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Preface

This book provides an introduction to the applications, theory, and algorithms of linear
and nonlinear optimization. The emphasis is on practical aspects—modern algorithms,
as well as the influence of theory on the interpretation of solutions or on the design of
software. Two important goals of this book are to present linear and nonlinear optimization
in an integrated setting, and to incorporate up-to-date interior-point methods in linear and
nonlinear optimization.

As an illustration of this unified approach, almost every algorithm in this book is
presented in the form of a General Optimization Algorithm. This algorithm has two ma-
jor steps: an optimality test, and a step that improves the estimate of the solution. This
framework is general enough to encompass the simplex method and various interior-point
methods for linear programming, as well as Newton’s method and active-set methods for
nonlinear optimization. The optimality test in this algorithm motivates the discussion of
optimality conditions for a variety of problems. The step procedure motivates the discussion
of feasible directions (for constrained problems) and Newton’s method and its variants (for
nonlinear problems).

In general, there is an attempt to develop the material from a small number of basic
concepts, emphasizing the interrelationships among the many topics. Our hope is that, by
emphasizing a few fundamental principles, it will be easier to understand and assimilate the
vast panorama of linear and nonlinear optimization.

We have attempted to make accessible a number of topics that are not often found
in textbooks. Within linear programming, we have emphasized the importance of sparse
matrices on the design of algorithms, described computational techniques used in sophisti-
cated software packages, and derived the primal-dual interior-point method together with
the predictor-corrector technique. Within nonlinear optimization, we have included discus-
sions of truncated-Newton methods for large problems, convergence theory for trust-region
methods, filter methods, and techniques for alleviating the ill-conditioning in barrier meth-
ods. We hope that the book serves as a useful introduction to research papers in these
areas.

The book was designed for use in courses and course sequences that discuss both linear
and nonlinear optimization. We have used consistent approaches when discussing the two
topics, often using the same terminology and notation in order to emphasize the similarities
between the two topics. However, it can also be used in traditional (and separate) courses
in Linear Programming and Nonlinear Optimization—in fact, that is the way we use it in
the courses that we teach. At the end of this preface are chapter descriptions and course
outlines indicating these possibilities.

xiii
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xiv Preface

We have also used the book for more advanced courses. The later chapters (and the
later sections within chapters) contain a great deal of material that would be difficult to
cover in an introductory course. The Notes at the ends of many sections contain pointers to
research papers and other references, and it would be straightforward to use such materials
to supplement the book.

The book is divided into four parts plus appendices. Part I (Basics) contains material
that might be used in a number of different topics. It is not intended that all of this material
be presented in the classroom. Some of it might be irrelevant (as the sample course outlines
illustrate). In other cases, material might be familiar to the students from other courses, or
simple enough to be assigned as a reading exercise. The material in Part I could also be
taught in stages, as it is needed. In a course on Nonlinear Optimization, for example, Chapter
4 (Representation of Linear Constraints) could be delayed until after Part III (Unconstrained
Optimization). Our intention in designing Part I was to make the book as flexible as possible,
and instructors should feel free to exploit this flexibility.

Part II (Linear Programming) and Part III (Unconstrained Optimization) are indepen-
dent of each other. Either one could be taught or read before the other. In addition, it is not
necessary to cover Part II before going on to Part IV (Nonlinear Optimization), although
the material in Part IV will benefit from an understanding of Linear Programming. The
material in the appendices may already be familiar. If not, it could either be presented in
class or left for students to read independently.

Many sections in the book can be omitted without interrupting the flow of the dis-
cussions (detailed information on this is given below). Proofs of theorems and lemmas
can similarly be omitted. Roughly speaking, it is possible to skip later sections within a
chapter and later chapters within a part and move on to later chapters in the book. The book
was organized in this way so that it would be accessible to a wider audience, as well as to
increase its flexibility.

Many of the exercises are computational. In some cases, pencil-and-paper techniques
would suffice, but the use of a computer is recommended. We have not specified how the
computer might be used, and we leave this up to the instructor. In courses with an emphasis
on modeling, a specialized linear or nonlinear optimization package might be appropriate.
In other courses, the students might be asked to program algorithms themselves. We leave
these decisions up to the instructor. Some information about software packages can be
found in Appendix C. In addition, some exercises depend on auxiliary data sets that can be
found on the web site for the book:

http://www.siam.org/books/ot108

In our own classes, we use the MATLAB® software package for class demonstrations
and homework assignments. It allows us to demonstrate a great many techniques easily,
and it allows students to program individual algorithms without much difficulty. It also
includes (in its toolboxes) prepared algorithms for many of the optimization problems that
we discuss.

We have gone to considerable effort to ensure the accuracy of the material in this
book. Even so, we expect that some errors remain. For this reason, we have set up an online
page for errata. It can be obtained at the book Web site.
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Using This Book

This book is designed to be flexible. It can be read and taught in many different ways.
The material in the appendices can be taught as needed, or left to the students to read

independently. Also, all formally identified proofs can be omitted.
Part II (Linear Programming) and Part III (Unconstrained Optimization) are indepen-

dent of each other. Part II does not assume any knowledge of Calculus. Part IV (Non-
linear Optimization) does not assume that Part II has been read (with the exception of
Section 14.4.1).

The only “essential” chapters in Part II are Chapters 4 (Geometry of Linear Program-
ming), 5 (The Simplex Method), and 6 (Duality). The only “essential” chapter in Part III is
Chapter 11 (Basics of Unconstrained Optimization). The other chapters can be skipped.

We now describe the chapters individually, pointing out various ways they can be
used. The sample course outlines that follow indicate how chapters might be selected to
construct individual courses (based on a 15-week semester).1

Part I: Basics

• Chapter 1: Optimization Models. This chapter is self-contained and describes a
variety of optimization models. Sections 1.3–1.5 are independent of one another.
Section 1.6 includes more realistic models and assumes that the reader is familiar
with the basic models described in the earlier sections. The subsections of Section
1.6 are independent of one another.

• Chapter 2: Fundamentals of Optimization. For Part II, only Sections 2.1–2.4 are
needed (and Section 2.3.1 can be omitted). For Parts III and IV the whole chapter is
relevant.

• Chapter 3: Representation of Linear Constraints. Sections 3.3.2–3.3.4 can be omitted
(although Section 3.3.2 is needed for Part IV). This chapter is only relevant to Parts
II and IV; it is not needed for Part III.

Part II: Linear Programming

• Chapter 4: Geometry of Linear Programming. All sections of this chapter are needed
in Part II.

• Chapter 5: The Simplex Method. Sections 5.1 and 5.2 are the most important. How
the rest of the chapter is used depends on the goals of the instructor, in particular
with regard to tableaus. In a number of examples, we use the full simplex tableau to
display data for linear programs. Thus, it is necessary to be able to read these tableaus
to extract information. This is the only use we make of the tableaus elsewhere in the
book. It is not necessary to be able to manipulate these tableaus.

1Throughout the book, the number of a section or subsection begins with the chapter number. That is, Section
10.3 refers to the third section in Chapter 10, and Section 16.7.2 refers to the second subsection in the seventh
section of Chapter 16. Also, a reference to Appendix A.9 refers to the ninth section of Appendix A. A similar
system is used for tables, examples, theorems, etc.; Figure 8.10 refers to the tenth figure in Chapter 8, for example.
For exercises, however, the chapter number is omitted, e.g., Exercise 4.7 is the seventh exercise in Section 4 of
the current chapter (unless another chapter is specified).
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• Chapter 6: Duality and Sensitivity. Sections 6.1 and 6.2 are the most important. The
remaining sections can be skipped, if desired. If taught, we recommend that Sections
6.3–6.5 be taught in order, although Section 6.3 is only used in a minor way in the
remaining two sections. It would be possible to stop after any section. Note: The
remaining chapters in Part II are independent of each other.

• Chapter 7: Enhancements of the Simplex Method. The sections in this chapter are
independent of each other. The instructor is free to pick and choose material, with one
partial exception: the discussion of the decomposition principle is easier to understand
if column generation has already been read.

• Chapter 8: Network Problems. In this chapter, the sections must be taught in order.
It would be possible to stop after any section.

• Chapter 9: Computational Complexity of Linear Programming. The first two sections
contain basic material used in Sections 9.3–9.5. Ideally, the remaining sections should
be taught in order, although Sections 9.4 and 9.5 are independent of each other. Even
if some topics are not of interest, at least the introductory paragraphs of each section
should be read. (Section 9.5 requires some knowledge of statistics.)

• Chapter 10: Interior-Point Methods for Linear Programming. Sections 10.1 and 10.2
are the most important. The later sections could be skipped but, if taught, Sections
10.4–10.6 should be taught in order. Section 10.4 reviews some fundamental concepts
from nonlinear optimization needed in Sections 10.5–10.6.

Part III: Unconstrained Optimization

• Chapter 11: Basics of Unconstrained Optimization. We recommend reading all of this
chapter (with the exception of the proofs). If desired, either Section 11.5 or Section
11.6 could be omitted, but not both. Chapters 12 and 13 could be omitted. Chapter
13 makes more sense if taught after Chapter 12, but in fact, only Section 13.5 makes
explicit use of the material in Chapter 12.

• Chapter 12: Methods for Unconstrained Optimization. Sections 12.1–12.3 are the
most important. All the remaining sections and subsections can be taught indepen-
dently of each other.

• Chapter 13: Low-Storage Methods for Unconstrained Problems. Once Sections 13.1
and 13.2 have been taught, the remaining sections are independent of each other.

Part IV: Nonlinear Optimization

• Chapter 14: Optimality Conditions for Constrained Problems. We recommend read-
ing Sections 14.1–14.6. The rest of the chapter may be omitted. Within Section 14.8,
Sections 14.8.3 and 14.8.5 can be taught without teaching the remaining subsections,
although Section 14.8.5 depends on Section 14.8.3. (The discussion of nonlinear
duality in Section 14.8 is only needed in Sections 16.6–16.8 of Chapter 16.)

• Chapter 15: Feasible-Point Methods. We recommend reading Sections 15.1–15.4
(although Section 15.4.1 could be omitted). These sections explain how to solve
problems with linear constraints. Sections 15.5–15.7 discuss methods for problems
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with nonlinear constraints. Sections 15.5 and 15.6 are independent of each other, but
Section 15.7 depends on Section 15.5.

• Chapter 16: Penalty and Barrier Methods. We recommend reading Sections 16.1 and
16.2 (although Section 16.2.3 could be omitted). If more of the chapter is covered,
then Section 16.3 should be read. Sections 16.4–16.8 are independent of each other.
Sections 16.6–16.8 use Section 14.8.3 of Chapter 14.

Changes in the Second Edition

The overall structure of the book has not changed in the new addition, and the major topic
areas are the same. However, we have updated certain topics to reflect developments since
the first edition appeared. We list the major changes here.

Chapter 1 has been expanded to include examples of more realistic optimization
models (Section 1.6). The description of interior-point methods for linear programming has
been thoroughly revised and restructured (Chapter 10). The discussion of derivative-free
methods has been extensively revised to reflect advances in theory and algorithms (Section
12.5). In Part IV we have added material on filter methods (Section 15.7), nonlinear primal-
dual methods (Section 16.7), and semidefinite programming (Section 16.8). In addition,
numerous smaller changes have been made throughout the book.

Some material from the first edition has been omitted here. The most notable examples
are the chapter on nonlinear least-squares data fitting, and the sections on interior-point
methods for convex programming. These topics from the first edition are available at the
book Web site (see above for the URL).

Sample Course Outlines

We provide below some sample outlines for courses that might use this book. If a section
is listed without mention of subsections, then it is assumed that all the subsections will be
taught. If a subsection is specified, then the unmentioned subsections may be omitted.

Proposed Course Outline: Linear Programming

I: Foundations

Chapter 1. Optimization Models
1. Introduction
3. Linear Equations
4. Linear Optimization
7. Optimization Applications

1. Crew Scheduling and Fleet Scheduling

Chapter 2. Fundamentals of Optimization
1. Introduction
2. Feasibility and Optimality
3. Convexity
4. The General Optimization Algorithm
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Chapter 3. Representation of Linear Constraints
1. Basic Concepts
2. Null and Range Spaces
3. Generating Null-Space Matrices

1. Variable Reduction Method

II: Linear Programming

Chapter 4. Geometry of Linear Programming
1. Introduction
2. Standard Form
3. Basic Solutions and Extreme Points
4. Representation of Solutions; Optimality

Chapter 5. The Simplex Method
1. Introduction
2. The Simplex Method
3. The Simplex Method (Details)
4. Getting Started—Artificial Variables

1. The Two-Phase Method
5. Degeneracy and Termination

Chapter 6. Duality and Sensitivity
1. The Dual Problem
2. Duality Theory
3. The Dual Simplex Method
4. Sensitivity

Chapter 7. Enhancements of the Simplex Method
1. Introduction
2. Problems with Upper Bounds
3. Column Generation
5. Representation of the Basis

Chapter 9. Computational Complexity of Linear Programming
1. Introduction
2. Computational Complexity
3. Worst-Case Behavior of the Simplex Method
4. The Ellipsoid Method
5. The Average-Case Behavior of the Simplex Method

Chapter 10. Interior-Point Methods for Linear Programming
1. Introduction
2. The Primal-Dual Interior-Point Method

Proposed Course Outline: Nonlinear Optimization

I: Foundations

Chapter 1. Optimization Models
1. Introduction
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3. Linear Equations
5. Least-Squares Data Fitting
6. Nonlinear Optimization
7. Optimization Applications2

2. Support Vector Machines
3. Portfolio Optimization
4. Intensity Modulated Radiation Treatment Planning
5. Positron Emission Tomography Image Reconstruction
6. Shape Optimization

Chapter 2. Fundamentals of Optimization
1. Introduction
2. Feasibility and Optimality
3. Convexity
4. The General Optimization Algorithm
5. Rates of Convergence
6. Taylor Series
7. Newton’s Method for Nonlinear Equations

Chapter 3. Representation of Linear Constraints3

1. Basic Concepts
2. Null and Range Spaces
3. Generating Null-Space Matrices

1. Variable Reduction Method

III: Unconstrained Optimization

Chapter 11. Basics of Unconstrained Optimization
1. Introduction
2. Optimality Conditions
3. Newton’s Method for Minimization
4. Guaranteeing Descent
5. Guaranteeing Convergence: Line Search Methods
6. Guaranteeing Convergence: Trust-Region Methods

Chapter 12. Methods for Unconstrained Optimization
1. Introduction
2. Steepest-Descent Method
3. Quasi-Newton Methods

Chapter 13. Low-Storage Methods for Unconstrained Problems
1. Introduction
2. The Conjugate-Gradient Method for Solving Linear Equations
3. Truncated-Newton Methods
4. Nonlinear Conjugate-Gradient Methods
5. Limited-Memory Quasi-Newton Methods

2Not all the applications need be taught.
3The material in Chapter 3 is not needed until Part IV.
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IV: Nonlinear Optimization

Chapter 14. Optimality Conditions for Constrained Problems
1. Introduction
2. Optimality Conditions for Linear Equality Constraints
3. The Lagrange Multipliers and the Lagrangian Function
4. Optimality Conditions for Linear Inequality Constraints
5. Optimality Conditions for Nonlinear Constraints
6. Preview of Methods
8. Duality

3. Wolfe Duality
5. Duality in Support Vector Machines

Chapter 15. Feasible-Point Methods
1. Introduction
2. Linear Equality Constraints
3. Computing the Lagrange Multipliers
4. Linear Inequality Constraints
5. Sequential Quadratic Programming

Chapter 16. Penalty and Barrier Methods
1. Introduction
2. Classical Penalty and Barrier Methods

Proposed Course Outline: Introduction to Optimization

I: Foundations

Chapter 1. Optimization Models
1. Introduction
3. Linear Equations
4. Linear Optimization
5. Least-Squares Data Fitting
6. Nonlinear Optimization
7. Optimization Applications4

Chapter 2. Fundamentals of Optimization
1. Introduction
2. Feasibility and Optimality
3. Convexity
4. The General Optimization Algorithm
5. Rates of Convergence
6. Taylor Series
7. Newton’s Method for Nonlinear Equations

Chapter 3. Representation of Linear Constraints
1. Basic Concepts
2. Null and Range Spaces

4Not all the applications need be taught.
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3. Generating Null-Space Matrices
1. Variable Reduction Method

II: Linear Programming

Chapter 4. Geometry of Linear Programming
1. Introduction
2. Standard Form
3. Basic Solutions and Extreme Points
4. Representation of Solutions; Optimality

Chapter 5. The Simplex Method
1. Introduction
2. The Simplex Method
3. The Simplex Method (Details)
4. Getting Started—Artificial Variables

1. The Two-Phase Method
5. Degeneracy and Termination

Chapter 6. Duality and Sensitivity
1. The Dual Problem
2. Duality Theory
4. Sensitivity

Chapter 8. Network Problems
1. Introduction
2. Basic Concepts and Examples

III: Unconstrained Optimization

Chapter 11. Basics of Unconstrained Optimization
1. Introduction
2. Optimality Conditions
3. Newton’s Method for Minimization
4. Guaranteeing Descent
5. Guaranteeing Convergence: Line Search Methods

IV: Nonlinear Optimization

Chapter 14. Optimality Conditions for Constrained Problems
1. Introduction
2. Optimality Conditions for Linear Equality Constraints
3. The Lagrange Multipliers and the Lagrangian Function
4. Optimality Conditions for Linear Inequality Constraints
5. Optimality Conditions for Nonlinear Constraints
6. Preview of Methods
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Chapter 1

Optimization Models

1.1 Introduction
Optimization models attempt to express, in mathematical terms, the goal of solving a prob-
lem in the “best” way. That might mean running a business to maximize profit, minimize
loss, maximize efficiency, or minimize risk. It might mean designing a bridge to minimize
weight or maximize strength. It might mean selecting a flight plan for an aircraft to mini-
mize time or fuel use. The desire to solve a problem in an optimal way is so common that
optimization models arise in almost every area of application. They have even been used
to explain the laws of nature, as in Fermat’s derivation of the law of refraction for light.

Optimization models have been used for centuries, since their purpose is so appeal-
ing. In recent times they have come to be essential, as businesses become larger and more
complicated, and as engineering designs become more ambitious. In many circumstances
it is no longer possible, or economically feasible, for decisions to be made without the aid
of such models. In a large, multinational corporation, for example, a minor percentage im-
provement in operations might lead to a multimillion dollar increase in profit, but achieving
this improvement might require analyzing all divisions of the corporation, a gargantuan
task. Likewise, it would be virtually impossible to design a new computer chip involving
millions of transistors without the aid of such models.

Such large models, with all the complexity and subtlety that they can represent, would
be of little value if they could not be solved. The last few decades have witnessed aston-
ishing improvements in computer hardware and software, and these advances have made
optimization models a practical tool in business, science, and engineering. It is now possible
to solve problems with thousands or even millions of variables. The theory and algorithms
that make this possible form a large portion of this book.

In the first part of this chapter we give some simple examples of optimization models.
They are grouped in categories, where the divisions reflect the properties of the models as
well as the differences in the techniques used to solve them. We include also a discussion of
systems of linear equations, which are not normally considered to be optimization models.
However, linear equations are often included as constraints in optimization models, and
their solution is an important step in the solution of many optimization problems.

3
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1 −

2 −

3 −

1
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3
|

x2

x1

x�

Figure 1.1. Nonlinear optimization problem. The feasible set is the dark line.

In the last section of this chapter we give some examples of applications of optimiza-
tion. These examples reflect families of problems that are either in wide use, or—at the
time of writing of this edition of the book—are subject of intense research. The examples
reflect the tastes of the authors; by no means do they constitute a broad or representative
sample of the myriad applications where optimization is in use today.

1.2 Optimization: An Informal Introduction
Consider the problem of finding the point on the line x1 + x2 = 2 that is closest to the point
(2, 2)T (see Figure 1.1) . The problem can be written as

minimize f (x) = (x1 − 2)2 + (x2 − 2)2

subject to x1 + x2 = 2.

It is easy, of course, to see that the problem has an optimum at x� = (1, 1)T.
This problem is an example of an optimization problem. Optimization problems

typically minimize or maximize a function f (called the objective function) in a set of
points S (called the feasible set). Commonly, the feasible set is defined by some constraints
on the variables. In this example our objective function is the nonlinear function f (x) =
(x1−2)2+(x2−2)2, and the feasible set S is defined by a single linear constraint x1+x2 = 2.
The feasible set could also be defined by multiple constraints. An example is the problem

minimize f (x) = x1

subject to x2
1 ≤ x2

x2
1 + x2

2 ≤ 2.

The feasible set S for this problem is shown in Figure 1.2; it is easy to see that the optimal
point is x� = (−1, 1)T. It is possible to have an unconstrained optimization problem where
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Figure 1.2. Nonlinear optimization problem with inequality constraints.

there are no constraints, as in the example

minimize f (x) = (ex1 − 1)2 + (x2 − 1)2.

The feasible set S here is the entire two-dimensional space. The minimizer is x� = (0, 1)T,
since the function value is zero at this point and positive elsewhere.

We see from these examples that the feasible set can be defined by equality constraints
or inequality constraints or no constraints at all. The functions defining the objective func-
tion and the constraints may be linear or nonlinear. The examples above are nonlinear
optimization problems since at least some of the functions involved are nonlinear. If the
objective function and the constraints are all linear, the problem is a linear optimization
problem or linear program. An example is the problem

maximize f (x) = 2x1 + x2

subject to x1 + x2 ≤ 1
x1 ≥ 0, x2 ≥ 0.

Figure 1.3 shows the feasible set. The optimal solution is clearly x� = (1, 0)T.
Consider now the nonlinear optimization problem

maximize f (x) = (x1 + x2)
2

subject to x1x2 ≥ 0
−2 ≤ x1 ≤ 1
−2 ≤ x2 ≤ 1.

The feasible set is shown in Figure 1.4. The point xc = (1, 1)T has an objective value of
f (xc) = 4, which is a higher objective value than any of its “nearby” feasible points. It is
therefore called a local optimizer. In contrast the point x� = (−2,−2)T has an objective
value f (x�) = 16 which is the best among all feasible points. It is called a global optimizer.
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Figure 1.3. Linear optimization problem. The feasible region is shaded.
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xc

Figure 1.4. Local and global solutions. The feasible region is shaded.

The methods we consider in this book focus on finding local optima. We will usually
assume that the problem functions and their first and second derivatives are continuous. We
can then use derivative information at a given point to anticipate the behavior of the problem
functions at “nearby” points and use this to determine whether the point is a local solution
and if not, to find a better point. The derivative information cannot usually anticipate the
behavior of the functions at points “farther away,” and hence cannot determine whether
a local solution is also the global solution. One exception is when the problem solved
is a convex optimization problem, in which any local optimizer is also a global optimizer
(see Section 2.3). Luckily, linear programs are convex so that for this important family of
problems, local solutions are also global.
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It may seem odd to give so much attention to finding local optimizers when they are not
always guaranteed to be global optimizers. However, most global optimization algorithms
seek the global optimum by finding local solutions to a sequence of subproblems generated
by some methodical approximation to the original problem; the techniques described in the
book are suitable for these subproblems. In addition, for some applications a local solution
may be sufficient, or the user might be satisfied with an improvement on the objective value.
Of course, some applications require finding a global solution. The drawback is that for
a problem that is not convex (or not known to be convex), finding a global solution can
require substantially more computational effort than finding a local solution.

Our book will also assume that the variables of the problems are continuous, that is,
they can take a continuous range of real values. For this reason the problems we consider
are also referred to as continuous optimization problems. Many variables such as length,
volume, weight, and time are by nature continuous, and even though we cannot compute
or measure them to infinite precision, it is plausible in the optimization to assume that they
are continuous. On the other hand, variables such as the number of people to be hired,
the number of flights to dispatch per day, or the number of new plants to be opened can
assume only integer values. Problems where the variables can only take on integer values
are called discrete optimization problems or, in the case where all problem functions are
linear, integer programming problems. In a few applications it is sufficient to solve the
problem ignoring the integrality restriction, and once a solution is obtained, to round off
the variables to their nearest integer. Unfortunately rounding off of a solution does not
guarantee that it is optimal, or even that it is feasible, so this approach is often inadequate.

While a discussion of discrete optimization is beyond the scope of this book, we will
mention that such problems are much harder than their continuous counterparts for much
the same reason global optimization is harder than local optimization. Since at a given point
we only have information of the behavior of the function at “nearby points,” there are no
straightforward conditions that can determine whether a given feasible solution is optimal.
Hence the solution process must rule out either explicitly or implicitly every other feasible
solution. Thus the search for an integer solution requires the solution of a potentially large
sequence of continuous optimization subproblems. Typically the first of these subproblems
is a relaxed problem, in which the integrality requirement on each variable is relaxed (omit-
ted) and replaced by a (continuous) constraint on the range of the variable. If, for example,
a variable xj is restricted to be either 0, 1, or 2, the relaxed constraint would be 0 ≤ xj ≤ 2.
Subsequent subproblems would typically include additional continuous constraints. The
subproblems would be solved by continuous optimization methods such as those described
in the book.

Continuous optimization is the basis for the solution of many applied problems, both
discrete and continuous, convex or nonconvex. The examples in this chapter reflect just a
small fraction of such applications.

1.3 Linear Equations
Systems of linear equations are central to almost all optimization algorithms and form a
part of a great many optimization models. They are used in this section to represent a data-
fitting example. Aslight generalization of this example will lead to the important problem of
least-squares data fitting. Linear equations are also used to represent constraints in a model.
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8 Chapter 1. Optimization Models

Finally, solving systems of linear equations is an important step in the simplex method for
linear programming and Newton’s method for nonlinear optimization, and is a technique
used to determine dual variables (Lagrange multipliers) in both settings. In this chapter
we only give examples of linear equations. Techniques for their solution are discussed in
Appendix A.

Our example is based on Figure 1.5. The points marked by • are assumed to lie on
the graph of a quadratic function. These points, denoted by (ti , bi)T, have the coordinates
(2, 1)T, (3, 6)T, and (5, 4)T. The quadratic function can be written as

b(t) = x1 + x2t + x3t
2,

where x1, x2, and x3 are three unknown parameters that determine the quadratic. The three
data points define three equations of the form b(ti) = bi :

x1 + x2(2)+ x3(2)
2 = 1

x1 + x2(3)+ x3(3)
2 = 6

x1 + x2(5)+ x3(5)
2 = 4

or

x1 + 2x2 + 4x3 = 1

x1 + 3x2 + 9x3 = 6

x1 + 5x2 + 25x3 = 4.

The solution is (x1, x2, x3)
T = (−21, 15,−2)T, or

b(t) = −21 + 15t − 2t2,

and is graphed in Figure 1.5.
This approach to data fitting has many applications. It is not unique to fitting data

by a quadratic function. If the data were thought to have some sort of periodic component
(perhaps a daily fluctuation), then a more appropriate model might be

b(t) = x1 + x2t + x3 sin t,

and the system of equations would have the form

x1 + x2(2)+ x3(sin 2) = 1

x1 + x2(3)+ x3(sin 3) = 6

x1 + x2(5)+ x3(sin 5) = 4.

Also, there is nothing special about having three data points and three terms in the model.
If we wish to associate the data-fitting problem with a system of linear equations, then the
number of data points and the number of model terms must be the same. However, through
the use of least-squares models (see Section 1.5), it would be possible to have more data
points than model terms. In fact, this is often the case. Least-squares techniques are also
appropriate if there are measurement errors in the data (also a common occurrence).
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Figure 1.5. Fitting a quadratic function to data.

Let us return to the example of the quadratic model. We can write the system of
equations in matrix form as

( 1 2 4
1 3 9
1 5 25

)(
x1

x2

x3

)
=
( 1

6
4

)
,

or more generally, ⎛
⎝ 1 t1 t21

1 t2 t22

1 t3 t23

⎞
⎠(

x1

x2

x3

)
=
(
b1

b2

b3

)
.

If there were n data points and the model were of the form

b(t) = x1 + x2t + · · · + xntn−1,

then the system would have the form

⎛
⎜⎜⎝

1 t1 · · · tn−1
1

1 t2 · · · tn−1
2

...

1 tn · · · tn−1
n

⎞
⎟⎟⎠
⎛
⎜⎜⎝
x1

x2
...

xn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
b1

b2
...

bn

⎞
⎟⎟⎠ .

We will often denote such a system of linear equations as Ax = b.
For these examples the number of data points is equal to the number of variables.

Equivalently the matrix A has the same number of rows and columns. We refer to this as a
“square” system because of the shape of the matrixA. It is also possible to consider problems
with unequal numbers of data points and variables. Such examples, called “rectangular,”
are discussed in Section 1.5.
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10 Chapter 1. Optimization Models

Table 1.1. Cabinet data.

Cabinet Wood Labor Revenue
Bookshelf 10 2 100
With Doors 12 4 150
With Drawers 25 8 200
Custom 20 12 400

1.4 Linear Optimization
A linear optimization model (also knows as a “linear program”) involves the optimization
of a linear function subject to linear constraints on the variables. Although linear functions
are simple functions, they arise frequently in economics, production planning, networks,
scheduling, and other applications. We will consider several examples. Further examples
are included in Section 1.7 and in Chapters 5–8. In particular, examples of network models
are discussed in Section 8.2.

Suppose that a manufacturer of kitchen cabinets is trying to maximize the weekly rev-
enue of a factory. Various orders have come in that the company could accept. They include
bookcases with open shelves, cabinets with doors, cabinets with drawers, and custom-
designed cabinets. Table 1.1 indicates the quantities of materials and labor required to
assemble the four types of cabinets, as well as the revenue earned.

Suppose that 5000 units of wood and 1500 units of labor are available. Let x1, . . . , x4

represent the number of cabinets of each type made (x1 for bookshelves, x2 for cabinets
with doors, etc.). Then the corresponding linear programming model might be

maximize z = 100x1 + 150x2 + 200x3 + 400x4

subject to 10x1 + 12x2 + 25x3 + 20x4 ≤ 5000

2x1 + 4x2 + 8x3 + 12x4 ≤ 1500

x1, x2, x3, x4 ≥ 0.

This problem can easily be expanded from four products (bookshelves, cabinets with
doors, cabinets without doors, etc.) to any number of products n, and from two resources
(wood and labor) to any number of resourcesm. Denoting the unit profit from product j by
cj , the amount available of resource i by bi , and the amount of resource i used by a unit of
product j by aij , the problem can be written in the form

maximize z =
n∑
j=1

cjxj

subject to
n∑
j=1

aij ≤ bi, i = 1, . . . , m

xj ≥ 0, j = 1, . . . , n.

The problem can be written in a more compact manner by introducing matrix-vector notation.
Letting x = (x1, . . . , xn)

T, c = (c1, . . . , cn)
T, b = (b1, . . . , bm)

T, and denoting the matrix
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Table 1.2. Work times (in minutes).

Worker Information Policy Claim

1 10 28 31
2 15 22 42
3 13 18 35
4 19 25 29
5 17 23 33

of coefficients aij by A, the problem becomes

maximize z = cTx

subject to Ax ≤ b

x ≥ 0.

This is a typical example of a linear program. Here a linear objective function is to
be maximized subject to linear inequality constraints and nonnegativity constraints on the
variables. In the general case, the objective of a linear program may be either maximized
or minimized, the constraints may involve a combination of inequalities and equalities, and
the variables may be either restricted in sign or unrestricted. Although these may appear as
different forms, it is easy to convert from one form to another.

As another example, consider the assignment of jobs to workers. Suppose that an
insurance office handles three types of work: requests for information, new policies, and
claims. There are five workers. Based on a study of office operations, the average work
times (in minutes) for the workers are known; see Table 1.2.

The company would like to minimize the overall elapsed time for handling a (long)
sequence of tasks, by appropriately assigning a fraction of each type of task to each worker.
Let pi be the fraction of information calls assigned to worker i, qi the fraction of new
policy calls, and ri the fraction of claims; t will represent the elapsed time. Then a linear
programming model for this situation would be

minimize z = t

subject to p1 + p2 + p3 + p4 + p5 = 1

q1 + q2 + q3 + q4 + q5 = 1

r1 + r2 + r3 + r4 + r5 = 1

10p1 + 28q1 + 31r1 ≤ t

15p2 + 22q2 + 42r2 ≤ t

13p3 + 18q3 + 35r3 ≤ t

19p4 + 25q4 + 29r4 ≤ t

17p5 + 23q5 + 33r5 ≤ t

pi, qi, ri ≥ 0, i = 1, . . . , 5.

The constraints in this model assure that t is no less than the overall elapsed time. Since the
objective is to minimize t , at the optimal solution t will be equal to the elapsed time.
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12 Chapter 1. Optimization Models

The problems we have introduced so far are small, involving only a handful of vari-
ables and constraints. Many real-life applications involve much larger problems, with
possibly hundreds of thousands of variables and constraints. Section 1.7 discusses some of
these applications.

Exercise5

4.1. Consider the production scheduling problem of the perfume Polly named after a
famous celebrity. The manufacturer of the perfume must plan production for the first
four months of the year and anticipates a demand of 4000, 5000, 6000, and 4500
gallons in January, February, March, and April, respectively. At the beginning of
the year the company has an inventory of 2000 gallons. The company is planning
on issuing a new and improved perfume called Pollygone in May, so that all Polly
produced must be sold by the end of April. Assume that the production cost for
January and February is $5 per gallon and this will rise to $5.5 per gallon in March
and April. The company can hold any amount produced in a certain month over to
the next month at an inventory cost of $1 per unit. Formulate a linear optimization
model that will minimize the costs incurred in meeting the demand for Polly in the
period January through April. Assume for simplicity that any amount produced in a
given month may be used to fulfill demand for that month.

1.5 Least-Squares Data Fitting
Let us re-examine the quadratic model from Section 1.3:

b(t) = x1 + x2t + x3t
2.

For the data points (2, 1), (3, 6), and (5, 4) we obtained the linear system( 1 2 4
1 3 9
1 5 25

)(
x1

x2

x3

)
=
( 1

6
4

)

with solution x = (−21, 15,−2)T so that

b(t) = −21 + 15t − 2t2.

It is easy to check that the three data points satisfy this equation.
Suppose that the data points had been obtained from an experiment, with an observa-

tion made at times t1 = 2, t2 = 3, and t3 = 5. If another observation were made at t4 = 7,
then (assuming that the quadratic model is correct) it should satisfy

b(7) = −21 + 15 × 7 − 2 × 72 = −14.

If the observed value at t4 = 7 were not equal to −14, then the observation would not be
consistent with the model.

5See Footnote 1 in the Preface for an explanation of the Exercise numbering within chapters.
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It is common when collecting data to gather more data points than there are variables
in the model. This is true in political polls where hundreds or thousands of people will be
asked which candidate they plan to vote for (so that there is only one variable). It is also true
in scientific experiments where repeated measurements will be made of a desired quantity.
It is expected that each of the measurements will be in error, and that the observations will
be used collectively in the hope of obtaining a better result than any individual measurement
provides. (The collective result may only be better in the sense that the bound on its error
will be smaller. Since the true value is often unknown, the actual errors cannot be measured.)

Since each of the measurements is considered to be in error, it is no longer sensible to
ask that the model equation (in our case b(t) = x1 + x2t + x3t

2) be solved exactly. Instead
we will try to make components of the “residual vector”

r = b − Ax =

⎛
⎜⎜⎜⎝
b1 − (x1 + x2t1 + x3t

2
1 )

b2 − (x1 + x2t2 + x3t
2
2 )

...

bm − (x1 + x2tm + x3t
2
m)

⎞
⎟⎟⎟⎠

small in some sense.
The most commonly used approach is called “least squares” data fitting, where we

try to minimize the sum of the squares of the components of r:

minimize
x

r2
1 + · · · + r2

m =
m∑
i=1

[bi − (x1 + x2ti + x3t
2
i )]2.

Under appropriate assumptions about the errors in the observations, it can be shown that
this is an optimal way of selecting the coefficients x.

If the fourth data point was (7,−14)T, then the least-squares approach would give
x = (−21, 15,−2)T, since this choice of x would make r = 0. In this case the graph of
the model would pass through all four data points. However, if the fourth data point was
(7,−15)T, then the least-squares solution would be

x =
(−21.9422

15.6193
−2.0892

)
.

The corresponding residual vector would be

r = b − Ax =
⎛
⎜⎝

0.0603
−0.1131

0.0754
−0.0226

⎞
⎟⎠ .

None of the residuals is zero, and so the graph of the model does not pass through any of
the data points. This is typical in least-squares models.

If the residuals can be written as r = b−Ax, then the model is “linear.” This name is
used because each of the coefficients xj occurs linearly in the model. It does not mean that
the model terms are linear in t . In fact, the model above has a quadratic term x3t

2. Other
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examples of linear models would be

b(t) = x1 + x2 sin t + x3 sin 2t + · · · + xk+1 sin kt

b(t) = x1 + x2

1 + t2 .

“Nonlinear” models are also possible. Some examples are

b(t) = x1 + x2e
x3t + x4e

x5t

b(t) = x1 + x2

1 + x3t2
.

In these models there are nonlinear relationships among the coefficients xj . A nonlinear
least-squares model can be written in the form

minimize f (x) =
m∑
i=1

ri(x)
2,

where ri(x) represents the residual at ti . For example,

ri(x) ≡ bi − (x1 + x2e
x3ti + x4e

x5ti )

for the first nonlinear model above. We can also write this as

f (x) = r(x)Tr(x).

If the model is linear, then r(x) = b−Ax and f (x) can be shown to be a quadratic function.
See the Exercises.

Nonlinear least squares models are examples of unconstrained minimization problems,
that is, they correspond to the minimization of a nonlinear function without constraints on
the variables. In fact, they are one of the most commonly encountered unconstrained
minimization problems.

Exercises
5.1. Prove that for the linear least-squares problem with r(x) = b − Ax, the objective

f (x) = r(x)Tr(x) is a quadratic function.

1.6 Nonlinear Optimization
A nonlinear optimization model (also referred to as a “nonlinear program”) consists of
the optimization of a function subject to constraints, where any of the functions may be
nonlinear. This is the most general type of model that we will consider in this book. It
includes all the other types of models as special cases.

Nonlinear optimization models arise often in science and engineering. For example,
the volume of a sphere is a nonlinear function of its radius, the energy dissipated in an electric



book
2008/10/23
page 15

�

�

�

�

�

�

�

�

1.6. Nonlinear Optimization 15

( x 2 , y 2 )

( x 3 , y 3 )

( x 4 , y 4 )w 3

w 4

w 2

w 1

1 , y )( x 1

2

4

6

5 10

-2

-4

x( , y )
0 0

Figure 1.6. Electrical connections.

circuit is a nonlinear function of the resistances, the size of an animal population is a nonlinear
function of the birth and death rates, etc. We will develop two specific examples here.

Suppose that four buildings are to be connected by electrical wires. The positions of
the buildings are illustrated in Figure 1.6. The first two buildings are circular: one at (1, 4)T

with radius 2, the second at (9, 5)T with radius 1. The third building is square with sides of
length 2 centered at (3,−2)T. The fourth building is rectangular with height 4 and width 2
centered at (7, 0)T. The electrical wires will be joined at some central point (x0, y0)

T and
will connect to building i at position (xi, yi)T. The objective is to minimize the amount of
wire used. Let wi be the length of the wire connecting building i to (x0, y0)

T. A model for
this problem is

minimize z = w1 + w2 + w3 + w4

subject to wi =
√
(xi − x0)2 + (yi − y0)2, i = 1, 2, 3, 4,

(x1 − 1)2 + (y1 − 4)2 ≤ 4

(x2 − 9)2 + (y2 − 5)2 ≤ 1

2 ≤ x3 ≤ 4

−3 ≤ y3 ≤ −1

6 ≤ x4 ≤ 8

−2 ≤ y4 ≤ 2.

We assume here for simplicity that the wires can be routed through the buildings (if neces-
sary) at no additional cost.

The constraints in nonlinear optimization problems are often written so that the right-
hand sides are equal to zero. For the above model this would correspond to using constraints
of the form

wi −
√
(xi − x0)2 + (yi − y0)2 = 0, i = 1, 2, 3, 4,

and so forth. This is just a cosmetic change to the model.
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r

h

Figure 1.7. Archimedes’ problem.

1

2

4

3

Figure 1.8. Traffic network.

As a second example we consider a problem posed by Archimedes. Figure 1.7
illustrates a portion of a sphere with radius r , where the height of the spherical segment is h.
The problem is to choose r and h so as to maximize the volume of the segment, but where
the surface area A of the segment is fixed. The model is

maximize v(r, h) = πh2(r − h
3 )

subject to 2πrh = A.

Archimedes was able to prove that the solution was a hemisphere (i.e., h = r).
As another illustration of how nonlinear models can arise, consider the network in

Figure 1.8. This represents a set of road intersections, and the arrows indicate the direction of
traffic. If few cars are on the roads, the travel times between intersections can be considered
as constants, but if the traffic is heavy, the travel times can increase dramatically.

Let us focus on the travel time between a pair of intersections i and j . Let ti,j be the
(constant) travel time when the traffic is light, let xi,j be the number of cars entering the road
per hour, let ci,j be the capacity of the road, that is, the maximum number of cars entering per
hour, and let αi,j be a constant reflecting the rate at which travel time increases as the traffic
get heavier. (The constant αi,j might be selected using data collected about the road system.)
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1.6. Nonlinear Optimization 17

Then the travel time between intersections i and j could be modeled by

Ti,j (xi,j ) = ti,j + αi,j xi,j

1 − xi,j /ci,j .

If there is no traffic on the road (xi,j = 0), then the travel time is ti,j . If xi,j approaches
the capacity of the road ci,j , then the travel time tends to +∞. Ti,j is a nonlinear function
of xi,j .

Suppose we wished to minimize the total travel time through the network for a volume
of X cars per hour. Then our model would be

minimize f (x) =
∑

xi,j Ti,j (xi,j )

subject to the constraints

x1,2 + x1,3 = X

x2,3 + x2,4 − x1,2 = 0

x3,4 − x1,3 − x2,3 = 0

x2,4 + x3,4 = X

0 ≤ xi,j ≤ cij .

The equations ensure that all cars entering an intersection also leave an intersection.
The objective sums up the travel times for all the cars.

A potential snag with this formulation is that if the traffic volume reaches capacity on
any arc (xi,j = ci,j ), the objective function becomes undefined, which will cause optimiza-
tion software to fail. A number of measures could be invoked to prevent this situation. One
alternative is to slightly lower the upper bounds on the variables, so that xi,j ≤ ci,j − ε,
where ε is a small positive number. Alternatively we could increase each denominator in
the objective by a small positive amount ε, thus forcing the denominator to have a value of
at least ε and thereby avoiding division by zero.

Our last example is the problem of finding the minimum distance from a point r to
the set {x : aTx = b}. In two dimensions the points in the set S define a line, and in three
dimensions they define a plane; in the more general case, the set is called a hyperplane. The
least-distance problem can be written as

minimize f (x) = 1
2 (x − r)T(x − r)

subject to aTx = b.

(The coefficient of one half in the objective is included for convenience; it allows for
simpler formulas when analyzing the problem.) Unlike most nonlinear problems this one
has a closed-form solution. It is given by

x = r + b − aTr
aTa

a.

(See the Exercises for Section 14.2.)



book
2008/10/23
page 18

�

�

�

�

�

�

�

�

18 Chapter 1. Optimization Models

The minimum distance problem is an example of a quadratic program. In general,
a quadratic program involves the minimization of a quadratic function subject to linear
constraints. An example is the problem

minimize f (x) = 1
2x

TQx

subject to Ax ≥ b.

Quadratic programs for which the matrix Q is positive definite are relatively easy to solve,
compared to other nonlinear problems.

1.7 Optimization Applications
In this section we present a number of applications that are of current interest to practitioners
or researchers. The models we present are but a few of the numerous applications where
optimization is making a significant impact.

We start by presenting two problems arising in the optimization of airline operations—
the crew scheduling and fleet scheduling problems. Both problems are large linear programs
with the added restriction that the variables must take on integer values.

Next we discuss an approach for pattern classification known as support vector ma-
chines. Given a set of points that all belong to one of two classes, the idea is to estimate a
function that will automatically classify to which of the two classes a new point belongs. In
particular we discuss the case where the classifying function is linear. The resulting problem
is a quadratic program. This topic is developed further in Chapter 14. Also in this section
we discuss a portfolio optimization problem that attempts to balance between the competing
goals of maximizing expected returns and minimizing risk in investment planning. This too
is a quadratic program.

Next we will discuss two optimization problems arising from medical applications.
One problem arises from planning for treatment of cancer by radiation, where the conflicting
goals of providing sufficient radiation to the tumor and limiting the dosage to nearby vital
organs give rise to a plethora of models which cover the spectrum from linear through
quadratic to nonlinear. The other problem arises from positron emission tomography (PET)
image reconstruction, where a model of the image that best fits the scan data gives rise to a
linearly constrained nonlinear problem. In both applications the optimization problems can
be very large and challenging to solve.

Finally we use optimization to find the shape of a hanging cable with minimum
potential energy. We present several models of the problem and emphasize the importance
of certain modeling issues.

1.7.1 Crew Scheduling and Fleet Scheduling

Consider an airline that operates 2000 flights per day serving 100 cities worldwide, with
400 aircraft of 10 different types, each requiring a flight crew. The airline must design a
flight schedule that meets the passenger demand, the maintenance requirements on aircraft,
and all other safety regulations and labor contract rules, while trying to be cost effective in
order to maximize profit.
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1.7. Optimization Applications 19

This planning problem is extremely complex. For this reason many airlines used a
phased planning cycle that breaks the problem into smaller steps. While more manageable,
the individual steps themselves can also be complex.

Arguably the most challenging of these is the crew scheduling problem, that assigns
crews (pilots and flight attendants) to flights. Economically it is a significant problem,
since the cost of crews is second only to the cost of fuel in an airline’s operating expenses.
Saving even 1% of this cost can save the airline hundreds of millions of dollars annually.
Computationally it is a difficult problem since it involves a linear model, which is not only
very large, but also involves integer variables, which necessitates multiple solutions of linear
programs.

In planning the crew activities, the flight schedule is subdivided into “legs,” repre-
senting a nonstop flight from one city to another. If a plane flew from, say, New York
via Chicago to Los Angeles, this would be considered as two legs. A large airline would
typically have hundreds of flight legs per day. The planning period might be a day, a week,
or a month.

The crews themselves are certified for particular aircraft, and this restricts how per-
sonnel can be assigned to legs. In addition, there are union rules and federal laws that
constrain the crew assignments.

To set up the model, the airline first specifies a set of possible crew assignments. One
of these assignments might correspond to sending a crew from New York (their home city)
to a sequence of cities and then back to New York. Each such round trip is called a “pairing.”
The number of pairings grows exponentially with the number of legs, and for a large airline,
the number of pairings may easily run into the billions, even for the shorter planning period
of one week.

The variables in the model are
{
xj
}
, where xj is 1 if a particular pairing is selected

as part of the total schedule, and 0 otherwise. Let the total number of pairings be N . The
majority of the constraints correspond to the requirement that each leg in the planning period
be covered by exactly one pairing. For the ith leg, the constraint has the form

N∑
j=1

ai,j xj = 1,

where the constant ai,j = 1 if a particular pairing includes leg i, and zero otherwise. There
is one such constraint for every leg in the schedule.

The columns of the matrix A correspond to the pairings, and each pairing must rep-
resent a round trip that is technically and legally feasible. For example, if a crew flies from
New York to Chicago, it cannot then immediately fly out of Denver. The pairing makes
sense if it makes sense chronologically, includes minimum rests between flights, satisfies
regulations on maximum flying time, and so forth. This places many restrictions on how
the pairings are generated, and hence on the coefficients ai,j . The resulting columns of A
are typically very sparse, with many zeros, and just a few ones, corresponding to the legs
of the roundtrip.

The cost cj of a pairing is a function of the duration of the pairing, the number of flight
hours, and “penalties” that may be associated with the pairing. For example, extra wages
and expenses must be paid if the crew spends a night away from its home city, or it may be
necessary to transport a crew from one city to another for them to complete the pairing.
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20 Chapter 1. Optimization Models

The basic model has the form

minimize z = cTx

subject to
N∑
j=1

ai,j xj = 1

xj = 0 or 1.

The problem is a linear program with the additional requirement that the variables take
on integer values (here—zero and one), hence it is an integer programming problem. As
mentioned in Section 1.2, such problems are most commonly solved by solving a sequence of
linear programs, where the integrality restrictions are relaxed and replaced by a (continuous)
constraint on the range of the variable. The range should ideally be as tight as possible, yet
should not exclude the optimal solution. For a zero-one problem the relaxed constraints
for the first subproblem would typically be 0 ≤ xj ≤ 1 for all j . Subsequent problems are
variants of the relaxed problem, usually with additional constraints or an adjusted objective
function.

Crew scheduling problems can be very large. Amajor effort is required just to generate
the possible pairings. Commonly, only a partial model is generated, corresponding to a
subset of the possible pairings. Even so, problems with millions of variables are typical.

Linear programs of this size (even ignoring the integrality restriction) are difficult
to solve. They demand all the resources of the most sophisticated software. The special
structure of the matrix A (and in particular its sparsity—the large number of zero entries)
and the latest algorithmic techniques must be used. Many of these techniques are discussed
in Part II.

The crew scheduling problem is typically the last step in an airline’s schedule planning.
The first step begins about several months prior to the actual service when the airline selects
the optimal set of flight legs to be included in its schedule. The flight schedule lists the
schedule of flight legs by departure time, destination, and arrival time.

The next step is fleet assignment, which determines which type of aircraft will fly each
leg of the schedule. Airline fleets are made up of many different types of aircraft, which
differ in capacity and in operational characteristics such as speed, fuel burn rates, landing
weights, range, and maintenance costs. Allocating an aircraft that is too small will result
in loss of revenue from passengers turned away, while allocating an aircraft that is too big
will result in too many empty seats to cover the high expenses. The airline’s problem is to
determine the best aircraft to use for each flight leg such that capacity is matched to demand
while minimizing the operating cost.

This problem is frequently represented as a time-line network. The network includes
a line called a “time-line” for each airport, with nodes positioned along the line in chrono-
logical order at each arrival and departure time. Each flight is represented by an arc in the
network. Thus for example a flight leaving Washington Dulles (IAD) at 6:00 am (Eastern
Standard Time) and arriving at Denver (DEN) at 10:00 am (Eastern Standard Time) would
be represented by an arc connecting the 6:00 am node on the IAD time-line to the 10:00 am
node on the DEN time-line. (In practice, the arrival time is adjusted to account for the time
it takes to prepare the aircraft for the next flight, but we will ignore that here.) In addition to
the flight arcs we create an arc from each node on a time line to the consecutive node on the
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IAD

DEN

SFO

6:00           8:00          10:00      12:00   2:00 4:00           6:00 

Figure 1.9. Time-line network.

time line, and (assuming the schedule is repeated daily) an arc from the last node returning
to the first node. The flow on these arcs represents aircraft on the ground that are waiting
for their flight.

Figure 1.9 illustrates a time-line network for an airline that has two flights a day each
from IAD to DEN, DEN to IAD, DEN to SFO (San Francisco), and SFO to DEN.

Define now xij to be the number of aircraft of type i on arc j . Any feasible fleet
assignment solution must satisfy the following constraints: (i) Covering constraints: each
flight leg must be covered by exactly one aircraft; (ii) Flow-balance constraints: for each
node of the network the total number of aircraft of type i entering the node must equal the
total number of aircraft of type i exiting the node; (iii) Fleet size constraints: the number of
aircraft used of each type must not exceed the number of aircraft available. The objective
is to minimize the total cost of the assignment. The problem is by nature integer, but it is
generally solved by a series of linear programs where the integrality restrictions are relaxed.

Once the fleet is assigned, the individual aircraft of the fleet must be assigned to their
flights. This is known as the aircraft routing problem. The planning must take into account
the required maintenance for each aircraft. To meet safety regulations, an airline might
typically maintain aircraft every 40–45 hours of flying with the maximum time between
checks restricted to three to four calendar days. The problem is to determine the most cost
effective assignment of aircraft of a single fleet to the scheduled flights, so that all flight
legs are covered and aircraft maintenance requirements are satisfied.

The last step of the planning cycle is the task of crew scheduling. Breaking down the
full planning cycle into steps helps make the planning more manageable, but ultimately it
leads to suboptimal schedules (see Exercise 7.2). Researchers are therefore investigating
methods that combine two or more of the planning phases together for more profitable
schedules.
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Exercises
7.1. Formulate the fleet scheduling problem corresponding to Figure 1.9.

7.2. Consider an airline that has scheduled the flight legs for the next month. It has done
so by breaking down the planning cycle into a sequence of steps: first determine the
optimal fleet for this schedule; next route the aircraft within the fleet to the flight
legs; and finally assign crews for each of the flight legs. Discuss why this makes the
planning more manageable but likely leads to suboptimal schedules.

1.7.2 Support Vector Machines

Suppose that you have a set of data points that you have classified in one of two ways:
either they have a certain stated property or they do not. These data points might represent
the subject titles of email messages, which are classified as either being legitimate email
or spam; or they may represent medical data such as age, sex, weight, blood pressure,
cholesterol levels, and genetic traits of patients that have been classified either as high risk
or as low risk for a heart attack; or they may represent some features of handwritten digits
such as ratio of height to width, curvature, that have been classified either as (say) zero or
not zero. Suppose now that you obtain a new data point. Your goal is to determine whether
this new point does or does not have the stated property. The set of techniques for doing this
is broadly referred to as pattern classification. The main idea is to identify some rule based
on the existing data (referred to as the training data) that characterizes the set of points that
have the property, which can then be used to determine whether a new point has the property.

In its simplest form classification uses linear functions to provide the characterization.
Suppose we have a set ofm training data xi ∈ �n with classification yi , where either yi = 1
or yi = −1. A two-dimensional example is shown in the left-hand side of Figure 1.10,
where the two classes of points are designated by circles of different shades. Suppose it is
possible to find some hyperplane wTx+ b = 0 which separates the positive points from the
negative. Ideally we would like to have a sharp separation of the positive points from the
negative. Thus we will require

wTxi + b ≥ +1 for yi = +1,
wTxi + b ≤ −1 for yi = −1.

There is nothing special about the separation coefficients ± on the right-hand side of the
above inequalities. The coefficients w and b of the hyperplane can always be scaled so that
the separation will be ± 1.

To obtain the best results we would like the hyperplanes separating the positive points
from the negative to be as far apart as possible. From basic geometric principles it can
be shown that the distance between the two hyperplanes (that is, the separation margin) is
2/ ‖w‖. Thus among all separating hyperplanes we should seek the one that maximizes this
margin. This is equivalent to minimizing wTw. The resulting problem is to determine the
coefficients w and b that solve

minimize f (w, b) = 1
2w

Tw

subject to yi(w
Txi + b) ≥ 1, i = 1, . . . , m.
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margin

wT x + b = 1

wT x + b = −1

Figure 1.10. Linear separating hyperplane for the separable case.

The coefficient 1
2 in the objective is included for convenience; it results in simpler formulas

when analyzing the problem.
The right-hand side of Figure 1.10 shows the solution of our two-dimensional example.

The training points that lie on the boundary of either of the hyperplanes are called the support
vectors; they are highlighted by larger circles. Removal of these points from our training
set would change the coefficients of the hyperplanes. Removal of the other training points
would leave the coefficients unchanged. The method is called a “support vector machine”
because support vectors are used for classifying data as part of a machine (computerized)
learning process.

Once the coefficientsw and b of the separating hyperplane are found from the training
data, we can use the value of the function f (x) = wTx + b (our “learning machine”) to
predict whether a new point x̄ has the property of interest or not, depending on the sign
of f (x̄).

So far we have assumed that the data set was separable, that is, a hyperplane separating
the positive points from the negative points exists. For the case where the data set is not
separable, we can refine the approach to the separable case. We will now allow the points
to violate the equations of the separating hyperplane, but we will impose a penalty for the
violation. Letting the nonnegative variable ξi denote the amount by which the point xi
violates the constraint at the margin, we now require

wTxi + b ≥ +1 − ξi for yi = +1
wTxi + b ≤ −1 + ξi for yi = −1.

A common way to impose the penalty is to add to the objective a term proportional
to the sum of the violations. The added penalty term takes the form C

∑m
i=1 ξ to the

objective, where the larger the value of the parameter C, the larger the penalty for violating
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wT x + b = 1

wT x + b = −1

Figure 1.11. Linear separating hyperplane for the nonseparable case.

the separation. Our problem is now to find w, b, and ξ that solve

minimize f (w, b, ξ) = 1
2w

Tw + C∑m
i=1 ξi

subject to yi(w
Txi + b) ≥ 1 − ξi, i = 1, . . . , m,

ξi ≥ 0.

Figure 1.11 shows an example of the nonseparable case and the resulting separating hyper-
plane. We see in this example that two of the points (indicated in the figure by the extra
squares) are misclassified, since they lie on the incorrect side of the hyperplanewTx+b = 0.

In later chapters of this book we will see that many problems have a companion
problem called the dual problem, that there are important relations between a problem and
its dual, and that these relations sometimes lead to insights for solving the problem. In
Section 14.8 we will discuss the dual of the problem of finding the hyperplanes with the
largest separation margin. We will show that the dual problem directly identifies the support
vectors, and that the dual formulation can give rise to a rich family of nonlinear classifications
that are often more useful and more accurate than the linear hyperplane classification we
presented here.

Exercises
7.1. Consider two classes of data, where the points

(13.3), (0.31.5), (2, 4.2), (2.2, 2.9), (1.7, 3.6), (3, 4), (1, 4)

possess a certain property and the points

(1.8, 1.5), (3.4, 3.6), (0.2, 2.5), (1, 1.3), (1, 2.5), (3, 1.1), (2, 0.1)
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do not possess this property. Use optimization software to compute the maximum
margin hyperplane that separates the two classes of points. Are the classes indeed
separable? What are the support vectors? Repeat the problem when the first class
includes also the point (0.2, 2.5) and the second class includes the point (1.7, 3.6).

7.2. In this project we create a support vector machine for breast cancer diagnosis. We use
the Wisconsin Diagnosis Breast Cancer Database (WDBC) made publicly available
by Wolberg, Street, and Mangasarian of the University of Wisconsin. A link to the
data base is made available on theWeb page for this book, http://www.siam.org/books/
ot108. There are two files: wdbc.data and wdbc.names. The file wdbc.names gives
more details about the data, and you should read it to understand the context. The
file wdbc.data gives N = 569 data vectors. Each data vector (in row form) has
n = 32 components. The first component is the patient number, and the second is
either “M” or “B” depending on whether the data is malignant or benign. You may
manually change the entries “M” to “+1” and “B” to “−1”. These entries are the
indicators yi . Elements 3 through 32 of each row i form a 30-dimensional vector xTi
of observations.

(i) Use the first 500 data vectors as your training set. Use a modeling language to
formulate the problem for the nonseparable case, using C = 1000. Solve the
problem and display the separating hyperplane. Determine whether the data
are indeed separable.

(ii) Use the output of the run to predict whether the remaining 69 patients have
cancer. Compare your prediction to the actual patients’ medical status. Evalu-
ate the accuracy (proportion of correct predictions), the sensitivity (proportion
of positive diagnoses for patients with the disease), and the specificity (the
proportion of negative diagnoses for patients without the disease).

1.7.3 Portfolio Optimization

Suppose that an investor wishes to select a set of assets to achieve a good return on the invest-
ment while controlling risks of losses. The use of nonlinear models to manage investments
began in the 1950s with the pioneering work of Nobel Prize laureate Harry Markowitz, who
demonstrated how to reduce the risk of investment by selecting a portfolio of stocks rather
than picking individual attractive stocks, and established the trade-off between reward and
risk in investment portfolios.

An investment portfolio is defined by the vector x = (x1, . . . , xn), where xj denotes
the proportion of the investment to be invested in asset j . Letting μj denote the expected
rate of return of asset j , the expected rate of return of the portfolio is μTx.

Let � be the matrix of variances and covariances of the assets’ returns. The entry
�j,j is the variance of investment j . A high variance indicates high volatility or high risk; a
low variance indicates stability or low risk. The entry �i,j is the covariance of investments
i and j . A positive value of �i,j indicates assets whose values usually move in the same
direction, as often occurs with stocks of companies in the same industry. A negative value
indicates assets whose values generally move in opposite directions—a desirable feature
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in a diversified portfolio. Markowitz defined the risk of the portfolio to be its expected
variance xT�x.

Our optimization problem has two conflicting objectives: to maximize the return
μTx, and to minimize the risk xT�x. The relative importance of these objectives will vary
depending on the investor’s tolerance for risk. We introduce a nonnegative parameter α
that reflects the investor’s trade-off between risk and return. The objective function in the
model will be some combination of the two objectives, parameterized by α, leading to the
model

maximize f (x) = μTx − αxT�x
subject to the constraints ∑

i

xi = 1 and x ≥ 0.

The value of α reflects the investor’s aversion to risk. A large value indicates a reluctance
to take on risk, with an emphasis on the stability of the investment. A low value indicates a
high tolerance for risk with an emphasis on the expected return of the investment.

It can be difficult to choose a sensible value for α. For this reason it is common to
solve this model for a range of values of this parameter. This can reveal how sensitive the
solution is to considerations of risk. The solution of the problem for any value of α is called
efficient indicating that there is no other portfolio that has a larger expected return and a
smaller variance.

There are of course some limitations to our model. First, we do not generally know
the theoretical (joint) distribution of the assets’ return and will need to estimate the mean
and variance from historical data. Denoting the estimate of μ by r and the estimate of �
by V , the actual problem we solve is

maximize rTx − αxTV x
subject to

∑
i xi = 1

xi ≥ 0.

Second, investors should be aware that past performance is no indicator of future returns.
Finally, we note that the matrix V is dense; that is, it has many nonzero elements. As a
result, when the number of assets is large, computations involving V can be expensive thus
making the optimization problem computationally difficult.

To illustrate portfolio optimization, consider an investor who is planning a portfolio
based on four stocks. Data on the rates of return of the stocks in the last six periods are
given in Table 1.3.

Using this information we estimate the mean of the rate of return as

r = ( 0.0667 0.0900 0.0717 0.0733 ) ,

and the variance as

V =
⎛
⎜⎝

0.00019 0.00065 0.00004 0.00038
0.00065 0.00883 0.00218 0.00327
0.00004 0.00218 0.00125 0.00063
0.00308 0.00327 0.00063 0.00162

⎞
⎟⎠ .
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Table 1.3. Past rates of return of stocks.

Period Stock 1 Stock 2 Stock 3 Stock 4
1 0.08 0.05 0.01 0.08
2 0.06 0.17 0.09 0.12
3 0.07 0.05 0.10 0.07
4 0.04 −0.07 0.04 −0.01
5 0.08 0.12 0.08 0.09
6 0.07 0.22 0.11 0.09

Table 1.4. Optimal portfolio for selected values of α.

α Stock 1 Stock 2 Stock 3 Stock 4 Mean Variance

1 0 1 0 0 0.090 8.8 ×10−3

2 0.12 0.65 0.23 0 0.083 4.5 ×10−3

5 0.57 0.19 0.24 0 0.072 8.0 ×10−4

10 0.71 0.04 0.25 0 0.069 2.6 ×10−4

100 0.87 0 0.13 0 0.067 1.7 ×10−4

The solution of the optimization problem for a selection of values of the parameter
α is given in Table 1.4. Figure 1.12 plots the rate of return against the variance of the
optimized portfolios for a continuous range of values of α. The curved line is called the
efficient frontier since it depicts the collection of all efficient points. The figure also shows
the rate of return and variance obtained when allocating the entire portfolio to one stock only.
In this example, a person who has a high tolerance for risk may choose to invest entirely
in Stock 2, whereas a person who is extremely cautious may choose to invest entirely in
Stock 1. Investing only in Stock 3, or only in Stock 4, or half in Stock 1 and half in Stock 2
are not recommended strategies for anyone, since they are dominated by strategies that have
both higher return and lower risk.

Exercises
7.1. How would the formulation to the problem change if a risk-free asset (such as gov-

ernment treasury bills at a fixed rate of return) is also being considered?

7.2. An investor wants to put together a portfolio consisting of the 30 stocks used to
determine the Dow Jones industrial average. Use 25 weekly returns ending on the
last Friday of last month to find the optimal portfolio. Experiment with different
values of the parameter α and plot the corresponding points on the efficient frontier.
You will need access to a nonlinear optimization solver. You may need to use a
modeling language to formulate the problem for input to the solver.
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Figure 1.12. Efficient frontier.

1.7.4 Intensity Modulated Radiation Treatment Planning

Radiotherapy is the treatment of cancerous tissues with external beams of radiation. As a
beam of radiation passes through the body, energy is deposited at points along its path, and as
this happens the beam intensity gradually decreases (this is called attenuation). The radiation
dosage is the amount of energy deposited locally per unit mass. High doses of radiation can
kill cancerous cells, but will also damage nearby healthy cells. If vital organs receive too
much radiation, serious complications may arise. Some limited damage to healthy cells may
be tolerable however, since normal cells repair themselves more effectively than cancerous
cells. If the radiation dosage is limited, the surrounding organs can continue to function
and may eventually recover. The goal of the radiation treatment planning is to design a
treatment that will kill the cancer in its entirety but limit the damage to surrounding healthy
tissue.

To keep the radiation levels of normal healthy tissue low, the treatment typically uses
several beams of radiation delivered from different angles. Intensity modulated radiation
therapy (IMRT) is an important recent advance that allows each beam to be broken into
hundreds (or possibly thousands) of beamlets of varying intensity. This is achieved using a
set of metallic leaves (called collimators) that can sequentially move from open to closed
position, thus filtering the radiation in a way that not only allows for the modulation of the
intensity of the beam, but also enables control of its shape. This enables more accurate
radiation treatment. This is particularly important in cases where the tumor has an unusual
shape as is the case when it is wrapped around the spinal cord, or when it is close to a vital
structure such as the optic nerve.

A simplified example of the desired goals for treatment of a hypothetical prostate
cancer patient is given in Table 1.5. Radiation dosage is measured in a unit call Gray
(Gy). One Gy is equal to one Joule of energy deposited in one kilogram. The planning
target volume (PTV) describes a region large enough to incorporate the diseased organ, the
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Table 1.5. Sample treatment specifications.

Volume Requirement

PTV excluding Prescription dose 80 Gy
rectum overlap Maximum dose 82 Gy

Minimum dose 78 Gy
95% of volume ≥ 79 Gy

PTV/rectum overlap Prescription dose 74 Gy
Maximum dose 77 Gy
Minimum dose 74 Gy

Rectum Maximum dose 76 Gy
70% of volume ≤ 32 Gy

Bladder Maximum dose 78 Gy

70% of volume ≤ 32 Gy

cancerous cells, as well as a margin to account for patient movement during the treatment.
Organs at risk are the rectum and the bladder. Since the PTV may overlap with the rectum,
different treatment specifications are given for the primary region where the PTV is distinct
from the rectum, and for the region where they overlap. The specifications for the primary
region, for example, include a desired “prescription” dose of 80 Gy at every cell, a minimum
dose value of 78 Gy, a maximum dose of 82 Gy, and finally, a “dose-volume” requirement
that specifies that 95% of the cells in this region must receive at least 79 Gy. The treatment
specification for the bladder includes an upper limit of 72 Gy for the entire organ and a
dose-volume requirement that 70% of the organ must receive 32 Gy or less.

To determine the treatment plan we will need to define a volume of interest that
includes the PTV and any nearby tissue that may be adversely affected by the treatment.
We will divide this volume into a three-dimensional grid of small boxes called voxels. We
will denote the dose deposited in voxel i by di . A key decision in the treatment planning is
the fluence map—the radiation intensity of the beamlets in each beam. Let xj denote the
intensity of beamlet j . Then the total radiation dosage deposited in the volume of interest
is given approximately by the equation

d = Ax.

The matrix A is called the fluence matrix and is assumed to be known. Its components ai,j
represent the amount of dose absorbed by voxel i per unit intensity emission from beamlet j .

The problem is therefore to find a fluence map x that yields a radiation dose d that
meets the requirements specified by the physician, as in Table 1.5. As such, this seems to be
a feasibility problem, namely one of finding a feasible solution, rather than an optimization
problem. Unfortunately the treatment requirements are usually conflicting, and it is impos-
sible to satisfy all the requirements simultaneously. To resolve this, the requirements are
usually broken up into “hard” constraints for which any violation is prohibited, and “soft”
constraints for which violations are allowed. Typically, hard constraints are included in
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the formulation as explicit constraints, whereas soft constraints are incorporated into the
objective function via some penalty that is imposed for their violation.

For example, the requirement that region S in the primary treatment volume will
receive a minimum dose l and a maximum dose u could be treated as a hard constraint by
explicitly requiring that

l ≤ di ≤ u for all i ∈ S.
Alternatively the requirement could be treated as a soft constraint, where a violation is
allowed, but with penalty. One approach is to include in the objective function the nonlin-
ear term

wl
∑
i∈S

max(0, l − di)2 + wu
∑
i∈S

max(0, di − u)2,

which sums up the squared deviation from the desired bound for those voxels where the
bounds are violated. The parameters wl and wu are weights representing the relative im-
portance of the bounds on the doses and may differ by region. For instance, underdosing
the tumor can be more harmful than overdosing it, so the weights for this region satisfy
wl ≥ wu. For an alternative way to impose a penalty for violating the bounds on the doses,
see the Exercises.

The “dose-volume constraints” that specify that a fraction β of some volume must
receive a dose of u or less (or a dose of l or more) are more difficult to incorporate. As an
example, suppose that the bladder volume in our example has 10,000 voxels. Then at least
7,000 of the voxels must receive 32 Gy or less. To count the number of voxels that exceed
32 Gy we must define an indicator for each voxel that determines whether its dose meets 32
Gy or exceeds it. This can be done by defining for each voxel a variable yi that is either zero
or one, depending on whether the dose meets the desired upper limit or not. Then adding
the constraints

di ≤ 32(1 − yi)+ 78yi,
∑
i∈S

yi ≤ 3,000, yi ∈ {0, 1}

enforces the dose-volume constraints. The first constraint implies that if di exceeds 32 Gy,
then yi must be one; the second implies that the number of voxels where the dose exceeds
32 Gy is at most 3,000.

This formulation expresses the dose-volume requirements as hard constraints. How-
ever models with integer variables can be difficult to solve and may require a specialized
implementation. For this reason, some researchers prefer other formulations. One way to
use a soft constraint for the dose-volume requirement is to add to the objective function a
penalty term of the form

w
∑
i∈S(d)

max(0, di − 32)2,

where S(d) is the set of 7,000 voxels (out of the 10,000) with the lowest dose, and w is
the weight of the penalty. Unfortunately, we have traded one difficulty for another. In
this alternative formulation, the penalty term does not have continuous derivatives (see the
Exercises), which can create challenges for many optimization algorithms.

One may wonder why there are so many different models and formulations. There
are several reasons. First, because the requirements are conflicting, there is no consensus



book
2008/10/23
page 31

�

�

�

�

�

�

�

�

Exercises 31

among physicians as to what should be a hard constraint and what should be a soft con-
straint. Second, physicians have other desired objectives in the treatment that are extremely
important yet cannot be adequately modeled. For example, they are concerned about the
tumor control probability—the probability that the dose delivered will indeed kill the tumor.
However models that incorporate these probabilities directly are computationally imprac-
tical. As another example, physicians obtain important information from the shape of the
dose-volume histogram, a graph displaying for each dose level the percentage of the vol-
ume that receives at least that dose amount. Ideally one would like to include constraints
that enforce the dose-volume histogram to have a “good” shape, but this would amount to
including numerous dose-volume constraints, which again is computationally impractical.
A third factor is the trade-off between solution time and solution quality. Most commercial
systems use the weighted sum of penalties since these can typically be solved efficiently.
However, because all the constraints are “soft,” the solutions are not always adequate. The
solutions can sometimes include undesirable features, such as regions of low dosage (“cold
spots”) within the tumor, or regions of high dosage (“hot spots”) in healthy tissue.

The problem of optimizing the fluence map can be immense. The number of voxels
may range from tens of thousands to hundreds of thousands. Typically a treatment may
use 5–10 beams, and the number of beamlets per beam can run into the thousands. Even
if the direction of the beams is prescribed, the problem can be challenging. The problem
becomes even harder if one attempts to optimize the number of beams and their directions,
in addition to their fluence.

There is an additional challenge. Recall that the beamlets are formed by the movement
of the leaf collimators; the longer a leaf is open, the more dose it allows to pass through. It
is also necessary to determine the sequence of leaf positions and length of their open times
that creates the desired fluence map—or an approximation to it—in a total sequencing time
that does not unduly prolong the patient’s total treatment time.

Exercises
7.1. One possible way to allow some violation of the constraint l ≤ di in a region S is to

introduce for each voxel i in S two new nonnegative variables s ′i and s ′′i satisfying

di − s ′i + s ′′i = li
s ′i , s

′′
i ≥ 0,

and to include a penalty term of the form wl
∑

i∈S s
′′
i in the objective. Explain

why this approach would work, and derive an equivalent approach for the constraint
di ≤ u.

7.2. The purpose of this exercise is to show that when the dose-volume requirements are
included as soft constraints in the objective, the resulting penalty term may have
discontinuous derivatives. Consider a region with only two voxels, and suppose
that it is required that not more than half the voxels exceed a dose of u. Show
that the approach described in this section for incorporating this requirement as a
soft constraint adds a penalty term of the form wmax(0, (mini=1,2{di} − u))2 to
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the objective. Evaluate the gradient of this penalty term at points where it exists.
Determine whether the first derivatives are continuous on d ≥ 0.

1.7.5 Positron Emission Tomography Image Reconstruction6

Positron emission tomography (PET) is a medical imaging technique that helps diagnose
disease and assess the effect of treatment. Unlike other imaging techniques such as X-
rays or CT-scans that directly study the anatomical structure of an organ, PET studies the
physiology (blood flow or level of metabolism) of the organ. Metabolic activity is an
important tool in diagnosis: cancerous cells have high metabolism or high activity, while
tumor cells damaged by irradiation have low metabolism or low activity. Alzheimer’s
disease is indicated by regions of reduced activity in the brain, and coronary tissue damage
is indicated by regions of reduced activity in the heart.

In a PET scan the patient is injected with a radioactively labeled compound (most
commonly glucose, but sometimes water or ammonia) that is selected for its tendency to be
absorbed in the organ of interest. Once the compound settles, it starts emitting radioactive
emissions that are counted by the PET scanner. The level of emissions is proportional to the
amount of drug absorbed, or in turn, to the level of cell activity. The emissions are counted
using a PET scanner that surrounds the body. Based on the emissions counts obtained in
the scanner, the goal is to determine the level of emissions from within the organ, and hence
the level of metabolic activity. The output of the reconstruction is typically presented in a
color image that reflects the different activity levels in the organ.

We describe the physics of PET in further detail. As the radioisotope decays, it emits
positrons. Each positron annihilates with an electron, and produces two photons which move
in nearly opposite directions, each hitting a tiny photodetector within the scanner at almost
the same time. Any near-simultaneous detection of an event by two such detectors defines a
coincidence event along a coincidence line. The number of coincidence events yj detected
along each of the possible coincidence lines j is the input to the image reconstruction.

Consider the situation depicted in Figure 1.13, where a grid of boxes or voxels has been
imposed over the emitting object (for simplicity, the figure is depicted in two dimensions;
the concept is readily extended to three dimensions). Given a set of measurements yj along
the coincidence lines j = 1, . . . , N , we seek to estimate xi, i = 1, . . . n, the expected
number of counts emitted from voxel i, where n is the number of voxels in the grid.

Most reconstruction methods are based on a technique known as filtered back projec-
tion. Although this technique yields fast reconstructions, the quality of the image can be
poor in situations where the amount of radioactive substance used must be small. Under
such situations it is necessary to use a statistical model of the emission process to determine
the most likely image that fits the data. The approach is via the maximum likelihood esti-
mation technique. The radioactive emissions from voxels i = 1, . . . , n are assumed to be
statistically independent random variables that follow a Poisson distribution with mean xi .
Denote byCi,j the probability that an emission emanating from voxel i will hit detector pair
(coincidence line) j . The n× N matrix C = Ci,j depends on the geometry of the scanner
and on the tissue being scanned, and is assumed to be known.

6This section requires some basic concepts from probability theory.
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Figure 1.13. PET.

Using these assumptions one can show that the emissions emanating from voxel i and
hitting detector pair j are also independent Poisson variables with mean rate Ci,j xi , and the
total emissions received by the detector pairs j = 1, . . . , N are independent Poisson dis-
tributed variables with mean rate

∑
i Ci,j xi . Let q = CeN where eN is a vector of 1’s. The

vector q denotes the sum of the columns of C (which need not be 1). It is computationally
easier if we write the optimization model using the logarithm of the likelihood function. If
we ignore a constant term, the resulting logarithm is

fML = −qT x +
∑
j

yj log
(
CTx

)
j
.

(See the Exercises.) Since the emission level is nonnegative, the final reconstruction problem
becomes

maximize fML = −qT x +∑
j yj log

(
CTx

)
j

subject to x ≥ 0.

The size of the problem can be enormous. If one wishes to reconstruct, say, a volume
of, say, 5 cubic cm at a resolution of half a millimeter, then the size of the grid would
be 100 by 100 by 100, corresponding to n = 100,000 variables. Problems of this size
and even larger are not uncommon. The size of the data is also huge. The scanner may
have thousands of photodetectors and since any pair of these can define a coincidence line,
the number of coincidence lines N can be on the order of millions. Since every function
evaluation requires the computation of a matrix product CTx, and the matrix C is large, the
function evaluations are time consuming.

The efficient solution of such large problems often requires understanding of their
structure. By structure we mean special characteristics of the function, its gradient, and
Hessian. Often structure is associated with the sparsity pattern of the Hessian, that is the
number of zeros, and possibly their location. The special structure of fML and its derivatives
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can be used in designing effective methods for solving the problem. Here we will just give
the formulas for the derivatives. Defining

ŷ = CT x,

we can write the gradient and Hessian of the objective function, respectively, as

∇fML (x) = −q + C Ŷ−1y,

∇2fML (x) = −C Y Ŷ−2CT ,

where Y = diag(y) and Ŷ = diag(ŷ). The matrix C itself is sparse, and only a small
fraction of its entries are nonzero. The diagonal matrices Y and Ŷ are of course also sparse.
Even so, the Hessian ∇2fML(x) is dense; almost all of its entries are likely to be nonzero.
A key challenge in the design of effective algorithms is to exploit the sparsity of C.

Exercises
7.1. The goal of this exercise is to derive the maximum likelihood model for PET im-

age reconstruction. Parts (a) and (b) require some basic background in stochastic
methods.

(i) Let Zij be the number of events emitted from voxel i and detected at coin-
cidence line j , and let Yj be the total emissions received by detector pair j ,
for j = 1, . . . , N . Use the assumptions given in the section to prove that{
Zij

}
are independent Poisson variables with mean Ci,j xi , and that

{
Yj
}

are
independent Poisson distributed variables with mean rates ŷj =∑

i Ci,j xi .

(ii) Prove that the likelihood may be written as

P {y|x} =
∏
j

e
−ŷj ŷ

yj

j

yj ! =
∏
j

e
−∑

i Ci,j xi (
∑

i Ci,j xi)
yj

yj ! .

(iii) Prove the final expression for the maximum likelihood estimation objective
function fML. Hint: Take the logarithm of the likelihood and omit the constant
term that does not depend on x.

7.2. Derive the formulas for the gradient and Hessian matrix of fML.

7.3. The purpose of this exercise is to show that the Hessian of fML may be dense, even
when its matrix factors are sparse. Suppose that C = ( I I en ) and y = ŷ =
e2n+1 where I is the identity matrix, and ek is a vector of ones of size k. Show that
every element of the Hessian is nonzero.

7.4. The purpose of this problem is to write a program in the modeling language of your
choice to solve a PET image reconstruction problem. Your model should not only be
correct, but also efficient and clear. Try and make your model as general as possible.

(i) Develop the model and test it on a problem with n = 9 variables corresponding
to a 3 × 3 grid, and with N = 33 detector pairs. The data are

C = (
B B B

)
,
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where B is a sparse n× (n+ 2) matrix with the following nonzero entries:

Bi,i = a, Bi,i+1 = b, Bi,i+2 = a, i = 1, . . . , n,

where
a = 0.18, b = 0.017,

and

yT= ( 0 0 1 19 27 30 40 50 35 15 1 . . .

0 0 1 7 20 38 56 55 38 20 7 . . .

1 0 1 3 17 38 40 20 7 1 0 ).

(ii) Test your software on a problem with n = 1080 variables corresponding to a
36 × 30 grid, and with N = 1444 detector pairs. The data are

C = (
B 2B

)
,

where B is defined as in part (a) with the parameter values a = 0.15 and
b = 0.05. The vector y can be downloaded in text format from the Web page
for this book (http://www.siam.org/books/ot108). Display the values of the
first row of the reconstructed image.

(iii) Identify the image you obtained in (ii). You will need software for displaying
intensity images.

1.7.6 Shape Optimization

In this section we show how nonlinear optimization can address a problem of finding the
shape of a hanging cable, which in equilibrium minimizes the potential energy of the cable.
This problem often is called the catenary problem (from the Latin word “catena” meaning
a chain).

The solution to the simplest case of the hanging cable problem, when the mass of
the cable is uniformly distributed along the cable, was found at the end of the 18th century
independently by John Bernoulli, Christian Huygens, and Gottfried Leibniz.

More recently, the catenary has played an important role in civil engineering. The
solution to the catenary problem helps understand the effects on suspended cables of external
applied forces arising from the live loads on a suspension bridge.

Here we demonstrate how a general hanging cable problem can be modeled as an
optimization problem. We present several optimization models to illustrate that sometimes
a physical problem can have multiple equivalent mathematical formulations, some of which
are numerically tractable while others are not.

First, for simplicity we assume that the mass of the cable is distributed uniformly.
The objective will be to minimize the potential energy of the cable

minimize
y(x)

∫ xb

xa

y(x)

√
1 + y ′(x)2dx.
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Figure 1.14. Hanging cable with uniformly distributed mass.

Here y(x) is the height of the cable measured from some zero level, and
√

1 + y ′(x)2dx is
the arc length, which is proportional to mass since the mass is distributed uniformly. The
model also has constraints: the cable has a specified length L∫ xb

xa

√
1 + y ′(x)2dx = L,

and the ends of the cable are fixed

y(xa) = ya, y(xb) = yb.

It can be shown that the solution to this problem is a hyperbolic cosine

y(x) = C0 cosh
(
x+C1
C0

)
+ C2,

where cosh(x) = (ex + e−x)/2 and the values of C0, C1, and C2 are determined by the
constraints. Figure 1.14 shows the graphical representation of y(x).

In contrast to our previous optimization models where we had a finite number of
variables, here we are seeking an optimal function, that is, an infinite continuum of values.
In order to solve such a problem using nonlinear optimization algorithms, we discretize the
function by approximating it at a finite number of points, as shown in Figure 1.15.

Here we describe the simplest method for discretizing such problems. If xa = x0 <

x1 < · · · < xN−1 < xN = xb is a uniform discretization of segment [xa, xb] such that
	x = x1 − x0 = x2 − x1 = · · · = xN − xN−1, a simple approximation to an integral of a
function f (x) is ∫ b

a

f (x)dx ≈
N−1∑
i=0

f (xi)	x.
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Figure 1.15. Discretized hanging cable with uniformly distributed mass.

The function values used to approximate the integral for the shape optimization problem
are f (xi) = y(xi)

√
1 + y ′(xi)2. We will approximate the values of the derivative y ′(x) at

the discretization points xi by

y ′i = yi+1−yi
	x

, i = 0, 1, . . . , N − 1,

whereyi = y(xi).The discretized problem consists of finding variablesyi, i = 1, . . . , N−1,
and y ′i , i = 0, . . . , N − 1, that solve the problem

minimize E(y, y ′) =
N−1∑
i=0

yi

√
1 + (y ′i )2	x

subject to yi+1 = yi + y ′i 	x, i = 0, . . . , N − 1

N−1∑
i=0

√
1 + (y ′i )2	x = L

y0 = ya, yN = yb.

We refer to this as optimization model 1.
The greater the number of discretizations pointsN, the better the solution to optimiza-

tion model 1 approximates the solution of the original problem. However for very largeN,
the optimization model 1 is difficult to solve. The constraint

∑N
i=1

√
1 + (y ′i )2	x = L is

nonlinear and can be a source of numerical difficulties for optimization algorithms. In the
two-dimensional case this constraint defines the perimeter shown in Figure 1.16 (left). The
point x0 is on the perimeter and hence is feasible, but almost any perturbation of x0 will
move off the perimeter and hence out of the feasible region. Fortunately, there is another
formulation of the catenary problem that leads to a more tractable model.

Rather than representing the cable as a function y(x) of the variable x, we parameterize
it as a function of its length with respect to its left end point. The points on the cable will
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Figure 1.16. Feasible regions.

now have the form (x(l), y(l)), l ∈ [0, L]. This representation leads to a model that is
simpler to analyze both mathematically and numerically.

Now we look for (x(l), y(l)), l ∈ [0, L], which minimizes the potential energy

min
∫ L

0
m(l)y(l)dl

subject to a constraint based on the Pythagorean theorem that defines the relations between
dx, dy, and dl (see Figure 1.15),

dx2 + dy2 = dl2,

and the ends of the cable are fixed

x(0) = xa, y(0) = ya, x(L) = xb, y(L) = yb.

Here m(l) is a mass distribution function such that
∫ L

0 m(l)dl = M is the total mass of the
cable.

The discretization of this problem with the uniform distribution of mass and the
total mass of the cable M consists of finding variables xl, l = 1, . . . , N − 1, and yi,
i = 1, . . . , N − 1, using the following optimization model 2:

minimize E(y) = M
N

N∑
l=0

yl

subject to (xl − xl−1)
2 + (yl − yl−1)

2 = (
L
N

)2
, l = 1, . . . , N

x0 = xa, xN = xb
y0 = ya, yN = yb,

where the mass distribution function is m = const = M/N. This optimization model also
has N nonlinear constraints:

(xl − xl−1)
2 + (yl − yl−1)

2 = (
L
N

)2
, l = 1, . . . , N,

which again can be a potential source of difficulties for optimization algorithms ifN is large
(the two-dimensional case is shown in Figure 1.16 (center)). However, the optimization
model 2 can be simplified substantially by relaxing these constraints into inequalities:

(xl − xl−1)
2 + (yl − yl−1)

2 ≤ (
L
N

)2
, l = 1, . . . , N.
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Figure 1.17. Constraints cannot always be relaxed.

Of course, we changed the formulation, which is legitimate only if we can prove that the
new formulation has the same solution as the original one. In other words, we have to prove
that both optimization model 2 and its relaxation have the same solution. We can prove this
by contradiction. Suppose that the optimal solution of the relaxed model satisfies at least
one constraint as a strict inequality. Then we can lower the discretized components of the
solution corresponding to this constraint and still remain feasible. But lowering part of the
cable decreases the potential energy, i.e., it decreases the objective function, so our solution
could not have been optimal. This contradicts our original assumption.

Thus optimization model 2 and its relaxation have the same optimal solutions. But
the two models are not equivalent computationally, since the feasible region for the re-
laxation has properties that make it easier for optimization algorithms to handle. In the
two-dimensional case, the feasible region of the relaxed optimization model 2 is shown in
Figure 1.16 (right). It is the entire circle, not just its perimeter. If x0 is a feasible point in
the interior of the feasible region, any small perturbation of x0 is also in the interior. This
feasible region has a convex shape; i.e., if we connect any two points from the feasible set,
all the points between them are also feasible. This property of the interior of feasible set
helps some optimization algorithms, later described in the book, efficiently find the solution.

It is apparently not possible to relax the constraints of optimization model 1 without
changing the optimal solution, but it is easy to do so with optimization model 2. Relaxation
of the nonlinear equality in optimization model 1 to an inequality

N∑
i=1

√
1 + (y ′i )2	x ≤ L

gives a model that is not equivalent and can result in an incorrect solution as shown in Figure
1.17. In this example, the length of an optimal cable for the relaxed model is less than L.
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Figure 1.18. Hanging cable with a nonuniform mass distribution.

Optimization model 2 has another attractive property. Mathematicians in the 18th
century assumed that the string is flexible and uniform, which implies that every segment
of equal length has equal mass. This assumption is too restrictive for modern engineering.
In many practical problems the total weight of the cable is not uniformly distributed along
the cable.

If the mass distribution function is not uniform along the cable but instead is a general
known functionm(l), then it is still easy to obtain a solution of a hanging cable problem using
optimization model 2. We just have to replace the objective function M

N

∑N+1
i=0 yi with a more

general linear objective function
∑N+1

i=0 miyi with appropriately selected coefficientsmi cor-
responding to a certain distribution of mass along the cable. For example, if the mass of most
nodes is much smaller than that of three special nodes—the center node and the two nodes
one quarter of the length away from both end points—then it is still easy to find the shape
of such a cable (see Figure 1.18). We would not be able to easily model such a case using
optimization model 1, for which the assumption of uniformly distributed mass is essential.

We conclude the section by emphasizing the importance of proper modeling of a
problem. It is the responsibility of a modeler not to make the formulation more difficult
than it need be. A problem that is computationally challenging in one formulation may
become much easier to solve in a different formulation. It is up to the modeler to carefully
consider the merits of a formulation prior to solving the problem.

1.8 Notes
Further information on integer programming can be found in the book by Wolsey (1998).
References on global optimization are listed in the Notes for Chapter 2.

Overviews of the crew scheduling, fleet assignment problem, and other airline schedul-
ing problems are given in the articles by Barnhart et al. (1999) and Gopalan andTalluri (1998);
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methods for solving the related linear program are described in the paper by Bixby et al.
(1992). The portfolio problem is described in the book by Markowitz and Todd (2000). An
innovative approach to calculating the entire efficient frontier by solving just one linear pro-
gramming problem using a specialized parametric method was developed by Ruszczynski
and Vanderbei (2003).

The concept of support vector machines was initially developed by Vapnik (1998) in
the late 1970s. A comprehensive overview on the subject is found in the tutorial by Burges
(1988). More recent research is discussed in the books by Cristianini and Shawe-Taylor
(2000), and by Schökopf et al. (1999).

Overviews of IMRT planning can be found in the articles by Shepard et al. (1999)
and by Lee and Deasy (2006). The book by Herman (1980) and the papers by Shepp and
Vardi (1982) and Lange and Carson (1984) are among the pioneering works pertaining to
PET. Figure 1.13 is due to Calvin Johnson, and was taken from the paper by Johnson and
Sofer (2001). Further applications of optimization can be found in the books by Vanderbei
(2007), and by Fourer, Gay, and Kernighan (2003).

The hanging cable or catenary problem was first posed in the Acta Eruditorium in 1690
by Jacob Bernoulli. Simple catenary problems can be solved analytically. More complicated
cases, those with nonuniformly distributed mass, may have to be solved numerically. More
details about how to find shapes of a hanging cable analytically and numerically can be
found in the paper of Griva and Vanderbei (2005) and many books on variational calculus;
see, e.g., Gelfand and Fomin (1963, reprinted 2000).
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Chapter 2

Fundamentals of
Optimization

2.1 Introduction
This chapter discusses basic optimization topics that are relevant to both linear and non-
linear problems. Sections 2.2–2.4 discuss local and global optima, convexity, and the general
form of an optimization algorithm. These topics have traditionally been considered as
fundamental topics in all areas of optimization. The later sections of the chapter, discussing
rates of convergence, series approximations to nonlinear functions, and Newton’s method
for nonlinear equations, are most relevant to nonlinear optimization. In fact, Part II on linear
programming can be understood without these later sections.

The later topics are basic to discussions of nonlinear optimization, since they allow
us to derive optimality conditions and develop and analyze algorithms for optimization
problems involving nonlinear functions.

Although not essential, these topics give a fuller understanding of linear programming
as well. For example, “interior-point” methods apply nonlinear optimization techniques to
linear programming. They might use Newton’s method to find a solution to the optimality
conditions for a linear program, or use a nonlinear optimization algorithm on a linear pro-
gramming problem. The tools from this chapter underlie the interior-point methods derived
in Chapter 10.

2.2 Feasibility and Optimality
There are a variety of terms that are used to describe feasible and optimal points. We first
discuss the terms associated with feasibility.

We consider a set of constraints of the form

gi(x) = 0, i ∈ E,
gi(x) ≥ 0, i ∈ I.

Here { gi } are given functions that define the constraints in the model, E is an index set
for the equality constraints, and I is an index set for the inequality constraints. Any set

43
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of equations and inequalities can be rearranged in this form. For example, the equation
3x2

1 + 2x2 = 3x3 − 9 could be written as

g1(x) = 3x2
1 + 2x2 − 3x3 + 9 = 0,

and the inequality sin x1 ≤ cos x2 is equivalent to

g2(x) = − sin x1 + cos x2 ≥ 0.

Such transformations are merely cosmetic, but they simplify the notation for describing the
constraints.

A point that satisfies all the constraints is said to be feasible. The set of all feasible
points is termed the feasible region or feasible set. We shall denote it by S.

At a feasible point x̄, an inequality constraint gi(x) ≥ 0 is said to be binding or active
if gi(x̄) = 0, and nonbinding or inactive if gi(x̄) > 0. The point x̄ is said to be on the
boundary of the constraint in the former case, and in the interior of the constraint in the
latter. All equality constraints are regarded as active at any feasible point. The active set
at a feasible point is defined as the set of all constraints that are active at that point. The
set of feasible points for which at least one inequality is binding is called the boundary
of the feasible region. All other feasible points are interior points. (Interior points are
only “interior” to the inequality constraints. If equality constraints are present, any feasible
point will satisfy them. Since it is not possible to be interior to an equality constraint, some
authors use the term relative interior points.)

Figure 2.1 illustrates the feasible region defined by the constraints

g1(x) = x1 + 2x2 + 3x3 − 6 = 0

g2(x) = x1 ≥ 0

g3(x) = x2 ≥ 0

g4(x) = x3 ≥ 0.

At the feasible point xa = (0, 0, 2)T, the first two inequality constraints x1 ≥ 0 and x2 ≥ 0
are active, while the third is inactive. At the point xb = (3, 0, 1)T only the second inequality
is active, while at the interior point xc = (1, 1, 1)T none of the inequalities are active. The
boundary of the feasible region is indicated by bold lines.

Let us now look at terms associated with optimality. It may seem surprising that
there is any question about what is meant by a “solution” to an optimization problem. The
confusion arises because there are a variety of conditions associated with an optimal point
and each of these conditions gives rise to a slightly different notion of a “solution.”

Let us consider the n-dimensional problem

minimize
x∈S f (x).

There is no fundamental difference between minimization and maximization problems. We
can maximize f by solving

minimize
x∈S (−f (x)),

and then multiplying the optimal objective value by −1. For this reason, it is sufficient to
discuss minimization problems only.
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Figure 2.1. Example of feasible region.
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Figure 2.2. Examples of global minimizers.

The set S of feasible points is usually defined by a set of constraints, as above. For
problems without constraints, the set S would be �n, the set of vectors of length n whose
components are real numbers.

The most basic definition of a solution is that x∗ minimizes f if

f (x∗) ≤ f (x) for all x ∈ S.

The point x∗ is referred to as a global minimizer of f in S. If in addition x∗ satisfies

f (x∗) < f (x) for all x ∈ S such that x = x∗,

then x∗ is a strict global minimizer. Not all functions have a finite global minimizer, and
even if a function has a global minimizer there is no guarantee that it will have a strict global
minimizer; see Figure 2.2.

It would be satisfying theoretically, and important practically, to be able to find global
minimizers. However, many of the methods that we will study are based on the Taylor
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minimizer
strict local

minimizersminimizer
strict local nonstrict localstrict local

minimizer (global) 

Figure 2.3. Examples of local minimizers.

series; that is, they are based on information about the function at a single point, and this
information is normally only be valid within a small neighborhood of that point (see Section
2.6). Without additional information or assumptions about the problem it will not be possible
to guarantee that a global solution has been found. An important exception is in the case
where the function f and the set S are convex (see Section 2.3), which is true for linear
programming problems.

If we cannot find the global solution, then at the least we would like to find a point that
is better than its surrounding points. More precisely, we would like to find a local minimizer
of f in S, a point satisfying

f (x∗) ≤ f (x) for all x ∈ S such that ‖x − x∗‖ < ε.

Here ε is some small positive number that may depend on x∗. The point x∗ is a strict local
minimizer if

f (x∗) < f (x) for all x ∈ S such that x = x∗ and ‖x − x∗‖ < ε.

Various one-dimensional examples are illustrated in Figure 2.3.
In many important cases, strict local minimizers can be identified using first and second

derivative values at x = x∗, and hence they can be identified by algorithms that compute
first and second derivatives of the problem functions. (A local minimizer that is not a strict
local minimizer is a degenerate case and is often considered to be a special situation.) Many
algorithms, in particular those that only compute first derivative values, are only guaranteed
to find a stationary point for the problem. (For unconstrained problems a stationary point
is a point where the first derivatives of f are equal to zero. For constrained problems the
definition is more complicated; see Chapter 14.) A local minimizer of f is also a stationary
point of f but the reverse need not be true.

Having all these various definitions of what is meant by a solution may seem perverse,
but it merely reflects the fact that if we only have limited information, then we can draw only
limited conclusions. The definitions are not without merit, though. In the case where all
these various types of solutions are defined and where the function has several continuous
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derivatives, a global solution will also be both a local solution and a stationary point. In
important special cases such as linear programming the reverse will also be true. In our
experience, it is unusual for an algorithm to converge to a point that is a stationary point
but not a local minimum. However, it is common for an algorithm to converge to a local
minimum that is not a global minimum.

It may seem troubling that a local but not global solution is often found, but in many
practical situations this can be acceptable if the local minimizer produces a satisfactory
reduction in the value of the objective function. For example, if the objective function rep-
resented the costs of running a business, a 10% reduction in these costs would be a valuable
saving, even if it did not correspond to the global solution to the optimization problem.
Local optimization techniques are a valuable tool even if global solutions are desired, since
techniques for global optimization typically solve a sequence of local optimization prob-
lems.

Exercises
2.1. Consider the feasible region defined by the constraints

1 − x2
1 − x2

2 ≥ 0,
√

2 − x1 − x2 ≥ 0, and x2 ≥ 0.

For each of the following points, determine whether the point is feasible or infeasible,
and (if it is feasible) whether it is interior to or on the boundary of each of the
constraints: xa = ( 1

2 ,
1
2 )
T, xb = (1, 0)T, xc = (−1, 0)T, xd = (− 1

2 , 0)T, and xe =
(1/

√
2, 1/

√
2)T.

2.2. Consider the one-variable function

f (x) = (x + 1)x(x − 2)(x − 5) = x4 − 6x3 + 3x2 + 10x.

Graph this function and locate (approximately) the stationary points, local minima,
and global minima.

2.3. Consider the problem
minimize f (x) = x1

subject to x2
1 + x2

2 ≤ 4

x2
1 ≥ 1.

Graph the feasible set. Use the graph to find all local minimizers for the problem,
and determine which of those are also global minimizers.

2.4. Consider the problem

minimize f (x) = x1

subject to (x1 − 1)2 + x2
2 = 1

(x1 + 1)2 + x2
2 = 1.

Graph the feasible set. Are there local minimizers? Are there global minimizers?

2.5. Give an example of a function that has no global minimizer and no global maximizer.
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2.6. Provide definitions for a global maximizer, a strict global maximizer, a local maxi-
mizer, and a strict local maximizer.

2.7. Consider minimizing f (x) for x ∈ S where S is the set of integers. Prove that every
point in S is a local minimizer of f .

2.8. Let S = { x : gi(x) ≥ 0, i = 1, . . . , m } and assume that the functions { gi } are con-
tinuous. Prove that if gi(x̂) > 0 for all i, then

{
x : ∥∥x − x̂∥∥ < ε

} ⊂ S for some
ε > 0.

2.9. Let S be the feasible region in Figure 2.1. Show that S can be represented by equality
and inequality constraints in such a way that it has no interior points. Thus the interior
of a set may depend on the way it is represented.

2.10. Let S = { x : gi(x) ≥ 0, i = 1, . . . , m } and assume that the functions { gi } are con-
tinuous. Assume that there exists a point x̂ such that gi(x̂) > 0 for all i. Prove that
S has a nonempty interior regardless of how S is represented.

2.3 Convexity
There is one important case where global solutions can be found, the case where the objective
function is a convex function and the feasible region is a convex set. Let us first talk about
the feasible region.

A set S is convex if, for any elements x and y of S,

αx + (1 − α)y ∈ S for all 0 ≤ α ≤ 1.

In other words, if x and y are in S, then the line segment connecting x and y is also in S.
Examples of convex and nonconvex sets are given in Figure 2.4. More generally, every set
defined by a system of linear constraints is a convex set; see the Exercises.

A function f is convex on a convex set S if it satisfies

f (αx + (1 − α)y) ≤ αf (x)+ (1 − α)f (y)
for all 0 ≤ α ≤ 1 and for all x, y ∈ S. This definition says that the line segment connecting
the points (x, f (x)) and (y, f (y)) lies on or above the graph of the function; see Figure
2.5. Intuitively, the graph of the function is bowl shaped.

Analogously, a function is concave on S if it satisfies

f (αx + (1 − α)y) ≥ αf (x)+ (1 − α)f (y)

convex nonconvex

Figure 2.4. Convex and nonconvex sets.
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f ( x)

( )yf

x+(1−α)yα

( )yfα f ( x)  + (1−α)

x+(1−α)yα(f )

f

x y

Figure 2.5. Convex function.

for all 0 ≤ α ≤ 1 and for all x, y ∈ S. Concave functions are explored in the Exercises
below. Linear functions are both convex and concave.

We say that a function is strictly convex if

f (αx + (1 − α)y) < αf (x)+ (1 − α)f (y)
for all x = y and 0 < α < 1 where x, y ∈ S.

Let us now return to the discussion of local and global solutions. We define a convex
optimization problem to be a problem of the form

minimize
x∈S f (x),

where S is a convex set and f is a convex function on S. A problem

minimize f (x)

subject to gi(x) ≥ 0, i = 1, . . . , m,

is a convex optimization problem if f is convex and the functions { gi } are concave; see
the Exercises.

The following theorem shows that any local solution of such a problem is also a global
solution. This result is important to linear programming, since every linear program is a
convex optimization problem.

Theorem 2.1 (Global Solutions of Convex Optimization Problems). Let x∗ be a local
minimizer of a convex optimization problem. Then x∗ is also a global minimizer. If the
objective function is strictly convex, then x∗ is the unique global minimizer.

Proof. The proof is by contradiction. Let x∗ be a local minimizer and suppose, by con-
tradiction, that it is not a global minimizer. Then there exists some point y ∈ S satisfying
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f (y) < f (x∗). If 0 < α < 1, then

f (αx∗ + (1 − α)y) ≤ αf (x∗)+ (1 − α)f (y)
< αf (x∗)+ (1 − α)f (x∗) = f (x∗).

This shows that there are points arbitrarily close to x∗ (i.e., when α is arbitrarily close to
1) whose function values are strictly less than f (x∗). These points are in S because S is
convex. This contradicts the definition of a local minimizer. Hence a point such as y cannot
exist, and x∗ must be a global minimizer.

If the objective function is strictly convex, then a similar argument can be used to
show that x∗ is the unique global minimizer; see the Exercises.

For general problems it may be as difficult to determine if the function f and the
region S are convex as it is to find a global solution, so this result is not always useful.
However, there are important practical problems, such as linear programs, where convexity
can be guaranteed.

We conclude this section by defining a convex combination (weighted average) of a
finite set of points. A convex combination is a linear combination whose coefficients are
nonnegative and sum to one. Algebraically, the point y is a convex combination of the
points { xi }ki=1 if

y =
k∑
i=1

αixi,

where
k∑
i=1

αi = 1 and αi ≥ 0, i = 1, . . . , k.

There will normally be many ways in which y can be expressed as a convex combination
of { xi }.

As an example, consider the points x1 = (0, 0)T, x2 = (1, 0)T, x3 = (0, 1)T, and
x4 = (1, 1)T. If y = ( 1

2 ,
1
2 )
T, then y can be expressed as a convex combination of { xi } in

the following ways:

y = 0x1 + 1
2x2 + 1

2x3 + 0x4

= 1
2x1 + 0x2 + 0x3 + 1

2x4

= 1
4x1 + 1

4x2 + 1
4x3 + 1

4x4,

and so forth.

2.3.1 Derivatives and Convexity

If a one-dimensional functionf has two continuous derivatives, then an alternative definition
of convexity can be given that is often easier to check. Such a function is convex if and
only if

f ′′(x) ≥ 0 for all x ∈ S;
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see the Exercises in Section 2.6. For example, the function f (x) = x4 is convex on the
entire real line because f ′′(x) = 12x2 ≥ 0 for all x. The function f (x) = sin x is neither
convex nor concave on the real line because f ′′(x) = − sin x can be both positive and
negative.

In the multidimensional case the Hessian matrix of second derivatives must be positive
semidefinite; that is, at every point x ∈ S

yT∇2f (x)y ≥ 0 for all y;
see the Exercises in Section 2.6. (The Hessian matrix is defined in Appendix B.4.) Notice
that the vector y is not restricted to lie in the set S. The quadratic function

f (x1, x2) = 4x2
1 + 12x1x2 + 9x2

2

is convex over any subset of �2 since

yT∇2f (x)y = ( y1 y2 )

(
8 12

12 18

)(
y1

y2

)
= 8y2

1 + 24y1y2 + 18y2
2

= 2(2y1 + 3y2)
2 ≥ 0.

Alternatively, it would have been possible to show that the eigenvalues of the Hessian matrix
were all greater than or equal to zero.

In the one-dimensional case, if a function satisfies

f ′′(x) > 0 for all x ∈ S,
then it is strictly convex on S. In the multidimensional case, if the Hessian matrix ∇2f (x)

is positive definite for all x ∈ S, then the function is strictly convex on S. This is not an “if
and only if ” condition, since the Hessian of a strictly convex function need not be positive
definite everywhere (see the Exercises).

Now we consider another characterization of convexity that can be applied to functions
that have one continuous derivative. In this case a function f is convex over a convex set
S if and only if it satisfies

f (y) ≥ f (x)+ ∇f (x)T(y − x)
for all x, y ∈ S. This property states that the function is on or above any of its tangents.
(See Figure 2.6.)

To prove this property, note that if f is convex, then for any x and y in S and for any
0 < α ≤ 1,

f (αy + (1 − α)x) ≤ αf (y)+ (1 − α)f (x),
so that

f (x + α(y − x))− f (x)
α

≤ f (y)− f (x).
If we let α approach 0 from above, we can conclude that f (y) ≥ f (x)+ ∇f (x)T(y − x).



book
2008/10/23
page 52

�

�

�

�

�

�

�

�

52 Chapter 2. Fundamentals of Optimization

f (x)

x

Figure 2.6. Convex function with continuous first derivative.

Conversely, suppose that the function f satisfies f (y) ≥ f (x)+∇f (x)T(y − x) for
all x and y in S. Let t = αx + (1 − α)y. Then t is also in the set S, so

f (x) ≥ f (t)+ ∇f (t)T(x − t)
and

f (y) ≥ f (t)+ ∇f (t)T(y − t).
Multiplying the two inequalities by α and 1 − α, respectively, and then adding yields the
desired result. See the Exercises for details.

Exercises
3.1. Prove that the intersection of a finite number of convex sets is also a convex set.

3.2. Let S1 = { x : x1 + x2 ≤ 1, x1 ≥ 0 } and S2 = { x : x1 − x2 ≥ 0, x1 ≤ 1 }, and let
S = S1 ∪ S2. Prove that S1 and S2 are both convex sets but S is not a convex set.
This shows that the union of convex sets is not necessarily convex.

3.3. Consider a feasible region S defined by a set of linear constraints

S = { x : Ax ≤ b } .
Prove that S is convex.

3.4. Prove that a function f is concave if and only if −f is convex.

3.5. Let f (x) be a function on �n. Prove that f is both convex and concave if and only
if f (x) = cTx for some constant vector c.

3.6. Prove that a convex combination of convex functions all defined on the same convex
set S is also a convex function on S.
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3.7. Let f be a convex function on a convex set S ∈ �n. Let k be a nonzero scalar, and
define g(x) = kf (x). Prove that if k > 0, then g is a convex function on S, and if
k < 0, then g is a concave function on S.

3.8. (Jensen’s Inequality.) Let f be a function on a convex set S ∈ �n. Prove that f is
convex if and only if

f

(
k∑
i=1

αixi

)
≤

k∑
i=1

αif (xi)

for all x1, . . . , xm ∈ S and 0 ≤ αi ≤ 1 where
∑k

i=1 αi = 1.

3.9. Prove the well-known inequality between the arithmetic mean and the geometric
mean of a set of positive numbers:

(x1 + · · · + xk)/k ≥ (x1 · · · xk)1/k.
Hint: Apply the previous problem to the function f (x) = − log(x).

3.10. Consider the function f (x1, x2) = αx
p

1 x
q

2 , defined on S = {x : x > 0}. For what
values of α, p, and q is the function convex? Strictly convex? For what values is it
concave? Strictly concave?

3.11. Consider the problem
maximize

x∈S f (x),

where S is a convex set and f is a concave function. Prove that any local maximizer
is also a global maximizer.

3.12. Let g1, . . . , gm be concave functions on �n. Prove that the set

S = { x : gi(x) ≥ 0, i = 1, . . . , m }
is convex.

3.13. Let f be a convex function on the convex set S. Prove that the level set

T = { x ∈ S : f (x) ≤ k }
is convex for all real number k.

3.14. A function f is said to be quasi convex on the convex set S if every level set of f in
S is convex, that is, if { x ∈ S : f (x) ≤ k } is convex for all k.

(i) Prove that f (x) = √
x is a quasi-convex function on S = {

x ∈ �1, x ≥ 0
}

but it is not convex on S.

(ii) Prove that f is quasi convex on a convex set S if and only if for every x and
y in S and every 0 ≤ α ≤ 1,

f (αx + (1 − α)x) ≤ max{f (x), f (y)}.
(iii) Prove that any local minimizer of a quasi-convex function on a convex set is

also a global minimizer.
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3.15. Let g1, . . . , gm be concave functions on �n. Prove that the set

S = { x : gi(x) ≥ 0, i = 1, . . . , m }
is convex.

3.16. Let f : �n → �1 be a convex function, and let g : �1 → �1 be a convex
nondecreasing function. (The notation f : �n → �1 means that f is a real-valued
function of n variables; g is a real-valued function of one variable.) Prove that the
composite function h : �n → �1 defined by h(x) = g(f (x)) is convex.

3.17. Complete the proof of Theorem 2.1 for the case when the objective function is strictly
convex.

3.18. Express (2, 2)T as a convex combination of (0, 0)T, (1, 4)T, and (3, 1)T.

3.19. For each of the following functions, determine if it is convex, concave, both, or
neither on the real line. If the function is convex or concave, indicate if it is strictly
convex or strictly concave.

(i) f (x) = 3x2 + 4x − 5

(ii) f (x) = exp(x2)

(iii) f (x) = 7x − 15

(iv) f (x) = √
1 + x2

(v) f (x) = 4 − 5x + 3x2

(vi) f (x) = 2x4 + 3x3 + 4x2

(vii) f (x) = x/(1 + x4).

3.20. Determine if
f (x1, x2) = 2x2

1 − 3x1x2 + 5x2
2 − 2x1 + 6x2

is convex, concave, both, or neither for x ∈ �2.

3.21. Give an example of a one-dimensional function f that is strictly convex on the real
line even though f ′′(x̂) = 0 at some point x̂.

3.22. Let g1, . . . , gm be concave functions on �n, let f be a convex function on �n, and
let μ be a positive constant. Prove that the function

β(x) = f (x)− μ
m∑
i=1

log gi(x)

is convex on the set S = { x : gi(x) > 0, i = 1, . . . , m }.

2.4 The General Optimization Algorithm
More algorithms for solving optimization problems have been proposed than could possibly
be discussed in a single book. This has happened in part because optimization problems can
come in so many forms, but even for particular problems such as one-variable unconstrained
minimization problems, there are many different algorithms that one could use.
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Despite this diversity of both algorithms and problems, all of the algorithms that we
will discuss in any detail in this book will have the same general form.

Algorithm 2.1.
General Optimization Algorithm I

1. Specify some initial guess of the solution x0.

2. For k = 0, 1, . . .

(i) If xk is optimal, stop.

(ii) Determine xk+1, a new estimate of the solution.

This algorithm is so simple that it almost conveys no information at all. However, as we
discuss ever more complex algorithms for ever more elaborate problems, it is often helpful
to keep in mind that we are still working within this simple and general framework.

The algorithm suggests that testing for optimality and determining a new point xk+1

are separate ideas, but this is usually not true. Often the information obtained from the
optimality test is the basis for the computation of the new point. For example, if we are
trying to solve the one-dimensional problem without constraints

minimize f (x),

then the optimality test will often be based on the condition

f ′(x) = 0.

If f ′(xk) = 0, then xk is not optimal, and the sign and value of f ′(xk) indicate whether
f is increasing or decreasing at the point xk , as well as how rapidly f is changing. Such
information is valuable in selecting xk+1.

Many of our algorithms will have a more specific form.

Algorithm 2.2.
General Optimization Algorithm II

1. Specify some initial guess of the solution x0.

2. For k = 0, 1, . . .

(i) If xk is optimal, stop.

(ii) Determine a search direction pk .

(iii) Determine a step length αk that leads to an improved estimate of the solution:
xk+1 = xk + αkpk .

In this algorithm, pk is a search direction that we hope points in the general direction of the
solution, or that “improves” our solution in some sense. The scalar αk is a step length that
determines the point xk+1; once the search direction pk has been computed, the step length
αk is found by solving some auxiliary one-dimensional problem; see Figure 2.7.
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p
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Figure 2.7. General optimization algorithm.

Why do we not just solve for the solution directly? Except for the simplest optimi-
zation problems, formulas for the solution do not exist. For example, consider the problem

minimize f (x) = ex + x2.

The optimality condition f ′(x) = 0 has the form

ex + 2x = 0,

but there is no simple formula for the solution to this equation. Hence for many problems
some form of iterative method must be employed to determine a solution. (Any finite se-
quence of calculations is a formula of some sort, and so the solution of a general optimization
problem can only be found as the limit of an infinite sequence. When we refer to computing
a “solution” we most always mean an approximate solution, an element of this sequence
that has sufficient accuracy. Determining the exact solution, or the limit of such a sequence,
would be an “infinite” calculation.)

Why do we split the computation of xk+1 into two calculations? Ideally we would
like to have xk+1 = xk + pk where pk solves

minimize
p

f (xk + p),

but this is equivalent to our original problem

minimize
x

f (x).

Instead a compromise is employed. For an unconstrained problem of the form here, we will
typically require that the search direction pk be a descent direction for the function f at the
point xk . This means that for “small” steps taken along pk the function value is guaranteed
to decrease:

f (xk + αpk) < f (xk) for 0 < α ≤ ε
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Figure 2.8. Line search.

for some ε. For a linear function f (x) = cTx, pk is a descent direction if

cT(xk + εpk) = cTxk + εcTpk < cTxk,

or in other words if cTpk < 0. Techniques for computing descent directions for nonlinear
functions are discussed in Chapter 11.

With pk available, we would ideally like to determine the step length αk so as to
minimize the function in that direction:

minimize
α≥0

f (xk + αpk).

This is a problem only involving one variable, the parameter α. The restriction α ≥ 0 is
imposed because pk is a descent direction.

Even for this one-dimensional problem there may not be a simple formula for the
solution, so it too cannot normally be solved exactly. Instead, an αk is computed that
either “sufficiently decreases” the value of f or yields an “approximate minimizer” of the
function f in the direction pk . Both these terms have precise theoretical meanings that will
be specified in later chapters, and computational techniques are available that allow αk to
be determined at reasonable cost. The calculation of αk is called a line search because it
corresponds to a search along the line xk + αpk defined by α. The line search is illustrated
in Figure 2.8.

Algorithm II with its three major steps (the optimality test, computation of pk , and
computation of αk) has been the basis for a great many of the most successful optimization
algorithms ever developed. It has been used to develop many software packages for non-
linear optimization, and it is also present implicitly as part of the simplex method for linear
programming. It is not the only approach possible (see Section 11.6), but it is the approach
that we will emphasize in this book.
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Using the concept of descent directions, we can establish an important condition for
optimality for the constrained problem

minimize
x∈S f (x).

We define p to be a feasible descent direction at a point xk ∈ S if, for some ε > 0,

xk + αp ∈ S and f (xk + αp) < f (xk)

for all 0 < α ≤ ε. If a feasible descent direction exists at a point xk , then it is possible to
move a short distance along this direction to a feasible point with a better objective value.
Then xk cannot be a local minimizer for this problem. Hence, if x∗ is a local minimizer,
there cannot exist any feasible descent directions at x∗. This result will be used to derive
optimality conditions for a variety of optimization problems.

Exercises
4.1. Let xk = (2, 1)T and pk = (−1, 3)T. Plot the set { x : x = xk + αpk, α ≥ 0 }.
4.2. Find all descent directions for the linear function f (x) = x1 −2x2 +3x3. Does your

answer depend on the value of x?

4.3. Consider the problem

minimize f (x) = −x1 − x2

subject to x1 + x2 ≤ 2
x1, x2 ≥ 0.

(i) Determine the feasible directions at x = (0, 0)T, (0, 1)T, (1, 1)T, and (0, 2)T.

(ii) Determine whether there exist feasible descent directions at these points, and
hence determine which (if any) of the points can be local minimizers.

2.5 Rates of Convergence
Many of the algorithms discussed in this book do not find a solution in a finite number of
steps. Instead these algorithms compute a sequence of approximate solutions that we hope
get closer and closer to a solution. When discussing such an algorithm, the following two
questions are often asked:

• Does it converge?
• How fast does it converge?

It is the second question that is the topic of this section.
If an algorithm converges in a finite number of steps, the cost of that algorithm is

often measured by counting the number of steps required, or by counting the number of
arithmetic operations required. For example, if Gaussian elimination is applied to a system
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of n linear equations, then it will require about n3 operations. This cost is referred to as
the computational complexity of the algorithm. This concept is discussed in more detail in
Chapter 9 in the context of linear programming.

For many optimization methods, the number of operations or steps required to find an
exact solution will be infinite, so some other measure of efficiency must be used. The rate
of convergence is one such measure. It describes how quickly the estimates of the solution
approach the exact solution.

Let us assume that we have a sequence of points xk converging to a solution x∗. We
define the sequence of errors to be

ek = xk − x∗.
Note that

lim
k→∞ ek = 0.

We say that the sequence { xk } converges to x∗ with rate r and rate constant C if

lim
k→∞

‖ek+1‖
‖ek‖r = C

and C <∞. To understand this idea better, let us look at some examples.
Initially let us assume that we have ideal convergence behavior

‖ek+1‖ = C ‖ek‖r for all k,

so that we can avoid having to deal with limits. When r = 1 this is referred to as linear
convergence:

‖ek+1‖ = C ‖ek‖ .
If 0 < C < 1, then the norm of the error is reduced by a constant factor at every iteration.
If C > 1, then the sequence diverges. (What can happen when C = 1?) If we choose
C = 0.1 = 10−1 and ‖e0‖ = 1, then the norms of the errors are

1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7,

and seven-digit accuracy is obtained in seven iterations, a good result. On the other hand,
if C = 0.99, then the norms of the errors take on the values

1, 0.99, 0.9801, 0.9703, 0.9606, 0.9510, 0.9415, 0.9321, . . . ,

and it would take about 1600 iterations to reduce the error to 10−7, a less impressive result.
If r = 1 and C = 0, the convergence is called superlinear. Superlinear convergence

includes all cases where r > 1 since if

lim
k→∞

‖ek+1‖
‖ek‖r = C <∞,

then

lim
k→∞

‖ek+1‖
‖ek‖ = lim

k→∞
‖ek+1‖
‖ek‖r ‖ek‖r−1 = C × lim

k→∞
‖ek‖r−1 = 0.
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When r = 2, the convergence is called quadratic. As an example, let r = 2, C = 1, and
‖e0‖ = 10−1. Then the sequence of error norms is

10−1, 10−2, 10−4, 10−8,

and so three iterations are sufficient to achieve seven-digit accuracy. In this form of quadratic
convergence the error is squared at each iteration. Another way of saying this is that the
number of correct digits in xk doubles at every iteration. Of course, if the constant C = 1,
then this is not an accurate statement, but it gives an intuitive sense of the attractions of a
quadratic convergence rate.

For optimization algorithms there is one other important case, and that is when 1 <
r < 2. This is another special case of superlinear convergence. This case is important
because (a) it is qualitatively similar to quadratic convergence for the precision of common
computer calculations, and (b) it can be achieved by algorithms that only compute first
derivatives, whereas to achieve quadratic convergence it is often necessary to compute
second derivatives as well. To get a sense of what this form of superlinear convergence
looks like, let r = 1.5, C = 1, and ‖e0‖ = 10−1. Then the sequence of error norms is

1 × 10−1, 3 × 10−2, 6 × 10−3, 4 × 10−4, 9 × 10−6, 3 × 10−8,

and five iterations are required to achieve single-precision accuracy.

Example 2.2 (Rate of Convergence of a Sequence). Consider the sequence

2, 1.1, 1.01, 1.001, 1.0001, 1.00001, . . .

with general term xk = 1 + 10−k . This sequence converges to x∗ = 1 and ek = xk − x∗ =
10−k . Hence

lim
k→∞

‖ek+1‖
‖ek‖ = lim

k→∞
10−(k+1)

10−k = 1

10
,

so that the sequence converges linearly with rate constant 1
10 .

Now consider the sequence

4, 2.5, 2.05, 2.00060975, . . .

defined by the formula

xk+1 = 1

2

(
xk + 4

xk

)
= xk

2
+ 2

xk

with x0 = 4. It can be shown that xk → 2. Also

ek+1 = xk+1 − x∗
= xk

2
+ 2

xk
− 2

= 1

2xk
(x2
k + 4 − 4xk)

= 1

2xk
(xk − 2)2 = 1

2xk
e2
k .
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From this it follows that

lim
k→∞

‖ek+1‖
‖ek‖2 = 1

2|x∗| =
1

4
.

Hence this sequence converges quadratically with rate constant 1
4 .

In practical situations ideal convergence behavior is not always observed. The rate
of convergence is only observed in the limit, so at the initial iterations there is no guarantee
that the norm of the error will be reduced at all, let alone at any predictable rate. In fact, it
is not uncommon for an algorithm to expend almost all of its effort far from the solution,
with this asymptotic convergence rate only becoming apparent at the last few iterations. In
addition, the algorithm will be terminated after a finite number of iterations when the error
in the solution is below some tolerance, and so the limiting behavior described here may be
only imperfectly observed.

There is ambiguity in the definition of the rate of convergence. For instance, any
sequence that converges quadratically also converges linearly, but with rate constant equal
to zero. It is common when discussing algorithms to refer to the fastest rate at which the
algorithm typically converges. For example, in Section 2.7 we show that a certain sequence
{ xk } satisfies

xk+1 − x∗ ≈
(
f ′′(x∗)
2f ′(x∗)

)
(xk − x∗)2,

where x∗ = lim xk and f is a function used to define the sequence. Based on this formula,
the sequence { xk } is said to converge quadratically. However, if f ′(x∗) = 0 the right-hand
side is not defined. On the other hand, if f ′(x∗) = 0 but f ′′(x∗) = 0, then the sequence can
converge faster than quadratically. “Typically” these things do not happen.

In many situations people use a sort of shorthand and only refer to the convergence
rate without mention of the rate constant. For quadratic rates of convergence this is not
too misleading, since the ideal behavior and the observed behavior are similar unless the
rate constant is exceptionally large or small. However, in the linear case the rate constant
plays an important role. It is not uncommon to see rate constants that are close to one,
and more unusual to see rate constants near zero. As a result, linear convergence rates are
often considered to be inferior. However, if the rate constant is small, then there is little
practical difference between linear and higher rates of convergence at the level of precision
common on many computers. In summary, even though it is generally true that higher rates
of convergence often represent improvements in performance, this is not guaranteed, and
an algorithm with a linear rate of convergence can sometimes be effective in a practical
setting.

Exercises
5.1. For each of the following sequences, prove that the sequence converges, find its limit,

and determine the rate of convergence and the rate constant.
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(i) The sequence
1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 , . . .

with general term xk = 2−k , for k = 1, 2, . . . .

(ii) The sequence
1.05, 1.0005, 1.000005, . . .

with general term xk = 1 + 5 × 10−2k , for k = 1, 2, . . . .

(iii) The sequence with general term xk = 2−2k .

(iv) The sequence with general term xk = 3−k2
.

(v) The sequence with general term xk = 1 − 2−2k for k odd, and xk = 1 + 2−k
for k even.

5.2. Consider the sequence defined by x0 = a > 0 and

xk+1 = 1
2

(
xk + a

xk

)
.

Prove that this sequence converges to x∗ = √
a and that the convergence rate is

quadratic, and determine the rate constant.

5.3. Consider a convergent sequence { xk } and define a second sequence { yk } with
yk = cxk where c is some nonzero constant. What is the relationship between
the convergence rates and rate constants of the two sequences?

5.4. Let { xk } and { ck } be convergent sequences, and assume that

lim
k→∞ ck = c = 0.

Consider the sequence { yk }withyk = ckxk . Is this sequence guaranteed to converge?
If so, can its convergence rate and rate constant be determined from the rates and
rate constants for the sequences { xk } and { ck }?

2.6 Taylor Series
The Taylor series is a tool for approximating a function f near a specified point x0. The
approximation obtained is a polynomial, i.e., a function that is easy to manipulate. The
Taylor series is a general tool—it can be applied whenever the function has derivatives—
and it has many uses:

• It allows you to estimate the value of the function near the given point (when the
function is difficult to evaluate directly).

• The derivatives and integral of the approximation can be used to estimate the deriva-
tives and integral of the original function.

• It is used to derive many algorithms for finding zeroes of functions (see below), for
minimizing functions, etc.
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Since many problems are difficult to solve exactly, and an approximate solution is often
adequate (the data for the problem may be inaccurate), the Taylor series is widely used, both
theoretically and practically. Even if the data are exact, an approximate solution may be
adequate, and in any case it is all we can hope for under most circumstances.

How does it work? We first consider the case of a one-dimensional function f with
n continuous derivatives. Let x0 be a specified point (say x0 = 17.5 or x0 = 0). Then the
nth order Taylor series approximation is

f (x0 + p) ≈ f (x0)+ pf ′(x0)+ 1

2
p2f ′′(x0)+ · · · + pn

n! f
(n)(x0).

Here f (n)(x0) is the nth derivative of f at the point x0, and n! = n(n−1)(n−2) · · · 3 ·2 ·1.
Notice that 1

2p
2f ′′(x0) = (p2/2!)f (2)(x0). In this formula, p is a variable; we will decide

later what values p will take. The approximation will normally only be accurate for small
values of p.

Example 2.3 (Taylor Series). Let f (x) = √
x and let x0 = 1. Then

f (x0) = √
x0 = √

1 = 1

f ′(x0) = 1
2x

− 1
2

0 = 1
2 1− 1

2 = 1
2

f ′′(x0) = − 1
4x

− 3
2

0 = − 1
4 1− 3

2 = − 1
4

f ′′′(x0) = 3
8x

− 5
2

0 = 3
8 1− 5

2 = 3
8

...

Hence, substituting into the formula for the Taylor series,√
1 + p = f (x0 + p)

≈ f (x0)+ pf ′(x0)+ 1
2p

2f ′′(x0)+ 1
6p

3f ′′′(x0)

= 1 + p( 1
2 )+ 1

2p
2(− 1

4 )+ 1
6p

3( 3
8 )

= 1 + 1
2p − 1

8p
2 + 1

16p
3.

How do we use this? Suppose we want to approximate f (1.6). Then x0 + p =
1 + p = 1.6, and so p = 0.6:

√
1.6 = √

1 + 0.6

≈ 1 + 1
2 (0.6)− 1

8 (0.6)
2 + 1

16 (0.6)
3 ≈ 1.2685.

The true value is 1.264911 . . . ; the approximation is accurate to three digits.

The first two terms of the Taylor series give us the formula for the tangent line for
the function f at the point x0. We commonly define the tangent line in terms of a general
point x, and not in terms of p. Since x0 + p = x, we can rearrange to get p = x − x0.
Substitute this into the first two terms of the series to get the tangent line:

y = f (x0)+ (x − x0)f
′(x0).
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Figure 2.9. Taylor series approximation.

For the example above we get

y = 1 + (x − 1) 1
2 or y = 1

2 (x + 1).

The first three terms of the Taylor series give a quadratic approximation to the function f
at the point x0. This is illustrated in Figure 2.9.

So far we have only considered a Taylor series for a function of one variable. The
Taylor series can also be derived for real-valued functions of many variables. If we use
matrix and vector notation, then there is an obvious analogy between the two cases:

1-variable: f (x0 + p) = f (x0)+ pf ′(x0)+ 1
2p

2f ′′(x0)+ · · ·
n-variables: f (x0 + p) = f (x0)+ pT∇f (x0)+ 1

2p
T∇2f (x0)p + · · · .

In the second line above x0 and p are both vectors. The notation ∇f (x0) refers to the
gradient of the function f at the point x = x0. The notation ∇2f (x0) represents the Hessian
of f at the point x = x0. (See Appendix B.4.) The higher-order terms of the Taylor series
can also be written down, but the notation is more complex and they will not be required in
this book.

Example 2.4 (Multidimensional Taylor Series). Consider the function

f (x1, x2) = x3
1 + 5x2

1x2 + 7x1x
2
2 + 2x3

2

at the point
x0 = (−2, 3)T.

The gradient of this function is

∇f (x) =
(

3x2
1 + 10x1x2 + 7x2

2

5x2
1 + 14x1x2 + 6x2

2

)
and the Hessian matrix is

∇2f (x) =
(

6x1 + 10x2 10x1 + 14x2

10x1 + 14x2 14x1 + 12x2

)
.
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At the point x0 = (−2, 3)T these become

∇f (x0) =
(

15
−10

)
and ∇2f (x0) =

(
18 22
22 8

)
.

If p = (p1, p2)
T = (0.1, 0.2)T, then

f (−1.9, 3.2) = f (−2 + 0.1, 3 + 0.2)

= f (x0 + p)
≈ f (x0)+ pT∇f (x0)+ 1

2
pT∇2f (x0)p

= −20 + ( 0.1 0.2 )

(
15

−10

)
+ 1

2
( 0.1 0.2 )

(
18 22
22 8

)(
0.1
0.2

)
= −20 − 0.5 + 0.69 = −19.81.

The true value is f (−1.9, 3.2) = −19.755, so the approximation is accurate to three
digits.

The Taylor series for multidimensional problems can also be derived using summa-
tions rather than matrix-vector notation:

f (x0 + p) = f (x0)+
n∑
i=1

pi
∂f (x)

∂xi

∣∣∣
x=x0

+ 1

2

n∑
i=1

n∑
j=1

pipj
∂2f (x)

∂xi∂xj

∣∣∣
x=x0

+ · · · .

The formula is the same as before; only the notation has changed.
There is an alternate form of the Taylor series that is often used, called the remainder

form. If three terms are used it looks like

1-variable: f (x0 + p) = f (x0)+ pf ′(x0)+ 1
2p

2f ′′(ξ)

n-variables: f (x0 + p) = f (x0)+ pT∇f (x0)+ 1
2p

T∇2f (ξ)p.

The point ξ is an unknown point lying between x0 and x0 + p. In this form the series is
exact, but it involves an unknown point, so it cannot be evaluated. This form of the series
is often used for theoretical purposes, or to derive bounds on the accuracy of the series.
The accuracy of the series can be analyzed by establishing bounds on the final “remainder”
term.

If the remainder form of the series is used, but with only two terms, then we obtain

1-variable: f (x0 + p) = f (x0)+ pf ′(ξ)
n-variables: f (x0 + p) = f (x0)+ pT∇f (ξ).

This result is known as the mean-value theorem.

Exercises
6.1. Find the first four terms of the Taylor series for

f (x) = log(1 + x)
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about the point x0 = 0. Evaluate the series for p = 0.1 and p = 0.01 and compare
with the value of f (x0+p). Derive the remainder form of the Taylor series using five
terms (the four terms you already derived plus a remainder term). Derive a bound
on the accuracy of the four-term series. Compare the bound you derived with the
actual errors for p = 0.1 and p = 0.01.

6.2. Find the first three terms of the Taylor series for the following functions.

(i) f (x) = sin x about the point x0 = π .

(ii) f (x) = 2/(3x + 5) about the point x0 = −1.

(iii) f (x) = ex about the point x0 = 0.

6.3. Determine the general term in the Taylor series for the function

f (x) =
{
e−1/x if x > 0,
0 if x ≤ 0,

about the point x0 = 0. Compare this with the Taylor series for the function f (x) = 0
about the same point. What can you conclude about the limitations of the Taylor
series as a tool for approximating functions?

6.4. Find the first three terms of the Taylor series for

f (x1, x2) = 3x4
1 − 2x3

1x2 − 4x2
1x

2
2 + 5x1x

3
2 + 2x4

2

at the point
x0 = (1,−1)T.

Evaluate the series for p = (0.1, 0.01)T and compare with the value of f (x0 + p).
6.5. Find the first three terms of the Taylor series for

f (x1, x2) =
√
x2

1 + x2
2

about the point x0 = (3, 4)T.

6.6. Prove that if pT∇f (xk) < 0, then f (xk + εp) < f (xk) for ε > 0 sufficiently
small. Hint: Expand f (xk + εp) in a Taylor series about the point xk and look at
f (xk + εp)− f (xk).

6.7. (The results of this and the next problem show that a function f is convex on a
convex set S if the Hessian matrix ∇2f (x) is positive semidefinite for all x ∈ S.)
Let f be a real-valued function of n variables x with continuous first derivatives.
Prove that f is convex on the convex set S if and only if

f (y) ≥ f (x)+ ∇f (x)T(y − x)
for all x, y ∈ S.

6.8. Let f be a real-valued function of n variables x with continuous second derivatives.
Use the result of the previous problem to prove that f is convex on the convex set S
if ∇2f (x) is positive semidefinite for all x ∈ S.
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2.7 Newton’s Method for Nonlinear Equations
Let us now consider methods for solving

f (x) = 0.

We first consider the one-dimensional case where x is a scalar and f is a real-valued
function. Later we will look at the n-dimensional case where x = (x1, . . . , xn)

T and
f (x) = (f1(x), . . . , fn(x))

T. Note that both x and f (x) are vectors of the same length n.
Throughout this section we assume that the function f has two continuous derivatives.

If f (x) is a linear function, it is possible to find a solution if the system is nonsingular.
The cost of finding the solution is predictable—it is the cost of applying Gaussian elimina-
tion. Except for a few isolated special cases, such as quadratic equations in one variable,
in the nonlinear case it is not possible to guarantee that a solution can be found, nor is it
possible to predict the cost of finding a solution. However, the situation is not totally bleak.
There are effective algorithms that work much of the time, and that are efficient on a wide
variety of problems. They are based on solving a sequence of linear equations. As a result,
if the function f is linear, they can be as efficient as the techniques for linear systems. Also,
we can apply our knowledge about linear systems in the nonlinear case.

The methods that we will discuss are based on Newton’s method. Given an estimate
of the solution xk , the function f is approximated by the linear function consisting of the
first two terms of the Taylor series for the function f at the point xk . The resulting linear
system is then solved to obtain a new estimate of the solution xk+1.

To derive the formulas for Newton’s method, we first write out the Taylor series for
the function f at the point xk:

f (xk + p) ≈ f (xk)+ pf ′(xk).

If f ′(xk) = 0, then we can solve the equation

f (x∗) ≈ f (xk)+ pf ′(xk) = 0

for p to obtain
p = −f (xk)/f ′(xk).

The new estimate of the solution is then xk+1 = xk + p or

xk+1 = xk − f (xk)/f ′(xk).

This is the formula for Newton’s method.

Example 2.5 (Newton’s Method). As an example, consider the one-dimensional problem

f (x) = 7x4 + 3x3 + 2x2 + 9x + 4 = 0.

Then
f ′(x) = 28x3 + 9x2 + 4x + 9

and the formula for Newton’s method is

xk+1 = xk − 7x4
k + 3x3

k + 2x2
k + 9xk + 4

28x3
k + 9x2

k + 4xk + 9
.
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Table 2.1. Newton’s method for a one-dimensional problem.

k xk f (xk) |xk − x∗|
0 0 4 × 100 5 × 10−1

1 −0.4444444444444444 4 × 10−1 7 × 10−2

2 −0.5063255748934088 3 × 10−2 5 × 10−3

3 −0.5110092428604380 2 × 10−4 3 × 10−5

4 −0.5110417864454134 9 × 10−9 2 × 10−9

5 −0.5110417880368663 0 0

If we start with the initial guess x0 = 0, then

x1 = x0 − 7x4
0 + 3x3

0 + 2x2
0 + 9x0 + 4

28x3
0 + 9x2

0 + 4x0 + 9

= 0 − 7 × 04 + 3 × 03 + 2 × 02 + 9 × 0 + 4

28 × 03 + 9 × 02 + 4 × 0 + 9

= 0 − 4

9
= −4/9 = −0.4444 . . . .

At the next iteration we substitute x1 = −4/9 into the formula for Newton’s method and
obtain x2 ≈ −0.5063. The complete iteration is given in Table 2.1.

Newton’s method corresponds to approximating the function f by its tangent line at
the point xk . The point where the tangent line crosses the x-axis (i.e., a zero of the tangent
line) is taken as the new estimate of the solution. This geometric interpretation is illustrated
in Figure 2.10.

The performance of Newton’s method in Example 2.5 is considered to be typical
for this method. It converges rapidly and, once xk is close to the solution x∗, the error is
approximately squared at every iteration. It has a quadratic rate of convergence as we now
show.

It is not difficult to analyze the convergence of Newton’s method using the Taylor
series. Define the error in xk by ek = xk − x∗. Using the remainder form of the Taylor
series:

0 = f (x∗) = f (xk − ek) = f (xk)− ekf ′(xk)+ 1
2e

2
kf

′′(ξ).

Dividing by f ′(xk) and rearranging gives

ek − f (xk)

f ′(xk)
= 1

2
e2
k

f ′′(ξ)
f ′(xk)

.

Since ek = xk − x∗ we obtain

xk − f (xk)

f ′(xk)
− x∗ = 1

2
(xk − x∗)2 f

′′(ξ)
f ′(xk)

,
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x1x2 x0

f ( )x  =  0

Figure 2.10. Newton’s method—geometric interpretation.

which is the same as

xk+1 − x∗ = 1

2
(xk − x∗)2 f

′′(ξ)
f ′(xk)

.

If the sequence { xk } converges, then ξ → x∗, and hence when xk is sufficiently close to x∗,

xk+1 − x∗ ≈ 1

2

(
f ′′(x∗)
f ′(x∗)

)
(xk − x∗)2

indicating that the error in xk is approximately squared at every iteration, assuming that the
rate constant 1

2f
′′(x∗)/f ′(x∗) is not ridiculously large or small. These results are summarized

in the following theorem.

Theorem 2.6 (Convergence of Newton’s Method). Assume that the function f (x) has two
continuous derivatives. Let x∗ be a zero of f with f ′(x∗) = 0. If |x0 − x∗| is sufficiently
small, then the sequence defined by

xk+1 = xk − f (xk)/f ′(xk)

converges quadratically to x∗ with rate constant

C = |f ′′(x∗)/2f ′(x∗)|.

Proof. See the Exercises.

Example 2.5 also shows that the function values f (xk) converge quadratically to zero.
This also follows from the Taylor series:

0 = f (x∗) = f (xk + ek) = f (xk)+ ekf ′(ξ).
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This can be rearranged to obtain

f (xk) = −ekf ′(ξ) = −f ′(ξ)(x∗ − xk)
so thatf (xk) is proportional to (x∗−xk). Hence they converge at the same rate iff ′(x∗) = 0.

In the argument above we have assumed that
{
f ′(xk)

}
and f ′(x∗) are all nonzero.

If f ′(xk) = 0 for some k, then Newton’s method fails (there is a division by zero in the
formula). Geometrically this means that the tangent line is horizontal, parallel to the x-axis,
and so it does not have a zero. If on the other hand f ′(xk) = 0 for all k, f ′′(x∗) = 0, but
f ′(x∗) = 0, then the coefficient in the convergence analysis

f ′′(ξ)
2f ′(xk)

tends to infinity, and the algorithm does not have a quadratic rate of convergence. If f
is a polynomial, this corresponds to f having a multiple zero at the point x∗; this case is
illustrated in Example 2.7.

Example 2.7 (Newton’s Method; f ′(x∗) = 0). We now apply Newton’s method to the
example

f (x) = x4 − 7x3 + 17x2 − 17x + 6

= (x − 1)2(x − 2)(x − 3) = 0.

This function has a multiple zero at x∗ = 1 and at this point f (x∗) = f ′(x∗) = 0. The
derivative of f is

f ′(x) = 4x3 − 21x2 + 34x − 17

and the formula for Newton’s method is

xk+1 = xk − x4 − 7x3 + 17x2 − 17x + 6

4x3 − 21x2 + 34x − 17
.

If we start with the initial guess x0 = 1.1, then the method converges to x∗ = 1 at a linear
rate, whereas if we start with x0 = 2.1, then the method converges to x∗ = 2 at a quadratic
rate. The results for these iterations are given in Tables 2.2 and 2.3. (In the final lines of
both tables the function value f (xk) is zero; this is the value calculated by the computer
and is a side effect of using finite-precision arithmetic.)

In Example 2.7 the slow convergence only occurs when the method converges to a
solution where f ′(x∗) = 0. Quadratic convergence is obtained at the other roots, where
f ′(x∗) = 0.

It should also be noticed that the accuracy of the solution was worse at a multiple
root. This too can be explained by the Taylor series, although this time we expand about
the point x∗:

f (xk) = f (x∗ + ek) = f (x∗)+ ekf ′(x∗)+ 1
2e

2
kf

′′(ξ).

At the solution, f (x∗) = 0, and since this is assumed to be a multiple zero, f ′(x∗) = 0 as
well. Hence

f (xk) = 1
2e

2
kf

′′(ξ) = ( 1
2f

′′(ξ))(xk − x∗)2.
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Table 2.2. Newton’s method: f ′(x∗) = 0 (x0 = 1.1).

k xk f (xk) |xk − x∗|
0 1.100000000000000 2 × 10−2 1 × 10−1

1 1.045541401273894 4 × 10−3 5 × 10−2

2 1.021932395992710 9 × 10−4 2 × 10−2

3 1.010779316995807 2 × 10−4 1 × 10−2

4 1.005345328998912 6 × 10−5 5 × 10−3

5 1.002661858321646 1 × 10−5 3 × 10−3

6 1.001328260855184 4 × 10−6 1 × 10−3

7 1.000663467429195 9 × 10−7 7 × 10−4

8 1.000331568468827 2 × 10−7 3 × 10−4

9 1.000165742989413 6 × 10−8 2 × 10−4

10 1.000082861192927 1 × 10−8 8 × 10−5

...

24 1.000000075780004 1 × 10−14 8 × 10−8

25 1.000000040618541 0 4 × 10−8

Table 2.3. Newton’s method: f ′(x∗) = 0 (x0 = 2.1).

k xk f (xk) |xk − x∗|
0 2.100000000000000 −1 × 10−1 1 × 10−1

1 2.006603773584894 −7 × 10−3 7 × 10−3

2 2.000042472785593 −4 × 10−5 4 × 10−5

3 2.000000001803635 −2 × 10−9 2 × 10−9

4 2.000000000000001 0 9 × 10−16

The function value f (xk) is now proportional to the square of the error (xk − x∗). So, for
example, if f (xk) = 10−16 (about the level of machine precision in typical double precision
arithmetic), and 1

2f
′′(ξ) = 1, then xk−x∗ = 10−8. In this case the point xk is only accurate

to half precision.
The proof of convergence for Newton’s method requires that the initial point x0 be

sufficiently close to a zero. If not, the method can fail to converge, even when there is no
division by zero in the formula for the method. This is illustrated in the example below. In
Chapter 11 we discuss safeguards that can be added to Newton’s method that prevent this
from happening.

Example 2.8 (Failure of Newton’s Method). Consider the problem

f (x) = ex − e−x
ex + e−x = 0.
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x
0

x1 x2x3 0

Figure 2.11. Failure of Newton’s method.

If Newton’s method is used with the initial guess x0 = 1, then the sequence of approximate
solutions is

x0 = 1, x1 = −0.8134, x2 = 0.4094
x3 = −0.0473, x4 = 7.06 × 10−5, x5 = −2.35 × 10−13

and at the final point f (x5) = −2.35 × 10−13, so the method converges to a solution.
However if x0 = 1.1, then

x0 = 1.1, x1 = −1.1286, x2 = 1.2341
x3 = −1.6952, x4 = 5.7154, x5 = −2.30 × 104

and at the next iteration an overflow results. At the final point f (x5) = 1, so the sequence
is not converging to a solution.

A graph of the function is given in Figure 2.11. This function is also called the
hyperbolic tangent function, f (x) = tanh x.

2.7.1 Systems of Nonlinear Equations

Much of the discussion in the one-dimensional case can be transferred with only minor
changes to the n-dimensional case. Suppose now that we are solving

f (x) = 0,

where this represents

f1(x1, . . . , xn) = 0,

f2(x1, . . . , xn) = 0,
...

fn(x1, . . . , xn) = 0.
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Define the matrix ∇f (x) with columns ∇f1(x), . . . ,∇fn(x). This is the transpose of the
Jacobian of f at the point x. (The Jacobian is discussed in Appendix B.4.) As before, we
write out the Taylor series approximation for the function f at the point xk:

f (xk + p) ≈ f (xk)+ ∇f (xk)Tp,
where p is now a vector. Now we solve the equation

f (x∗) ≈ f (xk)+ ∇f (xk)Tp = 0

for p to obtain
p = −∇f (xk)−T f (xk).

The new estimate of the solution is then

xk+1 = xk + p = xk − ∇f (xk)−T f (xk).
This is the formula for Newton’s method in the n-dimensional case.

Example 2.9 (Newton’s Method in n Dimensions). As an example, consider the two-
dimensional problem

f1(x1, x2) = 3x1x2 + 7x1 + 2x2 − 3 = 0,

f2(x1, x2) = 5x1x2 − 9x1 − 4x2 + 6 = 0.

Then

∇f (x1, x2) =
(

3x2 + 7 5x2 − 9
3x1 + 2 5x1 − 4

)
,

and the formula for Newton’s method is

xk+1 = xk −
(

3x2 + 7 5x2 − 9
3x1 + 2 5x1 − 4

)−T (
3x1x2 + 7x1 + 2x2 − 3
5x1x2 − 9x1 − 4x2 + 6

)
.

If we start with the initial guess x0 = (1, 2)T, then

x1 = x0 −
(

3x2 + 7 5x2 − 9
3x1 + 2 5x1 − 4

)−T (
3x1x2 + 7x1 + 2x2 − 3
5x1x2 − 9x1 − 4x2 + 6

)

=
(

1
2

)
−
(

13 1
5 1

)−T (
14
−1

)

=
(

1
2

)
−
(

2.375
−3.375

)
=
(−1.375

5.375

)
.

The complete iteration is given in Table 2.4.

In the n-dimensional case, Newton’s method corresponds to approximating the func-
tion f by a linear function at the point xk . The zero of this linear approximation is the
new estimate xk+1. As in the one-dimensional case, the method typically converges with a
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Table 2.4. Newton’s method for an n-dimensional problem.

k xk1 xk2 ‖f ‖2 ‖x − x∗‖2

0 1.0000000 × 100 2.0000000 1 × 101 1 × 100

1 −1.3749996 × 100 5.3749991 5 × 101 4 × 100

2 −5.4903371 × 10−1 3.0472771 1 × 101 2 × 100

3 −1.6824928 × 10−1 1.9741571 2 × 100 5 × 10−1

4 −2.7482068 × 10−2 1.5774495 3 × 10−1 8 × 10−2

5 −1.0090199 × 10−3 1.5028436 1 × 10−2 3 × 10−3

6 −1.4637396 × 10−6 1.5000041 2 × 10−5 4 × 10−6

7 −3.0852447 × 10−12 1.5000000 4 × 10−11 9 × 10−12

8 −2.0216738 × 10−18 1.5000000 0 2 × 10−18

quadratic rate of convergence, as the theorem below indicates. A proof of quadratic con-
vergence for Newton’s method can be found in the book by Ortega and Rheinboldt (1970,
reprinted 2000).

Theorem 2.10 (Convergence of Newton’s Method in n Dimensions). Assume that the
function f (x) has two continuous derivatives. Assume that x∗ satisfies f (x∗) = 0 with
∇f (x∗) nonsingular. If ‖x0 − x∗‖ is sufficiently small, then the sequence defined by

xk+1 = xk − (∇f (xk))−1f (xk)

converges quadratically to x∗.

Our discussion has implicitly assumed that every Jacobian matrix ∇f (xk)T is non-
singular, that is, the system of linear equations that defines the new point xk+1 has a unique
solution. If this assumption is not satisfied, Newton’s method fails. If the Jacobian matrix
at the solution ∇f (x∗)T is singular, then there is no guarantee of quadratic convergence.

The proof of convergence assumes that xk is “sufficiently close” to x∗, as in the
one-dimensional case. If it is not, the method can diverge.

Exercises
7.1. Apply Newton’s method to find all three solutions of

f (x) = x3 − 5x2 − 12x + 19 = 0.

You will have to use several different initial guesses.

7.2. Let a be some positive constant. It is possible to use Newton’s method to calculate
1/a to any desired accuracy without doing division. Determine a function f such
that f (1/a) = 0, and for which the formula for Newton’s method only uses the



book
2008/10/23
page 75

�

�

�

�

�

�

�

�

Exercises 75

arithmetic operations of addition, subtraction, and multiplication. For what initial
values does Newton’s method converge for this function?

7.3. Apply Newton’s method to

f (x) = (x − 2)4 + (x − 2)5

with initial guess x0 = 3. You should observe that the sequence converges linearly
with rate constant 3

4 . Now apply the iterative method

xk+1 = xk − 4f (xk)/f
′(xk).

This method should converge more rapidly for this problem. Prove that the new
method converges quadratically, and determine the rate constant.

7.4. A function f has a root of multiplicity m > 1 at the point x∗ if

f (x∗) = f ′(x∗) = · · · = f (m−1)(x∗) = 0.

Assume that Newton’s method with initial guess x0 converges to such a root. Prove
that Newton’s method converges linearly but not quadratically. Assume that the
iteration

xk+1 = xk −mf (xk)/f ′(xk)

converges to x∗. If f (m)(x∗) = 0, prove that this sequence converges quadratically.

7.5. Apply Newton’s method to solve f (x) = x2 − a = 0, where a > 0. This is a good
way to compute ±√

a. How does the iteration behave if a ≤ 0? What happens if
you choose x0 as a complex number?

7.6. Prove that your iteration from the previous problem converges to a root if x0 = 0.
When does the iteration converge to +√

a and when does it converge to −√
a?

7.7. For the iteration in the previous problem, can you efficiently determine a good initial
guess x0 using the value of a and the elementary operations of addition, subtraction,
multiplication, and division? Can you determine an upper bound on how many
elementary operations are required to determine a root to within a specified accuracy?

7.8. Newton’s method was derived by approximating the general function f by the first
two terms of its Taylor series at the current point xk . Derive another method for
finding zeroes by approximating f with the first three terms of its Taylor series at
the current point, and finding a zero of this approximation. Determine the rate of
convergence for this new method (you may assume that the method converges).
Apply the method to the functions in Examples 2.5 and 2.7.

7.9. Prove Theorem 2.10.

7.10. Apply Newton’s method to the system of nonlinear equations

f1(x1, x2) = x2
1 + x2

2 − 1 = 0

f2(x1, x2) = 5x2
1 − x2 − 2 = 0.

There are four solutions to this system of equations. Can you find all four of them
by using different initial guesses?
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7.11. (Extended Project) Apply Newton’s method to solve f (x) = xn− a = 0 for various
values of n. Experiment with the method in an attempt to understand its properties.
Under what circumstances will the method converge to a root? Can you, by using
complex-valued initial guesses, determine all n roots of this equation? What can you
prove about the convergence of the iteration? What happens if n is not an integer?

7.12. Suppose that Newton’s method is applied to a system of nonlinear equations, where
some of the equations are linear. Prove that the linear equations are satisfied at every
iteration, except possibly at the initial point.

2.8 Notes
Global Optimization—Techniques for global optimization are discussed in the books by
Hansen (1992) and Floudas and Pardalos (1992, reprinted 2007); Hansen andWalster (2003);
Horst et al. (2000); and Liberti and Maculan (2006). A survey of results can be found in
article by Rinnooy Kan and Timmer (1989).

Newton’s Method—If a function is known to have a multiple root, and if the multi-
plicity of the root is known (e.g., if it is known to be a double root), then it is possible to
adjust the formula for Newton’s method to restore the quadratic rate of convergence. (See
the Exercises above.) However, on a general problem it is unlikely that this information
will be available, so this is not normally a practical alternative.



book
2008/10/23
page 77

�

�

�

�

�

�

�

�

Chapter 3

Representation of Linear
Constraints

3.1 Basic Concepts
In this chapter we examine ways of representing linear constraints. The goal is to write
the constraints in a form that makes it easy to move from one feasible point to another.
The constraints specify interrelationships among the variables so that, for example, if we
increase the first variable, retaining feasibility might require making a complicated sequence
of changes to all the other variables. It is much easier if we express the constraints using a
coordinate system that is “natural” for the constraints. Then the interrelationships among
the variables are taken care of by the coordinate system, and moves between feasible points
are almost as simple as for a problem without constraints.

In the general case these constraints may be either equalities or inequalities. Since any
inequality of the “less than or equal” type may be transformed to an equivalent constraint of
the “greater or equal” type, any problem with linear constraints may be written as follows:

minimize f (x)

subject to aTi x = bi, i ∈ E
aTi x ≥ bi, i ∈ I.

Each ai here is a vector of length n and each bi is a scalar. E is an index set for the equality
constraints and I is an index set for the inequality constraints. We denote by A the matrix
whose rows are the vectors aTi and denote by b the vector of right-hand side coefficients bi .
Let S be the set of feasible points. A set of this form, defined by a finite number of linear
constraints, is sometimes called a polyhedron or a polyhedral set. In this chapter we are not
concerned with the properties of the objective function f .

Example 3.1 (Problem with Linear Constraints). Consider the problem

minimize f (x) = x2
1 + x3

2x
4
3

subject to x1 + 2x2 + 3x3 = 6
x1, x2, x3 ≥ 0.

77
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Figure 3.1. Feasible directions.

For this example E = { 1 } and I = { 2, 3, 4 }. The vectors { ai } that determine the con-
straints are

a1 = ( 1 2 3 )T , a2 = ( 1 0 0 )T

a3 = ( 0 1 0 )T , a4 = ( 0 0 1 )T

and the right-hand sides are

b1 = 6, b2 = 0, b3 = 0, and b4 = 0.

We start by taking a closer look at the relation between a feasible point and its neigh-
boring feasible points. We shall be interested in determining how the function value changes
as we move from a feasible point x̄ to nearby feasible points.

First let us look at the direction of movement. We define p to be a feasible direction at
the point x̄ if a small step taken along p leads to a feasible point in the set. Mathematically,
p is a feasible direction if there exists some ε > 0 such that x̄ + αp ∈ S for all 0 ≤ α ≤ ε.
Thus, a small movement from x̄ along a feasible direction maintains feasibility. In addition,
since the feasible set is convex, any feasible point in the set can be reached from x̄ by moving
along some feasible direction. Examples of feasible directions are shown in Figure 3.1.

In many applications, it is useful to maintain feasibility at every iteration. For exam-
ple, the objective function may only be defined at feasible points. Or if the algorithm is
terminated before an optimal solution has been found, only a feasible point may have prac-
tical value. These considerations motivate a class of methods called feasible-point methods.
These methods have the following form.

Algorithm 3.1.
Feasible-Point Method

1. Specify some initial feasible guess of the solution x0.

2. For k = 0, 1, . . .

(i) Determine a feasible direction of descent pk at the point xk . If none exists, stop.

(ii) Determine a new feasible estimate of the solution: xk+1 = xk + αkpk , where
f (xk+1) < f (xk).
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In this chapter we are mainly concerned with representing feasible directions with
respect to S in terms of the constraint vectors ai . We begin by characterizing feasible
directions with respect to a single constraint. Specifically, we determine conditions that
ensure that small movements away from a feasible point x̄ will keep the constraint satisfied.

Consider first an equality constraint aTi x = bi . Let us examine the effect of taking a
small positive step α in the direction p. Since aTi x̄ = bi , then aTi (x̄ + αp) = bi will hold if
and only if aTi p = 0.

Example 3.2 (An Equality Constraint). Suppose that we wished to solve

minimize f (x1, x2)

subject to x1 + x2 = 1.

For this constraint a1 = (1, 1)T and b1 = 1. Let x̄ = (0, 1)T so that x̄ satisfies the constraint.
Then x̄ + αp will satisfy the constraint if and only if aT1p = 0, that is,

p1 + p2 = 0.

For this example

aT1(x̄ + αp) = (x̄1 + x̄2)+ α(p1 + p2) = (1)+ α(0) = 1,

as expected.
The original problem is equivalent to

minimize
α

f (x̄ + αp),

where x̄ = (0, 1)T, as before, and where p = (1,−1)T is a vector satisfying aT1p = 0.
Expressing feasible points in the form x̄ + αp will be a way for us to transform constrained
problems to equivalent problems without constraints.

Continuing to inequality constraints, consider first some constraint aTi x ≥ bi which
is inactive at x̄. Since aTi x̄ > bi , then aTi (x̄ + αp) > bi for all α sufficiently small. Thus,
we can move a small distance in any direction p without violating the constraint.

