (x′) with probablity 1/q.

Note that this theorem does not depend on the computational power of Oscar: the stated level of security is
obtained because Oscar cannot tell which of q possible keys is being used by Bob. So the security is
unconditional.

We now go on to look at the fail-stop concept. What we have said so far is that, given a signature y on
message x, Oscar cannot compute Bob’s signature y′ on a different message x′. It is still conceivable that
Oscar can compute a forged signature y″ ≠ sigK (x′) which will still be verified. However, if Bob is given a

valid forged signature, then with probability 1 - 1/q he can produce a "proof of forgery." The proof of
forgery is the value a0 = logα β, which is known only to the central authority.

So we assume that Bob possesses a pair (x′, y″) such that verK (x′, y″) = true and y″ ≠ sigK (x′). That is,

where y″ = (). Now, Bob can compute his own signature on x′, namely y′ = (), and
it will be the case that

Hence,

Writing mod p, we have that

or

This simplifies to give

Now, (mod q) since y′ is a forgery. Hence, ()-1 mod q exists, and

Of course, by accepting such a proof of forgery, we assume that Bob cannot compute the discrete
logarithm logα β by himself. This is a computational assumption.

Finally, we remark that the scheme is a one-time scheme since Bob’s key K can easily be computed if two
messages are signed using K.

We close with an example illustrating how Bob can produce a proof of forgery.

Example 6.7

Suppose p = 3467 = 2 × 1733 + 1. The element α = 4 has order 1733 in . Suppose that a0 = 1567,

so

(Recall that Bob knows the values of α and β, but not a0 .) Suppose Bob forms his key using a1 = 888, a2

= 1024, b1 = 786 and b2 = 999, so

and

Now, suppose Bob is presented with the forged signature (822, 55) on the message 3383. This is a valid
signature since the verification condition is satisfied:

and

On the other hand, this is not the signature Bob would have constructed. Bob can compute his own
signature to be

Then, he proceeds to calculate the secret discrete log

This is the proof of forgery.

6.7 Notes and References

For a nice survey of signature schemes, we recommend Mitchell, Piper, and Wild [MPW92]. This paper
also contains the two methods of forging ElGamal signatures that we presented in Section 6.2.

The ElGamal Signature Scheme was presented in ElGamal [EL85]. The Digital Signature Standard
was first published by NIST in August 1991, and it was adopted as a standard in December 1994
[NBS94]. There is a lengthy discussion of DSS and the controversy surrounding it in the July 1992 issue
of the Communications of the ACM. For a response by NIST to some of the questions raised, see [SB93].

The Lamport Scheme is described in the 1976 paper by Diffie and Hellman [DH76]; the modification by
Bos and Chaum is in [BC93]. The undeniable signature scheme presented in Section 6.5 is due to Chaum
and van Antwerpen [CVA90]. The fail-stop signature scheme from Section 6.6 is due to van Heyst and
Pedersen [VHP93].

Some examples of well-known "broken" signature schemes include the Ong-Schnorr-Shamir Scheme
[OSS85] (broken by Estes et al. [EAKMM86]); and the Birational Permutation Scheme of Shamir
[SH94] (broken by Coppersmith, Stern, and Vaudenay [CSV94]). Finally, ESIGN is a signature scheme
due to Fujioka, Okamoto, and Miyaguchi [FOM91]. Some versions of the scheme were broken, but the
variation in [FOM91] has not been broken.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Exercises

6.1 Suppose Bob is using the ElGamal Signature Scheme, and he signs two messages x1 and x2

with signatures (γ, δ1) and (γ, δ2), respectively. (The same value for γ occurs in both signatures.)

Suppose also that gcd(δ1 - δ2 , p - 1) = 1.

(a) Describe how k can be computed efficiently given this information.
(b) Describe how the signature scheme can then be broken.
(c) Suppose p = 31847, α = 5 and β = 25703. Perform the computation of k and a, given the
signature (23972, 31396) for the message x = 8990 and the signature (23972, 20481) for the
message x = 31415.

6.2 Suppose I implement the ElGamal Signature Scheme with p = 31847, α = 5 and β = 26379.
Write a computer program which does the following.

(a) Verify the signature (20679, 11082) on the message x = 20543.
(b) Determine my secret exponent, a, using the Shanks time-memory tradeoff. Then determine
the random value k used in signing the message x.

6.3 Suppose Bob is using the ElGamal Signature Scheme as implemented in Example 6.1: p = 467,
α = 2 and β = 132. Suppose Bob has signed the message x = 100 with the signature (29, 51).
Compute the forged signature that Oscar can then form by using h = 102, i = 45 and j = 293. Check
that the resulting signature satisfies the verification condition.
6.4 Prove that the second method of forgery on the ElGamal Signature Scheme, described in
Section 6.2, also yields a signature that satisfies the verification condition.
6.5 Here is a variation of the ElGamal Signature Scheme. The key is constructed in a similar

manner as before: Bob chooses to be a primitive element, a is a secret exponent (0 ≤ a ≤ p -
2) such that gcd (a, p - 1) = 1, and β = αa mod p. The key K = (α, a, β), where α and β are public

and a is secret. Let be a message to be signed. Bob computes the signature sig(x) = (γ, δ),
where

and

The only difference from the original ElGamal Scheme is in the computation of δ. Answer the
following questions concerning this modified scheme.

(a) Describe how a signature (γ, δ) on a message x would be verified using Bob’s public key.

(b) Describe a computational advantage of the modified scheme over the original scheme.
(c) Briefly compare the security of the original and modified scheme.

6.6 Suppose Bob uses the DSS with q = 101, p = 7879, α = 170, a = 75 and β = 4567, as in Example
6.3. Determine Bob’s signature on the message x = 52 using the random value k = 49, and show how
the resulting signature is verified.

6.7 In the Lamport Scheme, suppose that two k-tuples, x and x′, are signed by Bob. Let

denote the number of coordinates in which x and x′ differ. Show at Oscar can now sign new
messages.
6.8 In the Bos-Chaum Scheme with k = 6 and n = 4, suppose that the messages x = (0, 1, 0, 0, 1, 1)
and x′ = (1, 1, 0, 1, 1, 1) are signed. Determine the new messages that be signed by Oscar, knowing
the signatures on x and x′.
6.9 In the Bos-Chaum Scheme, suppose that two k-tuples x and x′ are signed by Bob. Let

 Show that Oscar can now sign new messages.
6.10 Suppose Bob is using the Chaum-van Antwerpen Undeniable Signature Scheme as in
Example 6.5. That is, p = 467, α = 4, a = 101 and β = 449. Suppose Bob is presented with a signature
y = 25 on the message x = 157 and he wishes to prove it is a forgery. Suppose Alice’s random
numbers are e1 = 46, e2 = 123, f1 = 198 and f2 = 11 in the disavowal protocol. Compute Alice’s

challenges, c and d, and Bob’s responses, C and D, and show that Alice’s consistency check will
succeed.
6.11 Prove that each equivalence class of keys in the Pedersen-van Heyst Fail-stop Signature
Scheme contains q2 keys.
6.12 Suppose Bob is using the Pedersen-van Heyst Fail-stop Signature Scheme, where p = 3467,
α = 4, a0 = 1567 and β = 514 (of course, the value of a0 is not known to Bob).

(a) Using the fact that a0 = 1567, determine all possible keys

such that sigK (42) = (1118, 1449).

(b) Suppose that sigK (42) = (1118, 1449) and sigK (969) = (899, 471). Without using the fact

that a0 = 1567, determine the value of K (this shows that the scheme is a one-time scheme).

6.13 Suppose Bob is using the Pedersen-van Heyst Fail-Stop Signature Scheme with p = 5087, α
= 25 and β = 1866. Suppose the key is

Now, suppose Bob finds the signature (2219, 458) has been forged on the message 4785.
(a) Prove that this forgery satisfies the verification condition, so it is a valid signature.
(b) Show how Bob will compute the proof of forgery, a0 , given this forged signature.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Chapter 7
Hash Functions

7.1 Signatures and Hash Functions

The reader might have noticed that the signature schemes described in Chapter 6 allow only "small"
messages to be signed. For example, when using the DSS, a 160-bit message is signed with a 320-bit
signature. In general, we will want to sign much longer messages. A legal document, for example, might
be many megabytes in size.

A naive attempt to solve this problem would be to break a long message into 160-bit chunks, and then to
sign each chunk independently. This is analogous to encrypting a long string of plaintext by encrypting
each plaintext character independently using the same key (e.g., ECB mode in the DES).

But there are several problems with this approach in creating digital signatures. First of all, for a long
message, we will end up with an enormous signature (twice as long as the original message in the case of
the DSS). Another disadvantage is that most "secure" signature schemes are slow since they typically use
complicated arithmetic operations such as modular exponentiation. But an even more serious problem
with this approach is that the various chunks of a signed message could be rearranged, or some of them
removed, and the resulting message would still be verified. We need to protect the integrity of the entire
message, and this cannot be accomplished by independently signing little pieces of it.

The solution to all of these problems is to use a very fast public cryptographic hash function, which will
take a message of arbitrary length and produce a message digest of a specified size (160 bits if the DSS is
to be used). The message digest will then be signed. For the DSS, the use of a hash function h is depicted
diagramatically in Figure 7.1

When Bob wants to sign a message x, he first constructs the message digest z = h(x), and then computes
the signature y = sigK (z). He transmits the ordered pair (x, y) over the channel. Now the verification can

be performed (by anyone) by first reconstructing the message digest z = h(x) using the public hash
function h, and then checking that verK (z, y) = true.

Figure 7.1 Signing a message digest

7.2 Collision-free Hash Functions

We have to be careful that the use of a hash function h does not weaken the security of the signature
scheme, for it is the message digest that is signed, not the message. It will be necessary for h to satisfy
certain properties in order to prevent various forgeries.

The most obvious type of attack is for an opponent, Oscar, to start with a valid signed message (x, y),
where y = sigK (h(x)). (The pair (x, y) could be any message previously signed by Bob.) Then he computes

z = h(x) and attempts to find x′ ≠ x such that h(x′) = h(x). If Oscar can do this, (x′, y) would be a valid
signed message, i.e., a forgery. In order to prevent this type of attack, we require that h satisfy the
following collision-free property:

DEFINITION 7.1 Let x be a message. A hash function h is weakly collision-free for x if it is
computationally infeasible to find a message x′ ≠ x such that h(x′) = h(x).

Another possible attack is the following: Oscar first finds two messages x ≠ x′ such that h(x) = h(x′). Oscar
then gives x to Bob and persuades him to sign the message digest h(x), obtaining y. Then (x′, y) is a valid
forgery.

This motivates a different collision-free property:

DEFINITION 7.2 A hash function h is strongly collision-free if it is computationally infeasible to find
messages x and x′ such that x′ ≠ x and h(x′) = h(x).

Observe that a hash function h is strongly collision-free if and only if it in computationally infeasible to
find a message x such that h is not weakly collision-free for x.

Here is a third variety of attack. As we mentioned in Section 6.2, it is often possible with certain signature
schemes to forge signatures on random message digests z. Suppose Oscar computes a signature on such a
random z, and then he finds a message x such that z = h(x). If he can do this, then (x, y) is a valid forgery.
To prevent this attack, we desire that h satisfy the same one-way property that was mentioned previously
in the context of public-key cryptosystems and the Lamport Signature Scheme:

DEFINITION 7.3 A hash function h is one-way if, given a message digest z, it is computationally
infeasible to find a message x such that h(x) = z.

We are now going to prove that the strongly collision-free property implies the one-way property. This is
done by proving the contrapositive statement. More specifically, we will prove that an arbitrary inversion
algorithm for a hash function can be used as an oracle in a Las Vegas probabilistic algorithm that finds
collisions.

This reduction can be accomplished with a fairly weak assumption on the relative sizes of the domain and
range of the hash function. We will assume for the time being that the hash function h : X → Z, where X
and Z are finite sets and |X| ≥ 2|Z|. This is a reasonable assumption: If we think of an element of X as being
encoded as a bitstring of length log2 |X| and an element of Z as being encoded as a bitstring of length log2

|Z|, then the message digest z = h(x) is at least one bit shorter than the message x. (Eventually, we will be
interested in the situation where the message domain X is infinite, since we want to be able to deal with
messages of arbitrary length. Our argument also applies in this situation.)

We are assuming that we have an inversion algorithm for h. That is, we have an algorithm A which
accepts as input a message digest z ∈ Z, and finds an element A(z) ∈ X such that h(A(z)) = z.

We prove the following theorem.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

THEOREM 7.1

Suppose h : X → Z is a hash function where |X| and |Z| are finite and |X| ≥ 2|Z|. Suppose A is an inversion
algorithm for h. Then there exists a probabilistic Las Vegas algorithm which finds a collision for h with
probability at least 1/2.

PROOF Consider the algorithm B presented in Figure 7.2. Clearly B is a probabilistic algorithm of the Las
Vegas type, since it either finds a collision or returns no answer. Thus our main task is to compute the
probability of success. For any x ∈ X, define x ~ x1 if h(x) = h(x1). It is easy to see that ~ is an

equivalence relation. Define

Each equivalence class [x] consists of the inverse image of an element of Z, so the number of equivalence
classes is at most |Z|. Denote the set of equivalence classes by C.

Now, suppose x is the element of X chosen in step 1. For this x, there are |[x]| possible x1 ’s that could be

returned in step 3. |[x]| - 1 of these x1 ’s are different from x and thus lead to success in step 4. (Note that

the algorithm A does not know the representative of the equivalence class [x] that was chosen in step 1.)
So, given a particular choice x ∈ X, the probability of success is (|[x]| - 1)/|[x]|.

Figure 7.2 Using an inversion algorithm A to find collisions for a hash function h

The probability of success of the algorithm B is computed by averaging over all possible choices for x:

Hence we have constructed a Las Vegas algorithm with success probability at least 1/2.

Hence, it is sufficient that a hash function satisfy the strongly collision-free property, since it implies the
other two properties. So in the remainder of this chapter we restrict our attention to strongly collision-free
hash functions.

7.3 The Birthday Attack

In this section, we determine a necessary security condition for hash functions that depends only on the
cardinality of the set Z (equivalently, on the size of the message digest). This necessary condition results
from a simple method of finding collisions which is informally known as the birthday attack. This
terminology arises from the so-called birthday paradox, which says that in a group of 23 random people,
at least two will share a birthday with probability at least 1/2. (Of course this is not a paradox, but it is
probably counter-intuitive). The reason for the terminology "birthday attack" will become clear as we
progress.

As before, let us suppose that h : X → Z is a hash function, X and Z are finite, and |X| ≥ 2|Z|. Denote |X| =
m and |Z| = n. It is not hard to see that there are at least n collisions ‹ the question is how to find them. A
very naive approach is to choose k random distinct elements x1 ,...,xk< /I> ∈ X, compute zi = h(xi), 1 ≤ i

≤ k, and then determine if a collision has taken place (by sorting the zi ’s, for example).

This process is analogous to throwing k balls randomly into n bins and then checking to see if some bin
contains at least two balls. (The k balls correspond to the k random xi ’s, and the n bins correspond to the

n possible elements of Z.)

We will compute a lower bound on the probability of finding a collision by this method. This lower bound
will depend on k and n, but not on m. Since we are interested in a lower bound on the collision

probability, we will make the assumption that for all z ∈ Z. (This is a reasonable
assumption: if the inverse images are not approximately equal, then the probability of finding a collision
will increase.)

Since the inverse images are all (roughly) the same size and the xi ’s are chosen at random, the resulting

zi ’s can be thought of as random (not necessarily distinct) elements of Z. But it is a simple matter to

compute the probability that k random elements z1 ,...,zk< /I> ∈ Z are distinct. Consider the zi ’s in the

order z1 ,...,zk< /I>. The first choice z1 is arbitrary; the probability that z2 ≠ z1 is 1 - 1/n; the

probability that z3 is distinct from z1 and z2 is 1 - 2/n, etc.

Hence, we estimate the probability of no collisions to be

If x is a small real number, then . This estimate is derived by taking the first two terms of
the series expansion

Then our estimated probability of no collisions is

So we estimate the probability of at least one collision to be

If we denote this probability by ∈, then we can solve for k as a function of n and ∈.

If we ignore the term -k, then we estimate

If we take ∈ = .5, then our estimate is

So this says that hashing just over random elements of X yields a collision with a probability of 50%.

Note that a different choice of ∈ leads to a different constant factor, but k will still be proportional to

If X is the set of all human beings, Y is the set of 365 days in a non-leap year (i.e., excluding February 29),
and h(x) denotes the birthday of person x, then we are dealing with the birthday paradox. Taking n = 365
in our estimate, we get Hence, as mentioned earlier, there will be at least one duplicated
birthday among 23 random people with probability at least 1/2.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

This birthday attack imposes a lower bound on the sizes of message digests. A 40-bit message digest
would be very insecure, since a collision could be found with probability 1/2 with just over 220 (about a
million) random hashes. It is usually suggested that the minimum acceptable size of a message digest is
128 bits (the birthday attack will require over 264 hashes in this case). The choice of a 160-bit message
digest for use in the DSS was undoubtedly motivated by these considerations.

Figure 7.3 Chaum-van Heijst-Pfitzmann Hash Function

7.4 A Discrete Log Hash Function

In this section, we describe a hash function, due to Chaum, van Heijst, and Pfitzmann, that will be secure
provided a particular discrete logarithm cannot be computed. This hash function is not fast enough to be of
practical use, but it is conceptually simple and provides a nice example of a hash function that can be
proved secure under a reasonable computational assumption. The Chaum-van Heijst-Pfitzmann Hash
Function is presented in Figure 7.3. We now prove a theorem concerning the security of this hash
function.

THEOREM 7.2

Given one collision for the Chaum-van Heijst-Pfitzmann Hash Function h, the discrete logarithm logα

β can be computed efficiently.

PROOF Suppose we are given a collision

where (x1 , x2) ≠ (x3 , x4). So we have the following congruence:

or

Denote

Since p - 1 = 2q and q is prime, it must be the case that d ∈ {1,2,q,p - 1}. Hence, we have four possibilities
for d, which we will consider in turn.

First, suppose that d = 1. Then let

We have that

so we can compute the discrete logarithm logα β as follows:

Next, suppose that d = 2. Since p - 1 = 2q where q is odd, we must have gcd(x4 - x2 , q) = 1. Let

Now

for some integer k, so we have

since

So we have

It follows that

or

We can easily test which of these two possibilities is the correct one. Hence, as in the case d = 1, we have
calculated the discrete logarithm logα β.

The next possibility is that d = q. But

and

so

So it is impossible that gcd(x4 - x2 ,p - 1) = q; in other words, this case does not arise.

The final possibility is that d = p - 1. This happens only if x2 = x4 . But then we have

so

and x1 = x3 . Thus (x2 , x2) = (x3 , x4), a contradiction. So this case is not possible, either.

Since we have considered all possible values for d, we conclude that the hash function h is strongly

collision-free provided that it is infeasible to compute the discrete logarithm logα β in .

We illustrate the result of the above theorem with an example.

Example 7.1

Suppose p = 12347 (so q = 6173), α = 2 and β = 8461. Suppose we are given the collision

Thus x1 = 5692, x2 = 144, x3 = 212 and x4 = 4214. Now, gcd (x4 - x2 , p -1) = 2, so we begin by

computing

Next, we compute

Now it is the case that logα β ∈ {y′, y′ + q mod (p - 1)}. Since

we conclude that

As a check, we can verify that

Hence, we have determined logα β.

7.5 Extending Hash Functions

So far, we have considered hash functions with a finite domain. We now study how a strongly
collision-free hash function with a finite domain can be extended to a strongly collision-free hash function
with an infinite domain. This will enable us to sign messages of arbitrary length.

Suppose h : is a strongly collision-free hash function, where m ≥ t + 1. We will use h

to construct a strongly collision-free hash function h* : , where

We first consider the situation where m ≥ t + 2.

We will think of elements of X as bit-strings. |x| denotes the length of x (i.e., the number of bits in x), and x
|| y denotes the concatenation of the bit-strings x and y. Suppose |x| = n > m. We can express x as the
concatenation

where

and

where 0 ≤ d ≤ m - t - 2. Hence, we have that

We define h* (x) by the algorithm presented in Figure 7.4.

Figure 7.4 Extending a hash function h to h* (m ≥ t + 2)

Denote

Observe that yk is formed from xk by padding on the right with d zeroes, so that all the blocks yi (1 ≤ i ≤

k) are of length m - t - 1. Also, in step 3, yk+1 should be padded on the left with zeroes so that |yk+1 | = m -

t - 1.

In order to hash x, we first construct y(x), and then "process" the blocks y1 , y2 ,...,yk+1< /SUB> in a

particular fashion. It is important that y(x) ≠ y(x′) whenever x ≠ x′. In fact, yk+1 is defined in such a way

that the mapping will be an injection.

The following theorem proves that h* is secure provided that h is secure.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

THEOREM 7.3

Suppose h : is a strongly collision-free hash function, where m ≥ t + 2. Then the

function h* : , as constructed in Figure 7.4, is a strongly collision-free hash
function.

PROOF Suppose that we can find x ≠ x′ such that h*(x) = h*(x′). Given such a pair, we will show how we
can find a collision for h in polynomial time. Since h is assumed to be strongly collision-free, we will
obtain a contradiction, and thus h* will be proved to be strongly collision-free.

Denote

and

where x and x′ are padded with d and d′ 0’s, respectively, in step 2. Denote the values computed in steps 4

and 5 by g1 ,...,gk+1< /SUB> and , respectively.

We identify two cases, depending on whether or not |x| ≡ |x′| (mod m-t-1).

case 1: (mod m - t - 1).

Here d ≠ d′ and . We have

which is a collision for h since .

case 2: |x| ≡ |x′| (mod m - t - 1).

It is convenient to split this into two subcases:

case 2a: |x| = |x′|.

Here we have and . We begin as in case 1:

If , then we find a collision for h, so assume . Then we have

Either we find a collision for h, or and . Assuming we do not find a collision, we continue working
backwards, until finally we obtain

If , then we find a collision for h, so we assume . But then for 1 ≤ i ≤ k + 1, so y(x) = y(x′). But

this implies x = x′ since the mapping is an injection. Since we assumed x ≠ x′, we have a contradiction.

Figure 7.5 Extending a hash function h to h* (m = t + 1)

case 2b: |x| ≠ |x′|.

Without loss of generality, assume |x′| > |x|, so . This case proceeds in a similar fashion as case 2a. Assuming we find no
collisions for h, we eventually reach the situation where

But the (t + 1)st bit of 0t+1 || y1 is a 0 and the (t + 1)st bit of is a 1. So we find a collision for h.

Since we have considered all possible cases, we have the desired conclusion.

The construction of Figure 7.4 can be used only when m ≥ t + 2. Let’s now look at the situation where m = t + 1. We need to use a different
construction for h*. As before, suppose |x| = n > m. We first encode x in a special way. This will be done using the function f defined as
follows:

The algorithm to construct h* (x) is presented in Figure 7.5.

The encoding , defined in step 1, satisfies two important properties:

1. If x ≠ x′, then y(x) ≠ y(x′) (i.e., is an injection).
2. There do not exist two strings x ≠ x′ and a string z such that y(x) = z || y(x′). (In other words, no encoding is a postfix of another
encoding. This is easily seen because each string y(x) begins with 11, and there do not exist two consecutive 1’s in the remainder of
the string.)

THEOREM 7.4

Suppose h : is a strongly collision-free hash function. Then the function h* :

 , as constructed in Figure 7.5, is a strongly collision-free hash function.

PROOF Suppose that we can find x ≠ x′ such that h* (x) = h* (x′). Denote

and

We consider two cases.

case 1: .

As in Theorem 7.3, either we find a collision for h, or we obtain y = y′. But this implies x = x′, a contradiction.

case 2: .

Without loss of generality, assume . This case proceeds in a similar fashion. Assuming we find no collisions for h, we
have the following sequence of equalities:

But this contradicts the "postfix-free" property stated above.

We conclude that h* is collision-free.

We summarize the two constructions of in this section, and the number of applications of h needed to compute h*, in the following theorem.

THEOREM 7.5

Suppose h : is a strongly collision-free hash function, where m ≥ t + 1. Then there exists a strongly
collision-free hash function

The number of times h is computed in the evaluation of h* is at most

where |x| = n.

7.6 Hash Functions from Cryptosystems
So far, the methods we have described lead to hash functions that are probably too slow to be useful in practice. Another approach is to use

an existing private-key cryptosystem to construct a hash function. Let us suppose that is a computationally secure

cryptosystem. For convenience, let us assume also that . Here we should have n ≥ 128, say, in order to
prevent birthday attacks. This precludes using DES (as does the fact that the key length of DES is different from the plaintext length).

Suppose we are given a bitstring

where . (If the number of bits in x is not a multiple of n, then it will be necessary to pad x in some
way, such as was done in Section 7.5. For simplicity, we will ignore this now.)

The basic idea is to begin with a fixed "initial value" g0 = IV, and then construct g1,...,gk< /I> in order by a rule of the form

where f is a function that incorporates the encryption function of our cryptosystem. Finally, define the message digest h(x) = gk.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Several hash functions of this type have been proposed, and many of them have been shown to be insecure
(independent of whether or not the underlying cryptosystem is secure). However, four variations of this
theme that appear to be secure are as follows:

Figure 7.6 Constructing M in MD4

7.7 The MD4 Hash Function

The MD4 Hash Function was proposed in 1990 by Rivest, and a strengthened version, called MD5, was
presented in 1991. The Secure Hash Standard (or SHS) is more complicated, but it is based on the same
underlying methods. It was published in the Federal Register on January 31, 1992, and adopted as a
standard on May 11, 1993. (A proposed revision was put forward on July 11, 1994, to correct a "technical
flaw" in the SHS.) All of the above hash functions are very fast, so they are practical for signing very long
messages.

In this section, we will describe MD4 in detail, and discuss some of the modifications that are employed in
MD5 and the SHS.

Given a bitstring x, we will first produce an array

where each M[i] is a bitstring of length 32 and N ≡ 0 mod 16. We will call each M[i] a word. M is
constructed from x using the algorithm presented in Figure 7.6.

In the construction of M, we append a single 1 to x, then we concatenate enough 0’s so that the length
becomes congruent to 448 modulo 512, and finally we concatenate 64 bits that contain the binary
representation of the (original) length of x (reduced modulo 264, if necessary). The resulting string M has
length divisible by 512. So when we break M up into 32-bit words, the resulting number of words, denoted
by N, will be divisible by 16.

Now we proceed to construct a 128-bit message digest. A high-level description of the algorithm is
presented in Figure 7.7. The message digest is constructed as the concatenation of the four words A, B, C
and D, which we refer to as registers. The four registers are initialized in step 1. Now we process the array
M 16 words at a time. In each iteration of the loop in step 2, we first take the "next" 16 words of M and
store them in an array X (step 3). The values of the four registers are then stored (step 4). Then we perform
three "rounds" of hashing. Each round consists of one operation on each of the 16 words in X (we will
describe these operations in more detail shortly). The operations done in the three rounds produce new
values in the four registers. Finally, the four registers are updated in step 8 by adding back the values that
were stored in step 4. This addition is defined to be addition of positive integers, reduced modulo 232.

Figure 7.7 The MD4 hash function

The three rounds in MD4 are different (unlike DES, say, where the 16 rounds are identical). We first
describe several different operations that are employed in these three rounds. In the following description,
X and Y denote input words, and each operation produces a word as output. Here are the operations
employed:

Note that all of these operations are very fast, and the only arithmetic operation that is used is addition
modulo 232. If MD4 is actually implemented, it will be necessary to take into account the underlying
architecture of the computer it is run on in order to perform addition correctly. Suppose a1a2< I>a3a4

are the four bytes in a word. We think of each a i as being an integer in the range 0,...,255, represented in

binary. In a big-endian architecture (such as a Sun SPARCstation), this word represents the integer

In a little-endian architecture (such as the Intel 80xxx line), this word represents the integer

MD4 assumes a little-endian architecture. It is important that the message digest is independent of the
underlying architecture. So if we wish to run MD4 on a big-endian computer, it will be necessary to
perform the addition operation X + Y as follows:

1. Interchange x1 and x4 ; x2 and x3 ; y1 and y4 ; and y2 and y3 .

2. Compute Z = X + Y mod 232
3. Interchange z1 and z4 ; and z2 and z3 .

Rounds 1, 2, and 3 of MD4 respectively use three functions f, g and h. Each of f, g and h is a bitwise
boolean function that takes three words as input and produces a word as output. They are defined as
follows:

The complete description of Rounds 1, 2 and 3 of MD4 are presented in Figures 7.8-7.10.

MD4 was designed to be very fast, and indeed, software implementations on Sun SPARCstations attain
speeds of 1.4 Mbytes/sec. On the other hand, it is difficult to say something concrete about the security of
a hash function such as MD4 since it is not "based" on a well-studied problem such as factoring or the
Discrete Log problem. So, as is the case with DES, confidence in the security of the system can only be
attained over time, as the system is studied and (one hopes) not found to be insecure.

Figure 7.8 Round 1 of MD4

Although MD4 has not been broken, weakened versions that omit either the first or the third round can be
broken without much difficulty. That is, it is easy to find collisions for these two-round versions of MD4.
A strengthened version of MD4, called MD5, was proposed in 1991. MD5 uses four rounds instead of
three, and runs about 30% slower than MD4 (about .9 Mbytes/sec on a SPARCstation).

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

The Secure Hash Standard is yet more complicated, and slower (about .2 Mbytes/sec on a
SPARCstation). We will not give a complete description, but we will indicate a few of the modifications
employed in the SHS.

1. SHS is designed to run on a big-endian architecture, rather than a little-endian architecture.
2. SHS produces a 5-register (160-bit) message digest.

Figure 7.9 Round 2 of MD4

3. SHS processes the message 16 words at a time, as does MD4. However, the 16 words are first
"expanded" into 80 words. Then a sequence of 80 operations is performed, one on each word.

The following "expansion function" is used. Given the 16 words X[0],..., X[15], we compute 64 more
words by the recurrence relation

The result of Equation 7.1 is that each of the words X[16],..., X[79] is formed as the exclusive-or of a
predetermined subset of the words X[0],...,X[15].

For example, we have

Figure 7.10 Round 3 of MD4

The proposed revision of the SHS concerns the expansion function. It is proposed that Equation 7.1 be
replaced by the following:

As before, the operation " " means a circular left shift of one position.

7.8 Timestamping

One difficulty with signature schemes is that a signing algorithm may be compromised. For example,
suppose that Oscar is able to determine Bob’s secret exponent a in the DSS. Then, of course, Oscar can
forge Bob’s signature on any message he likes. But another (perhaps even more serious) problem is that
the compromise of a signing algorithm calls in to question the authenticity of all messages signed by Bob,
including those he signed before Oscar stole the signing algorithm.

Figure 7.11 Timestamping a signature on a message x

Here is yet another undesirable situation that could arise: Suppose Bob signs a message and later wishes to
disavow it. Bob might publish his signing algorithm and then claim that his signature on the message in
question is a forgery.

The reason these types of events can occur is that there is no way to determine when a message was
signed. This suggests that we consider ways of timestamping a (signed) message. A timestamp should
provide proof that a message was signed at a particular time. Then, if Bob’s signing algorithm is
compromised, it would not invalidate any signatures he made previously. This is similar conceptually to
the way credit cards work: if someone loses a credit card and notifies the bank that isssued it, it becomes
invalid. But purchases made prior to the loss of the card are not affected.

In this section, we will describe a few methods of timestamping. First, we observe that Bob can produce a
convincing timestamp on his own. First, Bob obtains some "current" publicly available information which
could not have been predicted before it happened. For example, such information might consist of all the
major league baseball scores from the previous day, or the values of all the stocks listed on the New York
Stock Exchange. Denote this information by pub.

Now, suppose Bob wants to timestamp his signature on a message x. We assume that h is a publicly
known hash function. Bob will proceed according to the algorithm presented in Figure 7.11. Here is how
the scheme works: The presence of the information pub means that Bob could not have produced y before
the date in question. And the fact that y is published in the next day’s newspaper proves that Bob did not
compute y after the date in question. So Bob’s signature y is bounded within a period of one day. Also
observe that Bob does not reveal the message x in this scheme since only z is published. If necessary, Bob
can prove that x was the message he signed and timestamped simply by revealing it.

Figure 7.12 Timestamping (zn , yn , IDn)

It is also straightforward to produce timestamps if there is a trusted timestamping service available (i.e., an
electronic notary public). Bob can compute z = h(x) and y = sigK (z) and then send (z, y) to the

timestamping service, or TSS. The TSS will then append the date D and sign the triple (z, y, D). This
works perfectly well provided that the signing algorithm of the TSS remains secure and provided that the
TSS cannot be bribed to backdate timestamps. (Note also that this method establishes only that Bob signed
a message before a certain time. If Bob also wanted to establish that he signed it after a certain date, he
could incorporate some public information pub as in the previous method.)

If it is undesirable to trust the TSS unconditionally, the security can be increased by sequentially linking
the messages that are timestamped. In such a scheme, Bob would send an ordered triple (z, y, ID(Bob)) to
the TSS. Here z is the message digest of the message x; y is Bob’s signature on z; and ID(Bob) is Bob’s
identifying information. The TSS will be timestamping a sequence of triples of this form. Denote by (zn ,

yn , IDn) the nth triple to be timestamped by the TSS, and let tn denote the time at which the nth request is

made.

The TSS will timestamp the nth triple using the algorithm in Figure 7.12. The quantity Ln is "linking

information" that ties the nth request to the previous one. (L0 will be taken to be some predetermined

dummy information to get the process started.)

Now, if challenged, Bob can reveal his message xn , and then yn can be verified. Next, the signature sn of

the TSS can be verified. If desired, then IDn-1 or IDn+1 can be requested to produce their timestamps,

(Cn-1 , sn-1 , IDn) and (Cn+1 , sn+1 , IDn+2), respectively. The signatures of the TSS can be checked in

these timestamps. Of course, this process can be continued as far as desired, backwards and/or forwards.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

7.9 Notes and References

The discrete log hash function described in Section 7.4 is due to Chaum, van Heijst, and Pfitzmann
[CvHP92]. A hash function that can be proved secure provided that a composite integer n cannot be
factored is given by Gibson [GIB91] (see Exercise 7.4 for a description of this scheme).

The material on extending hash functions in Section 7.5 is based on Damgård [DA90]. Similar methods
were discovered by Merkle [ME90].

For infomation concerning the construction of hash functions from private-key cryptosystems, see Preneel,
Govaerts, and Vandewalle [PGV94].

The MD4 hashing algorithm was presented in Rivest [RI91], and the Secure Hash Standard is described
in [NBS93]. An attack against two of the three rounds of MD4 is given by den Boer and Bossalaers
[DBB92]. Other recently proposed hash functions include N-hash [MOI90] and Snefru [ME90A].

Timestamping is discussed in Haber and Stornetta [HS91] and Bayer, Haber, and Stornetta [BHS93].

A thorough survey of hashing techniques can be found in Preneel, Govaerts, and Vandewalle [PGV93].