If the inequality constraint is active at x̄, we have aTi x̄ = bi . Then to guarantee that
aTi (x̄ + αp) ≥ bi for small positive step lengths α, the direction p must satisfy aTi p ≥ 0.

Example 3.3 (An Inequality Constraint). Suppose that we wished to solve

minimize f (x1, x2)

subject to x1 + x2 ≥ 1.

For this constraint a1 = (1, 1)T and b1 = 1. If x̄ = (0, 2)T, then the constraint is inactive
and any nearby point is feasible.

If x̄ = (0, 1)T, then the constraint is active and nearby points can be expressed in the
form x̄+αp with aT1p ≥ 0. For this example this corresponds to the condition p1 +p2 ≥ 0,
or p1 ≥ −p2.
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In summary, we conclude that the feasible directions at a point x̄ are determined by
the equality constraints and the active inequalities at that point. Let Î denote the set of
active inequality constraints at x̄. Then p is a feasible direction with respect to the feasible
set at x̄ if and only if

aTi p = 0, i ∈ E, aTi p ≥ 0, i ∈ Î.

In the following, it will be convenient to consider separately problems that have only equality
constraints, or only inequality constraints.

The general form of the equality-constrained problem is

minimize f (x)

subject to Ax = b.

It is evident from our discussion above that a vector p is a feasible direction for the linear
equality constraints if and only if

Ap = 0.

We call the set of all vectors p such that Ap = 0 the null space of A. A direction p is a
feasible direction for the linear equality constraints if and only if it lies in the null space
of A.

The general form of the inequality-constrained problem is

minimize f (x)

subject to Ax ≥ b.

Let x̄ be a feasible point for this problem. We have observed already that the inactive
constraints at x̄ do not influence the feasible directions at this point. LetÂ be the submatrix
ofA corresponding to the rows of the active constraints at x̄. Then a direction p is a feasible
direction for S at x̄ if and only if

Âp ≥ 0.

Since the inactive constraints at a point have no impact on its feasible directions, such
constraints can be ignored when testing whether the point is locally optimal. In particular,
if we had prior knowledge of which constraints are active at the optimum, we could cast
aside the inactive constraints and treat the active constraints as equalities. A solution of the
inequality-constrained problem is a solution of the equality-constrained problem defined by
the active constraints.

The theory for inequality-constrained problems draws on the theory for equality-con-
strained problems. For this reason, it is important to study problems with only equality
constraints. In particular, it will be useful to study ways to represent all the vectors in the
null space of a matrix. This is the topic of Sections 3.2 and 3.3.

Once a feasible direction p is determined, the new estimate of the solution is of the
form x̄ + αp where α ≥ 0. Since the new point must be feasible, in general there is an
upper limit on how large α can be.

For an equality constraint we have aTi p = 0, and so

aTi (x̄ + αp) = aTi x̄ = bi
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Figure 3.2. Movement to and away from the boundary.

for all values of α. For an active inequality constraint we have aTi p ≥ 0, and so

aTi (x̄ + αp) ≥ aTi x̄ ≥ bi

for all values of α ≥ 0. Thus only the inactive constraints are relevant when determining
an upper bound on α.

Because x̄ is feasible, aTi x̄ > bi for all inactive constraints. Thus, if aTi p ≥ 0, the
constraint remains satisfied for all α ≥ 0. As α increases, the movement is away from the
boundary of the constraint. On the other hand, if aTi p < 0, the inequality will remain valid
only if α ≤ (aTi x̄−bi)/(−aTi p). Apositive step alongp is a move towards the boundary, and
any step larger than this bound will violate the constraint. (See Figure 3.2.) The maximum
step length ᾱ that maintains feasibility is obtained from a ratio test:

ᾱ = min
{
(aTi x̄ − bi)/(−aTi p) : aTi p < 0

}
,

where the minimum is taken over all inactive constraints. If aTi p ≥ 0 for all inactive
constraints, then an arbitrarily large step can be taken without violating feasibility.

Example 3.4 (Ratio Test). Let x̄ = (1, 1)T and p = (4,−2)T. Suppose that there are three
inactive constraints with

aT1 = ( 1 4 ) and b1 = 3

aT2 = ( 0 3 ) and b2 = 2

aT3 = ( 5 1 ) and b3 = 4.

Then
aT1p = −4 < 0, aT2p = −6 < 0, and aT3p = 18 > 0,

so only the first two constraints are used in the ratio test:

ᾱ = min
{
(aTi x̄ − bi)/(−aTi p) : aTi p < 0

}
= min { (5 − 3)/4, (3 − 2)/6 } = 1/6.

Notice that the point x̄ + ᾱp = ( 5
3 ,

2
3 )
T is on the boundary of the second constraint.
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Exercises
1.1. Find the sets of all feasible directions at points xa = (0, 0, 2)T, xb = (3, 0, 1)T, and

xc = (1, 1, 1)T for Example 3.1.

1.2. Consider the set defined by the constraints x1 + x2 = 1, x1 ≥ 0, and x2 ≥ 0. At
each of the following points determine the set of feasible directions: (a) (0, 1)T;
(b) (1, 0)T; (c) (0.5, 0.5)T.

1.3. Consider the system of inequality constraints Ax ≥ b with

A =
( 9 4 1 9 −7

6 −7 8 −4 −6
1 6 3 −7 6

)
and b =

(−15
−30
−20

)
.

For the given values of x and p, perform a ratio test to determine the maximum step
length ᾱ such that x + ᾱp remains feasible.

(i) x = (8, 4,−3, 4, 1)T and p = (1, 1, 1, 1, 1)T,

(ii) x = (7,−4,−3,−3, 3)T and p = (3, 2, 0, 1,−2)T,

(iii) x = (5, 0,−6,−8,−3)T and p = (5, 0, 5, 1, 3)T,

(iv) x = (9, 1,−1, 6, 3)T and p = (−4,−2, 4,−2, 2)T.

1.4. What are the potential consequences of miscalculating ᾱ in the ratio test?

1.5. Let S = { x : Ax ≤ b }. Derive the conditions that must be satisfied by a feasible
direction at a point x̄ ∈ S.

1.6. On a computer, there is a danger that an overflow can occur during the ratio test if,
in a particular ratio, the numerator is large and the denominator is small. How can
the ratio test be implemented so that this danger is removed?

3.2 Null and Range Spaces
Let A be an m× n matrix with m ≤ n. We denote the null space of A by

N (A) = {
p ∈ �n : Ap = 0

}
.

The null space of a matrix is the set of vectors orthogonal to the rows of the matrix. Recall
that the null space represents the set of feasible directions for the constraints Ax = b. It is
easy to see that any linear combination of two vectors in N (A) is also in N (A), and thus
the null space is a subspace of �n. It can be shown that the dimension of this subspace is
n− rank(A). When A has full row rank (i.e., its rows are linearly independent), this is just
n−m.

Another term that will be important to our discussions is the range space of a matrix.
This is the set of vectors spanned by the columns of the matrix (that is, the set of all linear
combinations of these columns). In particular, we are interested in the range space of AT,
defined by

R(AT) = {
q ∈ �n : q = ATλ for some λ ∈ �m } .
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R (AT )

N(A ):a p = 0T

a

q

p

x

Figure 3.3. Null space and range space of A = (aT).

Throughout this text, if we mention a range space without specifying a matrix, it refers to
the range space of AT. The dimension of the range space is the same as the rank of AT, or
equivalently the rank of A.

There is an important relationship between N (A) and R(AT): they are orthogonal
subspaces. This means that any vector in one subspace is orthogonal to any vector in the
other. To verify this statement, we note that any vector q ∈ R(AT) can be expressed as
q = ATλ for some λ ∈ �m, and therefore, for any vector p ∈ N (A) we have

qTp = λTAp = 0.

There is more. Because the null and range spaces are orthogonal subspaces whose
dimensions sum to n, any n-dimensional vector x can be written uniquely as the sum of a
null-space and a range-space component:

x = p + q,
where p ∈ N (A) and q ∈ R(AT). Figure 3.3 illustrates the null and range spaces for
A = (aT), where a is a two-dimensional nonzero vector. Notice that the vector a is
orthogonal to the null space and that any range-space vector is a scalar multiple of a. The
decomposition of a vector x into null-space and range-space components is also shown in
Figure 3.3.

How can we represent vectors in the null space of A? For this purpose, we define a
matrix Z to be a null-space matrix for A if any vector in N (A) can be expressed as a linear
combination of the columns of Z. The representation of a null-space matrix is not unique.
If A has full row rank m, any matrix Z of dimension n × r and rank n − m that satisfies
AZ = 0 is a null-space matrix. The column dimension r must be at least (n − m). In the
special case where r is equal to n − m, the columns of Z are linearly independent, and Z
is then called a basis matrix for the null space of A. If Z is an n× r null-space matrix, the
null space can be represented as

N (A) = {p : p = Zv for some v ∈ �r } ,
thus N (A) = R(Z). This representation of the null space gives us a practical way to
generate feasible points. If x̄ is any point satisfying Ax = b, then all other feasible points
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can be written as
x = x̄ + Zv

for some vector v.
As an example consider the rank-two matrix

A =
(

1 −1 0 0
0 0 1 1

)
.

The null space of A is the set of all vectors p such that

Ap =
(

1 −1 0 0
0 0 1 1

)⎛⎜⎝
p1

p2

p3

p4

⎞
⎟⎠ =

(
p1 − p2

p3 + p4

)
=
(

0
0

)
;

that is, the vector must satisfy p1 = p2 and p3 = −p4. Thus any null-space vector must
have the form

p =
⎛
⎜⎝

v1

v1

v2

−v2

⎞
⎟⎠

for some scalars v1 and v2. A possible basis matrix for the null space of A is

Z =
⎛
⎜⎝

1 0
1 0
0 1
0 −1

⎞
⎟⎠

and the null space can be expressed as

N (A) = {
p : p = Zv for some v ∈ �2

}
.

The matrix

Z̄ =
⎛
⎜⎝

1 0 2
1 0 2
0 1 −1
0 −1 1

⎞
⎟⎠

is also a null-space matrix for A, but it is not a basis matrix since its third column is a linear
combination of the first two columns. The null space of A can be expressed in terms of Z̄
as

N (A) = {
p : p = Z̄v̄ for some v̄ ∈ �3

}
.

Exercises
2.1. In each of the following cases, compute a basis matrix for the null space of the matrix

A and express the points xi as xi = pi + qi where pi is in the null space of A and qi
is in the range space of AT.
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(i)

A =
( 1 1 1 1

1 −1 −1 1
0 1 0 1

)
, x1 =

⎛
⎜⎝

1
3
1
2

⎞
⎟⎠ , x2 =

⎛
⎜⎝

0
−2
−3

4

⎞
⎟⎠ .

(ii)

A = ( 1 1 1 1 ) , x1 =
⎛
⎜⎝
−2

4
5

−2

⎞
⎟⎠ , x2 =

⎛
⎜⎝

7
5

−13
1

⎞
⎟⎠ .

(iii)

A =
(

1 1 1 1
1 −1 −1 1

)
, x1 =

⎛
⎜⎝

4
3
4
0

⎞
⎟⎠ , x2 =

⎛
⎜⎝
−1

1
5

−5

⎞
⎟⎠ .

(iv)

A =
( 1 1 1 1

2 0 0 2
1 −1 −1 1

)
, x1 =

⎛
⎜⎝

3
1
1
2

⎞
⎟⎠ , x2 =

⎛
⎜⎝

8
9

−2
−4

⎞
⎟⎠ .

2.2. Let Z be an n × r null-space matrix for the matrix A. If Y is any invertible r × r

matrix, prove that Ẑ = ZY is also a null-space matrix for A.

2.3. Let A be a given m × n matrix and let Z be a null-space matrix for A. Let X be
an invertible m × m matrix and let Y be an invertible n × n matrix. If a change of
variable is made to transform A intoÂ = XAY , how can Z be transformed into Ẑ,
a null-space matrix forÂ?

2.4. Let A be a full-rank m × n matrix and let Z be a basis matrix for the null space of
A. Use the results of the previous problem to prove that, for appropriate choices of
X and Y ,Â and Ẑ have the form

Â = ( 0 Im ) and Ẑ =
(
In−m

0

)
,

where Im and In−m are identity matrices of the appropriate size. What is the cor-
responding result in the case where A is not of full rank and Z is any null-space
matrix?

2.5. Let A be an m × n matrix with m < n. Prove that any n-dimensional vector x can
be written uniquely as the sum of a null-space and a range-space component:

x = p + q,
where p ∈ N (A) and q ∈ R(AT).

2.6. Suppose that you are given a matrix A and a vector p and are told that p is in the
null space of A. On a computer, you cannot expect that Ap will be exactly equal
to zero because of rounding errors. How large would the computed value of ‖Ap‖
have to be before you could conclude that p was not in the null space of A? (Your
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answers should incorporate the values of the machine precision and the components
of A and p.) If the computed value of ‖Ap‖ is zero, can you conclude that p is in
the null space of A?

3.3 Generating Null-Space Matrices
We present here four commonly used methods for deriving a null-space matrix for A. The
discussion assumes thatA is anm×nmatrix of full row rank (and hencem ≤ n). Two of the
approaches, the variable reduction method and the QR factorization, yield an n× (n−m)
basis matrix for N (A). The other two methods yield an n× n null-space matrix.

3.3.1 Variable Reduction Method

This method is the approach used by the simplex algorithm for linear programming. It is
also used in nonlinear optimization (see Section 15.6). We start with an example.

Consider the linear system of equations:

p1 + p2 − p3 = 0
− 2p2 + p3 = 0.

This system has the form Ap = 0. We wish to generate all solutions to this system.
We can solve for any two variables whose associated columns in A are linearly inde-

pendent in terms of the third variable. For example, we can solve for p1 and p3 in terms of
p2 as follows:

p1 = p2

p3 = 2p2.

The set of all solutions to the system can be written as

p =
( 1

1
2

)
p2,

where p2 is chosen arbitrarily. Thus Z = (1, 1, 2)T is a basis for the null space of A.
Since the values of p1 and p3 depend on p2, they are called dependent variables.

They are also sometimes called basic variables. The variable p2 which can take on any
value is called an independent variable, or a nonbasic variable.

To generalize this, consider the m× n system Ap = 0. Select any set of m variables
whose corresponding columns are linearly independent—these will be the basic variables.
Denote by B the m×m matrix defined by these columns. The remaining variables will be
the nonbasic variables; we denote the m × (n − m) matrix of their respective columns by
N . The general solution to the systemAp = 0 is obtained by expressing the basic variables
in terms of the nonbasic variables, where the nonbasic variables can take on any arbitrary
value.
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For ease of notation we assume here that the first m variables are the basic variables.
Thus

Ap = ( B N )

(
pB

pN

)
= BpB +NpN = 0.

Premultiplying the last equation by B−1 we get

pB = −B−1NpN.

Thus the set of solutions to the system Ap = 0 is

p =
(
pB
pN

)
=
(−B−1N

I

)
pN,

and the n× (n−m) matrix

Z =
(−B−1N

I

)
is a basis for the null space of A.

Consider now the system Ax = b. One feasible solution is

x̄ =
(
B−1b

0

)
.

If x is any point that satisfies Ax = b, then x can be written in the form

x = x̄ + p = x̄ + ZpN =
(
B−1b

0

)
+
(−B−1N

I

)
pN.

If the basis matrix B is chosen differently, then the representation of the feasible points
changes, but the set of feasible points does not.

In this derivation we assumed that the first m variables were the basic variables. If
this is not true, the rows in Z must be reordered to correspond to the ordering of the basic
and nonbasic variables. This technique is illustrated in the following example.

Example 3.5 (Variable Reduction). Consider the system of constraints Ax = b with

A =
(

1 −2 1 3
0 1 1 4

)
and b =

(
5
6

)
.

Let B consist of the first two columns of A, and let N consist of the last two columns:

B =
(

1 −2
0 1

)
and N =

(
1 3
1 4

)
.

Then

x̄ =
(
B−1b

0

)
=
⎛
⎜⎝

17
6
0
0

⎞
⎟⎠
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and

Z =
(−B−1N

I

)
=
⎛
⎜⎝
−3 −11
−1 −4

1 0
0 1

⎞
⎟⎠ .

It is easy to verify that Ax̄ = b and AZ = 0. Every point satisfying Ap = 0 is of the form

ZpN =
⎛
⎜⎝
−3 −11
−1 −4

1 0
0 1

⎞
⎟⎠(

p3

p4

)
=
⎛
⎜⎝
−3p3 − 11p4

−p3 − 4p4

p3

p4

⎞
⎟⎠ .

If instead B is chosen as columns 4 and 3 of A (in that order), and N as columns 2
and 1, then

B =
(

3 1
4 1

)
and N =

(−2 1
1 0

)
.

Care must be taken in defining x̄ and Z to ensure that their components are positioned
correctly. In this case

B−1b =
(

1
2

)
and x̄ =

⎛
⎜⎝

0
0
2
1

⎞
⎟⎠ .

Notice that the components of B−1b are at positions 4 and 3 in x̄, corresponding to the
columns of A that were used to define B. Similarly

−B−1N =
(−3 1

11 −4

)
and Z =

⎛
⎜⎝

0 1
1 0

11 −4
−3 1

⎞
⎟⎠ .

The rows of −B−1N are placed in rows 4 and 3 of Z, and the rows of I are placed in rows
2 and 1. As before, Ax̄ = b and AZ = 0. Every point satisfying Ap = 0 is of the form

ZpN =
⎛
⎜⎝

0 1
1 0

11 −4
−3 1

⎞
⎟⎠(

p2

p1

)
=
⎛
⎜⎝

p1

p2

11p2 − 4p1

−3p2 + p1

⎞
⎟⎠ .

In practice the matrixZ itself is rarely formed explicitly, since the inverse ofB should
not be computed. This is not a limitation;Z is only needed to provide matrix-vector products
of the form p = Zv, or the form ZTg. These computations do not require Z explicitly.
For example, the vector p = Zv may be computed as follows. First we compute t = Nv.
Next we compute u = −B−1t , by solving the system Bu = −t . (This should be done via a
numerically stable method such as the LU factorization.) The vector p = Zv is now given
by p = (uT, vT)T.

The variable reduction approach for representing the null space is the method used in
the simplex algorithm for linear programming. This approach has been enhanced so that
ever larger problems can be solved. These enhancements exploit the sparsity that is often
present in large problems, in order to reduce computational effort and increase accuracy. A
more detailed exposition of these techniques is given in Chapter 7.
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A p = 0
P x

x

Figure 3.4. Orthogonal projection.

3.3.2 Orthogonal Projection Matrix

Let x be an n-dimensional vector, and let A be an m × n matrix of full row rank. Then x
can be expressed as a sum of two components, one in N (A) and the other in R(AT):

x = p + q,
where Ap = 0, and q = ATλ for some m-dimensional vector λ. Multiplying this equation
on the left by A gives Ax = AATλ, from which we obtain λ = (AAT)−1Ax. Substituting
for q gives the null-space component of x:

p = x − AT(AAT)−1Ax = (I − AT(AAT)−1A)x.

The n× n matrix
P = I − AT(AAT)−1A

is called an orthogonal projection matrix into N (A). The null-space component of the
vector x can be found by premultiplying x by P ; the resulting vector Px is also termed the
orthogonal projection of x onto N (A) (see Figure 3.4).

The orthogonal projection matrix is the unique matrix with the following properties:

• It is a null-space matrix for A;
• P 2 = P , which means repeated application of the orthogonal projection has no further

effect;
• PT = P (P is symmetric).

The name “orthogonal projection” may be misleading—unless P is the identity matrix it is
not orthogonal.

There are a number of ways to compute the projection matrix. Selection of the method
depends in general on the application, the size of m and n, as well as the sparsity of A. We
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point out that by “computing the matrix” we mean representing the matrix so that a matrix-
vector product of the form Px can be formed for any vector x. The projection matrix itself
is rarely formed explicitly.

To demonstrate this point, suppose that A consists of a single row: A = aT, where a
is an n-vector. Then

P = I − 1

aTa
aaT.

Forming P explicitly would require approximately n2/2 multiplications and n2/2 storage
locations. Forming the product Px for some vector x would require n2 additional multipli-
cations. These costs can be reduced dramatically if only the vector a and the scalar aTa are
stored. “Forming” P this way only requires n multiplications in the calculation of (aTa).
The matrix-vector product is computed as Px = x − a(aTx)/(aTa). This requires only 2n
multiplications.

In the example above the matrix AAT is the scalar aTa, which is easy to invert. In the
more general case whereAhas several rows, the task of “inverting”AAT becomes expensive,
and care must be taken to perform this in a numerically stable manner. Often, this is done
by the Cholesky factorization. However, if A is dense it is not advisable to form the matrix
AAT explicitly, since it can be shown that its condition number is the square of that of A. A
more stable approach is to use a QR factorization of AT (see Appendix A.7.3 and Section
3.3.4 below).

For the case when A is large and sparse, the QR factorization may be too expensive,
since it tends to produce dense factors. Special techniques that attempt to exploit the sparsity
structure of A have been developed for this situation.

3.3.3 Other Projections

As before, let A be an m × n matrix of full row rank. Let D be a positive-definite n × n

matrix, and consider the n× n matrix

PD = I −DAT(ADAT)−1A.

It is easy to show that PD is a null-space matrix for A. Also, PDPD = PD . An n × n

matrix with these two properties is called a projection matrix. An orthogonal projection is
therefore a symmetric projection matrix.

Many of the new interior point algorithms for optimization use projections of this
form. In the case of linear programming, the matrix D is generally a diagonal matrix with
positive diagonal terms. This matrixD changes from iteration to iteration, whileA remains
unchanged. Special techniques for computing and updating these projections have been
developed.

3.3.4 The QR Factorization

Again let A be anm× nmatrix with full row rank. We perform an orthogonal factorization
of AT :

AT = QR.
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Let Q = (Q1,Q2), where Q1 consists of the first m columns of Q, and Q2 consists of the
last n − m columns. Also denote the top m × m triangular submatrix of R by R1. The
rest of R is an (n − m) × m zero matrix. Since Q is an orthogonal matrix, it follows that
AQ = RT, or

AQ1 = RT1 and AQ2 = 0.

Thus
Z = Q2

is a basis for the null space of A. This basis is also known as an orthogonal basis, since
ZTZ = I .

Example 3.6 (Generating a Basis Matrix Using theQR Factorization). Consider the matrix

A =
(

1 −1 0 0
0 0 1 1

)
.

An orthogonal factorization of AT yields

Q =
⎛
⎜⎝
−√

2/2 0 −1/2 −1/2√
2/2 0 −1/2 −1/2

0 −√
2/2 1/2 −1/2

0 −√
2/2 −1/2 1/2

⎞
⎟⎠ , R =

⎛
⎜⎝
−√

2 0
0 −√

2
0 0
0 0

⎞
⎟⎠ ,

hence

Z =
⎛
⎜⎝
−1/2 −1/2
−1/2 −1/2

1/2 −1/2
−1/2 1/2

⎞
⎟⎠

is a basis for the null space of A.

The QR factorization method has the important advantage that the basis Z can be
formed in a numerically stable manner. Moreover, computations performed with respect
to the resulting basis Z are numerically stable. (For further information, see the references
cited in the Notes.) However, this numerical stability comes at a price, since computing
the QR factorization is relatively expensive. If m is small relative to n, some savings may
be gained by not forming Q explicitly. An additional drawback of the QR method is that
the basis Z can be dense even when A is sparse. As a result it may be unsuitable for large
sparse problems.

Exercises
3.1. For each of the following matrices, compute a basis for the null space using variable

reduction (with A written in the form (B,N)).

(i)

A =
( 1 1 1 1

1 −1 −1 1
0 1 0 1

)
.
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(ii)
A = ( 1 1 1 1 ) .

(iii)

A =
(

1 1 1 1
1 −1 −1 1

)
.

(iv)

A =
( 1 1 1 1

2 0 0 2
1 −1 −1 1

)
.

3.2. Compute the orthogonal projection matrix for each of the matrices in the previous
problem.

3.3. Consider the system Ap = 0, where

A =
(

1 2 0 2
2 1 2 4

)
.

Compute a basis for the null-space matrix ofA usingp2 andp3 as the basic variables.
Use this to write a general expression for all solutions to this system. Could you do
the same if p1 and p4 were the basic variables?

3.4. Let A be an m × n matrix of full row rank. Prove that the matrix AAT is positive
definite, and hence its inverse exists.

3.5. Let A be anm× nmatrix of full column rank. Prove that the matrix ATA is positive
definite, and hence its inverse exists.

3.6. Let A be anm× n full row rank matrix and let Z be a basis for its null space. Prove
that

I − AT(AAT)−1A = Z(ZTZ)−1ZT.

3.7. Let P be the orthogonal projection matrix associated with an m × n full row rank
matrix A. Prove that P has n − m linearly independent eigenvectors associated
with the eigenvalue 1, and m linearly independent eigenvectors associated with the
eigenvalue 0.

3.8. Prove that if P is the orthogonal projection matrix associated with N (A), then I −P
is the orthogonal projection matrix associated with R(AT).

3.9. Let A = (1, 3, 2,−1)T and let x = (6, 8,−2, 1)T. Compute the orthogonal projec-
tion of x into the null space of A without explicitly forming the projection matrix.

3.10. Prove that an orthogonal projection matrix is positive semidefinite.

3.11. Let A be an m × n matrix of full row rank, and let P be the orthogonal projection
matrix corresponding to A. Let a be an n-dimensional vector and suppose that a is
not a linear combination of the rows of A.

(i) Prove that aTPa = 0.

(ii) Let

Â =
(
A

aT

)
,

and let P̂ be the orthogonal projection matrix corresponding to Â. Prove that
P̂ = P − Pa(aTPa)−1aTP .
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3.12. Let A be an m× n full row rank matrix and D an n× n positive-definite matrix.

(i) Prove that the matrix ADAT is positive definite, and hence its inverse exists.

(ii) LetPD = I−DAT(ADAT)−1A. Prove thatPDx = 0 if and only if x = DATη

for some m-dimensional vector η.

(iii) Prove that the matrix PDD is positive semidefinite, and xTPDDx = 0, if and
only if x = ATη for some vector η.

3.13. Compute an orthogonal basis matrix for the matrices in Exercise 3.1.

3.14. Consider the QR factorization of a full row rank matrix A. Prove that Q1Q1
T +

Q2Q
T
2 = I .

3.15. Consider the problem of forming the orthogonal projection matrix associated with a
matrix A. One approach to avoid the potential ill-conditioning of the matrix AAT is
to use the QR factorization for the matrix AAT. Assume that A has full row rank.

(i) Prove that theAAT = RT1R1 and hence RT1 is the lower triangular matrix of the
Cholesky factorization for AAT.

(ii) Prove that the resulting orthogonal projection is P = Q2Q2
T .

(iii) Prove that AT(AAT)−1 = Q1R
−T
1 .

3.16. Let A be a matrix with full row rank, and let Z be an orthogonal basis matrix for A.
Prove that the orthogonal projection matrix associated with A satisfies P = ZZT.

3.17. Let P be an orthogonal projection. Prove that P is unique. Hint: Let P = ZZT

where Z is an orthogonal basis matrix for the null space. Suppose that P1 is another
orthogonal projection. Then P1 = ZV T for some full-rank matrix V . Now prove
that V = Z.

3.18. Compute an orthogonal projection matrix for

A =
(

1 1 1 1
2 2 2 2

)
.

3.4 Notes
Further information on these topics can be found in the books by Gill, Murray, and Wright
(1991); Golub and Van Loan (1996); and Trefethen and Bau (1997).
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Linear Programming
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Chapter 4

Geometry of Linear
Programming

4.1 Introduction
Linear programs can be studied both algebraically and geometrically. The two approaches
are equivalent, but one or the other may be more convenient for answering a particular
question about a linear program.

The algebraic point of view is based on writing the linear program in a particular way,
called standard form. Then the coefficient matrix of the constraints of the linear program
can be analyzed using the tools of linear algebra. For example, we might ask about the rank
of the matrix, or for a representation of its null space. It is this algebraic approach that is
used in the simplex method, the topic of the next chapter.

The geometric point of view is based on the geometry of the feasible region and uses
ideas such as convexity to analyze the linear program. It is less dependent on the particular
way in which the constraints are written. Using geometry (particularly in two-dimensional
problems where the feasible region can be graphed) makes many of the concepts in linear
programming easy to understand, because they can be described in terms of intuitive notions
such as moving along an edge of the feasible region.

There is a direct correspondence between these two points of view. This chapter will
explore several aspects of this correspondence.

Before giving an outline of the chapter, we show how a two-dimensional linear pro-
gram can be solved graphically. Consider the problem

minimize z = −x1 − 2x2

subject to −2x1 + x2 ≤ 2
−x1 + x2 ≤ 3

x1 ≤ 3
x1, x2 ≥ 0.

The feasible region is graphed in Figure 4.1.
The figure also includes lines corresponding to various values of the objective function.

For example, the line z = −2 = −x1 − 2x2 passes through the points (2, 0)T and (0, 1)T,

97
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Figure 4.1. Graphical solution of a linear program.

and the parallel line z = 0 passes through the origin. The goal of the linear program is to
minimize the value of z. As the figure illustrates, z decreases as these lines move upward
and to the right. The objective z cannot be decreased indefinitely, however. Eventually the
z line ceases to intersect the feasible region, indicating that there are no longer any feasible
points corresponding to that particular value of z. The minimum occurs when z = −15
at the point (3, 6)T, that is, at the last point where an objective line intersects the feasible
region. This is a corner of the feasible region.

It is no coincidence that the solution occurred at a corner or extreme point. Proving
this result will be the major goal of this chapter.

To achieve this goal, we will first describe standard form, a particular way of writ-
ing a system of linear constraints. Standard form will be used to define a basic feasi-
ble solution. We will then show that the algebraic notion of a basic feasible solution is
equivalent to the geometric notion of an extreme point. This equivalence is of value be-
cause, in higher dimensions, basic feasible solutions are easier to generate and identify
than extreme points. It will then be shown how to represent any feasible point in terms
of extreme points and directions of unboundedness (directions used in the description of
unbounded feasible regions). Finally, this representation of feasible points will be used to
prove that any linear program with a finite optimal solution has an optimal extreme point.
This last result will, in turn, motivate our discussion of the simplex method, a method that
solves linear programs by examining a sequence of basic feasible solutions, that is, extreme
points.

Exercises
1.1. Solve the following linear programs graphically.
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(i)
minimize z = 3x1 + x2

subject to x1 − x2 ≤ 1
3x1 + 2x2 ≤ 12
2x1 + 3x2 ≤ 3

−2x1 + 3x2 ≥ 9
x1, x2 ≥ 0.

(ii)
maximize z = x1 + 2x2

subject to 2x1 + x2 ≥ 12
x1 + x2 ≥ 5

−x1 + 3x2 ≤ 3
6x1 − x2 ≥ 12
x1, x2 ≥ 0.

(iii)
minimize z = x1 − 2x2

subject to x1 − 2x2 ≥ 4
x1 + x2 ≤ 8
x1, x2 ≥ 0.

(iv)
minimize z = −x1 − x2

subject to x1 − x2 ≥ 1
x1 − 2x2 ≥ 2
x1, x2 ≥ 0.

(v)
minimize z = x1 − x2

subject to x1 − x2 ≥ 2
2x1 + x2 ≥ 1
x1, x2 ≥ 0.

(vi)
minimize z = 4x1 − x2

subject to x1 + x2 ≤ 6
x1 − x2 ≥ 3

−x1 + 2x2 ≥ 2
x1, x2 ≥ 0.

(vii)
maximize z = 6x1 − 3x2

subject to 2x1 + 5x2 ≥ 10
3x1 + 2x2 ≤ 40

x1, x2 ≤ 15.
(viii)

minimize z = x1 + 9x2

subject to 2x1 + x2 ≤ 100
x1 + x2 ≤ 80

x1 ≤ 40
x1, x2 ≥ 0.
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(ix)
minimize z = 2x1 + 13x2

subject to x1 + x2 ≤ 5
x1 + 2x2 ≤ 6
x1, x2 ≥ 0.

(x)
minimize z = −5x1 − 7x2

subject to −3x1 + 2x2 ≤ 30
−2x1 + x2 ≤ 12

x1, x2 ≥ 0.

1.2. Find graphically all the values of the parameter a such that (−3, 4)T is the optimal
solution of the following problem:

maximize z = ax1 + (2 − a)x2

subject to 4x1 + 3x2 ≤ 0
2x1 + 3x2 ≤ 7
x1 + x2 ≤ 1.

1.3. Find graphically all the values of the parameter a such that the following systems
define nonempty feasible sets.

(i)
5x1 + x2 + x3 + 3x4 = a

8x1 + 3x2 + x3 + 2x4 = 2 − a
x1, x2, x3, x4 ≥ 0.

(ii)
ax1 + x2 + 3x3 − x4 = 2
x1 − x2 − x3 − 2x4 = 2
x1, x2, x3, x4 ≥ 0.

1.4. Suppose that the linear program

minimize z = cTx

subject to Ax = b

x ≥ 0

has an optimal objective z∗. Discuss how the optimal objective would change if (a) a
constraint is added to the problem; and (b) a constraint is deleted from the problem.

4.2 Standard Form
There are many different ways to represent a linear program. It is sometimes more conve-
nient to use one instead of another, at times to make a property of the linear program more
apparent, at other times to simplify the description of an algorithm. One such representation,
called standard form, will be used to describe the simplex method.
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In matrix-vector notation, a linear program in standard form will be written as

minimize z = cTx

subject to Ax = b

x ≥ 0

with b ≥ 0. Here x and c are vectors of length n, b is a vector of length m, and A is an
m × n matrix called the constraint matrix. The important things to notice are (i) it is a
minimization problem, (ii) all the variables are constrained to be nonnegative, (iii) all the
other constraints are represented as equations, and (iv) the components of the right-hand
side vector b are all nonnegative. This will be the form of a linear program used within the
simplex method. In other settings, other forms of a linear program may be more convenient.

Example 4.1 (Standard Form). The linear program

minimize z = 4x1 − 5x2 + 3x3

subject to 3x1 − 2x2 + 7x3 = 7
8x1 + 6x2 + 6x3 = 5
x1, x2, x3 ≥ 0

is in standard form. In terms of the matrix-vector notation,

x =
(
x1

x2

x3

)
, c =

( 4
−5

3

)
, A =

(
3 −2 7
8 6 6

)
, b =

(
7
5

)
.

There are n = 3 variables and m = 2 constraints.

All linear programs can be converted to standard form. The rules for doing this are
simple and can be performed automatically by software. Most linear programming software
packages allow the user to represent a linear program in any convenient way and then the
software performs the conversion internally. We illustrate these techniques via examples.
Justification for these rules is left to the Exercises.

If the original problem is a maximization problem:

maximize z = 4x1 − 3x2 + 6x3 = cTx,

then the objective can be multiplied by −1 to obtain

minimize ẑ = −4x1 + 3x2 − 6x3 = −cTx.
After the problem has been solved, the optimal objective value must be multiplied by −1,
so that z∗ = −ẑ∗. The optimal values of the variables are the same for both objective
functions.

If any of the components of b are negative, then those constraints should be multiplied
by −1. This will cause a constraint of the “≤” form to be converted to a “≥” constraint and
vice versa.

If a variable has a lower bound other than zero, say

x1 ≥ 5,
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then the variable can be replaced in the problem by

x ′1 = x1 − 5.

The constraint x1 ≥ 5 is equivalent to x ′1 ≥ 0. An upper bound on a variable (say, x1 ≤ 7)
can be treated as a general constraint, that is, as one of the constraints included in the
coefficient matrix A. This is inefficient but satisfactory for explaining the simplex method.
More efficient techniques for handling upper bounds are described in Section 7.2.

A variable without specified lower or upper bounds, called a free or unrestricted
variable, can be replaced by a pair of nonnegative variables. For example, if x2 is a free
variable, then throughout the problem it will be replaced by

x2 = x ′2 − x ′′2 with x ′2, x
′′
2 ≥ 0.

Intuitively, x ′2 will record positive values of x2, and x ′′2 will record negative values. So if
x2 = 7, then x ′2 = 7 and x ′′2 = 0, and if x2 = −4, then x ′2 = 0 and x ′′2 = 4. The properties of
the simplex method ensure that at most one of x ′2 and x ′′2 will be nonzero at a time (see the
Exercises in Section 4.3). This is only one way of handling a free variable; an alternative is
given in the Exercises; another is given in Section 7.6.6.

The remaining two transformations are used to convert general constraints into equa-
tions. A constraint of the form

2x1 + 7x2 − 3x3 ≤ 10

is converted to an equality constraint by including a slack variable s1:

2x1 + 7x2 − 3x3 + s1 = 10

together with the constraint s1 ≥ 0. The slack variable just represents the difference between
the left- and right-hand sides of the original constraint. Similarly a constraint of the form

6x1 − 2x2 + 4x3 ≥ 15

is converted to an equality by including an excess variable e2:

6x1 − 2x2 + 4x3 − e2 = 15

together with the constraint e2 ≥ 0. (For emphasis, the slack and excess variables are labeled
here as s1 and e2 to distinguish them from the variables used in the original formulation of
the linear program. In other settings it may be more convenient to label them like the other
variables, for example as x4 and x5. Of course, the choice of variable names does not affect
the properties of the linear program.)

Example 4.2 (Transformation to Standard Form). To illustrate these transformation rules,
we consider the example

maximize z = −5x1 − 3x2 + 7x3

subject to 2x1 + 4x2 + 6x3 = 7
3x1 − 5x2 + 3x3 ≤ 5

−4x1 − 9x2 + 4x3 ≤ −4
x1 ≥ −2, 0 ≤ x2 ≤ 4, x3 free.
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To convert to a minimization problem, we multiply the objective by −1:

minimize ẑ = 5x1 + 3x2 − 7x3.

The third constraint is multiplied by −1 so that all the right-hand sides of the constraints
are nonnegative:

4x1 + 9x2 − 4x3 ≥ 4.

The variable x1 will be transformed to

x ′1 = x1 + 2.

The upper bound x2 ≤ 4 will be treated here as one of the general constraints and the
variable x3 will be transformed to

x3 = x ′3 − x ′′3 ,
because it is a free variable. When these substitutions have been made we obtain

minimize ẑ = 5x ′1 + 3x2 − 7x ′3 + 7x ′′3 − 10

subject to 2x ′1 + 4x2 + 6x ′3 − 6x ′′3 = 11
3x ′1 − 5x2 + 3x ′3 − 3x ′′3 ≤ 11
4x ′1 + 9x2 − 4x ′3 + 4x ′′3 ≥ 12

x2 ≤ 4
x ′1, x2, x

′
3, x

′′
3 ≥ 0.

The constant term in the objective, “−10,” is usually removed via a transformation of the
form z′ = ẑ+ 10 so that we obtain the revised objective

minimize z′ = 5x ′1 + 3x2 − 7x ′3 + 7x ′′3 .

The final step in the conversion is to add slack and excess variables to convert the general
constraints to equalities:

minimize z′ = 5x ′1 + 3x2 − 7x ′3 + 7x ′′3
subject to 2x ′1 + 4x2 + 6x ′3 − 6x ′′3 = 11

3x ′1 − 5x2 + 3x ′3 − 3x ′′3 + s2 = 11
4x ′1 + 9x2 − 4x ′3 + 4x ′′3 − e3 = 12

x2 + s4 = 4
x ′1, x2, x

′
3, x

′′
3 , s2, e3, s4 ≥ 0.

With this the original linear program has been converted to an equivalent one in standard
form.

In matrix-vector form it would be represented as

minimize z = cTx

subject to Ax = b

x ≥ 0
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with c = (5, 3,−7, 7, 0, 0, 0)T, b = (11, 11, 12, 4)T, and

A =
⎛
⎜⎝

2 4 6 −6 0 0 0
3 −5 3 −3 1 0 0
4 9 −4 4 0 −1 0
0 1 0 0 0 0 1

⎞
⎟⎠ .

The vector of variables is x = (x ′1, x2, x
′
3, x

′′
3 , s2, e3, s4)

T.
It can be shown that the solution to the problem in standard form is

z′ = −0.12857, x ′1 = 0, x2 = 1.65714, x ′3 = 0.728571,

x ′′3 = 0, s2 = 17.1, e3 = 0, s4 = 2.34286,

so that the solution to the original problem is

z = 10.12857, x1 = −2, x2 = 1.65714, x3 = 0.728571.

One of the reasons that the general constraints in the problem are converted to equal-
ities is that it allows us to use the techniques of elimination to manipulate and simplify the
constraints. For example, the system

x1 = 1
x1 + x2 = 2

can be reduced to the equivalent system

x1 = 1
x2 = 1

by subtracting the first constraint from the second. However, if we erroneously apply the
same operation to

x1 ≥ 1
x1 + x2 ≥ 2,

then it results in

x1 ≥ 1
x2 ≥ 1,

a system of constraints that defines a different feasible region. The two regions are illustrated
in Figure 4.2. Elimination is not a valid way to manipulate systems of inequalities because
it can alter the set of solutions to such systems.

It might seem that the rules for transforming a linear program to standard form could
greatly increase the size of a linear program, particularly if a large number of slack and
excess variables must be added to obtain a problem in standard form. However, these new
variables only appear in the problem in a simple way so that the additional variables do not
make the problem significantly harder to solve.
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Figure 4.2. Elimination and inequalities.

Exercises
2.1. Convert the following linear program to standard form:

maximize z = 3x1 + 5x2 − 4x3

subject to 7x1 − 2x2 − 3x3 ≥ 4
−2x1 + 4x2 + 8x3 = −3

5x1 − 3x2 − 2x3 ≤ 9
x1 ≥ 1, x2 ≤ 7, x3 ≥ 0.

2.2. Convert the following linear program to standard form:

minimize z = x1 − 5x2 − 7x3

subject to 5x1 − 2x2 + 6x3 ≥ 5
3x1 + 4x2 − 9x3 = 3
7x1 + 3x2 + 5x3 ≤ 9
x1 ≥ −2, x2, x3 free.

2.3. Convert the following linear program to standard form:

maximize z = 6x1 − 3x2

subject to 2x1 + 5x2 ≥ 10
3x1 + 2x2 ≤ 40
x1, x2 ≤ 15.

2.4. Consider the linear program in Example 4.2. Convert it to standard form, except do
not make the substitution x3 = x ′3 − x ′′3 . Show that the problem can be replaced by
an equivalent problem with one less variable and one less constraint by eliminating
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x3 using the equality constraints. (This is a general technique for handling free vari-
ables.) Why cannot this technique be used to eliminate variables with nonnegativity
constraints?

2.5. Consider the linear program

minimize z = cTx

subject to Ax ≤ b

eTx = 1
x1, . . . , xn−1 ≥ 0, xn free,

where e = (1, . . . , 1)T, b and c are arbitrary vectors of length n, and A is the matrix
with entries ai,i = ai,n = 1 for i = 1, . . . , n and all other entries zero. Use the
constraint eTx = 1 to eliminate the free variable xn from the linear program (as in
the previous problem). Is this a good approach when n is large?

2.6. Prove that each of the transformation rules used to convert a linear program to
standard form produces an equivalent linear programming problem. Hint: For each
of the rules, prove that a solution to the original problem can be used to obtain a
solution to the transformed problem, and vice versa.

2.7. Consider the linear program

minimize z = cTx

subject to Ax = b

x ≥ 0.

Transform it into an equivalent standard-form problem for which the right-hand-side
vector is zero. Hint: You can achieve this by introducing an additional variable and
an additional constraint.

4.3 Basic Solutions and Extreme Points
In this section we examine the relationship between the geometric notion of an extreme
point of the feasible region and the algebraic notion of a basic feasible solution. First, it is
necessary to give a precise definition of both these terms. To do this, let us consider a linear
programming problem in standard form

minimize z = cTx

subject to Ax = b

x ≥ 0.

In this problem x is a vector of length n and A is an m × n matrix with m ≤ n. We will
assume that the matrix A has full rank, that is, the rows of A are linearly independent.

The full-rank assumption is not unreasonable. If A is not of full rank, then either the
constraints are inconsistent or there are redundant constraints, depending on the right-hand-
side vector b. If the constraints are inconsistent, then the problem has no solution and the
feasible region is empty, so there are no extreme points. If there are redundant constraints,
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Figure 4.3. Definition of an extreme point.

then theoretically they could be removed from the problem without changing either the
solution or the feasible region.

Ifm = n, then the constraintsAx = bwould completely determine x, and the feasible
region would consist of either a single point (if x ≥ 0) or would be empty (otherwise). If
m > n, then in most cases the constraints Ax = b would have no solution.

An extreme point is defined geometrically using convexity. A point x ∈ S is an
extreme point or vertex of a convex set S if it cannot be expressed in the form

x = αy + (1 − α)z
with y, z ∈ S, 0 < α < 1, and y, z = x. That is, x cannot be expressed as a convex
combination of feasible points y and z different from x. See Figure 4.3. Notice that the
values α = 0 and α = 1 are excluded in this definition. If α = 0 then x = z, and if
α = 1 then x = y. Since y and z are supposed to be different from x, these two cases are
ruled out.

The definition of an extreme point applies to any convex set. In particular, since a
system of linear constraints defines a convex set (see Section 2.3), it applies to the feasible
region of a linear programming problem.

A basic solution is defined algebraically using the standard form of the constraints. A
point x is a basic solution if

• x satisfies the equality constraints of the linear program, and

• the columns of the constraint matrix corresponding to the nonzero components of x
are linearly independent.

Since the matrix A has full row rank, it is possible to separate the components of x into
two subvectors, one consisting of n − m nonbasic variables xN all of which are zero, and
the other consisting of m basic variables xB whose constraint coefficients correspond to an
invertiblem×m basis matrix B. In cases where more than n−m components of x are zero
there may be more than one way to choose xB and xN . The set of basic variables is called
the basis.

A point x is a basic feasible solution if in addition it satisfies the nonnegativity con-
straint x ≥ 0. It is an optimal basic feasible solution if it is also optimal for the linear
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program. The word “solution” in these definitions refers only to the equality constraints for
the linear program in standard form, and has no connection with the value of the objective
function. In Section 4.4 we show that if a linear program has an optimal solution, then it
has an optimal basic feasible solution. For this reason it will be sufficient to examine just
the basic feasible solutions when solving a linear programming problem.

Example 4.3 (Basic Feasible Solutions). Consider the linear program from Section 4.1:

minimize z = −x1 − 2x2

subject to −2x1 + x2 ≤ 2
−x1 + x2 ≤ 3

x1 ≤ 3
x1, x2 ≥ 0.

The feasible region for this problem is illustrated in Figure 4.4, and the optimal value of
this problem is z∗ = −15 at the point x∗ = (3, 6)T. The graph will be used to examine the
extreme points.

The boundaries of the feasible region are defined by the lines

−2x1 + x2 = 2
−x1 + x2 = 3

x1 = 3
x1 = 0
x2 = 0

and each corner of the feasible region corresponds to the intersection of two of these lines.
There are ten potential intersections of this type, but only five of them (xa , xb, xc, xd , xe) are
corners of the feasible region. Four others lie outside the feasible region, and one pairing is
impossible since the lines x1 = 0 and x1 = 3 do not intersect.
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In standard form this linear program is written as

minimize z = −x1 − 2x2

subject to −2x1 + x2 + s1 = 2
−x1 + x2 + s2 = 3

x1 + s3 = 3
x1, x2, s1, s2, s3 ≥ 0.

Standard form will be used to describe the basic feasible solutions. In this form the problem
has five variables.

In our example, the basis { x2, s1, s3 } produces the basic solution

( x1 x2 s1 s2 s3 )
T = ( 0 3 −1 0 3 )T ;

it corresponds to the infeasible corner xf . The basis { s1, s2, s3 } produces the basic feasible
solution

( x1 x2 s1 s2 s3 )
T = ( 0 0 2 3 3 )T ;

it corresponds to the corner xa . If the basis { x1, x2, s1 } is chosen, we obtain the optimal
basic feasible solution

( x1 x2 s1 s2 s3 )
T = ( 3 6 2 0 0 )T ;

it corresponds to the corner xd . We will show how to determine basic feasible and optimal
basic feasible solutions when we discuss the simplex method in Chapter 5.

Two different bases can correspond to the same point. To see this, consider the
constraints defined by

Ax =
( 2 1 0 0

3 0 1 0
4 0 0 1

)⎛⎜⎝
x1

x2

x3

x4

⎞
⎟⎠ =

( 6
13
12

)
= b.

If x = (3, 0, 4, 0)T ≥ 0, then there is ambiguity about the choice of xB and xN . If xB =
(x1, x2, x3)

T and xN = (x4), then the coefficient matrix for the nonzero components of xB( 2 0
3 1
4 0

)

has linearly independent columns, so x is a basic feasible solution. In this example the
coefficient matrix for xB

B =
( 2 1 0

3 0 1
4 0 0

)

is invertible. The same basic feasible solution is obtained using

xB = ( x1 x3 x4 )
T and xN = ( x2 )
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with invertible basis matrix

B =
( 2 0 0

3 1 0
4 0 1

)
.

Because of this ambiguity, the point (3, 0, 4, 0)T is called a degenerate basic feasible solu-
tion.

Let x be any basic feasible solution. Once a set of basic variables has been selected
it is possible to reorder the variables so that the basic variables are listed first:

x =
(
xB
xN

)
.

The constraint matrix can then be written as

A = ( B N ) ,

where B is the coefficient matrix for xB and N is the coefficient matrix for xN . For a basic
solution we have xN = 0, so that the set of constraints Ax = b simplifies to BxB = b:

Ax = ( B N )

(
xB
xN

)
= BxB +NxN = BxB = b.

Thus xB , and hence x, is determined by B and b.
The number of basic feasible solutions is finite and is bounded by the number of ways

that the m variables xB can be selected from among the n variables x. This number is a
binomial coefficient (

n

m

)
= n!
m!(n−m)! ,

where
n! = n(n− 1)(n− 2) · · · 3 · 2 · 1.

Not all choices of xB will necessarily correspond to feasible points, so this number can be
an overestimate.

The concept of an extreme point is equivalent to the concept of a basic feasible solution,
as is proved in the following theorem.

Theorem 4.4. A point x is an extreme point of the set { x : Ax = b, x ≥ 0 } if and only if it
is a basic feasible solution.

Proof. We first show that if x is a basic feasible solution, then it is also an extreme point.
If x is a basic feasible solution, then it is a feasible point. For convenience we may assume
that the last n−m variables of x are nonbasic so that

x =
(
xB
xN

)
=
(
xB
0

)
.
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LetB be the invertible basis matrix corresponding to xB . The proof will be by contradiction:
If x is not an extreme point, then there exist two distinct feasible points y and z satisfying
x = αy + (1 − α)z with 0 < α < 1. We will write y and z in terms of the same basis

y =
(
yB
yN

)
and z =

(
zB
zN

)
.

Both y and z are feasible, so that yN ≥ 0 and zN ≥ 0. Since 0 = xN = αyN + (1− α)zN and
0 < α < 1, all the terms on the right-hand side are nonnegative, and we can conclude that
yN = zN = 0. Also, because x, y, and z are feasible they satisfy the equality constraints of
the problem, so that

BxB = ByB = BzB = b.

Since B is invertible, xB = yB = zB , contradicting our assumption that y and z were distinct
from x. Hence x is an extreme point.

The more difficult part of the proof is to show that if x is an extreme point then it is a
basic feasible solution. This will also be proved by contradiction. An extreme point x must
be feasible so that Ax = b and x ≥ 0. By reordering the variables if necessary so that the
zero variables are last, x can be written as

x =
(
xB
xN

)
,

where xN = 0 and xB > 0. We write A = (B,N) where B and N are the coefficients
corresponding to xB and xN , respectively. (B may not be a square matrix.) If the columns
of B are linearly independent, then x is a basic feasible solution, and nothing needs to be
proved. So we will suppose that the columns of B are linearly dependent and construct
distinct feasible points y and z that satisfy x = 1

2y + 1
2z, hence showing that x cannot be

an extreme point.
Let Bi be the ith column of B. If the columns of B are linearly dependent, then there

exist real numbers p1, . . . , pk , not all of which are zero, such that

B1p1 + B2p2 + · · · + Bkpk = 0.

If we define p = (p1, . . . , pk)
T, then the above equation can be written as Bp = 0. Note

that
B(xB ± αp) = BxB ± αBp = BxB ± 0 = BxB = b

for all values of α. Since xB > 0, for small positive values of ε we will have

xB + εp > 0
xB − εp > 0.

Let

y =
(
xB + εp
xN

)
and z =

(
xB − εp
xN

)
.

Then y and z are feasible and distinct from x. Since x = 1
2y + 1

2z, this contradicts our
assumption that x was an extreme point. This completes the proof.
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It is possible that one or more of the basic variables in a basic feasible solution will be
zero. If this occurs, then the point is called a degenerate vertex, and the linear program is
said to be degenerate. At a degenerate vertex several different bases may correspond to the
same basic feasible solution. This was illustrated in the latter part of Example 4.3, where
the basic feasible solution (x1, x2, x3, x4)

T = (3, 0, 4, 0)T could be represented using either
xB = (x1, x2, x3)

T or xB = (x1, x3, x4)
T.

Degeneracy can arise when a linear program contains a redundant constraint. For
example, the constraints in Example 4.3 arose when slack variables were added to the
constraints

2x1 ≤ 6
3x1 ≤ 13
4x1 ≤ 12.

In this form, the first and third constraints are equivalent, and so either of them could be
removed from the problem without changing its solution.

There are several more definitions that will be useful when discussing the simplex
method. Geometrically, two extreme points areadjacent if they are connected by an edge
of the feasible region. For example, in Figure 4.4 the extreme points xa and xb are adjacent,
but xa and xc are not. For a linear program in standard form with m equality constraints,
two bases will be adjacent if they have m− 1 variables in common. Adjacent bases define
adjacent basic feasible solutions. (Note that adjacent bases may not define distinct basic
feasible solutions; see Example 4.3.)

One further concept is needed to describe the feasible region geometrically, the concept
of a direction of unboundedness. (Some authors use the term direction of a set.) If S is a
convex set, then d = 0 is a direction of unboundedness if

x + γ d ∈ S for all x ∈ S and γ ≥ 0.

As we will show in the next section, every feasible point can be represented as a convex
combination of extreme points plus, if applicable, a direction of unboundedness.

Example 4.5 (Direction of Unboundedness). We obtain an unbounded feasible region by
deleting one constraint from our example:

minimize z = −x1 − 2x2

subject to −2x1 + x2 ≤ 2
−x1 + x2 ≤ 3
x1, x2 ≥ 0.

The feasible region for this new problem is illustrated in Figure 4.5.
Now there are only three extreme points, xa = (0, 0)T, xb = (0, 2)T, and xc = (1, 4)T.

The point y = (2, 1)T cannot be represented as a convex combination of these extreme
points. This follows from the conditions

α1xa + α2xb + α3xc = y

α1 + α2 + α3 = 1
α1, α2, α3 ≥ 0.
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The first condition represents two linear equations, one for each component of y. Combined
with the second condition, it gives the linear system( 0 0 1

0 2 4
1 1 1

)(
α1

α2

α3

)
=
( 2

1
1

)

whose unique solution is α1 = 5/2, α2 = −7/2, α3 = 2. Since α2 < 0, this is not a convex
combination. The triangular area in Figure 4.5 shows which points are convex combinations
of extreme points.

For this example, if x is any feasible point and γ ≥ 0, then any point

x + γ
(

1
0

)

is also feasible. The direction (1, 0)T is a direction of unboundedness because it is possible
to move arbitrarily far in that direction and remain feasible. In this example it is possible
to select two linearly independent directions of unboundedness, such as d1 = (1, 0)T and
d2 = (1, 1)T. It is not difficult to show that any feasible point can be written as a convex
combination of the extreme points xa , xb, and xc, plus some multiple of either of these
directions of unboundedness.

Let x be a feasible point for the linear program in standard form (Ax = b, x ≥ 0)
and let d be a direction of unboundedness. Then both x and x + γ d must be feasible for all
γ ≥ 0, so that

Ax = b, x ≥ 0,
A(x + γ d) = b, x + γ d ≥ 0.
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Together these conditions show that a direction of unboundedness must satisfy

Ad = 0
d ≥ 0.

In addition, any nonzero vector d satisfying these two conditions will be a direction of
unboundedness; see the Exercises.

Exercises
3.1. Consider the system of linear constraints

2x1 + x2 ≤ 100
x1 + x2 ≤ 80

x1 ≤ 40
x1, x2 ≥ 0.

(i) Write this system of constraints in standard form, and determine all the basic
solutions (feasible and infeasible).

(ii) Determine the extreme points of the feasible region (corresponding to both the
standard form of the constraints, as well as the original version).

3.2. Consider the following system of inequalities:

x1 + x2 ≤ 5
x1 + 2x2 ≤ 6
x1, x2 ≥ 0.

(i) Find the extreme points of the region defined by these inequalities.

(ii) Does this set have any directions of unboundedness? Either prove that none
exist, or give an example of a direction of unboundedness.

3.3. Consider the feasible region in Figure 4.5.

(i) Show that d1 = (1, 0)T and d2 = (1, 1)T are directions of unboundedness.
Determine the corresponding directions of unboundedness for the problem
written in standard form, and verify that the conditions Ad = 0 and d ≥ 0 are
satisfied for both directions.

(ii) Prove that d is a direction of unboundedness if and only if d is a nonnegative
combination of d1 and d2.

3.4. Consider the linear program

minimize z = −5x1 − 7x2

subject to −3x1 + 2x2 ≤ 30
−2x1 + x2 ≤ 12

x1, x2 ≥ 0.
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(i) Draw a graph of the feasible region.

(ii) Determine the extreme points of the feasible region.

(iii) Determine two linearly independent directions of unboundedness.

(iv) Convert the linear program to standard form and determine the basic feasible
solutions and two linearly independent directions of unboundedness for this
version of the problem. Verify that the directions of unboundedness satisfy
Ad = 0 and d ≥ 0.

3.5. Consider a linear program with the constraints in standard form

Ax = b and x ≥ 0.

Prove that if d = 0 satisfies

Ad = 0 and d ≥ 0,

then d is a direction of unboundedness.

3.6. Consider the system of constraints

2x1 + x2 ≤ 3
3x1 + x2 ≤ 4
4x1 + x2 ≤ 5
5x1 + x2 ≤ 6
x1, x2 ≥ 0.

(i) Determine the extreme points for the feasible region.

(ii) Convert the problem to standard form, and determine the basic feasible solu-
tions.

(iii) Which basic feasible solution corresponds to the extreme point (1, 1)T? How
many different bases can be used to generate this basic feasible solution? Which
of these bases are adjacent?

3.7. Find all the vertices of the region defined by the following system:

3x1 + x2 + x3 + x4 = 1
x1 + 6x2 − 2x3 + x4 = 1

x1, x2, x3, x4 ≥ 0.

Does the system have degenerate vertices?

3.8. Find all the values of the parameter a such that the regions defined by the following
systems have degenerate vertices.

(i)
x1 + x2 ≤ 8

6x1 + x2 ≤ 12
2x1 + x2 ≤ a

x1, x2 ≥ 0.
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(ii)
ax1 + x2 ≥ 1
2x1 + x2 ≤ 6
−x1 + x2 ≤ 6
x1 + 2x2 ≥ 6
x1, x2 ≥ 0.

3.9. Consider a linear program with the following constraints:

4x1 + 7x2 + 2x3 − 3x4 + x5 + 4x6 = 4
−x1 − 2x2 + x3 + x4 − x6 = −1
x2 − 3x3 − x4 − x5 + 2x6 = 0
xi ≥ 0, i = 1, . . . , 6.

Determine every basis that corresponds to the basic feasible solution (0, 1, 0, 1, 0, 0)T.

3.10. Consider the feasible region in Figure 4.4. Determine formulas for the points on the
edges of the feasible region. What are the corresponding formulas for the problem
in standard form? The formulas you determine should be of the form

(extreme point)+ α(direction) for 0 ≤ α ≤ αmax.

3.11. Repeat the previous problem for the feasible region in Figure 4.5. Note that in some
cases there will be no upper bound on α.

3.12. Consider the system of constraints Ax = b, x ≥ 0 with

A =
( 1 4 7 1 0 0

2 5 8 0 1 0
3 6 9 0 0 1

)
and b =

( 12
15
18

)
.

Is x = (1, 1, 1, 0, 0, 0)T a basic feasible solution? Explain your answer.

3.13. Suppose that a linear program includes a free variable xi . In converting this problem
to standard form, xi is replaced by a pair of nonnegative variables:

xi = x ′i − x ′′i , x ′i , x
′′
i ≥ 0.

Prove that no basic feasible solution can include both x ′i and x ′′i as basic variables.

3.14. Let the m × n matrix A be the coefficient matrix for a linear program in standard
form. The upper bound (

n

m

)
= n!
m!(n−m)!

on the number of basic feasible solutions can sometimes be precise, but it can also
be a considerable overestimate.

(i) Construct an example with n = 4 and m = 2 where the number of basic
feasible solutions is equal to

(
n

m

)
.

(ii) Construct examples of arbitrary size where the number of basic feasible solu-
tions is equal to zero.

3.15. Prove that the set S = { x : Ax < b } does not contain any extreme points.
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3.16. Let S = {
x : xTx ≤ 1

}
. Prove that the extreme points of S are the points on its

boundary.

3.17. Consider the set S = { x : x1 ≥ x2 ≥ · · · ≥ xn ≥ 0 }.
(i) Prove that if x ∈ S then so is αx ∈ S for all α ≥ 0. A set with this property is

called a cone.

(ii) Prove that the origin is the only extreme point of S.

(iii) Find n linearly independent directions of unboundedness for this set.

3.18. Give an example of a degenerate linear program that does not contain a redundant
constraint.

3.19. Give an example of a linear program where a degenerate basic feasible solution only
corresponds to a single basis.

4.4 Representation of Solutions; Optimality
The first goal of this section is to prove that any feasible point can be represented as a
convex combination of extreme points plus, possibly, a direction of unboundedness. Then
this result will be used to prove that any linear program with a finite optimal solution has
an optimal basic feasible solution.

The idea behind the representation theorem is straightforward and will first be illus-
trated using two examples of feasible sets, one bounded and one unbounded. The examples
will be in two dimensions so they can be graphed, but the techniques used in the examples
are the same as those used in the proof.

We will use the examples from Section 4.3. First we consider a bounded problem
with the constraints

−2x1 + x2 ≤ 2
−x1 + x2 ≤ 3

x1 ≤ 3
x1, x2 ≥ 0.

We would like to show that if x is any feasible point, then it can be expressed as a convex
combination of extreme points of the feasible region. Our discussion will be based on
Figure 4.6.

Let us choose the feasible point x = (2, 1)T. We would like to express x as a convex
combination of the extreme points xa, . . . , xe. Consider the direction p = (1, 1)T. Since x
is in the interior of the feasible region, x + γp will be feasible for small values of γ . (By
“small” we mean small in absolute value.) However, since the region is bounded, as we
move along p or −p eventually we will hit the boundary of the region. In this example this
occurs at the points y1 = x + p = (3, 2)T and y2 = x − p = (1, 0)T, that is, for γ = 1 and
γ = −1. Notice that x = 1

2y1 + 1
2y2 so that x is a convex combination of y1 and y2.

Neither y1 nor y2 is an extreme point; both are along an edge of the feasible region.
For small values of γ the points y1 + γp1 and y2 + γp2 will be feasible, where p1 =
(0, 1)T and p2 = (1, 0)T. However, as γ is increased in magnitude, we will eventually hit
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Figure 4.6. Representation via extreme points: Bounded case.

another boundary of the region. For y1 this occurs at y11 = y1 + 4p1 = (3, 6)T = xd and
y12 = y1 − 2p1 = (3, 0)T = xe, and for y2 this occurs at y21 = y2 + 2p2 = (3, 0)T and
y22 = y2 − 1p2 = (0, 0)T. The points y1 and y2 can be written as

y1 = 2
3y12 + 1

3y11

y2 = 2
3y22 + 1

3y21.

The points on the right-hand side are extreme points.
Since x = 1

2y2 + 1
2y1 we can combine these results to obtain

x = 1
3y22 + 1

6y21 + 1
3y12 + 1

6y11

= 1
3xa + 1

6xe + 1
3xe + 1

6xd

= 1
3xa + 1

2xe + 1
6xd.

Thus we have expressed x as a convex combination of extreme points.
Now we will consider the unbounded region obtained by deleting one of the con-

straints:

−2x1 + x2 ≤ 2
−x1 + x2 ≤ 3

x1, x2 ≥ 0.

We would like to show that if x is any feasible point, then it can be expressed as a con-
vex combination of extreme points plus, if required, a direction of unboundedness. Our
discussion will be based on Figure 4.7.

Let us again choose the feasible point x = (2, 1)T and the direction p = (1, 1)T.
As before, x + γp will be feasible for small values of γ . For γ < 0, the boundary is
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encountered at the point y2 = x − p = (1, 0)T. However, the direction p is a direction of
unboundedness so that x + γp is feasible for all positive values of γ . In this case we will
represent x as the sum of a direction of unboundedness and a point on the boundary, that is,
x = p + y2.

The point y2 is not an extreme point so we will represent it in terms of other points
along the same edge. For p2 = (1, 0)T we examine points of the form y2 + γp2. Another
boundary is encountered at the point y22 = y2 −p2 = (0, 0)T. In the direction p2 the region
is unbounded and y2 = p2 + y22, that is, y2 is the sum of a direction of unboundedness and
an extreme point.

Combining these two results we obtain

x = p + y2 = p + (p2 + y22)

= (p + p2)+ y22 = p̂ + xa,
where p̂ = p + p2 = (2, 1)T, another direction of unboundedness. In this way we have
expressed x as the sum of a direction of unboundedness and a (trivial) convex combination
of extreme points.

The representation theorem is given below. For the examples above, the constraints
were not in standard form; this was so the examples could be graphed easily. The theorem
works with a problem expressed in standard form. This is not an essential detail—it merely
eliminates ambiguity about how the constraints are represented. The argument is the same.

To point out the connection between the two approaches, we write the constraints for
the unbounded example in standard form, that is, S = { x : Ax = b, x ≥ 0 } with

A =
(−2 1 1 0
−1 1 0 1

)
and b =

(
2
3

)
.

The point x = (2, 1)T is transformed into x̄ = (2, 1, 5, 4)T, where x̄3 = 5 and x̄4 = 4 are the
slack variables for the two constraints. The direction p = (1, 1)T is transformed into the
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direction p̄ = (1, 1, 1, 0)T, with the last two components chosen so that A(x̄ + p̄) = b or,
equivalently, Ap̄ = 0.

Theorem 4.6 (Representation Theorem). Consider the set

S = { x : Ax = b, x ≥ 0 },
representing the feasible region for a linear program in standard form. Let

V = { v1, v2, . . . , vk }
be the set of extreme points (vertices) of S. If S is nonempty, then V is nonempty, and every
feasible point x ∈ S can be written in the form

x = d +
k∑
i=1

αivi,

where
k∑
i=1

αi = 1 and αi ≥ 0, i = 1, . . . , k,

and d satisfies Ad = 0 and d ≥ 0, i.e., either d = 0 or d is a direction of unboundedness
of S.

Proof. The proof will make repeated use of the equivalence between extreme points and
basic feasible solutions. We will assume that A is of full row rank, since if A is not of full
row rank it can be replaced by a smaller full-rank matrix.

We will first consider the case where the setS is bounded, so that there are no directions
of unboundedness and d = 0. Let x ∈ S be any feasible point. If x is an extreme point,
then x = vi for some i and the theorem is true with αi = 1 and αj = 0 for j = i.

If x is not an extreme point, then, by the results in the last section, x is not a basic
feasible solution. Hence the columns ofA corresponding to the nonzero entries are linearly
dependent and we can find a feasible direction p, that is, a vector p = 0 satisfying

Ap = 0
pi = 0 if xi = 0.

If ε is small in magnitude,

A(x + εp) = b

x + εp ≥ 0
(x + εp)i = 0 if xi = 0.

Hence x + εp ∈ S. Since S is bounded, as ε increases in magnitude (either positive or
negative) eventually points are encountered where some additional component of x + εp

becomes zero. Let y1 be the point obtained with ε > 0 and y2 be the point obtained with
ε < 0. Then x is a convex combination of y1 and y2 and both y1 and y2 have at least one
more zero component than x does; see the Exercises.
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The argument is now completed by induction. If y1 and y2 are both extreme points,
then we are finished. Otherwise, the same reasoning is applied as necessary to one or both of
y1 and y2 to express them as convex combinations of points with one more zero component.
This is repeated until eventually a representation is obtained in terms of extreme points.
(There is one detail that must be checked: it must be shown that if y1 and y2 are convex
combinations of extreme points, then so is x; see the Exercises.) This argument also shows
that the set of extreme points is nonempty. Because the number of nonzero components is
decreasing by one at each step, and is bounded below by 0, eventually the points generated
by this scheme must be basic feasible solutions, that is, extreme points.

The unbounded case is proved similarly. Choose x ∈ S. If x is not an extreme point
we can form x + εp for a vector p chosen as before. However, it is possible that either p
or −p is a direction of unboundedness if either p ≥ 0 or p ≤ 0, respectively. (They cannot
both be directions of unboundedness because of the nonnegativity constraints x ≥ 0; see
the Exercises.) Suppose that p is a direction of unboundedness, so a move in the direction
−p will hit the boundary at some point y2, that is, x − γp = y2 with γ > 0. (Analogous
remarks apply if −p is a direction of unboundedness.) Then

x = d + 1 · y2,

where d = γp for some γ , so that x is the sum of a direction of unboundedness and a
(trivial) convex combination of y2. As before, y2 has at least one more zero entry than x
does.

Now the same argument can be applied inductively to y2 to show that it can be
expressed as a convex combination of extreme points plus a nonnegative linear combination
of directions of unboundedness with nonnegative coefficients. Since such a combination of
directions of unboundedness is again a direction of unboundedness (see the Exercises), this
completes the proof.

So far our main concern has been the constraints in a linear program. We now examine
the objective function and show that a solution to a linear program, if one exists, can always
be chosen from among the extreme points of the feasible region.

Theorem 4.7. If a linear program in standard form has a finite optimal solution, then it has
an optimal basic feasible solution.

Proof. Let x be a finite optimal solution for the linear program represented in standard
form. Using the representation theorem we can write x as

x = d +
k∑
i=1

αivi,

where
k∑
i=1

αi = 1 and αi ≥ 0, i = 1, . . . , k.

As before { vi } is the set of extreme points of the feasible region, and d is either zero or a
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direction of unboundedness. The objective function has the value

cTx = cTd +
k∑
i=1

αic
Tvi .

We first show that cTd = 0. If cTd < 0, then the objective function is unbounded below,
since it is straightforward to verify that

xγ = γ d +
k∑
i=1

αivi

will be feasible for any γ > 0 and cT(γ d) = γ cTd will be unbounded below as γ increases.
This in turn implies that cTxγ is unbounded below. Since x was assumed to be a finite optimal
solution, this is a contradiction and so cTd ≥ 0. Now if cTd > 0, then cTx > cTy where

y =
k∑
i=1

αivi

is a feasible point. This shows that x would not be optimal in this case. Hence cTd = 0 and
cTx = cTy, showing that y is also an optimal solution.

Now pick an index j for which cTvj = mini
{
cTvi

}
. Then for any convex combination

of the vi’s,

cTy =
k∑
i=1

αic
Tvi ≥

k∑
i=1

αic
Tvj

= cTvj

k∑
i=1

αi = cTvj .

Since y is optimal it must be true that cTy = cTvj , showing that there is an optimal extreme
point, namely vj , or equivalently an optimal basic feasible solution.

One of the conditions for an optimal solution is that the objective function cannot
decrease if we move in any feasible direction. Consider the linear program from Section 4.1:

minimize z = −x1 − 2x2

subject to −2x1 + x2 ≤ 2
−x1 + x2 ≤ 3

x1 ≤ 3
x1, x2 ≥ 0.

If we select the optimal point x = (3, 6)T and move some small distance ε > 0 in the
feasible direction d = (−2,−3)T, then

cT(x + εd) = cTx + εcTd
= −15 + 8ε > −15,

so that the objective function increases in this direction.
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We can also represent this idea algebraically. Suppose that we have a linear program
in standard form

minimize z = cTx

subject to Ax = b

x ≥ 0,
and that x is an optimal basic feasible solution. If p is a feasible direction, then x+ εp must
be feasible for small ε > 0. In addition, because x is optimal, cT(x + εp) ≥ cTx. Hence p
must satisfy

cTp ≥ 0
Ap = 0
pi ≥ 0 if xi = 0.

We will use these conditions when deriving the simplex method in the next chapter.

Exercises
4.1. Let x be a feasible point for the constraints

Ax = b, x ≥ 0

that is not an extreme point. Prove that there exists a vector p = 0 satisfying

Ap = 0
pi = 0 if xi = 0.

4.2. Let x be an element of a convex set S. Assume that x1 = x + ε1p ∈ S and
x2 = x − ε2p ∈ S, where p = 0 and ε1, ε2 > 0. Prove that x is a convex
combination of x1 and x2. That is, prove that

x = αx1 + (1 − α)x2,

where 0 < α < 1, and determine the value of α.

4.3. Let x be a convex combination of { y1, . . . , yk }. Assume in turn that each yi is a
convex combination of

{
yi,1, . . . , yi,ki

}
. Prove that x is a convex combination of

the vectors
{
yi,j

}
.

4.4. Let p be a direction of unboundedness for the constraints

Ax = b, x ≥ 0.

Prove that −p cannot be a direction of unboundedness for these constraints.

4.5. Let { d1, . . . , dk } be directions of unboundedness for the constraints

Ax = b, x ≥ 0.

Prove that

d =
k∑
i=1

αidi with αi ≥ 0

is also a direction of unboundedness for these constraints.
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4.6. Consider the linear program

minimize z = 2x1 − 3x2

subject to 4x1 + 3x2 ≤ 12
x1 − 2x2 ≤ 2
x1, x2 ≥ 0.

Represent the point x = (1, 1)T as a convex combination of extreme points plus, if
applicable, a direction of unboundedness. Find three different representations.

4.7. Consider the linear program

minimize z = 3x1 + x2

subject to x1 − x2 ≥ 2
−2x1 + x2 ≤ 4
x1, x2 ≥ 0.

Represent the point x = (5, 2)T as a convex combination of extreme points plus, if
applicable, a direction of unboundedness. Find three different representations.

4.8. Suppose that a linear program with bounded feasible region has � optimal extreme
points v1, . . . , v�. Prove that a point is optimal for the linear program if and only if
it can be expressed as a convex combination of { vi }.

4.9. Complete the proof of Theorem 4.6 in the case where S is bounded by showing that
x is a convex combination of y1 and y2.

4.5 Notes
The material in this chapter is well known and is discussed in a number of books on linear
programming such as the books of Dantzig (1963, reprinted 1998), Chvátal (1983), Murty
(1983), and Schrijver (1986, reprinted 1998).
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Chapter 5

The Simplex Method

5.1 Introduction
The simplex method is the most widely used method for linear programming and one of the
most widely used of all numerical algorithms. It was developed in the 1940’s at the same
time as linear programming models came to be used for economic and military planning.
It had competitors at that time, but these competitors could not match the efficiency of the
simplex method and they were soon discarded. Even as problems have become larger and
computers more powerful, the simplex method has been able to adapt and remain the method
of choice for many people. It is only in recent years with the development of interior-point
methods (see Chapter 10) that the simplex method has had a serious challenge for primacy
in the realm of linear programming.

Even though the simplex method only solves linear programming problems, its tech-
niques are of more general interest. The same techniques can be used to handle linear
constraints in nonlinear optimization problems and can be generalized to handle nonlinear
constraints. This is discussed in Chapter 15. The ways that constraints are represented are
used in other settings, as are the methods for computing Lagrange multipliers (dual vari-
ables; see Chapter 6). Our study of the simplex method will also provide a good setting for
discussing degeneracy and a number of other topics.

The simplex method has important historic ties to economics, and this has influenced
the terminology associated with the method. For example, it is common to speak of reduced
“costs” and shadow “prices.” For many applications these terms are useful and suggestive
of the interpretations that will be given to the linear programming model.

In this chapter we describe the basic form of the simplex method. We apply the
method to a linear program in standard form, show how to find an initial feasible point,
and adapt the simplex method to solve degenerate problems. Our emphasis will be on the
general properties of the method. The details that make up a modern implementation of the
method are delayed until Chapter 7.

The results of Chapter 4 provide the major motivation for the simplex method. We
proved that if a linear program has a finite optimal solution, then it has an optimal basic
feasible solution. This implies that we need only examine basic feasible solutions to solve
a linear program. The simplex method is a systematic and effective way to do just this.

125
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126 Chapter 5. The Simplex Method

5.2 The Simplex Method
The simplex method is an iterative method for solving a linear programming problem written
in standard form. When applied to nondegenerate problems, it moves from one basic feasible
solution (extreme point) to another. The simplex method is an example of a feasible-point
method (see Section 3.1). What distinguishes the simplex method from a general feasible-
point method is that every estimate of the solution is a basic feasible solution. At each
iteration the method tests to see if the current basis is optimal. If it is not, the method selects
a feasible direction along which the objective function improves and moves to an adjacent
basic feasible solution along that direction. Then everything repeats.

Here we present the simplex method using explicit matrix inverses. Modern computer
implementations of the simplex method do not do this, but rather use matrix factorizations
and related techniques (see Section 7.5). The main reason is that explicit matrix inverses
are not suitable for sparse problems. However, many important ideas about linear pro-
gramming and about the simplex method can be explained without reference to the specific
representation of the inverse matrix.

The simplex method will be illustrated using the linear program

minimize z = −x1 − 2x2

subject to −2x1 + x2 ≤ 2
−x1 + 2x2 ≤ 7

x1 ≤ 3
x1, x2 ≥ 0.

Slack variables are added to put it in standard form:

minimize z = −x1 − 2x2

subject to − 2x1 + x2 + x3 = 2
− x1 + 2x2 + x4 = 7

x1 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0.

As usual, we denote the objective function by z = cTx and the constraints by Ax = b, with
x ≥ 0. The feasible region for the original form of the problem is illustrated in Figure 5.1.

In this problem each of the constraints has a slack variable. This makes it easy to
find a basic feasible solution, that is, xB = (x3, x4, x5)

T and xN = (x1, x2)
T. The coefficient

matrix associated with a complete set of slack variables will always be the identity matrix I ,
whose columns are linearly independent. Since the nonbasic variables will be zero, the
basic variables will satisfy

IxB = xB = b.

In standard form the right-hand side b will be nonnegative, so x ≥ 0 and is feasible. For
this example, the initial basic feasible solution is

( x1 x2 x3 x4 x5 )
T = ( 0 0 2 7 3 )T .

This corresponds to the extreme point xa in Figure 5.1.
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Figure 5.1. The simplex method.

We now test if this point is optimal. To do this, we determine if there exist any feasible
descent directions. The constraints can be written with the basic variables expressed in terms
of the nonbasic variables:

x3 = 2 + 2x1 − x2

x4 = 7 + x1 − 2x2

x5 = 3 − x1.

All other feasible points can be found by varying the values of the nonbasic variables x1 and
x2 and using the constraints to determine the values of the basic variables x3, x4, and x5.
Because the nonbasic variables are currently zero and all variables must be nonnegative, it
is only valid to increase a nonbasic variable so that it becomes positive.

Our goal is to minimize the objective function

z = −x1 − 2x2,

and its current value is z = 0. If either x1 or x2 is increased from zero, then z will decrease.
This shows that nearby feasible points obtained by increasing either x1 or x2 give lower
values of the objective function, so that the current basis is not optimal.

The simplex method moves from one basis to an adjacent basis, deleting and adding
just one variable from the basis. This corresponds to moving between adjacent basic feasible
solutions. In geometric terms, the simplex method moves along edges of the feasible region.
It is not difficult to calculate how the objective function changes along an edge of the feasible
region, and this contributes to the simplicity of the method.

For this example, moving to an adjacent basic feasible solution corresponds to in-
creasing either x1 or x2, but not both. The coefficient of x2 is greater in absolute value
than the coefficient of x1, so z decreases more rapidly when x2 is increased. In the hope of
making more rapid progress toward the solution, we choose to increase x2 rather than x1.
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Every unit increase of x2 decreases the objective value by two, so the more x2 is in-
creased, the better the value of the objective. However, the value of x2 cannot be increased
indefinitely because the region is bounded. The constraint equations show that as x2 in-
creases and x1 is kept fixed at zero, x3 = 2 − x2 and x4 = 7 − 2x2 decrease but x5 = 3
is unaffected. To maintain nonnegativity of the variables, x2 can be increased only until
one of x3 or x4 becomes zero. The first constraint shows that x3 = 0 when x2 = 2 (and
x4 = 3 > 0); this corresponds to the point xb in Figure 5.1. The second constraint shows
that x4 = 0 when x2 = 7

2 (and x3 = − 3
2 < 0); this corresponds to the infeasible point xf

in the figure. Consequently x2 can only be increased to the value x2 = 2. At this point x3

becomes zero and leaves the basis, and x2 has entered the basis. The new basic feasible
solution is xb:

( x1 x2 x3 x4 x5 )
T = ( 0 2 0 3 3 )T ,

where xB = (x2, x4, x5)
T and xN = (x1, x3)

T.
The final step in the iteration is to make the transition to the new basic feasible solution.

One way to do this is to rewrite the problem so that the new basic variables are expressed
in terms of the new nonbasic variables. We want only the nonbasic variables to appear
in the objective, and we want the coefficient matrix for the basic variables in the equality
constraints to be the identity matrix. Writing the constraints in this way will allow us to
repeat the same analysis at the new basic feasible solution. It will make it easy to determine
if the current basis is optimal, and if not, how the basis can be changed to improve the value
of the objective.

Since x2 is replacing x3 in the basis, we use the first constraint (the one that defines x3

in terms of the other variables) to express x2 in terms of the nonbasic variables x1 and x3:

x2 = 2 + 2x1 − x3.

We then use this equation to make substitutions for x2 in the remaining constraints and the
objective function. After simplification the linear program has the form

minimize z = −4 − 5x1 + 2x3

subject to the constraints

x2 = 2 + 2x1 − x3

x4 = 3 − 3x1 + 2x3

x5 = 3 − x1

and with all variables nonnegative. Since x1 = x3 = 0 the current objective value is z = −4
and the basic variables have the values x2 = 2, x4 = 3, and x5 = 3. This completes one
iteration of the simplex method.

We can now begin again by testing for optimality, examining how the objective
changes when we increase the nonbasic variables from zero. This basic feasible solu-
tion is not optimal and we can improve the objective by increasing x1. And so forth. At
each iteration, we identify a nonbasic variable that can improve the objective (if one exists).
This variable is increased until some basic variable decreases to zero. This gives a new
basic feasible solution, and the process repeats.

For this example, the simplex method moves from xa to xb to xc to xd , the optimal
point. We will go through the remaining iterations in Example 5.2.
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5.2.1 General Formulas

Let us now consider a general linear program and derive general formulas for the steps in
the simplex method. Assume that the problem has n variables and m linearly independent
equality constraints.

We derive the formulas in matrix-vector form for the linear program

minimize z = cTx

subject to Ax = b

x ≥ 0.

Let x be a basic feasible solution with the variables ordered so that

x =
(
xB
xN

)
,

where xB is the vector of basic variables and xN is the (currently zero) vector of nonbasic
variables. The objective function can be written as

z = cT
B
xB + cTN xN,

where the coefficients for the basic variables are in cB and the coefficients for the nonbasic
variables are in cN . Similarly, we write the constraints as

BxB +NxN = b.

The constraints can be rewritten as

xB = B−1b − B−1NxN.

By varying the values of the nonbasic variables we can obtain all possible solutions to
Ax = b.

If this formula is substituted into the formula for z, we obtain

z = cT
B
B−1b + (cT

N
− cT

B
B−1N)xN.

If we define y = (cT
B
B−1)T = B−T cB , then z can be written as

z = yTb + (cT
N
− yTN)xN.

This formula is efficient computationally. The vector y is the vector of simplex multipliers.
The current values of the basic variables and the objective are obtained by setting xN = 0.
We denote these by

xB = b̂ = B−1b and ẑ = cT
B
B−1b.

Example 5.1 (General Formulas). For our sample linear program,

A =
(−2 1 1 0 0
−1 2 0 1 0

1 0 0 0 1

)
, b =

( 2
7
3

)
, and c =

⎛
⎜⎜⎜⎝
−1
−2

0
0
0

⎞
⎟⎟⎟⎠ .
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If xB = (x1, x2, x3)
T and xN = (x4, x5)

T, then

B =
(−2 1 1
−1 2 0

1 0 0

)
, B−1 =

⎛
⎝ 0 0 1

0 1
2

1
2

1 − 1
2

3
2

⎞
⎠ , N =

( 0 0
1 0
0 1

)
,

cT
B
= (−1,−2, 0), and cT

N
= (0, 0). The current values of the variables are

xB = b̂ = B−1b =
( 3

5
3

)

and xN = (0, 0)T. The objective value is

ẑ = cT
B
B−1b = −13.

If we define
yT = cT

B
B−1 = ( 0 −1 −2 ) ,

then the objective value could also be computed as ẑ = yTb = −13. If xN = 0, then the
general formula for the basic variables is

xB = B−1b − B−1NxN =
( 3

5
3

)
−
⎛
⎝ 0 1

1
2

1
2

− 1
2

3
2

⎞
⎠(

x4

x5

)
,

and the general formula for the objective value is

z = yTb + (cT
N
− yTN)xN = −13 + ( 1 2 )

(
x4

x5

)
.

Let ĉj be the entry in the vector ĉT
N

≡ (cT
N
− cT

B
B−1N) corresponding to xj . The

coefficient ĉj is called the reduced cost of xj . Then

z = ẑ+ ĉT
N
xN.

(In Example 5.1, ĉ4 = 1 and ĉ5 = 2.) If the nonbasic variable xj is assigned some nonzero
value ε, then the objective function will change by ĉj ε.

To test for optimality we examine what would happen to the objective function if each
of the nonbasic variables were increased from zero. If ĉj > 0 the objective function will
increase, if ĉj = 0 the objective will not change, and if ĉj < 0 the objective will decrease.
Hence if ĉj < 0 for some j , then the objective function can be improved if xj is increased
from zero. If the current basis is not optimal, then a variable xt with ĉt < 0 can be selected
to enter the basis.

Once the entering variable xt has been selected, we must then determine how much
it can be increased before a nonnegativity constraint is violated. This determines which
variable (if any) will leave the basis. The basic variables are defined by

xB = B−1b − B−1NxN,
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and, with the exception of xt , all components of xN are zero. Thus

xB = b̂ −Âtxt ,
whereÂt is the vector B−1At and At is the t th column of A.

We examine this equation componentwise:

(xB)i = b̂i − âi,t xt .
If âi,t > 0, then (xB)i will decrease as the entering variable xt increases, and (xB)i will equal
zero when xt = b̂i/âi,t . If âi,t < 0, then (xB)i will increase, and if âi,t = 0, then (xB)i will
remain unchanged.

The variable xt can be increased as long as all the variables remain nonnegative, that
is, until it reaches the value

x̄t = min
1≤i≤m

{
b̂i

âi,t
: âi,t > 0

}
.

This is a ratio test (see Section 3.1), but of an especially simple form. The minimum ratio
from the ratio test identifies the new nonbasic variable, and hence determines the new basic
feasible solution, with xt as the new basic variable. The formulas

xB ← xB −Ât x̄t and ẑ← ẑ+ ĉt x̄t
can be used to determine the new values of the objective function and the basic variables in
the current basis. The variable xt is assigned the value x̄t ; the remaining nonbasic variables
are still zero.

If âi,t ≤ 0 for all values of i, then none of the basic variables will decrease in value as
xt is increased from zero, and so xt can be made arbitrarily large. In this case, the objective
function will decrease without bound as xt → ∞, indicating that the linear program does
not have a finite minimum. Such a problem is said to be “unbounded.”

We can now outline the simplex algorithm. The method starts with a basis matrix B
corresponding to a basic feasible solution xB = b̂ = B−1b ≥ 0. The steps of the algorithm
are given below.

1. The Optimality Test—Compute the vector yT = cT
B
B−1. Compute the coefficients

ĉT
N
= cT

N
− yTN . If ĉT

N
≥ 0, then the current basis is optimal. Otherwise, select a

variable xt that satisfies ĉt < 0 as the entering variable.

2. The Step—Compute Ât = B−1At , the constraint coefficients corresponding to the
entering variable. Find an index s that satisfies

b̂s

âs,t
= min

1≤i≤m

{
b̂i

âi,t
: âi,t > 0

}
.

This ratio test determines the leaving variable and the “pivot entry” âs,t . If âi,t ≤ 0
for all i, then the problem is unbounded.

3. The Update—Update the basis matrix B and the vector of basic variables xB .
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The optimality test is a local test since it only involves the reduced costs in the current
basis. Since linear programming problems are convex optimization problems, however,
any local solution is also a global solution. (See Section 2.3.) Thus this test identifies a
global solution to a linear program.

Example 5.2 (Simplex Algorithm). We will illustrate the simplex method on our example
linear program:

A =
(−2 1 1 0 0
−1 2 0 1 0

1 0 0 0 1

)
, b =

( 2
7
3

)
, and c =

⎛
⎜⎜⎜⎝
−1
−2

0
0
0

⎞
⎟⎟⎟⎠ .

If we use the slack variables as the initial basis, then xB = (x3, x4, x5)
T, xN = (x1, x2)

T,
B = I = B−1, cT

B
= (0, 0, 0), cT

N
= (−1,−2), and

N =
(−2 1
−1 2

1 0

)
.

Thus xB = b̂ = B−1b = (2, 7, 3)T. With this basis

yT = cT
B
B−1 = ( 0 0 0 ) and ĉT

N
= cT

N
− yTN = (−1 −2 ) .

Both components of ĉN are negative, so this basis is not optimal. Since (ĉN )2 is the more
negative component, we select x2 (the second nonbasic variable) as the entering variable.

For the ratio test we compute the entering column

Â2 = B−1A2 =
( 1

2
0

)
,

so that the ratios (corresponding to the first two components of Â2) are

b̂1

â1,2
= 2 and

b̂2

â2,2
= 7

2
.

The first ratio is smaller, so x3 (the first basic variable) is the variable that leaves the basis.
At the next iteration x2 replaces x3 in the basis, so that xB = (x2, x4, x5)

T, xN =
(x1, x3)

T,

B =
( 1 0 0

2 1 0
0 0 1

)
, B−1 =

( 1 0 0
−2 1 0

0 0 1

)
, N =

(−2 1
−1 0

1 0

)
,

cT
B
= (−2, 0, 0), and cT

N
= (−1, 0). Thus

xB = b̂ = B−1b = ( 2 3 3 )T

yT = cT
B
B−1 = (−2 0 0 )

ĉT
N
= cT

N
− yTN = (−5 2 ) .
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The first reduced cost is negative, so this basis is not optimal, and x1 (the first nonbasic
variable) is the entering variable. The entering column is

Â1 = B−1A1 =
(−2

3
1

)

and the candidate ratios are b̂2/â2,1 = 1 and b̂3/â3,1 = 3, so that x4 (the second basic
variable) is the leaving variable.

At the third iteration xB = (x2, x1, x5)
T, xN = (x3, x4)

T,

B =
( 1 −2 0

2 −1 0
0 1 1

)
, B−1 =

⎛
⎜⎝
− 1

3
2
3 0

− 2
3

1
3 0

2
3 − 1

3 1

⎞
⎟⎠ , N =

( 1 0
0 1
0 0

)
,

cT
B
= (−2,−1, 0), and cT

N
= (0, 0). Then

xB = b̂ = B−1b = ( 4 1 2 )T

yT = cT
B
B−1 = ( 4

3 − 5
3 0 )

ĉT
N
= cT

N
− yTN = (− 4

3
5
3 ) .

This basis is not optimal and x3 is the entering variable. The entering column is

Â3 = B−1A3 =
⎛
⎜⎝
− 1

3

− 2
3
2
3

⎞
⎟⎠

and the only candidate ratio is b̂3/â3,1 = 3, so x5 is the leaving variable.
At the fourth iteration, xB = (x2, x1, x3)

T, xN = (x4, x5)
T,

B =
( 1 −2 1

2 −1 0
0 1 0

)
, B−1 =

⎛
⎝ 0 1

2
1
2

0 0 1

1 − 1
2

3
2

⎞
⎠ , N =

( 0 0
1 0
0 1

)
,

cT
B
= (−2,−1, 0), and cT

N
= (0, 0). Then

xB = b̂ = B−1b = ( 5 3 3 )T

yT = cT
B
B−1 = ( 0 −1 −2 )

ĉT
N
= cT

N
− yTN = ( 1 2 ) .

This basis is optimal.

In the optimality test of the simplex method there is an ambiguity about the choice
of the entering variable. In the example, we selected the entering variable corresponding
to the most negative ĉj < 0. If xj is increased by ε, then z will change by ĉj ε, so this
choice achieves the best rate of decrease in z. This choice does not take into account the
results of the ratio test, so it is possible that only a tiny step will be taken and that zwill only
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decrease by a small amount. It also does not take into account the scaling of the variables in
the problem. Other more sophisticated ways of choosing the entering variable are possible,
but they may require additional computations and can be more expensive to use. They are
discussed in Section 7.6.1.

Had we chosen x1 to enter the basis at the first iteration, the method would have moved
from xa through xe to the optimal point xd , requiring only two iterations; see Figure 5.1.
For general problems, however, there is no practical way to predict which choice of entering
variable would lead to the least number of iterations.

5.2.2 Unbounded Problems

In step 2 of the simplex method there is the possibility that the problem will be unbounded.
If âi,t > 0, then basic variable (xB)i will decrease as the entering variable xt increases,
and (xB)i will equal zero when xt = b̂i/âi,t . If âi,t ≤ 0 for all i, then none of the basic
variables will decrease as xt increases, implying that xt can be increased without bound, and
hence the feasible region is unbounded. The objective function will change by an amount
equal to ĉt xt as xt increases. Since the entering variable was chosen because ĉt < 0, the
objective function can be decreased indefinitely. Thus the linear program will not have a
finite minimum value. Unboundedness is illustrated in the following example.

Example 5.3 (Unbounded Linear Program). Consider the linear program

minimize z = −x1 − 2x2

subject to −x1 + x2 ≤ 2
−2x1 + x2 ≤ 1
x1, x2 ≥ 0.

After two iterations, the basis is xB = (x1, x2)
T with xN = (x3, x4)

T,

B =
(−1 1
−2 1

)
and B−1 =

(
1 −1
2 −1

)
.

At this iteration, xB = (1, 3)T and the reduced costs for the nonbasic variables are ĉT
N
=

(5,−3), so the current basis is not optimal, and x4 (the second nonbasic variable) is the
entering variable. The entering column is

Â4 =
(−1
−1

)
,

so there are no candidates for the ratio test. The entering variable x4 can be increased
without limit, so the objective function can be decreased without limit, and there is no finite
solution to this linear program. This can also be seen by looking at a graph of the feasible
region; see Figure 5.2. (The figure represents the two-variable version of the problem, not
the problem in standard form.)

The current basic feasible solution is (x1, x2, x3, x4)
T = (1, 3, 0, 0)T. From the equa-

tion xB = b̂ −Â4x4 we conclude that all points of the form⎛
⎜⎝
x1

x2

x3

x4

⎞
⎟⎠ =

⎛
⎜⎝

1
3
0
0

⎞
⎟⎠+

⎛
⎜⎝

1
1
0
1

⎞
⎟⎠ x4
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1 2 3

1

2

3

-3 -2 -1

Figure 5.2. Unbounded linear program.

are feasible. Let d = (1, 1, 0, 1)T. It is easy to check that d ≥ 0 and Ad = 0, where

A =
(−1 1 1 0
−2 1 0 1

)
is the coefficient matrix for the constraints of the problem in standard form. Hence d is
a direction of unboundedness. Since cTd < 0, the objective decreases as x4 is increased,
showing that the problem is unbounded.

In this example it would have been possible to stop at the first iteration. Our rule for
choosing the entering variable picked x2 to enter the basis, but any variable xj with ĉj < 0
can be the entering variable since such a variable will lead to an improvement in the objective
function. If x1 were chosen as the entering variable, then the entering column would be

Â1 =
(−1
−2

)
,

and there would be no candidates for the ratio test, again indicating that the problem is
unbounded. At the first iteration, all points of the form⎛

⎜⎝
x1

x2

x3

x4

⎞
⎟⎠ =

⎛
⎜⎝

0
0
2
1

⎞
⎟⎠+

⎛
⎜⎝

1
0
1
2

⎞
⎟⎠ x1

are feasible, where d = (1, 0, 1, 2)T is a direction of unboundedness along which the ob-
jective decreases.

5.2.3 Notation for the Simplex Method (Tableaus)

Although we have presented the formulas for the simplex method already, these formulas
are not always convenient for classroom and explanatory use because they require the
calculation of matrix inverses or solving systems of equations. (If software is available
for performing the necessary matrix calculations, however, they are satisfactory.) In this
section we present a notational device called a “tableau” for representing the calculations in
the simplex method. The tableau uses the inverse of the basis matrix, but updates it at every
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iteration of the simplex method, rather than calculating it anew. This makes it possible to
solve small linear programs “by hand.”

The tableau is also a convenient and compact format to present examples. For this
reason we will sometimes use tableaus to discuss examples. To understand our examples
it is only necessary to be able to extract information from the tableaus, not to manipulate
them.

We emphasize that the tableaus (and the use of explicit matrix inverses) are merely
notational devices that assist our explanations of the simplex method. Computer implemen-
tations of the simplex method use other techniques more suitable for large sparse problems
(see Chapter 7).

For our example
minimize z = −x1 − 2x2

subject to − 2x1 + x2 + x3 = 2
− x1 + 2x2 + x4 = 7

x1 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0

the initial tableau looks like

basic x1 x2 x3 x4 x5 rhs

−z −1 −2 0 0 0 0

x3 −2 1 1 0 0 2
x4 −1 2 0 1 0 7
x5 1 0 0 0 1 3

The lower part of the tableau contains the coefficients of the constraints of the linear program
in standard form. For example, the last row corresponds to the third constraint x1 + x5 = 3.
The top row of the tableau contains the coefficients in the objective function. It corresponds
to writing the objective function in the form of an equality constraint

−z− x1 − 2x2 + 0x3 + 0x4 + 0x5 = 0,

where the right-hand side is the negative of the current value of the objective function. To
emphasize that the objective value is multiplied by −1, the top row of the tableau is labeled
−z. The first column of the tableau lists the basic variables and the column labeled “rhs” for
“right-hand side” records the values of −z and the basic variables. (The nonbasic variables
are zero.)

We will again solve the example problem, this time using the tableau. Because
the initial basis matrix is B = I , the entries in the lower part of the “rhs” column are
xB = b̂ = B−1b and the entries in the top row are the current reduced costs ĉ. At every
iteration, the entries in the tableau will be represented in terms of the current basis, so that
the “rhs” column will include b̂ and the top row will include ĉ.

Before proceeding with the example, we give the general formulas for the tableau.
Consider a linear program in standard form with n variables and m equality constraints.
Let us assume that at the current iteration the vectors of basic and nonbasic variables are
xB = (x1, . . . , xm)

T and xN = (xm+1, . . . , xn)
T, respectively.
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The original linear program corresponds to the tableau

basic xB xN rhs

−z cT
B

cT
N

0

xB B N b

and the tableau for the problem in the current basis is

basic xB xN rhs

−z 0 cT
N
− cT

B
B−1N −cT

B
B−1b

xB I B−1N B−1b

These are the matrix-vector formulas for the tableau.
The simplex iteration begins with the optimality test. For the basic variables the

reduced costs are zero. In our example, at the first iteration the reduced costs for the
nonbasic variables are negative, so the current basis is not optimal. The reduced cost for x2

is larger in magnitude, so we select x2 as the entering variable.
We determine the leaving variable using the ratio test. The ratios are computed using

the “rhs” values and the values in the entering column, where the ratio is computed only
if the coefficient of the entering variable is positive. The smallest nonnegative ratio will
correspond to the leaving variable. In the tableau, only the first two constraint coefficients
for x2 are greater than zero, giving the ratios 2/1 = 2 and 7/2 = 7

2 . Hence, x3 is the leaving
variable. In the tableau we mark the entering variable as well as the pivot entry in the x2

column and the x3 row:

⇓
basic x1 x2 x3 x4 x5 rhs

−z −1 −2 0 0 0 0

x3 −2 1 1 0 0 2
x4 −1 2 0 1 0 7
x5 1 0 0 0 1 3

The final step is to transform the tableau to express the coefficients in terms of the
new basis. This step is sometimes called pivoting. This can be done using the matrix-vector
formulas for the tableau using the new basis. It can also be done directly from the tableau
by applying elementary row operations to transform the x2 column into⎛

⎜⎝
0
1
0
0

⎞
⎟⎠ ,

that is, into a column of the identity matrix with a one as the pivot entry and zeroes elsewhere.
The result of this transformation is that the new basic variables are represented in terms of
the new nonbasic variables.
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In this case we add 2 times the x3 row to the −z row, and subtract 2 times the x3 row
from the x4 row to obtain the new tableau:

basic x1 x2 x3 x4 x5 rhs

−z −5 0 2 0 0 4

x2 −2 1 1 0 0 2
x4 3 0 −2 1 0 3
x5 1 0 0 0 1 3

Notice that the “basic” column has been modified to reflect the change in the basis. This is
the tableau corresponding to the transformed linear program at the basic feasible solution
xb that we derived earlier.

We now perform the second iteration of the simplex method. In the top row of the
tableau the reduced cost of x1 is −5 < 0, so this basis is not optimal and x1 will be the
entering variable. The ratio test indicates that x4 will leave the basis:

⇓
basic x1 x2 x3 x4 x5 rhs

−z −5 0 2 0 0 4

x2 −2 1 1 0 0 2
x4 3 0 −2 1 0 3
x5 1 0 0 0 1 3

We then apply elimination operations to get the next tableau. The tableaus for the remaining
iterations are

⇓
basic x1 x2 x3 x4 x5 rhs

−z 0 0 − 4
3

5
3 0 9

x2 0 1 − 1
3

2
3 0 4

x1 1 0 − 2
3

1
3 0 1

x5 0 0 2
3 − 1

3 1 2

and

basic x1 x2 x3 x4 x5 rhs

−z 0 0 0 1 2 13

x2 0 1 0 1
2

1
2 5

x1 1 0 0 0 1 3
x3 0 0 1 − 1

2
3
2 3
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At the fourth iteration the reduced costs of the nonbasic variables are all positive, so the
current basis is optimal. The solution can be read from the “rhs” column of the tableau:
z = −13, x2 = 5, x1 = 3, and x3 = 3. The nonbasic variables, x4 and x5, are zero. This is
the same as in Section 5.2.

5.2.4 Deficiencies of the Tableau

In the tableau form of the simplex method, many of the computations performed in a given
iteration are not used in that iteration. For example, the tableau columns of all nonbasic
variables are computed, even though only the column of the entering variable is needed in
order to determine the new solution.

Implementations of the simplex method generate at each iteration only the information
that is specifically required for that iteration. The result is a version of the method which
requires less storage and less computation. It also makes it possible to utilize the sparsity of
the matrix A to reduce the number of computations. Historically this approach was named
the revised simplex method to distinguish it from the tableau form.

The version of the simplex method presented in Section 5.2.1 is of this type. Here we
discuss some of the advantages of this approach.

As before, we work with a problem in standard form

minimize z = cTx

subject to Ax = b

x ≥ 0,

where A is an m × n matrix of full row rank. Let B be the basis matrix at some iteration.
In matrix-vector notation, the current tableau is

basic xB xN rhs

−z 0 cT
N
− cT

B
B−1N −cT

B
B−1b

xB I B−1N B−1b

The information required for the simplex method can be generated directly from
B−1 and the original data. This allows us to compute information only as needed. More
specifically, suppose that some representation of the m × m inverse of a basis matrix for
some iteration is available. Then the only other information that would be needed at that
iteration is the current solution vector, the reduced costs, and the column of the entering
variable. This information may be computed from the formulas for the method.

If the basis matrix inverse B−1 is available, then

xB = b̂ = B−1b

and the associated objective value is

ẑ = cT
B
B−1b = cT

B
xB.

The columns of the current tableau, Âj , are obtained from

Âj = B−1Aj ,
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where Aj is the j th column of A. If we define

yT = cT
B
B−1,

we can compute the reduced costs from

ĉj = cj − yTAj .
The process of computing the coefficients ĉj is called pricing.

Some mechanism is needed to update the representation of the inverse matrix for the
next iteration. The inverse could be computed anew at every iteration, but more efficient
techniques are discussed in Chapter 7.

We can be more precise about the computational differences between the simplex
method via formulas and via the tableau.

The simplex method, whether implemented using the formulas from Section 5.2.1
or using the tableau, will go through the same sequence of bases, provided that the same
criteria are used for selecting the entering variable and for breaking ties in selecting the
leaving variable. Thus, on a given problem the two versions perform the same number of
iterations. The difference between the versions of the method is in the organization of the
computation. In the following we compare the formulas with the tableau for a problem in
standard form with m constraints and n variables.

Consider first the storage requirements, beyond those required for storing the problem
itself. The tableau requires an (m+ 1)× (n+ 1) array. The formulas require

• an array of length m to store the value of xB ,

• an array of length m to store the entering column,

• an array of length n−m to store the reduced costs, and

• a representation of B−1.

IfB−1 is represented explicitly, then anm×m array is required. IfB is a sparse matrix, then
its inverse can typically be represented using storage proportional to the number of nonzero
entries inB. Thus if n is much larger thanm (as is frequently the case), the formulas achieve
significant savings in storage requirements as compared to the tableau.

Consider now the computational effort required by the two approaches. One measure
of this effort is the number of operations required per iteration. For simplicity we shall only
count the number of multiplications and divisions. The number of additions and subtractions
is roughly the same. We start by examining the work required to solve a dense problem.

The main computational effort in the tableau method is in pivoting. Each pivot updates
n−m+ 1 tableau columns, corresponding to the (n−m) nonbasic variables plus the right-
hand-side vector. First, the pivot row is divided by the pivot term; this requires n−m+ 1
operations. Next, a multiple of the updated pivot row is added to each of the remaining m
rows (including the top row); this requires m(n − m + 1) multiplications. In total, each
pivot requires

(n−m+ 1)+m(n−m+ 1) = mn+ n+ 1 −m2

multiplications. The only other calculations occur in the ratio test, where at mostm divisions
are performed. The effort in the ratio test is negligible compared to the effort in pivoting,
and for simplicity we shall ignore it.
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The computational effort in an iteration with the formulas includes: computation
of ĉj (pricing); computation of the entering column; the ratio test; and the update. Each
computation ĉj = cj − yTAj requires m multiplications in the inner product. Since there
are n−m nonbasic variables, pricing will requirem(n−m)multiplications. Computing the
entering columnÂt involves a matrix-vector product B−1At , or m2 multiplications. In the
update step, the representation of B−1 must be updated, along with the reduced costs and
the value of xB . If Gaussian elimination is used to do this (see Section 7.5), then the cost is
m+ 1 multiplications per row, or a total cost of (m+ 1)2. Summing up (and again ignoring
the cost of the ratio test), we conclude that the formula-based simplex method requires

m(n−m)+m2 + (m+ 1)2 = mn+ (m+ 1)2

multiplications per iteration.
It appears that unless n is substantially larger thanm, the tableau method will require

less computation. However, our operation count has not taken into account the effects of
sparsity. To examine this, consider for example a sparse problem, where each column of
A has exactly 5 nonzero elements. Then, if we are using the formulas, each inner product
yTAj will now only require 5 multiplications, hence full pricing will require 5(n − m)

multiplications. The matrix-vector product B−1At will require 5m multiplications. The
update step will still require (m+ 1)2 operations. In total, the number of operations will be

5(n−m)+ 5m+ (m+ 1)2 = 5n+ (m+ 1)2.

In contrast, the tableau will still require the number of computations given above. When
m and n are large, the savings offered by the revised simplex method are dramatic. For
example, if m = 1000 and n = 100,000, then each iteration of the tableau simplex method
will require about 99 million operations, while each iteration of the formula-based simplex
method will only require about 1.5 million operations. Such savings might reduce the total
solution time from days to just hours, or from hours to just minutes.

In the operation count, we assumed that B−1 is dense. This is often the case, even
when the matrix B is sparse. Thus, ifm is large the (m+1)2 operations required to update a
dense matrixB−1 may become expensive. In Chapter 7 we describe a variant of the simplex
method that represents B−1 as a product of factors which tend to be sparse. This can further
reduce the work and storage required by the simplex method.

Exercises
2.1. Verify the computational results in Example 5.2.

2.2. Solve the following linear programs using the simplex method. If the problem is two
dimensional, graph the feasible region, and outline the progress of the algorithm.

(i)
minimize z = −5x1 − 7x2 − 12x3 + x4

subject to 2x1 + 3x2 + 2x3 + x4 ≤ 38
3x1 + 2x2 + 4x3 − x4 ≤ 55
x1, x2, x3, x4 ≥ 0.
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(ii)
maximize z = 5x1 + 3x2 + 2x3

subject to 4x1 + 5x2 + 2x3 + x4 ≤ 20
3x1 + 4x2 − x3 + x4 ≤ 30
x1, x2, x3, x4 ≥ 0.

(iii)
minimize z = 3x1 + 9x2

subject to −5x1 + 2x2 ≤ 30
−3x1 + x2 ≤ 12
x1, x2 ≥ 0.

(iv)
minimize z = 3x1 − 2x2 − 4x3

subject to 4x1 + 5x2 − 2x3 ≤ 22
x1 − 2x2 + x3 ≤ 30

x1, x2, x3 ≥ 0

(v)
maximize z = 7x1 + 8x2

subject to 4x1 + x2 ≤ 100
x1 + x2 ≤ 80

x1 ≤ 40
x1, x2 ≥ 0

(vi)
minimize z = −6x1 − 14x2 − 13x3

subject to x1 + 4x2 + 2x3 ≤ 48
x1 + 2x2 + 4x3 ≤ 60
x1, x2, x3 ≥ 0.

.

2.3. Consider the linear program

minimize z = x1 − x2

subject to −x1 + x2 ≤ 1
x1 − 2x2 ≤ 2
x1, x2 ≥ 0.

Derive an expression for the set of optimal solutions to this problem, and show that
this set is unbounded.

2.4. Find all the values of the parameter a such that the following linear program has a
finite optimal solution:

minimize z = −ax1 + 4x2 + 5x3 − 3x4

subject to 2x1 + x2 − 7x3 − x4 = 2
x1, x2, x3, x4 ≥ 0.
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2.5. Using the optimality test to find all the values of the parameter a such that x∗ =
(0, 1, 1, 3, 0, 0)T is the optimal solution of the following linear program:

minimize z = −x1 − a2x2 + 2x3 − 2ax4 − 5x5 + 10x6

subject to − 2x1 − x2 + x4 + 2x6 = 2
2x1 + x2 + x3 = 2

− 2x1 − x3 + x4 + 2x5 = 2
x1, x2, x3, x4, x5, x6 ≥ 0.

2.6. The reduced costs are given by the formula ĉT
N
= cT

N
− cT

B
B−1N , and a basic feasible

solution is optimal if ĉT
N
≥ 0. Construct an example involving a degenerate basic

feasible solution that corresponds to two different bases, where in one basis the basic
feasible solution is optimal, but in the other basis it is not.

2.7. Prove that the set of optimal solutions to a linear programming problem is a convex
set.

2.8. Prove that in the simplex method a variable which has just left the basis cannot
re-enter the basis in the following iteration.

2.9. Consider the linear program

minimize z = cTx

subject to Ax ≤ b

x ≥ 0,

where x = (x1, . . . , xn)
T, c = (0, . . . , 0,−α)T, b = (1, . . . , 1)T, and

A =

⎛
⎜⎜⎜⎜⎝

1
−2 1

−2 1
. . .

. . .

−2 1

⎞
⎟⎟⎟⎟⎠ .

Here α is small positive number, say α = 2−50.

(i) Consider the basic feasible solution where the slacks are the basic variables.
Compute the reduced costs for this basis. By how much does this basis violate
the optimality conditions? What is the current value of the objective?

(ii) Consider now the solution where { x1, . . . , xn } is the set of basic variables.
Prove that this is a basic feasible solution.

(iii) Prove that the solution defined in (ii) is optimal.

(iv) What is the optimal objective value? (Find a closed-form solution, if possible.)

2.10. Consider a linear program with a single constraint

minimize z = c1x1 + c2x2 + · · · + cnxn
subject to a1x1 + a2x2 + · · · + anxn ≤ b

x1, x2, . . . , xn ≥ 0.

(i) Under what conditions is the problem feasible?

(ii) Develop a simple rule to determine an optimal solution, if one exists.
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2.11. Solve the linear programs in Exercise 2.2 using the tableau.

2.12. This problem concerns the number of additions/subtractions in the various versions
of the simplex method for a problem with n variables andm < n equality constraints.

(i) Compute the number of additions/subtractions required in each iteration of the
tableau version of the simplex method.

(ii) Compute the number of additions/subtractions required in each iteration of the
Simplex method implemented using the formulas in Section 5.2.4.

(iii) Assume now that each column of the constraint matrix has l < m nonzero
entries. Repeat part (ii).

2.13. The following tableau corresponds to an iteration of the simplex method:

basic x1 x2 x3 x4 x5 x6 rhs

−z 0 a 0 b c 3 d

0 −2 1 e 0 2 f

1 g 0 −2 0 1 1
0 0 0 h 1 4 3

Find conditions on the parameters a, b, . . . , h so that the following statements are
true.

(i) The current basis is optimal.

(ii) The current basis is the unique optimal basis.

(iii) The current basis is optimal but alternative optimal bases exist.

(iv) The problem is unbounded.

(v) The current solution will improve if x4 is increased. When x4 is entered into
the basis, the change in the objective is zero.

5.3 The Simplex Method (Details)
In Section 5.2, a general discussion of the simplex method was given, and a small linear
program was solved, but this does not give a complete description of the method. For
example, it was not shown how to initialize the method, and there were no guarantees that
it would terminate. The rest of this chapter will fill some of these gaps. In this section, we
show how to detect if the linear program has multiple solutions. In Section 5.4, techniques
for initializing the simplex method are described. And in Section 5.5, we give conditions
under which the simplex method will be guaranteed to terminate when applied to any linear
program.

5.3.1 Multiple Solutions

A linear program can have more than one optimal solution. This can occur when the reduced
cost of a nonbasic variable is equal to zero in the optimal basis.
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Example 5.4 (Multiple Solutions). Consider the linear program

minimize z = −x1

subject to −2x1 + x2 ≤ 2
−x1 + x2 ≤ 3

x1 ≤ 3
x1, x2 ≥ 0.

After one iteration of the simplex method,

basic x1 x2 x3 x4 x5 rhs

−z 0 0 0 0 1 3

x3 0 1 1 0 2 8
x4 0 1 0 1 1 6
x1 1 0 0 0 1 3

This basis is optimal, but the reduced cost for the nonbasic variable x2 is zero. This in-
dicates that if this variable entered the basis, then the objective would change by ĉ2 ×
(new value of x2) = 0, so the objective value would not be altered and would remain
optimal. If we perform this update we obtain

basic x1 x2 x3 x4 x5 rhs

−z 0 0 0 0 1 3

x3 0 0 1 −1 1 2
x2 0 1 0 1 1 6
x1 1 0 0 0 1 3

This basis is also optimal, and again the reduced cost of a nonbasic variable (x4) is zero.
This problem has two optimal basic feasible solutions. Any convex combination of

these two solutions is also optimal. These points correspond to an edge of the feasible
region. This is illustrated in Figure 5.3.

5.3.2 Feasible Directions and Edge Directions

The simplex method is an example of a feasible point method. It moves from one extreme
point to another along a sequence of feasible descent directions. For nondegenerate linear
programs, these directions correspond to edges of the feasible region.

We can determine formulas for the feasible directions in the simplex method. Let
A = (B,N) be the constraint matrix, and let

x̂ =
(
B−1b

0

)
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1 2 3-1-2-3

1

2

3

4

5

6

Figure 5.3. Multiple solutions.

be the corresponding basic feasible solution. (It may be necessary to reorder the variables,
with the basic variables listed first.) Any feasible point can be represented as

x =
(
xB
xN

)
=
(
B−1b − B−1NxN

xN

)

=
(
B−1b

0

)
+
(−B−1N

I

)
xN

= x̂ + ZxN
for some nonnegative value of xN . The matrix

Z =
(−B−1N

I

)

is the null-space matrix for A obtained via variable reduction with this basis.
Alternatively, following the discussion in Section 3.1, x may be written as x̂ + p

where p is a feasible direction. Since

A(x̂ + p) = b and x̂ + p ≥ 0,

it follows that

Ap = 0 and pN ≥ 0.

Hence p is in the null space of A and can be written as p = Zv for some v. Comparing
this with the result above shows that we can set v = pN = xN . Any nonnegative choice of
xN will correspond to a feasible direction.

In the simplex method, only one nonbasic variable is allowed to enter the basis at a
time. This implies that only one component of xN will be nonzero during an update. In turn,
this implies that the feasible directions considered at an iteration of the simplex method are
the columns of Z. If (xN)k is the entering variable and Zk is the kth column of Z, then an
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update step in the simplex method corresponds to a step of the form

x = x̂ + (xN)kZk.

The edges of the feasible region at the point x̂ are the nonnegative points x that can be
written in this form, and the vectors Zk are called edge directions. The step in the simplex
method is of the form

x̂ + αp
for a search direction p = Zk and a step length α = (xN)k , and so the simplex method fits
into the framework of our general optimization algorithm.

If some columnZi ofZ satisfiesZi ≥ 0, then d = Zi is a direction of unboundedness
for the problem. It is easy to verify that Ad = 0 and d ≥ 0, i.e., that the conditions for a
direction of unboundedness are satisfied.

Example 5.5 (Feasible Directions and Edge Directions). We look again at the linear
program

minimize z = −x1 − 2x2

subject to − 2x1 + x2 ≤ 2
− x1 + 2x2 ≤ 7

x1 ≤ 3
x1, x2 ≥ 0.

Its feasible region is depicted in Figure 5.1.
At the first iteration x̂ = xa = (0, 0, 2, 7, 3)T. The basic and nonbasic variables are

xB = (x3, x4, x5)
T and xN = (x1, x2)

T, respectively. The corresponding null-space matrix is

Z =
(

I

−B−1N

)
=

⎛
⎜⎜⎝

I

−
( 1 0 0

0 1 0
0 0 1

)−1 (−2 1
−1 2

1 0

)
⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1 0
0 1
2 −1
1 −2

−1 0

⎞
⎟⎟⎟⎠ .

At this iteration, x2 entered the basis. This is the second nonbasic variable and so the feasible
direction is

p = Z2 = ( 0 1 −1 −2 0 )T .

The step procedure determines that the new value of x2 is 2, and hence the step length is
α = 2. The new basic feasible solution can be written as

x = x̂ + αp = ( 0 0 2 7 3 )T + 2 ( 0 1 −1 −2 0 )T

= ( 0 2 0 3 3 )T .

It would also have been possible to take a step in the feasible direction p = Z1. Both Z1

and Z2 are edge directions. They correspond to the edges connecting xa to xe and xa to xb
in Figure 5.1.
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The null-space matrix Z can also be used to derive a formula for the reduced costs:

cTZ = ( cT
B

cT
N
)

(−B−1N

I

)
= −cT

B
B−1N + cT

N
= cT

N
− cT

B
B−1N.

Thus the reduced cost of the kth nonbasic variable is just cTZk .

Exercises
3.1. Consider the linear program

minimize z = −x1 + 2x2 − x3

subject to x1 + 2x2 + x3 ≤ 12
2x1 + x2 − x3 ≤ 6

− x1 + 3x2 ≤ 9
x1, x2, x3 ≥ 0.

Add slack variables x4, x5, and x6 to put the problem in standard form.

(i) Consider the basis { x1, x4, x6 }. Use the formulas for the simplex method to
represent the linear program in terms of this basis.

(ii) Perform an iteration of the simplex method, constructing the null-space matrix
Z, and computing the search direction d and the step length α so that xk+1 =
xk + αd , where xk is the current vector of variables and xk+1 is the new vector
of variables.

3.2. Derive an expression for the family of optimal solutions to the linear program in
Example 5.5.

3.3. At each iteration of the simplex method xk+1 = xk + αp. Determine α and p for
each iteration in the solution of the linear program from Section 5.2:

minimize z = −x1 − 2x2

subject to −2x1 + x2 ≤ 2
−x1 + 2x2 ≤ 7

x1 ≤ 3
x1, x2 ≥ 0

and verify that Ap = 0 where A is the coefficient matrix for the equality constraints
in the problem.

3.4. Suppose that the optimal solution to a linear program has been found, and a reduced
cost associated with a nonbasic variable is zero. Must the linear program have
multiple solutions? Explain your answer.

3.5. Let x̂ be an optimal basic feasible solution to a linear program in standard form with
m × n constraint matrix A of full row rank. Let Z be the null-space matrix for A
obtained via variable reduction using the basis corresponding to x̂. Suppose that
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cTZk = 0 for k = 1, . . . , � ≤ n − m, where Zk is the kth column of Z and c is the
vector of objective coefficients. Show that every nonnegative vector

x = x̂ +
�∑
j=1

αjZj

is also optimal for the linear program.

5.4 Getting Started—Artificial Variables
The simplex method moves from one basic feasible solution to another until either a solution
is found or until it is determined that the problem is unbounded. In the example in Section
5.2, an initial basic feasible solution was obtained by choosing the slack variables as a basis.
In problems where every constraint has a slack variable this will always be a valid choice.

General problems will not have this property, raising the question of how to find a
basic feasible solution. Sometimes the person posing the problem will be able to provide
one. In cases where a sequence of similar linear programs is solved, such as a weekly
budget prediction where the data vary slightly from week to week, the optimal basis from
the previous linear program may be feasible for the new linear program. Or, say, if the linear
program is designed to optimize the operations of a factory, the current setup at the factory
may represent a basic feasible solution. The use of a specified initial basis was illustrated
in Example 5.1.

This still leaves problems for which no obvious initial feasible point is available.
One could guess at a basis but there is no guarantee that it would correspond to a point
that satisfied the nonnegativity constraints. Randomly trying one basis after another until
a basic feasible solution is found can be time consuming; if the problem were infeasible,
every basis would have to be examined before this could be concluded.

When no initial point is provided, some general technique for getting started is re-
quired. We describe two standard approaches. The first (called the two-phase method)
solves an auxiliary linear program to find an initial basic feasible solution. The second
(called the big-M method) adds terms to the objective function that penalize for infeasi-
bility. Although these are usually considered to be two separate approaches for finding a
feasible point, they are closely related. They both use artificial variables as an algorithmic
device, and in fact the two-phase method is the limit of the big-M method as the magnitude
of the penalty goes to infinity. There are differences, however, in the way in which these
methods are implemented in software, and for this reason it is worthwhile to consider them
separately.

We will study these approaches using the following example:

minimize z = 2x1 + 3x2

subject to 3x1 + 2x2 = 14
2x1 − 4x2 ≥ 2
4x1 + 3x2 ≤ 19
x1, x2 ≥ 0.
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In standard form this becomes

minimize z = 2x1 + 3x2

subject to 3x1 + 2x2 = 14
2x1 − 4x2 − x3 = 2
4x1 + 3x2 + x4 = 19
x1, x2, x3, x4 ≥ 0.

The first constraint contains no obvious candidate for a basic variable. The second constraint
contains an excess variable, but if it were a basic variable it would take on the infeasible
value −2 < 0. Only the third constraint has a slack variable suitable as a member of the
initial basis.

Both initialization techniques use the device of artificial variables, that is, extra vari-
ables that are temporarily added to the problem. An artificial variable is added to every
constraint that does not contain a slack variable:

minimize z = 2x1 + 3x2

subject to 3x1 + 2x2 + a1 = 14
2x1 − 4x2 − x3 + a2 = 2

4x1 + 3x2 + x4 = 19
x1, x2, x3, x4, a1, a2 ≥ 0.

Now it is possible to initialize the simplex method using xB = (a1, a2, x4)
T with values

a1 = 14, a2 = 2, and x4 = 19. This choice of xB has coefficient matrix B that is a
permutation of the identity matrix I .

Since the artificial variables are not part of the original problem, this choice of basis
does not correspond to a basic feasible solution to the original problem; it is not even
feasible for the original problem. The methods discussed below try to move to a basic
feasible solution which does not include artificial variables. If this is possible, then the new
basis will only include variables from the original problem and will represent a feasible
point for the linear program. If the artificial variables cannot be driven to zero, then the
constraints for the original problem are infeasible and the problem has no solution.

5.4.1 The Two-Phase Method

In the two-phase method the artificial variables are used to create an auxiliary linear program,
called the phase-1 problem, whose only purpose is to determine a basic feasible solution
for the original set of constraints. The objective function for the phase-1 problem is

minimize z′ =
∑
i

ai,

where { ai } are the artificial variables. For our example z′ = a1 + a2. The constraints for
the phase-1 problem are the constraints of the original problem put in standard form, with
artificial variables added as necessary. If the constraints for the original linear program are
feasible, then the phase-1 problem will have optimal value z′∗ = 0. If the original constraints
are infeasible, then z′∗ > 0.
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We will illustrate this approach using the tableau. The tableau for the problem with
artificial variables is

basic x1 x2 x3 x4 a1 a2 rhs

−z′ 0 0 0 0 1 1 0

a1 3 2 0 0 1 0 14
a2 2 −4 −1 0 0 1 2
x4 4 3 0 1 0 0 19

The top-row entries for a1 and a2 are not zero, so z′ is not expressed only in terms of the
nonbasic variables. If we write the linear program in terms of the current basis, we obtain

basic x1 x2 x3 x4 a1 a2 rhs

−z′ −5 2 1 0 0 0 −16

a1 3 2 0 0 1 0 14
a2 2 −4 −1 0 0 1 2
x4 4 3 0 1 0 0 19

This transformation is necessary whenever the entries for the initial basic variables are not
zero; it can be performed using the general formulas for the simplex method or by using
elimination within the tableau. If we use the general formulas, the reduced costs for the
nonbasic variables are

cT
N
− cT

B
B−1N = ( 0 0 0 )− ( 0 1 1 )

( 0 0 1
1 0 0
0 1 0

)( 3 2 0
2 −4 −1
4 3 0

)

= (−5 2 1 ) .

The reduced costs for the basic variables are zero. Also, the objective value for the initial
basis is obtained either via elimination or from the formula −z = −cT

B
B−1b.

At the first iteration, the reduced cost for x1 is negative so this basis is not optimal.
The ratio test indicates that a2 is the leaving variable. We would like to remove a2 from
the problem completely. The artificial variables were added to constraints where there was
no obvious choice for a basic variable. In the current basis x1 serves that function for the
second constraint, and a2 is no longer required. For this reason a2 (or any other artificial
variable that has left the basis) can be removed from the problem. The new basic solution is

⇓
basic x1 x2 x3 x4 a1 rhs

−z′ 0 −8 − 3
2 0 0 −11

a1 0 8 3
2 0 1 11

x1 1 −2 − 1
2 0 0 1

x4 0 11 2 1 0 15
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At iteration 2 the reduced costs for x2 and x3 are negative, so this basis is not optimal.
Since the coefficient of x2 is larger in magnitude, x2 will be selected as the entering variable.
Then x4 is the leaving variable. After pivoting we obtain

⇓
basic x1 x2 x3 x4 a1 rhs

−z′ 0 0 − 1
22

8
11 0 − 1

11

a1 0 0 1
22 − 8

11 1 1
11

x1 1 0 − 3
22

2
11 0 41

11

x2 0 1 2
11

1
11 0 15

11

At iteration 3 the reduced cost for x3 is negative so this basis is not optimal and x3

is the entering variable. The ratio test shows that a1 is the leaving variable. Pivoting (and
removing the a1 column because it is irrelevant) gives the new tableau:

basic x1 x2 x3 x4 rhs

−z′ 0 0 0 0 0

x3 0 0 1 −16 2
x1 1 0 0 −2 4
x2 0 1 0 3 1

The current basis does not involve any artificial variables and the objective value is zero,
so this is a feasible point for the constraints of the original problem.

The solution of the phase-1 problem only gives a basic feasible solution for the original
problem; it is not optimal. It can be used as an initial basic feasible solution for the original
problem with objective z = 2x1+3x2. This is called the phase-2 problem, with the following
data:

basic x1 x2 x3 x4 rhs

−z 2 3 0 0 0

x3 0 0 1 −16 2
x1 1 0 0 −2 4
x2 0 1 0 3 1

If the simplex method is implemented without a tableau, then all that is necessary is to
retain the final basis from the phase-1 problem as the initial basis of the phase-2 problem.
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The reduced costs for the basic variables x1 and x2 are not zero, so the problem must
be expressed in standard form before the simplex method can be used. If we represent the
linear program in terms of the current basis, we obtain

⇓
basic x1 x2 x3 x4 rhs

−z 0 0 0 −5 −11

x3 0 0 1 −16 2
x1 1 0 0 −2 4
x2 0 1 0 3 1

The reduced cost for x4 is negative so this basis is not optimal. Only x2 is a candidate for
the ratio test, so it is the leaving variable. Pivoting gives

basic x1 x2 x3 x4 rhs

−z 0 5
3 0 0 − 28

3

x3 0 16
3 1 0 22

3

x1 1 2
3 0 0 14

3

x4 0 1
3 0 1 1

3

This basis is optimal.
Much of the time, the two-phase method will work as indicated. The phase-1 problem

will be set up and solved via the simplex method. If the constraints for the original problem
have a basic feasible solution, at the end of phase 1 the artificial variables will all be
nonbasic, and the final basis from phase 1 can be used as an initial basis for the original
linear program. However, there are several exceptional cases that can arise at the end of
phase 1, all associated with artificial variables remaining in the basis. We will discuss these
using examples. These exceptional cases occur in an analogous way when a big-M approach
is used; see the Exercises.

In the following examples, intermediate results of the simplex method are omitted so
we can focus on the exceptional cases.

Example 5.6 (Infeasible Problem). Consider the linear program

minimize z = −x1

subject to x1 + x2 ≥ 6
2x1 + 3x2 ≤ 4
x1, x2 ≥ 0.

An artificial variable will be used in the first constraint; the second constraint will have a slack
variable and so will not need an artificial variable. The optimal phase-1 basic solution is
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Figure 5.4. Infeasible problem.

basic x1 x2 x3 x4 a1 rhs

−z′ 0 1
2 1 1

2 0 −4

a1 0 − 1
2 −1 − 1

2 1 4

x1 1 3
2 0 1

2 0 2

The objective function is nonzero, and the artificial variable is still in the basis with value
a1 = 4 > 0. There is no solution to the phase-1 problem that has a1 = 0, indicating that
there is no feasible solution to the constraints. This can be seen from Figure 5.4.

In the next example an artificial variable remains in the basis at the end of phase 1,
but with value 0, and the phase-1 objective function also has value 0. In this case a basic
feasible solution has been found, but additional update steps are required to remove the
artificial variables from the basis before phase 2 can begin.

Example 5.7 (Removing Artificial Variables). Consider the linear program

minimize z = x1 + x2

subject to 2x1 + x2 + x3 = 4
x1 + x2 + 2x3 = 2
x1, x2, x3 ≥ 0.

If artificial variables are added to both equations, and x1 replaces a2 in the basis at the first
iteration, then the optimal phase-1 basic solution is

basic x1 x2 x3 a1 rhs

−z′ 0 1 3 0 0

a1 0 −1 −3 1 0
x1 1 1 2 0 2

The value of the objective function is zero, and the point (x1, x2, x3)
T = (2, 0, 0)T is a

feasible point for the original set of constraints. However, the artificial variable a1 is still
in the basis so it is not possible to proceed with phase 2, since an appropriate basis for the
original problem has not yet been found.
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At the current point the values of the variables are

( x1 x2 x3 a1 )
T = ( 2 0 0 0 )T

and so there are three possible choices of basis that would lead to the same solution (assuming
that the corresponding coefficient matrices are of full rank): { x1, x2 }, { x1, x3 }, and { x1, a1 }.
The last involves an artificial variable and is not of interest.

If { x1, x2 } is selected as the basis, then

basic x1 x2 x3 a1 rhs

−z′ 0 0 0 1 0

x2 0 1 3 −1 0
x1 1 0 −1 1 2

This basis is optimal for the phase-1 problem. If { x1, x3 } is selected, then

basic x1 x2 x3 a1 rhs

−z′ 0 0 0 1 0

x3 0 1
3 1 − 1

3 0

x1 1 1
3 0 2

3 2

This basis is also optimal for the phase-1 problem. In both these cases it is now possible to
proceed with phase 2.

For both of these choices we ignored the usual rules for the simplex method. The
reduced costs for the entering variables were positive, and the rules for the ratio test were
violated. It was only possible to do this because the artificial variable was zero. The
purpose here was to find a feasible basis that did not include artificial variables, having
found a solution to the phase-1 problem with objective value zero. We were only interested
in changing the way the solution was represented, that is, in changing the basis to an
equivalent one.

There is a general rule for cases where the phase-1 problem has optimal value zero
but the final basis includes artificial variables equal to zero. If the ith basic variable is a
zero-valued artificial variable, then it can be replaced in the basis by any nonbasic variable
xj from the original linear program for which âi,j = 0.

The final example is a linear program with linearly dependent constraints. We have
assumed up to now that such constraints would be removed. This example shows what can
happen if they are not.

Example 5.8 (Linearly Dependent Constraints). Consider the linear program

minimize z = x1 + 2x2

subject to x1 + x2 = 2
2x1 + 2x2 = 4
x1, x2 ≥ 0.
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The second constraint is twice the first constraint. If artificial variables are added, and x1

replaces a1 in the basis at the first iteration, we obtain the optimal phase-1 basis

basic x1 x2 a2 rhs

−z′ 0 0 0 0

x1 1 1 0 2
a2 0 0 1 0

This basis is optimal with objective value zero, but the artificial variable a2 is still in the
basis. It is not possible to choose the basis { x1, x2 } because the entry in column x2 and row
a2 is zero, so it cannot be a pivot entry.

To resolve the difficulty we look more carefully at the last row of the tableau. It
corresponds to the equation

a2 = 0.

Since this equation has no influence on the original problem it can be removed (together
with the a2 column), leaving the reduced problem

basic x1 x2 rhs

−z′ 0 0 0

x1 1 1 2

This basis can now be used to start phase 2. If the second constraint had been removed from
the problem to begin with, we would have obtained the same result.

This is another case where the phase-1 problem has optimal value zero but the final
basis includes artificial variables equal to zero. In general, if the ith basic variable is a
zero-valued artificial variable and if âi,j = 0 for every variable xj from the original linear
program, then the constraints in the original program must have been linearly dependent.

On a computer it can be difficult to identify linear dependence. Small rounding errors
will be introduced making it unlikely that any computed value will be exactly zero. It is then
necessary to decide if a small number should be considered to be zero. A wrong decision
can lead to a dramatic change in the solution to the linear program. This topic is discussed
further in Chapter 7.

5.4.2 The Big-M Method

In the Big-M method penalty terms are added to the objective function that are designed to
push artificial variables out of the basis. We will again use the example

minimize z = 2x1 + 3x2

subject to 3x1 + 2x2 = 14
2x1 − 4x2 ≥ 2
4x1 + 3x2 ≤ 19
x1, x2 ≥ 0
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to illustrate the method. As before, the problem is put in standard form and artificial variables
are added. But in this case, instead of setting up an auxiliary phase-1 problem, the objective
function will be changed to

minimize z′ = 2x1 + 3x2 +Ma1 +Ma2,

whereM is a symbol representing some large positive number. In general, there will be one
penalty term for each artificial variable. For pencil-and-paper calculations M is left as a
symbol and no specific value is given for it. In a computer calculationM would be set large
enough to dominate all other numbers arising during the solution of the linear program.

If M is large, then any basis that includes a positive artificial variable will lead to a
large positive value of the objective function z′. If there is any basic feasible solution to
the constraints of the original linear program, then the corresponding basis will not include
any artificial variables and its objective value will be much smaller. Because the artificial
variables have a high cost associated with them, the simplex method will eventually remove
them from the basis if this is at all possible. Any basic feasible solution to the penalized
problem in which all the artificial variables are nonbasic (and hence zero) is also a basic
feasible solution to the original problem. The corresponding basis can be used as an initial
basis for the original problem.

The objective function in the phase-1 problem can be obtained as a limit of the ob-
jective function in the big-M method. The big-M method has objective function

z′ = cTx +M
∑
i

ai .

This is equivalent to using the objective

ẑ = M−1cTx +
∑
i

ai .

Taking the limit as M → ∞ gives the phase-1 objective. As a consequence, the tableaus
for the phase-1 problem will only differ from the big-M tableaus in the top row. For this
reason we will go through the simplex method for the example more quickly than we did
when examining the two-phase method.

In our example, the initial basis for the penalized problem with artificial variables
gives

basic x1 x2 x3 x4 a1 a2 rhs

−z′ 2 3 0 0 M M 0

a1 3 2 0 0 1 0 14
a2 2 −4 −1 0 0 1 2
x4 4 3 0 1 0 0 19

As before, the reduced costs for the artificial variables are not zero and the problem must
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be written in terms of the current basis:

⇓
basic x1 x2 x3 x4 a1 a2 rhs

−z′ −5M + 2 2M + 3 M 0 0 0 −16M

a1 3 2 0 0 1 0 14
a2 2 −4 −1 0 0 1 2
x4 4 3 0 1 0 0 19

At the first iteration, x1 is the entering variable and a2 is the leaving variable. As in
the two-phase method, once an artificial variable leaves the basis it becomes irrelevant and
can be removed from the problem. After pivoting (and removing a2), we obtain the basic
solution

⇓
basic x1 x2 x3 x4 a1 rhs

−z′ 0 −8M + 7 − 3
2M + 1 0 0 −11M − 2

a1 0 8 3
2 0 1 11

x1 1 −2 − 1
2 0 0 1

x4 0 11 2 1 0 15

At iteration 2, x2 is the entering variable, and x4 is the leaving variable. After pivoting we
obtain

⇓
basic x1 x2 x3 x4 a1 rhs

−z′ 0 0 −M+6
22

8M−7
11 0 −M+127

11

a1 0 0 1
22 − 8

11 1 1
11

x1 1 0 − 3
22

2
11 0 41

11

x2 0 1 2
11

1
11 0 15

11

At iteration 3, x3 is the entering variable and a1 is the leaving variable. After pivoting (and
removing the a1 column because it is irrelevant) we obtain the new basic solution:

⇓
basic x1 x2 x3 x4 rhs

−z′ 0 0 0 −5 −11

x3 0 0 1 −16 2
x1 1 0 0 −2 4
x2 0 1 0 3 1
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The current basis does not involve any artificial variables, so this is a feasible point for the
original problem. With the artificial variables gone, the objective function is now that of
the original linear program.

At iteration 4 the reduced cost for x4 is negative so this basis is not optimal. In the
column for x4, x2 is the only possible exiting variable. Pivoting gives

basic x1 x2 x3 x4 rhs

−z 0 5
3 0 0 − 28

3

x3 0 16
3 1 0 22

3

x1 1 2
3 0 0 14

3

x4 0 1
3 0 1 1

3

This basis is optimal. As expected, it is the same as the optimal basis obtained using the
two-phase method.

In a software implementation it can be challenging to select an appropriate value for
the penaltyM . M must be large enough to dominate the other values in the problem, but if
it is too large it can introduce serious computational errors through rounding. This topic is
discussed further in Section 16.3.

Exercises
4.1. Use the simplex method (via a phase-1 problem) to find a basic feasible solution to

the following system of linear inequalities:

2x1 − 3x2 + 2x3 ≥ 3
−x1 + x2 + x3 ≥ 5

x1, x2, x3 ≥ 0.

4.2. Solve the problem
minimize z = −4x1 − 2x2 − 8x3

subject to 2x1 − x2 + 3x3 ≤ 30
x1 + 2x2 + 4x3 = 40

x1, x2, x3 ≥ 0,

using (a) the two-phase method; (b) the big-M method.

4.3. Solve the problem
minimize z = −4x1 − 2x2

subject to 3x1 − 2x2 ≥ 4
− 2x1 + x2 = 2
x1, x2,≥ 0,

using (a) the two-phase method; (b) the big-M method.
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4.4. Solve the following problem using the two-phase or big-M method:

minimize z = 2x1 − 2x2 − x3 − 2x4 + 3x5

subject to − 2x1 + x2 − x3 − x4 = 1
x1 − x2 + 2x3 + x4 + x5 = 4

−x1 + x2 − x5 = 4
x1, x2, x3, x4, x5 ≥ 0.

4.5. Consider the phase-1 problem for a linear program with the constraints

x1 ≥ 5
x2 ≥ 1

x1 + 2x2 ≥ 4
x1, x2 ≥ 0.

Consider the following sequence of points (x1, x2)
T:(

0
0

)
,

(
0
1

)
,

(
2
1

)
,

(
4
0

)
,

(
5
0

)
, and

(
5
1

)
.

Show that these points could correspond to successive basic feasible solutions if
the simplex method were applied to the phase-1 problem. Hence show that it is
possible for artificial variables to leave and then re-enter the basis if they are retained
throughout the solution of the phase-1 problem.

4.6. Apply the big-M method to the linear programs in Examples 5.7, 5.8, and 5.9.

4.7. The following are the final phase-1 basic solutions for four different linear program-
ming problems. In each problem a1 and a2 are the artificial variables for the two
constraints, and the objective of each of the problems is

minimize z = x1 + x2 + x3.

For each of the problems, determine whether the problem is feasible; and if it is
feasible, find the initial basis for phase 2 and write the linear program in terms of
that basis.

(i)

basic x1 x2 x3 a1 a2 rhs

−z′ 0 0 0 1 1 0

3 0 1 −1 2 0
2 1 0 0 1 5

(ii)

basic x1 x2 x3 a1 a2 rhs

−z′ 1 0 1 0 0 0

3 1 0 0 1 2
−1 0 −1 1 1 0
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(iii)

basic x1 x2 x3 a1 a2 rhs

−z′ 0 1 2 0 0 −1

0 1 −2 −3 1 1
1 3 4 1 0 3

(iv)

basic x1 x2 x3 a1 a2 rhs

−z′ 0 0 0 3 0 0

1 2 12 1 0 3
0 0 0 −2 1 0

4.8. The following is the final basic solution for phase 1 in a linear programming problem,
where a1 and a2 are the artificial variables for the two constraints:

basic x1 x2 x3 x4 x5 a1 a2 rhs

−z′ 0 a 0 0 b c 1 d

−2 0 4 1 0 0 −2 1
e f g 0 h i 1 j

Find conditions on the parameters a, b, c, d, e, f , g, h, i, and j such that the following
statements are true. You need not mention those parameters that can take on arbitrary
positive or negative values. You should attempt to find the most general conditions
possible.

(i) A basic feasible solution to the original problem has been found.

(ii) The problem is infeasible.

(iii) The problem is feasible but some artificial variables are still in the basis. How-
ever, by performing update operations a basic feasible solution to the original
problem can be found.

(iv) The problem is feasible but it has a redundant constraint.

(v) For the case a = 4, b = 1, c = 0, d = 0, e = 0, f = −4, g = 0, h = −1,
i = 1, and j = 0, determine whether the system is feasible. If so, find an
initial basic solution for phase 2. Assume that the objective is to minimize
z = x1 + x4.

4.9. Consider the linear programming problem

minimize z = cTx

subject to Ax = b

x ≥ 0.
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Let a1, . . . , am be the artificial variables, and suppose that at the end of phase 1 a
basic feasible solution to the problem has been found (no artificial variables are in
the basis). Prove that, in the final phase-1 basis, the reduced costs are zero for the
original variables x1, . . . , xn and are one for the artificial variables.

4.10. Describe how you would use the big-M method to solve a maximization problem.

4.11. Consider the linear programming problem

minimize z = cTx

subject to Ax ≥ b

x ≥ 0,

where b ≥ 0. It is possible to use a single artificial variable to obtain an initial
basic feasible solution to this problem. Let s be the vector of excess variables,
e = (1, . . . , 1)T and a be an artificial variable. Consider the phase-1 problem

minimize z′ = a

subject to Ax − s + ae = b

x, s, a ≥ 0.

(i) Assume for simplicity that b1 = max { bi }. Prove that { a, s2, s3, . . . , sm } is a
feasible basis for the new problem.

(ii) Prove that if the original problem is feasible, then the phase-1 problem will
have optimal objective value z′∗ = 0, and if the original problem is infeasible
it will have optimal objective value z′∗ > 0.

5.5 Degeneracy and Termination
The version of the simplex method that we have described can fail, cycling endlessly without
any improvement in the objective and without finding a solution. This can only happen on
degenerate problems, problems where a basic variable is equal to zero in some basis.

On a degenerate problem, an iteration of the simplex method need not improve the
value of the objective function. Suppose that at some iteration, xt is the entering variable
and xs is the leaving variable. Then the formulas for the simplex method in Section 5.2
indicate that

x̄t = b̂s

âs,t
and z̄ = ẑ+ ĉt x̄t ,

where z̄ is the new objective value. On a degenerate problem it is possible that b̂s = 0 and
x̄t = 0, the entering variable will have value 0 in the new basis (the same value it had as a
nonbasic variable), and the objective value will not change (z̄ = ẑ).

Example 5.9 (Degeneracy). Consider the problem

minimize z = −x1 − x2

subject to x1 ≤ 2
x1 + x2 ≤ 2
x1, x2 ≥ 0.
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The successive bases for this problem are

⇓
basic x1 x2 x3 x4 rhs

−z −1 −1 0 0 0

x3 1 0 1 0 2
x4 1 1 0 1 2

⇓
basic x1 x2 x3 x4 rhs

−z 0 −1 1 0 2

x1 1 0 1 0 2
x4 0 1 −1 1 0

basic x1 x2 x3 x4 rhs

−z 0 0 0 1 2

x1 1 0 1 0 2
x2 0 1 −1 1 0

The degeneracy arises because of the tie in the ratio test at the first iteration. At the second
iteration, x2 enters the basis but its new value is zero. As a result, the values of the variables
and the objective function are unchanged.

If the problem is not degenerate, then b̂s > 0 and so x̄t > 0 and z̄ < ẑ. This fact
will be used to prove that, if the problem is not degenerate, then our version of the simplex
method is guaranteed to terminate.

The “linear program” mentioned in the theorem might be a phase-1 problem or might
include big-M terms for problems where an initial basic feasible solution is not available.
In the case of a phase-1 problem (say), the “optimal basic feasible solution” would only be
a solution to the phase-1 problem and, if the optimal objective value were positive, would
indicate that the original problem were infeasible.

Theorem 5.10 (Finite Termination; Nondegenerate Case). Suppose that the simplex method
is applied to a linear program, and that at every iteration every basic variable is strictly
positive. Then in a finite number of iterations the method either terminates at an optimal
basic feasible solution or determines that the problem is unbounded.

Proof. Consider an iteration of the simplex method. If all the reduced costs satisfy ĉj ≥ 0,
then the current basis is optimal and the method terminates. Otherwise, it is possible to
choose an entering variable xt with ĉt < 0. The ratio test for this variable computes

min
1≤i≤m

{
b̂i

âi,t
: âi,t > 0

}
.
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We have assumed that at every iteration every basic variable is strictly positive, so that
b̂i > 0 for all i. If âi,t ≤ 0 for all i, then there is no valid ratio to consider in the ratio test,
and the problem is unbounded. Otherwise, the minimum ratio from the ratio test will be
strictly positive; let its value be α. The new value of the entering variable will be xt = α

and the objective will change by αĉt < 0, so that the new value of the objective will be
strictly less than the current value.

The value of the objective is completely determined by the choice of basis (the values
of the basic variables are determined from the equality constraints, and the nonbasic variables
are equal to zero). Since the objective is strictly decreased at every iteration, no basis can
reoccur. Since there are only finitely many bases, the simplex method must terminate in a
finite number of iterations.

Termination is not guaranteed for degenerate problems. Consider the linear program

minimize z = − 3
4x1 + 150x2 − 1

50x3 + 6x4

subject to 1
4x1 − 60x2 − 1

25x3 + 9x4 ≤ 0
1
2x1 − 90x2 − 1

50x3 + 3x4 ≤ 0

x3 ≤ 1

x1, x2, x3, x4 ≥ 0.

We will apply the simplex method to this problem, using the most negative reduced cost to
select the entering variable, and breaking ties in the ratio test by selecting the first candidate
row. If this is done, then the simplex method cycles—endlessly repeating the same sequence
of bases with no improvement in the objective and without finding the optimal solution. It
leads to the following sequence of basic solutions:

⇓
basic x1 x2 x3 x4 x5 x6 x7 rhs

−z − 3
4 150 − 1

50 6 0 0 0 0

x5
1
4 −60 − 1

25 9 1 0 0 0

x6
1
2 −90 − 1

50 3 0 1 0 0

x7 0 0 1 0 0 0 1 1

⇓
basic x1 x2 x3 x4 x5 x6 x7 rhs

−z 0 −30 − 7
50 33 3 0 0 0

x1 1 −240 − 4
25 36 4 0 0 0

x6 0 30 3
50 −15 −2 1 0 0

x7 0 0 1 0 0 0 1 1
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⇓
basic x1 x2 x3 x4 x5 x6 x7 rhs

−z 0 0 − 2
25 18 1 1 0 0

x1 1 0 8
25 −84 −12 8 0 0

x2 0 1 1
500 − 1

2 − 1
15

1
30 0 0

x7 0 0 1 0 0 0 1 1

⇓
basic x1 x2 x3 x4 x5 x6 x7 rhs

−z 1
4 0 0 −3 −2 3 0 0

x3
25
8 0 1 − 525

2 − 75
2 25 0 0

x2 − 1
160 1 0 1

40
1

120 − 1
60 0 0

x7 − 25
8 0 0 525

2
75
2 −25 1 1

⇓
basic x1 x2 x3 x4 x5 x6 x7 rhs

−z − 1
2 120 0 0 −1 1 0 0

x3 − 125
2 10500 1 0 50 −150 0 0

x4 − 1
4 40 0 1 1

3 − 2
3 0 0

x7
125

2 −10500 0 0 −50 150 1 1

⇓
basic x1 x2 x3 x4 x5 x6 x7 rhs

−z − 7
4 330 1

50 0 0 −2 0 0

x5 − 5
4 210 1

50 0 1 −3 0 0

x4
1
6 −30 − 1

150 1 0 1
3 0 0

x7 0 0 1 0 0 0 1 1

⇓
basic x1 x2 x3 x4 x5 x6 x7 rhs

−z − 3
4 150 − 1

50 6 0 0 0 0

x5
1
4 −60 − 1

25 9 1 0 0 0

x6
1
2 −90 − 1

50 3 0 1 0 0

x7 0 0 1 0 0 0 1 1
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The final basis is the same as the initial basis, so the simplex method has made no progress
and will continue to cycle through these six bases indefinitely.

Avariety of techniques have been developed that guarantee termination of the simplex
method even on degenerate problems. One of these, discovered by Bland (1977) and often
referred to as Bland’s rule, is described here. It is a rule for determining the entering
and leaving variables, and it depends on an ordering of all the variables in the problem.
Suppose that we have chosen the natural ordering: x1, x2, . . . . Then at each iteration of the
simplex method choose the entering variable as the first variable from this list for which the
reduced cost is strictly negative. Then, among all the potential leaving variables that give
the minimum ratio in the ratio test, choose the one that appears first in this list. Bland’s rule
determines how to break ties in the ratio test.

If Bland’s rule is applied to this example, then the first few bases are the same. The
first change occurs with the fifth basic solution

⇓
basic x1 x2 x3 x4 x5 x6 x7 rhs

−z − 1
2 120 0 0 −1 1 0 0

x3 − 125
2 10500 1 0 50 −150 0 0

x4 − 1
4 40 0 1 1

3 − 2
3 0 0

x7
125
2 −10500 0 0 −50 150 1 1

The rest of the basic solutions are

⇓
basic x1 x2 x3 x4 x5 x6 x7 rhs

−z 0 36 0 0 − 7
5

11
5

1
125

1
125

x3 0 0 1 0 0 0 1 1

x4 0 −2 0 1 2
15 − 1

15
1

250
1

250

x1 1 −168 0 0 − 4
5

12
5

2
125

2
125

basic x1 x2 x3 x4 x5 x6 x7 rhs

−z 0 15 0 21
2 0 3

2
1

20
1
20

x3 0 0 1 0 0 0 1 1

x4 0 −15 0 15
2 1 − 1

2
3

100
3

100

x1 1 −180 0 6 0 2 2
50

2
50

As hoped, with Bland’s rule the simplex method terminates.
Bland’s rule can be inefficient if applied at every simplex iteration since it may select

entering variables that do not greatly improve the value of the objective function. To rectify
this, Bland’s rule need only be used at degenerate vertices where there is a danger of cycling.
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At other iterations a more effective pivot rule should be used. An alternative is to use the
perturbation method described in Section 5.5.1.

It can be shown that if the simplex method uses Bland’s rule it will always terminate.

Theorem 5.11 (Termination with Bland’s Rule). If the simplex method is implemented
using Bland’s rule to select the entering and leaving variables, then the simplex method is
guaranteed to terminate.

Proof. See the paper by Bland (1977).

5.5.1 Resolving Degeneracy Using Perturbation

Another way to resolve degeneracy in the simplex method is to introduce small perturbations
into the right-hand sides of the constraints. These perturbations remove the degeneracy, so
the method makes progress at every iteration and hence is guaranteed to terminate. In some
software packages explicit perturbations are introduced. However, in the technique that
we describe here, the perturbations are merely symbolic. They are used to derive a pivot
rule for the simplex method that prevents cycling. This approach is also referred to as
the lexicographic method of resolving degeneracy. A related technique can be applied to
network problems in a particularly efficient manner (see Section 8.5).

If the simplex method is applied to a degenerate problem, then it is possible that at
some iteration the minimum ratio from the ratio test will be zero, and thus there is a risk of
cycling. (Even if cycling does not occur, the simplex method may perform a long sequence
of degenerate updates, a phenomenon known as stalling, and only make slow progress
toward a solution.) Suppose that each basic variable were perturbed:

(xB)i ← (xB)i + εi,
where { εi } is a set of small positive numbers. Then none of the perturbed basic variables
would be zero, and the risk of cycling would be removed (at least at the current iteration).
The method we will describe is a more elaborate version of this simple idea.

Consider a linear program where the constraints have been perturbed to

Ax = b + ε,
where

ε = ( ε0 ε2
0 · · · εm0 )

T

and ε0 > 0 is some “sufficiently small” positive number. (There will not be any need to
specify ε0; it will only need to be “small enough” for certain inequalities to hold.) The
simplex method will be applied to this perturbed problem and, once the solution has been
found, ε0 will be set equal to zero to obtain the solution to the original problem.

Let xB be some basic feasible solution to the perturbed problem corresponding to
a basis matrix B, and denote the entries in B−1 by (βi,j ). Then xB = B−1(b + ε) =
B−1b + B−1ε and so

(xB)i = b̂i + βi,1ε0 + βi,2ε2
0 + · · · + βi,mεm0 ,
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where b̂i = (B−1b)i .
We will say that (xB)i is lexicographically positive if the first nonzero term in the above

formula is positive. This is equivalent to saying that (xB)i is positive for all sufficiently small
ε0. To see this, first consider the case where b̂i > 0. Then

(xB)i = b̂i + ε0(βi,1 + βi,2ε0 + · · ·)

and so if ε0 is small enough, (xB)i > 0. Now suppose that b̂i = 0, βi,j = 0 for j =
1, . . . , k − 1, and βi,k > 0. Then

(xB)i = βi,kε
k
0 + βi,k+1ε

k+1
0 + · · · + βi,mεm0 ,

or
(xB)i

εk0
= βi,k + ε0(βi,k+1 + βi,k+2ε0 + · · ·).

Once again, (xB)i > 0 for small enough ε0.
Correspondingly, we will say that (xB)j is lexicographically smaller than (xB)i if

(xB)i − (xB)j is lexicographically positive. For sufficiently small ε0, this is the same as
(xB)i > (xB)j . This will be true if and only if the first nonzero term in the formula for (xB)i−
(xB)j is positive. It is possible to test these lexicographic conditions without specifying a
value for ε0.

Example 5.12 (Lexicographic Ordering). Let

B−1 =
( 1 −2 2

1 −2 3
0 3 4

)
and b̂ =

( 0
0
1

)
.

Then

(xB)1 = 0 + 1ε0 − 2ε2
0 + 2ε3

0

(xB)2 = 0 + 1ε0 − 2ε2
0 + 3ε3

0

(xB)3 = 1 + 0ε0 + 3ε2
0 + 4ε3

0 .

All three components of xB are lexicographically positive since the first nonzero term in
each expression is nonzero. Also, (xB)1 is smaller than (xB)2 since

(xB)2 − (xB)1 = 0 + 0ε0 + 0ε2
0 + 1ε3

0 ,

and the first nonzero coefficient in this expression is positive. In addition, (xB)2 is lexico-
graphically smaller than (xB)3.

For general ε0 it is not possible for two components (xB)i and (xB)j to be lexicograph-
ically equal (i.e., all the terms in their formulas have identical coefficients). This would
imply that

βi,k = βj,k for k = 1, . . . , m
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and hence thatB−1 had two identical rows. This is impossible since the rows of an invertible
matrix must be linearly independent. It is this property that guarantees that the perturbed
linear program will never have a degenerate basic feasible solution.

We will now prove that the simplex method applied to the perturbed problem is
guaranteed to terminate. For simplicity, we will assume that the linear program has a
complete set of slack variables. The application of the technique to linear programs in
standard form will be considered in the Exercises.

Theorem 5.13. Consider a linear program of the form

minimize z = cTx

subject to Ax ≤ b

x ≥ 0

with b ≥ 0. Assume that the constraints are perturbed to

Ax ≤ b + ε,
where

ε = ( ε0 · · · εm0 )
T

and ε0 is sufficiently small. Then the simplex method applied to the perturbed problem is
guaranteed to terminate.

Proof. We will show by induction that the components of xB are lexicographically positive at
every iteration, and hence (by Theorem 5.10) the simplex method is guaranteed to terminate.

For the linear program with slack variables, at the first iteration we can select B = I

and
(xB)i = bi + εi0.

Since bi ≥ 0, each component of the initial xB is lexicographically positive.
At a general iteration with basis matrix B, assume that the components of xB are

lexicographically positive. If the current basis is not optimal, let xt be the entering variable.
The only way that the next basic feasible solution can be degenerate is if there is a tie in the
minimum ratio test:

(xB)i

âi,t
= (xB)j

âj,t
.

The left-hand and right-hand sides of this equation would then be lexicographically equal,
implying that rows i and j of B−1 were multiples of each other, and hence B−1 would not
be invertible (which is impossible). Hence the ratio test must identify a unique leaving
variable, say (xB)s .

We will now show that the new basic feasible solution is lexicographically positive.
In the pivot row

(xB)s ← (xB)s/âs,t ,

where âs,t > 0, so (xB)s remains lexicographically positive. In the other rows of the tableau

(xB)j ← (xB)j − âj,t

âs,t
(xB)s .
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If âj,t ≤ 0, then this is the sum of a lexicographically positive term and a term that is either
lexicographically positive or zero, so the result is lexicographically positive. If âj,t > 0,
then the update can be rewritten as

(xB)j ← âj,t

[
(xB)j

âj,t
− (xB)s

âs,t

]
.

Since the right-hand side is the difference of two ratios from the ratio test, and (xB)s produced
the minimum ratio, the new value of (xB)j is lexicographically positive.

The number ε0 can be considered merely as a symbol. It need not be assigned a
specific value. To determine whether a component (xB)i is lexicographically positive, it
is only necessary to know the coefficients

{
βi,k

}
, i.e., to know the coefficients in the

corresponding row of B−1. In fact, we only need to know the first nonzero coefficient
in this set. Similarly, in the ratio test we only need to compare the leading terms in the
formulas for (xB)i and (xB)j to determine the minimum ratio. For nondegenerate problems,
the coefficients

{
βi,k

}
would never have to be examined.

Exercises
5.1. Suppose that at the current iteration of the simplex method the basic feasible solution

is degenerate. Is the objective value guaranteed to remain unchanged?

5.2. Consider the system of equations Bx = b + ε where

B−1 =
( 1 2 1

1 1 2
1 1 3

)
, b =

( 5
5
5

)
, and ε =

⎛
⎝ ε0

ε2
0

ε3
0

⎞
⎠ .

Sort the components of x = B−1(b + ε) lexicographically.

5.3. Apply the perturbation method to the linear program from this section:

minimize z = − 3
4x1 + 150x2 − 1

50x3 + 6x4

subject to 1
4x1 − 60x2 − 1

25x3 + 9x4 ≤ 0
1
2x1 − 90x2 − 1

50x3 + 3x4 ≤ 0

x3 ≤ 1

x1, x2, x3, x4 ≥ 0.

5.4. When the simplex method was applied to the sample linear program (see the previous
problem) and cycling occurred, ties in the ratio test were broken by choosing the first
candidate variable. Does cycling occur in this example when the last candidate
variable is chosen? (Be sure that you choose the first candidate entering variable in
the optimality test, just as before.)

5.5. Show how to apply the perturbation technique to a linear program in standard form.
(In the proof of Theorem 5.13, the linear program had a complete set of slack vari-
ables. This is not true in general.)
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5.6. Consider a linear program in standard form with exactly two variables. Prove that
cycling cannot occur.

5.7. Consider a linear program in standard form with exactly one equality constraint.
Prove that cycling cannot occur.

5.6 Notes
The Simplex Method—From the 1940s to the present, George Dantzig’s work on linear
programming has been immensely influential. Dantzig’s book (1963, reprinted 1998) con-
tains a vast amount of relevant material. More recent reference works include the books by
Chvátal (1983), Murty (1983), Schrijver (1986, reprinted 1998), and Bazaraa, Jarvis, and
Sherali (1990). Early discussions of what would later be called linear programming can be
found in the works of Kantorovich (1939) and von Neumann (1937).

The revised simplex method was first described by Dantzig (1953) and Orchard-Hays
(1954). An extensive discussion can be found in the book by Dantzig (1963).

Degeneracy—The first example of cycling was constructed by Hoffman (1953). Our
smaller example is due to Beale (1955). The perturbation method was described by Charnes
(1952), and the lexicographic method by Dantzig, Orden, and Wolfe (1955). Bland’s rule
is, not surprisingly, found in a paper by Bland (1977).
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Chapter 6

Duality and Sensitivity

6.1 The Dual Problem
For every linear programming problem there is a companion problem, called the “dual”
linear program, in which the roles of variables and constraints are reversed. That is, for
every variable in the original or “primal” linear program there is a constraint in the dual
problem, and for every constraint in the primal there is a variable in the dual.

In an application, the variables in the primal problem might represent products, and
the objective coefficients might represent the profits associated with manufacturing those
products. Hence the objective in the primal indicates directly how an increase in production
affects profit. The constraints in the primal problem might represent the availability of
raw materials. An increase in the availability of raw materials might allow an increase in
production, and hence an increase in profit, but this relationship is not as easy to deduce
from the primal problem. One of the effects of duality theory is to make explicit the effect
of changes in the constraints on the value of the objective. It is because of this interpretation
that the variables in the dual problem are sometimes called “shadow prices,” since they
measure the implicit “costs” associated with the constraints.

Duality can also be used to develop efficient linear programming methods. For exam-
ple, at the current time, the most successful interior-point software relies on a combination
of primal and dual information.

While it is possible to define a dual to any linear program, the symmetry of the two
problems is most obvious when the linear program is in canonical form. A minimization
problem is in canonical form if all problem constraints are of the “≥” type, and all variables
are nonnegative:

minimize z = cTx

subject to Ax ≥ b

x ≥ 0.
We shall refer to this original problem as the primal linear program. The corresponding
dual linear program will have the form

maximize w = bTy

subject to ATy ≤ c

y ≥ 0.

173
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If the primal problem has n variables and m constraints, then the dual problem will have m
variables (one dual variable for each primal constraint) and n constraints (one dual constraint
for each primal variable). The coefficients in the objective of the primal are the coefficients
on the right-hand side of the dual, and vice versa. The constraint matrix in the dual is the
transpose of the matrix in the primal.

The dual problem is a maximization problem, where all constraints are of the “≤”
type, and all variables are nonnegative. This form is referred to as the canonical form for a
maximization problem.

Example 6.1 (Canonical Dual Linear Program). Consider the primal problem, a linear
program in canonical form

minimize z = 6x1 + 2x2 − x3 + 2x4

subject to 4x1 + 3x2 − 2x3 + 2x4 ≥ 10
8x1 + x2 + 2x3 + 4x4 ≥ 18
x1, x2, x3, x4 ≥ 0.

Then its dual is
maximize w = 10y1 + 18y2

subject to 4y1 + 8y2 ≤ 6
3y1 + y2 ≤ 2

−2y1 + 2y2 ≤ −1
2y1 + 4y2 ≤ 2

y1, y2 ≥ 0.

Here y1 is the dual variable corresponding to the first primal constraint and y2 is the dual
variable corresponding to the second primal constraint. The first dual constraint (4y1−8y2 ≤
8) corresponds to the primal variable x1; similarly the second, third, and fourth constraints
in the dual correspond to the primal variables x2, x3, and x4, respectively.

Any linear program can be transformed to an equivalent problem in canonical form. A
“≤” constraint can simply be multiplied by −1. An equality constraint can be written as two
inequalities, since the equation a = b is equivalent to the simultaneous inequalities a ≥ b

and−a ≥ −b. The requirement that all variables be nonnegative can be handled in the same
way that conversion to standard form was handled (see Section 4.2). And a maximization
problem can be converted to a minimization problem by multiplying the objective by −1.

The next lemma shows that the role of the primal and dual could be interchanged. It
also indicates that the dual of a maximization problem in canonical form is a minimization
problem in canonical form.

Lemma 6.2. The dual of the dual linear program is the primal linear program.

Proof. We need only consider a canonical minimization problem

minimize z = cTx

subject to Ax ≥ b

x ≥ 0,
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since any linear program can be transformed to this form. The dual program is

maximize w = bTy

subject to ATy ≤ c

y ≥ 0.

This is equivalent to the following minimization problem in canonical form:

minimize w′ = −bTy
subject to −ATy ≥ −c

y ≥ 0.

The dual of this problem is
maximize z′ = −cTx
subject to −Ax ≤ −b

x ≥ 0.

This linear program is equivalent to the program

minimize z = cTx

subject to Ax ≥ b

x ≥ 0,

which is the primal linear program.

Although it is possible to determine the dual of any linear program simply by con-
verting it to canonical form, there are easy rules for obtaining the dual problem from the
primal problem directly. These rules can be deduced by considering some general linear
programs.

First consider a primal problem which has a mix of “≥” constraints, “≤” constraints,
and “=” constraints:

minimize z = cTx

subject to A1x ≥ b1

A2x ≤ b2

A3x = b3

x ≥ 0.

We can convert it to an equivalent problem in canonical form:

minimize z = cTx

subject to A1x ≥ b1

−A2x ≥ −b2

A3x ≥ b3

−A3x ≥ −b3

x ≥ 0.

If we define y1, y ′2, y ′3, and y ′′3 to be the vectors of dual variables corresponding to the four
groups of constraints, then the dual problem is

maximize w = bT1y1 − bT2y ′2 + bT3y ′3 − bT3y ′′3
subject to AT1y1 − AT2y ′2 + AT3y ′3 − AT3y ′′3 ≤ c

y1 ≥ 0, y ′2 ≥ 0, y ′3 ≥ 0, y ′′3 ≥ 0.
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Defining y2 = −y ′2 and y3 = y ′3 − y ′′3 , the dual problem can be rewritten in the form

maximize w = bT1y1 + bT2y2 + bT3y3

subject to AT1y1 + AT2y2 + AT3y3 ≤ c

y1 ≥ 0, y2 ≤ 0, y3 unrestricted.

Notice that the directions of the constraints in the original primal are not in canonical form.
Likewise, the signs of the variables in the final dual are not in canonical form. Let us
examine these anomalies. The dual variables associated with primal “≥” constraints are
nonnegative, but the dual variables associated with “≤” constraints are nonpositive, and the
dual variables associated with the “=” constraints are unrestricted. This could be restated
as follows: If the direction of a primal constraint is consistent with canonical form, the
corresponding dual variable is nonnegative; if the direction of the constraint is reversed
with respect to canonical form, the corresponding dual variable is nonpositive; and if the
constraint is an equality, the corresponding dual variable is unrestricted. This is a general
rule. It also applies to maximization problems which have a mix of “≥” constraints, “≤”
constraints, and “=” constraints (see the Exercises). The direction of a constraint in a
problem will be “consistent with respect to canonical form” if it is of the “≥” type in a
minimization problem, or if it is of the “≤” type in a maximization problem.

Now consider a primal linear program, which has a mix of nonnegative, nonpositive,
and unrestricted variables:

minimize z = cT1x1 + cT2x2 + cT3x3

subject to A1x1 + A2x2 + A3x3 ≥ b

x1 ≥ 0, x2 ≤ 0, x3 unrestricted.

If we put this problem in canonical form, and then simplify the dual problem, we obtain

maximize w = bTy

subject to AT1y ≤ c1

AT2y ≥ c2

AT3y = c3

y ≥ 0.

Here the signs of the variables in the primal are not in canonical form, and neither are
the directions of the constraints in the dual. If a primal variable is nonnegative, the direction
of the corresponding dual constraint will be consistent with (the dual’s) canonical form; if it
is nonpositive, the direction of the dual constraint will be reversed with respect to canonical
form; and if the variable is unrestricted, the corresponding constraint will be an equality.
This is a general rule, both for minimization and maximization problems. Notice that it is
symmetric (or “dual”) to the rule that we obtained earlier.

We can summarize the relationship between the constraints and variables in the primal
and dual problems as follows:

primal/dual constraint dual/primal variable

consistent with canonical form⇐⇒ variable ≥ 0
reversed from canonical form⇐⇒ variable ≤ 0

equality constraint⇐⇒ variable unrestricted
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Example 6.3 (General Dual Linear Problem). Consider the primal problem

maximize z = 6x1 + x2 + x3

subject to 4x1 + 3x2 − 2x3 = 1
6x1 − 2x2 + 9x3 ≥ 9
2x1 + 3x2 + 8x3 ≤ 5
x1 ≥ 0, x2 ≤ 0, x3 unrestricted.

Then its dual is
minimize w = y1 + 9y2 + 5y3

subject to 4y1 + 6y2 + 2y3 ≥ 6

3y1 − 2y2 + 3y3 ≤ 1

−2y1 + 9y2 + 8y3 = 1

y1 unrestricted, y2 ≤ 0, y3 ≥ 0.
The primal problem is a maximization problem. Its first constraint is an equality, and its
second constraint and third constraint are, respectively, reversed and consistent with respect
to the canonical form of a maximization problem. For this reason y1 is unrestricted, y2 ≤ 0,
and y3 ≥ 0. Now the dual problem is a minimization problem. Because x1 ≥ 0 and x2 ≤ 0,
the first and second dual constraints are, respectively, consistent and reversed with respect
to the canonical form of a minimization problem. Because x3 is unrestricted, the third dual
constraint is an equality.

It is easy to verify that the dual of the dual is the primal.

In the following sections it will be useful to consider the dual of a problem in standard
form. If the primal problem is

minimize z = cTx

subject to Ax = b

x ≥ 0,

then its dual is
maximize w = bTy

subject to ATy ≤ c.

The dual variables y are unrestricted.
The concept of a dual problem applies not only to linear programs, but also to a wide

range of problems from a wide variety of fields such as engineering, physics, and mathe-
matics. For example it is also possible to define a dual problem for nonlinear optimization
problems (see Chapter 14). There, the dual variables are often called Lagrange multipliers.

Exercises
1.1. Find the dual of

minimize z = 3x1 − 9x2 + 5x3 − 6x4

subject to 4x1 + 3x2 + 5x3 + 8x4 ≥ 24
2x1 − 7x2 − 4x3 − 6x4 ≥ 17
x1, x2, x3, x4 ≥ 0.



book
2008/10/23
page 178

�

�

�

�

�

�

�

�

178 Chapter 6. Duality and Sensitivity

1.2. Find the dual of
minimize z = −2x1 + 4x2 − 3x3

subject to 9x1 − 2x2 − 8x3 = 5
3x1 + 3x2 + 3x3 = 7
7x1 − 5x2 + 2x3 = 9
x1, x2, x3 ≥ 0.

1.3. Find the dual of

maximize z = 6x1 − 3x2 − 2x3 + 5x4

subject to 4x1 + 3x2 − 8x3 + 7x4 = 11
3x1 + 2x2 + 7x3 + 6x4 ≥ 23
7x1 + 4x2 + 3x3 + 2x4 ≤ 12
x1, x2 ≥ 0, x3 ≤ 0
(x4 unrestricted).

Verify that the dual of the dual is the primal.

1.4. Obtain the dual to the problem

minimize z = cT1x1 + cT2x2 + cT3x3

subject to A1x1 + A2x2 + A3x3 ≥ b

x1 ≥ 0, x2 ≤ 0, x3 unrestricted

by converting the problem to canonical form, finding its dual, and then simplifying
the result.

1.5. Find the dual to the problem

minimize z = cTx

subject to Ax = b

l ≤ x ≤ u,

where l and u are vectors of lower and upper bounds on x.

1.6. Find the dual to the problem

minimize z = cTx

subject to b1 ≤ Ax ≤ b2

x ≥ 0.

1.7. Can you find a linear program which is its own dual? (We will say that the two
problems are the same if one can be obtained from the other merely by multiplying
the objective, any of the constraints, or any of the variables by −1.)

1.8. Write a computer program that, when given a linear program (not necessarily in
standard form), will generate the dual linear program automatically.

1.9. If you have linear programming software available, experiment with the properties
of a pair of primal and dual linear programs. What is the relationship between
their optimal values? Change the coefficients in the objective or on the right-hand
side of the constraints and observe what happens to the optimal values of the linear
programs. Examine the relationship between the ith variable in one problem and the
ith constraint in the other.
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6.2 Duality Theory
There are two major results relating the primal and dual problems. The first, called “weak”
duality, is easier to prove. It states that primal objective values provide bounds for dual
objective values, and vice versa. This weak duality property can be extended to nonlinear
optimization problems and other more general settings. The second, called “strong” duality,
states that the optimal values of the primal and dual problems are equal, provided that they
exist. For nonlinear problems there may not be a strong duality result.

In the theoretical results below we work with primal linear programs in standard
form. In Section 4.2 it was shown that every linear program can be converted to standard
form. Hence working with problems in standard form is primarily a matter of convenience.
It makes it unnecessary to examine a great many different cases corresponding to linear
programs in a variety of forms. We begin with a simple theorem.

Theorem 6.4 (Weak Duality). Let x be a feasible point for the primal problem in standard
form, and let y be a feasible point for the dual problem. Then

z = cTx ≥ bTy = w.

Proof. The constraints for the dual show that cT ≥ yTA. Since x ≥ 0,

z = cTx ≥ yTAx = yTb = bTy = w.

We have stated and proved the weak duality theorem in the case where the primal
problem is a minimization problem. For a primal problem in general form, the weak duality
result would say that the objective value corresponding to a feasible point for the maximiza-
tion problem would always be less than or equal to the objective value corresponding to a
feasible point for the minimization problem.

Example 6.5 (Weak Duality). Consider the primal and dual linear programs in Example
6.1. It is easy to check that the point x = (4, 0, 0, 0)T is feasible for the primal and that the
point y = ( 1

2 , 0)T is feasible for the dual. At these points

z = cTx = 24 > 5 = bTy = w,

so that the weak duality theorem is satisfied.

There are several simple consequences of the weak duality theorem. For proofs, see
the Exercises.

Corollary 6.6. If the primal is unbounded, then the dual is infeasible. If the dual is
unbounded, then the primal is infeasible.

Corollary 6.7. If x is a feasible solution to the primal, y is a feasible solution to the dual,
and cTx = bTy, then x and y are optimal for their respective problems.
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Corollary 6.7 is used in the proof of strong duality. It shows that it is possible to check
if the points x and y are optimal without solving the corresponding linear programs. By the
way, it is possible for both the primal and dual problems to be infeasible.

Example 6.8 (Primal/Dual Relationships). First consider the primal problem

maximize z = x1 + x2

subject to x1 − x2 ≤ 1
x1, x2 ≥ 0,

and its dual problem
minimize w = y1

subject to y1 ≥ 1
−y1 ≥ 1
y1 ≥ 0.

Here, the primal problem is unbounded, and the dual is infeasible.
Next consider the infeasible problem

maximize z = 2x1 − x2

subject to x1 + x2 ≥ 1
−x1 − x2 ≥ 1.

In general, the dual of an infeasible problem could be either infeasible or unbounded. Here
the dual problem is

minimize z = y1 + y2

subject to y1 − y2 = 2
y1 − y2 = −1,

which is infeasible.

Theorem 6.9 (Strong Duality). Consider a pair of primal and dual linear programs. If one
of the problems has an optimal solution then so does the other, and the optimal objective
values are equal.

Proof. For convenience, we can assume that (a) the primal problem has an optimal solution
(since the roles of primal and dual could be interchanged), (b) the primal problem is in
standard form, and (c) x∗, the solution to the primal, is an optimal basic feasible solution.
By reordering the variables we can write x∗ in terms of basic and nonbasic variables:

x∗ =
(
xB
xN

)
and correspondingly we write

A = ( B N ) and c =
(
cB
cN

)
.

Then xB = B−1b. If x∗ is optimal, the reduced costs satisfy cT
N
− cT

B
B−1N ≥ 0 or

cT
B
B−1N ≤ cT

N
.
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Let y∗ be the vector of simplex multipliers corresponding to this basic feasible solution:
y∗ = B−T cB or

yT∗ = cT
B
B−1.

We will show that y∗ is feasible for the dual and that bTy∗ = cTx∗. Then Corollary 6.7 will
show that y∗ is optimal for the dual. We first check feasibility:

yT∗A = cT
B
B−1 ( B N )

= ( cT
B

cT
B
B−1N ) ≤ ( cT

B
cT
N
) = cT;

hence ATy∗ ≤ c and y satisfies the dual constraints. We now compute the objective values
for the primal and the dual:

z = cTx = cT
B
xB = cT

B
B−1b

w = bTy = yTb = cT
B
B−1b = z.

So y∗ is feasible for the dual and has dual value equal to the optimal primal value. Hence
by Corollary 6.7, y∗ is optimal for the dual.

The proof of the strong duality theorem provides the optimal dual solution. If we
write x∗ in terms of basic and nonbasic variables

x∗ =
(
xB
xN

)
and write

A = ( B N ) and c =
(
cB
cN

)
,

then the optimal values of the dual variables are given by the corresponding vector of simplex
multipliers

y∗ = B−T cB .
It also follows from the proof that at any iteration, if y is the vector of simplex multipliers,
then the vector of reduced costs is

ĉ = c − ATy.
Thus the reduced costs are the dual slack variables. If they are all nonnegative, then y is
dual feasible and the solution is optimal. (In such cases, the basis is said to be dual feasible.)
At any intermediate step the reduced costs are not all nonnegative and the vector of simplex
multipliers is dual infeasible. Thus the simplex method generates a sequence of primal
feasible solutions x and dual infeasible solutions y with cTx = bTy, terminating when y is
dual feasible.

If the original linear program has a complete set of slack variables, then the reduced
costs for the slack variables are given by

cT
N
− cT

B
B−1N = 0T − cT

B
B−1I = −(B−T cB )T = −yT∗,

because the objective coefficients (cT
N

) for the slack variables are zero, and their constraint
coefficients (N ) are given by I . In this case the values of the optimal dual variables are the
same as the reduced costs of the slack variables (except for the sign). This is also true when
there are excess or artificial variables; see the Exercises.
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Example 6.10 (Linear Program with Slack Variables). Consider the example from Section
5.2:

minimize z = −x1 − 2x2

subject to −2x1 + x2 ≤ 2
−x1 + 2x2 ≤ 7

x1 ≤ 3
x1, x2 ≥ 0.

The optimal basic solution is

basic x1 x2 x3 x4 x5 rhs

−z 0 0 0 1 2 13

x2 0 1 0 1
2

1
2 5

x1 1 0 0 0 1 3

x3 0 0 1 − 1
2

3
2 3

The optimal dual variables are

yT∗ = cT
B
B−1 = (−2 −1 0 )

⎛
⎝ 0 1

2
1
2

0 0 1

1 − 1
2

3
2

⎞
⎠ = ( 0 −1 −2 ) .

These are the negatives of the reduced costs corresponding to the slack variables. The dual
objective function is

maximize w = 2y1 + 7y2 + 3y3

and so w∗ = 2(0) + 7(−1) + 3(−2) = −13 = z∗, as expected. It is straightforward to
verify that the constraints of the dual problem are satisfied.

6.2.1 Complementary Slackness

We discuss here a further relationship between a pair of primal and dual problems that have
optimal solutions. There is an interdependence between the nonnegativity constraints in
the primal (x ≥ 0) and the constraints in the dual (ATy ≤ c). At optimal solutions to both
problems it is not possible to have both xj > 0 and (ATy)j < cj . At least one of these
constraints must be binding: either xj is zero or the j th dual slack variable is zero. This
property, called complementary slackness, can be summarized in the equation

xT(c − ATy) = 0.

This equation is the same as
∑

j xj (c − ATy)j = 0. Since the primal and dual constraints
ensure that each of the terms in the summation must be nonnegative, if the entire sum is
zero, then every term is zero. The complementary slackness property is established in the
following theorem. The theorem states that complementary slackness will hold between
any pair of optimal primal and optimal dual solutions; these solutions need not correspond
to a basis.
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Theorem 6.11 (Complementary Slackness). Consider a pair of primal and dual linear
programs, with the primal problem in standard form. If x is optimal for the primal and y is
optimal for the dual, then xT(c−ATy) = 0. If x is feasible for the primal, y is feasible for
the dual, and xT(c − ATy) = 0, then x and y are optimal for their respective problems.

Proof. As in the proof of weak duality (Theorem 6.4), if x and y are feasible, then

z = cTx ≥ yTAx = yTb = w.

If x and y are optimal, then w = z so that cTx = yTAx = xTATy. Rearranging this final
formula gives the first result.

If xT(c − ATy) = 0, then z = w and Corollary 6.7 shows that x and y are then
optimal.

Example 6.12 (Complementary Slackness). We look again at the linear program

minimize z = −x1 − 2x2

subject to − 2x1 + x2 + x3 = 2
− x1 + 2x2 + x4 = 7

x1 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0.

The optimal solutions are x = (x1, x2, x3, x4, x5)
T = (3, 5, 3, 0, 0)T and y = (y1, y2, y3)

T =
(0,−1,−2)T. The dual constraints are

−2y1 − y2 + y3 ≤ −1
y1 + 2y2 ≤ −2

y1 ≤ 0
y2 ≤ 0
y3 ≤ 0.

In the primal the last two nonnegativity constraints are binding (x4 ≥ 0 and x5 ≥ 0). In
the dual the first three constraints are binding. So the complementary slackness condition
is satisfied.

It is possible to have both xj = 0 and cj − (ATy)j = 0, for example, when the
problem is degenerate and one of the basic variables is zero. If this does not happen, that is,
if exactly one of these two quantities is zero for all j , then the problem is said to satisfy a
strict complementary slackness condition. If a linear programming problem has an optimal
solution, then there always exists a strictly complementary optimal pair of solutions to the
primal and the dual problems. This pair of solutions need not be basic solutions, however.
(See the Exercises.)

In the simplex method the complementary slackness conditions hold between any
basic feasible solution and its associated vector of simplex multipliers: If xj > 0, then xj
is a basic variable and its reduced cost (or dual slack variable) is zero. Conversely, if a dual
slack variable (reduced cost) is nonzero, then the associated primal variable is nonbasic
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and hence zero. Thus the simplex method maintains primal feasibility and complementary
slackness and strives to achieve dual feasibility.

If a linear program is not in standard form, then a complementary slackness condition
holds between any restricted (nonnegative or nonpositive) variable and its corresponding
dual constraint, as well as between any inequality constraint and its associated dual variable.
Thus for the pair of primal and dual canonical linear programs

minimize z = cTx

subject to Ax ≥ b

x ≥ 0

maximize w = bTy

subject to ATy ≤ c

y ≥ 0

the complementary slackness conditions are

xT(c − ATy) = 0 and yT(Ax − b) = 0.

(See the Exercises.)

6.2.2 Interpretation of the Dual

The dual linear program can be used to gain practical insight into the properties of a model.
We will examine this idea via an example. Although the exact interpretation of the dual will
vary from application to application, the approach we use (looking at the optimal values of
the dual variables, as well as the dual problem as a whole) is general.

Let us consider a baker who makes and sells two types of cakes, one simple and one
elaborate. Both cakes require basic ingredients (flour, sugar, eggs, and so forth), as well as
fancier ingredients such as nuts and fruit for decoration and flavor, with the elaborate cake
using more of the fancier ingredients. There are also greater labor costs associated with the
elaborate cake. The baker would like to maximize profit.

A linear programming model for this situation might be

maximize z = 24x1 + 14x2

subject to 3x1 + 2x2 ≤ 120
4x1 + x2 ≤ 100
2x1 + x2 ≤ 70
x1, x2 ≥ 0.

Here x1 and x2 represent the number of batches of the elaborate and simple cakes produced
per day. The objective records the profit. The first constraint represents the daily limits on
the availability of basic ingredients (in pounds), where a batch of the elaborate cake requires
3 pounds, and a batch of the simple cake requires 2 pounds. The second constraint similarly
records the limits on fancier ingredients. The third constraint records the limits on labor
(measured in hours) where a batch of the elaborate cakes uses 2 hours of labor, and a batch
of the simple cakes uses 1 hour of labor.

The dual linear program is

minimize w = 120y1 + 100y2 + 70y3

subject to 3y1 + 4y2 + 2y3 ≥ 24
2y1 + y2 + y3 ≥ 14

y1, y2, y3 ≥ 0.
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The optimal solution to the primal problem is z = 888, x1 = 16, and x2 = 36. The optimal
solution to the dual problem isw = 888, y1 = 6.4, y2 = 1.2, and y3 = 0. Note that the two
objective values are equal, and that the complementary slackness conditions are satisfied.

In this problem the limiting factors are the availability of basic and fancy ingredients.
(There are 2 hours of excess labor available; the bakery might employ one of the bakers part
time or give additional tasks to this baker.) The baker might be able to purchase additional
quantities of these ingredients. How much should the baker be willing to pay? Since the
optimal primal and dual objective values are equal, and the dual objective is

w = 120y1 + 100y2 + 70y3,

each extra pound of basic ingredients will be worth y1 = 6.4 dollars in profit, and each
extra pound of fancy ingredients will be worth y2 = 1.2 dollars. Hence the dual variables
determine the marginal values of these raw materials. Additional labor is of no value to the
baker (y3 = 0) because excess labor is already available. (There are limits to this argument,
however; if too many cakes are made the 2 excess hours of labor will be used up, and
additional analysis of the model will be required.)

There is an additional interpretation of the dual problem. Suppose that some other
company would like to take over the baker’s business. What price should be offered? A
price could be determined by setting values on the baker’s assets (plain ingredients, fancy
ingredients, and labor); call these values y1, y2, and y3. The other company would like to
minimize the amount paid to the baker:

minimize w = 120y1 + 100y2 + 70y3.

These values would be fair to the baker if they represented a profit at least as good as could
be obtained by producing cakes, that is, if

3y1 + 4y2 + 2y3 ≥ 24

2y1 + y2 + y3 ≥ 14

These are the objective and constraints for the dual problem. Thus the dual problem allows
us to determine the daily value of the baker’s business.

Another interpretation of the dual problem arises in game theory. This is discussed in
Section 14.8.

Exercises
2.1. Consider the linear program

maximize z = −x1 − x2

subject to −x1 + x2 ≥ 1
2x1 − x2 ≤ 2
x1, x2 ≥ 0.

Find the dual to the problem. Solve the primal and the dual graphically, and verify
that the results of the strong duality theorem hold. Verify that the optimal dual
solution satisfies yT = cT

B
B−1 where B is the optimal basis matrix.
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2.2. Prove that if both the primal and the dual problems have feasible solutions, then both
have optimal solutions, and the optimal objective values of the two problems are
equal.

2.3. Prove Corollary 6.6.

2.4. Prove Corollary 6.7.

2.5. Prove that if an excess variable has been included in the ith constraint, then the
optimal reduced cost for this variable is the ith optimal dual variable yi .

2.6. Prove that if an artificial variable has been added to the ith constraint within a big-M
approach, then the optimal reduced cost for this variable is yi −M , where yi is the
ith optimal dual variable.

2.7. Consider a linear program with a single constraint

minimize z = c1x1 + c2x2 + · · · + cnxn
subject to a1x1 + a2x2 + · · · + anxn ≤ b

x1, x2, . . . , xn ≥ 0.

Using duality develop a simple rule to determine an optimal solution, if the latter
exists.

2.8. Using duality theory find the solution to the following linear program:

minimize z = x1 + 2x2 + · · · + nxn
subject to x1 ≥ 1

x1 + x2 ≥ 2
...

x1 + x2 + x3 + · · · + xn ≥ n

x1, x2, x3, . . . , xn ≥ 0.

2.9. Consider the primal linear programming problem

minimize z = cTx

subject to Ax = b

x ≥ 0.

Assume that this problem and its dual are both feasible. Let x∗ be an optimal solution
to the primal and let y∗ be an optimal solution to the dual. For each of the following
changes, describe what effect they have on x∗ and y∗, if any. These changes should
be considered individually—they are not cumulative.

(i) The vector c is multiplied by λ, where λ > 0.

(ii) The kth equality constraint is multiplied by λ.

(iii) The ith equality constraint is modified by adding to it λ times the kth equality
constraint.

(iv) The right-hand side b is multiplied by λ.

2.10. Consider the following linear programming problems:

maximize z = cTx

subject to Ax ≤ b
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and
minimize z = cTx

subject to Ax ≥ b.

(i) Write the duals to these problems.

(ii) If both of these problems are feasible, prove that if one of these problems has
a finite optimal solution then so does the other.

(iii) If both of these problems are feasible, prove that the first objective is unbounded
above if and only if the second objective is unbounded below.

(iv) Assume that both of these problems have finite optimal solutions. Let x be
feasible for the first problem and let x̂ be feasible for the second. Prove that

cTx ≤ cTx̂.

2.11. Prove that if the problem
minimize z = cTx

subject to Ax = b

x ≥ 0
has a finite optimal solution, then the new problem

minimize z = cTx

subject to Ax = b̂

x ≥ 0

cannot be unbounded for any choice of the vector b̂.

2.12. Consider the linear programming problem

minimize z = cTx

subject to Ax = b

x ≥ 0.

Let B be the optimal basis, and suppose that B−1b > 0. Consider the problem

minimize z = cTx

subject to Ax = b + ε
x ≥ 0,

where ε is a vector of perturbations. Prove that if the elements of ε are sufficiently
small in absolute value, then B is also the optimal basis for the perturbed problem,
and that the optimal dual solution is unchanged. What is the optimal objective value
in this case?

2.13. Prove that if the system
Ax ≤ b

has a solution, then the system

ATy = 0
bTy < 0
y ≥ 0

has no solution.
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2.14. (Farkas’ Lemma) Use the duality theorems to prove that the system

ATy ≤ 0
bTy > 0

has a solution if and only if the system

Ax = b

x ≥ 0

has no solution.

2.15. Consider the linear program

maximize z = 2x1 + 9x2 + 3x3

subject to −2x1 + 2x2 + x3 ≥ 1
x1 + 4x2 − x3 ≥ 1

x1, x2, x3 ≥ 0.

(i) Find the dual to this problem and solve it graphically.

(ii) Use complementarity slackness to obtain the solution to the primal.

2.16. Suppose that in the previous problem the first constraint is replaced by the constraint
−3x1 + 2x2 + x3 ≥ 1. Find the dual to the problem and solve it graphically. Can
you use complementary slackness to obtain the dual solution?

2.17. Use a combination of duality theory, elimination of variables, and graphical solution
to solve the following linear programs. Do not use the simplex method.

(i)
minimize z = −3x1 + 2x2 + x3

subject to −3x2 − x3 ≤ 2
−x1 − x2 ≥ −3

−x1 − 2x2 − x3 ≥ 1
x1, x2 ≥ 0.

(ii)
minimize z = −2x1 − 4x2 + x3 + x4

subject to 2x1 − 2x2 + x3 + x4 ≥ 2
−x1 + x2 − x3 ≥ −1
3x1 + x2 + x4 = 5
x1, x2, x4 ≥ 0.

2.18. Derive the complementary slackness conditions for a pair of primal and dual linear
programs in canonical form.

2.19. Consider the primal linear programming problem

minimize z = cTx

subject to Ax ≤ b

x ≥ 0.

Assume that this problem and its dual are both feasible. Let x∗ be an optimal solution
vector to the primal, let z∗ be its associated objective value, and let y∗ be an optimal
solution vector to the dual problem. Show that

z∗ = yT∗Ax∗.
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2.20. Let x∗ be an optimal solution to a linear program in standard form. Let y∗ be an
optimal solution to the dual problem and let s∗ be the associated vector of dual
slack variables. Prove that the solutions satisfy strict complementarity if and only if
xT∗s∗ = 0 and x∗ + s∗ > 0.

2.21. In the next two exercises we will prove that if both primal and dual linear programs
have feasible solutions, then there exist feasible solutions to these problems that
satisfy strict complementarity. We will assume that the primal problem is given in
standard form, and will denote the primal by (P ) and its dual by (D). To start, we
will prove in this exercise that there exists a feasible solution x̄ to the primal and a
feasible solution ȳ to the dual with slack variables s̄, such that x̄ + s̄ > 0.

(i) Suppose that every feasible solution to the primal satisfies xj = 0 for some
index j . Consider the linear programming problem (P ′)

maximize z′ = eTjx

subject to Ax = b

x ≥ 0,

where ej is a vector with an entry of 1 in location j and zeros elsewhere. Prove
that (P ′) is feasible and has an optimal objective value of zero.

(ii) Formulate the dual (D′) to (P ′) and prove that it has an optimal solution with
optimal objective value of zero.

(iii) Let y ′ be an optimal solution to (D′) and let s ′ be the associated vector of slack
variables. Prove that for any feasible solution y to (D) and corresponding slack
variables s = c−ATy, the vector y+y ′ is feasible to (D), with corresponding
slack variables s + s ′ + ej , so that the j th dual slack variable is at least 1.

(iv) Prove that by taking appropriate strictly convex combinations of solutions to
the primal (P ) and to the dual (D) we can obtain a feasible solution x̄ to the
primal and a feasible solution ȳ to the dual with slack variables s̄, such that
x̄ + s̄ > 0.

2.22. Prove that any linear program with a finite optimal value has a strictly complementary
primal-dual optimal pair. Hint: Let z∗ be the optimal objective value for a problem
in standard form and consider the problem

minimize z = cTx

subject to Ax = b

cTx ≤ z∗
x ≥ 0.

Apply the results of the previous exercise to this problem.

6.3 The Dual Simplex Method
The version of the simplex method that we have been using, which we now refer to as the
primal simplex method, begins with a basic feasible solution to the primal linear program
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and iterates until the primal optimality conditions are satisfied. It is also possible to apply
the simplex method to the dual problem, starting with a feasible solution to the dual program
and iterating until the dual optimality conditions are satisfied.

The optimality conditions for the primal correspond to the feasibility conditions for
the dual. This result was derived as part of the proof of Theorem 6.9, where it was shown
that the primal optimality condition

cT
N
− cT

B
B−1N ≥ 0

is equivalent to the dual feasibility condition

ATy ≤ c,

where y = B−T cB is the vector of simplex multipliers corresponding to the basis B. Thus
the primal simplex method moves through a sequence of primal feasible but dual infeasible
bases, at each iteration trying to reduce dual infeasibility until the dual feasibility conditions
are satisfied.

The dual simplex method works in a “dual” manner. It goes through a sequence of
dual feasible but primal infeasible bases, trying to reduce primal infeasibility until the primal
feasibility conditions are satisfied. Although the dual simplex method can be viewed as the
simplex method applied to the dual problem, it can be implemented directly in terms of the
primal problem, if an initial dual feasible solution is available. The practical importance of
the dual simplex method is discussed in Section 6.4.

We assume that an initial dual-feasible basis has been specified; i.e., the reduced costs
are nonnegative. As described here, the algorithm uses B−1, xB = b̂ = B−1b, and the
current values of the reduced costs

{
ĉj
}
. (If the full tableau is used, this information can

be read from the tableau.)
The dual simplex method terminates when the current basis is primal feasible, so an

iteration of the method begins by checking if

xB ≥ 0.

If not, some entry (xB)s < 0 is used to select the pivot row.
We now describe an iteration of the dual simplex method, using an argument similar

to that used to derive the primal simplex method. Suppose that a variable (xB)s is infeasible
so that its right-hand-side entry b̂s < 0. In terms of the current basis the sth constraint has
the form

(xB)s +
∑
j∈N

âs,j xj = b̂s < 0,

where N is the set of indices of the nonbasic variables, and
{
âs,j

}
are the entries in row

s of B−1A. If some entry âs,j < 0 and nonbasic variable xj were to replace (xB)s in the
basis, then the new value of xj would be

b̂s

âs,j
> 0,

that is, the new basic variable would be feasible. Not all such nonbasic variables can enter
the basis because the dual feasibility (primal optimality) conditions must remain satisfied.
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If xj is the entering variable, the new reduced costs will satisfy

c̄l = ĉl − ĉj âs,l
âs,j

for l = 1, . . . , n.

(If l = j then c̄l = 0.) Since each c̄l must be nonnegative, the smallest ratio
{ |ĉj /âs,j | }

with âs,j < 0 determines which reduced cost goes to zero first. (See the Exercises.) This
ratio determines the pivot entry âs,t .

In our example below, the leaving variable is the one that is most negative. Any
negative variable may be chosen as the leaving variable, and so other selection rules are
possible. See Section 7.6.1.

The ratio test requires the computation of

ĉj

âs,j

for any nonbasic variable j for which âs,j < 0. Thus it is necessary to know the entries in
the pivot row. If the full tableau is used, this information is available. Otherwise, the pivot
row must be computed. The nonbasic entries in the entering row are given by

eTsB
−1Aj ,

where es is column s of the m×m identity matrix. These entries can be computed by first
letting σT = eTsB

−1, that is, computing row s of B−1, and then forming

σTAj

for all nonbasic variables j . The costs of this last calculation are almost the same as the
pricing step that computes

{
ĉj
}

in the primal method. (The vector es is a sparse vector,
and this can be exploited to make the computations more efficient.)

The update step is performed just as in the (primal) simplex method. If the full tableau
is used, elimination operations are applied to transform the pivot column to a column of the
identity matrix. Otherwise, the pivot column is computed using

Ât = B−1At,

and the reduced costs are updated using

ĉj ← ĉj − ĉt

âs,t
âs,j .

Finally xB and B−1 are updated.
We now summarize the dual simplex method. At the initial basis, the reduced costs

must satisfy ĉj ≥ 0. There are three major steps: the feasibility test, the step, and the
update.

1. The Feasibility Test—If xB = b̂ = B−1b ≥ 0, then the current basis is a solution.
Otherwise, choose (xB)s as the leaving variable, where b̂s < 0.
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2. The Step—In the pivot row (the row with entries âs,j = eTsB
−1Aj , where es is column

s of the identity matrix) find an index t that satisfies∣∣∣∣ ĉtâs,t
∣∣∣∣ = min

1≤j≤n

{ ∣∣∣∣ ĉjâs,j
∣∣∣∣ : âs,j < 0, xj nonbasic

}
.

This determines the entering variable xt and the pivot entry âs,t . If no such index t
exists, then the primal problem is infeasible and the dual problem is unbounded.

3. The Update—Represent the linear program in terms of the new basis. (Compute the
pivot columnÂt = B−1At , and update B−1, xB , and the reduced costs ĉ.)

The next example illustrates the dual simplex method.

Example 6.13 (Dual Simplex Method). Consider the linear program

minimize z = 2x1 + 3x2

subject to 3x1 − 2x2 ≥ 4
x1 + 2x2 ≥ 3
x1, x2 ≥ 0.

We will describe the dual simplex method using the full tableau.
If excess variables but not artificial variables are added, then the tableau for this

problem is

basic x1 x2 x3 x4 rhs

−z 2 3 0 0 0

3 −2 −1 0 4
1 2 0 −1 3

Consider the initial basis xB = (x3, x4)
T. If we multiply the constraints by −1, we obtain

basic x1 x2 x3 x4 rhs

−z 2 3 0 0 0

x3 −3 2 1 0 −4
x4 −1 −2 0 1 −3

This basis is primal infeasible since both x3 and x4 are negative, but the primal optimality
conditions are satisfied (the reduced costs are positive).

The dual problem is

maximize w = 4y1 + 3y2

subject to 3y1 + y2 ≤ 2
− 2y1 + 2y2 ≤ 3
y1, y2 ≥ 0.

Although not necessary for the algorithm, the corresponding dual solution can be found
from the formula yT = cT

B
B−1. (We will compute the sequence of dual solutions in this
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example to emphasize that the dual simplex method is moving through a sequence of dual
feasible solutions.) For this basis, the dual variables are y1 = y2 = 0 with dual objective
w = 0. This point is dual feasible but not dual optimal. Throughout the execution of the
dual simplex method, complementary slackness will be maintained and the primal and dual
objectives will be equal.

The current basis is not (primal) feasible. The most negative variable is x3, so it will
be the leaving variable. In the ratio test there is only one valid ratio, in the x1 column:

basic x1 x2 x3 x4 rhs

−z 2 3 0 0 0

x3 −3 2 1 0 −4 ⇐
x4 −1 −2 0 1 −3

We now apply elimination operations to obtain the new basic solution:

basic x1 x2 x3 x4 rhs

−z 0 13
3

2
3 0 − 8

3

x1 1 − 2
3 − 1

3 0 4
3

x4 0 − 8
3 − 1

3 1 − 5
3

The corresponding dual feasible solution is y1 = 2
3 , y2 = 0.

At the next iteration, x4 is the only negative variable, so it will be the leaving variable.
There are two ratios to consider in the ratio test:∣∣∣∣∣

13
3

− 8
3

∣∣∣∣∣ = 13

8
and

∣∣∣∣∣
2
3

− 1
3

∣∣∣∣∣ = 2.

The first of these is smaller so x2 is the entering variable:

basic x1 x2 x3 x4 rhs

−z 0 13
3

2
3 0 − 8

3

x1 1 − 2
3 − 1

3 0 4
3

x4 0 − 8
3 − 1

3 1 − 5
3 ⇐

After applying elimination operations we obtain

basic x1 x2 x3 x4 rhs

−z 0 0 1
8

13
8 − 43

8

x1 1 0 − 1
4 − 1

4
7
4

x2 0 1 1
8 − 3

8
5
8
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This basis is optimal and feasible, so we stop. The dual solution is y1 = 1
8 , y2 = 13

8 .
If the full tableau were not used, then the same sequence of bases would be obtained.

The only difference would be that the pivot rows and columns would be computed at every
iteration using the current basis matrix B.

Exercises
3.1. Use the dual simplex method to solve

minimize z = 5x1 + 4x2

subject to 4x1 + 3x2 ≥ 10
3x1 − 5x2 ≥ 12
x1, x2 ≥ 0.

3.2. Use the dual simplex method to solve

minimize z = 5x1 + 2x2 + 8x3

subject to 2x1 − 3x2 + 2x3 ≥ 3
−x1 + x2 + x3 ≥ 5
x1, x2, x3 ≥ 0.

3.3. Use the dual simplex method to solve

maximize z = −2x1 − 7x2 − 6x3 − 5x4

subject to 2x1 − 3x2 − 5x3 − 4x4 ≥ 20
7x1 + 2x2 + 6x3 − 2x4 ≤ 35
4x1 + 5x2 − 3x3 − 2x4 ≥ 15
x1, x2, x3, x4 ≥ 0.

3.4. In step 2 of the dual simplex method, explain why the dual problem is unbounded
if there is no admissible entering variable in the ratio test. Also, find a direction of
unboundedness for the dual problem in such a case.

3.5. Prove that at each iteration of the dual simplex method,

	w = 	z = ĉt b̂s

âs,t
≥ 0,

where 	w is the change in the dual objective function, and 	z is the change in the
primal objective function.

3.6. Prove that in the step procedure of the dual simplex method the smallest ratio{ ∣∣∣∣ ĉjâs,j
∣∣∣∣ : âs,j < 0, xj nonbasic

}

determines which reduced cost goes to zero first.

3.7. Is it possible for a basic variable that is nonnegative to become negative in the course
of the dual simplex?
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3.8. The following is a tableau obtained when solving a minimization linear programming
problem via the dual simplex algorithm.

basic x1 x2 x3 x4 x5 x6 x7 rhs

−z 0 a 0 0 3 b c 2

0 −1 1 3 −1 0 1 1
1 1 0 d e 0 f g

0 h 0 −2 −2 1 −1 2

Find conditions on the parameters a, b, c, d, e, f, g, h such that the following are
true. State the most general conditions that apply. (You do not have to mention those
parameters that can take on any value from −∞ to +∞.)

(i) The above tableau is a valid tableau for the dual simplex algorithm.

(ii) A basic feasible solution to the problem has been found.

(iii) The problem is infeasible.

(iv) The problem is unbounded.

(v) The current solution is not feasible. According to the dual simplex method,
the variable to enter the basis is x4. (Assume that there are no ties.)

(vi) x7 enters the basis, and the resulting solution is still infeasible.

3.9. In Exercises 3.1 and 3.2, apply the primal simplex method to the dual linear program,
using bases that correspond to the iterations of the dual simplex method. Show that
the two approaches are equivalent in these cases.

3.10. Suppose that the primal and dual simplex methods are implemented using the revised
simplex tableau. Compare the operation counts for an iteration of both methods, if
they are applied to a problem with n variables and m constraints. How are these
operation counts affected when sparsity is taken into account?

3.11. Define dual degeneracy. Show (via an example) that degeneracy can cause the
objective value to remain unchanged during an iteration of the dual simplex method.

3.12. Devise a “phase-1” procedure for the dual simplex method that would allow the
method to be applied to any linear program.

3.13. Devise a “big-M” procedure for the dual simplex method that would allow the method
to be applied to any linear program. Hint: Add a new variable and constraint.

6.4 Sensitivity
The purpose of sensitivity analysis is to determine how the solution of a linear program
changes when changes are made to the data in the problem. This is an important practical
technique, since it is rare that the data in a model are known exactly. For example, the linear
program might represent a model of the economy, and one of the entries in the model might
be the predicted inflation rate six months in the future. This rate can only be guessed at, and
so it would be worrisome if the solution to the linear program was especially sensitive to its
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estimated value. The developer of the model might wish to know the effect on the objective
value of a change in the right-hand side of one of the constraints. Or what happens when
the cost coefficients change, or when a new constraint is added to the problem. Another
possibility is that a particular entry in the model lies in some interval, and hence it would
be desirable to know the solution of the linear program for all permissible values of this
parameter. This situation might arise, for example, if the model of the economy included
the number of unemployed workers, a number that might be estimated in the form

7, 000, 000 ± 450, 000.

Sensitivity analysis is designed to answer such questions.
Sensitivity analysis attempts to answer these questions without having to re-solve the

problem. The idea is to start from the information provided by the optimal basis to answer
these “what if” questions.

When performing sensitivity analysis it is also possible to determine the range of
values that a perturbation can take without changing the optimal basis. Within this range,
the values of the variables may change, but the basis will remain constant. In particular, the
nonbasic variables will remain equal to zero. This could be of value, for example, if each
variable represented the number of hours that an employee were assigned to a task, so that
the optimal basis would determine the staffing required, even if the actual number of hours
worked by each employee might vary. Most software packages for linear programming
provide sensitivity information as well as range information for each objective coefficient
and for the right-hand side of each constraint.

Our techniques depend on the feasibility and optimality conditions for a linear pro-
gram. The current basis is feasible if

B−1b ≥ 0.

It is optimal if
cT
N
− cT

B
B−1N ≥ 0.

From a mathematical point of view, all of sensitivity analysis can be considered as a conse-
quence of these formulas.

We will consider only the simpler cases, but the approach is general:

• Do the changes in the data affect the optimality conditions? How much can the data
change before the optimality conditions are violated? If the current basis is no longer
optimal, apply the primal simplex method to restore optimality.

• Do the changes in the data affect the feasibility conditions? How much can the data
change before the feasibility conditions are violated? If the current basis is no longer
feasible, apply the dual simplex method to restore feasibility.

We will examine these ideas via an example.

Example 6.14 (Sensitivity Analysis). Consider the linear program

minimize z = −x1 − 2x2

subject to −2x1 + x2 ≤ 2
−x1 + 2x2 ≤ 7

x1 ≤ 3
x1, x2 ≥ 0.
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The optimal solution is given by

basic x1 x2 x3 x4 x5 rhs

−z 0 0 0 1 2 13

x2 0 1 0 1
2

1
2 5

x1 1 0 0 0 1 3

x3 0 0 1 − 1
2

3
2 3

The current basis is xB = (x2, x1, x3)
T, and

B =
( 1 −2 1

2 −1 0
0 1 0

)
, B−1 =

( 0 1
2

1
2

0 0 1
1 − 1

2
3
2

)
,

N =
( 0 0

1 0
0 1

)
, B−1N =

( 1
2

1
2

0 1
− 1

2
3
2

)
,

cB =
(−2
−1

0

)
, cN =

(
0
0

)
, yT = cT

B
B−1 = ( 0 −1 −2 ) ,

B−1b =
( 5

3
3

)
, ĉT

N
= cT

N
− yTN = ( 1 2 ) .

Here y is the vector of optimal dual variables.
We now perturb the linear program in various ways. Each of these changes will be

independent and will be applied to the original linear program.
Suppose that the right-hand side of the second constraint is perturbed. We will de-

note this by b̄2 = b2+δ, where b̄2 is the new right-hand-side value, and δ is the perturbation.
This is a change of the form b̄ = b+	b for some vector	b. In this case	b = (0, δ, 0)T.
This change has no effect on the optimality conditions since they do not involve the right-
hand side. However, it does affect the feasibility conditions: B−1b̄ ≥ 0. The feasibility
condition will remain satisfied as long as B−1(b + 	b) ≥ 0, or equivalently, as long as
B−1b ≥ −B−1	b. For this example, this condition is( 5

3
3

)
≥
(− 1

2δ

0
1
2δ

)
.

That is, the basis does not change if −10 ≤ δ ≤ 6.
The new value of the objective function will be z̄ = cT

B
B−1b̄ = yT(b + 	b) =

z+ yT	b. This shows that 	z = yT	b. For this example, z̄ = z+ y2δ = −13 − δ.
If δ = −4, then the basis will not change, and

x̄B = xB + B−1	b =
( 5

3
3

)
+
(−2

0
2

)
=
( 3

3
5

)

z̄ = z+ yT	b = −13 − 1(−4) = −9.
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No other values are affected.
If δ = 8, then the basis changes, since

x̄B = xB + B−1	b =
( 5

3
3

)
+
( 4

0
−4

)
=
( 9

3
−1

)
≥ 0

z̄ = z+ yT	b = −13 − 1(8) = −21

is infeasible. In terms of the current basis the perturbed problem is

basic x1 x2 x3 x4 x5 rhs

−z 0 0 0 1 2 21

x2 0 1 0 1
2

1
2 9

x1 1 0 0 0 1 3

x3 0 0 1 − 1
2

3
2 −1 ⇐

The reduced costs are unchanged, and hence the optimality conditions remain satisfied. The
dual simplex method can be applied to obtain the new solution

basic x1 x2 x3 x4 x5 rhs

−z 0 0 2 0 5 19

x2 0 1 1 0 2 8
x1 1 0 0 0 1 3
x4 0 0 −2 1 −3 2

Suppose now that the coefficient of x2 in the objective is changed: c̄2 = c2+δ. This is a
change in the cost coefficient of a basic variable, that is, a change of the form c̄B = cB +	cB
with 	cB = (δ, 0, 0)T. This affects the optimality condition cT

N
− c̄T

B
B−1N ≥ 0, but not

the feasibility condition. The optimality condition will remain satisfied if the new reduced
costs are nonnegative:

cT
N
− (cB +	cB )TB−1N = ĉT

N
−	cT

B
B−1N ≥ 0,

that is, if
ĉT
N
≥ (	cB )

TB−1N.

Substituting the data listed at the beginning of this example, we obtain

( 1 2 ) ≥ ( δ 0 0 )

( 1
2

1
2

0 1
− 1

2
3
2

)

or
( 1 2 ) ≥ ( 1

2δ
1
2δ ) .
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This will be satisfied if δ ≤ 2.
If δ = 1, the current basis remains optimal and the reduced costs become

ĉT
N
−	cT

B
B−1N = ( 1 − 1

2δ 2 − 1
2δ ) = ( 1

2
3
2 ) ≥ 0.

The new value of the objective is

z̄ = c̄T
B
B−1b = (cT

B
+	cT

B
)xB = z+ (	cB )TxB.

In this case z̄ = z+ δx2 = z+ 5δ = −13 + 5(1) = −8.
If δ = 4, the current basis is no longer optimal. The reduced costs for x4 and x5

become
( 1 − 1

2δ 2 − 1
2δ ) = (−1 0 ) ≥ 0.

The new value of the objective is

z̄ = z+ 5δ = −13 + 5(4) = 7.

We apply the primal simplex method to the perturbed problem:

⇓
basic x1 x2 x3 x4 x5 rhs

−z 0 0 0 −1 0 −7

x2 0 1 0 1
2

1
2 5

x1 1 0 0 0 1 3

x3 0 0 1 − 1
2

3
2 3

The new optimal basic solution is

basic x1 x2 x3 x4 x5 rhs

−z 0 2 0 0 1 3

x4 0 2 0 1 1 10
x1 1 0 0 0 1 3
x3 0 1 1 0 2 8

As a final illustration we consider the addition of a new variable x3 to the problem.
Suppose that its coefficient in the objective is c3 and its coefficients in the constraints are

A3 =
(
a1,3

a2,3

a3,3

)
.

We will also assume that the new variable x3 is constrained to be nonnegative.
The current basic feasible solution is also a basic feasible solution to the augmented

problem (the problem that includes x3) if x3 is included as a nonbasic variable. Is the current
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basis optimal? We must check if the reduced cost for x3 satisfies ĉ3 ≥ 0. This condition
has the form

ĉ3 = c3 − yTA3 ≥ 0.

If ĉ3 ≥ 0, then no further work is necessary: the current basis will remain optimal with
x3 = 0. If ĉ3 < 0, then the current basis is not optimal. A new column will be added to the
problem (corresponding to x3) and the primal simplex method will be applied to determine
the new optimal basis.

If c3 = 4 and A3 = (5,−3, 4)T, then the optimality condition for x3 is

4 − ( 0 −1 −2 )

( 5
−3

4

)
= 9 ≥ 0

so the new variable does not affect the solution.
If c3 = 2 and A3 = (4,−5, 1)T, then the optimality condition for x3 is

2 − ( 0 −1 −2 )

( 4
−5

1

)
= −1 ≥ 0

so the current solution is no longer optimal. The entries in the new column are obtained by
computing B−1A3:

B−1A3 =
( 0 1

2
1
2

0 0 1
1 − 1

2
3
2

)( 4
−5

1

)
=
(−2

1
8

)

so that the augmented problem becomes

⇓
basic x1 x2 x3 x3 x4 x5 rhs

−z 0 0 −1 0 1 2 13

x2 0 1 −2 0 1
2

1
2 5

x1 1 0 1 0 0 1 3
x3 0 0 8 1 − 1

2
3
2 3

The new optimal basic solution is

basic x1 x2 x3 x3 x4 x5 rhs

−z 0 0 0 1
8

15
16

35
16

107
8

x2 0 1 0 1
4

3
8

7
8

23
4

x1 1 0 0 − 1
8

1
16

13
16

21
8

x3 0 0 1 1
8 − 1

16
3

16
3
8
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Some general rules can be stated for doing sensitivity analysis. In the following we
denote the reduced costs by ĉT

N
= cT

N
− cT

B
B−1N .

• Change in the right-hand side—If b̄ = b + 	b, then determine if the current basis
is still feasible by checking if b̂ ≥ −B−1	b. If so, then x̄B = xB + B−1	b and
z̄ = z + yT	b. (The vector y is the vector of dual variables.) If not, apply the dual
simplex method to the perturbed problem to restore feasibility.

• Change to an objective coefficient (nonbasic variable)—If c̄N = cN + 	cN , then
determine if the basis is still optimal by checking if ĉT

N
≥ −(	cN )T. If the basis

does not change, then there are no changes to the variables or to the objective. If the
basis does change, then apply the primal simplex method to the perturbed problem to
restore optimality.

• Change to an objective coefficient (basic variable)—If c̄B = cB + 	cB , determine
if the basis is still optimal by checking if ĉT

N
≥ (	cB )

TB−1N . If the basis does not
change, then ȳ = y + B−T 	cB and z̄ = z + (	cB )

TxB . If the basis does change,
apply the primal simplex method to the perturbed problem to restore optimality.

• New constraint coefficients (nonbasic variable)—If N̄ = N + 	N , then determine
if the current basis is still optimal by checking if ĉT

N
≥ cT

B
B−1	N . If the basis does

not change, then there are no changes to the variables or to the objective. If the basis
does change, then apply the primal simplex method to restore optimality.

• New variable—If xt is a new variable with objective coefficient ct and constraint
coefficients At = (a1,t , . . . , am,t )

T, then determine if the current basis is still optimal
by testing if ct − yTAt ≥ 0. If it is, then there are no changes to the variables or to
the objective. If it is not, then apply the primal simplex method to restore optimality.

• New constraint—See the Exercises.

It is also possible to change the coefficients of the constraints corresponding to a basic
variable, or to have a combination of changes of the above forms. In these cases it might
happen that the current basis would be neither feasible nor optimal for the new problem, so
that neither the primal nor the dual simplex method could be applied directly to find the new
solution. It would be necessary to use some sort of phase-1 procedure to find a basic feasible
solution to the new problem before applying the primal simplex method. This might not be
any faster than solving the new problem from scratch.

Exercises
4.1. The following questions apply to the linear program in Example 6.14. Each of the

questions is independent.

(i) By how much can the right-hand side of the first constraint change before the
current basis ceases to be optimal?

(ii) What would the new solution be if the right-hand side of the third constraint
were increased by 5?

(iii) What would the new solution be if the coefficient of x1 in the objective were
decreased by 2? Increased by 2?
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(iv) Would the current basis remain optimal if a new variable x3 were added to
the model with objective coefficient c3 = 5 and constraint coefficients A3 =
(−2, 4, 5)T?

4.2. Show how to update the solution to a linear program when a new constraint is added.

(i) Consider first a constraint of the form

a1x1 + a2x2 + · · · + anxn ≤ β.

There are two cases: (a) when the current optimal solution satisfies the new
constraint, and (b) when the current optimal solution violates the new con-
straint.

(ii) Next, consider a constraint of the form

a1x1 + a2x2 + · · · + anxn = β.

In this case, an artificial variable may have to be added to the constraint, and
a big-M term may have to be added to the objective.

(iii) How can a constraint of the form

a1x1 + a2x2 + · · · + anxn ≥ β

be handled?

4.3. The following questions below apply to the linear program

maximize z = 3x1 + 13x2 + 13x3

subject to x1 + x2 ≤ 7
x1 + 3x2 + 2x3 ≤ 15

2x2 + 3x3 ≤ 9
x1, x2, x3 ≥ 0

with optimal basis { x1, x2, x3 } and

B−1 =
( 5/2 −3/2 1
−3/2 3/2 −1

1 −1 1

)
.

All of the questions are independent.

(i) What is the solution to the problem? What are the optimal dual variables?

(ii) What is the solution of the linear program obtained by decreasing the right-hand
side of the second constraint by 5?

(iii) By how much can the right-hand side of the first constraint increase and de-
crease without changing the optimal basis?

(iv) What is the solution of the linear program obtained by increasing the coefficient
of x2 in the objective by 15?

(v) By how much can the objective coefficient of x1 increase and decrease without
changing the optimal basis?
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(vi) Would the current basis remain optimal if a new variable x4 were added to
the model with objective coefficient c4 = 5 and constraint coefficients A4 =
(2,−1, 5)T?

(vii) Determine the solution of the linear program obtained by adding the constraint

x1 − x2 + 2x3 ≤ 10.

(viii) Determine the solution of the linear program obtained by adding the constraint

x1 − x2 + x3 ≥ 6.

(ix) Determine the solution of the linear program obtained by adding the constraint

x1 + x2 + x3 = 10.

4.4. The following questions below apply to the linear program

minimize z = −101x1 + 87x2 + 23x3

subject to 6x1 − 13x2 − 3x3 ≤ 11
6x1 + 11x2 + 2x3 ≤ 45

x1 + 5x2 + x3 ≤ 12
x1, x2, x3 ≥ 0

with optimal basic solution

basic x1 x2 x3 x3 x4 x5 rhs

−z 0 0 0 12 4 5 372

x1 1 0 0 1 −2 7 5
x2 0 1 0 −4 9 −30 1
x3 0 0 1 19 −43 144 2

All of the questions are independent.

(i) What is the solution of the linear program obtained by decreasing the right-hand
side of the second constraint by 15?

(ii) By how much can the right-hand side of the second constraint increase and
decrease without changing the optimal basis?

(iii) What is the solution of the linear program obtained by increasing the coefficient
of x1 in the objective by 25?

(iv) By how much can the objective coefficient of x3 increase and decrease without
changing the optimal basis?

(v) Would the current basis remain optimal if a new variable x4 were added to
the model with objective coefficient c4 = 46 and constraint coefficients A4 =
(12,−14, 15)T?

(vi) Determine the solution of the linear program obtained by adding the constraint

5x1 + 7x2 + 9x3 ≤ 50.
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(vii) Determine the solution of the linear program obtained by adding the constraint

12x1 − 15x2 + 7x3 ≥ 10.

(viii) Determine the solution of the linear program obtained by adding the constraint

x1 + x2 + x3 = 30.

6.5 Parametric Linear Programming
Parametric linear programming is a form of sensitivity analysis, but one in which a range
of values of the objective or the right-hand side is analyzed. For the case of the objective,
we will examine problems of the form

minimize z = (c + α	c)Tx
subject to Ax = b

x ≥ 0,

where the parameter α is allowed to range over all positive and negative values. If the
right-hand side were allowed to vary, then the problems would be of the form

minimize z = cTx

subject to Ax = b + α	b
x ≥ 0.

We will concentrate on the case where the objective coefficients are varied.
Parametric programming can be of value in applications where the coefficients in the

model are uncertain and are only known to lie within particular intervals. It can also be
valuable when there are two conflicting objective functions, for example, one representing
minimum cost (cTx) and the other representing minimum time (c̄Tx). To understand the
trade-offs between the two, a compromise objective function might be used:

z = (1 − α)cTx + αc̄Tx = cTx + α(c̄ − c)Tx.
This function is of the desired form with 	c = c − c̄. In this application, only values of α
in the interval [0, 1] would be relevant.

We will assume that the linear program has been solved with α = 0, that is, with
objective function z = (c + α	c)Tx = cTx. Techniques from sensitivity analysis will be
used to examine how the solution changes as α is varied from zero. If the current basis
remains optimal, then the current basic feasible solution xB = B−1b will not change. Hence
only the optimality conditions need be examined. For the perturbed problem they are

(cN + α	cN )T − (cB + α	cB )TB−1N ≥ 0

or
α(	cT

N
−	cT

B
B−1N) ≥ −(cT

N
− cT

B
B−1N),
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where	cN and	cB represent the perturbations to cN and cB , respectively. This inequality
must be satisfied for every component in the optimality test.

The coefficients on the right-hand side (that is, the reduced costs from the simplex
method) satisfy

ĉT
N
= cT

N
− cT

B
B−1N ≥ 0

since the current basis is assumed to be optimal. For α > 0, the inequality is of interest
only when

(	cT
N
−	cT

B
B−1N)i < 0.

As a result, α can be increased up to the value

ᾱ = min
i

{
− (cT

N
− cT

B
B−1N)i

(	cT
N
−	cT

B
B−1N)i

: (	cT
N
−	cT

B
B−1N)i < 0

}
before the current basis ceases to be optimal. For α > ᾱ the basis changes, and the index i
that determines ᾱ specifies the entering variable for the simplex method. Similarly, for
α < 0, it is possible to decrease α up to the value

α = max
i

{
− (cT

N
− cT

B
B−1N)i

(	cT
N
−	cT

B
B−1N)i

: (	cT
N
−	cT

B
B−1N)i > 0

}
before the current basis ceases to be optimal. Again, the index i that determinesα determines
the entering variable.

For α ∈ [α, ᾱ] the reduced costs for the nonbasic variables are given by the formula

(cT
N
− cT

B
B−1N)+ α(	cT

N
−	cT

B
B−1N).

The parametric objective value is given by

z(α) = z(0)+ α	cT
B
xB,

where z(0) is the objective value for the problem with α = 0.
If, when attempting to calculate ᾱ, there is no index that satisfies

(	cT
N
−	cT

B
B−1N)i < 0,

then α can be increased without bound with the current basis remaining optimal. If, when
applying the simplex method to determine the new basis at ᾱ, there is no leaving variable,
then the linear program is unbounded for α > ᾱ. Similarly, if there is no index that satisfies

(	cT
N
−	cT

B
B−1N)i > 0,

then α can be decreased without bound with the current basis remaining optimal, and if
there is no leaving variable at α, then the linear program is unbounded for α < α.

Parametric linear programming is illustrated in the following example.

Example 6.15 (Parametric Linear Programming). We will examine the linear program
from Example 6.12:

minimize z = −x1 − 2x2

subject to −2x1 + x2 ≤ 2
−x1 + 2x2 ≤ 7

x1 ≤ 3
x1, x2 ≥ 0



book
2008/10/23
page 206

�

�

�

�

�

�

�

�

206 Chapter 6. Duality and Sensitivity

with optimal basic solution

basic x1 x2 x3 x4 x5 rhs

−z 0 0 0 1 2 13

x2 0 1 0 1
2

1
2 5

x1 1 0 0 0 1 3

x3 0 0 1 − 1
2

3
2 3

Consider the parametric objective function z(α) = (c + α	c)Tx with

c = (−1 −2 0 0 0 )T and 	c = ( 2 3 0 0 0 )T ,

so that 	cB = (3, 2, 0)T and 	cN = (0, 0)T. For the original problem with α = 0 the
optimal basis is xB = (x2, x1, x3)

T. The values of B, cB , etc. are listed in Example 6.12.
To determine how much α can be varied without changing the basis, we calculate

	cT
N
−	cT

B
B−1N =

(− 3
2

− 7
2

)
and ĉT

N
= cT

N
− cT

B
B−1N =

(
1
2

)
.

Since there is no entry satisfying

(	cT
N
−	cT

B
B−1N)i > 0,

α can be decreased without bound, with the current basis remaining optimal. However, we
can compute an upper bound on the range of α:

ᾱ = min
{

2
3 ,

4
7

} = 4
7

and x5 is the entering variable for this value of α. The nonbasic reduced costs are(
1
2

)
+ α

(− 3
2

− 7
2

)
=
(

1 − 3
2α

2 − 7
2α

)
and the objective value is

z(α) = −13 + αcT
B
xB = −13 + 21α.

Hence for α = ᾱ = 4
7 , the coefficients in terms of the current basis are

⇓
basic x1 x2 x3 x4 x5 rhs

−z 0 0 0 1
7 0 1

x2 0 1 0 1
2

1
2 5

x1 1 0 0 0 1 3

x3 0 0 1 − 1
2

3
2 3
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After pivoting, the new optimal basic solution is

basic x1 x2 x3 x4 x5 rhs

−z 0 0 0 1
7 0 1

x2 0 1 − 1
3

2
3 0 4

x1 1 0 − 2
3

1
3 0 1

x5 0 0 2
3 − 1

3 1 2

The whole process can now be repeated using the new basis.
To determine how much α can be increased we use the new basis to calculate

	cT
N
−	cT

B
B−1N =

( 7
3

− 8
3

)
and ĉT

N
= cT

N
− cT

B
B−1N =

(
0
1
7

)
.

Then
ᾱ = 3

56

and x4 is the entering variable for α = 4
7 + ᾱ. (Note that we are calculating how much

further α can be increased from its current value of 4
7 .)

The nonbasic reduced costs are(
0
1
7

)
+ (α − 4

7 )

( 7
3

− 8
3

)
and the objective value is

z(α) = −1 + 14(α − 4
7 ).

For α − 4
7 = 3

56 we obtain

⇓
basic x1 x2 x3 x4 x5 rhs

−z 0 0 1
8 0 0 1

4

x2 0 1 − 1
3

2
3 0 4

x1 1 0 − 2
3

1
3 0 1

x5 0 0 2
3 − 1

3 1 2

After pivoting, the new optimal basic solution is

basic x1 x2 x3 x4 x5 rhs

−z 0 0 1
8 0 0 1

4

x2 −2 1 1 0 0 2

x4 3 0 −2 1 0 3

x5 1 0 0 0 1 3
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To determine how much further α can be increased we calculate

	cT
N
−	cT

B
B−1N =

(
8

−3

)
and ĉT

N
= cT

N
− cT

B
B−1N =

(
0
1
8

)
.

Then
ᾱ = 1

24

and x3 is the entering variable for α = 4
7 + 3

56 + ᾱ = 5
8 + ᾱ.

The nonbasic reduced costs are(
0
1
8

)
+ (α − 5

8 )

(
8

−3

)

and the objective value is
z(α) = − 1

4 + 6(α − 5
8 ).

For α − 5
8 = 1

24 we obtain

⇓
basic x1 x2 x3 x4 x5 rhs

−z 1
3 0 0 0 0 0

x2 −2 1 1 0 0 2

x4 3 0 −2 1 0 3

x5 1 0 0 0 1 3

After pivoting, the new optimal basic solution is

basic x1 x2 x3 x4 x5 rhs

−z 1
3 0 0 0 0 0

x3 −2 1 1 0 0 2

x4 −1 2 0 1 0 7

x5 1 0 0 0 1 3

For this basis

	cT
N
−	cT

B
B−1N =

(
2
3

)
> 0

so there is no entering variable and the current basis remains optimal for all larger values
of α. Also, since 	cB = (0, 0, 0)T for this basis, the objective value remains constant as α
increases.

To summarize: If α ∈ (−∞, 4
7 ], then

xB = (x1, x2, x3)
T

z(α) = −13 + 21α.
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Figure 6.1. Parametric objective function.

If α ∈ [ 4
7 ,

5
8 ], then

xB = (x1, x2, x5)
T

z(α) = −1 + 14(α − 4
7 ) = −9 + 14α.

If α ∈ [ 5
8 ,

2
3 ], then

xB = (x1, x4, x5)
T

z(α) = − 1
4 + 6(α − 5

8 ) = −4 + 6α.

If α ∈ [ 2
3 ,+∞), then

xB = (x3, x4, x5)
T

z(α) = 0.

The graph of the objective value as a function of α is plotted in Figure 6.1.

For the example, the value of the parametric objective function is piecewise linear and
concave. This result is true in general for parametric linear programs (see the Exercises).

A similar technique can be developed for solving problems of the form

minimize z = cTx

subject to Ax = b + α	b
x ≥ 0.

The technique can be derived in one of two ways: either directly using sensitivity analysis,
or by applying parametric analysis to the dual linear program. Regardless of how it is
derived, the dual simplex method is used to find the new basis for each critical value of α.
See the Exercises.
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Parametric linear programming can be used as a general technique for solving linear
programming problems. To develop this idea we assume that an initial basic feasible solution
is available. (If not, a two-phase or big-M approach could be used to initialize the method.)
This basis is used to define an artificial objective function c̄ with respect to which the initial
basis is optimal. One possible choice would be

c̄N = ( 1 · · · 1 )T

c̄B = ( 0 · · · 0 )T ,

so that

c̄T
N
− c̄T

B
B−1N = ( 1 · · · 1 )T ≥ 0.

Then the parametric programming method is applied to the linear program with objective
function

z = (1 − α)c̄Tx + αcTx = c̄Tx + α(c − c̄)Tx,
where c is the original vector of objective coefficients. The solution for α = 1 is the solution
to the original problem. This technique is sometimes called the shadow vertex method.

Exercises
5.1. Apply parametric linear programming to the linear program in Example 6.13. The

original objective uses c = (2, 3, 0, 0)T. Use 	c = (4, 1, 0, 0)T.

5.2. Consider a linear program with parametric objective function

minimize z = (c + α	c)Tx.

Prove that the optimal value z(α) is a concave, piecewise linear function of α.

5.3. Derive a parametric linear programming algorithm to solve

minimize z = cTx

subject to Ax = b + α	b
x ≥ 0

for α ≥ 0. Assume that an optimal basis is known for the problem with α = 0.

5.4. Apply the algorithm obtained in the previous problem to the linear program in Ex-
ample 6.12. Use 	b = (4, 1, 1)T.

5.5. Use the shadow vertex method to solve the linear program in Example 6.14. Use
the initial basis xB = (x3, x4, x5)

T and xN = (x1, x2)
T, and let the artificial objective

function have coefficients

c̄N = (1, 1)T and c̄B = (0, 0, 0)T.
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6.6 Notes
Duality—Duality theory for linear programming was first developed by von Neumann
(1947), but the first published result is in the paper by Gale, Kuhn, and Tucker (1951). Von
Neumann’s result built upon his earlier work in game theory. Farkas’ lemma (Exercise 2.14)
was proved (in a slightly different form) by Julius Farkas in 1901 and was used in the work
of Gale, Kuhn, and Tucker. The existence of a strictly complementary primal-dual optimal
pair for any linear program with a finite optimum is due to Goldman and Tucker (1956).
Further historical discussion of duality theory can be found in Section 14.9.

The Dual Simplex Method—The dual simplex method was first described in the papers
of Lemke (1954) and Beale (1954).

Parametric Programming—Parametric programming was first developed in the paper
by Gass and Saaty (1955). A more recent survey of works on this topic can be found in the
book by Gal (1979). On degenerate problems there is a possibility that the method described
here can cycle but, as with the simplex method, it is possible to modify the method so that
it is guaranteed to terminate. The papers by Dantzig (1989) and Magnanti and Orlin (1988)
describe techniques for doing this. The paper by Klee and Kleinschmidt (1990) explains
when cycling can occur.

The shadow vertex method is not widely used for practical computations, but it is
used theoretically to study the average-case behavior of the simplex method, that is, the
expected performance of the simplex method on a random problem. (See Section 9.5.)
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Chapter 7

Enhancements of the
Simplex Method

7.1 Introduction
In previous chapters, we made use of the formulas for the simplex method but paid less
attention to the computational details of the method. In particular, we did not explain
how the basis matrix was represented. One possibility would be to use the explicit inverse
of the basis matrix. This can be a sensible choice when solving small problems using hand
calculations; however, it is inefficient for solving large- or even moderate-size problems.
It is also inflexible—it is less able to take advantage of linear programs that have special
structure, and thereby less able to achieve computational savings within the simplex method.

An important goal of this chapter is to focus on the essentials of the simplex method
and to move away from the obvious interpretations of its formulas. The simplex method
consists of three major steps: the optimality test that identifies, if the current basis is not
optimal, the entering variable; the step procedure that determines the leaving variable and
the new basis; and the update that changes the basis. As long as these calculations can
be performed, the simplex method can be used, regardless of how the calculations are
organized.

Many of the techniques we describe are designed to permit the solution of large
problems, for which matrix inverses are particularly ill suited. Consider, for example, a
problem with m = 10,000 equalities. Practical problems of this size or larger are not
uncommon. The overwhelming majority of such large problems are sparse, with typically
only a handful of nonzero elements in each column of the constraint matrix and possibly
the right-hand side vector as well. Suppose our problem has, say, a total of 50,000 nonzero
elements in the basis matrix. Then this matrix can be stored in a compact form by recording
only the values of the nonzero elements and their row indices. If the basis matrix were
inverted, its inverse might be dense, and updating this inverse would require updating all
m2 = 100,000,000 nonzero entries. The computational effort required to perform these
updates over thousands of iterations would be prohibitive. This is the major disadvantage
of using matrix inverses in the simplex method: they do not exploit sparsity.

Section 7.2 discusses a type of problem with special structure. Many linear program-
ming models include upper bounds on the variables. In earlier chapters we treated these

213
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upper bounds as general constraints. However, it is possible to handle these upper bounds
in much the same way as the nonnegativity constraints on the variables, with considerable
computational savings. The resulting simplex method is only slightly more complicated
than for a problem in standard form.

In some linear programming models it can be inconvenient or expensive to generate
the coefficients associated with a variable. It is possible to implement the simplex method
in such a way that these coefficients are only generated as needed. The hope is that the linear
program can be optimized by examining only a subset of the coefficients, and hence avoid
unnecessary calculations. This technique is called column generation and is the subject of
Section 7.3.

Column generation is applied in Section 7.4 to problems whose constraints are divided
into two groups: one group of “easy” constraints, and another (usually small) group of
“hard” constraints. This special problem structure can be exploited using the decomposition
principle.

No matter how the simplex method is described, its ultimate effectiveness depends on
how it is implemented in software. Details of the algorithm that are mathematically routine
may require considerable transformation to turn them into efficient software. These ideas
are discussed in Sections 7.5 and 7.6. Section 7.5 discusses the representation of the basis
matrix. If sparsity is handled effectively, the storage requirements and computational effort
required to solve large linear programs can be dramatically reduced.

The many topics discussed in this chapter have a joint goal. They aim to generalize our
view of the simplex method to obtain a more powerful method capable of solving problems
with millions of variables. There are only a few basic steps that are necessary to define the
simplex method, and a focus on these basics serves as a unifying theme running through
these seemingly disparate topics.

For the most part, the sections in this chapter can be read independently of each
other. The only exception is Section 7.4 on the decomposition principle, which is easier to
understand if Section 7.3 on column generation has already been read.

7.2 Problems with Upper Bounds
It is common in linear programming models to include upper bound constraints on the
variables. These might represent upper limits on demand for a product, or perhaps just
limits on allowable values (for example, a probability cannot be greater than one). In
integer programming, where some or all of the variables are constrained to be integers,
upper bound constraints are included to reduce the size of the feasible region, and hence
reduce the amount of time required to compute a solution.

An upper bound constraint can be treated as a general linear constraint, and in fact
we have used this approach in earlier sections. This is computationally wasteful, however.
It increases the size of the problem by one general constraint and by one slack variable,
and it does not take full advantage of the special form of these constraints. Upper bound
constraints can be handled within the simplex method almost as easily as nonnegativity
constraints. We will discuss how to do this below. In fact, general bound constraints

� ≤ x ≤ u
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can be incorporated. We restrict our attention to constraints of the form

0 ≤ x ≤ u

so as to simplify the presentation. We also assume that u > 0, and that all the components
of u are finite. Techniques for more general problems are left to the Exercises.

To develop the method, we require a more general definition of a basic feasible
solution. Up to now we have assumed that the nonbasic variables are set equal to zero, their
lower bound. With upper bounds present, we will allow the nonbasic variables to be equal
to their lower bound (zero) or equal to their upper bound. For example, for the constraints

x1 + 2x2 = 4
0 ≤ x1 ≤ 5, 0 ≤ x2 ≤ 1

one basic feasible solution would be

xB = (x1) = (4)
xN = (x2) = (0)

and another would be

xB = (x1) = (2)
xN = (x2) = (1).

The same basis can lead to two different basic feasible solutions. Since xN = 0 when
upper bounds are present, some of the formulas for the simplex method will become more
complicated.

Let us define this new form of basic feasible solution more precisely. Consider a
linear program of the form

minimize z = cTx

subject to Ax = b

0 ≤ x ≤ u,

where u > 0 and A is an m × n matrix of full row rank. A point x will be an (extended)
basic feasible solution to this problem if (i) x satisfies the constraints of the linear program,
and (ii) the columns of the constraint matrix corresponding to the components of x that are
strictly between their bounds are linearly independent. The new definition of basic feasible
solution is consistent with the old definition applied to the standard form of the problem, as
the next lemma shows.

Lemma 7.1. An extended basic feasible solution for the bounded-variable problem is
equivalent to a basic feasible solution to the problem in standard form

minimize z = cTx

subject to Ax = b

x + s = u

x, s ≥ 0.

Proof. Consider a feasible solution (x, s) for the standard form. We may assume that x can
be split into the following three pieces: the first k components of x strictly between their
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bounds, the next � components at their upper bounds, and the remainingn−k−� components
equal to zero. Then the first k components of s are positive, the next � components are zero,
and the remaining n− k− � components are positive. Let A1 and A2 be the submatrices of
A corresponding to the first two pieces of x, respectively.

Let B̂ be the matrix consisting of the constraint coefficients corresponding to the
positive components of x and s:

B̂ =
⎛
⎜⎝
A1 A2

Ik Ik
I�

In−k−�

⎞
⎟⎠ .

(Here Ik denotes a k × k identity matrix, etc.) The columns of B̂ are linearly independent
(and hence x is a basic feasible solution in the old sense) if and only if there are no nontrivial
solutions to

A1α1 + A2α2 = 0
α1 + α3 = 0

α2 = 0
α4 = 0

and hence there are no nontrivial solutions to

A1α1 = 0
α2 = α4 = 0

α3 = −α1.

This shows that the columns of B̂ are linearly independent if and only if the columns of
A1 are linearly independent. Since A1 is also the coefficient matrix corresponding to the
components of x that are strictly between their bounds, then x is a basic feasible solution
in the new sense if and only if (x, s) is a basic feasible solution in the old sense.

Let us now return to the problem with upper bounds

minimize z = cTx

subject to Ax = b

0 ≤ x ≤ u

and assume that an initial feasible basis is provided. (A two-phase or big-M approach can be
used to find an initial basis.) Corresponding to the basis, we can identify m basic variables
xB and n−m nonbasic variables xN so that the constraints take the form BxB + NxN = b,
where B is an m×m invertible matrix. Hence,

xB = B−1b − B−1NxN.

The nonbasic variables will be either zero or at their upper bound.
If this formula is substituted into the objective function we obtain

z = cT
B
xB + cTN xN

= yTb + (cT
N
− yTN)xN

= yTb +
∑
j∈N

ĉj xj ,
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where yT = cT
B
B−1, and N is the index set for the nonbasic variables. As before, the

optimality test is based on the reduced costs

ĉj = cj − yTAj ,
although the test is more complicated in this case. If the nonbasic variable xj is zero and
if ĉj ≥ 0, then the solution will not improve if xj enters the basis. (If xj is increased from
zero, then the objective function will not decrease.) In addition, if xj is at its upper bound
and if ĉj ≤ 0, then again the solution will not improve if xj enters the basis. (If xj is
decreased from its upper bound, then the objective function will not decrease.)

If the optimality test is not satisfied, then any violation can be used to determine the
entering variable xt . As before, the entering column is

Ât = B−1At .

The ratio test for determining the leaving variable is also more complicated than before. One
of three things can happen as the entering variables is changed: (a) the “entering” variable
can move from one bound to another with the basis unchanged, (b) a basic variable can
increase and leave the basis by going to its upper bound, or (c) a basic variable can decrease
and leave the basis by going to zero. Cases (b) and (c) can be further refined depending
on whether the entering variable is equal to zero or to its upper bound. The ratio test must
determine which of these things happens first. Since every variable has finite upper and
lower bounds, the problem cannot be unbounded. In more general problems with infinite
upper bounds, unboundedness would be a possibility.

We now derive the ratio test, and hence determine the leaving variable. Suppose that
the entering variable xt is changed by α. Then the vector of basic variables will change
from its current value b̂ to xB = b̂−αÂt . To maintain feasibility with respect to the bounds,
the following condition must remain satisfied:

0 ≤ (xB)i = b̂i − αâi,t ≤ ûi ,

where ûi is the upper bound for the ith basic variable and âi,t is the ith component ofÂt . If
the entering variable is equal to zero (its lower bound), then α > 0. If âi,t > 0, then (xB)i
will decrease towards zero. Thus the ratio test

min
1≤i≤m

{
b̂i

âi,t
: âi,t > 0

}

determines which (if any) is the first basic variable to go to zero. If on the other hand
âi,t < 0, then (xB)i will increase towards its upper bound. The corresponding ratio test

min
1≤i≤m

{
ûi − b̂i
−âi,t : âi,t < 0

}

determines which (if any) is the first basic variable to reach its upper bound. Similar ratio
tests can be derived in the case where xt = ut , its upper bound, and where α < 0. (See the
Exercises.)
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The overall algorithm is summarized below. The method starts with a basis matrix B
corresponding to a basic feasible solution

xB = b̂ = B−1b −
∑
j∈N

B−1Ajxj .

The steps of the algorithm are given below.

Algorithm 7.1.
Bounded-Variable Simplex Method

1. The Optimality Test—Compute the vector of simplex multipliers yT = cT
B
B−1. Com-

pute the reduced costs ĉj = cj−yTAj for the nonbasic variables xj . If for all nonbasic
variables either (a) xj = 0 and ĉj ≥ 0, or (b) xj = uj and ĉj ≤ 0, then the current
basis is optimal. Otherwise, select a variable xt that violates the optimality test as the
entering variable.

2. The Step—Compute the entering column Ât = B−1At . Find an index s that corre-
sponds to the minimum value θ of the following quantities (if any of the quantities is
undefined, its value should be taken to be +∞):

(i) the distance between the bounds for the entering variable xt :

ut ;
(ii) if xt = 0,

min
1≤i≤m

{
b̂i

âi,t
: âi,t > 0

}
,

min
1≤i≤m

{
ûi − b̂i
−âi,t : âi,t < 0

}
,

where ûi is the upper bound for the ith basic variable;

(iii) if xt = ut ,

min
1≤i≤m

{
b̂i

−âi,t : âi,t < 0

}
,

min
1≤i≤m

{
ûi − b̂i
âi,t

: âi,t > 0

}
.

Here b̂ is the vector of current values of the basic variables, ûi is the upper
bound for the ith basic variable, and âi,t is the ith component of Ât . The ratio
test determines the leaving variable.

3. The Update—Update the basis matrix B and the vector of basic variables xB . If xt is
both the entering and leaving variable, then B does not change.
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We now give formulas for step 3 of the above algorithm; the formulas use the result
θ of the ratio test. Let α be the amount by which xt changes; α = θ if xt was zero, and
α = −θ if xt was at its upper bound. Then in terms of the current basis, the variables can
be updated using the formula(

xB
xN

)
←

(
xB
xN

)
+ α

(−Ât
et

)
.

Hence the basic variables can be updated via xB = b̂− αÂt . The new value of the entering
variable is xt + α. The objective value z will decrease by ĉtα. An example illustrating the
method is given below.

Example 7.2 (Upper Bounded Variables). Consider the linear program

minimize z = −4x1 + 5x2

subject to 3x1 − 2x2 + x3 = 6
−2x1 − 4x2 + x4 = 4
0 ≤ x1 ≤ 4
0 ≤ x2 ≤ 3
0 ≤ x3 ≤ 20
0 ≤ x4 ≤ 20.

We use the initial basis xB = (x3, x4)
T and xN = (x1, x2)

T and set the nonbasic variables at
the values x1 = 0 and x2 = 3. (The choice of basis does not uniquely determine the values
of the basic variables.) Hence

cB =
(

0
0

)
, cN =

(−4
5

)
,

B =
(

1 0
0 1

)
, N =

(
3 −2

−2 −4

)
, and xN =

(
0
3

)
.

The basic variables are computed from

xB = B−1b − B−1NxN =
(

12
16

)
.

At the first iteration of the simplex method, the simplex multipliers are

yT = cT
B
B−1 = ( 0 0 )

and the coefficients for the optimality test are

ĉ1 = −4 and ĉ2 = 5.

Both components fail the optimality test. We will use the larger violation to select x2 as the
entering variable.

The entering column is

Â2 = B−1A2 =
(−2
−4

)
.
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The entering variable will be decreased from its upper bound. In the ratio test the distance
between the bounds for the entering variable is 3. Both components of the entering column
are negative, so the rest of the ratio test is based on

min
1≤i≤m

{
b̂i

−âi,2 : âi,2 < 0

}
= min

1≤i≤m

{
12

2
,

16

4

}
= 4.

The result of the ratio test is that the entering variable moves to its lower bound. (The other
possible ratio tests are irrelevant.) The basis does not change, so B and B−1 do not change.
The change in the entering variable is α = −3, and the new basic feasible solution is

xB ← xB + α(−Â2) = xB + 3Â2 =
(

6
4

)
=
(
x3

x4

)
and xN =

(
0
0

)
=
(
x1

x2

)
.

This completes the first iteration.
At the second iteration, the dual variables and the reduced costs are unchanged:

y = (0, 0)T, ĉ1 = −4, and ĉ2 = 5

because the basis has not changed. However, now the variable x2 is at its lower bound and
ĉ2 satisfies the optimality test. The optimality test fails for ĉ1, so x1 is the entering variable.

The entering column is

Â1 =
(

3
−2

)
.

Variable x1 will be increased from zero. In the ratio test, the distance between bounds for
x1 is 4. The ratio test for the first component is based on

b̂1

â1,1
= 6

3
= 2.

The ratio test for the second component is

û2 − b̂2

−â2,1
= 20 − 4

2
= 8.

(Note that û2 = u4 = 20.) The smallest of these values is 2, so x3 is the leaving variable.
The change in the entering variable is α = 2.

The new basis corresponds to xB = (x1, x4)
T and xN = (x2, x3)

T. In terms of this
basis

cB =
(−4

0

)
, cN =

(−5
0

)
,

B =
(

3 0
−2 1

)
, N =

(
2 1
4 0

)
, and xN =

(
0
0

)
.

The basic variables are

xB =
(
x1

x4

)
=
(

2
4 − 2(−2)

)
=
(

2
8

)
.
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At the third iteration, the dual variables are

y =
(− 4

3

0

)

and the coefficients in the optimality test are

ĉ2 = 7
3 and ĉ3 = 4

3 .

Since x2 and x3 are at their lower bounds, this basis is optimal.
At the solution,

x = ( 2 0 0 8 )T

and z = cTx = −8 is the optimal objective value.

Exercises
2.1. Solve the following linear programs with the upper bound form of the simplex

method. Use the explicit representation of the inverse of the basis matrix. Use
the slack variables to form an initial basic feasible solution (note that there will be
no upper bounds on the slack variables).

(i)
minimize z = −5x1 − 10x2 − 15x3

subject to 2x1 + 4x2 + 2x3 ≤ 50
3x1 + 5x2 + 4x3 ≤ 80
0 ≤ x1, x2, x3 ≤ 20.

(ii)
minimize z = x1 − x2

subject to − x1 + x2 ≤ 5
x1 − 2x2 ≤ 9

0 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 8.

(iii)
maximize z = 6x1 − 3x2

subject to 2x1 + 5x2 ≤ 20
3x1 + 2x2 ≤ 40
0 ≤ x1, x2 ≤ 15.

(iv)
minimize z = −5x1 − 7x2

subject to − 3x1 + 2x2 ≤ 30
− 2x1 + x2 ≤ 12

0 ≤ x1, x2 ≤ 20.

2.2. Repeat Exercise 2.1(i) using the initial values x1 = 20, x2 = 0, and x3 = 0.

2.3. Repeat Exercise 2.1(ii) using the initial values x1 = 0 and x2 = 5.
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2.4. Repeat Exercise 2.1(iv) using the initial values x1 = 20 and x2 = 0.

2.5. Consider the bounded-variable linear program

minimize z = x1 − 4x3 + x4 − 3x5 + 2x6

subject to x1 + x2 − x3 − 2x5 = 0
x1 − 2x3 − x4 + x6 = 3
0 ≤ x1, x2, x3 ≤ 5
0 ≤ x4, x5, x6 ≤ 2.

At a certain iteration of the bounded simplex algorithm, the basic variables are x1

and x2, with basis inverse matrix

B−1 =
(

0 1
1 −1

)
.

The nonbasic variables x3 and x4 are at their lower bound (zero), while x5 and x6 are
at their upper bound. Now do the following:

(i) Determine the corresponding basic solution.

(ii) Determine which of the nonbasic variables will yield an improvement in the
objective value if chosen to enter the basis.

(iii) For each of the candidate variables that you found in part (ii), determine the
corresponding leaving variable and the resulting basic solution.

2.6. Derive the remaining portions of the ratio test for the case where the entering variable
xt is at its upper bound.

2.7. Derive a simplex method for linear programming problems with general bounds on
the variables � ≤ x ≤ u.

2.8. Determine how the simplex method for problems with upper bounds would be mod-
ified if some of the variables had upper and lower bounds both equal to 0.

2.9. A basic feasible solution to the bounded-variable problem is said to be degenerate
if one of the basic variables is equal to its upper or lower bound. Prove that, in
the absence of degeneracy, the bounded-variable simplex method will terminate in
a finite number of iterations.

2.10. Consider the bounded-variable problem

minimize z = cTx

subject to Ax = b

0 ≤ x ≤ u.

What is the dual to this problem? What are the complementary slackness conditions
at the optimum?

7.3 Column Generation
One of the important properties of the simplex method is that it does not require that the
constraint matrix A be explicitly available. Indeed, if we review the steps of the simplex
method, we see that the columns of A are used only to determine whether the reduced costs
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ĉj = cj − yTAj are nonnegative for every j , and if not, to generate a column At that
violates this condition. (At is then used to obtain the entering column Ât = B−1At .) All
that is needed is some technique that determines whether a basic solution is optimal, and if
not, produces a column that violates the optimality conditions. When the constraint matrix
A has some specific known structure, it is sometimes possible to find such an At without
explicit knowledge of the columns of A. This technique, which generates columns of A
only as needed, is called column generation.

One application where column generation is possible is the cutting stock problem, dis-
cussed below. Practical cutting stock problems may involve many millions of variables—so
many that it is impossible even to form their columns in reasonable time. Yet by using column
generation, the simplex algorithm can be used to solve such problems. At each iteration of the
algorithm, an auxiliary problem determines the column ofA that yields the largest coefficient
ĉj . Remarkably, this auxiliary problem can be solved without generating the columns ofA.

To present the cutting stock problem, we start with an example. A manufacturer
produces sheets of material (such as steel, paper, or foil) of standard width of 50′′. To satisfy
customer demand, the sheets must be cut into sections of the same length but of smaller
widths. Suppose the manufacturer has orders for 25 rolls of width 20′′, 120 rolls of width 14′′,
and 20 rolls of width 8′′. To fill these orders, the manufacturer can cut the standard sheets in
a variety of ways. For instance, a standard sheet could be cut into two sections of width 20′′
and one section of width 8′′, with a waste of 2′′; or it could be cut into two sections of width
14′′ and two sections of width 8′′, with a waste of 6′′ (see Figure 7.1). Each such alternative
is called a pattern, and clearly there are many possible patterns. The problem is to determine
how many sheets need to be cut and into which patterns. Assuming that waste material is
thrown away, our objective is to minimize the total number of sheets that need to be cut.

In the general case, a manufacturer produces sheets of standard widthW . These sheets
must then be cut to smaller widths to meet customer demand. Specifically, the manufacturer
has to supply bi sections of widthwi < W , for i = 1, . . . , m. To formulate this problem, we
represent each cutting pattern by a vector of length m, whose ith component indicates the
number of sections of width wi that are used in that pattern. For example, the two patterns
described above are represented by( 2

0
1

)
and

( 0
2
2

)
.

waste waste

14" 14" 8" 8"20"20" 8"

50" 50"

Figure 7.1. Cutting patterns.
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The first component in each vector indicates the number of sections of width 20′′ used in
a pattern, the second component indicates the number of sections of width 14′′, and the
third component indicates the number of sections of width 8′′. A vector a = (a1, . . . , am)

T

represents a cutting pattern if and only if

w1a1 + w2a2 + · · · + wmam ≤ W,

where { ai } are nonnegative integers.
Let xi denote the number of sheets to be cut into pattern i, and let n denote the number

of all possible cutting patterns. Even for small values of m, this number may be enormous.
In practical problems, m may be of the order of a few hundred. In such cases, n may
be of the order of hundreds of millions. Due to its sheer size, the matrix defined by the
various patterns will not be available explicitly. We denote this conceptual matrix by A.
The problem of minimizing the number of sheets used to satisfy the demands becomes

minimize z =
n∑
i=1

xi

subject to Ax ≥ b

x ≥ 0.

The variables xi must also be integer. Here we shall solve the linear program, ignoring
the integrality restrictions, and then round the solution variables appropriately. Although
rounding the solution of a linear program does not necessarily give an optimal solution of
the associated program with integrality constraints, in the case of cutting stock problems,
rounding is often appropriate because it is applied in large-scale production settings.

Finding an initial basic feasible solution is not difficult. For example, in the problem
above we can use the initial basis matrix

B =
( 2 0 0

0 3 0
0 0 6

)
.

The columns of B corresponds to the patterns that cut as many 20′′, 14′′, and 8′′ sections
as possible. For convenience we denote these columns by A1, A2, and A3 and denote the
number of sheets cut according to each of these patterns by x1, x2, and x3. The solution
corresponding to this basis matrix is

xB =
(
x1

x2

x3

)
= B−1b =

⎛
⎝ 1

2 0 0
0 1

3 0
0 0 1

6

⎞
⎠( 25

120
20

)
=
⎛
⎝

25
2

40
10
3

⎞
⎠ .

Suppose now that at some iteration we have a basic feasible solution with correspond-
ing basis matrixB. To determine whether the solution is optimal we first compute the vector
of simplex multipliers

yT = cT
B
B−1.

Next we must determine whether the solution is optimal. Suppose first that some component
of y, say yi , is negative. Then the reduced cost of the ith excess variable (xn+i) is ĉn+i = 0
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− yT(−ei) = yi < 0 (here ei denotes a vector of length m with a 1 in its ith position,
and zeroes elsewhere). We can therefore choose this excess variable to be the variable that
enters the basis. No further computation of the coefficients ĉj will be needed.

Suppose now that y ≥ 0. Then the excess variables will all have nonnegative reduced
costs. We must now determine whether the variables in the original problem satisfy the
optimality conditions, that is, whether

ĉj = 1 − yTAj ≥ 0, j = 1, . . . , n.

Because A has so many columns, and because these columns are not explicitly available,
it is virtually impossible to perform this computation variable by variable. Fortunately, we
know the structure of these columns. We will now show how we can use this knowledge
either to verify optimality or to select an entering variable.

The idea is simple but clever. To determine whether the optimality conditions are
satisfied, we will find a columnAt = (a1, a2, . . . , am)

T that corresponds to the most negative
reduced cost ĉt . This in turn is the column t with the largest value of yTAj . Since each
column corresponds to some cutting pattern, At will be the solution to the problem

maximize z̄ = y1a1 + y2a2 + · · · + ymam
subject to w1a1 + w2a2 + · · · + wmam ≤ W

ai ≥ 0 and integer, i = 1, . . . , m.

This problem has a linear objective and a single linear constraint; all variables are required
to be nonnegative integers. A problem of this form is called a knapsack problem. It can be
solved efficiently by special-purpose algorithms. Since finding the variable xt with the most
negative reduced cost ĉt can be formulated as a knapsack problem, it can be accomplished
without explicit knowledge of each column of A.

The solution of the knapsack problem is a pattern At corresponding to the largest
value of yTAj . If yTAt > 1, this column violates the optimality condition and is selected to
enter the basis. If yTAt ≤ 1, the current basic feasible solution is optimal, and the algorithm
is terminated.

Example 7.3 (Cutting Stock Problem). Consider the example discussed in this section.
Suppose that the initial basis matrix is given as above. The vector y is given by

yT = cT
B
B−1 = ( 1 1 1 )

⎛
⎝ 1

2 0 0
0 1

3 0
0 0 1

6

⎞
⎠ = ( 1

2
1
3

1
6 ) .

To find the column with the most negative reduced cost ĉj , we solve the problem

maximize 1
2a1 + 1

3a2 + 1
6a3

subject to 20a1 + 14a2 + 8a3 ≤ 50

a1, a2, a3 ≥ 0 and integer,

using a special-purpose algorithm for solving knapsack problems. The solution is a =
(0, 3, 1)T, with a knapsack objective value of yTa = 7/6. For convenience we label a by
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A4, and label the corresponding variable (representing the number of sheets to be cut in
patternA4) by x4. Then ĉ4 is the most negative of the coefficients ĉj . Since ĉ4 = 1−7/6 =
−1/6 < 0, the current solution is not optimal, and x4 enters the basis. To determine which
variable leaves the basis we compute

Â4 = B−1A4 =
⎛
⎝ 1

2 0 0
0 1

3 0
0 0 1

6

⎞
⎠( 0

3
1

)
=
( 0

1
1
6

)
.

Recall that xB = ( 25
4 , 40, 10

3 )
T. The admissible ratios in the ratio test are the second ratio

40/1 = 40, and the third ratio (10/3)/(1/6) = 20. The latter is smaller, so the third basic
variable leaves the basis. The new basis matrix and its inverse are

B =
( 2 0 0

0 3 3
0 0 1

)
and B−1 =

⎛
⎝

1
2 0 0

0 1
3 −1

0 0 1

⎞
⎠ ,

and the vector of basic variables is

xB =
(
x1

x2

x4

)
= B−1b =

⎛
⎝

1
2 0 0

0 1
3 −1

0 0 1

⎞
⎠( 25

120
20

)
=
⎛
⎝ 25

2

20
20

⎞
⎠ .

The vector of simplex multipliers is

yT = cT
B
B−1 = ( 1 1 1 ) B−1 = ( 1

2
1
3 0 ) ,

and the new knapsack problem is

maximize 1
2a1 + 1

3a2

subject to 20a1 + 14a2 + 8a3 ≤ 50

a1, a2, a3 ≥ 0 and integer.

The solution to the knapsack problem is the pattern a = (1, 2, 0)T with knapsack objective
value yTa = 7

6 . We label a by A5 and the corresponding variable by x5. Then ĉ5 =
1 − yTA5 = 1 − 7/6 = −1/6 < 0, and hence the current solution is still not optimal, and
x5 enters the basis. We compute

Â5 = B−1A5 =
⎛
⎝

1
2 0 0

0 1
3 −1

0 0 1

⎞
⎠( 1

2
0

)
=
⎛
⎝ 1

2
2
3
0

⎞
⎠ .

The ratio test compares the ratios ( 25
2 )/(

1
2 ) and (20)/( 2

3 ). The first of these ratios is smaller,
and the leaving variable is x1. The new basis matrix and its inverse are

B =
( 1 0 0

2 3 3
0 0 1

)
and B−1 =

⎛
⎝ 1 0 0

− 2
3

1
3 −1

0 0 1

⎞
⎠ ,
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and the vector of basic variables is

xB =
(
x5

x2

x4

)
= B−1b =

( 25
10
3

20

)
.

The vector of simplex multipliers is

yT = cT
B
B−1 = ( 1 1 1 ) B−1 = ( 1

3
1
3 0 ) .

To find the column with the largest coefficient ĉj we solve the knapsack problem

maximize 1
3a1 + 1

3a2

subject to 20a1 + 14a2 + 8a3 ≤ 50

a1, a2, a3 ≥ 0 and integer.

The solution to this problem is a = (0, 3, 0)T, which is the column of the basic variable x2.
The knapsack objective value is yTa = 1, indicating (as expected) that the reduced cost of
x2 is zero. Since ĉ2 = min

{
ĉj
} = 0, the current solution is optimal. Our basic variables

are x5 = 25, x2 = 3.33, and x4 = 20. In practice we are interested in an integer solution.
For this problem, rounding upwards in fact gives the optimal integer solution. The solution
is to cut 25 sections according to the pattern (1, 2, 0)T, 4 sections according to the pattern
(0, 3, 0)T, and 20 sections according to the pattern (0, 3, 1)T, using a total of 49 standard
sheets.

Exercises
3.1. Find all feasible patterns in the example discussed in this section.

3.2. Consider the cutting stock problem that arises when a company manufactures sheets
of standard width 100′′ and has commitments to supply 40 sections of width 40′′, 60
sections of width 24′′, and 80 sections of width 18′′. Find an initial basic feasible
solution to this problem, and formulate the knapsack problem that will determine
whether this solution is optimal.

7.4 The Decomposition Principle
In some applications of linear programming the constraints of the problem are divided
into two groups, one group of “easy” constraints and another of “hard” constraints. This
can happen in network problems where the constraints that describe the network (the easy
constraints) are augmented by additional constraints of a more general form (the hard con-
straints). This can also happen in “block angular” problems (see below) where there are a
small number of constraints that involve all the variables (the hard constraints), but if these
are removed the problem decomposes into several independent smaller problems, each of
which is easier to solve. (On a parallel computer these smaller problems could be solved
simultaneously on separate processors.)
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Referring to the constraints as “easy” and “hard” may be a bit deceptive. The “hard”
constraints need not be in themselves intrinsically difficult, but rather they can complicate the
linear program, making the overall problem more difficult to solve. If these “complicating”
constraints could be removed from the problem, then more efficient techniques could be
applied to solve the resulting linear program.

The decomposition principle is a tool for solving linear programs having this structure.
It is another example of column generation. The decomposition principle uses a change of
variables to transform the original linear program into a new linear program that involves
only the hard constraints. If the number of hard constraints is small, then it is likely that
this new linear program can be solved by the simplex method in few iterations. However,
the optimality test for the new linear program will require solving an auxiliary linear pro-
gram involving the easy constraints, and so will be expensive. The cost of performing the
optimality test will determine whether using the decomposition principle is more effective
than applying the simplex method directly to the original problem.

Consider a linear program of the form

minimize z = cTx

subject to AHx = bH
AEx = bE
x ≥ 0,

where AH is the constraint matrix for the hard constraints and AE is the matrix for the easy
constraints. We will assume that the set

{ x : AEx = bE, x ≥ 0 }

is bounded. (The unbounded case will be discussed later in this section.) Then every feasible
point x for the easy constraints can be represented as a convex combination of the extreme
points { vi } of this set:

x =
k∑
i=1

αivi,

where

k∑
i=1

αi = 1 and αi ≥ 0, i = 1, . . . , k

(see Theorem 4.6 of Chapter 4). If the matrix AE really does represent easy constraints,
then in principle it should not be difficult to generate the associated extreme points (basic
feasible solutions). The decomposition principle only generates individual extreme points
as needed and does not normally generate the entire set of extreme points.

This representation in terms of extreme points can be used to rewrite the linear
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program:

minimize z = cT

(∑
i

αivi

)

subject to AH

(∑
i

αivi

)
= bH∑

i

αi = 1

α ≥ 0.

If we define

cM = ( cTv1 · · · cTvk )
T

AM =
(
AHv1 · · · AHvk

1 · · · 1

)

bM =
(
bH
1

)
,

then the linear program becomes

minimize
α

z = cT
M
α

subject to AMα = bM
α ≥ 0.

This is the linear program that we will solve using the simplex method, with the coefficients
α as the variables. It is sometimes referred to as the master problem to distinguish it from
the auxiliary linear program that will be solved as part of the optimality test in the simplex
method. Its coefficients are denoted with a subscript M because of this name.

Example 7.4 (Transformation of a Linear Program). Consider the linear program

minimize z = 3x1 − 5x2 − 7x3 + 2x4

subject to x1 + 2x2 − x3 + 2x4 = 2.75
3x1 − x2 + 4x3 − 5x4 = 14.375

2x1 + 3x2 ≤ 9
x1 + 2x2 ≤ 5

3x3 + 5x4 ≤ 15
x3 − x4 ≤ 3

x ≥ 0.

We will consider the first two constraints to be the hard constraints and the last four to be
the easy constraints. If the hard constraints are removed, then the problem can be divided
into two independent linear programs—one involving the variables x1 and x2, the other
involving x3 and x4:

minimize 3x1 − 5x2

subject to 2x1 + 3x2 ≤ 9
x1 + 2x2 ≤ 5
x1, x2 ≥ 0
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and
minimize −7x3 + 2x4

subject to 3x3 + 5x4 ≤ 15
x3 − x4 ≤ 3
x3, x4 ≥ 0.

These linear programs involve only two variables and can be solved graphically.
If slack variables x5, x6, x7, and x8 are added to the easy constraints to convert them

into equations, then

c = ( 3 −5 −7 2 0 0 0 0 )T ,

AH =
(

1 2 −1 2 0 0 0 0
3 −1 4 −5 0 0 0 0

)
, bH =

(
2.750

14.375

)
,

AE =
⎛
⎜⎝

2 3 0 0 1 0 0 0
1 2 0 0 0 1 0 0
0 0 3 5 0 0 1 0
0 0 1 −1 0 0 0 1

⎞
⎟⎠ , bE =

⎛
⎜⎝

9
5

15
3

⎞
⎟⎠ .

The extreme points for the first linear program (with the slack variables included) are

⎛
⎜⎝
x1

x2

x5

x6

⎞
⎟⎠ =

⎛
⎜⎝

3
1
0
0

⎞
⎟⎠ ,

⎛
⎜⎝

4.5
0
0

0.5

⎞
⎟⎠ ,

⎛
⎜⎝

0
2.5
1.5
0

⎞
⎟⎠ , and

⎛
⎜⎝

0
0
9
5

⎞
⎟⎠ .

The extreme points for the second linear program are

⎛
⎜⎝
x3

x4

x7

x8

⎞
⎟⎠ =

⎛
⎜⎝

3.75
0.75

0
0

⎞
⎟⎠ ,

⎛
⎜⎝

3
0
6
0

⎞
⎟⎠ ,

⎛
⎜⎝

0
3
0
6

⎞
⎟⎠ , and

⎛
⎜⎝

0
0

15
3

⎞
⎟⎠ .

The extreme points for the set of easy constraints { x : AEx = bE, x ≥ 0 } are obtained by
combining extreme points from the two smaller linear programs. The resulting matrix of
extreme points V = ( v1 · · · vk ) is

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 3 3 3 4.5 4.5 4.5 4.5 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 2.5 2.5 2.5 2.5 0 0 0 0

3.75 3 0 0 3.75 3 0 0 3.75 3 0 0 3.75 3 0 0
0.75 0 3 0 0.75 0 3 0 0.75 0 3 0 0.75 0 3 0

0 0 0 0 0 0 0 0 1.5 1.5 1.5 1.5 9 9 9 9
0 0 0 0 0.5 0.5 0.5 0.5 0 0 0 0 5 5 5 5
0 6 0 15 0 6 0 15 0 6 0 15 0 6 0 15
0 0 6 3 0 0 6 3 0 0 6 3 0 0 6 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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The master linear program has constraint matrixAM , whose first two rows are equal toAHV ,
and whose last row is (1, . . . , 1):

AM =
( 2.75 2 11 5 2.25 1.5 10.5 4.5

19.25 20 −7 8 24.75 25.5 −1.5 13.5
1 1 1 1 1 1 1 1

2.75 2 11 5 −2.25 −3 6 0
8.75 9.5 −17.5 −2.5 11.25 12 −15 0

1 1 1 1 1 1 1 1

)
.

The objective coefficients in the master problem are

cM = V Tc =(−20.75 −17 10 4 −11.25 −7.5 19.5 13.5

−37.25 −33.5 −6.5 −12.5 −24.75 −21 6 0
)T
.

The right-hand side for the master problem is

bM =
( 2.75

14.375
1

)
.

It is neither necessary nor desirable to write down the master linear program explicitly.
The number of extreme points can be immense—much larger than the number of variables
in the original problem. Fortunately, it is possible to apply the simplex method to the master
problem without explicitly generating all the columns of AM .

To describe the method we assume that an initial basic feasible solution has been
specified. (Initialization procedures are discussed below.) If there arem hard constraints in
AH , the basis will be of sizem+ 1 because of the additional constraint

∑
αi = 1. Let B be

the basis matrix (B is a submatrix of AM). As usual, the dual variables are computed via

yT = (cM)
T
B
B−1,

where (cM)B is the subvector of cM corresponding to the current basis. The optimality test
is carried out by computing the components of

cT
M
− yTAM

corresponding to the nonbasic variables. If any of these entries is negative, then the current
basis is not optimal, and the most negative of these entries can be used to select the entering
variable. Hence the optimality test can be carried out by determining

min
i
(cT

M
)i − (yTAM)i

and checking to see if the optimal value is negative. All values of i can be considered, since
this expression will be zero if αi is a basic variable.

This minimization problem is equivalent to

min
i
cTvi − ȳTAHvi − ym+1 · 1,
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where ȳ = (y1, . . . , ym)
T. Since { vi } is the set of extreme points, and since any bounded

linear program always has an optimal extreme point (see Section 4.4), the optimality test
can be written as

minimize
x

z = (c − AT
H
ȳ)Tx − ym+1

subject to AEx = bE
x ≥ 0.

This is a linear program involving only the easy constraints, so presumably it is easy to
solve. (The term ym+1 in the objective is a constant. It can be ignored when solving this
linear program for x but must be included when determining the optimal value of z.)

If the solution to this linear program has optimal objective value zero, then the current
basis for the master problem is optimal. If the optimal objective value is negative, then the
current basis is not optimal. Note that the optimal basic feasible solution (the optimal basic
feasible solution for the easy problem in the optimality test) is one of the extreme points in
{ vi }. Denote it by v.

The rest of the simplex method for solving the master problem is much as before. The
entering column is computed using the formula

(ÂM)t = B−1

(
AHv

1

)
.

A ratio test is performed to determine the leaving variable, and thenB−1 and αB are updated.
(Recall that α is the vector of variables in the master problem.)

We now summarize the steps in an iteration of the method. A representation of B−1

must be provided, where the basis matrix B consists of the basic columns of the matrix
AM . The corresponding basic feasible solution to the master problem is αB = B−1bM . The
vector (cM)B contains the basic components of the vector cM . Note that AM and cM are not
normally available explicitly; only B and (cM)B may be available.

1. The Optimality Test—Compute the dual variables yT = (cM)
T
B
B−1 and set ȳ =

(y1, . . . , ym)
T. Solve the linear program

minimize
x

z = (c − AT
H
ȳ)Tx − ym+1

subject to AEx = bE
x ≥ 0

for an optimal extreme point v. If the optimal value is zero, then the current basis is
optimal. Otherwise, use v to define the entering column.

2. The Step—Compute the entering column

(ÂM)t = B−1

(
AHv

1

)
.

Find an index s that satisfies

(b̂M)s

(ÂM)s,t
= min

1≤i≤m+1

{
(b̂M)i

(ÂM)i,t
: (ÂM)i,t > 0

}
.
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(Here (ÂM)i,t denotes the ith component of (ÂM)t .) The ratio test determines the
leaving variable and the pivot entry (ÂM)s,t . If (ÂM)i,t ≤ 0 for all i, then the problem
is unbounded.

3. The Update—Update the inverse matrix B−1 and the vector of basic variables αB
(for example, by performing elimination operations that transform (ÂM)t into the sth
column of the identity matrix).

Once an optimal solution to the master problem has been found, the solution to the original
problem is obtained from

x = VBαB,

where VB is the matrix whose columns are the vertices corresponding to the optimal basis
for the master problem.

We now illustrate the decomposition principle with an example. The set of extreme
points for this example was given in Example 7.4, but it is not used here, and would not
normally be available. Only information associated with the current basis is used in the
calculations. We assume that an initial basic feasible solution for the master problem is
available; initialization procedures are discussed later in this section.

Example 7.5 (Decomposition Principle). Consider the linear program from Example 7.4.
As before, we will consider the first two constraints to be the hard constraints and the last
four to be the easy constraints. An initial feasible point for the master problem can be
obtained using the extreme points

v1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
1
3
0
0
0
6
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, v2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2.5
3
0

1.5
0
6
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, and v3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2.5
0
3

1.5
0
0
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

For convenience, we have labeled the extreme points as v1, v2, and v3; this merely reflects
the fact that they are the initial extreme points and does not correspond to their location in
the matrix V in Example 7.4. For this initial basis,

(cM)B = ( cTv1 cTv2 cTv3 )
T = (−17 −33.5 −6.5 )T

B =
(
AHv1 AHv2 AHv3

1 1 1

)
=
( 2 2 11

20 9.5 −17.5
1 1 1

)

αB = b̂M = B−1bM = ( 0.6786 0.2381 0.0833 )T

z = −20.0536.

The dual variables are

yT = (cM)
T
B
B−1 = ( 7.7143 1.5714 −63.8571 ) ,
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so ȳ = ( 7.7143 1.5714 )T. The coefficients of the objective in the linear program for the
optimality test are

c − AT
H
ȳ = (−9.4286 −18.8571 −5.5714 −5.5714 0 0 0 0 )T .

Recall from Example 7.4 that, because of the special structure of the easy constraint matrix
AE, this linear program splits into two smaller linear programs:

minimize −9.4286x1 − 18.8571x2

subject to 2x1 + 3x2 ≤ 9
x1 + 2x2 ≤ 5
x1, x2 ≥ 0

and
minimize −5.5714x3 − 5.5714x4

subject to 3x3 + 5x4 ≤ 15
x3 − x4 ≤ 3

x3, x4 ≥ 0.

These small linear programs can be solved graphically.
The first linear program has two optimal basic feasible solutions (here the optimal

slack variables are also listed):

( x1 x2 x5 x6 )
T = ( 3 1 0 0 )T and ( 0 2.5 1.5 0 )T

with optimal objective value −47.1429. The second linear program has the solution

( x3 x4 x7 x8 )
T = ( 3.75 0.75 0 0 )T

with objective value −25.0714. The objective value for the linear program in the optimality
test is obtained by subtracting y3 from these two objective values:

−47.1429 − 25.0714 − y3 = −47.1429 − 25.0714 − (−63.8571) = −8.3571 < 0,

so the current basis is not optimal. If the first solution to the first linear program is used,
then

v4 = ( 3 1 3.75 0.75 0 0 0 0 )T

is the entering vertex.
The entering column is given by

(ÂM)t = B−1

(
AHv4

1

)
=
( 1.1429
−0.2262

0.0833

)
.

With the right-hand side b̂M = ( 0.6786 0.2381 0.0833 )T, the ratios in the ratio test are( 0.5938
−
1

)
,
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so that α1 is the leaving variable. The new basis consists of {α4, α2, α3 }.
At the second iteration,

(cM)B = (−20.75 −33.5 −6.5 )T

B =
( 2.75 2 11

19.25 9.5 −17.5
1 1 1

)

αB = ( 0.5938 0.3724 0.0339 )T

z = −25.0156.

The dual variables are

yT = (cM)
T
B
B−1 = ( 5.625 0.875 −53.0625 ) .

The objective coefficients for the linear program in the optimality test are

c − AT
H
ȳ = (−5.25 −15.375 −4.875 −4.875 0 0 0 0 )T .

The resulting two small linear programs are solved graphically.
The first has the solution

( 0 2.5 1.5 0 )T

with optimal objective value −38.4275. The second has the solution

( 3.75 0.75 0 0 )T

with objective value −21.9375. For the optimality test the objective value is

−38.4275 − 21.9375 − (−53.0625) = −7.3125 < 0,

so the current basis is not optimal, and

v5 = ( 0 2.5 3.75 0.75 1.5 0 0 0 )T

is the entering vertex.
The entering column is

(ÂM)t = B−1

(
AHv5

1

)
=
( 0.1250

0.8021
0.0729

)
,

and the ratios in the ratio test are ( 4.7500
0.4643
0.4643

)
.

There is a tie; we will (arbitrarily) choose α2 as the leaving variable. The new basis consists
of {α4, α5, α3 }.
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At the third iteration,

(cM)B = (−20.75 −37.25 −6.5 )T

B =
( 2.75 2.75 11

19.25 8.75 −17.5
1 1 1

)

αB = ( 0.5357 0.4643 0 )T

z = −28.4107.

The dual variables are

yT = (cM)
T
B
B−1 = ( 8.7273 1.5714 −75 ) .

The objective coefficients for the linear program in the optimality test are

c − AT
H
ȳ = (−10.4416 −20.8831 −4.5584 −7.5974 0 0 0 0 )T .

The resulting two small linear programs are solved graphically.
The first has two solutions:

( 3 1 0 0 )T and ( 0 2.5 1.5 0 )T

with optimal objective value −52.2078. The second also has two solutions:

( 3.75 0.75 0 0 )T and ( 0 3 0 6 )T

with objective value −22.7922. For the optimality test the objective value is

−52.2078 − 22.7922 − (−75) = 0,

so the current basis for the master problem is optimal.
The optimal objective value for the original linear program is z = −28.4107, the

same as for the master linear program. The optimal values of the original variables are

x = α4v4 + α5v5 + α3v3 = ( 1.6071 1.6964 3.75 0.75 0.6964 0 0 0 )T .

It is straightforward to check that this point is feasible for the original problem, and that it
gives the correct objective value.

Some procedure is needed to find an initial basic feasible solution for the simplex
method. In some cases, an initial basis is readily available. For example, suppose that the
original linear program is of the form

minimize z = cTx

subject to AHx ≤ bH
AEx ≤ bE
x ≥ 0

with bH ≥ 0 and bE ≥ 0. Then v0 = (0, . . . , 0)T is an extreme point for the set
{ x : AEx ≤ bE, x ≥ 0 }. Let V be the matrix whose columns are the extreme points of
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this set, with v0 as its first column. Then the master problem will have the form

minimize
α

z = cT
M
α

subject to (AHV )α + s = bH
eTα = 1
α ≥ 0,

where s is a vector of slack variables and e = (1, . . . , 1)T. The constraint matrix for the
master problem will be

AM =
(
AHV I

eT 0

)
.

An initial basis can be obtained using the slack variables s (the final columns ofAM) together
with the variable corresponding to the extreme point v0 = (0, . . . , 0)T (the initial column
of AM). Since AHv0 = (0, . . . , 0)T, the basis matrix will be B = I . This idea can also be
used for problems of the form

minimize z = cTx

subject to AHx ≤ bH
AEx = bE
x ≥ 0

if we know an extreme point v0 for the easy constraints (see the Exercises).
In cases where there is no obvious initial basis for the master problem, artificial

variables must be added. Then either a two-phase or big-M approach can be used to initialize
the method. For example, if a two-phase approach is used and bM ≥ 0, then the phase-1
problem would be

minimize
α,a

z = eTa

subject to AMα + a = bM
α, a ≥ 0,

where a is a vector of artificial variables and e = (1, . . . , 1)T. The initial basis consists
entirely of the artificial variables and B = I . Then the algorithm for the decomposition
principle is used to solve this linear program to obtain an initial basic feasible solution for
the original problem.

Up to this point we have assumed that the set { x : AEx = bE, x ≥ 0 } is bounded. This
is not necessary. In general every feasible point x can be represented in terms of extreme
points { vi } and directions of unboundedness

{
dj
}
:

x =
k∑
i=1

αivi +
�∑
j=1

βjdj ,

where

k∑
i=1

αi = 1

αi ≥ 0, i = 1, . . . , k
βj ≥ 0, j = 1, . . . , �.
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238 Chapter 7. Enhancements of the Simplex Method

(See Theorem 4.6 of Chapter 4.) This representation can then be used to derive a similar
simplex method for the decomposed problem. For further details, see the book by Chvátal
(1983).

One of the most important applications of the decomposition principle is to block
angular problems. These are problems where AE , the matrix for the easy constraints, is
block diagonal. That is,

AE =

⎛
⎜⎜⎝
(AE)(1) 0

(AE)(2)
. . .

0 (AE)(r)

⎞
⎟⎟⎠ ,

where each (AE)(j) is itself a matrix. In this case the linear program for the optimality test

maximize
x

z = (AT
H
ȳ − c)Tx + ym+1

subject to AEx = bE
x ≥ 0

splits into r disjoint linear programs of smaller size:

maximize
x(j)

z(j) = (AT
H
ȳ − c)T(j)x(j)

subject to (AE)(j)x(j) = (bE)(j)
x(j) ≥ 0.

(The subscript (j) indicates the components of a vector corresponding to the submatrix
(AE)(j).) On a parallel computer, it would be possible to solve these smaller problems
simultaneously on a set of processors.

The linear program in Example 7.4 is of this type, with

(AE)(1) =
(

2 3
1 2

)
, (bE)(1) =

(
9
5

)
,

(AE)(2) =
(

3 5
1 −1

)
, and (bE)(2) =

(
15

3

)
.

Problems with this structure arise when modeling an organization consisting of many sep-
arate divisions. Each of the blocks in the easy constraints corresponds to the portion of the
model for a particular division. The hard constraints correspond to the linkages connecting
one division with another, and with the allocation of activities and resources among the
divisions. The overall objective is to optimize some “benefit” for the entire organization.

Exercises
4.1. Set up and solve the phase-1 problem for the master problem in Example 7.4.
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4.2. Consider a linear program of the form

minimize z = cTx

subject to AHx ≤ bH
AEx = bE
x ≥ 0,

where AH represents the hard constraints and AE represents the easy constraints.
Assume that an extreme point v0 for the easy constraint set

{ x : AEx = bE, x ≥ 0 }
is known. Show how to find an initial basic feasible solution for the decomposition
principle. What is the basis matrix B? Show how to compute B−1 efficiently.

4.3. Solve the following linear program using the decomposition principle:

minimize z = −2x1 − 5x2

subject to x1 + 2x2 = 13.5
x1 + 3x2 = 18.0
x1 ≤ 9
x2 ≤ 5
x1, x2 ≥ 0.

Let the first two constraints be the “hard” constraints and the remaining constraints
be the “easy” constraints. As an initial basis use the extreme points (0, 0)T, (0, 5)T,
and (9, 5)T. (These are extreme points for the easy constraints in their original form,
without slack variables.)

4.4. Use the decomposition principle to solve the problem

minimize z = −x1 − 2x2 − 4y1 − 3y2

subject to x1 + x2 + 2y1 ≤ 4
x2 + y1 + y2 ≤ 3

2x1 + x2 ≤ 4
x1 + x2 ≤ 2
y1 + y2 ≤ 2

3y1 + 2y2 ≤ 5
x ≥ 0, y ≥ 0.

4.5. At each iteration of the decomposition principle the current objective value provides
an upper bound on the optimal objective value. It is also possible to determine a lower
bound on the objective. Let x be a feasible point for the original linear program,
and let y be the vector of dual variables at the current iteration of the decomposition
principle. Prove that

(c − AT
H
ȳ)Tx − ym+1 ≥ z̄∗,

where z̄∗ is the optimal value of the linear program in the optimality test. Use this
formula to prove that

z∗ ≥ ȳTbH + ym+1 + z̄∗,
where z∗ is the optimal objective value for the original linear program.
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4.6. Use the formula from the previous problem to compute lower bounds on the objective
at each iteration for the linear program in Example 7.4.

7.5 Representation of the Basis
In previous chapters we described the formulas that govern the simplex method. We have
seen that all of the information needed for an iteration can be obtained from the set of
variables that are basic and from the corresponding basic matrix B. Thus the vectors xb, y,
andÂs can be computed directly from the formulas

xb = B−1b, yT = cT
B
B−1, Âs = B−1As.

In this section we discuss approaches for efficient implementation of these formulas.
In Section 7.5.1 we describe the approach known as the “product form of the inverse” in
which the basis inverse B−1 is represented as a product of elementary matrices. These
elementary matrices are quite sparse, so matrix-vector multiplications with respect to the
basis matrix inverse can be performed at relatively low cost. This method, however, has
been superseded by a more efficient approach that represents the LU factorization of the
basis B as a product of elementary matrices; this approach is described in Section 7.5.2.
Using this approach the vectors xb, y, andÂs are obtained by solving a system of equations
with respect to B:

Bxb = b, yTB = cT
B
, BÂs = As.

The LU factorization is superior to the product form of the inverse both in its utilization of
sparsity and its control of roundoff errors. However, it is more complicated both in notation
and in the operations involved. For this reason we have chosen to set the background for
key ideas in the use of products of elementary matrices by first describing the product form
of the inverse, and only then discussing the LU factorization. If the background ideas are
familiar to the reader, it is possible to skip Section 7.5.1 and turn directly to Section 7.5.2.

7.5.1 The Product Form of the Inverse

To develop the product form of the inverse, consider a simplex iteration with basis matrix
B. Suppose that at the end of this iteration, the sth basic variable is replaced by xt . The new
basis matrix B̄ is obtained from B by replacing its sth column by At . Since Ât = B−1At
(or BÂt = At ), it follows that

B̄ = BF,

where

F =

⎛
⎜⎜⎜⎜⎜⎝

1
1

. . .

⎡
⎢⎢⎢⎢⎢⎣Ât

⎤
⎥⎥⎥⎥⎥⎦ . . .

1

⎞
⎟⎟⎟⎟⎟⎠

is obtained from the identity matrix by replacing its sth column byÂt .
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Denoting E = F−1, the new inverse matrix is obtained by multiplying B−1 from the
left by E:

B̄−1 = EB−1.

It is easy to verify that E also differs from the identity matrix only in its sth column

E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
1

. . .

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
η

⎤
⎥⎥⎥⎥⎥⎥⎥⎦ . . .

1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

where

η =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−â1,t /âs,t
...

−âs−1,t /âs,t
1/âs,t

−âs+1,t /âs,t
...

−âm,t /âs,t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and
{
âj,t

}
are the entries in Ât (see the Exercises). The matrix E is called an elementary

matrix and the vector η is called an eta vector; one can show that the pivot operations
performed onÂ are achieved by multiplyingÂ on the left by E (see the Exercises).

Suppose that we start the simplex algorithm with an initial basis matrix B1 = I . Let
E1 denote the elementary matrix corresponding to the pivot operations in the first iteration.
Then at the second iteration the inverse basis matrix is B−1

2 = E1B
−1
1 = E1. Similarly, in

the third iteration, B−1
3 = E2B

−1
2 = E2E1, and in general at the kth iteration the inverse

basis matrix is
B−1
k = Ek−1Ek−2 · · ·E2E1,

where Ei is the elementary matrix corresponding to iteration i. This representation of the
basis matrix inverse is known as the product form of the inverse. The basis matrix inverse
is not formed explicitly, but kept as a product of its factors. Since each elementary matrix is
uniquely defined by its eta vector and its column position, it may be stored compactly. For
historic reasons, the collection of eta vectors corresponding to E1, E2, . . . , Ek is known as
the eta file.

How can we perform the simplex computations without explicitly forming B−1? The
matrix is not needed explicitly, but only to provide matrix-vector products. In the simplex
method these operations occur in two forms: (a) premultiplication—multiplication of a
column vector from the left (b̂ = B−1b and Ât = B−1At ); and (b) postmultiplication—
multiplication of a row vector from the right (yT = cT

B
B−1). We now show how these

operations can be performed.
A computation of the form B−1

k a is performed sequentially via

B−1
k a = Ek−1(Ek−2(Ek−3(· · · (E2(E1a)) · · ·))),
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by first premultiplying a by E1, next premultiplying the resulting vector by E2, and so
forth. This operation is called a forward transformation (Ftran), because it corresponds to
a forward scan of the eta file.

A computation of the form cTB−1
k is performed sequentially via

cTB−1
k = ((· · · (((cTEk−1)Ek−2)Ek−3) · · ·)E2)E1

by first postmultiplying cT by Ek−1, then postmultiplying the result by Ek−2, and so forth.
This operation is called a backward transformation (Btran), because it corresponds to a
backward scan of the eta file.

Each matrix operation with respect to an elementary matrix is fast and simple. To see
this, letE be an elementary matrix with eta vector η in its sth column. Then a matrix-vector
product of the form Ea for some vector a is computed as

Ea =

⎛
⎜⎜⎜⎜⎜⎝

1 η1
. . .

...

ηs
...

. . .

ηm 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

a1
...

as
...

am

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

a1 + η1as
...

ηsas
...

am + ηmas

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

a1
...

0
...

am

⎞
⎟⎟⎟⎟⎟⎠+ as

⎛
⎜⎜⎜⎜⎜⎝

η1
...

ηs
...

ηm

⎞
⎟⎟⎟⎟⎟⎠ .

The rule is, replace the sth term of a by zero, and add to that as times η. The matrix E need
not be formed explicitly.

Example 7.6 (Premultiplication of a Column Vector). Consider the 4×4 elementary matrix
E defined by

s = 3, η =

⎛
⎜⎜⎜⎝
− 3

2

1
1
2

−3

⎞
⎟⎟⎟⎠ .

This matrix is obtained from the identity matrix by replacing its third column by η. Let
a = (7,−3, 4, 2)T. Then the matrix-vector product Ea is computed as

Ea =
⎛
⎜⎝
a1

a2

0
a4

⎞
⎟⎠+ a3η =

⎛
⎜⎝

7
−3

0
2

⎞
⎟⎠+ 4

⎛
⎜⎜⎜⎝
− 3

2

1
1
2

−3

⎞
⎟⎟⎟⎠ =

⎛
⎜⎝

1
1
2

−10

⎞
⎟⎠ .

The computation was carried out without explicitly forming the matrix E.
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A vector product of the form cTE is computed as

cTE = ( c1 c2 . . . cs . . . cm )

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 η1

1
...

. . .
...

ηs
...

. . .

ηm 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ( c1 c2 . . . cs−1 (c1η1 + · · · + cmηm) cs+1 . . . cm )

= ( c1 c2 . . . cs−1 cTη cs+1 . . . cm ) .

Thus, the computation leaves c unchanged except for its sth component which is replaced
by cTη.

Example 7.7 (Postmultiplication of a Row Vector). Consider the matrix E in the previous
example, and let cT = (−1, 2,−3, 4). The matrix-vector product cTE is computed as
follows:

cTE = ( c1 c2 cTη c4 ) = (−1 2 −10 4 ) ,

since

cTη = (−1 2 −3 4 )

⎛
⎜⎜⎜⎜⎝
− 3

2

1
1
2

−3

⎞
⎟⎟⎟⎟⎠ = −10.

We can now outline the steps of the kth iteration of the product-form version of the
simplex method. Available at this iteration is a basis matrix inverse B−1

k , represented as a
product of elementary matrices Ek−1 · · ·E1. Each elementary matrix Ei is represented by
its eta vector ηi and its row index si . We also have available xB = b̂ = B−1

k b. The steps of
the algorithm are given below.

1. The Optimality Test—Compute

yT = cT
B
Ek−1Ek−2 · · ·E1.

Compute the coefficients ĉj = cj − yTAj for the nonbasic variables xj . If ĉj ≥ 0 for
all nonbasic variables, then the current basis is optimal. Otherwise, select a variable
xt that satisfies ĉt < 0 as the entering variable.

2. The Step—Compute the entering column Ât = Ek−1Ek−2 · · ·E1At . Find an index
s = sk that satisfies

b̂s

âs,t
= min

1≤i≤m

{
b̂i

âi,t
: âi,t > 0

}
.

This ratio test determines the leaving variable and the pivot entry âs,t . If âi,t ≤ 0 for
all i, then the problem is unbounded.
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3. The Update—Update the inverse matrix B−1
k+1: Form the eta vector ηk that transforms

Ât to the sth column of the identity matrix. Update the solution vector xB = Ekb̂.

In the computation of the new basic variables some savings can be achieved, since xB =
EkB

−1
k b = Ekb̂.

In the following example we solve a problem with the simplex method using the
product form of the inverse. The same problem was solved in Sections 5.2 and 5.3.

Example 7.8 (Simplex Method Using the Product Form of the Inverse). Consider the
problem

minimize z = −x1 − 2x2

subject to −2x1 + x2 ≤ 2
−x1 + 2x2 ≤ 7

x1 ≤ 3
x1, x2 ≥ 0.

Slack variables are added to put it in standard form:

minimize z = −x1 − 2x2

subject to −2x1 + x2 + x3 = 2
−x1 + 2x2 + x4 = 7

x1 + x5 = 3
x1, x2, x3, x4, x5 ≥ 0.

We start with xB = (x3, x4, x5)
T. The basis matrix B1 is the identity matrix.

Iteration 1. Since cT
B
= (0, 0, 0), our initial vector of simplex multipliers is yT = (0, 0, 0).

Pricing the nonbasic variables, we obtain

ĉ1 = c1 − yTA1 = −1 − 0 = −1, ĉ2 = c2 − yTA2 = −2 − 0 = −2,

and we choose x2 as the entering variable (corresponding to the most negative reduced cost).
The entering column is

Â2 = B−1
1 A2 = IA2 =

( 1
2
0

)
.

The ratio test with the right-hand-side vector b̂T = (2, 7, 3)T gives the first basic variable
x3 as the leaving variable. We can now update B−1

2 by updating the eta vector for E1:

η1 =
( 1/â1,2

−â2,2/â1,2

−â3,2/â1,2

)
=
( 1/1
−2/1

0/1

)
=
( 1
−2

0

)
.

We also record the position of η1 in E1: s1 = 1. Updating the resulting solution, we obtain

xB =
(
x2

x4

x5

)
= B−1

2 b = E1b

= E1

( 2
7
3

)
=
( 0

7
3

)
+ 2

( 1
−2

0

)
=
( 2

3
3

)
.
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Iteration 2. Updating the vector of multipliers gives

yT = cT
B
B−1

2 = cT
B
E1 = (−2 0 0 ) E1 = (−2 0 0 ) .

Pricing the nonbasic variables, we obtain

ĉ1 = c1 − yTA1 = −1 − (−2 0 0 )

(−2
−1

1

)
= −5

ĉ3 = c3 − yTA3 = 0 − (−2 0 0 )

( 1
0
0

)
= 2,

and hence the solution is not optimal and x1 will enter the basis. Computing the entering
column, we obtain

Â1 = B−1
2 A1 = E1A1

= E1

(−2
−1

1

)
=
( 0
−1

1

)
+ (−2)

( 1
−2

0

)
=
(−2

3
1

)
.

Performing the ratio test with respect to the right-hand-side vector, we conclude that the
second basic variable x4 will leave and will be replaced by x1. The new eta vector is

η2 =
(−â1,1/â2,1

1/â2,1

−a3,1/â2,1

)
=
(−(−2)/3

1/3
−(1)/3

)
=
⎛
⎝ 2/3

1/3

−1/3

⎞
⎠ .

The eta file now includes the following information:

s1 = 1 and η1 =
( 1
−2

0

)

s2 = 2 and η2 =
⎛
⎜⎝

2
3
1
3

− 1
3

⎞
⎟⎠ .

Updating the solution, we obtain

xB =
(
x2

x1

x5

)
= B−1

3 b = E2E1b

= E2b̂ =
( 2

0
3

)
+ 3

⎛
⎜⎝

2
3
1
3

− 1
3

⎞
⎟⎠ =

( 4
1
2

)
.

Iteration 3. To test for optimality we first compute

yT = cT
B
B−1

3 = ((−2 −1 0 ) E2) E1 = (−2 − 5
3 0 ) E1 = ( 4

3 − 5
3 0 ) .
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Pricing yields

ĉ3 = c3 − yTA3 = 0 − ( 4
3 − 5

3 0 )

( 1
0
0

)
= − 4

3

ĉ4 = c4 − yTA4 = 0 − ( 4
3 − 5

3 0 )

( 0
1
0

)
= 5

3 ,

and hence the solution may be improved by letting x3 enter the basis. To determine the
leaving variable, we compute the entering column

Â3 = B−1
3 A3 = E2E1A3

= E2E1

( 1
0
0

)
= E2

[( 0
0
0

)
+ 1

( 1
−2

0

)]

= E2

( 1
−2

0

)
=
( 1

0
0

)
− 2

⎛
⎜⎝

2
3
1
3

− 1
3

⎞
⎟⎠ =

⎛
⎜⎝
− 1

3

− 2
3
2
3

⎞
⎟⎠ .

The ratio test results in the third basic variable x5 leaving the basis. At the end of this
iteration we update the eta file with

s3 = 3 and η3 =
⎛
⎝

1
2

1
3
2

⎞
⎠ .

Updating the solution gives

xB =
(
x2

x1

x3

)
= B−1

4 b = E3E2E1b

= E3b̂ =
( 4

1
0

)
+ 2

⎛
⎝

1
2

1
3
2

⎞
⎠ =

( 5
3
3

)
.

Iteration 4. Updating the multiplier vector yields

yT = cT
B
B−1

4 = (((−2 −1 0 ) E3) E2) E1

= ((−2 −1 −2 ) E2) E1 = (−2 −1 −2 ) E1 = ( 0 −1 −2 ) .

Pricing yields

ĉ4 = c4 − yTA4 = 0 − ( 0 −1 −2 )

( 0
1
0

)
= 1

ĉ5 = c5 − yTA5 = 0 − ( 0 −1 −2 )

( 0
0
1

)
= 2,
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and the optimality conditions are satisfied. Our solution is x1 = 3 and x2 = 5, with slack
variables x3 = 3, x4 = 0, x5 = 0, and objective z = −x1 − 2x2 = −13.

From the example above, the product form of the simplex method may appear to
be cumbersome. Indeed, this problem is too small and dense to afford any computational
savings. The major savings of the product form occur when the problem is large and sparse.
In such problems, the eta vectors corresponding to the elementary matrix tend to be sparse.
The result is reduced storage and fewer computations.

Example 7.9 (Sparsity of Eta Vectors). Consider the basis matrix

B =

⎛
⎜⎜⎜⎝

1 0 0 0 1
1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1

⎞
⎟⎟⎟⎠ .

To obtain B−1, we start with a 5× 5 identity matrix and sequentially replace its ith column
by the ith column of B. At each step we update the inverse of the resulting matrix, using
the diagonal elements as the pivots (si = i).

Let B0 = I , and let bi be the ith column of B. We transform B0 in five stages
to B5 = B. The first eta vector is obtained from b1. The second eta vector is obtained
from E1b2. The last eta vector is obtained from E4E3E2E1b5. This procedure yields the
following eta vectors:

η1 =

⎛
⎜⎜⎜⎝

1
−1

0
0
0

⎞
⎟⎟⎟⎠ , η2 =

⎛
⎜⎜⎜⎝

0
1

−1
0
0

⎞
⎟⎟⎟⎠ , η3 =

⎛
⎜⎜⎜⎝

0
0
1

−1
0

⎞
⎟⎟⎟⎠ , η4 =

⎛
⎜⎜⎜⎝

0
0
0
1

−1

⎞
⎟⎟⎟⎠ , η5 =

⎛
⎜⎜⎜⎜⎜⎜⎝

− 1
2
1
2

− 1
2
1
2
1
2

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Thus most of the eta vectors are sparse. In contrast, the explicit inverse

B−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2

1
2 − 1

2
1
2 − 1

2

− 1
2

1
2

1
2 − 1

2
1
2

1
2 − 1

2
1
2

1
2 − 1

2

− 1
2

1
2 − 1

2
1
2

1
2

1
2 − 1

2
1
2 − 1

2
1
2

⎞
⎟⎟⎟⎟⎟⎟⎠

is completely dense.
Consider now a dense vector a. The matrix-vector product B−1a will require 13

multiplications if the product form of the inverse is used; however, it will require 25 multi-
plications if the explicit inverse is used (see the Exercises).



book
2008/10/23
page 248

�

�

�

�

�

�

�

�

248 Chapter 7. Enhancements of the Simplex Method

7.5.2 Representation of the Basis—The LU Factorization

In the previous subsection we represented B−1 as a product of elementary matrices and
showed how to compute the vector of basic variables xb = B−1b, the simplex multipliers
yT = cT

B
B−1, and the entering columnÂt = B−1At using this representation. This method

is no longer in wide use, since an approach based on Gaussian elimination is superior in
terms of its numerical accuracy, the overall number of operations required, and the greater
flexibility in utilizing sparsity and controlling the fill-in of nonzeroes.

The application of Gaussian elimination modifies the computations within the simplex
algorithm. Rather than using the formulas based on B−1, we solve a system of equations
with respect to the matrix B. Thus xb, yT, andÂt are computed as solutions of the systems

Bxb = b, yTB = cT
B
, BÂt = At .

The key idea in the method is to reduce the system via elementary row operations to an
equivalent system where the matrix is upper triangular.

One of the main techniques for utilizing sparsity in Gaussian elimination is the switch-
ing of rows or switching of columns. Intuitively, we would like to get a matrix that is
“almost” upper triangular to begin with. Judicious switching of rows can also help control
the roundoff error. Our discussion below assumes that we are using row permutations;
for example we might perform partial pivoting where rows are switched so that the pivot
element is the element of largest magnitude in the noneliminated part of its column. We will
ignore the effect of column permutations, but note that a change in the order of the columns
is simply a change in the order of the variables.

To utilize sparsity in Gaussian elimination, it is advantageous to represent the sequence
of operations required for the triangularization in product form:

LrPr · · ·L1P1B = U,

where the matricesLi are lower triangular pivot matrices and the matricesPi are permutation
matrices (see Appendix A.6). Each of these matrices can be stored in a compact form. The
number r here represents the number of Gaussian pivots used to transform B into an upper
triangular matrix, and U is the transformed upper triangular system matrix. If we write

L̄ = LrPr · · ·L1P1,

then L̄B = U . When no row permutations are required (that is, Pi = I ), then L̄ is a lower
triangular matrix, and so is its inverse. Letting L = L̄−1, we can write B as a product of
lower and upper triangular matrices

B = LU.

Because of this representation, the method is also called the LU factorization or LU de-
composition. In the more general case, where row permutations are used, the matrix L̄
and hence L may no longer be lower triangular, but the method is still known as the LU
factorization.

Our overview of the implementation of the LU factorization will begin with a dis-
cussion of the method for computing the factors of the LU decomposition, storing them in
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compact form, and performing computations using this compact form. Next we will discuss
how to solve the systems of equations that arise in the course of a simplex iteration. Finally,
we will discuss how to update the factorization following a simplex iteration, when one
variable leaves the basis and another variable enters.

We start with the triangulization of the matrix B:

LrPr · · ·L1P1B = U.

For simplicity we denote the intermediate (“partially” upper triangular) matrices generated in
the course of the factorization (regardless of the step) by Û . The Pi matrices are elementary
permutation matrices formed by switching two rows of the identity. Specifically, if P is an
elementary permutation matrix obtained by switching rows j and k of the identity, then the
operation P Û switches rows j and k of Û (see the Exercises). In general the permutation
matrix need not be formed explicitly. Only the indices of the rows being interchanged need
be stored. If P , say, interchanges rows j and k, then multiplying P from the right by a
column vector, or from the left by a row vector, simply switches elements j and k of the
vector.

The matricesLi are the matrices that perform the elementary row operations involved
in Gaussian elimination. The matrix Li that pivots on column s of Û is the identity matrix
with its sth column replaced by

η =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
1

−ûs+1,s/ûs,s
...

−ûm,s/ûs,s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

← s ,

where
{
ûj,s

}
are the entries in Û (see the Exercises). Denoting column s of the identity

matrix by es , we can write Li as

Li = I + (η − es)eTs .
The elementary matrices need not be formed explicitly. Only the index s of the pivot

term and the lower part of the eta vector containing entries s + 1, . . . , m need be stored.
Using just this information, it is easy to premultiply or postmultiply the matrix by a vector.
For example,

Lia = (I + (η − es)eTs )a = a + (η − es)as = a + as

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
ηs+1
...

ηm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus, to compute Lia we take the vector a and add to its subdiagonal portion (components
s + 1, . . . , m) the corresponding portion of as times η.
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Forming cTLi is also easy, since

cTLi = cT(I + (η − es)eTs ) = cT + (cTη − cs)eTs
= ( c1 c2 . . . cs−1 cTη cs+1 . . . cm ) .

Thus, the computation cTLi leaves c unchanged, except for its sth component which is
replaced by cTη.

Factorization of the matrix B using the product form is done a column at a time,
starting with its first column. At the beginning of step k we typically have an “eta file”
consisting of the eta vectors from the previous iterations, their associated pivot index, and
the permutations applied. Available also are columns 1, . . . , k − 1 of U . In the course of
triangularizing column k of B we first compute the effect of all previous row operations on
the column. After a possible row interchange, the top part of the resulting vector will be
column k of U , while the subdiagonal portion will define the elimination eta vector.

Example 7.10 (LU Factorization). We will illustrate the factorization using the 3 × 3
example

B =
( 1.6 −4.2 −0.8

4.0 1.5 3.0
8.0 −1.0 1.0

)

from Appendix A.6. We will use partial pivoting which chooses at each iteration k the pivot
term with largest magnitude from among those available.

At the first step, rows 1 and 3 are switched:

P1 : 1 ↔ 3;
therefore P1 is defined by the pair (1, 3) indicating that P1 is obtained by switching the first
and third rows of the identity matrix. The effect of this on the first column of B is

P1B1 =
( 8.0

4.0
1.6

)
.

We now record the first column of U , the eta vector, and the row index of the pivot:

U1 =
( 8

0
0

)
, η1 =

( 1
−0.5
−0.2

)
, s1 = 1.

Only the second and third components of η1 need be stored since the first component will
always be 1. At the second step we first reconstruct the effect ofL1P1 on the second column
of B:

L1P1B2 = L1P1

(−4.2
1.5
−1

)
= L1

( −1
1.5

−4.2

)
=
( −1

1.5
−4.2

)
−
( 0
−0.5

0.2

)
=
(−1

2
−4

)
.

Since the third element is greater than the second we define P2 by the pair (2, 3):

P2 : 2 ↔ 3.
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Since

P2B̂2 =
(−1
−4

2

)
,

we obtain

U2 =
(−1
−4

0

)
, η2 =

( 0
1

0.5

)
, s2 = 2.

Here only the third element of η2 need be stored. At the third and last step we reconstruct
the effect of L2P2L1P1 on the third column of B:

L2P2L1P1B3 = L2P2L1P1

(−0.8
3
1

)
= L2P2L1

( 1
3

−0.8

)

= L2P2

[( 1
3

−0.8

)
+
( 0
−0.5
−0.2

)]
= L2P2

( 1
2.5
−1

)

= L2

( 1
−1
2.5

)
=
( 1
−1
2.5

)
−
( 0

0
0.5

)
=
( 1
−1

2

)
.

We obtain

U3 =
( 1
−1

2

)
.

To solve a system of the form Bx = a we use the fact that L̄B = U to obtain
L̄a = Ux. We compute the vector

w = L̄b = LrPr · · ·L1P1a

and then solve
Ux = a.

Likewise, to solve a system yTB = cT, we use the fact that L̄B = U to obtain
yTL̄−1U = cT. Defining uT = yTL̄−1 (so that uTL̄ = yT) we first solve for u in

uTU = cT,

and then compute y:
yT = uTL̄ = uTLrPr · · ·L1P1.

Example 7.11 (Solution of System of Equations). Consider the system Bx = a, where B
is the matrix in the previous example and a = (0, 10, 10)T. We first compute

w = L2P2L1P1b = L2P2L1P1

( 0
10
10

)
= L2P2L1

( 10
10

0

)

= L2P2

( 10
5

−2

)
= L2

( 10
−2

5

)
=
( 10
−2

4

)
.
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Solving the system Ux = w, we obtain through backsubstitution that

2x3 = 4→ x3 = 2
−4x2 − 2 = −2→ x2 = 0

8x1 + 2 = 10→ x1 = 1

so the solution is x = (1, 0, 2)T.
Consider now the system yTB = cT where c = (32,−20, 4)T. We first solve for u in

uTU = cT to obtain
8u1 = 32→ u1 = 4

−4− 4u2 = −20→ u2 = 4
4− 4+ 2u3 = 4→ u3 = 2

so that u = (4, 4, 2)T. Next we compute yT = uTL̄:

yT = uTL2P2L1P1 = ( 4 4 2 ) L2P2L1P1 = ( 4 5 2 ) P2L1P1

= ( 4 2 5 ) L1P1 = ( 2 2 5 ) P1 = ( 5 2 2 ) .

So far we have described how to factor the initial basis matrix B. In most simplex
iterations—when one variable leaves the basis and another variable enters the basis—we
do not factor B from scratch. Instead the existing factorization is updated by performing
additional elementary row operations and permutations. As a result, the number of factors in
the LU decompositions gradually increases from iteration to iteration. After some number of
iterations this ceases to be efficient, since the effort to update and use the factorization grows
with each iteration. It may also be true that the accuracy of the factorization has deteriorated.
At this point a new LU factorization of the current basis matrix is computed using the
techniques we have just described. This step is called a refactorization. A refactorization
is also typically performed at the final iteration (see Section 7.6.3).

We now describe the technique for updating the factorization when the basis changes.
We will describe here the technique proposed by Bartels and Golub (1969). Suppose that
L̄B = U , where {Bi } and {Ui } are the columns of B and U , respectively. Then

L̄B = L̄ ( B1 · · · Bm ) = ( U1 · · · Um ) = U.

Let a = At and Bi be the columns associated with the entering and leaving variables, respec-
tively. Instead of replacing Bi by a, we will delete Bi from B, shift columns Bi+1, . . . , Bm

one position to the left, and insert the new column a at the end. This will give the updated
basis matrix B̄ with

L̄B̄ = L̄ ( B1 · · · Bi−1 Bi+1 · · · Bm a )

= ( U1 · · · Ui−1 Ui+1 · · · Um w ) ≡ Û ,

where
w = L̄a.

The reordering of the columns of B̄ corresponds to a reordering of the basic variables xB .
The vector w can be obtained as a by-product of the computation of the entering column
Ât , since it is computed in the first step of the solution of the system BÂt = a.
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Figure 7.2. Updating a factorization.

The columns of B̄ are reordered so as to simplify the updating of theLU factorization.
As is seen in Figure 7.2, the matrix Û is almost upper triangular—the only entries that need
to be eliminated are just below the main diagonal in columns i, . . . , m− 1.

The subdiagonal entries in Û are eliminated using Gaussian elimination with partial
pivoting. For column j (j = i, . . . , m − 1) the values |ûj,j | and |ûj+1,j | are compared.
If |ûj,j | < |ûj+1,j |, then rows j and j + 1 of Û are interchanged. Then the entry Ûj+1,j

in the resulting matrix is eliminated. The resulting eta vector will only have one element
other than the diagonal, so storage is minimal. The update procedure corresponds to an LU
factorization of Û , resulting in an updated upper triangular matrix Ū .

Example 7.12 (Updating the LU Factorization). Consider the basis matrix

B =

⎛
⎜⎜⎜⎜⎜⎝

2 −1 0 1 −2

−1 3
2 2 1

2 1

− 1
2

1
2

5
2 −1 1

2

1 −1 −1 2 −2

0 1 0 1 5
2

⎞
⎟⎟⎟⎟⎟⎠ .

In the course of the factorization we find that no permutations are required, that the eta
vectors corresponding to pivot indices s1 = 1, s2 = 2, s3 = 3, and s4 = 4 are

η1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1
2
1
4

− 1
2

0

⎞
⎟⎟⎟⎟⎟⎟⎠ , η2 =

⎛
⎜⎜⎜⎜⎜⎝

0
1

− 1
4
1
2

1

⎞
⎟⎟⎟⎟⎟⎠ , η3 =

⎛
⎜⎜⎜⎜⎜⎝

0
0

1

0

1

⎞
⎟⎟⎟⎟⎟⎠ , η4 =

⎛
⎜⎜⎜⎜⎜⎝

0
0

0

1
1
2

⎞
⎟⎟⎟⎟⎟⎠ ,
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and that the resulting upper triangular matrix is

U =

⎛
⎜⎜⎜⎝

2 −1 0 1 −2
0 1 2 1 0
0 0 2 −1 0
0 0 0 2 −1
0 0 0 0 2

⎞
⎟⎟⎟⎠ .

Although the matrix L̄L4L3L2L1 is not formed explicitly, we will construct it here to
facilitate the exposition:

L̄ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0
1
2 1 0 0 0
1
4 − 1

4 1 0 0

− 1
2

1
2 0 1 0

0 −1 1 1
2 1

⎞
⎟⎟⎟⎟⎟⎟⎠ .

Suppose that the entering column for the new basis is

a =

⎛
⎜⎜⎜⎝

2
0

−1
4
3

⎞
⎟⎟⎟⎠

and that

w = L̄a =

⎛
⎜⎜⎜⎜⎝

2
1

− 3
4
7
2

3

⎞
⎟⎟⎟⎟⎠ .