Exercises

7.1 Suppose h : X → Y is a hash function. For any y ∈ Y, let

and denote sy = |h -1(y)|. Define

Note that N counts the number of unordered pairs in X that collide under h. Answer the following:
(a) Prove that

so the mean of the sy ’s is

(b) Prove that

(c) Prove that

Figure 7.13 Hashing 4m bits to m bits

(d) Using the result proved in part (c), prove that

Further, show that equality is attained if and only if

for every y ∈ Y.
7.2 As in Exercise 7.1, suppose h : X → Y is a hash function, and let

for any y ∈ Y. Let ∈ denote the probability that h(x1) = h(x2), where x1 and x2 are random (not

necessarily distinct) elements of X. Prove that

with equality if and only if

for every y ∈ Y.

7.3 Suppose p = 15083, α = 154 and β = 2307 in the Chaum-van Heijst-Pfitzmann Hash
Function. Given the collision

compute logα β.

7.4 Suppose n = pq, where p and q are two (secret) distinct large primes such that p = 2p1 + 1 and q

= 2q1 + 1, where p1 and q1 are prime. Suppose that α is an element of order 2p1q1 in (this is

the largest order of any element in). Define a hash function h : {1,...,n2} → by the rule
h(x) = αx mod n.

Now, suppose that n = 603241 and α = 11 are used to define a hash function h of this type. Suppose
that we are given three collisions for h: h(1294755) = h(80115359) = h(52738737). Use this
information to factor n.

7.5 Suppose h1 : is a strongly collision-free hash function.

(a) Define h2 : as in Figure 7.13. Prove that h2 is strongly collision-free.

(b) For an integer i ≥ 2, define a hash function h i : recursively from h i -1, as

indicated in Figure 7.14. Prove that h i is strongly collision-free.

7.6 Using the (original) expansion function of the SHS, Equation 7.1, express each of X[16],..., X[79]
in terms of X[0],..., X[15]. Now, for each pair X[i], X[j],

Figure 7.14 Hashing 2i m bits to m bits

where 1 ≤ i < j ≤ 15, use a computer program to determine λ ij , which denotes the number of X[k]’s

(16 ≤ k ≤ 79) such that X[i] and X[j] both occur in the expression for X[k]. What is the range of values
λ ij ?

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Chapter 8
Key Distribution and Key Agreement

8.1 Introduction

We have observed that public-key systems have the advantage over private-key systems that a secure
channel is not needed to exchange a secret key. But, unfortunately, most public-key systems are much
slower than private-key systems such as DES, for example. So, in practice, private-key systems are
usually used to encrypt "long" messages. But then we come back to the problem of exchanging secret
keys.

In this chapter, we discuss several approaches to the problem of establishing secret keys. We will
distinguish between key distribution and key agreement. Key distribution is defined to be a mechanism
whereby one party chooses a secret key and then transmits it to another party or parties. Key agreement
denotes a protocol whereby two (or more) parties jointly establish a secret key by communicating over a
public channel. In a key agreement scheme, the value of the key is determined as a function of inputs
provided by both parties.

As our setting, we have an insecure network of n users. In some of our schemes, we will have a trusted
authority (denoted by TA) that is reponsible for such things as verifying the identities of users, choosing
and transmitting keys to users, etc.

Since the network is insecure, we need to protect against potential opponents. Our opponent, Oscar, might
be a passive adversary, which means that his actions are restricted to eavesdropping on messages that are
transmitted over the channel. On the other hand, we might want to guard against the possibility that Oscar
is an active adversary. An active adversary can do various types of nasty things such as the following:

1. alter messages that he observes being transmitted over the network
2. save messages for reuse at a later time
3. attempt to masquerade as various users in the network.

The objective of an active adversary might be one of the following:

1. to fool U and V into accepting an "invalid" key as valid (an invalid key could be an old key that
has expired, or a key chosen by the adversary, to mention two possibilities)
2. to make U or V believe that they have exchanged a key with other when they have not.

The objective of a key distribution or key agreement protocol is that, at the end of the protocol, the two
parties involved both have possession of the same key K, and the value of K is not known to any other
party (except possibly the TA). Certainly it is much more difficult to design a protocol providing this type
of security in the presence of an active adversary as opposed to a passive one.

We first consider the idea of key predistribution in Section 8.2. For every pair of users {U, V}, the TA
chooses a random key KU,V = KV,U and transmits it "off-band" to U and V over a secure channel. (That

is, the transmission of keys does not take place over the network, since the network is not secure.) This
approach is unconditionally secure, but it requires a secure channel between the TA and every user in the
network. But, of possibly even more significance is the fact that each user must store n - 1 keys, and the

TA needs to transmit a total of keys securely (this is sometimes called the "n2 problem"). Even for
relatively small networks, this can become prohibitively expensive, and thus it is not really a practical
solution.

In Section 8.2.1, we discuss an interesting unconditionally secure key predistribution scheme, due to
Blom, that allows a reduction in the amount of secret information to be stored by the users in the network.
We also present in Section 8.2.2 a computationally secure key predistribution scheme based on the
discrete logarithm problem.

A more practical approach can be described as on-line key distribution by TA. In such a scheme, the TA
acts as a key server. The TA shares a secret key KU with every user U in the network. When U wishes to

communicate with V, she requests a session key from the TA. The TA generates a session key K and sends
it in encrypted form for U and V to decrypt. The well-known Kerberos system, which we describe in
Section 8.3, is based on this approach.

If it is impractical or undesirable to have an on-line TA, then a common approach is to use a key
agreement protocol. In a key agreement protocol, U and V jointly choose a key by communicating over a
public channel. This remarkable idea is due to Diffie and Hellman, and (independently) to Merkle. We
describe a few of the more popular key agreement protocols. A variation of the original protocol of Diffie
and Hellman, modified to protect against an active adversary, is presented in Section 8.4.1. Two other
interesting protocols are also discussed: the MTI scheme is presented in Section 8.4.2 and the Girault
scheme is covered in Section 8.4.3.

8.2 Key Predistribution

In the basic method, the TA generates keys, and gives each key to a unique pair of users in a network
of n users. As mentioned above, we require a secure channel between the TA and each user to transmit
these keys. This is a significant improvement over each pair of users independently exchanging keys over

a secure channel, since the number of secure channels required has been reduced from to n. But if n is
large, this solution is not very practical, both in terms of the amount of information to be transmitted
securely, and in the amount of information that each user must store securely (namely, the secret keys of
the other other n - 1 users).

Thus, it is of interest to try to reduce the amount of information that needs to be transmitted and stored,
while still allowing each pair of users U and V to be able to (independently) compute a secret key KU,V .

An elegant scheme to accomplish this, called the Blom Key Predistribution Scheme, is discussed in the
next subsection.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

8.2.1 Blom’s Scheme

As above, we suppose that we have a network of n users. For convenience, we suppose that keys are

chosen from a finite field , where p ≥ n is prime. Let k be an integer, 1 ≥ k ≥ n - 2. The value k is the
largest size coalition against which the scheme will remain secure. In the Blom Scheme, the TA will

transmit k + 1 elements of to each user over a secure channel (as opposed to n - 1 in the basic key
predistribution scheme). Each pair of users, U and V, will be able to compute a key KU,V = KV,U , as

before. The security condition is as follows: any set of at most k users disjoint from {U, V} must be unable
to determine any information about KU,V (note that we are speaking here about unconditional security).

We first present the special case of Blom’s scheme where k = 1. Here, the TA will transmit two elements

of to each user over a secure channel, and any individual user W will be unable to determine any
information about KU,V if W ≠ U, V. Blom’s scheme is presented in Figure 8.1. We illustrate the Blom
Scheme with k = 1 in the following example.

Example 8.1

Suppose the three users are U, V and W, p = 17, and their public elements are rU = 12, rV = 7 and rW =

1. Suppose that the TA chooses a = 8, b = 7 and c = 2, so the polynomial f is

The g polynomials are as follows:

Figure 8.1 Blom Key Distribution Scheme (k = 1)

The three keys are thus

U would compute KU,V as

V would compute KU,V as

We leave the computation of the other keys as an exercise for the reader.

We now prove that no one user can determine any information about the key of two other users.

THEOREM 8.1

The Blom Scheme with k = 1 is unconditionally secure against any individual user.

PROOF Let’s suppose that user W wants to try to compute the key

The values rU and rV are public, but a, b and c are unknown. W does know the values

and

since these are the coefficients of the polynomial gW (x) that was sent to W by the TA.

What we will do is show that the information known by W is consistent with any possible value
of the key KU,V . Hence, W cannot rule out any values for KU,V . Consider the following matrix equation

(in):

The first equation represents the hypothesis that ; the second and third equations contain the
information that W knows about a, b and c from gW (x).

The determinant of the coefficient matrix is

where all arithmetic is done in . Since rW ≠ rU and rW ≠ rV , it follows that the coefficient matrix

has non-zero determinant, and hence the matrix equation has a unique solution for a, b, c. In other words,

any possible value of KU,V is consistent with the information known to W.

On the other hand, a coalition of two users, say {W, X}, will be able to determine any key KU,V where

 W and X together know that

Thus they have four equations in three unknowns, and they can easily compute a unique solution for a, b
and c. Once they know a, b and c, they can form the polynomial f(x, y) and compute any key they wish.

It is straightforward to generalize the scheme to remain secure against coalitions of size k. The only thing
that changes is step 2. The TA will use a polynomial f(x, y) having the form

where , and a i.j = a j,i for all i, j. The remainder of the

protocol is unchanged.

8.2.2 Diffie-Hellman Key Predistribution

In this section, we describe a key predistribution scheme that is a modification of the well-known
Diffie-Hellman key exchange protocol that we will discuss a bit later, in Section 8.4. We call this the
Diffie-Hellman Key Predistribution Scheme. The scheme is computationally secure provided a problem
related to the Discrete Logarithm problem is intractible.

We will describe the scheme over , where p is prime, though it can be implemented in any finite group
in which the Discrete Logarithm problem is intractible. We will assume that a is a primitive element of

 , and that the values p and α are publicly known to everyone in the network.

In this scheme, ID(U) will denote certain identification information for each user U in the network, e.g.,
his or her name, e-mail address, telephone number, or other relevant information. Also, each user U has a
secret exponent aU (where 0 ≤ aU ≤ p - 2), and a corresponding public value

The TA will have a signature scheme with a (public) verification algorithm verTA and a secret signing

algorithm sigTA . Finally, we will implicitly assume that all information is hashed, using a public hash

function, before it is signed. To make the procedures easier to read, we will not include the necessary
hashing in the description of the protocols.

Certain information pertaining to a user U will be authenticated by means of a certificate which is issued
and signed by the TA. Each user U will have a certificate

where bU is formed as described above (note that the TA does not need to know the value of aU). A

certificate for a user U will be issued when U joins the network. Certificates can be stored in a public
database, or each user can store his or her own certificate. The signature of the TA on a certificate allows
anyone in the network to verify the information it contains.

It is very easy for U and V to compute the common key

as shown in Figure 8.2.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

We illustrate the algorithm with a small example.

Example 8.2

Suppose p = 25307 and α = 2 are publicly known (p is prime and α is a primitive root modulo p). Suppose
U chooses aU = 3578. Then she computes

which is placed on her certificate. Suppose V chooses aV = 19956. Then he computes

Figure 8.2 Diffie-Hellman Key Predistribution

which is placed on his certificate.

Now U can compute the key

and V can compute the same key

Let us think about the security of this scheme in the presence of a passive or active adversary. The
signature of the TA on users’ certificates effectively prevents W from altering any information on
someone else’s certificate. Hence we need only worry about passive attacks. So the pertinent question is:
Can a user W compute KU,V if W ≠ U, V? In other words, given αau mod p and αav mod p (but not aU

nor aV), is it feasible to compute αaUaV mod p? This problem is called the Diffie-Hellman problem, and

it is formally defined (using an equivalent but slightly different presentation) in Figure 8.3. It is clear that
Diffie-Hellman Key Predistribution is secure against a passive adversary if and only if the
Diffle-Hellman problem is intractible.

Figure 8.3 The Diffie-Hellman problem

If W could determine aU from bU , or if he could determine aV from bV , then he could compute KU,V

exactly as U (or V) does. But both these computations are instances of the Discrete Log problem. So,

provided that the Discrete Log problem in is intractible, Diffie-Hellman Key Predistribution is
secure against this particular type of attack. However, it is an unproven conjecture that any algorithm that
solves the Diffie-Hellman problem could also be used to solve the Discrete Log problem. (This is very
similar to the situation with RSA, where it is conjectured, but not proved, that breaking RSA is
polynomially equivalent to factoring.)

By the remarks made above, the Diffie-Hellman problem is no more difficult than the Discrete Log
problem. Although we cannot say precisely how difficult this problem is, we can relate its security to that
of another cryptosystem we have already studied, namely the ElGamal Cryptosystem.

THEOREM 8.2

Breaking the ElGamal Cryptosystem is equivalent to solving the Diffie-Hellman problem.

PROOF First we recall how ElGamal encryption and decryption work. The key is K = (p, α, a, β), where

β = αa mod p (a is secret and p, α, and β are public). For a (secret) random number ,

where

and

For ,

Suppose we have an algorithm A to solve the Diffie-Hellman problem, and we are given an ElGamal
encryption (y1 , y2). We will apply the algorithm A with inputs p, α, y1 , and β. Then, we obtain the value

Then, the decryption of (y1 , y2) can easily be computed as

Conversely, suppose we have an algorithm B that performs ElGamal decryption. That is, B takes as inputs
p, α, β, y1 , and y2 , and computes the quantity

Now, given inputs p, α, β, and γ for the Diffie-Hellman problem, it is easy to see that

as desired.

8.3 Kerberos

In the key predistribution methods we discussed in the previous section, each pair of users can compute
one fixed key. If the same key is used for a long period of time, there is a danger that it might be
compromised. Thus it is often preferable to use an on-line method in which a new session key is produced
every time a pair of users want to communicate (this property is called key freshness).

If on-line key distribution is used, there is no need for any network user to store keys to communicate with
other users (each user will share a key with the TA, however). Session keys will be transmitted on request
by the TA. It is the responsibility of the TA to ensure key freshness.

Kerberos is a popular key serving system based on private-key cryptography. In this section, we give an
overview of the protocol for issuing session keys in Kerberos. Each user U shares a secret DES key KU

with the TA. In the most recent version of Kerberos (version V), all messages to be transmitted are
encrypted using cipher block chaining (CBC) mode, as described in Section 3.4.1.

Figure 8.4 Transmission of a session key using Kerberos

As in Section 8.2.2, ID(U) will denote public identification information for user U. When a request for a
session key is sent to the TA, the TA will generate a new random session key K. Also, the TA will record
the time at which the request is made as a timestamp, T, and specify the lifetime, L, during which K will be
valid. That is, the session key K is to be regarded as a valid key from time T to time T + L. All this
information is encrypted and transmitted to U and (eventually) to V. Before going into more details, we
will present the protocol in Figure 8.4.

The information transmitted in the protocol is illustrated in the following diagram:

We will now explain what is going on in the various steps of the protocol. Although we have no formal
proof that Kerberos is "secure" against an active adversary, we can at least give some informal motivation
of the features of the protocol.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

As mentioned above, the TA generates K, T, and L in step 2. In step 3, this information, along with ID(V),
is encrypted using the key KU shared by U and the TA to form m1 . Also, K, T, L, and ID(U) are

encrypted using the key Kv shared by V and the TA to form m2 . Both these encrypted messages are sent

to U.

U can use her key to decrypt m1 , and thus obtain K, T, and L. She will verify that the current time is in the

interval from T to T + L. She can also check that the session key K has been issued for her desired
communicant V by verifying the information ID(V) decrypted from m1 .

Next, U will relay m2 to V. As well, U will use the new session key K to encrypt T and ID (U) and send

the resulting message m3 to V.

When V receives m2 and m3 from U, he decrypts m2 to obtain T, K, L and ID(U). Then he uses the new

session key K to decrypt m3 and he verifies that T and ID(U), as decrypted from m2 and m3 , are the

same. This ensures V that the session key encrypted within m2 is the same key that was used to encrypt

m3 . Then V uses K to encrypt T + 1, and sends the result back to U as message m4 .

When U receives m4 , she decrypts it using K and verifies that the result is T + 1. This ensures U that the

session key K has been successfully transmitted to V, since K was needed in order to produce the message
m4 .

It is important to note the different functions of the messages transmitted in this protocol. The messages
m1 and m2 are used to provide secrecy in the transmission of the session key K. On the other hand, m3

and m4 are used to provide key confirmation, that is, to enable U and V to convince each other that they

possess the same session key K. In most key distribution schemes, (session) key confirmation can be
included as a feature if it is not already present. Usually this is done in a similar fashion as it is done in
Kerberos, namely by using the new session key K to encrypt known quantities. In Kerberos, U uses K to
encrypt ID (U) and T, which are already encrypted in m2 . Similarly, V uses K to encrypt T + 1.

The purpose of the timestamp T and lifetime L is to prevent an active adversary from storing "old"
messages for retransmission at a later time (this is called a replay attack). This method works because
keys are not accepted as valid once they have expired.

Figure 8.5 Diffie-Hellman Key Exchange

One of the drawbacks of Kerberos is that all the users in the network should have synchronized clocks,
since the current time is used to determine if a given session key K is valid. In practice, it is very difficult
to provide perfect synchronization, so some amount of variation in times must be allowed.

8.4 Diffie-Hellman Key Exchange

If we do not want to use an on-line key server, then we are forced to use a key agreement protocol to
exchange secret keys. The first and best known key agreement protocol is Diffie-Hellman Key Exchange.

We will assume that p is prime, α is a primitive element of , and that the values p and α are publicly
known. (Alternatively, they could be chosen by U and communicated to V in the first step of the protocol.)
Diffie-Hellman Key Exchange is presented in Figure 8.5.

At the end of the protocol, U and V have computed the same key

This protocol is very similar to Diffie-Hellman Key Predistribution described earlier. The difference is
that the exponents aU and aV of users U and V (respectively) are chosen anew each time the protocol is

run, instead of being fixed. Also, in this protocol, both U and V are assured of key freshness, since the
session key depends on both random exponents aU and aV .

8.4.1 The Station-to-station Protocol

Diffie-Hellman Key Exchange is supposed to look like this:

Unfortunately, the protocol is vulnerable to an active adversary who uses an intruder-in-the-middle attack.
There is an episode of The Lucy Show in which Vivian Vance is having dinner in a restaurant with a date,
and Lucille Ball is hiding under the table. Vivian and her date decide to hold hands under the table. Lucy,
trying to avoid detection, holds hands with each of them and they think they are holding hands with each
other.

An intruder-in-the-middle attack on the Diffie-Hellman Key Exchange protocol works in the same way.
W will intercept messages between U and V and substitute his own messages, as indicated in the
following diagram:

At the end of the protocol, U has actually established the secret key with W, and V has

established a secret key with W. When U tries to encrypt a message to send to V, W will be able
to decrypt it but V will not. (A similar situation holds if V sends a message to U.)

Clearly, it is essential for U and V to make sure that they are exchanging messages with each other and not
with W. Before exchanging keys, U and V might carry out a separate protocol to establish each other’s
identity, for example by using one of the identification schemes that we will describe in Chapter 9. But
this offers no protection against an intruder-in-the-middle attack if W simply remains inactive until after U
and V have proved their identities to each other. Hence, the key agreement protocol should itself
authenticate the participants’ identities at the same time as the key is being established. Such a protocol
will be called authenticated key agreement.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

We will describe an authenticated key agreement protocol which is a modification of Diffie-Hellman Key
Exchange. The protocol assumes a publicly known prime p and a primitive element α, and it makes use of
certificates. Each user U will have a signature scheme with verification algorithm verU and signing

algorithm sigU . The TA also has a signature scheme with public verification algorithm verTA . Each user

U has a certificate

where ID(U) is identification information for U.

Figure 8.6 Simplified Station-to-station Protocol

The authenticated key agreement known as the Station-to-station Protocol (or STS for short) is due to
Diffie, Van Oorschot, and Wiener. The protocol we present in Figure 8.6 is a slight simplification; it can
be used in such a way that it is conformant with the ISO 9798-3 protocols.

The information exchanged in the simplified STS protocol (excluding certificates) is illustrated as
follows:

Let’s see how this protects against an intruder-in -the-middle attack. As before, W will intercept

and replace it with . W then receives from V. He would like to replace

 with as before. However, this means that he must also replace by

 . Unfortunately for W, he cannot compute V’s signature on since he

doesn’t know V’s signing algorithm sigV . Similarly, W is unable to replace by

 because he does not know U’s signing algorithm.

This is illustrated in the following diagram:

It is the use of signatures that thwarts the intruder-in-the-middle attack.

The protocol, as described in Figure 8.6, does not provide key confirmation. However, it is easy to modify
so that it does, by defining

in step 4 and defining

in step 6. (As in Kerberos, we obtain key confirmation by encrypting a known quantity using the new
session key.) The resulting protocol is known as the Station-to-station Protocol. We leave the remaining
details for the interested reader to fill in.

8.4.2 MTI Key Agreement Protocols

Matsumoto, Takashima, and Imai have constructed several interesting key agreement protocols by
modifying Diffie-Hellman Key Exchange. These protocols, which we call MTI protocols, do not require
that U and V compute any signatures. They are two-pass protocols since there are only two separate
transmissions of information performed (one from U to V and one from V to U). In contrast, the STS
protocol is a three-pass protocol.

We present one of the MTI protocols. The setting for this protocol is the same as for Diffie-Hellman Key
Predistribution . We assume a publicly known prime p and a primitive element α. Each user U has an ID
string, ID(U), a secret exponent aU (0 ≤ aU ≤ p - 2), and a corresponding public value

The TA has a signature scheme with a (public) verification algorithm verTA and a secret signing

algorithm sigTA .

Figure 8.7 Matsumoto-Takashima-Imai Key Agreement Protocol

Each user U will have a certificate

where bU is formed as described above.

We present the MTI key agreement protocol in Figure 8.7. At the end of the protocol, U and V have both
computed the same key

We give an example to illustrate this protocol.

Example 8.3

Suppose p = 27803 and α = 5 are publicly known. Assume U chooses aU = 21131; then she will compute

which is placed on her certificate. As well, assume V chooses aV = 17555. Then he will compute

which is placed on his certificate.

Now suppose that U chooses rU = 169; then she will send the value

to V. Suppose that V chooses rV = 23456; then he will send the value

to U.

Now U can compute the key

and V can compute the key

Thus U and V have computed the same key.

The information transmitted during the protocol is depicted as follows:

Let’s look at the security of the scheme. It is not too difficult to show that the security of the MTI protocol
against a passive adversary is exactly the same as the Diffie-Hellman problem ‹ see the exercises. As with
many protocols, proving security in the presence of an active adversary is problematic. We will not
attempt to prove anything in this regard, and we limit ourselves to some informal arguments.

Here is one threat we might consider: Without the use of signatures during the protocol, it might appear
that there is no protection against an intruder-in-the-middle attack. Indeed, it is possible that W might alter
the values that U and V send each other. We depict one typical scenario that might arise, as follows:

In this situation, U and V will compute different keys: U will compute

while V will compute

However, neither of the key computations of U or V can be carried out by W, since they require
knowledge of the secret exponents aU and aV , respectively. So even though U and V have computed

different keys (which will of course be useless to them), neither of these keys can be computed by W
(assuming the intractibility of the Discrete Log problem). In other words, both U and V are assured that
the other is the only user in the network that could compute the key that they have computed. This
property is sometimes called implicit key authentication.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

8.4.3 Key Agreement Using Self-certifying Keys

In this section, we describe a method of key agreement, due to Girault, that does not require certificates.
The value of a public key and the identity of its owner implicitly authenticate each other.

The Girault Scheme combines features of RSA and discrete logarithms. Suppose n = pq, where p = 2p1

+ 1, q = 2q1 + 1, and p, q, p1 , and q1 are all large primes. The multiplicative group isomorphic to

 . The maximum order of any element in is therefore the least common multiple of p - 1

and q - 1, or 2p1q1 . Let α be an element of order 2p1q1 . Then the cyclic subgroup of generated by

α is a suitable setting for the Discrete Logarithm problem.

In the Girault Scheme, the factorization of n is known only to the TA. The values n and α are public, but
p, q, p1 , and q1 are all secret. The TA chooses a public RSA encryption exponent, which we will denote

by e. The corresponding decryption exponent, d, is secret (recall that d = eŒ1 mod ø (n)).

Each user U has an ID string ID(U), as in previous schemes. A user U obtains a self-certifying public key,
pU , from the TA as indicated in Figure 8.8. Observe that U needs the help of the TA to produce pU . Note

also that

can be computed from pU and ID(U) using publicly available information.

The Girault Key Agreement Protocol is presented in Figure 8.9. The information transmitted during the
protocol is depicted as follows:

Figure 8.8 Obtaining a self-certifying public key from the TA

At the end of the protocol, U and V each have computed the key

Here is an example of key exchange using the Girault Scheme.

Example 8.4

Suppose p = 839 and q = 863. Then n = 724057 and ø(n) = 722356. The element α = 5 has order 2p1q1 =

ø(n)/2. Suppose the TA chooses d = 125777 as the RSA decryption exponent; then e = 84453.

Suppose U has ID(U) = 500021 and aU = 111899. Then bU = 488889 and pU = 650704. Suppose also

that V has ID(V) = 500022 and aV = 123456. Then bV = 111692 and pV = 683556.

Now, U and V want to exchange a key. Suppose U chooses rU = 56381, which means that sU = 171007.

Further, suppose V chooses rV = 356935, which means that sV = 320688.

Then both U and V will compute the same key K = 42869.

Let’s consider how the self-certifying keys guard against one specific type of attack. Since the values bU ,

pU , and ID(U) are not signed by the TA, there is no way for anyone else to verify their authenticity

directly. Suppose this information is forged by W (i.e., it is not produced in cooperation with the TA), who

wants to masquerade as U. If W starts with ID(U) and a fake value , then there is no way for her to

compute the exponent corresponding if the Discrete Log problem is intractible. Without
computation cannot be performed by W (who is pretending to be U).

Figure 8.9 Girault Key Agreement Protocol

The situation is similar if W acts as an intruder-in-the-middle. W will be able to prevent U and V from
computing a common key, but W is unable to duplicate the computations of either U or V. Thus the
scheme provides implicit key authentication, as did the MTI protocol.

An attentive reader might wonder why U is required to supply the value aU to the TA. Indeed, the TA can

compute pU directly from bU , without knowing aU . Actually, the important thing here is that the TA

should be convinced that U knows the value of aU before the TA computes pU for U.

We illustrate this point by showing how the scheme can be attacked if the TA indiscriminately issues
public keys pU to users without first checking that they possess the value aU corresponding to their bU .

Suppose W chooses a fake value and computes the corresponding value

Here is how he can determine the corresponding public key

W will compute

and then given and ID(W) to the TA. Suppose the TA issues the public key

to W. Using the fact that

it is immediate that

Now, at some later time, suppose U and V execute the protocol, and W substitutes information as follows:

Now V will compute the key

whereas U will compute the key

W can compute K′ as

Thus W and V share a key, but V thinks he is sharing a key with U. So W will be able to decrypt messages
sent by V to U.

8.5 Notes and References

Blom presented his key predistribution scheme in [BL85]. Generalizations can be found in Blundo et al.
[BDSHKVY93] and Beimel and Chor [BC94].

Diffie and Hellman presented their key exchange algorithm in [DH76]. The idea of key exchange was
discovered independently by Merkle [ME78]. The material on authenticated key exchange is taken from
Diffie, van Oorschot, and Wiener [DVW92].

Version V of Kerberos is described in [KN93]. For a recent descriptive article on Kerberos, see Schiller
[SC94].

The protocols of Matsumoto, Takashima, and Imai can be found in [MTI86]. Self-certifying key
distribution was introduced by Girault [GIR91]. The scheme he presented was actually a key
predistribution scheme; the modification to a key agreement scheme is based on [RV94].

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Two recent surveys on key distribution and key agreement are Rueppel and Van Oorschot [RV94] and van
Tilburg [VT93].

Exercises

8.1 Suppose the Blom Scheme with k = 1 is implemented for a set of four users, U, V, W and X.
Suppose that p = 7873, rU = 2365, rV 6648, rW = 1837 and rX = 2186. The secret g polynomials

are as follows:

(a) Compute the key for each pair of users, verifying that each pair of users obtains a common
key (that is, KU,V = KV,U , etc.).

(b) Show how W and X together can compute KU,V .

8.2 Suppose the Blom Scheme with k = 2 is implemented for a set of five users, U, V, W, X and Y.
Suppose that p = 97, rU = 14, rV = 38, rW = 92, rX = 69 and rY = 70. The secret g polynomials are

as follows:

(a) Show how U and V each will compute the key KU,V = KV,U .

(b) Show how W, X and Y together can compute KU,V .

8.3 Suppose that U and V carry out the Diffie-Hellman Key Exchange with p = 27001 and α = 101.
Suppose that U chooses aU = 21768 and V chooses aV 9898. Show the computations performed by

both U and V, and determine the key that they will compute.
8.4 Suppose that U and V carry out the MTI Protocol where p = 30113 and α = 52. Suppose that U
has aU = 8642 and chooses rU = 28654, and V has aV = 24673 and chooses rV = 12385. Show the

computations performed by both U and V, and determine the key that they will compute.
8.5 If a passive adversary tries to compute the key K constructed by U and V by using the MTI
protocol, then he is faced with an instance of what we might term the MTI problem, which we
present in Figure 8.10. Prove that any algorithm that can be used to solve the MTI problem can be
used to solve the Diffie-Hellman problem, and vice versa.
8.6 Consider the Girault Scheme where p = 167, q = 179, and hence n = 29893. Suppose α = 2 and
e = 11101.

(a) Compute d.
(b) Given that ID(U) = 10021 and aU = 9843, compute bU and pU . Given that ID(V) = 10022

and aV = 7692, compute bV and pV .

(c) Show how bU can be computed from pU and ID(U) using the public exponent e. Similarly,

show how bV can be computed from pV and ID(V).

Figure 8.10 The MTI problem

(d) Suppose that U chooses rU = 15556 and V chooses rV = 6420. Compute sU and sV , and

show how U and V each compute their common key.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Chapter 9
Identification Schemes

9.1 Introduction

Cryptographic methods enable many seemingly impossible problems to be solved. One such problem is
the construction of secure identification schemes. There are many common, everyday situations where it is
necessary to electronically "prove" one’s identity. Some typical scenarios are as follows:

1. To withdraw money from an automated teller machine (or ATM), we use a card together with a
four-digit personal identification number (PIN).
2. To charge purchases over the telephone to a credit card, all that is necessary is a credit card
number (and the expiry date).
3. To charge long-distance telephone calls (using a calling card), one requires only a telephone
number together with a four-digit PIN.
4. To do a remote login to a computer over a network, it suffices to know a valid user name and the
corresponding password.

In practice, these types of schemes are not usually implemented in a secure way. In the protocols
performed over the telephone, any eavesdropper can use the identifying information for their own
purposes. This could include the person who is the recipient of the information; many credit card "scams"
operate in this way. An ATM card is somewhat more secure, but there are still weaknesses. For example,
someone monitoring the communication line can obtain all the information encoded on the card’s
magnetic strip, as well as the PIN. This could allow an imposter to gain access to a bank account. Finally,
remote computer login is a serious problem due to the fact that user IDs and passwords are transmitted
over the network in unencrypted form. Thus they are vulnerable to anyone who is monitoring the
computer network.

The goal of an identification scheme is that someone "listening in" as Alice identifies herself to Bob, say,
should not subsequently be able to misrepresent herself as Alice. Furthermore, we should try to guard
against the possibility that Bob himself might try to impersonate Alice after she has identified herself to
him. In other words, Alice wants to be able to prove her identity electronically without "giving away" her
identifying information.

Figure 9.1 Challenge-and-response protocol

Several such identification schemes have been discovered. One practical objective is to find a scheme that
is simple enough that it can be implemented on a smart card, which is essentially a credit card equipped
with a chip that can perform arithmetic computations. Hence, both the amount of computation and the
memory requirements should be kept as small as possible. Such a card would be a more secure alternative
to current ATM cards. However, it is important to note that the "extra" security pertains to someone
monitoring the communication line. Since it is the card that is "proving" its identity, we have no extra
protection against a lost card. It would still be necessary to include a PIN in order to establish that it is the
real owner of the card who is initiating the identification protocol.

In later sections, we will describe some of the more popular identification schemes. But first, we give a
very simple scheme that can be based on any private-key cryptosystem, e.g., DES. The protocol, which is
described in Figure 9.1, is called a challenge-and-response protocol. In it, we assume that Alice is
identifying herself to Bob, and Alice and Bob share a common secret key, K, which specifies an
encryption function eK .

We illustrate this protocol with a small example.

Example 9.1

Alice and Bob use an encryption function which does a modular exponentiation:

Suppose Bob’s challenge is x = 77835. Then Alice responds with y = 100369.

Virtually all identification schemes are challenge-and-response protocols, but the most useful schemes do
not require shared keys. This idea will be pursued in the remainder of the chapter.

9.2 The Schnorr Identification Scheme

We begin by describing the Schnorr Identification Scheme, which is one of the most attractive practical
identification schemes. The scheme requires a trusted authority, which we denote by TA. The TA will
choose parameters for the scheme as follows:

1. p is a large prime (i.e., p ≥ 2 512) such that the discrete log problem in is intractible.
2. q is a large prime divisor of p - 1 (i.e., q ≥ 2 140).

3. has order q (such an α can be computed as the (p - 1)/qth power of a primitive element).
4. A security parameter t such that q > 2t . For most practical applications, t = 40 will provide
adequate security.
5. The TA also establishes a secure signature scheme with a secret signing algorithm sigTA and a

public verification algorithm verTA .

6. A secure hash function is specified. As usual, all information is to be hashed before it is signed. In

order to make the protocols easier to read, we will omit the hashing steps from the descriptions of the
protocols.

The parameters p, q, and α, the public verification algorithm verTA and the hash function are all made

public.

A certificate will be issued to Alice by the TA. When Alice wants to obtain a certificate from the TA, the
steps in Figure 9.2 are carried out. At a later time, when Alice wants to prove her identity to Bob, say, the
protocol of Figure 9.3 is executed.

As mentioned above, t is a security parameter. Its purpose is to prevent an impostor posing as Alice, say
Olga, from guessing Bob’s challenge, r. For, if Olga guessed the correct value of r, she could choose any
value for y and compute

She would give Bob γ in step 1, and then when she receives the challenge r, she would supply the value y
she has already chosen. Then γ would be verified by Bob in step 6.

Figure 9.2 Issuing a certificate to Alice

The probability that Olga will guess the value of r correctly is 2-t if r is chosen at random by Bob. Thus, t
= 40 should be a reasonable value for most applications. (But notice that Bob should choose his challenge
r at random every time Alice identifies herself to him. If Bob always used the same challenge r, then Olga
could impersonate Alice by the method described above.)

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Basically, there are two things happening in the verification protocol. First, the signature s proves the
validity of Alice’s certificate. Thus Bob verifies the signature of the TA on Alice’s certificate to convince
himself that the certificate itself is authentic. This is essentially the same way that certificates were used in
Chapter 8.