The new basis matrix (with column 2 deleted and a inserted at the end) is

B̄ =

⎛
⎜⎜⎜⎜⎜⎝

2 0 1 −2 2

−1 2 1
2 1 0

− 1
2

5
2 −1 1

2 −1

1 −1 2 −2 4
1
2 0 1 5

2 3

⎞
⎟⎟⎟⎟⎟⎠

and thus U is transformed into (with column 2 deleted and w at the end)

Û =

⎛
⎜⎜⎜⎜⎝

2 0 1 −2 2
0 2 1 0 1
0 2 −1 0 − 3

4

0 0 2 −1 7
2

0 0 0 2 3

⎞
⎟⎟⎟⎟⎠ .

Gaussian elimination is then applied to this matrix.
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We start with column 2. No row interchange is required, so P5 = I . The elementary
matrix L5 corresponding to pivot term s5 = 2 and eta vector

η5 =

⎛
⎜⎜⎜⎝

0
1

−1
0
0

⎞
⎟⎟⎟⎠

is used to eliminate the (3, 2) entry. The effect of this on the third column of Û is

L5

⎛
⎜⎜⎜⎝

1
1

−1
2
0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

1
1

−2
0
0

⎞
⎟⎟⎟⎠ .

Again no interchange is required (so P6 = I ), and the elementary matrix L6 corresponding
to pivot term s6 = 3 and eta vector

η6 =

⎛
⎜⎜⎜⎝

0
0
1
1
0

⎞
⎟⎟⎟⎠

eliminates the (4, 3) entry. The effect of these operations on the fourth column of Û is

L6L5

⎛
⎜⎜⎜⎝
−2

0
0

−1
2

⎞
⎟⎟⎟⎠ = L6

⎛
⎜⎜⎜⎝
−2

0
0

−1
2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
−2

0
0

−1
2

⎞
⎟⎟⎟⎠ .

Finally, a permutation matrix
P7 : 4 ↔ 5

is used to interchange rows 4 and 5, and the elementary matrix L7 corresponding to pivot
term s7 = 4 and eta vector

η7 =

⎛
⎜⎜⎜⎜⎝

0
0
0
1
2

0

⎞
⎟⎟⎟⎟⎠

eliminates the (5, 4) entry. The effect of these operations on the fifth column of U are
computed via

L7P7L6L5

⎛
⎜⎜⎜⎜⎜⎝

2
1

− 3
4
7
2

3

⎞
⎟⎟⎟⎟⎟⎠ = L7P7L6

⎛
⎜⎜⎜⎜⎜⎝

2
1

− 7
4
7
2

3

⎞
⎟⎟⎟⎟⎟⎠ = L7P7

⎛
⎜⎜⎜⎜⎜⎝

2
1

− 7
4
7
4

3

⎞
⎟⎟⎟⎟⎟⎠ = L7

⎛
⎜⎜⎜⎜⎜⎝

2
1

− 7
4

3
7
4

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

2
1

− 7
4

3
13
4

⎞
⎟⎟⎟⎟⎟⎠ .
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The resulting upper triangular matrix is

Ū =

⎛
⎜⎜⎜⎜⎝

2 0 1 −2 2
0 2 1 0 1
0 0 −2 0 − 7

4

0 0 0 2 3
0 0 0 0 13

4

⎞
⎟⎟⎟⎟⎠ .

This corresponds to the transformation

L7P7L6L5Û = Ū

or in turn

L7P7L6L5L4L3L2L1B̄ = Ū .

Although this example may seem daunting, when the problem is large and sparse,
the sparsity of the eta vectors can be used to great advantage. Various other schemes have
been developed to further accelerate the simplex iterations, either by attempting to reduce
fill-in, or by devising approaches that have fast access to data in computer memory, based
on the scheme for storing sparse data (see Appendix A.6.1). As an example, we note that
the LU factorization we described uses row interchanges to maintain numerical stability.
Unfortunately these interchanges can interfere with the sparse storage schemes used to
represent the basis matrix. A related updating scheme has been proposed by Forrest and
Tomlin (1972) that alleviates some of these difficulties. In this alternative, a row interchange
is performed at every step of the elimination for Û , regardless of the values of |ûj,j | and
|ûj+1,j |. Because there is no choice about the interchange, this approach is less numerically
stable. Nevertheless, the Forrest–Tomlin update can be superior computationally.

Exercises
5.1. Use the simplex method to solve the linear programs in Exercise 2.2 of Chapter 5.

Use the product form of the inverse.

5.2. Consider the problem

minimize z = 34x1 + 5x2 + 10x3 + 9x4

subject to 2x1 + x2 + x3 + x4 = 9
4x1 − 2x2 + 5x3 + x4 ≤ 8

4x1 − x2 + 3x3 + x4 ≥ 5
x1, x2, x3, x4 ≥ 0.

Let x5 be the slack variable corresponding to the second constraint, x6 the surplus
variable corresponding to the third constraint, and let x7 and x8 be the artificial
variables corresponding to the first and third constraints, respectively. Assume that
the problem was solved via the simplex method, using a two-phase approach. The
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following information is available at the end of phase 1:

xB = (x2, x5, x4)
T,

s1 = 3, η1 =
(−1
−1

1

)

s2 = 1, η2 =
⎛
⎜⎝

1
2
1
2
1
2

⎞
⎟⎠ .

Find the current basic solution. Determine if it is optimal for phase 2, and if not, find
the optimal solution. Use the product form of the simplex method.

5.3. Let Â be an m × n matrix. Suppose that âs,t = 0. Let η be a vector of length m
such that ηs = 1/âs,t , and ηi = −âi,t /âs,t for i = s. Let E be the elementary matrix
obtained by replacing the sth column of the m×m identity matrix by the vector η.

(i) Prove that multiplying Â on the left by E is equivalent to pivoting on Â with
âs,t as the pivot.

(ii) Let F be a matrix obtained by replacing the sth column of an m×m identity
matrix by the t th column of Â. Prove that F−1 = E.

5.4. Let E be an m×m elementary matrix with eta vector η. Suppose that η has l < m

nonzero elements. Let a and c be dense vectors of length m.

(i) Show that the matrix-vector product Ea requires l multiplications and l − 1
additions.

(ii) Show that the matrix-vector product cTE requires l multiplications and l − 1
additions.

5.5. Compute the number of multiplications/divisions required in the kth iteration of the
product form of the simplex method. (You may assume that the problem is dense.)
Also compute the total number of multiplications/divisions required in k iterations
of the product form of the simplex method.

5.6. Verify the calculations in Example 7.8.

5.7. Compute the inverse of the matrix

B =

⎛
⎜⎜⎜⎝

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 1 1 1 6

⎞
⎟⎟⎟⎠

by sequentially replacing the ith column of the identity matrix by the ith column of
B and performing the required pivot operations. Show that most of the eta vectors
obtained are sparse. Compute B−1 explicitly, and verify that it is a dense matrix.

5.8. Consider the matrix

B =
⎛
⎜⎝

4 0 0 2
0 1 3 0
0 0 2 1
1 1 1 1

⎞
⎟⎠ .



book
2008/10/23
page 258

�

�

�

�

�

�

�

�

258 Chapter 7. Enhancements of the Simplex Method

(i) Represent B−1 using the product form of the inverse. Incorporate the columns
in order (first column 1, then column 2, and so on).

(ii) Solve the linear system Bx = b with b = (1,−1, 1,−1)T using the product-
form representation from (i).

5.9. Assume thatB is the current basis matrix, B̄ is the new basis matrix,As is the column
corresponding to the leaving variable (and is in column s in B), and that At is the
column corresponding to the entering variable. Show that B̄−1 = EB−1 where

E = I + (η − es)eTs
and es is column s of the identity matrix. Also show that B̄ = BF where F =
I + (Ât −Âs)eTs .

5.10. Prove that the product of two lower triangular matrices is lower triangular.

5.11. Prove that if the inverse of a lower triangular matrix exists, it is lower triangular.

5.12. Let Ls be an m×m lower triangular elementary matrix formed by replacing the sth
column of the identity matrix by η. Prove that L−1

s is obtained from the identity
matrix by replacing entries j = s + 1, . . . , m of column s by −ηj .

5.13. Suppose thatLi andLj are two lower triangular elementary matrices used in Gaussian
elimination, formed by replacing the ith and j th columns of the identity matrix,
respectively, by ηi and ηj . Prove that their product LiLj is the identity matrix with
columns i and j replaced by ηi and ηj , respectively.

5.14. Consider the matrix factorization

b =
( 2 4 −2

1 6 5
0 2 11

)
=
⎛
⎝ 1 0 0

1
2 1 0
0 1

2 1

⎞
⎠( 2 4 −2

0 4 6
0 0 8

)
= LU.

Replace the first column of B by a = (1, 3, 4)T and compute the updated factoriza-
tion.

5.15. Find an LU factorization of the matrix

B =
⎛
⎝ 0 2 4

1 0 5
−2 2 0

⎞
⎠ .

Use partial pivoting. Note: Find the eta vectors for the factorization, but do not
form the eta matrices. Use the result to solve the system yTB = cT

B
, where cT

B
=

(2, 11,−8).

5.16. In a certain iteration of the simplex algorithm, the basic variables are x1, x2, and x3,
and the basis matrix is

B =
( 0 −2 2

1 −2 0
−3 0 3

)
.

(i) Find the LU decomposition of the basis matrix using partial pivoting. Note:
Find the eta vectors for the factorization, but do not form the eta matrices.

(ii) Use the results of (i) to solve the system yTB = cT
B

, where cT
B
= (8,−10, 4).
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(iii) Suppose now that the second basic variable is replaced by x4, whose constraint
coefficients are

A4 = ( 0 −2 3 )T .

Let B̂ be the new basis matrix. Compute the updates required to obtain the
LU decomposition of B̂.

(iv) Solve the system of equations

B̂x =
( 10

0
12

)
.

5.17. Compute the LU factorization of the matrix

B =

⎛
⎜⎜⎜⎝

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
1 1 1 1 6

⎞
⎟⎟⎟⎠ .

5.18. Consider the matrix

B =
⎛
⎜⎝

4 0 0 2
0 1 3 0
0 0 2 1
1 1 1 1

⎞
⎟⎠ .

(i) Find the LU decomposition of B using partial pivoting. Note: Find the eta
vectors for the factorization, but do not form the eta matrices.

(ii) Solve the linear system Bx = b with b = (1,−1, 1,−1)T using the product-
form representation from (i).

7.6 Numerical Stability and Computational Efficiency
A great deal of effort must be expended to translate the simplex method into a high-quality
piece of software. Part of this effort is concerned with efficiency, making every step of
the method run as efficiently as possible. But there are other issues, such as reliability and
flexibility. Linear programming software should work effectively on a computer, where
the arithmetic is subject to rounding errors, and where the problems may not satisfy the
assumptions we have been routinely making (for example, that the constraint matrix has
full row rank). In addition, the software should be able to solve problems that are not
specified in standard form, but rather in a form that is more convenient to the user of the
software.

This section will describe some of the ideas and techniques that arise in the develop-
ment of software for the simplex method. Ideally, we would like to say, “This is the best way
to implement the simplex method,” but this is not possible. On different sets of problems,
on different computers, and on different variants of the simplex method, the choices can be
(and often are) different. Even subtle changes in the computer hardware can influence the
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way the software is written. If we tried to indicate the “best” techniques, there is a good
chance that our description would almost immediately be out of date, or would be invalid
in many contexts.

There is another reason that limits our discussion. Many details of linear programming
software have never been published. They are implemented in the computer software, but
this software is often proprietary. Even if the corresponding algorithms have been published,
the algorithmic descriptions may be less precise than the software, with many small but
important details omitted. Such details of software craftsmanship are rarely mentioned in
research publications.

In this section we discuss a number of implementation issues: (a) the choice of the
entering variable (pricing), (b) the choice of an initial basis, (c) tolerances for rounding
errors, (d) scaling, (e) preprocessing, and (f) alternate model formats. The first issue will
occupy most of our attention.

Although many of our comments are motivated by specific software packages, our
discussion here avoids any such identifications and frequently uses words like “often” and
“usually.” This is an attempt to be accurate, as well as to avoid having our comments go
quickly out of date. Software packages may include alternative choices for specific steps in
the simplex method, with default choices selected to achieve good performance on a large
class of problems. The alternatives may be invoked at the request of a particular user, or
perhaps when the software itself identifies that the alternative might be preferable. Thus,
from problem to problem, the behavior of the software may change.

7.6.1 Pricing

One of the most expensive operations in the simplex method is pricing, i.e., the optimality
test. Because it is so expensive, simplex algorithms try to either reduce the costs of this step,
or to make better use of all the calculations to select a more promising entering variable.

Partial pricing is one technique for reducing the costs of the optimality test. Instead
of computing all the coefficients

{
ĉj
}

( full pricing), only a subset of these coefficients is
computed (100, say). If one of the optimality conditions is violated, then this violation
identifies an entering variable. If not, then another subset of the coefficients is computed.
This continues until either an entering variable is identified, or until it is determined that the
current basis is optimal.

A much different approach to pricing is in fact to do extra calculations to identify
a “better” entering variable. We will examine one such approach, called steepest-edge
pricing. Suppose that at the current iteration, ĉt has been used to select the entering column
Ât . Then the variables x will be updated using the formula

(
xB
xN

)
←

(
xB
xN

)
+ αpt ,

where α is the minimum ratio from the ratio test, and pt is an edge direction, that is, pt is a
column of the matrix

Z =
(−B−1N

I

)
.
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(See Section 5.4.2.) The initial portion of pt is the vector −Ât = −B−1At , and the corre-
sponding reduced cost can be computed using

ĉt = ct − cTB B−1At = ( cT
B

cT
N
) pt = cTpt .

In our descriptions of the simplex method we have been selecting the entering variable as
the variable with the most negative reduced cost:

ĉt = min
j
cTpj ,

wherepj is the column ofZ corresponding toAj . We will refer to this as the steepest-descent
pricing rule. If the entering variable is increased from zero to ε, then the objective decreases
by ĉt ε, suggesting that this choice may give the greatest reduction (“steepest descent”) in
the objective value.

The steepest-descent rule has a drawback. It measures improvement in the objective
per unit change in the variable xj . If the feasible region is rotated, then this measure would
change, even though rotating the feasible region is merely a cosmetic change to the problem.
It would be preferable to have a rule that was insensitive to transformations of this type.
We would like to measure improvement in the objective per unit movement along an edge
of the feasible region.

The steepest-edge rule does this. It selects the entering variable using

min
j

cTpj∥∥pj∥∥ .
The rule determines how the objective function is changing in the direction determined by
the vector pj , without regard to the particular coordinate system used to represent it.

A disadvantage of the steepest-edge rule is that it requires the computation of

∥∥pj∥∥ =
√

1 +
∥∥∥Âj∥∥∥2

for all nonbasic columns j . Computing these norms in the obvious way would require
computing {Âj }, which would be prohibitively expensive. However, it is possible to update
the values of the norms inexpensively as the basis changes.

We will first show how to updateÂj . (This is just an intermediate step in the derivation
of the steepest-edge rule; only the norm values are actually calculated by the algorithm.) To
derive this, we need a formula for updating the inverse of the basis matrix. Let us assume
thatB is the current basis matrix, B̄ is the new basis matrix,As is the column corresponding
to the leaving variable (and, for simplicity, is in column s in B), and At is the column
corresponding to the entering variable. Then (see the Exercises)

B̄−1 = EB−1,

where E is a matrix of the form

E = I + (η − es)eTs
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and es is column s of an m×m identity matrix. More specifically,

η − es ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−â1,t /âs,t
...

−âs−1,t /âs,t
1/âs,t

−âs+1,t /âs,t
...

−âm,t /âs,t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
1
0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= es −Ât
âs,t

,

whereÂt is the entering column and âs,t is the pivot entry at the current iteration. We also
define

σ ≡ B−T es,

that is, σ is equal to row s of B−1. Expanding the formula for B̄−1 gives

B̄−1 = EB−1

= B−1 + (η − es)eTsB−1

= B−1 + 1

âs,t
(es −Ât )σ T.

Let Aj be a nonbasic column in both the current and the new basis. Then

B̄−1Aj = B−1Aj + 1

âs,t
(es −Ât )σ TAj

= Âj + σTAj

âs,t
(es −Ât ).

This formula can be used to update the norms of the vectors
{
pj
}
. First notice that

∥∥pj∥∥2 = 1 +
∥∥∥Âj∥∥∥2

.

If we define γj ≡
∥∥Âj∥∥2 = ÂTjÂj = (B−1Aj)

T(B−1Aj) and γ̄j ≡
∥∥B̄−1Aj

∥∥2
, then

γ̄j = (B̄−1Aj)
T(B̄−1Aj)

= γj +
(
σTAj

âs,t

)2

(1 − 2âs,t + γt )+ 2

(
σTAj

âs,t

)
(âs,j −ÂTjÂt ).

This formula can be reorganized to make it more suitable for computation. The final term
can be adjusted using the identity

Â
T

j Ât = (B−1Aj)
TÂt = ATj(B

−TÂt ).
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Also, since

2

(
σTAj

âs,t

)2

âs,t = 2

(
eTsB

−1Aj

âs,t

)2

âs,t

= 2

(
âs,j

âs,t

)2

âs,t

= 2

(
âs,j

âs,t

)
âs,j

= 2

(
σTAj

âs,t

)
âs,j ,

two of the terms involving âs,t cancel. As a result we obtain

γ̄j = γj +
(
σTAj

âs,t

)2

(1 + γt )− 2

(
σTAj

âs,t

)
ATj(B

−TÂt ).

A slightly different formula can be derived for the coefficient of the leaving variable. (See
the Exercises.)

This final formula is the basis for the steepest-edge rule. It requires the calculation of
B−TÂt , some additional inner products, as well as storage for

{
γj
}

and the initialization
of these quantities. (The other calculations are by-products of the simplex method.) For
sparse problems, many of the σTAj terms can be zero, so the number of extra calculations
required to implement this technique may not be excessive.

Example 7.13 (Steepest Edge Update Formula). Consider the constraint matrix

A =
( 1 2 0 4 1 5

0 1 2 2 5 4
0 0 1 1 3 5

)
.

We will begin with the basis xB = (x1, x2, x3)
T so that

B =
( 1 2 0

0 1 2
0 0 1

)
and B−1 =

( 1 −2 4
0 1 −2
0 0 1

)
.

For the nonbasic columns,

Â4 = B−1A4 =
( 4

0
1

)
, Â5 =

( 3
−1

3

)
, and Â6 =

( 17
−6

5

)
.

The new basis will be x̄B = (x1, x2, x4)
T so that s = 3, t = 4, es = (0, 0, 1)T, and

B̄ =
( 1 2 4

0 1 2
0 0 1

)
and B̄−1 =

( 1 −2 0
0 1 −2
0 0 1

)
.
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We will concentrate on the final two columns ofA, the columns that remain nonbasic. Then
âs,t = 1,

σ = B−T es = ( 0 0 1 )T ,

and

κ5 ≡ σTA5/âs,t = 3

κ6 ≡ σTA6/âs,t = 5.

Now it would be possible to updateÂ5 andÂ6 using

Â5 ← Â5 + κ5(es −Ât )
Â6 ← Â6 + κ6(es −Ât ),

although this is not required by the steepest-edge rule.
Now let us examine the update formula for the squares of the norms of these vectors.

Initially
γ4 = 17, γ5 = 19, and γ6 = 350.

We compute

B−TÂt = B−TÂ4 =
( 4
−8
17

)
.

Then

γ̄5 = γ5 + κ2
5 (1 + γ4)− 2κ5A

T
5(B

−TÂ4) = 91

γ̄6 = γ6 + κ2
6 (1 + γ4)− 2κ6A

T
6(B

−TÂ4) = 70,

and these are the squares of the norms of the vectors in p̄.

The steepest-edge rule can dramatically decrease the overall number of simplex iter-
ations required to solve a linear program. It is especially valuable within the dual simplex
method since in that setting a separate calculation is not required to obtain the vector σ . For
further details, see the paper by Forrest and Goldfarb (1992).

There are other pricing rules that attempt to choose a better entering variable than given
by the steepest-descent rule. One of these, called Devex, only approximates the norms that
are computed exactly by the steepest-edge rule. The costs per simplex iteration are lower,
but more iterations are typically required. For further information on the Devex and other
approximate forms of steepest-edge pricing, see the papers by Harris (1973), Goldfarb and
Reid (1977), and Świetanowski (1998).

Currently, steepest-edge pricing is considered to be a good choice for the dual simplex
method, whereas for the primal simplex method it is preferable to start with partial pricing
and later switch to Devex or some other form of approximate steepest-edge pricing.

7.6.2 The Initial Basis

Many software packages can take advantage of a specified initial basis, that is, if the user
is able to provide one. More commonly, the package will have to determine an initial basis
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automatically. The simplex method can be initialized with a basis consisting of slack and/or
artificial variables. However, if the model is feasible, the optimal basis need not contain any
artificial variables. Also, if a slack variable is in the optimal basis, then the corresponding
constraint is redundant. Hence an initial basis consisting of artificial and slack variables
might have little in common with the optimal basis, and the simplex algorithm would then
have to perform a great many pivots before reaching the optimal solution.

For these reasons, some packages attempt to find an initial basis that avoids using
artificial variables and (to a lesser extent) slack variables. This operation is sometimes
referred to as a crash procedure. One such strategy is described in the paper by Bixby (1993).

Crash procedures attempt to choose an initial basis B according to criteria such as
(a) the columns of B do not correspond to artificial variables, (b) the columns of B are
sparse, (c) the columns of B form an (approximately) upper or lower triangular matrix,
(d) the diagonal entries of B are suitable pivot entries for Gaussian elimination, (e) the
matrix B is not “too ill conditioned,” and (f) the columns of B are “likely” to be in the
optimal basis.

A crash procedure can reduce the number of simplex iterations required to find an
optimal solution. However, the initial basis that results will be less sparse than for a
slack/artificial basis (where B = I ) so the early simplex iterations will be more expen-
sive, and the resulting savings in computer time may not be as dramatic.

7.6.3 Tolerances; Degeneracy

Ideally, linear programming software would return a solution that exactly satisfied the con-
straints, all of whose variables were nonnegative, and where all the optimality conditions
were satisfied. Unfortunately, due to the realities of finite-precision arithmetic, this is not
always possible. Instead, the computed solution will only satisfy these conditions to within
certain tolerances related to machine epsilon εmach (the accuracy of the computer arithmetic;
see Appendix B.2). The tolerances indicated below are based on a value of εmach ≈ 10−16.
Many software packages allow the user to modify the tolerances used by the algorithm.

Not all of these conditions are equally difficult to satisfy. If xB is computed using an
LU factorization of B with partial pivoting, then

‖BxB − b‖
‖B‖ · ‖xB‖ = O(εmach).

This indicates that (under these assumptions) the constraints Ax = b will be satisfied
to near the limits of machine accuracy. These assumptions are not fully satisfied in linear
programming software, however. The pivoting strategy may be modified to enhance sparsity
of the factorization, and updates to the factorization can lead to additional deterioration. In
fact, if ‖BxB − b‖ (scaled as above) becomes “too large” (larger than 10−6, say), then this
is an indication that it is time to refactor the basis matrix. Also, it is common to refactor the
basis matrix at the optimal point to enhance the accuracy of the computed solution.

The computed solution may violate the nonnegativity constraints x ≥ 0 (primal
feasibility) or the optimality conditions (dual feasibility), but only by a small amount. For
example, violations in these conditions of up to 10−6 might be tolerated.

In addition, small coefficients in the model might be ignored. For example, any entry
in A satisfying (say) |Ai,j | ≤ 10−12 might be replaced by zero.
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These tolerances for zero can be exploited as a technique for resolving degeneracy.
Suppose that at some iteration of the simplex method the step procedure resulted in a step of
zero. Then the feasibility tolerance for the corresponding basic variable could be randomly
perturbed. The simplex algorithm would allow this variable to become slightly negative,
and a nonzero step would be taken. The perturbed problem would not be degenerate. Similar
perturbations could be incorporated whenever a degeneracy was detected. Later, when the
solution to the perturbed problem had been found, the perturbations would be removed.
The current basis might then be infeasible, and additional calculations would be required
to restore feasibility with respect to the original problem. These further calculations would
correspond to a phase-1 problem.

It is common to encounter degeneracy when solving large practical linear program-
ming problems. Strategies such as these are important enhancements to software for the
simplex method.

The tolerances can be used in a similar manner within the ratio test to expand the
list of potential leaving variables. This can be of value in controlling ill-conditioning in
the basis matrix, since leaving variables associated with small pivot entries can perhaps be
avoided. For further details, see the paper by Bixby (1993).

7.6.4 Scaling

It is possible to make a problem ill conditioned merely by changing the units in which the
model is specified. For example, consider the constraints(

3 1
1 3

)(
x1

x2

)
=
(

5
9

)
.

The matrix has condition number equal to 2. Suppose that the first constraint measures
kilograms of flour, say. If this first constraint is changed so that it measures grams of flour,
then the system of constraints becomes(

3000 1000
1 3

)(
x1

x2

)
=
(

5000
9

)
,

and the condition number of the transformed matrix is approximately 1250, which is about
1000 times worse than before. A similar situation would occur if the variable x1 had its
units changed via a change of variables of the form

x̂1 = 1000x1,

causing a column of the matrix (as well as the cost coefficient c1) to be modified.
Transformations such as these are cosmetic changes to the model and lead to new

models that are mathematically equivalent to the originals. However, on a computer where
finite-precision arithmetic is used, they can alter the behavior of the simplex method and
lead to a deterioration in performance.

Scaling problems can also arise if the model includes a large upper bound for a variable
that need not have an upper bound. For example, the model might replace the constraint
0 ≤ x5 with

0 ≤ x5 ≤ 1012,
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where the value 1012 is out of scale with the remaining data in the model. This can cause
difficulties if at some iteration the variable is set equal to its upper bound.

It is not uncommon to encounter such “poorly scaled” problems. Large models are
developed over a long period of time, often by a changing team of people, making it difficult
to ensure that all the constraints are measured in consistent units. Or perhaps data might
be collected from a variety of agencies whose reporting schemes did not conform to any
common standard.

Linear programming software attempts to cope with such difficulties by scaling of the
variables and constraints. (In some codes this is done by default; in others it is optional.) A
simple scaling rule divides the ith constraint (including the right-hand side) by

max
j

|ai,j |

to obtainÂ. Then the j th column ofÂ and the cost coefficient cj are divided by

max
i

|âi,j |

to obtainĀ. Then the simplex method is applied to the transformed problem. If this scaling
is used, then the largest entry (in absolute value) in any nonzero row or column ofĀ is equal
to 1 (see the Exercises).

This scaling strategy is heuristic in the sense that it is not guaranteed to improve the
performance or accuracy of the simplex method. Ideally the scaling would be chosen so
as to minimize, or at least reduce, the condition numbers of the basis matrices B. Such a
strategy is not practical, even for finding an ideal strategy for a single basis, let alone a set
of bases. For more information on scaling, see the paper by Skeel (1979).

7.6.5 Preprocessing

Since large models are often created by teams of people or automatically by software, it
is common for these models to contain redundancies. These redundancies are generally
harmless, so there is little motivation for the creator of the model to examine a model in
detail in an attempt to eliminate them. Even though they are harmless, these redundancies
do increase the size of a model, and this can lead to computational inefficiencies.

Some software packages attempt to eliminate redundancies by preprocessing the
model before applying the simplex method. We will list some of these techniques here.
Further ideas can be found in the papers by Lustig, Marsten, and Shanno (1994); Brearly,
Mitra, and Williams (1975); and Andersen and Andersen (1995).

If all the entries in a row ofA are equal to zero, then either the constraint is redundant
(if the right-hand side is zero) and the constraint can be deleted, or it is inconsistent and the
problem is infeasible. A similar technique can be applied if a column of A is zero, in which
case the dual problem might be infeasible.

A row of the matrix might represent a simple bound on a variable that had been written
as a general constraint. It is better to handle such a constraint explicitly as a bound (see
Section 7.2).
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The upper and lower bounds on a variable might be equal (see Section 7.6.6), for
example,

3 ≤ x5 ≤ 3.

Then 3 could be substituted for x5 throughout the model, and x5 eliminated.
A more sophisticated technique uses the bounds on a variable to identify redundant

constraints. For example, suppose the model contained the constraints

x1 + x2 ≤ 20
0 ≤ x1 ≤ 10
0 ≤ x2 ≤ 5.

Then the first constraint could be removed from the model since the upper bounds on the
variables indicate that x1 + x2 ≤ 15.

These rules could be applied repeatedly to a model since one set of reductions might
reveal new possibilities. Once this process had stabilized, the simplex method would be
applied to the reduced problem. Then, after the solution had been found, the transformations
would be reversed to find the solution to the original problem.

7.6.6 Model Formats

We have assumed that the linear program being solved is in standard form:

minimize z = cTx

subject to Ax = b

x ≥ 0.

We have discussed how to convert any linear program into standard form, so this is not
a restrictive assumption, but it can increase the size of a model unnecessarily. Linear
programming software usually allows more general models, such as

minimize z = cTx

subject to Ax = b

� ≤ x ≤ u,

or even
minimize z = cTx

subject to b1 ≤ Ax ≤ b2

� ≤ x ≤ u,

where b1, b2, �, and u are (possibly infinite) upper and lower bounds on the constraints and
the variables. Models of these types can be solved using straightforward variants of the
simplex method (see Section 7.2).

This flexibility permits models that might seem eccentric or even perverse. For ex-
ample, it would allow a free constraint:

−∞ ≤ 7x1 + 9x2 ≤ +∞.

This might arise if a user was interested in solving a linear program, and then knowing
the values of alternate objective functions at the optimal point x∗. Each of these objective
functions could be included in the original model as a free constraint.
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It would allow a fixed variable:

1 ≤ x3 ≤ 1.

This might arise if a general, open-ended model were being developed for a company, but
currently there was no flexibility for certain terms in the model. It would also allow a free
variable:

−∞ ≤ x4 ≤ ∞,

a variable that can take on any value.
All of these cases can be handled by the simplex method. A free constraint is always

satisfied, so it can be ignored until the problem is solved and the solution is presented to the
user. Fixed variables are just constants in the model.

Free variables could be handled by the software in several ways. One way would be
to eliminate them from the problem. For example, if x4 appeared in the constraint

5x4 + x5 − 3x6 = 2,

then the equivalent formula
x4 = 1

5 (2 − x5 + 3x6)

could be substituted for x4 everywhere in the model. However, this approach can destroy
some of the sparsity in the model. Instead, it may be preferable to retain x4 in the model
and add it to the basis as soon as possible. Once a free variable enters the basis it will never
leave the basis, since a change in the value of the entering variable will not cause the free
variable to violate a bound. The only way that a free variable will not be part of the optimal
basis is if its reduced cost is zero at every iteration.

Exercises
6.1. Let

A =
( 1 3 2 5 8 7

0 2 5 1 4 6
0 0 3 5 2 1

)
.

Suppose that the current basis uses the basic variables xB = (x1, x2, x3)
T and the new

basis x̄B = (x1, x2, x6)
T. Use the formulas for the steepest-edge pricing scheme to

compute the updated vector γ̄ corresponding to columns 4 and 5 of A.

6.2. In a linear program, suppose that the j th variable is transformed via x ′j = θxj ,
where θ > 0. Is the steepest-edge pricing rule affected by this change? Explain your
answer.

6.3. The discussion of the steepest-edge pricing rule did not derive the formulas corre-
sponding to the leaving variable. Using the notation of Section 7.6.1, show that

B̄−1As = es + (1/âs,t )(es −Ât ) = (1 + 1/âs,t )es − (1/âs,t )Ât
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and
γ̄s = (1/â2

s,t )(1 + γt )− 1.

Verify your result using the data in Example 7.13.

6.4. Another possible pricing scheme would be to determine, for each potential entering
variable, what the new value of the objective function would be if that variable were
to enter the basis. Why would this scheme be expensive within the simplex method?

6.5. Suppose that the scaling strategy in Section 7.6.4 is applied to an m × n matrix A
to obtain a scaled matrix Ā. Assume that no row or column of A has all its entries
equal to zero. Prove that

max
i

|āi,j | = 1 for 1 ≤ j ≤ n,

max
j

|āi,j | = 1 for 1 ≤ i ≤ m.

7.7 Notes
Product Form—The product form of the inverse was developed by Dantzig and Orchard-
Hays (1954).

Column Generation—The technique of column generation is described in the papers
of Eisemann (1957), Ford and Fulkerson (1958), and Manne (1958). The cutting stock
problem is discussed in the papers of Gilmore and Gomory (1961, 1963, 1965). The
knapsack problem is discussed in the book by Nemhauser and Wolsey (1988, reprinted
1999).

Decomposition—The decomposition principle is due to Dantzig and Wolfe (1960).
The implications for parallel computing are discussed in the paper by Ho, Lee, and Sundarraj
(1988).

In our description of the decomposition principle, a point x is represented as a convex
combination of all the extreme points for the set described by the easy constraints. In cases
such as our example, where these constraints can be decomposed into independent subprob-
lems, the convex combinations can also be decomposed, and this can lead to computational
efficiencies; see the paper by Jones et al. (1993).

Numerical Stability and Computational Efficiency—In addition to the references
cited in this section, general discussions of computational issues for the simplex method
can be found in the books by Nazareth (1987) and Vanderbei (2007).
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Network Problems

8.1 Introduction
Linear programming problems defined on networks have many special properties. These
properties allow the simplex method to be implemented more efficiently, making it possible
to solve large problems efficiently. The structure of a basis, as well as the steps in the simplex
method, can be interpreted directly in terms of the network, providing further insight into
the workings of the simplex method. These relationships between the simplex method and
the network form one of the major themes of this chapter. We use them to derive the network
simplex method, a refinement of the simplex method specific to network problems.

Network problems arise in many settings. The network might be a physical network,
such as a road system or a network of telephone lines. Or the network might only be a mod-
eling tool, perhaps reflecting the time restrictions in scheduling a complicated construction
project. A number of these applications are discussed in Section 8.2.

8.2 Basic Concepts and Examples
The most general network optimization problem that we treat in this chapter is called the
minimum cost network flow problem. It is a linear program of the form

minimize z = cTx

subject to Ax = b

� ≤ x ≤ u,

where � and u are vectors of lower and upper bounds on x. We allow components of �
and u to take on the values −∞ and +∞, respectively, to indicate that a variable can be
arbitrarily small or large.

The notation for describing network problems is slightly different than for the linear
programs we have discussed so far. Consider the network in Figure 8.1. You might think of
this as a set of roads through a park. This network has seven nodes (the small black circles)
and eleven arcs connecting the nodes. The nodes are numbered 1–7. An arc between nodes
i and j is denoted as (i, j). So, for example, this network includes the arcs (1, 2) and (4, 5).

271
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Figure 8.1. Sample network.

In this example, the existence of an arc (i, j) means that it is possible to drive from node i
to node j , but not from node j to node i. There is a difference between arc (i, j) and arc
(j, i). For each arc (i, j) the linear program will have a corresponding variable xi,j and cost
coefficient ci,j . The variable xi,j records the flow in arc (i, j) of the network, and for this
application it might represent the number of cars on a road. In this problem there are eleven
variables, one for each road. (The remaining information on the network is explained in
Example 8.1.)

In the general network problem there will be a variable for each arc in the network,
and an equality constraint for each node. We assume that there are m nodes and n arcs in
the network, so thatA is anm×nmatrix.7 The bounds on the variables represent the upper
and lower limits on flow on an arc. Often the lower bound will be zero.

The ith row of the constraint matrix A corresponds to a constraint at the ith node:

(flow out of node i) − (flow into node i) = bi,

or in algebraic terms ∑
j

xi,j −
∑
k

xk,i = bi,

where the respective summations are taken over all arcs leading out of and into node i. If
bi > 0, then node i is called a source since it adds flow to the network. If bi < 0, then the
node is called a sink since it removes flow from the network. If bi = 0, then the node is
called a transshipment node, a node where flow is conserved. A component ci,j of the cost
vector c records the cost of shipping one unit of flow over arc (i, j).

Example 8.1 (Network Linear Program). Consider the network in Figure 8.1. We now
use it to represent the flow of oil through pipes. Suppose that 50 barrels of oil are being
produced at node 1, and that they must be shipped through a system of pipes to nodes 6 and
7 (20 barrels to node 6, and 30 barrels to node 7). The costs of pumping a barrel of oil along
each arc are marked on the figure. The flow on each arc has a lower bound of zero and an
upper bound of 30.

Node 1 is a source and nodes 6 and 7 are sinks. The other nodes are transshipment
nodes. The cost of each arc is marked in the figure. The corresponding minimum cost linear

7This reverses the more common usage of n for the number of nodes and m for the number of arcs that is used
in many references on network problems. This choice, however, provides consistency with the other chapters in
this book, where n refers to the number of variables and m refers to the number of constraints.
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program is

minimize z = 12x1,2 + 15x1,3 + 9x2,4 + 8x2,6 + 7x3,4 + 6x3,5

+ 8x4,5 + 4x4,6 + 5x5,6 + 3x5,7 + 11x6,7

subject to x1,2 + x1,3 = 50
x2,4 + x2,6 − x1,2 = 0
x3,4 + x3,5 − x1,3 = 0
x4,5 + x4,6 − x2,4 − x3,4 = 0
x5,6 + x5,7 − x3,5 − x4,5 = 0
x6,7 − x2,6 − x4,6 − x5,6 = −20
−x5,7 − x6,7 = −30
0 ≤ x ≤ 30.

The constraints are listed in order of node number, where the left-hand side of the constraint
corresponds to (flow out)− (flow in). If we order the variables as in the objective function,
then in matrix-vector form the linear program could be written with cost vector

c = ( 12 15 9 8 7 6 8 4 5 3 11 )T ,

right-hand side vector

b = ( 50 0 0 0 0 −20 −30 )T ,

and coefficient matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1
−1 1 1

−1 1 1
−1 −1 1 1

−1 −1 1 1
−1 −1 −1 1

−1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

Each column ofA has two nonzero entries, +1 and −1. Each column corresponds to an arc
(i, j): +1 appears in row i and −1 in row j to indicate that the arc carries flow out of node
i and into node j .

The total supply in the network is given by the formula

S ≡
∑

{ i:bi>0 }
bi

and the total demand by

D ≡ −
∑

{ i:bi<0 }
bi.

We will assume that S = D (that total supply equals total demand). A network can always
be modified to guarantee this. If S > D, that is, there is excess supply, then an artificial
node is added to the network with demand S −D, and artificial arcs are added, connecting



book
2008/10/23
page 274

�

�

�

�

�

�

�

�

274 Chapter 8. Network Problems

25

20

-40

2

4

31

5

2

4

31

5

-60

20

25

Figure 8.2. Unbalanced networks.
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Figure 8.3. Transformed networks.

every source to this artificial node; each such arc has its associated cost coefficient equal
to zero. (This assumes that there is no cost associated with excess production.) If there is
excess demand, then an artificial node is added with supply D − S, together with artificial
arcs connecting this artificial node with every sink. These new arcs have cost coefficients
that correspond to the cost (if any) of unmet demand.

Example 8.2 (Ensuring that Total Supply Equals Total Demand). Consider the networks
in Figure 8.2. The first has excess supply and the second has excess demand.

If artificial sources and sinks are added appropriately, together with the associated
artificial arcs, then the networks are brought into balance. The results of these transforma-
tions are illustrated in Figure 8.3. No cost has been associated with either excess supply or
excess demand.

We have written above that there are lower and upper bounds on every flow: � ≤ x ≤
u. For the sake of simplicity, when deriving the network simplex method in this chapter we
will assume that the variables are only constrained to be nonnegative:

x ≥ 0.

This simplifying assumption can be made without any loss of generality. (The reasons for
this are outlined here, although their justification is left to the Exercises.) Asimple change of
variables can be used to transform � ≤ x into 0 ≤ x̂. Upper bounds can also be eliminated.
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The technique used to eliminate upper bounds does increase the size of the linear program,
which can lead to an increase in solution time. An alternative is to develop a variant of
the network simplex method that handles upper bounds, analogous to the bounded-variable
simplex method developed in Section 7.2.

The constraint matrix A in a network problem is sparse. As observed in Example
8.1, each column of A has precisely two nonzero entries, +1 and −1. If (i, j) is an arc in
the network, then the corresponding column in A has +1 in row i and −1 in row j . This
implies that if all the rows of A are added together, then the result is a vector of all zeroes.
Thus, the rank of A is at most m− 1, where m is the number of nodes in the network. We
prove in the next section that the rank of A is exactly m− 1.

If we add together all the rows in the equality constraints Ax = b, then, by the above
remarks, the left-hand side will be zero. The right-hand side will sum to S−D (supply minus
demand), and so it also will be zero. Therefore, any one of the constraints is redundant.
The rank deficiency in A does not lead to an inconsistent system of linear equations.

There are a number of special forms of the minimum cost network flow problem
that are of independent interest. Special-purpose algorithms have been developed for these
problems, some of which are dramatically more efficient than the general-purpose simplex
method. For this reason, giving them individualized treatment has resulted in many practical
benefits. We will not discuss these special-purpose algorithms in this book, but we mention
some of these special problems to give some idea of the range of applications of network
models.

In a transportation problem, every node in the network is either a source or a sink, and
every arc goes from a source node to a sink node. Hence the flow conservation constraints
have one of two forms: ∑

j

xi,j = bi

for a source with bi > 0, or
−
∑
k

xk,i = bi

for a sink with bi < 0. A transportation problem models the direct movement of goods from
suppliers to customers, where some cost is associated with the shipments.

Example 8.3 (Transportation Problem). Suppose that a toy company imports dolls man-
ufactured in Asia. Ships carrying the dolls arrive in either San Francisco or Los Angeles,
and then the dolls are transported by truck to distribution centers in Chicago, New York,
and Miami. We assume that the costs of the truck shipments are roughly proportional to the
distances traveled. The corresponding transportation problem is given in Figure 8.4, with
supplies and demands marked. Note that total supply equals total demand.

An assignment problem is an optimization model for assigning people to jobs. Ev-
eryone must be assigned a job, and only one person can fill each job. It is a special case
of a transportation problem, where bi = 1 for a source and bi = −1 for a sink. There
are the same number of sources as sinks, because there are the same number of people as
jobs. An assignment problem is frequently written as a maximization problem with the
objective coefficients ci,j indicating the value of a person if assigned to a particular job
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Figure 8.4. Transportation problem.

(perhaps based on their experience or education, as well as the skill requirements of the
job). If required, the assignment problem can be expressed as an equivalent minimization
problem by multiplying the objective function by −1. Assignment problems suffer from
severe degeneracy, but special algorithms have been designed to solve them that are more
efficient than general algorithms for the transportation problem.

It is not normally possible to assign a fraction of a person to a fraction of a job, so an
assignment problem also includes the requirement that the variables take on integer values.
This integrality constraint is common to many network problems. We show in the next
section that, if the data for a network problem are integers, then any basic solution will be
integer valued, and hence an optimal basic feasible solution will be integer valued. For this
reason, we omit the integrality constraint from the model for an assignment problem.

Example 8.4 (Assignment Problem). Suppose that a company is planning to assign three
people to three jobs. The jobs are accountant, budget director, and personnel manager.
The first two people have degrees in business, but the second has ten years of corporate
experience, while the first is just out of school. The second and third persons both have
some management experience, but in different departments. The third person’s degree
was in anthropology. Based on this information, the personnel department has determined
numerical values

{
ci,j

}
corresponding to each person’s appropriateness for a particular job.

The corresponding assignment problem is illustrated in Figure 8.5.
The corresponding linear program can be written as

maximize z = 11x1,1 + 5x1,2 + 2x1,3 + 15x2,1 + 12x2,2

+ 8x2,3 + 3x3,1 + 1x3,2 + 10x3,3

subject to the constraints

x1,1 + x1,2 + x1,3 = 1

x2,1 + x2,2 + x2,3 = 1
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Figure 8.5. Assignment problem.

x3,1 + x3,2 + x3,3 = 1

−x1,1 − x2,1 − x3,1 = −1

−x1,2 − x2,2 − x3,2 = −1

−x1,3 − x2,3 − x3,3 = −1

0 ≤ x ≤ 1.

A shortest path problem determines the shortest or the fastest route between an origin
and a destination. It can be represented as a minimum cost network flow problem with
one source (the origin) with supply equal to 1, and one sink (the destination) with demand
equal to 1. There are usually many transshipment nodes where flow is conserved. The cost
coefficients

{
ci,j

}
represent the length of an arc, the time required to traverse a particular

arc, or the financial cost of using an arc.
In many applications the cost coefficients satisfy ci,j ≥ 0. This is a natural requirement

if ci,j represents the length of arc (i, j) in the network. If this requirement is satisfied, then
especially efficient algorithms are available to solve the shortest path problem. There exist
applications, however, where it is sensible to allow ci,j < 0. If negative costs are present,
the special-purpose algorithms can break down, and the shortest path problem can be more
difficult to solve.

Example 8.5 (Shortest Path Problem). The network in Figure 8.6 represents a road system.
Some of the streets are one way, while others can be driven in both directions. The goal is
to drive from the source (node 1) to the sink (node 11) via the shortest possible route. The
travel times for each road segment are marked on the arcs.

A maximum flow problem determines the maximum amount of flow that can be moved
through a network from the source to the sink. As in the shortest path problem, there is a
single source and a single sink. This problem includes an additional variable f that records
the flow in the network. For convenience, assume that node 1 is the source and node m is
the sink.
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Figure 8.6. Shortest path problem.

This problem is normally written in the form

maximize
x,f

z = f

subject to
∑
j

x1,j −
∑
k

xk,1 = f

∑
j

xi,j −
∑
k

xk,i = 0, i = 2, . . . , m− 1

∑
j

xm,j −
∑
k

xk,m = −f
0 ≤ xi,j ≤ ui,j .

(Note that f is a variable, even though it is written on the right-hand side of the constraints.)
If the artificial arc (m, 1) is added to the network, with unlimited capacity (um,1 = +∞),
then the maximum flow problem can be converted to an equivalent minimum cost network
flow problem:

minimize
x

z = −xm,1
subject to

∑
j

xi,j −
∑
k

xk,i = 0, i = 1, . . . , m

0 ≤ xi,j ≤ ui,j .

The maximum flow problem is illustrated in the following example.

Example 8.6 (Maximum Flow Problem). Suppose that you wish to transport a large number
of military personnel between Seattle and New York by airplane. The network in Figure 8.7
indicates the available flights and the capacities (in hundreds) of the planes. The solution
to the maximum flow problem determines the number of people that can be transported, as
well as the routings that achieve this result.
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Figure 8.7. Maximum flow problem.

The dual of a maximum flow problem can be interpreted in terms of cuts. A cut is
defined to be a division of the nodes into two disjoint sets, the first N1 containing the source,
and the second N2 containing the sink. The capacity of the cut is the sum of the capacities
of the arcs that lead from N1 to N2.

Example 8.7 (Cuts in a Network). Consider the maximum flow problem in Example 8.6.
If we pick the cut defined by the node sets N1 = { 1, 2, 3 } and N2 = { 4, 5, 6, 7, 8 }, then the
capacity of the cut is 5300 (the sum of the capacities of arcs (1, 4), (1, 8), (2, 4), (3, 4), (3, 5),
and (3, 7)). If we pick the cut defined by the sets N1 = { 1, 4, 5, 7 } and N2 = { 2, 3, 6, 8 },
then the capacity of the cut is 9100 (for arcs (1, 2), (1, 3), (1, 8), (4, 2), (4, 6), (7, 6), and
(7, 8)).

A famous theorem states that the value of the maximum flow in a network is equal to
the minimum of the capacities of all cuts in the network, a result that we will sketch here.
This is a special case of the strong duality theorem for linear programming. For complete
details, see the book by Ford and Fulkerson (1962).

The dual of the original form of the maximum flow problem is

minimize
y,v

w =∑
ui,j vi,j

subject to ym − y1 = 1
yi − yj + vi,j ≥ 0 for all arcs (i, j)

vi,j ≥ 0.

The dual variable yi corresponds to the flow-conservation constraint for the ith node in the
primal. The dual variable vi,j corresponds to the upper bound xi,j ≤ ui,j in the primal.

To show the relationship of the dual problem with cuts, let yi = 0 if node i is in the
set N1, and let yi = 1 if node i is in the set N2. This ensures that ym− y1 = 1. Let vi,j = 1
if arc (i, j) connects N1 with N2, and let vi,j = 0 otherwise. It is straightforward to check
that this produces a feasible solution to the dual, and that the dual objective value is equal
to the capacity of the cut. The fact that the optimal solution to the dual corresponds to a cut
is left to the Exercises.
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Exercises
2.1. Write down the linear program for the transportation problem in Example 8.3.

2.2. Write down the linear program for the shortest path problem in Example 8.5.

2.3. Consider a network linear program where the variables have general lower bounds
� ≤ x. Show how to use a change of variables to convert to a problem with nonneg-
ativity constraints 0 ≤ x̂.

2.4. Consider a network linear program that includes upper bounds on the variables
0 ≤ x ≤ u. Show, by adding an artificial node for every upper bound, how to
convert to an equivalent network problem without upper bounds on the variables.

2.5. Use the technique of the previous problem to remove the upper bounds in the linear
program in Example 8.1.

2.6. Consider an arbitrary minimum cost network flow problem with lower bounds � = 0.
Show that a feasible point for this problem can be found by solving a related maximum
flow problem. Hint: Add a new “super source” to the network that can supply all the
given sources, and a new “super sink” that can absorb the demand of all the given
sinks.

2.7. Verify that the rank of the matrix A in Example 8.1 is equal to 6, one less than the
number of equality constraints.

2.8. Solve the linear program in Example 8.4 (either by using simplex software or by
examining the network in Figure 8.5) and verify that there is an integer-valued optimal
basic feasible solution.

2.9. Show (by constructing an example) that the objective value in a shortest path problem
with negative cost coefficients can be unbounded below.

2.10. Consider the maximum flow problem in Example 8.6.

(i) Write down the linear program for this problem.

(ii) What is the dual of this linear program?

(iii) What is the capacity of the cut corresponding to the sets N1 = { 1, 3, 5, 6 } and
N2 = { 2, 4, 7, 8 }?

(iv) What is the dual feasible solution corresponding to this cut?

2.11. Consider a maximum flow problem and its dual, with N1 and N2 being the sets
associated with a cut. Let yi = 0 if node i is in N1, and let yi = 1 if node i is in N2.
Let vi,j = 1 if arc (i, j) connects N1 with N2, and let vi,j = 0 otherwise. Verify that
y and v are feasible for the dual.

2.12. Use duality results from linear programming to prove that an optimal basic feasible
solution to a maximum flow problem corresponds to a minimum capacity cut.

8.3 Representation of the Basis
Many of the efficiencies in the network simplex method come about because of the special
form of the basis in a network problem. As we shall prove below, a basis is equivalent to
a spanning tree, a special subset of a network that will be defined below. Before we can
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prove this important result, we shall need to define a number of terms relating to networks.
The terms will be illustrated using the sample network in Figure 8.8. This same network
was used in Example 8.1; the corresponding linear program will be referred to here also.

A subnetwork of a network is a subset of the nodes and arcs of the original network.
The arcs in the subnetwork must connect nodes in the subnetwork and must not involve
nodes that are not in the subnetwork. For example, if the subnetwork includes only nodes
1, 3, and 6, then an arc (1, 2) could not be part of the subnetwork because node 2 is not part
of the subnetwork; arc (6, 3) could be included if it was present in the original network.
Subnetworks are illustrated in Figure 8.9. A subnetwork is itself a network.

A path from node i1 to node ik is a subnetwork consisting of a sequence of nodes i1,
i2, . . ., ik , together with a set of distinct arcs connecting each node in the sequence to the
next. The arcs need not all point in the same direction. For example, the path could contain
either arc (i1, i2) or arc (i2, i1). See Figure 8.10.

A network is said to be connected if there is a path between every pair of nodes in the
subnetwork. See Figure 8.11.

A cycle is a path from a node i1 to itself. That is, it consists of a sequence of nodes i1,
i2, . . ., ik = i1, together with arcs connecting them. See Figure 8.12.

A tree is a connected subnetwork containing no cycles. A spanning tree is a tree that
includes every node in the network. A tree and spanning tree for the network in Figure 8.8
are shown in Figure 8.13.

We will examine further the properties of trees and spanning trees. These are estab-
lished in a sequence of lemmas. For the remainder of this chapter we make the following
two assumptions about any network that we will consider: (a) the network is connected (if
not, the problem can be decomposed into two or more smaller problems), and (b) there are
no arcs of the form (i, i) from a node to itself. We are now ready to prove our results.
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Figure 8.12. Cycles.

Lemma 8.8. Every tree consisting of at least two nodes has at least one end (a node that is
incident to exactly one arc).

Proof. Pick some node i in the tree. Follow any path away from node i (one must exist
since the tree is connected). Since there are no cycles in the tree, eventually the path must
terminate at an end of the tree.
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Figure 8.13. Trees and spanning trees.

Lemma 8.9. A spanning tree for a network with m nodes contains exactly m− 1 arcs.

Proof. This is proved by induction on the number of nodes in the spanning tree. If the
spanning tree consists of one node, then there are no arcs. If the spanning tree consists of
m ≥ 2 nodes, construct a subtree and subnetwork by removing an end node from the tree
and the network, as well as the arc incident to it. Lemma 8.8 shows that such a node exists.
The resulting tree has m − 1 nodes and (by induction) m − 2 arcs. Adding back the end
node and the corresponding arc gives a spanning tree with m nodes and m− 1 arcs.

Lemma 8.10. If a spanning tree is augmented by adding to it an additional arc of the
network, then exactly one cycle is formed.

Proof. Suppose that arc (i, j) is added to the spanning tree. Since the spanning tree already
contains a path between nodes i and j , that path together with the arc (i, j) forms a cycle.
So the augmented tree contains at least one cycle. Suppose that two distinct cycles were
formed. They must both contain the new arc (i, j) because the spanning tree had no cycles.
Then the union of the two cycles, minus the new arc (i, j), also contains a cycle, but consists
only of arcs in the original tree. This is a contradiction, showing that exactly one cycle is
formed.

Lemma 8.11. Every connected network contains a spanning tree.
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Proof. If the network does not contain a cycle, then it is also a spanning tree since it is
connected and contains all of the nodes. Otherwise, there exists a cycle. Deleting any arc
from this cycle results in a subnetwork that is still connected. It is possible to continue
deleting arcs in this way as long as the resulting subnetwork continues to contain a cycle.
Ultimately a subnetwork is obtained that contains no cycle and is connected and contains
all the nodes, that is, a spanning tree.

The submatrix of A corresponding to a spanning tree has special structure: it can
be rearranged to form a full-rank lower triangular matrix. Let B be the submatrix of A
corresponding to a spanning tree. For the network in Figure 8.8, the matrix A was derived
in Example 8.1:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1
−1 1 1

−1 1 1
−1 −1 1 1

−1 −1 1 1
−1 −1 −1 1

−1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

For the spanning tree in Figure 8.13, the matrix B is obtained by selecting the columns
associated with the variables x1,2, x1,3, x2,4, x4,5, x4,6, and x6,7:

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1
−1 1

−1
−1 1 1

−1
−1 1

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.

If the matrix B is rearranged so that the rows are listed in the order (3, 1, 2, 7, 5, 6, 4), and
the columns in the order (2, 1, 3, 6, 4, 5), then B is transformed into

B̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1
1 1

−1 1
−1

−1
1 −1

−1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

a lower triangular matrix with entries ±1 along the diagonal. It is clear that the columns of
B are linearly independent, and hence B is of full rank. The following lemma shows that
this is always possible.

Lemma 8.12. LetB be the submatrix of the constraint matrixA corresponding to a spanning
tree with m nodes. Then B can be rearranged to form a full-rank lower triangular matrix
of dimension m× (m− 1) with diagonal entries ±1.
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Proof. By Lemma 8.9, a spanning tree consists of m nodes and m − 1 arcs, so B is of
dimension m × (m − 1). We will use induction to show that B can be rearranged into the
required form. If m = 1, then B is empty. If m = 2, then the spanning tree consists of one
arc so that either

B =
(

1
−1

)
or B =

(−1
1

)
.

Both of these matrices are of the required form.
Suppose that the result is true for spanning trees of m − 1 nodes. Now consider a

spanning tree with m nodes, and let node i be an end of the spanning tree. By Lemma 8.8
such a node exists. Since node i is only connected to one arc in the tree, row i of B has
exactly one nonzero entry, with value ±1. Suppose that this entry occurs in column j of B.
Now interchange rows 1 and i of B, as well as columns 1 and j . Then B is transformed into

B̂ =
(±1 0
v B1

)
,

where B1 is the submatrix corresponding to the spanning tree with node i and the corre-
sponding arc removed, and v consists of the remaining portion of column j of B with row
i removed.

The matrix B1 represents a spanning tree for the network with node i removed, and
hence (by induction) it can be rearranged into a lower triangular matrix with diagonal entries
±1. Hence B̂ can also be rearranged into this form. Since all the diagonal entries of the
rearranged matrix are nonzero, the matrix is full rank.

We are now in a position to show the relationship between a spanning tree and a basis.
To do this we state two definitions. Given a spanning tree for a network, a spanning tree
solution x is a set of flow values that satisfy the flow-balance constraints Ax = b for the
network, and for which xi,j = 0 for any arc (i, j) that is not part of the spanning tree. A
feasible spanning tree solution x is a spanning tree solution that satisfies the nonnegativity
constraints x ≥ 0. These definitions are analogous to the definitions of basic solution and
basic feasible solution.

Recall from Section 4.3 that a point x is an extreme point for a linear program in
standard form if and only if it is a basic feasible solution. Keep in mind, however, that in
Chapter 4 we assumed that the constraint matrix A had full rank, whereas here one of the
constraints is redundant. Hence the size of the basis will bem−1, one less than the number
of rows in A.

Theorem 8.13 (Equivalence of Spanning Tree and Basis). A flow x is a basic feasible
solution for the network flow constraints

{ x : Ax = b, x ≥ 0 }
if and only if it is a feasible spanning tree solution.

Proof. For the first half of the proof, let us assume that x corresponds to a feasible spanning
tree solution. (That is, x is feasible, and the nonzero components of x together with, if
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necessary, a subset of the zero components of x are the variables for arcs that form a
spanning tree.) Let B be the submatrix of A corresponding to the spanning tree. By the
previous lemma the columns of B are linearly independent, and hence x is a basic feasible
solution.

For the other half of the proof, consider the set of arcs corresponding to the strictly
positive components of x. If these arcs do not contain a cycle, then they can be augmented
with zero-flow arcs to form a spanning tree, showing that x is a feasible spanning tree
solution. Otherwise, this set of arcs must contain a cycle. We may assume that, within the
cycle, all the flows are strictly greater than zero (if not, any arc with zero flow could be
removed from the subnetwork associated with x). If the flow on an arc (i, j) in the cycle is
increased by some small ε > 0, then the other flows in the cycle must be adjusted to maintain
the flow-balance constraints. Any arc pointing in the same direction as arc (i, j) has its flow
increased by ε, and any arc pointing in the opposite direction has its flow decreased by ε.
If ε is sufficiently small, this can be done without violating the nonnegativity constraints.
Call this new flow xε . Similarly, if the flow on xi,j is decreased by ε, we can obtain a new
feasible flow x−ε . Since

x = 1
2xε + 1

2x−ε

the flow x is not an extreme point, and hence not a basic feasible solution. Together these
remarks show that if x is a basic feasible solution, then x corresponds to a feasible spanning
tree solution.

If the right-hand-side entries { bi } for a network problem are all integers, then any
basic feasible solution will also consist of integers. This is a consequence of the special
form of the basis matrix B. Let B̄ be the matrix obtained by deleting the (dependent) last
row of the lower triangular rearrangement of B. A basic feasible solution can be obtained
by solving

B̄xB = b̄,

where b̄ is the correspondingly rearranged right-hand-side b with its last component re-
moved. This linear system can be solved using forward substitution: (xB)1 = B̄−1

1,1 b̄1, and
for i = 2, . . . , m− 1,

(xB)i = B̄−1
i,i

(
b̄i −

i−1∑
j=1

B̄i,j (xB)j

)
.

Since B̄i,i = ±1 for all i, and B̄i,j = 0 or ±1, then xB must consist of integers if b consists
of integers. By similar reasoning, if the cost coefficients

{
ci,j

}
are all integers, then the

dual variables must also be integers (see the Exercises).
This property has important practical consequences. Linear programs in which the

solutions are further constrained to take on integer values arise frequently. For example,
it is difficult to build two-thirds of a warehouse or to send half of a soldier on a mission.
Such problems are called integer programming problems. In general cases, they can be
difficult to solve, requiring auxiliary search techniques beyond the simplex method, such as
branch and bound or cutting plane methods (see the book by Nemhauser and Wolsey (1988,
reprinted 1999)). For network problems, however, the basic feasible solutions will always
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take on integer values, and hence an integer solution can be obtained just by applying the
simplex method to the linear program arising from the network.

Exercises
3.1. For each of the example networks in Section 8.2, identify a spanning tree and compute

the corresponding spanning tree solution. For the network in Figure 8.5, identify the
basis matrix B and show that it can be rearranged as a lower triangular matrix.

3.2. Show how to compute the spanning tree solution corresponding to any spanning
tree by first determining the flow at an end node of the tree, and then traversing the
tree along paths beginning at the end node. Use this technique to prove that, if the
supplies and demands for a network are integers, then any spanning tree solution
will consist of integers.

3.3. Prove that, if the cost coefficients
{
ci,j

}
in a minimum cost network flow problem

are all integers, then the simplex multipliers corresponding to any basic feasible
solution must be integers. Hence prove that the values of the dual variables at an
optimal basic feasible solution must also be integers.

3.4. Let A be the constraint matrix for a network linear program. Prove that the determi-
nant of every square submatrix of A is equal to 0, 1, or −1. Such a matrix is called
totally unimodular. (Hint: Use induction on the size of the square submatrix.)

3.5. Consider a linear program in standard form with constraint matrixA, right-hand-side
vector b, and cost vector c. Assume that all the entries in A, b, and c are integers.
Prove that if A is totally unimodular, then every basic feasible solution has integer
entries. Hint: Use Cramer’s rule.

3.6. For a connected network, prove that any tree can be augmented with additional arcs
to form a spanning tree.

3.7. Prove that a set of arcs in a network does not contain a cycle if and only if the
corresponding submatrix of A has full column rank.

3.8. Use the result of the previous problem to prove that a basic feasible solution is
equivalent to a feasible spanning tree solution.

8.4 The Network Simplex Method
The network simplex method uses the same operations as the simplex method (see Section
5.2). The method takes advantage of the special form of the minimum cost network flow
problem to reduce the operation count for the method, often performing the calculations
directly on the network rather than using matrix operations. The exceptional efficiency of
these operations has made the network simplex method an important tool for this special
class of linear programming problems.

We describe the network simplex method, showing how each of the major operations
(the optimality test, the step, and the update) can be performed using network techniques.
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Figure 8.14. A sample network.

These operations will be related back to the formulas and algebraic techniques used in
Chapter 5 to describe the simplex method.

Before we present the network simplex method, we will review the steps in the simplex
method. Let B be the basis matrix at a given iteration, and assume that it corresponds to
a basic feasible solution satisfying BxB = b. Let Ai,j be the column of A associated with
arc (i, j). Then the steps of the simplex method (adapted to the notation for the network
problem) are as follows:

1. The Optimality Test—Compute the vector of simplex multipliers by solving BTy =
cB . Compute the coefficients ĉi,j = ci,j − yTAi,j for the nonbasic variables xi,j . If
ĉi,j ≥ 0 for all nonbasic variables, then the current basis is optimal. Otherwise, select
a variable xs,t that satisfies ĉs,t < 0 as the entering variable.

2. The Step—Determine by how much the entering variable xs,t can be increased before
one of the current basic variables is reduced to zero. If xs,t can be increased without
bound, then the problem is unbounded.

3. The Update—Update the representation of the basis matrix B and the vector of basic
variables xB .

The simplifications in the method come about because of the special form of the basis
matrix B (a lower triangular matrix with all entries equal to 0, 1, or −1) and its equivalent
representation as a spanning tree.

To describe the method, we will use as an example the network problem in Figure
8.14. Nodes 1 and 2 are sources (with supplies equal to 10 and 15, respectively) and node
8 is a sink (with demand equal to 25). The costs of the arcs are indicated on the network.

We initialize the method with the basic feasible solution

x1,3 = 10, x3,4 = 10, x4,6 = 10, x6,8 = 25
x2,5 = 15, x5,6 = 15, x7,8 = 0.

All other arcs are nonbasic, and the corresponding variables are zero. The value of the
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objective function is
z = 465.

It is easy to check that this flow satisfies all the constraints for the network, and that it is a
feasible spanning tree solution.

To determine the simplex multipliers y we solve BTy = cB . If xi,j is a basic variable,
and (i, j) is the corresponding arc in the network, then the corresponding equation for the
simplex multipliers is

yi − yj = ci,j .

There is a simplex multiplier associated with every node in the network. As has been
mentioned, the rows of the matrix B are linearly dependent. This implies that one of the
simplex multipliers is arbitrary. To determine the simplex multipliers, we will traverse the
spanning tree (basis) starting at an end and set the first of the simplex multipliers equal to
zero. Hence for this basis,

y1 = 0
y3 = y1 − 5 = −5
y4 = y3 − 4 = −9
y6 = y4 − 7 = −16
y8 = y6 − 8 = −24
y7 = y8 + 3 = −21
y5 = y6 + 5 = −11
y2 = y5 + 2 = −9.

To determine the simplex multipliers we could have begun this process at any node. Also, we
could have specified any value for the first simplex multiplier, not just zero. This would have
resulted in different values for the simplex multipliers, but would not affect the optimality
test, since this test only depends on the differences between pairs of simplex multipliers.

To perform the optimality test we compute

ĉi,j = ci,j − yTAi,j
for the nonbasic variables xi,j . Because each column ofA contains only two nonzero entries,
+1 and −1, we obtain the formula

ĉi,j = ci,j − yi + yj .
If we carry out this calculation for all the nonbasic arcs, we get

ĉ1,4 = 8 − y1 + y4 = −1 < 0
ĉ3,6 = 6 − y3 + y6 = −5 < 0
ĉ5,4 = 10 − y5 + y4 = 10
ĉ2,4 = 12 − y2 + y4 = 12
ĉ5,7 = 9 − y5 + y7 = −1 < 0.

Since some of these entries are negative, this basis is not optimal.
The entry ĉ3,6 is the most negative, and we choose the variable x3,6 to enter the basis.

By Lemma 8.10, adding this arc to the spanning tree creates a unique cycle, illustrated in
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Figure 8.15. Entering variable and cycle.
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Figure 8.16. Result of iteration 1.

Figure 8.15. If x3,6 is increased from zero, then the flows in the other arcs in the cycle must
be adjusted to maintain the flow-balance constraints in the linear program.

In this case the flows in the other two arcs must decrease by one unit for every increase
of one unit in x3,6. In the current basis x3,4 = x4,6 = 15, so x3,6 can be increased until it is
equal to 15, at which point the other two flows are both equal to zero. One of the two arcs
must be chosen to leave the basis. We pick x3,4 to leave the basis. We obtain the new basic
feasible solution shown in Figure 8.16.
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Figure 8.17. Result of iteration 2.

The new values of the basic variables are

x1,3 = 10, x3,6 = 10, x4,6 = 0, x6,8 = 25
x2,5 = 15, x5,6 = 15, x7,8 = 0,

and the new value of the objective function is z = 415. Setting y1 = 0, the simplex
multipliers are

y = ( 0 −4 −5 −4 −6 −11 −16 −19 )T .

In the optimality test,

ĉ5,7 = 9 − y5 + y7 = −1 < 0.

Hence this basis is not optimal, and x5,7 is the entering variable. Adding arc (5, 7) to the
spanning tree produces a unique cycle.

To maintain the flow-balance constraints when x5,7 is increased by one unit, x7,8 will
also increase by one unit, while x5,6 and x6,8 will both decrease by one unit. Since x5,6 = 15
and x6,8 = 25, x5,6 will go to zero first and hence will leave the basis. The new basic feasible
solution is illustrated in Figure 8.17.

The new values of the basic variables are

x1,3 = 10, x3,6 = 10, x4,6 = 0, x6,8 = 10
x2,5 = 15, x5,7 = 15, x7,8 = 15,

and the new value of the objective function is z = 400. Computing the simplex multipliers
gives

y = ( 0 −5 −5 −4 −7 −11 −16 −19 )T .
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In the optimality test,

ĉ1,4 = 4, ĉ3,4 = 5, ĉ2,4 = 13
ĉ5,4 = 11, ĉ5,6 = 1.

Since these entries are all nonnegative, the current basis is optimal and the algorithm termi-
nates.

We now summarize the steps in the network simplex method.

1. The Optimality Test

(i) Compute the simplex multipliers y: Start at an end of the spanning tree and
set the associated simplex multiplier to zero. Following the arcs (i, j) of the
spanning tree, use the formula yi −yj = ci,j to compute the remaining simplex
multipliers.

(ii) Compute the reduced costs ĉ: For each nonbasic arc (i, j) compute ĉi,j =
ci,j − yi + yj . If ĉi,j ≥ 0 for all nonbasic arcs, then the current basis is optimal.
Otherwise, select an arc (s, t) that satisfies ĉs,t < 0 as the entering arc.

2. The Step—Identify the cycle formed by adding (s, t) to the spanning tree. Determine
how much the flow on arc (s, t) can be increased before one of the other flows in the
cycle is reduced to zero. If the flow in (s, t) can be increased without bound, then the
problem is unbounded.

3. The Update—Update the spanning tree by adding arc (s, t) and removing an arc of
the cycle whose flow has been reduced to zero.

It remains to show how to obtain an initial basic feasible solution.
In the example an initial basic feasible solution was provided, but in general cases

a procedure for finding an initial point is required. The techniques for network problems
are analogous to those used for general linear programs (see Section 5.5). In a network
problem, artificial arcs (or, equivalently, artificial variables) can be added to the network in
such a way that an “obvious” initial basic feasible solution is apparent. Then a phase-1 or
big-M procedure is used to remove the artificial variables from the basis.

One way of doing this is to pick one node in the network to be labeled the root node.
Then artificial arcs are added: one from each source node to the root node, and one from
the root node to each sink and transshipment node. (No arc need be added from the root
node to itself.) The costs associated with these arcs would be equal to 1 in a phase-1
problem, and equal to M in a big-M problem. The initial basic feasible solution would
transmit all flow from the sources to the sinks via the root node, with zero flow from the
root node to a transshipment node. This technique is illustrated in Figure 8.18, where the
original arcs in the network are marked with solid lines and the artificial arcs with dotted
lines.

The network simplex method performs the following arithmetic operations:

computing y : m subtractions
computing ĉ : 2(n−m) subtractions

updating x : m additions/subtractions
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Figure 8.18. Initial basic feasible solution.

so that the total number of arithmetic operations is

m+ 2(n−m)+m = 2n additions/subtractions.

All of these calculations involve integers if the vectors b and c consist of integers.
We now compare this with the simplex method. The operation counts for the simplex

method (see Sections 5.3 and 7.5) are harder to determine, since they depend on the sparsity
of the constraint matrixA and the representation of the basis matrix B. We will assume that
an LU factorization is used to represent B, and that the matrices A and B are sparse. An
iteration of the simplex method involves the following steps:

computing y : solving BTy = cB

computing ĉ : computing cj − yTAj for (n−m) values of j

updating B : updating a sparse LU factorization.

Each of these steps is more expensive than the corresponding step of the network simplex
method. More operations are required, the operations involve multiplication and addition,
and the operations involve real (decimal) numbers.

The network simplex method involves fewer operations, and each of those operations
is faster (addition is usually faster than multiplication, and integer operations are usually
faster than real operations). As a result, network simplex software is much faster than
general-purpose simplex software.

In these operation counts we are ignoring the operations involved in maintaining the
data structures for the algorithms. Much research has focused on ways of representing the
network, as well as the spanning tree, within the network simplex algorithm. The data
structure must allow all the simplex operations to be performed efficiently. It must also be
designed so that it can be updated easily to reflect changes in the basis. For further details
see the book by Ahuja, Magnanti, and Orlin (1993).
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Many of the topics that have been discussed in other chapters for the simplex method
have analogs for the network simplex method. For example, it is possible to do sensitivity
analysis, but in the network case all the calculations can be done more efficiently. Also,
for degenerate problems, it is possible that the network simplex method could cycle, and so
some sort of anticycling procedure may be necessary.

Degeneracy in network problems is common. Even in cases where cycling does
not occur, it is possible to have a large number of consecutive degenerate iterations. This
is referred to as stalling. If the network simplex method is implemented with the basis
represented and updated in a special way (using what is known as a “strongly feasible
basis”), and if the entering variable is chosen appropriately, then at most nm consecutive
degenerate iterations can occur. This approach guarantees that the network simplex method
always terminates in a finite number of iterations, even on degenerate problems. It also
improves the practical performance of the network simplex method. Details of this approach
are discussed in Section 8.5.

Exercises
4.1. Apply the network simplex method to the linear programming problems in

(i) Example 8.1.

(ii) Example 8.3.

(iii) Example 8.4.

(iv) Example 8.6.

4.2. In the network simplex method, let r be the node whose simplex multiplier is set to
zero. An arc (i, j)will be called a forward arc if the path from node r to node j along
the spanning tree includes node i. Otherwise, arc (i, j) will be a reverse arc. Define
the cost of a path from node r to node i as the sum of the costs of the reverse arcs
in the path minus the sum of the costs of the forward arcs. Prove that the simplex
multiplier yi is equal to the cost of the path from node r to node i.

4.3. Consider the cycle created by adding a nonbasic arc (i, j) to a spanning tree. Define
the cost of the cycle as the sum of the costs of the arcs in the cycle whose direction
is the same as arc (i, j) minus the sum of the costs of the arcs whose direction is
opposite to arc (i, j). Prove that the cost of this cycle is equal to ĉi,j , the reduced
cost for the nonbasic arc.

4.4. The network simplex method can be made more efficient by updating the simplex
multipliers y at each iteration, rather than recomputing them. Prove that the new
simplex multipliers ȳ satisfy either ȳi = yi or ȳi = yi − ĉj,k , where (j, k) is the
entering arc. What is the rule for determining which formula to use to compute ȳi?

4.5. Derive a variant of the network simplex method for upper bounded variables, anal-
ogous to the bounded-variable simplex method developed in Section 7.2.

4.6. Apply the initialization procedure in Figure 8.18 to the network problem in Figure
8.1. Use a phase-1 procedure to find an initial basic feasible solution to the original
network.
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4.7. Suppose that a minimum cost network flow problem has been modified by adding
additional linear constraints. Show how to use the decomposition principle to solve
the resulting problem, with the flow-balance constraints considered as the “easy”
constraints.

4.8. Apply the method of the previous exercise to the linear program obtained by adding
the constraint

x1,2 + x1,3 ≥ 6

to the network problem in Figure 8.14.

8.5 Resolving Degeneracy
As with the regular simplex method, it is possible to solve degenerate linear programming
problems and avoid cycling by using an appropriate pivot rule. The approach we will use
here is a variant of the perturbation method (see Section 5.5.1). For network problems, this
method can be realized in a particularly efficient manner. Much of our discussion will be
specific to networks, and only at the end will the connections with the perturbation method
be made clear.

The technique we describe uses a special form of basis, called a strongly feasible basis
or strongly feasible tree. To define such a tree, we identify a particular node r as the root
node. Then the tree is strongly feasible if any arc whose flow is zero points away from the
root node r . (An arc (i, j) points away from the root if the path from node j to node r along
the tree includes node i.) Any tree whose flows are all positive is strongly feasible. Strongly
feasible trees are illustrated in Figure 8.19. The following theorem shows that they can be
used to guarantee termination of the simplex method.

Theorem 8.14 (Guaranteed Termination). If the basis at every iteration of the network
simplex method is a strongly feasible basis, then the simplex method will terminate in a
finite number of iterations.

Proof. We will prove that the simplex method cannot cycle. Since there are only finitely
many possible bases, and no basis can repeat, this will guarantee finite termination. We
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Figure 8.19. Strongly feasible tree.
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denote by x and y the values of the variables at the current iteration, and by x̄ and ȳ the
values at the next iteration.

As a preliminary step in the proof, we derive an update formula for the simplex
multipliers y. Let (s, t) be the entering arc at the current iteration of the simplex method.
Consider the subnetwork obtained by deleting the leaving arc from the current tree. This
subnetwork consists of two trees, Ts containing node s and Tt containing node t . The new
simplex multipliers ȳ can be chosen as

ȳi =
{
yi if node i is in Ts ;
yi − ĉs,t if node i is in Tt .

We must verify that ȳi − ȳj = ci,j for the new basis. If arc (i, j) is in Ts or in Tt , then

ȳi − ȳj = yi − yj = ci,j .

To verify this for the entering arc (s, t) first recall that

ĉs,t = cs,t − ys + yt .
Then

ȳs − ȳt = ys − (yt − ĉs,t )
= (cs,t + yt − ĉs,t )− yt + ĉs,t = cs,t

as desired.
To prove that the simplex method does not cycle, we will show that “progress” is

made at every iteration. Progress will be defined in terms of two functions:

f1(x) = cTx

f2(y) =
m∑
i=1

(yr − yi),

where r is the root node of the strongly feasible tree. (Even though the simplex multipliers
are not uniquely determined, their differences are unique, and so the function f2 is well
defined.)

At a nondegenerate iteration there is strict improvement in the objective function, so

f1(x̄) < f1(x)

and progress is made with respect to f1.
At a degenerate iteration f1(x̄) = f1(x). The entering arc (s, t) will enter the basis

with flow equal to zero, and hence it must point away from the root (by the definition of a
strongly feasible tree). This implies that node r is in the subnetwork Ts , and that

f2(ȳ) = f2(y)+ ĉs,t |Tt |,
where |Tt | is the number of nodes in Tt . Since ĉs,t < 0 and |Tt | > 0,

f2(ȳ) < f2(y),
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and so in this case progress is made with respect to f2. Because progress is made with
respect to one or the other of these functions at every iteration, a basis can never repeat and
cycling cannot occur.

If the network simplex method can be implemented so that at every iteration a strongly
feasible basis is maintained, then it is guaranteed to terminate. The initialization scheme
described in Section 8.4 produces an initial strongly feasible basis. (See the Exercises.) We
now show that, if the leaving arc is chosen appropriately at every iteration, then every basis
will be a strongly feasible basis.

The rule for choosing the leaving arc will be based on the cycle created by the entering
arc. If there is only one candidate for the leaving arc, then no choice is available. Otherwise,
within this cycle define the join to be the node closest to the root of the tree, that is, the
node whose path to the root consists of the fewest number of arcs. We will traverse the
cycle, starting at the join, in the direction corresponding to the entering arc. (If (s, t) is
the entering arc, this traversal will encounter node s just before node t .) The leaving arc
will be chosen as the first candidate arc encountered during this traversal of the cycle. The
following theorem shows that this rule has the desired property.

Theorem 8.15. Assume that the network simplex method is initialized with a strongly
feasible basis, and that at every iteration the leaving arc is chosen using the above rule.
Then at every iteration the basis will be a strongly feasible basis.

Proof. We need only prove that if the current basis is strongly feasible, then so is the new
basis. There are two cases: nondegenerate and degenerate iterations. In both cases we need
only examine the arcs in the cycle.

For a nondegenerate iteration, all the candidate arcs must point in the opposite direction
to the entering arc, since their flow will decrease towards zero. If the first arc encountered
in traversing the cycle is selected as the leaving arc, then all the other candidate arcs will
point away from the root in the new basis. Thus the new basis will be strongly feasible.

For a degenerate iteration, all the arcs with zero flow will point away from the root,
by the definition of a strongly feasible basis. As we traverse the cycle starting at the join,
there will be no candidate arcs encountered until after we have traversed the entering arc.
(The candidate arcs will all point in the opposite direction to the entering arc.) Hence the
leaving arc will come after the entering arc, and once it is removed, all the arcs with zero
flow in the new basis will point away from the root. This completes the proof.

To conclude this section, we will show the relationship between strongly feasible
bases and the perturbation method. This is the subject of the next theorem.

Theorem 8.16. Consider a network linear program with equality constraints Ax = b and
a perturbed problem with constraints Ax = b + ε, where

εi =
{−(m− 1)/m if i = r;

1/m otherwise.

Here m is the number of nodes in the network, r is the index of the root node, and i is
the index of a general node. Assume that the original problem has integer data, and that
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a feasible spanning tree solution for this problem has been specified. Then the tree for
the network is strongly feasible if and only if the corresponding flow is feasible for the
perturbed problem.

Proof. We will define subsets of the nodes of the network relative to the root of the tree.
For a node i, d(i) will be the set of nodes whose paths to the root include node i. Let |d(i)|
be the number of elements in d(i).

Let x be the current basic feasible solution of the original problem, and let x̄ be the
corresponding solution of the perturbed problem. If (i, j) is a basic arc, we will show that

x̄i,j =
{
xi,j + |d(j)|/m if arc (i, j) points away from node r ,
xi,j − |d(i)|/m if arc (i, j) points towards node r

satisfies the flow constraints for the perturbed problem.
Suppose first that the arc (i, j) points away from node r . At node j = r the perturbed

flow-balance equation must be satisfied:

x̄i,j +
∑
k =i

x̄k,j −
∑
�

x̄j,� = bj + 1/m,

where these summations only include arcs that are in the tree. (Note that the nodes k and �
satisfy k, � ∈ d(j).) Substituting the proposed solution into the left-hand side gives

x̄i,j +
∑
k =i

x̄k,j −
∑
�

x̄j,�

= xi,j + |d(j)|/m+
∑
k =i
(xk,j − |d(k)|/m)−

∑
�

(x�,j + |d(�)|/m)

=
(
xi,j +

∑
k =i

xk,j −
∑
�

x�,j

)
+
(
|d(j)| −

∑
k =i

|d(k)| −
∑
�

|d(�)|
)

= bj + 1/m,

so the general constraints in the perturbed problem are satisfied. A similar argument can be
used when the arc (i, j) points towards node r , as well as at the root node (see the Exercises).

We now show that the perturbed solution is feasible if and only if the basis is strongly
feasible. On the basic arcs, the perturbed solution differs from the original solution by
±|d(j)|/m, a value that is less than one in magnitude. For a problem with integer data, the
only arcs that could become infeasible are those with zero flow in the original problem that
point towards the root node. If the perturbed solution is feasible, then no such nodes can
exist and so the basis is strongly feasible. Likewise, if the basis is strongly feasible, then
there are no such nodes and the perturbed solution is feasible.

In Chapter 5, perturbation was applied to general linear programs as a technique for
resolving degeneracy. In that setting it was shown that perturbation could be implemented
within the simplex method using a lexicographic technique. Here, in the context of network
problems, we have shown how perturbation can be implemented using strongly feasible
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trees. This establishes an additional relationship between the properties of networks and
the algebraic properties of the simplex method.

Exercises
5.1. Prove that the initialization scheme in Figure 8.18 produces a strongly feasible basis.

5.2. Prove that exactly two smaller trees are formed when an arc is deleted from a tree.

5.3. Complete the proof of Theorem 8.16 by showing that the proposed perturbed solution
satisfies the flow constraints (a) at the root node, and (b) at node i when the arc (i, j)
points towards the root node.

5.4. Solve the assignment problem in Example 8.4 with the perturbation method initial-
ized using the technique in Figure 8.18. You may use either a big-M or a two-phase
approach.

8.6 Notes
Network Models—Network models can sometimes be solved much faster than general linear
programs. This can happen for one of two reasons: the problem might have a special struc-
ture that guarantees that the network simplex method will terminate in few iterations, or there
might exist special algorithms for the problem. For example, the shortest path problem can
be solved using an algorithm of Dijkstra (1959) that requires O(m2) operations. Fredman
and Tarjan (1987) showed how to reduce this to O(n+m logm) by using appropriate data
structures. There are other efficient algorithms with operation counts that depend on the mag-
nitudes of the coefficients in the cost vector c. (In many applications,m� n� m(m−1).)

As with the shortest path problem, there are especially efficient algorithms for the
maximum flow problem. Early results in this area can be found in the book of Ford and
Fulkerson (1962). The first polynomial-time algorithm was described by Edmonds and
Karp (1972), a method requiring O(mn2) operations. Cheriyan and Maheshwari (1989)
have a method with an operation count of O(m2√n), and there are a number of efficient
methods with operation counts that depend on the magnitudes of the upper bounds u. An
important class of algorithms for this problem is described in the papers of Goldberg (1985)
and Goldberg and Tarjan (1988).

For further references, and for further information on algorithms for individual net-
work problems, see the books by Murty (1992, reprinted 1998) and Ahuja, Magnanti, and
Orlin (1993).

Network Simplex Method—The network simplex method continues to be a competi-
tive method for solving network optimization problems, and it has the advantage that it is
available in high-quality software packages. However, many alternative algorithms have
been proposed for these problems that (a) have better theoretical properties, (b) have promis-
ing practical properties, or (c) take advantage of the special form of a particular problem
(such as a shortest path problem).

The network simplex method requires few operations per iteration, but the number of
iterations may be large. Technically, the number of iterations may be “exponential” in the
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size of the network. As a result, the total effort of solving the network problem can be large.
It is desirable to have an algorithm that requires only a “polynomial” number of iterations.8

Some of these other algorithms are based on the simplex method. Before mentioning
them, we should point out that the (primal) simplex method maintains primal feasibility (the
constraints in the primal linear program are satisfied at every iteration) and complementary
slackness, and it iterates until the dual feasibility (that is, primal optimality) conditions are
satisfied.

The “primal-dual” method is one of these simplex-based methods. It starts with
a dual feasible solution and uses the complementary slackness conditions to construct a
“restricted” version of the primal problem. This restricted primal problem is then solved.
If the restricted primal problem has optimal objective value zero, then the original network
problem has been solved. Otherwise, the solution of the restricted primal can be used to
improve the values of the dual variables, or to determine that no solution exists. The primal-
dual method maintains dual feasibility and complementary slackness and strives for primal
feasibility. The motivation for this method is that the restricted primal problem is a shortest
path problem, for which special algorithms exist. For more information on the primal-dual
method, see the book by Chvátal (1983).

Early tests of the primal-dual simplex method showed that it could be more efficient
than the primal simplex method, but these conclusions were reversed when better imple-
mentations of the primal simplex method became available. Also, the primal-dual simplex
method may require an exponential number of iterations, and so its theoretical behavior is
not superior either.

It is also possible to apply the dual simplex method. In the version due to Orlin (1984),
the dual simplex method requires only a polynomial number of iterations. (See also the
paper by Orlin, Plotkin, and Tardos (1993).) Note, however, that not all versions of the dual
simplex method may be polynomial-time methods. In fact, Zadeh (1979) has shown the
equivalence of versions of the primal simplex method, the dual simplex method, the primal-
dual simplex method, and the out-of-kilter method (see below), and in an earlier paper
(1973) described an example where all of these methods require an exponential number of
iterations.

There are a great many other network algorithms that are not based on the simplex
method. One of the earliest, called the “out-of-kilter” algorithm, begins with an initial guess
that satisfies the flow-balance constraints, but may violate the primal bound constraints as
well as the dual feasibility constraints. It iterates, trying to find a point that satisfies the
feasibility and optimality conditions, measuring progress in terms of a “kilter number” based
on the optimality conditions for the problem. For further details, see the book by Ford and
Fulkerson (1962).

Much recent research is concerned with the development of efficient polynomial-time
methods for network problems. The earliest of these methods (derived from the primal-
dual and out-of-kilter methods) had operation counts that depended on the magnitudes of
the cost coefficients and upper bounds in the model. More recent work, starting with the
paper by Tardos (1985), has developed “strongly” polynomial methods whose operation
counts are independent of these magnitudes. For a survey of this work, see the book by
Ahuja, Magnanti, and Orlin (1993).

8The terms “exponential” and “polynomial” are defined in Section 9.2.
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Computational Complexity
of Linear Programming

9.1 Introduction
Almost as soon as it was developed, the simplex method was tested to determine how
well it worked. Those early tests demonstrated that it was an effective method (at least on
the examples it was applied to), and this conclusion was confirmed by numerous practical
applications of the method to ever larger and more elaborate models.

This encouraging empirical experience was not supported by comparable theoretical
results about the behavior of the simplex method, despite considerable effort to find such
results. This raised a number of questions. Is the simplex method guaranteed to work
well on all nondegenerate problems? Are there classes of problems on which the simplex
method performs poorly? Is the simplex method the most efficient method possible for
linear programming? These questions were answered (at least partially) in the 1970s and
1980s. In this chapter we present a brief survey of these results.

First, we discuss measures of performance of algorithms. Next we discuss the com-
putational efficiency of the simplex method. We show that for some specially structured
problems the number of iterations required by the simplex method grows exponentially
with the size of the problem. Thus, measured by its worst-case performance, the simplex
method is inefficient. This result spurred researchers to seek “polynomial algorithms” for
which the computational effort required—even in the worst case—grows just polynomially
with the size of the problem. We describe the ellipsoid method, the first method for linear
programming shown to be polynomial. This discovery, in 1979, was received with much
fanfare and optimism, soon to be followed by equally great disappointment. The method,
while efficient in theory, is inefficient in practice, with its performance often matching the
worst-case bound. These discouraging results led some researchers to focus on average-case
rather than worst-case performance. In the last section of this chapter, we present results
developed in the early 1980s that suggest that, measured by its average-case performance
(albeit on a special set of problems), the simplex method is efficient.

The simplex algorithm remained the leading method for linear programming until
1984, when Karmarkar proposed a new polynommial method for linear programming that
showed promising, if not stellar, computational results. Karmarkar’s algorithm triggered

301
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research into a new class of methods called interior-point methods that, in some cases,
have good theoretical properties and are also competitive computationally with the simplex
method. These methods are the subject of the next chapter.

9.2 Computational Complexity
The purpose of computational complexity is to determine the number of arithmetic or other
computational operations required to solve a particular problem using a specific algorithm.
We will refer to this as the cost of solving a problem. For example, what is the cost of
solving a nonsingular system of n linear equations, using Gaussian elimination with partial
pivoting? In this chapter, we will mainly be concerned with the cost of solving a linear
programming problem.

The cost of an algorithm can be measured in several ways. One measure is the
“worst-case” cost: if some diabolical person were choosing an example so as to make
the algorithm perform as poorly as possible, how many operations would the algorithm
require to solve the problem? For algorithms such as Gaussian elimination applied to dense
matrices, the worst-case behavior is also the typical behavior, so this is a useful measure
of cost.

Another measure is the “average-case” behavior of an algorithm, that is, the number
of arithmetic operations required when the algorithm is applied to an “average” problem.
The simplex method has poor worst-case behavior (see Section 9.3) but good average-
case behavior (see Section 9.5). In practice a worst-case analysis does not reflect the
observed performance of the simplex method, so it is more plausible to consider average-
case performance. However, it is often more difficult to analyze the average-case behavior of
an algorithm than the worst-case behavior. One preliminary difficulty is the definition of an
“average” problem. For example, most large linear programs that arise in applications have
sparse constraint matrices, but randomly generated matrices (with common choices of the
underlying probability distribution) are almost certain to be dense. Also, applied problems
are often degenerate, whereas random problems are, with probability one, nondegenerate.
Disagreements about the definition of an “average” problem can raise doubts about the
applicability of the corresponding estimates of average-case performance.

There are other decisions that must be made in defining the cost of an algorithm, for
example, defining what an “operation” is. In this book, we typically define an operation to be
an arithmetic operation applied to two real numbers, such as an addition or a multiplication.

Arithmetic operations are not the only operations that could be counted. There is
work associated with retrieving a number from memory, storing a result in memory, and
printing the solution to a problem. These could also be included as part of the cost of an
algorithm. The amount of storage required by an algorithm could also be counted, although
this would be significant only if the algorithm required intermediate storage much greater
than that used to store the problem data.

Computer implementations of the simplex method are almost always programmed
using “real” arithmetic, meaning that the calculations are performed on floating-point num-
bers with a fixed number of digits. For the algorithms we discuss, the number of operations
required to move numbers to and from memory is either proportional to, or overwhelmed
by, the number of arithmetic operations, so these auxiliary operations are ignored. Finally,
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the algorithms discussed here have storage costs proportional to the size of the problem data.
As a result, in assessing the cost of an algorithm we will only count arithmetic operations on
floating-point numbers. For example, the cost of applying Gaussian elimination to a system
of n linear equations is about 2

3n
3 arithmetic operations.

To make all these cost measures precise, computer scientists often describe algorithms
in terms of an associated “Turing machine.” In his famous 1936 paper, Alan M. Turing
described an imaginary computing device (since named after him) consisting of a processing
unit together with an infinite tape divided into cells, each of which could record one of a
finite set of symbols. The processing unit could be set in a finite number of “states,” and at
every time step of the algorithm, the processing unit could either (i) read the symbol on the
current cell of the tape, (ii) write a symbol on the current cell of the tape, (iii) move the tape
one cell to the left, (iv) move the tape one cell to the right, (v) change state, or (vi) stop.
Despite the primitive nature of this device, Turing argued convincingly in his paper that
every sequence of steps that might be considered as a calculation could be performed by a
machine of this type. Turing also described a “universal” machine of this type that could
mimic all other such machines, a forerunner of our modern general-purpose computer.

When Turing invented his machines, he was not interested in assessing the costs of
algorithms, but instead used them as an intellectual tool to settle a famous problem about the
axioms of arithmetic. They have since been used to define what is meant by an algorithm,
or a step in an algorithm. We will not describe algorithms in terms of Turing machines, but
will use more intuitive notions of computing. Even so, Turing machines will have a subtle
influence on our discussions, particularly the notion of the “length of the input,” a measure
of the size of the problem with connections to the “tape” in a Turing machine.

When comparing algorithms, it is common to compare only the “order of magnitude”
costs of the algorithms. For example, Gaussian elimination would cost O(n3) arithmetic
operations, ignoring the constant 2

3 . If we say that the cost of an algorithm is O(f (L)), we
mean that for sufficiently large L,

number of arithmetic operations ≤ Cf (L),

where C is some positive constant, L is a measure of the length of the input data for the
problem, and f is some function. Because the constant is ignored, these order-of-magnitude
estimates are mainly of value whenL is large; for smallL they can be deceptive, particularly
if C is large.

What do we mean by “the length of the input data” for a problem? In the case of a
linear program, we will consider it to be the number of bits required to store all the data
for the problem. This would include the number of variables n, the number of general
constraints m, and the coefficients in the matrix A and the vectors b and c. We will assume
that these numbers are all integers,9 so

L =
∑
i,j

�log2(|ai,j | + 1)� +
∑
i

�log2(|bi | + 1)� +
∑
j

�log2(|cj | + 1)�

+�log2(n+ 1)� + �log2(m+ 1)� + (nm+ n+m+ 1).

9A problem involving fractions can be converted into one with integers; a problem involving general real
numbers would require infinite space to store the binary representations of these numbers. Finite-precision numbers
stored by a computer can be represented as fractions.
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Table 9.1. Polynomial and exponential growth rates.

L L2 L3 L100 2L L!
2 4 8 1 × 1030 4 2
5 25 1 × 102 8 × 1069 32 1 × 102

10 1 × 102 1 × 103 1 × 10100 1 × 103 4 × 106

50 3 × 103 1 × 105 8 × 10169 1 × 1015 3 × 1064

100 1 × 104 1 × 106 1 × 10200 1 × 1030 9 × 10157

(The notation �x� denotes the smallest integer that is ≥ x.) The final term (nm+n+m+1)
represents the space needed to store the signs of all the numbers, plus an additional bit to
indicate whether the linear program is a minimization or maximization problem.

The number L is a coarse measure of the size of a problem. In many cases it may be
more convenient to use a different measure, such as the number of variables. For example,
some of the algorithms for linear programming that we discuss have costs that are O(n3L)

in the worst case. Since n < L, we could have written that the costs were O(L4), but it is
common to use a more precise cost estimate when one is available.

A distinction is made between “polynomial” and “exponential” algorithms. A poly-
nomial algorithm has costs that areO(f (L)) in the worst case, where f (L) is a polynomial
in L. An exponential algorithm has costs that grow exponentially with L in the worst case.
For example, an exponential algorithm might have costs proportional to 2L. Exponential
costs grow much more rapidly than polynomial costs as L increases, so exponential algo-
rithms are often considered unacceptable for large problems. This is illustrated in Table 9.1.
There are further categories of algorithms, between polynomial and exponential (with costs
proportional to, say, LlnL) and beyond exponential (with costs proportional to, say, L!).

It is usually feasible to solve problems of size L = 100 if there is a polynomial-time
algorithm, and the polynomial is of low degree. This may not be the case for exponential
algorithms, where the costs increase rapidly withL. If f (L) is a polynomial of high degree,
say f (L) = L100, then even a polynomial algorithm will be unworkable for large problems
in the worst case. In a great many cases, however, polynomial algorithms have costs that
are O(L)–O(L4), whereas exponential algorithms have costs that are O(2L) or worse, so
the distinction between polynomial and exponential algorithms is a useful one.

Exercises
2.1. Determine L, the length of the input, for the linear program

maximize z = 5x1 + 7x2 + 9x3 + 12x4

subject to 3x1 − 9x2 + 6x3 − 4x4 = 12
2x1 + 3x2 − 2x3 + 7x4 = 21
x1, x2, x3, x4 ≥ 0.

2.2. Show that an iteration of the simplex algorithm in Section 5.2 has polynomial costs.
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2.3. If the cost of one algorithm is 2L and another is L100, how large does L have to be
before the polynomial algorithm becomes cheaper than the exponential algorithm?

2.4. Use Stirling’s formula to show that if an algorithm requires L! operations, then it is
not a polynomial algorithm.

9.3 Worst-Case Behavior of the Simplex Method
Ever since it was invented, the simplex method has been considered a successful method
for linear programming. In 1953 a paper by Hoffman et al. compared the simplex method
with several other algorithms and concluded that it was much faster, even though the others
were better suited to the computers available at that time.

It has been observed that the number of iterations required by the simplex method
to find the optimal solution is often a small multiple of the number of general constraints.
This is remarkable, since a problem with n variables and m constraints could have as
many as (

n

m

)
basic solutions (of course, many of these are likely to be infeasible). There was always
the possibility that the simplex method might examine all of these bases before finding the
optimal basis, but up until the 1970s no one had been able to exhibit a set of linear programs
(with an arbitrary number of variables) where the simplex method took that many iterations
to find a solution.

There is a considerable difference between m iterations and
(
n

m

)
iterations. If we set

n = 2m, then the values of these two quantities are

m
(2m
m

)
1 2
5 252

10 184756
20 1 × 1011

50 1 × 1029

100 9 × 1058

200 1 × 10119

300 1 × 10179

400 2 × 10239

500 3 × 10299

Even for small values of m the number of possible bases is huge. If we had a computer
capable of performing one billion simplex iterations per second, then examining

(100
50

)
bases

(that is, m = 50) would take 3,199,243,548,502.2 years.
If the number of simplex iterations were proportional to m, then the simplex method

would be a polynomial algorithm. All the operations in a simplex iteration are simple matrix
and vector calculations, with total costs of O(mn) arithmetic operations if full pricing is
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done. Periodic refactorization of the basis matrix costs O(m3) arithmetic operations. So
the costs of a simplex iteration can be as high as O(m3 + nm) operations, and if O(m)
iterations are performed, the overall costs of the simplex method areO(m4+nm2) arithmetic
operations. This number is a polynomial in n and m. (These costs would be lower if the
problem were sparse; the estimates here are based on dense-matrix computations.) On the
other hand, if

(
n

m

)
iterations were required, then the simplex method would be an exponential

algorithm.
If a trial basis to a linear program has been proposed, it is possible to check if it is

optimal in polynomial time. The optimality test in the simplex method is one way to do it,
involving the computation of the reduced costs. The reduced costs can be computed using
O(m3 + nm) arithmetic operations. (If the linear program is degenerate, it is possible that
the basis may not be optimal, even though the corresponding point x is optimal.)

Together these comments show that the simplex method might be a polynomial algo-
rithm (if the number of iterations were always O(m)) or an exponential algorithm (if the
number of iterations were sometimes

(
n

m

)
), but in either case a solution can be verified in

polynomial time. All these facts were known in the early 1970s.
In 1972 a paper by Klee and Minty showed that there exist problems of arbitrary size

that cause the simplex method to examine every possible basis when the steepest-descent
pricing rule is used, and hence showed that the simplex method is an exponential algorithm
in the worst case.

We give here a variant of the original Klee–Minty problems:

maximize z =
m∑
j=1

10m−j xj

subject to 2
i−1∑
j=1

10i−j xj + xi ≤ 100i−1 for i = 1, . . . , m

x ≥ 0.

When slack variables are added, there are 2m variables and m general constraints. These
problems have 2m feasible bases. If the simplex method chooses the entering variable as
the one with the largest violation in the optimality test (as usual), then every basis will be
examined.

Example 9.1 (Klee–Minty Problem). Ifm = 3, then the Klee–Minty problem has the form

maximize z = 100x1 + 10x2 + x3

subject to x1 ≤ 1
20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10000
x ≥ 0.

The feasible region is illustrated schematically in Figure 9.1.
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3x

x2

x1

Figure 9.1. Klee–Minty problem.

When the simplex method is applied with the steepest-descent pricing rule, the se-
quence of basic feasible solutions is as follows:

Basis z

s1 = 1 s2 = 100 s3 = 10000 0
x1 = 1 s2 = 80 s3 = 9800 100
x1 = 1 x2 = 80 s3 = 8200 900
s1 = 1 x2 = 100 s3 = 8000 1000
s1 = 1 x2 = 100 x3 = 8000 9000
x1 = 1 x2 = 80 x3 = 8200 9100
x1 = 1 s2 = 80 x3 = 9800 9900
s1 = 1 s2 = 100 x3 = 10000 10000

This problem has 23 = 8 possible basic feasible solutions, and all are examined by the
simplex method.

In this example, the steepest-descent pricing rule causes the simplex method to ex-
amine all possible basic feasible solutions for the constraints. It would have been possible,
however, to solve this problem at the first iteration if x3 had been chosen as the entering
variable and s3 as the leaving variable. This raises the possibility that the simplex method,
with a different pricing rule, might have better worst-case behavior. Anumber of researchers
have examined this question and have shown that, for a variety of pricing rules, there are
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corresponding linear programming problems that cause the simplex method to examine an
exponential number of basic feasible solutions. Although these results do not fully settle
the question, they raise doubts that such an efficient pricing rule exists.

This is not the only question raised by the Klee–Minty example. For example, how
common are linear programs that require exponentially many simplex iterations? How
does the simplex method perform on an “average” problem? Are there algorithms for linear
programming that require only a polynomial number of operations even in the worst case?
These questions are discussed in the remaining sections of this chapter.

Exercise
3.1. Use linear programming software to solve Klee–Minty problems of various sizes.

How many pivots are required? Are all basic feasible solutions examined?

9.4 The Ellipsoid Method
In 1979 the Soviet mathematician Leonid G. Khachiyan settled one of these questions
by exhibiting a polynomial-time algorithm for linear programming. (The algorithm was
not new, but Khachiyan’s observations were.) His discovery received a great deal of
attention, based on the hope that this algorithm might be a dramatically more efficient
method for linear programming. Articles soon appeared in the New York Times and other
general-interest publications, an indication of the immense practical importance of linear
programming.

Khachiyan’s method, based on a more general algorithm for convex programming and
now called the ellipsoid method, is designed to find a point that strictly satisfies a system of
linear inequalities. That is, it tries to find a point x such that

Ax < b.

Any linear programming problem can be transformed into a problem of this type, as we will
now show.

Suppose we are given a linear program in canonical form

minimize z = cTx

subject to Ax ≥ b

x ≥ 0

together with its dual program

maximize w = bTy

subject to ATy ≤ c

y ≥ 0.
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By duality theory (see Section 6.2), at the optimal solutions of both problems the two
objective values will be equal, and the constraints to both problems will be satisfied:

cTx − bTy = 0
Ax ≥ b

ATy ≤ c

x ≥ 0
y ≥ 0.

By weak duality, a pair of feasible points satisfies bTy ≤ cTx, so these conditions are
equivalent to a system of linear inequalities of the form

Âx̂ ≤ b̂,

where

Â =

⎛
⎜⎜⎜⎝

cT −bT
−A 0

0 AT

−I 0
0 −I

⎞
⎟⎟⎟⎠ , x̂ =

(
x

y

)
, and b̂ =

⎛
⎜⎜⎜⎝

0
−b
c

0
0

⎞
⎟⎟⎟⎠ .

Because of this equivalence, we will assume in the rest of this section that we are
solving a system of linear inequalities Ax ≤ b, where A is an m × n matrix. Assume that
the entries inA and b are all integers, and thatL is the length of the input data for the system
Ax ≤ b:

L =
∑
i,j

�log2(|ai,j | + 1)� +
∑
i

�log2(|bi | + 1)�
+�log2(n)� + �log2(m)� + (nm+m),

where n is the number of variables andm is the number of inequalities. Let e = (1, . . . , 1)T.
It can be shown that if the system

Ax < b + 2−Le

has a solution, then the system Ax ≤ b has a solution (see the paper by Gács and Lovász
(1981)). These transformations allow us to solve a linear programming problem by solving
a system of strict linear inequalities.

Before giving a precise description of the ellipsoid method, we will describe it in-
tuitively. To begin, an ellipsoid is the higher-dimensional generalization of an ellipse. In
n-dimensional space, it can be defined as the set of points{

x : (x − x̄)TM−1(x − x̄) ≤ 1
}
,

where the vector x̄ of length n is the “center” of the ellipsoid and the n×n positive definite
matrix M defines the orientation and shape of the ellipsoid.

Example 9.2 (Ellipsoid). Let x̄ = (5, 4)T and

M =
(

3 1
1 3

)
.
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Figure 9.2. Ellipsoid.

Then

M−1 = 1

8

(
3 −1

−1 3

)
.

If we define y = x − x̄, then the condition

(x − x̄)TM−1(x − x̄) ≤ 1

simplifies to
1
4 (y1 − y2)

2 + 1
8 (y1 + y2)

2 ≤ 1.

The ellipsoid is graphed in Figure 9.2.

The ellipsoid method begins by selecting an ellipsoid centered at the origin (x̄ = x0 =
0) that contains part of the feasible region

S = { x : Ax < b } .
The first ellipsoid is defined by a positive-definite matrixM0 that is a multiple of the identity
matrix. It is desirable to chooseM0 so that the initial ellipsoid is as small as possible, since
this will reduce the bound on the number of iterations required by the method. In the absence
of other information, it is possible to chooseM0 = 2LI , a choice which defines an ellipsoid
sufficiently large that it is guaranteed to contain part of the feasible region, if this region is
nonempty. This is just a simple way to initialize the method. It would be possible to begin
with any ellipsoid that contains some part S̄ of the feasible region.

At the kth iteration, the method first checks if the center x̄ = xk of the current ellipsoid
is feasible:

Axk < b.

If so, the method terminates with xk as a solution. If not, then at least one of the constraints
is violated. One of the violated constraints is used to determine a smaller ellipsoid with
center xk+1 and matrix Mk+1 that also contains the part S̄ of the feasible region. Then the
method repeats.
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At each iteration the size of the ellipsoid shrinks by a constant factor. Because the
data for the problem are all integers, it is possible to show that, eventually, either a solution
has been found or the ellipsoid is so small that the feasible region must be empty. (Each
ellipsoid in the sequence contains the same part S̄ of the feasible region contained by the
initial ellipsoid. It is possible to show that if the feasible region is nonempty, then there is
a lower bound on the volume of S̄. Eventually the volume of the ellipsoid will be smaller
than this lower bound, implying that the feasible region must have been empty.)

Here then is the algorithm for finding a solution to Ax < b, where A is an m × n

matrix, and L is the length of the input data.

Algorithm 9.1.
Ellipsoid Method

1. Set x0 = 0, M0 = 2LI .

2. For k = 0, 1, . . .

(i) If Axk < b stop. (A feasible point xk has been found.)

(ii) If k > 6(n+ 1)2L stop. (The feasible region is empty.)

(iii) Otherwise, find any inequality such that aTi xk ≥ bi (that is, an inequality that is
violated by xk). Then set

xk+1 = xk − 1

n+ 1

Mkai√
aTi Mkai

Mk+1 = n2

n2 − 1

(
Mk − 2

n+ 1

(Mkai)(Mkai)
T

aTi Mkai

)
.

The form of the algorithm given here uses square roots, meaning that after the first iteration
the numbers may not be representable as fractions. With more care, the limitations of
finite-precision calculations can be taken into account.

Let Ek be the ellipsoid at the kth iteration. If aTi xk ≥ bi , then any feasible point
satisfies aTi x ≤ aTi xk . The formulas for xk+1 and Mk+1 define an ellipsoid Ek+1 that is the
ellipsoid of minimum volume satisfying

Ek+1 ⊃ Ek ∩
{
x : aTi x ≤ aTi xk

}
and

Ek+1 ∩
{
x : aTi x = aTi xk

} = Ek ∩
{
x : aTi x = aTi xk

}
.

It is clear that Ek+1 contains the same portion of the feasible region that Ek does. This is
illustrated in Figure 9.3.

It is possible to show that

volume (Ek+1) = c(n) volume (Ek),

where

c(n) =
(

n2

n2 − 1

)(n−1)/2
n

n+ 1
< e−1/2(n+1) < 1,
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a 2
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a 1
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1b=x
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a 1
T

1b=x
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T x =x
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k
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E

=
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k+1

+2k

1+k

1+k

Figure 9.3. Sequence of ellipsoids.

so that the volume of the ellipsoid is reduced by a constant factor at every iteration. (Here
the term e−1/2(n+1) involves the number e ≈ 2.71.) Using the fact that the volume of the
initial ellipsoid is bounded above by 2L(n+1) and that the volume of the portion S̄ of the
feasible region (if the feasible region is nonempty) is bounded below by 2−(n+1)2L, it is
straightforward to show that after at most 6(n + 1)2L iterations, either a solution is found
or the feasible region is empty.

Example 9.3 (Ellipsoid Method). Consider the system of strict linear inequalitiesAx < b:(−1 0
0 −1

)(
x1

x2

)
<

(−1
−1

)
.

Here m = n = 2 and L = 12. At the first iteration, we will choose

x0 =
(

0
0

)
and M0 = 4096

(
1 0
0 1

)
.

The first constraint is violated, so we can choose aTi = aT1 = (−1, 0). Then M0a1 =
4096(−1, 0)T, aT1M0a1 = 4096,

x1 =
(

0
0

)
− 1

3

4096
(−1

0

)
64

=
(

0
0

)
− 64

3

(−1
0

)
=
( 64

3

0

)
,
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and

M1 = 4

3

[
4096

(
1 0
0 1

)
− 2

3

(4096)2
( 1 0

0 0

)
4096

]

= 16384

3

[(
1 0
0 1

)
− 2

3

(
1 0
0 0

)]
= 16384

9

(
1 0
0 3

)
.

This completes the first iteration.
At the second iteration, aT2x1 = 0 > −1, so the second constraint is violated. When

the formulas for the ellipsoid method are applied with aTi = aT2, we obtain

x2 =
( 64

3
128
3
√

3

)
and M2 = 65536

27

(
1 0
0 1

)
.

This completes the second iteration. The point x2 satisfies the linear inequalities Ax < b,
so the method terminates.

The ellipsoid method requires at most 6(n + 1)2L iterations, where n is the number
of variables. If A is an m × n matrix, then computing xk+1 from xk requires O(mn + n2)

arithmetic operations (the cost is dominated by the cost of finding a violated constraint and
calculating Mkai). Computing Mk+1 from Mk requires an additional O(n2) operations.
Overall, the ellipsoid method requires at most O((mn3 + n4)L) arithmetic operations,
making it a polynomial-time algorithm.

Although the discovery of the ellipsoid method generated a great deal of excitement,
the excitement quickly dissipated. It is true that in some cases (such as on the Klee–Minty
problems) the simplex method would be much worse than the ellipsoid method. On many
other problems, however, the simplex method is much better than the ellipsoid method.
Computational experiments showed that the theoretical bounds on the performance of the
ellipsoid method are qualitatively the same as its behavior on “typical” problems, whereas
the performance of the simplex method is much better than its worst-case bounds. On
practical problems the ellipsoid method is often slow to converge. It is not a practical
alternative to the simplex method.

The ellipsoid method is not without its uses. Variants of it have been developed that
provide polynomial-time algorithms for problems whose computational complexity had
been previously unknown. Also, each iteration of the ellipsoid method requires only that a
violated constraint be found. This does not require that the complete set of constraints be
explicitly represented, which is a useful property in some settings (see the paper by Bland,
Goldfarb, and Todd (1981)). Perhaps the most important contribution of the ellipsoid method
was that it settled the question of whether linear programs can be solved in polynomial time.
On the other hand, it left unanswered the question of whether a practical polynomial-time
algorithm for linear programming could be found.

Exercises
4.1. Fill in the details of the calculations for the second iteration of the ellipsoid method

in Example 9.3.
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4.2. Determine a more precise count on the number of arithmetic operations required for
an iteration of the ellipsoid method.

4.3. For the Klee–Minty linear programs in Section 9.3, how large does m have to be
before the ellipsoid method becomes more efficient than the simplex method?

4.4. Consider the ellipsoid defined by{
x : (x − x̄)TM−1(x − x̄) ≤ 1

}
,

where x̄ is the center of the ellipsoid and M is a positive-definite matrix M . Define
y = x − x̄. Assume that M has been factored as

M = P�PT,

where � = diag (λ1, . . . , λn) is the matrix of eigenvalues and

P = ( p1 · · · pn )

is the matrix of eigenvectors. Prove that the condition (x − x̄)TM−1(x − x̄) ≤ 1 is
equivalent to

n∑
i=1

λ−1
i (p

T
i y)

2 ≤ 1.

(The eigenvectors define the axes of the ellipsoid, and the eigenvalues determine the
lengths of these axes.) Determine P and � for the ellipsoid in Example 9.2, and
show that in this case the formula you have derived is equivalent to

1
4 (y1 − y2)

2 + 1
8 (y1 + y2)

2 ≤ 1.

9.5 The Average-Case Behavior of the Simplex Method10

By the early 1960s the “conventional wisdom” was that the simplex method requires between
m and 3m iterations to find the solution of a linear program in standard form withm general
constraints. This conclusion was based on a great deal of practical experience with the
simplex method, and it continued to be accepted even as solutions of larger and larger
problems were attempted. These iteration counts were low enough to make the simplex
method an efficient and effective tool for everyday use. Even the pessimistic examples of
Klee and Minty (see Section 9.3) were not enough to dim the enthusiasm for the simplex
method (in part because no other competitive method was available).

Still, these pessimistic examples did raise doubts. Were such examples common?
Would more bad examples show up as problems grew larger? Does there exist a large class
of realistic problems that caused the simplex method to perform poorly? What is a “typical”
linear programming problem? How did the simplex method behave on an “average” linear
programming problem? We will concentrate on this last question.

This question needs to be phrased more precisely before it can be answered. In
particular, three things must be specified: (1) the variant of the simplex method that will be

10This section uses ideas from statistics.
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used, (2) the class of linear programming problems that will be solved, and (3) the stochastic
model that will be used to define a “random” or “average” problem. We might hope to use
the simplex method from Chapter 5, applied to linear programs in standard form, with some
“simple” stochastic model. However, the results we present are not for this case.

Analyzing average-case behavior for the simplex method is difficult, and the results
obtained are often influenced by the availability and tractability of appropriate mathematical
tools. This has led researchers to study less familiar variants of the simplex method. In addi-
tion, care must be taken in the choice of a stochastic model, or else there is a possibility that
an “average” problem may not be defined. These issues can quickly become complicated,
while the discussion given here is brief; for further information see the book by Borgwardt
(1987).

In this section we assume that the linear programs are in the form

maximize z = cTx

subject to Ax ≤ b,

where A is an m × n matrix. The ith row of A is denoted by aTi . We also assume that
a feasible initial point x0 is provided. (For certain results, the right-hand-side vector will
be chosen as b = e ≡ (1, . . . , 1)T so that x0 = 0 will automatically be feasible for the
problems.)

A variant of the simplex method called the shadow vertex algorithm will be used
to solve the linear programs. It is a form of parametric programming and is described in
Section 6.5.

The first proof to show that, on average, a variant of the simplex method converged
in a number of iterations that was a polynomial inm and n, was discovered by Borgwardt in
1982. His theorem is given below. It assumes that the coefficients in the linear program are
chosen randomly in�n\ { 0 }, meaning that none of the vectors in the problem can be equal to
zero (although individual coefficients might be zero). The right-hand side in the “average”
linear program considered in the theorem is not random—it is the vector e = (1, . . . , 1)T.
Note that there are no explicit nonnegativity constraints on the variables.

Theorem 9.4. Consider a linear program of the form

maximize z = cTx

subject to Ax ≤ e,

where c, a1, . . . , am are independently and identically distributed in �n\ { 0 }, and the dis-
tribution is symmetric under rotations. If the shadow vertex method is used with a feasible
initial point, the expected number of iterations is bounded by

17n3m1/(n−1).

This result established the polynomial-time average behavior of the simplex method,
but the bound obtained did not correspond to the observed practical behavior of the method
(that is, between m and 3m iterations). A result with a more satisfying conclusion was
obtained independently by Haimovich and Adler in 1983. It also uses the shadow vertex
method, with an assumption about the existence of a “cooptimal path” (this term is explained
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in Borgwardt (1987)). The form of the linear program is slightly different (it allows a general
right-hand-side vector b), and a different stochastic model is used.

Theorem 9.5. Consider a linear program of the form

maximize z = cTx

subject to Ax ≤ b.

The coefficients c, A, and b are assumed to be chosen randomly in such a way that the
problem is nondegenerate, and so that the constraints

aTi x ≤ bi and − aTi x ≤ −bi
are equally likely. If the shadow vertex method is used with a random initial basic feasible
point x0, and if a cooptimal path exists, then the expected number of iterations is bounded by

n
m− n+ 2

m+ 1
.

For the linear programs in Theorem 9.5 there need not be an obvious initial feasible
point. Related results have shown that, if a two-phase approach is used in such cases, then
the average number of iterations is bounded by

O
(

min
{
(m− n)2, n2

} )
for a related stochastic model as in the theorem, but without the assumption about the
cooptimal path.

These two results are not straightforward to compare. Theorem 9.5 has a more
optimistic conclusion, but its stochastic model can produce problems with a great many
redundant constraints (so that m is an overestimate of the “effective size” of the linear pro-
gram) and can produce many infeasible or unbounded, and hence irrelevant, problems. The
stochastic model in Theorem 9.4 allows varying amounts of redundancy in the constraints,
and all the problems generated are automatically feasible; moreover, the algorithm uses the
known feasible solution at the origin to get started. However, this stochastic model rules
out many practical problems since rotational symmetry implies that sparse problems are
rare under these assumptions, whereas large, practical problems are almost always sparse.

9.6 Notes
Complexity—Background material on computational complexity can be found in the book
by Papadimitriou and Steiglitz (1982, reprinted 1998).

Klee–Minty Problem—The variant of the Klee–Minty example that we use here is
due to Chvátal (1983).

Ellipsoid Method—The survey papers of Bland, Goldfarb, and Todd (1981) and
Schrader (1982, 1983) provide extensive background information on the ellipsoid method.
The book of Schrijver (1986, reprinted 1998) is another useful source of information on
this and other topics in this chapter. The ellipsoid method is derived from a method for
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solving nonsmooth convex programming problems discussed in the paper by Shor (1964).
This method was improved by Yudin and Nemirovskii (1976). Khachiyan (1979) showed
that this improved method, when specialized to linear programming problems, yielded a
polynomial-time algorithm. Khachiyan’s original publication was only an extended ab-
stract, but was followed by a more detailed paper. The extended abstract was expanded
upon in the paper of Gács and Lovász (1981), and this was the first detailed discussion of
Khachiyan’s work in English.

Average-Case Behavior—For an in-depth probabilistic analysis of the simplex method
refer to the book by Borgwardt (1987). Recently, Spielman and Teng (2004) developed an
approach called smoothed analysis that is a hybrid of worst-case and average-case analyses
and can inherit the advantages of both.
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Chapter 10

Interior-Point Methods for
Linear Programming

10.1 Introduction
Interior-point methods are arguably the most significant development in linear optimization
since the development of the simplex method. The methods can have good theoretical
efficiency and good practical performance that are competitive with the simplex method.
An important feature common to these algorithms is that the iterates are strictly feasible.
(A strictly feasible point for the set {x : Ax = b, x ≥ 0} is defined as a point x such that
Ax = b and x > 0.) Thus, in contrast to the simplex algorithm, where the movement is
along the boundary of the feasible region, the points generated by these new approaches
lie in the interior of the inequality constraints. For this reason the methods are known as
interior-point methods. This chapter discusses the underlying ideas in this important class
of methods.

The seminal thrust in the development of interior-point methods for linear program-
ming was the 1984 publication by Narendra Karmarkar of a new polynomial-time algorithm
for linear programming. Five years earlier, the ellipsoid method—the first polynomial-time
algorithm for linear programming—had been publicized and received with great excitement,
soon to be followed with great disappointment due to its poor computational performance.
Karmarkar’s method, in contrast, was claimed from the outset to perform extraordinarily
well on large linear programs. Although some initial assertions on the performance (“50
times faster than the simplex method”) have not been established, it is now accepted that
interior-point methods are an important tool in linear programming that can outperform the
simplex method on many problems.

The publication of Karmarkar’s new algorithm led to a flurry of research activity in
the method and related methods. This activity was further increased with the surprising
discovery in 1985 that Karmarkar’s method is a specialized form of a class of algorithms
for nonlinear optimization known as barrier methods (see Section 16.2).

Barrier methods solve a constrained problem by minimizing a sequence of uncon-
strained barrier functions. The methods were used and studied intensively in the 1960s. At
that time, they were one of the few options for solving nonlinear optimization problems,
but they were not seriously considered for solving linear programs because the simplex

319
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method was so effective. Eventually barrier methods were deemed by many researchers to
be inefficient even for nonlinear optimization, mainly because they were thought to suffer
from serious numerical difficulties. In the early 1970s barrier methods started to fall from
grace, and by the early 1980s they were all but discarded. All this abruptly changed in
1984. Barrier methods, and in particular, those employing the logarithmic barrier function,
became the focus of renewed research and spawned many new algorithms.

Most interior-point algorithms for linear programming fall into the following three
main classes, each of which can be motivated by the logarithmic barrier function: path-
following methods, potential-reduction methods, and affine-scaling methods. Path-follow-
ing methods attempt to stay close to a “central trajectory” defined by the logarithmic barrier
function; potential-reduction methods attempt to obtain a reduction in some merit or poten-
tial function that is related to the logarithmic barrier function; and affine-scaling methods
sequentially transform the problem via an “affine scaling.” This is only a rough classifica-
tion, and algorithms often combine ideas from the various categories.

The algorithms may be characterized as either primal methods (maintaining primal
feasibility), dual methods (maintaining dual feasibility), or primal-dual methods (maintain-
ing feasibility to both problems). Throughout our discussion we will assume that the primal
problem has the standard form

minimize z = cTx

subject to Ax = b

x ≥ 0.

In general, the iterates of primal interior-point methods satisfy the equality constraints
and strictly satisfy (and hence are interior to) the nonnegativity constraints. Thus an iterate
xk satisfies Axk = b, with xk > 0. Primal methods usually compute some estimate of the
dual variables. Convergence is attained when the estimate is dual feasible and the duality
gap is zero (to within specified tolerances).

Dual interior-point methods operate on the dual problem

maximize w = bTy

subject to ATy + s = c

s ≥ 0.

Again, the iterates satisfy the equality constraints and strictly satisfy the nonnegativity
constraints. Thus an iterate (yk, sk) satisfies ATyk + sk = c, with sk > 0. Dual methods
usually compute some estimate of the optimal primal variables; as in primal methods, these
are used to test for convergence.

Primal-dual methods attempt to solve the primal and dual problems simultaneously.
In these methods, the primal and dual equality constraints are both satisfied exactly, while
the nonnegativity constraints on x and s are strictly satisfied. Convergence is attained when
the duality gap reaches zero (to within some tolerance). If x is feasible to the primal, and
(y, s) is feasible to the dual, then

cTx − bTy = xTs.

Thus a condition on the duality gap is equivalent to a condition on complementary slackness.
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In terms of theoretical performance—complexity— there are many papers that give
bounds on the number of iterations and arithmetic operations required by these methods
to solve a linear programming problem. These bounds vary, depending on the particular
algorithm used and the choice of the parameter settings. Karmarkar’s original method
requires at most O(nL) iterations to solve a problem, with each iteration requiring O(n3)

arithmetic operations, for a total ofO(n4L) arithmetic operations. (As usual, n is the number
of variables and L is the length of the input data.) Subsequent results have reduced this to
O(

√
nL) iterations and an average ofO(n2.5) operations per iteration, for a total ofO(n3L)

operations. The bound for the ellipsoid method isO((mn3 +n4)L). The bounds for the two
methods are surprisingly close, but while the practical performance of the ellipsoid method
matches its theoretical bound, practical interior-point methods perform far better than the
theory predicts.

It would be of great value if there were some theoretical criterion that predicted
accurately whether a method would perform well practically, but unfortunately no such
criterion is currently known. Some successful interior-point algorithms are polynomial
algorithms, although the most successful implementations of these methods may not be.
Also, algorithms such as the primal and dual affine methods are competitive, even though
they are believed to be nonpolynomial. A great many algorithms with fine theoretical
properties have never been tested on an extensive set of large problems.

Our focus in this chapter is on methods that have been successfully implemented in
the solution of large-scale linear programs. We start with the primal-dual path-following
method, the algorithm that has proved the most successful in practice. We discuss the method,
as well as a technique for accelerating performance called the predictor-corrector method.
We also discuss computational issues for the primal-dual method and interior-point meth-
ods in general. Next we present a “self-dual” formulation of the linear problem that allows
for an efficient solution if a strictly feasible starting point is not known—and even if the
problem is infeasible. We also present affine methods, and finally we give a more detailed
discussion of path-following methods.

Interestingly, Karmarkar’s method—the method that transformed the entire field of
linear optimization—does not match the leading methods in its computational performance.
For this reason we do not include a detailed discussion of Karmarkar’s method, although
one is available on the book’s Web page, http://www.siam.org/books/ot108.

Interior-point methods are intrinsically based on nonlinear optimization methodol-
ogy. However, it is possible to motivate the primal-dual path-following method using just
concepts of linear optimization, and this is the approach taken in our presentation. The more
theoretical aspects of path-following methods as well as affine-scaling methods are based
on ideas from nonlinear optimization; a brief overview of the concepts required is given in
Section 10.4.

10.2 The Primal-Dual Interior-Point Method
We describe here the primal-dual method, an interior-point method which has been par-
ticularly successful in practice. The method was originally developed as a theoretical,
polynomial-time algorithm for linear programming, but it was quickly discovered that it
could be adapted to give extraordinary practical performance.
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To present the primal-dual method, we consider a linear program in standard form
(the primal problem)

minimize z = cTx

subject to Ax = b

x ≥ 0.
(P)

We assume that A is an m × n matrix of full row rank. This assumption is not always
necessary, but it simplifies the discussion. If we denote by s the vector of dual slack
variables, the corresponding dual problem can be written as

maximize w = bTy

subject to ATy + s = c

s ≥ 0.
(D)

Let x̄ be a feasible solution to (P), and let (ȳ, s̄) be a feasible solution to (D). These
points will be optimal to (P) and (D) if and only if they satisfy the complementary slackness
conditions

xj sj = 0, j = 1, . . . , n.

The main idea of the primal-dual method is to move through a sequence of strictly
feasible primal and dual solutions that come increasingly closer to satisfying the comple-
mentary slackness conditions. Specifically, at each iteration we attempt to find vectors x(μ),
y(μ), and s(μ) satisfying, for some μ > 0,

Ax = b

ATy + s = c

xj sj = μ, j = 1, . . . , n
x, s ≥ 0.

(PD)

The value of the parameter μ is then reduced and the process repeated until convergence
is achieved (to within some tolerance). If μ > 0, the condition xj sj = μ guarantees that
x > 0 and s > 0; that is, the iterates are strictly feasible.

These conditions also constrain the duality gap since

cTx − bTy = xTs = nμ.

(See the Exercises.) Thus, the algorithm attempts to find a sequence of primal and dual
feasible solutions with decreasing duality gaps. If the duality gap were zero, then the points
would be optimal. Closeness to the solution will be measured by the size of the duality gap.

It is convenient to represent the conditions on complementary slackness in matrix-
vector notation. Let X = diag (x) be a diagonal matrix whose j th diagonal term is xj .
Similarly, let S = diag (s), and let

e = ( 1 · · · 1 )T

be the vector of length n whose entries are all equal to one. Thus we can write x = Xe,
s = Se, and the complementary slackness condition may be written as

XSe = μe.

In the primal-dual algorithm the main computational effort is solving the primal-dual
equations (PD).To save computation, we shall not solve them exactly but only approximately.
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Thus at every iteration we shall only have an estimate of the solution to (PD). We now discuss
how to obtain such an estimate.

Suppose that we have estimatesx > 0, y, and s > 0 such thatAx = b andATy+s = c,
but xj sj are not necessarily equal toμ. We shall find new estimates x+	x, y+	y, s+	s
that are closer to satisfying these conditions. The requirements for primal feasibility are
easy to state: we require that A(x +	x) = b, and since Ax = b, it follows that

A	x = 0,

which is a system of linear equations in	x. Similarly, in order to maintain dual feasibility
we must satisfy the linear system

AT	y +	s = 0,

which is a system of linear equations in 	y and 	s. The equations for complementary
slackness,

(xj +	xj)(sj +	sj ) = μ,

can be written as
sj	xj + xj	sj +	xj	sj = μ− xj sj

and must be satisfied for all j . These are nonlinear equations in	xj and	sj . To obtain an
approximate solution we ignore the term	xj	sj . If	xj and	sj are both small, then their
product will be much smaller, justifying this action. The resulting system is now linear:

sj	xj + xj	sj = μ− xj sj .
We have approximated the nonlinear system by a linear system. This technique for solving
nonlinear equations by linearizing them is known as Newton’s method (see Section 2.7).
At each iteration of the primal-dual method we perform one iteration of Newton’s method
for solving (PD). We will refer to the search directions as the Newton directions.

In summary, the vectors 	x, 	y, 	s are obtained by solving the linear system

S	x +X	s = μe −XSe
A	x = 0

AT	y +	s = 0.

To solve this system, we use the third equation to obtain	s = −AT	y. Substituting in the
first equation we obtain

S	x −XAT	y = μe −XSe.
Multiplying this equation by AS−1 and using A	x = 0, we get

−AS−1XAT	y = AS−1(μe −XSe).
Define the diagonal matrixD ≡ S−1X, and let v(μ) = μe−XSe. Then the solution vectors
can be written as

	y = −(ADAT )−1AS−1v(μ)

	s = −AT	y
	x = S−1v(μ)−D	s.

If some xj or sj is zero, then these formulas are not defined.
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The algorithm is as follows. Assume that we are given strictly feasible initial estimates
x > 0, y, and s > 0 of the primal, dual, and dual slack variables. We compute the directions
	x, 	y, and 	s. We define the new estimates of the solutions as x + 	x, y + 	y, and
s +	s. Then we reduce μ and repeat.

If the parameter μ is updated as

μk+1 = θμk,

with 0 < θ < 1, then under appropriate conditions on θ the new estimates are guaranteed
to be strictly feasible (x > 0, s > 0), and the resulting algorithm is polynomial.

Unfortunately the values of θ for which this is true are close to 1. For example, the
paper of Monteiro and Adler (1989) indicates that using θ = 1 − 3.5/

√
n will suffice. The

resulting method requires at mostO(
√
nL) iterations, a good theoretical result. In practice,

however, this value of θ is inefficient since μ decreases slowly, and the algorithm requires
many iterations to reach a sufficiently low value of μ, a value where the difference between
the primal and dual objectives is sufficiently close to zero.

To transform the method into a practical algorithm, we should decreaseμmore rapidly.
However, with these larger changes in μ, the new estimates of the solution may no longer
be strictly feasible; that is, the variables may fail to satisfy the conditions x > 0 and s > 0.
Therefore, the update rule for the new point is modified to

x(α, μ) = x + α	x
y(α, μ) = y + α	y
s(α, μ) = s + α	s,

where α is a step length chosen to ensure that x and s are positive. Even when a step
length of 1 is strictly feasible, a larger step may be better. A strategy that has yielded good
computational results is to take a large step which still maintains strict feasibility. For
example, one may take α as 99.999% of the distance to boundary, that is,

α = 0.99999αmax,

where αmax is the largest step satisfying

xj + αmax	xj ≥ 0 and sj + αmax	sj ≥ 0

for all j . This value is explicitly given by

αmax = min(αP , αD),

where

αP = min
	xj<0

(−xj/	xj )
αD = min

	sj<0
(−sj /	sj ).

This is just a ratio test, as in the simplex method. (Practical algorithms often use different
step lengths for the primal and dual variables, based on αP and αD , respectively. For
simplicity, we do not do this in the example.)
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Example 10.1 (Primal-Dual Method). We will apply the primal-dual method to the linear
program

minimize z = −x1 − 2x2

subject to −2x1 + x2 ≤ 2
−x1 + 2x2 ≤ 7
x1 + 2x2 ≤ 3

x1, x2 ≥ 0.

Slack variables (labeled here x3, x4, and x5) are added to put it into standard form

minimize z = −x1 − 2x2

subject to − 2x1 + x2 + x3 = 2
− x1 + 2x2 + x4 = 7
x1 + 2x2 + x5 = 3

x1, x2, x3, x4, x5 ≥ 0.

The dual of this problem, with slack variables sj added, is

maximize w = 2y1 + 7y2 + 3y3

subject to −2y1 − y2 + y3 + s1 = −1
y1 + 2y2 + 2y3 + s2 = −2

y1 + s3 = 0
y2 + s4 = 0
y3 + s5 = 0

s1, s2, s3, s4, s5 ≥ 0.

Hence the coefficient matrix for the constraints is

A =
(−2 1 1 0 0
−1 2 0 1 0

1 2 0 0 1

)
.

An initial set of strictly feasible points is given by

x =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2
1
2
5
2

13
2
3
2

⎞
⎟⎟⎟⎟⎟⎟⎠ , y =

(−1
−1
−5

)
, and s =

⎛
⎜⎜⎜⎝

1
11
1
1
5

⎞
⎟⎟⎟⎠ .

If we select, for instance, μ = 10, then at the first iteration of the primal-dual method we
set up the matrices and vectors

X =

⎛
⎜⎜⎜⎜⎝

1
2 0 0 0 0
0 1

2 0 0 0
0 0 5

2 0 0
0 0 0 13

2 0
0 0 0 0 3

2

⎞
⎟⎟⎟⎟⎠
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S =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 11 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 5

⎞
⎟⎟⎟⎠

D =

⎛
⎜⎜⎜⎜⎝

1
2 0 0 0 0
0 1

22 0 0 0
0 0 5

2 0 0
0 0 0 13

2 0
0 0 0 0 3

10

⎞
⎟⎟⎟⎟⎠

e = ( 1 1 1 1 1 )T .

From these we compute

v = v(μ) = μe −XSe = ( 9.5 4.5 7.5 3.5 2.5 )T

as well as

ADAT =
( 4.5455 1.0909 −0.9091

1.0909 7.1818 −0.3182
−0.9091 −0.3182 0.9818

)

(ADAT )−1 =
( 0.2767 −0.0311 0.2461
−0.0311 0.1448 0.0181

0.2461 0.0181 1.2523

)
.

It is then possible to calculate

	y = ( 0.2450 0.2092 −10.7239 )T

	s = ( 11.4231 20.7843 −0.2450 −0.2092 10.7239 )T

	x = ( 3.7885 −0.5356 8.1126 4.8598 −2.7172 )T .

In the ratio test, αP is determined by x5

αP = −x5/	x5 = 0.5520,

and αD is determined by s3
αD = −s3/	s3 = 4.0812

so that α = 0.5520. (Multiplying α by 0.99999 does not affect the first five digits of α.)
For this value of α the new estimates of the solution are

x = ( 2.5914 0.2043 6.9785 9.1828 0.0000 )T

y = (−0.8647 −0.8845 −10.9200 )T

s = ( 7.3060 22.4738 0.8647 0.8845 10.9200 )T .

For these values of x and s the duality gap is xTs = 37.6812 and the complementary
slackness condition has the residual xTs − nμ = −12.3188.
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At each of the subsequent iterations, we chose to reduce μ by 10. The values of the
residual and the duality gap are

μ xTs − nμ xTs

101 −1 × 101 4 × 101

100 −4 × 100 1 × 100

10−1 −2 × 10−1 3 × 10−1

10−2 −2 × 10−2 3 × 10−2

10−3 −3 × 10−3 2 × 10−3

10−4 −2 × 10−4 3 × 10−4

10−5 −3 × 10−5 2 × 10−5

10−6 −2 × 10−6 3 × 10−6

10−7 −3 × 10−7 2 × 10−7

At this point the estimates of the solution are given by

x = ( 2.1794 0.4103 5.9486 8.3588 2 × 10−8 )T

s = ( 5 × 10−8 1 × 10−7 2 × 10−12 4 × 10−9 1.0000 )T

y = (−2 × 10−12 −4 × 10−9 −1.0000 )T .

The primal and dual objective values are

z = cTx = −3.0000

w = bTy = −3.0000

and are equal (up to the number of digits displayed).
For this example the primal linear program (P) has multiple solutions, although the

dual has a unique solution. The true solution of the dual is

s∗ = ( 0 0 0 0 1 )T

y∗ = ( 0 0 −1 )T

and the solutions to the primal are all the points on the line segment connecting

x1 = ( 0 3
2

1
2 4 0 )T

x2 = ( 3 0 8 10 0 )T .

One of these points is

x∗ = ( 2.1794 0.4103 5.9486 8.3588 0 )T

which is close to the solution given by the primal-dual method.
The final point x obtained by the algorithm is not a vertex of the feasible region.

This is typical for interior-point methods whenever there are multiple solutions. Even so,
the method converges to a point x∗ that satisfies strict complementarity, as happens in this
example for x∗ and s∗.
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In our presentation of the primal-dual method we assumed that the vectors x, y, and
s satisfied

Ax = b and ATy + s = c,

with x > 0 and s > 0. It might be difficult to find such points, and in such cases it is useful
to modify the primal-dual method so that infeasible starting guesses can be used.

Assume that x, y, and s have been specified, with x > 0 and s > 0. Then we attempt
to choose 	x, 	y, and 	s to satisfy

A(x +	x) = b

AT(y +	y)+ (s +	s) = c

(xj +	xj)(sj +	sj ) = μ.

If, as before, we ignore the term 	xj	sj , then these equations can be transformed into

S	x +X	s = μe −XSe ≡ v(μ)

A	x = b − Ax ≡ rP
AT	y +	s = c − ATy − s ≡ rD.

Here rP is the residual for the primal constraints Ax = b, and rD is the residual for the dual
constraints ATy + s = c. An analysis similar to that used earlier can be used to show that

	y = −(ADAT)−1[AS−1v(μ)− ADrD − rP ]
	s = −AT	y + rD
	x = S−1v(μ)−D	s.

These formulas are only a slight modification of those derived earlier, indicating that in-
feasible starting points can be handled in a straightforward manner within the primal-dual
method. This modification is useful if the primal and dual have feasible solutions. If the
primal or the dual is infeasible, this modification may fail to converge. An alternative
approach that can detect whether the primal and dual are feasible is given in Section 10.3.

10.2.1 Computational Aspects of Interior-Point Methods

An important question is how interior-point methods and simplex methods compare on
practical problems. Extensive computational tests indicate that interior-point methods in
general—not just primal-dual path-following methods—require few iterations to solve a
linear program, typically 20–60, even for large problems. Interior-point methods are affected
little, if at all, by degeneracy. Each iteration of an interior-point method is expensive,
requiring the solution of a system of linear equations involving the matrix ADAT, where
D is a diagonal matrix. (For the primal-dual method, D = S−1X; the formulas for D
differ among the various interior-point methods.) The matrixADAT changes in every entry
at every iteration, so it must be factored at every iteration. This matrix can be much less
sparse than A. (Since D is diagonal, the sparsity pattern of ADAT does not change when
D changes. Hence the sparsity pattern need only be analyzed once, and only a single
symbolic factorization is required. The numerical factorization, however, is performed at
every iteration. See Appendix A.6.1.)
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Simplex methods typically require between m and 3m iterations, where m is the
number of constraints. The number of iterations can increase dramatically on degenerate
problems, or can decrease dramatically if a good initial basis is provided. Each iteration of
the simplex method is cheap. The linear systems in the simplex method involve the basis
matrix B. This matrix changes only in one column at each iteration, so that a factorization
of B can be updated at every iteration, which is much less expensive than a refactorization.
Since B consists of columns of A, it is as sparse as A.

A few conclusions can be drawn from these observations. If no good initial guess
of the solution is available, or if ADAT is sparse and easy to factor, or if the problem is
degenerate, then interior-point methods are likely to perform well. However, ifADAT is not
sparse or is not easy to factor, or if a good initial guess is available (as in sensitivity analysis,
or in applications where the linear program is solved repeatedly with slightly changing data),
then the simplex method is likely to perform well.

Finally, interior-point methods do not produce an optimal basic feasible solution.
Some auxiliary “basis recovery” procedure must be used to determine an optimal basis. In
some applications, a basic feasible solution is of value, and this requirement can favor the
use of the simplex method.

10.2.2 The Predictor-Corrector Algorithm

The predictor-corrector method is a modification of the primal-dual method that can reduce
the number of iterations required by the method with only a modest increase in the cost per
iteration. It is currently used in most interior-point software packages.

In our derivation we ignored the second-order terms of the form 	xj	sj in the
equation

(xj +	xj)(sj +	sj ) = μ.

They were ignored under the assumption that they were small. This is likely to be true if x
and s are near their optimal values, but it might be false at points far from the optimum.

The predictor-corrector method is designed to take these second-order terms into
account by attempting to find a solution to the system

S	x +X	s = μe −XSe −	X	Se
A	x = b − Ax

	y +	s = c − ATy − s,
(PC)

where	X = diag (	xj ) and	S = diag (	sj ). This is done in two steps. In the “predictor”
step, a prediction of 	x and 	s is obtained, together with a prediction of a “good” value
of μ (that is, a value of μ that is related to the values of x and s). In the “corrector” step,
these predicted values are used to obtain an approximate solution to the (PC) system.

The predictor step solves the system (PC) with the term μe −	X	Se ignored:

S	x +X	s = −XSe
A	x = b − Ax

AT	y +	s = c − ATy − s.
This determines intermediate values	X̂ and	Ŝ. These are used to determine intermediate
solutions x̂ and ŝ, and in turn an updated value of μ based on the updated duality gap. (See
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the paper by Mehrotra (1992) for details.) The values ofμ,	X̂, and	Ŝ are then substituted
into the (PC) equations,

S	x +X	s = μe −XSe −	X̂	Ŝe
A	x = b − Ax

AT	y +	s = c − ATy − s,
which are then solved for 	x, 	y, and 	s.

This approach might seem to double the cost of an iteration of the primal-dual method.
In fact, the corrector step uses the same factorization of the matrix ADAT as the predictor
step, so the predictor-corrector approach only slightly increases the cost of each iteration,
and it offers the potential of decreasing the number of iterations required by the primal-dual
method. Computational testing has shown that this combined approach forms one of the
most effective of interior-point methods.

Exercises
2.1. Apply the primal-dual method to the linear program in Example 10.1, but using the

infeasible initial guess x = (1, 1, 1, 1, 1)T, y = (0, 0, 0)T, and s = (1, 1, 1, 1, 1)T.

2.2. Apply the predictor-corrector method to the linear program in Example 10.1. Choose
μ so that

(x +	x̂)T(s +	ŝ) = nμ.

2.3. Apply the primal-dual method to the linear program in Example 10.1. Reduce μ by
using the formula

μk+1 = θμk

with θ = 1 − 1/
√
n. Use α = 1 at every iteration.

2.4. For the primal-dual pair of linear programs (P) and (D) prove that the duality gap
satisfies

cTx − bTy = xTs,

and prove further that the solution to (PD) satisfies

cTx − bTy = xTs = nμ.

2.5. Prove that, ifD is a nonsingular diagonal matrix, then the sparsity pattern of ADAT

is in general unaffected by the values of D.

2.6. Prove that, if one of the columns of A is dense (has no zero entries), and D is a
nonsingular diagonal matrix, then ADAT will in general be a dense matrix.

2.7. Suppose that exactly one of the columns of A is dense (see the previous problem)
and let Â be the matrix obtained by replacing this column by a column of zeroes.

Assume that ÂDÂ
T

is sparse and nonsingular, where D is a nonsingular diagonal
matrix. Show how to use the Sherman–Morrison formula (see Appendix A.9) to
efficiently solve linear systems involving the matrix ADAT.
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2.8. Suppose

μk+1 =
(

1 − γ√
n

)
μk,

where 0 < γ < 1. Givenμ0, find the number of iterations required to obtainμk ≤ ε,
for any given ε > 0.

10.3 Feasibility and Self-Dual Formulations
The path-following methods we have discussed have a drawback: they assume that the
primal and dual problems are feasible. In practice, if either the primal or dual problem is
infeasible, these methods can diverge, even when an adaptation for infeasible starting points
is applied.

We describe here a method that overcomes this difficulty by reformulating the problem
in a special way. The resulting formulation has several attractive properties. First, it does
not require that an initial feasible solution to the original problem be known, nor does it
assume that such a solution exists. Second, when an interior-point method such as the
primal-dual algorithm is used to solve the reformulated problem, it will converge to an
optimal solution if an optimum exists; otherwise, it will detect that either the primal or the
dual is infeasible. Third, the size of the problem is only slightly larger than the original
primal-dual pair. Finally, the problem can still be solved in O(

√
nL) iterations.

The approach we describe embeds the problem in a self-dual linear optimization
problem. A self-dual problem is a problem that is equivalent to its dual. In canonical form
it can be written as

minimize
u

qTu

subject to Mu ≥ −q
u ≥ 0,

where q ≥ 0 and the matrix M is skew symmetric, that is, MT = −M .
The problem has a feasible solution u = 0, and since q ≥ 0, the optimal objective

value is zero. Denote by v the slack vector for the constraints:

v = Mu+ q,
where v ≥ 0. The self-duality implies that any vectors u and v that are feasible to the
primal are also feasible to the dual, with v corresponding to the dual slack variables. At the
optimum, u and v will satisfy the complementary slackness condition, so uTv = 0.

Suppose that we are given a linear program in canonical form

minimize z = cTx

subject to Ax ≥ b

x ≥ 0,

together with its dual program

maximize w = bTy

subject to ATy ≤ c

y ≥ 0.
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By duality theory, if both problems have optimal solutions, then their solutions will satisfy
the system of inequalities

Ax ≥ b, x ≥ 0
− ATy ≥ −c, y ≥ 0

bTy − cTx ≥ 0.

Of course, if either the primal or the dual is infeasible, this system will not have a solution.
However, if we introduce a nonnegative scalar variable τ and define a new homogeneous
system of inequalities

Ax − bτ ≥ 0
− ATy + cτ ≥ 0
bTy − cTx ≥ 0,

where x, y, τ ≥ 0, then this new system always has a feasible solution since the vector of all
zeroes is feasible. Moreover, it is easy to see that if τ is positive at any feasible solution to
the system, then the vectors x/τ and y/τ solve the primal and dual problems, respectively.
Therefore, if we define

M̄ =
( 0 A −b
−AT 0 c

bT −cT 0

)
, ū =

(
y

x

τ

)
,

then we are interested in finding a solution of the homogeneous system

M̄ū ≥ 0, ū ≥ 0

for which τ > 0. If such a solution exists, we can immediately obtain the solution of the
original linear program.

We still face two challenges. The first is to devise an approach that identifies whether
a solution with τ > 0 exists. The second is that we would like to solve the system via an
interior-point method; however, the system has no feasible point that strictly satisfies all
inequalities. Indeed, any strictly feasible point (x, y, τ ) > 0 also satisfies bTy − cTx = 0
(see the Exercises), so the last inequality cannot be strictly satisfied.

To address this we will expand the dimension of the system by adding one nonnegative
variable and one constraint. The new variable, θ , is akin to an artificial variable that will
start with a value of 1 and converge to zero. The coefficients of θ in each of the m+ n+ 1
original rows are designed so that the slack in each of these rows will have an initial value
of 1. Assume for simplicity that the starting points x0, y0, and θ0 are vectors of all 1’s. Then
the coefficients of θ in the new column will be

r = e − M̄e,
where e is a vector of 1’s of length m+ n+ 1.

The new constraint is designed to keep the expanded matrix skew symmetric, so its
coefficients are (−rT 0 ). The corresponding right-hand-side coefficient is set to −(m+
n+ 2), so that the slack of the constraint at the initial iteration is equal to 1. We now obtain
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our equivalent self-dual problem:

minimize qTu

subject to Mu ≥ −q
u ≥ 0,

(SD)

where

M =
(
M̄ r

−rT 0

)
, u =

(
ū

θ

)
, q =

(
0

m+ n+ 2

)
.

The objective is to minimize qTu = (m+ n+ 2)θ . Since u = 0 is a feasible solution
and θ ≥ 0, any optimal solution u∗ to (SD) will have θ∗ = 0.

The primal-dual algorithm for problem (SD) is straightforward. Since the primal is
equivalent to the dual, the Newton step satisfies

U	v + V	u = μe − UV e
M	u+	v = 0,

where v = Mu + q is the primal (and dual) slack, U = diag (u), and V = diag (v). With
appropriate reduction in the barrier parameter, the algorithm converges within O(

√
nL)

iterations.
Denote

u∗ =
⎛
⎜⎝
y∗
x∗
τ∗
θ∗

⎞
⎟⎠ , v∗ =

⎛
⎜⎝
vD∗
vP∗
ρ∗
η∗

⎞
⎟⎠ .

The limiting solutions u∗ and v∗ satisfy strict complementarity, meaning that if (u∗)i = 0,
then (v∗)i > 0. The proof of the latter point is quite technical and we will omit it; however,
it is an important point. It allows us to prove the following lemma.

Lemma 10.2 (Strictly Complementary Solution to the Self-Dual Problem). Let u∗ and v∗
be optimal solutions to the self-dual problem (SD) that satisfy strict complementarity. Then
(i) if τ∗ > 0, then x∗/τ∗ is an optimal solution to the primal and y∗/τ∗ is an optimal solution
to the dual; (ii) if τ∗ = 0, then either the primal problem or the dual problem is infeasible,
or possibly both.

Proof. Part (i) is straightforward and has already been discussed above. To prove part (ii)
we note that, because θ∗ = 0, then if τ∗ = 0, we have

Ax∗ ≥ 0 and ATy ≤ 0.

Also, since v∗ = Mu∗ + q, we have that

ρ∗ = bTy∗ − cTx∗.
Consider now the strict complementarity between τ∗ and its corresponding dual slack

variable ρ∗. Since τ∗ = 0, then ρ∗ > 0, and hence

bTy∗ − cTx∗ > 0.
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This implies that either bTy∗ > 0, or cTx∗ < 0, or possibly both.
Suppose bTy∗ > 0. Then for any feasible solution x to the primal we have

0 ≥ (yT∗A)x = yT∗(Ax) ≥ yT∗b > 0,

which is a contradiction, so the primal must be infeasible. Similarly if cTx∗ < 0, then for
any feasible solution y to the dual we have

0 ≤ (Ax∗)Ty = xT∗(A
Ty) ≤ xT∗c < 0,

which is a contradiction, and the dual must be infeasible. Finally, if both bTy∗ > 0 and
cTx∗ < 0, then both the primal and dual problems are infeasible.

The lemma shows that applying a primal-dual algorithm to a problem in self-dual
form will yield either an optimal solution to the primal and dual problems, or a confirmation
that one of these problems is infeasible.

Exercises
3.1. LetM be an n×n skew-symmetric matrix, and let q be a nonnegative n-dimensional

vector. Prove that the problem

minimize
u

qTu

subject to Mu ≥ −q
u ≥ 0

is self-dual.

3.2. Give an example for a two-dimensional self-dual linear program.

3.3. Prove that, if the n × n matrix M is skew symmetric, then uTMu = 0 for any
n-dimensional vector u.

3.4. Prove that, for any positive vector ū = (yT, xT, τ )T satisfying M̄ū ≥ 0, the constraint
b̂Ty − cTx ≥ 0 is binding. (Hint: Use the fact that x/τ solves the primal and y/τ
solves the dual.)

3.5. Set up the self-dual formulation corresponding to the problem

minimize z = x1 − x2

subject to x1 + x2 ≤ 2
x1, x2 ≥ 0.

10.4 Some Concepts from Nonlinear Optimization
Interior-point methods for linear programming are inherently based on nonlinear optimiza-
tion techniques. Luckily, only a few results are needed to gain an understanding of these
methods. Here we shall give a brief summary of the fundamental concepts needed. For a
more detailed discussion, see the referenced sections of the book.
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We start with the problem of minimizing an unconstrained function of n variables
f (x). At any local minimizer x∗ the gradient (the vector of all partial derivatives) of f must
satisfy ∇f (x∗) = 0. If in addition the matrix of second derivatives ∇2f (x∗) is positive
definite, then x∗ is a strict local minimizer of f . (See Chapter 11.)

We will also be interested in minimizing a function subject to linear equality con-
straints. Consider the problem of minimizing a function f subject to m constraints of the
form aTi x = bi , that is,

minimize f (x)

subject to Ax = b.

To find the optimum we introduce an auxiliary function,

L(x, λ) = f (x)−
m∑
i=1

λi(a
T
i x − bi) = f (x)− λT(Ax − b),

called the Lagrangian. The variables λi are called the Lagrange multipliers, and, in the
case of linear programming, correspond to the dual variables. For any optimal point x∗
there exist values of λ1, . . . , λm for which the gradient of the Lagrangian is zero. Thus the
first-order optimality conditions can be written as

∇f (x∗)− ATλ = 0

Ax∗ = b.

More detail is given in Chapter 14.
The next concept is Newton’s method for the solution of a system of nonlinear equa-

tions. Given a guess xk of the solution, Newton’s method replaces the nonlinear functions
at xk + 	x by their linear approximation, obtained from the Taylor series, and solves the
resulting linear system. The solution 	x is called the Newton direction and the resulting
point xk + 	x will be the new guess of the solution of the nonlinear system. See Section
2.7.1 for further details.

An analogous idea is used in the minimization of an unconstrained function f (x). Any
local minimizer will satisfy ∇f (x) = 0. The Newton direction is obtained by replacing
the components of the gradient at xk by their linear approximation obtained from the Taylor
series. This leads to the linear system of equations

∇2f (xk)	x = −∇f (xk),
and the solution is the Newton direction. See Section 11.3.

We can also give an alternative interpretation of Newton’s method. The method
approximates f (x +	x) by a quadratic function around f (xk) and then finds the step	xk
that minimizes the quadratic approximation. Ignoring a constant term, we find that the
resulting minimization problem is

minimize 1
2	x∇2f (xk)	x + ∇f (xk)T	x.

In the case where the function to be minimized is subject to linear constraints Ax = b

and the current guess xk satisfies Axk = b, a projected Newton search direction can be
computed. The direction minimizes the quadratic approximation above and lies in the null
space of A, so that Aδx = 0.

The final concept to be addressed is that of the logarithmic barrier method. We defer
that to Section 10.6.
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10.5 Affine-Scaling Methods
Affine methods were proposed soon after the publication of Karmarkar’s method as a simpli-
fication of his method. It was later discovered, however, that the Russian scientist I. I. Dikin
had proposed a primal affine method in 1967. Affine methods have been successful in solv-
ing large linear programs, although not quite as successful as the primal-dual path-following
method. They are of interest because the directions they employ provide important insight
into the search directions of path-following methods.

Affine-scaling methods are the simplest interior-point methods, yet they are effective
at solving large problems. These methods transform the linear program into an equivalent
one in which the current point is favorably positioned for a constrained form of the steepest-
descent method.

Before we come to this idea, we discuss the search direction. Suppose that we are
given some interior point for the primal problem. Since the nonnegativity constraints are
nonbinding, we can move a small distance in a direction without violating these constraints.
It would make sense to move in the steepest-descent direction −c along which the func-
tion value decreases most rapidly. To maintain feasibility of the constraints Ax = b, we
project this direction onto the null space of A. When A has full rank, this is achieved by
premultiplying the steepest-descent direction by the orthogonal projection matrix

P = I − AT(AAT)−1A.

The resulting direction
	x = −Pc

is the projected steepest-descent direction. It is the feasible direction that produces the
fastest rate of decrease in the objective (see the Exercises).

If the current point is close to the center of the feasible region (as is the point xa in
Figure 10.1), then considerable improvement could be made by moving in the projected
steepest-descent direction. If the point is close to the boundary defined by the nonnegativity
constraints, then possibly only a small step could be taken without losing feasibility, and thus
little improvement achieved (see point xb in the figure.) The steepest-descent direction will
be effective if the current point is close to the center of the feasible region. Motivated by this,
affine methods transform the linear problem into an equivalent problem that has the current
point in a more “central” position; a step is then made along the projected steepest-descent
direction for the transformed problem.

What is a “central” position? A plausible choice is the point e = (1, 1, . . . , 1)T, since
all its variables are equally distant from their bounds. To transform the current point xk
into the point e we simply scale the variables, dividing them by the components of xk . Let
X = diag (xk) be the n× n diagonal matrix whose diagonal entries are the components of
xk . Then the scaling

x̄ = X−1x or equivalently x = Xx̄

transforms the variables x into new variables x̄, with xk transformed into e. This transfor-
mation is an affine-scaling transformation, and X is the scaling matrix. Note that

e = X−1xk and xk = Xe.
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Figure 10.1. Steepest-descent from “central” and “noncentral” points.