The second part of the protocol concerns the secret number a. The value a functions like a PIN in that it
convinces Bob that the person carrying out the identification protocol is indeed Alice. But there is an
important difference from a PIN: in the identification protocol, the value of a is not revealed. Instead Alice
(or more accurately, Alice’s smart card) "proves" that she/it knows the value of a in step 5 of the protocol
by computing the value y in response to the challenge r issued by Bob. Since the value of a is not revealed,
this technique is called a proof of knowledge.

Figure 9.3 The Schnorr identification scheme

The following congruences demonstrate that Alice will be able to prove her identity to Bob:

Thus Bob will accept Alice’s proof of identity (assuming he is honest), and the protocol is said to have the
completeness property.

Here is a small (toy) example illustrating the challenge-and-response aspect of the protocol.

Example 9.2

Suppose p = 88667, q = 1031 and t = 10. The element α = 70322 has order q in . Suppose Alice’s
secret exponent is a = 755; then

Now suppose Alice chooses k = 543. Then she computes

and sends γ to Bob. Suppose Bob issues the challenge r = 1000. Then Alice computes

and sends y to Bob. Bob then verifies that

So Bob believes that he is communicating with Alice.

Next, let’s consider how someone might try to impersonate Alice. An imposter, Olga, might try to
impersonate Alice by forging a certificate

where v′ ≠ v. But s′ is supposed to be a signature of (ID (Alice), v′), and this is verified by Bob in step 3 of
the protocol. If the signature scheme of the TA is secure, Olga will not be able to forge a signature s′
which will subsequently be verified by Bob.

Another approach would be for Olga to use Alice’s correct certificate, which is C(Alice) = (ID(Alice), v,
s) (recall that certificates are not secret, and the information on a certificate is revealed each time the
identification protocol is executed). But Olga will not be able to impersonate Alice unless she also knows
the value of a. This is because of the "challenge" r in step 4. In step 5, Olga would have to compute y, but
y is a function of a. The computation of a from v involves solving a discrete log problem, which we
assume is intractible.

We can prove a more precise statement about the security of the protocol, as follows.

THEOREM 9.1

Suppose Olga knows a value γ for which she has probability ∈ ≥ 1/2t-1 of successfully impersonating
Alice in the verification protocol. Then Olga can compute a in polynomial time.

PROOF For a fraction ∈ of the 2t possible challenges r, Olga can compute a value y which will be
accepted in step 6 by Bob. Since ∈ ≥ 1/2 t-1 , we have that 2t ∈, and therefore Olga can compute values
y1 , y2 , r1 and r2 such that

and

It follows that

Since v = α -a , we have that

Now, 0 < |r2 - r1 | < 2t and q > 2t is prime. Hence gcd(r2 - r1 , q) = 1, and Olga can compute

as desired.

The above theorem proves that anyone who has a non-negligible chance of successfully executing the
identification protocol must know (or be able to compute in polynomial time) Alice’s secret exponent a.
This property is often referred to as soundness.

We illustrate with an example.

Example 9.3

Suppose we have the same parameters as in Example 9.2: p = 88667, q = 1031, t = 10, α = 70322, α = 755
and v = 13136. Suppose Olga learns that

Then she can compute

and thus discover Alice’s secret exponent.

We have proved that the protocol is sound and complete. But soundness and completeness are not
sufficient to ensure that the protocol is "secure." For example, if Alice simply revealed the value of her
exponent a to prove her identity to Olga (say), the protocol would still be sound and complete. However, it
would be completely insecure, since Olga could subsequently impersonate Alice.

This motivates the consideration of the secret information released to a verifier (or an observer) who takes
part in the protocol (in this protocol, the secret information is the value of the exponent a). Our hope is
that no information about a can be gained by Olga when Alice proves her identity, for then Olga would be
able to masquerade as Alice.

In general, we could envision a situation whereby Alice proves her identity to Olga, say, on several
different occasions. Perhaps Olga does not choose her challenges (i.e., the values of r) in a random way.
After several executions of the protocol, Olga will try to determine the value of a so she can subsequently
impersonate Alice. If Olga can determine no information about the value of a by taking part in a
polynomial number of executions of the protocol and then performing a polynomial amount of
computation, then we would be convinced that the protocol is secure.

It has not been proven that the Schnorr Scheme is secure. But in the next section, we present a
modification of the Schnorr Scheme, due to Okamoto, that can be proved to be secure given a certain
computational assumption.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

The Schnorr Scheme was designed to be very fast and efficient, both from a computational point of view
and in the amount of information that needs to be exchanged in the protocol. It is also designed to
minimize the amount of computation performed by Alice. This is desirable because in many practical
applications, Alice’s computations will be performed by a smart card with low computing power, while
Bob’s computations will be performed by a more powerful computer.

For the purpose of discussion, let’s assume that ID (Alice) is a 512-bit string. v also comprises 512 bits,
and s will be 320 bits if the DSS is used as a signature scheme. The total size of the certificate C(Alice)
(which needs to be stored on Alice’s smart card) is then 1344 bits.

Let us consider Alice’s computations: step 1 requires a modular exponentiation to be performed; step 5
comprises one modular addition and one modular multiplication. It is the modular exponentiation that is
computationally intensive, but this can be precomputed offline, if desired. The online computations to be
performed by Alice are very modest.

It is also a simple matter to calculate the number of bits that are communicated during the protocol. We
can depict the information that is communicated in the form of a diagram:

Alice gives Bob 1344 + 512 = 1856 bits of information in step 2; Bob gives Alice 40 bits in step 4; and
Alice gives Bob 140 bits in step 6. So the communication requirements are quite modest, as well.

Figure 9.4 Issuing a certificate to Alice

9.3 The Okamoto Identification Scheme

In this section, we present a modification of the Schnorr Scheme due to Okamoto. This modification can

be proved secure, assuming the intractibility of computing a particular discrete logarithm in .

To set up the scheme, the TA chooses p and q as in the Schnorr Scheme. The TA also chooses two

elements both having order q. The value is kept secret from all the
participants, including Alice. We will assume that it is infeasible for anyone (even a coalition of Alice and
Olga, say) to compute the value c. As before, the TA chooses a signature scheme and hash function. The
certificate issued to Alice by the TA is constructed as described in Figure 9.4. The Okamoto
Identification Scheme is presented in Figure 9.5.

Here is an example of the Okamoto Scheme.

Example 9.4

As in previous examples, we will take p = 88667, q = 1031, and t = 10. Suppose α1 = 58902 and α2 =

73611 (both α1 and α2 have order q in). Now, suppose α1 = 846 and α2 = 515; then v = 13078.

Figure 9.5 The Okamoto identification scheme

Suppose Alice chooses k1 = 899 and k2 = 16; then γ = 14574. If Bob issues the challenge r = 489 then

Alice will respond with y1 = 131 and y2 = 287. Bob will verify that

So Bob will accept Alice’s proof of identity.

The proof that the protocol is complete (i.e., that Bob will accept Alice’s proof of identity) is
straightforward. The main difference between Okamoto’s and Schnorr’s scheme is that we can prove that

the Okamoto Scheme is secure provided that the computation of the discrete logarithm is
intractible.

The proof of security is quite subtle. Here is the general idea: As before, Alice identifies herself to Olga
polynomially many times by executing the protocol. We then suppose (hoping to obtain a contradiction)
that Olga is able to learn some information about the values of Alice’s secret exponents α1 and α2 . If this

is so, then we will show that (with high probability) Alice and Olga together will be able to compute the
discrete logarithm c in polynomial time. This contradicts the assumption made above, and proves that
Olga must be unable to obtain any information about Alice’s exponents by taking part in the protocol.

The first part of this procedure is similar to the soundness proof for the Schnorr Scheme.

THEOREM 9.2

Suppose Olga knows a value γ for which she has probability ∈ ≥ 1/2t-1 of successfully impersonating
Alice in the verification protocol. Then, in polynomial time, Olga can compute values b1 and b2 such that

PROOF For a fraction ∈ of the 2t possible challenges r, Olga can compute values y1 , y2 , z1 , z2 , r and s

with r ≠ s and

Define

b1 = (y1 - z1)(r - s) -1 mod q

and

b2 = (y2 - z2)(r - s) -1 mod q.

Then it is easy to check that

as desired.

We now proceed to show how Alice and Olga can together compute the value of c.

THEOREM 9.3

Suppose Olga knows a value γ for which she has probability ∈ ≥ 1/2t-1 of successfully impersonating
Alice in the verification protocol. Then, with probability 1 - 1/q, Alice and Olga can together compute

 in polynomial time.

PROOF By Theorem 9.2, Olga is able to determine values b1 and b2 such that

Now suppose that Alice reveals the values α1 and α2 to Olga. Of course

so it must be the case that

Suppose that (a1 , a2) ≠ (b1 , b2). Then (a2 - b2) -1 mod q exists, and the discrete log

can be computed in polynomial time.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

There remains to be considered the possibility that (a1 , a2) = (b1 , b2). If this happens, then the value of c

cannot be computed as described above. However, we will argue that (a1 , a2) = (b1 , b2) will happen

only with very small probability 1/q, so the procedure whereby Alice and Olga compute c will almost
surely succeed.

Define

That is, consists of all the possible ordered pairs that could be Alice’s secret exponents. Observe that

where . Thus consist of q ordered pairs.

The ordered pair (b1 , b2) computed by Olga is certainly in the set . We will argue that the value of the

pair (b1 , b2) is independent of the value of the pair (a1 , a2) that comprises Alice’s secret exponents.

Since (a1 , a2) was originally chosen at random by Alice, it must be the case that the probability that (a1 ,

a2) = (b1 , b2) is 1/q.

So, we need to say what we mean by (b1 , b2) being "independent" of (a1 , a2). The idea is that Alice’s

pair (a1 , a2) is one of the q possible ordered pairs in the set , and no information about which is the

"correct" ordered pair is revealed by Alice identifying herself to Olga. (Stated informally, Olga knows that

an ordered pair from comprises Alice’s exponents, but she has no way of telling which one.)

Let’s look at the information that is exchanged during the identification protocol. Basically, in each
execution of the protocol, Alice chooses a γ; Olga chooses an r; and Alice reveals y1 and y2 such that

Recall that Alice computes

and

where

But note that k1 and k2 are not revealed (nor are a1 and a2).

The particular quadruple (γ, r, y1 , y2) that is generated during one execution of the protocol appears to

depend on Alice’s ordered pair (a1 , a2), since y1 and y2 are defined in terms of a1 and a2 . But we will

show that each such quadruple could equally well be generated from any other ordered pair

 . To see this, suppose and
where 0 ≤ θ ≤ q - 1. We can express y1 and y2 as follows:

and

where all arithmetic is performed in . That is, the quadruple (γ,r,y1 ,y< SMALL>2) is also consistent with

the ordered pair using the random choices and to produce (the
same) γ. We have already noted that the values of k1 and k2 are not revealed by Alice, so the quadruple

(γ,r,y1 ,y< SMALL>2) yields no information regarding which ordered pair in Alice is actually using for

her secret exponents. This completes the proof.

This security proof is certainly quite elegant and subtle. It would perhaps be useful to recap the features of
the protocol that lead to the proof of security. The basic idea involves having Alice choose two secret

exponents rather than one. There are a total of q pairs in the set that are "equivalent" to Alice’s pair

(a1 , a2). The fact that leads to the ultimate contradiction is that knowledge of two different pairs in

provides an efficient method of computing the discrete logarithm c. Alice, of course, knows one pair in

; and we proved that if Olga can impersonate Alice, then Olga is able to compute a pair in which (with

high probability) is different from Alice’s pair. Thus Alice and Olga together can find two pairs in and
compute c, which provides the desired contradiction.

Here is an example to illustrate the computation of by Alice and Olga.

Example 9.5

As in Example 9.4, we will take p = 88667, q = 1031 and t = 10, and assume that v = 13078.

Suppose Olga has determined that

Then she can compute

b1 = (131 - 890)(489 - 199)-1 mod 1031 = 456

and

b2 = (287 - 303)(489 - 199)-1 mod 1031 = 519.

Now, using the values of a1 and a2 supplied by Alice, the value

c = (846 - 456)(519 - 515)-1 mod 1031 = 613

is computed. This value c is in fact as can be verified by calculating

58902613 mod 88667 = 73611.

Finally, we should emphasize that, although there is no known proof that the Schnorr Scheme is secure
(even assuming that the discrete logarithm problem is intractible), neither is there any known weakness in
the scheme. Actually, the Schnorr Scheme might be preferred in practice to the Okamoto Scheme simply
because it is somewhat faster.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

9.4 The Guillou-Quisquater Identification Scheme

In this section, we describe another identification scheme, due to Guillou and Quisquater, that is based on
RSA.

The set-up of the scheme is as follows: The TA chooses two primes p and q and forms the product n = pq.
The values of p and q are secret, while n is public. As is usually the case, p and q should be chosen large
enough that factoring n is intractible. Also, the TA chooses a large prime integer b which will function as a
security parameter as well as being a public RSA encryption exponent; to be specific, let us suppose that b
is a 40-bit prime. Finally, the TA chooses a signature scheme and hash function.

The certificate issued to Alice by the TA is constructed as described in Figure 9.6. When Alice wants to
prove her identity to Bob, say, the protocol of Figure 9.7 is executed. We will prove that the
Guillou-Quisquater Scheme is sound and complete. However, the scheme has not been proved to be
secure (even assuming that the RSA cryptosystem is secure).

Figure 9.6 Issuing a certificate to Alice

Figure 9.7 The Guillou-Quisquater identification scheme

Example 9.6

Suppose the TA chooses p = 467 and q = 479, so n = 223693. Suppose also that b = 503 and Alice’s secret
integer u = 101576. Then she will compute

Now, let’s assume that Alice is proving her identity to Bob and she chooses k = 187485; then she gives
Bob the value

Suppose Bob responds with the challenge r = 375. Then Alice will compute

and gives it to Bob. Bob then verifies that

Hence, Bob accepts Alice’s proof of identity.

As is generally the case, proving completeness is quite simple:

Now, let us consider soundness. We will prove that the scheme is sound provided that it is infeasible to
compute u from v. Since v is formed from u by RSA encryption, this is a plausible assumption to make.

THEOREM 9.4

Suppose Olga knows a value γ for which she has probability ∈ > 1/b of successfully impersonating Alice
in the verification protocol. Then, in polynomial time, Olga can compute u.

PROOF For some γ, Olga can compute values y1 , y2 , r1 , r2 with r1 ≠ r2 , such that

Suppose, without loss of generality, that r1 > r2 . Then we have

Since 0 < r1 - r2 < b and b is prime, t = (r1 - r2) -1 mod b exists, and it can be computed in polynomial

time by Olga using the Euclidean algorithm. Hence, we have that

Now,

for some positive integer , so

or equivalently,

Now raise both sides of the congruence to the power b -1 mod φ(n), to get the following:

Finally, compute the inverse modulo n, of both sides of this congruence, to obtain the following formula
for u:

Olga can use this formula to compute u in polynomial time.

Example 9.7

As in the previous example, suppose that n = 223693, b = 503, u = 101576 and v = 89888. Suppose Olga
has learned that

She will first compute

Figure 9.8 Issuing a value u to Alice

Next, she calculates

Finally, she can obtain the secret value u as follows:

Thus Alice’s secret exponent has been compromised.

9.4.1 Identity-based Identification Schemes

The Guillou-Quisquater Identification Scheme can be transformed into what is known as an
identity-based identification scheme. This basically means that certificates are not necessary. Instead, the
TA computes the value of u as a function of Alice’s ID string, using a public hash function h with range

 . This is done as indicated in Figure 9.8. The identification protocol now works as described in Figure
9.9. The value v is computed from Alice’s ID string via the public hash function h. In order to carry out
the identification protocol, Alice needs to know the value of u, which can be computed only by the TA
(assuming that the RSA cryptosystem is secure). If Olga tries to identify herself as Alice, she will not
succeed because she does not know the value of u.

Figure 9.9 The Guillou-Quisquater identity-based identification scheme

9.5 Converting Identification to Signature Schemes

There is a standard method of converting an identification scheme to a signature scheme. The basic idea is
to replace the verifier (Bob) by a public hash function, h. In a signature scheme obtained by this approach,
the message is not hashed before it is signed; the hashing is integrated into the signing algorithm.

We illustrate this approach by converting the Schnorr Scheme into a signature scheme. See Figure 9.10.
In practice, one would probably take the hash function h to be the SHS, with the result reduced modulo q.
Since the SHS produces a bitstring of length 160 and q is a 160-bit prime, the modulo q reduction is
necessary only if the message digest produced by the SHS exceeds q; and even in this situation it is
necessary only to subtract q from the result.

In proceeding from an identification scheme to a signature scheme, we replaced a 40-bit challenge by a
160-bit message digest. 40 bits suffice for a challenge since an impostor needs to be able to guess the
challenge in order to precompute a response that will be accepted. But in the context of a signature
scheme, we need message digests of a much larger size, in order to prevent attacking the scheme by
finding collisions in the hash function.

Other identification schemes can be converted to signature schemes in a similar fashion.

Figure 9.10 Schnorr Signature Scheme

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

9.6 Notes and References

The Schnorr Identification Scheme is from [SC91], the Okamoto Scheme was presented in [OK93], and
the Guillou-Quisquater Scheme can be found in [GQ88]. Another scheme that can be proved secure
under a plausible computational assumption has been given by Brickell and McCurley [BM92].

Other popular identification schemes include the Feige-Fiat-Shamir Scheme [FFS88] (see also [FS87])
and Shamir’s Permuted Kernel Scheme [SH90]. The Feige-Fiat-Shamir Scheme is proved secure using
zero-knowledge techniques (see Chapter 13 for more information on zero-knowledge proofs).

The method of constructing signature schemes from identification schemes is due to Fiat and Shamir
[FS87]. They also describe an identity-based version of their identification scheme.

Surveys on identification schemes have been published by Burmester, Desmedt, and Beth [BDB92] and de
Waleffe and Quisquater [DWQ93].

Exercises

9.1 Consider the following possible identification scheme. Alice possesses a secret key n = pq, where
p and q are prime and p ≡ q ≡ 3 (mod 4). The values n and ID(Alice) are signed by the TA, as usual,
and stored on Alice’s certificate. When Alice wants to identify herself to Bob, say, Bob will present
Alice with a random quadratic residue modulo n, say x. Then Alice will compute a square root y of x
and give it to Bob. Bob then verifies that y2 ≡ x (mod n). Explain why this scheme is insecure.
9.2 Suppose Alice is using the Schnorr Scheme where q = 1201, p = 122503, t = 10 and α = 11538.

(a) Verify that α has order q in .
(b) Suppose that Alice’s secret exponent is a = 357. Compute v.
(c) Suppose that k = 868. Compute γ.
(d) Suppose that Bob issues the challenge r = 501. Compute Alice’s response y.
(e) Perform Bob’s calculations to verify y.

9.3 Suppose that Alice uses the Schnorr Scheme with p, q, t and α as in Exercise 9.2. Now suppose
that v = 51131, and Olga has learned that

Show how Olga can compute Alice’s secret exponent a.

9.4 Suppose that Alice is using the Okamoto Scheme with q = 1201, p = 122503, t = 10, α1 =

60497 and α2 = 17163.

(a) Suppose that Alice’s secret exponents are a1 = 432 and a2 = 423. Compute v.

(b) Suppose that k1 = 389 and k2 = 191. Compute γ.

(c) Suppose that Bob issues the challenge r = 21. Compute Alice’s response, y1 and y2 .

(d) Perform Bob’s calculations to verify y1 and y2 .

9.5 Suppose that Alice uses the Okamoto Scheme with p, q, t, α1 , and α2 as in Exercise 9.4.

Suppose also that v = 119504.
(a) Verify that

(b) Use this information to compute b1 and b2 such that

(c) Now suppose that Alice reveals that a1 = 484 and a2 = 935. Show how Alice and Olga

together will compute .
9.6 Suppose that Alice is using the Guillou-Quisquater Scheme with p = 503, q = 379, and b = 509.

(a) Suppose that Alice’s secret u = 155863. Compute v.
(b) Suppose that k = 123845. Compute γ.
(c) Suppose that Bob issues the challenge r = 487. Compute Alice’s response, y.
(d) Perform Bob’s calculations to verify y.

9.7 Suppose that Alice is using the Guillou-Quisquater Scheme with n = 199543, b = 523 and v =
146152. Suppose that Olga has discovered that

Show how Olga can compute u.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Chapter 10
Authentication Codes

10.1 Introduction

We have spent a considerable amount of time studying cryptosystems, which are used to obtain secrecy.
An authentication code provides a method of ensuring the integrity of a message, i.e., that the message has
not been tampered with and that it originated with the presumed transmitter. Our goal is to achieve this
authentication capability even in the presence of an active opponent, Oscar, who can observe messages in
the channel and introduce messages of his own choosing into the channel. This goal is accomplished in the
"private-key" setting whereby Alice and Bob share a secret key, K, before any message is transmitted.

In this chapter, we study codes that provide authentication but no secrecy. In such a code, a key is used to
compute an authentication tag which will enable Bob to check the authenticity of the message he receives.
Another application of an authentication code is verify that data in a large file has not been tampered with.
An authentication tag would be stored with the data; the key used to generate and verify the authenticator
would be stored separately, in a "secure" area.

We should also point out that, in many respects, an authentication code is similar to a signature scheme or
to a message authentication code (MAC). The main differences are as follows: The security of an
authentication code is unconditional, whereas signature schemes and MACs are studied from the point of
view of computational security. Also, when an authentication code (or a MAC) is used, a message can be
verified only by the intended receiver. In comparison, anyone can verify a signature using a public
verification algorithm.

We now give a formal definition of the terminology we use in the study of authentication codes.

DEFINITION 10.1 An authentication code is a four-tuple , where the following conditions
are satisfied:

1. is a finite set of possible source states

Figure 10.1 Impersonation by Oscar

2. is a finite set of possible authentication tags
3. , the keyspace, is a finite set of possible keys.

4. For each , there is an authentication rule .

The message set is defined to be .

REMARK Note that a source state is analogous to a plaintext. A message consists of a plaintext with an
appended authentication tag; it could be more precisely referred to as a signed message. Also, an
authentication rule need not be an injective function.

In order to transmit a (signed) message, Alice and Bob follow the following protocol. First, they jointly
choose a random key . This is done in secret, as in a private-key cryptosystem. At a later time,
suppose that Alice wants to communicate a source state to Bob over an insecure channel. Alice
computes a = eK (s) and sends the message (s, a) to Bob. When Bob receives (s, a), he computes a′ =

eK (s). If a′ = a, then he accepts the message as authentic; otherwise, he rejects it.

We will study two different types of attacks that Oscar might carry out. In both of these attacks, Oscar is
an "intruder-in-the-middle." These attacks described are as follows:

Impersonation
Oscar introduces a message (s, a) into the channel, hoping to have it accepted as authentic by Bob.
This is depicted in Figure 10.1.

Substitution
Oscar observes a message (s, a) in the channel, and then changes it to (s′, a′), where s′ ≠ s, again
hoping to have it accepted as authentic by Bob. Hence, he is hoping to mislead Bob as to the source
state. This is depicted in Figure 10.2.

Associated with each of these attacks is a deception probability, which represents the probability that
Oscar will successfully deceive Bob, if he (Oscar) follows an optimal strategy. These probabilities are
denoted by Pd0 (impersonation) and Pd1 (substitution). In order to compute Pd0 and Pd1 , we need to

specify probability distributions on and . These will be denoted by and , respectively. We
assume that the authentication code and these two probability distributions are known to Oscar. The only
information that Alice and Bob possess that is not known to Oscar is the value of the key, K. This is
analogous to the way that we studied the unconditional security of private-key cryptosystems.

Figure 10.2 Substitution by Oscar

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

10.2 Computing Deception Probabilities

In this section, we look at the computation of deception probabilities. We begin with a small example of
an authentication code.

Example 10.1

Suppose

and

For each and each , define

It will be useful to study the authentication matrix, which tabulates all the values e ij (s). For each key

 and for each , place the authentication tag eK (s) in row K and column s of a

matrix M. The array M is presented in Figure 10.3.

Suppose that the key is chosen at random, i.e., for each . We do not specify the
probability distribution since it turns out to be immaterial in this example.

Let’s first consider an impersonation attack. Oscar will pick a source state s, and attempt to guess the
"correct" authentication tag. Denote by K0 the actual key being used (which is unknown to Oscar). Oscar

will succeed in deceiving Bob if he guesses the tag . However, for any and
 , it is easy to verify that there are exactly three (out of nine) authentication rules such

that eK (s) = a. (In other words, each symbol occurs three times in each column of the authentication

matrix.) Hence, it follows that Pd0 = 1/3.

Figure 10.3 An authentication matrix

Substitution is a bit more complicated to analyze. As a specific case, suppose Oscar observes the message
(0, 0) in the channel. This does give Oscar some information about the key: he now knows that

Now suppose Oscar replaces the message (0, 0) with the message (1, 1). Then, he will succeed in his
deception if and only if K0 = (1, 0). The probability that K0 is the key is 1/3, since the key is known to be

in the set {(0, 0), (1, 0), (2, 0)}.

A similar analysis can be done for any substitution that Oscar might make. In general, if Oscar observes
the message (s, a), and replaces it with any message (s′, a′) where s′ ≠ s, then he deceives Bob with
probability 1/3. We can see this as follows. Observation of (s, a) restricts the key to one of three
possibilities. Then, for each choice of (s′, a′), there is one key (out of the three possible keys) under which
a′ is the authentication tag for s′.

Let’s now discuss how to compute the deception probabilities in general. First, we consider Pd0 . As

above, let K0 denote the key chosen by Alice and Bob. For and , define payoff (s, a) to be

the probability that Bob will accept the message (s, a) as being authentic. It is not difficult to see that

That is, payoff (s, a) is computing by selecting the rows of the authentication matrix that have entry a in
column s, and summing the probabilities of the corresponding keys.

In order to maximize his chance of success, Oscar will choose (s, a) such that payoff (s, a) is a maximum.
Hence,

Note that Pd0 does not depend on the probability distribution .

Pd1 is more difficult to compute, and it may depend on the probability distribution . Let’s first

consider the following problem: Suppose Oscar observes the message (s, a) in the channel. Oscar will

substitute some (s′, a′) for (s, a), where s′ ≠ s. Hence, for , and , we define
payoff (s′, a′; s, a) to be the probability that a substitution of (s, a) with (s′, a′) will succeed in deceiving
Bob. Then we can compute the following:

The numerator of this fraction is found by selecting the rows of the authentication matrix that have the
value a in column s and the value a′ in column s′, and summing the probabilities of the corresponding
keys.

Since Oscar wants to maximize his chance of deceiving Bob, he will compute

The quantity p s ,a denotes the probability that Oscar can deceive Bob with a substitution, given that (s, a)

is the message observed in the channel.

Now, how do we compute the deception probability Pd1? Evidently, we have to compute a weighted

average of the quantities P s ,a with respect to the probabilities of observing messages (s, a) in

the channel. That is, we calculate Pd1 to be

Figure 10.4 An authentication matrix

The probability distribution is as follows:

In Example 10.1,

for all s, a, so Pd0 = 1/3. Also, it can be checked that

for all s, s′, a, a′, s ≠ s′. Hence, Pd1 = 1/3 for any probability distribution . (In general, though, Pd1

will depend on .)

Let’s look at the computation of Pd0 and Pd1 for a less "regular" example.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Example 10.2

Consider the authentication matrix of Figure 10.4. Suppose the probability distributions on and are

1 ≤ i ≤ 4; and

The values payoff (s, a) are as follows:

Hence, Pd0 = 3/4. Oscar’s optimal impersonation strategy is to place any of the messages (1, 1), (3, 1) or

(4, 2) into the channel.

Now we turn to the computation of Pd1 . First, we present the various values payoff (s′, a′; s, a) in the

form of a matrix. The entry in row (s, a) and column (s′, a′) is the value payoff (s′, a′; s, a).

Thus we have p1,1 = 2/3, p2,2 = 1/2, and p s,a = 1 for all other s, a. It is then a simple matter to evaluate

Pd1 = 7/8. An optimal substitution strategy for Oscar is as follows:

This strategy indeed yields Pd1 = 7/8.

The computation of Pd1 in Example 10.2 is straightforward but lengthy. We can in fact simplify the

computation of Pd1 by observing that we divide by the quantity payoff (s, a) in the computation of p s ,a ,

and then later multiply by payoff (s, a) in the computation of Pd1 . Of course, these two operations cancel

each other out. Suppose we define

for all s, a. Then we have the following more concise formula for Pd1 :

10.3 Combinatorial Bounds

We have seen that the security of an authentication code is measured by the deception probabilities.
Hence, we want to construct codes so that these probabilities are as small as possible. But other
considerations are also important. Let’s consider the various objectives that we might strive for in an
authentication code:

1. The deception probabilities Pd0 and Pd1 must be small enough to obtain the desired level of

security.
2. The number of source states must be large enough so that we can communicate the desired
information by appending an authentication tag to one source state.
3. The size of the key space should be minimized, since the value of the key must be communicated
over a secure channel. (Note that the key must be changed every time a message is communicated, as
is done with the One-time Pad.)

In this section, we determine lower bounds on the deception probabilities, which will be computed in
terms of other parameters of the code. Recall that we have defined an authentication code to consist of a

four-tuple . Throughout this section, we will denote .

Suppose we fix a source state . Then we can compute:

Hence, for every , there exists an authentication tag a(s) such that

The following theorem follows easily.

THEOREM 10.1

Suppose is an authentication code. Then , where . Further,

 if and only if

for every .

Now, we turn our attention to substitution. Suppose we fix s, a and s′, where s′ ≠ s. Then we have the
following:

So, there exists an authentication tag a′(s′, s, a) such that

The next theorem follows as a consequence.

THEOREM 10.2

Suppose is an authentication code. Then , where . Further,

 if and only if

for every .

PROOF We have

Further, equality occurs if and only if for ever (s, a). But this is in turn equivalent to the

condition that for every (s, a).

Combining Theorems 10.1 and 10.2, we get the following:

THEOREM 10.3

Suppose is an authentication code, where . Then if and only
if

for every .

PROOF Equations (10.4) and (10.5) imply Equation (10.6). Conversely, Equation (10.6) implies
Equations (10.4) and (10.5).

If the keys are equiprobable, then we obtain the following corollary:

COROLLARY 10.4

Suppose is an authentication code where , and keys are chosen equiprobably.

Then if and only if

for every .

10.3.1 Orthogonal Arrays

In this section, we look at the connections between authentication codes and certain combinatorial
structures called orthogonal arrays. First, we give a definition.

Figure 10.5 An OA(3, 3, 1)

DEFINITION 10.2 An orthogonal array OA(n, k, λ) is a λn2 × k array of n symbols, such that in any
two columns of the array every one of the possible n2 pairs of symbols occurs in exactly λ rows.

Orthogonal arrays are well-studied structures in combinatorial design theory, and are equivalent to other
structures such as transversal designs, mutually orthogonal Latin squares and nets.

In Figure 10.5, we present an orthogonal array OA(3, 3, 1) which is obtained from the authentication
matrix of Figure 10.3. Any orthogonal array OA(n, k, λ) can be used to construct an authentication code
with Pd0 = Pd1 = 1/n, as stated in the following theorem.

THEOREM 10.5

Suppose there is an orthogonal array OA(n, k, λ). Then there is an authentication code ,

where and Pd0 = Pd1 = 1/n.

PROOF Use each row of the orthogonal array as an authentication rule with equal probability 1/(λn2).
The correspondences are as follows:

Since Equation (10.7) is satisfied, we can apply Corollary 10.4, obtaining a code with the stated properties.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

10.3.2 Constructions and Bounds for OAs

Suppose that we construct an authentication code from an OA(n, k, λ). The parameter n determines the
number of authenticators (i.e., the security of the code), while the parameter k determines the number of
source states the code can accommodate. The parameter λ relates only to the number of keys, which is
λn2 . Of course, the case λ = 1 is most desirable, but we will see that it is sometimes necessary to use
orthogonal arrays with higher values of λ.

Suppose we want to construct an authentication code with a specified source set , and a specified
security level ∈ (i.e., so that Pd0 ≤ ∈ and Pd1 ≤ ∈). An appropriate orthogonal array will satisfy the

following conditions:

1. n ≥ 1/∈

2. (observe that we can always delete one or more columns from an orthogonal array and the

resulting array is still an orthogonal array, so we do not require)
3. λ is minimized, subject to the two previous conditions being satisfied.

Let’s first consider orthogonal arrays with λ = 1. For a given value of n, we are interested in maximizing
the number of columns. Here is a necessary condition for existence:

THEOREM 10.6

Suppose there exists an OA(n, k, 1). Then k ≤ n + 1.

PROOF Let A be an OA(n, k, 1) on symbol set X = {0, 1, �, n - 1}. Suppose π is a permutation of X, and
we permute the symbols in any column of A according to the permutation π. The result is again an OA(n,
k, 1). Hence, by applying a succession of permutations of this type, we can assume without loss of
generality that the first row of A is (00 � 0).

We next show that each symbol must occur exactly n times in each column of A. Choose two columns, say
c and c′, and let x be any symbol. Then for each symbol x′, there is a unique row of A in which x occurs in
column c and x′ occurs in column c′. Letting x′ vary over X, we see that x occurs exactly n times in column
c.

Now, since the first row is (00 � 0), we have exhausted all occurrences of ordered pairs (0, 0). Hence, no
other row contains more than one occurrence of 0. Now, let us count the number of rows containing at
least one 0: the total is 1 + k(n - 1). But this total cannot exceed the total number of rows in A, which is
n2 . Hence, 1 + k(n - 1) ≤ n2 , so k ≤ n + 1, as desired.

We now present a construction for orthogonal arrays with λ = 1 in which k = n. This is, in fact, the
construction that was used to obtain the orthogonal array presented in Figure 10.5.

THEOREM 10.7

Suppose p is prime. Then there exists an orthogonal array OA(p, p, 1).

PROOF The array will be a p2 × p array, where the rows are indexed by and the columns are

indexed by . The entry in row (i, j) and column x is defined to be ix + j mod p.

Suppose we choose two columns, x, y, x ≠ y, and two symbols a, b. We want to find a (unique) row (i, j)
such that a occurs in column x and b occurs in column y of row (i, j). Hence, we want to solve the two
equations

for the unknowns i and j (where all arithmetic is done in the field). But this system has the unique
solution

Hence, we have an orthogonal array.

We remark that any OA(n, n, 1) can be extended by one column to form an OA(n, n + 1, 1) (see the
Exercises). Hence, using Theorem 10.7, we can obtain an infinite class of OA’s that meet the bound of
Theorem 10.6 with equality.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Theorem 10.6 tells us that λ > 1 if k > n + 1. We will prove a more general result that places a lower bound
on λ as a function of n and k. First, however, we derive an important inequality that we will use in the
proof.

LEMMA 10.8

Suppose b1 , �, bm are real numbers. Then

PROOF Apply Jensen’s Inequality (Theorem 2.5) with f(x) = -x2 and a i = 1/m, 1 ≤ i ≤ m. The function f is

continuous and concave, so we obtain

which simplifies to give the desired result.

THEOREM 10.9

Suppose there exists an OA(n, k, λ). Then

PROOF Let A be an OA(n, k, λ) on symbol set X = {0, 1,�, n - 1}, where, without loss of generality, the
first row of A (00 � 0) (as in Theorem 10.6).

Let us denote the set of rows of A by let r1 denote the first row, and let . For any row

r of A, denote by x r the number of occurrences of 0 in row r. It is easy to count the total number of

occurrences of 0 in . Since each symbol must occur exactly λn times in each column of A, we have that

Now, the number of times the ordered pair (0, 0) occurs in rows in is

Applying Lemma 10.8, we obtain

and hence

On the other hand, in any given pair of columns, the ordered pair (0, 0) occurs in exactly λ rows. Since
there are k(k - 1) ordered pairs of columns, it follows that the exact number of occurrences of the ordered

pair (0, 0) in rows in is (λ - 1)k(k - 1). We therefore have

and hence

If we divide out a factor of k, we get

Expanding, we have

This simplifies to give

or

Finally, taking out a factor of λ(n - 1), we obtain

which is the desired bound.

Our next result establishes the existence of an infinite class of orthogonal arrays that meet the above bound
with equality.

THEOREM 10.10

Suppose p is prime and d ≥ 2 is an integer. Then there is an orthogonal array OA(p, (pd - 1)/(p - 1),
pd-2).

PROOF Denote by the vector space of all d-tuples over . We will construct A, an OA(p,(pd -

1)/(p - 1), pd-2) in which the rows and columns are indexed by certain vectors in . The entries of A

will be elements of . The set of rows is defined to be ; the set of columns is

 consists of all vectors in , so . consists of all non-zero vectors that have the first
non-zero coordinate equal to 1. Observe that

and that no two vectors in are scalar multiples of each other.

Now, for each and each , define

where ⋅ denotes the inner product of two vectors (reduced modulo p).

We prove that A is the desired orthogonal array. Let be two distinct columns, and let

. We will count the number of row such that and . Denote

 and . The two equations

 can be written as two linear equations in :

Figure 10.6 An OA(2, 7, 2)

This is a system of two linear equations in the d unknowns r1 , � rd . Since and are not scalar

multiples, the two equations are linearly independent. Hence, this system has a solution space of

dimension d - 2. That is, the number of solutions (i.e., the number of rows in which x occurs in column

and y occurs in column) is pd-2 , as desired.

Let’s carry out a small example of this construction.

Example 10.3

Suppose we take p = 2, d = 3. Then we will construct an OA(2, 7, 2). We have

and

The orthogonal array in Figure 10.6 results.

10.3.3 Characterizations of Authentication Codes

To this point, we have studied authentication codes obtained from orthogonal arrays. Then we looked at
necessary existence conditions and constructions for orthogonal arrays. One might wonder whether there
are better alternatives to the orthogonal array approach. However, two characterization theorems tell us
that this is not the case if we restrict our attention to authentication codes in which the deception
probabilities are as small as possible.

We first prove the following partial converse to Theorem 10.5:

THEOREM 10.11

Suppose is an authentication code where and Pd0 = Pd1 = 1/n. Then .

Further, if and only if there is an orthogonal array OA (n, k, 1) where , and

 for every key .

PROOF Fix two (arbitrary) source states s and s′, s ≠ s′, and consider Equation (10.6). For each ordered
pair (a, a′) of authentication tags, define

Then for every pair (a, a′). Also, the n2 , sets are disjoint. Hence, .

Now, suppose that . Then for every pair (a, a′), and Equation (10.6) tells us that

 for every key .

It remains to show that the authentication matrix forms an orthogonal array OA(n, k, 1). Consider the

columns indexed by the source states s and s′. Since for every (a, a′), we have every ordered
pair occurring exactly once in these two columns. Since, s and s′ are arbitrary, we see that every ordered
pair occurs exactly once in any two columns.

The following characterization is more difficult; we state it without proof.

THEOREM 10.12

Suppose is an authentication code where and Pd0 = Pd1 = 1/n. Then

 . Further, if and only if there is an orthogonal array OA(n, k, λ),

where λ = (k(n - 1) + 1)/n2 , and for every key .

REMARK Notice that Theorem 10.10 provides an infinite class of orthogonal arrays that meet the bound
of Theorem 10.12 with equality.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

10.4 Entropy Bound

In this section, we use entropy techniques to obtain bounds on the deception probabilities. The first of
these is a bound on Pd0 .

THEOREM 10.13

Suppose that is an authentication code. Then

PROOF From Equation (10.1), we have

Since the maximum of the values payoff (s, a) is greater than their weighted average, we obtain

Hence, by Jensen’s inequality (Theorem 2.5), we have

Recalling from Section 10.2 that

we see that

Now, we observe that (i.e., the probability that a is the authenticator, given that s
is the source state). Hence,

by the definition of conditional entropy. We complete the proof by showing that - H(A|S) = H(K |M) -
H(K). This follows from basic entropy identities. On one hand, we have

On the other hand, we compute

where we use the facts that H(A|K , S) = 0 since the key and source state uniquely determine the
authenticator, and H(K , S) = H(K) + H(S) since the source and key are independent events.

Equating the two expressions for H(K , A, S), we obtain

But a message m = (s, a) is defined to consist of a source state and an authenticator (i.e.,).
Hence, H(K |A, S) = H(K |M) and the proof is complete.

There is a similar bound for Pd1 which we will not prove here. It is as follows:

THEOREM 10.14

Suppose that is an authentication code. Then

We need to define what we mean by the random variable M 2 . Suppose we authenticate two distinct
source states using the same key K. In this way, we obtain an ordered pair of message

 . In order to define a probability distribution on , it is necessary to

define a probability distribution on , with the stipulation that for every
(that is, we do not allow source states to be repeated). The probability distribution on and will
induce a probability distribution on , in the same way that the probability distributions on
and induce a probability on .

As an illustration of the two bounds, we consider our basic orthogonal array construction and show that
the bounds of Theorems 10.13 and 10.14 are both met with equality. First, it is clear that

since each of the λn2 authentication rules are chosen with equal probability. Let’s next turn to the
computation of H(K |M). If any message m = (s, a) is observed, this restricts the possible keys to a subset
of size λn. Each of these λn keys is equally likely. Hence, H(K |m) = log λn, for any message m. Then, we
get the following:

Thus we have

so the bound is met with equality.

If we observe two messages which have been produced using the same key (and different source states),
then the number of possible keys is reduced to λ. Using similar reasoning as above, we have that
H(K |M 2) = log λ. Then

so this bound is also met with equality.

10.5 Notes and References

Authentication codes were invented in 1974 by Gilbert, MacWilliams, and Sloane [GMS74]. Much of the
theory of authentication codes was developed by Simmons, who proved many fundamental results in the
area. Two useful survey articles by Simmons are [SI92] and [SI88]. Another good survey is Massey
[MA86].

The connections between orthogonal arrays and authentication codes has been addressed by several
researchers. The treatment here is based on three papers by Stinson [ST88], [ST90] and [ST92]. Orthogonal
arrays have been studied for over 45 years by researchers in statistics and in combinatorial design theory.
For example, the bound in Theorem 10.9 was first proved by Plackett and Berman in 1945 in [PB45].
Many interesting results on orthogonal arrays can be found in various textbooks on combinatorial design
theory such as Beth, Jungnickel, and Lenz [BJL85].

Finally, the use of entropy techniques in the study of authentication codes was introduced by Simmons.
The bound of Theorem 10.13 was first proved in Simmons [SI85]; a proof of Theorem 10.14 can be found
in Walker [WA90].

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Exercises

10.1 Compute Pd0 and Pd1 for the following authentication code, represented in matrix form:

The probability distributions on and are as follows:

What are the optimal impersonation and substitution strategies?

10.2 We have seen a construction for an orthogonal array OA(p, p, 1) when p is prime. Prove that
this OA(p, p, 1) can always be extended by one extra column to form an OA(p, p + 1, 1). Illustrate
your construction in the case p = 5.
10.3 Suppose A is an OA(n1 , k, λ1) on symbol set {1, �, n1} and suppose B is an OA(n2 , k, λ2)

on symbol set {1, �, n2}. We construct C, an OA(n1n2< /SUB>, k, λ1 λ2) on symbol set {1, �, n1} × {1, �,

n2}, as follows: for each row r1 = (x1, �, xk) of A and for each row s1 = (y1, �, yk) of B, define a row

of C. Prove that C is indeed an OA(n1 n2, k, λ1 λ2).

10.4 Construct an orthogonal array OA(3, 13, 3).
10.5 Write a computer program to compute H(K), H(K |M) and H(K |M 2) for the authentication code from Exercise 10.1. The
probability distribution on sequences of two sources is as follows:

Compare the entropy bounds for Pd0 and Pd1 with the actual values you computed in Exercise 10.1.

HINT To compute , use Bayes’ formula

We already know how to calculate . To compute , write m = (s, a) and then observe that

 if ek (s) = a, and otherwise.

To compute , use Bayes’ formula

 can be calculated as follows: write m1 = (s1, a1) and m2 = (s2, a2). Then

(Note the similarity with the computation of p(m).) To compute , observe that

 and ek (s2) = a2, and

 , otherwise.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Chapter 11
Secret Sharing Schemes

11.1 Introduction: The Shamir Threshold Scheme

In a bank, there is a vault which must be opened every day. The bank employs three senior tellers, but they
do not trust the combination to any individual teller. Hence, we would like to design a system whereby
any two of the three senior tellers can gain access to the vault, but no individual teller can do so. This
problem can be solved by means of a secret sharing scheme, the topic of this chapter.

Here is an interesting "real-world" example of this situation: According to Time-Magazine1 , control of
nuclear weapons in Russia involves a similar "two-out-of-three" access mechanism. The three parties
involved are the President, the Defense Minister and the Defense Ministry.

1 Time Magazine, May 4, 1992, p. 13

We first study a special type of secret sharing scheme called a threshold scheme. Here is an informal
definition.

DEFINITION 11.1 Let t, w be positive integers, t ≤ w. A (t, w) -threshold scheme is a method of sharing
a key K among a set of w participants (denoted by), in such a way that any t participants can compute
the value of K, but no group of t - 1 participants can do so.

Note that the examples described above are (2, 3)-threshold schemes.

The value of K is chosen by a special participant called the dealer. The dealer is denoted by D and we

assume . When D wants to share the key K among the participants in , he gives each
participant some partial information called a share. The shares should be distributed secretly, so no
participant knows the share given to another participant.

At a later time, a subset of participants will pool their shares in an attempt to compute the key
K. (Alternatively, they could give their shares to a trusted authority which will perform the computation for
them.) If |B| ≥ t, then they should be able to compute the value of K as a function of the shares they
collectively hold; if |B| < t, then they should not be able to compute K.

Figure 11.1 The Shamir (t, w)-threshold scheme in

We will use the following notation. Let

be the set of w participants. is the key set (i.e., the set of all possible keys); and is the share set (i.e.,
the set of all possible shares).

In this section, we present a method of constructing a (t, w)-threshold scheme, called the Shamir
Threshold Scheme, which was invented in 1979. Let where p ≥ w + 1 is prime. Also, let

 . Hence, the key will be an element of , as will be each share given to a participant. The
Shamir threshold scheme is presented in Figure 11.1. In this scheme, the dealer constructs a random
polynomial a(x) of degree at most t - 1 in which the constant term is the key, K. Every participant Pi

obtains a point (xi , yi) on this polynomial.

Let’s look at how a subset B of t participants can reconstruct the key. This is basically accomplished by
means of polynomial interpolation. We will describe a couple of methods of doing this.

Suppose that participants want to determine K. They know that

1 ≤ j ≤ t, where is the (secret) polynomial chosen by D. Since a(x) has degree at most t -
1, a(x) can be written as

where the coefficients a0 , . . . , at-1 are unknown elements of , and a0 = K is the key. Since

 , 1 ≤ j ≤ t, B can obtain t linear equations in the t unknowns a0 , . . . , at-1 , where all

arithmetic is done in . If the equations are linearly independent, there will be a unique solution, and a0

will be revealed as the key.

Here is a small example to illustrate.

Example 11.1

Suppose that p = 17, t = 3, and w = 5; and the public x-co-ordinates are xi = i, 1 ≤ i ≤ 5. Suppose that B =

{ P1 , P3 , P5} pool their shares, which are respectively 8, 10, and 11. Writing the polynomial a(x) as

and computing a(1), a(3) and a(5), the following three linear equations in are obtained:

This system does have a unique solution in . The key is
therefore K = a0 = 13.

Clearly, it is important that the system of t linear equations has a unique solution, as in Example 11.1. We
show now that this is always the case. In general, we have

1 ≤ j ≤ t, where

and

The system of linear equations (in) is the following:

This can be written in matrix form as follows:

Now, the coefficient matrix A is a so-called Vandermonde matrix. There is a well-known formula for the
determinant of a Vandermonde matrix, namely

Recall that the xi ’s are all distinct, so no term in this product is equal to zero. The product is

computed in , where p is prime, which is a field. Since the product non-zero terms in a field is always
non-zero, we have that det A ≠ 0. Since the determinant of the coefficient matrix is non-zero, the system

has a unique solution over the field . This establishes that any group of t participants will be able to
recover the key in this threshold scheme.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

What happens if a group of t - 1 participants attempt to compute K? Proceeding as above, they will obtain
a system of t - 1 equations in t unknowns. Suppose they hypothesize a value y0 for the key. Since the key

is a0 = a(0), this will yield a tth equation, and the coefficient matrix of the resulting system of t equations

in t unknowns will again be a Vandermonde matrix. As before, there will be a unique solution. Hence, for
every hypothesized value y0 of the key, there is a unique polynomial ay0(x) such that

1 ≤ j ≤ t - 1, and such that

Hence, no value of the key can be ruled out, and thus a group of t - 1 participants can obtain no
information about the key.

We have analyzed the Shamir scheme from the point of view of solving systems of linear equations over

 . There is an alternative method, based on the Lagrange interpolation formula for polynomials. The
Lagrange interpolation formula is an explicit formula for the (unique) polynomial a(x) of degree at most t
that we computed above. The formula is as follows:

It is easy to verify the correctness of this formula by substituting : all terms in the summation

vanish except for the jth term, which is . Thus, we have a polynomial of degree at most t - 1 which

contains the t ordered pairs , 1 ≤ j ≤ t. We already proved above that this polynomial is unique,
so the interpolation formula does yield the correct polynomial.

A group B of t participants can compute a(x) by using the interpolation formula. But a simplification is
possible, since the participants in B do not need to know the whole polynomial a(x). It is sufficient for
them to compute the constant term K = a(0). Hence, they can compute the following expression, which is
obtained by substituting x = 0 into the Lagrange interpolation formula:

Suppose we define

1 ≤ j ≤ t. (Note that these values bj can be precomputed, if desired, and their values are not secret.) Then
we have

Hence, the key is a linear combination of the t shares.

To illustrate this approach, let’s recompute the key from Example 11.1.

Example 11.1 (Con’t.)

The participants {P 1 , P3 , P5} can compute b1 , b2 , and b3 according to the formula given above. For

example, they would obtain

Similarly, b2 = 3 and b3 = 11. Then, given shares 8, 10, and 11 (respectively), they would obtain

as before.

The last topic of this section is a simplified construction for threshold schemes in the special case w = t.

This construction will work for any key set with . (For this scheme, it is not

required that m be prime, and it is not necessary that m ≥ w + 1.) If D wants to share the key ,
he carries out the protocol of Figure 11.2.

Figure 11.2 A (t, t)-threshold scheme in

Observe that the t participants can compute K by the formula

Can t - 1 participants compute K? Clearly, the first t - 11 participants cannot do so, since they receive t - 1

independent random numbers as their shares. Consider the t - 1 participants in the set , where 1 ≤ i
≤ t - 1. These t - 1 participants possess the shares

and

By summing their shares, they can compute K - yi . However, they do not know the random value yi , and

hence they have no information as to the value of K. Consequently, we have a (t, t)-threshold scheme.

11.2 Access Structures and General Secret Sharing

In the previous section, we desired that any t of the w participants should be able to determine the key. A
more general situation is to specify exactly which subsets of participants should be able to determine the
key and which should not. Let Γ be a set of subsets of ; the subsets in Γ are those subsets of
participants that should be able to compute the key. Γ is called an access structure and the subsets in Γ are
called authorized subsets.

Let be the key set and let be the share set. As before, when a dealer D wants to share a key
 , he will give each participant a share from . At a later time a subset of participants will

attempt to determine K from the shares they collectively hold.

DEFINITION 11.2 A perfect secret sharing scheme realizing the access structure Γ is a method of
sharing a key K among a set of w participants (denoted by), in such a way that the following two
properties are satisfied:

1. If an authorized subset of participants, pool their shares, then they can determine the
value of K.

2. If an unauthorized subset of participants pool their shares, then they can determine
nothing about the value of K.

Observe that a (t, w)-threshold scheme realizes the access structure

Such an access structure is called a threshold access structure. We showed in the previous section that the
Shamir scheme is a perfect scheme realizing the threshold access structure.

We study the unconditional security of secret sharing schemes. That is, we do not place any limit on the
amount of computation that can be performed by an unauthorized subset of participants.

Suppose that B ∈ Γ and . Suppose the subset C wants to determine K. Since B is an
authorized subset, it can already determine K. Hence, the subset C can determine K by ignoring the shares
of the participants in C\B. Stated another way, a superset of an authorized set is again an authorized set.
What this says is that the access structure should satisfy the monotone property:

In the remainder of this chapter, we will assume that all access structures are monotone.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

If Γ is an access structure, then B ∈ Γ is a minimal authorized subset if A ∉ Γ whenever
. The set of minimal authorized subsets of Γ is denoted Γ0 and is called the basis of Γ. Since Γ consists of

all subsets of that are supersets of a subset in the basis Γ0 , Γ is determined uniquely as a function of

Γ0 . Expressed mathematically, we have

We say that Γ is the closure of Γ0 and write

Example 11.2

Suppose and

Then

Conversely, given this access structure Γ, it is easy to see that Γ0 consists of the minimal subsets in Γ.

In the case of a (t, w)-threshold access structure, the basis consists of all subsets of (exactly) t participants.

11.3 The Monotone Circuit Construction

In this section, we will give a conceptually simple and elegant construction due to Benaloh and Leichter
that shows that any (monotone) access structure can be realized by a perfect secret sharing scheme. The
idea is to first build a monotone circuit that "recognizes" the access structure, and then to build the secret
sharing scheme from the description of the circuit. We call this the monotone circuit construction.

Suppose we have a boolean circuit C, with w boolean inputs, x1 , . . . , xw (corresponding to the w

participants P1 , . . . , Pw), and one boolean output, y. The circuit consists of "or" gates and "and" gates;

we do not allow any "not" gates. Such a circuit is called a monotone circuit. The reason for this

nomenclature is that changing any input x i from "0" (false) to "1" (true) can never result in the output y

changing from "1" to "0." The circuit is permitted to have arbitrary fan-in, but we require fan-out equal to
1 (that is, a gate can have arbitrarily many input wires, but only one output wire).

If we specify boolean values for the w inputs of such a monotone circuit, we can define

i.e., the subset of corresponding to the true inputs. Suppose C is a monotone circuit, and define

where C (x1 , . . . , xw) denotes the output of C, given inputs x1 , . . . , xw . Since the circuit C is monotone,

it follows that Γ(C) is a monotone set of subsets of .

It is easy to see that there is a one-to-one correspondence between monotone circuits of this type and
boolean formulae which contain the operators ("and") and ("or"), but do not contain any negations.

If Γ is a monotone set of subsets of , then it is easy to construct a monotone circuit C such that Γ(C) =
Γ. One way to do this is as follows. Let Γ0 be the basis of Γ. Then construct the disjunctive normal form

boolean formula

In Example 11.2, where

we would obtain the boolean formula

Each clause in the boolean formula corresponds to an "and" gate of the associated monotone circuit; the
final disjunction corresponds to an "or" gate. The number of gates in the circuit is |Γ0 | + 1.

Suppose C is any monotone circuit that recognizes Γ (note that C need not be the circuit described above.)
We describe an algorithm which enables D, the dealer, to construct a perfect secret sharing scheme that
realizes Γ. This scheme will use as a building block the (t, t)-schemes constructed in Figure 11.2. Hence,

we take the key set to be for some integer m.

The algorithm proceeds by assigning a value to every wire W in the circuit C. Initially, the
output wire Wout of the circuit is assigned the value K, the key. The algorithm iterates a number of times,

until every wire has a value assigned to it. Finally, each participant P i is given the list of values f(W) such

that W is an input wire of the circuit which receives input x i .

A description of the construction is given in Figure 11.3. Note that, whenever a gate G is an "and" gate
having (say) t input wires, we share the "key" f(WG) among the input wires using a (t, t)-threshold

scheme.

Let’s carry out this procedure for the access structure of Example 11.2, using the circuit corresponding to
the boolean formula (11.1).

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Example 11.3

We illustrate the construction in Figure 11.4. Suppose K is the key. The value K is given to each of the
three input wires of the final "or" gate. Next, we consider the "and" gate corresponding to the clause

 . The three input wires are assigned values a1 , a2 , K - a1 - a2 , respectively, where all

arithmetic is done in . In a similar way, the three input wires corresponding to are

assigned values b1 , b2 , K - b1 - b2 . Finally, the two input wires corresponding to are assigned

values c i , K - c1 . Note that a1 , a2 , b1 , b2 and c1 are all independent random values in . If we look

at the shares that the four participants receive, we have the following:

1. P1 receives a 1 , b1 .

2. P2 receives a2 , c1 .

3. P3 receives b2 , K - c1 .

4. P4 receives K - a1 - a2 , K - b1 - b2 .

Figure 11.3 The monotone circuit construction

Thus, every participant receives two elements of as his or her share.

Let’s prove that the scheme is perfect. First, we verify that each basis subset can compute K. The
authorized subset {P1 , P2 , P4} can compute

The subset {P1 , P3 , P4} can compute

Finally, the subset {P2 , P3} can compute

Figure 11.4 A monotone circuit

Thus any authorized subset can compute K, so we turn our attention to the unauthorized subsets. Note that
we do not need to look at all the unauthorized subsets. For, if B1 and B2 are both unauthorized subsets,

 , and B2 cannot compute K, then neither can B1 compute K. Define a subset to be a

maximal unauthorized subset if B1 ∈ Γ for all . It follows that it suffices to verify

that none of the maximal unauthorized subsets can determine any information about K. Here, the maximal
unauthorized subsets are

In each case, it is easy to see that K cannot be computed, either because some necessary piece of "random"
information is missing, or because all the shares possessed by the subset are random. For example, the
subset {P1 , P2} possesses only the random values a1 , b1 , a2 , c1 . As another example, the subset {P3 ,

P4} possesses the shares b2 , K - c1 , K - a1 - a2 , K - b1 - b2 . Since the values of c1 , a1 , a2 , and b1 are

unknown random values, K cannot be computed. In each possible case, an unauthorized subset has no
information about the value of K.

We can obtain a different scheme realizing the same access structure by using a different circuit. We
illustrate by returning again to the access structure of Example 11.2.

Example 11.4

Suppose we convert the formula (11.1) to the so-called conjunctive normal form:

(The reader can verify that this formula is equivalent to the formula (11.1).) If we implement the scheme
using the circuit corresponding to formula (11.2), then we obtain the following:

1. P1 receives a1 , a2 .

2. P2 receives a1 , a3 , a4 .

3. P3 receives a2 , a3 , K - a1 - a2 - a3 - a4 .

4. P4 receives a4 , K - a1 - a2 - a3 - a4 .

We leave the details for the reader to check.

We now prove that the monotone circuit construction always produces a perfect secret sharing scheme.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

THEOREM 11.1

Let C be any monotone boolean circuit. Then the monotone circuit construction yields a perfect secret
sharing scheme realizing the access structure Γ(C).

PROOF We proceed by induction on the number of gates in the circuit C. If C contains only one gate, then
the result is fairly trivial: If C consists of one "or" gate, then every participant will be given the key. This
scheme realizes the access structure consisting of all non-empty subsets of participants. If C consists of a
single "and" gate with t inputs, then the scheme is the (t, t)-threshold scheme presented in Figure 11.2.

Now, as an induction assumption, suppose that there is an integer j > 1 such that, for all circuits C with
fewer than j gates, the construction produces a scheme that realizes Γ(C). Let C be a circuit on j gates.
Consider the "last" gate, G, in the circuit; again, G could be either an "or" gate or an "and" gate. Let’s first
consider the case where G is an "or" gate. Denote the input wires to G by W i , 1 ≤ i ≤ t. These t input wires

are the outputs of t sub-circuits of C, which we denote C i , 1 ≤ i ≤ t. Corresponding to each C i , we have a

(sub-)scheme that realizes the access structure ΓCi , by induction. Now, it is easy to see that

Since every W i is assigned the key K, it follows that the scheme realizes Γ(C), as desired.

The analysis is similar if G is an "and" gate. In this situation, we have

Since the key K is shared among the t wires W i using a (t, t)-threshold scheme, it follows again that the

scheme realizes Γ(C). This completes the proof.

Of course, when an authorized subset, B, wants to compute the key, the participants in B need to know the
circuit used by D to distribute shares, and which shares correspond to which wires of the circuit. All this
information will be public knowledge. Only the actual values of the shares are secret. The algorithm for
reconstructing the key involves combining shares according to the circuit, with the stipulation that an
"and" gate corresponds to summing the values on the input wires modulo m (provided these values are all
known), and an "or" gate involves choosing the value on any input wire (with the understanding that all
these values will be identical).

11.4 Formal Definitions

In this section, we will give formal mathematical definitions of a (perfect) secret sharing scheme. We
represent a secret sharing scheme by a set of distribution rules. A distribution rule is a function

A distribution rule represents a possible distribution of shares to the participants, where f(P i) is the share

given to P i , 1 ≤ i ≤ w.

Now, for each , let be a set of distribution rules. will be distribution rules corresponding

to the key having the value K. The sets of distribution rule are public knowledge.

Next, define

 is the complete set of distribution rules of the scheme. If is the value of the key that D wishes

to share, then D will choose a distribution rule , and use it to distribute shares.

This is a completely general model in which we can study secret sharing schemes. Any of our existing
schemes can be described in this setting by determining the possible distribution rules which the scheme
will use. The fact that this model is mathematically precise makes it easier to give definitions and to
present proofs.

It is useful to develop conditions which ensure that a set of distribution rules for a scheme realizes a
specified access structure. This will involve looking at certain probability distributions, as we did
previously when studying the concept of perfect secrecy. To begin with, we suppose that there is a

probability distribution on . Further, for every , D will choose a distribution rule in

 according to a probability distribution .

Given these probability distributions, it is straightforward to compute the probability distribution on the
list of shares given to any subset of participants, B (authorized or unauthorized). This is done as follows.

Suppose . Define

where the function f|B denotes the restriction of the distribution rule f to B. That is, is

defined by

for all P i ∈ B. Thus, is the set of possible distributions of shares to the participants in B.

The probability distribution on , denoted , is computed as follows: Let . Then

Also

for all and .

Here now is a formal definition of a perfect secret sharing scheme.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

DEFINITION 11.3 Suppose Γ is an access structure and is a set of distribution rules.

The is a perfect secret sharing scheme realizing the access structure Γ provided that the following two
properties are satisfied:

1. For any authorized subset of participants , there do not exist two distribution rules

 and with K ≠ K’, such that f|B = f’| B . (That is, any distribution of shares to

the participants in an authorized subset B determines the value of the key.)

2. For any unauthorized subset of participants and for any distribution of shares

 for every . (That is, the conditional probability

distribution on , given a distribution of shares fB to an unauthorized subset B, is the same as the

a priori probability distribution on . In other words, the distribution of shares to B provides no
information as to the value of the key.)

Figure 11.5 Distribution rules for a secret sharing scheme

Observe that the second property in Definition 11.3 is very similar to the concept of perfect secrecy; this
similarity is why the resulting secret sharing scheme is termed "perfect."

Note that the probability can be computed from probability distributions exhibited above using
Bayes’ theorem:

Let us now illustrate these definitions by looking at a small example.

Example 11.5

We will present the distribution rules for the scheme constructed in Example 11.4 when it is implemented

in . Each of and contains 16 equiprobable distribution rules. For conciseness, we replace a

binary k-tuple by an integer between 0 and 2k - 1. If this is done, then and are as depicted in
Figure 11.5, where each row represents a distribution rule.

This yields a perfect scheme for any probability distribution on the keys. We will not perform all the
verifications here, but we will look at a couple of typcial cases to illustrate the use of the two properties in
Definition 11.3.

The subset {P2 , P3} is an authorized subset. Thus the shares that P2 and P3 receive should (together)

determine a unique key. It can easily be checked that any distribution of shares to these two participants

occurs in a distribution rule in at most one of the sets and . For example, if P2 has the share 3 and

P3 has the share 6, then the distribution rule must be the eighth rule in and thus the key is 0.

On the other hand, B = {P1 , P2} is an unauthorized subset. It is not too hard to see that any distribution of

shares to these two participants occurs in exactly one distribution rule in and in exactly one distribution

rule in . That is,

for any and for K = 0, 1. Next, we compute

Now, we use Bayes’ theorem to compute :

so the second property is satisfied for this subset B.

Similar computations can be performed for other authorized and unauthorized sets, and in each case the
appropriate property is satisfied. Hence we have a perfect secret sharing scheme.

11.5 Information Rate

The results of Section 11.3 prove that any monotone access structure can be realized by a perfect secret
sharing scheme. We now want to consider the efficiency of the resulting schemes. In the case of a (t,
w)-threshold scheme, we can construct a circuit corresponding to the disjunctive normal form boolean

formula which will have gates. Each participant will receive elements of as his or
her share. This seems very inefficient, since a Shamir (t, w)-threshold scheme enables a key to be shared
by giving each participant only one "piece" of information.

In general, we measure the efficiency of a secret sharing scheme by the information rate, which we define
now.

DEFINITION 11.4 Suppose we have a perfect secret sharing scheme realizing an access structure Γ.
The information rate for Pi is the ratio

(Note that denotes the set of possible shares that Pi might receive; of course The

information rate of the scheme is denoted by ρ and is defined as

The motivation for this definition is as follows. Since the key K comes from a finite set , we can think

of K as being represented by a bit-string of length , by using a binary encoding, for example. In a

similar way, a share given to Pi can be represented by a bit-string of length . Intuitively, Pi

receives bits of information (in his or her share), but the information content of the key is

 bits. Thus ρ i is the ratio of the number of bits in a share to the number of bits in the key.

Example 11.6

Let’s look at the two schemes from Section 11.2. The scheme produced in Example 11.3 has

However, in Example 11.4, we get a scheme with

Hence, the first implementation is preferable.

In general, if we construct a scheme from a circuit C using the monotone circuit construction, then the
information rate can be computed as indicated in the following theorem.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

THEOREM 11.2

Let C be any monotone boolean circuit. Then there is a perfect secret sharing scheme realizing the access
structure Γ(C) having information rate

where ri denotes the number of input wires to C carrying the input xi .

With respect to threshold access structures, we observe that the Shamir scheme will have information rate
1, which we show below is the optimal value. In contrast, an implementation of a (t, w)-threshold scheme

using a disjunctive normal form boolean circuit will have information rate , which is much lower
(and therefore inferior) if 1 < t < w.

Obviously, a high information rate is desirable. The first general result we prove is that ρ ≤ 1 in any
scheme.

THEOREM 11.3

In any perfect secret sharing scheme realizing an access structure Γ, ρ ≤ 1.

PROOF Suppose we have a a perfect secret sharing scheme that realizes the access structure Γ. Let B ∈

Γ0 and choose any participant Pj ∈ B. Define B′ = B\{ Pj }. Let . Now, B′ ∉ Γ, so the

distribution of shares g|B′ provides no information about the key. Hence, for each , there is a

distribution rule such that gK |B′< /SMALL> = g|B′ . Since B ∈ Γ, it must be the case that gK (P j) ≠ gK ′ (P j) if

K ≠ K′. Hence, and thus ρ ≤ 1.

Since ρ = 1 is the optimal situation, we refer to such a scheme an ideal scheme. The Shamir schemes are ideal schemes. In the next section,
we present a construction for ideal schemes that generalizes the Shamir schemes.

11.6 The Brickell Vector Space Construction
In this section, we present a construction for certain ideal schemes known as the Brickell vector space construction.

Suppose Γ is an access structure, and let denote the vector space of all d-tuples over , where p is prime and d ≥ 2. Suppose there
exists a function

which satisfies the property

Figure 11.6 The Brickell scheme

In other words, the vector (1, 0, . . . , 0) can be expressed as a linear combination of the vectors in the set {φ(P i) : P i ∈ B} if and only if B

is an authorized subset.

Now, suppose there is a function φ that satisfies Property (11.3). (In general, finding such a function is often a matter of trial and error,
though we will see some explicit constructions of suitable functions φ for certain access structures a bit later.) We are going to construct an

ideal secret sharing scheme with . The distribution rules of the scheme are as follows: for every vector

 , define a distribution rule , where

for every , and the operation "⋅" is the inner product modulo p.

Note that each contains pd-1 distribution rules. We will suppose that each probability distribution is equiprobable:

 for every . The Brickell scheme is presented in Figure 11.6

We have the following result.

THEOREM 11.4

Suppose φ satisfies Property (11.3). Then the sets of distribution rules , comprise an ideal scheme that realizes Γ.

PROOF First, we will show that if B is an authorized subset, then the participants in B can compute K. Since

we can write

where each . Denote by si the share given to P i . Then

where is an unknown vector chosen by D and

By the linearity of the inner product operation,

Thus, it is a simple matter for the participants in B to compute

What happens if B is not an authorized subset? Denote by e the dimension of the subspace 〈φ(P i) : P i ∈ B〉 (note that e ≤ |B|). Choose any

 , and consider the system of equations:

This is a system of linear equations in the d unknowns a1, . . . , ad. The coefficient matrix has rank e + 1, since

Provided the system of equations is consistent, the solution space has dimension d - e - 1 (independent of the value of K). It will then follow

that there are precisely pd-e-1 distribution rules in each that are consistent with any possible distribution of shares to B. By a similar

computation as was performed in Example 11.5, we see that for every , where fB(P i) = si for all

P i ∈ B.

Why is the system consistent? The first |B| equations are consistent, since the vector chosen by D is a solution. Since

(as mentioned above) the last equation is consistent with the first |B| equations. This completes the proof.

It is interesting to observe that the Shamir (t, w)-threshold scheme is a special case of the vector space construction. To see this, define d = t
and let

for 1 ≤ i ≤ w, where x i is the x-coordinate given to P i . The resulting scheme is equivalent to the Shamir scheme; we leave the details to the

reader to check.