Suppose that the original problem in “x-space” is written as

minimize z = cTx

subject to Ax = b

x ≥ 0.

Then the transformed problem in “x̄-space” can be written as

minimize z = c̄Tx̄

subject to Āx̄ = b

x̄ ≥ 0,

where
c̄ = Xc and Ā = AX.

Our current position in “x̄-space” is at the point e. We now make a move in the projected
steepest-descent direction

	x̄ = −P̄ c̄ = −(I −ĀT(ĀĀT)−1Ā)c̄

= − (
I −XAT(AX2AT)−1AX

)
Xc.

The step in the transformed space along 	x̄ yields

x̄k+1 = e + α	x̄,
where α is a suitable step length. The final task in the iteration is to map x̄k+1 back to the
original “x-space” to obtain

xk+1 = Xx̄k+1.

We now summarize the affine-scaling algorithm. In each iteration, (i) the problem in
“x-space” is transformed via affine scaling into an equivalent problem in “x̄-space” so that
the current point xk is transformed into the point e, (ii) an appropriate step is taken from e

along the projected steepest-descent direction in “x̄-space,” and (iii) the resulting point in
“x̄-space” is transformed back into the corresponding point in “x-space.”

It is possible to express the algorithm entirely in terms of the original variables. To
see this, note that

xk+1 = Xx̄k+1 = X(e + α	x̄) = xk + αX	x̄.
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Defining 	x = X	x̄, we obtain

xk+1 = xk + α	x,
where

	x = − (
X2 −X2AT(AX2AT)−1AX2

)
c = −XP̄Xc

and P̄ = I−XAT(AX2AT)−1AX is the orthogonal projection matrix forAX. The direction
	x is the primal affine-scaling direction.

There are several ways to select the step length α. Because the function decreases at
a constant rate along the search direction 	x, most implementations take as large a step as
possible, stopping just short of the boundary. (On the boundary, some variable is zero and
the method is not defined.) Commonly α is chosen as

α = γαmax,

where αmax is the step to the boundary, and 0 < γ < 1; typically γ is set very close to 1,
e.g., γ = 0.99. Since αmax is the largest step satisfying

(xk)i + αmax	xi ≥ 0, i = 1, . . . , n,

its value is given by a ratio test

αmax = min
	xi<0

(−(xk)i/	xi).

If 	x ≥ 0 and 	x = 0, then the problem is unbounded (see the Exercises).
We would like to terminate the algorithm when the optimality conditions are satisfied

to within some tolerance, which occurs if a dual feasible solution with a near-zero duality
gap is available. Under nondegeneracy assumptions, it is possible to estimate the solution
to the dual. If we define

yk = (AX2AT)−1AX2c and sk = c − ATyk,
then (yk, sk) will converge to the optimal solution of the dual problem as xk converges.
Here, yk is the solution to the least-squares problem

min
y

∥∥X(c − ATy)∥∥ ,
and hence sk is the solution to mins ‖Xs‖; this is the vector s that yields the smallest
“complementarity” (in norm) with respect to xk . Since

	x = −X2sk,

the computation of the dual estimates is a by-product of the computation of the search
direction and does not require extra work.

If the problem is degenerate, these dual estimates may not converge. Acommonly used
alternative is to stop when the relative improvement in the objective is small, that is, when

cTxk − cTxk+1

max
{

1, |cTxk|
} ≤ ε,

where ε is a small tolerance.



book
2008/10/23
page 339

�

�

�

�

�

�

�

�

10.5. Affine-Scaling Methods 339

Example 10.3 (Primal Affine Method). We apply the primal affine method to the linear
program

minimize z = −x1 − 2x2

subject to − 2x1 + x2 ≤ 2
− x1 + 2x2 ≤ 7

x1 ≤ 3
x1, x2 ≥ 0.

After slack variables are added to put the problem in standard form, the constraint matrix
and cost vector are

A =
(−2 1 1 0 0
−1 2 0 1 0

1 0 0 0 1

)
and c = (−1 −2 0 0 0 )T .

Suppose that we start from the initial feasible point

x = ( 0.5 0.5 2.5 6.5 2.5 )T .

Then the initial scaling matrix is

X =

⎛
⎜⎜⎜⎝

0.5 0 0 0 0
0 0.5 0 0 0
0 0 2.5 0 0
0 0 0 6.5 0
0 0 0 0 2.5

⎞
⎟⎟⎟⎠ ,

and thus

Ā = AX =
( −1 0.5 2.5 0 0
−0.5 1 0 6.5 0

0.5 0 0 0 2.5

)
, c̄ = (−0.5 −1 0 0 0 )T .

From these we compute

AX2AT =
( 7.50 1.00 −0.50

1.00 43.50 −0.25
−0.50 −0.25 6.50

)
.

Using this we compute

y = (AX2AT)−1AX2c =
(−0.0003
−0.0175
−0.0392

)
, s = c − ATy =

⎛
⎜⎜⎜⎝
−0.9789
−1.9648

0.0003
0.0175
0.0392

⎞
⎟⎟⎟⎠ ,

and

	x = X	x̄ =

⎛
⎜⎜⎜⎝

0.2447
0.4912

−0.0018
−0.7377
−0.2447

⎞
⎟⎟⎟⎠ .
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The ratio test gives

αmax = min

{
2.5

0.0018
,

6.5

0.7377
,

2.5

0.2477

}
= 8.8114.

Taking a step that is 0.9999 of the maximum step to the boundary yields α = 8.8105. The
new point is

x1 = x0 + α	x = ( 2.6561 4.8277 2.4845 0.0001 0.3439 )T .

After three additional iterations, the estimate of the solution is

x = ( 3.0000 5.0000 3.0000 7 × 10−8 3 × 10−9 )T .

The solution of this problem is x∗ = (3, 5, 3, 0, 0)T. The estimates of the dual variables at
this iteration are

y = ( 3 × 10−10 −1.0000 −2.0000 )T ,

s = (−2 × 10−10 −4 × 10−11 −3 × 10−10 1.0000 2.0000 )T .

Since s is nonnegative (to an acceptable tolerance), and the duality gap cTx−bTy = 7×10−8

is small, we terminate. Here is a summary of the progress of the algorithm:

‖x − x∗‖ min si cTx − bTy
9 × 10−1

7 × 10−1 −2 × 100 −1 × 101

8 × 10−4 −5 × 10−2 −3 × 10−1

7 × 10−5 −9 × 10−9 6 × 10−5

8 × 10−8 −3 × 10−10 7 × 10−8

The combination of affine scaling and the steepest-descent method can also be applied
to the dual problem. This results in the dual affine-scaling method. To develop the method,
we consider the dual problem

maximize w = bTy

subject to ATy + s = c

s ≥ 0.
(D)

Before cluttering our notation with transformations, we discuss how we form a pro-
jected steepest-descent direction. The dual has two sets of variables: y and s. When the con-
straint matrix A has full rank, we can represent the problem in a more convenient form that
omits the free variables y. The pair (y, s) is dual feasible if and only ifATy = c−s, or equiv-
alently, if and only if y = (AAT)−1A(c − s). Substituting for y in the dual problem gives

minimize w = b̃Ts

subject to Ps = Pc

s ≥ 0,
(D̃)
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where
P = I − AT(AAT)−1A and b̃ = AT(AAT)−1b.

The constraint matrixP is the orthogonal projection matrix corresponding toA. This matrix
is usually singular. Nevertheless, it is still possible to find an orthogonal projection matrix
corresponding to P ; this is

P̃ = I − P = AT(AAT)−1A

(see the Exercises). The projected steepest-descent direction for (D̃) is

	s = −P̃ b̃ = −(AT(AAT)−1A)(AT(AAT)−1)b = −AT(AAT)−1b.

This direction represents the change in the variable s. To obtain the change in y, we return to
the original dual problem (D). To maintain feasibility, any step must satisfyAT	y+	s = 0.
This holds if and only if 	y = −(AAT)−1A	s, or

	y = (AAT)−1b.

The direction (	y,	s) is the dual projected steepest-descent direction.
We now apply affine scaling to the dual problem (D). Our goal, as in the primal method,

is to obtain a substantial improvement with the steepest-descent direction. To achieve this
the current point should be away from the boundary. We perform an affine scaling that
transforms the variables s so that sk is sent to e. (It is not necessary to transform y, since
these variables are not restricted.) The scaling matrix is now S = diag (sk), the diagonal
matrix whose entries are the elements of sk . The affine transformation is given by

s̄ = S−1s or equivalently s = Ss̄

and the transformed problem can be written as

maximize w = bTy

subject to Ā
T
y + s̄ = c̄

s̄ ≥ 0,

where
Ā = AS−1 and c̄ = S−1c.

We take a step in the transformed space, along the projected steepest-descent direction. The
movement in y is given by

	y = (ĀĀ
T
)−1b.

We now return to the original variables. Since y was not transformed, 	y is unchanged.
We obtain

	y = (AS−2AT)−1b

	s = −AT	y = −AT(AS−2AT)−1b.

The direction (	y,	s) is the dual affine direction.
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In summary, the dual affine algorithm sets

yk+1 = yk + α	y, sk+1 = sk + α	s,
where	y and	s are as given above. The step size α is typically a fraction of the maximum
step to the boundary αmax, where

αmax = min
	si<0

(−(sk)i/	si)

is found by a ratio test. (If 	s ≥ 0 and 	s = 0, then the dual problem is unbounded and
the primal problem is infeasible.)

Termination of the dual algorithm is as in the primal algorithm. A commonly used
rule is to terminate if

bTyk+1 − bTyk
max

{
1, |bTyk|

} ≤ ε.

It is also possible to compute estimates of the primal variables:

xk = −S−2	s.

If xk ≥ 0, it is primal feasible, since it already satisfies Axk = b. Under nondegeneracy
assumptions, xk converges to the optimal primal solution.

In both the primal affine and the dual affine methods, the major effort is the compu-
tation of the projection. More specifically, both algorithms require the solution of a system
of equations with respect to a matrix ADAT, where D is a diagonal matrix: in the primal
methodD = X2 and in the dual methodD = S−2. The amount of computation per iteration
is similar. However, there are some differences. In the primal version, if	x is not computed
precisely, then the equation A	x = 0 will no longer be satisfied, and feasibility will be
lost. In contrast, in the dual version, even if	y is not computed precisely, the computation
	s = AT	y (an “easy” calculation) guarantees that dual feasibility is maintained. On the
other hand, the primal affine method has the advantage that it always terminates with a
primal feasible solution.

Despite their simplicity, the primal and dual affine methods are competitive with, if
perhaps slightly inferior to, the best interior-point methods. The algorithms are globally
convergent even for degenerate problems. They are not known to be polynomial algorithms;
however, and in fact there is suggestive theoretical evidence that they are not.

In contrast, it is possible to define a primal-dual affine-scaling method that has poly-
nomial complexity. In this method, the current point xk is transformed into (XS)1/2e, and
the vector of dual slack variables sk is transformed into (XS)−1/2e, so that the complemen-
tarity vectorXSe is transformed into e. The expressions for the search directions are similar
to those for the primal affine and dual affine methods, except that the matrices X2 and S2

are replaced by the matrices D and D−1, respectively, where D = (XS−1). This gives the
following search directions:

	x = −(D −DAT(ADAT)−1AD)c

	y = (ADAT)−1b

	s = AT	y = −AT(ADAT)−1b.
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As usual, the step size is determined by a ratio test. The primal-dual affine method has a
complexity bound ofO(nL2) iterations. In practice, however, it has not been as successful
as its primal and dual counterparts. The algorithm has also been adapted to solve strictly
convex quadratic programs in polynomial time.

Exercises
5.1. Consider the problem

minimize z = 2x1 + x2

subject to x1 + 2x2 = 4
x1, x2 ≥ 0.

Plot the feasible region. Suppose the current point is x = (2, 1)T. Define the
corresponding affine scaling, and the transformed linear program, and plot its feasible
region. Repeat the above for x = (3, 1

2 )
T.

5.2. Use the primal affine-scaling method to solve the problem

minimize z = 2x1 + x2 + 3x3

subject to x1 + 2x2 − x3 = 1
x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0.

Start from the point x0 = (0.25, 0.5, 0.25)T. At each iteration use a step length that is
0.99 of the maximum step to the boundary. Terminate when the relative improvement
in the objective is below 10−5.

5.3. Use the dual affine-scaling method to solve the previous problem.

5.4. Prove that the direction obtained by scaling the steepest-descent direction by its norm
is the solution to

minimize
p

z = cTp

subject to Ap = 0
pTp = 1.

Note: You can solve this problem by using the optimality conditions for constrained
optimization of Chapter 14; alternatively you can solve it by using the formula
xTy = ‖x‖ · ‖y‖ cos(θ), where θ is the angle between x and y.

5.5. Prove that the projected steepest-descent direction for the primal problem is the
solution to

minimize
p

f (p) = ‖p + c‖
subject to Ap = 0.

5.6. Prove that in the affine-scaling algorithm, cTxk − cTxk+1 = α ‖	x̄‖2 > 0; hence the
algorithm is a descent method.

5.7. Let 	x be the search direction in the primal affine method. Prove that if 	x ≥ 0
and 	x = 0, then the problem is unbounded.
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5.8. Let y = (AX2AT)−1AX2c, and let s = c − ATy. Prove that the search direction
in the primal affine method is 	x = −X2s. Prove that if 	x ≤ 0, then (y, s) is
dual feasible. Indicate how you would use this result to obtain a lower bound on the
objective in the primal affine method.

5.9. LetA be a matrix with full row rankm, and letP = I−AT(AAT)−1A. Let P̃ = I−P .
Prove that P̃ is symmetric, is idempotent (that is, P̃ 2 = P̃ ), that it satisfies P P̃ = 0,
and that it has rankm. Conclude from this that P̃ is an orthogonal projection matrix
for P .

5.10. In the dual affine method let x = −S−2	s. Prove that if 	s ≤ 0, then x is feasible
to the primal problem.

10.6 Path-Following Methods
Path-following methods are algorithms that restrict the iterates to being “close” to the central
path. For a problem in standard form, the central path is a trajectory defined by the set of
points x(μ), y(μ), and s(μ) that satisfy

Ax = b

ATy + s = c

xj sj = μ, j = 1, . . . , n
x, s ≥ 0

for some μ > 0.
One motivation for these equations is that they try to maintain primal feasibility,

dual feasibility, and a perturbed complementary slackness condition. This was the view-
point taken in Section 10.2.2, where we initially developed the primal-dual path-following
algorithm.

We can also motivate these equations from the perspective of the class of methods
known as logarithmic barrier methods. This viewpoint can lead to further insight regarding
the central path and also gives rise to a variety of new algorithms for solving the primal
problem, and the dual problem, or the primal and dual problems simultaneously.

Barrier methods handle inequality constraints gi(x) ≥ 0 in an optimization problem
by removing them as explicit constraints, and instead, incorporating them into the objective
as a “barrier term” that prevents the iterates from reaching the boundary of these constraints.
For the logarithmic barrier method the barrier term is−∑

log(xi). Anonnegative parameter
μ controls the weight of the barrier and is gradually decreased to zero as the iterates approach
the solution.

Given a linear program in standard form (P), the logarithmic barrier method solves a
sequence of problems of the form

minimize
x

βμ(x) = cTx − μ
n∑
j=1

log(xj )

subject to Ax = b

(Pμ)

for a decreasing sequence of positive barrier parametersμ that approach zero. The equalities
Ax = b can be handled explicitly by moving in the null space of the constraint matrix.
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Figure 10.2. Central path.

The objective, βμ(x) = cTx−μ∑ log(xj ), will be referred to as the primal logarith-
mic barrier function. Its gradient and Hessian are

∇βμ(x) = c − μ
⎛
⎝ 1/x1

...

1/xn

⎞
⎠ , ∇2βμ(x) = μ

⎛
⎝ 1/x2

1
. . .

1/x2
n

⎞
⎠ .

If we denote X = diag (x), then

∇βμ(x) = c − μX−1e, ∇2βμ(x) = μX−2.

Let y denote the vector of Lagrange multipliers associated with the equality constraints
of Pμ. Then the first-order optimality conditions are

c − μX−1e − ATy = 0

Ax = b.

It can be shown that if both the primal problem and the dual problem have strictly feasible
solutions, then the barrier subproblems have a unique solution x = x(μ) for every μ > 0,
and that x(μ) converges to a solution of the primal problem as μ approaches zero. The
central path or barrier trajectory for the primal problem is the set of points { x(μ) : μ > 0 }.
This is illustrated in Figure 10.2.

Let us take a closer look at the barrier trajectory. If we define s = c − ATy, then
the first equation implies that s − μX−1e = 0, or equivalently, Xs = μe. Thus, for each
component we have xj sj = μ. Since xj is positive, sj is also positive, and s > 0. Thus, the
multipliers y correspond to a dual feasible solution (y, s). Furthermore, when μ is small,
the complementary slackness conditions are close to being satisfied—they are perturbed by
μ. Denoting S = diag (s), the conditions can be written in an equivalent form that describes
a primal-dual central trajectory:

Ax = b

ATy + s = c

XSe = μ.

For a given μ, the system may be regarded as a perturbation of the optimality condi-
tions for a linear program: primal feasibility, dual feasibility, and perturbed complementarity
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slackness. If we apply Newton’s method to this nonlinear system of equations, then we ob-
tain the primal-dual algorithm introduced in Section 10.2. For completeness, we present
again the search directions (in a slightly different form):

	x = −(D −DAT(ADAT)−1AD)(c − μX−1e)

	y = (ADAT)−1(b − μAS−1e)

	s = −AT(ADAT)−1(b − μAS−1e),

where D = S−1X. The primal-dual algorithm is therefore a path-following method.
The primal variant of the method applies Newton’s method in a slightly different

setting. It operates in a primal framework, updating and maintaining feasibility of the
primal variables. The search direction at a point x is the projected Newton direction—the
feasible direction 	x that minimizes the quadratic approximation to βμ at x. Denoting
X = diag (x), the projected Newton direction solves the quadratic program

minimize f (	x) = 1
2	x

TμX−2	x + (c − μX−1e)T	x

subject to A	x = 0.

Letting y be the vector of Lagrange multipliers for this problem, the first-order necessary
conditions for optimality are

μX−2	x + (c − μX−1e)− ATy = 0

A	x = 0.

Multiplying the first equation on the left by (1/μ)X2, we obtain

	x = − 1

μ
X2(c − μX−1e − ATy).

Multiplying on the left by A, and recalling that A	x = 0, we obtain an expression for y:

y = (AX2AT)−1AX2(c − μX−1e).

Defining s = c − ATy, the projected Newton direction is

	x = − 1

μ
X2(s − μX−1e) = x − 1

μ
X2s.

Later we shall show that, as x converges to x∗, the vector y converges to the optimal
dual solution, and the vector s = c − ATy converges to the optimal dual slack vector. For
this reason we refer to (y, s) as the “dual estimates” at x.

Example 10.4 (Primal Path-Following Method). Consider again the problem in Example
10.1. We will compute the search direction generated by the primal path-following method
at the initial point x = (0.5, 0.5, 2.5, 6.5, 2.5)T. We use μ = 10. Then

c − μX−1e =

⎛
⎜⎜⎜⎝
−1
−2

0
0
0

⎞
⎟⎟⎟⎠− 10

⎛
⎜⎜⎜⎝

2 0 0 0 0
0 2 0 0 0
0 0 0.4 0 0
0 0 0 0.1539 0
0 0 0 0 0.4

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

1
1
1
1
1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
−21.000
−22.000
−4.000
−1.539
−4.000

⎞
⎟⎟⎟⎠ .
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Since

AX =
( −1 0.5 2.5 0 0
−0.5 1 0 6.5 0

0.5 0 0 0 2.5

)
and AX2AT =

( 7.50 1.00 −0.50
1.00 43.50 −0.25

−0.50 −0.25 6.50

)
,

we obtain

y = (AX2AT)−1AX2(c − μX−1e) =
(−2.7832
−1.5908
−4.9291

)
, s = c − ATy =

⎛
⎜⎜⎜⎝
−3.2280

3.9647
2.7832
1.5908
4.9291

⎞
⎟⎟⎟⎠ ,

and

	x = X	x̄ =

⎛
⎜⎜⎜⎝

0.5807
0.4009
0.7605

−0.2211
−0.5807

⎞
⎟⎟⎟⎠ .

We now re-examine the search direction 	x. We can write it as

	x = − 1

μ
X2(c − ATy − μX−1e)

= − 1

μ

(
X2 −X2AT(AX2AT)−1AX2

)
(c − μX−1e)

= − 1

μ
XP̄X(c − μX−1e) = − 1

μ
XP̄Xc +XP̄ e,

where P̄ = I − XAT(AX2AT)−1AX is the orthogonal projection matrix corresponding to
AX. This final expression is a sum of two directions: the first is a multiple of the primal
affine-scaling direction; the second, XP̄ e, is called a centering direction, for reasons we
shall explain. Almost all primal interior-point methods move in a direction that is some
combination of these two directions. (Similar observations can be made for dual methods
as well as primal-dual methods.) As μ goes to zero, the contribution of the affine-scaling
direction becomes increasingly dominant. Thus the limiting direction when μ approaches
zero is the affine scaling direction.

The centering direction is the Newton direction for the problem

minimize f (x) = −
n∑
j=1

log xj

subject to Ax = b.

This problem finds the “analytic center” of the feasible region, the point “farthest away”
from all boundaries, in the sense that the product

∏
xj is maximal.

We now briefly describe the polynomial algorithms that use these search directions.
In general, path-following algorithms attempt to move along the barrier trajectory. The
strategy is to choose an initial parameterμ = μ0, find an approximate solution to the appro-
priate subproblem (Pμ in the primal case), reduce μ (usually by some specified fraction),
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and repeat. The best complexity bound on the number of iterations is currently O(
√
nL)

iterations, for “short-step” algorithms. In such methods the iterates are confined to a small
region around the barrier trajectory, so that one iteration of Newton’s method will typically
suffice to obtain a “near solution” to Pμ. To prevent the iterates from straying too far from
the trajectory, the barrier parameter μ can be reduced only by a small amount, typically by
(1−γ /√n), for some appropriate constant γ > 0. “Long-step” methods allow their iterates
to lie in a wider neighborhood of the barrier trajectory and reduce the barrier parameter more
rapidly. They may require more than one Newton iteration to obtain a “near solution” to
Pμ. For such methods, the best complexity bound on the number of iterations is currently
O(nL) iterations.

To conclude this section, we present a variant of the short-step primal logarithmic
barrier algorithm and prove that under appropriate assumptions it requires at mostO(

√
nL)

iterations. A similar proof can be developed for the primal-dual version of the algorithm.
The algorithm is a “theoretical algorithm”; details such as the step length and the strategy
for reducing the barrier parameter must be modified to obtain a computationally efficient
algorithm. The algorithm proceeds as follows.

Given a strictly feasible point x, a positive barrier parameter μ, and some tolerance
ε > 0, do the following:

1. Compute
y = (AX2AT)−1AX2(c − μX−1e), s = c − ATy.

2. If s ≥ 0 and xTs ≤ ε, stop—a solution has been found.

3. Let

	x = x − 1

μ
X2s.

Set x+ = x +	x. Set μ′ = θμ, where 0 < θ < 1, and repeat.

To establish the polynomial complexity of the algorithm, we define a measure of
proximity to the central trajectory. We show that, if a point is “sufficiently close” to the
trajectory (using our measure of proximity), then the Newton step will lead to a feasible
point with a guaranteed reduction in the duality gap. We also show that, if μ decreases by
a factor of (1 − γ /√n) for an appropriate value of γ (here we use γ = 1/6), then the new
point will also be “sufficiently close” to the trajectory.

What is a good measure of proximity to the barrier trajectory? For a given value of
μ, x is “near” the trajectory if, for some dual slack vector s, the components of xj sj are
approximately equal to μ. Here “approximately equal” is defined relative to μ. This leads
to the following measure of proximity at a point x:

δ(x, μ) = min
s

{∥∥∥∥Xsμ − e
∥∥∥∥ : ATy + s = c, y ∈ �m

}
.

The choice of norm in this definition is crucial. If the 2-norm is used, it is possible to obtain
a complexity of O(

√
nL) steps. However if a “looser” ∞-norm is used, then typically the

algorithm has a complexity ofO(nL) iterations. (Despite this inferior complexity, however,
algorithms that are based on the ∞-norm can have better performance.)
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In the following we use the stricter 2-norm for our measure of proximity. The measure
can then be written more conveniently as

δ(x, μ) = ∥∥X−1	x
∥∥

since

δ(x, μ) = min

{∥∥∥∥Xsμ − e
∥∥∥∥ : ATy + s = c, y ∈ �m

}
= μ−1 min

{ ‖Xs − μe, ‖ : ATy + s = c, y ∈ �m }
= μ−1 min

{ ∥∥X(c − ATy)− μe∥∥ : y ∈ �m }
= μ−1 min

{ ∥∥(Xc − μe)−XATy∥∥ : y ∈ �m }
= μ−1

∥∥P̄ (Xc − μe)∥∥ = ∥∥X−1	x
∥∥ .

The vectors y and s that solve the least-squares problem are the dual estimates at x obtained
from computing 	x (see the Exercises).

We now prove that under appropriate assumptions the path-following algorithm de-
scribed here has polynomial complexity. We shall analyze the properties of the algorithm
in a sequence of lemmas and then combine them to prove the final complexity theorem.

Within the proof, we define a “scaled complementarity” vector

t = Xs

μ
,

whose components are tj = xj sj /μ. Using this notation, the proximity measure can be
expressed as

δ(x, μ) = ‖t − e‖ =
[ n∑
j=1

(tj − 1)2
]1/2

.

We start by showing that if δ(x, μ) < 1, the points generated by applying Newton’s
method to solve Pμ are feasible, and their proximity measure decreases quadratically.

Lemma 10.5 (Quadratic Reduction in Proximity Measure). Let x be strictly feasible for
the primal problem, and let x+ = x +	x. If δ(x, μ) < 1, then x+ is strictly feasible and
δ(x+, μ) ≤ δ(x, μ)2.

Proof. First we prove that x+ is feasible. Since Ax = b and A	x = 0, it follows that
Ax+ = b, so we need only show that x+ > 0. To prove this we write x+ = x + 	x =
X(e+X−1	x). Now by assumption δ(x, μ) = ‖X−1	x‖ < 1, and hence each component
ofX−1	x is less than 1 in absolute value. It follows that e+X−1	x > 0, and consequently
x+ > 0.

To prove that δ(x+, μ) ≤ δ(x, μ)2 we first note that

δ(x+, μ) = min
s̄

{∥∥∥∥X+s̄
μ

− e
∥∥∥∥ : ATȳ + s̄ = c

}
≤
∥∥∥∥X+s
μ

− e
∥∥∥∥ ,
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where X+ = diag (x+) and s is the dual slack estimate at x. Using the relation

x+ = x +	x = x + x − 1

μ
X2s = 2x − 1

μ
X2s,

and the relation Xs = Sx where S = diag (s), we obtain

X+s
μ

= Sx+
μ

= 2Sx

μ
− SX2s

μ2
= 2Xs

μ
− (XS)(Xs)

μ2
.

Let t = Xs/μ and T = diag (t) = XS/μ. Then

X+s
μ

− e = 2t − T 2e − e.

Therefore

δ(x+, μ)2 ≤
n∑
j=1

(2tj − t2j − 1)2 =
n∑
j=1

(tj − 1)4 ≤
[ n∑
j=1

(tj − 1)2
]2

= δ(x, μ)4,

and consequently δ(x+, μ) < δ(x, μ)2.

Thus, if δ(x, μ) < 1, then the point x is “close” to the minimizer of Pμ, and each
iteration of Newton’s method will decrease the proximity measure at least quadratically. The
next lemma gives a bound on the proximity measure of x with respect to a new (reduced)
value of the barrier parameter μ′.

Lemma 10.6 (Proximity of x for Reduced μ). Let μ′ = θμ with 0 < θ ≤ 1. Then

δ(x, μ′) ≤ 1

θ

(
δ(x, μ)+ (1 − θ)√n ) .

Proof. From the definition of the proximity measure we have

δ(x, μ′) = min
s̄

{∥∥∥∥Xs̄μ′ − e
∥∥∥∥ : ATȳ + s̄ = c

}
≤
∥∥∥∥Xsμ′ − e

∥∥∥∥ =
∥∥∥∥ tθ − e

∥∥∥∥ ,
where s is the dual slack estimate at x for barrier parameter μ, and t = Xs/μ. Applying
the triangle inequality, we obtain

δ(x, μ′) ≤ 1

θ
‖(t − e)+ (1 − θ)e‖ ≤ 1

θ
‖t − e‖ + (1 − θ) ‖e‖

≤ 1

θ

(
δ(x, μ)+ (1 − θ)√n ) .

We now combine the results of the previous two lemmas to obtain a bound on the
proximity measure of a point obtained by a Newton step and for a new value of the barrier
parameter. In particular, if δ(x, μ) ≤ 1

2 , and the reduction in μ is sufficiently conservative
(that is, θ is sufficiently close to 1), then δ(x+, μ′) ≤ 1

2 also.
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Lemma 10.7 (Bounded Proximity Measure). Let x be strictly feasible for the primal prob-
lem, and suppose that δ(x, μ) ≤ 1

2 . Let x+ = x + 	x, and suppose that μ′ = θμ. If
θ ≥ (1 − 1/(6

√
n)), then δ(x+, μ′) ≤ 1

2 .

Proof. Applying Lemmas 10.5 and 10.6 successively, we obtain

δ(x+, μ′) ≤ 1

θ

(
δ(x+, μ)+ (1 − θ)√n )

≤ 1

θ

(
δ(x, μ)2 + (1 − θ)√n )

≤ 1

θ

(
1

4
+ 1

6

)
= 5

12θ
≤ 1

2
.

The last inequality follows since θ ≥ 1 − 1/6
√
n ≥ 5

6 .

From the preceding lemmas we can conclude that if we have a strictly feasible point
x0 and a barrier parameter μ0 satisfying δ(x0, μ0) ≤ 1

2 , then the sequence of iterates
(xk, μk) obtained by repeatedly taking a single Newton step, and reducing μ by a factor of
(1 − 1/(6

√
n)), is strictly feasible and maintains a proximity measure δ(xk, μk) ≤ 1

2 . Will
this sequence converge to an optimal solution as μ goes to zero? The next lemma will help
answer this question. It provides bounds on the duality gap at a point x in terms of μ and
δ(x, μ).

Lemma 10.8 (Bounded Duality Gap). Let x be strictly feasible for the primal problem, and
let (y, s) be the dual estimates at x with respect to μ. If δ(x, μ) ≤ δ ≤ 1, then (y, s) is dual
feasible, and

μ(n− δ√n) ≤ cTx − bTy ≤ μ(n+ δ√n).

Proof. By definition, ATy + s = c, and hence we need only show that s ≥ 0. Now by
assumption,

δ(x, μ) =
∥∥∥∥Xsμ − e

∥∥∥∥ ≤ 1,

and hence each component of Xs
μ

− e is at most 1 in absolute value. This implies that
xj sj ≥ 0 for all j , and since x > 0, it follows that s ≥ 0.

Because x is feasible to the primal and (y, s) is feasible to the dual, cTx− bTy = xTs.
Now

	x = x − 1

μ
X2s = Xe − 1

μ
X2s,

and hence
s = μX−1(e −X−1	x).

Consequently, the duality gap is

xTs = μxTX−1(e −X−1	x) = μeT(e −X−1	x) = μ(n− eTX−1	x),

so that
μ
(
n− ‖e‖ ∥∥X−1	x

∥∥ ) ≤ xTs ≤ μ
(
n+ ‖e‖ ∥∥X−1	x

∥∥ ).
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Since
∥∥X−1	x

∥∥ = δ(x, μ) ≤ δ, we obtain the desired result:

μ(n− δ√n) ≤ xTs ≤ μ(n+ δ√n).

It follows from the lemma that as the barrier parameter goes to zero, the iterates
converge to the optimal solution. The final theorem gives an upper bound on the number of
iterations required by the algorithm.

Theorem 10.9 (Complexity of the Short-Step Algorithm). Assume that the short-step algo-
rithm is initialized with x0 andμ0 > 0, so that δ(x0, μ0) <

1
2 . Assume that at each iteration

a single Newton step is taken and that the barrier parameter is updated as μk+1 = θμk ,
where θ = (1 − 1/(6

√
n)). Then the number of iterations required to find a solution with

a duality gap of at most ε is bounded above by 6
√
nM , where M = log(1.5nμ0/ε).

Proof. After the kth iteration we will have μk = θkμ0. Let x be the point obtained and y
the corresponding dual estimate. The previous lemmas imply that x is primal feasible, y is
dual feasible, and

cTx − bTy ≤ μk
(
n+ δ(x, μk)

√
n
) ≤ μk1.5n = 1.5nμ0

(
1 − 1/(6

√
n)
)k
.

Thus, the algorithm will have terminated if

1.5nμ0
(
1 − 1/(6

√
n)
)k ≤ ε,

or equivalently, if
k log

(
1 − 1/(6

√
n)
) ≤ − log(1.5nμ0/ε).

This condition implies that

−k log
(
1 − 1/(6

√
n)
) ≥ M.

Since − log(1− α) ≥ α for all 0 < α < 1 (see the Exercises), this inequality will certainly
hold if k/6

√
n ≥ M , that is, if k ≥ 6

√
nM . Thus we have the required bound on the number

of iterations.

It can be shown (see Papadimitriou and Steiglitz (1982, reprinted 1998)) that if the
objective values of a primal feasible solution and a dual feasible solution differ by less than
2−2L, then the objective values must be equal, so the solutions must be optimal to the primal
and dual problems, respectively. Consequently, if sTk xk < 2−2L, then the optimal solution
has been found. Assuming that μ0 = 2O(L), we obtain that M = O(L), and hence the
number of iterations required for termination is at most O(

√
nL). (For this choice of μ0,

initialization procedures for the algorithm exist.)

Exercises
6.1. Write down the first-order optimality conditions for the dual logarithmic barrier

problem. Prove that they are equivalent to the perturbed optimality conditions solved
by the primal-dual algorithm.
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6.2. Prove that the centering direction is the solution to the problem

minimize f (x) = −
n∑
j=1

log xj

subject to Ax = b.

6.3. Note that it is also possible to define a dual logarithmic barrier method—a barrier
method that operates on the dual problem. The method solves a sequence of problems

maximize
y,s

f (y, s) = bTy + μ
n∑
j=1

log(sj )

subject to ATy + s = c

for a decreasing sequence of barrier parameters. Do the following:

(i) Derive the first-order optimality conditions for this problem and prove that the
points satisfying these conditions are on the primal-dual central path.

(ii) The dual method moves in the projected Newton direction for this problem.
Prove that this direction is given by

	y = 1

μ
(AS−2AT)−1b − (AS−2AT)−1AS−1e,

where 	s = −AT	y.
6.4. The analytic center for the dual problem is the point that solves

minimize f (y) = −
n∑
j=1

log(c − ATy)j .

Find an expression for the Newton direction at a point y for the problem of finding
the analytic center of the dual. This direction is called the dual centering direction.
Prove that the projected Newton direction for the dual logarithmic barrier method is
a combination of the dual affine direction and the dual centering direction.

6.5. Prove that − log(1 − α) ≥ α for all 0 < α < 1.

10.7 Notes

Interior-Point Methods—The book by Fiacco and McCormick (1968, reprinted 1990) is
a “classical” reference to interior-point methods for nonlinear optimization. See also our
Chapter 16. The books by den Hertog (1994), Roos et al. (2005), Vanderbei (2007), Wright
(1997), and Ye (1997) provide comprehensive overviews of interior-point methods for linear
programming. The developments in interior-point methods for linear programming have
been extended to wider classes of convex programming. See Sections 16.7 and 16.8.

Karmarkar’s Method—In his original paper Karmarkar considered a primal problem
in standard form with an additional normalizing constraint eTx = 1. He showed that all
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linear programs can be transformed into this specific form, but the proposed transformation
results in a much larger linear program. Variants of the method that are suitable for problems
in standard form were proposed by Anstreicher (1986), Gay (1987), and Ye and Kojima
(1987). A description of Karmarkar’s method is available on the Web page for this book at
http://www.siam.org/books/ot108.

Path-Following Methods—The first path-following method, which was also the first
O(

√
nL) algorithm for linear programming, was developed by Renegar (1988). The de-

velopment of primal-dual path-following methods was motivated by the 1986 paper by
Megiddo. The first polynomial primal-dual path-following algorithms were proposed by
Kojima, Mizuno, and Yoshise (1989) and Monteiro and Adler (1989). Kojima, Mizuno, and
Yoshise used an ∞-norm proximity measure to obtain an O(nL) algorithm, while Mon-
teiro and Adler used a 2-norm measure to obtain an O(

√
nL) algorithm. The particular

primal-dual method presented in Section 10.2 is based on the paper by Monteiro and Adler.
The proof of polynomiality for the primal path-following method presented in Section 10.6
follows the article by Roos and Vial (1992).

The predictor-corrector method is described in the paper of Mehrotra (1992). The
convergence behavior of the method in degenerate cases is discussed in the paper by Güler
and Ye (1993). Many software packages for linear programming include an enhancement
of the method proposed by Gondzio that allows efficient use of higher-order predictor and
corrector terms.

A polynomial predictor-corrector primal-dual path-following algorithm is given in
the paper by Mizuno, Todd, and Ye (1993). If proximity is measured using a 2-norm, the
algorithm has a complexity bound of O(

√
nL) iterations. A predictor-corrector algorithm

based on an ∞-norm is given in the paper by Anstreicher and Bosch (1995). The algorithm
requires at mostO(L) “predictor” steps, and each of those requires at mostO(n) “corrector”
or centering steps, so that the algorithm requires at most O(nL) steps.

The paper by Zhang and Tapia (1992) shows that the centering parameter and the step
length in a primal-dual path-following method can be chosen so that both polynomiality
and superlinear convergence are achieved. Further, if the solution is nondegenerate, the
rate of convergence is quadratic. (When referring to “convergence rates” we assume that
the method takes an infinite number of steps to converge.) The algorithm asymptotically
uses the affine-scaling direction (the centering parameter—the coefficient of the centering
direction—tends to zero) and allows the iterates to be close to the boundary. These features
have also been observed to give good practical performance.

Computational Issues— A discussion of computational issues for interior-point meth-
ods can be found in the papers by Lustig, Marsten, and Shanno (1992, 1994a). Further
developments are in the 1996 paper by Andersen et al.

Self-Dual Formulations—The concept of a self-dual linear program was introduced
by Tucker (1956). The idea of embedding a linear program in a self-dual problem was
proposed in the paper by Ye, Todd, and Mizuno (1994) and, in a simplified form, in the
paper by Xu, Hung, and Ye (1993).

Affine-Scaling Methods—The primal affine-scaling method was proposed by Barnes
(1986) and Vanderbei, Meketon, and Freedman (1986). Subsequently it was found that
the method had already been proposed 12 years earlier by Dikin (1974), a student of
Kantorovich.
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Unconstrained Optimization
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Chapter 11

Basics of Unconstrained
Optimization

11.1 Introduction
In this chapter we begin studying the problem

minimize f (x),

where no constraints are placed on the variables x = (x1, . . . , xn)
T. Unconstrained problems

arise, for example, in data fitting (see Section 1.5), where the objective function measures
the difference between the model and the data. Methods for unconstrained problems are
of more general value, though, since they form the foundation for methods used to solve
constrained optimization problems.

We will derive several optimality conditions for the unconstrained optimization prob-
lem. One of these conditions, the “first-order necessary condition,” consists of a system
of nonlinear equations. Applying Newton’s method to this system of equations will be our
fundamental technique for solving unconstrained optimization problems.

When started “close” to a solution, Newton’s method converges rapidly. At an arbi-
trary starting point, however, Newton’s method is not guaranteed to converge to a minimizer
of the function f and must be refined before an acceptable algorithm can be obtained. Such
refinements are described in the latter part of the chapter. These refinements can be used
to ensure that Newton’s method as well as other optimization methods converge from any
starting point.

11.2 Optimality Conditions
We will derive conditions that are satisfied by solutions to the problem

minimize f (x).

The conditions for the problem
maximize f (x)

are analogous and will be mentioned in passing.

357
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Let x∗ denote a candidate solution to the minimization problem. In Chapter 2 we
defined global solutions to optimization problems. The definition of a global optimum does
not have much computational utility since it requires information about the function at every
point, whereas the algorithms in common use will only have information about the function
at a finite set of points. Even if the global minimizer x∗ were given to us, it would be
difficult or impossible to confirm that it was indeed the global minimizer. (See the Notes in
Chapter 2.)

It is easier to look for local minimizers. A local minimizer is a point x∗ that satisfies
the condition

f (x∗) ≤ f (x) for all x such that ‖x − x∗‖ < ε,

where ε is some (typically small) positive number whose value may depend on x∗. Similarly
defined is a strict local minimizer:

f (x∗) < f (x) for all x such that 0 < ‖x − x∗‖ < ε.

It is possible for a function to have a local minimizer and yet have no global minimizer. It
is also possible to have neither global nor local minimizers, to have both global and local
minimizers, to have multiple global minimizers, and various other combinations. (See the
Exercises.)

In this form, these conditions are no more practical than those for a global minimizer,
since they too require information about the function at an infinite number of points, and the
algorithms will only have information at a finite number of points. However, with additional
assumptions on the function f , practical optimality conditions can be obtained.

To obtain more practical conditions, we assume that the function f is differentiable
and that its first and second derivatives are continuous in a neighborhood of the point x∗. Not
all the conditions that we derive will require this many derivatives, but it will simplify the
discussion if the assumptions do not change from condition to condition. (A more precise
discussion can be found in the book by Ortega and Rheinboldt (1970, reprinted 2000).) All
of these conditions will be derived using Taylor series expansions of f about the point x∗.

Suppose that x∗ is a local minimizer of f . Consider the Taylor series with remainder
term (see Section 2.6)

f (x∗ + p) = f (x∗)+ ∇f (x∗)Tp + 1
2p

T∇2f (ξ)p,

wherep is a nonzero vector and ξ is a point betweenx andx∗. We will show that∇f (x∗) = 0.
If x∗ is a local minimizer, there can be no feasible descent directions at x∗ (see Section 2.2).
Hence

∇f (x∗)Tp ≥ 0 for all feasible directions p.

For an unconstrained problem, all directions p are feasible, and so the gradient at x∗ must
be zero; see the Exercises. Thus, if x∗ is a local minimizer of f , then

∇f (x∗) = 0.

A point satisfying this condition is a stationary point of the function f .
In the one-dimensional case, there is a geometric interpretation for this condition. If

f is increasing at a point x, then f ′(x) > 0. Similarly if f is decreasing, then f ′(x) < 0.
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stationary points

Figure 11.1. Stationary points.

Apoint wheref is increasing or decreasing cannot correspond to a minimizer. At a minimizer
the function will be flat or stationary, and hencef ′(x∗) = 0. This is illustrated in Figure 11.1.

The condition ∇f (x∗) = 0 is referred to as the first-order necessary condition for
a minimizer. The term “first-order” refers to the presence of the first derivatives of f
(or to the use of the first-order term in the Taylor series to derive this condition). It is a
“necessary” condition since if x∗ is a local minimizer, then it “necessarily” satisfies this
condition. The condition is not “sufficient” to determine a local minimizer since a point
satisfying ∇f (x∗) = 0 could be a local minimizer, a local maximizer, or a saddle point (a
stationary point that is neither a minimizer nor a maximizer).

Local minimizers can be distinguished from other stationary points by examining
second derivatives. Consider again the Taylor series expansion at x = x∗ + p, but now
using the result that ∇f (x∗) = 0:

f (x) = f (x∗ + p) = f (x∗)+ 1
2p

T∇2f (ξ)p.

We will show that ∇2f (x∗) must be positive semidefinite. If not, then vT∇2f (x∗)v < 0
for some v. Then it is also true that vT∇2f (ξ)v < 0 if ‖ξ − x∗‖ is small. This is because
∇2f is assumed to be continuous at x∗. If p is chosen as some sufficiently small multiple
of v, then the point ξ will be close enough to x∗ to guarantee (via the Taylor series) that
f (x) < f (x∗), a contradiction. Hence if x∗ is a local minimizer, then ∇2f (x∗) is positive
semidefinite. This is referred to as the second-order necessary condition for a minimizer,
with the “second-order” referring to the use of second derivatives or the second-order term
in the Taylor series.

There is also a second-order sufficient condition, “sufficient” to guarantee that x∗ is a
local minimizer: If

∇f (x∗) = 0 and ∇2f (x∗) is positive definite,
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then x∗ is a strict local minimizer of f . If this condition is satisfied, then it is easy to modify
the above argument to show that f (x) = f (x∗ +p) > f (x∗) for all 0 < ‖p‖ < ε for some
ε > 0 as follows: We write down the Taylor series expansion about the point x∗, taking into
account that ∇f (x∗) = 0:

f (x) = f (x∗)+ 1
2p

T∇2f (ξ)p.

If ∇2f (x∗) is positive definite and ∇2f is continuous, then ∇2f (ξ) will also be positive
definite if ‖ξ − x∗‖ is sufficiently small. Since ‖ξ − x∗‖ ≤ ‖p‖ we can choose ε small
enough to guarantee this. Hence the second term in the Taylor series will be positive and
so f (x) > f (x∗), as desired.

So far we have discussed only minimization problems. There is no fundamental
difference between minimization and maximization problems because

max f (x) = −min −f (x).
As a result, the optimality conditions for a maximizer are analogous to those for a minimizer.
The necessary conditions state that if x∗ is a local maximizer, then

∇f (x∗) = 0 and ∇2f (x∗) is negative semidefinite.

The sufficient conditions state that if

∇f (x∗) = 0 and ∇2f (x∗) is negative definite,

then x∗ is a strict local maximizer. These optimality conditions are derived in the Exercises.

Example 11.1 (Optimality Conditions). Consider the function

f (x1, x2) = 1
3x

3
1 + 1

2x
2
1 + 2x1x2 + 1

2x
2
2 − x2 + 9.

The condition for a stationary point is

∇f (x) =
(
x2

1 + x1 + 2x2

2x1 + x2 − 1

)
= 0.

The second component of this condition shows that x2 = 1 − 2x1, and if this is substituted
into the first component, we obtain

x2
1 − 3x1 + 2 = 0 or (x1 − 1)(x1 − 2) = 0.

Hence there are two stationary points:

xa =
(

1
−1

)
and xb =

(
2

−3

)
.

The Hessian matrix for the function is

∇2f (x) =
(

2x1 + 1 2
2 1

)
,
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x 3(x) =f x 4(x) =f -(x) =f x 4

Figure 11.2. Limitations of optimality conditions.

so

∇2f (xa) =
(

3 2
2 1

)
and ∇2f (xb) =

(
5 2
2 1

)
.

∇2f (xb) is positive definite, so xb is a local minimizer. However, ∇2f (xa) is indefinite,
and xa is neither a minimizer nor a maximizer of f . This function has neither a global
minimizer nor a global maximizer, since f is unbounded as x1 → ±∞.

There is a slight gap between the necessary and sufficient conditions for a minimizer,
the case where ∇f (x∗) = 0 and ∇2f (x∗) is positive semidefinite. This gap represents a
limitation of these conditions, as can be seen by considering the one-dimensional functions
f1(x) = x3, f2(x) = x4, and f3(x) = −x4. All three functions satisfy f ′(0) = f ′′(0) = 0,
and so x∗ = 0 is a candidate for a local minimizer. However, while f2 has a local minimum
at x∗ = 0, f1 has only an inflection point, and f3 has a local maximum. This is illustrated
in Figure 11.2. More complicated conditions involving higher derivatives are required to
fill this gap between the necessary and sufficient conditions.

The conditions given here require that ∇f (x∗) be exactly zero. For computer calcu-
lations this will almost never be true, and so these conditions must be adapted in a computer
algorithm. This topic is discussed in Section 12.5.

Exercises
2.1. Consider the following function

f (x) = 15 − 12x − 25x2 + 2x3.

(i) Use the first and second derivatives to find the local maxima and local minima
of f .

(ii) Show that f has neither a global maximum nor a global minimum.
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2.2. Consider the function

f (x) = 3x3 + 7x2 − 15x − 3.

Find all stationary points of this function and determine whether they are local min-
imizers and maximizers. Does this function have a global minimizer or a global
maximizer?

2.3. Consider the function

f (x1, x2) = 8x2
1 + 3x1x2 + 7x2

2 − 25x1 + 31x2 − 29.

Find all stationary points of this function and determine whether they are local min-
imizers and maximizers. Does this function have a global minimizer or a global
maximizer?

2.4. Find the global minimizer of the function

f (x1, x2) = x2
1 + x1x2 + 1.5x2

2 − 2 log x1 − log x2.

2.5. Determine the minimizers/maximizers of the following functions:

(i) f (x1, x2) = x4
1 + x4

2 − 4x1x2.

(ii) f (x1, x2) = x2
1 − 2x1x

2
2 + x4

2 − x5
2 .

(iii) f (x1, x2, x3) = x2
1 + 2x2

2 + 5x2
3 − 2x1x2 − 4x2x3 − 2x3.

2.6. Find all the values of the parameter a such that (1, 0)T is the minimizer or maximizer
of the function

f (x1, x2) = a3x1e
x2 + 2a2 log(x1 + x2)− (a + 2)x1 + 8ax2 + 16x1x2.

2.7. Consider the problem

minimize f (x1, x2) = (x2 − x2
1)(x2 − 2x2

1).

(i) Show that the first- and second-order necessary conditions for optimality are
satisfied at (0, 0)T.

(ii) Show that the origin is a local minimizer of f along any line passing through
the origin (that is, x2 = mx1).

(iii) Show that the origin is not a local minimizer of f (consider, for example,
curves of the form x2 = kx2

1 ). What conclusions can you draw from this?

2.8. Consider the problem

minimize f (x) = (x1 − 2x2)
2 + x4

1 .

Find the minimizer of f . Determine that the second-order necessary condition for
a local minimizer is satisfied at this point. Is the second-order sufficient condition
satisfied? Is this point a strict local minimizer? Is it a global minimizer?
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2.9. Let
f (x) = 2x2

1 + x2
2 − 2x1x2 + 2x3

1 + x4
1 .

Determine the minimizers/maximizers of f and indicate what kind of minima or
maxima (local, global, strict, etc.) they are.

2.10. Let
f (x) = cx2

1 + x2
2 − 2x1x2 − 2x2,

where c is some scalar.

(i) Determine the stationary points of f for each value of c.

(ii) For what values of c can f have a minimizer? For what values of c can f have
a maximizer? Determine the minimizers/maximizers corresponding to such
values of c and indicate what kind of minima or maxima (local, global, strict,
etc.) they are.

2.11. Consider the following unconstrained problem:

minimize f (x) = x2
1 − x1x2 + 2x2

2 − 2x1 + ex1+x2 .

(i) Write down the first-order necessary conditions for optimality.

(ii) Is x = (0, 0)T a local optimum? If not, find a direction p along which the
function decreases.

(iii) Attempt to minimize the function starting from x = (0, 0)T along the direction
p that you have chosen in part (ii). [Hint: Consider F(α) = f (x + αp).]

2.12. Consider the following problem:

minimize f (x) = (x1 − 2)2 + (x2 − 3)2 + 1.

Solve this problem. Consider now the problems below: Do they all have the same
optimal point? If not, explain why not.

(i) minimize f (x) = √
(x1 − 2)2 + (x2 − 3)2 + 1.

(ii) minimize f (x) = (x1 − 2)2 + (x2 − 3)2.

(iii) minimize f (x) = √
(x1 − 2)2 + (x2 − 3)2.

2.13. Consider the quadratic function

f (x) = 1
2x

TQx − cTx.
(i) Write the first-order necessary condition. When does a stationary point exist?

(ii) Under what conditions on Q does a local minimizer exist?

(iii) Under what conditions on Q does f have a stationary point, but no local
minima nor maxima?

2.14. Consider the problem

minimize f (x) = ‖Ax − b‖2
2 ,

where A is an m× n matrix with m ≥ n, and b is a vector of length m. Assume that
the rank of A is equal to n.
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(i) Write down the first-order necessary condition for optimality. Is this also a
sufficient condition?

(ii) Write down the optimal solution in closed form.

2.15. Give examples of functions that have the following properties:

(i) f has a local minimizer but no global minimizer.

(ii) f has neither global nor local minimizers.

(iii) f has both global and local minimizers.

(iv) f has multiple global minimizers.

2.16. Give an example of a differentiable function on �2 which has infinitely many mini-
mizers but not a single maximizer.

2.17. Give an example of a differentiable function on �2 which has just one stationary
point: the local but not the global minimizer.

2.18. Define the terms global maximizer, strict global maximizer, local maximizer, and
strict local maximizer in analogy with the corresponding terms for minimizers.

2.19. State and prove the first-order necessary condition for a local maximizer of a function.

2.20. State and prove the second-order necessary condition for a local maximizer of a
function.

2.21. State and prove the second-order sufficient condition for a local maximizer of a
function.

2.22. Prove that, if f is convex, then any stationary point is also a global minimizer.

2.23. If x∗ is a local minimizer of a function f , then

∇f (x∗)Tp ≥ 0 for all feasible directions p.

Prove that, for an unconstrained problem, the only way that this condition can be
satisfied is if the gradient at x∗ is zero.

11.3 Newton’s Method for Minimization
In this section we present Newton’s method in its most basic or “classical” form. In later
sections we will show how the method can be adjusted to guarantee that the search directions
are descent directions, to guarantee convergence, and to lower the costs of the method.

As presented in Chapter 2, Newton’s method is an algorithm for finding a zero of a
nonlinear function. To use Newton’s method for optimization, we apply it to the first-order
necessary condition for a local minimizer:

∇f (x) = 0.

Since the Jacobian of ∇f (x) is ∇2f (x), this leads to the formula

xk+1 = xk − [∇2f (xk)]−1∇f (xk).
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Newton’s method is often written as xk+1 = xk+pk , where pk is the solution to the Newton
equations:

[∇2f (xk)]p = −∇f (xk).
This emphasizes that the step pk is usually obtained by solving a linear system of equations
rather than by computing the inverse of the Hessian.

Newton’s method was derived in Chapter 2 by finding a linear approximation to a
nonlinear function via the Taylor series. The formula for Newton’s method represents a
step to a zero of this linear approximation. For the nonlinear equation ∇f (x) = 0 this
linear approximation is

∇f (xk + p) ≈ ∇f (xk)+ ∇2f (xk)p.

The linear approximation is the gradient of the quadratic function

qk(p) ≡ f (xk)+ ∇f (xk)Tp + 1
2p

T∇2f (xk)p.

qk(p) corresponds to the first three terms of a Taylor series expansion for f about the
point xk .

The quadratic function qk provides a new interpretation of Newton’s method for
minimizing f . At every iteration Newton’s method approximates f (x) by qk(p), the first
three terms of its Taylor series about the point xk; minimizes qk as a function of p; and then
sets xk+1 = xk + p. Hence at each iteration we are approximating the nonlinear function
by a quadratic model. It is this point of view that we shall prefer.

As might be expected, Newton’s method has a quadratic rate of convergence except
in “degenerate” cases; it can sometimes diverge or fail. If Newton’s method converges, it
will converge to a stationary point. In the form that we have presented it (the “classical”
Newton formula) there is nothing in the algorithm to bias it towards finding a minimum,
although that topic will be discussed in Section 11.4.

Newton’s method is rarely used in its classical form. The method is altered in two
general ways: to make it more reliable and to make it less expensive. We have already seen
that Newton’s method can diverge or fail, and even if it does converge, it might not converge
to a minimizer. By embedding Newton’s method inside some sort of auxiliary strategy it
will be possible to guarantee that the method will converge to a stationary point and possibly
a local minimizer, if one exists. One approach is to use the Newton direction within our
general optimization algorithm (see Section 2.4), so that the new point is defined as

xk+1 = xk + αkpk,
where αk is a scalar chosen so that f (xk+1) < f (xk). (In the classical Newton’s method,
αk = 1 at every iteration, and there is no guarantee that the function value is decreased.)

There are three types of costs associated with using Newton’s method: derivatives,
calculations, and storage. In its classical form, Newton’s method requires second deriva-
tives, the solution of a linear system, and the storage of a matrix. For an n-variable problem,
there areO(n2) entries in the Hessian matrix, meaning thatO(n2) expressions must be pro-
grammed to compute these derivatives. Many people find it tedious to derive and program
these formulas; it is easy to make errors that can cause the optimization algorithm to per-
form poorly or even fail. Once the Hessian matrix has been found, it costsO(n3) arithmetic
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operations to solve the linear system in the Newton formula. Also, normally the Hessian
matrix will have to be stored at a cost of O(n2) storage locations. As n increases, these
costs grow rapidly.

Some of these concerns can be ameliorated. For example, it is possible to automate the
derivative calculations (see Section 12.4). Also, many large problems have sparse Hessian
matrices, and the use of sparse matrix techniques can reduce the storage and computational
costs of using Newton’s method (see Appendix A.6).

Alternatively, it is possible to reduce these costs by using algorithms that compromise
on Newton’s method. Virtually all of these algorithms get by with only first derivative
calculations. Most of these algorithms avoid solving a linear system and reduce the cost
of using the Newton formula to O(n2) or less. The methods designed for solving large
problems reduce the storage requirements to O(n). Some of these compromises will be
discussed in Chapters 12 and 13.

These compromises do not come without penalties. The resulting algorithms have
slower rates of convergence and tend to use more, but cheaper, iterations to solve problems.

Since Newton’s method is almost never used in its classical form, why is this classical
form presented here with such prominence? The reason is that Newton’s method represents
an “ideal” method for solving minimization problems. It may sometimes fail, and it may be
too expensive to use routinely. Other algorithms strive to overcome its deficiencies while
retaining its good properties, in particular, while retaining as rapid a rate of convergence as
possible. It can be confusing to study all the various methods that have been proposed for
solving unconstrained minimization problems. However, if it is remembered that virtually
all of them are compromises on Newton’s method, then the relationships among the methods
become clearer, and their relative merits become easier to understand.

If Newton’s method is used, the theorem below shows that under appropriate condi-
tions the convergence rate will be quadratic.

Theorem 11.2 (Quadratic Convergence of Newton’s Method). Let f be a real-valued
function of n variables defined on an open convex set S. Assume that ∇2f is Lipschitz
continuous on S, that is, ∥∥∇2f (x)− ∇2f (y)

∥∥ ≤ L ‖x − y‖
for all x, y ∈ S and for some constant L <∞. Consider the sequence { xk } generated by

xk+1 = xk − [∇2f (xk)]−1∇f (xk).
Let x∗ be a minimizer of f (x) in S and assume that∇2f (x∗) is positive definite. If ‖x0 − x∗‖
is sufficiently small, then { xk } converges quadratically to x∗.

Proof. See the Exercises.

If a compromise to Newton’s method is used, we cannot normally expect to achieve
such a rapid rate of convergence. It is still possible, however, to achieve superlinear conver-
gence. This is the topic of the next theorem. The theorem shows that, to achieve superlinear
convergence, the search direction must approach the Newton direction in the limit as the
solution is approached.
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The theorem implicitly assumes that the Newton direction is defined at every iteration,
that is, ∇2f (xk) is nonsingular for every k. This is not an essential assumption. The
conclusion of the theorem is only of interest in the limit as x∗ is approached. Since ∇2f (x∗)
is assumed to be positive definite, the continuity of ∇2f guarantees that ∇2f (xk) will be
positive definite for all sufficiently large values of k.

Theorem 11.3 (Superlinear Convergence). Let f be a real-valued function of n variables
defined on an open convex set S. Assume that ∇2f is Lipschitz continuous on S, that is,∥∥∇2f (x)− ∇2f (y)

∥∥ ≤ L ‖x − y‖
for all x, y ∈ S and for some constant L <∞. Consider the sequence { xk } generated by

xk+1 = xk + pk.
Suppose that { xk } ⊂ S,

lim
k→∞ xk = x∗ ∈ S,

and that xk = x∗ for all k. Also suppose that ∇2f (x∗) is positive definite. Then { xk }
converges to x∗ superlinearly and ∇f (x∗) = 0 if and only if

lim
k→∞

‖pk − (pN)k‖
‖pk‖ = 0,

where (pN)k is the Newton direction at xk .

Proof. We give here an outline of the proof. Some details are left to the Exercises.
We first prove the “if” part of the theorem, assuming that

lim
k→∞

‖pk − (pN)k‖
‖pk‖ = 0.

This is done in two stages, first showing that ∇f (x∗) = 0, and then showing that { xk }
converges superlinearly.

(i) ∇f (x∗) = 0: Since −∇f (xk) = ∇2f (xk)(pN)k and xk+1 − xk = pk ,

∇f (xk+1) = [∇f (xk+1)− ∇f (xk)− ∇2f (xk)(xk+1 − xk)]
+∇2f (xk)[pk − (pN)k].

Thus

‖∇f (xk+1)‖
‖pk‖ ≤

∥∥∇f (xk+1)− ∇f (xk)− ∇2f (xk)(xk+1 − xk)
∥∥

‖pk‖
+ ∥∥∇2f (xk)

∥∥ ‖pk − (pN)k‖
‖pk‖ .

From Theorem B.6 in Appendix B, it follows that∥∥∇f (xk+1)− ∇f (xk)− ∇2f (xk)(xk+1 − xk)
∥∥ = O(‖pk‖2).
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Hence, for some positive constant γ ,

lim
k→∞

‖∇f (xk+1)‖
‖pk‖ ≤ lim

k→∞
γ ‖pk‖2

‖pk‖ + lim
k→∞

∥∥∇2f (xk)
∥∥ ‖pk − (pN)k‖

‖pk‖ = 0.

(Note that
∥∥∇2f (xk)

∥∥ has a finite limit because of the continuity assumptions in the
theorem.) Since limk→∞ ‖pk‖ = 0, then

∇f (x∗) = lim
k→∞∇f (xk) = 0.

(ii) { xk } converges to x∗ superlinearly: From the assumptions on f and its derivatives,
there exists an α > 0 such that

‖∇f (xk+1)‖ = ‖∇f (xk+1)− ∇f (x∗)‖ ≥ α ‖xk+1 − x∗‖
for all sufficiently large values of k (see the Exercises). Hence

‖∇f (xk+1)‖
‖pk‖ ≥ α ‖xk+1 − x∗‖

‖pk‖
≥ α ‖xk+1 − x∗‖

‖xk+1 − x∗‖ + ‖xk − x∗‖
= α ‖xk+1 − x∗‖ / ‖xk − x∗‖

‖xk+1 − x∗‖ / ‖xk − x∗‖ + 1
.

But since

lim
k→∞

‖∇f (xk+1)‖
‖pk‖ = 0,

it follows that

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖ = 0,

and hence { xk } converges superlinearly.

This completes the first half of the proof. The second half, the “only if” part, more or
less reverses the arguments used in the first half of the proof.

We assume that { xk } converges superlinearly and that ∇f (x∗) = 0. Now there exists
a constant β > 0 such that

‖∇f (xk+1)‖ = ‖∇f (xk+1)− ∇f (x∗)‖ ≤ β ‖xk+1 − x∗‖
for all sufficiently large k (see the Exercises). The superlinear convergence of { xk } implies
that

0 = lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

≥ lim
k→∞

1

β

‖∇f (xk+1)‖
‖xk − x∗‖

= lim
k→∞

1

β

‖∇f (xk+1)‖
‖pk‖

‖xk+1 − xk‖
‖xk − x∗‖ .
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Since

lim
k→∞

‖xk+1 − xk‖
‖xk − x∗‖ = 1

(see the Exercises), we obtain that

lim
k→∞

‖∇f (xk+1)‖
‖pk‖ = 0.

Now, by an argument similar to that used in step (i) of the first half of the proof,∥∥∇2f (xk)[pk − (pN)k]
∥∥

‖pk‖ ≤
∥∥∇f (xk+1)− ∇f (xk)− ∇2f (xk)(xk+1 − xk)

∥∥
‖pk‖

+‖∇f (xk+1)‖
‖pk‖ .

Since the limit of the right-hand side is zero, we obtain that

lim
k→∞

∥∥∇2f (xk)[pk − (pN)k]
∥∥

‖pk‖ = 0.

Since ∇2f (x∗) is positive definite, ∇2f (xk) will be positive definite for large values of k,
and hence

lim
k→∞

‖pk − (pN)k‖
‖pk‖ = 0.

This completes the proof.

Exercises
3.1. Let

f (x1, x2) = 2x2
1 + x2

2 − 2x1x2 + 2x3
1 + x4

1 .

What is the Newton direction at the point x0 = (0, 1)T? Use a Cholesky decompo-
sition of the Hessian to solve the Newton equations.

3.2. Use Newton’s method to solve

minimize f (x) = 5x5 + 2x3 − 4x2 − 3x + 2.

Look for a solution in the interval −2 ≤ x ≤ 2. Make sure that you have found a
minimum and not a maximum. You may want to experiment with different initial
guesses of the solution.

3.3. Use Newton’s method to solve

minimize f (x1, x2) = 5x4
1 + 6x4

2 − 6x2
1 + 2x1x2 + 5x2

2 + 15x1 − 7x2 + 13.

Use the initial guess (1, 1)T. Make sure that you have found a minimum and not a
maximum.
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3.4. Consider the problem
minimize f (x) = x4 − 1.

Solve this problem using Newton’s method. Start from x0 = 4 and perform three
iterations. Prove that the iterates converge to the solution. What is the rate of
convergence? Can you explain this?

3.5. For a one-variable problem, suppose that |x−x∗| = ε where x∗ is a local minimizer.
Using a Taylor series expansion, find bounds on |f (x)−f (x∗)| and |f ′(x)−f ′(x∗)|.

3.6. Consider the problem

minimize f (x) = 1
2x

TQx − cTx,
where Q is a positive-definite matrix. Prove that Newton’s method will determine
the minimizer of f in one iteration, regardless of the starting point.

3.7. The purpose of this exercise is to prove Theorem 11.2. Assume that the assumptions
of the theorem are satisfied.

(i) Prove that

xk+1 − x∗ = ∇2f (xk)
−1
[∇2f (xk)(xk − x∗)− (∇f (xk)− ∇f (x∗))

]
.

(ii) Prove that

‖xk+1 − x∗‖ ≤ (L/2)
∥∥∇2f (xk)

−1
∥∥ ‖xk − x∗‖2 .

Hint: Use Theorem B.6 in Appendix B.

(iii) Prove that for all large enough k,

‖xk+1 − x∗‖ ≤ L
∥∥∇2f (x∗)−1

∥∥ ‖xk − x∗‖2 ,

and from here prove the results of the theorem.

3.8. Let { xk } be a sequence that converges superlinearly to x∗. Prove that

lim
k→∞

‖xk+1 − xk‖
‖xk − x∗‖ = 1.

3.9. Let f be a real-valued function of n variables and assume that f , ∇f , and ∇2f are
continuous. Suppose that ∇2f (x̄) is nonsingular for some point x̄. Prove that there
exist constants ε > 0 and β > α > 0 such that

α ‖x − x̄‖ ≤ ‖∇f (x)− ∇f (x̄)‖ ≤ β ‖x − x̄‖
for all x satisfying ‖x − x̄‖ ≤ ε.

3.10. Use the previous two problems to complete the proof of Theorem 11.3.

3.11. Assume that the conditions of Theorem 11.3 are satisfied, and that∇2f (xk) is positive
definite for all k. Also assume that pk is computed as the solution of

Bkpk = −∇f (xk),
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where Bk is a positive-definite matrix, and where ‖Bk‖ ≤ M for all k, withM being
some constant. Let (pN)k be the Newton direction at the kth iteration. Prove that

lim
k→∞

∥∥[Bk − ∇2f (xk)]pk
∥∥

‖pk‖ = 0

if and only if

lim
k→∞

‖pk − (pN)k‖
‖pk‖ = 0.

3.12. Consider the minimization problem in Exercise 3.1. Suppose that a change of vari-
ables x̂ ≡ Ax + b is performed with

A =
(

3 1
4 1

)
and b =

(−1
−2

)
.

Show that the Newton direction for the original problem is the same as the New-
ton direction for the transformed problem (when both are written using the same
coordinate system).

3.13. Prove that the Newton direction remains unchanged if a change of variables x̂ ≡
Ax + b is performed, where A is an invertible matrix.

11.4 Guaranteeing Descent
Our general optimization algorithm (see Section 2.4) determines the new estimate of the
solution in the form

x + αp,
where α > 0 and f (x + αp) < f (x). This is possible if the search direction p is a descent
direction, that is, if

pT∇f (x) < 0.

In this section we show how to use a “modified matrix factorization” to guarantee this for
Newton’s method. (Additional requirements on p and α are needed to guarantee conver-
gence of the overall algorithm; see Section 11.5.)

In the classical Newton method the search direction is defined by

p = −[∇2f (x)]−1∇f (x).
If p is to be a descent direction at the point x, it must satisfy

pT∇f (x) = −∇f (x)T[∇2f (x)]−1∇f (x) < 0

or
∇f (x)T[∇2f (x)]−1∇f (x) > 0.

This condition will be satisfied if [∇2f (x)]−1 (or equivalently ∇2f (x)) is positive definite.
Requiring that ∇2f (x) be positive definite is a stronger condition than pT∇f (x) < 0.

To motivate this, recall that Newton’s method can be interpreted as approximating f (x+p)
by a quadratic:

f (x + p) ≈ f (x)+ pT∇f (x)+ 1
2p

T∇2f (x)p.
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The formula for Newton’s method is obtained by setting the derivative of the quadratic
function equal to zero. An alternative view is to minimize the quadratic as a function of
p. If ∇2f (x) is positive definite, then the minimum is obtained by setting the derivative
equal to zero, as before, and the two points of view are equivalent. If ∇2f (x) is indefinite,
however, then the quadratic function does not have a finite minimum.

If the Hessian matrix is indefinite, then one possible strategy is to replace the Hessian
by some related positive-definite matrix in the formula for the Newton direction. This
guarantees that the search direction is a descent direction. It also implies that the search
direction corresponds to the minimization of a quadratic approximation to the objective
function f , a quadratic approximation obtained from the Taylor series by replacing ∇2f (x)

with the “related positive-definite matrix.”
This might seem arbitrary, but there are several justifications for it. First, if it is done

appropriately, then the resulting algorithm can be shown to converge when used inside a line
search method. Second, at the solution to the optimization problem ∇2, f (x∗) will usually
be positive definite (it is always positive semidefinite), so that the Hessian will normally
only be replaced at points distant from the solution. Third, the related positive-definite
matrix can be found as a side effect of trying to use the classical Newton formula, with little
additional computation required. This third point is discussed further below.

Computing the search direction involves solving the linear system

∇2f (x)p = −∇f (x).
If ∇2f (x) is positive definite, then the factorization

∇2f (x) = LDLT

can be used, where the diagonal matrix D has positive diagonal entries (see Appendix
A.7.2). If ∇2f (x) is not positive definite, then at some point during the computation of the
factorization some diagonal entry of D will satisfy

dii ≤ 0.

If this happens, then dii should be replaced by some positive entry, perhaps |dii | or some
small positive number.

It can be shown (via the formulas for the matrix factorization) that modifying the
entries of D is equivalent to replacing ∇2f (x) by

∇2f (x)→ ∇2f (x)+ E,
where E is a diagonal matrix, and then factoring this matrix,

∇2f (x)+ E = LDLT,

and so the modified Hessian matrix is positive definite. This factorization is then used to
compute the search direction:

(LDLT )p = −∇f (x),
and hence the overall technique corresponds to replacing ∇2f (x) by the related positive-
definite matrix ∇2f (x) + E. Even if ∇2f (x) were always positive definite, this matrix
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would still be factored to compute the search direction from the Newton formula, and so
this “modified” matrix factorization is obtained with little effort—just the effort of changing
any negative (or zero) dii to a suitable positive number.

Example 11.4 (Modified Matrix Factorization). Suppose that

∇2f (x) =
(−1 2 4

2 −3 6
4 6 22

)
.

This matrix is symmetric but not positive definite. At the first stage of the factorization,
d1,1 = −1; we will replace this number by 4. (In this example the entries in E have been
chosen to simplify the calculations.) Then d1,1 = 4, e1,1 = 5, �1,1 = �3,1 = 1, and �2,1 = 1

2 .
At the next stage, d2,2 = −4; we will replace this number by 8. Hence d2,2 = 8,

e2,2 = 12, �2,2 = 1, and �3,2 = 1
2 .

At the final stage, d3,3 = 16, so no modification is necessary. The overall factoriza-
tion is

∇2f (x)+ E =
(−1 2 4

2 −3 6
4 6 22

)
+
( 5 0 0

0 12 0
0 0 0

)

=
⎛
⎝ 1 0 0

1
2 1 0
1 1

2 1

⎞
⎠( 4 0 0

0 8 0
0 0 16

)⎛⎝ 1 1
2 1

0 1 1
2

0 0 1

⎞
⎠ = LDLT.

This final factorization would be used to compute a search direction.

There is a great deal of flexibility in choosing how to modify D in the case where
∇2f (x) is not positive definite. Of course,D must be chosen so that the resulting modified
matrix is positive definite. To satisfy the assumptions of the convergence theorem for a
line search method (see Section 11.5) the modified matrix must not be “arbitrarily” close to
being singular; that is, the smallest eigenvalue of the modified matrix must be larger than
some positive tolerance. In addition, the norm of the modified matrix must remain bounded.
(See the Exercises in Section 11.5.) These conditions place limits on how small and large
the elements ofD can be. Within this range, however, any choice ofD would be acceptable,
at least theoretically.

We conclude by presenting a practical version of Newton’s method, one that is guar-
anteed to converge and that does not assume that ∇2f (xk) is positive definite for all values
of k. Some steps in the method are left vague. It is assumed that these steps are carried out
in a way that is consistent with Theorem 11.7 of Section 11.5, or some other convergence
theorem for a line search method. The convergence test in this algorithm is simplified; a
more complete discussion of convergence tests can be found in Section 12.5.

Algorithm 11.1.
Modified Newton Algorithm with Line Search

1. Specify some initial guess of the solution x0, and specify a convergence tolerance ε.

2. For k = 0, 1, . . .

(i) If ‖∇f (xk)‖ < ε, stop.
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(ii) Compute a modified factorization of the Hessian:

∇2f (xk)+ E = LDLT

and solve
(LDLT)p = −∇f (xk)

for the search direction pk . (E will be zero if ∇2f (xk) is “sufficiently” positive
definite.)

(iii) Perform a line search to determine

xk+1 = xk + αkpk,
the new estimate of the solution.

Exercises
4.1. Find a diagonal matrix E so that A+ E = LDLT, where

A =
( 1 4 3

4 2 5
3 5 3

)
.

4.2. Suppose that ∇f (x) = 0 and that ∇2f (x) is indefinite. Show how the modified
matrix factorization

∇2f (x)+ E = LDLT

can be used to compute a direction along which f decreases.

4.3. Apply the result of the previous problem to the matrix

A =
( 1 4 3

4 2 5
3 5 3

)
.

4.4. Let M be a positive-definite matrix and let

p = −M−1∇f (xk).
Prove that p is a descent direction for f at xk .

4.5. Consider the matrix

A =
(
ε 1
1 1

)
,

where ε is some small positive number. Consider two ways of modifying A to make
it positive definite, the first where only A2,2 is changed, and the second where both
A1,1 andA2,2 are changed. Show that in the first case the norm of the modification is
O(ε−1), whereas in the second case the modification can be chosen so that its norm
is O(1).

4.6. A vector d is a direction of negative curvature for the function f at the point x if
dT∇2f (x)d < 0. Prove that such a direction exists if and only if at least one of
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the eigenvalues of ∇2f (x) is negative. Also prove that, if a direction of negative
curvature exists, then there also exists a direction of negative curvature that is also a
descent direction.

11.5 Guaranteeing Convergence: Line Search Methods
The auxiliary techniques that are used to guarantee convergence attempt to rein in the
optimization method when it is in danger of getting out of control, and they also try to
avoid intervening when the optimization method is performing effectively. Far from the
solution, when the Taylor series is a poor approximation to the function near the optimum,
these “globalization strategies” are an active part of the algorithm, preventing movement
away from the solution, or even divergence. Near the solution these strategies will remain
in the background as safeguards; they are available if required, but normally they will not
be invoked.

The term “globalization strategy” is used to distinguish the method used for selecting
the new estimate of the solution from the method for computing the search direction. In most
algorithms, the formula for the search direction is derived from the Taylor series, and the
Taylor series is a “local” approximation to the function. The method for choosing the new
estimate of the solution is designed to guarantee “global convergence,” that is, convergence
from any starting point. Note that this is convergence to a stationary point.

If the underlying optimization method produces good search directions, as is often the
case with Newton’s method on well-conditioned problems, then the globalization strategies
will act merely as a safety net protecting against the occasional bad step. For a method that
produces less effective search directions, such as a nonlinear conjugate-gradient method
(see Section 13.4), they can be a major contributor to the practical success of a method.

We discuss two major types of globalization strategy. Line search methods are the
topic of this section, and trust-region methods are the topic of Section 11.6. In later chapters
we often assume that one of these strategies has been incorporated into the algorithms we
discuss. Typically we refer to using a line search, although in many cases a trust-region
strategy could also be used.

Line search methods are the oldest and most widely used of the globalization strategies.
To describe them, let xk be the current estimate of a minimizer of f , and let pk be the search
direction at the point xk . Then the new estimate of the solution is defined by the formula

xk+1 = xk + αkpk,
where the step length αk is some scalar chosen so that

f (xk+1) < f (xk).

Since the function value at the new point is smaller than the function value at the current
point, progress has been made toward the minimum. (This is not the whole truth. Exceptions
and details are discussed below.)

Example 11.5 (Line Search). Consider the problem

minimize f (x1, x2) = 5x2
1 + 7x2

2 − 3x1x2.
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Let xk = (2, 3)T and pk = (−5,−7)T, so that f (xk) = 65. If αk = 1, then

f (xk + αkpk) = f (−3,−4) = 121 > f (xk),

so this is not an acceptable step length. If αk = 1
2 , then

f (xk + αkpk) = f (− 1
2 ,− 1

2 ) = 9
4 ,

and so this step length produces a decrease in the function value, as desired.

Let us look more closely at the line search formula. We will assume that pk is a
descent direction at xk; that is, pk must satisfy

pTk∇f (xk) < 0.

This should be guaranteed by the algorithm used to compute the search direction. For
Newton’s method this is discussed in Section 11.4. If pk is a descent direction, then f (xk+
αpk) < f (xk) at least for small positive values of α. Because of this property we assume
that the step length satisfies αk > 0.

The technique is called a “line search” or “linear search” because a search for a new
point xk+1 is carried out along the line y(α) = xk+αpk . Intuitively we would like to choose
αk as the solution to

minimize
α>0

F(α) ≡ f (xk + αpk).
That is, αk would be the result of a one-dimensional minimization problem. It is usually
too expensive to solve this one-dimensional problem exactly, so in practice an approximate
minimizer is accepted instead. In its crudest form, this approximate minimizer merely
reduces the value of the function f , as was indicated above. However, a little more than
this is required to guarantee convergence, as the example below indicates.

Example 11.6 (A Naive Line Search). Consider the minimization problem

minimize f (x) = x2

with initial guess x0 = −3. At each iteration we use the search direction pk = 1 with step
length αk = 2−k . Hence

xk+1 = xk + 2−k.
The sequence of approximate solutions will be

−3,−2,− 3
2 ,− 5

4 ,− 9
8 , . . .

with xk = −(1 + 21−k). Each search direction is a descent direction since

pTk∇f (xk) = 1 × 2xk = −2(1 + 21−k) < 0.

It is easy to check that f (xk+1) < f (xk) as well.
Even though this simple algorithm produces a reduction in the function value at each

iteration, it does not converge to a stationary point:

lim
k→∞ xk = −1

and f ′(−1) = −2 = 0. The solution is x∗ = 0. Clearly more is required of a line search
than just reduction in the value of f .
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One way to guarantee convergence is to make additional assumptions, two on the
search directionpk and two on the step lengthαk . The assumptions on the search directionpk
are that (a) it produces “sufficient descent,” and (b) it is “gradient related.” The assumptions
on the step length αk are that (a) it produces a “sufficient decrease” in the function f , and
(b) it is not “too small.”

Let us first discuss “sufficient descent.” The search direction must first of all be a
descent direction, that is, pTk∇f (xk) < 0. A danger is that pk might become arbitrarily
close to being orthogonal to ∇f (xk) while still remaining a descent direction, and thus
the algorithm would make little progress toward a solution. To ensure against this we
assume that

− pTk∇f (xk)
‖pk‖ · ‖∇f (xk)‖ ≥ ε > 0

for all k, where ε > 0 is some specified tolerance. This condition can also be written as

cos θ ≥ ε > 0,

where θ is the angle between the search direction pk and the negative gradient −∇f (xk).
For this reason, it can be referred to as the angle condition. Ifpk and∇f (xk) are orthogonal,
then cos θ = 0.

The search directions are said to be gradient related if

‖pk‖ ≥ m ‖∇f (xk)‖
for all k, where m > 0 is some constant. This condition states that the norm of the search
direction cannot become too much smaller than that of the gradient.

These conditions can normally be guaranteed by making slight modifications to the
method used to compute the search direction. We will assume that the method used to
compute the search direction has been adjusted, if necessary, to guarantee that the sufficient
descent and gradient-relatedness conditions are satisfied. Techniques for doing this are
discussed in the context of specific methods.

The sufficient decrease condition on αk ensures that some nontrivial reduction in the
function value is obtained at each iteration. “Nontrivial” is measured in terms of the Taylor
series. A linear approximation to f (xk + αpk) is obtained from

f (xk + αpk) ≈ f (xk)+ αpTk∇f (xk).
In the line search we will demand that the step length αk produce a decrease in the function
value that is at least some fraction of the decrease predicted by the above linear approxima-
tion. More specifically, we will require that

f (xk + αkpk) ≤ f (xk)+ μαkpTk∇f (xk),
where μ is some scalar satisfying 0 < μ < 1. When μ is near zero this condition is easier
to satisfy since only a small decrease in the function value is required. The condition is
illustrated in Figure 11.3. It is sometimes referred to as an Armijo condition.

If α is small, the linear approximation will be good, and the sufficient decrease condi-
tion will be satisfied. If α is large, the decrease predicted by the linear approximation may
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f (x
k
+αp)

αμ p T f (x
k
)f (x

k
) +

f (x
k
)

αμ p T f (x
k
)f (x

k
) +f (x

k
+αp) <= 0α α

Figure 11.3. The sufficient decrease condition.

differ greatly from the actual decrease in f , and the condition can be violated. In this sense,
the sufficient decrease condition prevents α from being “too large.”

We discuss two ways of satisfying the other condition on αk—that it not be “too
small.” The first, a simple line search algorithm, will be used to prove a convergence result
but is not recommended for practical computations. The second, called a Wolfe condition,
leads to better, but more complicated, algorithms; it is discussed in Section 11.5.1. The
Wolfe condition is found in many widely used software packages.

The simple line search algorithm we will analyze uses backtracking: Let pk be a
search direction satisfying the sufficient descent condition. Define αk to be the first element
of the sequence

1, 1
2 ,

1
4 ,

1
8 , . . . , 2−i , . . .

that satisfies the sufficient decrease condition. Such an αk always exists. Because a “large”
step α = 1 is tried first and then reduced, the step lengths {αk } that are generated by this
algorithm will not be “too small.”

This algorithm is easy to program on a computer. First, test if α = 1 satisfies the
sufficient decrease condition. If it does not, try α = 1

2 , α = 1
4 , etc., until an acceptable α is

found. The step α = 1 is tried first (rather than α = 5, say) because in the classical Newton
method a step of one is always used, and near the solution we would expect that a step of
one would be acceptable and lead to a quadratic convergence rate.

The theorem below makes several assumptions in addition to those mentioned above.
It assumes that the level set

{ x : f (x) ≤ f (x0) }
is bounded. This ensures that the function takes on its minimum value at a finite point. It
rules out functions such as f (x) = ex that are bounded below (in this case by zero) but
only approach this bound in the limit. There is also a technical assumption that the search
directions are bounded. This can usually be guaranteed by careful programming of the
optimization algorithm.

In summary, the theorem requires that the function have a bounded level set, and that
the gradient of the function be Lipschitz continuous. All the remaining assumptions are
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assumptions about the method and can be satisfied by careful design of the method. The
assumptions on the optimization problem are minimal.

The conclusion to the theorem does not state that the sequence { xk } converges to a
local minimizer of f . It only states that ∇f (xk)→ 0. To prove the stronger result using a
line search algorithm, stronger assumptions must be made.

Theorem 11.7. Let f be a real-valued function of n variables. Let x0 be a given initial
point and define { xk } by xk+1 = xk+αkpk , where pk is a vector of dimension n and αk ≥ 0
is a scalar. Assume that

(i) the set S = { x : f (x) ≤ f (x0) } is bounded;

(ii) ∇f is Lipschitz continuous for all x, that is,

‖∇f (x)− ∇f (y)‖ ≤ L ‖x − y‖
for some constant 0 < L <∞;

(iii) the vectors pk satisfy a sufficient descent condition

− pTk∇f (xk)
‖pk‖ · ‖∇f (xk)‖ ≥ ε > 0;

(iv) the search directions are gradient related:

‖pk‖ ≥ m ‖∇f (xk)‖ for all k (with m > 0),

and bounded in norm:
‖pk‖ ≤ M for all k;

(v) the scalar αk is chosen as the first element of the sequence
{

1, 1
2 ,

1
4 , . . .

}
to satisfy a

sufficient decrease condition

f (xk + αpk) ≤ f (xk)+ μαkpTk∇f (xk),
where 0 < μ < 1.

Then
lim
k→∞

‖∇f (xk)‖ = 0.

Proof. There are five steps in the proof. First we show that f is bounded from below on S.
Second we show that lim f (xk) exists. Third we show that

lim
k→∞αk

‖∇f (xk)‖2 = 0.

Fourth we show that if αk < 1, then

αk ≥ γ ‖∇f (xk)‖2
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for an appropriate constant γ > 0. Finally, we show that

lim ‖∇f (xk)‖ = 0.

1. f is bounded from below on S: Because f is continuous, the set

S = { x : f (x) ≤ f (x0) }
is closed. Furthermore, by assumption (i) in the theorem, it is bounded. A continuous
function on a closed and bounded set takes on its minimum value at some point in
that set (see Appendix B.8). This shows that f is bounded from below on the set S,
that is, f (x) ≥ C for some number C.

2. lim f (xk) exists: The sufficient decrease condition ensures that f (xk+1) < f (xk) ≤
f (x0) so that xk ∈ S for all k. The sequence { f (xk) } is monotone decreasing and
bounded from below (by C), so it has a limit f̄ .

3. limk→∞ αk ‖∇f (xk)‖2 = 0: This follows from

f (x0)− f̄ = [f (x0)− f (x1)] + [f (x1)− f (x2)] + [f (x2)− f (x3)] + · · ·
=

∞∑
k=0

[f (xk)− f (xk+1)]

≥ −
∞∑
k=0

μαkp
T
k∇f (xk)

(from the sufficient decrease condition)

≥
∞∑
k=0

μαkε ‖pk‖ · ‖∇f (xk)‖
(from the sufficient descent condition)

≥
∞∑
k=0

μαkεm ‖∇f (xk)‖2

(from the gradient-relatedness condition).

Since f (x0)− f̄ ≤ f (x0)−C <∞ this final summation converges, and so the terms
in the summation go to zero:

lim
k→∞μαkεm

‖∇f (xk)‖2 = 0.

The result now follows because m, μ, and ε are fixed nonzero constants.

4. If αk < 1, then αk ≥ γ ‖∇f (xk)‖2 for an appropriate constant γ > 0: This step of the
proof is based on the backtracking line search. If αk < 1, then the sufficient decrease
condition was violated when the step length 2αk was tried:

f (xk + 2αkpk)− f (xk) > 2μαkp
T
k∇f (xk).

Because∇f is Lipschitz continuous, by Theorem B.6 ofAppendix B we can conclude
that

f (xk + 2αkpk)− f (xk)− 2αkp
T
k∇f (xk) ≤ 1

2L ‖2αkpk‖2 .
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This can be rearranged as

f (xk)− f (xk + 2αkpk) ≥ −2αkp
T
k∇f (xk)− 2L ‖αkpk‖2 .

Adding this to the first inequality above and simplifying gives

αkL ‖pk‖2 ≥ −(1 − μ)pTk∇f (xk).
The sufficient descent and gradient-relatedness conditions then give

αkL ‖pk‖2 ≥ (1 − μ)ε ‖pk‖ · ‖∇f (xk)‖ ≥ (1 − μ)εm ‖∇f (xk)‖2 .

Since ‖pk‖ ≤ M , we have that αk ≥ γ ‖∇f (xk)‖2 with

γ = (1 − μ)εm
M2L

> 0

as desired.

5. limk→∞ ‖∇f (xk)‖ = 0: Either αk = 1 or αk ≥ γ ‖∇f (xk)‖2. Hence

αk ≥ min
{

1, γ ‖∇f (xk)‖2 }
and

αk ‖∇f (xk)‖2 ≥ [
min

{
1, γ ‖∇f (xk)‖2 }] ‖∇f (xk)‖2 ≥ 0.

From step 3 we already know that lim αk ‖∇f (xk)‖2 = 0. Since γ > 0, this implies
that lim ‖∇f (xk)‖ = 0 also.

The proof is completed.

11.5.1 Other Line Searches

The backtracking line search is not the only way of guaranteeing that the step length αk is
not “too small.” This is also guaranteed by conditions derived from the one-dimensional
problem

minimize
α>0

F(α) ≡ f (xk + αpk).
A decrease in the function value corresponds to the condition

f (xk + αp) < f (xk).

This is equivalent to the condition

F(α) < F(0).

Instead of just asking for a decrease in the function value, we could ask thatαk approximately
minimize F , or that F ′(αk) ≈ 0. This condition is normally written as

|F ′(αk)| ≤ η|F ′(0)|,
where η is a constant satisfying 0 ≤ η < 1.
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An exact line search corresponds to choosing an αk ≥ 0 that is a local minimizer of
F(α). In this case the above condition is satisfied with η = 0. If f is a quadratic function,
there is a simple formula to do this (see the Exercises). On general problems an exact line
search is usually too expensive to be a practical technique. Exact line searches are frequently
encountered in theoretical results because it can be easier to prove the convergence of an
algorithm that uses an exact line search.

The term F ′(α) is a directional derivative of the function f at the point xk + αpk . Its
formula can be derived from

F ′(α) = lim
h→0

F(α + h)− F(α)
h

= lim
h→0

f (xk + αpk + hpk)− f (xk + αpk)
h

= lim
h→0

f (xk + αpk)+ hpTk∇f (xk + αpk)+ 1
2h

2pTk∇2f (ξ)pk

h

−f (xk + αpk)
h

(using a Taylor series expansion)

= lim
h→0

pTk∇f (xk + αpk)+
1

2
hpTk∇2f (ξ)pk

= pTk∇f (xk + αpk).
In a similar manner it can be shown that F ′′(α) = pTk∇2f (xk + αpk)pk; see the Exercises.

The value α = 0 corresponds to the point xk . For this value,

F(0) = f (xk),

the current function value, and

F ′(0) = pTk∇f (xk),
the directional derivative at the point xk .

Example 11.8 (One-Dimensional Problem). Consider the function of two variables

f (x) = 1
2x

2
1 + x2

2 − log(x1 + x2).

Let xk = (1, 1)T and p = (2,−1)T. Then

F(α) = f (xk + αp) = 1
2 (1 + 2α)2 + (1 − α)2 − log(2 + α).

Note that F(0) = 3
2 − log 2 = f (xk). Also,

F ′(α) = 2(1 + 2α)− 2(1 − α)− 1

2 + α .

We can verify that F ′(α) = pT∇f (xk + αp). First, notice that

∇f (x) =
(
x1 − 1/(x1 + x2)

2x2 − 1/(x1 + x2)

)
.
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f (x
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+αp)p T < | |η| |

Δ Δ= 0α α

Figure 11.4. The Wolfe condition.

Then

pT∇f (xk + αp) = ( 2 −1 )

(
(1 + 2α)− 1/(2 + α)
2(1 − α)− 1/(2 + α)

)

= 2(1 + 2α)− 2

2 + α − 2(1 − α)+ 1

2 + α
= 2(1 + 2α)− 2(1 − α)− 1

2 + α = F ′(α).

Using the formula for the directional derivative, the condition

|F ′(αk)| ≤ η|F ′(0)|
becomes

|pTk∇f (xk + αkpk)| ≤ η|pTk∇f (xk)|.
This is sometimes called the Wolfe condition. It is illustrated in Figure 11.4.

The Wolfe condition only finds an approximate stationary point of the function F . A
local maximum of this function would satisfy the condition, so by itself it does not guarantee
a decrease in the function value. For this reason, algorithms insist that the step length α
also satisfy a sufficient decrease condition, with μ < η; often the constant μ is chosen to
be very small so that almost any decrease in the function is enough to be acceptable. An
elegant convergence result can be derived using the combination of the Wolfe and sufficient
decrease conditions; it is outlined in Exercise 5.15.

Many widely used line search algorithms are based on the Wolfe condition. These
algorithms are often much more effective than the backtracking line search described earlier.
However, implementing an inexact line search based on approximately minimizing F is a
complicated task, requiring great attention to detail to ensure that an acceptable step length
αk that satisfies both the Wolfe and the sufficient decrease conditions can always be found.

In a line search based on the Wolfe condition, some form of one-dimensional mini-
mization technique is used to determine a step length. A common approach is to bracket a
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minimizer of F , that is, to find an interval [α, α] that contains a local minimizer of F(α).
Then this interval is refined via a sequence of polynomial approximations to F(α).

Let us first look at bracketing. We search for an interval [α, α] with F ′(α) < 0 and
F ′(α) > 0. At some point in the interval there must be an α satisfying F ′(α) = 0. Since
F ′(0) = pTk∇f (xk) < 0, the value α = 0 provides an initial lower bound on the step length
αk . To obtain an upper bound, an increasing sequence of values of α are examined until one
is found that satisfies F ′(α) > 0. For example, we might try α = 1, then α = 2, α = 4, etc.
Then the interval [α, α] brackets a minimizer of F(α), where α is the largest trial value of
α for which F ′(α) < 0.

If during the bracketing step a trial value of α that satisfies the Wolfe condition is
found, the line search is terminated with that trial value as the step length αk . On the other
hand, if no upper bound α is found, then the one-dimensional function F as well as the
objective function f may both be unbounded below or may have no finite minimizer.

We now assume that an interval [α, α] has been determined that brackets a minimizer
of F , with F ′(α) < 0 and F ′(α) > 0. A polynomial approximation to the function F will
be used to reduce the size of this interval. If cubic approximations are used, then the unique
cubic polynomial P3(α) satisfying

P3(α) = F(α) P ′
3(α) = F ′(α)

P3(α) = F(α) P ′
3(α) = F ′(α)

is computed. (In general, a cubic interpolant is uniquely determined by four independent
data values.)

This cubic polynomial must have a local minimizer α̂ within the interval [α, α]. The
point α̂ is the next estimate of the step length. If this point satisfies the Wolfe condition, then
αk = α̂ is accepted as the step length. Otherwise, one of α or α is replaced by α̂ (depending
on the sign of F ′(α̂)), and the process repeats.

Example 11.9 (Line Search with Wolfe Condition). Suppose that the one-dimensional
function is

F(α) = 5 − α − log(4.5 − α).
At the initial value α = 0,

F(0) = 3.4959 and F ′(0) = −0.7778 < 0.

We use a Wolfe condition with η = 0.1, so that the step length αk must satisfy

|F ′(αk)| ≤ 0.07778.

We first attempt to bracket the step length by trying a sequence of increasing values of α
until one is found that satisfies F ′(α) > 0:

α = 1 : F(1) = 2.7472 and F ′(1) = −0.7143
α = 2 : F(2) = 2.0837 and F ′(2) = −0.6000
α = 4 : F(4) = 1.6931 and F ′(4) = 1.0000.

Thus α = 4, and the interval that brackets the step length is [α, α] = [2, 4]. None of these
trial α values satisfies the Wolfe condition.
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We now refine the interval using cubic polynomial approximations. Using the formu-
las derived in the Exercises, we determine that the cubic

P3(α) = 0.9309 + 2.5434α − 1.3788α2 + 0.1976α3

matches the values of F and F ′ at α and α. It has a local minimizer at α̂ = 3.3826, where

F(α̂) = 1.5064 and F ′(α̂) = −0.1050.

This point does not satisfy the Wolfe condition.
Since F ′(α̂) < 0 the new interval is [3.3826, 4]. The new cubic is

P3(α) = −25.4041 + 24.7208α − 7.5297α2 + 0.7608α3,

with local minimizer α̂ = 3.5294. At this point,

F(α̂) = 1.5004 and F ′(α̂) = 0.0303,

so this point satisfies the Wolfe condition, and the step length is αk = 3.5294. (This value
of α also satisfies the sufficient decrease condition for μ = 0.1, say.)

The exact minimizer of F(α) is α∗ = 3.5. This would be the step length if an exact
line search were stipulated.

Further care is required to transform this description of a line search algorithm into
a piece of software. For example, we have made reference only to the Wolfe condition
and have ignored the requirement that the step length simultaneously satisfy the sufficient
decrease condition. We have also ignored the effects of computer arithmetic. These topics
are discussed in the references cited in the Notes.

Exercises
5.1. Consider the problem

minimize f (x1, x2) = (x1 − 2x2)
2 + x4

1 .

(i) Suppose a Newton’s method with a line search is used to minimize the function,
starting from the point x = (2, 1)T. What is the Newton search direction at
this point? Use a Cholesky decomposition of the Hessian matrix to solve the
Newton equations.

(ii) Suppose a backtracking line search is used. Does the trial step α = 1 satisfy
the sufficient decrease condition for μ = 0.2? For what values of μ does
α = 1 satisfy the sufficient decrease condition?

5.2. Let
f (x1, x2) = 2x2

1 + x2
2 − 2x1x2 + 2x3

1 + x4
1 .

(i) Suppose that the function is minimized starting from x0 = (0,−2)T. Verify
that p0 = (0, 1)T is a direction of descent.
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(ii) Suppose that a line search is used to minimize the functionF(α) = f (x0+αp0),
and that a backtracking line search is used to find the optimal step length α.
Does α = 1 satisfy the sufficient decrease condition for μ = 0.5? For what
values of μ does α = 1 satisfy the sufficient decrease condition?

5.3. Consider the quadratic function

f (x) = 1
2x

TQx − cTx,
where Q is a positive-definite matrix. Let p be a direction of descent for f at the
point x. Prove that the solution of the exact line search problem

minimize
α>0

f (x + αp)

is

α = −p
T∇f (x)
pTQp

.

5.4. Let f be the quadratic function in the previous problem, and assume that f is being
minimized with an optimization algorithm that uses an exact line search. Prove that
the current search direction pk is orthogonal to the gradient at the new point xk+1.

5.5. Let f be a differentiable function that is being minimized with an optimization
algorithm that uses an exact line search. Prove that the current search direction pk
is orthogonal to the gradient at the new point xk+1.

5.6. Why does the sufficient descent condition use the scaled formula

− pTk∇f (xk)
‖pk‖ · ‖∇f (xk)‖ ≥ ε > 0

and not the simpler formula

−pT∇f (xk) ≥ ε > 0

as a test for descent?

5.7. Prove that F ′′(α) = pT∇2f (xk + αp)p by using the definition

F ′′(α) = lim
h→0

[F ′(α + h)− F ′(α)]/h

together with the formula for F ′(α) given earlier.

5.8. Consider the objective function from the PET image reconstruction problem de-
scribed in Section 1.7.5:

fML = −qT x +
∑
j

yj log
(
CTx

)
j
.

Let p be the search direction at a feasible point xk , and letw = CTp. Show how you
can use w to calculate the directional derivatives for a sequence of trial values of α,
and show that this computation can also be used as part of the forward projection
computation at the new point xk+1. Thus one can test the Wolfe condition without
the full expense of calculating the derivatives at the trial points.
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5.9. Suppose that in a line search procedure the trial step α̂ does not satisfy the sufficient
decrease condition. One strategy for selecting a new trial step is to approximate
F(α) = f (xk + αpk) by the one-dimensional quadratic function q(α) that satisfies
q(0) = F(0), q ′(0) = F ′(0), and q(α̂) = F(α̂). Determine the coefficients of q(α).
Let α be the minimizer of q(α). Prove that

α = − α̂2F ′(0)
2[F(α̂)− F(0)− α̂F ′(0)] .

Then α can be used as the new trial step in the line search procedure, if α is not too
small. Prove also that

α <
α̂

2(1 − μ),
where μ is the constant from the sufficient decrease condition.

5.10. Prove that Theorem 11.7 is still true if the backtracking algorithm in the line search
chooses αk as the first element of the sequence

1, 1/κ, 1/κ2, . . . , 1/κi, . . .

to satisfy the sufficient decrease condition, where κ > 1.

5.11. Show how to determine the cubic polynomial P3 satisfying

P3(α) = F(α) P ′
3(α) = F ′(α)

P3(α) = F(α) P ′
3(α) = F ′(α),

where α < α, F ′(α) < 0, and F ′(α) > 0. Why is this polynomial unique? What
is the formula for the unique local minimizer of P3 in the interval [α, α]? You may
wish to write the polynomial in the form

P3(α) = c1 + c2(α − α)+ c3(α − α)2 + c4(α − α)2(α − α).
Verify that the polynomials obtained in Example 11.9 are correct.

5.12. A line search using the Wolfe condition can also be designed using quadratic poly-
nomials. In this case a quadratic polynomial P2 is computed that satisfies

P2(α) = F(α), P ′
2(α) = F ′(α), and P2(α) = F(α).

Determine the coefficients of P2, assuming that α < α, F ′(α) < 0, and F ′(α) > 0.
Also determine the formula for the unique local minimizer ofP2 in the interval [α, α].
You may wish to write the polynomial in the form

P2(α) = c1 + c2(α − α)+ c3(α − α)2.
Apply your line search to the function in Example 11.9.

5.13. Suppose that the modified Newton direction p is computed using

∇2f (x)+ E = LDLT,
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where ‖E‖ ≤ C
∥∥∇2f (x)

∥∥ for some constant C, and where the smallest eigenvalue
of ∇2f (x) + E is greater than or equal to γ > 0. For appropriate constants ε and
m > 0, prove that the direction p is a sufficient descent direction:

− pT∇f (x)
‖p‖ · ‖∇f (x)‖ ≥ ε > 0

and is gradient related:
‖pk‖ ≥ m ‖∇f (xk)‖ .

5.14. (The goal of this problem is to prove that if Newton’s method converges when an
exact line search is used, then it converges quadratically.) Suppose that Newton’s
method is used to solve

minimize f (x)

and that an exact line search is used at every iteration. Assume that the classical New-
ton method (that is, Newton’s method with no line search) converges quadratically
to x∗, and that ∇2f (x) is Lipschitz continuous on �n.

(i) Let αk be the step length from the exact line search. Prove that

αk = 1 +O(‖∇f (xk)‖)
for all sufficiently large k. Hint: Let F(α) = f (xk + αpk) and expand the
condition F ′(α) = 0 in a Taylor series.

(ii) Prove that

‖xk+1 − x∗‖ = O(‖∇f (xk)‖2)+O(‖xk − x∗‖2).

(iii) Prove that
‖xk+1 − x∗‖ = O(‖xk − x∗‖2).

5.15. (The goal of this problem is to prove a convergence theorem for a line search algo-
rithm based on the Wolfe condition.) We will assume that an algorithm is available
to compute a step length αk satisfying

f (xk + αkpk) ≤ f (xk)+ μαkpTk∇f (xk)
pTk∇f (xk + αkpk) ≥ ηpTk∇f (xk),

with 0 < μ < η < 1. This is a less stringent form of the Wolfe condition presented
earlier and is known as the weak Wolfe condition. We will also assume that the search
directions satisfy a sufficient descent condition

− pTk∇f (xk)
‖pk‖ · ‖∇f (xk)‖ ≥ ε > 0.

Let f be a real-valued function of n variables, and let x0 be some given initial point.
Assume that (i) the set S = { x : f (x) ≤ f (x0) } is bounded, and (ii) ∇f is Lipschitz
continuous in S, that is, there exists a constant L > 0 such that

‖∇f (x)− ∇f (x̄)‖ ≤ L ‖x − x̄‖
for all x, x̄ ∈ S.
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(i) Prove that

(η − 1)pTk∇f (xk) ≤ pTk(∇f (xk+1)− ∇f (xk)) ≤ αkL ‖pk‖2 .

(ii) Prove that
f (xk+1) ≤ f (xk)− c cos2 θk ‖∇f (xk)‖2 ,

where c = μ(1 − η)/L and θk is the angle between pk and −∇f (xk).
(iii) Prove that

∞∑
k=0

cos2 θk ‖∇f (xk)‖2 <∞.

(iv) Prove that
lim
k→∞

‖∇f (xk)‖ = 0.

5.16. In this problem we examine conditions that guarantee the existence of a step size
that satisfies both the sufficient decrease and the weak Wolfe conditions. Let f
be a differentiable function, and let p be a descent direction for f at the point xk .
Let F(α) = f (xk + αp), and assume that F is bounded below for all positive α.
Let 0 < μ < 1 denote the parameter in the sufficient decrease condition, and let
0 < η < 1 denote the parameter of the weak Wolfe condition.

(i) Prove that F(α) < F(0)+ μαF ′(0) for all sufficiently small α > 0, and that
F(α) > F(0) + μαF ′(0) for all sufficiently large α. Use this to prove that
there exists some α such that

F(α) = F(0)+ μαF ′(0).

Let ᾱ be the smallest step size that satisfies this equation. Prove that the
sufficient descent condition is satisfied for any 0 < α < ᾱ.

(ii) Prove that there exists a scalar 0 < α̂ < ᾱ for which

F ′(α̂) = ∇f (xk + α̂pk)Tp = μF ′(0).

(iii) Suppose that μ < η. Prove that the weak Wolfe condition and the sufficient
decrease condition are satisfied for any positive α in a neighborhood of α̂.

5.17. This problem shows that, in an algorithm where the search directions approach the
Newton direction, the step length αk = 1 satisfies the weak Wolfe condition and the
sufficient decrease condition for all large k. We assume here that 0 ≤ μ ≤ 1

2 , and
thatμ ≤ η ≤ 1, whereμ and η are the parameters of the sufficient decrease condition
and the Wolfe condition, respectively. We also assume that the function f has two
continuous derivatives, and that the iterates are generated using xk+1 = xk + αpk ,
where pTk∇f (xk) < 0. Suppose that xk converges to a point x∗ at which ∇2f (x∗) is
positive definite. Suppose also that

lim
k→∞

∥∥∇2f (xk)pk + ∇f (xk)
∥∥

‖pk‖ = 0.
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(i) Prove that there exists a γ > 0 such that

−pTk∇f (xk) ≥ γ ‖pk‖2 .

Hint: Use the fact that

−pTk∇f (xk) = pTk∇2f (xk)pk − pTk[∇2f (xk)pk + ∇f (xk)].
(ii) Prove that there exists a point ξk on the line segment between xk and xk + pk

such that

f (xk + pk)− f (xk)− 1
2p

T
k∇f (xk) = 1

2p
T
k[∇2f (ξk)pk + ∇f (xk)].

Use this to prove that

f (xk + pk)− f (xk)− 1
2p

T
k∇f (xk) ≤ ( 1

2 − μ)η ‖pk‖2

for all large k, and hence a step length of 1 satisfies the sufficient decrease
condition for all large k.

(iii) Prove that there exists a ζk on the line segment between xk and xk + pk such
that

pTk∇f (xk + pk) = pTk[∇2f (ζk)pk + ∇f (xk)],
and conclude from this that

pTk∇f (xk + pk) ≤ γ η ‖pk‖2 ≤ −ηpTk∇f (xk)
for all large k, and hence a step length of 1 satisfies the weak Wolfe conditions
for all large k.

5.18. Write a computer program for minimizing a multivariate function using a modified
Newton algorithm. If, in the Cholesky factorization of the Hessian, the diagonal
entry di,i ≤ 0, replace it by max

{ |di,i |, 10−2
}
. Include the following:

(i) Use a backtracking line search as described in this section.

(ii) Accept x as a solution if ‖∇f (x)‖ /(1 + |f (x)|) ≤ ε, or if the number of
iterations exceeds Itmax. Use ε = 10−8 and Itmax = 1000.

(iii) Print out the initial point, and then at each iteration print the search direction,
the step length α, and the new estimate of the solution xk+1. (If a great many
iterations are required, provide this output only for the first 10 iterations and the
final 5 iterations.) Indicate if no solution has been found after Itmax iterations.

(iv) Test your algorithm on the test problems listed here:

f(1)(x) = x2
1 + x2

2 + x2
3 , x0 = (1, 1, 1)T

f(2)(x) = x2
1 + 2x2

2 − 2x1x2 − 2x2, x0 = (0, 0)T

f(3)(x) = 100(x2 − x2
1)

2 + (1 − x1)
2, x0 = (−1.2, 1)T

f(4)(x) = (x1 + x2)
4 + x2

2 , x0 = (2,−2)T

f(5)(x) = (x1 − 1)2 + (x2 − 1)2 + c(x2
1 + x2

2 − 0.25)2, x0 = (1,−1)T.
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For the final function, test three different settings of the parameter c: c = 1,
c = 10, and c = 100. The condition number of the Hessian matrix at the
solution becomes larger as c increases. Comment on how this affects the
performance of the algorithm.

(v) Are your results consistent with the theory of Newton’s method?

11.6 Guaranteeing Convergence: Trust-Region Methods
Trust-region methods offer an alternative framework for guaranteeing convergence. They
were first used to solve nonlinear least-squares problems, but have since been adapted to
more general optimization problems.

Trust-region methods make explicit reference to a “model” of the objective function.
For Newton’s method this model is a quadratic model derived from the Taylor series for f
about the point xk:

qk(p) = f (xk)+ ∇f (xk)Tp + 1
2p

T∇2f (xk)p.

The method will only “trust” this model within a limited neighborhood of the point xk ,
defined by the constraint

‖p‖ ≤ 	k.

This will serve to limit the size of the step taken from xk to xk+1. The value of	k is adjusted
based on the agreement between the model qk(p) and the objective function f (xk + p).
If the agreement is good, then the model can be trusted and 	k increased. If not, then 	k

will be decreased. (In the discussion here we assume that ‖·‖ = ‖·‖2, that is, we use the
Euclidean norm. Other trust-region algorithms sometimes use different norms for reasons
associated with the computation of the step pk .)

At the early iterations of the method when xk may be far from the solution x∗, the
values of	k may be small and may prevent a full Newton step from being taken. However,
at later iterations when xk is closer to x∗, it is hoped that there will be greater trust in the
model. Then	k can be made sufficiently large so that it does not impede Newton’s method,
and a quadratic convergence rate is achievable.

At iteration k of a trust-region method, the following subproblem is solved to determine
the step:

minimize
p

qk(p) = f (xk)+ ∇f (xk)Tp + 1
2p

T∇2f (xk)p

subject to ‖p‖ ≤ 	k.

This is a constrained optimization problem. The optimality conditions for this subproblem
(see Section 14.5.1) show that pk will be the solution of the linear system

(∇2f (xk)+ λI)pk = −∇f (xk),
where λ ≥ 0 is a scalar (called the Lagrange multiplier for the constraint), (∇2f (xk)+ λI)
is positive semidefinite, and

λ(	k − ‖pk‖) = 0.

We will not derive this result here.
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Figure 11.5. Piecewise linear approximation to trust-region curve.

If ∇2f (xk) is positive definite and 	k is sufficiently large, then the solution of the
subproblem is the solution to

∇2f (xk)p = −∇f (xk),
the Newton equations. Without these assumptions, the method guarantees that

	k ≥ ‖pk‖ = ∥∥(∇2f (xk)+ λI)−1∇f (xk)
∥∥ ,

and so if 	k → 0, then λ→ ∞ and

pk ≈ −1

λ
∇f (xk).

(For a more rigorous demonstration of this, see the Exercises.) Hence pk is a function
of λ and indirectly a function of 	k . As λ varies between 0 and ∞, it can be shown that
pk = pk(λ) varies continuously between the Newton direction (in the positive-definite case)
and a multiple of −∇f (xk). This is illustrated in Figure 11.5. In the figure, the arc shows
the values of pk(λ). As λ→ ∞, pk(λ) points in the direction of the negative gradient. For
λ = 0, pk(0) is the Newton direction.

This approach is in sharp contrast to a line search method, where the search direction
is chosen (perhaps using the Newton equations) but then left fixed while the step length is
computed. In a trust-region method the choice of the bound 	k affects both the length and
the direction of the step pk (but the step length is always one or zero).

We now specify the steps in a simple trust-region algorithm based on Newton’s
method.

Algorithm 11.2.
Trust-Region Algorithm

1. Specify some initial guess of the solution x0. Select the initial trust-region bound
	0 > 0. Specify the constants 0 < μ < η < 1 (perhaps μ = 1

4 and η = 3
4 ).

2. For k = 0, 1, . . .

(i) If xk is optimal, stop.
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(ii) Solve

minimize
p

qk(p) = f (xk)+ ∇f (xk)Tp + 1
2p

T∇2f (xk)p

subject to ‖p‖ ≤ 	k

for the trial step pk .

(iii) Compute

ρk = f (xk)− f (xk + pk)
f (xk)− qk(pk) = actual reduction

predicted reduction
.

(iv) If ρk ≤ μ, then xk+1 = xk (unsuccessful step), else xk+1 = xk + pk (successful
step).

(v) Update 	k:

ρk ≤ μ �⇒ 	k+1 = 1
2	k

μ < ρk < η �⇒ 	k+1 = 	k

ρk ≥ η �⇒ 	k+1 = 2	k.

The value of ρk indicates how well the model predicts the reduction in the function value. If
ρk is small (that is, ρk ≤ μ), then the actual reduction in the function value is much smaller
than that predicted by qk(pk), indicating that the model cannot be trusted for a bound as
large as 	k; in this case the step pk will be rejected and 	k will be reduced. If ρk is large
(that is, ρk ≥ η), then the model is adequately predicting the reduction in the function value,
suggesting that the model can be trusted over an even wider region; in this case the bound
	k will be increased.

Example 11.10 (Trust-Region Method). Consider the unconstrained minimization prob-
lem

minimize f (x1, x2) = (x4
1 + 2x3

1 + 24x2
1)+ (x4

2 + 12x2
2)

with initial guess x0 = (2, 1)T and initial trust-region bound 	0 = 1. At the initial point,

f (x0) = 141, ∇f (x0) =
(

152
28

)
, and ∇2f (x0) =

(
120 0

0 36

)
.

The Newton direction is

pN = −∇2f (x0)
−1∇f (x0) =

(− 152
120

− 28
36

)
≈
(−1.2667
−0.7778

)
.

Since ‖pN‖ = 1.4864 > 	0 = 1, the Newton step cannot be used.
The trust-region step can be obtained by finding a scalar λ such that ‖p‖ = 1, where

p is the solution to (
120 + λ 0

0 36 + λ
)(

p1

p2

)
= −

(
152

28

)
.

A simple calculation shows that λ must satisfy(
152

120 + λ
)2

+
(

28

36 + λ
)2

= 1.
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This equation can be solved numerically to obtain λ ≈ 42.655. (Software for a trust-region
method would typically find only an approximate solution to this nonlinear equation.) Hence
the trust-region step is

p0 =
(−0.9345
−0.3560

)
.

It is easy to verify that ‖p0‖ = 1.
For this step the trust-region model has the value

q0(p0) = f (x0)+ ∇f (x0)
Tp0 + 1

2p
T
0∇2f (x0)p0 = 43.6680.

The function value at x0+p0 is f (x0+p0) = 39.8420. Hence the ratio of actual to predicted
reduction is

ρ0 = f (x0)− f (x0 + p0)

f (x0)− q0(p0)
= 141 − 39.8420

141 − 43.6680
= 1.0393.

If we use the constants μ = 1
4 and η = 3

4 in the trust-region algorithm, then ρ0 > η, the
step is successful, x1 = x0 + p0 = (1.0655, 0.6440)T, and 	1 = 2	0 = 2.

The solution of the trust-region subproblem

minimize
p

qk(p) = f (xk)+ ∇f (xk)Tp + 1
2p

T∇2f (xk)p

subject to ‖p‖ ≤ 	k

is difficult. For example, if the Newton direction does not satisfy the constraint, then it is
necessary to determine λ so that

‖pk‖ = ∥∥(∇2f (xk)+ λI)−1∇f (xk)
∥∥ = 	k.

This is a nonlinear equation in λ. In addition, it is necessary to choose λ so that (∇2f (xk)+
λI) is positive definite, adding a further complication.

Practical trust-region methods find only an approximate solution to the trust-region
subproblem. One approach is to find an approximate solution to this nonlinear equation.
Newton’s method could be applied, but more efficient special methods have been derived.
Even these special methods are computationally expensive, however. For each new estimate
of λ, a linear system involving the matrix (∇2f (xk)+ λI) must be solved.

A second approach to solving the subproblem is to approximate pk(λ), the curve of
steps defined as λ varies between 0 and ∞, by a simpler curve. It is common to use a
piecewise linear curve, that is, a sequence of line segments. For λ ≈ 0 the line segment
should coincide with the Newton step (in the positive-definite case), and as λ → ∞ it
should coincide with −∇f (xk). It is easy to determine which point on this sequence
of line segments solves the subproblem. The sequence of line segments is sometimes
called a “dogleg” by analogy with the game of golf. For further information on both these
approaches, see the book by Dennis and Schnabel (1983, reprinted 1996).

Both line search and trust-region methods have been used as the basis for optimization
software. Experiments have shown them to be comparably efficient on average, although
on individual problems their performance can differ. There are sometimes subtle reasons
for preferring one approach over the other. Some of these reasons are discussed in the paper
by Dennis and Schnabel (1989).
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We now state a convergence theorem that is analogous to the convergence theorem
for line search methods. The conclusion is the same, and the assumptions on the problem
are similar. Additional theoretical results, including a discussion of second-order optimality
conditions, can be found in the paper by Moré (1983). See the Notes.

Theorem 11.11. Let f be a real-valued function of n variables. Let x0 be some given initial
point, and let { xk } be defined by the trust-region algorithm above. Assume that

(i) the set S = { x : f (x) ≤ f (x0) } is bounded, and

(ii) f , ∇f , and ∇2f are continuous for all x ∈ S.

Then
lim
k→∞

‖∇f (xk)‖ = 0.

Proof. The proof will be in two parts. In the first part, we will prove that a subsequence
of { ‖∇f (xk)‖ } converges to zero. The proof is by contradiction. If no such subsequence
converges to zero, then for all sufficiently large values of k, ‖∇f (xk)‖ ≥ ε > 0 where ε
is some constant. Since we are interested only in the asymptotic behavior of the algorithm,
we can ignore the early iterations, so we may as well assume that ‖∇f (xk)‖ ≥ ε for all k.
This simplifies the argument.

The first part of the proof has five major steps. The first two steps establish relation-
ships among the quantities f (xk)−f (xk+1), qk(pk),	k , and ‖∇f (xk)‖. These relationships
are valid in general. The remaining steps use the assumption that ‖∇f (xk)‖ ≥ ε to obtain
a contradiction. Step 3 shows that lim	k = 0. If 	k is small, then so is ‖pk‖, and the
quadratic model must be a good prediction of the actual reduction in the function value (that
is, lim ρk = 1). If this is true, then the algorithm will not reduce 	k (that is, lim	k = 0),
thus contradicting the result of step 3 and proving the overall result.

Throughout the proof we denote ∇fk = ∇f (xk) and ∇2fk = ∇2f (xk). In addition,
let M be a constant satisfying

∥∥∇2fk
∥∥ ≤ M for all k. The upper bound M exists because

∇2f is continuous and the set S is closed and bounded.

1. A bound on the predicted reduction: We prove that

f (xk)− qk(pk) ≥ 1
2 ‖∇fk‖ · min

{
	k,

‖∇fk‖
M

}
by examining how small qk could be if pk were a multiple of −∇fk . To do this we
define the function

φ(α) ≡ qk

(
−α ∇fk

‖∇fk‖
)
− f (xk)

= −α∇f
T
k ∇fk

‖∇fk‖ + 1
2α

2 ∇f Tk (∇2fk)∇fk
‖∇fk‖2

= −α ‖∇fk‖ + 1

2
α2Mk,

where Mk = ∇f Tk (∇2fk)∇fk/ ‖∇fk‖2 ≤ ∥∥∇2fk
∥∥ ≤ M . Let α∗ be the minimizer

of φ on the interval [0,	k]. Note that α∗ > 0. If 0 < α∗ < 	k , then α∗ can be
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determined by setting φ′(α) = 0, showing that α∗ = ‖∇fk‖ /Mk and

φ(α∗) = − 1
2 ‖∇fk‖2 /Mk ≤ − 1

2 ‖∇fk‖2 /M.

On the other hand, suppose that α∗ = 	k . It follows thatMk	k ≤ ‖∇fk‖ (ifMk ≤ 0,
then this is trivially satisfied; otherwise, this is a consequence of setting φ′(α) = 0,
since the solution of this equation must be ≥ 	k). Thus

φ(α∗) = φ(	k) = −	k ‖∇fk‖ + 1
2	

2
kMk ≤ − 1

2	k ‖∇fk‖ .
Finally, the desired result is obtained by noting that qk(pk)− f (xk) ≤ φ(α∗).

2. A bound on f (xk)− f (xk+1): If a successful step is taken, then

μ ≤ ρk = f (xk)− f (xk+1)

f (xk)− qk(pk) ,

where μ is the constant used to test ρk in the algorithm. Hence

f (xk)− f (xk+1) ≥ (f (xk)− qk(pk))μ ≥ 1

2
μ ‖∇fk‖ · min

{
	k,

‖∇fk‖
M

}

using the result of step 1.

3. lim	k = 0: First, note that lim f (xk) exists and is finite (f is bounded below on
S, and the algorithm ensures that f cannot increase at any iteration). If, as in our
contrary assumption, ‖∇fk‖ ≥ ε > 0, and if k is a successful step, then step 2 shows
that

f (xk)− f (xk+1) ≥ 1

2
με · min

{
	k,

ε

M

}
.

The limit of the left-hand side is zero, so lim	ki = 0, where { ki } are the indices of the
iterations where successful steps are taken. At successful steps the trust-region bound
is either kept constant or doubled, and at unsuccessful steps the bound is reduced. So
between successful steps,

2	ki ≥ 	ki+1 ≥ 	ki+2 ≥ · · · ≥ 	ki+1 .

Thus lim	k = 0 also.

4. lim ρk = 1: Using the remainder form of the Taylor series for f (xk + pk), we obtain

|f (xk + pk)− qk(pk)|
= |f (xk)+ ∇f Tk pk + 1

2p
T
k∇2f (xk + ξkpk)pk − qk(pk)|

= | − 1
2p

T
k(∇2fk)pk + 1

2p
T
k∇2f (xk + ξkpk)pk|

≤ 1
2M ‖pk‖2 + 1

2M ‖pk‖2

= M ‖pk‖2 ≤ M	2
k.

Using the bound from step 1 and the result of step 3, we obtain

f (xk)− qk(pk) ≥ 1
2ε	k
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for large values of k. Hence

|ρk − 1| =
∣∣∣∣f (xk)− f (xk + pk)f (xk)− qk(pk) − 1

∣∣∣∣
= |f (xk + pk)− qk(pk)|

|f (xk)− qk(pk)|
≤ M	2

k

1
2ε	k

= 2M

ε
	k → 0.

This is the desired result.

5. lim	k = 0: If lim ρk = 1, then for large values of k the algorithm will not decrease
	k . Hence 	k will be bounded away from zero.

This is the desired contradiction establishing that a subsequence of the sequence { ‖∇f (xk)‖ }
converges to zero. This completes the first part of the proof.

The second part of the proof shows that lim ‖∇fk‖ = 0. This also is proved by
contradiction. If this result is not true, then

∥∥∇fki∥∥ ≥ ε > 0 for some subset { ki } of the
iterations of the algorithm. (This may be a different ε than used above.) However, since
a subsequence of { ‖∇f (xk)‖ } converges to zero, there must exist a set of indices { �i }
such that

‖∇fk‖ ≥ 1
4ε for ki ≤ k < �i∥∥∇f�i∥∥ < 1
4ε.

If ki ≤ k < �i and iteration k is successful, then step 2 above shows that

f (xk)− f (xk+1) ≥ 1

2
μ

(
1

4
ε

)
· min

{
	k,

1
4ε

M

}
.

The left-hand side of this inequality goes to zero, so that

f (xk)− f (xk+1) ≥ ε1 ‖xk+1 − xk‖ ,
where ε1 = 1

8με. Because ‖xk+1 − xk‖ = 0 for an unsuccessful step, this result is valid for
ki ≤ k < �i . Using this result repeatedly, we obtain

ε1

∥∥xki − x�i∥∥
≤ ε1(

∥∥xki − xki+1

∥∥+ ∥∥xki+1 − xki+2

∥∥+ · · · + ∥∥x�i−1 − x�i
∥∥)

≤ f (xki )− f (xki+1)+ f (xki+1 − f (xki+2)+ · · · + f (x�i−1)− f (x�i )
= f (xki )− f (x�i ).

Since the right-hand side of this result goes to zero, the left-hand side can be made arbitrarily
small. Because ∇f (x) is continuous on the set S, and S is closed and bounded, by choosing
i large enough it is possible to guarantee that∥∥∇fki − ∇f�i

∥∥ ≤ 1
4ε.
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We are now ready to obtain the desired contradiction:

ε ≤ ∥∥∇fki∥∥ = ∥∥(∇fki − ∇f�i )+ ∇f�i
∥∥

≤ ∥∥∇fki − ∇f�i
∥∥+ ∥∥∇f�i∥∥ ≤ 1

4ε + 1
4ε = 1

2ε < ε.

Hence lim ‖∇f (xk)‖ = 0.

Exercises
6.1. Perform an additional iteration of the trust-region method in Example 11.10.

6.2. Suppose that, in a trust-region method, pk = αv where v is some nonzero vector.
Show how to determine α so that pk solves the trust-region subproblem

minimize
p

qk(p) = f (xk)+ ∇f (xk)Tp + 1
2p

T∇2f (xk)p

subject to ‖p‖ ≤ 	k.

6.3. Extend the result of the previous problem to the case where pk is constrained to lie
on a piecewise linear path. That is,

pk =

⎧⎪⎨
⎪⎩
αv1 if ‖pk‖ ≤ δ1;
α1v1 + αv2 if δ1 ≤ ‖pk‖ ≤ δ2;
α1v1 + α2v2 + αv3 if δ2 ≤ ‖pk‖ ≤ δ3;
etc.

6.4. Theorem 11.11 assumes that ∇2f is continuous for all x ∈ S. Prove that the theorem
is still true even if ∇2f is only bounded for all x ∈ S.

6.5. Define p(λ) by
(∇2f (x)+ λI)p(λ) = −g(x).

(i) If ∇2f (x) is nonsingular, prove that

lim
λ→0

p(λ) = −∇2f (x)−1∇f (x).

(ii) Prove that
lim

λ→+∞ λp(λ) = −∇f (x),
and hence prove p(λ) ≈ −(1/λ)∇f (x) for sufficiently large λ.

(iii) Use (ii) to prove that
lim

λ→+∞
‖p(λ)‖ = 0.

(iv) If (∇2f (x)+ λI) is nonsingular, prove that

d

dλ
‖p(λ)‖ = −p(λ)

T(∇2f (x)+ λI)−1p(λ)

‖p(λ)‖ .

Use this result to prove that, if (∇2f (x)+λI) is positive definite, then ‖p(λ)‖
is a monotone decreasing function of λ.



book
2008/10/23
page 399

�

�

�

�

�

�

�

�

11.7. Notes 399

(v) Let d be a nonzero vector satisfying dT∇f (x) = 0. Prove that

lim
λ→+∞

dTp(λ)

‖p(λ)‖ = 0.

6.6. We show in Chapter 14 that the solution to the trust-region subproblem satisfies

(∇2f (xk)+ λI)pk = −∇f (xk)
λ(	k − ‖pk‖) = 0
(∇2f (xk)+ λI) is positive semidefinite

for some λ ≥ 0. Use these conditions to answer the following questions.

(i) If λ = 0, prove that pk solves

minimize qk(p)

subject to ‖p‖ = 	k.

Hint: Prove that, for any p, qk(pk) ≤ qk(p)+ 1
2λ(p

Tp − pTkpk).
(ii) If λ = 0 and ∇2f (xk) is positive definite, prove that pk solves the trust-region

subproblem.

(iii) If the trust-region subproblem has no solution such that ‖pk‖ = 	k , prove that
∇2f (xk) is positive definite and∥∥∇2f (xk)

−1∇f (xk)
∥∥ < 	k.

6.7. Assume that ∇2f (x) is positive definite, and let pN be the Newton direction at x.
Let pC be the solution to

minimize
α

q(−α∇f (x))
subject to ‖α∇f (x)‖ ≤ 	.

(i) Find a formula for ᾱ satisfying pC = −ᾱ∇f (x).
(ii) Define

p(α) = pC + α(pN − pc)
for 0 ≤ α ≤ 1. Prove that ‖p(α)‖ is strictly monotone increasing as a function
of α. Hint: Consider the derivative with respect to α of ‖p(α)‖2.

(iii) Prove that q(p(α)) is strictly monotone decreasing as a function of α.

(iv) Prove that there is a unique α∗ satisfying

‖p(α∗)‖ = 	.

11.7 Notes
Superlinear Convergence—Theorem 11.3 is adapted from the paper by Dennis and Moré
(1974).

Guaranteeing Descent—The derivation given above of the modificationE to the Hes-
sian ignores a few details. To ensure the convergence of the descent method in Theorem 11.7
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(see Section 11.5), we make a number of assumptions about the search directions. These
assumptions are guaranteed to be satisfied if both ∇2f (x) + E and (∇2f (x) + E)−1 are
bounded. However, if the modification E is chosen carelessly, this will not be true. Safe
ways of choosing E are discussed in the papers by Gill and Murray (1974a) and Schnabel
and Eskow (1990). These papers also show how a search direction can be chosen in the
case where ∇f (x) = 0 and ∇2f (x) is indefinite (that is, x is a stationary point but not a
local minimizer of f ).

The techniques used in this section are not the only way to salvage Newton’s method
in the indefinite case. The trust-region approach discussed in Section 11.6 is another, where
the Hessian is replaced by a matrix of the form (∇2f (xk)+ λI) for some λ ≥ 0. Still other
ideas are discussed in the book by Gill, Murray, and Wright (1981).

Line Search Methods—An extensive discussion of convergence theory for line search
methods can be found in the book by Ortega and Rheinboldt (1970, reprinted 2000). Some
practical line search algorithms are described in the papers by Gill and Murray (1974b) and
Moré and Thuente (1994). The Wolfe condition and other conditions that can be used to
design a line search are discussed in the paper by Wolfe (1969). A summary can be found
in the paper by Nocedal (1992).

Trust-Region Methods—The idea of a trust region was first proposed by Levenberg
(1944) and Marquardt (1963) as a technique for solving nonlinear least-squares problems.
Methods for computing the search direction within a trust-region method are described in
the papers by Gay (1981), Sorensen (1982), and Moré and Sorensen (1983). Convergence
theory is discussed in the paper by Moré (1983). An extensive overview of trust-region
methods can be found in the book by Conn, Gould, and Toint (1987).

The proof of the convergence theorem is originally due to Powell (1975) and Thomas
(1975). The assumptions we make are more stringent than necessary. For example, we
assume that the trust-region subproblem is solved exactly. This is not necessary. In step
1 of the first part of the proof, we examine how small qk could be if the step pk were a
multiple of −∇fk . As long as an iteration of the method reduces the function value by some
nontrivial fraction of this amount, then the conclusion is still true. (In fact, it is not difficult
to modify the proof to show this.) A great many practical methods, including the “dogleg”
approach of Powell (1970), are capable of achieving this. (See also the papers of Steihaug
(1983) and Toint (1981) for results applicable to large problems.)

The assumptions of the theorem are sufficient to prove a stronger result, namely that
there is some limit point x∗ of the sequence { xk } for which∇2f (x∗) is positive semidefinite.
(See the papers by Moré and Sorensen mentioned above.) Thus x∗ satisfies the second-order
necessary conditions for a local minimizer. This stronger result may not hold, however, if
the trust-region subproblem is solved approximately using dogleg and related approaches.
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Chapter 12

Methods for Unconstrained
Optimization

12.1 Introduction
A principal advantage of Newton’s method is that it converges rapidly when the current
estimate of the variables is close to the solution. It also has disadvantages, and overcoming
these disadvantages has led to many ingenious techniques.

In particular, Newton’s method can fail to converge, or it can converge to a point that
is not a minimum. This is its most serious failing, but one which can be overcome by using
strategies that guarantee progress towards the solution at every iteration, such as the line
search and trust-region strategies discussed in Chapter 11.

The costs of Newton’s method can also be a concern. It requires the derivation,
computation, and storage of the second derivative matrix, and the solution of a system of
linear equations.

Obtaining the second derivative matrix can be tedious and can be prone to error.
An alternative is toautomate the calculation of second derivatives, or to use a method that
reduces the requirement to compute derivative values. We will consider both of these ideas.

The other costs of Newton’s method are the computational costs of applying the
method. If there are n variables, and if the problem is not sparse, calculating the Hessian
matrix involves calculating and storing about n2 entries, and solving a linear system requires
about n3 arithmetic operations. If n is small, these costs might be acceptable. For n of mod-
erate size (say, n < 200) storing this matrix might be acceptable, but solving a linear system
might not be. Also for largen (say, n > 1000), even storing this matrix might be undesirable.

Luckily, large problems are frequently sparse, and taking advantage of sparsity can
greatly reduce the computational costs of Newton’s method and make it a practical tool in
such cases. Techniques for exploiting sparsity are mentioned in Chapter 13 andAppendixA.

A major topic of this chapter will be methods for solving unconstrained problems
that are compromises to Newton’s method and that reduce one or more of these costs. In
exchange, these other methods generally have slower rates of convergence. A trade-off is
made between the cost per iteration and the number of iterations.

We present two compromises on Newton’s method: quasi-Newton methods and the
steepest-descent method. Quasi-Newton methods are currently among the most widely used

401
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Newton-type methods for problems of moderate size, where matrices can be stored. The
steepest-descent method is an old and widely known method whose costs are low but whose
performance is usually atrocious. It illustrates the dangers of compromising too much when
using Newton’s method.

These methods are based on Newton’s method but use a different formula to compute
the search direction. They are based on approximating the Hessian matrix in a way that
lowers the costs of the algorithm. These methods also have slower convergence rates
than Newton’s method, and so there is a trade-off between the cost per iteration (higher for
Newton’s method) and the number of iterations (higher for the other methods). Additional
methods are discussed in the next chapter that are suitable for problems with many variables.

Many of these methods can be interpreted as computing the search direction by solving
a linear system of equations

Bkp = −∇f (xk),
where Bk is a positive-definite matrix. In the case of Newton’s method, Bk = ∇2f (xk),
assuming that the Hessian matrix is positive definite. Intuitively,Bk should be some approx-
imation to ∇2f (xk). This interpretation emphasizes that these methods are compromises
on Newton’s method, where the degree of compromise reflects the degree to which Bk
approximates the Hessian ∇2f (xk).

In some situations it is desirable to use a method that does not require derivatives. For
example, if you wish to optimize a function which does not have derivatives at all points, then
Newton’s method and related methods cannot be used. Effective derivative-free methods
have been developed that do not require the user to compute derivatives and that do not
make use of derivative values to find a solution. What is surprising is that these methods
have guarantees of convergence comparable to quasi-Newton methods. It is perhaps also
surprising that such methods are suitable for parallel computing.

The chapter includes some practical information about the design and use of software
for unconstrained optimization, for Newton-like methods, as well as for derivative-free
methods. It concludes with a summary of the historical background for these methods.

12.2 Steepest-Descent Method
The steepest-descent method is the simplest Newton-type method for nonlinear optimization.
The price for this simplicity is that the method is hopelessly inefficient at solving most
problems. The method has theoretical uses, though, in proving the convergence of other
methods, and in providing lower bounds on the performance of better algorithms. It is well
known, and has been widely used and discussed, and so it is worthwhile to be familiar with
it if only to know not to use it on general problems.

The steepest-descent method is old, but not as old as Newton’s method. It was invented
in the nineteenth century by Cauchy, about two hundred years later than Newton’s method.
It is much simpler than Newton’s method. It does not require the computation of second
derivatives, it does not require that a system of linear equations be solved to compute the
search direction, and it does not require matrix storage. So in every way it reduces the costs
of Newton’s method—at least, the costs per iteration. On the negative side it has a slower
rate of convergence than Newton’s method; it converges only at a linear rate, with a constant
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that is usually close to one. Hence it often converges slowly—sometimes so slowly that
xk+1 − xk is below the precision of computer arithmetic and the method fails. As a result,
even though the costs per iteration are low, the overall costs of solving an optimization
problem are high.

The steepest-descent method computes the search direction from

pk = −∇f (xk)
and then uses a line search to determine xk+1 = xk + αkpk . Hence the cost of computing
the search direction is just the cost of computing the gradient. Since the gradient must be
computed to determine if the solution has been found, it is reasonable to say that the search
direction is available for free. The search direction is a descent direction if ∇f (xk) = 0;
that is, it is a descent direction unless xk is a stationary point of the function f .

The formula for the search direction can be derived in two ways, both of which have
connections with Newton’s method. The first derivation is based on a crude approximation
to the Hessian. If the formula for Newton’s method is used ((∇2f )p = −∇f ) but with the
Hessian approximated by the identity matrix (∇2f ≈ I ), then the formula for the steepest-
descent method is obtained. This approach, where an approximation to the Hessian is used
in the Newton formula, is the basis of the quasi-Newton methods discussed in Section 12.3.

The second, and more traditional, derivation is based on the Taylor series and explains
the name “steepest descent.” In our derivation of Newton’s method, the function value
f (xk + p) was approximated by the first three terms of the Taylor series, and the search
direction was obtained by minimizing this approximation. Here we use only the first two
terms of the Taylor series:

f (xk + p) ≈ f (xk)+ pT∇f (xk).
The intuitive idea is to minimize this approximation to obtain the search direction; however,
this approximation does not have a finite minimum in general. Instead, the search direction
is computed by minimizing a scaled version of this approximation:

minimize
p =0

pT∇f (xk)
‖p‖ · ‖∇f (xk)‖ .

The solution is pk = −∇f (xk) (see the Exercises).
To explain the name “steepest descent,” we recall that a descent direction satisfies

the condition pT∇f (xk) < 0. Choosing p to minimize pT∇f (xk) gives the direction that
provides the “most” descent possible. In the line search we also required that the search
direction satisfy the sufficient descent condition

− pT∇f (xk)
‖pk‖ · ‖∇f (xk)‖ ≥ ε > 0.

For steepest descent this condition simplifies to

−−∇f (xk)T∇f (xk)
∇f (xk)T∇f (xk) = 1 > 0



book
2008/10/23
page 404

�

�

�

�

�

�

�

�

404 Chapter 12. Methods for Unconstrained Optimization

and so is clearly satisfied. The gradient-relatedness condition

‖pk‖ ≥ m ‖∇f (xk)‖
is also satisfied, with m = 1.

Example 12.1 (The Steepest-Descent Method). We apply the steepest-descent method to
a three-dimensional quadratic problem

minimize f (x) = 1
2x

TQx − cTx
with

Q =
( 1 0 0

0 5 0
0 0 25

)
and c =

(−1
−1
−1

)
.

The steepest-descent direction is

pk = −∇f (xk) = −(Qxk − c).
An exact line search is used so that xk+1 = xk + αkpk with

αk = −∇f (xk)Tpk
pTkQpk

(see Exercise 5.3 of Chapter 11). The solution of the minimization problem is

x∗ = Q−1c =
⎛
⎝ −1

− 1
5

− 1
25

⎞
⎠ .

If the initial guess of the solution is x0 = (0, 0, 0)T, then

f (x0) = 0, ∇f (x0) =
( 1

1
1

)
, ‖∇f (x0)‖ = 1.7321.

This implies that the step length is α0 = 0.0968 leading to the following new estimate of
the solution:

x1 =
(−0.0968
−0.0968
−0.0968

)
.

At this point,

f (x1) = −0.1452, ∇f (x1) =
( 0.9032

0.5161
−1.4194

)
, ‖∇f (x1)‖ = 1.7598.

The next step length is α1 = 0.0590 and the new estimate of the solution is

x2 =
(−0.1500
−0.1272
−0.0131

)
.
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At the point x2,

f (x2) = −0.2365, ∇f (x2) =
( 0.8500

0.3639
0.6732

)
, ‖∇f (x2)‖ = 1.1437.

It takes 216 iterations before the norm of the gradient is less than 10−8.

Now we determine the rate of convergence for the steepest-descent method. In view
of Theorem 11.3, superlinear convergence cannot in general be expected. In fact, we show
that linear convergence is all that can be guaranteed. Much of our analysis is for the case
of a quadratic function:

minimize f (x) = 1
2x

TQx − cTx,
where Q is positive definite. Results for the more general nonlinear case are mentioned
afterward.

The convergence rate is analyzed using f (xk)− f (x∗) instead of ‖xk − x∗‖ because
the analysis is simpler. It can be shown that the two quantities converge at the same rate,
using an argument similar to that used in Section 2.7 (see the Exercises). The argument
used here is adapted from the book by Luenberger (2003).

Since x∗ = Q−1c (or equivalently, c = Qx∗) we obtain

f (xk)− f (x∗) = ( 1
2x

T
kQxk − cTxk)− ( 1

2x
T
∗Qx∗ − cTx∗)

= 1
2x

T
kQxk − (Qx∗)Txk − ( 1

2x
T
∗Qx∗ − (Qx∗)Tx∗)

= 1
2x

T
kQxk − xT∗Qxk − ( 1

2x
T
∗Qx∗ − xT∗Qx∗)

= 1
2x

T
kQxk − xT∗Qxk + 1

2x
T
∗Qx∗

= 1
2 (xk − x∗)TQ(xk − x∗).

We define E(x) = 1
2 (x − x∗)TQ(x − x∗). The convergence result is proved using the

function E(x) and is based on the following two lemmas.

Lemma 12.2. Assume that { xk } is the sequence of approximate solutions obtained when
the steepest-descent method is applied to the quadratic function f (x) = 1

2x
TQx− cTx, and

where an exact line search is used. Then

E(xk+1) =
[

1 − (∇f (xk)T∇f (xk))2
(∇f (xk)TQ∇f (xk))(∇f (xk)TQ−1∇f (xk))

]
E(xk).

Proof. See the Exercises.

Lemma 12.3. Let Q be a positive-definite matrix. For any vector y = 0,

(yTy)2

(yTQy)(yTQ−1y)
≥ 1 −

[
cond(Q)− 1

cond(Q)+ 1

]2

,

where cond(Q) is the condition number of Q (see Appendix A.8).
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Proof. See the book by Luenberger (2003).

Lemma 12.4. Assume that { xk } is the sequence of approximate solutions obtained when
the steepest-descent method is applied to the quadratic function f (x) = 1

2x
TQx − cTx and

where an exact line search is used. Then for any x0 the method converges to the unique
minimizer x∗ of f , and furthermore,

f (xk+1)− f (x∗) ≤
[

cond(Q)− 1

cond(Q)+ 1

]2

(f (xk)− f (x∗)),

that is, the method converges linearly.

Proof. This is a direct consequence of the two previous lemmas. Since the rate constant is
strictly less than one, the method converges from any starting point.

Example 12.5 (Convergence of the Steepest-Descent Method). This convergence theory
can be applied to the problem in the previous example. In this case the condition number is
cond(Q) = 25 and the corresponding bound on the rate constant is 0.8521. Table 12.1 lists
the values of

f (xk+1)− f (x∗)
f (xk)− f (x∗) = E(xk+1)

E(xk)

and compares them to this rate constant. For this example, the observed rate constant is
about 0.84, which is close to but less than the bound given in the theorem. This is typical
for the steepest-descent method.

The theorem provides only an upper bound on the rate constant, but in many examples
this bound is close to the observed rate constant (see the Exercises). Table 12.2 compares the

Table 12.1. Observed rate constant.

f (xk) E(xk+1)/E(xk) Bound

0 — 0.8521
−0.1452 0.7659 0.8521
−0.2365 0.8077 0.8521
−0.3038 0.8246 0.8521
−0.3560 0.8348 0.8521
−0.3988 0.8379 0.8521
−0.4343 0.8397 0.8521
−0.4640 0.8401 0.8521
−0.4889 0.8404 0.8521
−0.5098 0.8405 0.8521
−0.5274 0.8405 0.8521
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Table 12.2. Rate constants for the steepest-descent method.

cond(Q) Constant

1 0
10 0.669421

100 0.960788
1000 0.996008

10000 0.999600
100000 0.999960

1000000 0.999996

x

x

x
0

2

1

Figure 12.1. Steepest-descent in two dimensions (part 1).

bound on the rate constant to various values of the condition number cond(Q). Notice that,
even for moderate values of cond(Q), the bound is close to one. Only when the condition
number is less than about 50 does this method converge fast enough to be of practical
value. For example, if cond(Q) = 100, then the steepest-descent algorithm is guaranteed
to improve the solution by only about 4% per iteration.

The convergence theorem given here applies only to quadratic functions. For general
nonlinear functions it is possible to show that the steepest-descent method (with an exact
line search) also converges linearly, with a rate constant that is bounded by

[
cond(Q)− 1

cond(Q)+ 1

]2

,

where Q = ∇2f (x∗), the Hessian at the solution. Hence the method behaves much the
same way on general functions as it does on quadratic functions.

This poor behavior of the steepest-descent method may be surprising. In Figure 12.1
the method is applied to a two-dimensional quadratic function. The method works well
in this case. For this problem, cond(Q) ≈ 1 and the rate constant is near 0, so the good
performance is confirmed by the theory.

In cases where cond(Q) ≈ 1, the picture looks more like Figure 12.2. In this case
the steepest-descent directions are almost at right angles to the direction of the minimizer
and the method performs poorly, as we would expect. It is this particular figure that should
be remembered.
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x2

1x
x3

x0

Figure 12.2. Steepest-descent in two dimensions (part 2).

Exercises
2.1. Use the steepest-descent method to solve

minimize f (x1, x2) = 4x2
1 + 2x2

2 + 4x1x2 − 3x1,

starting from the point (2, 2)T. Perform three iterations.

2.2. Apply the steepest-descent method, with an exact line search, to the three-dimensional
quadratic function f (x) = 1

2x
TQx − cTx with

Q =
( 1 0 0

0 γ 0
0 0 γ 2

)
and c =

( 1
1
1

)
.

Here γ is a parameter that can be varied. Try γ = 1, 10, 100, 1000. How do your
results compare with the convergence theory developed above? (If you do this by
hand, perform four iterations; if you are using a computer, then it is feasible to
perform more iterations.)

2.3. Consider the problem

minimize f (x1, x2) = x2
1 + 2x2

2 .

(i) If the starting point is x0 = (2, 1)T, show that the sequence of points generated
by the steepest-descent algorithm is given by

xk =
(

1
3

)k ( 2

(−1)k

)

if an exact line search is used.

(ii) Show that f (xk+1) = f (xk)/9.

(iii) Compare the results in (ii) to the bounds on the convergence rate of the steepest-
descent method when minimizing a quadratic function. What conclusions can
you draw regarding this method?
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2.4. The method of steepest descent applied to the problem

minimize f (x1, x2) = 4x2
1 + x2

2

generates a sequence of points { xk }.
(i) If x0 = (1, 4)T, show that

xk = (0.6)k
(
(−1)k

4

)
.

(ii) What is the minimizer x∗ of f ? What is f (x∗)? What is the rate of convergence
of the sequence { f (xk)− f (x∗) }?

2.5. Suppose that the steepest-descent method (with an exact line search) is used to
minimize the quadratic function

f (x) = 1
2x

TQx − cTx,
where Q is a positive-definite matrix. Prove that

∇fk+1 = ∇fk − ∇f Tk ∇fk
∇f Tk Q∇fk Q∇fk,

where ∇fk = ∇f (xk) and ∇fk+1 = ∇f (xk+1).

2.6. In this problem we will derive the subproblem used to determine the steepest-descent
direction from the Taylor series.

(i) Prove that the subproblem

minimize
p

pT∇f (xk)

does not have a finite solution unless ∇f (xk) = 0.

(ii) If we normalize the vectors p and ∇f (xk) by dividing each of them by their
norms, we obtain the subproblem

minimize
p =0

pT∇f (xk)
‖p‖ · ‖∇f (xk)‖ .

Solve this problem using the formula pT∇f (xk) = ‖p‖ · ‖∇f (xk)‖ cos θ ,
where θ is the angle between p and ∇f (xk).

2.7. Are there starting points for which the steepest-descent algorithm terminates in one
iteration? This problem will partly address this question for the case of a strictly
convex quadratic function. Consider the problem

minimize f (x) = 1
2x

TQx − cTx,
where Q is a positive-definite matrix. Let x∗ be the minimizer of this function. Let
v be an eigenvector of Q, and let λ be the associated eigenvalue. Suppose now that
the starting point for the steepest-descent algorithm is x0 = x∗ + v.
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(i) Prove that the gradient at x0 is ∇f (x0) = λv.

(ii) Prove that if the steepest-descent direction is taken, then the step length which
minimizes f in this direction is α0 = 1/λ.

(iii) Prove that the steepest-descent direction with an accurate step length will lead
to the minimum of the function f in one iteration.

(iv) Confirm this result for the function

f (x) = 3x2
1 − 2x1x2 + 3x2

2 + 2x1 − 6x2.

Suppose that the starting point is x0 = (1, 2)T; compute the point obtained by
one iteration of the steepest-descent algorithm. Prove that the point obtained
is the unique minimum x∗. Verify that x0 −x∗ is an eigenvector of the Hessian
matrix.

2.8. Prove Lemma 12.2.

2.9. Suppose that lim xk = x∗, where x∗ is a local minimizer of the nonlinear function f
(the sequence { xk } need not come from the steepest-descent method). Assume that
∇2f (x∗) is positive definite. Prove that the sequence { f (xk)− f (x∗) } converges
linearly if and only if { ‖xk − x∗‖ } converges linearly. Prove that the two sequences
converge at the same rate, regardless of what this rate is. What is the relationship
between the rate constants for the two sequences? [Hint: See Section 2.7, but note that
in that section the problem is to find a solution to f (x) = 0 and not minimize f (x).]

2.10. Write a computer program for minimizing a multivariate function using the steepest-
descent algorithm. Include the following details:

(i) Use a backtracking line search as described in Section 11.5.

(ii) Accept x as a solution if ‖∇f (x)‖ /(1 + |f (x)|) ≤ ε, or if the number of
iterations exceeds Itmax. Use ε = 10−5 and Itmax = 1000.

(iii) Print out the initial point, and then at each iteration print the search direction,
the step length α, and the new estimate of the solution xk+1. (If a great many
iterations are required, provide this output only for the first 10 iterations and the
final 5 iterations.) Indicate if no solution has been found after Itmax iterations.

(iv) Test your algorithm on the test problems listed here:

f(1)(x) = x2
1 + x2

2 + x2
3 , x0 = (1, 1, 1)T

f(2)(x) = x2
1 + 2x2

2 − 2x1x2 − 2x2, x0 = (0, 0)T

f(3)(x) = 100(x2 − x2
1)

2 + (1 − x1)
2, x0 = (−1.2, 1)T

f(4)(x) = (x1 + x2)
4 + x2

2 , x0 = (2,−2)T

f(5)(x) = (x1 − 1)2 + (x2 − 1)2 + c(x2
1 + x2

2 − 0.25)2, x0 = (1,−1)T.

For the final function, test the following three different settings of the parameter
c: c = 1, c = 10, and c = 100. The condition number of the Hessian matrix
at the solution becomes larger as c increases. Comment on how this affects
the performance of the algorithm.

(v) Are your computational results consistent with the theory of the steepest-
descent method?
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2.11. Consider the minimization problem in Exercise 3.1 of Chapter 11. Suppose that a
change of variables x̂ ≡ Ax + b is performed with

A =
(

3 1
4 1

)
and b =

(−1
−2

)
.

Show that the steepest-descent direction for the original problem is not the same as
the steepest-descent direction for the transformed problem (when both are written
using the same coordinate system).

2.12. Prove that the steepest-descent direction is changed if a change of variables x̂ ≡
Ax + b is performed, where A is an invertible matrix, unless A is an orthogonal
matrix.

12.3 Quasi-Newton Methods
Quasi-Newton methods are among the most widely used methods for nonlinear optimization.
They are incorporated in many software libraries, and they are effective in solving a wide
variety of small to mid-size problems, in particular when the Hessian is hard to compute.
In cases when the number of variables is large, other methods may be preferred, but even in
this case they are the basis for limited-memory quasi-Newton methods, an effective method
for solving large problems (see Chapter 13).

There are many different quasi-Newton methods, but they are all based on approxi-
mating the Hessian ∇2f (xk) by another matrix Bk that is available at lower cost. Then the
search direction is obtained by solving

Bkp = −∇f (xk),
that is, from the Newton equations but with the Hessian replaced by Bk . If the matrix Bk is
positive definite, then this is equivalent to minimizing the quadratic model

minimize q(p) = f (xk)+ ∇f (xk)Tp + 1
2p

TBkp.

The various quasi-Newton methods differ in the choice of Bk .
There are several advantages to this approach. First, an approximationBk can be found

using only first-derivative information. Second, the search direction can be computed using
only O(n2) operations (versus O(n3) for Newton’s method in the nonsparse case). There
are also disadvantages, but they are minor. The methods do not converge quadratically,
but they can converge superlinearly. At the precision of computer arithmetic, there is not
much practical difference between these two rates of convergence. Also, quasi-Newton
methods still require matrix storage, so they are not normally used to solve large problems.
Modifications to quasi-Newton methods that do not use matrix storage are available, though;
see Section 13.5.

Quasi-Newton methods are generalizations of a method for one-dimensional problems
called the secant method. The secant method uses the approximation

f ′′(xk) ≈ f ′(xk)− f ′(xk−1)

xk − xk−1
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in the formula for Newton’s method xk+1 = xk−f ′(xk)/f ′′(xk). This results in the formula

xk+1 = xk − (xk − xk−1)

f ′(xk)− f ′(xk−1)
f ′(xk).

It is illustrated in the example below.

Example 12.6 (The Secant Method). We apply the secant method to

minimize f (x) = sin x.

The secant method requires that two initial points be specified, x0 and x1. We use x0 = 0
and x1 = −1. Then

x2 = x1 − (x1 − x0)

f ′(x1)− f ′(x0)
f ′(x1)

= −1 − (−1 − 0)

cos(−1)− cos(0)
cos(−1)

= −1 − (−1 − 0)

0.5403 − 1
0.5403 = −2.1753.

The next few iterates are x3 = −1.5728, x4 = −1.5707, and x5 = −1.5708 ≈ −π/2, and
so the sequence converges to a solution of the problem.

Under appropriate assumptions, the secant method can be proved to converge super-
linearly with rate r = 1

2 (1 +√
5) ≈ 1.618 (the “golden ratio”). See, for example, the book

by Conte and de Boor (1980).
Quasi-Newton methods are based on generalizations of the formula

f ′′(xk) ≈ f ′(xk)− f ′(xk−1)

xk − xk−1
.

This formula cannot be used in the multidimensional case because it would involve division
by a vector, an undefined operation. This condition is rewritten in the form

∇2f (xk)(xk − xk−1) ≈ ∇f (xk)− ∇f (xk−1).

From this we obtain the condition used to define the quasi-Newton approximations Bk:

Bk(xk − xk−1) = ∇f (xk)− ∇f (xk−1).

We will call this the secant condition. For an n-dimensional problem this condition rep-
resents a set of n equations that must be satisfied by Bk . However, the matrix Bk has n2

entries, and so this condition by itself is insufficient to define Bk uniquely (unless n = 1).
Additional conditions must be imposed to specify a particular quasi-Newton method.

The secant condition has extra significance when f is a quadratic function, f (x) =
1
2x

TQx − cTx. In this case

Q(xk − xk−1) = (Qxk − c)− (Qxk−1 − c) = ∇f (xk)− ∇f (xk−1)
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so that the Hessian matrixQ satisfies the secant condition. Intuitively we are asking that the
approximation Bk mimic the behavior of the Hessian matrix when it multiplies xk − xk−1.
Although this interpretation is precise only for quadratic functions, it holds in an approximate
way for general nonlinear functions. We are asking that the approximation Bk imitate the
effect of the Hessian matrix along a particular direction.

Before going further it is useful to define two vectors that will appear repeatedly in
the discussion of quasi-Newton methods:

sk = xk+1 − xk and yk = ∇f (xk+1)− ∇f (xk).
This notation is used throughout the literature on quasi-Newton methods. The secant con-
dition then becomes Bksk−1 = yk−1 or, as will be more convenient to us,

Bk+1sk = yk.

When a line search is used, xk+1 = xk + αkpk where αk is the step length and pk is the
search direction. In this case sk = αkpk .

An example of a quasi-Newton approximation is given by the formula

Bk+1 = Bk + (yk − Bksk)(yk − Bksk)T
(yk − Bksk)Tsk .

The numerator of the second term is the outer product of two vectors and is an n×nmatrix.
This approximation is illustrated in the following example.

Example 12.7 (A Quasi-Newton Approximation). We will look at a three-dimensional
example. Let k = 1, and define

B0 = I =
( 1 0 0

0 1 0
0 0 1

)
, s0 =

( 2
3
4

)
, y0 =

( 5
6
7

)
.

Then (y0 − B0s0) = (3, 3, 3)T. We compute

B1 = B0 + (y0 − B0s0)(y0 − B0s0)
T

(y0 − B0s0)Ts0
= I +

(
3
3
3

)
( 3 3 3 )

( 3 3 3 )
(

2
3
4

)

= I + 1

27

( 9 9 9
9 9 9
9 9 9

)
=
⎛
⎜⎝

4
3

1
3

1
3

1
3

4
3

1
3

1
3

1
3

4
3

⎞
⎟⎠ .

It is easy to check that

B1s0 =
⎛
⎜⎝

4
3

1
3

1
3

1
3

4
3

1
3

1
3

1
3

4
3

⎞
⎟⎠
( 2

3
4

)
=
( 5

6
7

)
= y0,

so the secant condition is satisfied.
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This simple formula forBk+1 displays many of the general properties of quasi-Newton
methods.

• The secant condition will be satisfied regardless of how Bk is chosen:

Bk+1sk = Bksk + (yk − Bksk)(yk − Bksk)T
(yk − Bksk)Tsk sk

= Bksk + (yk − Bksk)((yk − Bksk)Tsk)
(yk − Bksk)Tsk

= Bksk + (yk − Bksk) = yk.

• The new approximationBk+1, is obtained by modifying the old approximationBk . To
start a quasi-Newton method some initial approximation B0 must be specified. Often
B0 = I is used, but it is reasonable and often advantageous to supply a better initial
approximation if one can be obtained with little effort.

• The new approximation Bk+1 can be obtained from Bk using O(n2) arithmetic op-
erations since the difference Bk+1 − Bk only involves products of vectors. More
surprisingly the search direction can also be computed using O(n2) arithmetic oper-
ations. Normally the computational cost of solving a system of linear equations is
O(n3), so this represents a significant saving. The costs are lower in this case because
it is possible to derive formulas that update a Cholesky factorization of Bk rather than
Bk itself. With a factorization available, the search direction can be computed via
backsubstitution.

All the quasi-Newton methods we consider have the form

Bk+1 = Bk + [something].
The “something” represents an “update” to the old approximation Bk , and so a formula for
a quasi-Newton approximation is often referred to as an update formula.

A variety of quasi-Newton methods are obtained by imposing conditions on the ap-
proximation Bk . These conditions are usually properties of the Hessian matrix that we
would like the approximation to share. For example, since the Hessian matrix is symmetric,
perhaps the approximation Bk should be symmetric as well. The quasi-Newton formula in
Example 12.7,

Bk+1 = Bk + (yk − Bksk)(yk − Bksk)T
(yk − Bksk)Tsk ,

preserves symmetry because Bk+1 is symmetric if Bk is. It is called the symmetric rank-one
update formula. The “rank-one” is in its name because the update term is a matrix of rank
one. This is the only rank-one update formula that preserves symmetry, as the lemma below
shows.

Lemma 12.8. Let Bk be a symmetric matrix. Let Bk+1 = Bk + C where C = 0 is a matrix
of rank one. Assume that Bk+1 is symmetric, Bk+1sk = yk , and (yk − Bksk)Tsk = 0. Then

C = (yk − Bksk)(yk − Bksk)T
(yk − Bksk)Tsk .
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Proof. If Bk+1 = Bk + C and both Bk and Bk+1 are symmetric, then C must be symmetric
also. Since C is also of rank one, C must have the form

C = γwwT,

where γ is a scalar and w is a vector of norm one. (See the Exercises.) Now we use the
secant condition

yk = Bk+1sk = (Bk + C)sk = (Bk + γwwT)sk = Bksk + γw(wTsk).
This can be rewritten as

γ (wTsk)w = yk − Bksk.
If wTsk = 0, then Bksk = yk , or in other words, Bk already satisfies the secant condition, so
there is no reason to perform any update. Since the theorem assumed that C = 0, we can
rule this out, and so wTsk = 0. Hence we can write

w = θ(yk − Bksk),
where θ = 1/ ‖yk − Bksk‖. This shows thatw is a multiple of yk−Bksk . (SinceC = γwwT,
the sign of θ is irrelevant.)

It only remains to determine the value of γ in terms of Bk , sk , and yk . To do this we
use γ (wTsk)w = yk − Bksk:

yk − Bksk = γ (wTsk)w

= γ

‖yk − Bksk‖2 [(yk − Bksk)Tsk](yk − Bksk),
so

γ = ‖yk − Bksk‖2

(yk − Bksk)Tsk .
If we now substitute the formulas for γ and w into C = γwwT, the result follows.

If a quasi-Newton method is used with a line search, then the algorithm takes the
following form.

Algorithm 12.1.
Quasi-Newton Algorithm

1. Specify some initial guess of the solution x0 and some initial Hessian approximation
B0 (perhaps B0 = I ).

2. For k = 0, 1, . . .

(i) If xk is optimal, stop.

(ii) Solve Bkp = −∇f (xk) for pk .

(iii) Use a line search to determine xk+1 = xk + αkpk .
(iv) Compute

sk = xk+1 − xk
yk = ∇f (xk+1)− ∇f (xk).
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(v) Compute Bk+1 = Bk + · · · using some update formula.

This is illustrated below using the symmetric rank-one formula on a quadratic problem.

Example 12.9 (The Symmetric Rank-One Formula). We will look at a three-dimensional
quadratic problem f (x) = 1

2x
TQx − cTx with

Q =
( 2 0 0

0 3 0
0 0 4

)
and c =

(−8
−9
−8

)
,

whose solution is x∗ = (−4,−3,−2)T. An exact line search will be used (see Exercise 5.3
of Section 11.5). The initial guesses are B0 = I and x0 = (0, 0, 0)T. At the initial point,
‖∇f (x0)‖ = ‖−c‖ = 14.4568, so this point is not optimal. The first search direction is

p0 =
(−8
−9
−8

)

and the line search formula gives α0 = 0.3333. The new estimate of the solution, the update
vectors, and the new Hessian approximation are

x1 =
(−2.6667
−3.0000
−2.6667

)
, ∇f1 =

( 2.6667
0

−2.6667

)
, s0 =

(−2.6667
−3.0000
−2.6667

)
, y0 =

( −5.3333
−9.0000

−10.6667

)
,

and

B1 = I + (y0 − Is0)(y0 − Is0)T
(y0 − Is0)Ts0 =

( 1.1531 0.3445 0.4593
0.3445 1.7751 1.0335
0.4593 1.0335 2.3780

)
.

At this new point ‖∇f (x1)‖ = 3.7712 so we keep going, obtaining the search direction

p1 =
(−2.9137
−0.5557

1.9257

)

and the step length α1 = 0.3942. This gives the new estimates

x2 =
(−3.8152
−3.2191
−1.9076

)
, ∇f2 =

( 0.3697
−0.6572

0.3697

)
, s1 =

(−1.1485
−0.2191

0.7591

)
, y1 =

(−2.2970
−0.6572

3.0363

)
,

and

B2 =
( 1.6568 0.6102 −0.3432

0.6102 1.9153 0.6102
−0.3432 0.6102 3.6568

)
.



book
2008/10/28
page 417

�

�

�

�

�

�

�

�

12.3. Quasi-Newton Methods 417

At the point x2, ‖∇f (x2)‖ = 0.8397 so we keep going, with

p2 =
(−0.4851

0.5749
−0.2426

)

and α = 0.3810. This gives

x3 =
(−4
−3
−2

)
, ∇f3 =

( 0
0
0

)
, s2 =

(−0.1848
0.2191
−0.0924

)
, y2 =

(−0.3697
0.6572
−0.3697

)
,

and B3 = Q. Now ‖∇f (x3)‖ = 0, so we stop. The final approximation matrix B3 is equal to
Q, the Hessian matrix. In exact arithmetic, this will always happen within n iterations when
the symmetric rank-one formula is applied to a quadratic problem, but it is not guaranteed
on more general problems.

Symmetry is not the only property that can be imposed. Since the Hessian matrix at
the solution x∗ will normally be positive definite (it will always be positive semidefinite), it
is reasonable to ask that the matrices Bk be positive definite as well. This will also guarantee
that the quasi-Newton method corresponds to minimizing a quadratic model of the nonlinear
function f , and that the search direction is a descent direction. (See the remarks in Section
11.4.)

There is no rank-one update formula that maintains both symmetry and positive def-
initeness of the Hessian approximations. However, there are infinitely many rank-two
formulas that do this. The most widely used formula, and the one considered to be most
effective, is the BFGS update formula

Bk+1 = Bk − (Bksk)(Bksk)
T

sT
kBksk

+ yky
T
k

yT
k sk

.

The BFGS formula gets its name from the four people who developed it: Broyden, Fletcher,
Goldfarb, and Shanno. It is easy to check that Bk+1sk = yk . It is not as easy to check that
it has the property that we want.

Lemma 12.10. Let Bk be a symmetric positive-definite matrix, and assume that Bk+1 is
obtained from Bk using the BFGS update formula. Then Bk+1 is positive definite if and only
if yT

k sk > 0.

Proof. If Bk is positive definite, then it can be factored as Bk = LLT where L is a nonsingular
matrix. (This is just the Cholesky factorization of Bk .) If this factorization is substituted
into the BFGS formula for Bk+1, then

Bk+1 = LWLT,

where

W = I − ŝ ŝT

ŝTŝ
+ ŷŷT

ŷTŝ
, ŝ = LTsk, and ŷ = L−1yk.

Bk+1 will be positive definite if and only if W is. To test if W is positive definite, we test
if vTWv > 0 for all v �= 0. Let θ1 be the angle between v and ŝ, θ2 the angle between v
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and ŷ, and θ3 the angle between ŝ and ŷ. Then

vTWv = vTv − (vTŝ)2

ŝTŝ
+ (vTŷ)2

ŷTŝ

= ‖v‖2 − ‖v‖2
∥∥ŝ∥∥2

cos2 θ1∥∥ŝ∥∥2 − ‖v‖2
∥∥ŷ∥∥2

cos2 θ2∥∥ŷ∥∥ · ∥∥ŝ∥∥ cos θ3

= ‖v‖2

[
1 − cos2 θ1 +

∥∥ŷ∥∥ cos2 θ2∥∥ŝ∥∥ cos θ3

]

= ‖v‖2

[
sin2 θ1 +

∥∥ŷ∥∥ cos2 θ2∥∥ŝ∥∥ cos θ3

]
.

If yTk sk > 0, then ŷTŝ > 0 and cos θ3 > 0; hence vTWv > 0 and W is positive definite. If
yTk sk < 0, then cos θ3 < 0; in this case, v can be chosen so that vTWv < 0 and so W is not
positive definite. This completes the proof.

The new matrix Bk+1 will be positive definite only if yTk sk > 0. This property can be
guaranteed by performing an appropriate line search and so is not a serious limitation (see
the Exercises). The BFGS formula is illustrated below.

Example 12.11 (The BFGS Formula). We will apply the BFGS formula to the same three-
dimensional example that was used for the symmetric rank-one formula. Again we will
choose B0 = I and x0 = (0, 0, 0)T. At iteration 0, ‖∇f (x0)‖ = 14.4568, so this point is
not optimal. The search direction is

p0 =
(−8
−9
−8

)

and α0 = 0.3333. The new estimate of the solution and the new Hessian approximation are

x1 =
(−2.6667
−3.0000
−2.6667

)
and B1 =

( 1.1021 0.3445 0.5104
0.3445 1.7751 1.0335
0.5104 1.0335 2.3270

)
.

At iteration 1, ‖∇f (x1)‖ = 3.7712, so we continue. The next search direction is

p1 =
(−3.2111
−0.6124

2.1223

)

and α1 = 0.3577. This gives the estimates

x2 =
(−3.8152
−3.2191
−1.9076

)
and B2 =

( 1.6393 0.6412 −0.3607
0.6412 1.8600 0.6412

−0.3607 0.6412 3.6393

)
.

At iteration 2, ‖∇f (x2)‖ = 0.8397, so we continue, computing

p2 =
(−0.5289

0.6268
−0.2644

)
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and α2 = 0.3495. This gives

x3 =
(−4
−3
−2

)
and B3 =

( 2 0 0
0 3 0
0 0 4

)
.

Now ‖∇f (x3)‖ = 0, so we stop.
You may have noticed that the values of { xk } were the same here as in the previous

example. This does not happen in general, but it can be shown to be a consequence of using
an exact line search and solving a quadratic problem.

There is a class of update formulas that preserve positive-definiteness, given by the
formula

Bk+1 = Bk − (Bksk)(Bksk)
T

sTkBksk
+ yky

T
k

yTk sk
+ φ(sTkBksk)vkvTk ,

where φ is a scalar and

vk = yk

yTk sk
− Bksk

sTkBksk
.

The BFGS update formula is obtained by setting φ = 0. As with the BFGS update, positive-
definiteness is preserved if and only if yTk sk > 0. When φ = 1 the update is called the DFP
formula, which is named for its developers, Davidon, Fletcher, and Powell. The class of
update formulas is sometimes referred to as the Broyden class.

We conclude this section by mentioning a convergence result for quasi-Newton meth-
ods. It applies to a subset of the Broyden class of update formulas, when the parameter
satisfies 0 ≤ φ < 1. It excludes the DFP formula. In addition, the theorem assumes that
∇2f (x) is always positive definite, that is, the objective function is strictly convex.

Theorem 12.12. Let f be a real-valued function of n variables. Let x0 be some given initial
point and let { xk } be defined by xk+1 = xk+αkpk , where pk is a vector of dimension n and
αk ≥ 0 is a scalar. Assume that

(i) the set S = { x : f (x) ≤ f (x0) } is bounded;

(ii) f , ∇f , and ∇2f are continuous for all x ∈ S;

(iii) ∇2f (x) is positive definite for all x;

(iv) the search directions {pk } are computed using

Bkpk = −∇f (xk),
where B0 = I , and the matrices {Bk } are updated using a formula from the Broyden
class with parameter 0 ≤ φ < 1;

(v) the step lengths {αk } satisfy

f (xk + αkpk) ≤ f (xk)+ μαkpTk∇f (xk)
pTk∇f (xk + αkpk) ≥ ηpTk∇f (xk),

with 0 < μ < η < 1, and the line search algorithm uses the step length αk = 1
whenever possible.
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Then

lim
k→∞ xk = x∗,

where x∗ is the unique global minimizer of f on S, and the rate of convergence of { xk } is
superlinear.

Proof. See the paper by Byrd, Nocedal, and Yuan (1987).

Exercises
3.1. Apply the symmetric rank-one quasi-Newton method to solve

minimize f (x) = 1
2x

TQx − cTx

with

Q =
( 5 2 1

2 7 3
1 3 9

)
and c =

(−9
0

−8

)
.

Initialize the method with x0 = (0, 0, 0)T and B0 = I . Use an exact line search.

3.2. Apply the BFGS quasi-Newton method to solve

minimize f (x) = 1
2x

TQx − cTx

with

Q =
( 5 2 1

2 7 3
1 3 9

)
and c =

(−9
0

−8

)
.

Initialize the method with x0 = (0, 0, 0)T and B0 = I . Use an exact line search.

3.3. Let f be a strictly convex quadratic function of one variable. Prove that the secant
method for minimization will terminate in exactly one iteration for any initial starting
points x0 and x1.

3.4. Let C be a symmetric matrix of rank one. Prove that C must have the form C =
γwwT, where γ is a scalar and w is a vector of norm one.

3.5. In the proof of Lemma 12.10, show that, if yTk sk < 0, then v can be chosen so that
vTWv < 0.

3.6. LetBk+1 be obtained fromBk using the symmetric rank-one update formula. Assume
that the associated quasi-Newton method is applied to an n-dimensional, strictly
convex, quadratic function, and that the vectors s0, . . . , sn−1 are linearly independent.
Also assume that (yi − Bisi)

Tsi = 0 for all i. Prove that Bk+1si = yi for i =
0, 1, . . . , k, and that the method terminates in at most n + 1 iterations. Use this to
prove that Bn is equal to the Hessian of the quadratic function. (This exercise makes
no assumptions about the line search.)
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3.7. Let Bk+1 be obtained from Bk using the update formula

Bk+1 = Bk + (yk − Bksk)vT
vTsk

,

where v is a vector such that vTsk = 0. Prove that Bk+1sk = yk .

3.8. Let Bk+1 be obtained from Bk using the BFGS update formula. Prove that Bk+1sk =
yk .

3.9. Let Bk+1 be obtained from Bk using the BFGS update formula. Bk+1 is guaranteed
to be positive definite only if yTk sk > 0. Prove that if the Wolfe condition

|pT∇f (xk + αp)| ≤ η|pT∇f (xk)|
is used to terminate the line search, and η is sufficiently small, then yTk sk > 0. Hence,
if an appropriate line search is used, then Bk+1 will be positive definite.

3.10. Consider the class of positive-definite updates depending on the parameter φ. What
is the rank of the update formula? Prove that these updates preserve positive-
definiteness if and only if yTk sk > 0.

3.11. Write a computer program for minimizing a multivariate function using the BFGS
quasi-Newton algorithm. Use B0 = I as the initial Hessian approximation. Include
the following details:

(i) Use a backtracking line search as described in Section 11.5. Before updating
Bk , check if yTk sk > 0; if this condition is not satisfied, then do not update Bk
at that iteration of the algorithm.

(ii) Accept x as a solution to the optimization problem if ‖∇f (x)‖ /(1+|f (x)|) ≤
ε, or if the number of iterations exceeds Itmax. Use ε = 10−8 and Itmax =
1000.

(iii) Print out the initial point, and then at each iteration print the search direction,
the step length α, and the new estimate of the solution xk+1. (If a great many
iterations are required, provide this output for only the first 10 iterations and the
final 5 iterations.) Indicate if no solution has been found after Itmax iterations.

(iv) Test your algorithm on the test problems listed here:

f(1)(x) = x2
1 + x2

2 + x2
3 , x0 = (1, 1, 1)T

f(2)(x) = x2
1 + 2x2

2 − 2x1x2 − 2x2, x0 = (0, 0)T

f(3)(x) = 100(x2 − x2
1)

2 + (1 − x1)
2, x0 = (−1.2, 1)T

f(4)(x) = (x1 + x2)
4 + x2

2 , x0 = (2,−2)T

f(5)(x) = (x1 − 1)2 + (x2 − 1)2 + c(x2
1 + x2

2 − 0.25)2, x0 = (1,−1)T.

For the final function, test three different settings of the parameter c: c = 1,
c = 10, and c = 100. The condition number of the Hessian matrix at the
solution becomes larger as c increases. Comment on how this affects the
performance of the algorithm.

(v) Are your computational results consistent with the theory of quasi-Newton
methods?
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12.4 Automating Derivative Calculations
One of the disadvantages of Newton’s method is that it requires the computation of both
first and second derivatives. This can be a disadvantage in two ways: (i) having to derive
and program the formulas for these derivatives, and (ii) having to use these derivatives at
all. The avoidance of second derivative calculations was discussed in the sections on the
steepest-descent and quasi-Newton methods. Now we show how to avoid even calculating
first derivatives. In this section, we describe two ways to automate derivative calculations.
The first and most widely used technique is to use differences of function values to estimate
derivatives. Next we discuss techniques that analyze formulas for the function value and
derive exact formulas for the derivatives.

Another way to automate derivative calculations is to use a modeling language to
describe the optimization problem. (Modeling languages are discussed in Appendix C.) A
modeling language will typically build a symbolic representation for the derivatives based
on the description of the optimization problem. This useful feature of modeling languages
reduces the time needed for a problem’s description and simplifies the modeling process
overall.

There are many important applications where it is not appropriate to calculate or
estimate derivative values. In some cases the derivatives of the objective may not always
exist. This can happen with “noisy” functions that are subject to random errors, perhaps
because of inaccuracies that arise when computing or approximating their values. In other
cases, the objective function may be computed using sophisticated algorithmic techniques
that lead to discontinuities or lack of smoothness. This can occur even if the underlying
mathematical formulas are differentiable. See also Section 12.5.1.

In cases such as these the Newton and quasi-Newton methods can fail, or may not
even be defined. It is necessary to use methods that do not rely on derivative values, either
explicitly in their usage requirements, or implicitly in the derivations of the methods. Such
methods are the topic of the next section.

12.4.1 Finite-Difference Derivative Estimates

Finite differencing refers to the estimation of f ′(x) using values of f (x). The simplest
formulas just use the difference of two function values which gives the technique its name.
Finite differencing can also be applied to the calculation of ∇f (x) for multidimensional
problems, as well as to the computation of f ′′(x) and the Hessian matrix ∇2f (x). For a
problem withn variables, computing∇f (x)will be aboutn times as expensive as computing
f (x), and computing ∇2f (x) will be about n2 times as expensive as f (x). Hence, even
though this technique relieves the burden of deriving and programming derivative formulas,
it is expensive computationally. In addition, finite differencing only produces derivative
estimates, not exact values. In contrast, the automatic differentiation techniques discussed in
Section 12.4.2 have low computational costs and produce exact answers, but unfortunately
they too have deficiencies.

Finite-difference estimates can be derived from the Taylor series. In one dimension,

f (x + h) = f (x)+ hf ′(x)+ 1
2h

2f ′′(ξ).
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A simple rearrangement gives

f ′(x) = f (x + h)− f (x)
h

− 1

2
hf ′′(ξ),

leading to the approximation

f ′(x) ≈ f (x + h)− f (x)
h

.

This is the most commonly used finite-difference formula. It is sometimes called the forward
difference formula because x + h is a shift “forward” from the point x. This formula could
also have been derived from the definition of the derivative as a limit,

f ′(x) = lim
h→0

f (x + h)− f (x)
h

,

but this would not have provided an estimate of the error in the formula.

Example 12.13 (Finite Differencing). Consider the function

f (x) = sin(x)

with derivative f ′(x) = cos(x). The results of using the finite-difference formula

f ′(x) ≈ sin(x + h)− sin(x)

h

for x = 2 and for various values of h are given in Table 12.3.
The derivation of the finite-difference formula indicates that the error will be equal to

| 1
2hf

′′(ξ)|. Since ξ is between x and x + h,

error ≈ | 1
2hf

′′(x)| = | 1
2h(− sin(x))| = | 1

2h(− sin(2))| ≈ | 1
2h(−0.91)| = 0.455h.

This corresponds to the results in the table for h between 100 and 10−8, but after that the
error starts to increase, until eventually the finite-difference calculation estimates that the
derivative is equal to zero. This phenomenon will be explained below by examining the
errors that result when finite differencing is used.

We now estimate the error in finite differencing when the calculations are performed
on a computer. Part of the error is due to the inaccuracies in the formula itself; this is called
the truncation error:

truncation error = 1
2h|f ′′(ξ)|.

In addition there are rounding errors from the evaluation of the formula (f (x+h)−f (x))/h
on a computer that depend on εmach, the precision of the computer calculations (seeAppendix
B.2). There are rounding errors from the evaluations of the function f in the numerator:

(rounding error)1 ≈ |f (x)|εmach
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Table 12.3. Finite differencing.

h f ′(x) Estimate Error

100 −0.4161468365 −0.7681774187 4 × 10−1

10−1 −0.4161468365 −0.4608806017 4 × 10−2

10−2 −0.4161468365 −0.4206863500 4 × 10−3

10−3 −0.4161468365 −0.4166014158 4 × 10−4

10−4 −0.4161468365 −0.4161923007 4 × 10−5

10−5 −0.4161468365 −0.4161513830 4 × 10−6

10−6 −0.4161468365 −0.4161472912 4 × 10−7

10−7 −0.4161468365 −0.4161468813 4 × 10−8

10−8 −0.4161468365 −0.4161468392 3 × 10−9

10−9 −0.4161468365 −0.4161468947 6 × 10−8

10−10 −0.4161468365 −0.4161471167 3 × 10−7

10−11 −0.4161468365 −0.4161448963 2 × 10−6

10−12 −0.4161468365 −0.4162226119 8 × 10−5

10−13 −0.4161468365 −0.4163336342 2 × 10−4

10−14 −0.4161468365 −0.4218847493 6 × 10−3

10−15 −0.4161468365 −0.3330669073 8 × 10−2

10−16 −0.4161468365 0 4 × 10−1

which are then magnified and augmented by the division by h:

(rounding error)2 ≈ |f (x)|εmach

h
+ |f ′(x)|εmach

(the first rounding error is magnified by 1/h and then there is an additional rounding error
from the division that is proportional to the result f ′(x)). Under typical circumstances,
when h is small and f ′(x) is not overly large, the first term will dominate, leading to the
estimate

rounding error ≈ |f (x)|εmach

h
.

The total error is the combination of the truncation error and the rounding error

error ≈ 1

2
h|f ′′(ξ)| + |f (x)|εmach

h
.

For fixed x and for almost fixed ξ (ξ is between x and x + h, and h will be small), this
formula can be analyzed as a function of h alone.

To determine the “best” value of hwe minimize the estimate of the error as a function
of h. Differentiating with respect to h and setting the derivative to zero gives

1

2
|f ′′(ξ)| − |f (x)|εmach

h2
= 0,



book
2008/10/23
page 425

�

�

�

�

�

�

�

�

12.4. Automating Derivative Calculations 425

which can be rearranged to give

h =
√

2|f (x)|εmach

|f ′′(ξ)| .

In cases where f (x) and f ′′(ξ) are neither especially large nor small, the simpler approxi-
mation

h ≈ √
εmach

can be used. If the more elaborate formula for h is substituted into the approximate formula
for the error, then the result can be simplified to

error ≈ √
2εmach|f (x) · f ′′(ξ)|,

or more concisely to the result that the error is O(
√
εmach).

In the example above, εmach ≈ 10−16 and the simplified formula for h yields h ≈√
εmach ≈ 10−8. This value of h gives the most accurate derivative estimate in the example.

The more elaborate formula for h yields h ≈ 2.1 × 10−8, almost the same value. The error
with this value of h is about 1.4 × 10−8, slightly worse than the value given by the simpler
formula. This does not indicate that the derivation is invalid; rather it only emphasizes that
the terms used in the derivation are estimates of the various errors. As expected, the errors
in this example are approximately equal to

√
εmach.

In practical settings the value of f ′′(ξ) will be unknown (even the value of f ′′(x)
will be unknown) and so the more elaborate formula for h cannot be used. Some software
packages just use h = √

εmach or some simple modification of this formula (for example,
taking into account |x| or |f (x)|). An alternative is to perform extra calculations for one
value of x, perhaps the initial guess for the optimization algorithm, to obtain an estimate
for f ′′(ξ), and then use this to obtain a better value for h that will be used for subsequent
finite-difference calculations.

An additional complication can arise if |x| is large. If h < εmach|x|, then the computed
value of x+hwill be equal to x and the finite-difference estimate will be zero. Thus, in the
general case the choice of h will depend on εmach, |x|, and the values of |f ′′|. For further
information, see the references cited in the Notes.

If higher accuracy in the derivative estimates is required, then there are two things
that can be done. One choice is to use higher-precision arithmetic (arithmetic with a smaller
value of εmach). This might just mean switching from single to double precision, a change
that can sometimes be made with an instruction to the compiler without any changes to
the program. If the program is already in double precision, then on some computers it is
possible to use quadruple precision, but quadruple precision arithmetic can be much slower
than double precision since the instructions for it are not normally built into the computer
hardware.

The other choice is to use a more accurate finite-difference formula. The simplest of
these is the central-difference formula

f ′(x) = f (x + h)− f (x − h)
2h

− 1

12
h2[f ′′′(ξ1)+ f ′′′(ξ2)].

It can be derived using the Taylor series for f (x + h) and f (x − h) about the point h. (See
the Exercises.)
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Higher derivatives can also be obtained by finite differencing. For example, the
formula

f ′′(x) = f (x + h)− 2f (x)+ f (x − h)
h2

− 1

24
h2[f (4)(ξ1)+ f (4)(ξ2)]

can be derived from the Taylor series for f (x + h) and f (x − h) about the point x. (See
the Exercises.)

The derivatives of multidimensional functions can be estimated by applying the finite-
difference formulas to each component of the gradient or Hessian matrix. If we define the
vector

ej = ( 0 · · · 0 1 0 · · · 0 )T

having a one in the j th component and zeroes elsewhere, then

[∇f (x)]j ≈ f (x + hej )− f (x)
h

.

If the gradient is known, then the Hessian can be approximated via

[∇2f (x)]jk = ∂2f (x)

∂xj ∂xk
≈ [∇f (x + hek)− ∇f (x)]j

h
.

For further details, see the Exercises.
If it is feasible to use complex arithmetic to evaluate f (x), then an alternative way to

estimate f ′(x) is to use
f ′(x) ≈ �[f (x + ih)]/h,

where i = √−1 and�[f ] is the imaginary part of the function f . This formula is capable of
producing more accurate estimates of the derivative (sometimes up to full machine accuracy)
with only one additional function evaluation, for a broad range of values of h.

12.4.2 Automatic Differentiation

The goal of automatic differentiation is to use software to analyze the formulas used to
evaluate f (x) and produce formulas to evaluate ∇f (x). The user might provide a computer
program that evaluates f (x), and then the automatic differentiation software would take
this program and produce a new program that evaluates both the function and its gradient.
The technique uses the chain rule to analyze every step in the evaluation of the function,
with the results being organized in such a way that the gradient is evaluated efficiently,
that is, almost as efficiently as the function itself is evaluated. The resulting software for
evaluating the gradient will have accuracy comparable to the software for evaluating the
function. Hence, this technique not only automates the evaluation of the gradient, but does
it in a way that is in general more efficient and more accurate than finite differencing.

To explain automatic differentiation we first assume that the function evaluation has
been decomposed into a sequence of simple calculations, each of which involves only one or
two variables. The “variables” may represent intermediate results and need not correspond
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+x9 x= x6 8

x x 1x5 2== 2x x7 1
2

=x x 5 x6 3x 8
x 7e=

3xx 2x 1

Figure 12.3. Evaluation graph.

to variables in the original problem. These simple calculations might be, for example, of
the form

x10 = x1 + x2

x12 = x3x4

x15 = 1/x5

x21 = sin x7

and so forth. If the function evaluation is expressed in this way, it is easy to differentiate
each step in the evaluation. The user need not program the function evaluation in this simple
form, since the automatic differentiation software can perform this step itself. We use this
representation to simplify our description of automatic differentiation.

Example 12.14 (Function Evaluation). Consider the function

f (x1, x2, x3) = x1x2x3 + e2x2
1 .

It can be evaluated as follows:

x5 = x1x2

x6 = x5x3

x7 = 2x2
1

x8 = ex7

x9 = x6 + x8

and then f (x) = x9. Each of the steps involves at most two variables.

This sequence of evaluation steps can be represented by a graph. Evaluation of the
function corresponds to moving through the graph from top to bottom. This is illustrated in
Figure 12.3 for the function in Example 12.14.

The graph, and the sequence of evaluation steps, can also be used to evaluate the
gradient. For our example,

f (x) = x9 = x6 + x8.
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Hence
∂f

∂x9
= 1.

This is the initialization step for the gradient evaluation. Then

∂f

∂x6
= ∂f

∂x9

∂x9

∂x6
and

∂f

∂x8
= ∂f

∂x9

∂x9

∂x8
.

These formulas determine the partial derivatives of f with respect to x6 and x8. These can
in turn be used to determine the partial derivatives of f with respect to x5 and x7, and thus
recursively the gradient of f . This process only requires calculating derivatives for each of
the simple steps in the evaluation of f , which is easy to do. The entire process is illustrated
in the next example.

Example 12.15 (Gradient Evaluation). To evaluate the gradient we first set

∂f

∂x9
= 1.

At the next stage

∂f

∂x6
= ∂f

∂x9

∂x9

∂x6
= 1 × 1 = 1

∂f

∂x8
= ∂f

∂x9

∂x9

∂x8
= 1 × 1 = 1.

In turn we can calculate

∂f

∂x5
= ∂f

∂x6

∂x6

∂x5
= 1 × x3 = x3

∂f

∂x7
= ∂f

∂x8

∂x8

∂x7
= 1 × ex7 = ex7

∂f

∂x3
= ∂f

∂x6

∂x6

∂x3
= 1 × x5 = x5

∂f

∂x1
= ∂f

∂x5

∂x5

∂x1
+ ∂f

∂x7

∂x7

∂x1
= x2x3 + 4x1e

x7

∂f

∂x2
= ∂f

∂x5

∂x5

∂x2
= x1x3.

The final three formulas determine the gradient. They include the intermediate variables
from the evaluation of f , and so this approach assumes that both f (x) and ∇f (x) are
calculated together. For efficiency, the formulas would be left in this form, but it is possible
to derive gradient formulas that involve only the original variables for the problem. In this
case they are

∇f (x) =
(
x2x3 + 4x1e

2x2
1

x1x3

x1x2

)
.
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Evaluation of the gradient can be interpreted in terms of the evaluation graph. Whereas
evaluating the function traverses the graph from top to bottom, evaluating the gradient
traverses the graph from bottom to top. To initialize the process, the partial derivative value
at the bottom node is set equal to one. (In our example, this is at the node corresponding
to x9.) Then the chain rule is used to move upward through the graph. By beginning at the
bottom of the graph and moving up one level at a time, the gradient is evaluated through a
sequence of calculations. This is called the reverse mode of automatic differentiation.

Each step in the evaluation of f (x) is simple, involving at most two variables. As a
result, each step in the evaluation of ∇f (x) is also simple. For example, if a step in the
function evaluation involves the addition of two variables,

x9 = x6 + x8,

then the step in the gradient evaluation involves two multiplications of derivative values,

∂f

∂x9

∂x9

∂x6
and

∂f

∂x9

∂x9

∂x8
.

This analysis can be extended to show that the number of operations required to evaluate
the gradient is proportional to the number of operations required to evaluate the function.

It would also be possible to evaluate the gradient by starting at the top of the graph
and moving downward (forward mode). This is the traditional way of deriving the formulas
for the gradient. If this is done, then in general evaluating the gradient can require about n
times as many arithmetic operations as evaluating the function. The efficiency of automatic
differentiation depends on evaluating the gradient starting at the bottom of the graph. Even
so, software for automatic differentiation exploits both modes, since both have practical
advantages.

Unfortunately, automatic differentiation is not a perfect technique. To be able to
evaluate the gradient efficiently it may be necessary to store all the intermediate results
in the evaluation of the function f . If the evaluation of f (x) involves a large number of
operations, the storage requirements for automatic differentiation can potentially be large.
Modern implementations of automatic differentiation make a trade-off between efficiency
and storage requirements, making it feasible to apply automatic differentiation to large
classes of problems.

Exercises
4.1. Apply the forward-difference formula to the function f (x) = sin(100x) at x = 1.0

with various values of h. Determine the value of h that produces the best estimate of
the derivative and compare it with the value predicted by the theory. How accurate
is the theoretical estimate of the error for this function? How well do the “simple”
estimates of h and the error perform?

4.2. Repeat the previous problem using the central-difference formula.

4.3. Repeat the previous problem using the difference formula for the second derivative.
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4.4. Apply the forward-difference formula to estimate the gradient of the function

f (x1, x2) = exp(10x1 + 2x2
2)

at (x1, x2) = (−1, 1)with various values ofh. Determine the value ofh that produces
the best estimate of the derivative. How well do the “simple” estimates of h and the
error perform?

4.5. Estimate the Hessian of the function in the previous problem using finite differencing.
First do this by taking differences of gradient values, and then repeat the calculations
using differences of function values.

4.6. Derive the central-difference formula in the one-dimensional case together with the
formulas for the best value of h and for the error.

4.7. Derive the one-dimensional formula for the second derivative

f ′′(x) ≈ f ′(x + h)− f ′(x)
h

together with the formulas for the best value of h and the value of the error.

4.8. Derive the forward-difference formula for the gradient

[∇f (x)]i ≈ f (x + hei)− f (x)
h

together with the formulas for the best value of h and the value of the error. These
formulas vary from component to component. What would be an appropriate “com-
promise” value of h that could be used for all components?

4.9. Derive the forward-difference formula for the Hessian

[∇2f (x)]ij = ∂2f (x)

∂xi∂xj
≈ [∇f (x + hej )− ∇f (x)]i

h

together with the formulas for the best value of h and the value of the error. These
formulas vary from component to component. What would be an appropriate “com-
promise” value of h that could be used for all components?

4.10. Use a Taylor series approximation to show that

f ′(x) ≈ �[f (x + ih)]/h,
where i = √−1 and �[f ] is the imaginary part of the function f . Derive a formula
for the error in this approximation. Repeat Exercises 4.1 and 4.4 using this derivative
estimate.

4.11. Derive the evaluation graph for the function

f (x1, x2) = x2
1 + 3x1x2 + 7x2

2 .

Use the graph to derive an evaluation technique for ∇f (x). Apply your technique
at the point x = (4,−5)T. Use the reverse mode of automatic differentiation.
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4.12. Derive the evaluation graph for the function

f (x1, x2, x3) = 1√
x1 + x2

2 + x3
3

+ sin(x1x2 + x1x3 + x2x3).

Use the graph to derive an evaluation technique for ∇f (x). Apply your technique
at the point x = (3, 6, 10)T. Use the reverse mode of automatical differentiation.

4.13. Assume that the evaluation of f (x) involves only the operations of addition, sub-
traction, multiplication, and division. Prove that, if the automatic differentiation
technique described in this section is used, then the number of arithmetic operations
required to evaluate ∇f (x) is proportional to the number of arithmetic operations re-
quired to evaluate f (x).

4.14. Consider the function
f (x1, . . . , xn) = x1x2 · · · xn.

Show that the number of arithmetic operations required to evaluate ∇f (x) using
automatic differentiation is O(n), whereas the number of arithmetic operations re-
quired to naively evaluate the gradient is O(n2). Evaluate the gradient by moving
through the evaluation graph from top to bottom and show that this corresponds to
using the “naive” formulas.

12.5 Methods That Do Not Require Derivatives
It is sometimes inconvenient, difficult, or impossible to calculate the derivatives of a func-
tion. For example, the function might not be differentiable at every point, so the derivative
might not exist. Or the function evaluation might be carried out in terms of a long calculation
involving auxiliary software—perhaps the solving of a differential equation or the running
of a simulation—making it difficult to derive derivative formulas even if they exist. In these
latter cases the function values might only be accurate to a few digits, so finite differencing
would not be effective either.

In such cases it is desirable to have available optimization methods that do not require
the calculation of derivative values. This requirement puts a severe handicap on a method,
since even the optimality tests are based on derivative values. Even if such a method were
given the solution to the optimization problem, it might require considerable computational
effort before the method could identify such a point as the solution.

It might seem that such methods would, by necessity, fall outside the framework
that we developed in Chapter 11. It is true that these methods are not directly related
to Newton’s method, since they cannot compute a gradient, and hence cannot compute
a descent direction based on the gradient; also they cannot assess a step length using a
sufficient descent condition, since that too depends on the gradient; and so forth.

What is surprising is that a large collection of derivative-free methods are guaranteed
to converge, with a convergence theorem that is similar to the convergence theorem for line
search methods discussed in Chapter 11. The assumptions on the objective function are the
same for both convergence theorems, and the conditions on the methods are similar. This
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is remarkable since the conditions involve the gradient of the objective function, and the
derivative-free methods do not compute gradients.

Derivative-free methods are easy to use. If it is possible to evaluate the objective
function, then it is possible to use the methods. In addition, derivative-free methods are
suitable for parallel computers, more so than Newton-type methods. It is gratifying that the
methods have these good properties, along with guarantees of convergence.

One deficiency of derivative-free methods is their slow convergence. Another is that
they are ill suited for large problems. Use of high-performance computers can ameliorate
these deficiencies.

12.5.1 Simulation-Based Optimization

The most important setting for derivative-free optimization is the case where the evaluation
of the objective function is based on auxiliary software, that is, the function values are
obtained from a simulation. Suppose you are trying to design a car and would like the
surface of the car to have low air resistance. You might develop a computer simulation
that calculates the air flow and air resistance for a particular design. This itself could be
challenging, since it involves the simulation of fluid flow at high speeds, with the potential
for turbulence and wind vortices. Once this model had been perfected, the next goal would be
to determine an optimal design, or at least an improved design. Presumably the preliminary
design sketches would determine the approximate shape of the car, and the optimization
would be used to refine this design, perhaps by adjusting the values of a relatively small
number of design variables. For example, the design variables might represent the angle of
the windshield, the wheel base, etc.

Given the complexity of the formulas for air flow and air resistance, it might be
difficult to derive formulas for the derivative values required by a quasi-Newton method. In
addition to the challenges of deriving the necessary formulas, there would be challenges in
implementing the formulas in software. This would be compounded because the underlying
simulation software for computing these function values would almost certainly have been
prepared by others, perhaps another company, with the source code unavailable.

This might seem like a good setting for using finite-difference approximations to
the gradient. In this case there are a small number of variables, the function values can be
computed by the auxiliary software, and there is some hope that the function is differentiable.
But this is not the case.

One reason is that the solution of the air-flow model might not be computed to high
accuracy. Even with sophisticated machining equipment, the settings of the equipment
would only be accurate to perhaps 3–4 digits. It would not make sense to solve the air-
flow simulation to high accuracy given the limitations of machining. This would mean that
the function values would be accurate to about 4 digits, and the resulting finite-difference
gradient values would be accurate to only about 2 digits. (The errors in the gradient values
are proportional to the square root of the error in the function values; see Section 12.4.1.)
With gradients of this low accuracy, a quasi-Newton method would likely perform poorly.

There is another reason why it is inappropriate to use a finite-difference gradient,
a reason that is more serious and that becomes more prominent as the auxiliary software
becomes more sophisticated. Consider a simplified one-variable example with an objective
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function defined in terms of an integral:

f (x) =
∫ b

a

g(x, y) dy.

We will assume that we know the formula for the function g(x, y), but that a formula for
the integral is not available, since such a formula may not even exist. Simple algorithms
approximate an integral by a weighted sum of function values:

f̂ (x) =
k∑
i=1

αkg(x, yk),

where αk are specified constants and yk are specified values of y in the interval [a, b].
If g(x, y) is a differentiable function, then so are f and f̂ :

f ′(x) =
∫ b

a

∂

∂x
g(x, y) dy

f̂ ′(x) =
k∑
i=1

αk
∂

∂x
g(x, yk).

This is a simplistic way of estimating integrals, since the same formula is used re-
gardless of the values of a, b, and x, and regardless of the behavior of the function g. More
sophisticated software for estimating integrals does not use a single formula, but rather uses
an adaptive algorithm that changes the calculations based on the behavior of the underlying
function. For example, if the function g(x, y) is changing rapidly, then a more elaborate cal-
culation will be used. This approach makes it possible to compute accurate approximations
to the integral with minimal computational effort.

Suppose we want to solve

minimize f (x) =
∫ b

a

g(x, y) dy

and that we use sophisticated software to estimate the integrals that define f (x). Then
it is possible, indeed likely, that as x changes, the formula used to estimate the integral
also changes. Every change in the formula is likely to introduce nonsmoothness or even a
discontinuity in the computed objective function. The effects on the objective function may
be small, but they can have a large effect on the computation of a finite-difference gradient
because of the division by the small finite-difference parameter h.

This is illustrated in Figure 12.4. The graph on the left was obtained by using an
adaptive algorithm to approximate an integral. On the right is a blowup of one portion of
the graph. It is clear that the approximation is not differentiable.

In summary, by using sophisticated software to estimate a smooth function f (x), we
can create an optimization problem involving a nonsmooth function.

These difficulties are common when using auxiliary software. Adaptive algorithms
are widely used to solve differential equations, for example.

If the objective function, as computed, is not differentiable, then it is not possible
to use finite-difference approximations. The adaptivity of the algorithm may also make it
impossible to use automatic differentiation. Use of a Newton-type method would require
you to derive and program analytic formulas for the required derivatives.
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Figure 12.4. Side effects of adaptive algorithms.

In cases like these, derivative-free methods can be an attractive choice. If it is possible
to evaluate the objective function, then it is possible to apply a derivative-free method.
Whether the function is evaluated naively, or via sophisticated techniques, the derivative-
free methods are an available tool.

12.5.2 Compass Search: A Derivative-Free Method

A great many derivative-free methods are based on the following basic template: Start with
some trial point x. Evaluate the objective function at the point x and at a set of points in
a specified pattern about x. If a better point is found (that is, one with a smaller function
value), then this point becomes the new trial point and the process repeats. Otherwise, the
size of the pattern is reduced and the current trial point retained. This continues until the size
of the pattern is reduced below some tolerance, and then the current trial point is returned
as the estimate of the solution.

If the pattern is appropriately designed, and if the function being minimized is con-
tinuously differentiable, then it is possible to prove that

lim
k→∞

∥∥∇f (x(k))∥∥ = 0,
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where the points x(k) are the trial points corresponding to the iterations where the pattern
is reduced in size. Since the pattern is reduced only when no better point is found, these
are referred to as the “unsuccessful” iterations. At “successful” iterations a better point is
found, and the size of the pattern is unchanged.

Let us look more closely at one of these methods. We will do this for a two-dimensional
minimization problem so the results can be displayed graphically. Later we will mention
how to extend the method to problems with more than two variables.

The method we will consider is called compass search because the pattern corresponds
to the points of a compass. We will evaluate the objective function at the trial point x =
(x1, x2)

T, as well as at the points

North : x +	
(

0
1

)

South : x +	
(

0
−1

)

East : x +	
(

1
0

)

West : x +	
(−1

0

)
for some scalar value 	 that determines the size of the pattern.

Example 12.16 (Compass Search Method). We apply the compass search method to the
problem

minimize f (x1, x2) = x2
1 + 3x2

2 + 2x1x2 + x1 + 3

whose solution is x∗ = (0.25,−0.75)T. We start with the initial values

x0 = ( 2 0.75 )T

	0 = 2.

At the first iteration we compute

f (x0) = 13.6875

f
(
x0 +	0(1, 0)T

) = 30.6875

f
(
x0 −	0(1, 0)T

) = 4.6875

f
(
x0 +	0(0, 1)T

) = 42.6875

f
(
x0 −	0(0, 1)T

) = 8.6875.

Since the smallest value is obtained at the new point x0−	0(1, 0)T = (0, 0.75)T, we consider
this to be a successful iteration and setx1 = (0, 0.75)T and	1 = 	0 = 2. This completes the
first iteration. It would also have been valid to accept x0 −	0(0, 1)T = (2,−1.25)T as the
new point, since this also improves the value of the objective function.

The first few iterations of the compass search method are illustrated in Figure 12.5.
The figure shows the contours of the objective function with the minimizer marked with
a +. At each successful iteration, the point with the smallest function value is chosen as the
new point. This point on the compass pattern is marked with a ∗.
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Figure 12.5. Compass search method.

The first two iterations are successful, giving x1 = (0, 0.75)T and x2 = (−2, 0.75)T.
The third iteration is unsuccessful, so x3 = x2 and 	3 = 	2/2 = 1. The fourth iteration
is successful, giving x4 = (−1, 0.75)T. The fifth iteration is unsuccessful, so x5 = x4 and
	5 = 	4/2 = 0.5.

If the iteration is continued, the algorithm converges to the solution x∗ =
(0.25,−0.75)T.

It is easy to extend the compass search method to n dimensions. In general, the
objective function is evaluated at the trial point x and at the points

x +	di,
where di is either a coordinate direction or its negative. For example,

d1 = (1, 0, 0, . . . , 0)T

d2 = −(1, 0, 0, . . . , 0)T

d3 = (0, 1, 0, . . . , 0)T

d4 = −(0, 1, 0, . . . , 0)T

...
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Except for the increase in the number of trial points, the method remains unchanged. Here
is the algorithm.

Algorithm 12.2.
Compass Search Algorithm

1. Specify some initial guess of the solution x0, an initial pattern size 	0 > 0, and a
convergence tolerance 	tol > 0.

2. For k = 0, 1, . . .

(i) If 	k < 	tol, stop.

(ii) Evaluate f at the points xk and xk +	kdi , for i = 1, . . . , 2n.

(iii) If f (xk+	kdi) < f (xk) for some i, then set xk+1 = xk+	kdi and	k+1 = 	k .

(iv) Otherwise, set 	k+1 = 	k/2.

The efficiency of the compass search method depends critically on the choice of the
initial pattern size 	0. If 	0 is chosen too small and if x0 is far from the solution, it may
take many iterations to get close to the solution. If	0 is chosen too large, it may take many
iterations to reduce 	k below the tolerance 	tol.

The compass search algorithm allows some choice in the selection of xk1 , since it is
possible to choose any i for which f (xk + 	kdi) < f (xk). It is possible to exploit this
flexibility when using the algorithm, for example, by terminating an iteration as soon as a
better point is found.

More importantly, it is possible to evaluate multiple function values { f (x +	di) }2n
i=1

simultaneously on the various processors of a parallel computer. In cases where the function
evaluations are expensive, such as when they involve some auxiliary simulation, this can
dramatically accelerate the compass search algorithm. If sufficient processors are available,
it is possible to expand the set of directions { di } by including additional directions beyond
just the coordinate directions and their negatives. This can further accelerate the algorithm.

Compass search is a slow but sure method. It is guaranteed to make progress towards
a solution, but might do so slowly. For this reason, the convergence tolerance 	tol is
commonly set, so a coarse estimate of the solution is accepted.

12.5.3 Convergence of Compass Search

It is possible to prove a convergence theorem for compass search that is remarkably similar
to the convergence theorem for line search methods (see Section 11.5). It will be necessary
to make some assumptions about the objective function, and indeed we will make the same
assumptions as before. Namely, we will assume that (i) the set S = { x : f (x) ≤ f (x0) } is
bounded, and (ii) ∇f is Lipschitz continuous for all x, that is,

‖∇f (x)− ∇f (y)‖ ≤ L ‖x − y‖
for some constant 0 < L < ∞. The first assumption assures that the method will not
continue indefinitely evaluating points in an unbounded region. Some variant of the second
assumption is necessary to guarantee that the algorithm will converge.
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Let us look more closely at an iteration of compass search, and in particular at what
happens at an unsuccessful iteration where a better point cannot be found.

Suppose that the current trial point is not a stationary point. Then ∇f (xk) = 0. In
the two-dimensional case it is obvious that, no matter what the value of the gradient, the
steepest-descent direction −∇f (xk) is within 45◦ of one of the compass directions di . Let
d be a compass direction that satisfies this condition. Then

− dT∇f (xk)
‖d‖ · ‖∇f (xk)‖ ≥ cos(45◦) = 1√

2
> 0.

This is condition (iii) from the line search theorem

− pTk∇f (xk)
‖pk‖ · ‖∇f (xk)‖ ≥ ε > 0

with ε = 1/
√

2. In n dimensions it is possible to show that

− dT∇f (xk)
‖d‖ · ‖∇f (xk)‖ ≥ 1√

n
> 0

for at least one of the compass directions d. (See the Exercises.) Thus there is always a
direction d that satisfies a sufficient descent condition. This condition can be rearranged as

1√
n
‖d‖ · ‖∇f (xk)‖ ≤ −dT∇f (xk).

At an unsuccessful iteration, f (xk + 	kd) ≥ f (xk). We can use the mean-value
theorem to conclude that

0 ≤ f (xk +	kd)− f (xk) = 	kd
T∇f (xk + η	kd)

for some η between 0 and 1. (See Section 2.6.) If we divide by 	k and then subtract
dT∇f (xk) from both sides, we obtain

−dT∇f (xk) ≤ dT[∇f (xk + η	kd)− ∇f (xk)].
Now substitute the rearranged sufficient descent condition into this formula:

1√
n
‖d‖ · ‖∇f (xk)‖ ≤ dT[∇f (xk + η	kd)− ∇f (xk)]

≤ ‖d‖ · ‖∇f (xk + η	kd)− ∇f (xk)‖ .
Earlier we assumed that the gradient of the objective function ∇f (x) was Lipschitz contin-
uous with constant L. Applying this assumption to the right-hand side gives

1√
n
‖d‖ · ‖∇f (xk)‖ ≤ ‖d‖ · L ‖η	kd‖ ≤ L	k ‖d‖2 .

Since the compass directions all satisfy ‖d‖ = 1, this simplifies to

‖∇f (xk)‖ ≤ √
nL	k.
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We have been able to derive a bound on ‖∇f (xk)‖ at an unsuccessful iteration of the compass
search method, even though the method does not use any gradient information.

This is enough to provide us with our convergence result. If we only consider the
unsuccessful iterations x(k), then

lim
k→∞

∥∥∇f (x(k))∥∥ ≤ √
nL lim

k→∞	(k).

At every unsuccessful iteration, 	k+1 = 	k/2, and 	k is never increased. Since the level
sets are bounded, for each value of 	 there can only be a finite number of successful
iterations. (See the Exercises.) Thus the limit of the right-hand side is zero and

lim
k→∞

∥∥∇f (x(k))∥∥ = 0.

If the assumptions about the objective function are satisfied, the compass search method is
guaranteed to converge. A formal statement of the theorem is given below.

Theorem 12.17 (Convergence of Compass Search). Let f be a real-valued function of n
variables. Let x0 be a given initial point and determine { xk } using the compass search
algorithm with initial pattern size 	0. Assume that

(i) the set S = { x : f (x) ≤ f (x0) } is bounded;

(ii) ∇f is Lipschitz continuous for all x, that is,

‖∇f (x)− ∇f (y)‖ ≤ L ‖x − y‖ ,
for some constant 0 < L <∞.

Let
{
x(k)

}
be the set of unsuccessful iterations, i.e., the iterations where a better point

cannot be found and 	k is reduced. Then

lim
k→∞

∥∥∇f (x(k))∥∥ = 0.

It is also possible to determine the rate of convergence for the compass search algo-
rithm. If additional assumptions are made, then it can be shown that at the unsuccessful
iterations, ∥∥x(k) − x∗∥∥ ≤ c	(k)

for some constant c that does not depend on k. This is similar to, but not the same as,
a linear rate of convergence. There are several differences between this result and linear
convergence.

First, in this result we consider only unsuccessful iterations and ignore successful
iterations. Second, the result shows only that

{
x(k) − x∗

}
is bounded by a linearly conver-

gent series. At each unsuccessful iteration we divide 	(k) by 2, so the sequence
{
	(k)

}
converges linearly to zero. This does not guarantee that

{
x(k) − x∗

}
converges linearly.

(See the Exercises.) Nevertheless it is similar to linear convergence, and this property is
sometimes referred to as “r-linear” convergence.
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In contrast, the steepest-descent method from Section 12.2 converges linearly, i.e., at
a faster rate than the compass search method.

Exercises
5.1. Fill in the details of the iterations of the compass search method for Example 12.16.

5.2. Apply the compass search method to the problem

minimize f (x1, x2) = (x1 + x2 + 4)2 + (x1 − x2 + 3)2

using the initial point x0 = (1, 5)T and 	0 = 6. Perform at least four iterations of
the method.

5.3. Apply the compass search method to the problem

minimize f (x1, x2, x3) = x2
1 + 2x2

2 + 3x2
3

using the initial point x0 = (1, 2, 1)T and 	0 = 3. Perform at least five iterations of
the method.

5.4. Variants of compass search can be developed using different sets of search directions.
For example, the directions could be based on the corners of a box or cube centered
about the origin. In two dimensions this gives the directions di = (±1,±1)T:

d1 = ( 1 1 )T

d2 = ( 1 −1 )T

d3 = (−1 1 )T

d4 = (−1 −1 )T .

In three dimensions this gives the directions di = (±1,±1,±1)T. Repeat the pre-
vious two problems using this variant of compass search. This is sometimes called
box search.

5.5. If compass search is used to solve an n-dimensional problem, how many directions
di are needed? How many directions are needed for box search in this case? Which
method is preferable as n increases?

5.6. Program the compass search algorithm, and apply it to the problem in Example
12.16 with 	tol = 10−5. In your program, choose the best value of xk + 	kdi at
each iteration. At which iteration is xk = x∗? How many additional iterations are
required before the algorithm terminates?

5.7. Repeat the previous problem, but choose the first value of xk + 	kdi that yields a
better function value. How do the two versions of the algorithm compare? Be sure
to take into account the number of function evaluations required to find a solution,
and not just the number of iterations.

5.8. The compass search algorithm terminates when 	k < 	tol. Apply the compass
search algorithm to the minimization problems in the previous problems and compare
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	k and ‖∇f (xk)‖ at the unsuccessful iterations. (You should use a small value of
	tol.) Is the value of 	k an effective substitute for the value of ‖∇f (xk)‖ in the
convergence test? (It would be desirable to use ‖∇f (xk)‖ in the convergence test,
but compass search is often used when it is impossible to compute ∇f (xk).)

5.9. Repeat the previous exercise, but compare 	k and ‖∇f (xk)‖ at all iterations, both
successful and unsuccessful. Can you identify a relationship between these two sets
of values?

5.10. Consider the two-variable problem

minimize f (x) = 1
2 max

{ ‖x − c‖2 , ‖x − d‖2
}
,

where c = (1,−1)T and d = −c.
(i) Prove that the function is continuous and strictly convex, but that its gradient

is discontinuous at points of the form x̂ = (a, a)T.

(ii) Prove that the minimizer of f (x) is x∗ = (0, 0)T.

(iii) Let x0 = (a, a)T for some a = 0. Prove that any positive value of 	0 will
result in an unsuccessful iteration of the compass search algorithm. Use this
result to prove that the compass search algorithm will terminate at (a, a)T and
make no progress towards the solution.

(iv) Program the compass search algorithm and run it on this example. Use initial
guesses of the form x0 = (a, a)T as well as points that do not lie on this line.
Is compass search able to find the minimizer of this function?

5.11. Give an example of a sequence { yk } that satisfies

|yk| ≤ 1/2k,

but where the sequence does not converge linearly. This shows that a sequence that
converges “r-linearly” need not converge linearly.

5.12. In the compass search method, prove that for each value of 	 there can only be a
finite number of successful iterations if the level sets are bounded.

5.13. Let f (x) be a function of n variables and assume that ‖∇f (xk)‖ > 0. Prove that
there is at least one compass direction d that satisfies

− dT∇f (xk)
‖d‖ · ‖∇f (xk)‖ ≥ 1√

n
> 0.

12.6 Termination Rules
Ideally an algorithm for unconstrained optimization would terminate at an estimate of the
solution xk that satisfied

∇f (xk) = 0 and ∇2f (xk) positive semidefinite.

There are two reasons why this is not realistic. First, it is unlikely that the calculated
value of the gradient would ever be exactly zero because of rounding errors in computer
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calculations. Second, even if there are no rounding errors, no algorithm is guaranteed to
find such a point in a finite amount of time. Another difficulty, although not as serious, is
that many commonly used algorithms for unconstrained optimization do not have available
to them the Hessian matrix ∇2f (xk), and so cannot directly verify if this matrix is positive
semidefinite.

As an alternative, we might consider replacing the above conditions by the test

‖∇f (xk)‖ ≤ ε

for some small number ε. This immediately raises the question of how small to make ε.
If (say) 16-digit arithmetic were used, then perhaps ε ≈ 10−16 would be appropriate. In
Section 2.7, we have shown that if the error in the function value |f (xk)− f (x∗)| is O(h),
then the norm of the gradient ‖∇f (xk)‖ and the errors in the variables ‖xk − x∗‖ will both
be O(

√
h), suggesting that a value

ε ≈
√

10−16 = 10−8

would be more appropriate.
Suppose now that the objective function were changed by changing the units in which

it was measured. For example, suppose that instead of measuring the objective in terms of
kilometers it were now measured in terms of millimeters. This would cause the objective
function to be multiplied by 106, and hence would cause ‖∇f (xk)‖ to be multiplied by
106. This minor change to the objective function would make the convergence test much
more difficult to satisfy, even though the underlying optimization problem was essentially
unchanged.

To alleviate this difficulty, the convergence test could be modified to

‖∇f (xk)‖ ≤ ε|f (xk)|,
where ε ≈ √

εmach, in this case ε ≈ 10−8. This test is also flawed. If the optimal value
of the objective function is zero (which is not uncommon when least-squares problems are
solved), then this convergence test will be unnecessarily stringent and may very well be
impossible to satisfy. We are thus led to consider a convergence test of the form

‖∇f (xk)‖ ≤ ε(1 + |f (xk)|)
which attempts to cope with all the above-mentioned difficulties. When |f (xk)| is close to
zero, this test resembles our original test, whereas when |f (xk)| is large, it resembles our
second test.

When Newton’s method is being used, it is also appropriate to ask that ∇2f (xk) be
positive semidefinite. Due to the properties of rounded arithmetic, however, we weaken
this requirement and only demand that

∇2f (xk)+ εI
be positive semidefinite. (The choice of ε is discussed below.) Since a factorization∇2f (xk)

is normally computed to determine the search direction in Newton’s method, this test can
be performed at low cost as a by-product of the method. (See Section 11.4.)
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Since it is not possible to design a perfect convergence test for terminating an algo-
rithm, it is common to insist that additional tests be satisfied before a point xk is accepted as
an approximate minimizer of the function f . For example, the algorithm might attempt to
ensure that the sequences { f (xk) } and { xk } are both converging. The combined test might
take the form

‖∇f (xk)‖ ≤ ε1(1 + |f (xk)|)
f (xk−1)− f (xk) ≤ ε2(1 + |f (xk)|)
‖xk−1 − xk‖ ≤ ε3(1 + ‖xk‖)
∇2f (xk)+ ε4I is positive semidefinite.

The fourth test on ∇2f (xk) would be performed only if the Hessian matrix were available.
The tolerances εi should be selected based on the accuracy of the computer calcula-

tions. The tolerance ε2 should represent the accuracy with which the function and derivative
values can be calculated. If they can be calculated to full machine accuracy, then it is ap-
propriate to take ε2 = εmach, or perhaps some multiple of εmach that depends on the number
of variables in the problem. If the function and derivative values are only accurate to, say,
8 digits, then ε2 = 10−8 is a more appropriate choice. (Such a choice would be neces-
sary, for example, if finite-difference derivative estimates were used; see Section 12.4.1.)
Under many circumstances, it will be appropriate to choose ε4 = ε2

∥∥∇2f (xk)
∥∥, unless

the accuracy of the Hessian calculations is different from that of the function and gradient
values.

Since xk and ∇f (xk) can only be expected to have half the precision of f (xk) (see
Section 2.7), we are led to choose ε1 = ε3 = √

ε2. The book by Gill, Murray, and Wright
(1981) recommends the larger value ε1 = ε3 = 3

√
ε2, based on computational tests that the

authors have performed.
The tests on ∇f (xk) and xk both are based on norms. If, for example, ∇f (xk) =

(γ, . . . , γ )T, then

‖∇f (xk)‖2 = √
n|γ | and ‖∇f (xk)‖∞ = |γ |,

where n is the number of variables. If n is large, then the 2-norm of the gradient can be
large even if γ is small. This can distort the convergence tests and so it is wise to use the
infinity norm when large problems are solved.

The use of norms in the convergence tests can have other side effects. Suppose that

xk−1 = ( 1.44453 0.00093 0.0000079 ) T

xk = ( 1.44441 0.00012 0.0000011 ) T.

If we had chosen ε3 = 10−3, then

‖xk−1 − xk‖∞ = ∥∥( 0.00012 0.00081 0.0000068 )T
∥∥

= 0.00081 ≤ ε3 ‖xk‖ = 1.44441 × 10−3

and so xk would pass this test. If, for our application, it was important that the significant
digits of all the variables be accurate, then xk would not be satisfactory since its second
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and third components are still changing in their first significant digit. The use of norms
emphasizes the larger components in a vector, and so the smaller components may have
poor relative accuracy.

This effect can be ameliorated by scaling the variables. Suppose that we knew that

x∗ ≈ ( 1 10−4 10−6 )T .

(We might know this from practical experience, or from a previous attempt at computing
x∗.) Then we could perform a change of variables x → x̂ so that

x̂∗ ≈ ( 1 1 1 )T .

At the optimum, all the variables in the transformed problem would have approximately the
same relative accuracy. In this case the change of variables would be

x = ( x1 x2 x3 )
T → ( x1 104x2 106x3 )

T = x̂.

Note that the formulas for f and ∇f would have to be adjusted accordingly.

Example 12.18 (Scaling). Consider the quadratic function

f (x) = 1
2x

TQx − cTx,
where

Q =
( 8 3 × 104 0

3 × 104 4 × 108 1 × 1010

0 1 × 1010 6 × 1012

)
and c =

( 11
8 × 104

7 × 106

)
.

This function has a minimum at

x∗ = Q−1c = ( 1 10−4 10−6 )T .

We make the change of variable
x̂ = Dx,

where

D =
( 1 0 0

0 104 0
0 0 106

)
,

and let f̂ be the transformed function. Then x = D−1x̂, or

x1 = x̂1, x2 = 10−4x̂2, and x3 = 10−6x̂3.

Substituting into the formulas for f and ∇f gives

f̂ (x̂) = 1
2 x̂

T(D−1QD−1)x̂ − (D−1c)Tx̂

and
∇f̂ (x̂) = (D−1QD−1)x̂ − (D−1c),
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where

D−1QD−1 =
( 8 3 0

3 4 1
0 1 6

)
and D−1c =

( 11
8
7

)
.

The minimizer of the scaled function is

x̂∗ = (D−1QD−1)−1(D−1c) = ( 1 1 1 )T .

Notice that
∇f̂ (x̂) = D−1∇f (x).

This result can be derived directly using the chain rule (see below).

In general suppose we perform a change of variable of the form

x → Dx = x̂,

where D is an invertible scaling matrix. Then by the chain rule,

f̂ (x̂) = f (D−1x̂) = f (x) and ∇f̂ (x̂) = D−1∇f (D−1x̂) = D−1∇f (x).
Once the minimization has been performed with respect to the variables x̂, the solution to
the original problem is obtained from x∗ = D−1x̂∗.

Exercises
6.1. Suppose that a change of variables of the form

x → Dx = x̂

has been performed, where D is an invertible matrix. What is the formula for
∇2f̂ (x̂)?

6.2. Suppose that a change of variables of the form

x → Dx = x̂

has been performed, whereD is an invertible matrix. Prove that the Newton direction
(in terms of the original variables) is unchanged. Under what conditions on D are
the steepest-descent and the BFGS quasi-Newton directions unchanged?

6.3. Suppose that a change of variables of the form

x → Dx = x̂ + v
has been performed, where D is an invertible matrix and v is a nonzero vector.
Determine the formulas for f̂ (x̂), ∇f̂ (x̂), and ∇2f̂ (x̂). Apply your results to the
function in Example 12.18 using

D =
( 1 3 0

0 103 5
0 0 105

)
and v = ( 4 7 2 ) .
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6.4. Use Newton’s method (with or without a line search) to solve

minimize f (x1, x2) = 5x4
1 + 6x4

2 − 6x2
1 + 2x1x2 + 5x2

2 + 15x1 − 7x2 + 13.

Use the initial guess (1, 1)T, and use the termination rules derived in this section.
Experiment with the choices of ε1–ε4, and determine how small you can make them
before you reach the limits of the precision on your computer.

6.5. Repeat the previous problem using the steepest-descent method. You need not test
if the Hessian at xk is (approximately) positive semidefinite.

12.7 Historical Background
Many of the ideas in this chapter owe a great debt to Isaac Newton, and in particular
to his manuscripts of the 1660s.11 In these manuscripts Newton examines the roots of
polynomial equations from both a numerical and an analytic point of view and develops
a technique (now called Newton’s method) for approximating these roots to any desired
accuracy.

Newton’s own derivation is different from ours, and we present it here, using the
example that Newton himself employed:

x3 − 2x − 5 = 0.

The first step is to find an integer adjacent to a root. A few simple calculations indicate that
there is a root between 2 and 3, and so 2 is an acceptable initial guess. The root can be
written as

x∗ = 2 + p
for some p. Substituting this into the cubic polynomial gives

p3 + 6p2 + 10p − 1 = 0.

Since |p| < 1, the terms p3 + 6p2 “are neglected on account of their smallness” leaving us
with the approximate equation

10p − 1 = 0,

or p ≈ 0.1, “very nearly true.” We now repeat this process, applying it to p instead of x.
The exact value of p will satisfy

p = 0.1 + q
for some q, and this expression can be substituted into the cubic equation for p, giving

q3 + 6.3q2 + 11.23q + 0.061 = 0.

11Newton’s manuscripts are available in an edition due to D. T. Whiteside that includes the Latin original, an
English translation, and extensive annotations.
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If the terms q3 + 6.3q2 are ignored, we solve for q in

11.23q + 0.061 = 0,

obtaining q ≈ −0.0054. Repeating this procedure one more time using q = −0.0054 + r

gives (after ignoring nonlinear terms) the equation

0.000541708 + 11.16196r = 0

or r ≈ −0.00004853. Combining these results together gives

x∗ ≈ 2.09455147.

The root is x∗ = 2.0945514815 . . . . Newton goes on, a few pages later, to show how to use
his technique to obtain analytic series approximations to roots of polynomial equations. He
also points out that a quadratic equation could be solved to obtain the update to the solution
(for example, p could be obtained by solving 6p2 + 10p − 1 = 0) and thus improve the
convergence rate of the method. His comments indicate that he is aware that his basic
method converges at a quadratic rate, and that using a quadratic equation would cause it to
converge at a cubic rate.

The approach used by Newton solves a nonlinear equation by guessing at a solution,
approximating the nonlinear equation near that guess by a linear equation (in fact the equation
for the tangent line), and using that linear approximation to obtain a new guess of the solution.
This is the same approach used in Chapter 2 to derive Newton’s method, but the organization
of the calculations used there is different. The algorithm in Chapter 2 was used by Joseph
Raphson in 1690, although Raphson did not refer to derivatives. Raphson was aware of
Newton’s work, but he did not realize that the two methods were equivalent.

From a practical, pencil-and-paper point of view the methods are different. Newton’s
original formulation requires that a new polynomial be derived every time the estimate of the
solution is refined, whereas Raphson’s version always works with the original polynomial.
It is also more obvious how to generalize Raphson’s formula to more general nonlinear
functions. For these reasons, the more modern formulas are often referred to collectively
as the Newton–Raphson method. (Further information about Raphson can be found in the
paper by Bićanić and Johnson (1979).)

Many other important enhancements, such as the interpretation of the method using
derivatives, are due to Thomas Simpson (1740). A more detailed history of Newton’s
method can be found in the paper by Ypma (1995).

This was not the first approach that Newton had used to solve polynomial equations. In
late 166412 Newton examined existing algorithms due to Viète and Oughtred; these methods
converge linearly, finding the root one digit at a time. In early 1665 Newton discovered the
secant method. His derivation appears to be based on geometric reasoning, although he does
not include a diagram. Other relevant results that can be found in Newton’s manuscripts
include the Taylor series and Horner’s rule for evaluating a polynomial. Newton was averse
to publishing many of his results. However, some of his manuscripts were circulated during
and after his lifetime, inspiring publications by other British scientists such as Raphson,

12Many of Newton’s manuscripts cannot be precisely dated; the dates given here are those proposed by Whiteside.
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Taylor, Horner, Halley, Maclaurin, Simpson, and others, and it is those publications that
give these results their modern names.

It would be pleasing to report that Newton was the first to discover Newton’s method,
but this is not the case. For example, according to Whiteside, a “primitive form of it”
was used to solve xn − a = 0 by the “fifteenth-century Arabic mathematician al-Kāš̄ı.” It
appears, however, that Newton was unaware of these earlier developments.

The optimality conditions for one-dimensional optimization problems were known to
Newton, and were developed as he developed his calculus. The corresponding conditions
for multidimensional problems were known to Simpson, although there is indirect evidence
that Newton may have known these as well. The multidimensional version of Newton’s
method is also due to Simpson. Multidimensional versions of the secant method (i.e.,
quasi-Newton methods) were developed by Davidon in 1959, although his report was not
published until 1991; the first published account of these techniques was by Fletcher and
Powell in (1963) and was based on Davidon’s technical report.

The steepest-descent method was developed by Cauchy in 1847. He discussed it as a
technique for solving a nonlinear equation of the form

f (x1, . . . , xn) = 0,

where f is a real-valued function that cannot take on negative values. This is the same as
solving

minimize f (x1, . . . , xn),

and the fact that in Cauchy’s case the optimal value of f is zero is but a minor technicality.
Cauchy, like Gauss, was motivated by the study of planets and comets, and his specific
motivation was presented in a paper he published earlier the same year.

12.8 Notes
Quasi-Newton Methods—Although the BFGS formula is the most widely used of the quasi-
Newton formulas for optimization, the symmetric rank-one formula also has desirable
properties. The relative merits of the two methods have been studied in several papers
(see, for example, Nocedal (1991)), and these studies may lead to modifications in the way
quasi-Newton methods are programmed. The symmetric rank-one formula must be used
with some care, since the denominator in the update can be zero or negative, leading to
computational difficulties for the optimization method.

The description of the quasi-Newton methods given above uses the formula Bkp =
−∇f (xk) to compute the search direction. This would seem to require the solution of a linear
system at a cost ofO(n3) operations. Some authors recommend using a more sophisticated
technique. The Cholesky factorization of the initial matrix B0 = L0L

T
0 is computed in the

usual way. (If B0 = I , then L0 = I as well, making this especially easy.) At later iterations
the update formula is applied toLk−1 rather thanBk−1 so that at every iteration the Cholesky
factorization of Bk is automatically available. In this way, computing the search direction
requires only two applications of backsubstitution at a cost of only O(n2) operations. This
is possible because the update formula is of low rank (for example, the BFGS update is of
rank two). Details of this approach can be found in the paper by Gill and Murray (1972).
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This approach also can be used to ensure that the sufficient descent and gradient-relatedness
conditions on the search direction are satisfied.

The first developers of quasi-Newton methods used a different set of update for-
mulas. Instead of computing a set of approximations Bk ≈ ∇2f (xk) they computed
Hk ≈ [∇2f (xk)]−1. For each of the update formulas given above there is a corresponding
update formula forHk . Using these approximations, the search direction is computed from
p = −Hk∇f (xk) without having to solve a system of linear equations. This makes the
algorithms easy to program. However, there is a price associated with this simplicity. If
the BFGS formula for Hk is programmed on a computer, then the matrices {Hk } ought to
be positive definite. But in rounded computer arithmetic there is a danger that this will not
always be true, and this has led people to abandon this approach. If, however, the formula
for Bk is used and a factorization of this matrix is updated, then it is possible to monitor
the effects of computer arithmetic and ensure that the matrices remain positive definite.
(An alternative is to update Hk and monitor the conditions specified in the line search con-
vergence theorem. If these conditions are violated, then the method can be “restarted” by
setting Hk = I and using the current value of xk as a new “initial guess” of the solution.
Both of these approaches can be used to guarantee global convergence, but both may also
interfere with the asymptotic properties of the method and prevent superlinear convergence
rates.)

An extensive discussion of quasi-Newton methods can be found in the paper of
Dennis and Moré (1977). The convergence result that we mention is but one of many
results that have been proved for quasi-Newton methods. For further information, see for
example the paper by Byrd, Nocedal, and Yuan (1987).

Finite Differencing—Further discussion of finite differencing can be found in the
books by Dennis and Schnabel (1983, reprinted 1996) and Gill, Murray, and Wright (1981).
Special finite-differencing techniques have been derived to approximate sparse Hessian
matrices; for details see the papers by Curtis, Powell, and Reid (1974) and Powell and Toint
(1979).

Finite differencing using complex numbers was first described in the paper by Lyness
and Moler (1967); see also the paper by Squire and Trapp (1998).

In our discussion we assumed that the rounding errors were proportional to machine
precision εmach. More generally, the rounding errors will be proportional to the accuracy εf
with which the function f can be computed, which may be larger than machine precision.
In this case, the formulas for h will involve εf as well as εmach.

Automatic Differentiation—A thorough discussion of automatic differentiation can
be found in the book by Griewank (2000). Early descriptions of automatic differentiation
can be found in the papers by Wengert (1964) and Ostrovskii, Wolin, and Borisov (1971).
A number of papers on the topic are contained in the book edited by Griewank and Corliss
(1991). We have discussed using automatic differentiation just to compute the gradient. It
can also be used effectively for computing the Hessian and for other derivative calculations,
such as directional derivatives. (This latter technique can be useful within a truncated-
Newton method; see Section 13.3.) Although the number of operations required to calculate
the gradient is comparable to the number of operations required to calculate the function,
computation of the Hessian is roughly n times as expensive for a function with n variables;
this cost is inherent, and not just a deficiency of current techniques.
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Derivative-Free Methods—One of the most widely used derivative-free methods is
due to Nelder and Mead (1965). For this particular method the gradient need not go to zero
in the limit, although a number of other methods have convergence properties similar to the
one described in this section. Many types of derivative-free methods have been developed
and studied, including methods suitable for parallel computing, and methods that can solve
constrained problems. A survey of such methods can be found in the paper by Kolda, Lewis,
and Torczon (2003).
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Chapter 13

Low-Storage Methods for
Unconstrained Problems

13.1 Introduction
The methods discussed in this chapter are suitable for solving large problems. They are
suitable for two reasons. One is that their storage needs are low ( just a few vectors are
needed, unlike the matrix storage needed for the quasi-Newton methods of the last chapter).
The other is that the work per iteration (the work required to compute a search direction)
is also low, usually proportional to the number of variables n. For quasi-Newton methods
the work per iteration is proportional to n2. The search directions computed by these low-
storage methods are generally of lower quality than those computed by Newton’s method,
in the sense that the rate of convergence is slower, and hence more iterations will often be
required to find a solution. The hope is that the increase in the number of iterations will be
more than compensated by the savings in the costs per iteration—savings that grow ever
more dramatic as n increases.

Large problems can arise in several ways. In a model designed to optimize the
operations of a corporation, adding variables may allow a more detailed examination of the
corporate structure—for example, it might allow budget decisions to be examined at the
level of individual departments rather than in terms of larger divisions within the company.
In an engineering design problem, such as the design of a bridge or an airplane, the number
of variables might be proportional to the number of components and so would be large if
there were a large number of parts. In optimal control problems the solution is a function
that might be approximated by determining its values at a finite number of points; if the
solution varied rapidly, a large number of points would be needed to approximate the solution
accurately.

The chapter begins with a discussion of the linear conjugate-gradient method, a method
for solving systems of linear equations. This may seem an odd introduction to this topic,
but two of the three groups of methods discussed here adapt the linear conjugate-gradient
method to the solution of nonlinear optimization problems. Truncated-Newton methods
use the linear conjugate-gradient method to find a search direction. Nonlinear conjugate-
gradient methods generalize its formulas to create a new method. Limited-memory quasi-
Newton methods are not as easy to categorize. They use the formulas of quasi-Newton

451



book
2008/10/23
page 452

�

�

�

�

�

�

�

�
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methods but are often considered as extensions of nonlinear conjugate-gradient methods.
The chapter concludes with a discussion of preconditioning, a powerful tool for accelerating
the convergence of these algorithms.

In many cases, large problems are also sparse. By exploiting sparsity, it is possible to
extend Newton’s method to solve large problems. Although we do not discuss this topic in
detail, various approaches to exploiting sparsity are described in the Notes for this chapter
and for Appendix A.

Of these methods, nonlinear conjugate-gradient methods typically have the lowest
per iteration computational costs, followed by limited-memory quasi-Newton methods,
truncated-Newton methods, and sparse versions of Newton’s method. Nonlinear conjugate-
gradient methods usually require many iterations to find a solution and may have difficulty
in finding a high-accuracy solution to an optimization problem. However, such methods can
be successful in finding a low-accuracy solution efficiently. In contrast, Newton’s method
is likely to require far fewer iterations and is often able to compute a solution to high
accuracy.

13.2 The Conjugate-Gradient Method for Solving
Linear Equations

The most commonly used technique for solving systems of linear equations is Gaussian
elimination. It is referred to as a “direct” method because it determines the solution in a
fixed number of arithmetic operations that can be predicted in advance. “Iterative” methods,
on the other hand, do not have fixed costs since the solution is obtained from a sequence of
approximate solutions, and the algorithm is terminated when some measure of the error has
been made adequately small.

Iterative methods are a valuable tool for solving large systems of linear equations.
They have several potential advantages over direct methods in this case. First, since the
coefficient matrix need not be factored, there is no fill-in and loss of sparsity. Second, storage
requirements are often lower for iterative methods than for direct methods. In some cases,
it may not be necessary to store the coefficient matrix at all. Third, if a good approximation
to the coefficient matrix is available, and this approximation can be inverted at low cost,
then an iterative method can take advantage of this information to obtain the solution more
rapidly. This is not normally possible with a direct method.

A great many iterative methods have been invented, but we will only consider one of
them: the conjugate-gradient method. (Many of the other iterative methods are applied pri-
marily in the solution of differential equations.) The conjugate-gradient method is designed
to solve

Ax = b

in the case where the matrix A is symmetric and positive definite. It can be considered as a
technique for solving the equivalent problem

minimize f (x) = 1
2x

TAx − bTx.
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To see that the problems are equivalent, set the gradient of f to zero:

∇f (x) = Ax − b = 0.

This finds the minimum since the Hessian matrix ∇2f (x) = A is positive definite, and the
sufficient conditions for a minimum are satisfied.

The conjugate-gradient method gets its name from the fact that it generates a set of
vectors {pi } that are conjugate with respect to the coefficient matrix A; that is,

pTi Apj = 0 if i = j.

In the special case where A = I , conjugate vectors are just orthogonal vectors. In general,
any set of nonzero conjugate vectors will be linearly independent (see the Exercises).

To see the significance of the conjugacy property, assume that the vectors {pi } are
known. Consider a trial point y that is a linear combination of m+ 1 such vectors

y =
m∑
i=0

αipi

and evaluate f (y):

f (y) = f

(
m∑
i=0

αipi

)
= 1

2

(
m∑
i=0

αipi

)T
A

⎛
⎝ m∑
j=0

αjpj

⎞
⎠− bT

(
m∑
i=0

αipi

)

= 1

2

m∑
i=0

m∑
j=0

αiαjp
T
i Apj −

m∑
i=0

αib
Tpi

= 1

2

m∑
i=0

α2
i p

T
i Api −

m∑
i=0

αib
Tpi (from conjugacy)

=
m∑
i=0

(
1

2
α2
i p

T
i Api − αibTpi

)
.

It is then easy to minimize the function over all vectors y of this form:

min
y
f (y) = min{αi }

f

(
m∑
i=0

αipi

)

= min{αi }

m∑
i=0

(
1

2
α2
i p

T
i Api − αibTpi

)

=
m∑
i=0

min
αi

(
1

2
α2
i p

T
i Api − αibTpi

)
.

The original problem has been reduced to the sum of one-dimensional minimization prob-
lems. Each of these one-dimensional problems can be solved by setting the derivative with
respect to αi equal to zero:

αi(p
T
i Api)− bTpi = 0 or αi = bTpi

pTi Api
.
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(The formula forαi corresponds to an exact line search along the directionpi for the function
f ; see the Exercises.) Thus, if we can represent the solution as a linear combination of
conjugate vectors, the solution can be found easily.

The conjugate-gradient method iteratively determines a set of conjugate vectors {pi }
and their coefficients {αi }. Here is one version of the method. The vector ri is equal to the
residual b − Axi , and the scalar βi is used to determine the vector pi .

Algorithm 13.1.
Conjugate-Gradient Method

1. Set x0 = 0, r0 = b = b − Ax0, p−1 = 0, β0 = 0, and specify the convergence
tolerance ε.

2. For i = 0, 1, . . .

(i) If ‖ri‖ < ε, stop.

(ii) If i > 0, set βi = rTi ri/r
T
i−1ri−1.

(iii) Set pi = ri + βipi−1.

(iv) Set αi = rTi ri/p
T
i Api .

(v) Set xi+1 = xi + αipi .
(vi) Set ri+1 = ri − αiApi .

In this algorithm the initial guess is specified as x0 = 0. It may be that a better initial guess
is known. In this case the method can still be used, but with r0 = b−Ax0 instead of r0 = b;
no other changes are necessary (see the Exercises).

The formulas for αi and ri in the conjugate-gradient method are different from the
formulas given earlier in this section, but the different formulas can be shown to be equiva-
lent; see the Exercises. One reason for using different formulas is to reduce computational
effort. For example, the formula for αi reuses the value rTi ri from the computation of βi .
More importantly, the formula for ri reuses Api from the computation of αi . The matrix
A only appears as part of Api , and as long as this matrix-vector product can be computed
the algorithm can be used, even if A is not available explicitly. The formation of Api is
discussed further below.

In this algorithm xi+1 = xi + αipi , and hence

xi+1 = αipi + αi−1pi−1 + · · · + α0p0

so the approximate solutions from the conjugate-gradient method have the same form as the
point y used earlier. This shows that xi+1 is in the subspace spanned by {pj }ij=0. In fact,

xi+1 minimizes the quadratic function f (x) = 1
2x

TAx − bTx over this subspace.
It will be shown later in this section that, if exact arithmetic is used, this algorithm

produces a set of conjugate vectors {pi } and a set of orthogonal vectors { ri }.
Although this algorithm has been written with subscripts on all the variables, only

the current values of the variables need be saved. For example, the new value xi+1 can be
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overwritten on the old one xi . Only the inner product rTi−1ri−1 from the previous iteration
need be saved.

Example 13.1 (The Conjugate-Gradient Method). We will apply the conjugate-gradient
method to the problem Ax = b with

A =
( 1 0 0

0 2 0
0 0 3

)
and b =

( 1
1
1

)
.

The method is initialized with

x0 =
( 0

0
0

)
, r0 =

( 1
1
1

)
, p−1 =

( 0
0
0

)
, β0 = 0, and ε = 10−12.

At iteration 0, ‖r0‖ = 1.7321 > ε, so we do not stop. Then

p0 =
( 1

1
1

)

and so α0 = 0.5000,

x1 =
( 0.5000

0.5000
0.5000

)
, and r1 =

( 0.5000
0

−0.5000

)
.

At iteration 1, ‖r1‖ = 0.7071 > ε, so we continue and obtain β1 = 0.1667 and

p1 =
( 0.6667

0.1667
−0.3333

)
.

This gives α1 = 0.6000,

x2 =
( 0.9000

0.6000
0.3000

)
, and r2 =

( 0.1000
−0.2000

0.1000

)
.

At iteration 2, ‖r2‖ = 0.2449 > ε, so we continue, getting β2 = 0.1200 and

p2 =
( 0.1800
−0.1800

0.0600

)
.

Then α2 = 0.5556,

x3 =
( 1.0000

0.5000
0.3333

)
, and r3 = 10−16 ×

( 0.1388
0.2776
0.1388

)
.

(We used 16-digit arithmetic for these calculations.) At iteration 3, ‖r3‖ = 3.4×10−17 < ε,
so we stop.
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The conjugate-gradient method does not require the matrix A explicitly. It requires
only the computation of matrix-vector products of the form Ap for an arbitrary vector p.
If the matrix A were stored explicitly, then of course this matrix-vector product could be
computed using the traditional formulas. However, the traditional formulas are not often
used. Large problems are often sparse, or have other special structure that makes it possible
to compute Ap efficiently. In such cases software can be written to compute Ap that does
not use any matrix storage.

Example 13.2 (Efficient Matrix-Vector Product). Consider the n× n matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

4 1
1 4 1 0

1
. . .

. . .
. . . 4 1

0 1 4 1
1 4

⎞
⎟⎟⎟⎟⎟⎟⎠+ wwT,

where w is a vector. If all the entries of w are nonzero, then A is a dense matrix. Nev-
ertheless the matrix-vector product y = Ap can be computed efficiently via the following
algorithm.

Algorithm 13.2.
Efficient Matrix-Vector Product

1. For i = 1, 2, . . . , n

(i) yi = 4pi
(ii) If i > 1, then yi ← yi + pi−1

(iii) If i < n, then yi ← yi + pi+1

2. y ← y + (wTp)w.

The cost of this algorithm is about 6n arithmetic operations, far less than the 2n2 operations
of the traditional matrix-vector product. Notice that the matrix A is not stored.

With the possible exception of the matrix-vector product, all of the operations in the
conjugate-gradient method are standard vector operations (inner product, multiplication of
a vector by a scalar, and sums of vectors). High-performance computers often have special
hardware that performs these operations rapidly; hence this algorithm is well suited to such
computers if the matrix-vector product can be programmed efficiently.

The conjugacy and orthogonality properties of the conjugate-gradient method are
proved in the theorem below. The proof given here uses only elementary arguments and is
based on mathematical induction. Other derivations of the conjugate-gradient method are
possible; some can be found in the paper by Hestenes and Stiefel (1952).
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Theorem 13.3. Assume that the vectors {pi } and { ri } are defined by the formulas for the
conjugate-gradient method. Then

rTi rj = 0, rTi pj = 0, and pTi Apj = 0

for i > j . That is, the residuals { ri } are orthogonal, the residuals are orthogonal to the
directions

{
pj , j < i

}
, and the directions {pi } are conjugate.

Proof. The proof is by mathematical induction, with the induction hypothesis consisting of
all three of the equations in the statement of the theorem.

For i = 0 we need only show that rT0p−1 = 0 and pT0Ap−1 = 0 since no other cases
are possible. These results follow immediately because p−1 = 0.

Assume now that the three results are true for i; we wish to prove them for i+1. This
will be done in five steps. Each of these steps makes regular use of the formulas for the
conjugate-gradient method.

1. rTi+1rj = 0 for j < i:

rTi+1rj = (ri − αiApi)Trj = rTi rj − αirTj Api
= 0 − αi(pj − βjpj−1)

TApi

= −αipTjApi + αiβjpTj−1Api = 0.

Each of the individual terms in the second-to-last line vanishes because of the induction
hypothesis.

2. rTi+1ri = 0:

rTi+1ri = rTi ri − αirTi Api = rTi ri − αi(pi − βipi−1)
TApi

= rTi ri − αipTi Api + αiβipTi−1Api

= rTi ri −
rTi ri

pTi Api
pTi Api + 0 = 0.

3. rTi+1pj = 0 for j < i + 1:

rTi+1pj = rTi+1rj + βj rTi+1pj−1

= 0 + βj (ri − αiApi)T pj−1

= βj (r
T
i pj−1 − αipTi Apj−1) = 0.

Notice that rTi+1rj = 0 because of steps 1 and 2 in this proof.

4. pTi+1Apj = 0 for j < i:

pTi+1Apj = (ri+1 + βi+1pi)
TApj = rTi+1Apj + βi+1p

T
i Apj

= rTi+1[α−1
j (rj − rj+1)] + 0

= α−1
j (r

T
i+1rj − rTi+1rj+1) = 0

because of steps 1 and 2.
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5. pTi+1Api = 0:

pTi+1Api = (ri+1 + βi+1pi)
T[α−1

i (ri − ri+1)]
= α−1

i (r
T
i+1ri + βi+1p

T
i ri − rTi+1ri+1 − βi+1p

T
i ri+1)

= α−1
i (0 + βi+1p

T
i ri − rTi+1ri+1 − 0)

= α−1
i [βi+1(ri + βipi−1)

Tri − rTi+1ri+1]
= α−1

i [βi+1r
T
i ri + βi+1βip

T
i−1ri − rTi+1ri+1]

= α−1
i [βi+1r

T
i ri + 0 − rTi+1ri+1] = 0.

The final line follows from the definition of βi+1 = rTi+1ri+1/r
T
i ri .

These five steps together show that the induction hypothesis is true for i+ 1, and hence this
completes the proof.

The approximate solution xi minimizes the function f (x) = 1
2x

TAx − bTx over all
linear combinations of vectors of the form

xi = c1b + c2(Ab)+ c3(A
2b)+ · · · + ci(Ai−1b)

(see the Exercises). The set of vectors of this form is called a Krylov subspace. This result
can be used to show that, in exact arithmetic, the conjugate-gradient method converges in a
finite number of iterations equal to the number of distinct eigenvalues of the matrix A. The
number of distinct eigenvalues is, at most, the number of variables.

Most iterative methods do not converge in a finite number of iterations. Instead they
generate an infinite sequence of approximate solutions that approach the exact solution in the
limit. For this reason it may seem odd to consider the conjugate-gradient method as an itera-
tive method. When the number of variables is large, however, it may be too time consuming
to use a number of iterations equal to the number of variables. Also, in rounded arithmetic
the finite termination property may not be satisfied, and the number of iterations can be much
larger than the number of variables. In a truncated-Newton method (see Section 13.3) the
matrix-vector products Ap may only be approximated, and this can lead to a loss of conju-
gacy and orthogonality more pronounced than that caused by rounded arithmetic. For these
reasons the conjugate-gradient method is usually treated as an iterative method like any other.

When considered as an iterative method, the linear conjugate-gradient method can be
shown to converge linearly with

‖xi+1 − x∗‖A
‖xi − x∗‖A ≤

√
cond(A)− 1√
cond(A)+ 1

.

The error is measured in the norm defined by

‖y‖2
A ≡ 1

2y
TAy.

If cond(A) = 1, then the rate constant above is zero and the conjugate-gradient method
converges in one iteration. If cond(A) = 100, then the rate constant is about 0.82, and if
cond(A) = 1,000,000, then the rate constant is about 0.998.
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The conjugate-gradient method is often used with a “preconditioning” matrix, that
is, a matrix M ≈ A. The matrix M usually corresponds to a related linear system that
is easier to solve. For example, the matrix M might be diagonal and represent a scaling
of the variables. If such a matrix is available, then the conjugate-gradient method can be
adjusted to take advantage of this additional information, and this can lead to much faster
convergence of the method. This is discussed in Section 13.6.

Exercises
2.1. Apply the conjugate-gradient method to the problem Ax = b, where

A =
( 2 1 0

1 2 1
0 1 2

)
and b =

( 1
1
1

)
.

Verify that the vectors {pi } are conjugate and the vectors { ri } are orthogonal.

2.2. The conjugate-gradient method is applied to the minimization of a function of three
variables. Initially r0 = (1,−1, 2)T. At iteration 1, the first two components of r1
are 2 and 2, respectively. What is the direction of search prescribed by the conjugate-
gradient method at the second iteration?

2.3. The conjugate-gradient method was applied to the minimization of a function. At
some iteration the following data were given: ri = (5, 3,−1)T and pi = (4,−2, 1)T.
Why cannot these data be correct?

2.4. The choice of the starting direction p0 = r0 is important in the conjugate-gradient
method. To see this consider the problem(

2 0
0 1

)(
x1

x2

)
=
(

3
4

)
.

Suppose that x0 = (1, 1)T, and instead of p0 = r0 take p0 = (−1, 0)T. Perform
two iterations of the conjugate-gradient method. List all properties of the “regular”
method that are not satisfied in these two iterations.

2.5. Prove that the two formulas for αi given in this section are equivalent, i.e.,

αi = bTpi

pTi Api
= rTi ri

pTi Api
.

2.6. Show that the conjugate-gradient method can be adjusted to take advantage of some
initial guess x0 = 0 by taking r0 = b − Ax0. Hint: Show that this is equivalent to
applying the method to a related linear system with initial guess equal to zero.

2.7. Prove by induction that the vector ri in the conjugate-gradient method is equal to the
residual b − Axi .

2.8. Prove that the conjugate-gradient method converges in one iteration if A = κI ,
where κ is some positive number.
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2.9. Prove that if the nonzero vectors { vi } are mutually conjugate with respect to a
positive-definite matrix A, then they are also linearly independent.

2.10. In the conjugate-gradient method prove that pi−1 can be written as a linear combi-
nation of the set of vectors

{
b,Ab,A2b, . . . , Ai−1b

}
. Also prove that xi minimizes

the quadratic function f (x) = 1
2x

TAx − bTx over all linear combinations of vectors
from this set.

2.11. Use the result of the previous problem to prove that, if exact arithmetic is used, the
conjugate-gradient method converges in a number of iterations equal to the number
of distinct eigenvalues of the matrix A.

2.12. The goal of this problem is to prove that, when the conjugate-gradient method is
used to solve Ax = b, the norms of the errors decrease monotonically.

(i) Prove that the conjugate directions satisfy pTi pj ≥ 0 for all i and j .

(ii) Prove that the estimates of the solution satisfy ‖xi‖ ≥ ‖xi−1‖ for all i. (Here
the 2-norm is used.)

(iii) Let x∗ solve Ax = b. Prove that ‖xi − x∗‖ ≤ ‖xi−1 − x∗‖ for all i.

2.13. Write a computer program that uses the conjugate-gradient method to minimize an
n-dimensional quadratic function

minimize
x

f (x) = 1
2x

TAx − bTx,

where A is a positive-definite matrix. You may assume that the starting point x0 is
the zero vector. Test your algorithm on the quadratic function with data

A =

⎛
⎜⎜⎜⎜⎜⎝

4 0 0 1 0 0
0 4 0 0 1 0
0 0 5 0 0 1
1 0 0 5 0 0
0 1 0 0 6 0
0 0 1 0 0 6

⎞
⎟⎟⎟⎟⎟⎠ and b =

⎛
⎜⎜⎜⎜⎜⎝

4
−8
16

1
−2

9

⎞
⎟⎟⎟⎟⎟⎠ .

Your program should be written so that it only uses matrix-vector products of the
form Ap, instead of explicitly using the matrix A. This means that no matrices are
used in the course of the algorithm.

13.3 Truncated-Newton Methods
Truncated-Newton methods are used to solve the problem

minimize f (x).

They are a compromise on Newton’s method, and they compute a search direction by finding
an approximate solution to the Newton equations

∇2f (xk)p ≈ −∇f (xk)
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using some iterative method, usually the conjugate-gradient method. Notice that the Newton
equations are a linear system of the formAx = bwithA = ∇2f (xk) andb = −∇f (xk). The
iterative method is stopped (“truncated”) before the exact solution to the Newton equations
has been found, giving the method its name.

The overall optimization method now consists of nested iterations. There is an outer
iteration that corresponds to our general optimization method (see Section 2.4). At each
outer iteration we compute a search direction and perform a line search. The computation
of the search direction uses an inner iteration corresponding to the iterative method used
to solve the Newton equations. (The line search also represents an inner iteration of the
optimization method.)

This appears to be a minor adjustment to Newton’s method, but it is enough to allow
Newton’s method to be extended to solve large problems. The line search only requires the
storage of a few vectors: the current point xk , the gradient at xk , the search direction p, plus
perhaps trial values of xk +αp together with their corresponding gradients. The conjugate-
gradient method to compute the search direction also only requires the storage of a few
vectors. The only possible obstacle to using this approach might be the computation of
matrix-vector products of the form Av = ∇2f (xk)v for arbitrary vectors v. Of course,
if explicit second-derivative information were available and easy to compute, then these
matrix-vector products would be computed in the traditional way.

It is possible to approximate the matrix-vector products using values of the gradient
in such a way that the Hessian matrix need not be computed or stored. By rearranging the
Taylor series

∇f (xk + hv) = ∇f (xk)+ h∇2f (xk)v +O(h2),

we obtain that

∇2f (xk)v = lim
h→0

∇f (xk + hv)− ∇f (xk)
h

.

Hence the matrix-vector product ∇2f (xk)v can be approximated using

∇2f (xk)v ≈ ∇f (xk + hv)− ∇f (xk)
h

for some small value of h. (The selection of h is discussed in Section 12.4.1, although in
this setting there is an additional complication since the choice of h depends on v as well
as x and f .) Since ∇f (xk) is the right-hand side of the Newton equations and so is already
available, this shows that a matrix-vector product can be approximated using one gradient
evaluation.

It would also be possible to compute the matrix-vector products using automatic
differentiation (see Section 12.4.2). With this approach, two additional gradient evaluations
are required for each matrix-vector product, instead of just one for finite differencing.
Automatic differentiation would typically produce a more accurate result, however.

With either of these techniques for computing the matrix-vector products, the im-
plementation of a truncated-Newton method requires only that the function f (x) and the
gradient ∇f (x) be calculated. Vector storage is needed for the conjugate-gradient method
and for the line search (these can be the same vectors), but no matrix storage. Many other
optimization methods designed for solving large problems have the same requirements for
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function information and storage, although the exact amount of vector storage may vary
slightly from method to method.

If the costs of the matrix-vector product are ignored, then each inner iteration of such
a truncated-Newton method requires O(n) arithmetic operations, where n is the number
of variables. The cost of each outer iteration, however, is variable since it depends on the
number of inner iterations performed. If more inner iterations are performed, then we would
expect that a “better” search direction would be obtained, in the sense that we would expect
the search direction to be a better approximation to the Newton direction. Hence, there is a
trade-off between the arithmetic costs of each outer iteration and the quality of each search
direction.

This trade-off can be made explicit, since there is a relationship between the accuracy
with which the Newton equations are solved and the convergence rate of the truncated-
Newton method. Let us assume that the iterative method is stopped when the norm of the
residual satisfies ∥∥∇2f (xk)p + ∇f (xk)

∥∥ ≤ φk ‖∇f (xk)‖
for some tolerance φk ≥ 0. In this test, the index k refers to the outer iteration and corre-
sponds to the current approximation xk to the solution x∗. This condition involves the term

∇2f (xk)p + ∇f (xk),
which is the residual for the Newton equations, and which measures how close p is to
the Newton direction. This residual is compared to ‖∇f (xk)‖, the norm of the right-hand
side of the Newton equations. This test measures the relative size of the residual. If the
objective function f is multiplied by a nonzero constant (if the units used to measure the
objective function are changed), this test is unaffected.

The rate of convergence of the truncated-Newton method can be directly related to
the choice of the tolerances {φk }. If

φk = c < 1,

then the truncated-Newton method will converge linearly with rate constant c. If

φk → 0,

then the truncated-Newton method will converge superlinearly. (This is a consequence of
Theorem 11.3; see the Exercises.) If

φk ≤ ‖∇f (xk)‖ ,
then the truncated-Newton method will converge quadratically. If φk = 0, then Newton’s
method is obtained.

The more rapid rates of convergence carry a price. The smaller φk is, the more inner
iterations will be required to compute a search direction. On the other hand, the higher
the rate of convergence, the fewer outer iterations will normally be required to solve the
optimization problem. Many implementations of truncated-Newton methods choose {φk }
to obtain linear or superlinear rates of convergence. One such implementation is illustrated
in the example below.
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Example 13.4 (Truncated-Newton Method). We will demonstrate the usage of a simple
truncated-Newton algorithm. The overall algorithm is of the form described in Theo-
rem 11.7, that is, it will use a backtracking line search. (We will use the parameter value
μ = 0.1 in the sufficient decrease condition.) The conjugate-gradient method from Section
13.2 will be used to compute the search direction; the search direction p will be accepted
when ∥∥∇2f (xk)p + ∇f (xk)

∥∥
‖∇f (xk)‖ ≤ 0.001.

In this example, the matrix-vector products will be computed in the traditional way, using
the Hessian matrix ∇2f (xk).

We apply the truncated-Newton method to the n-dimensional problem

minimize f (x) = 1
10 (x − e)TD(x − e)+ (xTx − 1

4 )
2,

where

e = ( 1 · · · 1 )T

and D is a diagonal matrix with diagonal entries 1, 2, . . . , n. The gradient and Hessian are
given by the formulas

∇f (x) = 1
5D(x − e)+ 4(xTx − 1

4 )x

∇2f (x) = 1
5D + 4(xTx − 1

4 )I + 8xxT.

The matrix-vector product in the conjugate-gradient method can be computed using the
formula

∇2f (x)v = 1
5Dv + 4(xTx − 1

4 )v + 8(xTv)x;

this requires only O(n) arithmetic operations instead of the O(n2) operations required for
a traditional matrix-vector product.

We give detailed results for the first iteration for the case n = 4 and summaries of the
complete results for n = 4 and n = 100. The initial guess is

x0 = ( 1 −1 1 −1 )T ,

and at this point

f (x0) = 16.462

∇f (x0) = ( 15.0 −15.8 15.0 −16.6 )T

∇2f (x0) =
⎛
⎜⎝

23.2 −8 8 −8
−8 23.4 −8 8

8 −8 23.6 −8
−8 8 −8 23.8

⎞
⎟⎠ .



book
2008/10/23
page 464

�

�

�

�

�

�

�

�

464 Chapter 13. Low-Storage Methods for Unconstrained Problems

Table 13.1. Truncated-Newton method (n = 4 and n = 100).

k ls cg ‖∇f (xk)‖
0 1 0 2 × 101

1 2 2 5 × 100

2 3 5 2 × 100

3 4 8 7 × 10−1

4 5 11 5 × 10−1

5 6 15 1 × 10−1

6 7 19 1 × 10−2

7 8 23 2 × 10−4

8 9 27 5 × 10−8

k ls cg ‖∇f (xk)‖
0 1 0 4 × 102

1 2 2 1 × 102

2 3 5 5 × 101

3 4 8 2 × 101

4 5 12 7 × 100

5 6 16 2 × 100

6 7 20 1 × 10−1

7 8 24 4 × 10−4

8 9 28 8 × 10−7

9 10 32 1 × 10−10

For the conjugate-gradient iteration, the norms of the scaled residuals at the first three
iterations are

1, 2.6 × 10−2, 2.8 × 10−4.

The final value is smaller than the tolerance, and the corresponding approximate solution to
the Newton equations is accepted as the search direction:

p = (−0.29602 0.34340 −0.28794 0.38588 )T .

In the line search,

α = 1

f (x0 + αp) = 4.061

f (x0)+ μαpT∇f (x0) = 14.403

so the step length α = 1 is accepted. The new estimate of the solution is

x1 = ( 0.70398 −0.65661 0.71206 −0.61412 )T .

This completes the first iteration of the truncated-Newton method.
The complete results forn = 4 andn = 100 are given in Table 13.1. The outer iteration

number is indicated by k. The costs of the method are given by “ls” (the number of gradient
evaluations used in the line search) and “cg” (the number of gradient evaluations used inside
the conjugate-gradient method). (The numbers in the table record the cumulative costs. The
norm used is the infinity norm.) Note that, even when n = 100, only 2–4 conjugate-gradient
iterations are used to compute the search directions for this example.

Truncated-Newton methods are a flexible class of methods. They can be implemented
in a general way to solve a wide class of optimization problems. They can also be adapted
to specific settings. For example, a special-purpose matrix-vector product could be used,
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or a carefully chosen preconditioning strategy (see Section 13.6). The tolerances {φk } can
be adjusted. A special iterative method could be used so that the method would be suitable
for a parallel computer. There are many opportunities for a knowledgeable user to enhance
the method. Further information can be found in the Notes section.

Exercises
3.1. Verify the results obtained in Example 13.4 for n = 4.

3.2. Apply the truncated-Newton method described in Example 13.4 to the problem

minimize f (x) =
n−1∑
i=1

(xi − 2x2
i+1)

2.

Use the initial guess x0 = (1, . . . , 1)T. Solve this problem for n = 4 and n = 10.

3.3. How accurate is the approximation

∇2f (xk)v ≈ ∇f (xk + hv)− ∇f (xk)
h

for “small” values of h?

3.4. Consider a truncated-Newton method where the inner conjugate-gradient iteration is
terminated after one iteration. Prove that the resulting search direction is a multiple
of the steepest-descent direction.

3.5. Suppose that the truncated-Newton method from the previous problem is applied to
a quadratic function. Prove that using a step length of α = 1 corresponds to an exact
line search.

3.6. Suppose that this same truncated-Newton method is applied to a nonlinear function
f that has four continuous derivatives. Define F(α) = f (xk) + αp. Examine the
Taylor series of F ′(α) for α = 1 for the search direction produced by the truncated-
Newton method. How many terms vanish?

3.7. Suppose that the truncated-Newton method of Example 13.4 is applied to a strictly
convex nonlinear function f that has two continuous derivatives. Prove that the
search direction is always a descent direction, regardless of how many inner iterations
of the conjugate-gradient method are performed.

3.8. Suppose that the truncated-Newton method of Example 13.4 is applied to a general
nonlinear function f , and that finite differencing is used to approximate the required
matrix-vector products. What are the vector storage requirements for the method?
You can ignore any storage that might be required to evaluate the function f and its
gradient.

3.9. Suppose that the inner iteration of a truncated-Newton method uses a set of parameters
{φk } satisfying φk → 0. Assume that xk → x∗ and that ∇2f (x∗) is positive
definite. Use Theorem 11.3 to prove that the truncated-Newton method converges
at a superlinear rate.
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3.10. Write a program that minimizes an unconstrained function using a truncated-Newton
method. Take the basic details of the method and the test functions from Exercise
5.18 in Chapter 11. Use the following approach.

(i) Write a program to solve a linear system of equations Ay = b using the
conjugate-gradient method. Assume that A is positive definite. See Exercise
2.13 of this chapter. You may find it helpful to denote the search direction in
the conjugate-gradient method as v, rather than p, to avoid confusion between
the search direction in the inner iteration and the outer iteration.

(ii) Modify your program from (i) so that instead of explicitly using the matrix
A, it uses only matrix-vector products of the form Av. This means that no
matrices are used in the course of the algorithm.

(iii) Write a program for minimizing a convex nonlinear function via a truncated-
Newton method. Terminate the inner iteration when the norm of the scaled
residual is less than 0.1. Do not form the Hessian. The only quantities re-
quired are Hessian-vector products of the form ∇2f (x)v, and these may be
approximated by (∇f (x+ hv)−∇f (x))/h. Use h = √

εmach, where εmach is
machine epsilon. Run your program on test functions 1, 2, 4, and 5.

(iv) Modify your code to handle nonconvex problem as follows: Exit the inner
iteration if vT∇2f (x)v ≤ θ . If this occurs in the first iteration of the inner
iteration, set p = −∇f (x). Otherwise, set p to be the solution estimate
presently available from the inner iteration. Use θ = 10−6. Run your program
on test function 3.

13.4 Nonlinear Conjugate-Gradient Methods
Nonlinear conjugate-gradient methods adapt the formulas of the linear conjugate-gradient
method so that nonlinear problems can be solved. The linear conjugate-gradient method
solves the problem

minimize f (x) = 1
2x

TAx − bTx.
At each iteration it computes a new conjugate direction pi using the residual ri = b − Axi
and the old direction pi−1. Then it computes a step length α that minimizes f (xi + αpi) as
a function of α. The residual can also be written as

ri = b − Axi = −∇f (xi).
If we do this and replace the computation of α by a line search, then the algorithm has the
following form.

Algorithm 13.3.
Nonlinear Conjugate-Gradient Method

1. Set p−1 = 0, β0 = 0, and set the convergence tolerance ε.

2. For i = 0, 1, . . .
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(i) If ‖∇f (xi)‖ < ε, stop.

(ii) If i > 0, set
βi = ∇f (xi)T∇f (xi)/∇f (xi−1)

T∇f (xi−1).

(iii) Set pi = −∇f (xi)+ βipi−1.

(iv) Use a line search to determine xi+1 = xi + αipi .

This algorithm can be applied to general unconstrained problems:

minimize f (x).

It requires the computation of the gradient ∇f (x), but no second-derivative calculations.
Its storage requirements are low—just the three vectors xi , pi , and ∇f (xi), plus whatever
temporary storage is required by the line search. At each iteration the algorithm requires
only a small number of operations on vectors, plus the computation of f and ∇f for various
values of x. Hence it is suitable for large problems.

Example 13.5 (Nonlinear Conjugate-Gradient Method). We apply the above nonlinear
conjugate-gradient method to the minimization problem from Example 13.4. As in Example
13.4, we use a backtracking line search with parameter μ = 0.1. We give detailed results
for the first two iterations, as well as a summary of the complete results for n = 4. The
results for n = 100 are similar.

The initial point is
x0 = ( 1 −1 1 −1 )T .

At this point,

f (x0) = 16.462

∇f (x0) = ( 15.0 −15.8 15.0 −16.6 )T .

At the first iteration the steepest-descent direction is used:

p = −∇f (x0) = (−15.0 15.8 −15.0 16.6 )T .

In the line search, the first few trial values of α are rejected:

α = 1

f (x0 + αp) = 7.3 × 105

f (x0)+ μαpT∇f (x0) = −81.058
...

α = 0.0625

f (x0 + αp) = 0.0985

f (x0)+ μαpT∇f (x0) = 10.367

but the step length α = 0.0625 is accepted.
The new point is

x1 = ( 0.0625 −0.0125 0.0625 0.0375 )T
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with

f (x1) = 0.98506

∇f (x1) = (−0.24766 −0.39297 −0.62266 −0.80609 )T .

At this iteration
β1 = 1.2851 × 10−3

and the search direction is

p = ( 0.22838 0.41327 0.60338 0.82743 )T .

In the line search

α = 1

f (x1 + αp) = 1.5712

f (x1)+ μαpT∇f (x1) = 0.85889

α = 0.5

f (x1 + αp) = 0.46348

f (x1)+ μαpT∇f (x1) = 0.92197

and the step length α = 0.5 is accepted. The new point is

x2 = ( 0.17669 0.19414 0.36419 0.45121 )T .

This concludes the second iteration.
The complete results for n = 4 are given in Table 13.2. The iteration number is

indicated by k. The costs of the method are given by “ls” (the number of gradient evaluations

Table 13.2. Nonlinear conjugate-gradient method (n = 4).

k ls ‖∇f (xk)‖
0 1 2 × 101

1 6 8 × 10−1

2 8 2 × 10−1

3 11 2 × 10−1

4 13 1 × 10−1

5 16 6 × 10−2

6 18 3 × 10−2

7 20 1 × 10−2

8 23 1 × 10−3

9 24 1 × 10−3

10 27 7 × 10−4

11 29 5 × 10−4

12 32 2 × 10−4

k ls ‖∇f (xk)‖
13 33 6 × 10−5

14 35 5 × 10−5

15 37 2 × 10−5

16 38 2 × 10−5

17 41 8 × 10−6

18 43 7 × 10−6

19 46 2 × 10−6

20 48 9 × 10−7

21 50 5 × 10−7

22 52 1 × 10−7

23 54 1 × 10−7

24 57 7 × 10−8
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used in the line search). The numbers in Table 13.2 record the cumulative costs. The norm
used is the infinity norm.

Notice that the nonlinear conjugate-gradient method required more iterations to solve
this problem than the truncated-Newton method, but that the iterations for the truncated-
Newton method required more gradient evaluations. Overall, however, the truncated-
Newton method solved the problem more efficiently. This performance is typical for these
methods.

There are several versions of the nonlinear conjugate-gradient method that differ in the
formula for βi . When applied to a quadratic function these versions are equivalent, but they
behave differently on general nonlinear functions. The three best known formulas for βi are

β
(1)
i = ∇f (xi)T∇f (xi)/∇f (xi−1)

T∇f (xi−1)

β
(2)
i = yTi−1∇f (xi)/∇f (xi−1)

T∇f (xi−1)

β
(3)
i = yTi−1∇f (xi)/yTi−1pi−1,

where yi−1 = ∇f (xi) − ∇f (xi−1). The first formula for βi is the one used in the algo-
rithm above and is called the “Fletcher–Reeves” formula because of the paper by Fletcher
and Reeves (1964) that discussed the method. If this formula is used, then the method is
guaranteed to converge under appropriate assumptions.

The second formula is known as the “Polak–Ribiére” formula, and the third as the
“Hestenes–Stiefel” formula. Computational experiments have suggested that they generally
perform better than the Fletcher–Reeves formula, even though examples have been con-
structed which cause them to display especially poor performance, bordering on failure.

All of these methods have low storage requirements: 3–5 vectors of length n. The line
search in a nonlinear conjugate-gradient method plays a more critical role than in, say, New-
ton’s method. The tolerances in the line search may be more stringent or, depending on the
formula used to compute βi , an additional condition must be imposed on the step length αi to
ensure that the search direction at the next iteration is a descent direction. (See the Exercises.)

At one time nonlinear conjugate-gradient methods were the only effective technique
for solving large unconstrained optimization problems. There are still circumstances where
they are recommended, for example, if storage is severely limited. They are usually less
effective than truncated-Newton methods or limited-memory quasi-Newton methods (see
Section 13.5), methods whose storage requirements are only slightly greater but which tend
to be more reliable and more efficient. The relative merits of these methods are discussed
in the paper by Nash and Nocedal (1991).

Exercises
4.1. Verify the results obtained in Example 13.5 for n = 4.

4.2. Apply the nonlinear conjugate-gradient method described in Example 13.5 to

minimize f (x) =
n−1∑
i=1

(xi − 2x2
i+1)

2.

Use the initial guess x0 = (1, . . . , 1)T. Solve this problem for n = 4 and n = 10.
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4.3. Prove that the three formulas for computingβi are all equivalent whenf is a quadratic
function and the linear conjugate-gradient method is used.

4.4. Examine the three formulas for βi and determine under what conditions it is possible
to guarantee that pi is a descent direction.

4.5. Suppose that the nonlinear conjugate-gradient method of Example 13.5 is applied
to a general nonlinear function f . What are the vector storage requirements for the
method? You can ignore any storage that might be required to evaluate the function
f and its gradient. Do the vector storage requirements change if one of the other
formulas for βi is used?

4.6. Consider a nonlinear conjugate-gradient method that uses the formula β(1)i . Under
what circumstances, if any, will it be possible to guarantee that the conditions of the
line search convergence theorem, Theorem 11.7, are satisfied?

13.5 Limited-Memory Quasi-Newton Methods
Limited-memory quasi-Newton methods compromise on quasi-Newton methods in an at-
tempt to achieve some semblance of their performance, but with much lower storage re-
quirements and much lower arithmetic costs per iteration. Limited-memory quasi-Newton
methods use the quasi-Newton update formulas to describe an approximation to the inverse
of the Hessian matrix, but do not form explicitly the matrix corresponding to this approxi-
mation. Instead the formulas are used directly, and only the information required to evaluate
the formulas is stored. Because no matrices are stored, the techniques can be applied to
problems with large numbers of variables. We will derive these methods from the point
of view of quasi-Newton methods. However, in their simplest versions they are similar to
nonlinear conjugate-gradient methods, and they share many practical properties with these
methods.

We begin with a brief review of quasi-Newton methods (see also Section 12.3). Let
{ xk } be the sequence of approximate solutions to the optimization problem. Then we
define

sk ≡ xk+1 − xk and yk ≡ ∇f (xk+1)− ∇f (xk).
If the BFGS quasi-Newton method is used, the Hessian approximations Bk ≈ ∇2f (xk) are
defined by

Bk+1 = Bk − (Bksk)(Bksk)
T

sTkBksk
+ yky

T
k

yTk sk

with (say) B0 = I . At each iteration the search direction for the optimization method is
obtained by solving

Bkp = −∇f (xk)
and then a line search can be used to determine xk+1.

Every update formula for Bk has a companion formula for updating Hk ≡ B−1
k . It

can be derived using the Sherman–Morrison formula (see Appendix A.9). For the BFGS



book
2008/10/23
page 471

�

�

�

�

�

�

�

�

13.5. Limited-Memory Quasi-Newton Methods 471

formula,

Hk+1 = Hk − sk(Hkyk)
T + (Hkyk)sTk
yTk sk

+y
T
k sk + yTkHkyk
(yTk sk)

2
(sks

T
k )

=
[
I − sky

T
k

yTk sk

]
Hk

[
I − yks

T
k

yTk sk

]
+ sks

T
k

yTk sk
.

If the inverse matrices are updated, then the search direction is

pk = −Hk∇f (xk).

Limited-memory quasi-Newton methods are based on these inverse formulas.
Assume that yk , sk , and Hk are known. Then pk+1 = −Hk+1∇f (xk+1) can be

computed using the update formula for Hk+1:

pk+1 = −Hk+1∇f (xk+1)

= −
[
I − sky

T
k

yTk sk

]
Hk

[
I − yks

T
k

yTk sk

]
∇f (xk+1)− sks

T
k

yTk sk
∇f (xk+1).

This final formula requires no matrix storage (other than the storage used to representHk) and
uses only vector operations. It is one version of a limited-memory quasi-Newton method.

More elaborate formulas can be developed by using additional pairs

(yk−1, sk−1), (yk−2, sk−2), (yk−3, sk−3), . . . .

Then instead of using a specified Hk , Hk would be defined using the update formula in
terms of yk−1, sk−1, and Hk−1. Then Hk−1 could be defined in terms of sk−2, yk−2, and
Hk−2. Each succeeding term requires additional vector storage and additional arithmetic to
perform the updates. Practical experience has shown that 3–5 updates are appropriate for
many problems. If r updates are used to define Hk+1, then Hk+1−r must be initialized in
some manner. A simple approach is to choose Hk+1−r = I ; more sophisticated options are
described in the papers cited in the Notes. There is a recursive algorithm that can be used
to efficiently compute the search direction using r updates (see the Exercises).

Example 13.6 (Limited-Memory Quasi-Newton Method). We apply a limited-memory
quasi-Newton method to the minimization problem from Example 13.4. We use a single
BFGS update initialized withHk = I to compute the search direction. As in Example 13.4,
we use a backtracking line search with parameter μ = 0.1. We give detailed results for the
first two iterations, as well as a summary of the complete results, for n = 4. The results for
n = 100 are similar.

The first iteration of the limited-memory quasi-Newton method is the same as the first
iteration of the nonlinear conjugate-gradient iteration (at the first iteration of both methods,



book
2008/10/23
page 472

�

�

�

�

�

�

�

�

472 Chapter 13. Low-Storage Methods for Unconstrained Problems

the steepest-descent direction is used):

x0 = ( 1 −1 1 −1 )T

f (x0) = 16.462
∇f (x0) = ( 15.0 −15.8 15.0 −16.6 )T

p0 = (−15.0 15.8 −15.0 16.6 )T

α = 0.0625
x1 = ( 0.0625 −0.0125 0.0625 0.0375 )T

f (x1) = 0.98506
∇f (x1) = (−0.24766 −0.39297 −0.62266 −0.80609 )T .

At the second iteration

s0 = (−0.93750 0.98750 −0.93750 1.0375 )T

y0 = (−15.248 15.407 −15.623 15.794 )T .

For computational purposes, we expand the update formula for p1 in terms of vector oper-
ations. It is convenient to use the following intermediate quantities:

t0 = yT0s0 = 60.542

t1 = sT0∇f (x1) = −0.40846

t2 = t1/t0 = −0.0067468.

Then we form the vector u:

u = ∇f (x1)− t2y0 = (−0.35053 −0.28902 −0.72806 −0.69954 )T .

In the general case we would then compute u ← H0u. Here we are using H0 = I so no
computation is necessary. We can then compute the search direction p1 via

t3 = yT0u = 1.2176

t4 = t3/t0 = 0.20112

and finally

p1 = −u+ (t4 − t2)s0
= ( 0.32535 0.31554 0.70288 0.72740 )T .

In the line search

α = 1

f (x1 + αp1) = 1.5261

f (x1)+ μαpT1∇f (x1) = 0.86220

α = 0.5

f (x1 + αp1) = 0.47636

f (x1)+ μαpT1∇f (x1) = 0.92363
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Table 13.3. Limited-memory quasi-Newton method (n = 4).

k ls ‖∇f (xk)‖
0 1 2 × 101

1 6 8 × 10−1

2 8 3 × 10−1

3 10 2 × 10−1

4 11 9 × 10−2

5 13 9 × 10−2

6 16 2 × 10−2

7 18 6 × 10−3

8 21 2 × 10−3

9 22 4 × 10−4

10 24 3 × 10−4

11 27 6 × 10−5

12 28 3 × 10−5

k ls ‖∇f (xk)‖
13 30 3 × 10−5

14 32 9 × 10−6

15 34 8 × 10−6

16 36 4 × 10−6

17 37 3 × 10−6

18 39 3 × 10−6

19 41 7 × 10−7

20 43 6 × 10−7

21 45 4 × 10−7

22 46 3 × 10−7

23 48 3 × 10−7

24 50 1 × 10−7

25 52 8 × 10−8

so the step length α = 0.5 is accepted. The new point is

x2 = ( 0.22517 0.14527 0.41394 0.40120 )T .

This concludes the second iteration.
The complete results for n = 4 are given in Table 13.3. The iteration number is

indicated by k. The number of gradient evaluations used in the line search is given by
“ls.” (The numbers in Table 13.3 record the cumulative costs. The norm used is the infinity
norm.)

Exercises
5.1. Verify the results obtained in Example 13.6 for n = 4.

5.2. Apply the limited-memory quasi-Newton method in Example 13.6 to

minimize f (x) =
n−1∑
i=1

(xi − 2x2
i+1)

2.

Use the initial guess x0 = (1, . . . , 1)T. Solve this problem for n = 4 and n = 10.

5.3. Suppose that the limited-memory quasi-Newton method of Example 13.6 is applied
to a general nonlinear function f . What are the vector storage requirements for the
method? You can ignore any storage that might be required to evaluate the function
f and its gradient.

5.4. Use the Sherman–Morrison formula to derive the BFGS update formula for Hk .
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5.5. Use the Sherman–Morrison formula to derive the update formula for Hk based on
the symmetric rank-one update

Bk+1 = Bk + (yk − Bksk)(yk − Bksk)T
(yk − Bksk)Tsk .

5.6. Show how to compute the search direction when two updates are used. That is,
Hk−2 = I and the pairs (yk−1, sk−1) and (yk−2, sk−2) are given. What are the formulas
when three updates are used? How much additional computation is required for each
additional update?

5.7. Suppose that a limited-memory quasi-Newton method based on the BFGS formula
is used to minimize a nonlinear function. Prove that the search directions are descent
directions if all the pairs (yi, si) satisfy the condition yTi si > 0.

5.8. Consider a limited-memory quasi-Newton method based on r BFGS updates, with the
formula initialized with Hk+1−r = I . Prove that the following algorithm computes
the corresponding search direction pk+1. Within the algorithm, p̄ records the current
estimate of Hk+1∇f (xk+1).

If (k + 1) < r set J = 0, K = k + 1; else set J = k + 1 − r , K = r

Set p̄ = ∇f (xk+1).
For i = (K − 1), . . . , 0
j = i + J
ρj = 1/(sTj yj )
γi = ρj s

T
j p̄

p̄ ← p̄ − γiyj
For i = 0, 1, . . . , (K − 1)
j = i + J
φi = ρjy

T
j p̄

p̄ ← p̄ + sj (γi − φi)
Set pk+1 = −p̄.

13.6 Preconditioning
The idea behind preconditioning is to take advantage of auxiliary information about a prob-
lem to accelerate the convergence of an algorithm. We discuss this idea in the context of the
linear conjugate-gradient method where the technique is well developed, but it is a general
idea that can be applied to many algorithms.

A preconditioner for the conjugate-gradient method is a positive-definite matrix M .
Instead of solving

Ax = b

we will solve the equivalent problem

M−1Ax = M−1b.

The hope is that this transformed system will be easier to solve than the original.
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Example 13.7 (Preconditioning). Consider the linear system

Ax =
(

2000 1000
1 2

)(
x1

x2

)
=
(

1
1

)
= b.

The coefficient matrix has condition number cond(A) ≈ 1700. If we use the precondition-
ing matrix

M =
(

1000 0
0 1

)
,

then we obtain the transformed system

M−1Ax =
(

2 1
1 2

)(
x1

x2

)
=
(

0.001
1

)
= M−1b.

The transformed matrix has condition number cond(M−1A) = 3, a considerable improve-
ment over the original matrix. It can be verified that the original and the transformed systems
have the same solution x ≈ (−0.3227, 0.6663)T.

If the conjugate-gradient method is applied to the transformed system, then, after a
change of variables, the formulas for the “preconditioned conjugate-gradient method” are
obtained (for details, see the Exercises).

Algorithm 13.4.
Preconditioned Conjugate-Gradient Method

1. Set x0 = 0, r0 = b, p−1 = 0, β0 = 0, and specify the convergence tolerance ε.

2. For i = 0, 1, . . .

(i) If ‖ri‖ < ε, stop.

(ii) Set zi = M−1ri .

(iii) If i > 0, set βi = rTi zi/r
T
i−1zi−1.

(iv) Set pi = zi + βipi−1.

(v) Set αi = rTi zi/p
T
i Api .

(vi) Set xi+1 = xi + αipi .
(vii) Set ri+1 = ri − αiApi .

This algorithm requires one more vector than the original conjugate-gradient method
(zi) as well as the computation zi = M−1ri . This means that M−1 must be “easy” to
compute, or that linear systems of the form Mz = r be “easy” to solve. For example, M
might be a diagonal matrix. The matrix M is called the preconditioning matrix.

The convergence of the preconditioned algorithm depends on the matrix M−1A. If
M = A, then M−1A = I and the preconditioned method converges in one iteration, but
normally this choice is impractical. We would like M−1A ≈ I or M ≈ A. More precisely,
in exact arithmetic the preconditioned method converges in a number of iterations equal to
the number of distinct eigenvalues of the matrixM−1A. Also, from iteration to iteration the
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Table 13.4. Conjugate-gradient iterations.

Preconditioned

i ‖ri‖ ‖xi − x∗‖
0 2 × 100 4 × 10−1

1 1 × 100 4 × 10−1

2 1 × 100 2 × 10−1

3 4 × 10−1 4 × 10−2

4 3 × 10−2 3 × 10−3

5 4 × 10−3 3 × 10−4

6 3 × 10−4 3 × 10−5

7 1 × 10−5 2 × 10−6

8 1 × 10−6 8 × 10−8

9 2 × 10−16 8 × 10−17

Unpreconditioned

i ‖ri‖ ‖xi − x∗‖
0 2 × 100 4 × 10−1

1 9 × 10−1 3 × 10−1

2 4 × 10−1 2 × 10−1

3 2 × 10−1 1 × 10−1

4 2 × 10−1 9 × 10−2

5 1 × 10−1 5 × 10−2

6 9 × 10−2 2 × 10−2

7 3 × 10−2 7 × 10−3

8 2 × 10−2 3 × 10−3

9 5 × 10−3 1 × 10−3

10 1 × 10−0 6 × 10−4

11 9 × 10−4 2 × 10−4

12 4 × 10−4 5 × 10−5

13 1 × 10−4 1 × 10−5

14 6 × 10−6 7 × 10−7

15 7 × 10−18 8 × 10−17

method converges linearly with a rate constant that depends on cond(M−1A). NormallyM
is chosen to reduce the condition number, or to reduce the number of distinct eigenvalues,
or both.

Example 13.8 (Preconditioned Conjugate-Gradient Method). Consider the systemAx = b

where A is a 15× 15 diagonal matrix with Ai,i = i and b = (1, . . . , 1)T. We use a diagonal
preconditioning matrix M with diagonal entries

1, 2, 3, 4, 5, 6, 7, 1, . . . , 1.

Then M−1A has nine distinct eigenvalues (1, 8, 9, 10, 11, 12, 13, 14, 15). As can be seen
from Table 13.4, the preconditioned conjugate-gradient method converges in nine iterations,
which is consistent with the theory. If the method is used withM = I (no preconditioning),
then the method requires 15 iterations, again as expected.

The choice of the preconditioner is sometimes specific to the application. For example,
if the linear system Ax = b represents an analysis of variance problem with missing data,
then M might correspond to the same problem with complete data, a much easier problem
to solve. There are also some general choices available. If A is a sparse matrix, then M
might represent a factorization of A where all the fill-in is ignored, called an “incomplete
Cholesky” factorization. Just as with the matrix-vector product, it is not necessary to store
M explicitly.
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Preconditioning (sometimes called “scaling”) can also be applied to other algorithms.
In a limited-memory quasi-Newton method a preconditioning matrix M can be used as the
initial approximation to the Hessian. In a truncated-Newton method the inner conjugate-
gradient iteration can be preconditioned. In general, if it is known that the variables in a
problem will be of vastly different magnitudes (for example, if x1 is measured in light years
and x2 in millimeters), then it may be useful to scale the variables so that they all have
approximately the same magnitude (see Section 12.5).

The conjugacy and orthogonality properties of the preconditioned conjugate-gradient
method are stated in the theorem below, an analog of Theorem 13.3.

Theorem 13.9. Assume that the vectors {pi } and { ri } are defined by the formulas for the
preconditioned conjugate-gradient method. Then

rTi M
−1rj = 0, rTi pj = 0, and pTi M

1/2AM1/2pj = 0

for i > j .

Proof. See the Exercises.

Exercises
6.1. Verify the results in Example 13.8.

6.2. Repeat Example 13.8, but with varying choices of the preconditioning matrix M .
Let M be a diagonal matrix with diagonal entries

1, 2, . . . , j, 1, . . . , 1,

where j varies between 1 and 15. How many iterations are required to find the
solution? Is this result consistent with the theory?

6.3. Apply the preconditioned conjugate-gradient method to the 10 × 10 linear system
Ax = b, where A = D + vvT, D is a diagonal matrix with entries di,i = i,
v = (1, . . . , 1)T, and b = (1, . . . , 1)T. Use the preconditioner M = D. How many
iterations are required? Is this result consistent with the theory?

6.4. Suppose that the preconditioned conjugate-gradient method is applied to a linear sys-
tem Ax = b with preconditioner M = A. Prove directly that the method terminates
in one iteration.

6.5. The purpose of this problem is to derive the formulas for the preconditioned conjugate-
gradient method. Assume that A and M are both symmetric positive-definite ma-
trices. You may use the fact that a positive-definite matrix M can be written as
M1/2M1/2, where M1/2 is also symmetric and positive definite.

(i) Show that the linear system M−1Ax = M−1b is equivalent toÂx̂ = b̂ where

Â = M−1/2AM−1/2, x̂ = M1/2x, b̂ = M−1/2b.

(ii) Write out the traditional linear conjugate-gradient method forÂx̂ = b̂.
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(iii) Show that your result from (ii) is equivalent to the preconditioned conjugate-
gradient method given above.

6.6. Prove Theorem 13.9. While it is possible to do this by mimicking the proof of
Theorem 13.3, the results can be obtained more easily by using the approach described
in Exercise 6.5.

13.7 Notes
The Conjugate-Gradient Method—The conjugate-gradient method was first described by
Hestenes and Stiefel (1952). This paper contains a wealth of information about the
method.

In rounded arithmetic, the conjugacy and orthogonality properties of the method are
lost. For some problems such as Example 13.1 the loss may be negligible, but it is not hard
to find examples where almost complete loss of conjugacy occurs. Some authors do not see
this as a serious deficiency, but just treat the conjugate-gradient method as another iterative
method that keeps iterating until the residual is small enough (see, for example, the book by
Cullum and Willoughby (1985, reprinted 2002)). At the other extreme it is possible to save
all the vectors {pi } and { ri } and do additional calculations to guarantee orthogonality and
conjugacy. This can be expensive. In between these extremes there is a technique called
“selective” orthogonalization that performs the addition calculations only as necessary and
monitors the algorithm for loss of orthogonality (see the book by Parlett (1980, reprinted
1998)).

The conjugate-gradient method has been generalized to problems where the matrix
is symmetric, but not positive definite, as well as to nonsymmetric systems; see, for ex-
ample, the paper by Saad (1981). Many of these generalizations are based on the Lanczos
algorithm, an algorithm developed by Cornelius Lanczos in 1950. The Lanczos algorithm
is normally used to find eigenvalues of symmetric matrices but can be shown to be equiv-
alent to the conjugate-gradient method. For more information see the paper by Paige and
Saunders (1975).

Truncated-Newton Methods—A survey of truncated-Newton methods can be found
in the paper by Nash (2000). The convergence theory for truncated-Newton methods is
described in the paper by Dembo, Eisenstat, and Steihaug (1982). The rules given here are
based on the residual of the Newton equations. Other rules are possible and perhaps even
preferable; see the paper by Nash and Sofer (1990).

The conjugate-gradient method assumes that the coefficient matrix is positive definite,
suggesting that truncated-Newton methods can only be applied to convex problems. This
is not true. Truncated-Newton methods can be extended to general problems in much the
same way as Newton’s method (see the paper by Nash (1984)), as well as by exploiting the
properties of the conjugate-gradient method within a trust-region strategy (see the papers
by Steihaug (1983) and Toint (1981)). Software incorporating these ideas is available from
Netlib (www.netlib.org).

Atruncated-Newton algorithm suitable for parallel computers is described in the paper
by Nash and Sofer (1991). Software is also available from Netlib and is described in the
paper by Nash and Sofer (1992).
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Nonlinear Conjugate-Gradient Methods— An extensive discussion of nonlinear
conjugate-gradient methods can be found in the paper by Nocedal (1992). The convergence
of such a method with the Fletcher–Reeves formula was proved in the paper by Al-Baali
(1985). It should be noted that these methods may require a different line search from that
described in Theorem 11.7, since it may not be possible to guarantee convergence, or even
to guarantee that the search direction is a descent direction, unless additional conditions
are imposed on the step length α. There have been attempts to produce a hybrid method
that performs as well as the Polak–Ribiére formula with the guaranteed convergence of the
Fletcher–Reeves formula, but the results have only been partially successful. For further
details, see the paper by Gilbert and Nocedal (1992).

Implementations of nonlinear conjugate-gradient methods often include “restart” pro-
cedures, where βi is set to zero intermittently, and the search direction is thus reset to the
steepest-descent direction. This is motivated theoretically by the conjugacy properties of
the linear conjugate-gradient method (the method terminates after n iterations in exact arith-
metic) as well as the practical observation that these methods can “stall” before finding the
solution. One approach, described in the paper by Powell (1977), proposes that the method
be restarted if

|∇f (xi)T∇f (xi−1)| > ν ‖∇f (xi−1)‖2 ,

where ν is some small positive number. For a quadratic function, successive gradients
(residuals) will be orthogonal; Powell’s test monitors the deterioration in this property.

Limited-Memory Quasi-Newton Methods—Limited-memory quasi-Newton methods
were first described in the papers by Perry (1977) and Shanno (1978). More recently
developed techniques can be found in the papers by Liu and Nocedal (1989) and Byrd et al.
(1995).

Another way of adapting quasi-Newton methods for large problems is based on a
property called “partial separability.” This assumes that the objective function f (x) can be
written as the sum of simpler functions, each depending only on a small number of variables.
Many large problems can be expressed in this way. For such functions, the Hessian matrix
can be decomposed into smaller submatrices, and the usual quasi-Newton formulas can be
used to approximate each of these. For further information on this topic, see the paper by
Griewank and Toint (1982).

Preconditioning—A general discussion of preconditioning can be found in the book
by Chen (2005). Preconditioning within the conjugate-gradient method is hinted at in the
paper of Hestenes and Stiefel (1952), although the idea was not fully developed until
the paper of Concus, Golub, and O’Leary (1976). The choice of a preconditioner may
depend on the particular problem being solved, although there are some general techniques
available. If the coefficient matrix is sparse, then an incomplete Cholesky factorization
may be used as a preconditioner; see the paper by Meijerink and Van Der Vorst (1977).
Automatic preconditioning strategies for the conjugate-gradient method within a truncated-
Newton methods are discussed in the paper by Nash (1985). The scaling of limited-memory
quasi-Newton methods is discussed in the paper by Gilbert and Lemaréchal (1989).



book
2008/10/23
page 480

�

�

�

�

�

�

�

�



book
2008/10/23
page 481

�

�

�

�

�

�

�

�

Part IV

Nonlinear Optimization
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Chapter 14

Optimality Conditions for
Constrained Problems

14.1 Introduction
In this part we study techniques for solving nonlinear optimization problems. We concentrate
on problems that can be written in the general form

minimize f (x)

subject to gi(x) = 0, i ∈ E
gi(x) ≥ 0, i ∈ I.

Here E is an index set for the equality constraints and I is an index set for the inequality
constraints. We assume that the objective function f and the constraint functions gi are
twice continuously differentiable.

In this chapter we study the conditions satisfied by solutions to the constrained op-
timization problem. We shall focus only on local solutions, for the same reasons as in the
unconstrained case. In the case of convex problems, that is, when the feasible region is
convex and f is a convex function, any local solution is also a global solution.

In the unconstrained case the optimality conditions were derived by using a Taylor
series approximation to examine the behavior of the objective function f about a local
minimizer x∗. In particular, at points “near” x∗ the value of f does not decrease.

A similar approach is used in the constrained case. Taylor series approximations are
used to analyze the behavior of the objectivef and the constraintsgi about a local constrained
minimizer x∗. In this case, at feasible points “near” x∗ the value of f does not decrease.

The optimality conditions will be derived in stages, first for problems with linear
constraints, and then for problems with nonlinear constraints. The intuition in both cases is
similar, but is easier to comprehend when the constraints are linear. In the nonlinear case
the details are more complicated and can disguise the basic ideas involved.

If all the constraints are linear, feasible movements are completely characterized by
feasible directions. (See Section 3.1.) At a local minimizer there can be no feasible directions
of descent for f , hence

pT∇f (x∗) ≥ 0 for all feasible directions p at x∗. (14.1)

The first-order optimality condition is a direct result of this statement.

483
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484 Chapter 14. Optimality Conditions for Constrained Problems

If the problem has nonlinear constraints, it may no longer be possible to move to
nearby points along feasible directions. Instead, movements will be made along feasible
curves. Analyzing movement along curves is more complicated than along directions, and
more complicated situations can arise. Even so, the basic idea is that the objective value
will not decrease at feasible points near x∗.

Some new concepts arise in the constrained case, in particular, the Lagrange mul-
tipliers and the Lagrangian function. The Lagrange multipliers are analogous to the dual
variables in linear optimization. The Lagrangian is a single function that combines the
objective and constraint functions; it plays a central role in the theory and algorithms of
constrained optimization. We shall also develop a theory of duality, a generalization of the
duality theory for linear optimization.

14.2 Optimality Conditions for Linear Equality
Constraints

In this section we discuss the optimality conditions for nonlinear problems where all con-
straints are linear equalities:

minimize f (x)

subject to Ax = b,

where A is an m × n matrix. We assume that f is twice continuously differentiable over
the feasible region. We also assume that the rows of A are linearly independent, that is, A
has full row rank. This is not an unduly restrictive assumption since in theory, if a problem
is consistent, we can discard any redundant constraints.

The main idea is to transform this constrained problem into an equivalent uncon-
strained problem. The theory and methods for unconstrained optimization can then be
applied to the new problem.

To demonstrate the approach consider the problem

minimize f (x) = x2
1 − 2x1 + x2

2 − x2
3 + 4x3

subject to x1 − x2 + 2x3 = 2.

At any feasible point, the variable x1 can be expressed in terms of x2 and x3 using x1 = 2+
x2−2x3. Substituting this into the formula for f (x), we obtain the equivalent unconstrained
problem

minimize 2x2
2 + 3x2

3 − 4x2x3 + 2x2.

(The number of variables has been reduced from three to two.) It is easy to verify that a strict
local minimizer to the unconstrained problem is x2 = −1.5, x3 = −1. The solution to the
original problem is x∗ = (2.5,−1.5,−1)Twith an optimal objective value off (x∗) = −1.5.

Any problem with linear equality constraints Ax = b can be recast as an equivalent
unconstrained problem. Suppose we have a feasible point x̄, that is,Ax̄ = b. Then any other
feasible point can be expressed as x = x̄ + p, where p is a feasible direction. Any feasible
direction must lie in the null space ofA, the set of vectorsp satisfyingAp = 0. Denoting this
null space by N (A), the feasible region can be described by { x : x = x̄ + p, p ∈ N (A) }.
Let Z be an n × r null-space matrix for A (with r ≥ n − m). Then the feasible region is
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given by { x : x = x̄ + Zv,where v ∈ �r }. Consequently, our constrained problem in x is
equivalent to the unconstrained problem

minimize
v∈�r φ(v) = f (x̄ + Zv).

The function φ is the restriction of f onto the feasible region; we shall refer to it as the
reduced function.

If Z is a basis matrix for the null space of A, then φ will be a function of n − m

variables. Not only has the constrained problem been transformed into an unconstrained
problem, but also the number of variables has been reduced as well.

Example 14.1 (Reduced Function). Consider again the problem

minimize f (x) = x2
1 − 2x1 + x2

2 − x2
3 + 4x3

subject to x1 − x2 + 2x3 = 2.

Select

Z =
( 1 −2

1 0
0 1

)

as a null-space matrix for the constraint matrix A = (1,−1, 2). Using the (arbitrary)
feasible point x̄ = (2, 0, 0)T, any feasible point can be written as

x = x̄ + Zv =
( 2

0
0

)
+
( 1 −2

1 0
0 1

)
v

for some v = (v1, v2)
T. Substituting into f , we obtain the reduced function φ(v) =

2v2
1 + 3v2

2 − 4v1v2 + 2v1. This is the same reduced function as before, except that now the
variables are called v1 and v2 rather than x2 and x3.

The optimality conditions involve the derivatives of the reduced function. If x =
x̄ + Zv, then by the chain rule (see Appendix B.7),

∇φ(v) = ZT∇f (x̄ + Zv) = ZT∇f (x)
and

∇2φ(v) = ZT∇2f (x̄ + Zv)Z = ZT∇2f (x)Z.

(See the Exercises.) The vector ∇φ(v) = ZT∇f (x) is called the reduced gradient of f
at x. If Z is an orthogonal projection matrix, it is sometimes called the projected gradi-
ent. Similarly the matrix ∇2φ(v) = ZT∇2f (x)Z is called the reduced Hessian matrix, or
sometimes the projected Hessian matrix. The reduced gradient and Hessian matrix are the
gradient and Hessian of the restriction of f onto the feasible region, evaluated at x.

If x∗ is a local solution of the constrained problem, then x∗ = x̄ + Zv∗ for some v∗,
and v∗ is a local minimizer of φ. Hence

∇φ(v∗) = 0 and ∇2φ(v∗) is positive semidefinite.
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Using the formulas for the reduced gradient and Hessian matrix, we obtain the first- and
second-order necessary conditions for a local minimizer. They are summarized in the
following lemma.

Lemma 14.2 (Necessary Conditions, Linear Equality Constraints). If x∗ is a local minimizer
of f over { x : Ax = b } and Z is a null-space matrix for A, then

• ZT∇f (x∗) = 0, and

• ZT∇2f (x∗)Z is positive semidefinite;

that is, the reduced gradient is zero and the reduced Hessian matrix is positive semidefinite.

A point at which the reduced gradient is zero is a stationary point. Such a point may
be a local minimizer of f , or a local maximizer, or neither, in which case it is a saddle point.
Second derivative information is used to distinguish local minimizers from other stationary
points.

The second-order condition is equivalent to the condition

vTZT∇2f (x∗)Zv ≥ 0 for all v.

Observing that p = Zv is a null-space vector, this can be rewritten as

pT∇2f (x∗)p ≥ 0 for all p ∈ N (A);

that is, the Hessian matrix at x∗ must be positive semidefinite on the null space of A.
This condition does not require that the Hessian matrix itself be positive semidefinite.

It is a less stringent requirement. If the Hessian matrix atx∗ is positive semidefinite, however,
then of course the second-order condition will be satisfied.

The second-order sufficiency conditions are also analogous to the unconstrained case.
We will assume that Z is a basis matrix for the null space of A, so that the columns of Z
are linearly independent. The corresponding second-order sufficiency conditions are given
in the lemma below. Results for other null-space matrices are given in the Exercises.

Lemma 14.3 (Sufficient Conditions, Linear Equality Constraints). If x∗ satisfies

• Ax∗ = b,

• ZT∇f (x∗) = 0, and

• ZT∇2f (x∗)Z is positive definite,

where Z is a basis matrix for the null space of A, then x∗ is a strict local minimizer of f
over { x : Ax = b }.

The following example illustrates the optimality conditions.

Example 14.4 (Necessary Conditions for Optimality). We examine again the problem

minimize f (x) = x2
1 − 2x1 + x2

2 − x2
3 + 4x3

subject to x1 − x2 + 2x3 = 2.
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Since ∇f (x) = (2x1 −2, 2x2,−2x3 +4)T, then at the feasible point x∗ = (2.5,−1.5,−1)T

the gradient of f is (3,−3, 6)T. Selecting

Z =
( 1 −2

1 0
0 1

)

as the null-space matrix of A = (1,−1, 2), it is easily verified that ZT∇f (x∗) = (0, 0)T.
Thus, the reduced gradient vanishes at x∗, and the first-order necessary condition for a local
minimum is satisfied at this point. Checking the reduced Hessian matrix, we find that

ZT∇2f (x∗)Z =
(

1 1 0
−2 0 1

)( 2 0 0
0 2 0
0 0 −2

)( 1 −2
1 0
0 1

)
=
(

4 −4
−4 6

)
.

The reduced Hessian matrix is positive definite at x∗. Hence the second-order sufficiency
conditions are satisfied, and x∗ is a strict local minimizer of f . Notice that ∇2f (x∗) itself
is not positive definite.

Let us choose some other feasible point, say x = (2, 0, 0)T. The reduced gradient at
this point is

ZT∇f (x) =
(

2
0

)
=
(

0
0

)
;

hence this point is not a local minimizer. To move to a better point we should use a descent
direction. Any vector v = (v1, v2)

T such that vT(ZT∇f (x)) = 2v1 < 0 will be a descent
direction for the reduced function at this point. The corresponding direction p = Zv will
be a feasible descent direction for f .

Let us take another look at the first-order necessary condition. Let x∗ be a local
minimum, and let Z be any n × r null-space matrix for A. Breaking ∇f (x∗) into its
null-space and range-space components gives

∇f (x∗) = Zv∗ + ATλ∗,
where v∗ is in �r and λ∗ is in �m. Premultiplying by ZT and recalling that the reduced
gradient vanishes at x∗, we find that ZTZv∗ = 0. This can occur only if Zv∗ = 0, that is, if
the null-space component of the gradient is zero. Therefore, if x∗ is a local minimizer,

∇f (x∗) = ATλ∗ (14.2)

for some m-vector λ∗. Thus, at a local minimum the gradient of the objective is a linear
combination of the gradients of the constraints. The vector λ∗ gives the coefficients of this
linear combination. It is known as the vector of Lagrange multipliers. Its ith component is
the Lagrange multiplier for the ith constraint.

The optimality conditions are demonstrated in Figure 14.1. This problem involves a
single linear constraint aTx = b. At the minimizer x∗ the gradient is parallel to the vector
a. Therefore there exists some number λ∗ such that ∇f (x∗) = aλ∗. On the other hand,
at the point x̄ the gradient is not parallel to the vector a; thus there is no λ that satisfies
∇f (x̄) = aλ, and the point is not optimal.
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Figure 14.1. Existence of Lagrange multipliers.

Example 14.5 (Necessary Conditions for Optimality—Lagrange Multipliers). Consider
again the problem in Example 14.1. The first-order necessary condition is( 2x1 − 2

2x2

−2x3 + 4

)
=
( 1
−1

2

)
λ.

This implies that x1 = 1 + λ/2, x2 = −λ/2, and x3 = 2 − λ. Since the solution must be
feasible, we substitute these values into the constraint x1 −x2 +2x3 = 2 to obtain λ∗ = 3 as
the only solution. This indicates that x∗ = (2.5,−1.5,−1)T is the unique stationary point.
Since we have seen that the second-order sufficiency conditions are satisfied at x∗, this is
the unique local solution.

In Example 14.5 we used condition (14.2) to obtain a local solution. In most cases,
however, these equations will not have a closed-form solution. This is demonstrated in
Example 14.6.

Example 14.6 (Intractability of the Optimality Conditions). Consider the problem

minimize f (x) = x4
1x

2
2 + x2

1x
4
3 + 1

2x
2
1 + x1x2 + x3

subject to x1 + x2 + x3 = 1.

The first-order necessary condition implies that, at a local minimum,( 4x3
1x

2
2 + 2x1x

4
3 + x1 + x2

2x4
1x2 + x1

4x2
1x

3
3 + 1

)
=
( 1

1
1

)
λ

for some number λ. These three equations together with the constraint x1 + x2 + x3 = 1
give four equations in the four unknowns x1, x2, x3, and λ. These equations are not easy to
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solve, however. If we try to solve them numerically, there is no guarantee that the solution
will be a local minimizer; it may be a saddle point or even a local maximizer.

We have shown that if the reduced gradient is zero, then there exists a vector of
Lagrange multipliers λ∗ that satisfies the optimality condition (14.2). The reverse is also
true; that is, (14.2) implies that the reduced gradient vanishes (see the Exercises). Thus, the
two versions of the first-order optimality condition are equivalent. From a practical point
of view there is a difference, however. If the reduced gradient at a given point is nonzero,
it can be used to find a descent direction for the reduced function, and in turn for f . In
contrast, the fact that Lagrange multipliers do not exist at a point does not assist in finding
a better estimate of a solution.

Then why do we care about Lagrange multipliers? The Lagrange multipliers provide
important information in sensitivity analysis (see Section 14.3). Furthermore, for problems
with inequality constraints, estimates of the multipliers can indicate how to improve an
estimate of the solution. Consequently, the two equivalent optimality conditions are used
together in optimization software. A common procedure is to find a point x∗ for which the
reduced gradient is zero; at x∗ condition (14.2) is consistent and the corresponding Lagrange
multipliers can be computed.

Our derivation assumes that the matrixA has full row rank, that is, its rows are linearly
independent. This assumption is called a regularity assumption. The results in this section
can be extended to the case where the rows ofA are linearly dependent, but then the vector of
Lagrange multipliers will not generally be unique. For problems with nonlinear constraints,
some assumption, such as a regularity assumption on the gradients of the constraints at the
local minimum, is needed to state the optimality conditions.

Exercises
2.1. Consider the problem

minimize f (x) = x2
1 + x2

1x
2
3 + 2x1x2 + x4

2 + 8x2

subject to 2x1 + 5x2 + x3 = 3.

(i) Determine which of the following points are stationary points: (i) (0, 0, 2)T;
(ii) (0, 0, 3)T; (iii) (1, 0, 1)T.

(ii) Determine whether each stationary point is a local minimizer, a local maxi-
mizer, or a saddle point.

2.2. Determine the minimizers/maximizers of the following functions subject to the given
constraints.

(i) f (x1, x2) = x1x
3
2 subject to 2x1 + 3x2 = 4.

(ii) f (x1, x2) = 2x1 − 3x2 subject to x2
1 + x2

2 = 25.

(iii) f (x1, x2) = x2
1 + 2x1x2 + x2

2 subject to 3x2
1 + x2

2 = 9.

(iv) f (x1, x2) = 3x3
1 + 2x3

2 subject to x2
1 + x2

2 = 4.

(v) f (x1, x2) = x2 subject to x3
1 + x3

2 − 3x1x2 = 0.
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(vi) f (x1, x2) = x3
1 + x3

2 subject to 2x1 + x2 = 1.

(vii) f (x1, x2) = 1
3x

3
1 + x2 subject to x2

1 + x2
2 = 1.

2.3. Find all the values of the parameters a and b such that (0, 0)Tminimizes or maximizes
the following function subject to the given constraint:

f (x1, x2) = (a + 2)x1 − 2x2 subject to a(x1 + ex1)+ b(x2 + ex2) = 1.

2.4. Consider the problem of finding the minimum distance from a point r to a set {x :
aTx = b}. The problem can be written as

minimize f (x) = 1
2 (x − r)T(x − r)

subject to aTx = b.

Prove that the solution is given by

x∗ = r + b − aTr
aTa

a.

2.5. Solve the problem

maximize f (x) = x1x2x3

subject to
x1

a1
+ x2

a2
+ x3

a3
= 1 (a1, a2, a3 > 0).

2.6. Solve the problem

maximize f (x) = x1x2 · · · xn
subject to

x1

a1
+ x2

a2
+ · · · + xn

an
= 1 (a1, a2, . . . , an > 0).

2.7. LetA be a matrix of full row rank. Find the point in the setAx = b which minimizes
f (x) = 1

2x
Tx.

2.8. Heron’s problem. The two-dimensional points A and B lie in the same half plane
with respect to the line l. IfC minimizes the sum of the distancesAC andBC, prove
that the angle between AC and l is equal to the angle between BC and l.

2.9. Euclid’s problem. In a given triangle ABC, inscribe a parallelogram ADEF with
side DE parallel to AC, and FE parallel to AB. Determine the parallelogram of
this form with the largest area.

2.10. Consider the linear program

minimize f (x) = cTx

subject to Ax = b.

Prove that if the problem has a feasible solution, then either the problem is unbounded,
or all feasible points are optimal.

2.11. (From Luenberger (2003).) Consider the quadratic program

minimize f (x) = 1
2x

TQx − cTx
subject to Ax = b.

Prove that x∗ is a local minimum point if and only if it is a global minimum point
(no convexity is assumed).
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2.12. Derive the formulas for the reduced gradient and Hessian, that is,

∇φ(v) = ZT∇f (x̄ + Zv) = ZT∇f (x)
∇2φ(v) = ZT∇2f (x̄ + Zv)Z = ZT∇2f (x)Z,

where x = x̄ + Zv.

2.13. Prove Lemma 14.3.

2.14. Let Z be a null-space matrix for the matrixA. Prove that if ∇f (x∗) = ATλ for some
λ, then ZT∇f (x∗) = 0.

2.15. Consider the problem of minimizing a twice continuously differentiable function f
subject to the linear constraintsAx = b. Let x∗ be a feasible point for the constraints.
Let Z be an n × r null-space matrix for A which is not a basis, that is, some of its
columns are linearly dependent (and r > n−m).

(i) Prove that the matrix ZT∇2f (x∗)Z cannot be positive definite.

(ii) Prove that if

ZT∇f (x∗) = 0 and pT∇2f (x∗)p > 0 for all p ∈ N (A), p = 0,

then x∗ is a strict local minimizer of f over the set Ax = b. This is an
alternative form of the second-order sufficiency conditions.

2.16. Consider the problem
minimize f (x) = x2

1 + x2
2

subject to x1 + x2 = 2.
Let

Z =
( 1

2 − 1
2

− 1
2

1
2

)
be a null-space matrix for the constraint set. Show that the first-order necessary
condition is satisfied at the point x∗ = (1, 1)T, but that ZT∇2f (x∗)Z is not positive
definite. Show also that the second-order conditions given in the previous problem
are satisfied, and hence x∗ is a strict local minimum point.

2.17. Consider the problem
maximize f (x)

subject to Ax = b,

where f is twice continuously differentiable, and A is a matrix of full row rank.

(i) State and prove the first-order necessary condition for a local solution.

(ii) State and prove the second-order necessary conditions for a local solution.

(iii) State and prove the second-order sufficiency conditions for a local solution.

14.3 The Lagrange Multipliers and the Lagrangian
Function

The Lagrange multipliers express the gradient at the optimum as a linear combination of the
rows of the constraint matrix A. These multipliers have a significance which goes beyond
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this purely mathematical interpretation. In this section we shall see that they indicate
the sensitivity of the optimal objective value to changes in the data. We also present the
Lagrangian function and show how it can be used to express the optimality conditions in a
concise way.

In most applications, only approximate data are available. Measurement errors, fluc-
tuations in data, and unavailability of information are some of the factors that contribute
to imprecision in the optimization model. In the absence of precise data, there may be
no choice but to solve the problem using the best available estimates. Once a solution is
obtained, the next step is to assess the quality of the resulting solution. A key question is,
how sensitive is the solution to variations in the data?