Here is another general result that is easy to prove. It concerns access structures that have as a basis a collection of pairs of participants that
forms a complete multipartite graph. A graph G = (V, E) with vertex set V and edge set E is defined to be a complete multipartite graph if

the vertex set V can be partitioned into subsets such that {x, y} ∈ E if and only if x ∈ V i , y ∈ V j , where i ≠ j. The sets

V i are called parts. The complete multipartite graph is denoted by if . A complete

multipartite graph K1, . . . , 1 (with parts) is in fact a complete graph and is denoted .

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

THEOREM 11.5

Suppose G = (V, E) is a complete multipartite graph. Then there is an ideal scheme realizing the access
structure cl (E) on participant set V.

PROOF Let be the parts of G. Let be distinct elements of , where

 . Let d = 2. For every participant v ∈ V i , define φ(v) = (x i , 1).

It is straightforward to verify Property (11.3). By Theorem 11.4, we have an ideal scheme.

To illustrate the application of these constructions, we will consider the possible access structures for up to
four participants. Note that it suffices to consider only the access structures in which the basis cannot be
partitioned into two non-empty subsets on disjoint participant sets. (For example, Γ0 = {{ P1 , P2}, { P3 ,

P4}} can be partitioned as {{P1 , P2}} ∪ {{ P3 , P4}} so we do not consider it.) We list the

non-isomorphic access structures of this type on two, three, and four participants in Table 11.1 (the
quantities ρ* are defined in Section 11.7).

Of these 18 access structures, we can already obtain ideal schemes for ten of them using the constructions
we have at our disposal now. These ten access structures are either threshold access structures or have a
basis which is a complete multipartite graph, so Theorem 11.5 can be applied. One such access structure is
9, whose basis is the complete multipartite graph K1,1,2. We illustrate in the following example.

Example 11.7

For access structure # 9, take d = 2, p ≥ 3, and define φ as follows:

 w subsets in Γ 0 ρ* comments

1. 2 P 1P 2< /SMALL> 1 (2, 2)-threshold

2. 3 P 1P 2< /SMALL> , P 2P 3 1 Γ 0 ≅ K 1,2

3. 3 P 1P 2< /SMALL> , P 2P 3, P 1P 3 1 (2, 3)-threshold

4. 3 P 1P 2< /SMALL>P 3 1 (3, 3)-threshold

5. 4 P 1P 2< /SMALL> , P 2P 3, P 3P 4 2/3

6. 4 P 1P 2< /SMALL> , P 1P 3, P 1P 4 1 Γ 0 ≅ K 1,3

7. 4 P 1P 2< /SMALL> , P 1P 4, P 2P 3, P 3P 4 1 Γ 0 ≅ K 2,2

8. 4 P 1P 2< /SMALL> , P 2P 3, P 2P 4, P 3P 4 2/3

9. 4 P 1P 2< /SMALL> , P 1P 3, P 1P 4, P 2P 3, P 2P 4 1 Γ 0 ≅ K 1,1,2

10. 4 P 1P 2< /SMALL> , P 1P 3, P 1P 4, P 2P 3, P 2P 4, P 3P 4 1 (2, 4)-threshold

11. 4 P 1P 2< /SMALL>P 3, P 1P 4 1

12. 4 P 1P 3P 4, P 1P 2, P 2P 3 2/3

13. 4 P 1P 3< /SMALL>P 4,P 1< /SMALL>P 2, P 2P 3, P 2P 4 2/3

14. 4 P 1P 2< /SMALL>P 3, P 1P 2< I>P4 1

15. 4 P 1P 2< /SMALL>P 3, P 1P 2< I>P4, P 3P 4 1

16. 4 P 1P 2< /SMALL>P 3, P 1P 2< I>P4, P 1P 3< /SUB>P4 1

17. 4 P 1P 2< /SMALL>P 3, P 1P 2< I>P4, P 1P 3< I>P4, P 2P 3< I>P4 1 (3, 4)-threshold

18. 4 P 1P 2< /SMALL>P 3P 4< /SMALL> 1 (4, 4)-threshold

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Applying Theorem 11.5, an ideal scheme results.

Eight access structures remain to be considered. It is possible to use ad hoc applications of the vector
space construction to construct ideal schemes for four of these: # 11, # 14, # 15 and # 16. We present the
constructions for # 11 and # 14 here.

Example 11.8

For access structure # 11, take d = 3, p ≥ 3, and define φ as follows:

First, we have

Also,

Hence,

and

Now, it suffices to show that

if B is a maximal unauthorized subset. There are three such subsets B to be considered: {P1 , P2}, { P1 ,

P3}, and {P2 , P3 , P4}. In each case, we need to establish that a system of linear equations has no

solution. For example, suppose that

where . This is equivalent to the system

The system is easily seen to have no solution. We leave the other two subsets B for the reader to consider.

Example 11.9

For access structure # 14, take d = 3, p ≥ 2 and define φ as follows:

Again, Property (11.3) is satisfied and hence an ideal scheme results.

Constructions of ideal schemes for the access structures # 15 and # 16 are left as exercises. In the next
section, we will show that the remaining four access structures cannot be realized by ideal schemes.

11.7 An Upper Bound on the Information Rate

Four access structures remain to be considered: # 5, # 8, # 12, and # 13. We will see in this section that in
each case, there does not exist a scheme having information rate ρ > 2/3.

Denote by ρ* = ρ* (Γ) the maximum information rate for any perfect secret sharing scheme realizing a
specified access structure Γ. The first result we present is an entropy bound that will lead to an upper

bound on ρ* for certain access structures. We have defined a probability distribution on ; the

entropy of this probability distribution is denoted H(K). We have also denoted by the probability

distribution on the shares given to a subset . We will denote the entropy of this probability

distribution by H(B).

We begin by giving yet another definition of perfect secret sharing schemes, this time using the language
of entropy. This definition is equivalent to Definition 11.3.

DEFINITION 11.5 Suppose Γ is an access structure and is a set of distribution rules. Then is a
perfect secret sharing scheme realizing the access structure Γ provided that the following two properties
are satisfied:

1. For any authorized subset of participants

2. For any unauthorized subset of participants .

We will require several entropy identities and inequalities. Some of these results were given in Section 2.3
and the rest are proved similarly, so we state them without proof in the following Lemma.

LEMMA 11. 6

Let X, Y and Z be random variables. Then the following hold:

We next prove two preliminary entropy lemmas for secret sharing schemes.

LEMMA 11.7

Suppose Γ is an access structure and is a set of distribution rules realizing Γ.

Suppose B ∉ Γ and , where . Then

PROOF From Equations 11.5 and 11.6, we have that

and

so

Since, by Property 2 of Definition 11.5, we have

and, by Property 1 of Definition 11.5, we have

the result follows.

LEMMA 11.8

Suppose Γ is an access structure and is a set of distribution rules realizing Γ. Suppose ,

where . Then H (A|B) = H (A|BK).

PROOF As in Lemma 11.7, we have that

Since

and

the result follows.

We now prove the following important theorem.

THEOREM 11.9

Suppose Γ is an access structure such that

and

Let be any perfect secret sharing scheme realizing Γ. Then H (XY) ≥ 3H (K).

PROOF We establish a sequence of inequalities:

H(K) = H(Y|WZ) - H(Y|WZK) by Lemma 11.7

≤ H(Y|WZ) by (11.7)

≤ H(Y|W) by (11.8)

= H(Y|WK) by Lemma 11.8

≤ H(XY |WK) by (11.9)

= H(X|WK) + H(Y|WXK) by (11.5)

≤ H(X|WK) + H(Y|XK) by (11.8)

= H(X|W) - H(K) + H(Y|X) - H(K) by Lemma 11.7

≤ H(X) - H(K) + H(Y|X) - H(K) by (11.7)

= H(XY) - 2H(K) by (11.4).

Hence, the result follows.

COROLLARY 11.10

Suppose that Γ is an access structure that satisfies the hypotheses of Theorem 11.9. Suppose the keys
are equally probable. Then ρ ≤ 2/3.

PROOF Since the keys are equiprobable, we have

Also, we have that

By Theorem 11.9, we have that

Hence it follows that

Now, by the definition of information rate, we have

and

It follows that

Hence, ρ ≤ 2/3.

For the access structures # 5, # 8, # 12, and # 13, the hypotheses of Theorem 11.9 are satisfied. Hence, ρ*
≤ 2/3 for these four access structures.

We also have the following result concerning ρ* in the case where the access structure has a basis Γ0

which is a graph. The proof involves showing that any connected graph which is not a multipartite graph
contains an induced subgraph on four vertices that is isomorphic to the basis of access structure # 5 or # 8.

If G = (V, E) is a graph with vertex set V and edge set E, and , then the induced subgraph
G[V1] is defined to be the graph (V1 , E1), where

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

THEOREM 11.11

Suppose G is a connected graph that is not a complete multipartite graph. Let Γ(G) be the access structure
that is the closure of E, where E is the edge set of G. Then ρ*(Γ(G)) ≤ 2/3.

PROOF We will first prove that any connected graph that is not a complete multipartite graph must
contain four vertices w, x, y, z such that the induced subgraph G[w, x, y, z] is isomorphic to either the basis
of access structure # 5 or # 8.

Let GC denote the complement of G. Since G is not a complete multipartite graph, there must exist three
vertices x, y, z such that xy, yz ∈ E(GC) and xz ∈ E(G). Define

where dG denotes the length of a shortest path (in G) between two vertices. Then d ≥ 2. Without loss of

generality, we can assume that d = dG (y, x) by symmetry.

Let

be a path in G, where yo = y. We have that

and

It follows that G[yd-2 , yd-1 , x, z] is isomorphic to the basis of access structure # 5 or # 8, as desired.

So, we can assume that we have found four vertices w, x, y, z such that the induced subgraph G[w, x, y, z]

is isomorphic to either the basis of access structure #5 or # 8. Now, let be any scheme realizing the
access structure Γ(G). If we restrict the domain of the distribution rules to {w, x, y, z}, then we obtain a

scheme realizing access structure # 5 or # 8. It is also obvious that . Since

 , it follows that . This completes the proof.

Since ρ* = 1 for complete multipartite graphs, Theorem 11.11 tells us that it is never the case that 2/3 < ρ*
< 1 for any access structure that is the closure of the edge set of a connected graph.

11.8 The Decomposition Construction

We still have four access structures in Table 11.1 to consider. Of course, we can use the monotone circuit
construction to produce schemes for these access structures. However, by this method, the best we can do
is to obtain information rate ρ = 1/2 in each case. We can get ρ = 1/2 in cases # 5 and # 12 by using a
disjunctive normal form boolean circuit. For cases # 8 and # 13, a disjunctive normal form boolean circuit
will yield ρ = 1/3, but other monotone circuits exist which allow us to attain ρ = 1/2. But in fact, it is
possible to construct schemes with ρ = 2/3 for each of these four access structures, by employing
constructions that use ideal schemes as building blocks in the construction of larger schemes.

We present a construction of this type called the "decomposition construction." First, we need to define an
important concept.

DEFINITION 11.6 Suppose Γ is an access structure having basis Γ0 . Let be a specified key set. An

ideal decomposition of Γ0 consists of a set {Γ1 , . . . Γn} such that the following properties are

satisfied:

1.
2.
3. for 1 ≤ k ≤ n, there exists an ideal scheme with key set , on the subset of participants

for the access structure having basis Γk .

Given an ideal -decomposition of an access structure Γ, we can easily construct a perfect secret sharing
scheme, as described in the following theorem.

THEOREM 11.12

Suppose Γ is an access structure having basis Γ0 . Let be a specified key set, and suppose {Γ1 ,...Γn<

/SUB>} is an ideal -decomposition of Γ. For every participant P i , define

Then there exists a perfect secret sharing scheme realizing Γ, having information rate ρ 1/R, where

PROOF For 1 ≤ k ≤ n, we have an ideal scheme realizing the access structure with basis Γk , with key set , having as its set of

distribution rules. We will construct a scheme realizing Γ, with key set . The set of distribution rules is constructed according to the

following recipe. Suppose D wants to share a key K. Then, for 1 ≤ k ≤ n, he chooses a random distribution rule and distributes

the resulting shares to the participants in .

We omit the proof that the scheme is perfect. However, it is easy to compute the information rate of the resulting scheme. Since each of the
component schemes is ideal, it follows that

for 1 ≤ i ≤ w. So

and

which is what we were required to prove.

Although Theorem 11.12 is useful, it is often much more useful to employ a generalization in which we have ideal -decompositions

of Γ0 instead of just one. Each of the decompositions is used to share a key chosen from . Thus, we build a scheme with key set

. The construction of the scheme and its information rate are as stated in the following theorem.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

THEOREM 11.13 (Decomposition Construction)

Suppose Γ is an access structure having basis Γ0 , and is an integer. Let be a specified key set,

and for 1 , suppose that is an ideal decomposition of Γ0 . Let

denote the participant set for the access structure Γ j,k . For every participant Pi , define

Then there exists a perfect secret sharing scheme realizaing Γ, having information rate where

PROOF For and 1 ≤ k ≤ n, we have an ideal scheme realizing the access structure with basis

Γ j,k , with key set , having as its set of distribution rules. We construct a scheme realizing Γ,

with key set . The set of distribution rules is constructed according to the following recipe.

Suppose D wants to share a key . Then for and 1 ≤ k ≤ n, he

chooses a random distribution rule and distributes the resulting shares to the participants in

The information rate can be computed in a manner similar to that of Theorem 11.12.

Let’s look at a couple of examples.

Example 11.10

Consider access structure # 5. The basis is a graph that is not a complete multi-partite graph. Therefore we
know from Theorem 11.11 that ρ* ≤ 2/3.

Let p be prime, and consider the following two ideal -decompositions:

where

and

where

Each decomposition consists of a K2 and a K1,2, so they are indeed ideal -decompositions. Either of

them yields a scheme with ρ = 1/2. However, if we "combine" them by applying Theorem 11.13 with

 , then we get a scheme with ρ = 2/3, which is optimal.

One implementation of the scheme, using Theorem 11.5, is as follows. D will choose four random

elements (independently) from , say b11, b12, b21, and b22. Given a key , D

distributes shares as follows:

1. P1 receives b11, b21.

2. P2 receives b11 + K1 , b12, b21 + K2 .

3. P3 receives b12 + K1 , b21, b22.

4. P4 receives b12, b22 + K2 .

(All arithmetic is performed in .)

Example 11.11

Consider access structure # 8. Again, ρ* ≤ 2/3 by Theorem 11.11, and two suitable ideal compositions will
yield an (optimal) scheme with ρ = 2/3.

Take for any prime p ≥ 3, and define two ideal -decompositions to be:

where

and

where

 consists of a K2 and a K3 , and consists of a K2 and a K1,3, so both are ideal

-decompositions. Applying Theorem 11.13 with , we get a scheme with ρ = 2/3.

One implementation, using Theorem 11.5, is as follows. D will choose four random elements

(independently) from , say b11, b12, b21, and b22. Given a key , D distributes

shares as follows:

1. P1 receives b11 + K1 , b21 + K2 .

2. P2 receives b11, b12, b21.

3. P3 receives b12 + K1 , b21 + K2 , b22.

4. P4 receives b12 + 2K1 , b21 + K2 , b22 + K2 .

(All arithmetic is performed in

To this point, we have explained all the information in Table 11.1 except for the values of ρ* for access
structures # 12 and # 13. These values arise from a more general version of the decomposition
construction which we do not describe here; see the notes below.

11.9 Notes and References

Threshold schemes were invented independently by Blakley [BL79] and Shamir [SH79]. Secret sharing for
general access structures was first studied in Ito, Saito, and Nishizeki [ISN87]; we based Section 11.2 on
the approach of Benaloh and Leichter [BL90]. The vector space construction is due to Brickell [BR89A].
The entropy bound of Section 11.7 is proved in Capocelli et al. [CDGV93], and some of the other material
from this section is found in Blundo et al. [BDSV93].

In this chapter, we have emphasized a linear-algebraic and combinatorial approach to secret sharing. Some
interesting connections with matroid theory can be found in Brickell and Davenport [BD91]. Secret
sharing schemes can also be constructed using geometric techniques. Simmons has done considerable
research in this direction; we refer to [SI92A] for an overview of geometric techniques in secret sharing.
Further discussion of these topics, as well as constructions for schemes having information rate 2/3 for

access structures # 12 and # 13, can be found in the expository paper by Stinson [ST92A].

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Exercises

11.1 Write a computer program to compute the key for a Shamir (t, w)-threshold scheme

implemented in . That is, given t public x-coordinates, x1 , x2 , . . . , x t , and t y-coordinates y1 , . . .

, y t , compute the resulting key. Use the Lagrange interpolation method, as it is easier to program.

(a) Test your program if p = 31847, t = 5 and w = 10, with the following

shares:

x1 = 413 y1 = 25439

x2 = 432 y2 = 14847

x3 = 451 y3 = 24780

x4 = 470 y4 = 5910

x5 = 489 y5 = 12734

x6 = 508 y1 = 12492

x7 = 527 y2 = 12555

x8 = 546 y3 = 128578

x9 = 565 y4 = 20806

x10 = 584 y5 = 21462

Verify that the same key is computed by using several different subsets of five shares.

(b) Having determined the key, compute the share that would be given to a participant with
x-coordinate 10000. (Note that this can be done without computing the whole secret polynomial
a(x).)

11.2 A dishonest dealer might distribute "bad" shares for a Shamir threshold scheme, i.e., shares for
which different t-subsets determine different keys. Given all w shares, we could test the consistency

of the shares by computing the key for every one of the t-subsets of participants, and verifying

that the same key is computed in each case. Can you describe a more efficient method of testing the
consistency of the shares?
11.3 For access structures having the following bases, use the monotone circuit construction to
construct a secret sharing scheme with information rate ρ = 1/3.

(a) Γ0 = {{ P1 , P2}, { P2 , P3}, { P2 , P4}, { P3 , P4}}.

(b) Γ0 = {{ P1 , P3 , P4}, { P1 , P2}, { P2 , P3},{ P2< /SUB>, P4}}.

(c) Γ0 = {{ P1, P2}, { P1, P3}, { P2, P3, P4}, { P2, P4, P5}, { P3, P4, P5}}.

11.4 Use the vector space construction to obtain ideal schemes for access structures having the following bases:
(a) Γ0 = {{ P1, P2, P3}, { P1, P2, P4}, { P3, P4}}.

(b) Γ0 = {{ P1, P2, P3}, { P1, P2, P4},{ P1< /SUB>, P3, P4}}.

(c) Γ0 = {{ P1, P2}, { P1, P3}, { P2, P3}, { P1, P4, P5}, { P2, P4, P5}}.

11.5 Use the decomposition construction to obtain schemes with specified information rates for access structures having the following bases:

(a) Γ0 = {{ P1, P3, P4}, { P1, P2}, { P2, P3}}, ρ = 3/5.

(b) Γ0 = {{ P1, P3, P4}, { P1, P2}, { P2, P3},{ P2< /SUB>, P4}}, ρ = 4/7.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Chapter 12
Pseudo-random Number Generation

12.1 Introduction and Examples

There are many situations in cryptography where it is important to be able to generate random numbers,
bit-strings, etc. For example, cryptographic keys are to be generated at random from a specified keyspace,
and many protocols require random numbers to be generated during their execution. Generating random
numbers by means of coin tosses or other physical processes is time-consuming and expensive, so in
practice it is common to use a pseudo-random bit generator (or PRBG). A PRBG starts with a short
random bit-string (a "seed") and expands it into a much longer "random-looking" bit-string. Thus a PRBG
reduces the amount of random bits that are required in an application.

More formally, we have the following definition.

DEFINITION 12.1 Let k, be positive integers such that (where is a specified

polynomial function of k). A - pseudo-random bit generator (more briefly, a -PRBG) is a

function that can be computed in polynomial time (as a function of k). The input

 is called the seed, and the output is called a pseudo-random bit-string.

The function f is deterministic, so the bit-string f(s0) is dependent only on the seed. Our goal is that the

pseudo-random bit-string f(s0) should "look like" truly random bits, given that the seed is chosen at

random. Giving a precise definition is quite difficult, but we will try to give an intuitive description of the
concept later in this chapter.

One motivating example for studying this type PRBG is as follows. Recall the concept of perfect secrecy
that we studied in Chapter 2. One realization of perfect secrecy is the One-time Pad, where the plaintext
and the key are both bitstrings of a specified length, and the ciphertext is constructed by taking the bitwise
exclusive-or of the plaintext and the key. The practical difficulty of the One-time Pad is that the key,
which must be randomly generated and communicated over a secure channel, must be as long as the
plaintext in order to ensure perfect secrecy. PRBGs provide a possible way of alleviating this problem.
Suppose Alice and Bob agree on a PRBG and communicate a seed over the secure channel. Alice and Bob
can then both compute the same string of pseudo-random bits, which will be used as a One-time Pad.
Thus the seed functions as a key, and the PBRG can be thought of as a keystream generator for a stream
cipher.

Figure 12.1 Linear Congruential Generator

We now present some well-known PRBGs to motivate and illustrate some of the concepts we will be
studying. First, we observe that a linear feedback shift register, as described in Section 1.1.7, can be
thought of as a PRBG. Given a k-bit seed, an LFSR of degree k can be used to produce as many as 2k - k -
1 further bits before repeating. The PRBG obtained from an LFSR is very insecure: we already observed
in Section 1.2.5 that knowledge of any 2k consecutive bits suffice to allow the seed to be determined, and
hence the entire sequence can be reconstructed by an opponent. (Although we have not yet defined
security of a PRBG, it should be clear that the existence of an attack of this type means that the generator
is insecure!)

Another well-known (but insecure) PRBG, called the Linear Congruential Generator, is presented in
Figure 12.1. Here is a very small example to illustrate.

Example 12.1

We can obtain a (5, 10)-PRBG by taking M = 31, a = 3 and b = 5 in the Linear Congruential Generator.
If we consider the mapping mod 31, then , and the other 30 residues are
permuted in a cycle of length 30, namely 0, 5, 20, 3, 14, 16, 22, 9, 1, 8, 29, 30, 2, 11, 7, 26, 21, 6, 23, 12,
10, 4, 17, 25, 18, 28, 27, 24, 15, 19. If the seed is anything other than 13, then the seed specifies a starting
point in this cycle, and the next 10 elements, reduced modulo 2, form the pseudo-random sequence.

seed sequence

0 1010001101

1 0100110101

2 1101010001

3 0001101001

4 1100101101

5 0100011010

6 1000110010

7 0101000110

8 1001101010

9 1010011010

10 0110010110

11 1010100011

12 0011001011

13 1111111111

14 0011010011

15 1010100011

16 0110100110

17 1001011010

18 0101101010

19 0101000110

20 1000110100

21 0100011001

22 1101001101

23 0001100101

24 1101010001

25 0010110101

26 1010001100

27 0110101000

28 1011010100

29 0011010100

30 0110101000

The 31 possible pseudo-random bit-strings produced by this generator are illustrated in Table 12.1.

We can use some concepts developed in earlier chapters to consrtruct PRBGs. For example, the output
feedback mode of DES, as described in Section 3.4.1, can be thought of as a PRBG; moreover, it appears
to be computationally secure.

Figure 12.2 RSA Generator

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Another approach in constructing very fast PRBGs is to combine LFSRs in some way that the output looks
less linear. One such method, due to Coppersmith, Krawczyk and Mansour, is called the Shrinking
Generator. Suppose we have two LFSRs, one of degree k1 and one of k2 . We will require a total of k1 +

k2 bits as our seed, in order to initialize both LFSRs. The first LFSR will produce a sequence of bits, say

a1 , a2 , �, and the second produces a sequence of bits b1 , b2 , �.Then we define a sequence of

pseudo-random bits z1 , z2 , � by the rule

where ik is the position of the kth 1 in the sequence b1 , b2 , �. These pseudo-random bits comprise a

subsequence of the bits produced by the first LFSR. This method of pseudo-random bit generation is very
fast and is resistent to various known attacks, but there does not seem to be any way to prove that it is
secure.

In the rest of this chapter, we will investigate PRBGs that can be proved to be secure given some plausible
computational assumption. There are PRBGs based on the fundamental problems of factoring (as it relates
to the RSA public-key cryptosystem) and the Discrete Logarithm problem. A PRBG based on the RSA
encryption function is shown in Figure 12.2, and a PRBG based on the Discrete Logarithm problem is
discussed in the exercises.

We now give an example of the RSA Generator.

i si z i

0 75634

1 31483 1

2 31238 0

3 51968 0

4 39796 0

5 28716 0

6 14089 1

7 5923 1

8 44891 1

9 62284 0

10 11889 1

11 43467 1

12 71215 1

13 10401 1

14 77444 0

15 56794 0

16 78147 1

17 72137 1

18 89592 0

19 29022 0

20 13356 0

Example 12.2

Suppose n = 91261 = 263 × 347, b = 1547, and s0 = 75364. The first 20 bits produced by the RSA
Generator are computed as shown in Table 12.2. Hence the bit-string resulting from this seed is

10000111011110011000.

12.2 Indistinguishable Probability Distributions

There are two main objectives of a pseudo-random number generator: it should be fast (i.e., computable in
polynomial time as a function of k) and it should be secure. Of course, these two requirements are often
conflicting. The PRBGs based on linear congruences or linear feedback shift registers are indeed very fast.
These PRBGs are quite useful in simulations, but they are very insecure for cryptographic applications.

Let us now try to make precise the idea of a PRBG being "secure." Intuitively, a string of km bits
produced by a PRBG should look "random." That is, it should be impossible in an amount of time that is

polynomial in k (equivalently, polynomial in) to distinguish a string of pseudo-random bits produced

by a PRBG from a string of truly random bits.

This motivates the idea of distinguishability of probability distributions. Here is a definition of this
concept.

DEFINITION 12.2 Suppose p0 and p1 are two probability distributions on the set of bit-strings

of length . Let be a probabilistic algorithm that runs in polynomial time (as a

function of). Let ε > 0. For j = 0, 1, define

We say that A is an ε-distinguisher of p0 and p1 provided that

and we say that p0 and p1 are ε-distinguishable if there exists an ε-distinguisher of p0 and p1 .

REMARK If A is a deterministic algorithm, then the conditional probabilities

always have the value of 0 or 1.

The intuition behind this definition is as follows. The algorithm A tries to decide if a bit-string

 of length is more likely to have arisen from probability distribution p1 or from

probability distribution p0 . This algorithm may use random numbers if desired, i.e., it can be probabilistic.

The output represents the algorithm’s guess as to which of these two probability

distributions is more likely to have produced, . The quantity EA (p j) represents the average

(i.e., expected) value of the output of A over the probability distribution p j , for j = 0, 1. This is computed

by summing over all possible sequences the product of the probability of the -tuple

 and the probability that A answers "1" when given as input. A is an
ε-distinguisher provided that the values of these two expectations are at least ε apart.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

The relevance to PRBGs is as follows. Consider the sequence of bits produced by the PRBG. There are

 possible sequences, and if the bits were chosen independently at random, each of these sequences

would occur with equal probability . Thus a truly random sequence corresponds to an equiprobable

distribution on the set of all bit-strings of length . Suppose we denote this probability distribution by p0 .

Now, consider sequences produced by the PRBG. Suppose a k-bit seed is chosen at random, and then the

PRBG is used to obtain a bit-string of length . Then we obtain a probability distribution on the set of all

bit-strings of length , which we denote by p1 . (For the purposes of illustration, suppose we make the

simplifying assumption that no two seeds give rise to the same sequence of bits. Then, of the possible

sequences, 2k sequences each occur with probability 1/2k , and the remaining sequences never

occur. So, in this case, the probability distribution p1 is very non-uniform.)

Even though the two probability distributions p0 and p1 may be quite different, it is still conceivable that

they might be ε-distinguishable only for small values of ε. This is our objective in constructing PRBGs.

Example 12.3

Suppose that a PRBG only produces sequences in which exactly bits have the value 0 and bits
have the value 1. Define the function A by

In this case, the algorithm A is deterministic. It is not hard to see that

and

It can be shown that

Hence, for any fixed value of ε < 1, p0 and p1 are ε-distinguishable if is sufficiently large.

12.2.1 Next Bit Predictors

Another useful concept in studying PRBGs is that of a next bit predictor, which works as follows. Let f be

a -PRBG. Suppose we have a probabilistic algorithm B i , which takes as input the first i-1 bits

produced by f (given an unknown seed), say z1 , �, zi-1 , and attempts to predict the next bit zi . The value

i can be any value such that . We say that B i is an ε-next bit predictor if B i can

predict the ith bit of a pseudo-random sequence with probability at least 1/2 + ε, where ε > 0.

We can give a more precise formulation of this concept in terms of probability distributions, as follows.

We have already defined the probability distribution p1 on induced by the PRBG f. We can also

look at the probability distributions induced by f on any of the pseudo-random output bits (or indeed on

any subset of these output bits). So, for , we will can think of the ith pseudo-random
output bit as a random variable that we will denote by zi .

In view of these definitions, we have the following characterization of a next bit predictor.

THEOREM 12.1

Let f be a -PRBG. Then the probabilistic algorithm B i is an ε-next bit predictor for f if and only if

PROOF The probability of correctly predicting the ith bit is computed by summing over all possible (i -
1)-tuples (z1 , � , zi-1) the product of the probability that the (i - 1)-tuple, (z1 ,�, zi-1) is produced by the

PRBG and the probability that the ith bit is predicted correctly given the (i - 1)-tuple, (z1 , � , zi-1).

The reason for the expression 1/2 + ε in this definition is that any predicting algorithm can predict the next
bit of a random sequence with probability 1/2. If a sequence is not random, then it may be possible to
predict the next bit with higher probability. (Note that it is unnecessary to consider algorithms that predict
the next bit with probability less than 1/2, because in this case an algorithm that replaces every prediction z
by 1 - z will predict the next bit with probability greater than 1/2.)

We illustrate these ideas by producing a next-bit predictor for the Linear Congruential Generator of
Example 12.1.

Example 12.1 (Cont.)

For any i such that 1 ≤ i ≤ 9, Define B i (z) = 1 - z. That is, B i predicts that a 0 is most likely to be followed

by a 1, and vice versa. It is not hard to compute from Table 12.1 that each of these predictors B i is a

-next bit predictor (i.e., they predict the next bit correctly with probability 20/31).

We can use a next bit predictor to construct a distinguishing algorithm A, as shown in Figure 12.3. The

input to algorithm A is a sequence of bits, , and A calls the algorithm B i as a

subroutine.

Figure 12.3 Constructing a distinguisher from a next bit predictor

THEOREM 12.2

Suppose B i is an ε-next bit predictor for the -PRBG f. Let p1 be the probability distribution

induced on by f, and let p0 be the uniform probability distribution on . Then A, as described

in Figure 12.3, is an ε-distinguisher of p1 and p0 .

PROOF First, observe that

Also, the output of A is independent of the values of . Thus we can compute as
follows:

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

On the other hand, any predictor B i will predict the ith bit of a truly random sequence with probability

1/2. Then, it is not difficult to see that EA (p0) = 1/2. Hence |EA (p0) - EA (p1)| ≥ ε, as desired.

One of the main results in the theory of pseudo-random bit generators, due to Yao, is that a next bit
predictor is a universal test. That is, a PRBG is "secure" if and only if there does not exist an ε-next bit
predictor except for very small values of ε. Theorem 12.2 proves the implication in one direction. To
prove the converse, we need to show how the existence of a distinguisher implies the existence of a next
bit predictor. This is done in Theorem 12.3.

THEOREM 12.3

Suppose A, is an ε-distinguisher of p1 and p0 , where p1 is the probability distribution induced on

by the -PRBG f, and p0 is the uniform probability distribution on . Then for some i,

 , there exists an -next bit predictor B i for f.

PROOF For , define qi to be a probability distribution on where the first i bits are

generated using f, and the remaining bits are generated at random. Thus q0 = p0 and

 . We are given that

By the triangle inequality, we have that

Hence, it follows that there is at least one value , such that

Without loss of generality, we will assume that

We are going to construct an ith bit predictor (for this specified value of i). The predicting algorithm is
probabilistic in nature and is presented in Figure 12.4. Here is the idea behind this construction. The

predicting algorithm in fact produces an -tuple according to the probability distribution qi - 1, given that

z1 ,�, zi-1< /SMALL>are generated by the PRBG. If A answers "0," then it thinks that the -tuple was most

likely generated according to the probability distribution qi . Now qi-1 and qi differ only in that the ith bit

is generated at random in qi-1 , whereas it is generated according to the PRBG in qi . Hence, when A
answers "0," it thinks that the ith bit, zi , is what would be produced by the PRBG. Hence, in this case we

take zi as our prediction of the ith bit. If A answers "1," it thinks that zi is random, so we take 1 - zi as

our prediction of the ith bit.

We need to compute the probability that the ith bit is predicted correctly. Observe that if A answers "0,"
then the prediction is correct with probability

Figure 12.4 Constructing a next bit predictor from a distinguisher

where p1 is the probability distribution induced by the PRBG. If A answers "1," then the prediction is

correct with probability

For brevity, we denote . In our computation, we will make use of the fact that

This can be proved easily as follows:

Now we can perform our main computation:

which was what we wanted to prove.

12.3 The Blum-Blum-Shub Generator

In this section we describe one of the most popular PRBGs, due to Blum, Blum, and Shub. First, we review
some results on Jacobi symbols from Section 4.5 and other number-theoretic facts from other parts of
Chapter 4.

Suppose p and q are two distinct primes, and let n = pq. Recall that the Jacobi symbol

Denote the quadratic residues modulo n by QR (n). That is,

Recall that x is a quadratic residue modulo n if and only if

Define

Thus

An element is called a pseudo-square modulo n.

The Blum-Blum-Shub Generator, as well as some other cryptographic systems, is based on the
Quadratic Residues problem defined in Figure 12.5. (In Chapter 4, we defined the Quadratic Residues
problem modulo a prime and showed that it is easy to solve; here we have a composite modulus.) Observe
that the Quadratic Residues problem requires us to distinguish quadratic residues modulo n from
pseudo-squares modulo n. This can be no more difficult than factoring n. For if the factorization n = pq

can be computed, then it is a simple matter to compute , say. Given that , it follows that x is a

quadratic residue if and only if .

Figure 12.5 Quadratic Residues

Figure 12.6 Blum-Blum-Shub Generator

There does not appear to be any way to solve the Quadratic Residues problem efficiently if the
factorization of n is not known. So this problem appears to be intractible if it is infeasible to factor n.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

The Blum-Blum-Shub Generator is presented in Figure 12.6. The generator works quite simply. Given a

seed s0 ∈ QR(n), we compute the sequence by successive squaring modulo n,

and then reduce each s i modulo 2 to obtain z i . It follows that

 .

i si z i

0 20749

1 143135 1

2 177671 1

3 97048 0

4 89992 0

5 174051 1

6 80649 1

7 45663 1

8 69442 0

9 186894 0

10 177046 0

11 137922 0

12 123175 1

13 8630 0

14 114386 0

15 14863 1

16 133015 1

17 106065 1

18 45870 0

19 137171 1

20 48060 0

We now give an example of the BBS Generator.

Example 12.4

Suppose n = 192649 = 383 × 503 and s0 = 1013552 mod n = 20749. The first 20 bits produced by the

BBS Generator are computed as shown in Table 12.3. Hence the bit-string resulting from this seed is

11001110000100111010.