Here we address this question for the particular case where small variations are made
in the right-hand side of the constraints and investigate their effect on the optimal objective
value. Our presentation will be informal. A more formal proof is somewhat more complex.

We start with the problem

minimize f (x)

subject to Ax = b.

We assume that f is twice continuously differentiable, and that A is anm×nmatrix of full
row rank. We also assume that a local minimizer x∗ has been found, with corresponding
optimal objective value f (x∗). Suppose now that the right-hand side b is perturbed to b+δ,
where δ is a vector of “small” perturbations. We shall investigate how the optimal objective
value changes as a result of these perturbations. If the perturbations are sufficiently small, it
is reasonable to assume that the new problem has an optimum that is close to x∗. In fact this
can be shown to be true, provided that the second-order sufficiency conditions are satisfied
at x∗. For x̄ close to x∗ withAx̄ = b+δ, we can use a Taylor series approximation to obtain

f (x̄) ≈ f (x∗)+ (x̄ − x∗)T∇f (x∗)
= f (x∗)+ (x̄ − x∗)TATλ∗
= f (x∗)+ δTλ∗
= f (x∗)+

m∑
i=1

δiλ∗i .

In particular, this is valid if x̄ is the minimizer of the perturbed problem. If the right-
hand side of the ith constraint changes by δi , then the optimal objective value changes by
approximately δiλ∗i . Hence λ∗i represents the change in the optimal objective per unit
change in the ith right-hand side. For this reason, the Lagrange multipliers are also called
shadow prices or dual variables.

Example 14.7 (Solution of a Perturbed Problem). Consider again the problem

minimize f (x) = x2
1 − 2x1 + x2

2 − x2
3 + 4x3

subject to x1 − x2 + 2x3 = 2.

In Example 14.5 we determined that x∗ = (2.5,−1.5,−1)T, withf (x∗) = −1.5 andλ∗ = 3.
Consider now the perturbed problem

minimize f (x) = x2
1 − 2x1 + x2

2 − x2
3 + 4x3

subject to x1 − x2 + 2x3 = 2 + δ,
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and denote its minimum value by f∗(δ). The interpretation of the Lagrange multipliers as
shadow prices indicates that a first-order estimate of this minimum value is

f∗(δ) ≈ −1.5 + 3δ.

For example, if δ = 0.5, the approximate optimal objective value is zero.
The precise solution to the perturbed problem is x1 = 2.5 − δ/2, x2 = −1.5 + δ/2,

and x3 = −1 + δ, with an objective value of

f∗(δ) = −1.5 + 3δ − 0.5δ2.

If δ = 0.5, the true value of the optimal objective is −0.125.

Let us now take another look at the optimality conditions (14.2). Since any solution
must be feasible, a local optimum is the solution to the system of n + m equations in the
n+m unknowns x and λ:

∇f (x)− ATλ = 0

Ax = b.

This is another representation of the first-order optimality conditions.
These conditions were used by Lagrange, although his work was done in a more

general setting (see Section 14.9). Following Lagrange’s approach we can construct a
function of x and λ:

L(x, λ) = f (x)−
m∑
i=1

λi(a
T
i x − bi) = f (x)− λT(Ax − b),

where aTi denotes the ith row of A. This function is called the Lagrangian function. The
gradient of the Lagrangian with respect to x is ∇xL(x, λ) = ∇f (x)−ATλ, and the gradient
with respect to λ is ∇λL(x, λ) = b − Ax. Hence, the first-order optimality conditions can
simply be stated as

∇L(x∗, λ∗) = 0.

Thus a local minimizer is a stationary point of the Lagrangian function.

Exercises
3.1. Consider the problem

minimize f (x) = 3x2
1 − 1

2x
2
2 − 1

2x
2
3 + x1x2 − x1x3 + 2x2x3

subject to 2x1 − x2 + x3 = 2.

Solve this problem. Use the Lagrange multiplier to estimate the minimum value of
f under the perturbed constraint 2x1 − x2 + x3 = 2 + δ. Compare the estimated
minimum objective value to the actual minimum for δ = 0.25.
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3.2. For the previous problem, determine the exact solution to the perturbed problem as
a function of δ. Are there any limits on how large δ can be before this result ceases
to be valid?

3.3. The following problem demonstrates that if the second-order sufficiency conditions
are not satisfied at a local minimum x∗, the perturbed problem may not have an
optimum. Consider the problem

minimize f (x) = x2
1 − x1x2 − x1

subject to x1 − x2 = 1.

Show that f has a constant value zero at all feasible points, and thus that all feasi-
ble points are local optima. Show that the second-order sufficiency conditions are
not satisfied anywhere. Consider now the problem of minimizing f subject to the
perturbed constraint x1 − x2 = 1 + δ. Show that the perturbed problem has no local
minimum for any nonzero value of δ.

3.4. In Example 14.5, suppose that the constraint is perturbed to

x1 − x2 + (2 + δ)x3 = 2.

What is the solution to the perturbed problem? Can this solution be approximated
using Lagrange multipliers? Can you approximate the solution to the problem with
constraint

(1 + δ1)x1 − (1 + δ2)x2 + (2 + δ3)x3 = 2 + δ4,

where all the coefficients are independently perturbed?

14.4 Optimality Conditions for Linear Inequality
Constraints

We now turn our attention to problems where the constraints are linear inequalities. We
start with an example:

minimize f (x) = 1
2x

2
1 + 1

2x
2
2

subject to x1 + 2x2 ≥ 2
x1 − x2 ≥ −1

−x1 ≥ −3.

The objective of this problem is to find the feasible point closest in Euclidean norm to the
origin. This is depicted in Figure 14.2.

The figure suggests that the solution x∗ is on the line x1 + 2x2 = 2. Let us assume for
the moment that this is the case. Then x∗ is a minimizer of f along this line and will solve
the equality-constrained problem

minimize f (x) = 1
2x

2
1 + 1

2x
2
2

subject to x1 + 2x2 = 2.

The unique solution of the first-order optimality conditions for this problem is x∗ =
( 2

5 ,
4
5 )
T with objective value f (x∗) = 2

5 and Lagrange multiplier λ∗ = 2
5 . Since the
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x
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3
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Figure 14.2. Graphical solution.

objective function is strictly convex, this point is the global minimizer of f along the line
x1 + 2x2 = 2.

To determine if x∗ solves the original inequality-constrained problem, we must verify
that the objective value does not decrease as we make a small movement away from x∗ into
the interior of the feasible region, where x1 + 2x2 > 2. For small positive values δ, the
minimum objective value along x1 + 2x2 = 2 + δ will change by approximately λ∗δ. If λ∗
were negative, the objective value would decrease, indicating that the point x∗ would not be
a local minimizer. In our example λ∗ = 2

5 , and thus as we move from the boundary into the
interior where x1 + 2x2 = 2 + δ, the objective will increase by roughly 2

5δ. Thus, the point
x∗ has a better objective value than all its neighboring feasible points and consequently is
a local minimizer.

In this example a graph helped us identify the constraints that are binding at the
solution. We then minimized f with all binding constraints treated as equalities. In most
problems we cannot determine the optimal active set (the set of binding constraints) so easily.
We may need to examine many trial active sets and rule out those that are not optimal. How
can we verify whether a guess of the active set is indeed optimal?

Suppose, for example, that we erroneously guessed that only the third constraint was
active at the solution. This would mean that the solution to the problem also solved the
equality constrained problem

minimize f (x) = 1
2x

2
1 + 1

2x
2
2

subject to −x1 = −3.

This problem has the solution x1 = 3, x2 = 0, with associated multiplier λ = −3. Since
λ < 0, moving into the interior of the constraint will yield points with better objective
values. Hence (3, 0)T is not a local minimizer.

Our example highlights two major points in the treatment of inequality-constrained
problems. First, any solution of the problem is also a solution of the equality-constrained
problem obtained by requiring that the active constraints at that point be satisfied exactly.
Second, the associated Lagrange multipliers at this point cannot be negative; a negative
multiplier indicates that the objective can be improved by making a small move into the
interior of the corresponding constraint.
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We now develop the optimality conditions in a more rigorous manner. We are inter-
ested in solving

minimize f (x)

subject to Ax ≥ b,

whereA is anm×nmatrix whose rows are the vectors aTi . We shall assume that the system
has a feasible solution.

Let x∗ be a local solution. Since the constraints that are inactive at x∗ have no impact
on the local optimality of x∗, they can be omitted from the discussion. LetÂ be the matrix
whose rows are the vectors aTi of the active constraints, and let b̂ be the corresponding vector
of right-hand-side coefficients. Then Âx∗ = b̂. Any other feasible point may be reached
from x∗ by moving along some feasible direction p. Note that p is a feasible direction at x∗
if and only ifÂp ≥ 0. (See Section 3.1.) To simplify matters, we shall make the regularity
assumption that the rows ofÂ are linearly independent; however, the final results below will
hold even without this assumption.

Since x∗ is a local solution for the inequality-constrained problem it is also a local
solution for the equality-constrained problem

minimize f (x)

subject to Âx = b̂.

Let Z be a null-space matrix for Â. The first-order necessary condition for the equality-
constrained problem implies that

ZT∇f (x∗) = 0 or equivalently ∇f (x∗) = ÂTλ̂∗,
where λ̂∗ is the vector of Lagrange multipliers (if there are t active constraints, then λ̂ is of
length t). The second-order necessary conditions imply that ZT∇2f (x∗)Z must be positive
semidefinite.

We now show that λ̂∗ ≥ 0. If not, then some component of λ̂∗, say λ̂∗1, is negative.
Let e1 be a t-dimensional vector whose first component is 1 and all other components are
0. The rows ofÂ are linearly independent, and so we can find a vector p such thatÂp = e1

(see the Exercises). SinceÂp ≥ 0, p is a feasible direction for the constraints. But

pT∇f (x∗) = pTÂ
T
λ̂∗ = eT1λ̂∗ = λ̂∗1 < 0.

Thus p is a feasible direction of descent at x∗, contradicting the fact that x∗ is a local
minimizer. Therefore, at a local solution the vector of multipliers λ̂∗ must be nonnegative.

We can look at the first-order conditions in another way by defining the multiplier
of an inactive constraint to be zero. Then we may form an m-vector λ∗ of the multipliers

associated with all the constraints. The conditions ∇f (x∗) = ÂTλ̂∗ and λ̂∗ ≥ 0 are now
equivalent to the conditions∇f (x∗) = ATλ∗ and λ∗ ≥ 0. (Each column ofA corresponding
to an inactive constraint is multiplied by a zero Lagrange multiplier.) The requirement that
any inactive constraint have a zero Lagrange multiplier can be expressed as

λ∗i (aTi x∗ − bi) = 0, i = 1, . . . , m.

These are known as the complementary slackness conditions. They state that either a
constraint is active (aTi x∗ − bi = 0) or its associated Lagrange multiplier is zero (λ∗i = 0).
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At least one of the two must hold. The situation where exactly one of the two holds—either
aTi x∗ − bi = 0 or λ∗i = 0, but not both—is called strict complementarity. In this case,
the Lagrange multiplier for an active constraint will be positive (that is, λ̂∗ > 0). If strict
complementarity does not hold, then some active constraint will have a Lagrange multiplier
equal to zero. Such a constraint is called degenerate. Degeneracy is an undesirable feature,
since it may cause algorithms to progress very slowly, or even to fail.

We summarize the first- and second-order necessary conditions in the following
lemma.

Lemma 14.8 (Necessary Condition, Linear Inequality Constraints). Ifx∗ is a local minimizer
of f over the set { x : Ax ≥ b }, then for some vector λ∗ of Lagrange multipliers,

• ∇f (x∗) = ATλ∗, or equivalently, ZT∇f (x∗) = 0,
• λ∗ ≥ 0,
• λ∗T(Ax∗ − b) = 0, and
• ZT∇2f (x∗)Z is positive semidefinite,

where Z is a null-space matrix for the matrix of active constraints at x∗.

We also develop sufficiency conditions that guarantee that a stationary point of f is
indeed a local minimizer. For the sake of clarity, we consider only the case when Z is a
basis matrix for the null space ofÂ.

One might anticipate that the sufficiency conditions would require ZT∇2f (x∗)Z to
be positive definite, as is the case for equality-constrained problems. Unfortunately, the
situation is not so straightforward, as is demonstrated by the following example.

Example 14.9 (Anomaly in the Sufficiency Conditions). Consider the problem

minimize f (x) = x3
1 + x2

2

subject to −1 ≤ x1 ≤ 0.

At the point x̄ = (0, 0)T the active set consists of the upper bound constraint on x1. Writing
this constraint as −x1 ≥ 0 we find thatÂ = (−1, 0) is the matrix of the active constraints.

Since ∇f (x̄) = (0, 0)T, then ∇f (x̄) = Â
T
λ̂ for λ̂ = 0, and the first-order necessary

condition is satisfied at this point. We now examine the second-order necessary conditions,
using Z = (0, 1)T as a basis matrix for the null space ofÂ. Then

ZT∇2f (x̄)Z = (0, 1)

(
0 0
0 2

)(
0
1

)
= 2 > 0,

and so the reduced Hessian matrix is positive definite at x̄. The point x̄ is not optimal,
however, since any nearby point of the form (−ε, 0)T (with ε small and positive) has a
lower objective value.

The culprit in this example is a degenerate constraint, namely an active constraint
having Lagrange multiplier equal to zero. If there are no degenerate constraints (if strict
complementarity holds), we can extend the second-order sufficiency conditions in a straight-
forward manner.
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Lemma 14.10 (Sufficient Conditions, Linear Inequality Constraints I). If x∗ satisfies

• Ax∗ ≥ b,

• ∇f (x∗) = ATλ∗,
• λ∗ ≥ 0,
• strict complementarity holds, and
• ZT∇2f (x∗)Z is positive definite,

then x∗ is a strict local minimizer for the inequality-constrained problem.

Proof. We show that along any feasible direction at x∗, the function f is increasing. Notice
first that x∗ is a strict local minimizer of f on the set {x : Âx = b̂} defined by the active
constraints at x∗. Therefore, along any direction p such that Âp = 0, the function f is
increasing. Consider now a direction p such thatÂp ≥ 0, where some components ofÂp
are strictly positive. The direction p points into the interior of the feasible region. Since

∇f (x∗) = ATλ∗ = ÂTλ̂∗, then

pT∇f (x∗) = pTÂ
T
λ̂∗ > 0,

and p is a direction of ascent. Thus, along any feasible direction at x∗, the function f is
increasing, and therefore x∗ is a strict local minimizer.

As we have seen, if the Lagrange multiplier associated with an active constraint is
positive, than a small movement into the interior of the constraint will cause an increase in
the objective value. If the Lagrange multiplier is zero, however, it is impossible to predict
from first-order information whether a small move into the interior of the constraint will
cause an increase or a decrease in the objective value. Thus, in the case of a degenerate
constraint, more stringent conditions on the Hessian are required to guarantee that a point
is a local minimum. We just state the result as a lemma.

Lemma 14.11 (Sufficient Conditions, Linear Inequality Constraints II). LetÂ+ be the sub-
matrix of Â corresponding to the nondegenerate active constraints at x∗, that is, those
constraints whose associated multipliers are positive. Let Z+ be a basis matrix for the null
space ofÂ+. If x∗ satisfies

• Ax∗ ≥ b,

• ∇f (x∗) = ATλ∗,
• λ∗ ≥ 0,
• λ∗T(Ax∗ − b) = 0, and
• ZT+∇2f (x∗)Z+ is positive definite,

then x∗ is a strict local minimizer for the inequality-constrained problem.

Example 14.12 (Sufficiency Conditions in the Presence of Degenerate Constraints). For
the problem in Example 14.9,Â+ is an empty matrix. Hence Z+ = I , and

ZT+∇2f (x̄)Z+ =
(

0 0
0 2

)
.
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Since this matrix is not positive definite, the second-order sufficiency conditions are not
satisfied at x̄.

We conclude this section with an example involving a small inequality-constrained
problem.

Example 14.13 (A Small Inequality-Constrained Problem). Consider the problem

minimize f (x) = x3
1 − x3

2 − 2x2
1 − x1 + x2

subject to −x1 − 2x2 ≥ −2
x1 ≥ 0
x2 ≥ 0.

Let λ = (λ1, λ2, λ3)
T be the vector of Lagrange multipliers associated with the three con-

straints. Then the necessary conditions for a local minimum are

−x1 − 2x2 ≥ −2, x1 ≥ 0, x2 ≥ 0,

(
3x2

1 − 4x1 − 1
−3x2

2 + 1

)
=
(−1
−2

)
λ1 +

(
1
0

)
λ2 +

(
0
1

)
λ3,

λ1(2 − x1 − 2x2) = 0, λ2x1 = 0, λ3x2 = 0, λ1 ≥ 0, λ2 ≥ 0, λ3 ≥ 0.

We must consider all possible combinations in the complementary slackness conditions,
that is, either a constraint is active, or its Lagrange multiplier is zero.

If all three constraints are active, there are no feasible points.
If the first two constraints are active and λ3 = 0, then

−x1 − 2x2 = −2
x1 = 0

�⇒ x =
(

0
1

)

so that (−1
−2

)
=
(−1
−2

)
λ1 +

(
1
0

)
λ2 �⇒ λ1 = 1

λ2 = 0,

and hence this point is a stationary point, where the second constraint is degenerate.
If the first and third constraints are active and λ2 = 0, then

−x1 − 2x2 = −2
x2 = 0

�⇒ x =
(

2
0

)

so that (
3
1

)
=
(−1
−2

)
λ1 +

(
0
1

)
λ3 �⇒ λ1 = −3

λ3 = −5,

and hence this point is not optimal.
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If the second and third constraints are active and λ1 = 0, then

x1 = 0
x2 = 0

�⇒ x =
(

0
0

)
so that (−1

1

)
=
(

1
0

)
λ2 +

(
0
1

)
λ3 �⇒ λ2 = −1

λ3 = 1,

and hence this point is not optimal.
If the first constraint is active and λ2 = λ3 = 0, then x1 = 2 − 2x2 and(

12x2
2 − 16x2 + 3
−3x2

2 + 1

)
=
(−1
−2

)
λ1.

This leads to two solutions. The first is x2 = 1 which gives x1 = 0, which leads to
the first point above. The second is x2 = 0.1852 which in turn gives x1 = 1.6297 and
λ1 = −0.4485, and hence this cannot be a solution.

If the second constraint is active and λ1 = λ3 = 0, then x1 = 0 and( −1
−3x2

2 + 1

)
=
(

1
0

)
λ2,

which implies that λ2 = −1 and hence is not optimal.
If the third constraint is active and λ1 = 0 and λ2 = 0, then x2 = 0 and(

3x2
1 − 4x1 − 1

1

)
=
(

0
1

)
λ3,

which gives two solutions x = (1.5486, 0)T and x = (−0.2153, 0)T. The first has λ3 = 1,
and hence it is a stationary point; the second solution is infeasible.

Finally, it is easy to see that if no constraints are active, then(
3x2

1 − 4x1 − 1
−3x2

2 + 1

)
=
(

0
0

)
,

which gives only infeasible solutions.
It remains to verify which stationary points satisfy the second-order necessary con-

ditions, and whether any of those satisfies the sufficiency conditions. This is left as an
exercise. Since the feasible region is bounded and the objective is continuous, the problem
must have a minimum.

This example demonstrates the major difficulty in solving problems with inequality
constraints: the combinatorial issue of determining the correct active set. Even for a small
problem the number of possibilities may be large. To avoid a prohibitive amount of compu-
tation, we must devise methods that do not require the consideration of every active set. In
Chapter 15 we discuss active-set methods, in which we usually need only consider a fraction
of the possible active sets. Another approach, one that avoids the combinatorial difficulty
entirely by moving through the interior of the feasible region, is described in Chapter 16.
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Exercises
4.1. Solve the problem

minimize f (x) = 1
2x

2
1 + x2

2
subject to 2x1 + x2 ≥ 2

x1 − x2 ≤ 1
x1 ≥ 0.

4.2. Solve the problem

minimize f (x) = −x2
1 + x2

2 − x1x2

subject to 2x1 − x2 ≥ 2
x1 + x2 ≤ 4

x1 ≥ 0.

4.3. Determine which stationary points in Example 14.13 are local minimizers.

4.4. Consider the linear program

minimize f (x) = cTx

subject to Ax ≥ b.

(i) Write the first- and second-order necessary conditions for a local solution.

(ii) Show that the second-order sufficiency conditions do not hold anywhere, but
that any point x∗ satisfying the first-order necessary conditions is a global
minimizer. (Hint: Show that there are no feasible directions of descent at x∗,
and that this implies that x∗ is a global minimizer.)

4.5. Consider the quadratic problem

minimize f (x) = 1
2x

TQx − cTx
subject to Ax ≥ b,

where Q is a symmetric matrix.

(i) Write the first- and second-order necessary optimality conditions. State all
assumptions that you are making.

(ii) Is it true that any local minimum to the problem is also a global minimum?

4.6. Let A be an m × n matrix whose rows are linearly independent. Prove that there
exists a vector p such that Ap = e1, where e1 = (1, 0, . . . , 0)T.

4.7. Prove Lemma 14.11.

4.8. (From Avriel (1976, reprinted 2003).) Prove the following result, first proved by
Gibbs in 1876. Let x∗ be a solution to the problem

minimize f (x) =
n∑
j=1

fj (xj )

subject to
n∑
j=1

xj = 1

xj ≥ 0, j = 1, . . . , n,
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where each fj is differentiable. Then there exists a number η such that

f ′
j (x∗j ) = η if x∗j > 0
f ′
j (x∗j ) ≥ η if x∗j = 0.

4.9. (From Avriel (1976, reprinted 2003).) Solve the problem

minimize f (x) =
n∑
j=1

cj

xj

subject to
n∑
j=1

ajxj = 1

xj ≥ 0, j = 1, . . . , n,

where
{
aj
}

and
{
cj
}

are positive constants.

4.10. Consider the bound-constrained problem

minimize f (x)

subject to l ≤ x ≤ u,

where l and u are vectors of lower and upper bounds, such that l < u. Let x∗ be a
local minimizer. Show that

if x∗i = li then
∂f (x∗)
∂xi

≥ 0,

if x∗i = ui then
∂f (x∗)
∂xi

≤ 0,

if li < x∗i < ui then
∂f (x∗)
∂xi

= 0.

Note that the Lagrange multipliers can be obtained at no additional cost in a bound-
constrained problem.

4.11. Consider the problem
maximize f (x)

subject to Ax ≥ b,

where A is an m× n matrix, b is an m-vector, and f is a twice continuously differ-
entiable function. Assume that the system has a feasible solution.

(i) State and prove the first-order necessary conditions for a local solution.

(ii) State and prove the second-order necessary conditions for a local solution.

(iii) State and prove the second-order sufficient conditions for a local solution.
(Assume that strict complementarity holds.)

14.5 Optimality Conditions for Nonlinear Constraints
The optimality conditions for problems with nonlinear constraints are similar in form to
those for problems with linear constraints. Their derivation, however, is more complicated,
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even though it is based on related principles. The intuition behind both derivations is the
same, but in the case of nonlinear constraints different technical tools are required to give
substance to this intuition. In addition, nonlinear constraints can give rise to situations that
are impossible in the case of linear constraints.

The optimality conditions for nonlinearly constrained problems form the basis for
algorithms for solving such problems, and so are of great importance. However, not all
readers may be interested in studying the derivation of these conditions. For this reason,
we state the optimality conditions first, together with some examples. We then discuss the
use of these optimality conditions within optimization algorithms. Only then do we present
the derivation of the optimality conditions.

14.5.1 Statement of Optimality Conditions

We present the optimality conditions separately for problems with equality and inequality
constraints. It is straightforward to combine these results into a more general optimality
condition (see the Exercises).

The problem with equality constraints is written in the general form

minimize f (x)

subject to gi(x) = 0, i = 1, . . . , m.

The problem with inequality constraints is

minimize f (x)

subject to gi(x) ≥ 0, i = 1, . . . , m.

We assume that all the functions are twice continuously differentiable.
Some additional assumption must be made to ensure the validity of the optimality

conditions. We have chosen to assume that a solution x∗ to the optimization problem is
a “regular” point. In the case of equality constraints this means that the gradients of the
constraints { ∇gi(x∗) } are linearly independent. In the case of inequality constraints this
means that the gradients of the active constraints at x∗, { ∇gi(x∗) : gi(x∗) = 0 }, are linearly
independent.

Example 14.14 (Regularity). Consider an equality-constrained problem with the two con-
straints

g1(x) = x2
1 + x2

2 + x2
3 − 3 = 0

g2(x) = 2x1 − 4x2 + x2
3 + 1 = 0

at the feasible point x∗ = (1, 1, 1)T. The gradients of the constraints at x∗ are

∇g1(x∗) = ( 2 2 2 )T

∇g2(x∗) = ( 2 −4 2 )T .

These two gradients are linearly independent, and so x∗ is a regular point.
Now consider an inequality-constrained problem with the single constraint

g1(x) = ( 1
2x

2
1 + 1

2x
2
2 − 1)3 ≥ 0
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at the feasible point x∗ = (1, 1)T. The constraint is binding at this point, and its gradient is

∇g1(x∗) = ( 0 0 )T .

Hence x∗ is not a regular point.

The optimality conditions are expressed in terms of the Lagrangian function

L(x, λ) = f (x)−
m∑
i=1

λigi(x) = f (x)− λTg(x),

where λ is a vector of Lagrange multipliers, and g is the vector of constraint functions { gi }.
We state these conditions below. They are derived in Section 14.7.

Theorem 14.15 (Necessary Conditions, Equality Constraints). Let x∗ be a local minimizer
of f subject to the constraints g(x) = 0. Let Z(x∗) be a null-space matrix for the Jacobian
matrix ∇g(x∗)T. If x∗ is a regular point of the constraints, then there exists a vector of
Lagrange multipliers λ∗ such that

• ∇xL(x∗, λ∗) = 0, or equivalently Z(x∗)T∇f (x∗) = 0, and

• Z(x∗)T∇2
xxL(x∗, λ∗)Z(x∗) is positive semidefinite.

Theorem 14.16 (Sufficiency Conditions, Equality Constraints). Let x∗ be a point satisfying
g(x∗) = 0. LetZ(x∗) be a basis for the null space of ∇g(x∗)T. Suppose there exists a vector
λ∗ such that

• ∇xL(x∗, λ∗) = 0, and

• Z(x∗)T∇2
xxL(x∗, λ∗)Z(x∗) is positive definite.

Then x∗ is a strict local minimizer of f in the set { x : g(x) = 0 }. (If the reduced Hessian
is negative definite, then x∗ is a local maximizer of f .)

The theorems involve the Jacobian matrix ∇g(x∗)T, which is the matrix of gradients
of the constraint functions (see Appendix B.4). For a system of linear equality constraints
Ax = b, the Jacobian would be equal to A, and so the condition

Z(x∗)T∇f (x∗) = 0,

or equivalently
∇xL(x∗, λ∗) = ∇f (x∗)− ∇g(x∗)λ∗ = 0,

is analogous to the condition

ZT∇f (x∗) = 0, or equivalently ∇f (x∗) = ATλ∗,

for linear equality constraints.
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The second-order conditions are based on the reduced Hessian

Z(x∗)T∇2
xxL(x∗, λ∗)Z(x∗).

These conditions involve the Hessian of the Lagrangian L, while in the case of linear
constraints they involve the Hessian of the objective f . The second derivatives of linear
constraints are zero, however, and so

∇2
xxL(x∗, λ∗) = ∇2f (x∗)

in this case. Thus, the second-order conditions for linearly constrained problems are a
special case of the conditions above.

These optimality conditions are illustrated in the following example.

Example 14.17 (Optimality Conditions, Equality Constraints). Consider the problem

minimize f (x) = x2
1 − x2

2

subject to x2
1 + 2x2

2 = 4.

Here we have a single constraint g(x) = x2
1 + 2x2

2 − 4 = 0. The Lagrangian function is
L(x, λ) = x2

1 − x2
2 − λ(x2

1 + 2x2
2 − 4). An optimal point must therefore satisfy

2x1 − 2λx1 = 0
−2x2 − 4λx2 = 0,

together with the feasibility requirement. The first equation has two possible solutions:
x1 = 0 and λ = 1. If x1 = 0, then from feasibility x2 = ±√

2. In either case, the second
equation implies that λ = − 1

2 . If on the other hand λ = 1, then from the second equation
we get x2 = 0, and from feasibility x1 = ±2. There are four possible solutions:

x = (0,
√

2)T, λ = − 1
2 ;

x = (0,−√
2)T, λ = − 1

2 ;
x = (2, 0)T, λ = 1;
x = (−2, 0)T, λ = 1.

These are all stationary points of f . We can determine which are minimizers by examining
the Hessian matrix

∇2
xxL(x, λ) =

(
2 0
0 −2

)
− λ

(
2 0
0 4

)
=
(

2(1 − λ) 0
0 −2(1 + 2λ)

)
.

Consider the solution x = (0,
√

2)T with Lagrange multiplier λ = − 1
2 . Since

∇g(x) = (2x1, 4x2)
T = (0, 4

√
2)T we can choose the null-space matrix Z = Z(x) =

(1, 0)T. Taking λ = − 1
2 we obtain

ZT∇2
xxL(x, λ)Z = 3 > 0,

and hence the reduced Hessian is positive definite and the point is a strict local minimizer
of f . Similarly, the solution x = (0,−√

2)T is also a strict local minimizer.
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If we take the solution x = (2, 0)T, λ = 1, then ∇g(x) = (2x1, 4x2)
T = (4, 0)T, and

we can choose the null-space matrixZ = (0, 1)T. The reduced Hessian isZT∇2
xxL(x, λ)Z =

−6 < 0, and hence the point is a local maximizer of f . A similar conclusion holds for the
point x = (−1, 0)T. For this problem, all feasible points are regular points.

The next theorem gives the necessary conditions for problems with inequality con-
straints. These conditions are sometimes called the Karush–Kuhn–Tucker conditions, the
KKT conditions, or the Kuhn–Tucker conditions; see Section 14.9.

Theorem 14.18 (Necessary Conditions, Inequality Constraints). Let x∗ be a local minimum
point of f subject to the constraints g(x) ≥ 0. Let the columns of Z(x∗) form a basis for
the null space of the Jacobian of the active constraints at x∗. If x∗ is a regular point for the
constraints, then there exists a vector of Lagrange multipliers λ∗ such that

• ∇xL(x∗, λ∗) = 0, or equivalently Z(x∗)T∇f (x∗) = 0,

• λ∗ ≥ 0,

• λ∗Tg(x∗) = 0, and

• Z(x∗)T∇2
xxL(x∗, λ∗)Z(x∗) is positive semidefinite.

The condition λ∗Tg(x∗) = 0 is the complementary slackness condition. Since the vec-
tors λ∗ and g(x∗) are both nonnegative, it implies that λ∗igi(x∗) = 0 for each i. This means
that either a constraint is active, or its associated Lagrange multiplier is zero. In particular,
any inactive constraint has a Lagrange multiplier of zero. If the multipliers corresponding
to the active constraints are all positive, then we have strict complementarity; otherwise, if
a Lagrange multiplier corresponding to an active constraint is zero, the constraint is said to
be degenerate.

The second-order sufficiency conditions for a local minimum point are stated below.

Theorem 14.19 (Sufficiency Conditions, Inequality Constraints). Letx∗ be a point satisfying
g(x∗) ≥ 0. Suppose there exists a vector λ∗ such that

• ∇xL(x∗, λ∗) = 0,

• λ∗ ≥ 0,

• λ∗Tg(x∗) = 0, and

• Z+(x∗)T∇2
xxL(x∗, λ∗)Z+(x∗) is positive definite,

whereZ+ is a basis for the null space of the Jacobian matrix of the nondegenerate constraints
(the active constraints with positive Lagrange multipliers) at x∗. Then x∗ is a strict local
minimizer of f in the set { x : g(x) ≥ 0 }.

These optimality conditions are illustrated in the following example.

Example 14.20 (Optimality Conditions, Inequality Constraints). Consider the problem

minimize f (x) = x1

subject to (x1 + 1)2 + x2
2 ≥ 1

x2
1 + x2

2 ≤ 2.
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A

B

C

-1-2 2

Figure 14.3. Problem with nonlinear inequalities.

We shall test whether the pointsA = (0, 0)T,B = (−1,−1)T, andC = (0,
√

2)T are optimal
(see Figure 14.3).

Rearranging the constraints to the “≥” form we obtain

L(x, λ) = x1 − λ1((x1 + 1)2 + x2
2 − 1)+ λ2(x

2
1 + x2

2 − 2).

Therefore

∇xL(x, λ) =
(

1 − 2λ1(x1 + 1)+ 2λ2x1

− 2λ1x2 + 2λ2x2

)
and

∇2
xxL(x, λ) =

(
2(λ2 − λ1) 0

0 2(λ2 − λ1)

)
.

At the point A, only the first constraint is active, and hence λ2 = 0. Solving for λ1

we obtain
1 − 2λ1 = 0

0 = 0
�⇒ λ1 = 1

2 .

Therefore, this is a candidate for a local minimizer. Taking Z = (0, 1)T as a basis matrix
for the null space of the Jacobian matrix (2, 0), we get

ZT∇2
xxL(x, λ)Z = (0, 1)

(−1 0
0 −1

)(
0
1

)
= −1,

and hence the reduced Hessian matrix is negative definite, and the sufficiency conditions
are not satisfied. This point is not a local maximizer since λ1 > 0 (see Exercise 5.9).

At the point B both constraints are active. Solving for the Lagrange multipliers we
obtain

1 − 2λ2 = 0
2λ1 − 2λ2 = 0

�⇒ λ1 = λ2 = 1
2 .

Therefore the point satisfies the first-order necessary condition for optimality. Moving to
the sufficiency conditions, we note that the null-space matrix for the Jacobian is empty.
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Therefore the sufficiency conditions are trivially satisfied, and the point is a strict local
minimizer.

At the point C = (0,
√

2)T, only the second constraint is active, and hence λ1 = 0.
Solving for λ2 we obtain

1 + 2λ2(0) = 0

2λ2

√
2 = 0.

This system is inconsistent. Hence the first-order necessary condition is not satisfied and
the point is not optimal.

As in the linearly constrained case (see Section 14.3), the Lagrange multipliers provide
a measure of the sensitivity of the optimal objective value to changes in the constraints. This
shows up in the optimality conditions which include the requirement that λ∗ ≥ 0 for the
inequality-constrained problem. The magnitude of the multipliers also has meaning, with a
large multiplier indicating a constraint more sensitive to changes in its right-hand side.

The following example shows that if the regularity condition is not satisfied at a local
minimizer, the first-order necessary condition for optimality may not hold.

Example 14.21 (Regularity Condition Not Satisfied). Consider the problem

minimize f (x) = 3x1 + 4x2

subject to (x1 + 1)2 + x2
2 = 1

(x1 − 1)2 + x2
2 = 1.

The solution to this problem is x∗ = (0, 0)T, which is also the only feasible point. The
gradients of the constraints at x∗ are (2, 0)T and (−2, 0)T, and thus are linearly dependent.
Setting the gradient of the Lagrangian with respect to x equal to zero yields

3 − 2λ1 + 2λ2 = 0
4 = 0.

This is an inconsistent system. Hence there are no multipliers λ1 and λ2 for which the
gradient of the Lagrangian is zero, even though the point is optimal.

Exercises
5.1. Consider the constraint g1(x) = ( 1

2x
2
1 + 1

2x
2
2 − 1)3 ≥ 0 of Example 14.14.

(i) Determine which feasible points are regular points and which are not.

(ii) Consider the constraint ĝ(x) = 1
2x

2
1 + 1

2x
2
2 − 1 ≥ 0. Show that the constraint

ĝ(x) ≥ 0 is equivalent to the constraint g1(x) ≥ 0. Show also that every
feasible point for ĝ(x) ≥ 0 is also a regular point of this constraint. Thus
regularity is not a result of the geometry of the feasible region, but a result of
its algebraic representation.
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5.2. Solve the problem
minimize f (x) = cTx

subject to
n∑
i=1

xi = 0

n∑
i=1

x2
i = 1.

5.3. Solve the problem
minimize f (x) = x1 + x2

subject to log x1 + 4 log x2 ≥ 1.

5.4. Determine the minimizers/maximizers of the following functions subject to the given
constraints. If helpful, graph the feasible set to guess minimizers or maximizers.
However, you must verify your guess using the optimality conditions.

(i) f (x1, x2) = x2 subject to x2
1 + x2

2 ≤ 1, −x1 + x2
2 ≤ 0, and x1 + x2 ≥ 0.

(ii) f (x1, x2) = x2
1 + 2x2

2 subject to x3
1 + x3

2 ≤ 1 and x2
1 + x2

2 ≥ 1.

5.5. Consider the problem
maximize f (x) = cTx

subject to xTQx ≤ 1,

where Q is a positive-definite symmetric matrix.

(i) Solve the problem. What is the optimal objective value?

(ii) What is the solution when the objective function is to be minimized?

5.6. Let Q be an n× n symmetric matrix.

(i) Find all stationary points of the problem

maximize f (x) = xTQx

subject to xTx = 1.

(ii) Determine which of the stationary points are global maximizers.

(iii) How do your results in part (i) change if the constraint is replaced by

xTAx ≤ 1,

where A is positive definite?

5.7. Use the optimality conditions to find all local solutions to the problem

minimize f (x) = x1 + x2

subject to (x1 − 1)2 + x2
2 ≤ 2

(x1 + 1)2 + x2
2 ≥ 2.

5.8. For the problem in Example 14.20, perturb the right-hand side of the first constraint:

(x1 + 1)2 + x2
2 ≥ 1 + δ.

Solve the perturbed problem (assume that δ is “small”). Compare the optimal ob-
jective value to the value predicted by λ∗ for the original problem.



book
2008/10/23
page 510

�

�

�

�

�

�

�

�

510 Chapter 14. Optimality Conditions for Constrained Problems

5.9. Let x� be a local maximizer of f subject to the constraints gi(x) ≥ 0.

(i) Use the results of Theorem 14.18 to prove that if x∗ is a regular point for the
constraints, then there exists a vector of Lagrange multipliers λ∗ ≤ 0 such that
∇xL(x∗, λ∗) = 0 and λ∗Tg(x∗) = 0.

(ii) Let Z(x∗) be a basis for the null space of the active constraints at x∗. Prove
that Z(x∗)T∇2

xxL(x∗, λ∗)Z(x∗) must be negative semidefinite.

5.10. Consider the problem

minimize f (x)

subject to gi(x) = 0, i = 1, . . . , l

gi(x) ≥ 0, i = l + 1, . . . , m.

(i) Derive a definition for a regular point of the constraints for this problem.

(ii) State the first- and second-order necessary conditions for optimality.

(iii) State the second-order sufficiency conditions for optimality at a feasible point.

5.11. Consider the problem
minimize max

1≤i≤m
fi(x).

This problem is called a minimax problem.

(i) Formulate the minimax problem as a constrained optimization problem.

(ii) Use the optimality conditions for the constrained optimization problem to de-
rive the optimality conditions for the minimax problem.

14.6 Preview of Methods
In the unconstrained case, we derived methods for solving

minimize f (x)

by applying Newton’s method to the optimality condition

∇f (x) = 0.

Convergence was guaranteed by insisting that at each iteration the value of the objective
function improve:

f (xk+1) < f (xk).

Methods for constrained problems can be derived in a similar way, although guaranteeing
convergence in the constrained case is more difficult. The goal in this section is to indicate
some of the difficulties that arise. The next two chapters will provide considerably more
detail.

We focus our attention here on the equality-constrained problem

minimize f (x)

subject to g(x) = 0.

Here g is a vector of m functions gi .
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The Lagrangian function in this case is

L(x, λ) = f (x)−
m∑
i=1

λigi(x) = f (x)− λTg(x).

The optimality conditions can be expressed as conditions on the derivatives of the La-
grangian:

∇xL(x∗, λ∗) = ∇f (x∗)− ∇g(x∗)λ∗ = 0
∇λL(x∗, λ∗) = −g(x∗) = 0,

where ∇g(x∗) is the matrix with columns ∇gi(x∗) (i.e., the transpose of the Jacobian matrix
at x∗). We can summarize these conditions compactly as ∇L(x∗, λ∗) = 0. Thus a local
minimizer is a stationary point of the Lagrangian function.

One way to determine a solution to the optimization problem would be to apply
Newton’s method to the system of nonlinear equations

∇L(x, λ) = 0,

where the gradient is taken with respect to both x and λ. In fact, the formulas for many
methods can be interpreted as doing this, or some variant of this.

The formula for Newton’s method is(
xk+1

λk+1

)
=
(
xk
λk

)
+
(
pk
νk

)
,

where pk and νk are obtained as the solution to the linear system

∇2L(xk, λk)
(
pk
νk

)
= −∇L(xk, λk).

This linear system has the form(∇2
xxL(xk, λk) −∇g(xk)
−∇g(xk)T 0

)(
pk
νk

)
=
(−∇xL(xk, λk)

g(xk)

)
.

As in the unconstrained case, if a method is to converge at a superlinear rate, the search
direction for the method must approach the solution of this linear system in the limit as the
solution to the optimization problem is approached.

This linear system plays a fundamental role in the “local” behavior of the methods,
that is, their behavior near the solution. On its own, however, it is inadequate to define
a method since its “global” behavior is inadequate. As we saw in Chapter 11, there is no
guarantee that convergence to a local minimum will be obtained. The first-order conditions
define a stationary point, and this need not be a constrained minimizer. In addition, there
is the danger that the iterates could diverge. Some globalization strategy is required to
guarantee convergence to a local solution.

It might be hoped that techniques from the unconstrained case could be applied di-
rectly. For example, we might insist that

L(xk+1, λk+1) < L(xk, λk).
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Figure 14.4. Lagrangian function.

This would only be satisfactory if the solution (x∗, λ∗) were a local minimizer of the La-
grangian function with respect to both x and λ. Unfortunately (x∗, λ∗) is in general a saddle
point of the Lagrangian—not a minimizer—as the following example shows.

Example 14.22 (Stationary Point of the Lagrangian). Consider the one-dimensional
problem

minimize f (x) = x2

subject to x = 1.

The solution to this problem is x∗ = 1, with Lagrange multiplier λ∗ = 2. The Lagrangian
function is

L(x, λ) = x2 − λ(x − 1).

Since ∇L(x, λ) = (2x − λ,−(x − 1))T, then ∇L(1, 2) = (0, 0)T, and indeed (x∗, λ∗) is a
stationary point of the Lagrangian. The Hessian matrix of the Lagrangian is

∇2L(x∗, λ∗) =
(

2 −1
−1 0

)
.

This is an indefinite matrix. Thus (x∗, λ∗) is a saddle point of the Lagrangian function. This
is illustrated in Figure 14.4.

We will describe two general approaches that are used to guarantee convergence.
The first attempts to ensure that xk is feasible at every iteration. Then convergence can be
guaranteed, as in the unconstrained case, by insisting that

L(xk+1, λk+1) = f (xk+1) < f (xk) = L(xk, λk).

If only feasible points are considered, then the solution x∗ will be a local minimizer of
the Lagrangian. When the constraints are linear it is not difficult to maintain feasibility
at every iteration, but when nonlinear constraints are present this idea must be interpreted
more freely. This approach is the topic of Chapter 15.
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The second approach constructs a new function, related to the Lagrangian, that
(ideally) has a minimum at (x∗, λ∗). This new function can be considered as “distorting”
the Lagrangian at infeasible points so as to create a minimum at (x∗, λ∗). Unconstrained
minimization techniques can then be applied to the new function. This approach can make
it easier to guarantee convergence to a local solution, but there is the danger that the local
convergence properties of the method can be damaged. The “distortion” of the Lagrangian
function can lead to a “distortion” in the Newton equations for the method. Hence the
behavior of the method near the solution may be poor unless care is taken. This approach
is the topic of Chapter 16.

These two general approaches, along with all the possible methods within each ap-
proach, lead to many different algorithms for solving constrained optimization problems.
It is difficult to identify an ideal method, in part because there is no clear way to determine
whether the new point xk+1 is better than the current point xk .

The difficulty arises because two criteria are used to compare two successive iterates:
the value of the objective function, and the infeasibility in the constraints. If all the iterates
are feasible points, then the latter criterion is irrelevant and the objective function can be
used to measure progress towards the solution. Without that, it is necessary to balance the
two criteria to compare two estimates of the solution, and there is no simple way to do this.

One approach is to use auxiliary merit functions as an indirect way to measure progress
and guarantee convergence. Consider an optimization problem of the form

minimize f (x)

subject to g(x) = 0.

An example of a merit function for this problem is

M(x) = f (x)+ ρ‖g(x)‖, ρ > 0.

(Here, the norm could be any of the norms discussed in Appendix A.3.) This merit function
reflects the combined decrease of the two criteria involved in minimization: the objective
function and the infeasibility.

The parameter ρ > 0 specifies the relative importance of one criterion with respect to
the other. For example, if ρ is large, then the merit function emphasizes the importance of in-
feasibility when comparing two different iterates. The best choice of ρ is typically unknown.
Practical algorithms usually adjust ρ in the course of solving an optimization problem.

It can be difficult to choose an appropriate merit function and, once one is chosen,
to determine an appropriate value of the parameter ρ. If the choices are inappropriate, the
merit function may reject good choices of xk + αp and even prevent the algorithm from
achieving its ideal rate of convergence. That is, a poor choice of merit function might reject
the iterates generated by Newton’s method, interfere with the quadratic convergence rate,
and result in a method that converges only at a slow linear rate.

For these reasons, methods have been developed that replace the merit function with a
device called a filter. Filter methods assess iterates by explicitly using the objective function
and the infeasibility as separate criteria, without combining them into a single value. The
filter keeps track of a set of iterates xk that are the best found so far by the algorithm. Because
the iterates are compared using two separate criteria, there may be no “best” iterate. For
example, suppose that we have two iterates x1 and x5, where x1 has an objective value of
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5.2 and the norm of the infeasibility is 2.7, and x5 has objective value of 3.1 and infeasibility
8.2. Then x5 is better in terms of objective value but worse in terms of infeasibility. In this
case, the filter would keep track of both iterates. Filter methods ameliorate many of the
difficulties associated with merit functions, but they require a more complicated approach
to assess the successive estimates of the solution.

Merit functions, filters, and related techniques are discussed in greater detail in the
next two chapters.

There is a further difficulty, and that is the difficulty of finding a point that satisfies the
constraints. If the constraints are linear, then it is possible to find a feasible point by solving
a linear program (see Section 5.5). In the nonlinear case, finding a feasible point requires
solving a system of nonlinear equations and inequalities, a problem that is as difficult in
general as the original optimization problem. Methods have been developed whose purpose
is to find a feasible point, but they are not guaranteed to succeed. Although unattractive, it
may be necessary to try a method repeatedly with varying starting points to obtain a feasible
point.

Nonlinear constraints can define complicated feasible regions. A constraint might
define a single point

(x1 − 5)2 + (x2 − 3)2 = 0,

a curve of points
(x1 − 5)2 + (x2 − 3)2 = 1,

a discrete set of points
sin(πx1) = 0,

or no points
x2

1 + 1 = 0.

Small changes in the coefficients in a nonlinear constraint can lead to qualitative differences
in the shape of the feasible region. This further exacerbates the difficulty of solving nonlinear
optimization problems.13

Exercises
6.1. Consider the equality-constrained problem

minimize f (x)

subject to g(x) = 0.

Let (x∗, λ∗) be the optimal solution vector and the associated Lagrange multipliers.
Assume that the regularity conditions and the second-order sufficiency conditions
hold at x∗. Prove that L(x∗, λ∗) is a minimizer of L(x, λ) in the direction (pT, νT)T,
when p is a vector in the null space of ∇g(x∗) and ν = 0. Prove also that L(x∗, λ∗)
is a maximizer of L(x, λ) in the direction (pT, νT)T, when p = 0 and ν is in the range
space of ∇g(x∗)T. Hence (x∗, λ∗) is a saddle point of the Lagrangian.

13It is possible to omit reading the rest of this chapter without loss of continuity.
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Figure 14.5. No feasible directions.

14.7 Derivation of Optimality Conditions for Nonlinear
Constraints

We now examine the derivation of the optimality conditions for problems with nonlinear
constraints. We again begin with a problem that has equality constraints only:

minimize f (x)

subject to gi(x) = 0, i = 1, . . . , m.

Each of the functions f and gi is assumed to be twice continuously differentiable. If we
define g(x) as the vector of constraint functions { gi(x) }, then the problem is to minimize
f (x) subject to g(x) = 0. The set of points x such that g(x) = 0 is called a surface.

We derive first- and second-order optimality conditions for this problem. The main
difficulty is the characterization of small movements that maintain feasibility. In the linear
case, such movements can be completely represented in terms of feasible directions (see
Chapter 3). In the nonlinear case, this may not be possible. For example, consider the
nonlinear equality constraint x2

1 + x2
2 = 2, and let x be any feasible point, say x = (1, 1)T.

Any small step taken from x along any direction will result in the loss of feasibility (see
Figure 14.5). Thus there are no feasible directions at this point, or at any other feasible
point. To define small movements that maintain feasibility, we will use feasible curves.

A curve is a set of points { x = x(t) : t0 ≤ t ≤ t1 }. It is termed a feasible curve with
respect to the surface g(x) = 0 if g(x(t)) = 0 for all such t . A curve passing through
the point x∗ satisfies x(t∗) = x∗ for some t0 ≤ t∗ ≤ t1 (by a shift of the parameter t
we can always assume that t∗ = 0).14 The first derivative of x(t) is the vector x ′(t) =
d(x(t))/dt ; this is the tangent to the curve at x(t). The second derivative is the vector
x ′′(t) = d2(x(t))/dt2. In the following discussion we shall consider only curves that have
two continuous derivatives.

14In this section, we assume that any feasible curve x(t) through x∗ satisfies x(0) = x∗.
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x

(0)

*

x (ε) x’

Figure 14.6. Feasible curve.

Example 14.23 (Feasible Curve). Consider the constraint g(x) = x2
1 + x2

2 + x2
3 − 3 = 0,

and consider the curve

x(t) =
(√

2 cos(t + π/4)√
2 sin(t + π/4)

1

)
, −π ≤ t ≤ π.

Then x(0) = (1, 1, 1)T and g(x(t)) = 2 cos2(t + π/4) + 2 sin2(t + π/4) + 1 − 3 = 0.
Hence x(t) is a feasible curve passing through the point (1, 1, 1)T. The tangent to the curve
at (1, 1, 1)T is (see also Figure 14.6)

x ′(0) = d

dt
x(t)

∣∣∣∣
t=0

=
( −√

2 sin(t + π/4)√
2 cos(t + π/4)

0

)
t=0

=
(−1

1
0

)
.

Suppose that x∗ is a local solution of the optimization problem. Then x∗ is a local
minimizer of f along any feasible curve passing through x∗. Let x(t) be any such curve
with x(0) = x∗. Then t = 0 is a local minimizer of the one-dimensional function f (x(t)),
and the derivative of f (x(t)) with respect to t must vanish at t = 0. Using the chain rule
we obtain

d

dt
f (x(t))

∣∣∣∣
t=0

= x ′(t)T∇f (x(t))
∣∣∣∣
t=0

= x ′(0)T∇f (x∗) = 0.

Thus, if x∗ is a local minimizer of f , then

x ′(0)T∇f (x∗) = 0 for all feasible curves x(t) through x∗. (14.3)

Define

T (x∗) =
{
p : p = x ′(0) for some feasible curve x(t) through x∗

}
.

This is the set of all tangents to feasible curves through x∗. Assume for convenience that
0 ∈ T (x∗). The set has the property that if p ∈ T (x∗), then αp ∈ T (x∗) for any nonnegative
scalar α (see the Exercises). A set with this property is called a cone, and for this reason
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(T
*

x )

x’ (0)

x*

x (ε)

Figure 14.7. Tangent cone.

T (x∗) is sometimes called the tangent cone at x∗. The tangent cone at the point (1, 1, 1)T in
Example 14.23 is shown in Figure 14.7. It is parallel to the tangent plane at (1, 1, 1)T but
passes through the origin.

From equation (14.3) we obtain a condition for optimality of a feasible point x∗:

pT∇f (x∗) = 0 for all p ∈ T (x∗).
In this form, the optimality condition is not yet practical, since it is not always easy to
represent the set of all feasible curves explicitly. We shall develop an alternative character-
ization of the tangent cone. To this end, we notice that gi(x(t)) is a constant function of
t (it is zero for all t), and hence its derivative with respect to t vanishes everywhere, i.e.,
d
dt
gi(x(t)) = 0. Using the chain rule we obtain

x ′(t)T∇gi(x(t)) = 0.

In particular, at t = 0 we obtain x ′(0)T∇gi(x∗) = 0. Since this is true for all feasible arcs
through x∗, we obtain

pT∇gi(x∗) = 0 for all p ∈ T (x∗).
The equation above holds for each constraint i. It will be useful to defineA(x∗) as them×n
matrix whose ith row is ∇gi(x∗)T. This is the Jacobian matrix of g at x∗. The equation
above can be written as A(x∗)p = 0, so that any vector in the tangent cone at x∗ also lies in
the null space of the Jacobian matrix at x∗:

p ∈ T (x∗)⇒ p ∈ N (A(x∗)).

Hence the tangent cone at a point is contained in the null space of the Jacobian matrix at the
point.

Example 14.24 (Null Space of the Jacobian). Consider the problem in Example 14.23.
At x∗ = (1, 1, 1)T we have ∇g(x∗)T = (2, 2, 2)T. Thus any vector p in the tangent cone
must satisfy pT∇g(x∗) = 2p1 + 2p2 + 2p3 = 0, that is, p1 + p2 + p3 = 0. In this
example, the tangent cone and the null space of the Jacobian are both equal to the set
{p : p1 + p2 + p3 = 0 }.
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In the previous example, the tangent cone and the null space of the Jacobian were
equal. It can be difficult to characterize the tangent cone, but it is easy to compute the
Jacobian matrix and generate its associated null space. Hence it would be useful if these
two sets were always equal. Unfortunately, this is not always the case, as the next example
shows.

Example 14.25 (T (x∗) = N (A(x∗))). Consider the constraintg(x) = ( 1
2x

2
1+ 1

2x
2
2−1)2 =

0. The feasible set is a circle of radius
√

2. The tangent cone at the pointx∗ = (1, 1)T is the set
T (x∗) = {p : p1 + p2 = 0 }. Since ∇g(x) = (2( 1

2x
2
1 + 1

2x
2
2 − 1)x1, 2( 1

2x
2
1 + 1

2x
2
2 − 1)x2)

T,
the Jacobian matrix at x∗ is A(x∗) = (0, 0). Therefore the null space of the Jacobian is
N (A(x∗)) = �2, and T (x∗) = N (A(x∗)).

Luckily, examples such as the above are uncommon. In the majority of problems the
tangent cone at a feasible point is indeed equal to the null space of the Jacobian matrix at
the point. One condition that guarantees this is regularity, that is, the assumption that the
gradient vectors ∇gi(x∗), i = 1, . . . , m, are linearly independent (or equivalently, that their
Jacobian matrix has full row rank). In the next lemma we prove that if x∗ is a regular point,
then T (x∗) = N (A(x∗)).

Lemma 14.26. If x∗ is a regular point of the constraints, then T (x∗) = N (A(x∗)).

Proof. We need only show that p ∈ N (A(x∗)) implies that p ∈ T (x∗); that is, there exists
some feasible curve x(t) through x∗ satisfying x ′(0) = p.

To prove the existence of a feasible curve we shall use the implicit function theorem
(see Appendix B.9). Let y be an m-dimensional vector, and consider the following system
of nonlinear equations in y and t :

g(x∗ + tp + ∇g(x∗)y) = 0.

The system has a solution at (ŷ, t̂ ) = (0, 0). Its Jacobian with respect to y at this point is

∇g(x∗)T∇g(x∗ + tp + ∇g(x∗)y)|(y,t)=(0,0) = ∇g(x∗)T∇g(x∗),
which by the regularity assumption is nonsingular. Therefore, by the implicit function
theorem, there exists a continuously differentiable function y = y(t) in a neighborhood of
t = 0 satisfying

g(x∗ + tp + ∇g(x∗)y(t)) = 0.

Letting x(t) = x∗ + tp + ∇g(x∗)y(t), we obtain that x(t) is a feasible curve through x∗
with x(0) = x∗. It remains only to show that x ′(0) = p. From the formula for x(t)we have
that x ′(0) = p+∇g(x∗)y ′(0), so we need to show that the second term is zero. Since x(t)
is a feasible curve it satisfies ∇g(x∗)Tx ′(0) = 0. Hence

∇g(x∗)Tp + ∇g(x∗)T∇g(x∗)y ′(0) = 0.

The first term above is zero because p ∈ N (A(x∗)). The lemma now follows because of
the regularity assumption.
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If we assume that a local minimizer is a regular point, we can obtain a more useful
optimality condition. Let x∗ be a local solution that satisfies the regularity condition. Then
any vector p ∈ N (A(x∗)) is also in T (x∗). It follows from (14.7) that

pT∇f (x∗) = 0 for all p ∈ N (A(x∗)).

If Z(x∗) is a null-space matrix for A(x∗), then

Z(x∗)T∇f (x∗) = 0.

This is the first-order necessary condition for optimality. It states that the reduced gradient
at a local minimum must be zero. We caution here that the same condition is also satisfied at
a local maximum point. The reduced gradient may also be zero at a point that is neither a
local maximum nor a local minimum point, that is, at a saddle point.

As in the linear case, we can show that the reduced gradient is zero if and only if there
exists an m-dimensional vector λ∗ such that

∇f (x∗) = A(x∗)Tλ∗ =
m∑
i=1

λ∗i∇gi(x∗).

This is an equivalent statement of the first-order necessary condition for optimality. The
coefficients { λ∗i } are the Lagrange multipliers.

We now derive the second-order conditions for optimality. Recall that if x∗ is a local
minimizer, then x∗ is a local minimizer along any feasible curve passing through x∗. Let
x(t) be any such curve with x(0) = x∗. Then since t = 0 is a local minimizer of the function
f (x(t)), the second derivative of f (x(t)) with respect to t must be nonnegative at t = 0.
Using the chain rule we obtain

d2

dt2
f (x(t)) = d

dt

[
x ′(t)T∇f (x(t))] = x ′(t)T∇2f (x(t))x ′(t)+ ∇f (x(t))Tx ′′(t).

Hence
d2

dt2
f (x(0)) = pT∇2f (x∗)p + ∇f (x∗)Tx ′′(0) ≥ 0,

where p = x ′(0) is the tangent to the curve at x∗. In the expression above, the term
∇f (x∗)Tx ′′(0) does not necessarily vanish. Therefore the second derivative along an arc
depends not only on the Hessian of the objective, but also on the curvature of the constraints
(that is, on the term x ′′(0)).

To transform this into a more useful condition, it will be convenient to get rid of the
term involving x ′′(0). To do this, we notice that gi(x(t)) is constant, so its second derivative
with respect to t must vanish for all t , in particular at t = 0. Using the chain rule we obtain

pT∇2gi(x∗)p + ∇gi(x∗)Tx ′′(0) = 0.

We can multiply the last equality by λ∗i and sum over all i. If we subtract the result from
the previous inequality, then, because ∇xL(x∗, λ∗) = 0, the term involving x ′′(0) will be
eliminated. The final result is that

pT

[
∇2f (x∗)−

m∑
i=1

λ∗i∇2gi(x∗)

]
p ≥ 0
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Figure 14.8. Feasible arcs.

for all tangent vectors p ∈ T (x∗). The term in brackets is the Hessian of L with respect to
x at the point (x, λ). Therefore

pT
[∇2

xxL(x∗, λ∗)
]
p ≥ 0

for all tangent vectors p ∈ T (x∗). Under the regularity assumption, this inequality will
hold for any p in N (A(x∗)). Consequently, the reduced HessianZ(x∗)T∇2

xxL(x∗, λ∗)Z(x∗)
must be positive semidefinite. This is the second-order necessary condition for optimality.

The proof of the sufficiency conditions uses similar techniques.
Finally, we consider a problem with nonlinear inequality constraints:

minimize f (x)

subject to gi(x) ≥ 0, i = 1, . . . , m.

Optimality conditions can be derived by combining the ideas developed for problems with
nonlinear equalities with those for problems with linear inequalities. There are a few issues
which are unique to problems with nonlinear inequalities, however. We discuss them briefly.

Let x∗ be a feasible solution to the inequality-constrained problem. Whereas in the
case of equality constraints we can maintain feasibility by moving in either direction along
a feasible curve through x∗, here it is often possible to move in only one direction; we shall
call this “movement along a feasible arc.” More formally, we define an arc emanating from
x∗ as a directed curve x(t) parameterized by the variable t in an interval [0, T ] for which
x(0) = x∗. An arc is feasible if g(x(t)) ≥ 0 for t in [0, T ]. Some examples of feasible arcs
are illustrated in Figure 14.8. The optimality conditions are a result of the requirement that
if a small movement is made along a feasible arc, the objective value will not decrease.

The constraints that are inactive at x∗ can be ignored, since they do not influence the
local optimality conditions. With the regularity assumption, it is possible to derive the first-
and second-order conditions for optimality. The proofs are left to the Exercises.

Exercises
7.1. Consider the constraint g(x) = (x2 − x2

1)(x
2
1 − x2

2) = 0. Find the tangent cone and
the null space of the Jacobian matrix at x∗ = (0, 0)T.
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7.2. Consider the problem
minimize f (x) = x2

subject to x2 = 0
x2 − x3

1 = 0.

Show that the solution is x∗ = (0, 0)T. Show that there exists a vector of multipliers
λ∗ such that ∇L(x∗, λ∗) = 0, even though T (x) = N (A(x)).

7.3. Let x∗ be a feasible point to an equality-constrained problem, and let T (x∗) be the
tangent cone at x∗. Prove that if 0 ∈ T (x∗), then T (x∗) is a cone. (Hint: Prove that
if x(t) is a feasible arc through x∗, then so is x(αt).)

7.4. Let x∗ be a feasible point to the inequality-constrained problem. Prove that if x(t) is a
feasible arc emanating from x∗, then x ′(0)T∇gi(x∗) ≥ 0 for all binding constraints i.

7.5. Assume that x∗ is a regular point for the inequality-constrained problem, and that
there exists some λ such that∇xL(x∗, λ) = 0 and λTg(x∗) = 0. Suppose that λ1 < 0.
Prove that there exists some feasible arc x(t) emanating from x∗ such that

df (x(t))

dt

∣∣∣
t=0

= λ1.

Hence, x∗ cannot be a local minimizer.

7.6. Use the results of the previous two problems to prove Theorem 14.18.

7.7. Prove Theorem 14.19.

7.8. Consider the problem with a single constraint:

minimize f (x)

subject to g(x) ≥ 0.

It is possible to transform the inequality constraint into an equality constraint by
subtracting a squared variable, say y2, from g. We obtain a problem with n + 1
variables and a single equality constraint. Write the first- and second-order optimality
conditions for this problem, and compare them to the optimality conditions for the
original inequality-constrained problem. Also, determine the conditions satisfied by
a regular point for this problem and compare them to the conditions satisfied by a
regular point of the original problem.

7.9. Consider the problem
minimize f (x)

subject to g(x) = 0,

where x ∈ �n and g is a vector function. Let x∗ be a regular point of the constraints.
Consider now the equivalent problem

minimize f (x)

subject to g(x) ≥ 0
−g(x) ≥ 0.

Prove that x∗ is no longer a regular point of the constraints for this new problem, but
that there exists a vector of Lagrange multipliers that satisfies Theorem 14.18. Is the
vector of multipliers unique?



book
2008/10/23
page 522

�

�

�

�

�

�

�

�

522 Chapter 14. Optimality Conditions for Constrained Problems

7.10. It is possible to derive optimality conditions that do not require that T (x∗) =
N (A(x∗)). This was done by Fritz John (1948) who defined a “weak Lagrangian”
that includes a multiplier for the objective. Consider the problem

minimize f (x)

subject to g(x) ≥ 0,

where x ∈ �n, g is vector function, and all functions are continuously differentiable.
John showed that if x∗ is a local minimizer of the problem, then there exist multipliers
θ∗, λ∗ not all zero so that θ∗∇f (x∗)− λ∗T∇g(x∗) = 0, λ∗Tg(x∗) = 0, and λ∗ ≥ 0.

(i) Use this result to prove that if x∗ is a regular point of the constraints, then
θ∗ = 0.

(ii) Consider the problem of minimizing f (x) = −x1 subject to the constraint
(1− x1)

3 − x2 ≥ 0 and x1x2 ≥ 0. The local minimizer is x∗ = (1, 0)T but it is
not a regular point. Show that there are no multipliers that satisfy our regular
optimality condition, but the Fritz John conditions are satisfied.

(iii) Consider now a problem with equality constraints g(x) = 0 that are split into
two inequalities as in Exercise 7.9. Prove that the Fritz John conditions are
satisfied by every feasible point. This illustrates one major weakness of these
conditions.

14.8 Duality
We have already encountered the concept of duality in the chapters on linear programming
(Chapters 4–10), in which we saw that every linear programming problem has an associ-
ated dual linear programming problem that is intimately related to it. There are several
connections between a linear problem (the primal problem) and its dual: (i) if the primal
is a minimization problem, the dual problem is a maximization problem, and vice versa;
(ii) the dual of the dual problem is the primal problem; (iii) the objective value for any
feasible solution to the maximization problem is a lower bound on the objective value for
any feasible solution to the minimization problem (the weak duality theorem); (iv) if one
problem has an optimal solution, then so does the other, and the optimal objective values of
the two problems are equal (the strong duality theorem).

The relationship between primal and dual linear programs has immense value from
both theoretical and computational points of view. First, the dual problem may be easier
to solve, and if the optimal solution to the dual problem is known, then (in nondegenerate
cases) the optimal solution to the primal problem can easily be computed. Second, a good
estimate of the optimal dual solution may assist in obtaining a good estimate of the optimal
primal solution. In addition, the dual variables have an important economic significance
and can be used for sensitivity analysis (see Section 6.4).

The first-order optimality conditions for nonlinear optimization are stated not only
in terms of the vector of variables x∗ but also in terms of a vector of optimal Lagrange
multipliers λ∗. The Lagrange multipliers are the dual variables. If the optimal Lagrange
multipliers were known a priori, the optimization problem would often be easier to solve.
Thus it would be useful if we could easily compute λ∗. Hence the question, can we define
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a new nonlinear optimization problem, where the unknown variables are the Lagrange
multipliers, and the solution is λ∗? Furthermore, under what conditions will the solution to
this new problem also provide us with a solution to the original problem? Duality theory
examines these questions.

In this section we develop a duality theory for nonlinear optimization. Specifically, we
define for every nonlinear optimization problem a related dual problem. Ideally we would
like the relationships between a pair of primal and dual nonlinear problems to replicate those
of primal and dual linear programs. As we shall see, this is not always possible.

Various possible formulations have been proposed for the dual of a nonlinear problem.
The fundamental idea underlying most approaches is to represent a constrained minimization
problem in a form that will be termed a “min-max” problem. Its dual problem will be
represented in a form termed a “max-min” problem. These two problems can be viewed as
strategy problems for two players in a game. We describe this idea next.

14.8.1 Games and Min-Max Duality

Let us consider a game between two players, Peter and Harriet. In this game, Peter has a set
of possible strategiesX, while Harriet has a set of possible strategies Y . The game proceeds
as follows: Peter chooses a strategy x ∈ X, and Harriet chooses a strategy y ∈ Y . The
choices of strategies are then revealed simultaneously. As a result, Peter pays an amount
F(x, y) to Harriet (the amount paid can be negative, in which case, Peter actually gains).
The game is called a zero-sum game because whatever one player wins, the other player
loses.

We now make the assumption that both Peter and Harriet act rationally to maximize
their rewards. Suppose in fact that both players would like to take a course of action that
will guarantee their largest gain, regardless of what their opponent does. Then both players
would attempt to optimize their worst-case scenario. Based on these premises, we now
analyze the players’ optimal strategies.

Consider first Peter, who is worried about making a large payoff to Harriet. If Peter
chooses strategy x ∈ X, then in the worst case (that is, if Harriet is either very clever or
very lucky) his payoff to Harriet will be

F∗(x) = max
y∈Y F(x, y).

(In strict mathematical terms, we should use the “supremum” operator15 rather than the
“maximum” operator, because there may be no y ∈ Y for which a maximum value is
achieved; here for simplicity we ignore this possibility.) To minimize this worst-case payoff,
Peter has to choose the strategy that solves the optimization problem

minimize
x∈X F∗(x).

This problem is referred to as a min-max problem, since it seeks the value

min
x∈X max

y∈Y F(x, y).

15The supremum of a set is its least upper bound; the infimum of the set is its greatest lower bound. If the
supremum or infimum exists, it need not belong to the set.
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Harriet, on the other hand, is worried about receiving a payoff that is too small. If
she chooses a strategy y ∈ Y , then in the worst case, the payoff that she will receive will
only be

F∗(y) = min
x∈X F(x, y).

(For simplicity we use the “minimum” operator instead of the more precise “infimum”
operator.) Harriet’s optimal strategy is to maximize the worst-case payoff that she will
receive. Hence she must solve the problem

maximize
y∈Y F∗(y).

This problem is referred to as a max-min problem, since it seeks the value

max
y∈Y min

x∈X F(x, y).

The two problems are said to be dual to each other. We refer to the min-max problem
faced by Peter as the primal problem. The objective to be minimized, F∗(x), is referred
to as the primal function. We refer to the max-min problem faced by Harriet as the dual
problem. The objective to be maximized, F∗(y), is referred to as the dual function.

For any x ∈ X and y ∈ Y ,

F∗(y) = min
x∈X F(x, y) ≤ F(x, y) ≤ max

y∈Y F(x, y) = F∗(x), (14.4)

and thus in particular
F∗(y) ≤ F∗(x).

This is the statement of weak duality.
A consequence of the weak duality statement is that the optimal solution of the max-

min problem is bounded above by the optimal value of the min-max problem. This result
is summarized in the following lemma.

Lemma 14.27.
max
y∈Y min

x∈X F(x, y) ≤ min
x∈X max

y∈Y F(x, y).

Proof. From (14.4) it follows that

min
x∈X F(x, y) ≤ max

y∈Y F(x, y).

This holds for any x ∈ X and y ∈ Y , so it holds for the y that maximizes the left-hand term
and for the x that minimizes the right-hand term. Thus

max
y∈Y min

x∈X F(x, y) ≤ min
x∈X max

y∈Y F(x, y).

Example 14.28 (Two-Person Zero-Sum Game). Suppose that Peter has a set of two possible
strategies, denoted X = { 1, 2 }, and that Harriet also has a set of two possible strategies,
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denoted Y = { 1, 2 }. If Peter chooses strategy i ∈ X and Harriet chooses strategy j ∈ Y ,
Peter’s payoff will be F(i, j) = ai,j , where A = (ai,j ) is given as

A =
(−1 2

4 3

)
.

Then Peter’s min-max problem is to choose the strategy that solves

minimize
i

max
j
ai,j .

Now

min
i

max
j
ai,j = min

{
max
j
a1,j ,max

j
a2,j

}
= min { 2, 4 } = 2,

and hence Peter’s optimal strategy would be to choose row i = 1, thereby guaranteeing that
his payoff to Harriet will be at most 2.

Harriet’s max-min problem is to choose the strategy that solves

maximize
j

min
i
ai,j .

Now

max
j

min
i
ai,j = max

{
min
i
ai,1,min

i
ai,2

}
= max {−1, 2 } = 2,

and hence Harriet’s optimal strategy would be to choose column j = 2, thereby guaranteeing
that her reward will be at least 2. In this case we see that

max-min = 2 = min-max.

The game can be considered to be in equilibrium, in the sense that neither player can gain
from a change in strategy as long as the opponent’s strategy remains fixed.

It is not always true that max-min = min-max. If the matrix

Ā =
(−1 2

4 1

)
were used instead of A, then we would obtain that

max-min = 1 ≤ 2 = min-max.

In this example, element a12 of A is largest in its row and smallest in its column. If
such an element exists, a game of this type is said to have a saddle point. The matrixĀ does
not have a saddle point. As we will see, the optimal primal and dual objectives are equal if
and only if the game has a saddle point.

We first give a more general definition. A point (x∗, y∗) with x∗ ∈ X and y∗ ∈ Y is
said to satisfy the saddle-point condition for F if

F(x∗, y) ≤ F(x∗, y∗) ≤ F(x, y∗)

for all x ∈ X and y ∈ Y . Thus, x∗ is a minimizer of F when y is fixed at y∗, and y∗ is a
maximizer of F when x is fixed at x∗.
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The following lemma states under what conditions the optimal values of the two
problems are equal.

Lemma 14.29 (Strong Duality). The condition

max
y∈Y min

x∈X F(x, y) = min
x∈X max

y∈Y F(x, y) (14.5)

holds if and only if there exists a pair (x∗, y∗) that satisfies the saddle-point condition for F .

Proof. Suppose that (x∗, y∗) satisfies the saddle-point condition. Then

max
y∈Y F(x∗, y) ≤ F(x∗, y∗) ≤ min

x∈X F(x, y∗).

Now the left-hand term in the inequality above is bounded below by

min
x∈X max

y∈Y F(x, y) ≤ max
y∈Y F(x∗, y),

and the right-hand term in the inequality above is bounded above by

min
x∈X F(x, y∗) ≤ max

y∈Y min
x∈X F(x, y).

Combining the last three inequalities, we obtain that

min
x∈X max

y∈Y F(x, y) ≤ F(x∗, y∗) ≤ max
y∈Y min

x∈X F(x, y),

or in short, min-max ≤ max-min. But in view of Lemma 14.27, this can be true only if
min-max = max-min, and therefore

max
y∈Y min

x∈X F(x, y) = F(x∗, y∗) = min
x∈X max

y∈Y F(x, y).

Suppose now that (14.5) holds. Then

max
y∈Y min

x∈X F(x, y) = F(x∗, y∗) = min
x∈X max

y∈Y F(x, y)

for some (x∗, y∗). Therefore for any x ∈ X and y ∈ Y ,

F(x∗, y) ≤ max
y∈Y F(x∗, y) = F(x∗, y∗) = min

x∈X F(x, y∗) ≤ F(x, y∗),

and therefore (x∗, y∗) satisfies the saddle-point condition for F .

14.8.2 Lagrangian Duality

Min-max duality serves as the basis for developing a dual problem to a nonlinear problem.
The main idea is to define some game with payoff function F so that the solution to the min-
max problem with respect to F is also the solution to the nonlinear minimization problem.
The resulting max-min problem is then the dual problem. There are various ways in which
this can be done. The approaches differ in the way the sets X and Y and the function F are



book
2008/10/23
page 527

�

�

�

�

�

�

�

�

14.8. Duality 527

defined. Here we describe an approach sometimes termed Lagrangian duality that is useful
from a computational point of view. An alternative approach termed conjugate duality is
more intricate, yet it is more powerful from a theoretical point of view.

We assume that the nonlinear problem has the form

minimize f (x)

subject to g(x) ≥ 0

x ∈ X.
(14.6)

Here g is a vector of m functions gi . The set constraint x ∈ X is used to impose additional
requirements that we may wish to handle separately. These may be additional explicit
functional constraints, such as nonnegativity constraints on the variables. Or, if this were
a discrete problem, these may be the integrality requirements, and X would be the set of
points in �n with integer components (this option is useful in developing an approach for
solving integer programs). WhenX = �n, there are no “special” requirements and, we can
omit this constraint from the statement of the problem.

Consider now the Lagrangian function

L(x, λ) = f (x)− λTg(x)
for x ∈ X ⊂ �n and λ ∈ �m, λ ≥ 0; here g is the vector of constraint functions gi .
We will show that the nonlinear optimization problem can be represented as a min-max
problem. The Lagrangian L(x, λ) will assume the role of F in this representation, and the
set { λ ∈ �m, λ ≥ 0 } will assume the role of the set Y .

We first define
L∗(x) = max

λ≥0
L(x, λ)

for any x ∈ X. This is the primal function. Let us take a closer look at this function for a
fixed x:

L∗(x) = max
λ≥0

[f (x)− λTg(x)].
If g(x) ≥ 0, then λTg(x) will be nonnegative. Thus the Lagrangian will be maximized
when the second term is zero. This is achieved, for example, if λ = 0, and we then obtain
that L∗(x) = f (x). If on the contrary gi(x) < 0 for some constraint, then by letting
the multiplier λi increase without limit and keeping all other multipliers equal to zero, the
Lagrangian will increase without limit. Therefore

L∗(x) =
{
f (x) if g(x) ≥ 0
∞ otherwise.

Now the min-max primal problem is

minimize
x∈X L∗(x).

If we ignore the regions where L∗ is infinite, then this problem becomes our original con-
strained problem

minimize f (x)

subject to g(x) ≥ 0

x ∈ X.
Thus the original constrained nonlinear problem is represented as a min-max problem.
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We can now utilize min-max duality to formulate a dual problem. For any λ ≥ 0 the
dual function is defined as

L∗(λ) = min
x∈X L(x, λ).

The resulting max-min dual problem becomes

maximize
λ≥0

L∗(λ).

This is the nonlinear dual problem, with dual variables λ. More explicitly, the dual problem
can be written in the form

maximize
λ≥0

min
x∈X [f (x)− λ

Tg(x)].

Throughout this discussion we have assumed that in the original problem, all the con-
straints involving { gi } are inequalities. There is no conceptual difficulty if some constraints
are equalities, however. If some gi is required to be exactly zero, then in the definition of
the dual function its associated multiplier λi will be unrestricted in sign.

We now give an example. Unless stated otherwise, in the examples in this section we
assume that the set X is the entire space �n.
Example 14.30 (Dual Problem). Consider the problem

minimize f (x) = x2

subject to x ≥ 1.

The solution to this problem is x∗ = 1. The Lagrangian function is

L(x, λ) = x2 − λ(x − 1).

Therefore the dual function is

L∗(λ) = min
x

L(x, λ) = min
x
[x2 − λ(x − 1)]

for λ ≥ 0. The function on the right is a quadratic in x whose minimizer is x = λ/2. Thus
the dual function takes the form

L∗(λ) = λ− 1
4λ

2

for λ ≥ 0. The dual problem is therefore

maximize
λ≥0

λ− 1
4λ

2.

It is easy to see that the solution is λ∗ = 2, which is indeed the Lagrange multiplier
corresponding to x∗. The optimal dual objective value is L∗(λ∗) = 1, and it is equal to the
optimal objective value f (x∗).

In this example we succeeded in obtaining an explicit expression for the dual function.
Unfortunately, this will not always be possible, as is demonstrated in the following example.
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Example 14.31 (Dual Function Not Available Explicitly). Consider the problem

minimize f (x) = ex

subject to 1 − x2 ≥ 0.

The dual function is

L∗(λ) = min
x

L(x, λ) = min
x
ex − λ(1 − x2).

For any fixed λ ≥ 0, the function ex − λ(1 − x2) is convex, and hence any local minimizer
will also be a global minimizer. This minimizer is the solution x = x(λ) of the nonlinear
equation

ex + 2xλ = 0.

For a given value λ, the solution can be found numerically, but this solution cannot be
expressed as an explicit function of λ. The dual problem is thus

maximize
λ≥0

ex − λ(1 − x2),

where x solves
ex + 2xλ = 0.

Equivalently, we can write this problem in the form

maximize
x,λ

ex − λ(1 − x2)

subject to ex + 2xλ = 0
λ ≥ 0.

If we represent the primal problem in the form

minimize f (x) = ex

subject to −1 ≤ x ≤ 1,

then the dual can be written explicitly. Thus the form of the dual depends on the particular
way in which the primal is written.

Examples of problems where the dual function cannot be given explicitly are common.
The statement of the dual problem may include the original variables as well as the dual
variables. Thus we define a point (x̄, λ̄) to be dual feasible if x̄ ∈ X, λ̄ ≥ 0, and x̄ minimizes
L(x, λ̄). In the previous example the point (x̄, λ̄) = (−1, 1

2e
−1) is a dual feasible solution.

Let us now examine the relationship between a nonlinear problem and its dual. If x
is feasible to the primal problem, then L∗(x) = f (x), and if (x̄, λ̄) is feasible to the dual
problem, then L∗(λ̄) = L(x̄, λ̄). From weak duality, we know that L∗(λ̄) ≤ L∗(x). We
therefore obtain the following theorem.

Theorem 14.32 (Weak Duality). Let x be a feasible solution to the primal problem (14.6),
and let (x̄, λ̄) be a feasible solution to its dual problem. Then

f (x̄)− λ̄Tg(x̄) ≤ f (x).

The following is a consequence of the weak duality theorem.
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Corollary 14.33.

max
λ≥0

L∗(λ) ≤ min
x∈X

{ f (x) : g(x) ≥ 0 } .

If we define the dual problem to be infeasible when L∗(λ) = −∞ for all λ ≥ 0, then
we have the following corollary.

Corollary 14.34. If a (primal) nonlinear optimization problem is unbounded, then its dual
is infeasible. If the dual is unbounded, then the primal is infeasible.

Corollary 14.33 states that the optimal objective value of the primal problem is greater
than or equal to the optimal value of the dual problem. In Example 14.30 the optimal
objective values of the primal and dual problems were equal. This may lead us to believe
that, just as in linear programming, this result will always be true whenever an optimal
solution to the problems exists. This is not the case, however. There are problems for which
a duality gap exists, where the optimal value of the primal is strictly greater than the optimal
value of the dual. This is illustrated in the next example.

Example 14.35 (Duality Gap). Consider the problem

minimize f (x) = −x2

subject to x = 1
x ∈ X,

where X = { x : 0 ≤ x ≤ 2 }. The solution is clearly x∗ = 1 with optimal objective
value −1.

Denote by λ the Lagrange multiplier associated with the constraint x = 1. Because
the constraint is an equality, λ is no longer restricted to being nonnegative. The Lagrangian
function is

L(x, λ) = −x2 − λ(x − 1), x ∈ X, −∞ ≤ λ ≤ ∞.

The dual function is

L∗(λ) = min
x∈X L(x, λ) = min

0≤x≤2
−x2 − λ(x − 1).

The function −x2 − λ(x − 1) has no local minimizer, and hence it will attain its minimum
in X either at x = 0 or at x = 2. Comparing function values, we obtain

L∗(λ) =
{
λ if λ < −2
−4 − λ if λ ≥ −2.

The dual function is depicted in Figure 14.9. The maximum of the dual function is at
λ∗ = −2. At this point the optimal dual objective is L∗(λ∗) = −2. Since the optimal
primal objective is −1, the two optimal objective values are not equal. The duality gap is
the difference f (x∗)− L∗(λ∗) = 1.

It is possible also to construct examples with an infinite duality gap, as the next
example shows.
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Figure 14.9. Dual function.

Example 14.36 (Infinite Duality Gap). Consider the problem

minimize f (x) = −x2

subject to 0 ≤ x ≤ 1.

The solution is x∗ = 1 with corresponding Lagrange multiplier λ∗1 = 0 for the lower bound
constraint and λ∗2 = 2 for the upper bound constraint. The Lagrangian function is

L(x, λ) = −x2 − λ1x − λ2(1 − x),
and the dual function is

L∗(λ1, λ2) = min
x

L(x, λ) = min
x
[−x2 − λ1x − λ2(1 − x)] = −∞

for all λ1 ≥ 0 and λ2 ≥ 0. Therefore the dual problem

maximize
λ

L∗(λ1, λ2)

has an optimal objective value of −∞.

Under what conditions are the optimal primal and dual objectives guaranteed to be
equal? The strong duality theorem of the previous section indicates that this will be true if
and only if there is some point (x∗, λ∗) that satisfies the saddle-point condition

L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗)

for all x ∈ X and λ ≥ 0. The last two examples show that it is possible that no (x∗, λ∗)
satisfies the saddle-point condition, even if the problem has an optimal solution.

There is one important class of problems for which, under mild conditions, the saddle-
point condition is guaranteed to be satisfied. These are problems of the form

minimize f (x)

subject to gi(x) ≥ 0, i = 1, . . . , m,
(14.7)

where f is a convex function and each gi is a concave function. Such problems are con-
vex optimization problems. (The result can be extended to include linear equalities; see
Example 14.38.)
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Theorem 14.37 (Convex Duality). Consider the convex optimization problem (14.7) in
which all functions are assumed to be continuously differentiable. Let x∗ be a solution to
the problem, and assume that x∗ is a regular point of the constraints. Let λ∗ be the vector
of Lagrange multipliers corresponding to x∗. Then (x∗, λ∗) is dual feasible, λ∗ solves the
dual problem, and the optimal primal and dual function values are equal.

Proof. It is sufficient to show that (x∗, λ∗) satisfies the saddle-point condition for L.
Since f is convex, gi are concave, and λ∗ ≥ 0, the function

L(x, λ∗) = f (x)− λTg(x)
is a convex function of x. Consequently, the first-order optimality condition

∇xL(x∗, λ∗) = 0

implies that x∗ minimizes L(x, λ∗), and hence

L(x∗, λ∗) ≤ L(x, λ∗)

for all x. In addition, the complementary slackness conditions at x∗ imply thatλ∗Tg(x∗) = 0.
Thus L(x∗, λ∗) = f (x∗), and for any λ ≥ 0 we have

L(x∗, λ) = f (x∗)− λTg(x∗) ≤ f (x∗) = L(x∗, λ∗).

Therefore
L(x∗, λ) ≤ L(x∗, λ∗) ≤ L(x, λ∗)

and (x∗, λ∗) satisfies the saddle-point condition.

The problem of Example 14.30 is convex, and indeed the optimal primal and dual
objectives are equal. In Examples 14.35 and 14.36, where we observed a duality gap, the
problems are not convex. It is also possible to construct examples of problems which are
not convex, but where the duality gap is zero.

14.8.3 Wolfe Duality

When all problem functions are continuously differentiable, the dual of a convex problem
can be represented in a more convenient form. For any fixed λ, the point x̄ minimizes
L(x, λ) if and only if

∇xL(x, λ)|x=x̄ = 0.

Because of this we can state the dual in the form

maximize
x,λ≥0

L(x, λ)

subject to ∇xL(x, λ) = 0.

This representation is sometimes called the Wolfe dual.
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Example 14.38 (Dual of a Linear Program). Consider the linear program

minimize f (x) = cTx

subject to Ax = b

x ≥ 0.

Denoting by y the vector of Lagrange multipliers for the linear equalities, and by λ ≥ 0 the
vector of Lagrange multipliers for the nonnegativity constraints, we obtain the Lagrangian

L(x, y, λ) = cTx − yT(Ax − b)− λTx.

The dual problem is

maximize
λ≥0

L(x, y, λ) = cTx − yT(Ax − b)− λTx
subject to c − ATy − λ = 0.

The equality constraint implies that cTx − yTAx − λTx = 0. Substituting this into the dual
objective, the dual problem may be rewritten in the form

maximize bTy

subject to ATy ≤ c

which is equivalent to the dual of a linear program in standard form.

The dual of a linear program is a linear program. The next example shows that the
dual of a strictly convex quadratic program is a quadratic program.

Example 14.39 (Dual of a Quadratic Program). Consider the quadratic program

minimize f (x) = 1
2x

TQx + cTx
subject to Ax ≥ b,

where Q is a positive-definite matrix. This is a convex problem, and hence the Wolfe dual
problem exists:

maximize
x,λ

1
2x

TQx + cTx − λT(Ax − b)
subject to Qx + c − ATλ = 0

λ ≥ 0.

It follows from the equality constraint that x = Q−1(ATλ − c). When this is used to
eliminate x, the resulting dual problem involves only λ:

maximize
λ

− 1
2λ

T(AQ−1AT )λ+ (AQ−1c + b)Tλ− 1
2c
TQ−1c

subject to λ ≥ 0.

This is also a quadratic program.
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14.8.4 More on the Dual Function

The correspondence between the solutions of the primal and dual problems has useful im-
plications. First, the dual problem could be used to obtain estimates of the optimal Lagrange
multipliers. Good multiplier estimates could in turn provide good solution estimates for the
primal. Alternatively, if deemed more convenient, the dual instead of the primal problem
could be solved directly.

For convex problems (14.7), there is a correspondence between the primal and dual
solutions. As we have already seen, for nonconvex problems such a correspondence may
not hold. Nevertheless, it is possible in certain cases to define a local duality theory. We
use the name “local duality” because we restrict the problem to a neighborhood of a local
solution. To obtain the primal/dual correspondence we assume that the Lagrangian at the
local solution is strictly convex. In this section we develop the local duality theory. We also
study properties of the dual function that are useful in algorithms.

First, we show that the dual function is concave. Surprisingly, this property holds
even if the primal problem is not convex. To prove this result, let λ1 and λ2 be any two
nonnegative multipliers, and let α be a scalar such that 0 ≤ α ≤ 1. Then

L∗(αλ1 + (1 − α)λ2)

= min
x∈X

{
f (x)− (αλ1 + (1 − α)λ2)

Tg(x)
}

= min
x∈X

{
α[f (x)− λT1g(x)] + (1 − α)[f (x)− λT2g(x)]

}
≥ αmin

x∈X
{
f (x)− λT1g(x)

}+ (1 − α)min
x∈X

{
f (x)− λT2g(x)

}
= αL∗(λ1)+ (1 − α)L∗(λ2),

and so the dual function is concave.
The concavity of the dual function is an appealing property, since it implies that every

local maximizer of the dual function is also a global maximizer. It suggests also that an
algorithm for solving the dual may not encounter some of the difficulties associated with
maximizing a nonconcave function (these difficulties are similar to those incurred when
minimizing a nonconvex function). Note that solving the dual only gives bounds on the
primal objective unless the duality gap is known to be zero. The latter will be true for a
convex optimization problem under the assumptions stated in Lemma 14.10. It will also be
true under the convexity assumptions of the local duality theory presented below.

To develop the local duality theory we consider the problem

minimize f (x)

subject to gi(x) ≥ 0, i = 1, . . . , m,
(14.8)

where f and all gi are twice continuously differentiable. Let x∗ be a local solution to
this problem, and assume that it is a regular point. Let λ∗ be the corresponding vector of
Lagrange multipliers, so that

∇L(x∗, λ∗) = ∇f (x∗)− ∇g(x∗)λ∗ = 0.

We will now require the assumption that the Lagrangian Hessian

∇2
xxL(x∗, λ∗)
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is positive definite. This assumption is stronger (that is, more restrictive) than the assumption
made in the second-order sufficiency conditions that the reduced Lagrangian Hessian is
positive definite.

Consider the system of equations

∇L(x, λ) = ∇f (x)− ∇g(x)λ = 0.

The system has a solution (x∗, λ∗), and its Jacobian with respect to x at this point, the
matrix ∇2

xxL(x∗, λ∗), is positive definite. It follows from the implicit function theorem
(see Appendix B.9) that there exist neighborhoods of x∗ and λ∗ such that every λ in the
neighborhood of λ∗ has a unique corresponding point x = x(λ) in the neighborhood of x∗
that solves this system of equations, and furthermore, ∇2

xxL(x, λ) is positive definite. Let
us denote such a neighborhood of x∗ by X. Then every λ sufficiently close to λ∗ has a
unique corresponding x that is the global minimizer of L(x, λ) in X. Suppose now that we
restrict our attention to the solution of (14.8) in the neighborhood X of x∗. Then the primal
problem can be written locally as

minimize
x∈X f (x)

subject to gi(x) ≥ 0.

The dual function for this local problem takes the form

L∗(λ) = min
x∈X L(x, λ).

When λ is sufficiently close to λ∗,

L∗(λ) = L(x(λ), λ) = f (x(λ))− λTg(x(λ)), (14.9)

where x(λ) is the unique point near x∗ such that

∇f (x(λ))− ∇g(x(λ))λ = 0.

The problem
maximize

λ≥0
L∗(λ)

is termed the local dual problem. The equality of the local optimal primal and dual objective
values is established in the following theorem.

Theorem 14.40 (Local Duality). Consider the problem (14.8) in which all functions are
assumed to be twice continuously differentiable. Let x∗ be a local solution to the problem
that is a regular point of the constraints. Let λ∗ be the corresponding vector of Lagrange
multipliers, and assume that ∇2

xxL(x∗, λ∗) is positive definite. Then λ∗ is a solution of
the local dual problem, (x∗, λ∗) is dual feasible, and the optimal primal and dual function
values are equal.

Proof. We prove that (x∗, λ∗) satisfies the saddle-point condition for the Lagrangian. The
results then follow from the strong duality theorem.
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Because ∇xL(x∗, λ∗) = 0 and ∇2
xxL(x∗, λ∗) is positive definite, x∗ minimizes

L(x, λ∗), and
L(x∗, λ∗) ≤ L(x, λ∗)

for all x ∈ X. Also, because λ ≥ 0 and g(x∗) ≥ 0, and because of the complementary
slackness at x∗,

L(x∗, λ) = f (x∗)− λTg(x∗) ≤ f (x∗) = L(x∗, λ∗)

for all λ ≥ 0. Therefore (x∗, λ∗) satisfies the saddle-point condition.

As already mentioned, for λ sufficiently close to λ∗, the dual function takes the form
(14.9), where x(λ) is the minimizer of the Lagrangian close to x∗. It is not necessary to
specify a setX explicitly to compute the point x(λ) and the corresponding value of the dual
function L∗(λ).

Example 14.41 (Local Duality). Consider the problem

minimize f (x) = −3x

subject to 1 − x3 ≥ 0.

The optimal point is clearly x∗ = 1 and the corresponding objective value is −3. The
Lagrangian function for the problem is

L(x, λ) = −3x − λ(1 − x3),

and the first-order necessary condition

∇xL(x, λ) = −3 + 3λx2 = 0

at x∗ yields λ∗ = 1.
The dual function is

L∗(λ) = min
x

L(x, λ) = min
x
{−3x − λ(1 − x3)} = −∞

for all λ ≥ 0, and hence the dual problem is infeasible. Notice, however, that

∇2
xxL(x, λ) = 6λx �⇒ ∇2

xxL(x∗, λ∗) = 6 > 0

and as a result, the local duality theorem applies. We thus focus on the problem restricted to
an appropriate neighborhood of x∗. To find a local minimizer of the Lagrangian for λ close
to λ∗ = 1, note that

∇xL(x, λ) = −3 + 3λx2 = 0 �⇒ x2 = 1/λ.

Since∇2
xxL(x, λ) is positive definite when both x and λ are positive, then x = x(λ) = 1/

√
λ

is the minimizer of L(x, λ) for λ > 0. It follows that the local dual function has the form

L∗(λ) = −2/
√
λ− λ

for λ > 0. Since

∇L∗(λ∗) = (λ∗)−1.5 − 1 = 0 and ∇2L∗(λ∗) = −1.5(λ∗)−2.5 = −1.5 < 0,

then λ∗ = 1 is indeed the maximizer of L∗(λ). Furthermore, x(λ∗) = x∗ = 1 and L∗(λ∗) =
−3 = f (x∗).
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The equality of the primal and dual objectives, combined with the concavity of the dual
function, suggest that solving the dual problem could be a sensible alternative to solving the
primal. However, a potential difficulty in this approach is that the dual function is not usually
available in explicit form. The evaluation of L∗ at a point λ may require the solution of the
optimization problem minx L(x, λ), and so the dual function can be expensive to compute.
Despite this, given the value of the dual function at some point λ close to λ∗, its first and
second derivatives at that point can be computed readily. The assumption that is needed
again is positive-definiteness of ∇2

xxL(x∗, λ∗). It follows then from the implicit function
theorem that x(λ) is twice continuously differentiable for λ close to λ∗. This result is used
below.

To compute the derivatives of the dual function, we note that in a neighborhood of λ∗
it can be written in the form

L∗(λ) = L(x(λ), λ) = f (x(λ))− λTg(x(λ)).
To obtain the gradient of this function we use the chain rule:

∇L∗(λ) = ∇x(λ)∇xL(x(λ), λ)+ ∇λL(x(λ), λ),
where ∇x(λ) is an m × n matrix whose j th column is ∇λxj (λ). Now ∇xL(x(λ), λ) = 0
because x(λ) is the minimizer of the Lagrangian. Also, ∇λL(x, λ) = −g(x). Therefore we
obtain

∇L∗(λ) = −g(x(λ)),
or in short

∇L∗ = −g.
To obtain the second derivative, we differentiate ∇L∗(λ). Using the previous result and the
chain rule, we obtain

∇2L∗(λ) = −∇x(λ)∇g(x(λ)).
Although we do not have an explicit expression for x(λ), we can obtain an expression for
its gradient. Since

∇xL(x(λ), λ) = 0

for all λ, we can differentiate this equality with respect to λ to obtain

∇x(λ)∇2
xxL(x(λ), λ)+ ∇λxL(x(λ), λ)T
= ∇x(λ)∇2

xxL(x(λ), λ)− ∇g(x(λ))T = 0.

This implies that
∇x(λ) = ∇g(x(λ))T[∇2

xxL(x(λ), λ)]−1,

and hence
∇2L∗(λ) = −∇g(x(λ))T[∇2

xxL(x(λ), λ)]−1∇g(x(λ)).
By omitting the function arguments, we can write this compactly as

∇2L∗ = −∇gT[∇2
xxL]−1∇g.
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Example 14.42 (Derivatives of the Dual Function). Consider the quadratic programming
problem of Example 14.39. In this case x(λ) is available explicitly: x(λ) = Q−1(ATλ− c).
Using the above formulas with g(x) = Ax − b we obtain

∇L∗(λ) = −g(x(λ)) = −(A(x(λ))− b) = −AQ−1ATλ+ AQ−1c + b.
Also, since ∇g(x) = AT and ∇2L(x, λ) = Q, we obtain that

∇2L∗ = −∇gT[∇xxL]−1∇g = −AQ−1AT.

The same results could be obtained directly by differentiating the quadratic objective of the
dual problem.

14.8.5 Duality in Support Vector Machines

Duality plays an important role in pattern classification via support vector machines, a
problem that was presented in Section 1.7.2. Suppose that we have a set ofm training points
xi ∈ �n that are classified by a scalar yi , where yi = 1 if xi has a specified characteristic,
and yi = −1 if it does not. We wish to find a separating hyperplane of the form wTx + b,
so that all points with yi = 1 lie on one side of the hyperplane, all points with yi = −1 lie
on the other side, and with the margin of separation as large as possible. This separating
hyperplane will serve as a “machine” that predicts the classification of any new point x̄
based on the sign of wTx̄ + b.

We will assume that our training data might not be separable, and we denote the
violation of the margin by ξ . Our problem is to find an n-dimensional vector w, an n-
dimensional vector ξ , and a scalar b that solve the quadratic program

minimize 1
2w

Tw + C
m∑
i=1

ξi

subject to yi(x
T
i w + b) ≥ 1 − ξi, i = 1, . . . , m,

ξi ≥ 0.

Here C is a penalty coefficient representing the trade-off between misclassification and a
wide separation margin.

To define the dual of this problem it will be convenient to represent the problem
constraints in matrix-vector form. Denote by X the n × m matrix whose columns are the
training vectors xi . Let Y = diag (y) be a diagonal matrix whose ith diagonal term is yi ,
and let e = ( 1 · · · 1 )T be a vector of length m whose entries are all equal to one. Then
the problem becomes

minimize 1
2w

Tw + CeTξ
subject to YXTw + yb ≥ e − ξ

ξ ≥ 0.

Let α and η be the m-dimensional vectors of Lagrange multipliers corresponding to the
hyperplane constraints and the constraints ξ ≥ 0, respectively. Setting the gradient of the
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Lagrangian to zero implies that

w = XYα =
m∑
i=1

αiyixi .

The dual problem is therefore given by

maximize
m∑
i=1

αi − 1
2α

T(YXTXY)α

subject to
m∑
i=1

yiαi = 0

αi + ηi = C

α, η ≥ 0

(see the Exercises). The problem can be written just in terms of α as

maximize
m∑
i=1

αi − 1
2α

TYXTXYα

subject to
m∑
i=1

yiαi = 0

0 ≤ αi ≤ C.

The dual, like the primal, is a quadratic problem. However, it is usually easier to solve be-
cause, with the exception of one equality, all constraints are simple upper and lower bounds.

From complementary slackness, any αi that is positive corresponds to a binding
hyperplane constraint, and hence the corresponding point xi is a support vector. We will
denote the set of support vectors by SV . The coefficients of the hyperplane w can then be
computed as

w =
∑
i∈SV

αiyixi .

Complementary slackness also implies that if αj < C, then ξj = 0. Thus any point xj for
which 0 < αj < C satisfies yj (wTxj − b) = 1. Any such point can be used to compute the
value of b:

b = wTxj − yj =
∑
i∈SV

αiyix
T
i xj − yj .

If there are several such points, the average computed value of b is commonly taken to
ensure the highest accuracy.

The significance of the dual formulation, however, is not just its computational ease.
It also allows us to expand the power of support vector machines to data that are not linearly
separable.

Consider, for example, the points shown on the left-hand side of Figure 14.10. They
are clearly not separable by a linear equation, and it seems more plausible to separate them
by a quadratic equation, say an ellipse centered at the origin, as is shown in the figure on
the right. For every point x = (x1, x2) ∈ �2, the quadratic equation would involve some
linear combination of the terms x2

1 , x1x2, and x2
2 . If we transformed each two-dimensional

data vector x into the higher-dimensional “feature” vector �(x) = ( x2
1 x1x2 x2

2 )
T , we
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Figure 14.10. Nonlinear support vector machines.

could consider a three-dimensional hyperplane of the form �(x)Tw + b that separates the
feature vectors corresponding to the data. The coefficients of the hyperplane would in turn
provide the coefficient of the best ellipse that separates the data. We could also generalize
this idea to define other separating nonlinear functions such as higher-order polynomials,
which would involve even more “features.”

While this idea is appealing, the dimensionality of the problem could easily explode.
The problem of separating an n-dimensional set of data by an ellipsoid centered at the origin
is transformed into a separating hyperplane problem of dimension n(n+ 1)/2. Separation
by higher-order polynomials makes the problem substantially larger. For many applied
problems, such as voice recognition or face recognition, the dimension of the data is so
large as to make this prohibitive. Luckily the dual formulation offers an approach for
efficient computation.

Suppose that we mapped the lower-dimensional points x to points �(x) in some
higher-dimensional space (called “feature space”) and suppose that we used a separating
hyperplane for the points�(x) in feature space. The dual to the resulting problem would be

maximize
m∑
i=1

αi − 1
2α

TY (�(X)T�(X))Yα

subject to
m∑
i=1

yiαi = 0

0 ≤ αi ≤ C,

where �(X) is the matrix whose columns are �(xi).
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We now make the observation that the only way the data appear in the dual problem
is through the matrix�(X)T�(X)whose elements areK(xi, xj ) = �(xi)

T�(xj ). It would
be advantageous to have an efficient way to compute inner products of the form

K(x, z) = �(x)T�(z)

for any two points x and z without going through the trouble of forming �(x) and �(z).
Consider the above problem of separating the data by an ellipse. With �(x) =

( x2
1 x1x2 x2

2 )
T there are no special savings to be gained in computing the inner product

of transformed points. Suppose instead that we defined the transformation to be �(x) =
( x2

1

√
2x1x2 x2

2 )
T . Then we would still transform the data space to the same feature

space, but now, the computation of K(x, z) is easy, since K(x, z) = �(x)T�(z) = (xTz)2.
Notice that the inner product is computed in the lower-dimensional input space rather than
the higher-dimensional feature space, and it does not require explicit construction of the �
vectors. In fact, as long as our functionK(x, z) corresponds to inner products of� vectors,
we do not even need to know the exact form of � to compute K(x, y), nor do we need to
formulate and solve the dual problem. Furthermore, the classification of any new test point
x̄ does not require explicit construction of � vectors either. The decision is determined by
the sign of wT�(x̄)+ b. From the formula w =∑

i∈SV αiyi�(xi) we find that

wT�(x̄)+ b =
∑
i∈SV

αiyi�(xi)
T�(x̄)+ b =

∑
i∈SV

αiyiK(xi, x̄)+ b.

The computation requires only the productsK(xi, x̄) and does not require that the�’s (or the
vector w) be constructed explicitly. (Note that the computation of b requires only products
of the form K(xi, xj ); see the Exercises.)

The function K(x, z) = �(x)T�(z) is called the kernel of the machine. Our interest
is in kernel functions that can be computed efficiently without constructing �. In fact
we will not even be concerned with the specific form of �. The question is, under what
conditions is a given function K(x, z) an admissible kernel? The answer is given in a
theorem due to Mercer. Simplified, it states that the matrix of all inner products of any
number of points in the data space must be positive semidefinite. Examples of kernels
that meet the Mercer condition are the homogeneous polynomial kernel K(x, z) = (xTz)p

and the nonhomogeneous polynomial kernel K(x, z) = (xTz + 1)p, both for any positive
integerp. If, for example, we wish to separate a set of data by a cubic polynomial, we would
use p = 3 without worrying about the precise form of the underlying � vector. Another
admissible kernel is the widely used Gaussian radial-based kernel

K(x, z) = e−‖x−z‖2/2.

The associated � vector would be hard to construct since it corresponds to an infinite-
dimensional feature space. Another example is the sigmoidal kernelK(x, z) = tanh(γ xTz+
μ), which is admissible for any positive scalars γ and μ.

Support vector machines have been successfully used in a wide range of applications.
The search for appropriate kernels is a crucial part of effective classification. It is the dual
viewpoint that makes this so successful.
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Exercises
8.1. Consider the problem

minimize f (x) = ex

subject to x ≥ 1.
What is the solution to this problem? Formulate and solve the dual problem. For-
mulate the dual to the dual problem and show that it is equivalent to the primal
problem.

8.2. Consider the problem of Example 14.30. Formulate the dual to the dual problem and
show that it is equivalent to the primal problem.

8.3. Suppose that in the problem of Example 14.35 the constraints 0 ≤ x ≤ 2 are treated
explicitly. What would be the dual problem?

8.4. (Fletcher (2000)) Consider the problem

minimize f (x) = 1
2ηx

2
1 + 1

2x
2
2 + x1

subject to x1 ≥ 0.

Determine the solution to this problem for the cases η = 1 and η = −1. For each of
the two cases, formulate the dual and determine whether its local solution gives the
Lagrange multipliers at the optimal primal solution.

8.5. Consider the problem

minimize
x∈X f (x) =

n∑
i=1

xi log(xi/ci)

subject to Ax = b,

where the constants { ci } are positive, A is a matrix of full row rank, and X =
{ x : x > 0 }. What is the dual to this problem? Determine expressions for the first
and second derivatives of the dual function.

8.6. Consider the problem
minimize f (x) = −3x

subject to 1 − x3 ≥ 0
presented in Example 14.41. Formulate and solve the dual to the problem using each
of the following sets. In each case compare the solution of the dual to the solution
of the local dual in Example 14.41.

(i) X = { x : 0.5 ≤ x ≤ 1.5 };
(ii) X = { x : 0 < x };

(iii) X = { x : −1 ≤ x }.
8.7. Formulate the dual to the following problem:

minimize f (x) =
n∑
i=1

|xi − ai |

subject to
n∑
i=1

xi = 0.

Solve the dual problem, then determine the solution to the primal problem.
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8.8. Let x∗ be an optimal solution to problem (14.6), and assume that it is a regular point
of the constraints. Let λ∗ be an optimal solution to the dual problem, and suppose
that f (x∗) = L∗(λ∗). Prove that λ∗ is the vector of optimal Lagrange multipliers
corresponding to x∗.

8.9. Verify the formulas for the first and second derivatives of the dual function.

8.10. Consider the least-squares problem

minimize f (x) =
n∑
i=1

1
2 (xi − x̄i )2

subject to x1 ≥ x2 ≥ · · · ≥ xn,

where x̄i are given constants. Find an explicit form for the dual problem for the case
n = 4. Generalize this result for all n.

8.11. Consider the problem
minimize f (x)

subject to g(x) ≥ 0,

where f is a convex function and g is a vector of concave functions. Let (x̄, λ̄) be
a dual feasible solution for this problem. Determine a lower bound on the optimal
objective value f (x∗).

8.12. Verify the formulation of the dual to the separating hyperplane problem.

8.13. Suppose you wish to separate a set of n-dimensional training points by a polynomial
of degree 4. What would be the size of the feature space?

8.14. Let K(x, z) be the kernel of a nonlinear support vector machine, and suppose an
optimal solution α to the dual problem is found. Describe how the coefficient b can
be computed without explicitly computing w.

14.9 Historical Background
The foundations of nonlinear optimization were developed in the eighteenth and nineteenth
centuries in the study of the calculus of variations. The calculus of variations solves op-
timization problems whose parameters are not simple variables, but rather functions. For
example, how should the shape of an automobile hood be chosen so as to minimize air
resistance? Or, what path does a ray of light follow in an irregular medium? The calculus
of variations is closely related to optimal control theory, where a set of “controls” is used to
achieve a certain goal in an optimal way. For example, the pilot of an aircraft might wish to
use the throttle and flaps to achieve a particular cruising altitude and velocity in a minimum
amount of time or using a minimum amount of fuel. We are surrounded by devices designed
using optimal control—in cars, elevators, heating systems, audio systems, etc.

The calculus of variations was inspired by problems in mechanics, especially the
study of three-dimensional motion. It was used to derive many important laws of physics.
This was done using the principle of least action. Action is defined to be the integral of the
product of mass, velocity, and distance. The principle of least action asserts that nature acts
so as to minimize this integral. To apply the principle, the formula for the action integral
would be specialized to the setting under study, and then the calculus of variations would be
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used to optimize the integral. This general approach was used to derive important equations
in mechanics, fluid dynamics, and other fields.

The most famous problem in the calculus of variations was posed in 1696 by John
Bernoulli. It is called the brachistochrone (“least time”) problem, and it asks that we find
the shape of the curve down which a bead will slip from one point to another in the least
time when accelerated only by gravity. The solution to the brachistochrone problem can be
found by solving

minimize
x(t)

1√
2g

∫ t2

t1

√
1 + x ′(t)2
x(t)

dt,

where g is the gravitational constant. If this were a finite-dimensional problem, then it could
be solved by setting the derivative of the objective function equal to zero, but seventeenth-
century mathematics did not know how to take a derivative with respect to a function.

The brachistochrone problem was solved at the time by Newton and others, but the
general techniques that inspired the name “calculus of variations” were not developed until
several decades later. The first major results were obtained by Euler in the 1740s. He
considered various problems of the general form

minimize
x(t)

∫ t2

t1

f (t, x(t), x ′(t))dt.

The brachistochrone problem is of this form. Euler solved these problems by discretizing
the solution x(t)—approximating the solution by its values at finitely many points. This
gave a finite-dimensional problem that could be solved using the techniques of calculus.
Euler then took the limit of the approximate solutions as the number of discretization points
tended to infinity. This approach was effortful and restrictive because it had to be adapted to
the specifics of the problem being solved, and because there were restrictions on the types
of problems for which it was successful.

Far more influential was the approach of Lagrange. He suggested that the solution
be perturbed or “varied” from x(t) to x(t) + εy(t), where ε is a small number and y(t) is
some arbitrary function that satisfies y(t1) = y(t2) = 0. For the brachistochrone problem
this latter condition ensures that the perturbed function still represents a path between the
two points.

If x(t) is a solution to the problem

minimize
x(t)

∫ t2

t1

f (t, x(t), x ′(t))dt,

then ε = 0 will be a solution to

minimize
ε

∫ t2

t1

f (t, x(t)+ εy(t), x ′(t)+ εy ′(t)) dt.

This observation allowed Lagrange to convert the original infinite-dimensional problem to
a one-dimensional problem that could be analyzed using ordinary calculus. Setting the
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derivative of the integral with respect to ε equal to zero at the point ε = 0 leads to the
equation

d

dt

∂f

∂x ′
− ∂f

∂x
= 0.

This final condition is a first-order optimality condition for an unconstrained calculus-of-
variations problem. It was first discovered by Euler, but the derivation here is due to
Lagrange.

The name “calculus of variations” was chosen by Euler and was inspired by Lagrange’s
approach in “varying” the function x(t). The optimality condition is stated as “the first
variation must equal zero” by analogy with the condition f ′(x) = 0 for a one-variable
optimization problem. Euler was so impressed with Lagrange’s work that he held back his
own papers so that Lagrange could publish first, a magnanimous gesture by the renowned
Euler towards the then young and unknown Lagrange.

There are additional first-order optimality conditions for calculus-of-variations prob-
lems. The theory is more complicated than for finite-dimensional optimization, and the
necessary and sufficient conditions for an optimal solution were not fully understood until
the 1870s, when Weierstrass studied this topic. A discussion of this theory can be found in
the book by Gregory and Lin (1992, reprinted 2007).

Constraints can be added to problems in the calculus of variations just as in other
optimization problems. Aconstraint might represent the principle of conservation of energy,
or perhaps that the motion was restricted in some way, for example, that a planet was traveling
in a particular orbit around the sun.

Both Euler and Lagrange considered problems of this type, and both were led to the
concept of a multiplier. In the calculus of variations the multiplier might be a scalar (as it
is in finite-dimensional problems) or, depending on the form of the constraint, it might be a
function of the independent variable t . They have come to be called “Lagrange multipliers”
but, as with the optimality condition, Euler discovered them first.

In his book Mécanique Analytique (1778), Lagrange includes an interpretation of the
multiplier terms. He writes that they can be considered as representing the moments of
forces acting on the moving particle, and serve to keep the constraints satisfied. This point
of view is the basis for duality theory, although Lagrange does not seem to have followed
up on this idea.

Euler and Lagrange considered only problems with equality constraints, but later
authors allowed inequality constraints as well. When specialized to finite-dimensional
problems, the optimality condition is referred to as the Karush–Kuhn–Tucker condition.
Kuhn and Tucker derived this result in a 1951 paper. It was later discovered that Karush
had proven the same result in his Master’s thesis (1939) at the University of Chicago in
the department headed by Bliss. We mention two aspects of his result: its treatment of
inequality constraints, and the assumption or “constraint qualification” that was used to
prove it. The first idea can be traced to Weierstrass and the second to Mayer, and both
are outgrowths of the calculus of variations. (There are actually earlier examples of these
results, due to Cauchy (1847a) and Gauss (1850–51), but these were isolated results and do
not seem to have been influential.)

In the 1870s Weierstrass studied the calculus of variations and presented lectures on
the results of his investigations. Weierstrass did not publish his work, and it only became
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widely known years later through the writings of those in attendance. According to the book
by Bolza (1904, reprinted 2005), Weierstrass converted the inequality constraint

g(x) ≤ 0

into an equivalent equality constraint

g(x)+ s2 = 0

using a squared “slack” variable s. He then applied Lagrange’s results to obtain the opti-
mality conditions (see the Exercises in Section 14.7). This technique is described in many
sources dating from 1900 onward. Bolza later became a professor at the University of
Chicago, establishing a connection between Weierstrass, Bliss, and Karush. Karush used
this technique in his thesis.

The constraint qualification used by Karush, Kuhn, and Tucker relates feasible arcs
(paths of feasible points leading to the solution) to the gradients of the constraints at the
solution. This same condition was used by Mayer in 1886, although applied to a calculus-
of-variations problem with equality constraints, and then in a chain of papers by various
authors (including Bliss) leading to Karush’s thesis. In these papers it is called a “normality”
condition, and it is equivalent to requiring that the matrix of constraint gradients at the
solution be of full rank. The implicit function theorem (see Appendix B.9) can be used to
relate this to the condition on feasible arcs, an observation that is explicit in Mayer’s work.

Duality theory did not become fully developed until the early 20th century, with
many of the important steps coming from the calculus of variations. At first there were
only isolated examples of duality. That is, someone would notice that a pair of problems—
one a maximization problem, one a minimization problem—would have optimal solutions
that were related to each other. An early example of this type was published in 1755 and
is described in the paper by Kuhn (1991). In the 19th century various other examples
were noticed, such as the relationship between currents and voltages in an electrical circuit.
Gradually it was understood that duality was not an accidental phenomenon peculiar to
these examples, but rather a general principle that applied to wide classes of optimization
problems. By the 1920s, techniques had been developed for obtaining upper and lower
bounds on the solutions to optimization problems by finding approximate solutions to the
primal and dual problems. Duality as a general idea is described in the book by Courant and
Hilbert (1953, reprinted 1989); the same material can be found in the 1931 German edition
of this book; however, it is not present in the 1924 edition, suggesting a date of origin in the
late 1920s.

14.10 Notes
Optimality Conditions—In our previous development we saw that an optimal point for a
nonlinearly constrained problem must satisfy the first-order optimality conditions, provided
that this point is regular. Furthermore, an optimal point that is not regular may not satisfy
the first-order optimality conditions. A condition such as regularity that guarantees that the
first-order optimality conditions will be satisfied at an optimal point is called a constraint
qualification. For example, the condition that T (x) = N (A(x)) for all feasible x is a
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constraint qualification for the equality-constrained problem. Whenever it holds, an optimal
point must satisfy the first-order optimality conditions. The regularity condition is also a
constraint qualification, but stronger (that is, more restrictive) than the condition T (x) =
N (A(x)) in the sense that any regular point will satisfy this condition. Unfortunately, the
condition T (x) = N (A(x)) is not practical because it is not easy to verify. Regularity is
easy to verify and therefore practical.

The condition T (x) = N (A(x)) is not the weakest (that is, least restrictive) constraint
qualification, in the sense that there are points that satisfy the first-order optimality conditions
that do not satisfy this constraint qualification. One example is the problem

minimize f (x) = x2

subject to x2 = 0
x2 − x3

1 = 0.

At the solution x∗ = (0, 0)T there exists a vector of multipliers λ∗ such that ∇L(x∗, λ∗) = 0,
even though T (x) = N (A(x)). (See the Exercises.)

Our comments here focus primarily on optimization problems with equality con-
straints. The constraint qualifications can be extended to problems that include inequality
constraints as well.

During the 1960s and early 1970s, much research was conducted to develop constraint
qualifications that would guarantee the fulfillment of the optimality conditions; see, for
example, Abadie (1967), Mangasarian (1969, reprinted 1994), and Gould and Tolle (1971).
The constraint qualification developed by Guignard (1969) is the weakest in the sense that
it is not only sufficient but also necessary for the fulfillment of the optimality conditions.
Unfortunately it too is not practical for computation.

Astronger but more useful constraint qualification for inequality-constrained problems
is the Slater condition. It applies to a feasible set { x : gi(x) ≥ 0, i = 1, . . . , m } where the
functions gi are concave. The condition states that, if S has a nonempty interior (that is,
there is some point x0 satisfying gi(x0) > 0 for all i), then an optimal point must satisfy the
first-order necessary condition.

Duality—For more information on duality, see the books by Avriel (1976, reprinted
2003) and Rockafellar (1974). The use of the dual for creating nonlinear classifiers was
proposed in 1992 by Boser et al. This work was built on the ideas of Aizerman et al. (1964)
who first proposed the presentation of kernels as inner products in a feature space.



book
2008/10/23
page 548

�

�

�

�

�

�

�

�



book
2008/10/23
page 549

�

�

�

�

�

�

�

�

Chapter 15

Feasible-Point Methods

15.1 Introduction
In this chapter we examine methods that solve constrained optimization problems by at-
tempting to remain feasible at every iteration. If all the constraints are linear, maintaining
feasibility is straightforward. We discuss this case first. When nonlinear constraints are
present, then more elaborate procedures are required. We discuss two such approaches to
nonlinear constraints: sequential quadratic programming (SQP) and reduced-gradient meth-
ods. Both of these approaches generalize the techniques for linear constraints. Although
they strive to maintain feasibility at every iteration, they do not always achieve this.

15.2 Linear Equality Constraints
The vast majority of methods for solving problems with linear equality constraints are
feasible-point methods: they start from a feasible point and move along feasible descent
directions to consecutively better feasible points. There are two features that make this
approach particularly attractive. First, from a practical point of view it is advantageous that
all iterates are feasible. Even if the algorithm fails to solve the problem to the accuracy
desired, it might still provide a feasible solution that is usable. Second, by restricting
movement to feasible directions, the equality-constrained problem is transformed into an
unconstrained problem in the null space of the constraints. This new problem may then be
solved using unconstrained minimization techniques.

As in the previous chapter we write the problem in the form

minimize f (x)

subject to Ax = b.

We assume that f is twice continuously differentiable, and that A is an m × n matrix of
full row rank. As in the unconstrained case, the methods we describe are only guaranteed
to find a stationary point of the problem. If the objective function is convex, this point will
be a global minimizer of f . In the more general case, there is no guarantee that the point
will be a global minimizer. In some cases it may not even be a local minimizer.

549
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Let x̄ be a feasible point. Since any other feasible point can be reached from x̄ by
moving in a feasible direction, the solution to the problem can be written as x∗ = x̄ + p,
where p solves the problem

minimize
p∈�n f (x̄ + p)

subject to Ap = 0.

If Z denotes an n × (n − m) basis matrix for the null space of A, then p = Zv for some
(n−m)-dimensional vector v. This problem is equivalent to the unconstrained problem

minimize
v∈�n−m

φ(v) = f (x̄ + Zv).

We have reduced the problem of finding the “best” n-dimensional vector p to the uncon-
strained problem of finding the “best” (n − m)-dimensional vector v, that is, the v that
minimizes the reduced function φ.

Conceptually, it is possible to minimize the reduced function φ using any of the
unconstrained methods described in Chapters 11–13. In practice it is not necessary to
provide an explicit expression for φ(v). Instead, it is possible to work directly with the
original variables x, using

∇φ(v) = ZT∇f (x) and ∇2φ(v) = ZT∇2f (x)Z,

where x = x̄ + Zv. This idea will be demonstrated shortly.
The basic tool for any solution method is the Taylor series. Expanding φ about zero

(notice that φ(0) = f (x̄)), we obtain

φ(v) = f (x̄ + Zv) = f (x̄)+ vTZT∇f (x̄)+ 1
2v

TZT∇2f (x̄)Zv + · · · .
Ideally we would like to use the Newton direction; it is obtained by minimizing the quadratic
approximation to φ(v) obtained from the Taylor series. Setting the gradient of the quadratic
approximation to zero gives the following linear system in v:[

ZT∇2f (x̄)Z
]
v = −ZT∇f (x̄).

This system is known as the reduced Newton equation, or the null-space equation. Its
solution may be written explicitly as

v = − (
ZT∇2f (x̄)Z

)−1
ZT∇f (x̄).

This is an estimate of the “best” v; in turn it provides an estimate of the “best” p

p = Zv = −Z (ZT∇2f (x̄)Z
)−1

ZT∇f (x̄).
This direction is termed the reduced Newton direction at x̄.

We can now derive the equality-constrained analog of the classical Newton method.
The method sets

xk+1 = xk + p,
where p = −Z(ZT∇2f (xk)Z)

−1ZT∇f (xk) is the reduced Newton direction at xk . This
is just the mathematical representation of the method, and in practice explicit inverses are
not normally computed. The method does not require that the reduced function be formed
explicitly.
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Example 15.1 (Reduced Newton Direction). Consider the problem

minimize f (x) = 1
2x

2
1 − 1

2x
2
3 + 4x1x2 + 3x1x3 − 2x2x3

subject to x1 − x2 − x3 = −1,

and consider the feasible point x̄ = (1, 1, 1)T. Choose

Z =
( 1 1

1 0
0 1

)

as a basis for the null space of A = (1,−1,−1). The reduced gradient at x̄ is

ZT∇f (x̄) =
(

1 1 0
1 0 1

)( 8
2
0

)
=
(

10
8

)
,

and the reduced Hessian matrix at x̄ is

ZT∇2f (x̄)Z =
(

1 1 0
1 0 1

)( 1 4 3
4 0 −2
3 −2 −1

)( 1 1
1 0
0 1

)
=
(

9 6
6 6

)
.

The reduced Newton equation yields

v =
(−2/3
−2/3

)
,

and hence the reduced Newton direction is

p = Zv =
(−4/3
−2/3
−2/3

)
.

Since the objective function is a quadratic and the reduced Hessian matrix is positive definite,
a step length of α = 1 leads to the optimum x∗ = (− 1

3 ,
1
3 ,

1
3 )
T. At x∗, the reduced gradient

is ZT∇f (x∗) = ZT(2,−2,−2)T = (0, 0)T as expected. The corresponding Lagrange
multiplier (satisfying ∇f (x∗) = ATλ∗) is λ∗ = 2.

The reduced Newton direction is invariant with respect to the null-space matrix Z:
mathematically, any choice of basis matrix Z will yield the same search direction p (see
the Exercises). Numerically, however, the choice of Z can have a dramatic effect on the
computation. In fact, the condition number ofZT∇2f (x)Z may be substantially larger than
the condition number of ∇2f (x). It can be shown that

cond(ZT∇2f (x)Z) ≤ cond(∇2f (x))× cond(ZTZ),

and the upper bound on the right can sometimes be tight. Thus if the matrix ZTZ has a
large condition number (this may happen, for example, if the columns of Z are “almost”
linearly dependent), then the reduced Hessian matrix may have a condition number that is
much larger than that of the Hessian matrix itself. For this reason it is advisable to select
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Z so that the condition number of ZTZ is small. One such matrix is the orthogonal basis
Z obtained from the QR factorization, which satisfies ZTZ = I (see Section 3.3.4). This
choice guarantees that the reduced Hessian matrix has a condition number no larger than
that of the Hessian matrix, and consequently it is a good choice for small dense problems.
For large sparse problems the QR method may be too expensive or may give bases which
are too dense to be practical.

The classical reduced Newton method has all the properties of the classical Newton
method. In particular, if the reduced Hessian matrix at the solution is positive definite,
and if the starting point is sufficiently close to the solution, then the iterates will converge
quadratically. In the more general case, however, the method may diverge or fail. To make
the method reliable, some globalization strategy should be used (see Sections 11.5 and 11.6).
Such strategies are essentially the same as in the unconstrained case. For example, we might
use a line search to obtain a sufficient decrease in the objective value f and insist that the
search direction produce sufficient descent.

If xk is not a local solution and if the reduced Hessian matrix is positive definite, then
the reduced Newton direction is a descent direction, since

pT∇f (xk) = −∇f (xk)Z
(
ZT∇2f (xk)Z

)−1
ZT∇f (xk) < 0.

If the reduced Hessian matrix is not positive definite, then the search direction may not be a
descent direction and—worse still—may not even be defined. In this case, the modified fac-
torizations described in Section 11.4 can be applied to the reduced Hessian matrix to provide
a descent direction. (The reduced Hessian matrix will be positive definite in a neighbor-
hood of a local solution point whenever this point satisfies the second-order sufficiency
conditions.)

Other compromises on Newton’s method may be made to obtain cheaper iterations.
The simplest of all methods is of course the steepest-descent method. For the reduced
function, this strategy gives the direction

v = −ZT∇f (xk)
in the reduced space, which yields the reduced steepest-descent direction

p = −ZZT∇f (xk)
in the original space. Here the matrix Z may be any null-space matrix for A. Note,
however, that the direction will vary with the particular choice of Z, unlike the reduced
Newton direction.

Example 15.2 (Reduced Steepest-Descent Direction). The reduced gradient at the initial
point of Example 15.1 is ZT∇f (x̄) = (10, 8)T, and hence the reduced steepest-descent
direction is p = −ZZT∇f (x̄) = (−18,−10,−8)T. Had we chosen

Ẑ =
( 2 0

1 4
1 −4

)

as the null-space matrix for A, the reduced gradient would be

ẐT∇f (x̄) = ẐT(8, 2, 0)T = (18, 8)T,
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and the reduced steepest-descent direction would be

p = −ẐẐT∇f (x̄) = (−36,−50, 14)T.

The reduced steepest-descent method has the same properties as that of its uncon-
strained counterpart. The iterations are cheap, but convergence may be very slow (see
Section 12.2).

Quasi-Newton methods are a more sophisticated compromise. A common approach
is to construct an approximation Bk to the reduced Hessian matrix at xk . Let Z be a basis
for the null space of A. The search direction is computed as p = Zv, where v is obtained
by solving

Bkv = −ZT∇f (xk).
The approximationBk is updated in much the same way as in the unconstrained case, except
that all quantities are in the reduced space. For example, the symmetric rank-one update
formula becomes

Bk+1 = Bk + (ȳk − Bks̄k)(ȳk − Bks̄k)T
(ȳk − Bks̄k)Ts̄k ,

where ȳk = ZT (∇f (xk+1)− ∇f (xk)) and s̄k = ZT(xk+1 − xk).
For large problems, “reduced” versions of the low-storage methods in Chapter 13 may

be suitable. For example, a truncated-Newton method or limited-memory quasi-Newton
methods could be used. If the matrix A is sparse, a null-space matrix Z that preserves
sparsity should be chosen.

In principle, it is possible to solve an equality-constrained problem using any standard
technique for unconstrained optimization. In practice, the numerical difficulties encountered
when solving equality-constrained problems are not quite the same as those encountered
when solving unconstrained problems, and it is not always possible to solve a large equality-
constrained problem by simply applying general-purpose software for unconstrained opti-
mization. One reason is that the reduced Hessian matrix in a constrained problem is often
different in structure from the Hessian matrix in an unconstrained minimization problem.
This is demonstrated in the following example.

Example 15.3 (Special Structure of Matrix Destroyed by Reduction). Consider the quadratic
problem

minimize f (x) = 1
2x

2
1 + x2

2 + 2x2
3 + 4x2

4

subject to x1 + x2 + x3 + x4 = 1.
Taking the matrix

Z =

⎛
⎜⎜⎜⎝

1
2

1
2

1
2

1
2 − 1

2 − 1
2

− 1
2

1
2 − 1

2

− 1
2 − 1

2
1
2

⎞
⎟⎟⎟⎠

as a basis for the null space of the constraint matrix A = (1, 1, 1, 1), we obtain

∇2f (x) =
⎛
⎜⎝

1 0 0 0
0 2 0 0
0 0 4 0
0 0 0 8

⎞
⎟⎠ and ZT∇2f (x)Z =

⎛
⎜⎝

15
4

3
4 − 5

4
3
4

15
4 − 9

4

− 5
4 − 9

4
15
4

⎞
⎟⎠ .
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Thus the reduced matrix ZT∇2f (x)Z is dense, even though the matrix ∇2f (x) is sparse.
The special diagonal structure of the Hessian matrix is destroyed by the reduction.

To overcome these problems, special implementations that are tailored to the equality-
constrained problem may be needed. For example, if a conjugate-gradient method is used
to solve the reduced Newton equation (as in a truncated-Newton method), then it is not
necessary to form the reduced Hessian matrix explicitly. The reason is that the conjugate-
gradient method requires only Hessian-vector products—in this case, products of the form
(ZT∇2f (xk)Z)y for some vector y. This can be done by first computing y1 = Zy, then
computing y2 = ∇2f (xk)y1, and finally by computing the required Hessian-vector product
as y3 = ZTy2. If ∇2f is sparse, and Z can be represented in sparse form, then for large
problems such techniques may bring substantial computational savings.

Once an optimal solution to the equality-constrained problem is obtained, the associ-
ated vector of Lagrange multipliers is computed. There are several reasons for this. First,
the Lagrange multipliers measure the sensitivity of the solution to changes in the constraints.
Second, the equality-constrained problem could be one of a sequence of problems generated
by an algorithm for solving a problem with inequality constraints (see Section 15.4). In this
case, the Lagrange multipliers indicate how to improve the current solution.

Computation of the Lagrange multipliers should be done in a cost-effective manner.
We discuss this issue in more detail in the next section.

As was mentioned in the last chapter, the optimality conditions for

minimize f (x)

subject to Ax = b

can be used directly to derive algorithms. The conditions are

∇f (x)− ATλ = 0
b − Ax = 0,

where λ is the vector of Lagrange multipliers. This is a system of nonlinear equations in
the variables x and λ.

If Newton’s method is applied to this system, then

xk+1 = xk + pk
λk+1 = λk + νk,

where the updates pk and νk are the solution to the Newton equations(∇2f (xk) −AT
−A 0

)(
p

ν

)
=
(
ATλk − ∇f (xk)

Axk − b
)
.

(See the Exercises.) Some algorithms for constrained optimization work directly with
this linear system, although some care must be taken to ensure that descent directions are
obtained.

This linear system is closely related to the reduced Newton equation derived earlier.
If xk is feasible, then b − Axk = 0, and p must satisfy Ap = 0. Hence p = Zv for some
(n−m)-dimensional vector v. If we substitute for p in the first equation of our system, then

∇2f (xk)Zv − ATν = ATλk − ∇f (xk).
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Multiplying this equation on the left by ZT, and using the fact that ZTAT = 0, we obtain

[ZT∇2f (xk)Z]v = −ZT∇f (xk),
the reduced Newton equation. Thus we can interpret the reduced Newton equation as a
technique for applying Newton’s method to the optimality conditions for the constrained
optimization problem.

There is yet another way to compute the Newton direction. The derivation is based
on the Newton equations, and it assumes that ∇2f (x) is positive definite for all x. Suppose
that xk is feasible so that Axk − b = 0, and let λk+1 = λk + ν. If we write ∇2f = ∇2f (xk)

and ∇f = ∇f (xk), then the Newton equations are equivalent to(∇2f −AT
−A 0

)(
p

λk+1

)
=
(−∇f

0

)
.

From the first equation we obtain

p = (∇2f )−1ATλk+1 − (∇2f )−1∇f.
Since Ap = 0,

0 = Ap = A(∇2f )−1ATλk+1 − A(∇2f )−1∇f.
This equation can be used to solve for λk+1:

λk+1 = [A(∇2f )−1AT]−1A(∇2f )−1∇f.
Substituting this into the equation for p gives

p = − (
(∇2f )−1 − (∇2f )−1AT[A(∇2f )−1AT]−1A(∇2f )−1

)∇f.
This is sometimes called the projected Newton direction.

Exercises
2.1. Use a reduced Newton method to solve the problem

minimize f (x) = 1
2x

TQx

subject to Ax = b,

where

Q =
⎛
⎜⎝

0 −13 −6 −3
−13 23 −9 3
−6 −9 −12 1
−3 3 1 −1

⎞
⎟⎠ ,

A =
(

2 1 2 1
1 1 3 −1

)
, and b =

(
3
2

)
.

Initialize the method with x0 = (1, 1, 0, 0)T.
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2.2. Use a reduced steepest-descent method to solve the problem above, starting from
x0 = (1, 1, 0, 0)T. Perform three iterations, using an exact line search.

2.3. Prove that the reduced steepest-descent direction is a descent direction at any point
that is not a stationary point.

2.4. The particular variant of the reduced steepest-descent method, in which the null-
space matrix for the constraintsAx = b is the orthogonal projection matrix, is called
the projected gradient method. Derive an explicit expression for the search direction
at each iteration of the projected gradient method.

2.5. LetZ1 andZ2 be two basis matrices for the null space of a full row rankm×nmatrix
A. Let H be a matrix such that ZT1HZ1 is positive definite. Prove that the matrix
ZT2HZ2 is also positive definite, and that

Z1(Z
T
1HZ1)

−1ZT1 = Z2(Z
T
2HZ2)

−1ZT2 .

2.6. Let H be the three-dimensional identity matrix, and let A = (2, 1, 1). Compute
a basis matrix Z for the null space of A for which (a) cond(ZTHZ) = 1, and
(b) cond(ZTHZ) > 1000.

2.7. Derive the formula for the reduced version of the symmetric rank-one update.

2.8. Derive a reduced version of the BFGS update formula.

2.9. Apply Newton’s method to the first-order optimality condition for

minimize f (x)

subject to Ax = b.

Show that the iteration has the form

xk+1 = xk + pk
λk+1 = λk + νk,

where the updates pk and νk form the solution to(∇2f (xk) −AT
−A 0

)(
p

ν

)
=
(
ATλk − ∇f (xk)

Axk − b
)
.

Under what conditions on ∇2f (x) and A will this iteration have a quadratic conver-
gence rate? Under what conditions on ∇2f (x) and A will pk be a descent direction
for f at xk?

2.10. Let Z be a null-space matrix, and assume that ∇2f (x) is positive definite. Prove
that

cond(ZT∇2f (x)Z) ≤ cond(∇2f (x))× cond(ZTZ).

15.3 Computing the Lagrange Multipliers
Consider the linear equality-constrained problem

minimize f (x)

subject to Ax = b.



book
2008/10/23
page 557

�

�

�

�

�

�

�

�

15.3. Computing the Lagrange Multipliers 557

Assume that the regularity condition holds, that is, that the rows of A are linearly indepen-
dent. Consider the optimality condition

ATλ∗ = ∇f (x∗).
This is a system of n equations inm ≤ n unknowns, and so it cannot normally be expected to
have a solution. At most feasible points x∗, this overdetermined system will be inconsistent,
but if x∗ is a local solution of the optimization problem, then the system will have a solution.
How can such a solution λ∗ be computed?

A useful tool is a matrix known as the right inverse. We define an n × m matrix Ar
to be a right inverse for the m × n matrix A, if AAr = Im. It is easy to see that a matrix
A has a right inverse only if it has full row rank. In this case, and if m = n, then the right
inverse is unique, and Ar = A−1. If m < n, the right inverse is generally not unique. For
example, the matrices ⎛

⎜⎜⎜⎝
3
4 0

− 1
4 0
0 1

2

0 1
2

⎞
⎟⎟⎟⎠ and

⎛
⎜⎝

1 0
0 0
0 1
0 0

⎞
⎟⎠

are both right inverses for the matrix

A =
(

1 −1 0 0
0 0 1 1

)
.

To see how right inverses are of use in solving the system ATλ∗ = ∇f (x∗), suppose
that a solution to this system exists. If both sides of this equation are multiplied byATr , then
we obtain

λ∗ = ATr∇f (x∗).
(Here ATr refers to (Ar)T and not (AT)r .) If the system ATλ∗ = ∇f (x∗) is consistent, its
solution λ∗ = ATr∇f (x∗) is unique, even though the right inverse may not be unique. To
verify this, note that ATλ∗ = ∇f (x∗) implies that AATλ∗ = A∇f (x∗), and so the unique
solution is

λ∗ = (AAT)−1A∇f (x∗).
(If A has full row rank, the matrix AAT is positive definite, and hence its inverse exists.)

The linear system ATλ∗ = ∇f (x∗) is consistent if and only if ∇f (x∗) is a linear
combination of the rows of A. Hence a vector λ∗ computed via λ∗ = ATr∇f (x∗) will be a
solution to the system if and only if

(I − ATATr )∇f (x∗) = 0

(see the Exercises).
In practice we will almost never find a point x∗ that satisfies the optimality conditions

precisely. Rather, we will (if successful) find some point xk that satisfies the optimality
conditions to within some specified tolerance. The point xk will be an estimate of the
optimal solution. Correspondingly, the vector λ = ATr∇f (xk)will be only an estimate of the
vector of Lagrange multipliers at the solution. It is sometimes termed a first-order estimate,
because, for sufficiently small ε, if ‖xk − x∗‖ = O(ε), then ‖λ− λ∗‖ = O(ε) also.
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In the rest of this section, we discuss methods for computing a right-inverse matrix.
To avoid unnecessary work, the computation of a right-inverse matrix for a matrixA should
be performed in conjunction with the computation of the null-space matrix for A. We will
show that each of the methods for computing a null-space matrix for A (see Section 3.3)
provides a right-inverse matrix at little or no additional cost. The discussion assumes that
A is an m× n matrix of full row rank.

• The variable reduction method (see Section 3.3.1). In this method the variables are
partitioned into m basic and n − m nonbasic variables. The matrix A is partitioned
into basic and nonbasic columns correspondingly. Assuming that the firstm columns
are basic, we have A = (B,N) where B is an m × m nonsingular matrix, and the
n× (n−m) matrix

Z =
(−B−1N

I

)
is a basis matrix for the null space of A. The matrix

Ar =
(
B−1

0

)

is a right-inverse matrix for A that is available with no additional computation.
• Orthogonal projection matrix (see Section 3.3.2). Let the n× n matrix

P = I − AT(AAT)−1A

be the orthogonal projection matrix into the null space of A. A right inverse for A
associated with the orthogonal projection is the matrix

Ar = AT(AAT)−1.

This matrix, which we will denote by A+, is a special right inverse. It satisfies the
following four conditions:

AA+A = A, (AA+)T = AA+,
A+AA+ = A+, (A+A)T = A+A.

It can be shown that, for anym× n matrix A, there is a unique n×m matrix A+ that
satisfies these conditions. A+ is called the Penrose–Moore generalized inverse of A.
If A has full row rank, then A+ = AT(AAT)−1, and if A has full column rank, then
A+ = (ATA)−1AT. Formulas for A+ can also be developed when A does not have
full row or column rank; see the book by Golub and Van Loan (1996).

Given a point xk , the vector of Lagrange multiplier estimates (A+)T∇f (xk) obtained
from the Penrose–Moore generalized inverse has the appealing property that it solves
the problem

minimize
λ∈�m

∥∥ATλ− ∇f (xk)
∥∥

2

(see the Exercises). For this reason it is termed the least-squares Lagrange multiplier
estimate at xk .
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Because the condition number of AAT is the square of the condition number of A,
the computation of (AAT)−1 is potentially unstable. The QR factorization provides
a stable approach to computing this matrix that is practical for smaller problems (see
below).

• A nonorthogonal projection (see Section 3.3.3). Let D be a positive-definite n × n

matrix. Then the n× n projection matrix

PD = I −DAT(ADAT)−1A

is a null-space matrix for A. A right inverse for A associated with this projection is

Ar = DAT(ADAT)−1.

• The QR factorization (see Section 3.3.4). The QR factorization represents AT as a
product of an orthogonal matrix Q and an upper triangular matrix R. Denoting the
first m columns of Q by Q1 and the last n−m columns by Q2, we have

AT = QR = (Q1 Q2 )

(
R1

0

)
,

where R1 is an m×m triangular matrix. The n× (n−m) matrix

Z = Q2

is an orthogonal basis for the null space of A. The matrix

Ar = Q1R
−T
1

is a right inverse for A available from the QR factorization at little additional cost.
In fact, this matrix need not be formed explicitly: a computation of the form λ =
ATr∇f (xk) may be done by first computing y1 = QT

1∇f (xk) and then solving the
triangular system R1λ = y1. It is easy to show that Ar = AT(AAT)−1, and hence this
right inverse is in fact the Penrose–Moore generalized inverse ofA (see the Exercises).

Just as with the “regular” matrix inverse, a right inverse is a useful notational tool, but it
should rarely be formed explicitly. Instead, computations with respect to the right inverse
should use the specific matrix factorizations that were employed to obtain the null-space
matrix.

Example 15.4 (Right Inverses). We will construct several right inverses for

A =
(

1 −1 0 0
0 0 1 1

)
.

If variable reduction is used, with columns 2 and 3 ofA being selected as the basic columns,
then

B =
(−1 0

0 1

)
and N =

(
1 0
0 1

)
.
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From these we determine that

Z =
⎛
⎜⎝

1 0
1 0
0 −1
0 1

⎞
⎟⎠ and Ar =

⎛
⎜⎝

0 0
−1 0

0 1
0 0

⎞
⎟⎠ .

(For all the right inverses that we compute in this example, it is straightforward to verify
that AZ = 0 and AAr = I .)

If the orthogonal projection matrix is used, then

P = I − AT(AAT)−1A =

⎛
⎜⎜⎜⎝

1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2 − 1

2

0 0 − 1
2

1
2

⎞
⎟⎟⎟⎠ .

The corresponding right inverse is

Ar = AT(AAT)−1 =

⎛
⎜⎜⎜⎝

1
2 0

− 1
2 0

0 1
2

0 1
2

⎞
⎟⎟⎟⎠ .

A nonorthogonal projection can also be used. If

D =
⎛
⎜⎝

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

⎞
⎟⎠ ,

then

PD = I −DAT(ADAT)−1A =

⎛
⎜⎜⎜⎝

2
3

1
3 0 0

2
3

1
3 0 0

0 0 4
7 − 3

7

0 0 − 4
7

3
7

⎞
⎟⎟⎟⎠ .

The corresponding right inverse is

Ar = DAT(ADAT)−1 =

⎛
⎜⎜⎜⎝

1
3 0

− 2
3 0

0 3
7

0 4
7

⎞
⎟⎟⎟⎠ .

If a QR factorization of AT is used, then

Q =

⎛
⎜⎜⎜⎜⎝
− 1√

2
0 − 1

2 − 1
2

1√
2

0 − 1
2 − 1

2

0 − 1√
2

1
2 − 1

2

0 − 1√
2

− 1
2

1
2

⎞
⎟⎟⎟⎟⎠ and R =

⎛
⎜⎝
−√

2 0
0 −√

2
0 0
0 0

⎞
⎟⎠ .
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Z consists of the last two columns of Q:

Z =

⎛
⎜⎜⎜⎝
− 1

2 − 1
2

− 1
2 − 1

2
1
2 − 1

2

− 1
2

1
2

⎞
⎟⎟⎟⎠ .

The right inverse is obtained from the formula

Ar = Q1R
−T
1 ,

where Q1 consists of the first two columns of Q,

Q1 =

⎛
⎜⎜⎜⎜⎝
− 1√

2
0

1√
2

0

0 − 1√
2

0 − 1√
2

⎞
⎟⎟⎟⎟⎠

and R1 consists of the first two rows of R,

R1 =
(−√

2 0
0 −√

2

)
.

Hence

Ar =

⎛
⎜⎜⎜⎝

1
2 0

− 1
2 0

0 1
2

0 1
2

⎞
⎟⎟⎟⎠ .

If
∇f (x) = ( 7 −7 −2 −2 )T ,

then for all of the above right inverses,

λ = ATr∇f (x) =
(

7
−2

)
.

No matter which right inverse is used, the same values of the Lagrange multipliers are
obtained.

Exercises
3.1. Compute four different right inverses for the matrix A = (1, 4,−2). Demonstrate

that each of the right inverses yields the same solution when used to solve the system
ATλ = (−3,−12, 6)T.
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3.2. Use the variable reduction method to find a right inverse for the matrix

A =
(

2 −1 4 6
1 −1 7 −5

)
,

where the basis consists of the second and third variables, i.e., xB = (x2, x3)
T. Use

your computations to solve the system ATλ = (3,−1, 1, 17)T.

3.3. Consider the system ATλ = ∇f (x∗), where A is a matrix with full row rank. Let Ar
be a right inverse matrix for A. Prove that the system has a solution if and only if

(I − ATATr )∇f (x∗) = 0.

3.4. Consider the equality-constrained problem

minimize f (x)

subject to Ax = b.

Let x∗ be a local solution to the problem with associated Lagrange multiplier vector
λ∗. Assume that A has full row rank, and let Ar be a right inverse for a matrix A.
Prove that x∗ + Arδ is a feasible solution to the perturbed constraints Ax = b + δ.
Confirm that a first-order approximation to the objective function at this point is
f (x∗)+ δTλ∗.

3.5. Let A be an m× n matrix of full row rank.

(i) Prove that AT(AAT)−1 satisfies the four conditions for a Penrose–Moore gen-
eralized inverse.

(ii) Prove that if m = n, then A+ = A−1.

3.6. Let A be an m × n matrix of full column rank. Prove that (ATA)−1AT satisfies the
four conditions for a Penrose–Moore generalized inverse.

3.7. Let A be an m × n matrix of full row rank, and let P be the projection matrix
associated with N (A). Prove that P+ = P .

3.8. LetA be anm×nmatrix of full row rank. Prove that λ̄ = (AAT)−1A∇f (xk) solves
the least-squares problem

minimize
λ∈�m

∥∥ATλ− ∇f (xk)
∥∥

2 .

3.9. Let A be a full row rank matrix, and let Ar be a right inverse for A. Prove that the
matrix P = I − ArA is a projection matrix.

3.10. Let Ar = Q1R
−T
1 be the right-inverse matrix for A obtained from theQR factoriza-

tion of AT. Prove that Ar = AT(AAT)−1.

3.11. Write a computer program that solves

minimize f (x) = 1
2x

TQx − cTx
subject to Ax = b,

where Q is positive definite and A is an m × n matrix of full row rank. Use a
reduced Newton direction with a step size of 1. Assume that a feasible starting point
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is available. Use your program to solve the problem with

A =
( 1 2 1 2 0

0 1 0 0 −1
1 0 2 1 1

)
, Q =

⎛
⎜⎜⎜⎝

2 −1
−1 2

1
1 −1

−1 1

⎞
⎟⎟⎟⎠ , b =

( 5
1
3

)
,

c = (−7 3 −3 −8 −2 )T , and x0 = ( 0 1 1 1 0 )T .

Print out the optimal solution and the associated Lagrange multipliers.

15.4 Linear Inequality Constraints
In this section we discuss methods for solving problems with linear inequality constraints.
The problem will be written in the form

minimize f (x)

subject to Ax ≥ b,

where f is a twice continuously differentiable function. For simplicity we assume that the
problem has only inequality constraints. The extension of the methods to include equality
constraints is straightforward and will be mentioned at the end of the section.

Suppose that the point x∗ is a local solution to this problem. LetÂ be a matrix whose
rows are the coefficients of the active constraints at x∗, and letZ be a null-space matrix forÂ.

The first-order optimality conditions state that there exists λ∗ ≥ 0 such that ∇f (x∗) = ÂTλ∗
(or equivalently, ZT∇f (x∗) = 0).

Problems that have inequality constraints are significantly more difficult to solve than
problems in which all constraints are equations. The reason is that it is not known in advance
which inequality constraints are active at the solution. If we knew a priori the correct active
set, then we could ignore the inactive constraints and minimize the objective function with
all active constraints treated as equalities. In practice, unfortunately, we do not know what
the correct active set is.

How can we resolve this combinatorial issue? A brute force approach would be to
solve the equality-constrained problem for all possible selections of active constraints, and
then choose the best solution. Even for a small problem, however, the number of such
subproblems is enormous, and the amount of work could be prohibitive.

Active-set methods attempt to overcome this difficulty by moving sequentially from
one choice of active constraints to another choice that is guaranteed to produce at least
as good a solution. The hope is that only a fraction of the potential subproblems will be
considered.

The most commonly used active-set methods are feasible-point methods. An initial
feasible point, if none is provided, can be obtained much as in linear programming (see
Section 5.5). At each iteration of the active-set method, we select a working set of constraints
that are assumed to be active at the optimum. We attempt to minimize f with all constraints
in the working set treated as equalities. All other constraints are considered inactive and
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temporarily ignored. (We should keep in mind, however, that these constraints should not
be violated—more on that later.)

In general, the working set at the current point x is a subset of the constraints that are
active at x, so that x is a feasible point for the working set. There may also be constraints
that are active at x but that are not included in the working set; hence the working set is not
necessarily equal to the active set.

Example 15.5 (Working Set). Consider the problem

minimize f (x)

subject to x1 + x2 + x3 ≥ 1
x1 ≥ 0
x2 ≥ 0
x3 ≥ 0.

At xa = (0, 1
2 ,

1
2 )
T the first two inequalities are active. If both constraints are chosen for the

working set, then we will attempt to minimize f on the set

{ x : x1 + x2 + x3 = 1, x1 = 0 } .
If only the first constraint is selected to be in the working set, then we will attempt to
minimize f on the set

{ x : x1 + x2 + x3 = 1 } .

The problem of minimizing f subject to the constraints defined by the working set is
an equality-constrained problem. Therefore we can use any of the techniques described in
Section 15.2 to obtain a feasible search direction p. We could then use this search direction
within a line search method and find an appropriate step length α. If this were truly an
equality-constrained problem, we could use a standard line search method for unconstrained
minimization and take a step considered to be “acceptable” by the line search. For example,
we could test an initial step length of one, and use backtracking to find a step that satisfies
a sufficient decrease condition (see Section 11.5). In a problem with inequality constraints,
however, an “acceptable” step might lead to a point that is infeasible, that is, a point that
violates one or more of the constraints that we have ignored. Geometrically, as we move
from x along p, we may encounter the boundary of some constraint for some step length
ᾱ. The value ᾱ represents the largest possible step that may be taken without violating
feasibility. The line search procedure must place an upper bound ᾱ on any trial step, and
the step length must never exceed ᾱ.

It is possible that the “best” acceptable step length that does not exceed ᾱ is ᾱ itself.
This step leads to a point on the boundary of a constraint. The constraint encountered is now
satisfied exactly at the new point, and it is added to the working set. With the step length
determined, and any necessary adjustments made to the working set, the entire process is
repeated.

It is also possible that the “best” acceptable step length is zero. This is an exceptional
case, and it occurs when ᾱ = 0. If ᾱ = 0 occurs, no step is taken, and a constraint is added
to the working set (since α = ᾱ = 0).
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Figure 15.1. Sequence of movements in an active-set method.

Suppose now that we have found a point x that minimizes f on a given working set.
Then the first-order optimality conditions for the equality-constrained problem are satisfied
at x, and we can compute the Lagrange multipliers corresponding to the constraints in the
working set. (The Lagrange multipliers for all other constraints are assumed to be zero.)
If the Lagrange multipliers are all nonnegative, then x is also a solution to the original
inequality-constrained problem and the problem is solved. However, if some Lagrange
multiplier is negative, then x is not an optimal solution. The negative multiplier indicates
that the function can be decreased if we move away from the corresponding constraint into
the interior of the feasible region. Hence we can drop this constraint from the working set.
We now have a new working set, and the process is repeated. (For simplicity, we allow only
one constraint at a time to enter or leave the working set, although alternatives are possible.)

In summary, active-set methods have two major components. One component is the
selection of the search direction. For a given working set, it is a feasible descent direction
for the equality-constrained problem associated with the working set. The other component
is a strategy for changing the working set. A constraint may be added to the working set if it
is encountered in the course of a line search; a constraint may be dropped from the working
set at an optimal point of the equality-constrained problem if its corresponding Lagrange
multiplier is negative.

Example 15.6 (Sequence of Movements in an Active-Set Method). Figure 15.1 illustrates
a possible sequence of movements in an active-set method for minimizing a convex function
f on the box 0 ≤ xi ≤ 1, i = 1, 2, 3. The directions of movement in this example are
arbitrary feasible descent directions and do not correspond to any specific method.

Let the point A be the starting point. The initial working set is chosen as the active
constraints atA. It consists of the upper bound constraint on x3, which is the single constraint
that is active at A. An attempt is now made to minimize f subject to x3 = 1, starting from
A. Suppose that the first search ends at the point B. If B is still not a minimizer of f on
x3 = 1, then another search is made, starting from B. Suppose that this time the boundary
of the constraint x1 ≤ 1 is encountered at the point C. Then C is accepted as the new
solution, and the upper bound constraint on x1 is added to the working set. If the point C is
not a minimizer of f on the set x3 = 1 and x1 = 1, then a search is made on this constraint
set. Suppose that a constraint boundary is encountered at the point D = (1, 1, 1)T. Then
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the constraint x2 = 1 is added to the working set. There are now three constraints in the
working set: x3 = 1, x2 = 1, and x1 = 1. Thus the point D is the only feasible solution
to these constraints, and D is trivially a local minimizer of f on these constraints. The
Lagrange multipliers corresponding to the three constraints are now computed. Suppose
that the Lagrange multiplier corresponding to the constraint x3 = 1 is negative, so f can be
improved by decreasing x3. After removing the constraint x3 = 1, the working set consists
of the constraints x2 = 1 and x1 = 1. A search along these constraints leads to, say, the point
E. Assume that E is a local minimizer of f along these two constraints. If the Lagrange
multipliers corresponding to these constraints are both nonnegative, then E is also a local
minimizer for the original problem, and the algorithm is terminated.

We now discuss some of the above ideas in further detail. We assume that we have
a point x that is feasible for the inequality-constrained problem. Denote the working set
at x by W; that is, W is the set of indices of the constraints in the working set. Denote
the coefficient matrix for the constraints in the working set by Ā and the corresponding
right-hand-side vector by b̄. Let Z̄ be a null-space matrix forĀ. The equality-constrained
problem for the working set W can be written in the form

minimize f (x)

subject to Āx = b̄.

This problem is commonly solved using some feasible direction method. Thus, if p is the
search direction at x, p satisfies Āp = 0. The step-size procedure will attempt to find an
acceptable step length, while retaining feasibility with respect to all the constraints.

It is easy to compute the maximum feasible step length that can be taken along a
direction p using a ratio test (see Section 3.1):

ᾱ = max {α : x + αp is feasible }
= min

{
(aTi x − bi)/(−aTi p) : aTi p < 0, i ∈ W

}
.

We now outline a simple active-set method. Assume that a feasible starting point x0

is given and let W be the index set of the active constraints at x0. Let Ā be the constraint
matrix for the active constraints, let Z̄ be a null-space matrix for Ā, and let Ār be a right
inverse forĀ. Set k = 0.

1. The Optimality Test—If Z̄T∇f (xk) = 0, then

(i) If no constraints are active, then the current point is a local (unconstrained)
stationary point—stop.

(ii) Else, compute Lagrange multipliers:

λ̄ = ĀTr∇f (xk).
(iii) If λ̄ ≥ 0, then stop (a local stationary point has been reached). Otherwise,

drop a constraint corresponding to a negative multiplier from the active set, and
update W ,Ā, Z̄, andĀr .

2. The Search Direction—Compute a descent direction p that is feasible with respect to
the constraints in the working set.
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3. The Step—Compute a step length satisfying f (xk + αp) < f (xk) and α ≤ ᾱ where
ᾱ is the maximum feasible step along p.

4. The Update—Find the new solution point

xk+1 = xk + αp.
If a new constraint boundary is encountered (α = ᾱ), add it to the working set
and update W , Ā, Z, and Ār accordingly. (If more than one constraint boundary
is encountered, then pick one of the constraints to enter the working set; this is a
degenerate case.) Set k = k + 1 and return to 1.

Example 15.7 (Active-Set Method). Consider the problem

minimize f (x) = 1
2 (x1 − 3)2 + (x2 − 2)2

subject to 2x1 − x2 ≥ 0
−x1 − x2 ≥ −4

x2 ≥ 0.

We use an active-set method to solve this problem. The equality-constrained subproblems
will be solved using a reduced Newton method. Since the objective function is quadratic,
we use a step α = 1 whenever it is feasible, that is, whenever ᾱ ≥ 1. Otherwise, we shall
take the step α = ᾱ.