Here is a feature of the BBS Generator that is useful when we look at its security. Since n = pq where p ≡
q ≡ 3 mod 4, it follows that for any quadratic residue x, there is a unique square root of x that is also a
quadratic residue. This square root is called the principal square root of x. It follows the mapping

 mod n used to define the BBS Generator is a permutation on QR(n), the set of quadratic
residues modulo n.

12.3.1 Security of the BBS Generator

In this section, we look at the security of the BBS Generator in detail. We begin by supposing that the

pseudo-random bits produced by the BBS Generator are ε-distinguishable from random bits and then
see where that leads us. Throughout this section, n = pq, where p and q are primes such that p ≡ q ≡ 3 mod
4, and the factorization n = pq is unknown.

We have already discussed the idea of a next bit predictor. In this section we consider a similar concept

that we call a previous bit predictor. A previous bit predictor for a -BBS Generator will take as

input pseudo-random bits produced by the generator (as determined by an unknown random seed s0 ∈

QR(n)), and attempt to predict the value z0 = s0 mod 2. A previous bit predictor can be a probabilistic

algorithm, and we say that a previous bit predictor B0 is an ε-previous bit predictor if its probability of

correctly guessing z0 is at least 1/2 + ε, where this probability is computed over all possible seeds s0 .

We state the following theorem, which is similar to Theorem 12.3, without proof.

THEOREM 12.4

Suppose A, is an ε-distinguisher of p1 and p0 , where p1 is the probability distribution induced on

by the -BBS Generator, f, and p0 is the uniform probability distribution on . Then there

exists an -previous bit predictor B0 for f.

We now show how to use an -previous bit predictor, B0 , to construct a probabilistic algorithm that

distinguishes quadratic residues modulo n from pseudo-squares modulo n with probability 1/2 + ε. This
algorithm A, presented in Figure 12.7, uses B0 as a subroutine, or oracle.

THEOREM 12.5

Suppose B0 is an ε-previous bit predictor for the -BBS Generator f. Then the algorithm A, as

described in Figure 12.7, determines quadratic residuosity correctly with probability at least 1/2 + ε,

where this probability is computed over all possible inputs .

PROOF Since n = pq and p ≡ q ≡ 3 mod 4, it follows that so . Hence, if

 then the principal square root s0 = x2 is x if x ∈ QR(n); and -x if . But

so it follows that algorithm A gives the correct answer if and only if B0 correctly predicts z. The result

then follows immediately.

Figure 12.7 Constructing a quadratic residue distinguisher from a previous bit predictor

Theorem 12.5 shows how we can distinguish pseudo-squares from quadratic residues with probability at
least 1/2 + ε. We now show that this leads to a Monte Carlo algorithm that gives the correct answer with

probability at least 1/2 + ε. In other words, for any , the Monte Carlo algorithm
gives the correct answer with probabilty at least 1/2 + ε. Note that this algorithm is an unbiased algorithm
(it may give an incorrect answer for any input) in contrast to the Monte Carlo algorithms that we studied in
Section 4.5 which were all biased algorithms.

The Monte Carlo algorithm A1 is presented in Figure 12.8. It calls the previous algorithm A as a

subroutine.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

THEOREM 12.6

Suppose that algorithm A determines quadratic residuosity correctly with probability at least 1/2 + ε.
Then the algorithm A 1 , as described in Figure 12.8, is a Monte Carlo algorithm for Quadratic Residues
with error probability at most 1/2 + ε.

PROOF For any given input , the effect of step 2 in algorithm A 1 is to produce

an element x′ that is a random element of whose status as a quadratic residue is
known.

The last step is to show that any (unbiased) Monte Carlo algorithm that has error probability at most 1/2 +
ε can be used to construct an unbiased Monte Carlo algorithm with error probability at most δ, for any δ >
0. In other words, we can make the probability of correctness arbitrarily close to 1. The idea is to run the
given Monte Carlo algorithm 2m + 1 times, for some integer m, and take the "majority vote" as the
answer. By computing the error probability of this algorithm, we can also see how m depends on δ. This
dependence is stated in the following theorem.

Figure 12.8 A Monte Carlo algorithm for Quadratic Residues

THEOREM 12.7

Suppose A 1 is an unbiased Monte Carlo algorithm with error probability at most 1/2 + ε. Suppose we run

A 1 n = 2m + 1 times on a given instance I, and we take the most frequent answer. Then the error

probability of the resulting algorithm is at most

PROOF The probability of obtaining exactly i correct answers in the n trials is at most

The probability that the most frequent answer is incorrect is equal to the probability that the number of
correct answers in the n trials is at most m. Hence, we compute as follows

as required.

Suppose we want to lower the probability of error to some value δ, where 0 < δ < 1/2 - ε. We need to
choose m so that

Hence, it suffices to take

Then, if algorithm A is run 2m + 1 times, the majority vote yields the correct answer with probability at
least 1 - δ. It is not hard to show that this value of m is at most c/(δε2) for some constant c. Hence, the
number of times that the algorithm must be run is polynomial in 1/δ and 1/ε.

Example 12.5

Suppose we start with a Monte Carlo algorithm that returns the correct answer with probability at least .55,
so ε = .05. If we desire a Monte Carlo algorithm in which the probability of error is at most .05, then it
suffices to take m = 230 and n = 461.

Let us combine all the reductions we have done. We have the following sequence of implications:

Since it is widely believed that there is no polynomial-time Monte Carlo algorithm for Quadratic
Residues with small error probability, we have some evidence that the BBS Generator is secure.

We close this section by mentioning a way of improving the efficiency of the BBS Generator. The
sequence of pseudo-random bits is constructed by taking the least significant bit of each si , where

 mod n. Suppose instead that we extract the m least significant bits from each si . This will

improve the efficiency of the PRBG by a factor of m, but we need to ask if the PRBG will remain secure.
It has been shown that this approach will remain secure provided that m ≤ log2 log2 n. So we can extract

about log2 log2 n pseudo-random bits per modular squaring. In a realistic implementation of the BBS

Generator, , so we can extract nine bits per squaring.

12.4 Probabilistic Encryption

Probabilistic encryption is an idea of Goldwasser and Micali. One motivation is as follows. Suppose we
have a public-key cryptosystem, and we wish to encrypt a single bit, i.e., x = 0 or 1. Since anyone can
compute eK (0) and eK (1), it is a simple matter for an opponent to determine if a ciphertext y is an

encryption of 0 or an encryption of 1. More generally, an opponent can always determine if the plaintext
has a specified value by encrypting a hypothesized plaintext, hoping to match a given ciphertext.

The goal of probabilistic encryption is that "no information" about the plaintext should be computable
from the ciphertext (in polynomial time). This objective can be realized by a public-key cryptosystem in
which encryption is probabilistic rather than deterministic. Since there are "many" possible encryptions of
each plaintext, it is not feasible to test whether a given ciphertext is an encryption of a particular plaintext.

Here is a formal mathematical definition of this concept.

DEFINITION 12.3 A probabilistic public-key cryptosystem is defined to be a six-tuple

 where is the set of plaintexts, is the set of ciphertexts, is the keyspace,

 is a set of randomizers, and for each key , is a public encryption rule and

 is a secret decryption role. The following properties should be satisfied:

1. Each and are functions such that

for every plaintext and every . (In particular, this implies that

 .)

2. Let ε be a specified security parameter. For any fixed and for any , define a

probability distribution pK,x on , where pK,x(y) denotes the probability that y is the ciphertext

given that K is the key and x is the plaintext (this probability is computed over all). Suppose

 , x ≠ x′, and . Then the probability distributions pK,x and pK,x′ are not

ε-distinguishable.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Here is how the system works. To encrypt a plaintext x, choose a randomizer and compute y =
eK (x,r). Any such value y = eK (x,r) can be decrypted to x. Property 2 is stating that the probability

distribution of all encryptions of x cannot be distinguished from the probability distribution of all
encryptions of x′ if x′ ≠ x. Informally, an encryption of x "looks like" an encryption of x′. The security

parameter ε should be small: in practice we would want to have for some small c > 0.

We now present the Goldwasser-Micali Probabilistic Public-key Cryptosystem in Figure 12.9. This
system encrypts one bit at a time. A 0 bit is encrypted to a random quadratic residue modulo n; a 1 bit is
encrypted to a random pseudo-square modulo n. When Bob recieves an element

 he can use his knowledge of the factorization of n to determine whether y ∈

QR(n) or whether . He does this by computing

then

Figure 12.9 Goldwasser-Micali Probabilistic Public-key Cryptosystem

A more efficient probabilistic public-key cryptosystem was given by Blum and Goldwasser. The
Blum-Goldwasser Probabilistic Public-key Cryptosystem is presented in Figure 12.10. The basic idea

is as follows. A random seed s0 generates a sequence of psuedorandom bits using the

BBS Generator. The z i ’s are used as a keystream, i.e., the are exclusive-ored with the plaintext bits to

form the ciphertext. As well, the element mod n is transmitted as part of the
ciphertext.

When Bob receives the ciphertext, he can compute s0 from , then reconstruct the keystream, and

finally exclusive-or the keystream with the ciphertext bits to obtain the plaintext. We should explain how

Bob derives s0 from . Recall that each s i-1 is the principal square root of s i . Now, n = pq with p ≡

q ≡ 3 mod 4, so the square roots of any quadratic residue x modulo p are ±x (p+1)/4. Using properties of
Jacobi symbols, we have that

It follows that x (p+1)/4 is the principal square root of x modulo p. Similarly, x (q+1)/4 is the principal square
root of x modulo q. Then, using the Chinese remainder theorem, we can find the principal square root of x
modulo n.

Figure 12.10 Blum-Goldwasser Probabilistic Public-key Cryptosystem

More generally, will be the principal root of x modulo p and will

be the principal root of x modulo q. Since has order p - 1, we can reduce the exponent

 modulo p - 1 in the computation mod p. In a similar fashion, we can

reduce the exponent modulo q - 1. In Figure 12.10, having obtained the principal

 roots of modulo p and modulo q (steps 1-4 of the decryption process), the Chinese

remainder theorem is used to compute the principal root of modulo n.

Here is an example to illustrate.

Example 12.6

Suppose n = 192649, as in Example 12.4. Suppose further that Alice chooses r = 20749 and wants to
encrypt the 20-bit plaintext string

She will first compute the keystream

exactly as in Example 12.4, and then exclusive-or it with the plaintext, to obtain the ciphertext

which she transmits to Bob. She also computes

and sends it to Bob.

Of course Bob knows the factorization n = 383 × 503, so (p + 1)/4 = 96 and (q + 1)/4 = 126. He begins by
computing

and

Next, he calculates

and

Now Bob proceeds to solve the system of congruences

to obtain Alice’s seed r = 20749. Then he constructs Alice’s keystream from r. Finally, he exclusive-ors
the keystream with the ciphertext to get the plaintext.

12.5 Notes and References

A lengthy treatment of PRBGs can be found in the book by Kranakis [KR86]. See also the survey paper by
Lagarias [LA90].

The Shrinking Generator is due to Coppersmith, Krawczyk, and Mansour [CKM94]; another practical
method of constructing PBRGs using LFSRs has been given by Gunther [GU88]. For methods of breaking
the Linear Congruential Generator, see Boyar [BO89].

The basic theory of secure PRBGs is due to Yao [YA82], who proved the universality of the next bit test.
Further basic results can be found in Blum and Micali [BM84]. The BBS Generator is described in
[BBS86]. The security of the Quadratic Residues problem is studied by Goldwasser and Micali [GM84],
on which we based much of Section 12.3.1. We have, however, used the approach of Brassard and Bratley
[BB88A, Section 8.6] to reduce the error probability of an unbiased Monte Carlo algorithm.

Properties of the RSA Generator are studied in Alexi, Chor, Goldreich, and Schnorr [ACGS88]. PRBGs
based on the Discrete Logarithm problem are treated in Blum and Micali [BM84], Long and Wigderson
[LW88], and Håstad, Schrift, and Shamir [HSS93]. A sufficient condition for the secure extraction of
multiple bits per iteration of a PRBG was proved by Vazirani and Vazirani [VV84].

Figure 12.11 Discrete Logarithm Generator

The idea of probabilistic encryption is due to Goldwasser and Micali [GM84]; the Blum-Goldwasser
Cryptosystem is presented in [BG85].

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Exercises

12.1 Consider the Linear Congruential Generator defined by s i = (as i-1 + b) mod M. Suppose that

M = qa + 1 where a is odd and q is even, and suppose that b = 1. Show that the next bit predictor
B i (z) = 1 - z for the i bit is an ε-next bit predictor, where

12.2 Suppose we have an RSA Generator with n = 36863, b = 229 and seed s0 = 25. Compute the

first 100 bits produced by this generator.
12.3 A PRBG based on the Discrete Logarithm problem is given in Figure 12.11. Suppose p =
21383, the primitive element α = 5 and the seed s0 = 15886. Compute the first 100 bits produced by

this generator.
12.4 Suppose that Bob has knowledge of the factorization n = pq in the BBS Generator.

(a) Show how Bob can use this knowledge to compute any s i from so with 2k multiplications

modulo φ(n) and 2k multiplications modulo n, where n has k bits in its binary representation. (If
i is large compared to k, then this approach represents a substantial improvement over the i
multiplications required to sequentially compute s0 , �, s i .)

(b) Use this method to compute s10000 if n = 59701 = 227 × 263 and s0 = 17995.

E1866663F17FDBD1DC8C8FD2EEBC36AD7F53795DBA3C9CE22D

C9A9C7E2A56455501399CA6B98AED22C346A529A09C1936C61

ECDE10B43D226EC683A669929F2FFB912BFA96A8302188C083

46119E4F61AD8D0829BD1CDE1E37DBA9BCE65F40C0BCE48A80

0B3D087D76ECD1805C65D9DB730B8D0943266D942CF04D7D4D

76BFA891FA21BE76F767F1D5DCC7E3F1D86E39A9348B3

12.5 We proved that, in order to reduce the error probability of an unbiased Monte Carlo algorithm
from 1/2 - ε to δ, where δ + ε < 1/2, it suffices to run the algorithm m times, where

Prove that this value of m is O(1/(δε2).

12.6 Suppose Bob receives some ciphertext which was encrypted with the Blum-Goldwasser
Probabilistic Public-key Cryptosystem. The original plaintext consisted of English text. Each
alphabetic character was converted to a bitstring of length five in the obvious way: A ↔ 00000, B ↔
00001, �, Z ↔ 11001. The plaintext consisted of 236 alphabetic characters, so a bitstring of length
1180 resulted. This bitstring was then encrypted. The resulting ciphertext bitstring was then
converted to a hexadecimal representation, to save space. The final string of 295 hexadecimal
characters is presented in Table 12.4. Also, s1181 = 20291 is part of the ciphertext, and n = 29893 is

Bob’s public key. Bob’s secret factorization of n is n = pq, where p = 167 and q = 179.

Your task is to decrypt the given ciphertext and restore the original English plaintext, which was
taken from "Under the Hammer," by John Mortimer, Penguin Books, 1994.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Chapter 13
Zero-knowledge Proofs

13.1 Interactive Proof Systems

Very informally, a zero-knowledge proof system allows one person to convince another person of some
fact without revealing any information about the proof. We first discuss the idea of an interactive proof
system. In an interactive proof system, there are two participants, Peggy and Vic. Peggy is the prover and
Vic is the verifier. Peggy knows some fact, and she wishes to prove to Vic that she does.

It is necessary to describe the kinds of computations that Peggy and Vic will be allowed to perform, and
also to describe the interaction that takes place. It is convenient to think of both Peggy and Vic as being
probabilistic algorithms. Peggy and Vic will each perform private computations, and each of them has a
private random number generator. They will communicate to each other through a communication
channel. Initially, Peggy and Vic both possess an input x. The object of the interactive proof is for Peggy
to convince Vic that x has some specified property. More precisely, x will be a yes-instance of a specified
decision problem II.

The interactive proof, which is a challenge-and-response protocol, consists of a specified number of
rounds. During each round, Peggy and Vic alternately do the following:

1. receive a message from the other party
2. perform a private computation
3. send a message to the other party.

A typical round of the protocol will consist of a challenge by Vic, and a response by Peggy. At the end of
the proof, Vic either accepts or rejects, depending on whether or not Peggy successfully replies to all of
Vic’s challenges. We define the protocol to be an interactive proof system for the decision problem II if
the following two properties are satisfied whenever Vic follows the protocol:

Figure 13.1 Graph Isomorphism

completeness
If x is a yes-instance of the decision problem II, then Vic will always accept Peggy’s proof.

soundness
If x is a no-instance of II, then the probability that Vic accepts the proof is very small.

We will restrict our attention to interactive proof systems in which the computations performed by Vic can
be done in polynomial time. On the other hand, we do not place any bound on the computation time
required by Peggy (informally, Peggy is "all-powerful").

We begin by presenting an interactive proof system for the problem of Graph Non-isomorphism. The
Graph Isomorphism problem is described in Figure 13.1. This is an interesting problem since no
polynomial-time algorithm to solve it is known, but it is not known to be NP-complete.

We will present an interactive proof system which will allow Peggy to "prove" to Vic that two specified
graphs are not isomorphic. For simplicity, let us suppose that G1 and G2 each have vertex set {1, �, n}.

The interactive proof system for Graph Non-isomorphism is presented in Figure 13.2.

We present a toy example.

Example 13.1

Suppose G1 = (V, E1) and G2 = (V, E2), where V = {1, 2, 3, 4}, E1 = {12, 14, 23, 34} and E2 = {12, 13,

14, 34}.

Suppose in some round of the protocol that Vic gives Peggy the graph H = (V, E3), where E3 = {13, 14,

23, 24} (see Figure 13.3). The graph H is isomorphic to G1 (one isomorphism from H to G1 is the

permutation (1 3 4 2)). So Peggy answers "1."

It is easy to see that this proof system satisfies the completeness and soundness properties. If G1 is not

isomorphic to G2 , then j will equal i in every round, and Vic will accept with probability 1. Hence, the

protocol is complete.

Figure 13.2 An interactive proof system for Graph Non-isomorphism

Figure 13.3 Peggy’s non-isomorphic graphs and Vic’s challenge

On the other hand, suppose that G1 is isomorphic to G2 . Then any challenge graph H submitted by Vic is

isomorphic to both G1 and G2 . Peggy has no way of determining if Vic constructed H as an isomorphic

copy of G1 or of G2 , so she can do no better than make a guess j = 1 or 2 for her response. The only way

that Vic will accept is if Peggy is able to guess all n choices of i made by Vic. Her probability of doing

this is 2-n . Hence, the protocol is sound.

Notice that Vic’s computations are all polynomial-time. We cannot say anything about Peggy’s
computation time since the Graph Isomorphism problem is not known to be solvable in polynomial time.
However, recall that we assumed that Peggy has infinite computing power, so this is allowed under the
"rules of the game."

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

13.2 Perfect Zero-knowledge Proofs

Although interactive proof systems are of interest in their own right, the most interesting type of
interactive proof is a zero-knowledge proof. This is one in which Peggy convinces Vic that x possesses
some specified property, but at the end of the protocol, Vic still has no idea of how to prove (himself) that
x has this property. This is a very tricky concept to define formally, and we present an example before
attempting any definitions.

In Figure 13.4, we present a zero-knowledge interactive proof for Graph Isomorphism. A small example
will illustrate the workings of the protocol.

Example 13.2

Suppose G1 = (V, E1) and G2 = (V, E2), where V = {1, 2, 3, 4}, E1 = {12, 13, 14, 34} and E2 = {12, 13,

23, 24}. One isomorphism from G2 to G1 is the permutation σ = (4 1 3 2).

Now suppose in some round of the protocol that Peggy chooses the permutation π = (2 4 1 3). Then H has
edge set {12, 13, 23, 24} (see Figure 13.5).

If Vic’s challenge is i = 1, then Peggy gives Vic the permutation π and Vic checks that the image of G1

under π is H. If Vic’s challenge is i = 2, then Peggy gives Vic the composition ρ = π

 σ = (3 2 1 4) and Vic checks that the image of G2 under ρ is H.

Completeness and soundness of the protocol are easy to verify. It is easy to see that the probablity that Vic
accepts is 1 if G1 is isomorphic to G2 . On the other hand, if G1 is not isomorphic to G2 , then the only

way for Peggy to deceive Vic is for her to correctly guess the value i that Vic will choose in each round,
and write a (random) isomorphic copy of G i on the communication tape. Her probability of correctly

guessing Vic’s n random challenges is 2-n .

Figure 13.4 A perfect zero-knowledge interactive proof system for Graph Isomorphism

Figure 13.5 Peggy’s isomorphic graphs

All of Vic’s computations can be done in polynomial time (as a function of n, the number of vertices in
G1 and G2). Although it is not necessary, notice that Peggy’s computations can also be done in

polynomial time provided that she knows the existence of one permutation a such that the image of G2

under σ is G1 .

Why would we refer to this proof system as a zero-knowledge proof? The reason is that, although Vic is
convinced that G1 is isomorphic to G2 , he does not gain any "knowledge" that would help him find a

permutation σ that carries G2 to G1 . All he sees in each round of the proof is a random isomorphic copy

H of the graphs G1 and G2 , together with a permutation that carries G1 to H or G2 to H (but not both!).

But Vic can compute random isomorphic copies of these graphs by himself, without any help from Peggy.
Since the graphs H are chosen independently and at random in each round of the proof, it seems unlikely
that this will help Vic find an isomorphism from G1 to G2 .

Let us look carefully at the information that Vic obtains by participating in the interactive proof system.
We can represent Vic’s view of the interactive proof by means of a transcript that contains the following
information:

1. the graphs G1 and G2

2. all the messages that are transmitted by both Peggy and Vic
3. the random numbers used by Vic to generate his challenges.

Hence, a transcript T for the above interactive proof of Graph Isomorphism would have the following
form:

The essential point, which is the basis for the formal definition of zero-knowledge proof, is that Vic (or
anyone else) can forge transcripts ‹ without participating in the interactive proof ‹ that "look like" real
transcripts. This can be done provided that the input graphs G1 and G2 are isomorphic. Forging is

accomplished by means of the algorithm presented in Figure 13.6. The forging algorithm is a
polynomial-time probabilistic algorithm. In the vernacular of zero-knowledge proofs, a forging algorithm
is often called a simulator.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

The fact that a simulator can forge transcripts has a very important consequence. Anything that Vic (or
anyone else) can compute from the transcript could also be computed from a forged transcript. Hence,
participating in the proof system does not increase Vic’s ability to perform any computation; and in
particular, it does not enable Vic himself to "prove" that G1 and G2 are isomorphic. Moreover, Vic

cannot subsequently convince someone else that G1 and G2 are isomorphic by showing them the

transcript T, since there is no way to distinguish a legitimate transcript from one that has been forged.

We still have to make precise the idea that a forged transcript "looks like" a real one. We give a rigorous
definition in terms of probability distributions.

Figure 13.6 Forging algorithm for transcripts for Graph Isomorphism

DEFINITION 13.1 Suppose that we have a polynomial-time interactive proof system for a decision
problem II, and a polynomial-time simulator S. Denote the set of all possible transcripts that could be

produced as a result of Peggy and Vic carrying out the interactive proof with a yes-instance x by ,

and denote the the set of all possible forged transcripts that could be produced by S by . For any

transcript , let denote the probability that T is the transcript produced from the

interactive proof. Similarly, for , let denote the probability that T is the (forged)

transcript produced by S. Suppose that , and for any , suppose that

 . (In other words, the set of real transcripts is identical to the set of forged transcripts,
and the two probability distributions are identical.) Then we define the interactive proof system to be
perfect zero-knowledge for Vic.

Of course we can define zero-knowledge however we like. But it is important that the definition captures
our intuitive concept of what "zero-knowledge" should mean. We are saying that an interactive proof
system is zero-knowlege for Vic if there exists a simulator that produces transcripts with an identical
probability distribution to those produced when Vic actually takes part in the protocol. (This is a related
but stronger concept than that of indistinguishable probability distributions that we studied in Chapter 12.)
We have observed that a transcript contains all the information gained by Vic by taking part in the
protocol. So it should seem reasonable to say that whatever Vic might be able to do after taking part in the
protocol he could equally well do by just using the simulator to generate a forged transcript. We are
perhaps not defining "knowledge" by this approach; but whatever "knowledge" might be, Vic doesn’t gain
any!

We will now prove that the interactive proof system for Graph Isomorphism is perfect zero-knowledge
for Vic.

THEOREM 13.1

The interactive proof system for Graph Isomorphism is perfect zero-knowledge for Vic.

PROOF Suppose that G1 and G2 are isomorphic graphs on n vertices. A transcript T (real or forged)

contains n triples of the form (H, i, p), where i = 1 or 2, ρ is a permutation of {1, �, n}, and H is the

image of Gi under the permutation ρ. Call such a triple a valid triple and denote by the set of all valid

triples. We begin by computing , the number of valid triples. Evidently since each choice
of i and p determines a unique graph H.

In any given round, say j, of the forging algorithm, it is clear that each valid triple (H, i, p) occurs with
equal probability 1/(2 × n!). What is the probability that the valid triple (H, i, p) is the jth triple on a real
transcript? In the interactive proof system, Peggy first chooses a random permutation π and then computes
H to be the image of G1 under π. The permutation ρ is defined to be π if i = 1, and it is defined to be the

composition of the two permutations π and ρ if i = 2.

We are assuming that the value of i is chosen at random by Vic. If i = 1, then all n! permutations ρ are
equiprobable, since ρ = π in this case and π was chosen to be a random permutation. On the other hand, if

i = 2, then p = π ρ, where π is random and σ is fixed. In this case as well, every
possible permutation ρ is equally probable. Now, since the two cases i = 1 and 2 are equally probable, and
each permutation ρ is equally probable (independent of the value of i), and since i and p together

determine H, it follows that all triples in are equally likely.

Since a transcript consists of the concatenation of n independent random triples, it follows that

for every possible transcript T.

The proof of Theorem 13.1 assumes that Vic follows the protocol when he takes part in the interactive
proof system. The situation is much more subtle if Vic does not follow the protocol. Is it true that an
interactive proof remains zero-knowledge even if Vic deviates from the protocol?

In the case of Graph Isomorphism, the only way that Vic can deviate from the protocol is to choose his
challenges i in a non-random way. Intuitively, it seems that this does not provide Vic with any
"knowledge." However, transcripts produced by the simulator will not "look like" transcripts produced by
Vic if he deviates from the protocol. For example, suppose Vic chooses i = 1 in every round of the proof.
Then a transcript of the interactive proof will have i j = 1 for 1 ≤ j ≤ n; whereas a transcript produced by

the simulator will have i j = 1 for 1 ≤ j ≤ n only with probability 2-n .

The way around this difficulty is to show that, no matter how a "cheating" Vic deviates from the protocol,
there exists a polynomial-time simulator that will produce forged transcripts that "look like" the transcripts
produced by Peggy and (the cheating) Vic during the interactive proof. As before, the phrase "looks like"
is formalized by saying that two probability distributions are identical.

Here is a more formal definition.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

DEFINITION 13.2 Suppose that we have a polynomial-time interactive proof system for a given decision
problem II. Let V* be any polynomial-time probabilistic algorithm that (a possibly cheating) verifier uses
to generate his challenges. (That is, V* represents either an honest or cheating verifier.) Denote the set of
all possible transcripts that could be produced as a result of Peggy and V* carrying out the interactive

proof with a yes-instance x of II by . Suppose that, for every such V*, there exists an expected
polynomial-time probabilistic algorithm S* = S*(V*) (the simulator) which will produce a forged

transcript. Denote the set of possible forged transcripts by . For any transcript

 , let denote the probability that T is the transcript produced by V* taking part in

the interactive proof. Similarly, for , let denote the probability that T is the (forged)

transcript produced by S*. Suppose that , and for any , suppose

that . Then the interactive proof system is said to be perfect zero-knowledge
(without qualification).

In the special case where V* is the same as Vic (i.e., when Vic is honest), the above definition is exactly
the same as what we defined as "perfect zero-knowledge for Vic."

In order to prove that a proof system is perfect zero-knowledge, we need a generic transformation which
will construct a simulator S* from any V*. We proceed to do this for the proof system for Graph
Isomorphism. The simulator will play the part of Peggy, using V* as a "restartable subroutine."
Informally, S* tries to guess the challenge i j that V* will make in each round j. That is, S* generates a

random valid triple of the form (H j , i j , ρ j), and then executes the algorithm V* to see what its challenge

is for round j. If the guess i j is the same as the challenge i′ j (as produced by V*), then the triple (H j , i j ,

ρ j) is appended to the forged transcript. If not, then this triple is discarded, S* guesses a new challenge i j ,

and the algorithm V* is restarted after resetting its "state" to the way it was at the beginning of the current
round. By the term "state" we mean the values of all variables used by the algorithm.

We now give a more detailed description of the simulation algorithm S*. At any given time during the
execution of the program V*, the current state of V* will be denoted by state(V*). A pseudo-code
description of the simulation algorithm is given in Figure 13.7.

It is possible that the simulator will run forever, if it never happens that i j = i′ j . However, we can show

that the average running time of the simulator is polynomial, and that the two probability distributions

 and are identical.

Figure 13.7 Forging algorithm for V* for transcripts for Graph Isomorphism

THEOREM 13.2

The interactive proof system for Graph Isomorphism is perfect zero-knowledge.

PROOF First, we observe that, regardless of how V* generates its challenges, the probability that the
guess i j of S* is the same as the challenge i′ j is 1/2. Hence, on average, S* will generate two triples for

every triple that it concatenates to the forged transcript. Hence, the average running time is polynomial in
n.

The more difficult task is to show that the two probability distributions and are
identical. In Theorem 13.1, where Vic was honest, we were able to compute the two probability
distributions and see that they were identical. We also used the fact that triples (H, i, ρ) generated in
different rounds of the proof are independent. However, in the current setting, we have no way of
explicitly computing the two probability distributions. Further, triples generated in different rounds of the
proof need not be independent. For example, the challenge that V* presents in round j may depend in some
very complicated way on challenges from previous rounds and on the way Peggy replied to those
challenges.

The way to handle these difficulties is to look at the probability distributions on the possible partial
transcripts during the course of the simulation or interactive proof, and proceed by induction on the

number of rounds. For 0 ≤ j ≤ n, we define probability distributions and on the set of

partial transcripts that could occur at the end of round j. Notice that and

 . Hence, if we can show that the two distributions and are
identical for all j, then we will be done.

The case j = 0 corresponds to the beginning of the algorithm; at this point the transcript contains only the
two graphs G1 and G2 . Hence, the probability distributions are identical when j = 0. We use this for the

start of the induction.

We make an inductive hypothesis that the two probability distributions and

on are identical, for some j ≥ 1. We now prove that the two probability distributions and

 on are identical.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Consider what happens during round j of the interactive proof. The probability that V*’s challenge i′ j = 1

is some real number p1 and the probability that his challenge i′ j = 2 is 1 - p1 , where p1 depends on the

state of the algorithm V* at the beginning of round j. We noted earlier that in the interactive proof, all
possible graphs H are chosen by Peggy with equal probability. As well, any permutation ρ occurs with
equal probability, independent of the value of p1 , since all permutations are equally likely for either

possible challenge i′ j . Hence, the probability that the jth triple on the transcript is (H, i, ρ) is p1 /n! if i = 1,

and (1 - p1)/n! if i = 2.

Next, let’s do a similar analysis for the simulation. In any given iteration of the repeat loop, S* will
choose any graph H with probability 1/n!. The probability that i j = 1 and V*’s challenge is 1 is p1 /2; and

the probability that i j = 2 and V*’s challenge is 2 is (1 - p1)/2. In each of these situations, (H, i j , ρ) is

written as the jth triple on the transcript. With probability 1/2, nothing is written on the tape during any
given iteration of the repeat loop.

Let us first consider the case i j = 1. As mentioned above, the probability that V*’s challenge is 1 is p1 .

The probability that a triple (H, 1, ρ) is written as the jth triple on the transcript during the iteration of
the repeat loop is

Hence, the probability that (H, 1, ρ) is the jth triple on the transcript is

The case i j = 2 is analyzed in a similar fashion: the probability that (H, 2, ρ) is written as the jth triple on

the transcript is (1 - p1)/n!

Hence, the two probability distributions on the partial transcripts at the end of round j are identical. By

induction, the two probability distribution and are identical, and the proof is
complete.

It is interesting also to look at the interactive proof system for Graph Non-isomorphism. It is not too
difficult to prove that this proof is perfect zero-knowledge if Vic follows the protocol (i.e., if Vic chooses
each challenge graph to be a random isomorphic copy of G i where i = 1 or 2 is chosen at random).

Further, provided that Vic constructs each challenge graph by taking an isomorphic copy of either G1 or

G2 , the protocol remains zero-knowledge even if Vic chooses his challenges in a non-random fashion.

However, suppose that our ubiquitous troublemaker, Oscar, gives a graph H to Vic which is isomorphic to
one of G1 or G2 , but Vic does not know which G i is isomorphic to H. If Vic uses this H as one of his

challenge graphs in the interactive proof system, then Peggy will give Vic an isomorphism he didn’t
previously know, and (possibly) couldn’t figure out for himself. In this situation, the proof system is
(intuitively) not zero-knowledge, and it does not seem likely that a transcript could be forged by a
simulator.

Figure 13.8 A perfect zero-knowledge interactive proof system for Quadratic Residues

It is possible to alter the proof of Graph Non-isomorphism so it is perfect zero-knowledge, but we will
not go into the details.

We now present some other examples of perfect zero-knowledge proofs. A perfect zero-knowledge proof
for Quadratic Residues (modulo n = pq, where p and q are prime) is given in Figure 13.8. Peggy is
proving that x is a quadratic residue. In each round, she generates a random quadratic residue y and sends
it to Vic. Then, depending on Vic’s challenge, Peggy either gives Vic a square root of y or a square root of
xy.

Figure 13.9 Subgroup Membership

It is clear that the protocol is complete. To prove soundness, observe that if x is not a quadratic residue,
then Peggy can answer only one of the two possible challenges since, in this case, y is a quadratic residue
if and only if xy is not a quadratic residue. So Peggy will be caught in any given round of the protocol with

probability 1/2, and her probability of deceiving Vic in all log2 n rounds is only . (The

reason for having log2 n rounds is that the size of the problem instance is proportional to the number of

bits in the binary representation of n, which is log2 n. Hence, the deception probability for Peggy is

exponentially small as a function of the size of the problem instance, as in the zero-knowledge proof for
Graph Isomorphism.)

Perfect zero-knowledge for Vic can be shown in a similar manner as was done for Graph Isomorphism.
Vic can generate a triple (y, i, z) by first choosing i and z, and then defining

Triples generated in this fashion have exactly the same probability distribution as those generated during
the protocol, assuming Vic chooses his challenges at random. Perfect zero-knowledge (for an arbitrary V*)
is proved by following the same strategy as for Graph Isomorphism. It requires building a simulator S*
that guesses V*’s challenges and keeps only the triples where the guesses are correct.

We now present one more example of a perfect zero-knowledge proof, this one for a decision problem
related to the Discrete Logarithm problem. The problem, which we call Subgroup Membership, is
defined in Figure 13.9. Of course, the integer k (if it exists) is just the discrete logarithm of β.

We present a perfect zero-knowledge proof for Subgroup Membership in Figure 13.10. The analysis of
this protocol is similar to the others that we have looked at; the details are left to the reader.

Figure 13.10 A perfect zero-knowledge interactive proof system for Subgroup Membership

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

13.3 Bit Commitments

The zero-knowledge proof system for Graph Isomorphism is interesting, but it would be more useful to
have zero-knowledge proof systems for problems that are known to be NP-complete. There is theoretical
evidence that perfect zero-knowledge proofs do not exist for NP-complete problems. However, we can
describe proof systems that attain a slightly weaker form of zero-knowledge called computational
zero-knowledge. The actual proof systems are described in the next section; in this section we describe the
technique of bit commitment that is an essential tool used in the proof system.

Suppose Peggy writes a message on a piece of paper, and then places the message in a safe for which she
knows the combination. Peggy then gives the safe to Vic. Even though Vic doesn’t know what the
message is until the safe is opened, we would agree that Peggy is committed to her message because she
cannot change it. Further, Vic cannot learn what the message is (assuming he doesn’t know the
combination of the safe) unless Peggy opens the safe for him. (Recall that we used a similar analogy in
Chapter 4 to describe the idea of a public-key cryptosystem, but in that case, it was the recipient of the
message, Vic, who could open the safe.)

Suppose the message is a bit b = 0 or 1, and Peggy encrypts b in some way. The encrypted form of b is
sometimes called a blob and the encryption method is called a bit commitment scheme. In general, a bit
commitment scheme will be a function f : {0, 1} × X → Y, where X and Y are finite sets. An encryption of
b is any value f(b, x), x ∈ X. We can informally define two properties that a bit commitment scheme
should satisfy:

concealing
For a bit b = 0 or 1, Vic cannot determine the value of b from the blob f(b, x).

binding
Peggy can later "open" the blob, by revealing the value of x used to encrypt b, to convince Vic that b
was the value encrypted. Peggy should not be able to open a blob as both a 0 and a 1.

If Peggy wants to commit any bitstring, she simply commits every bit independently.

One way to perform bit commitment is to use the Goldwasser-Micali Probabilistic Cryptosystem
described in Section 12.4. Recall that in this system, n = pq, where p and q are primes, and .
The integers n and m are public; the factorization n = pq is known only to Peggy. In our bit commitment

scheme, we have and

Peggy encrypts a value b by choosing a random x and computing y = f(b, x); the value y comprises the
blob.

Later, when Peggy wants to open y, she reveals the values b and x. Then Vic can verify that

Let us think about the concealing and binding properties. A blob is an encryption of 0 or of 1, and reveals
no information about the plaintext value x provided that the Quadratic Residues problem is infeasible
(we discussed this at length in Chapter 12). Hence, the scheme is concealing.

Is the scheme binding? Let us suppose not; then

for some . But then

which is a contradiction since .

We will be using bit commitment schemes to construct zero-knowledge proofs. However, they have
another nice application, to the problem of coin-flipping by telephone. Suppose Alice and Bob want to
make some decision based on a random coin flip, but they are not in the same place. This means that it is
impossible for one of them to flip a real coin and have the other verify it. A bit commitment scheme
provides a way out of this dilemma. One of them, say Alice, chooses a random bit b, and computes a blob,
y. She gives y to Bob. Now Bob guesses the value of b, and then Alice opens the blob to reveal b. The
concealing property means that it is infeasible for Bob to compute b given y, and the binding property
means that Alice can’t "change her mind" after Bob reveals his guess.

We now give another example of a bit commitment scheme, this time based on the Discrete Logarithm
problem. Recall from Section 5.1.2 that if p = 3 (mod 4) is a prime such that the Discrete Logarithm
problem in is infeasible, then the second least significant bit of a discrete logarithm is secure. Actually,
it has been proved for primes p ≡ 3 (mod 4) that any Monte Carlo algorithm for the Second Bit problem

having error probability 1/2 = ∈ with ∈ > 0 can be used to solve the Discrete Log problem in . This
much stronger result is the basis for the bit commitment scheme.

This bit commitment scheme will have X = {1, �, p - 1} and . The second least significant bit
of an integer x, denoted by SLB(x), is defined as follows:

The bit commitment scheme f is defined by

In other words, a bit b is encrypted by choosing a random element having second last bit b, and raising α
to that power modulo p. (Note that SLB(p - x) ≠ SLB (x) since p ≡ 3 (mod 4).)

The scheme is binding, and by the remarks made above, it is concealing provided that the Discrete
Logarithm problem in is infeasible.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

13.4 Computational Zero-knowledge Proofs

In this section, we give a zero-knowledge proof system for the NP-complete decision problem Graph
3-Colorability , which is defined in Figure 13.11. The proof system uses a bit commitment scheme; to be
specific, we will employ the bit commitment scheme presented in Section 13.3 that is based on
probabilistic encryption. We assume that Peggy knows a 3-coloring φ of a graph G, and she wants to
convince Vic that G is 3-colorable in a zero-knowledge fashion. Without loss of generality, we assume
that G has vertex set V = {1, �, n}. Denote m = |E|. The proof system will be described in terms of a
commitment scheme f : {0, 1} x X → Y which is made public. Since we want to encrypt a color rather than
a bit, we will replace the color 1 by the two bits 01, the color 2 by 10 and the color 3 by 11. Then we
encrypt each of the two bits representing the color by using f.

Figure 13.11 Graph 3-Colorability

The interactive proof system is presented in Figure 13.12. Informally, what happens is the following. In
each round, Peggy commits a coloring that is a permutation of the fixed coloring φ. Vic requests that
Peggy open the blobs corresponding to the endpoints of some randomly chosen edge. Peggy does so, and
then Vic checks that the commitments are as claimed and that the two colors are different. Notice that all
Vic’s computations are polynomial-time, and so are Peggy’s, provided that she knows the existence of one
3-coloring φ.

Here is a very small example to illustrate.

Example 13.3

Suppose G is the graph (V, E), where

and

Suppose that Peggy knows the 3-coloring φ where φ(1) = 1, φ(2) = φ(4) = 2 and φ(3) = φ(5) = 3. Suppose
also that the bit commitment scheme is defined as f(b, x) = 156897b x2< /SMALL> mod 321389, where b = 0, 1 and

 .

Suppose that Peggy chooses the permutation π = (1 3 2) in some round of the proof. Then she computes:

Figure 13.12 A computational zero-knowledge interactive proof system for Graph 3-colorability

She will encode this coloring in binary as the 10-tuple

0111101110

and then compute commitments of these ten bits. Suppose that she does this as follows:

Then Peggy gives Vic the ten values f(b, x) computed above.

Next, suppose that Vic chooses the edge 34 as his challenge. Then Peggy opens four blobs: the two that correspond to vertex 3 and the two
that correspond to vertex 4. So Peggy gives Vic the ordered pairs

Vic will first check that the two colors are distinct: 10 encodes color 2 and 11 encodes color 3, so this is all right. Next, Vic verifies that the
four commitments are valid and hence this round of the proof is completed successfully.

As in previous proof systems we have studied, Vic will accept a valid proof with probability 1, so we have completeness. What is the
probability that Vic will accept if G is not 3-colorable? In this case, for any coloring, there must be at least one edge ij such that i and j have
the same color. Vic’s chances of choosing such an edge are at least 1/m. Peggy’s probability of fooling Vic in all m 2 rounds is at most

Since (1 - 1/m)m → e -1 as m ∞, there exists an integer m 0 such that (1 - 1/m) m ≤ 2/e for m ≥ m 0. Hence

 . Since (2/e) m approaches zero exponentially quickly as a function of m = |E|, we have
soundness as well.

Let’s now turn to the zero-knowledge aspect of the proof system. All that Vic sees in any given round of the protocol is an encrypted
3-colouring of G, together with the two distinct colours of the endpoints of one particular edge, as previously committed by Peggy. Since
the colors are permuted in each round, it seems that Vic cannot combine information from different rounds to reconstruct the 3-coloring.

The proof system is not perfect zero-knowledge, but it does provide a weaker form of zero-knowledge called computational
zero-knowledge. Computational zero-knowledge is defined exactly as perfect zero-knowledge, except that the relevant probability
distributions of transcripts are required only to be polynomially indistinguishable (in the sense of Chapter 12) rather than identical.

We begin by showing how transcripts can be forged. We give an explicit algorithm that will forge transcripts that cannot be distinguished
from those produced by an honest Vic. If Vic deviates from the protocol, then it is possible to construct a simulator which uses the
algorithm V* as a restartable subroutine to construct forged transcripts. Both forging algorithms follow the pattern of the related algorithms
for the Graph Isomorphism proof system.

Here, we consider only the case where Vic follows the protocol. A transcript T for the interactive proof of Graph 3-colorability would have
the form

where A j consists of 2n blobs computed by Peggy, the edge uv chosen by Vic, the colors assigned by Peggy in round j to u and v, and the

four random numbers used by Peggy to encrypt the colors of these two vertices. A transcript is forged by means of the forging algorithm
presented in Figure 13.13.

Proving (computational) zero-knowledge for Vic requires showing that the two probability distributions on transcripts (as produced by the
Vic taking part in the protocol, and as produced by the simulator) are indistinguishable. We will not do this here, but we will make a couple
of comments. Notice that the two probability distributions are not identical. This is because virtually all the R ij ’s in a forged transcript are

blobs encrypting 1; whereas the R ij ’s on a real transcript will (usually) be encryptions of more equal numbers of 0’s and 1’s. However, it is

possible to show that the two probability distributions cannot be distinguished in polynomial time, provided that the underlying bit
commitment scheme is secure. More precisely, this means that the probability distribution on blobs encrypting color c are indistinguishable
from the probability distribution on blobs encrypting color d if c ≠ d.

Readers familiar with NP-completeness theory will realize that, having given a zero-knowledge proof for one particular NP-complete
problem, we can obtain a zero-knowledge proof for any other problem in NP. This can be done by applying a polynomial transformation
from a given problem in NP to the Graph 3-coloring problem.

Figure 13.13 Forging algorithm for transcripts for Graph 3-colorability

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

13.5 Zero-knowledge Arguments

Let us recap the basic properties of the computational zero-knowledge proof for Graph 3-colorability
presented in the last section. No assumptions are needed to prove completeness and soundness of the
protocol. A computational assumption is needed to prove zero-knowledge, namely that the underlying bit
commitment scheme is secure. Observe that if Peggy and Vic take part in the protocol, then Vic may later
try to break the bit commitment scheme that was used in the protocol (for example, if the scheme based on
quadratic residuosity were used, then Vic would try to factor the modulus). If at any future time Vic can
break the bit commitment scheme, then he can decrypt the blobs used by Peggy in the protocol and extract
the 3-coloring.

This analysis depends on the properties of the blobs that were used in the protocol. Although the binding
property of the blobs is unconditional, the concealing property relies on a computational assumption.

An interesting variation is to use blobs in which the concealing property is unconditional but the binding
property requires a computational assumption. This leads to a protocol that is known as a zero-knowledge
argument rather than a zero-knowledge proof. The reader will recall that we have assumed up until now
that Peggy is all-powerful; in a zero-knowledge argument we will assume that Peggy’s computations are
required to be polynomial-time. (In fact, this assumption creates no difficulties, for we have already
observed that Peggy’s computations are polynomial-time provided she knows one 3-coloring of G.)

Let us begin by describing a couple of bit commitment schemes of this type and then examine the
ramifications of using them in the protocol for Graph 3-coloring.

The first scheme is (again) based on the Quadratic Residues problem. Suppose n = pq, where p and q are
prime, and let m ∈ QR(n) (note that in the previous scheme m was a pseudo-square). In this scheme
neither the factorization of n nor the square root of m should be known to Peggy. So either Vic should
construct these values or they should be obtained from a (trusted) third party.

Let and Y = QR(n), and define

As before, Peggy encrypts a value b by choosing a random x and computing the blob y = f(b, x). In this
scheme all the blobs are quadratic residues. Further, any y ∈ QR(n) is both an encryption of 0 and an
encryption of 1. For suppose y = x2 mod n and m = k2 mod n. Then

This means that the concealing property is achieved unconditionally. On the other hand, what happens to
the binding property? Peggy can open any given blob both as a 0 and as a 1 if and only if she can compute
k, a square root of m. So, in order for the scheme to be (computationally) binding, we need to make the
assumption that it is infeasible for Peggy to compute a square root of m. (If Peggy were all-powerful, then
she could, of course, do this. This is one reason why we are now assuming that Peggy is computationally
bounded.)

As a second bit commitment scheme of this type, we give an example of a scheme based on the Discrete
Logarithm problem. Let p be a prime such that the discrete log problem in is infeasible, let α be a

primitive element of and let . The value of β should be chosen by Vic, or by a trusted third

party, rather than by Peggy. This scheme will have , and f is defined by

It is not hard to see that this scheme is unconditionally concealing, and it is binding if and only if it is
infeasible for Peggy to compute the discrete logarithm logα β.

Now, suppose we use one of these two bit commitment schemes in the protocol for Graph 3-colorability .
It is easy to see that the protocol remains complete. But now the soundness condition depends on a
computational assumption: the protocol is sound if and only if the bit commitment scheme is binding.
What happens to the zero-knowledge aspect of the protocol? Because the bit commitment scheme is
unconditionally concealing, the protocol is now perfect zero-knowledge rather than just computational
zero-knowledge. Thus we have a perfect zero-knowledge argument.

property zero-knowledge proof zero-knowledge argument

completeness unconditional unconditional

soundness unconditional computational

zero-knowledge computational perfect

binding blobs unconditional computational

concealing blobs computational unconditional

Whether one prefers an argument to a proof depends on the application, and whether one wants to make a
computational assumption regarding Peggy or Vic. A comparison of the properties of proofs and
arguments is summarized in Table 13.1. In the column "zero-knowledge proof," the computational
assumptions pertain to Peggy’s computing power; in the column "zero-knowledge argument," the
computational assumptions refer to Vic’s computing power.

13.6 Notes and References

Most of the material in this chapter is based on Brassard, Chaum, and Crépeau [BCC88] and on Goldreich,
Micali, and Wigderson [GMW91]. The bit commitment schemes we present, and a thorough discussion of
the differences between proofs and arguments, can be found in [BCC88] (however, note that the term
"argument" was first used in [BC90]). Zero-knowledge proofs for Graph Isomorphism, Graph
Non-isomorphism and Graph 3-colorability can be found in [GMW91]. Another relevant paper is
Goldwasser, Micali, and Rackoff [GMR89], in which interactive proof systems are first defined formally.
The zero-knowledge proof for Quadratic Residues is from this paper.

The idea of coin-flipping by telephone is due to Blum [BL82].

A very informal and entertaining illustration of the concept of zero-knowledge is presented by Quisquater
and Guillou [QG90]. Also, see Johnson [JO88] for a more mathematical survey of interactive proof
systems.

Figure 13.14 An interactive proof system for Quadratic Non-residues

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Previous Table of Contents Next

Exercises

13.1 Consider the interactive proof system for the problem Quadratic Non-residues presented in
Figure 13.14. Prove that the system is sound and complete, and explain why the protocol is not
zero-knowledge.
13.2 Devise an interactive proof system for the problem Subgroup Non-membership. Prove that
your protocol is sound and complete.
13.3 Consider the zero-knowledge proof for Quadratic Residues that was presented in Figure 13.8.

(a) Define a valid triple to be one having the form (y, i, z), where y ∈ QR(n), i = 0 or 1,

 and z2 ≡ x i y (mod n). Show that the number of valid triples is 2(p - 1)(q - 1), and
each such triple is generated with equal probability if Peggy and Vic follow the protocol.
(b) Show that Vic can generate triples having the same probability distribution without knowing
the factorization n = pq.
(c) Prove that the protocol is perfect zero-knowledge for Vic.

13.4 Consider the zero-knowledge proof for Subgroup Membership that was presented in Figure
13.10.

(a) Prove that the protocol is sound and complete.

(b) Define a valid triple to be one having the form (γ, i, h), where , i = 0 or 1, 0 ≤ h ≤

 - 1 and αh ≡ β i γ (mod n). Show that the number of valid triples is ,
and each such triple is generated with equal probability if Peggy and Vic follow the protocol.
(c) Show that Vic can generate triples having the same probability distribution without knowing
the discrete logarithm logα β.

(d) Prove that the protocol is perfect zero-knowledge for Vic.
13.5 Prove that the Discrete Logarithm bit commitment scheme presented in Section 13.5 is
unconditionally concealing, and prove that it is binding if and only if Peggy cannot compute logα β.

13.6 Suppose we use the Quadratic Residues bit commitment scheme presented in Section 13.5 to
obtain a zero-knowledge argument for Graph 3-coloring. Using the forging algorithm presented in
Figure 13.13, prove that this protocol is perfect zero-knowledge for Vic.

Previous Table of Contents Next

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Table of Contents

Further Reading
Other recommended textbooks and monographs on cryptography include the following:

Beker and Piper [BP82] Beutelspacher [Be94]

Brassard [Br88] Biham and Shamir [BS93]

Denning [De82] Kahn [Ka67]

Kaufman, Perlman and Speciner [KPS95] Koblitz [Ko94]

Konheim [Ko81] Kranakis [Kr86]

Menezes [Me93] Meyer and Matyas [MM82]

Patterson [Pa87] Pomerance [Po90a]

Rhee [Rh94] Rueppel [Ru86]

Salomaa [Sa90] Schneier [Sc95]

Seberry and Pieprzyk [SP89] Simmons [Si92b]

Stallings [St95] van Tilborg [vT88]

Wayner [Wa96] Welsh [We88]

For a thorough and highly recommended reference on all aspects of practical cryptogrpahy, see Menezes,
Van Oorschot and Vanstone [MVV96].

The main research journals in cryptography are the Journal of Cryptology, Designs, Codes and
Cryptography and Cryptologia. The Journal of Cryptology is the journal of the International Association
for Cryptologic Research (or IACR) which also sponsors the two main annual cryptology conferences,
CRYPTO and EUROCRYPT.

CRYPTO has been held since 1981 in Santa Barabara. The proceedings of CRYPTO have been published
annually since 1982:

CRYPTO ’82 [CRS83] CRYPTO ’83 [Ch84]

CRYPTO ’84 [BC85] CRYPTO ’85 [Wi86]

CRYPTO ’86 [Od87] CRYPTO ’87 [Po88]

CRYPTO ’88 [Go90] CRYPTO ’89 [Br90]

CRYPTO ’90 [MV91] CRYPTO ’91 [Fe92]

CRYPTO ’92 [Br93] CRYPTO ’93 [St94]

CRYPTO ’94 [De94] CRYPTO ’95 [Co95]

CRYPTO ’96 [Ko96]

EUROCRYPT has been held annually since 1982, and except for 1983 and 1986, its proceedings have
been published, as follows:

EUROCRYPT ’82 [Be83] EUROCRYPT ’84 [BCI85]

EUROCRYPT ’85 [Pi86] EUROCRYPT ’87 [CP88]

EUROCRYPT ’88 [Gu88a] EUROCRYPT ’89 [QV90]

EUROCRYPT ’90 [Da91] EUROCRYPT ’91 [Da91a]

EUROCRYPT ’92 [Ru93] EUROCRYPT ’93 [He94]

EUROCRYPT ’94 [De95] EUROCRYPT ’95 [GQ95]

EUROCRYPT ’96 [Ma96]

A third conference series, AUSCRYPT/ASIACRYPT, has been held "in association with" the IACR. Its
conference proceedings have also been published:

AUSCRYPT ’90 [SP90] ASIACRYPT ’91 [IRM93]

AUSCRYPT ’92 [SZ92] ASIACRYPT ’94 [PS95]

Bibliography

[ACGS88] W. Alexi, B. Chor, O. Goldreich and C. P. Schnorr. RSA and Rabin
functions: certain parts are as hard as the whole. SIAM Jounal on
Computing, 17 (1988), 194-209.

[An91] H. Anton. Elementary Linear Algebra (Sixth Edition). John Wiley and
Sons, 1991.

[BHS93] D. Bayer, S. Haber and W. S. Stornetta. Improving the efficiency and
reliability of digital time-stamping. In Sequences II, Methods in
Communication, Security, and Computer Science, pages 329-334.
Springer-Verlag, 1993.

[BB88] P. Beauchemin and G. Brassard. A generalization of Hellman’s extension to
Shannon’s approach to cryptography. Journal of Cryptology, 1 (1988),
129-131.

[BBCGP88] P. Beauchemin, G. Brassard, C. Crépeau, C. Goutier and C. Pomerance. The
generation of random numbers that are probably prime. Journal of
Cryptology, 1 (1988), 53-64.

[BC94] A. Beimel and B. Chor. Interaction in key distribution schemes. Lecture
Notes in Computer Science, 773 (1994), 444-455. (Advances in Cryptology
- CRYPTO ’93.)

[BP82] H. Beker and F. Piper. Cipher Systems, The Protection of Communications.
John Wiley and Sons, 1982.

[BL90] J. Benaloh and J. Leichter. Generalized secret sharing and monotone
functions. Lecture Notes in Computer Science, 403 (1990), 27-35.
(Advances in Cryptology - CRYPTO ’88.)

[Be83] T. Beth (Ed.) Cryptography Proceedings, 1982. Lecture Notes in Computer
Science, vol. 149, Springer-Verlag, 1983.

[BCI85] T. Beth, N. Cot and I. Ingemarsson (Eds.) Advances in Cryptology:
Proceedings of EUROCRYPT ’84. Lecture Notes in Computer Science, vol.
209, Springer-Verlag, 1985.

[BJL85] T. Beth, D. Jungnickel, and H. Lenz. Design Theory. Bibliographisches
Institut, Zurich, 1985.

[Be94] A. Beutelspacher. Cryptology. Mathematical Association of America, 1994.

[BS91] E. Biham and A. Shamir. Differential cryptanalysis of DES-like
cryptosystems. Journal of Cryptology, 4 (1991), 3-72.

[BS93] E. Biham and A. Shamir. Differential Cryptanalysis of the Data Encryption
Standard. Springer-Verlag, 1993.

[BS93a] E. Biham and A. Shamir. Differential cryptanalysis of the full 16-round
DES. Lecture Notes in Computer Science, 740 (1993), 494-502. (Advances
in Cryptology - CRYPTO ’92.)

[Bl79] G. R. Blakley. Safeguarding cryptographic keys. AFIPS Conference
Proceedings, 48 (1979), 313-317.

[BC85] G. R. Blakley and D. Chaum (Eds.) Advances in Cryptology: Proceedings
of CRYPTO ’84. Lecture Notes in Computer Science, vol. 196,
Springer-Verlag, 1985.

[Bl85] R. Blom An optimal class of symmetric key generation schemes. Lecture
Notes in Computer Science, 209 (1985), 335-338. (Advances in Cryptology
- EUROCRYPT ’84.)

[BBS86] L. Blum, M. Blum and M. Shub. A simple unpredictable random number
generator. SIAM Jounal on Computing, 15 (1986), 364-383.

[Bl82] M. Blum. Coin flipping by telephone: a protocol for solving impossible
problems In 24th IEEE Spring Computer Conference, pages 133-137. IEEE
Press, 1982.

[BG85] M. Blum and S. Goldwasser. An efficient probabilistic public-key
cryptosystem that hides all partial information. Lecture Notes in Computer
Science, 196 (1985), 289-302. (Advances in Cryptology - CRYPTO ’84.)

[BM84] M. Blum and S. Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM Journal on Computing, 13 (1984),
850-864.

[Bo89] J. Boyar. Inferring sequences produced by pseudo-random number
generators. Journal of Association for Computing Machinery, 36 (1989),
129-141.

[BDSV93] C. Blundo, A. De Santis, D. R. Stinson, and U. Vaccaro. Graph
decompositions and secret sharing schemes. Lecture Notes in Computer
Science, 658 (1993), 1-24. (Advances in Cryptology - EUROCRYPT ’92.)

[BDSHKVY93] C. Blundo, A. De Santis,A. Herzberg, S. Kutten, U. Vaccaro and M. Yung.
Perfectly-secure key distribution for dynamic conferences. Lecture Notes in
Computer Science, 740 (1993), 471-486. (Advances in Cryptology -
CRYPTO ’92.)

[BC93] J. N. E. Bos and D. Chaum. Provably unforgeable signatures. Lecture Notes
in Computer Science, 740 (1993), 1-14. (Advances in Cryptology -
CRYPTO ’92.)

[Br88] G. Brassard. Modern Cryptology - A Tutorial. Lecture Notes in Computer
Science, vol. 325, Springer-Verlag, 1988.

[Br90] G. Brassard (Ed.) Advances in Cryptology - CRYPTO ’89 Proceedings.
Lecture Notes in Computer Science, vol. 435, Springer-Verlag, 1990.

[BB88a] G. Brassard and P. Bratley. Algorithmics, Theory and Practice. Prentice
Hall, 1988.

[BCC88] G. Brassard, D. Chaum and C. Crépeau. Minimum disclosure proofs of
knowledge. Journal of Computer and Systems Science, 37 (1988), 156-189.

[BC90] G. Brassard and C. Crépeau. Sorting out zero-knowledge. Lecture Notes in
Computer Science, 434 (1990), 181-191. (Advances in Cryptology -
EUROCRYPT ’89.)

[Br89] D. M. Bressoud. Factorization and Primality Testing. Springer-Verlag,
1989.

[Br85] E. F. Brickell. Breaking iterated knapsacks. Lecture Notes in Computer
Science, 218 (1986), 342-358. (Advances in Cryptology - CRYPTO ’85.)

[Br89a] E. F. Brickell. Some ideal secret sharing schemes. Journal of Combinatorial
Mathematics and Combinatorial Computing, 9 (1989), 105-113.

[Br93] E. F. Brickell (Ed.) Advances in Cryptology - CRYPTO ’92 Proceedings.
Lecture Notes in Computer Science, vol. 740, Springer-Verlag, 1993.

[BD91] E. F. Brickell and D. M. Davenport. On the classification of ideal secret
sharing schemes. Journal of Cryptology, 4 (1991), 123-134.

[BM92] E. F. Brickell and K. S. McCurley. An interactive identification scheme
based on discrete logarithms and factoring. Journal of Cryptology, 5 (1992),
29-39.

[BMP87] E. F. Brickell, J. H. Moore and M. R. Purtill. Structure in the S-boxes of
DES. Lecture Notes in Computer Science, 263 (1987), 3-8. (Advances in
Cryptology - CRYPTO ’86.)

[BO92] E. F. Brickell and A. M. Odlyzko. Cryptanalysis, a survey of recent results.
In Contemporary Cryptology, The Science of Information Integrity, pages
501-540. IEEE Press, 1992.

[BS92] E. F. Brickell and D. R. Stinson. Some improved bounds on the information
rate of perfect secret sharing schemes. Journal of Cryptology, 5 (1992),
153-166.

[BKPS90] L. Brown, M. Kwan, J. Pieprzyk and J. Seberry. LOKI - A cryptographic
primitive for authentication and secrecy applications. Lecture Notes in
Computer Science, 453 (1990), 229-236. (Advances in Cryptology -
AUSCRYPT ’90.)

[BDB92] M. Burmester, Y. Desmedt and T. Beth. Efficient zero-knowledge
identification schemes for smart cards. The Computer Journal, 35 (1992),
21-29.

[CDGV93] R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro. On the size of
shares for secret sharing schemes. Journal of Cryptology, 6 (1993),
157-167.

[Ch95] F. Chabaud. On the security of some cryptosystems based on
error-correcting codes. Lecture Notes in Computer Science, to appear.
(Advances in Cryptology - EUROCRYPT ’94.)

[Ch84] D. Chaum (Ed.) Advances in Cryptology: Proceedings of CRYPTO ’83.
Plenum Press, 1984.

[CP88] D. Chaum and W. L. Price (Eds.) Advances in Cryptology - EUROCRYPT
’87 Proceedings. Lecture Notes in Computer Science, vol. 304,
Springer-Verlag, 1988.

[CRS83] D. Chaum, R. L. Rivest and A. T. Sherman (Eds.) Advances in Cryptology:
Proceedings of CRYPTO ’82. Plenum Press, 1983.

[CvA90] D. Chaum and H. van Antwerpen. Undeniable signatures. Lecture Notes in
Computer Science, 435 (1990), 212-216. (Advances in Cryptology -
CRYPTO ’89.)

[CvHP92] D. Chaum, E. van Heijst and B. Pfitzmann. Cryptographically strong
undeniable signatures, unconditionally secure for the signer. Lecture Notes
in Computer Science, 576 (1992), 470-484. (Advances in Cryptology -
CRYPTO ’91.)

[CR88] B. Chor and R. L. Rivest. A knapsack-type public key cryptosystem based
on arithmetic in finite fields. IEEE Transactions on Information Theory, 45
(1988), 901-909.

[Co95] D. Coppersmith (Ed.) Advances in Cryptology - CRYPTO ’95 Proceedings.
Lecture Notes in Computer Science, vol. 963, Springer-Verlag, 1995.

[CKM94] D. Coppersmith, H. Krawczyz and Y. Mansour. The shrinking generator.
Lecture Notes in Computer Science, 773 (1994), 22-39. (Advances in
Cryptology - CRYPTO ’93.)

[CSV94] D. Coppersmith, J. Stern and S. Vaudenay. Attacks on the birational
permutation signature schemes. Lecture Notes in Computer Science, 773
(1994), 435-443. (Advances in Cryptology - CRYPTO ’93.)

[CW91] T. W. Cusick and M. C. Wood. The REDOC-II cryptosystem. Lecture Notes
in Computer Science, 537 (1991), 545-563. (Advances in Cryptology -
CRYPTO ’90.)

[Da90] I. B. Damgård. A design principle for hash functions. Lecture Notes in
Computer Science, 435 (1990), 416-427. (Advances in Cryptology -
CRYPTO ’89.)

[Da91] I. B. Damgård (Ed.) Advances in Cryptology - EUROCRYPT ’90
Proceedings. Lecture Notes in Computer Science, vol. 473,
Springer-Verlag, 1991.

[DLP93] I. Damgård, P. Landrock and C. Pomerance. Average case error estimates
for the strong probable prime test. Mathematics of Computation, 61 (1993),
177-194.

[Da91a] D. W. Davies (Ed.) Advances in Cryptology - EUROCRYPT ’91
Proceedings. Lecture Notes in Computer Science, vol. 547,
Springer-Verlag, 1991.

[De84] J. M. DeLaurentis. A further weakness in the common modulus protocol for
the RSA cryptosystem. Cryptologia, 8 (1984), 253-259.

[dBB92] B. den Boer and A. Bossalaers. An attack on the last two rounds of MD4.
Lecture Notes in Computer Science, 576 (1992), 194-203. (Advances in
Cryptology - CRYPTO ’91.)

[De82] D. E. R. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[De95] A. De Santis (Ed.) Advances in Cryptology - EUROCRYPT ’94
Proceedings. Lecture Notes in Computer Science, vol. 950,
Springer-Verlag, 1995.

[De94] Y. G. Desmedt (Ed.) Advances in Cryptology - CRYPTO ’94 Proceedings.
Lecture Notes in Computer Science, vol. 839, Springer-Verlag, 1994.

[dWQ93] D. de Waleffe and J.-J. Quisquater. Better login protocols for computer
networks. Lecture Notes in Computer Science, 741 (1993), 50-70.
(Computer Security and Industrial Cryptography, State of the Art and
Evolution, ESAT Course, May 1991.)

[Di92] W. Diffie. The first ten years of public-key cryptography. In Contemporary
Cryptology, The Science of Information Integrity, pages 135-175. IEEE
Press, 1992.

[DH76] W. Diffie and M. E. Hellman. Multiuser cryptographic techniques. AFIPS
Conference Proceedings, 45 (1976), 109-112.

[DH76a] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22 (1976), 644-654.

[DVW92] W. Diffie, P. C. Van Oorschot and M. J. Wiener. Authentication and
authenticated key exchanges. Designs, Codes and Cryptography, 2 (1992),
107-125.

[Eb93] H. Eberle. A high-speed DES implementation for network applications.
Lecture Notes in Computer Science, 740 (1993), 527-545. (Advances in
Cryptology - CRYPTO ’92.)

[El85] T. ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31 (1985),
469-472.

[EAKMM86] D. Estes, L. M. Adleman, K. Kompella, K. S. McCurley and G. L. Miller.
Breaking the Ong-Schnorr-Shamir signature schemes for quadratic number
fields. Lecture Notes in Computer Science, 218 (1986), 3-13. (Advances in
Cryptology - CRYPTO ’85.)

[FFS88] U. Feige, A. Fiat and A. Shamir. Zero-knowledge proofs of identity.
Journal of Cryptology, 1 (1988), 77-94.

[Fe92] J. Feigenbaum (Ed.) Advances in Cryptology - CRYPTO ’91 Proceedings.
Lecture Notes in Computer Science, vol. 576, Springer-Verlag, 1992.

[Fe73] H. Feistel. Cryptography and computer privacy. Scientific American, 228(5)
(1973), 15-23.

[FN91] A. Fiat and M. Naor. Rigorous time/space trade-offs for inverting functions.
In Proceedings of the 23rd Symposium on the Theory of Computing, pages
534-541. ACM Press, 1991.

[FS87] A. Fiat and A. Shamir. How to prove yourself: practical solutions to
identification and signature problems. Lecture Notes in Computer Science,
263 (1987), 186-194. (Advances in Cryptology - CRYPTO ’86.)

[FOM91] A. Fujioka, T. Okamoto and S. Miyaguchi. ESIGN: an efficient digital
signature implementation for smart cards. Lecture Notes in Computer
Science, 547 (1991), 446-457. (Advances in Cryptology - EUROCRYPT
’91.)

[Gib91] J. K. Gibson. Discrete logarithm hash function that is collision free and one
way. IEE Proceedings-E, 138 (1991), 407-410.

[GMS74] E. N. Gilbert, F. J. MacWilliams and N. J. A. Sloane. Codes which detect
deception. Bell Systems Technical Journal, 53 (1974), 405-424.

[Gir91] M. Girault. Self-certified public keys. Lecture Notes in Computer Science,
547 (1991), 490-497. (Advances in Cryptology - EUROCRYPT ’91.)

[GP91] C. M. Goldie and R. G. E. Pinch. Communication Theory. Cambridge
University Press, 1991.

[GMW91] O. Goldreich, S. Micali and A. Wigderson. Proofs that yield nothing but
their validity or all languages in NP have zero-knowledge proof systems.
Journal of the ACM, 38 (1991), 691-729.

[Go90] S. Goldwasser (Ed.) Advances in Cryptology - CRYPTO ’88 Proceedings.
Lecture Notes in Computer Science, vol. 403, Springer-Verlag, 1990.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer
and Systems Science, 28 (1984), 270-299.

[GMR89] S. Goldwasser, S. Micali and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM Journal on Computing, 18 (1989), 186-208.

[GMT82] S. Goldwasser, S. Micali and P. Tong. Why and how to establish a common
code on a public network. In 23rd Annual Symposium on the Foundations of
Computer Science, pages 134-144. IEEE Press, 1982.

[GM93] D. M. Gordon and K. S. McCurley. Massively parallel computation of
discrete logarithms. Lecture Notes in Computer Science, 740 (1993),
312-323. (Advances in Cryptology - CRYPTO ’92.)

[GQ88] L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol
fitted to security microprocessor minimizing both transmission and
memory. Lecture Notes in Computer Science, 330 (1988), 123-128.
(Advances in Cryptology - EUROCRYPT ’88.)

[GQ95] L. C. Guillou and J.-J. Quisquater (Eds.) Advances in Cryptology -
EUROCRYPT ’95 Proceedings. Lecture Notes in Computer Science, vol.
921, Springer-Verlag, 1995.

[Gu88] C. G. Gunther Alternating step generators controlled by de Bruijn
sequences. Lecture Notes in Computer Science, 304 (1988), 88-92.
(Advances in Cryptology - EUROCRYPT ’87.)

[Gu88a] C. G. Gunther (Ed.) Advances in Cryptology - EUROCRYPT ’88
Proceedings. Lecture Notes in Computer Science, vol. 330,
Springer-Verlag, 1988.

[HS91] S. Haber and W. S. Stornetta. How to timestamp a digital document.
Journal of Cryptology, 3 (1991), 99-111.

[HSS93] J. Håstad, A. W. Schrift and A. Shamir. The discrete logarithm modulo a
composite hides O(n) bits. Journal of Computer and Systems Science, 47
(1993), 376-404.

[He80] M. E. Hellman. A cryptanalytic time-memory trade-off. IEEE Transactions
on Information Theory, 26 (1980), 401-406.

[Hi29] L. S. Hill. Cryptogaphy in an algebraic alphabet. American Mathematical
Monthly, 36 (1929), 306-312.

[He94] T. Helleseth (Ed.) Advances in Cryptology - EUROCRYPT ’93 Proceedings.
Lecture Notes in Computer Science, vol. 765, Springer-Verlag, 1994.

[HLLPRW91] D. G. Hoffman, D. A. Leonard, C. C. Lindner, K. T. Phelps, C. A. Rodger
and J. R. Wall. Coding Theory, The Essentials. Marcel Dekker, 1991.

[IRM93] H. Imai, R. L. Rivest and T. Matsumoto (Eds.) Advances in Cryptology -
ASIACRYPT ’91 Proceedings. Lecture Notes in Computer Science, vol. 739,
Springer-Verlag, 1993.

[ISN87] M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general
access structure. Proceedings IEEE Globecom ’87, pages 99-102, 1987.

[Jo88] D. S. Johnson. The NP-completeness column: an ongoing guide. Journal of
Algorithms, 9 (1988), 426-444.

[Ka67] D. Kahn. The Codebreakers. The Story of Secret Writing. Macmillan, 1967.

[KPS95] C. Kaufman, R. Perlman and M. Speciner. Network Security. Private
Communication in a Public World. Prentice Hall, 1995.

[Ko87] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48
(1987), 203-209.

[Ko94] N. Koblitz. A Course in Number Theory and Cryptography (Second
Edition). Springer-Verlag, 1994.

[Ko96] N. Koblitz (Ed.) Advances in Cryptology - CRYPTO ’96 Proceedings.
Lecture Notes in Computer Science, vol. 1109, Springer-Verlag, 1996.

[KN93] J. Kohl and C. Neuman. The Kerboros Network Authentication Service.
Network Working Group Request for Comments: 1510, September 1993.

[Ko81] A. G. Konheim. Cryptography, A Primer. John Wiley and Sons, 1981.

[Kr86] E. Kranakis. Primality and Cryptography. John Wiley and Sons, 1986.

[La90] J. C. Lagarias Pseudo-random number generators in cryptography and
number theory. In Cryptology and Computational Number Theory, pages
115-143. American Mathematical Society, 1990.

[LO91] B. A. Lamacchia and A. M. Odlyzko. Computation of discrete logarithms in
prime fields. Designs, Codes and Cryptography, 1 (1991), 47-62.

[LL93] A. K. Lenstra and H. W. Lenstra, Jr. (Eds.) The Development of the Number
Field Sieve. Lecture Notes in Mathematics, vol. 1554. Springer-Verlag,
1993.

[LL90] A. K. Lenstra and H. W. Lenstra, Jr. Algorithms in number theory. In
Handbook of Theoretical Computer Science, Volume A: Algorithms and
Complexity, pages 673-715. Elsevier Science Publishers, 1990.

[LN83] R. Lidl and H. Niederreiter. Finite Fields. Addison-Wesley, 1983.

[LW88] D. L. Long and A. Wigderson. The discrete log hides O(log n) bits. SIAM
Jounal on Computing, 17 (1988), 363-372.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting
Codes. North-Holland, 1977.

[Ma86] J. L. Massey. Cryptography - a selective survey. In Digital
Communications, pages 3-21. North-Holland, 1986.

[Ma94] M. Matsui. Linear cryptanalysis method for DES cipher. Lecture Notes in
Computer Science, 765 (1994), 386-397. (Advances in Cryptology -
EUROCRYPT ’93.)

[Ma94a] M. Matsui. The first experimental cryptanalysis of the data encryption
standard. Lecture Notes in Computer Science, 839 (1994), 1-11. (Advances
in Cryptology - CRYPTO ’94.)

[MTI86] T. Matsumoto, Y. Takashima and H. Imai. On seeking smart public-key
distribution systems. Transactions of the IECE (Japan), 69 (1986), 99-106.

[Ma96] U. Maurer (Ed.) Advances in Cryptology - EUROCRYPT ’96 Proceedings.
Lecture Notes in Computer Science, vol. 1070, Springer-Verlag, 1996.

[Mc90] K. McCurley The discrete logarithm problem. In Cryptology and
Computational Number Theory, pages 49-74. American Mathematical
Society, 1990.

[Mc78] R. McEliece. A public-key cryptosystem based on algebraic coding theory.
DSN Progress Report, 42-44 (1978), 114-116.

[Mc87] R. McEliece. Finite Fields for Computer Scientists and Engineers. Kluwer
Academic Publishers, 1987.

[Me93] A. J. Menezes. Elliptic Curve Public Key Cryptosystems. Kluwer Academic
Publishers, 1993.

[MBGMVY93] A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone and T.
Yaghoobian. Applications of Finite Fields. Kluwer Academic Publishers,
1993.

[MOV94] A. J. Menezes, T. Okamoto and S. A. Vanstone. Reducing elliptic curve
logarithms to logarithms in a finite field. IEEE Transactions on Information
Theory, 39 (1993), 1639-1646.

[MV91] A. J. Menezes and S. A. Vanstone (Eds.) Advances in Cryptology -
CRYPTO ’90 Proceedings. Lecture Notes in Computer Science, vol. 537,
Springer-Verlag, 1991.

[MV93] A. J. Menezes and S. A. Vanstone. Elliptic curve cryptosystems and their
implementation. Journal of Cryptology, 6 (1993), 209-224.

[MVV96] A. J. Menezes, P. C. Van Oorschot and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

[Me78] R. C. Merkle. Secure communications over insecure channels.
Communications of the ACM, 21 (1978), 294-299.

[Me90] R. C. Merkle. One way hash functions and DES. Lecture Notes in Computer
Science, 435 (1990), 428-446. (Advances in Cryptology - CRYPTO ’89.)

[Me90a] R. C. Merkle. A fast software one-way hash function. Journal of
Cryptology, 3 (1990), 43-58.

[MH78] R. C. Merkle and M. E. Hellman. Hiding information and signatures in
trapdoor knapsacks. IEEE Transactions on Information Theory, 24 (1978),
525-530.

[MM82] C. Meyer and S. Matyas. Cryptography: A New Dimension in Computer
Security. John Wiley and Sons, 1982.

[Mi76] G. L. Miller. Riemann’s hypothesis and tests for primality. Journal of
Computer and Systems Science, 13 (1976), 300-317.

[Mi86] V. Miller. Uses of elliptic curves in cryptography. Lecture Notes in
Computer Science, 218 (1986), 417-426. (Advances in Cryptology -
CRYPTO ’85.)

[MPW92] C. J. Mitchell, F. Piper and P. Wild. Digital signatures. In Contemporary
Cryptology, The Science of Information Integrity, pages 325-378. IEEE
Press, 1992.

[Mi91] S. Miyaguchi. The FEAL cipher family. Lecture Notes in Computer
Science, 537 (1991), 627-638. (Advances in Cryptology - CRYPTO ’90.)

[MOI90] S. Miyaguchi, K. Ohta and M. Iwata. 128-bit hash function (N-hash).
Proceedings of SECURICOM 1990, 127-137.

[Mo92] J. H. Moore. Protocol failures in cryptosystems. In Contemporary
Cryptology, The Science of Information Integrity, pages 541-558. IEEE
Press, 1992.

[NBS77] Data Encryption Standard (DES). National Bureau of Standards FIPS
Publication 46, 1977.

[NBS80] DES modes of operation. National Bureau of Standards FIPS Publication
81, 1980.

[NBS81] Guidelines for implementing and using the NBS data encryption standard.
National Bureau of Standards FIPS Publication 74, 1981.

[NBS85] Computer data authentication. National Bureau of Standards FIPS
Publication 113, 1985.

[NBS93] Secure hash standard. National Bureau of Standards FIPS Publication 180,
1993.

[NBS94] Digital signature standard. National Bureau of Standards FIPS Publication
186, 1994.

[Od87] A. M. Odlyzko (Ed.) Advances in Cryptology - CRYPTO ’86 Proceedings.
Lecture Notes in Computer Science, vol. 263, Springer-Verlag, 1987.

[Ok93] T. Okamoto. Provably secure and practical identification schemes and
corresponding signature schemes. Lecture Notes in Computer Science, 740
(1993), 31-53. (Advances in Cryptology - CRYPTO ’92.)

[OSS85] H. Ong, C. P. Schnorr and A. Shamir. Efficient signature schemes based on
polynomial equations. Lecture Notes in Computer Science, 196 (1985),
37-46. (Advances in Cryptology - CRYPTO ’84.)

[Pa87] W. Patterson. Mathematical Cryptology for Computer Scientists and
Mathematicians. Rowman and Littlefield, 1987.

[Pe86] R. Peralta. Simultaneous security of bits in the discrete log. Lecture Notes in
Computer Science, 219 (1986), 62-72. (Advances in Cryptology -
EUROCRYPT ’85.)

[Pi86] F. Pichler (Ed.) Advances in Cryptology - EUROCRYPT ’85 Proceedings.
Lecture Notes in Computer Science, vol. 219, Springer-Verlag, 1986.

[PS95] J. Piepryzk and R. Safavi-Naini (Eds.) Advances in Cryptology -
ASIACRYPT ’94 Proceedings. Lecture Notes in Computer Science, vol. 917,
Springer-Verlag, 1995.

[PB45] R. L. Plackett and J. P. Burman. The design of optimum multi-factorial
experiments. Biometrika, 33 (1945), 305-325.

[PH78] S. C. Pohlig and M. E. Hellman. An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance. IEEE
Transactions on Information Theory, 24 (1978), 106-110.

[Po88] C. Pomerance (Ed.) Advances in Cryptology - CRYPTO ’87 Proceedings.
Lecture Notes in Computer Science, vol. 293, Springer-Verlag, 1988.

[Po90] C. Pomerance. Factoring. In Cryptology and Computational Number
Theory, pages 27-47. American Mathematical Society, 1990.

[Po90a] C. Pomerance (Ed.) Cryptology and Computational Number Theory,
American Mathematical Society, 1990.

[PGV93] B. Preneel, R. Govaerts and J. Vandewalle. Information authentication: hash
functions and digital signatures. Lecture Notes in Computer Science, 741
(1993), 87-131. (Computer Security and Industrial Cryptography, State of
the Art and Evolution, ESAT Course, May 1991.)

[PGV94] B. Preneel, R. Govaerts and J. Vandewalle. Hash functions based on block
ciphers: a synthetic approach. Lecture Notes in Computer Science, 773
(1994), 368-378. (Advances in Cryptology - CRYPTO ’93.)

[QG90] J.-J. Quisquater and L. Guillou. How to explain zero-knowledge protocols
to your children. Lecture Notes in Computer Science, 435 (1990), 628-631.
(Advances in Cryptology - CRYPTO ’89.)

[QV90] J.-J. Quisquater and J. Vandewalle (Eds.) Advances in Cryptology -
EUROCRYPT ’89 Proceedings. Lecture Notes in Computer Science, vol.
434, Springer-Verlag, 1990.

[Ra79] M. O. Rabin. Digitized signatures and public-key functions as intractible as
factorization. MIT Laboratory for Computer Science Technical Report,
LCS/TR-212, 1979.

[Ra80] M. O. Rabin. Probabilistic algorithms for testing primality. Journal of
Number Theory, 12 (1980), 128-138.

[Rh94] M. Y. Rhee. Cryptography and Secure Communications. McGraw-Hill,
1994.

[Ri91] R. L. Rivest. The MD4 message digest algorithm. Lecture Notes in
Computer Science, 537 (1991), 303-311. (Advances in Cryptology -
CRYPTO ’90.)

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public key cryptosystems. Commununications of the ACM,
21 (1978), 120-126.

[Ro93] K. H. Rosen. Elementary Number Theory and its Applications (Third
Edition). Addison Wesley, 1993.

[Ru86] R. A. Rueppel. Analysis and Design of Stream Ciphers. Springer-Verlag,
1986.

[Ru93] R. A. Rueppel (Ed.) Advances in Cryptology - EUROCRYPT ’92
Proceedings. Lecture Notes in Computer Science, vol. 658,
Springer-Verlag, 1993.

[RV94] R. A. Rueppel and P. C. Van Oorschot Modern key agreement techniques.
To appear in Computer Communications, 1994.

[Sa90] A. Salomaa. Public-Key Cryptography. Springer-Verlag, 1990.

[Sc94] J. I. Schiller. Secure distributed computing. Scientific American, 271(5)
(1994), 72-76.

[Sc95] B. Schneier. Applied Cryptography, Protocols, Algorithms and Source Code
in C (Second Edition). John Wiley and Sons, 1995.

[Sc91] C. P. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4 (1991), 161-174.

[SP89] J. Seberry and J. Pieprzyk Cryptography: An Introduction to Computer
Security. Prentice-Hall, 1989.

[SP90] J. Seberry and J. Pieprzyk (Eds.) Advances in Cryptology - AUSCRYPT ’90
Proceedings. Lecture Notes in Computer Science, vol. 453,
Springer-Verlag, 1990.

[SZ92] J. Seberry and Y. Zheng (Eds.) Advances in Cryptology - AUSCRYPT ’92
Proceedings. Lecture Notes in Computer Science, vol. 718,
Springer-Verlag, 1993.

[Sh79] A. Shamir. How to share a secret. Communications of the ACM, 22 (1979),
612-613.

[Sh84] A. Shamir. A polynomial-time algorithm for breaking the basic
Merkle-Hellman cryptosystem. IEEE Transactions on Information Theory,
30 (1984), 699-704.

[Sh90] A. Shamir. An efficient identification scheme based on permuted kernels.
Lecture Notes in Computer Science, 435 (1990), 606-609. (Advances in
Cryptology - CRYPTO ’89.)

[Sh94] A. Shamir. Efficient signature schemes based on birational permutations.
Lecture Notes in Computer Science, 773 (1994), 1-12. (Advances in
Cryptology - CRYPTO ’93.)

[Sh48] C. E. Shannon. A mathematical theory of communication. Bell Systems
Technical Journal, 27 (1948), 379-423, 623-656.

[Sh49] C. E. Shannon. Communication theory of secrecy systems. Bell Systems
Technical Journal, 28 (1949), 656-715.

[ST92] J. H. Silverman and J. Tate. Rational Points on Elliptic Curves.
Springer-Verlag, 1992.

[Si85] G. J. Simmons. Authentication theory / coding theory. Lecture Notes in
Computer Science, 196 (1985), 411-432. (Advances in Cryptology -
CRYPTO ’84.)

[Si88] G. J. Simmons. A natural taxonomy for digital information authentication
schemes. Lecture Notes in Computer Science, 293 (1988), 269-288.
(Advances in Cryptology - CRYPTO ’87.)

[Si92] G. J. Simmons. A survey of information authentication. In Contemporary
Cryptology, The Science of Information Integrity, pages 379-419. IEEE
Press, 1992.

[Si92a] G. J. Simmons. An introduction to shared secret and/or shared control
schemes and their application. In Contemporary Cryptology, The Science of
Information Integrity, pages 441-497. IEEE Press, 1992.

[Si92b] G. J. Simmons (Ed.) Contemporary Cryptology, The Science of Information
Integrity. IEEE Press, 1992.

[SB92] M. E. Smid and D. K. Branstad. The data encryption standard: past and
future. In Contemporary Cryptology, The Science of Information Integrity,
pages 43-64. IEEE Press, 1992.

[SB93] M. E. Smid and D. K. Branstad. Response to comments on the NIST
proposed digital signature standard. Lecture Notes in Computer Science,
740 (1993), 76-88. (Advances in Cryptology - CRYPTO ’92.)

[SS77] R. Solovay and V. Strassen. A fast Monte Carlo test for primality. SIAM
Journal on Computing, 6 (1977), 84-85.

[St95] W. STallings. Network and Internetwork Security. Principles and Practice.
Prentice Hall, 1995.

[St88] D. R. Stinson. Some constructions and bounds for authentication codes.
Journal of Cryptology, 1 (1988), 37-51.

[St90] D. R. Stinson. The combinatorics of authentication and secrecy codes.
Journal of Cryptology, 2 (1990), 23-49.

[St92] D. R. Stinson. Combinatorial characterizations of authentication codes.
Designs, Codes and Cryptography, 2 (1992), 175-187.

[St92a] D. R. Stinson. An explication of secret sharing schemes. Designs, Codes
and Cryptography, 2 (1992), 357-390.

[St94] D. R. Stinson (Ed.) Advances in Cryptology - CRYPTO ’93 Proceedings.
Lecture Notes in Computer Science, vol. 773, Springer-Verlag, 1994.

[vHP93] E. van Heyst and T. P. Pedersen. How to make efficient fail-stop signatures.
Lecture Notes in Computer Science, 658 (1993), 366-377. (Advances in
Cryptology - EUROCRYPT ’92.)

[VV89] S. A. Vanstone and P. C. Van Oorschot. An Introduction to Error
Correcting Codes with Applications. Kluwer Academic Publishers, 1989.

[vT88] H. C. A. van Tilborg. An Introduction to Cryptology. Kluwer Academic
Publishers, 1988.

[vT93] J. van Tilburg. Secret-key exchange with authentication. Lecture Notes in
Computer Science, 741 (1993), 71-86. (Computer Security and Industrial
Cryptography, State of the Art and Evolution, ESAT Course, May 1991.)

[VV84] U. Vazirani and V. Vazirani. Efficient and secure pseudorandom number
generation. In Proceedings of the 25th Annual Symposium on the
Foundations of Computer Science, pages 458-463. IEEE Press, 1984.

[Wa90] M. Walker. Information-theoretic bounds for authentication systems.
Journal of Cryptology, 2 (1990), 131-143.

[Wa96] P. Wayner. Disappearing Cryptography. Academic Press, 1996.

[We88] D. Welsh. Codes and Cryptography. Oxford Science Publications, 1988.

[Wi94] M. J. Wiener. Efficient DES key search. Technical report TR-244, School
of Computer Science, Carleton University, Ottawa, Canada, May 1994 (also
presented at CRYPTO ’93 Rump Session).

[Wi80] H. C. Williams. A modification of the RSA public-key encryption
procedure. IEEE Transactions on Information Theory, 26 (1980), 726-729.

[Wi86] H. C. Williams (Ed.) Advances in Cryptology - CRYPTO ’85 Proceedings.
Lecture Notes in Computer Science, vol. 218, Springer-Verlag, 1986.

[Ya82] A. Yao. Theory and applications of trapdoor functions. In Proceedings of
the 23rd Annual Symposium on the Foundations of Computer Science,
pages 80-91. IEEE Press, 1982.

Table of Contents

Copyright © CRC Press LLC

Cryptography: Theory and Practice
by Douglas Stinson
CRC Press, CRC Press LLC

ISBN: 0849385210 Pub Date: 03/17/95

Table of Contents

Index
abelian group, 4, 116, 184
accept, 385
access structure, 331

threshold, 332, 333
active adversary, 258
additive identity, 3
additive inverse, 3
adjoint matrix, 16
adversary

active, 258
passive, 258

Affine Cipher, 8, 8-12
cryptanalysis of, 26-27

affine function, 8
Affine-Hill Cipher, 41
algorithm

deterministic, 129
Las Vegas, 139, 171, 234
Monte Carlo, 129, 129
probabilistic, 129

associative property, 3
of cryptosystems, 66

authentication code, 304, 304-323
combinatorial bounds, 311-313
deception probability, 305, 306-313, 319-323
entropy bounds, 321-323
impersonation attack, 305, 306-308
orthogonal array characterization, 319-320
substitution attack, 305, 307-309

authentication matrix, 306
authentication rule, 305
authentication tag, 305
authorized subset, 331
minimal, 332
Autokey Cipher, 23, 23

basis, 332
Bayes’ Theorem, 45, 60, 135, 340, 341
binding, 399
binomial coefficient, 31
birthday paradox, 236
bit commitment scheme, 399, 398-401, 405-407
blob, 399
block cipher, 20
Blom Key Predistribution Scheme, 261, 260-263
Blum-Blum-Shub Generator, 371, 370-377, 379
Blum-Goldwasser Cryptosystem, 380, 379-382
boolean circuit, 333

fan-in, 333
fan-out, 333
monotone, 333

boolean formula, 333
conjunctive normal form, 337
disjunctive normal form, 334

Bos-Chaum Signature Scheme, 216, 215-217
Brickell Secret Sharing Scheme, 344, 343-348

Caesar Cipher, 4
certificate, 264
challenge, 385
challenge-and-response protocol, 217, 283, 385
Chaum-van Antwerpen Signature Scheme, 218, 217-223
Chaum-van Heijst-Pfitzmann hash function, 238, 238-241
Chinese remainder theorem, 122, 119-122, 142, 166, 380
Chor-Rivest Cryptosystem, 115
chosen ciphertext cryptanalysis, 25
chosen plaintext cryptanalysis, 25
cipher

block, 20
stream, 20, 20-24, 360

cipher block chaining mode, 83, 83, 267
cipher feedback mode, 83, 85
ciphertext, 1, 20, 378
ciphertext-only cryptanalysis, 25
closure, 332
closure property, 3
code, 194

distance of, 194
dual code, 194
generating matrix, 194
Goppa code, 195
Hamming code, 196
nearest neighbor decoding, 194

parity-check matrix, 194
syndrome, 194
syndrome decoding, 195

coin-flipping by telephone, 400
commutative cryptosystems, 66
commutative property, 3
complete graph, 346
complete multipartite graph, 346, 352, 353
completeness, 286, 386
Composites, 129, 130
computational security, 44
concave function, 56

strictly, 56
concealing, 399
conditional entropy, 59
conditional probability, 45
congruence, 3
conjunctive normal form boolean formula, 337
cryptanalysis, 6

chosen ciphertext, 25
chosen plaintext, 25
ciphertext-only, 25
known-plaintext, 25

cryptogram, 7
cryptosystem, 1

endomorphic, 64
idempotent, 66
iterated, 66
monoalphabetic, 12
polyalphabetic, 13
private-key, 114
probabilistic public-key, 378
product, 64, 64-67
public-key, 114

cyclic group, 123, 183, 187

Data Encryption Standard, 51, 70
description of, 70-78
differential cryptanalysis of, 89, 89-104
dual keys, 110
exhaustive key search, 82
expansion function, 71, 73
initial permutation, 70, 73
key schedule, 71, 75-78
modes of operation, 83, 83-86
S-boxes, 72, 73-75, 82
time-memory tradeoff, 86, 86-89

dealer, 326
deception probability, 305
decision problem, 129, 190
decomposition construction, 354, 355, 353-357
decryption rule, 1, 21, 378
determinant, 16
deterministic algorithm, 129
differential cryptanalysis, 89

characteristic, 98
filtering operation, 101
input x-or, 89
output x-or, 89
right pair, 100
wrong pair, 100

Diffie-Hellman Key Exchange, 270, 270-271
Diffie-Hellman Key Predistribution Scheme, 265, 263-267
Diffie-Hellman problem, 266, 265-267, 275
Digital Signature Standard, 205, 211, 209-213
digram, 25
disavowal protocol, 217
Discrete Logarithm Generator, 383
Discrete Logarithm problem, 162, 163, 164-177, 206, 207, 210, 238, 263, 266, 276, 287, 290, 362,
397, 400, 406

bit security of, 172-177, 400
elliptic curve, 187
generalized, 177, 177-180
in Galois fields, 183
index calculus method, 170-172
ith Bit problem, 173
Pohlig-Hellman algorithm, 169, 166-170
Shanks’ algorithm, 165, 165-166

disjunctive normal form boolean formula, 334
distinguishable probability distributions, 364
distinguisher, 364
distribution rule, 338
distributive property, 4

electronic codebook mode, 83, 83
ElGamal Cryptosystem, 115, 163, 162-164, 266-267

elliptic curve, 187-190
generalized, 178, 177-178

ElGamal Signature Scheme, 205, 205-209
elliptic curve, 183, 183-187

point at infinity, 183
Elliptic Curve Cryptosystem, 115, 187-190
encryption matrix, 47
encryption rule, 1, 21, 378

endomorphic cryptosystem, 64
entropy, 52, 51-52

conditional, 59
of a natural language, 61
of a secret sharing scheme, 349-352
of authentication code, 321-323
properties of, 56-59, 349

Euclidean algorithm, 116-120, 140, 179, 181
extended, 117, 119
running time of, 128

Euler phi-function, 9
Euler pseudo-prime, 132
Euler’s criterion, 130, 131, 173
exclusive-or, 21
exhaustive key search, 6, 13

of DES, 82

factor base, 171
factoring, 150-156

factor base, 153
number field sieve, 155
p - 1 algorithm, 151, 151-152
quadratic sieve, 154
trial division, 150

fan-in, 333
fan-out, 333
Fermat’s theorem, 122, 137
Fibonacci number, 128
field, 10, 181
forging algorithm, 390

for Graph 3-colorability, 405
for Graph Isomorphism, 391, 394

Galois field, 180-183
Girault Key Agreement Scheme, 278, 276-279
Goldwasser-Micali Cryptosystem, 379, 378-379, 399
graph, 346

complete, 346
complete multipartite, 346, 352, 353
induced subgraph, 352
isomorphic, 386
proper 3-coloring, 401

Graph 3-colorability, 401
Graph 3-colorability Interactive Proof System, 402, 400-404, 406-407
Graph Isomorphism, 386
Graph Isomorphism Interactive Proof System, 389, 388-395
Graph Non-isomorphism, 386

Graph Non-isomorphism Interactive Proof System, 387, 386-388, 395-396
group, 4

abelian, 4, 116, 184
cyclic, 123, 183, 187
order of element in, 122

Guillou-Quisquater Identification Scheme, 296, 295-299
identity-based, 300

Hamming distance, 194
hash function, 203, 232, 232-254

birthday attack, 236-237
collision-free, 233-236
constructed from a cryptosystem, 246
extending, 241-246
one-way, 234
strongly collision-free, 233
weakly collision-free, 233

Hill Cipher, 13-17, 18
cryptanalysis of, 36-37

Huffman encoding, 53-56
Huffman’s algorithm, 55

ideal decomposition, 353
ideal secret sharing scheme, 343, 344, 346-348
idempotent cryptosystem, 66
identification scheme, 282-300

converted to signature scheme, 300
identity-based, 299, 299

identity matrix, 14
impersonation, 305
implicit key authentication, 276, 278
independent random variables, 45
index of coincidence, 31

mutual, 33
indistinguishable probability distributions, 363-370, 378, 404
induced subgraph, 352
information rate, 342

monotone circuit construction, 343
injective function, 2
interactive argument

perfect zero-knowledge, 407
zero-knowledge, 406, 405-407

interactive proof, 385, 385-397
computational zero-knowledge, 398, 404, 400-404
perfect zero-knowledge, 393, 388-397
perfect zero-knowledge for Vic, 391
zero-knowledge, 385

intruder-in-the-middle attack, 271, 305
inverse matrix, 15
inverse permutation, 7
isomorphic graphs, 386
iterated cryptosystem, 66

Jacobi symbol, 132, 132-134, 370, 379
Jensen’s Inequality, 56, 63, 316
joint probability, 45

Kasiski test, 31
Kerberos, 268, 267-270

key lifetime, 268
session key, 267
timestamp, 268

Kerckhoff’s principle, 24
key, 1, 20, 203, 305, 326, 378
key agreement, 258

authenticated, 271
key confirmation, 269
key distribution, 258

on-line, 259
key equivocation, 59
key freshness, 267
key predistribution, 259, 260-267
key server, 259
keystream, 20
keystream alphabet, 21
keystream generator, 21
keyword, 12
known-plaintext cryptanalysis, 25

Lagrange interpolation formula, 329, 329-330
Lagrange’s theorem, 122
Lamé’s theorem, 128
Lamport Signature Scheme, 213, 213-215
Las Vegas algorithm, 139, 171, 234
Legendre symbol, 131, 131-132
Linear Congruential Generator, 360, 360
linear feedback shift register, 22, 360, 362
linear recurrence, 21
linear transformation, 14

m-gram Substitution Cipher, 68
matrix product, 14
McEliece Cryptosystem, 115, 196, 193-198
MD4 Hash Function, 248, 247-250

MD5 Hash Function, 247, 250
memoryless source, 53
Menezes-Vanstone Cryptosystem, 189, 188-190
Merkle-Hellman Cryptosystem, 115, 193, 190-193
message, 203, 305
message authentication code, 86, 304
message digest, 232
Miller-Rabin algorithm, 129, 130, 137, 136-138

error probability of, 138
mod operator, 3
modular exponentiation, 127

square-and-multiply algorithm, 127, 127, 131
modular multiplication, 126
modular reduction, 3
modulus, 3
monoalphabetic cryptosystem, 12
monotone circuit, 333
monotone circuit construction, 333, 335

information rate, 343
monotone property, 332
Monte Carlo algorithm, 129, 129, 374

error probability of, 129
no-biased, 129
unbiased, 374, 374-377
yes-biased, 129

MTI Key Agreement Protocol, 274, 273-276
Multiplicative Cipher, 65, 65
multiplicative identity, 4
multiplicative inverse, 10
mutual index of coincidence, 33

next bit predictor, 365-370
NP-complete problem, 44, 191, 193, 400, 404

Okamoto Identification Scheme, 291, 290-295
One-time Pad, 50, 50
one-way function, 116, 213, 234

trapdoor, 116
oracle, 139
orthogonal array, 314, 313-320

bounds, 315-318
constructions, 318-319

output feedback mode, 83, 85, 362

passive adversary, 258
perfect secrecy, 48, 44-51
perfect secret sharing scheme, 332, 339, 349

periodic stream cipher, 21
permutation, 2
Permutation Cipher, 18, 17-20
permutation matrix, 19
plaintext, 1, 20, 378
polyalphabetic cryptosystem, 13
polynomial

congruence of, 180
degree of, 180
division, 180
irreducible, 181
modular reduction of, 181

polynomial equivalence, 126
prefix-free encoding, 54
previous bit predictor, 373
primality testing, 129-138
prime, 9
Prime number theorem, 129, 135
primitive element, 123
principal square root, 373, 379
private-key cryptosystem, 114
probabilistic algorithm, 129
probabilistic encryption, 377-382
probabilistic public-key cryptosystem, 378
probability, 45

conditional, 45
joint, 45

product cryptosystem, 64, 64-67
proof of forgery algorithm, 224
proof of knowledge, 285
proper 3-coloring, 401
protocol failure, 156, 158, 208
prover, 385
pseudo-random bit generator, 359, 359-377
pseudo-square, 370
public-key cryptosystem, 114

probabilistic, 378

quadratic non-residue, 130
Quadratic Non-residues Interactive Proof System, 408
quadratic reciprocity, 132
quadratic residue, 130
Quadratic Residues, 130, 130, 371, 370-371, 374, 375, 377, 396, 399, 406
Quadratic Residues Interactive Proof System, 396, 396-397

Rabin Cryptosystem, 147, 145-150
security of, 149-150

rank, 226
redundancy of a natural language, 61
reject, 385
relative shift, 33
relatively prime, 9
replay attack, 269
response, 385
ring, 4, 180
round, 385
RSA Cryptosystem, 114, 124, 124

attacks on, 138-145
bit security of, 144-145
implementation of, 125-128

RSA Generator, 362, 362-363
RSA Signature Scheme, 203, 204

Schnorr Identification Scheme, 286, 284-289, 295
Schnorr Signature Scheme, 301
search problem, 190
secret sharing scheme, 326-357

decomposition construction, 353-357
ideal, 343, 344, 346-348
information rate, 342, 341-343, 349-355
monotone circuit construction, 333-338
threshold scheme, 326-331

Secure Hash Standard, 247, 250-252
security parameter, 284, 378
seed, 359
self-certifying public key, 276
session key, 259
Shamir Threshold Scheme, 327, 327-330, 343, 346
share, 326
Shift Cipher, 4, 3-7
Shrinking Generator, 362
signature, 203
signature scheme, 203, 202-229

constructed from identification
scheme, 300
fail-stop, 224-229
one-time, 213-217, 228
undeniable, 217-223

signing algorithm, 203
simulator, 390
Solovay-Strassen algorithm, 133, 129-136

error probability, 136, 134-136

soundness, 288, 386
source state, 304
Sperner property, 215
spurious keys, 61, 59-64

expected number of, 63
square-and-multiply algorithm, 127, 127, 131
Station-to-station Protocol, 272, 271-273
Stirling’s formula, 68, 216
stream cipher, 20, 20-24, 360

cryptanalysis of, 37
synchronous, 21, 85

Subgroup Membership, 397
Subgroup Membership Interactive Proof System, 398
Subset Sum problem, 190, 190-191

modular transformation, 192
superincreasing, 191

substitution, 305
Substitution Cipher, 7, 7, 7-8

cryptanalysis of, 27-31
m-gram, 68

synchronous stream cipher, 21, 85

threshold scheme, 326, 326-331
timestamping, 252-254
transcript, 390
Transposition Cipher, 17
trapdoor, 116
trigram, 25
trusted authority, 258

unconditional security, 45
unicity distance, 63, 59-64

van Heyst-Pedersen Signature Scheme, 225, 224-229
Vandermonde matrix, 329

determinant of, 329
verification algorithm, 203
verifier, 385
Vernam One-time Pad, 50, 50
Vigenere Cipher, 12, 12-13, 40

cryptanalysis of, 31-36

zero-knowledge interactive argument, 406, 405-407
perfect, 407

zero-knowledge interactive proof, 385
computational, 398, 404, 400-404
perfect, 393, 388-397

perfect, for Vic, 391

Table of Contents

Copyright © CRC Press LLC