We use the variable reduction method to compute the null-space matrix for the ac-
tive constraints, and for simplicity always use the “left-hand” submatrix of Ā as the basis
matrix. This gives

Ā = ( B N ) , Z̄ =
(−B−1N

I

)
, Ār =

(
B−1

0

)
.

Let x0 = (0, 0)T be our feasible starting point. Since the first and third constraints are
active, we have

Ā =
(

2 −1
0 1

)
, Ār =

(
1/2 1/2
0 1

)
.

The basis matrix Z̄ is empty, and hence the reduced gradient Z̄T∇f (x0) vanishes trivially.
We therefore compute the Lagrange multipliers

λ̄ =
(
λ1

λ3

)
= ĀTr∇f (x0) =

(
1/2 0
1/2 1

)(−3
−4

)
=
( −3/2
−11/2

)
.

Both multipliers are negative, and thus we should drop one of the constraints from the
working set. We drop the third constraint because its multiplier is more negative. Updating
the working set gives

Ā = ( 2 −1 ) , Z̄ =
(

1/2
1

)
, Ār =

(
1/2
0

)
,
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so that the new reduced gradient is Z̄T∇f (x0) = (−11/2). We now compute the reduced
Newton search direction to obtain

p = −Z̄(Z̄T∇2f (x0)Z̄)
−1Z̄T∇f (x0) = −

(
1/2
1

)
(9/4)−1(−11/2) =

(
11/9
22/9

)
.

The maximum step to the boundary of the constraints is ᾱ = 12/11, and hence a step length
of 1 is feasible (α = 1). The full Newton step is taken to reach the point

x1 =
(

0
0

)
+ 1

(
11/9
22/9

)
=
(

11/9
22/9

)
.

The next iteration begins with the optimality test:

Z̄T∇f (x1) = ( 1/2 1 )

(−16/9
8/9

)
= (0).

Thus the reduced gradient vanishes at x1, as expected. Since a local minimum of f with re-
spect to the working set has been found, we compute the Lagrange multiplier corresponding
to the active constraint:

λ̄ = ( λ1 ) = ĀTr∇f (x1) = ( 1/2 0 )

(−16/9
8/9

)
= (−8/9).

As this multiplier is negative, we drop the constraint from the active set. We are now left
with no active constraints, which means that the problem is locally unconstrained. The
reduced gradient is simply the gradient itself (Z̄ = I ), and the search direction is simply
the unconstrained Newton direction

p = −∇2f (x1)
−1∇f (x1) = −

(
1 0
0 1/2

)(−16/9
8/9

)
=
(

16/9
−4/9

)
.

Since the largest feasible step to the boundary is

ᾱ = min { 1/4, 11/2 } = 1/4,

we use α = 1/4, and at the new point

x2 =
(

11/9
22/9

)
+ (1/4)

(
16/9
−4/9

)
=
(

5/3
7/3

)
,

the second constraint is active. We now update

Ā = (−1 −1 ) , Z̄ =
(−1

1

)
, Ār =

(−1
0

)
.

Again testing for optimality, we find that the reduced gradient at the new point is

Z̄T∇f (x2) = (−1 1 )

(−4/3
2/3

)
= (2).
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Figure 15.2. Illustration of active-set algorithm.

Since it is not zero, we continue with a search in the Newton direction. This gives

p = −Z̄ (Z̄T∇2f (x2)Z̄
)−1

Z̄T∇f (x2) = −
(−1

1

)
(3)−1(2) =

(
2/3

−2/3

)
.

The maximum step to the boundary is ᾱ = 7/2, and hence the step length is α = 1. This
gives

x3 =
(

5/3
7/3

)
+ 1

(
2/3

−2/3

)
=
(

7/3
5/3

)
.

At the new point the reduced gradient is

Z̄T∇f (x3) = (−1 1 )

(−2/3
−2/3

)
= (0).

Since

λ̄ = ( λ2 ) = ĀTr∇f (x3) = (−1 0 )

(−2/3
−2/3

)
= (2/3) > 0,

the point satisfies the first-order optimality conditions and we terminate. Since the objective
function f is strictly convex, the solution x = (7/3, 5/3)T is a strict global minimizer. The
Lagrange multipliers corresponding to the three constraints are λ1 = 0, λ2 = 2/3, λ3 = 0.

The progress of the algorithm is shown in Figure 15.2.

There are various modifications that can be made to the basic active-set method. Here
we just give a brief overview of them.

One possible modification is to solve the equality-constrained subproblems inexactly,
whenever there is reason to believe that the working set is not the optimal active set. The
rationale is that faster progress may be made by obtaining a “better” working set than
by getting a few extra digits of accuracy on an incorrect set. This idea requires care in
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Figure 15.3. Zigzagging.

implementation, however. The reason is that as the solution to a problem becomes less
accurate, the computed Lagrange multipliers also become less accurate. These inaccuracies
can affect the sign of a computed Lagrange multiplier. Consequently, a constraint may
erroneously be deleted from the working set, thereby wiping out any potential savings.

Another possible danger is zigzagging. This phenomenon can occur if the iterates cy-
cle repeatedly between two working sets. This situation is depicted in Figure 15.3. Zigzag-
ging cannot occur if the equality-constrained problems are solved sufficiently accurately
before constraints are dropped from the working set.

To conclude, we indicate how the active-set method can be adapted to solve a problem
of the form

minimize f (x)

subject to A1x ≥ b1

A2x = b2

containing a mix of equality and inequality constraints. In this case, the equality constraints
are kept permanently in the working set W since they must be kept satisfied at every iteration.
The Lagrange multipliers for equality constraints can be positive or negative, and so do not
play a role in the optimality test. The equality constraints also do not play a role in the
selection of the maximum allowable step length ᾱ. These are the only changes that need be
made to the active-set method.

15.4.1 Linear Programming

The simplex method for linear programming is a special case of an active-set method.16

Suppose that we were trying to solve a linear program with n variables and m linearly
independent equality constraints:

minimize f (x) = cTx

subject to Ax = b

x ≥ 0.

16This section uses the notation of Chapters 4 and 5.
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Assume for simplicity that the problem is not degenerate. The matrix A represents only the
general constraints and does not include the nonnegativity constraints. Let xk be a basic
feasible solution, with the variables ordered so that

xk =
(
xB
xN

)
,

where xB is the vector of basic variables and xN is the (currently zero) vector of nonbasic
variables. We write

A = ( B N ) and c =
(
cB
cN

)
.

The current working set corresponds to the equations

Āxk ≡
(
B N

0 I

)(
xB
xN

)
=
(
b

0

)
.

This is a system of n equations in n unknowns, and so

Ār = Ā−1 =
(
B−1 −B−1N

0 I

)
.

The right-most portion ofĀr is the same as the null-space matrix

Z̄ =
(−B−1N

I

)
that would be obtained if variable reduction were applied to A.

The first step in the active-set method is the optimality test. Since Ā is an n × n

invertible matrix, the corresponding null-space matrix Z̄ is empty, and so

Z̄T∇f (xk) = Z̄Tc = 0.

(This is guaranteed to occur, so this step is not an explicit part of the algorithm.) Lagrange
multipliers are computed from the formula

λ̄ = ĀTr∇f (xk)

=
(

B−T 0
−NTB−T I

)(
cB
cN

)

=
(

B−T cB
cN −NTB−T cB

)
.

Hence λ̄ consists of the vector of simplex multipliers y = B−T cB together with the vector of
reduced costs ĉN = cN −NTB−T cB . The simplex multipliers y are the Lagrange multipliers
for the general constraintsAx = b, and so there is no sign restriction on them. The reduced
costs are the multipliers for the constraints xN ≥ 0. For xk to be optimal, the reduced costs
must be nonnegative.

If the optimality conditions are not satisfied, then ĉj < 0 for some j , and the constraint
xj ≥ 0 is dropped from the working set. This corresponds to deleting one of the bottom
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rows from Ā. A feasible descent direction must then be determined. Such a direction p
must satisfy Ap = 0 and so, if variable reduction is used, p can be written in the form

p =
(−B−1N

I

)
v = Z̄v

for some v. In addition, the other nonbasic variables must remain zero. This further
restriction implies that we can choose

p = Z̄j ,

where Z̄j is the column of Z̄ corresponding to ĉj . This is the same search direction as in
the simplex method (see Section 5.3.2).

If a step of lengthα is taken along the search directionp, then the value of the objective
function is given by

f (xk + αp) = cTxk + αĉj
and so f (xk+αp) < f (xk) for all α > 0. The greatest reduction in f is obtained by taking
the maximum feasible step along p. The upper bound ᾱ on α is determined by a ratio test,
a test that is the same in the simplex method as in the active-set method.

In the simplex method, the step length is α = ᾱ, and a new constraint boundary is
encountered. This boundary corresponds to one of the nonnegativity constraints becoming
active, that is, to a variable leaving the basis. Hence a row is added to Ā, making it again
an n× n invertible matrix of the same general form as before. This completes an iteration
of the active-set method.

The above remarks show that the simplex method is an active-set method in which
variable reduction is used to represent the null space of the general constraints.

Exercises
4.1. Apply the simple active-set method to the problem in Example 15.5, using the initial

guess x0 = (5, 9, 2)T, and with f (x) = x2
1 + 2x2

2 + 3x2
3 . Compute a search direction

using a reduced Newton method.

4.2. Suppose that a quasi-Newton approximation is used to compute the search direction
within the simple active-set method, and that only an approximation to the reduced
Hessian is maintained.

(i) Indicate how to adjust the quasi-Newton approximation to the reduced Hessian
when a constraint is added or dropped from the working set.

(ii) If a positive-definite quasi-Newton update formula is used, do your techniques
guarantee that the approximation to the reduced Hessian remains positive
definite?

4.3. Suppose that a constraint is dropped from the working set in the optimality test for the
simple active-set method. If the search direction is computed using a reduced Newton
method, and the Hessian is positive definite, is the search direction a feasible descent
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direction at the current iteration? What if some other method is used to compute the
search direction?

4.4. LetĀ be the matrix corresponding to the working set, and assume that an orthogonal
projection matrix P = I −ĀT(ĀĀT)−1Ā

T
is used as the null-space matrix. Let the

constraint aTx ≥ b be added to the working set, and assume that Pa = 0. Prove that
the new orthogonal projection matrix P̂ satisfies

P̂ = P − Pa(aTPa)−1aTP .

What happens if Pa = 0?

4.5. Derive a “steepest-edge” rule to select a constraint to drop from the active set. (See
Section 7.6.1.)

4.6. Consider the optimization problem in Example 15.7. At the solution x∗, the active
set includes only the second constraint. For every feasible point x corresponding to
this active set, compute an estimate λ of the optimal Lagrange multiplier λ∗ using
the right inverse in the example. What is the relationship between ‖x − x∗‖ and
|λ− λ∗|? For what values of x is the sign of the multiplier estimate correct?

4.7. Suppose that the line search within the active-set method uses a backtracking ap-
proach (see Section 11.5). Specify the algorithm for this line search. What conditions
must the step length α satisfy?

4.8. Suppose that the line search within the active-set method is based on aWolfe condition
(see Section 11.5.1). What conditions must the step length α satisfy?

4.9. Consider the linear programming example from Section 5.2. Reinterpret the itera-
tions of the simplex method as steps in an active-set method.

4.10. Write a computer program to solve the problem

minimize f (x) = 1
2x

TQx − cTx
subject to Ax ≥ b,

where Q is positive definite and A is an m × n matrix of full row rank. Use an
active-set method based on a reduced Newton search direction. You may assume
that the initial guess is a feasible point and that ᾱ is always positive. Use your method
to solve the problem

minimize f (x) = x2
1 + 2x2

2
subject to x1 − x2 ≥ 3

2x1 − 3x2 ≥ 6.

Use the initial guess x0 = (8, 2)T. Include an upper limit on the number of iterations
(10 should be more than sufficient here). At each iteration print out the current point,
the working set, the reduced gradient, the Lagrange multipliers (if applicable), the
search direction, and the step size. Plot the sequence of iterates obtained.

15.5 Sequential Quadratic Programming
Sequential quadratic programming is a popular and successful technique for solving non-
linearly constrained problems. The main idea is to obtain a search direction by solving
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a quadratic program, that is, a problem with a quadratic objective function and linear
constraints. This approach is a generalization of Newton’s method for unconstrained
minimization.

As was pointed out in Section 14.6, methods for solving

minimize f (x)

subject to g(x) = 0

can be derived by applying Newton’s method to the corresponding optimality conditions.
(Here g is a vector of m functions gi .) The Lagrangian for this problem is

L(x, λ) = f (x)− λTg(x),
and the first-order optimality condition is

∇L(x, λ) = 0.

Then the formula for Newton’s method is(
xk+1

λk+1

)
=
(
xk
λk

)
+
(
pk
νk

)
,

where pk and νk are obtained as the solution to the linear system

∇2L(xk, λk)
(
pk
νk

)
= −∇L(xk, λk).

This linear system has the form(∇2
xxL(xk, λk) −∇g(xk)
−∇g(xk)T 0

)(
pk
νk

)
=
(−∇xL(xk, λk)

g(xk)

)
.

We will use these formulas to develop one of the most successful classes of methods for
constrained optimization.

This system of equations represents the first-order optimality conditions for the opti-
mization problem

minimize q(p) = 1
2p

T [∇2
xxL(xk, λk)]p + pT [∇xL(xk, λk)]

subject to [∇g(xk)]Tp + g(xk) = 0,

with νk the vector of Lagrange multipliers. This optimization problem is a quadratic pro-
gram; that is, it is the minimization of a quadratic function subject to linear constraints. The
quadratic function is a Taylor series approximation to the Lagrangian at (xk, λk), and the
constraints are a linear approximation to g(xk + p) = 0.

In Chapter 11, where we examined unconstrained problems, the formulas for Newton’s
method corresponded to the minimization of a quadratic approximation to the objective
function. Now in the constrained case, the formulas for Newton’s method correspond to
the constrained minimization of a quadratic approximation to the Lagrangian.

In a sequential quadratic programming method, at each iteration a quadratic program
is solved to obtain (pk, νk). These are used to update (xk, λk), and the process repeats at
the new point. Each of the quadratic programs is solved using the techniques described in
Section 15.2.
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Example 15.8 (Sequential Quadratic Programming Method). We apply the SQP method
to the problem

minimize f (x1, x2) = e3x1 + e−4x2

subject to g(x1, x2) = x2
1 + x2

2 − 1 = 0.

The solution to this problem is x∗ ≈ (−0.74834, 0.66332)T with λ∗ ≈ −0.21233.
We use the initial guess x0 = (−1, 1)T and λ0 = −1. At this point

∇f =
(

3e3x1

−4e−4x2

)
=
(

0.14936
−0.07326

)

∇2f =
(

9e3x1 0
0 16e−4x2

)
=
(

0.44808 0
0 0.29305

)
g = x2

1 + x2
2 − 1 = ( 1 )

∇g =
(

2x1

2x2

)
=
(−2

2

)
∇2g =

(
2 0
0 2

)

∇xL = ∇f − λ∇g =
(−1.85064

1.92674

)

∇2
xxL = ∇2f − λ∇2g =

(
2.44808 0

0 2.29305

)
.

The corresponding quadratic program is

minimize q(p) = 1
2p

T[∇2
xxL]p + pT[∇xL]

subject to [∇g]Tp + g = 0.

Its solution can be found using the first-order optimality conditions for the quadratic pro-
gram: ( ∇2

xxL −∇g
−∇gT 0

)(
p

ν

)
=
(−∇xL

g

)
or ( 2.44808 0 2

0 2.29305 −2
2 −2 0

)(
p1

p2

ν

)
=
( 1.85064
−1.92674

1

)
.

The solution of the quadratic program is

p0 =
(

0.22577
−0.27423

)
and ν0 = (−0.64896 ),

and the new estimates of the solution are

x1 = x0 + p0 =
(−0.77423

0.72577

)
λ1 = λ0 + ν0 = (−0.35104 ) .

The complete iteration is given in Table 15.1. Notice the rapid convergence rate, as expected
for Newton’s method.
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Table 15.1. Sequential quadratic programming method.

k xk λk ‖∇xL‖ ‖g‖
0 −1.00000 1.00000 −1.00000 3 × 100 1 × 100

1 −0.77423 0.72577 −0.35104 4 × 10−1 1 × 10−1

2 −0.74865 0.66614 −0.21606 1 × 10−2 4 × 10−3

3 −0.74834 0.66332 −0.21232 4 × 10−6 8 × 10−6

4 −0.74834 0.66332 −0.21233 3 × 10−11 2 × 10−11

5 −0.74834 0.66332 −0.21233 1 × 10−16 0

Computing the updates pk and νk by solving the quadratic program corresponds to
applying Newton’s method to the optimality conditions for the original problem. As a
result, if the initial point is “close enough” to the solution, this method will have a quadratic
convergence rate, provided that ∇2L(x∗, λ∗) is nonsingular. This rapid convergence rate is
observed in the example. The Hessian of the Lagrangian will be nonsingular if the regularity
condition and the second-order sufficiency conditions for the original optimization problem
are satisfied, that is, if ∇g(x∗) is of full rank and if ZT∇2

xxL(x∗, λ∗)Z is positive definite,
where Z is a basis matrix for the null space of ∇g(x∗)T; see the Exercises.

The sequential quadratic programming method outlined above is not often used in this
simple form. There are two major reasons for this. First, it is not guaranteed to converge
to a local solution to the optimization problem. Second, it is not always appropriate to use
Newton’s method because of its computational costs. These are the same reasons that the
classical Newton method is not always used in the unconstrained case.

We first discuss the issue of computational costs. The method outlined above requires
the Hessians of the objective function f and the constraint functions g. Once these have
been obtained, a quadratic program must be solved to determine the updates pk and νk
(this corresponds to solving the linear system of optimality conditions for the quadratic
program). As in the unconstrained case, it would be desirable to reduce these requirements
for derivatives and to reduce the number of arithmetic operations required at each iteration
of the algorithm. If large problems are being solved, it would also be desirable to reduce the
storage requirements by using computational techniques that do not require matrix storage.

One way to reduce the expense of this algorithm is to use a quasi-Newton approx-
imation to the Hessian of the Lagrangian (see Section 12.3). If this is done, then second
derivatives need not be computed. In addition, the quasi-Newton matrix can be maintained
in the form of a factorization, and in this way the arithmetic costs of the method can also be
reduced.

Choosing an update formula for the quasi-Newton approximation in the constrained
case can be a more complicated decision than in the unconstrained case. For example, one
might choose to approximate the full Hessian of the Lagrangian, or perhaps just the reduced
Hessian. This choice can affect the convergence theory for the method. (See the Notes.)

Convergence results for the sequential quadratic programming method are obtained
by insisting that (xk+1, λk+1) be a “better” estimate of the solution than (xk, λk). In the
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unconstrained case, progress is measured in terms of the objective function. In the con-
strained case it is common to measure progress in terms of an auxiliary merit function.
Usually, a merit function is the sum of terms that include the objective function and the
amount of infeasibility of the constraints. If the new point reduces the objective function
and reduces infeasibility, then the value of the merit function will decrease. In many in-
stances, however, improvements in the objective value come at the expense of feasibility,
and vice versa, so the merit function must balance these two goals. One example of a merit
function is the quadratic penalty function

M(x) = f (x)+ ρg(x)Tg(x) = f (x)+ ρ
m∑
i=1

gi(x)
2,

where ρ is some positive number. The greater the value of ρ, the greater the penalty for
infeasibility. This merit function is a function of x only; other examples of merit functions
may be functions of both x and λ.

Example 15.9 (Merit Function). Let us use the merit function

M(x) = f (x)+ 10g(x)Tg(x)

to measure the progress of the sequential quadratic programming method in the previous
example. At the first iteration

x0 = (−1.00000 1.00000 )T

f (x0) = 0.068103
g(x0) = 1.00000

M(x0) = 10.068103

and

x1 = (−0.77423 0.72577 )T

f (x1) = 0.152864
g(x1) = 0.126174

M(x1) = 0.312063

so, in terms of this merit function, the point x1 is better than the point x0. At the next
iteration,

x2 = (−0.74865 0.66614 )T

f (x2) = 0.175457
g(x2) = 0.004219

M(x2) = 0.175635,

indicating that x2 is better than both x1 and x0 for this merit function.

Ideally, the merit function would be chosen so that (x∗, λ∗)would be a local minimizer
of the merit function if and only if it were a local solution of the optimization problem. If
this were true, then a line search with respect to the merit function could be performed:(

xk+1

λk+1

)
=
(
xk
λk

)
+ α

(
pk
νk

)
,
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where α is chosen so that

M(xk+1, λk+1) < M(xk, λk).

For this to be successful, the search direction from the quadratic program would have to
be a descent direction for the merit function. The convergence theorem for unconstrained
minimization (Theorem 11.7) could then be adapted to prove convergence in the constrained
case.

Unfortunately, it is rarely possible to guarantee that the local minimizers of the merit
function and the local solutions of the optimization problem coincide. For the merit function

M(x) = f (x)+ ρg(x)Tg(x),
some of the local minimizers of M approach local solutions of the constrained problem
in the limit as ρ → ∞ (see Section 16.2). In addition M may have local minima at
points where g(x) = 0, that is, at infeasible points. Other merit functions have analogous
deficiencies that can limit the applicability of convergence theorems or can complicate the
development of sequential quadratic programming methods.

In the unconstrained case we assume that search directions are descent directions with
respect to the objective function. In this setting, we assume that either pk or the combined
vector (pk, νk) is a descent direction with respect to the merit function. A common way
to guarantee this is to insist that the reduced Hessian for the quadratic program be positive
definite. (Recall that in the unconstrained case we insisted that the Hessian of the quadratic
model be positive definite.)

If a quasi-Newton approximation to the Hessian is used to define the quadratic pro-
gram, then positive-definiteness of the reduced Hessian is often guaranteed by the choice
of quasi-Newton update formula. If Newton’s method is used, so that the Hessian in the
quadratic program is ∇2

xxL(xk, λk), then it is necessary to test if the reduced Hessian is
positive definite, and to modify it if it is not. (See also Section 11.4.) In the constrained
case, testing whether the reduced Hessian is positive definite is more complicated than in
the unconstrained case, particularly if the quadratic program is solved via the linear system(∇2

xxL(xk, λk) −∇g(xk)
−∇g(xk)T 0

)(
pk
νk

)
=
(−∇xL(xk, λk)

g(xk)

)
.

In this case, the reduced Hessian may not be available, and more elaborate tests for positive-
definiteness must be used.

Near the solution of the constrained problem we would normally like to take a step of
α = 1 in the line search so that the quadratic convergence rate of Newton’s method could be
achieved. Hence the merit function should be chosen so that a step of α = 1 is guaranteed
to be accepted in the limit as the solution is approached. For certain merit functions this is
not true. In such cases it is possible to give examples where a step of α = 1 is unacceptable
at every iteration, no matter how close the current point is to the solution.

We will ignore many of these difficulties and only prove that pk is a descent direc-
tion for the quadratic penalty merit function. Even more, we will make the simplifying
assumption that the full Hessian of the Lagrangian (or some approximation to it) is positive
definite. If a quasi-Newton approximation to the Hessian is used, this assumption is not
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unreasonable, but for Newton’s method it is restrictive. The lemma below (together with
Theorem 11.7) can be used to show that

lim
k→∞∇M(xk) = 0.

For large values of ρ, local solutions of the constrained problem are approximate local
minimizers of M(x) to within O(1/ρ), and so this argument provides the rough outline of
a convergence theorem. For further results, ones with less restrictive assumptions and with
more satisfying conclusions, see the references mentioned in the Notes.

Lemma 15.10 (Descent Direction for Merit Function). Assume that (pk, νk) is computed
as the solution to the quadratic program

minimize q(p) = 1
2p

THp + pT [∇xL(xk, λk)]
subject to [∇g(xk)]Tp + g(xk) = 0,

where H is some positive-definite approximation to ∇2
xxL(xk, λk). If pk = 0, then

pTk∇M(xk) < 0

for all sufficiently large values of ρ, where

M(x) = f (x)+ ρg(x)Tg(x);
that is, pk is a descent direction with respect to this merit function.

Proof. For simplicity, we omit the subscript k on most vectors and write∇xL ≡ ∇xL(xk, λk),
etc. The proof is based directly on the optimality conditions for the quadratic program

Hp = −∇f + ∇g(λ+ ν)
∇gTp = −g.

The first of these conditions implies that

pT∇f = −pTHp + pT∇gλ̂,
where λ̂ ≡ λ+ ν.

Using these conditions we obtain

pT∇M = pT∇f + 2ρpT(∇g)g
= pT∇f − 2ρgTg

= −pTHp + pT(∇g)λ̂− 2ρgTg

= −pTHp − gTλ̂− 2ρgTg.

The first term is negative, since we have assumed that H is positive definite and p = 0. If
g = 0, then pT∇M < 0. If g = 0, then we can ensure that pT∇M < 0 by choosing ρ
large enough. To see this, we write the last two terms as

m∑
i=1

(−giλ̂i − 2ρg2
i ),
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and so if

ρ > max
i

{
− λ̂i

2gi
: gi = 0

}
,

the summation will be negative, showing that p is a descent direction.

So far we have discussed only problems with equality constraints. Consider now a
problem of the form

minimize f (x)

subject to g1(x) ≥ 0
g2(x) = 0,

where g1 and g2 are vectors of constraint functions. We can develop a sequential quadratic
programming method for this problem as well.

Our earlier quadratic program was based on a quadratic approximation to the La-
grangian function and a linear approximation to the constraints. If the same approximations
are used here, we obtain

minimize q(p) = 1
2p

T [∇2
xxL(xk, λk)]p + pT [∇f (xk)]

subject to [∇g1(xk)]Tp + g1(xk) ≥ 0

[∇g2(xk)]Tp + g2(xk) = 0.

The solutionpk to this quadratic program provides the step to the next estimate of the solution
of the original constrained problem, and the Lagrange multipliers provide an estimate of
the Lagrange multipliers of the original problem. The objective for this quadratic problem
includes the termpT [∇f (xk)]—notpT [∇xL(xk, λk)] as might have been expected. Without
this modification, the method is not guaranteed to converge. (See the Exercises.)

The references in the Notes discuss the case where the quadratic program has no
solution. This quadratic program can be solved using the active-set method discussed in
Section 15.4.

Exercises
5.1. Show that the solution to

minimize f (x) = e3x1+4x2

subject to g(x1, x2) = x2
1 + x2

2 − 1 = 0

is x∗ = (− 3
5 ,− 4

5 )
T with λ∗ = − 5

2e
−5. Set up and solve the quadratic subproblem at

x = ( 3
5 ,

4
5 )
T and λ = 5

2e
−5.

5.2. Prove that the Hessian of the Lagrangian function

L(x, λ) = f (x)− λTg(x)
will be nonsingular if the regularity condition and the second-order sufficiency con-
ditions for the original optimization problem are satisfied, that is, if ∇g(x∗) is of full
rank and if ZT∇2

xxL(x∗, λ∗)Z is positive definite, where Z is a basis matrix for the
null space of ∇g(x∗).
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5.3. Consider the problem
minimize f (x) = xTQx

subject to xTx ≤ 1,

where

Q =
(

2 0
0 1

)
.

Suppose that x0 = (1, 1)T and that λ0 is specified. Find x1 and λ1 using the sequential
quadratic programming method. Under what conditions is λ1 = λ0?

5.4. (This problem illustrates a pathology of sequential quadratic programming called the
Maratos effect.) Consider the problem

minimize f (x) = 2(x2
1 + x2

2 − 1)− x1

subject to x2
1 + x2

2 − 1 = 0.

(i) Prove that x∗ = (1, 0)T is the minimizer with associated multiplier λ∗ = 3/2.

(ii) Suppose that xk = (cos θ, sin θ)T, where θ ≈ 0. Verify that xk is feasible
and close to x∗. Let λk = λ∗. Set up and solve the corresponding quadratic
program at this point. Show that the solution is pk = (sin2 θ,− sin θ cos θ)T.
What is νk? Show that if xk+1 = xk + pk , then f (xk+1) > f (xk) and that
xk+1 is infeasible. This shows that, even when close to the solution, a unit step
along the Newton direction may increase the value of any merit function.

5.5. Suppose that you wish to solve an optimization problem of the form

minimize f (x)

subject to g1(x) ≥ 0
g2(x) = 0,

where the search directions are computed using the quadratic subproblem

minimize q(p) = 1
2p

T [∇2
xxL(xk, λk)]p + pT [∇xL(xk, λk)]

subject to [∇g1(xk)]Tp + g1(xk) ≥ 0

[∇g2(xk)]Tp + g2(xk) = 0.

Suppose that the initial guess for the Lagrange multipliers satisfies λ0 > λ∗. Prove
that the estimates of the Lagrange multipliers for the inequality constraints do not
converge to the optimal Lagrange multipliers.

15.6 Reduced-Gradient Methods
Reduced-gradient methods try to maintain feasibility at every iteration. This approach has
several advantages. If each estimate of the solution is feasible, the algorithm can be stopped
before it converges, and the approximate solutions may still be useful. Also, guarantee-
ing convergence is simpler because progress can be measured directly using the value of
the objective function, rather than with an auxiliary merit function. The disadvantage of
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reduced-gradient methods is the computational expense of ensuring that nonlinear con-
straints remain satisfied at every iteration.

We apply a version of the reduced-gradient method to the problem

minimize f (x)

subject to g(x) = 0,

where g is a vector ofm functions gi . Our derivation begins the same way as for sequential
quadratic programming. The Lagrangian is

L(x, λ) = f (x)− λTg(x),
and if Newton’s method is applied to the first-order optimality condition, then(

xk+1

λk+1

)
=
(
xk
λk

)
+
(
pk
νk

)
,

where pk and νk are obtained as the solution to the linear system

∇2L(xk, λk)
(
pk
νk

)
= −∇L(xk, λk).

This linear system has the form(∇2
xxL(xk, λk) −∇g(xk)
−∇g(xk)T 0

)(
pk
νk

)
=
(−∇xL(xk, λk)

g(xk)

)
.

It is at this point that the derivations for the two methods diverge.
In the reduced-gradient method we use these formulas to derive a portion of the search

direction, that is, the portion that lies in the null space of the constraint gradients. If Zk is
a basis matrix for the null space of ∇g(xk)T, and Yk is a basis matrix for the range space of
∇g(xk), then

pk = ZkpZ + YkpY ,

where pZ is the solution to the reduced system

ZTk [∇2
xxL(xk, λk)]ZkpZ = −ZTk∇xL(xk, λk).

This formula determines pZ in the reduced-gradient method.
If all the constraints are linear, then this formula is equivalent to the formula for the

reduced Newton method derived in Section 15.2. In that case the matrixZk will be the same
at every iteration, and

∇2
xxL(xk, λk) = ∇2f (xk)

ZTk∇xL(xk, λk) = ZTk∇f (xk).
(This last equation is valid even in the nonlinear case; see the Exercises.) Hence the reduced-
gradient method is a generalization of the reduced Newton method for linearly constrained
problems.
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The remaining portion of the search direction is determined from the condition that
the new estimate of the solution must be feasible: g(xk+1) = 0. Since xk+1 = xk + pk , this
condition has the form

g(xk + ZkpZ + YkpY ) = 0.

This is a system of m nonlinear equations in the m variables pY . (We are assuming here
that ∇g(xk) is a matrix of full rank.) If the constraints are linear, then pY = 0. If the
constraints are nonlinear, some auxiliary algorithm must be applied to this nonlinear system
to determine pY . For example, Newton’s method could be used.

The reduced-gradient method is illustrated in the following example.

Example 15.11 (Reduced-Gradient Method). We apply the reduced-gradient method to
the same problem used in Example 15.8:

minimize f (x1, x2) = e3x1 + e−4x2

subject to g(x1, x2) = x2
1 + x2

2 − 1 = 0.

The solution to this problem is x∗ ≈ (−0.74834, 0.66332)T with λ∗ ≈ −0.212325.
We again use the initial guess x0 = (−1, 1)T, even though this point does not satisfy

the constraints. At this point

∇f =
(

3e3x1

−4e−4x2

)
=
(

0.14936
−0.07326

)

∇2f =
(

9e3x1 0
0 16e−4x2

)
=
(

0.44808 0
0 0.29305

)
g = x2

1 + x2
2 − 1 = ( 1 )

∇g =
(

2x1

2x2

)
=
(−2

2

)
∇2g =

(
2 0
0 2

)
.

An estimate of the Lagrange multiplier is needed to determine the gradient and Hessian
of the Lagrangian. We compute a multiplier estimate λk by solving

minimize
λ

‖∇f (xk)− λ∇g(xk)‖2
2 .

At the initial point x0, the multiplier estimate is λ0 = −0.055655. Using this value we
obtain

∇xL = ∇f − λ∇g =
(

0.03805
0.03805

)

∇2
xxL = ∇2f − λ∇2g =

(
0.55939 0

0 0.40436

)
.

We use variable reduction to compute the null-space matrix Zk and the range-space
matrix Yk , based on

∇gT = ( 2x1 2x2 ) ≡ ( B N ) .

Then

Zk =
(−B−1N

I

)
=
(−x2/x1

1

)
and Yk = 1√

x2
1 + x2

2

(
x1

x2

)
.
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At this iteration

Z0 =
(

1
1

)
.

The null-space portion of the search direction is obtained by solving

ZTk [∇2
xxL]ZkpZ = −ZTk∇xL,

or
(0.963754)pZ = −0.076099,

so that pZ = −0.078961.
The remaining portion of the search direction, YkpY , is determined by solving

g(xk + ZkpZ + YkpY ) = 0

using Newton’s method. In this example,

YkpY =
(
y1

y2

)
γ

for some unknownγ , where y1 and y2 are the components ofYk . If we define x̂k = xk+ZkpZ,
then the condition for YkpY has the form

φ(γ ) ≡ (x̂1 + γy1)
2 + (x̂2 + γy2)

2 − 1 = 0.

Applying Newton’s method to this equation gives the iteration

γi+1 = γi − φ(γi)

φ′(γi)
= γi − (x̂1 + γiy1)

2 + (x̂2 + γy2)
2 − 1

2y1(x̂1 + γiy1)+ 2y2(x̂2 + γiy2)
.

In this example we initialize the iteration with γ0 = 0. Then

γ0 = 0, φ(γ0) = 1 × 100

γ1 = −0.35796205114318, φ(γ1) = 1 × 10−1

γ2 = −0.41861845196074, φ(γ2) = 4 × 10−3

γ3 = −0.42046619052517, φ(γ3) = 3 × 10−6

γ4 = −0.42046790833490, φ(γ4) = 3 × 10−12

γ5 = −0.42046790833638, φ(γ5) = −2 × 10−16.

The overall search direction is

p0 = Z0pZ+Y0pY =
(

1
1

)
(−0.078961 )+

(−0.70711
0.70711

)
(−0.420468 ) =

(
0.218355

−0.376276

)

and

x1 = x0 + p0 =
(−0.78164

0.62372

)
.

The complete iteration is given in Table 15.2. The initial guess of the solution is
not feasible, but all later estimates of the solution are feasible (to 15 digits). The method
converges rapidly, as expected for Newton’s method.
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Table 15.2. Reduced-gradient method.

k xk λk ‖∇xL‖ ‖g‖
0 −1.00000 1.00000 −0.055655 5 × 10−2 1 × 100

1 −0.78164 0.62372 −0.215306 8 × 10−2 8 × 10−15

2 −0.74950 0.66201 −0.212401 3 × 10−3 8 × 10−15

3 −0.74834 0.66332 −0.212325 2 × 10−6 3 × 10−15

The reduced-gradient method corresponds to using Newton’s method in the null space
of the constraints, and so it can be expected to converge quadratically in nondegenerate
cases. This quadratic convergence rate is observed in Example 15.11. As before, Newton’s
method is not guaranteed to converge, and even if it does converge, it may converge to a
maximum or stationary point and not a minimum. Hence some globalization strategy must
be employed to ensure convergence to a local solution of the optimization problem.

A line search can be used to guarantee convergence, as was done with the sequential
quadratic programming method. If all the solution estimates xk are feasible points, then the
value of the quadratic penalty merit function is

M(xk) = f (xk)+ ρg(xk)Tg(xk) = f (xk),

and so a line search can be performed using the objective function f itself as a merit function.
As long as the conditions of Theorem 11.7 are satisfied, convergence is guaranteed.

Example 15.12 (Progress Measured by Objective Function). For the problem in Example
15.11, the successive values of the objective function are

f (x0) = 0.068103
f (x1) = 0.178359
f (x2) = 0.176349
f (x3) = 0.176347,

so in this case the objective value increases at the first iteration while the reduced-gradient
method finds a feasible point, but the objective value decreases at every other iteration, even
though no line search is employed.

The line search for a reduced-gradient method is more complicated than in the uncon-
strained case. For each trial value of the step length α, the trial point must satisfy

g(xk + αZkpZ + YkpY ) = 0.

Hence pY depends on α and must be computed by solving a nonlinear system of equations.
For “large” values of α there may be nopY that satisfies the constraints, further complicating
the line search algorithm. For these reasons, it is not entirely correct to say that the reduced-
gradient method produces a search “direction” since in fact the method must search along
an arc defined by pZ and α.
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Theorem 11.7 makes several assumptions about the search direction and the step
length. For example, the search direction must be a descent direction, that is, we require

f (xk + εZkpZ + YkpY (ε)) < f (xk)

for “small” positive values of ε. (Here we have written pY(ε) to emphasize that pY depends
on ε.) Conditions that guarantee descent are given in the following lemma. The remaining
requirements of the convergence theorem can be derived in a similar manner.

Lemma 15.13 (Descent Direction). Assume that the reduced-gradient method is applied to
the problem

minimize f (x)

subject to g(x) = 0.

Let xk be the kth estimate of the solution, with g(xk) = 0. Assume that ∇g(x) is of full rank
for all x in a neighborhood of xk . Also assume that the null-space portion pZ of the search
direction is computed from

ZTk [∇2
xxL(xk, λk)]ZkpZ = −ZTk∇xL(xk, λk),

where λk is an estimate of the Lagrange multipliers, and where

ZTk [∇2
xxL(xk, λk)]Zk

is positive definite. Define pY(ε) as the solution to

g(xk + εZkpZ + YkpY (ε)) = 0.

If ZTk∇xL(xk, λk) = 0, then

f (xk + εZkpZ + YkpY (ε)) < f (xk)

for all sufficiently small positive values of ε.

Proof. To simplify the proof, we omit the subscript k on all quantities and use the notation
H = ZTk [∇2

xxL(xk, λk)]Zk . Using a Taylor series expansion, we obtain

f (x + εZpZ + YpY(ε)) = f (x)+ ε∇f (x)TZpZ + ∇f (x)TYpY (ε)+O(ε2)

= f (x)− ε∇f (x)TZH−1ZT∇f (x)+ ∇f (x)TYpY (ε)+O(ε2).

If the matrixH is positive definite, then the second term in this expansion will be negative.
If ε is small enough, the final term will be negligible in comparison with the second term.
We will prove that the third term is proportional to ε2, and so (for small enough values of
ε) it too will be negligible.

We first prove that
YpY(ε) = O(ε),

and then use this result to prove that

YpY(ε) = O(ε2).
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We will analyze pY using the condition

g(x + ZpZ + YpY(ε)) = 0.

Expanding in a Taylor series, we obtain

g(x)+ ∇g(x + ξ)T(εZpZ + YpY(ε)) = 0,

where x + ξ is some unknown point between x and x + ZpZ + YpY(ε). Since g(x) = 0,
and since ∇g(x) is of full rank, we can rearrange this equation to obtain

YpY(ε) = −ε[∇g(x + ξ)∇g(x + ξ)T]−1∇g(x + ξ)TZpZ.

This shows that YpY(ε) = O(ε); it follows that ξ = O(ε) also.
To prove that YpY(ε) = O(ε2), we take the equation

∇g(x + ξ)T(εZpZ + YpY(ε)) = 0

and further expand ∇g(x + ξ) using a Taylor series. We obtain

[∇g(x)+O(ε)]T(εZpZ + YpY(ε)) = 0.

Since ZT∇g(x) = 0 (because Z is a null-space matrix for ∇g(x)), this is equivalent to

∇g(x)TYpY (ε) = −O(ε2)ZpZ.

Hence, because ∇g(x) is full rank,

YpY(ε) = −O(ε2)[∇g(x)∇g(x)T]−1ZpZ = O(ε2).

Thus,

f (x + εZpZ + YpY(ε)) = f (x)− ε∇f (x)TZH−1ZT∇f (x)+O(ε2),

and it now follows that descent is obtained for “small” positive values of ε.

The lemma assumes that

ZTk [∇2
xxL(xk, λk)]Zk

is positive definite. This will not be true in general. If this condition is not satisfied, then
the techniques in Section 11.4 can be used to guarantee that a descent direction is obtained.

The reduced-gradient method need not be based on Newton’s method. Aquasi-Newton
approximation to the Hessian, or the steepest-descent method, or a truncated-Newton method
could be used instead to computepZ. As in the unconstrained case, the overall method would
converge at a slower rate.

The main disadvantage of a reduced-gradient method is that each iteration can be
expensive. The method (at least in the idealized form given here) insists that the estimates
of the solution xk remain feasible. When the constraints are nonlinear, this means that a
system of nonlinear equations must be solved at each trial point to restore feasibility. If the
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constraints are “nearly” linear, or if there are not too many nonlinear constraints, then this
will not be difficult. Otherwise, solving the nonlinear system may require a great deal of
computation, and in some cases the nonlinear system will have no solution.

Variants of the reduced-gradient method have been developed that are more flexible
in that they allow some violation of the constraints. Such methods might be considered
a compromise between reduced-gradient and sequential quadratic programming methods;
see the Notes.

Exercises
6.1. Prove that

Z(x)T∇xL(x, λ) = Z(x)T∇f (x).

15.7 Filter Methods
In this section we describe a multicriteria approach that guarantees convergence of opti-
mization methods. This approach uses filters instead of merit functions to measure the
progress of algorithms. For several reasons filter methods are an attractive alternative to
the methods using merit functions. First, filter methods rely on primary goals— a decrease
of the objective function and infeasibility—and therefore may not be sensitive to the choice
of parameters or a particular merit function. Second, filter methods tend to allow more
freedom in selecting the next trial point than methods based on penalty or merit functions.
This can contribute to the efficiency of filter methods. Finally, filter methods demonstrate
robust and efficient performance in practice.

Filter methods are a new and active area of research. They can be based on a variety
of different underlying optimization methods. Filter methods are analogous to the use of
a merit function, since they are used to guarantee convergence. In this section we discuss
filter methods in the context of SQP algorithms.

Consider an optimization problem with equality constraints

minimize f (x)

subject to gi(x) = 0, i = 1, . . . , m.

We will discuss later how to treat inequality constraints.
To guarantee convergence of the SQP method, in Section 15.5 we used a quadratic

penalty function as a merit function,

M(x) = f (x)+ ρg(x)Tg(x) = f (x)+ ρ
m∑
i=1

gi(x)
2,

where ρ is the positive penalty parameter. Alternatively, some other merit functions can be
used, e.g.,

π(x, ρ) = f (x)+ ρ‖g(x)‖,
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where ‖g(x)‖ is some norm of the vector functiong(x). (See Chapter 16.) Apenalty function
is the weighted sum of two terms that includes the objective function and some measure of
infeasibility.

Temporarily, let us use the following penalty function π(x, ρ) = f (x)+ ρ‖g(x)‖ as
a merit function to control convergence of the iterates xk . If π(xk+1, ρ) < π(xk, ρ), then
xk+1 is considered a better estimate of the solution than xk . The penalty function measures
the decrease of a combination of the objective function f (x) and the infeasibility ‖g(x)‖.
The parameter ρ > 0 specifies the relative importance of one criterion with respect to the
other. For example, if ρ is small, then the penalty function emphasizes decrease of the
objective function. However, if ρ is large, then the penalty function emphasizes decrease
of the infeasibility.

Numerical experiments reveal that the value of ρ can influence the performance of the
algorithm. What is the best choice of ρ? This difficult question lacks a definitive answer.
The best value of ρ may depend on the problem and on the distance from xk to the solution.
Usually, practical algorithms start with a certain value of ρ and adjust it as required. Various
strategies are possible for adjusting ρ.

Is it possible to eliminate ρ altogether? The answer is yes, and filter methods are one
way to achieve this. Instead of using penalty functions, filter methods consider decrease of
the objective function and decrease of infeasibility as two criteria that must be controlled
simultaneously. The main idea of filter methods is that the next trial point xk+1 is accepted if
it improves at least one of two criteria: the value of the objective function or the infeasibility
of the constraints.

Our filter method will incorporate a function h(x) = ‖g(x)‖ that measures the infea-
sibility of the constraints; that is, (i) h(x) = 0 if and only if x is a feasible point, and (ii) the
larger the value of h(x), the more infeasible x is considered to be.

Suppose that we apply some optimization algorithm to the equality-constrained prob-
lem, and that it generates a sequence { xk } of estimates of the solution. We will use
fk = f (xk) and hk = h(xk) to denote the corresponding objective values and infeasi-
bilities. If fk+1 < fk and hk+1 < hk, then we will say that xk+1 is closer than xk to the
solution of the problem. It would be ideal if this were true at every iteration, but that will
not always happen. Even convergent algorithms do not guarantee that both inequalities
fk+1 < fk and hk+1 < hk hold. Often outside of the feasible set, reduction of infeasibility
results in an increase of the value of the objective function (see Figure 15.4). It can be
better to accept xk+1 if there is a substantial decrease in just one of the two criteria, even
if the other increases. That gives the algorithm more freedom in selecting iterates without
compromising convergence properties.

In the following we formalize the idea of filters. A pair (fq, hq) is said to dominate
another pair (fr , hr) if and only if both fq ≤ fr and hq ≤ hr . A filter is said to be a
list of pairs F = {(fj , hj ), j = 1, . . . , s} such that no pair dominates any other. A filter
F = {(f1, h1), (f2, h2), (f3, h3)} is illustrated in Figure 15.5 (left). In the figure, one point
dominates another if the first point is below and to the left of the second point.

Every point in the filter generates a block consisting of the points dominated by this
point, and the union of these blocks represents the set of points that are dominated by the
filter. For example, (f2, h2) generates the grey block shown in Figure 15.5 (left). Every
point in this block, e.g., (f̄ , h̄), is dominated by (f2, h2).

The filter is used to accept or reject the trial point xk+1. The trial point xk+1 is
accepted if and only if (fk+1, hk+1) is included in the filter. In turn, (fk+1, hk+1) is included
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Figure 15.4. Iterates can approach the solution outside the feasible set.
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Figure 15.5. Filter.

in the filter if and only if (fk+1, hk+1) is not dominated by any point from the filter. For
example, in Figure 15.5 (left), (f̄ , h̄) is dominated by (f2, h2). Therefore (f̄ , h̄) is not
included in the filter. However, (f4, h4) in Figure 15.5 (right) is not dominated by (f1, h1),

(f2, h2), or (f3, h3). Therefore (f4, h4) is included in the filter, and the updated filter is
F = {(f1, h1), (f2, h2), (f3, h3), (f4, h4)}.

In mathematical terms, (fk+1, hk+1) is included in the filter if and only if

either fk+1 < fj or hk+1 < hj for all j = 1, . . . , s.
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Figure 15.6. Filter and penalty.

After a new pair (fk+1, hk+1) is included in the filter, all the pairs from the filter
dominated by (fk+1, hk+1) are eliminated from the filter. Thus, a filter can consist of as
many as k + 1 pairs. However, at a certain iteration a new pair can dominate more than
one old entry of the filter. If this happens, we can eliminate multiple entries from the filter
and thus decrease the number of points in the filter. In general, we assume that a filter Fk

consists of s ≤ k + 1 points.
Figure 15.6 illustrates the difference between using filters and merit functions to accept

trial points. For example, the contours of the merit function π(xk, ρ)would be straight lines
with slope −ρ (see Figure 15.6) and only points to the left of this line would be accepted.
Filter methods would accept all the points outside the grey area. The filter method is able to
consider a larger set of points when choosing the next trial point. If a trial point is accepted
by the merit function for some ρ > 0, it is also accepted by the filter. However, the reverse
is not true. (See the Exercises.) If ρ is not chosen correctly, then the merit function can
reject good trial points that would be accepted by the filter, or by the merit function with a
different value of ρ. Thus, filter methods tend to be less restrictive than methods controlled
by merit functions when the number of entries in the filter is small.

The filter is used to accept or reject a trial point, but by itself it is not sufficient
to guarantee convergence. It must be combined with either a line search or trust-region
approach. (See Chapter 11.) Here we will use a trust-region approach, which was the
approach used when filter methods were first developed.

We will apply the filter method in the context of an SQP algorithm. At each iteration a
quadratic program is solved to obtain a search directionp. The trust-region strategy imposes
the following additional constraint to control the distance between xk+1 and xk:

‖p‖ ≤ 	k,

where	k > 0 is the maximum distance that we will allow between trial and current points.
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Figure 15.7. Infeasibility.

At each iteration the SQP-filter method solves the following problem:

minimize q(p) = 1
2p

THkp + pT∇f (xk)
subject to ∇g(xk)Tp + g(xk) = 0

‖p‖ ≤ 	k,

whereHk ≈ ∇2
xxL(xk, λk) approximates the Hessian of the Lagrangian. If a solution to the

quadratic program is found, then the trial point is

xk+1 = xk + pk.
If xk+1 is not accepted by the filter, then 	k is reduced and the quadratic program is

solved again. If pk = 0, then xk is a first-order optimality point of the original problem
with the Lagrange multipliers νk from the quadratic program. (See the Exercises.)

If the infinity norm (‖p‖ = max1≤i≤n |pi |) is used, then the trust-region constraint
‖p‖ ≤ 	k is equivalent to a set of bound constraints on the components of p. If the 2-norm(‖p‖ =

√∑n
i=1 p

2
i

)
is used, then the constraint ‖p‖ ≤ 	k is equivalent to one quadratic

inequality. (See the Exercises.) For a discussion of the norms see Appendix A.3.
If the quadratic problem is infeasible, then two situations can occur. The first situation

is when the linearized constraints

∇g(xk)Tp + g(xk) = 0

are consistent, but 	k is too small (see Figure 15.7). This situation can be resolved by
increasing 	k and solving the quadratic problem again.

The second situation is when the linearized constraints are inconsistent. If this hap-
pens, the algorithm tries to restore feasibility before continuing. It ignores the value of f (x)
and focuses on reducing h(x). For details on this topic, see the Notes. Practical algorithms
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may use various criteria when choosing between increasing 	k or restoring feasibility.
The algorithm presented in this section always performs feasibility restoration followed by
resetting	k to some fixed initial value in the case where the quadratic problem is infeasible.

Inequality constraints can be treated by the SQP-filter method in a similar way. Con-
sider an optimization problem of the form

minimize f (x)

subject to gi(x) ≥ 0, i ∈ I
gi(x) = 0, i ∈ E .

We can use the function ψi(x) = min(gi(x), 0) to measure infeasibility of the ith in-
equality constraint. The functions hI(x) = maxi∈I |ψi(x)| and hE(x) = maxi∈E |gi(x)|
measure the infeasibility of the inequality and equality constraints, respectively. Then
h(x) = max(hI(x), hE(x)) measures the overall infeasibility of the problem. There are
other examples of functions that measure the infeasibility of the problem. Often the choice
of h(x) is related to the method used for feasibility restoration. For details on this topic, see
the Notes.

Now the filter approach is applied to the general problem with objective function
f (x) and infeasibility measure h(x). The quadratic program solved at each iteration now
includes the linearized inequality constraints:

minimize
p

1
2p

THkp + pT∇f (xk)
subject to ∇gI(xk)Tp + gI(xk) ≥ 0

∇gE(xk)Tp + gE(xk) = 0
‖p‖ ≤ 	k,

where ∇gTI and ∇gTE are the Jacobians corresponding to the inequality and equality con-
straints, respectively. The rest is the same as before.

We are now able to present the SQP-filter algorithm.

Algorithm 15.1.
SQP-Filter Algorithm

1. Select x0, λ0. Set f0 = f (x0), h0 = h(x0). Initialize the filter: F0 = {(f0, h0)}.
Select the initial trust-region radius 	0 = 	̄.

2. For k = 0, 1, . . .

(i) Solving the Quadratic Subproblem—Compute pk and the Lagrange multipliers
νk by solving the quadratic subproblem

minimize
p

1
2p

THkp + pT∇f (xk)
subject to ∇gI(xk)Tp + g(xk) ≥ 0

∇gE(xk)Tp + g(xk) = 0
‖p‖ ≤ 	k.

(ii) The Optimality Test—If pk = 0, then stop. Output xk, λk = νk.
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(iii) The Restoration Test—If the quadratic subproblem is infeasible, then perform
feasibility restoration: determine xk+1 such that

hk+1 = h(xk+1) < min
(fj ,hj )∈Fk

hj .

Reset 	k+1 = 	̄.

(iv) The Update—If pk is the solution to the quadratic subproblem, then set

xk+1 = xk + pk.
If xk+1 is accepted, then set λk+1 = νk, fk+1 = f (xk+1), hk+1 = h(xk+1),
	k+1 = 	̄; update the filter using Fk+1 = Fk ∪ (fk+1, hk+1), and then remove
the points dominated by (fk+1, hk+1) from the filter. If xk+1 is not accepted,
then set 	k+1 = 	k/2, xk+1 = xk, Fk+1 = Fk.

Example 15.14 (The SQP-Filter Method). We apply the SQP-filter method to the follow-
ing problem:

minimize f (x1, x2) = e3x1 + e−4x2

subject to g(x1, x2) = x2
1 + x2

2 − 1 = 0.

The solution to this problem is x∗ = (−0.74834, 0.66332)T with λ∗ = −0.21233.
We use 	0 = 1, the infinity norm, and the initial guess x0 = (0, 0)T. We set Hk =

∇2
xxL(xk, λk), so we need also an initial guess for the Lagrange multiplier λ0 = −1.At this

point,

f = e3x1 + e−4x2 = ( 2 )

∇f =
(

3e3x1

−4e−4x2

)
=
(

3
−4

)

∇2f =
(

9e3x1 0
0 16e−4x2

)
=
(

9 0
0 16

)
g = x2

1 + x2
2 − 1 = (−1 )

∇g =
(

2x1

2x2

)
=
(

0
0

)
, ∇2g =

(
2 0
0 2

)

∇2
xxL = ∇2f − λ∇2g =

(
11 0
0 18

)
.

We initialize the filter as F0 = {(f0, h0)} = {(2, 1)}. The corresponding quadratic
program is

minimize q(p) = 1
2p

T∇2
xxLp + pT∇f

subject to ∇gTp + g = 0
−	 ≤ p1 ≤ 	

−	 ≤ p2 ≤ 	.

Since ∇g = (0, 0)T but g = −1, the linear system ∇gTp+g = 0 does not have a solution.
Therefore, the quadratic problem is infeasible. The SQP-filter method invokes the feasibility



book
2008/10/23
page 595

�

�

�

�

�

�

�

�

15.7. Filter Methods 595

restoration phase, which can be done by minimizing the function g(x1, x2)
2 = (x2

1 +x2
2 −1)2

using methods of unconstrained minimization. In fact, to improve infeasibility, it is enough
to move the iterate a little in any direction. For example, x1 = (0.5, 0.5)T improves the
infeasibility since g(0.5, 0.5) = −0.5. Therefore x1 = (0.5, 0.5)T is accepted and the filter
is updated as follows:

F1 = F0 ∪ (f1, h1) = {(2, 1) (4.61702, 0.5)}.
Note that neither (2, 1) nor (4.61702, 0.5) dominates the other. At x1,

f = ( 4.61702 )

∇f =
(

13.44507
−0.54134

)

∇2f =
(

40.33520 0
0 2.16536

)
g = (−0.5 )

∇g =
(

1
1

)
, ∇2g =

(
2 0
0 2

)

∇2
xxL = ∇2f − λ∇2g =

(
42.33520 0

0 4.16536

)
.

This time the quadratic problem is feasible and we have the following solution:

p1 =
(−0.25599

0.75599

)
and λ1 = ( 2.60764 ) .

The candidate for the next iterate is

x2 = x1 + p1 =
(

0.24401
1.25599

)
.

At this point

f = ( 2.08587 )
g = ( 0.63705 ) .

The new filter entry (f2, h2) = (2.08587, 0.63705) neither dominates nor is dominated by
the other filter entries, so x2 is accepted, and the updated filter is

F2 = {(2, 1), (4.61702, 0.5), (2.08587, 0.63705)}.
The next iteration produces x3 = (−0.20627, 1.08990)T and a new filter entry

(f3, h3) = (0.55137, 0.23035). All the other elements of the filter are dominated by this
new entry and therefore are excluded from the filter:

F3 = {(0.55137, 0.23035)}.
Several more iterations are given in Table 15.3.
The final filter

F8 = {(0.17635, 3×10−7) (0.17629, 3×10−4) (0.17425, 1×10−2) (0.15447, 1×10−1)}
has four entries.
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Table 15.3. The SQP-filter method.

k xk λk ‖∇xL‖ Fk

0 0 0 −1 5 × 100 (2, 1)
1 0.5 0.5 −1 1 × 101 (4.61702, 5 × 10−1)

(2, 1)
2 0.24401 1.25599 2.60764 8 × 100 (2.08587, 6 × 10−1)

(4.61702, 5 × 10−1)

(2, 1)
3 −0.20627 1.08990 0.32747 2 × 100 (0.55137, 2 × 10−1)

4 −0.59301 0.91099 0.01350 5 × 10−1 (0.19495, 2 × 10−1)

5 −0.84205 0.64922 −0.11364 2 × 10−1 (0.15447, 1 × 10−1)

6 −0.74258 0.67771 −0.19838 3 × 10−2 (0.17425, 1 × 10−2)

(0.15447, 1 × 10−1)

7 −0.74876 0.66303 −0.21201 9 × 10−4 (0.17629, 3 × 10−4)

(0.17425, 1 × 10−2)

(0.15447, 1 × 10−1)

8 −0.74834 0.66332 −0.21232 5 × 10−7 (0.17635, 3 × 10−7)

(0.17629, 3 × 10−4)

(0.17425, 1 × 10−2)

(0.15447, 1 × 10−1)

To guarantee convergence, the SQP-filter methods must be modified by imposing
stricter rules for acceptance of a new trial iterate:

either fk+1 < fj − γ hk+1 or hk+1 < ηhj for all j = 1, . . . , s,

for some 0 < η < 1, 0 < γ < 1. The acceptance area is shown below the dashed line in
Figure 15.8.

Another modification is enforcing the sufficient reduction condition, similar to the
one used in unconstrained minimization (see Chapter 12). First, the predicted reduction

	qk = 1
2p

T
k Hkpk + pTk ∇f (xk)

is calculated. Then if 	qk < 0, the algorithm verifies if

fk+1 < fk + σ	qk.
In other words, the filter algorithm verifies whether a new iterate sufficiently reduces the
objective function.

Convergence can be guaranteed for the filter method with the following acceptance
rule. A trial point xk+1 = xk + pk is accepted at iteration k if
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h(x)

f (x)

Figure 15.8. Modified filter.

• xk+1 is acceptable to the modified filter, that is,

either fk+1 < fj − γ hk+1 or hk+1 < ηhj for all j = 1, . . . , s,

for some 0 < η < 1, 0 < γ < 1;

• the new iterate achieves sufficient reduction of the objective function:

fk+1 < fk + σ	qk if 	qk < 0.

We already mentioned that filters are a general tool for controlling convergence.
Filter methods can be based on a variety of different optimization techniques and not just
on an SQP method, for example, with interior-point methods. The Notes contain additional
information on practical filter algorithms.

Exercises
7.1. Consider the problem

minimize f (x) = e−x1 + e−2x2

subject to g(x) = x2
1 + x2

2 − 4 = 0.

Starting with x0 = (1, 1)T, λ0 = 0, and 	̄ = 1, perform three iterations of the
SQP-filter method.

7.2. Let (p∗, λ∗) be a first-order optimality point of the following subproblem:

minimize q(p) = 1
2p

THkp + pT∇f (xk)
subject to ∇gI(xk)Tp + g(xk) ≥ 0

‖p‖ ≤ 	.
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Prove that if p∗ = 0, then (xk, λ∗) is a first-order optimality point of the following
problem:

minimize f (x)

subject to gi(x) ≥ 0, i ∈ I.
7.3. Suppose that a constraint ‖x‖ ≤ M based on the infinity norm is added to the problem

minimize f (x)

subject to gi(x) ≥ 0, i ∈ I.

Prove that, forM sufficiently large, once ‖x0‖ ≤ M , then all the quadratic subprob-
lems generate directions pk such that ‖xk‖ ≤ M, k = 1, 2, . . . .

7.4. Consider a filter with one entry, as illustrated in Figure 15.6. Prove that if a trial
point xk+1 is accepted by the penalty functionπ(x, ρ), i.e., if the following inequality
holds:

π(xk+1, ρ) < π(xk, ρ)

for some penalty parameter ρ > 0, then xk+1 will be accepted by the filter.

7.5. Consider again a filter with one entry, as illustrated in Figure 15.6. Prove that if a
trial point xk+1 is accepted by the filter, then there exists ρ̄ > 0 such that xk+1 will
be accepted by the penalty function π(x, ρ̄), i.e., the following inequality holds:

π(xk+1, ρ̄) < π(xk, ρ̄).

7.6. Prove the following.

(i) The trust-region constraint ‖p‖ ≤ 	k with the infinity norm (‖p‖ =
max1≤i≤n |pi |) is equivalent to a set of linear constraints.

(ii) The trust-region constraint ‖p‖ ≤ 	k with the 2-norm
(‖p‖ =

√∑n
i=1 p

2
i

)
is equivalent to one quadratic inequality.

15.8 Notes
Active-Set Methods—One of the first practical active-set methods for nonlinear optimization
was given in the paper by Rosen (1960). A detailed discussion can be found in the book by
Gill, Murray, and Wright (1981).

Sequential Quadratic Programming—SQP was first suggested in the Ph.D. thesis of
Wilson (1963). Since then, the approach has been examined by a great many authors. A
recent survey can be found in the paper by Boggs and Tolle (1995).

If all the constraints are equalities, then algorithms can be designed that maintain
feasibility at every iteration. (Hence the nonlinear objective function can be used as a merit
function, a valuable simplification.) See, for example, the paper by Panier and Tits (1993).

Reduced-Gradient Methods—Areduced-gradient method for problems with nonlinear
constraints was first discussed in the paper by Abadie and Carpentier (1965). More recent
results can be found in the papers by Abadie (1978) and Lasdon et al. (1978). Sophisticated
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versions of reduced-gradient methods have been developed that allow some violation of the
constraints. An example of such an algorithm is described in the paper by Drud (1992).

Filter Methods—SQP-filter methods based on a trust-region approach were developed
and analyzed by Fletcher and Leyffer (2002) and Fletcher et al. (2002). Since then, line
search versions have been derived, and filter methods have been applied in the context of
other optimization algorithms. For further information, see the survey paper by Fletcher et
al. (2007).
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Chapter 16

Penalty and Barrier
Methods

16.1 Introduction
In Chapter 15 we discussed the use of feasible-point methods for solving constrained opti-
mization problems. These methods are based on minimizing the Lagrangian function while
attempting to attain and maintain feasibility. When inequality constraints are present, these
methods generalize the simplex method. They solve a sequence of subproblems with a
changing active set (or basis) until a solution to the original constrained problem is found.

There are some major disadvantages to this approach. First, as the number of con-
straints increases, the number of potential subproblems increases exponentially. While
the hope is that the algorithm will consider only a small proportion of these subproblems,
there is no known method to guarantee that this indeed will be the case. (This was illus-
trated for the simplex method in Chapter 9.) Second, the idea of keeping the constraints
satisfied exactly, although easily achieved in the case of linear constraints, is much more
difficult to accomplish in the case of nonlinear constraints, and in some cases may not be
desirable.

In this chapter we discuss a group of methods, referred to here as penalization methods,
that remove some of these difficulties. These methods solve a constrained optimization
problem by solving a sequence of unconstrained optimization problems. The hope is that
in the limit, the solutions of the unconstrained problems will converge to the solution of
the constrained problem. The unconstrained problems involve an auxiliary function that
incorporates the objective function or the Lagrangian function, together with “penalty” terms
that measure violations of the constraints (various techniques differ in the way the auxiliary
function is defined). The auxiliary function also includes one or more parameters that
determine the relative importance of the constraints in the auxiliary function. By changing
these parameters appropriately, a sequence of problems is generated where the effect of
the constraints becomes increasingly pronounced. In contrast to active-set methods, the
auxiliary function takes into account all constraints, even when inequalities are present,
and thus the combinatorial difficulties of guessing a correct active set are avoided. Further,
since penalization techniques do not attempt to keep the constraints satisfied exactly, they
can be more suitable for handling nonlinear constraints.

601
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Although penalization methods ameliorate some of the difficulties associated with
feasible-point methods, they introduce difficulties of their own. In particular, straightfor-
ward applications of penalization can give rise to ill-conditioning. Sophisticated modern
interpretations of this idea, however, resolve some of these issues and can be effective
methods for challenging optimization problems.

16.2 Classical Penalty and Barrier Methods
The general class of penalization methods includes two groups of methods: one group
imposes a penalty for violating a constraint, and the other imposes a penalty for reaching
the boundary of an inequality constraint. We refer to the first group as penalty methods
and to the second group as barrier methods. In this section we present the “classical”
version of these methods. The methods in later sections can be viewed as modifications or
enhancements to the classical penalty and barrier methods.

We start with a geometrical motivation for these methods. Suppose that our con-
strained problem is given in the form

minimize f (x)

subject to x ∈ S,
where S is the set of feasible points. Define

σ(x) =
{

0 if x ∈ S
+∞ if x ∈ S.

The function σ can be considered as an infinite penalty for violating feasibility. Hence the
constrained problem can be transformed into an equivalent unconstrained problem

minimize f (x)+ σ(x). (16.1)

Conceptually, if we could solve this unconstrained minimization problem, we would be
done (a point x∗ is a solution to the constrained problem if and only it is a solution to
this unconstrained problem). Unfortunately, this is not a practical idea, since the objective
function of the unconstrained minimization is not defined outside the feasible region. Even
if we were to replace the “∞” by a large number, the resulting unconstrained problem would
be difficult to solve because of its discontinuities.

Instead, barrier and penalty methods solve a sequence of unconstrained subprob-
lems that are more “manageable,” and that gradually approximate problem (16.1). This
is achieved by replacing the “ideal” penalty σ by a continuous function that gradually
approaches σ .

In barrier methods, this function (called a barrier term) approaches σ from the interior
of the feasible region. It creates a barrier that prevents the iterates from reaching the boundary
of the feasible region. In penalty methods this function (called a penalty term) approaches
σ from the exterior of the feasible region. It serves as a penalty for being infeasible.

Barrier methods generate a sequence of strictly feasible iterates that converge to a
solution of the problem from the interior of the feasible region. For this reason they are
also called interior-point methods. Since these methods require the interior of the feasible
region to be nonempty, they are not appropriate for problems with equality constraints.
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In contrast, penalty methods permit the iterates to be infeasible. Agradually increasing
penalty is imposed for violation of feasibility, however. Penalty methods usually generate a
sequence of points that converges to a solution of the problem from the exterior of the feasible
region. These methods are usually more convenient on problems with equality constraints.
Although the methods can also handle inequality constraints, the resulting unconstrained
problems usually do not have continuous second derivatives, and barrier methods are often
preferable.

Despite their apparent differences, barrier and penalty methods have much in common.
Their convergence theories are similar, and the underlying structure of their unconstrained
problems is similar. Much of the theory for barrier methods can be replicated for penalty
methods and vice versa. It is common to use the generic name “penalty methods” to
describe both methods, with interior penalty methods referring to barrier methods, and
exterior penalty methods referring to penalty methods.

16.2.1 Barrier Methods

Consider the nonlinear inequality-constrained problem

minimize f (x)

subject to gi(x) ≥ 0, i = 1, . . . , m.
(16.2)

The functions are assumed to be twice continuously differentiable.
Barrier methods are strictly feasible methods; that is, the iterates lie in the interior

of the feasible region. We assume, therefore, that the feasible set has a nonempty interior;
that is, there exists some point x0 such that gi(x0) > 0 for all i. We also assume that it is
possible to reach any boundary point by approaching it from the interior.

Barrier methods maintain feasibility by creating a barrier that keeps the iterates away
from the boundary of the feasible region. The methods use a barrier term that approaches
the infinite penalty function σ . Let φ(x) be a function that is continuous on the interior of
the feasible set, and that becomes unbounded as the boundary of the set is approached from
its interior:

φ(x)→ ∞ as gi(x)→ 0+.

Two examples of such a function are the logarithmic function

φ(x) = −
m∑
i=1

log(gi(x))

and the inverse function

φ(x) =
m∑
i=1

1

gi(x)
.

Now let μ be a positive scalar. Then μφ(x) will approach σ(x) as μ approaches zero. This
is demonstrated in Figure 16.1 for a one-dimensional problem with bound constraints.

By adding a barrier term of the form μφ(x) to the objective, we obtain a barrier
function

βμ(x) = f (x)+ μφ(x),
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Figure 16.1. Effect of barrier term.

where μ is referred to as the barrier parameter. The best-known barrier function is the
logarithmic barrier function

βμ(x) = f (x)− μ
m∑
i=1

log(gi(x)),

but the inverse barrier function

βμ(x) = f (x)− μ
m∑
i=1

1

gi(x)

is also widely used.
Barrier methods solve a sequence of unconstrained minimization problems of the

form
minimize

x
βμk (x)

for a sequence {μk } of positive barrier parameters that decrease monotonically to zero.
Because the barrier term is infinite on the boundary of the feasible region, it acts as a
repelling force that drives the minimizers of the barrier function away from the boundary
into the interior of the feasible region. Thus any minimizer of the barrier function will be
strictly feasible. As the barrier parameter is decreased, however, the effect of the barrier
term is diminished, so that the iterates can gradually approach the boundary of the feasible
region.

Why solve a sequence of problems? It might seem better to solve a single uncon-
strained problem using a small value of μ, but this is not normally practical. The reason is
that when the barrier parameter is small, the problems are difficult to solve (recall that the
function μφ will be “close” in shape to the infinite penalty σ ). For this reason we start with
larger values of the barrier parameter. If μ is decreased gradually, and if the solution of one
unconstrained problem is used as the starting point of the next problem, these unconstrained
minimization problems tend to be much easier to solve.

Example 16.1 (Barrier Method). Consider the nonlinear optimization problem

minimize f (x) = x1 − 2x2

subject to 1 + x1 − x2
2 ≥ 0
x2 ≥ 0.
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Then the logarithmic barrier function gives the unconstrained problem

minimize βμ(x) = x1 − 2x2 − μ log(1 + x1 − x2
2)− μ log x2

for a sequence of decreasing barrier parameters. For a specific parameter μ, the first-order
necessary conditions for optimality are

1 − μ

1 + x1 − x2
2

= 0

−2 + 2μx2

1 + x1 − x2
2

− μ

x2
= 0.

If the constraints are strictly satisfied, the denominators are positive. We obtain an equation
for x2:

x2
2 − x2 − 1

2μ = 0.

We can solve this equation to determine x2 in terms of μ:

x2(μ) = 1 +√
1 + 2μ

2
.

(Why was the positive root taken?) Since x1 = x2
2 − 1 + μ, we obtain

x1(μ) =
√

1 + 2μ+ 3μ− 1

2
.

The unconstrained objective is strictly convex, and hence this solution is the unique local
minimizer in the feasible region.

As μ approaches zero, we obtain

lim
μ→0+

x1(μ) =
√

1 + 2(0)+ 3(0)− 1

2
= 0

and

lim
μ→0+

x2(μ) = 1 +√
1 + 2(0)

2
= 1,

and it is easy to verify that x∗ = (0, 1)T is indeed the solution to this problem.
Table 16.1 shows the values of x1(μ) and x2(μ) for a sequence of barrier parameters.

The initial barrier parameter is selected to be 1, and consecutive parameters are decreased
by a factor of 10. Observe that x(μ) = (x1(μ), x2(μ))

T exhibits a linear rate of convergence
to the optimal solution.

Example 16.1 illustrates a number of features that typically occur in a barrier method.
First, the sequence of barrier minimizers x(μ) converges to the optimal solution x∗. Indeed,
it is possible to prove convergence for barrier methods under mild conditions. (See Section
16.2.3.) Further, the sequence of barrier minimizers defines a differentiable curve x(μ).
This curve is known as the barrier trajectory. It exists when the logarithmic or inverse
barrier methods are used to solve (16.2), provided that x∗ is a regular point of the constraints
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Table 16.1. Barrier function minimizers.

μ x1(μ) x2(μ)

100 1.8660254 1.3660254
10−1 0.1977226 1.0477226
10−2 0.0199752 1.0049752
10−3 0.0019998 1.0004998
10−4 0.0002000 1.0000500
10−5 0.0000200 1.0000050
10−6 0.0000020 1.0000005

that satisfies the second-order sufficiency conditions as well as the strict complementarity
conditions. The existence of a trajectory can be used to develop algorithms such as path-
following algorithms for linear programming (see Chapter 10). It can also be used to develop
techniques that accelerate the convergence of a barrier method.

There is another important feature. We discuss it for the case of the logarithmic
barrier function, but an analogous result holds for the inverse barrier function. Consider a
point x = x(μ) that is a minimizer of the logarithmic barrier function for a specific barrier
parameter μ. Setting the gradient of the barrier function to zero, we obtain

∇f (x)− μ
m∑
i=1

∇gi(x)
gi(x)

= 0.

This may be written as

∇f (x)−
m∑
i=1

μ

gi(x)
∇gi(x) = 0.

In turn, we can write the last expression in the form

∇f (x)−
m∑
i=1

λi∇gi(x) = 0,

where λi = λi(μ) is defined by

λi = μ

gi(x)
.

We therefore have a feasible point x(μ) and a vectorλ(μ) that satisfy the following relations:

∇f (x(μ))−
m∑
i=1

λi(μ)∇gi(x(μ)) = 0

λi(μ)gi(x(μ)) = μ, i = 1, . . . , m

λi(μ) ≥ 0, i = 1, . . . , m.
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These relations resemble the first-order necessary conditions for optimality of the con-
strained problem. The only difference is that the complementary slackness conditions are
perturbed, so that λi(μ)gi(x(μ)) is equal to μ rather than to zero. Thus λ(μ) can be viewed
as an estimate of the Lagrange multipliers λ∗ at the optimal point x∗. Indeed, if x∗ is a
regular point of the constraints, then as x(μ) converges to x∗, λ(μ) converges to λ∗. The
above results show that the points on the barrier trajectory, together with their associated
Lagrange multiplier estimates, are the solutions to a perturbation of the first-order optimality
conditions.

Example 16.2 (Lagrange Multiplier Estimates). Consider the problem

minimize f (x) = x2
1 + x2

2
subject to x1 − 1 ≥ 0

x2 + 1 ≥ 0.

The solution to this problem is x∗ = (1, 0)T. The first inequality is active at x∗, and the
corresponding Lagrange multiplier is (λ∗)1 = 2. The second constraint is inactive; hence
its Lagrange multiplier is (λ∗)2 = 0.

Suppose the problem is solved via a logarithmic barrier method. Then the method
solves the unconstrained minimization problem

minimize βμ(x) = x2
1 + x2

2 − μ log(x1 − 1)− μ log(x2 + 1)

for a decreasing sequence of barrier parameters μ that converge to zero. The first-order
necessary conditions for optimality are

2x1 − μ

x1 − 1
= 0

2x2 − μ

x2 + 1
= 0,

yielding the unconstrained minimizers

x1(μ) = x1 = 1 +√
1 + 2μ

2
, x2(μ) = x2 = −1 +√

1 + 2μ

2
.

The Lagrange multiplier estimates at this point are

λ1(μ) = μ

x1 − 1
= 2μ√

1 + 2μ− 1
= √

1 + 2μ+ 1

and

λ2(μ) = μ

x1 + 1
= 2μ√

1 + 2μ+ 1
= √

1 + 2μ− 1.

When μ approaches zero, we obtain

lim
μ→0

x1(μ) = 1 +√
1 + 2(0)

2
= 1, lim

μ→0
x2(μ) = −1 +√

1 + 2(0)

2
= 0.
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Also we obtain

lim
μ→0

λ1(μ) =
√

1 + 2(0)+ 1 = 2, lim
μ→0

λ2(μ) =
√

1 + 2(0)− 1 = 0.

Thus x(μ)→ x∗ and λ(μ)→ λ∗.

Barrier methods have several attractive features. They avoid the combinatorial dif-
ficulty associated with active-set constraints. They converge under mild conditions. The
barrier minimizers provide estimates of the Lagrange multipliers at the optimum. Yet an-
other desirable property shared by both the logarithmic barrier function and the inverse
barrier function is that the barrier function is convex if the constrained problem is a convex
optimization problem defined in terms of a convex objective function and concave constraint
functions (see the Exercises).

Despite these attractive features, barrier methods also have potential difficulties. The
property for which barrier methods have drawn the most severe criticism is that the uncon-
strained problems become increasingly difficult to solve as the barrier parameter decreases.
The reason is that (with the exception of some special cases) the condition number of the
Hessian matrix of the barrier function at its minimum point becomes increasingly large,
tending to infinity as the barrier parameter tends to zero. We discuss this ill-conditioning in
more detail in Section 16.3. Here we demonstrate it via an example.

Example 16.3 (Ill-Conditioning of the Barrier Hessian Matrix). Consider the problem of
Example 16.2. Then

∇2
xβμ(x) =

( 2 + μ

(x1 − 1)2
0

0 2 + μ

(x2 + 1)2

)
.

Suppose now that x(μ) = (x1, x2)
T is a minimizer of the barrier function for some value

of μ. Recall from Example 16.2 that λ1(μ) = μ/(x1 − 1) and that λ2(μ) = μ/(x2 + 1).
When μ is small, λ1(μ) ≈ 2 and λ2(μ) ≈ 0. Therefore

∇2
xβμ(x) =

⎛
⎝ 2 + λ2

1(μ)
μ 0

0 2 + λ2
2(μ)
μ

⎞
⎠ ≈

(
2 + 4

μ 0

0 2

)
.

The condition number of the Hessian matrix is approximately equal to

2 + 4
μ

2
= 1 + 2

μ
= O

(
1

μ

)
;

hence the matrix is ill conditioned. Although the calculations were performed for a point
on the barrier trajectory, the same results will hold at all points in a neighborhood of the
solution.

The contours of the barrier function in this example are shown in Figure 16.2 for the
parameters μ = 1 and μ = 0.1. We see that for the smaller barrier parameter, the contours
of the barrier function are almost parallel to the line x1 = 1. More precisely, the contours
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Figure 16.2. Contours of the logarithmic barrier function.

are almost parallel to the null space of the gradient of the active constraint at the solution.
This is characteristic of barrier functions.

The ill-conditioning of the Hessian matrix of the barrier function has several ramifi-
cations. It rules out the use of an unconstrained method whose convergence rate depends on
the condition number of the Hessian matrix at the solution. Therefore Newton-type methods
are usually the method of choice. The solution to the Newton equations is also sensitive to
the ill-conditioning of the Hessian matrix, however. The numerical errors can result in a
poor search direction.

The ill-conditioning of the barrier functions led to their abandonment in the early
1970s. Interest in barrier methods was renewed in 1984, with the announcement of Kar-
markar’s method for linear programming and the discovery, shortly thereafter, that this
method is in fact a special case of a barrier method. (When applied to a linear program with
a unique solution, a barrier method does not introduce ill-conditioning; see the Exercises.)
Recently, special attention has been given to the development of specialized linear algebra
techniques that compute a numerically stable, approximate solution to the Newton equations
for a barrier function. One such approach is studied in Section 16.4.

We conclude this section by mentioning a few properties of barrier methods. First,
barrier functions are singular at the boundary of the feasible region. Therefore special
safeguards should be used in the (unconstrained) line search to avoid the evaluation of
the barrier function at trial points that are not strictly feasible. Furthermore, because of the
singularity, standard line search techniques such as backtracking or polynomial interpolation
can be ineffective. Special line search techniques have been developed that model the
specific singularity of the barrier function.

A consequence of the ill-conditioning of the barrier Hessian is that, if the initial barrier
parameter μ1 is “too small,” the corresponding unconstrained minimization problem may
be extremely difficult to solve. At the same time, there are also drawbacks to using an initial
barrier parameter which is “too large.” A large parameter will likely have a minimizer
that is “far” from the constrained minimizer, and would require that more unconstrained
minimization problems be solved. In addition, if the feasible region is unbounded, the
unconstrained problem may not have a minimizer. This situation can occur only if the
problem is nonconvex. It is illustrated in the following example.
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Example 16.4 (Unbounded Barrier Function). Consider the one-dimensional problem

minimize f (x) = log(x + 1)

subject to x ≥ 0,

which has a solution at the point x∗ = 0. The corresponding logarithmic barrier function is
βμ(x) = log(x + 1)− μ log(x). Its derivative is

d

dx
βμ(x) = 1

x + 1
− μ

x
= (1 − μ)x − μ

x(x + 1)
.

When μ ≥ 1, the numerator in the expression above is negative for all x ≥ 0. Therefore,
for μ ≥ 1, the logarithmic barrier function has no minimizer—in fact it is unbounded.

If μ < 1, then the problem has a solution: x(μ) = μ/(1 − μ). This solution
approaches the optimal solution x∗ = 0 as μ approaches zero.

In most applied problems, the unconstrained minimization problem will have a solu-
tion if the barrier parameter is sufficiently small. This is not always guaranteed to be true,
however. It is possible to construct examples where the barrier function is unbounded for
any positive value ofμ, even though the original problem has a solution (see the Exercises).
Fortunately, such examples are rare in practice.

Barrier methods require that the initial guess of the solution be strictly feasible. In
our examples, such an initial guess has been provided, but for general problems a strictly
feasible point may not be known. It is sometimes possible to find an initial point by solving
an auxiliary optimization problem. This is analogous to the use of a two-phase method in
linear programming, where in the first phase a linear program is solved to determine an
initial feasible point, and in the second phase, the original linear program is solved. For
further details, see the Exercises.

16.2.2 Penalty Methods

In contrast to barrier methods, penalty methods solve a sequence of unconstrained opti-
mization problems whose solution is usually infeasible to the original constrained problem.
A penalty for violation of the constraints is incurred, however. As this penalty is increased,
the iterates are forced towards the feasible region.

An advantage of penalty methods is that they do not require the iterates to be strictly
feasible. Thus, unlike barrier methods, they are suitable for problems with equality con-
straints.

Consider first the equality-constrained problem

minimize f (x)

subject to g(x) = 0,

where g(x) is an m-dimensional vector whose ith component is gi(x). We assume that all
functions are twice continuously differentiable.

The penalty for constraint violation will be a continuous functionψ with the property
that

ψ(x) = 0 if x is feasible,
(16.3)

ψ(x) > 0 otherwise.
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The best-known such penalty is the quadratic-loss function

ψ(x) = 1

2

m∑
i=1

gi(x)
2 = 1

2
g(x)Tg(x).

Also possible is a penalty of the form

ψ(x) = 1

γ

m∑
i=1

|gi(x)|γ ,

where γ ≥ 1. (The case γ = 1 is discussed in Section 16.5.) The weight of the penalty is
controlled by a positive penalty parameter ρ. As ρ increases, the function ρψ approaches
the “ideal penalty” σ . By adding the term ρψ to f we obtain the penalty function

πρ(x) = f (x)+ ρψ(x).
The penalty method consists of solving a sequence of unconstrained minimization problems
of the form

minimize πρk (x)

for an increasing sequence { ρk } of positive values tending to infinity. In general, the
minimizers of the penalty function violate the constraints g(x) = 0. The growing penalty
gradually forces these minimizers towards the feasible region.

Penalty methods share many of the properties of barrier methods. First, under mild
conditions, it is possible to guarantee convergence. Also, under appropriate conditions, the
sequence of penalty function minimizers defines a continuous trajectory. In the latter case,
it is possible to get estimates of the Lagrange multipliers at the solution. For example,
consider the quadratic-loss penalty function

πρ(x) = f (x)+ 1

2
ρ

m∑
i=1

gi(x)
2.

Its minimizer x(ρ) satisfies

∇xπρ(x(ρ)) = ∇f (x(ρ))+ ρ
m∑
i=1

∇gi(x(ρ))gi(x(ρ)) = 0.

Defining λi(ρ) = −ρgi(x(ρ)), we obtain that

∇f (x(ρ))−
m∑
i=1

λi(ρ)∇gi(x(ρ)) = 0.

If x(ρ) converges to a solution x∗ that is a regular point of the constraints, then λ(ρ)
converges to the Lagrange multiplier λ∗ associated with x∗.

Penalty functions suffer from the same problems of ill-conditioning as do barrier
functions. As the penalty parameter increases, the condition number of the Hessian matrix
of πρ(x(ρ)) increases, tending to ∞ as ρ → ∞. Therefore the unconstrained minimization
problems can become increasingly difficult to solve.
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Example 16.5 (Penalty Method). Consider the problem

minimize f (x) = −x1x2

subject to g(x) = x1 + 2x2 − 4 = 0.

Suppose that this problem is solved via a penalty method using the quadratic-loss penalty
function. Then a sequence of unconstrained minimization problems

minimize πρ(x) = −x1x2 + 1
2ρ(x1 + 2x2 − 4)2

is solved for increasing values of the penalty parameter ρ. The necessary conditions for
optimality for the unconstrained problem are

−x2 + ρ(x1 + 2x2 − 4) = 0
−x1 + ρ(x1 + 2x2 − 4)(2) = 0.

For ρ > 1/4 this yields the solution

x1(ρ) = x1 = 8ρ

4ρ − 1
, x2(ρ) = x2 = 4ρ

4ρ − 1
,

which is a local as well as a global minimizer. (The unconstrained problem has no minimum
if ρ ≤ 1/4.) Note that x(ρ) is infeasible to the original constrained problem, since

g(x(ρ)) = x1 + 2x2 − 4 = 16ρ

4ρ − 1
− 4 = 4

4ρ − 1
.

At any solution x(μ) we can define a Lagrange multiplier estimate as

λ = −ρg(x(ρ)) = −4ρ

4ρ − 1
.

As ρ tends to ∞ we obtain

lim
ρ→∞ x1(ρ) = lim

ρ→∞
2

1 − 1/4ρ
= 2, lim

ρ→∞ x2(ρ) = lim
ρ→∞

1

1 − 1/4ρ
= 1,

and indeed x∗ = (2, 1)T is the minimizer for the constrained problem. Further,

lim
ρ→∞ λ(ρ) = lim

ρ→∞
−1

1 − 1/4ρ
= −1,

and indeed λ∗ = −1 is the Lagrange multiplier at x∗.
To demonstrate the ill-conditioning of the penalty function, we compute its Hessian

matrix at x(ρ):

∇2
xπρ(x(ρ)) =

(
ρ 2ρ − 1

2ρ − 1 4ρ

)
.

It can be shown that its condition number is approximately 25ρ/4. When ρ is large, the
Hessian matrix is ill conditioned.
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It is also possible to apply penalty methods to problems with inequality constraints.
Consider, for example, the problem

minimize f (x)

subject to gi(x) ≥ 0, i = 1, . . . , m.

Any continuous function ψ that satisfies the conditions (16.3) can serve as a penalty. Thus,
for example, the quadratic-loss penalty function in this case is

ψ(x) = 1

2

m∑
i=1

[min(gi(x), 0)]2.

This function has continuous first derivatives

∇ψ(x) =
m∑
i=1

[min(gi(x), 0)]∇gi(x),

but its second derivatives can be discontinuous at points where some constraint gi is satisfied
exactly (see the Exercises). The same observation holds for other simple forms of the penalty
function. Thus, one cannot safely use Newton’s method to minimize the function. For this
reason, straightforward penalty methods have not been widely used for solving general
inequality-constrained problems.

16.2.3 Convergence17

In this subsection we discuss the convergence properties of penalization methods. We focus
on the convergence of barrier methods when applied to the inequality-constrained problem.
Convergence results for penalty methods can be developed in a similar manner.

We consider the problem

minimize f (x)

subject to gi(x) ≥ 0, i = 1, . . . , m.

Denote the feasible set by

S = { x : gi(x) ≥ 0, i = 1, . . . , m } ,
and its interior by

S0 = { x : gi(x) > 0, i = 1, . . . , m } .
In developing the convergence theory, we make the following assumptions.

(i) The functions f and g1, . . . , gm are continuous on �n.
(ii) The set { x : x ∈ S, f (x) ≤ α } is bounded for any finite α.

(iii) The set S0 is nonempty.

(iv) S is the closure of S0.

17This subsection can be omitted from study without loss of continuity.
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Assumptions (i) and (ii) imply that the function f has a minimum value on the set S.
We denote this minimum value by f∗. Assumption (iii) is necessary to define the barrier
subproblems. Assumption (iv) is necessary to avoid situations where the minimum point is
isolated and does not have neighboring interior points. As an example, consider the problem
of minimizing x subject to the constraints x2 − 1 ≥ 0 and x + 1 ≥ 0. The feasible region
consists of the points { x ≥ 1 } and the isolated point x = −1. The point x = −1 is the
minimizer, but because it is isolated it is not possible to approach it from the interior of the
feasible region, and a barrier method could not converge to this solution.

The barrier function will be of the form βμ(x) = f (x)+μφ(x), where φ can be any
function that is continuous on the interior of the feasible set, and that satisfies

φ(x)→ ∞ as gi(x)→ 0+.

We will show here that under mild conditions, the sequence of barrier minimizers has a
convergent subsequence, and the limit of any such convergent subsequence is a solution
to the problem. Although in practice, convergence of the entire sequence of minimizers is
observed, from a theoretical point of view it is not always possible to guarantee convergence
of the entire sequence, but only convergence of some subsequence. The following example
illustrates this.

Example 16.6 (Nonconvergent Sequence with Convergent Subsequence). Consider the
one-variable problem

minimize f (x) = −x2

subject to 1 − x2 ≥ 0.

The logarithmic barrier function is βμ(x) = −x2 −μ log(1−x2). It has a single minimizer
x = 0 if μ ≥ 1, and two minimizers x = ±√

1 − μ if μ < 1. (The point x = 0 is a
local maximizer if μ < 1.) Suppose that μ0, μ1, . . . is a sequence of decreasing barrier
parameters less than 1. Then a possible sequence of minimizers ofβ is xk = (−1)k

√
1 − μk .

This sequence oscillates between neighborhoods of−1 and+1, and hence is nonconvergent.
However, the subsequences { x2k } and { x2k+1 } both converge to solutions of the original
constrained problem.

This example was contrived to illustrate the limitations of what can be said about a
sequence of minimizers. In practice, because the solution of one subproblem is used as the
starting point of the next subproblem, it is unlikely that a sequence of minimizers obtained
in computation would jump back and forth in the manner described by { xk }. Rather,
consecutive minimizers would likely either all be in a neighborhood of +1 (eventually) or
all be in the neighborhood of −1, and the resulting sequence would converge.

In the following, we assume that it is possible to compute global minimizers of the
barrier function. This is true, for example, if the problem is convex (see the Exercises).

Theorem 16.7. Suppose that a nonlinear inequality-constrained problem satisfies condi-
tions (i)–(iv) above. Suppose that a sequence of unconstrained minimization problems

minimize βμ(x) = f (x)+ μφ(x)
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is solved for μ taking values μ1 > μ2 > · · · > μk > · · ·, where limk→∞ μk = 0. Suppose
also that the functions βμk (x) have a minimum in S0 for each k. Let xk denote a global
minimizer of βμk (x). Then

(i) f (xk+1) ≤ f (xk),

(ii) φ(xk+1) ≥ φ(xk),

(iii) the sequence xk has a convergent subsequence,

(iv) if { xk : k ∈ K } is any convergent subsequence of unconstrained minimizers of β, then
its limit point is a global solution of the constrained problem.

Proof. We prove the results in the order stated in the theorem. Only the last is of any
difficulty.

1. Since xk is the minimizer of βμk (x), then βμk (xk) ≤ βμk (xk+1), so

f (xk)+ μkφ(xk) ≤ f (xk+1)+ μkφ(xk+1).

Also, since xk+1 is the minimizer of βμk+1(x), then βμk+1(xk+1) ≤ βμk+1(xk), or

f (xk+1)+ μk+1φ(xk+1) ≤ f (xk)+ μk+1φ(xk).

Multiplying the first inequality by μk+1, the second inequality by μk , adding the
resulting inequalities, and reordering yields

(μk − μk+1)f (xk+1) ≤ (μk − μk+1)f (xk).

Since μk > μk+1, we conclude that

f (xk+1) ≤ f (xk).

2. As before, since xk is the minimizer of βμk (x), then

f (xk)+ μkφ(xk) ≤ f (xk+1)+ μkφ(xk+1).

Since f (xk) ≥ f (xk+1) this implies that

φ(xk) ≤ φ(xk+1).

3. Consider the set S1 = { x ∈ S : f (x) ≤ f (x1) }. The continuity of f implies that S1

is closed, and assumption (ii) implies that it is bounded. Hence S1 is compact. Now
in view of (i), f (xk) ≤ f (x1) for all k. Thus the sequence { xk } lies in the compact
set S1, and therefore it has a convergent subsequence in S1, and thus also in S.

4. Let { xk : k ∈ K } be a convergent subsequence of { xk }, and let x̂ be its limit point.
Since gi(xk) > 0 for all k, gi(x̂) ≥ 0, and hence x̂ is feasible to the constrained
problem. Let f∗ be the minimum value of f in the feasible region. We will show that
f (x̂) = f∗ by contradiction, assuming that

f (x̂) > f∗. (16.4)
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It follows from (16.4) and assumption (iv) that there exists some strictly feasible point
y ∈ S0 such that

f (y) < f (x̂).

Denote ε = f (x̂)− f (y); then ε > 0. Because f is continuous, it holds that

lim
k∈K
k→∞

f (xk) = f (x̂),

and thus for sufficiently large k ∈ K we have

f (y)+ 1
2ε < f (xk). (16.5)

Also, because xk is a minimizer of βμk () we have

f (xk)+ μkφ(xk) ≤ f (y)+ μkφ(y). (16.6)

We consider now two cases.

(i) x̂ is strictly feasible. Then for large enough k ∈ K, xk is strictly feasible,
and therefore φ(xk) is bounded. Also, because y is strictly feasible, φ(y) is
bounded. Therefore, for k sufficiently large,

− 1
8ε ≤ μkφ(xk) and μkφ(y) ≤ 1

8ε.

Combining this with (16.6) yields

f (xk)− 1
8ε ≤ f (y)+ 1

8ε

or
f (xk) ≤ f (y)+ 1

4ε.

But this is a contradiction to (16.5), and therefore to (16.4).

(ii) x̂ is not strictly feasible. It follows from (16.5) that

f (y) < f (xk).

Adding this to (16.6), rearranging, and dividing by μk gives

φ(xk) < φ(y).

Because y is strictly feasible, the right-hand side is finite. Nevertheless, because
xk approaches the boundary, the left-hand side is unbounded above as k tends
to ∞. We therefore have a contradiction to (16.4).

A key assumption in the theorem is that the barrier functions have a minimizer. We
now state conditions that guarantee this.
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Lemma 16.8. Assume that the set S is compact. Then for any fixed positive value μ there
exists a point x(μ) ∈ S0 that minimizes βμ(x).

Proof. Let x0 be any point in S0, and define the set

W = {
x ∈ S0 : βμ(x) ≤ βμ(x0) = β0

}
.

Because S is compact,W is bounded. We now show thatW is also closed; that is, it contains
all its limits points.

Let
{
wj

}
be any convergent sequence inW with limit point ŵ. Since

{
wj

} ⊂ S and
S is compact, then ŵ ∈ S. Now if ŵ were on the boundary of S (that is, some gi(ŵ) = 0),
then limj→∞ βμ(wj ) = ∞, which contradicts the fact that wj ∈ W . Thus ŵ ∈ S0. Now
because wj ∈ W , it follows that βμ(wj ) ≤ β0 for all j . The continuity of β in S0 implies
that βμ(ŵ) ≤ β0 also. Thus ŵ ∈ W . Therefore W contains all its limit points, and hence it
is closed. Because it is also bounded, W is compact.

Since β is continuous on the compact setW , it attains its global minimum x(μ) inW .
But by definition, the value of β at any point in S that is not in W must be larger than β0,
and in turn, larger than the minimum value βμ(x(μ)). Thus x(μ) is the global minimizer
of β in S.

Another case where the barrier minimizers always exist is when the problem is convex.
This is true even if the feasible region is unbounded. A proof can be found in the book by
Fiacco and McCormick (1968, reprinted 1990).

Theorem 16.7 shows that a subsequence of global minimizers of the barrier function
converges to a global minimum of the constrained problem. It is also possible to prove
convergence to a local minimum of the constrained problem if additional assumptions are
made. In practice, if started close to some local solution, it is likely that consecutive
minimizers of the barrier functions will naturally satisfy these conditions, and that the
sequence of barrier minimizers will therefore have a limit.

It is not true that every limit point of a sequence of local minimizers of the barrier
function is a constrained minimizer. (See the Exercises.)

Exercises
2.1. Consider the problem

minimize f (x) = 1
2x

2
1 + 1

2x
2
2

subject to x1 + x2 ≥ 1.

Suppose that the logarithmic barrier method is used to solve this problem.

(i) What is x(μ)? What is λ(μ)? What is x∗? What is λ∗?

(ii) Compute the Hessian matrix B of the logarithmic barrier function for μ =
10−4. What is the condition number of B? What is B−1?
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618 Chapter 16. Penalty and Barrier Methods

2.2. Repeat Exercise 2.1 for

minimize f (x) = x1 + x2

subject to x1 ≥ 0
x2 ≥ 0.

This example illustrates that if an n-variable problem has n constraints in the optimal
active set, then the barrier method does not introduce ill-conditioning.

2.3. Repeat Exercise 2.1 for

maximize f (x) = x1 + x2

subject to x1 ≥ 0
x2 ≥ 0
x1 + x2 ≤ 1.

2.4. (Due to Powell (1972).) Consider the one-dimensional problem

minimize
−1

x2 + 1
subject to x ≥ 1.

Show that the logarithmic barrier function is unbounded below in the feasible region.
Show also that the logarithmic barrier function has a local minimizer that approaches
the solution x∗ = 1 as μ→ 0.

2.5. For barrier methods, we assume that it is possible to reach any boundary point of the
feasible region by approaching it from the interior. Give three examples of feasible
regions that violate this assumption.

2.6. (Due to Fiacco (1973) and Wright (1992).) Consider the problem

minimize f (x) = x

subject to x2 ≥ 0
x ≥ −1.

Prove that the sequence of global minimizers of the logarithmic barrier function
converges to the constrained global minimizer x = −1, but that the sequence of local,
but nonglobal, minimizers converges to 0, which is not a constrained minimizer.

2.7. Show how to use a two-phase approach to obtain an initial feasible point for a barrier
method.

2.8. Suppose that f is bounded below in the feasible region. Prove that if βμ0(x) is
bounded from below in S0, then so is βμ(x) for all μ such that 0 < μ < μ0.

16.3 Ill-Conditioning
We now analyze the structure of the Hessian matrix of the barrier function and show that
as μ decreases, the Hessian matrix becomes increasingly ill conditioned. Although our
discussion will focus on the logarithmic barrier function method, the same results are true
in general for other barrier and penalty methods. This ill-conditioning is the main reason that
classical barrier and penalty methods were abandoned in the early 1970s. In Section 16.4
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we show how to overcome this ill-conditioning by deriving numerically stable formulas for
the Newton direction in a barrier method.

The logarithmic barrier method attempts to solve the constrained problem by solving
a sequence of unconstrained problems of the form

minimize βμ(x) = f (x)− μ
m∑
i=1

log(gi(x))

for a sequence of positive barrier parameters μ which decrease to zero.
The ill-conditioning can be observed by examining the formulas for the Hessian matrix

of β. They are

∇xβ = ∇f − μ
m∑
i=1

∇gi
gi

∇2
xxβ = ∇2f − μ

m∑
i=1

∇2gi

gi
+ μ

m∑
i=1

∇gi∇giT
gi2

,

where we have written f in place of f (x), etc. Let x(μ) be an unconstrained minimizer
of βμ(x), and let λi = μ/gi(x(μ)) be the associated Lagrange multiplier estimate. The
formulas for the gradient and Hessian matrix can be rewritten as

∇xβ = ∇f −
m∑
i=1

λi∇gi

∇2
xxβ = ∇2f −

m∑
i=1

λi∇2gi + 1

μ

m∑
i=1

λ2
i∇gi∇giT.

Notice that the gradient is an approximation to the gradient of the Lagrangian at the optimum.
Let us inspect the expression for the Hessian matrix. The term ∇2f −∑m

i=1 λi∇2gi
is an approximation to the Hessian matrix of the Lagrangian of the problem. In general,
its condition number reflects the conditioning of the Lagrangian Hessian for the original
constrained problem.

Ill-conditioning in the barrier function arises because of the final term in the Hes-
sian matrix. If a constraint is binding at the solution of the constrained problem (and its
corresponding Lagrange multiplier is not zero), then the ratio λ2

i /μ tends to infinity as μ
approaches zero. As a result, the Hessian matrix in general becomes increasingly ill condi-
tioned as the solution is approached. This structural ill-conditioning occurs even when the
underlying constrained problem is well conditioned.

16.4 Stabilized Penalty and Barrier Methods18

Despite the ill-conditioning of the Hessian matrix of the barrier function, it is still possible
to compute a Newton-type direction in a numerically stable manner. We show how to do

18This section can be omitted from study without loss of continuity.
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this for the logarithmic barrier function applied to the problem

minimize f (x)

subject to g(x) ≥ 0.

The results can be extended to other penalty and barrier methods.
The ill-conditioning is avoided by using an approximate formula for the Newton direc-

tion for the barrier problem. This formula becomes more accurate as the barrier parameter
goes to zero, that is, as the ill-conditioning becomes more severe.

For simplicity, we assume that all the constraints are binding at the solution, and that
all of these constraints have positive Lagrange multipliers. In practice, there is likely to be a
mix of binding and nonbinding constraints, and in that case the techniques that we describe
would be applied only to the binding constraints.

Our approach is to separate the Newton direction into two components, one in the null
space and one in the range space of the constraint gradients. We show that approximations
to both these components can be computed in a stable manner.

LetA = ∇g(x)T be the Jacobian matrix of the constraints, and assume thatA has full
rank. Let Z be a basis matrix for the null space of A, and let Ar be a right-inverse matrix
for A. We assume that Z and Ar have been obtained from an orthogonal QR factorization
(see Section 3.3.4), so that

( Z AT )

(
ZT

ATr

)
= I.

We also define the Lagrange multiplier estimates λi = μ/gi(x) and the diagonal matrix
D, whose ith diagonal entry is λi2. Finally, let B = ∇2

xxβ be the Hessian of the barrier
function.

With these definitions, we obtain

B = ∇2
xxβ = ∇2f −

m∑
i=1

λi∇2gi + 1

μ

m∑
i=1

λ2
i∇gi∇giT = H + 1

μ
ATDA,

where

H = ∇2f −
m∑
i=1

λi∇2gi

is the Hessian matrix of the Lagrangian. From the identity

B = IBI = ( Z AT )

(
ZT

ATr

)
B (Z Ar )

(
ZT

A

)
,

we obtain

B−1 = ( Z Ar )

(
ZTBZ ZTBAr
ATrBZ ATrBAr

)−1 (
ZT

ATr

)
.

To compute the search direction, we approximate the inverse of the middle matrix on the
right-hand side.
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To find an explicit expression for this inverse matrix, we use the bordered-inverse
formula: If A1 and A3 are symmetric matrices, then(

A1 A2

AT2 A3

)−1

=
(
A−1

1 + A−1
1 A2G

−1AT2A
−1
1 −G−1AT2A

−1
1

−A−1
1 A2G

−1 G−1

)

=
(
A−1

1 0
0 0

)
+
(
A−1

1 A2

−I
)
G−1 ( AT2A

−1
1 −I ) ,

where
G = (A3 − AT2A−1

1 A2).

Applying this formula, and noting that AZ = 0, gives

B−1 = ( Z Ar )

[(
(ZTHZ)−1 0

0 0

)

+
(
(ZTHZ)−1ZTHAr

−I
)
G−1 ( ATrHZ(Z

THZ)−1 −I )
](

ZT

ATr

)
,

where

G = 1

μ
D + ATrHAr − ATrHZ(ZTHZ)−1ZTHAr.

When μ is small (that is, as we approach the solution where the ill-conditioning becomes
apparent), G−1 ≈ μD−1. Hence

B−1 ≈ Z(ZTHZ)−1ZT

+μ(Z(ZTHZ)−1ZTH − I )ArD−1ATr (HZ(Z
THZ)−1ZT − I ).

This approximation to B−1 determines an approximation to the Newton direction
p = B−1∇xβ. It is straightforward to show that

p = B−1∇xβ ≈ p1 + μp2,

where

p1 = −Z(ZTHZ)−1ZT∇xβ,
λ = ATr (Hp1 + ∇xβ),
p2 = (Z(ZTHZ)−1ZTH − I )ArD−1λ.

The main point to notice here is that to compute an approximate Newton direction, the only
matrix inverse required is that ofZTHZ. This matrix has no structural ill-conditioning, that
is, no ill-conditioning due to the presence of the barrier parameter.

The matrix ZTHZ appears twice in these formulas. This inverse matrix should not
be formed. Instead a factorization should be computed. This factorization need only be
computed once; backsubstitution can be used to compute p1 and p2.

Asμ→ 0, it can be shown that the error in the approximate search direction isO(μ);
see the references in the Notes.
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Example 16.9 (Stabilized Formulas). Consider the problem from Example 16.2 with the
nonbinding constraint removed:

minimize f (x) = x2
1 + x2

2

subject to g(x) = x1 − 1 ≥ 0.

The corresponding barrier problem is

minimize βμ(x) = x2
1 + x2

2 − μ log(x1 − 1).

If we set μ = 10−4 and x = (1.001, 0.001)T, then the multiplier estimate is λ = μ/(x1 −
1) = 0.1. At this point,

∇xβ =
(

2x1 − μ/(x1 − 1)
2x2

)
=
(

1.902
0.002

)

B = ∇2
xxβ =

(
2 + μ/(x1 − 1)2 0

0 2

)
=
(

102 0
0 2

)
.

Then cond(B) = 50.1. The Newton direction is

p = −B−1b =
(−0.0186
−0.0010

)
.

We now determine the approximate Newton direction. For this problem,

H =
(

2 0
0 2

)
and A = ( 1 0 ) .

Hence

Ar =
(

1
0

)
, Z =

(
0
1

)
, and ZTHZ = ( 2 ) .

Now cond(ZTHZ) = 1. The diagonal matrix is D = (λ2) = (0.01). From these we
determine

p1 = −Z(ZTHZ)−1ZT∇xβ =
(

0
−0.001

)
λ = ATr (Hp1 + ∇xβ) = ( 1.902 )

p2 = (Z(ZTHZ)−1ZTH − I )ArD−1λ =
(−190.2

0

)
.

The approximate Newton direction is

p̄ = p1 + μp2 =
(−0.0190
−0.0010

)
.

The difference between the Newton direction and the approximation Newton direction
is

p − p̄ =
(

4 × 10−4

0

)
.

This is as expected, since the theory predicts that this difference will be proportional to
μ = 10−4.
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If the matrixZTHZ is positive definite at the point x, then these formulas will produce
a descent direction provided that the barrier parameter μ is sufficiently small. If ZTHZ
is not positive definite, it is still possible to compute a descent direction by modifying the
Hessian matrix (see Section 11.4).

Exercises
4.1. For Exercise 2.1, compute ZTHZ. Note that the only inverse matrix required in the

stabilized formulas is that of ZTHZ.

4.2. Verify the formulas for the first and second derivatives of the barrier function in
Section 16.3.

4.3. Verify the expressions for B−1.

4.4. Verify the bordered-inverse formula.

16.5 Exact Penalty Methods
Barrier methods and penalty methods both solve a constrained problem by solving a se-
quence of unconstrained problems. In general, a sequence of unconstrained optima will
approach the solution of the constrained problem, but will not attain it exactly, even if exact
arithmetic is used. Is it possible to obtain the exact solution of a constrained problem by
solving a finite number of unconstrained problems? Or better still, is it possible to obtain
the exact solution of a constrained problem by solving a single unconstrained problem?

In this section we present a family of methods that achieve these goals. These methods
are called exact penalty methods because they make it possible to solve the constrained
problem exactly for a finite positive penalty parameter.

To illustrate these methods, we consider a problem with both equality and inequality
constraints:

minimize f (x)

subject to gi(x) = 0, i ∈ E
gi(x) ≥ 0, i ∈ I.

We assume that the objective function f and the constraint functions gi are continuous.
Consider the penalty function

πρ(x) = f (x)+ ρ
∑
i∈E

|gi(x)| + ρ
∑
i∈I

|min(0, gi(x))|

= f (x)+ ρ
∑
i∈E

|gi(x)| − ρ
∑
i∈I

min(0, gi(x)).

The penalty imposed for violating a constraint is simply the absolute value of the violation.
The function π is continuous, but it is not differentiable at all points. This penalty function
is sometimes called the �1 exact penalty function, because the penalty term is the �1-norm
(1-norm) of the constraint violations.
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Figure 16.3. Exact penalty function.

Example 16.10 (Exact Penalty Method). Consider the problem

minimize f (x) = 1
2 (x1 − x2)

2 + 1
2x

2
2

subject to x1 ≥ 1.

This problem has a unique minimizer x1 = 1, x2 = 1
2 , with a corresponding Lagrange

multiplier λ = 1
2 . Let us use the exact �1 penalty function to solve the problem. The penalty

function is
πρ(x) = 1

2 (x1 − x2)
2 + 1

2x
2
2 − ρmin(0, x1 − 1).

This function is not differentiable when x1 = 1. It will be convenient to write π in the form

πρ(x) = ( 1
2x1 − x2)

2 + ( 1
4x

2
1 − ρmin(0, x1 − 1)).

Then the minimum of π is obtained at a point where x2 = 1
2x1, and where x1 minimizes the

function defined by {
1
4x

2
1 − ρ(x1 − 1) if x1 < 1

1
4x

2
1 if x1 ≥ 1.

This function is graphed in Figure 16.3 for two values of ρ. When ρ ≤ 1
2 , the left branch of

this function is decreasing for x1 ≤ 2ρ and then increasing for 2ρ ≤ x1 ≤ 1. At this point it
meets the right branch of the function which also increases. When ρ > 1

2 , the left branch of
the function is decreasing for x1 ≤ 1, and the right branch is increasing for x1 ≥ 1. Hence,
for any ρ > 1

2 , x1 = 1 is the minimizer of the function. In turn this yields x2 = 1
2 . Thus,

for any ρ > 1
2 , the solution x∗ is also a minimizer of the penalty function.

The following lemma shows that, for a large-enough penalty parameter, the minimizer
of the penalty function also solves the constrained minimization problem.

Lemma 16.11. Let (x∗, λ∗) be a solution to the constrained optimization problem. Assume
that the second-order sufficiency conditions are satisfied, and that ‖λ∗‖ ≤ M for some
constantM . There exists a ρ̄ such that if ρ ≥ ρ̄, then x∗ is also a local minimizer of πρ(x).
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Proof. We prove the result in the case when only equality constraints are present; the
remainder of the proof is left to the Exercises.

The proof is based on ideas from sensitivity analysis. Let h be some vector, with ‖h‖
“small,” and consider the perturbed optimization problem

minimize f (x)

subject to g(x) = h.

Let F(h) be the optimal objective value. Then

F(h) = F(0)+ hT∇F(ξ) = f (x∗)+ hT∇F(ξ),
where ‖ξ‖ ≤ ‖h‖.

We now examine the penalty function:

min
x
πρ(x) = min

x
f (x)+ ρ

∑
|gi(x)|

= min
x,h

{
f (x)+ ρ

∑
|hi | : gi(x) = hi

}
= min

h
F (h)+ ρ

∑
|hi |.

We now show thatF(h)+ρ∑ |hi | > F(0) if h = 0 and ρ is large. SinceF(0) = πρ(x∗) =
f (x∗), this will prove the lemma.

Using the Taylor series expansion, we obtain

F(h)+ ρ
∑

|hi | = f (x∗)+ hT∇F(ξ)+ ρ
∑

|hi |.

Let ε be some small positive number. Since ∇F(0) = λ (see, for example, the book by
Luenberger (1984)) and ‖ξ‖ < ‖h‖, we can guarantee that |(∇F(ξ))i | < |λi | + ε if ‖h‖ is
sufficiently small. Hence

hT∇F(ξ) ≥ −
(

max
i

{ |(∇F(ξ))i | }
)∑

|hi |
≥ −

(
max
i

{ |λi | + ε }
)∑

|hi |.

Let |λ̂| be the largest Lagrange multiplier in absolute value. Then

F(h)+ ρ
∑

|hi | ≥ f (x∗)+ (ρ − |λ̂| − ε)
∑

|hi |.

If ρ > |λ̂+ ε|, then this is greater than f (x∗). Since this is true for all ε > 0, the lemma is
true with ρ̄ = |λ̂|.

Optimization methods such as Newton’s method use the derivatives of the problem
functions. They cannot be applied directly to this exact penalty function, since it is not
differentiable at all points. So, even though it improves on classical penalty methods by
allowing the penalty parameter to remain bounded, it has its own deficiencies.
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In the next section we will derive a differentiable exact penalty function, but it too
will not be free of complications.

Exercises
5.1. Apply an exact penalty method to

minimize f (x) = 1
3x

3 − x
subject to x = 1.

Find the minimizer of the penalty function for any penalty parameter ρ. Determine
the critical value of the paramter ρ̄ that guarantees that, for any ρ ≥ ρ̄, the problem
can be solved via a single subproblem.

5.2. Consider the linear programming problem

minimize f (x) = cTx

subject to Ax = b

x ≥ 0.

(i) Find the dual problem.

(ii) Suppose that there is no known initial feasible solution to this problem. A
common technique is to add (nonnegative) artificial variables to the equality
constraints and use a big-M method to solve the problem. On paper, if the
problem is solved by the simplex method, one can treat “M” as a symbol. In
practice, a value of M must be specified. How large must M be? Show that it
is sufficient to chooseM ≥ max { |yi | }, where y is the vector of dual variables
corresponding to the equality constraints. You may assume that the original
linear program has a unique optimal solution.

(iii) Show also that the big-M method may be viewed as an exact penalty method,
and indicate how the results above confirm the theory of exact penalty methods.

5.3. Complete the proof of Lemma 16.11 by showing that the result is also true if inequality
constraints are present.

16.6 Multiplier-Based Methods
The ill-conditioning of penalty methods can be ameliorated by including multipliers explic-
itly in the penalty function. This complicates the algorithms, because both the variables x
and the multipliers λmust be updated, but in exchange it offers the possibility of more rapid
rates of convergence. Of course, multipliers appear in the context of the classical penalty
method, but in that case they are a by-product of the method. For example, in the classical
penalty method, the multiplier estimate is

λ = −ρg(x),
where g is the vector of constraint functions. These multiplier estimates are used in the
termination tests, as well as for sensitivity analysis. But multiplier estimates can be used
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in a more active way to drive an optimization algorithm. We examine this idea in this
section.

Let us begin by examining problems of the form

minimize f (x)

subject to g(x) = 0,

where g is a vector-valued function. As was pointed out in Section 14.6, the solution x∗
to this problem is a stationary point of the Lagrangian function, but is a minimizer of this
function if x is restricted to be feasible. Thus x∗ solves

minimize L(x, λ) = f (x)− λTg(x)
subject to g(x) = 0.

If penalty terms are added to the Lagrangian, then it might be possible to make x∗ an
unconstrained minimizer of this penalized Lagrangian function. For example, it might be
possible to solve

minimize
x

Aρ(x, λ) = f (x)− λTg(x)+ 1
2ρg(x)

Tg(x)

to obtain x∗. This is referred to as an augmented Lagrangian method because it is based on
minimizing an augmented Lagrangian function.

A simple augmented Lagrangian method has the following form: Values of x0, λ0,
and ρ0 > 0 are chosen to initialize the method. Then for k = 0, 1, . . . do the following:

1. The Optimality Test—If ∇L(xk, λk) = 0, then stop.

2. The Unconstrained Subproblem—Compute xk+1 by solving

minimize
x

Aρk (x, λk) = f (x)− λTkg(x)+ 1
2ρkg(x)

Tg(x)

using any of our unconstrained optimization methods.

3. The Update—Determine λk+1 and ρk+1. For example, for the multiplier update we
could use

λk+1 = λk − ρkg(xk+1).

The new penalty parameter should be chosen so that ρk+1 ≥ ρk .

The final step requires comment. If xk+1 minimizes Aρk (x, λk), then

∇xAρk (xk+1, λk) = 0

or
∇f (xk+1)− ∇g(xk+1)λk + ρk∇g(xk+1)g(xk+1) = 0.

This can be rearranged as

∇f (xk+1)− ∇g(xk+1)[λk − ρg(xk+1)] = 0.

If we define λk+1 = λk − ρkg(xk+1), then

∇xL(xk+1, λk+1) = ∇f (xk+1)− ∇g(xk+1)λk+1 = 0;
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that is, the optimality conditions for the constrained problem are partially satisfied. The
algorithm will terminate when

∇λL(xk+1, λk+1) = −g(xk+1) = 0,

that is, when feasibility has been achieved.
The update step also selects ρk+1. This parameter should be “large enough” so that

the augmented Lagrangian function has a local minimizer in x. If ρ is too small, then the
unconstrained subproblem may not have a solution. (See the Exercises.) If a failure is
detected when attempting to solve this subproblem, then ρ should be increased. Software
for these methods often includes elaborate rules for updating ρ.

Example 16.12 (Augmented Lagrangian Method). We apply the augmented Lagrangian
method to the problem in Example 15.8:

minimize f (x1, x2) = e3x1 + e−4x2

subject to g(x1, x2) = x2
1 + x2

2 − 1 = 0.

The solution to this problem is x∗ = (−0.74834, 0.66332)T with λ∗ ≈ −0.21233. The
augmented Lagrangian function is

Aρ(x, λ) = e3x1 + e−4x2 − λ(x2
1 + x2

2 − 1)+ 1
2ρ(x

2
1 + x2

2 − 1)2.

We again use the initial guess x0 = (−1, 1)T, together with λ0 = −1. The penalty
parameter will be kept constant: ρ0 = ρk = 10. At the initial point

∇f =
(

3e3x1

−4e−4x2

)
=
(

0.14936
−0.07326

)

∇2f =
(

9e3x1 0
0 16e−4x2

)
=
(

0.44808 0
0 0.29305

)
g = x2

1 + x2
2 − 1 = ( 1 )

∇g =
(

2x1

2x2

)
=
(−2

2

)
, ∇2g =

(
2 0
0 2

)
.

We use Newton’s method to solve the unconstrained subproblem. For simplicity, we
use the classical method, without a line search, so that

x ← x − (∇2
xxA)−1(∇xA).

For x = x0,

∇xA =
(−21.851

21.927

)
and ∇2

xxA =
(

62.448 −40.000
−40.000 62.293

)

and

x ←
(−1

1

)
−
(−0.21138

0.21626

)
=
(−0.78862

0.78374

)
.
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Table 16.2. Augmented Lagrangian method.

k xk λk ‖∇xL‖ ‖g‖
0 −1.00000 1.00000 −1.000000 3 × 100 1 × 100

1 −0.71795 0.63937 −0.242431 6 × 10−12 8 × 10−2

2 −0.74719 0.66242 −0.213381 1 × 10−15 3 × 10−3

3 −0.74830 0.66329 −0.212362 7 × 10−10 1 × 10−4

4 −0.74833 0.66332 −0.212326 2 × 10−15 4 × 10−6

5 −0.74834 0.66332 −0.212325 2 × 10−10 1 × 10−7

6 −0.74834 0.66332 −0.212325 2 × 10−13 4 × 10−9

At this point ‖∇xA‖ = 7.1533. We continue using Newton’s method until

‖∇xA‖ < 10−9,

obtaining the successive iterates(−0.70745
0.68719

)
,

(−0.70887
0.65110

)
, · · ·

(−0.71795
0.63937

)
.

This final point is x1. (Even though no line search is used, the iteration converges to a local
minimizer of the augmented Lagrangian function in this case.)

To complete an iteration of the augmented Lagrangian method we update the Lagrange
multiplier estimate:

λ1 = λ0 − ρ0g(x1) = −1 − 10(−0.075757) = −0.24243.

Now the whole process repeats at the new point.
The complete iteration is summarized in Table 16.2. From the first iteration to the last

iteration, the optimality condition is almost satisfied. This is a consequence of the update
formula for the Lagrange multiplier. (The optimality condition is not exactly satisfied
because the unconstrained subproblems are not solved exactly.)

We now establish some basic properties of the augmented Lagrangian function. As-
sume that x∗ is a regular point, and let λ∗ be the vector of Lagrange multipliers at x∗. For
any ρ > 0,

Aρ(x∗, λ∗) = f (x∗)− λ∗Tg(x∗)+ 1
2ρg(x∗)

Tg(x∗) = f (x∗),

since the solution must be a feasible point (that is, g(x∗) = 0). This shows that the objective
function and the augmented Lagrangian function have the same value at the solution. In
addition,

∇xAρ(x∗, λ∗) = ∇f (x∗)− ∇g(x∗)λ∗ + ρ∇g(x∗)g(x∗)
= ∇f (x∗)− ∇g(x∗)λ∗ = 0.

Hence the gradient of the augmented Lagrangian is equal to the gradient of the Lagrangian
and vanishes as the solution. It is also possible to show that the Hessian matrix of the
augmented Lagrangian is positive definite under reasonable conditions.
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Lemma 16.13 (Hessian Matrix of Augmented Lagrangian). Let (x∗, λ∗) be a solution to
the constrained optimization problem

minimize f (x)

subject to g(x) = 0.

Assume that the second-order sufficiency conditions are satisfied at (x∗, λ∗) and that x∗ is a
regular point of the constraints. Then ∇2

xxAρ(x∗, λ∗) is positive definite for all ρ ≥ ρ̄, for
some value ρ̄.

Proof. We prove that xT∇2
xxAρ(x∗, λ∗)x > 0 for x = 0 and ρ sufficiently large. To simplify

the proof, we denote H = ∇2
xxL(x∗, λ∗) and A = ∇g(x∗)T. Then

∇2
xxAρ(x∗, λ∗) = H + ρATA.

Any x can be written as x = Zv + q, where Z is a basis matrix for the null space of A and
q is in the range of AT. (See Section 3.2.) If x = 0, then v and q cannot both be zero.

We now test if the Hessian matrix of the augmented Lagrangian function is positive
definite (using the fact that AZ = 0):

xT∇2
xxAρ(x∗, λ∗)x = (Zv + q)T(H + ρATA)(Zv + q)

= vT(ZTHZ)v + 2vTZTHq + qTHq + ρqTATAq.
Let α be the smallest eigenvalue of ZTHZ; because of the second-order sufficiency condi-
tion, α > 0. Also, let β = ‖Z‖, γ = ‖H‖, and let δ be the smallest nonzero eigenvalue of
ATA. Note that δ > 0. Then (see the Exercises)

xT∇2
xxAρ(x∗, λ∗)x ≥ α ‖v‖2 − 2βγ ‖v‖ ‖q‖ + (ρδ − γ ) ‖q‖2 .

This final result will be positive if

ρ >
1

δ

(
β2γ 2

α
+ γ

)

(see the Exercises). This proves that the Hessian matrix is positive definite for sufficiently
large ρ, and the right-hand side of this inequality determines ρ̄.

The lemma shows that, under the above conditions, the Hessian matrix of the aug-
mented Lagrangian is positive definite for ρ ≥ ρ̄ at a local solution to the constrained
optimization problem. Since the functions f and g are twice continuously differentiable,
the result is also true for x ≈ x∗ and λ ≈ λ∗, although a larger value of ρ̄ might have to be
used.

At a local solution to the constrained problem, the gradient of the augmented La-
grangian is zero. If the Hessian matrix of the augmented Lagrangian is positive definite
at this point, then this local solution is a local minimizer of the augmented Lagrangian
function. Thus the solution to the constrained problem can be found using a single uncon-
strained minimization of the augmented Lagrangian function if ρ ≥ ρ̄ and if λ = λ∗. Thus
the augmented Lagrangian function is an exact penalty function (see Section 16.5). Unlike
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a classical penalty method where the penalty parameter must tend to infinity, an augmented
Lagrangian method can maintain ρ at some fixed, sufficiently large value. This ameliorates
some of the ill-conditioning associated with penalty methods.

This lemma assumes that λ = λ∗, that is, the optimal Lagrange multipliers are known.
This will not normally be true. If only an estimate of the multipliers is provided, then progress
towards a solution can still be guaranteed if the penalty parameter is large enough. This
is the topic of the next theorem. The theorem shows that the progress of the algorithm
is controlled by the accuracy of the multiplier estimates, in the sense that the accuracy of
λ at the current iteration determines the accuracy of both x and λ at the next iteration.
For this reason, an augmented Lagrangian method is sometimes referred to as a method of
multipliers.

Theorem 16.14 (Local Convergence of Augmented Lagrangian Method). Assume that the
second-order sufficiency conditions are satisfied for

minimize f (x)

subject to g(x) = 0.

Let ρ̄ > 0 be large enough so that ∇2
xxAρ̄ (x∗, λ∗) is positive definite. Then there exist

positive constants δ, ε, and M such that

(i) for all (λ, ρ) ∈ D ≡ { (λ, ρ) : ‖λ− λ∗‖ < δρ, ρ ≥ ρ̄ } the problem

minimizex Aρ(x, λ)

subject to ‖x − x∗‖ ≤ ε

has a unique solution x(λ, ρ). The function x(λ, ρ) is continuously differentiable in
the interior of D, and for all (λ, ρ) ∈ D,

‖x(λ, ρ)− x∗‖ ≤ M

ρ
‖λ− λ∗‖ ;

(ii) for all (λ, ρ) ∈ D,

‖λ+(λ, ρ)− λ∗‖ ≤ M

ρ
‖λ− λ∗‖ ,

where
λ+(λ, ρ) = λ− ρg(x(λ, ρ))

are the updated multipliers;

(iii) for all (λ, ρ) ∈ D, ∇2
xxAρ(x(λ, ρ), λ) is positive definite, and ∇g(x(λ, ρ)) has full

rank.

Proof. There are two major steps in the proof. In the first step, we examine the governing
equations for an augmented Lagrangian method. We make a change of variables so that the
implicit function theorem can be applied to them, and we conclude that a solution to these
equations exists for λ ≈ λ∗ and for ρ ≥ ρ̄. Most of the conclusions in the theorem follow
from this step, with the exception of the bounds on ‖x(λ, ρ)− x∗‖ and ‖λ+(λ, ρ)− λ∗‖.
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The second step establishes these bounds by analyzing the first-order terms in Taylor
series expansions of x(λ, ρ) and λ+(λ, ρ). This step requires a number of minor technical
arguments.

1. Use of the Implicit Function Theorem: Let ρ ≥ ρ̄, let x be a local minimizer of
the augmented Lagrangian function for a given λ and ρ, and let λ+ be the new vector of
Lagrange multipliers. (The local minimizer x will exist for λ ≈ λ∗; see the remarks after
Lemma 16.13.) Then

∇f (x)− ∇g(x)λ+ = 0
1

ρ
(λ− λ+)− g(x) = 0.

(The first equation comes from the optimality of x, and the second is a rearrangement of the
update formula for the multipliers.)

We make a change of variables: ζ ≡ (λ − λ∗)/ρ and μ = 1/ρ. (If ρ is large and if
λ ≈ λ∗, then both ζ and μ will be near zero.) The equations become

∇f (x)− ∇g(x)λ+ = 0
ζ + μ(λ∗ − λ+)− g(x) = 0.

This is a system of n+m equations in the n+m unknowns x and λ+. The system has the
solution x = x∗ and λ+ = λ∗ at ζ = 0, μ = 0. We differentiate with respect to x and λ+
and evaluate the resulting Jacobian at this solution:(∇2

xxL(x∗, λ∗) −∇g(x∗)
−∇g(x∗)T −μI

)
.

This matrix is invertible for 0 ≤ μ ≤ 1/ρ̄ (see the Exercises). Hence by the implicit
function theorem (see Appendix B.9) this system has a unique solution x̂(ζ, μ), λ̂(ζ, μ) at
nearby points: There exist positive constants ε and δ such that

∇f (x̂(ζ, μ))− ∇g(x̂(ζ, μ))λ̂(ζ, μ) = 0
(16.7)

ζ + μ(λ∗ − λ̂(ζ, μ))− g(x̂(ζ, μ)) = 0

for 0 ≤ μ ≤ 1/ρ̄ and ‖ζ‖ ≤ δ, with√∥∥x̂(ζ, μ)− x∗∥∥2 +
∥∥∥λ̂(ζ, μ)− λ∗∥∥∥2

< ε.

In addition, x̂(ζ, μ) and λ̂(ζ, μ) are continuously differentiable with respect to ζ and
μ. We can choose δ and ε sufficiently small so that ∇g(x̂(ζ, μ)) has full rank and
∇2
xxAρ(x̂(ζ, μ), λ̂(ζ, μ)) is positive definite.

If we now reverse the change of variables, the same conclusions apply to the implicit
solutions x(λ, ρ) and λ+(λ, ρ). These conclusions are sufficient to prove all the results in
the theorem, with the exception of the bounds on ‖x(λ, ρ)− x∗‖ and ‖λ+(λ, ρ)− λ∗‖.

2. Bounds on the Errors: We derive Taylor series expansions for x̂(ζ, μ) and λ̂(ζ, μ).
To do this, we require formulas for their Jacobians. To obtain these, we differentiate (16.7)
with respect to ζ and μ and rearrange:

∇
(
x̂(ζ, μ)

λ̂(ζ, μ)

)T
= A(ζ, μ)

(
0 0
−I λ̂(ζ, μ)− λ∗

)
,
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where

A(ζ, μ) =
(∇2

xxL(x̂(ζ, μ), λ̂(ζ, μ)) −∇g(x̂(ζ, μ))
−∇g(x̂(ζ, μ))T −μI

)−1

.

We expand in a Taylor series about ζ = 0 and μ = 0. At this point x̂(0, 0) = x∗ and
λ̂(0, 0) = λ∗. Using the remainder form of the Taylor series for each component, we obtain(

x̂(ζ, μ)− x∗
λ̂(ζ, μ)− λ∗

)
j

=
[
A(ηjζ, ηjμ)

(
0 0
−I λ̂(ηj ζ, ηjμ)− λ∗

)(
ζ

μ

)]
j

, (16.8)

where 0 ≤ ηj ≤ 1.
Bounds on the errors are obtained by taking norms and using equation (16.8). If δ is

sufficiently small, and if ‖ζ‖ ≤ δ, then
∥∥A(ηjζ, ηjμ)∥∥ ≤ C for some constant C. Now

pick δ so that Cδ < 1, and pick μ < δ. Then from (16.8),√∥∥x̂(ζ, μ)− x∗∥∥2 +
∥∥∥λ̂(ζ, μ)− λ∗∥∥∥2 ≤ C

[
‖ζ‖ + μ max

0≤η≤1

∥∥∥λ̂(ηζ, ημ)− λ∗∥∥∥ ]. (16.9)

This implies that∥∥∥λ̂(ζ, μ)− λ∗∥∥∥ ≤ C ‖ζ‖ + μC max
0≤η≤1

∥∥∥λ̂(ηζ, ημ)− λ∗∥∥∥ .
This condition remains satisfied if, on the left-hand side, we replace ζ by ηζ and μ by ημ,
so that

max
0≤η≤1

∥∥∥λ̂(ηζ, ημ)− λ∗∥∥∥ ≤ C ‖ζ‖ + μC max
0≤η≤1

∥∥∥λ̂(ηζ, ημ)− λ∗∥∥∥ .
Hence

max
0≤η≤1

∥∥∥λ̂(ηζ, ημ)− λ∗∥∥∥ ≤ C

1 − Cμ ‖ζ‖ .
Combining this with (16.9) produces√∥∥x̂(ζ, μ)− x∗∥∥2 +

∥∥∥λ̂(ζ, μ)− λ∗∥∥∥2 ≤
(
C + C2μ

1 − Cμ
)
‖ζ‖ ≤ C

1 − Cμ ‖ζ‖ ≤ 2C ‖ζ‖ .

Let M = 2C. If we now reverse the change of variables made in step 1, we obtain

‖x(λ, ρ)− x∗‖ ≤ M

ρ
‖λ− λ∗‖

‖λ+(λ, ρ)− λ∗‖ ≤ M

ρ
‖λ− λ∗‖

for ‖λ− λ∗‖ ≤ δρ and ρ > max { ρ̄, 1/δ }. Because x(λ, ρ) is continuously differentiable,
we can find a constant M that produces the same result for ρ̄ ≤ ρ ≤ max { ρ̄, 1/δ }. This
completes the proof.

This theorem can be used to prove convergence of an augmented Lagrangian method.
First, notice that if λ = λ∗, then the algorithm converges in one iteration. More generally,
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if the algorithm is controlled so that the multiplier estimates λk remain bounded, then
‖λk − λ∗‖ will also remain bounded. By choosing ρ large enough, the error bound in the
theorem will guarantee that

‖λk+1 − λ∗‖ ≤ M

ρ
‖λk − λ∗‖

withM/ρ < 1. This shows that the multipliers converge linearly, and hence { xk } converges
also. If a sequence { ρk } of barrier parameters are used, with lim ρk = +∞, then

lim
k→∞

‖λk+1 − λ∗‖
‖λk − λ∗‖ ≤ lim

k→∞
M

ρk
= 0,

showing that the multiplier estimates { λk } converge superlinearly.
The “convergence rate” here is not directly comparable to the convergence rates of

the other methods we have discussed. Each iteration of the augmented Lagrangian method
involves the solution of an unconstrained minimization subproblem, whereas an iteration
of the other methods required at most the solution of a system of linear equations. Thus the
iterations here are in general much more expensive than the iterations of the other methods.
In special cases (for example, when Newton’s method is applied to a convex problem) it
can be shown that, for points xk ≈ x∗, only one Newton iteration need be applied to each
subproblem. Under such circumstances, the convergence rate of an augmented Lagrangian
method is comparable to that of other methods.

If ρ is large, then the augmented Lagrangian method will suffer from ill-conditioning,
just as the penalty method did. Thus there is a conflict between rate of convergence and
conditioning of the method. This ill-conditioning can be controlled by using stabilized
formulas for the search directions, analogous to the techniques described in Section 16.4.

A multiplier-based method can also be derived for problems with inequality con-
straints:

minimize f (x)

subject to g(x) ≥ 0.

In this case, if a multiplier estimate λk ≈ λ∗ and a barrier parameter μk > 0 are specified,
then at the kth iteration a modified barrier function is minimized to obtain xk+1:

minimize
x

Sμk (x, λk) = f (x)− μk
m∑
i=1

(λk)i log(μ−1
k gi(x)+ 1).

Then the multipliers are updated using

(λk+1)i = (λk)i

μ−1
k gi(xk+1)+ 1

.

If this update formula is used, then (as before)

∇xL(xk+1, λk+1) = ∇f (xk+1)− ∇g(xk+1)λk+1 = 0,

so that this part of the optimality conditions is satisfied. The iteration is continued until
complementary slackness is attained.
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In the barrier method, every estimate of the solution has to be strictly feasible so that
the logarithmic barrier term can be evaluated. The modified barrier function is defined as
long as μ−1gi(x)+ 1 > 0, or

gi(x) > −μ.
Thus the modified barrier function permits the constraints to be violated by as much as μ.

The modified barrier function has many of the same properties as the augmented
Lagrangian function. For any μ > 0,

Sμ(x∗, λ∗) = f (x∗)

and
∇xSμ(x∗, λ∗) = ∇f (x∗)− ∇g(x∗)λ∗ = 0.

Hence the gradient of the modified barrier function is equal to the gradient of the Lagrangian
and vanishes as the solution. The Hessian matrix of the modified barrier function is positive
definite under certain conditions for μ less than some critical value μ̄. Finally, there is an
analog of our convergence theorem that shows that

‖xk+1 − x∗‖ ≤ Mμ ‖λk − λ∗‖ and ‖λk+1 − λ∗‖ ≤ Mμ ‖λk − λ∗‖
for some constant M . (See the Exercises.)

16.6.1 Dual Interpretation

The convergence of the augmented Lagrangian method is determined by the Lagrange
multiplier estimates, and in fact the entire method can be considered as an algorithm for
solving the dual problem. If the constrained problem is

minimize f (x)

subject to g(x) = 0,

then the iteration has the form

λk+1 = λk − ρkg(xk+1).

We can interpret −g(xk+1) as a search direction for the dual problem, with ρk as the step
length. In this subsection we examine this interpretation in greater detail.

Our discussion is based on the theory of local duality (see Section 14.8.3). The
constrained optimization problem may not be convex, but it is equivalent to

minimize πρ(x) = f (x)+ 1
2ρg(x)

Tg(x)

subject to g(x) = 0.

Lemma 16.13 shows that this problem is locally strictly convex near (x∗, λ∗) for ρ suffi-
ciently large.

The corresponding dual problem (in a neighborhood of (x∗, λ∗)) is

maximize
λ

L∗(λ),
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where the dual function is defined as

L∗(λ) = min
x

{
f (x)− λTg(x)+ 1

2ρg(x)
Tg(x)

}
.

We could apply any unconstrained optimization method to maximize L∗, and in fact any
such method would give an update formula for λk . Of most relevance to us will be Newton’s
method and the steepest-ascent method. (The steepest-ascent method for a maximization
problem is the analog of the steepest-descent method for a minimization problem.)

In Section 14.8 we derived formulas for the gradient and Hessian matrix of the dual
function. When applied to this case we obtain

∇L∗(λ) = −g(x(λ))
∇2L∗(λ) = −∇g(x(λ))T[∇2

xxL(x(λ), λ)
+ ρ∇g(x(λ)∇g(x(λ))T]−1∇g(x(λ)),

where x(λ) is the value of x obtained when evaluating L∗(λ).
The steepest-ascent method uses the search direction

pk = ∇L∗(λk) = −g(x(λk))
and so the update formula

λk+1 = λk − ρkg(xk+1)

for the augmented Lagrangian method corresponds to applying the steepest-ascent method
to the dual problem with a fixed step length ρk . As was pointed out in Chapter 12, the
steepest-ascent method is often slow to converge, and so it is normally advisable to use
a better method, such as Newton’s method. What we will show is that, in the limit as
ρ → ∞, this update formula becomes the classical Newton method applied to the dual
problem. Thus, at least for large values of ρ, using the steepest-ascent method (even with
this fixed step length) can achieve rapid convergence.

The convergence of the steepest-ascent method depends on the condition number of
the Hessian matrix of L∗ (see Section 12.2). The following lemma determines this condition
number. Note that

−∇g(x(λ))T[∇2
xxL(x(λ), λ)]−1∇g(x(λ))

is the Hessian matrix of the dual function for the original problem.

Lemma 16.15 (Condition Number of Dual Hessian). Let L∗(λ) be the dual function for the
augmented optimization problem. Then the condition number of ∇2L∗(λ) is

W−1 + ρ
w−1 + ρ ,

where w and W are the smallest and largest eigenvalues, respectively, of

∇g(x(λ))T[∇2
xxL(x(λ), λ)]−1∇g(x(λ)).

Proof. Let H = ∇2
xxL(x(λ, λ) and A = ∇g(x(λ))T. Then the Hessian matrix of the dual

function is
−A[H + ρATA]−1AT.
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We must relate the eigenvalues of this matrix to those of AH−1AT. We do this by showing
that these matrices have the same eigenvectors.

The matrix version of the Sherman–Morrison formula (see Appendix A.9) can be used
to show that

ρA[H + ρATA]−1AT = I − (I + ρAH−1AT)−1

(see the Exercises). Multiplying on the right by (I + ρAH−1AT) we obtain

ρA[H + ρATA]−1AT(I + ρAH−1AT) = ρAH−1AT.

Let y be an eigenvector of AH−1AT with corresponding eigenvalue v. Then

ρA[H + ρATA]−1AT(1 + ρv)y = ρvy.

Hence y is also an eigenvector of A[H + ρATA]−1AT with eigenvalue

ρv

ρ(1 + ρv) =
1

v−1 + ρ .

Letting v be the smallest and largest eigenvalues of AH 1AT completes the proof.

To see what happens for large values of ρ, we examine

lim
ρ→∞

W−1 + ρ
w−1 + ρ = 1.

Hence, asρ increases, the Hessian matrix becomes better conditioned and the steepest-ascent
method performs better.

The search direction for Newton’s method in the dual is

pk = −[∇2L∗(λk)]−1∇L∗(λk).

The Hessian here is

∇2L∗(λ) = −∇g(x(λ))T[∇2
xxL(x(λ), λ)

+ ρ∇g(x(λ)∇g(x(λ))T]−1∇g(x(λ)).
The Sherman–Morrison formula (see the proof of Lemma 16.15) implies that, for large
values of ρ,

∇2L∗(λ) ≈ −ρ−1I.

Hence the Newton direction satisfies

pk ≈ ρ∇L∗(λk) = −ρg(x(λk))
and the update formula

λk+1 = λk − ρkg(xk+1)

for the augmented Lagrangian method corresponds to an approximate Newton method
when ρ is large. Unfortunately, we can expect the augmented Lagrangian function to be
ill conditioned in this case. This provides an additional explanation of the conflict between
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rapid convergence and numerical stability for this method.

Exercises
6.1. Consider the one-dimensional problem

minimize f (x) = − 1
2x

2

subject to x = 1.

Verify that the solution is x∗ = 1, λ∗ = −1. Show that if ρ < 1, then the augmented
Lagrangian function Aρ(x, λ) is unbounded below. Show also that for ρ > 1 the
augmented Lagrangian function is strictly convex when considered as a function of
x, and thus has a unique minimizer. What happens when ρ = 1?

6.2. For the example in the previous problem, suppose that x0 = 0 and λ0 = 0. Prove
that if ρ is fixed and ρ > 1, then

xk = 1 − (−1)k

(ρ − 1)k
and λk = −1 + (−1)k

(ρ − 1)k
.

What is the limit point of (xk, λk)? What is the convergence rate?

6.3. Use the matrix version of the Sherman–Morrison formula (see Appendix A.9) to
prove that

ρA[H + ρATA]−1AT = I − (I + ρAH−1AT)−1.

6.4. Use the previous problem to prove that

∇2L∗(λ) ≈ −ρ−1I.

6.5. (From Avriel (1976, reprinted 2003).) Consider the quadratic problem

minimize
x

f (x) = 1
2x

TQx + θbTx
subject to bTx = 0,

where Q is a nonsingular symmetric matrix that is positive definite on the subspace
bTx = 0. The vector b = 0 and the scalar θ > 0 are given.

(i) What is the optimal solution to this problem? What is the corresponding
Lagrange multiplier?

(ii) Suppose the problem is solved by the augmented Lagrangian method, where the
multiplier estimates are updated in the standard way. Let λk be the multiplier
estimate at the kth iteration, and let ρ be the penalty parameter. Show that, if
the augmented Lagrangian has a minimum, its minimizer is

xk = (λk − θ)Q−1b

1 + ρbTQ−1b
.

(iii) If we initialize the method with λ1 = 0, show that

xk = − θQ−1b

(1 + ρbTQ−1b)k
and λk+1 = −θ

[
1

(1 + ρbTQ−1b)k
− 1

]
.
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(iv) Assume that the penalty parameter ρ is held fixed throughout the solution
process. For what values of ρ is the iterative process guaranteed to converge?
(Assume as in part (iii) that λ0 = 0.)

(v) Comment on the effect of the value of the penalty parameter ρ on (i) the rate
of convergence of the algorithm, and (ii) the condition number of the Hessian
matrix of the augmented Lagrangian function.

6.6. Consider an optimization problem with a single constraint:

minimize f (x)

subject to g(x) ≥ 0.

Make the constraint an equality by subtracting a squared slack variable s.

(i) What is the augmented Lagrangian function Aρ(x, s, λ) for this problem?

(ii) Determine the update formula for the Lagrange multiplier.

(iii) Let (x∗, λ∗) be the solution to the original problem, and let s∗ = √
g(x∗).

Prove that Aρ(x∗, s∗, λ∗) = f (x∗), and that ∇xsAρ(x∗, s∗, λ∗) = 0.

6.7. Suppose that

∇2
xxA = H + ρATA.

Write x = Zv + q, where Z is a basis matrix for the null space of A and q is in the
range of AT. Let α be the smallest eigenvalue of ZTHZ and assume that α > 0.
Also, let β = ‖Z‖, γ = ‖H‖, and let δ be the smallest nonzero eigenvalue of ATA.

(i) Prove that

xT(∇2
xxA)x ≥ α ‖v‖2 − 2βγ ‖v‖ ‖q‖ + (ρδ − γ ) ‖q‖2 .

(ii) Prove that xT(∇2
xxA)x > 0 if

ρ >
1

δ

(
β2γ 2

α
+ γ

)
.

6.8. In the proof of Theorem 16.14, prove that(∇2
xxL(x∗, λ∗) −∇g(x∗)
−∇g(x∗)T −μI

)

is invertible for 0 ≤ μ ≤ 1/ρ̄.

6.9. Let (x∗, λ∗) be a solution to

minimize f (x)

subject to g(x) ≥ 0.

Prove that, for any μ > 0, the modified barrier function satisfies

Sμ(x∗, λ∗) = f (x∗)
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and

∇xSμ(x∗, λ∗) = ∇f (x∗)− ∇g(x∗)λ∗ = 0.

6.10. The modified-barrier function is a barrier function with shifted constraints, that is,
it perturbs the constraint g(x) ≥ 0 to g(x) ≥ −μ. Prove that the augmented
Lagrangian function is equivalent to the shifted penalty function

f (x)+ 1
2ρ(g(x)− ρ−1λ)T(g(x)− ρ−1λ).

6.11. Prove an analog of Theorem 16.14 for the modified-barrier function, showing that
(for some constant M)

‖xk+1 − x∗‖ ≤ Mμ ‖λk − λ∗‖ and ‖λk+1 − λ∗‖ ≤ Mμ ‖λk − λ∗‖ .

Assume that strict complementarity slackness holds.

16.7 Nonlinear Primal-Dual Methods
The penalty and barrier methods that we have discussed so far assign different roles to the
primal and dual variables. An unconstrained optimization problem is solved to find the
primal iterate xk; then the dual iterate λk is computed from xk using a simple formula. This
asymmetry between the primal and dual variables limits the efficiency of the methods.

In this section we describe a family of methods that assign an equal role to both
primal and dual variables. The resulting methods are in general more efficient, with a faster
convergence rate and better performance. They were originally inspired by the success of
primal-dual interior-point methods for linear programming (see Chapter 10).

These methods share some characteristics of barrier methods. In particular, they solve
a sequence of subproblems with a barrier parameter that is shrinking to zero. But, unlike in
a traditional barrier method, for each value of the barrier parameter only a small number of
Newton iterations are used, perhaps only one.

The Newton iteration is based on a system of nonlinear equations derived from the
optimality conditions for the barrier problem. The solution to this system is used to update
the primal and dual iterates simultaneously. Under an appropriate condition, and if started
sufficiently close to the solution, the algorithm can achieve a quadratic rate of convergence,
which is a most desirable property.

The overall method is called a primal-dual interior-point method. It is a “primal-
dual” method because the two sets of variables are given equal prominence, and it is an
“interior-point” method because the iterates lie in the interior of the feasible region.

Since the development of Karmarkar’s method in 1984, primal-dual interior-point
methods have become a major focus of theoretical research and practical experiments. For
linear programming, there are polynomial-time algorithms of this type. Computational
experiments have demonstrated that primal-dual interior-point methods are very efficient
for linear, convex quadratic, and general nonlinear problems.

In the following subsections we derive a primal-dual interior-point method for solving
general nonlinear optimization problems and present a convergence theorem.
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16.7.1 Primal-Dual Interior-Point Methods

We will focus on a minimization problem with inequality constraints:

minimize f (x)

subject to gi(x) ≥ 0, i = 1, . . . , m.

Equality constraints can be included in the formulation, but we ignore them to simplify the
presentation.

The primal-dual interior-point method will be derived from a lagarithmic barrier
method

minimize βμk (x),

where βμk (x) = f (x) − μk
∑m

i=1 log gi(x). The minimization problem will be solved for
a decreasing sequence of barrier parameters μk .

The solution (x(μk), λ(μk)) to the barrier subproblem satisfies the following per-
turbed primal-dual system of equations and inequalities (see Section 16.2):

g(x) ≥ 0

∇xL(x, λ) = ∇f (x)−
m∑
i=1

λi∇gi(x) = 0

λ ≥ 0

λigi(x) = μk, i = 1, . . . , m,

where L(x, λ) = f (x) −∑m
i=1 λigi(x) is the Lagrangian of the problem. The equations

will serve as the foundation for the new method.
At each iteration the primal-dual interior-point method obtains a search direction

by computing the Newton directions (	xk,	λk) for the following nonlinear system of
equations:

∇xL(x, λ) = ∇f (x)−
m∑
i=1

λi∇gi(x) = 0

λigi(x) = μk, i = 1, . . . , m.

To derive the formulas for the Newton directions, we linearize this system at (xk, λk) using
Taylor’s series, ignoring the terms of second and higher order, and set the linearized system
to zero.

If we write x = xk +	xk and λ = λk +	λk , then the Taylor series expansions are

∇xL(x, λ) = ∇xL(xk +	xk, λk +	λk)
≈ ∇xL(xk, λk)+ ∇2

xxL(xk, λk)	xk + ∇2
λxL(xk, λk)	λk

= ∇xL(xk, λk)+ ∇2
xxL(xk, λk)	xk − ∇g(xk)	λk

and

λigi(x) = ((λk)i + (	λk)i)gi(xk +	xk)
≈ (λk)igi(xk)+ λi∇gi(xk)T	xk + (	λk)igi(xk), i = 1, . . . , m,
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where∇2
xxL(x, λ) = ∇2f (x)−∑m

i=1 λi∇2gi(x) is the Hessian of the Lagrangian and∇g(x)
is the transpose of the Jacobian of the vector-valued function g(x) = (g1(x), . . . , gm(x))

T .

If we ignore the second- and higher-order terms, we obtain the following linear system for
the primal and dual directions:[ ∇2

xxL(xk, λk) −∇g(xk)
�k∇g(xk)T G(xk)

] [
	xk
	λk

]
=
[ −∇xL(xk, λk)

−�kg(xk)+ μke
]
,

where G(x) is the diagonal matrix with elements gi(x), i = 1, . . . , m; � is the diagonal
matrix with the elements λi, i = 1, . . . , m; and e = (1, . . . , 1)T .

The primal-dual interior-point method requires that the inequalities of the perturbed
system be strictly satisfied. This means that the iterates xk are strictly feasible (gi(xk) > 0)
and that (λk)i > 0, i = 1, . . . , m. If the initial values (x0, λ0) are interior to the feasible
region, then the choice of the step lengths αP and αD will guarantee that the subsequent
iterates are also interior to the feasible region. If the feasible set does not have an interior
point, then the method cannot be used.

The following ratio test can be used to keep the dual iterates λk+1 positive:

αD = min
1≤i≤m

{
1; −κ (λk)i

(	λk)i
: (	λk)i < 0

}
,

where 0 < κ < 1. To keep the primal iterates in the interior of the primal feasible, set the
algorithm uses a backtracking line search. As the step length is reduced, the trial point gets
closer to xk , which satisfies gi(xk) > 0. If the constraint functions gi(x) are continuous,
then for a small-enough step length we are guaranteed that the trial point must satisfy
gi(xk+1) > 0 also.

The optimality test is based on a merit function that measures the violation of optimality
conditions

ν(x, λ) = max{‖∇xL(x, λ)‖, ‖G(x)λ‖}.
At the solution, ν(x∗, λ∗) = 0. (For additional discussion of merit functions, see Section
14.6.)

We are now able to present our algorithm.

Algorithm 16.1.
Primal-Dual Interior-Point Algorithm

1. Choose (x0, λ0) such that gi(x0) > 0 and (λ0)i > 0 for i = 1, . . . , m, and select an
initial barrier parameter μ0 > 0.

2. For k = 0, 1, . . . do the following:

(i) The Optimality Test—If ν(xk, λk) = 0, then stop.

(ii) Find the Primal-Dual Directions—Compute (	xk,	λk) by solving the linear
system of equations[ ∇2

xxL(xk, λk) −∇g(xk)
�k∇g(xk)T G(xk)

] [
	xk
	λk

]
=
[ −∇xL(xk, λk)

−�kg(xk)+ μke
]
.
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(iii) Find the Primal and the Dual Step Lengths—Compute αD from the formula

αD = min
1≤i≤m

{
1; −κ (λk)i

(	λk)i
: (	λk)i < 0

}
.

Compute αP using a backtracking line search: choose αP as the first element of
the sequence { 1, 1/2, 1/4, . . . } for whichgi(xk+αP	xk) > 0 for i = 1, . . . , m.
The choices of the step lengths αP and αD guarantee that xk+1 is in the interior
of the primal feasible regions and λk+1 is positive.

(iv) The Update—Determine xk+1 and λk+1 from

xk+1 = xk + αP	xk
λk+1 = λk + αD	λk.

(v) The Barrier Parameter Update—Computeμk+1 using an appropriate rule, e.g.,

μk+1 = θμk, 0 < θ < 1.

Example 16.16 (Primal-Dual Interior-Point Method). We apply the primal-dual interior-
point method to the problem from Example 16.1:

minimize f (x) = x1 − 2x2

subject to g1(x) = 1 + x1 − x2
2 ≥ 0

g2(x) = x2 ≥ 0.

The initial guess is chosen in the interior of the primal and dual feasible sets: x0 = (0.5, 0.5)T

and λ0 = (0.5, 0.5)T. The initial barrier parameter is μ0 = 1. For these values, the merit
function ν(x0, λ0) is nonzero, so the optimality condition is not satisfied.

The system for finding the Newton directions is⎡
⎢⎢⎣

0 0 −1 0
0 2λ1 2x2 −1
λ1 −2x2λ1 1 + x1 − x2

2 0
0 λ2 0 x2

⎤
⎥⎥⎦
[
	x

	λ

]
=

⎡
⎢⎢⎣

−1 + λ1

2 − 2x2λ1 + λ2

−λ1(1 + x1 − x2
2)+ μ−λ2x2 + μ

⎤
⎥⎥⎦ .

At the initial point the system is⎡
⎢⎢⎣

0 0 −1.00 0
0 1.00 1.00 −1.00

0.50 −0.50 1.25 0
0 0.50 0 0.50

⎤
⎥⎥⎦
[
	x

	λ

]
=

⎡
⎢⎢⎣

0.500
−2.000
−0.375
−0.750

⎤
⎥⎥⎦ .

We solve the system to obtain	x = (1.0, 1.5)T and	λ = (0.5, 0)T. The primal step length
αP is calculated by backtracking: αP = 1 fails to keep the next iterate x0 + αP	x in the
interior of the primal feasible region; however, αP = 0.5 produces an acceptable primal
iterate x1 = x0 + 0.5	x = (1.00, 1.25)T.

The dual step length αD = 1 is calculated using the ratio test with κ = 0.9, giving
λ1 = λ0 +	λ = (1.0, 0.5)T.
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Table 16.3. Interior-point method.

k μ αP xk αD λk

1 1 0.5 (1.00000, 1.25000)T 1 (1.00000, 0.50000)T

2 10−1 1 (0.22500, 1.07500)T 1 (1.00000, 0.15000)T

3 10−2 1 (0.02424, 1.00924)T 1 (1.00000, 0.01847)T

4 10−3 1 (0.00207, 1.00057)T 0.96 (1.00000, 0.00185)T

5 10−4 1 (0.00020, 1.00005)T 0.95 (1.00000, 0.00018)T

6 10−5 1 (0.00002, 1.00000)T 0.95 (1.00000, 0.00001)T

7 10−6 1 (0.00000, 1.00000)T 0.95 (1.00000, 0.00000)T

If we update the barrier parameter using μk+1 = 0.1μk , then μ1 = 0.1.
At the next iteration, the optimality test gives ν(x1, λ1) = 0, so the algorithm executes

the second step. The results of the next few iterations are listed inTable 16.3. The table shows
the barrier parameter, the primal-dual iterates xk and λk , and their step lengths αP and αD.
In this example, the algorithm converges linearly to the primal-dual solution x∗ = (0, 1)T

and λ∗ = (1, 0)T .

Primal-dual interior-point methods are well defined if the matrix

M(x, λ) =
[ ∇2

xxL(x, λ) −∇g(x)
�∇g(x)T G(x)

]

from the system for finding the search directions is nonsingular. The second-order opti-
mality, strict complementarity, and regularity conditions guarantee the nonsingularity of
M(x, λ) in some neighborhood of the primal-dual solution. Further from the solution, the
algorithm may regularize the Hessian ∇2

xxL(x, y), if necessary, to guarantee that the matrix
M(x, λ) is nonsingular:

Rt(x, y) = ∇2
xxL(x, y)+ tI, t ≥ 0,

where I is the identity matrix and t ≥ 0 is the regularization parameter. It can be shown that
if t ≥ 0 is large enough, then replacing the Hessian with the regularized Hessian guarantees
that the matrix M is nonsingular (see the Exercises).

The efficiency of the algorithm depends critically on the strategy for updating the
barrier parameter μ at each iteration. This strategy affects the rate of convergence of the
interior-point method and therefore the number of steps required to find the solution to a
specified accuracy. We will discuss the rate of convergence in Section 16.7.2.

Another factor that affects the performance of the primal-dual interior-point algorithm
is the efficiency of solving the Newton system for the search directions at each step. An
effective implementation must exploit any sparsity or other structure in the matrix.

The system can be modified by a simple division of its rows such that the system
matrix becomes symmetric (see the Exercises). Also by eliminating	λ, the system can be
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reduced so the system matrix becomes symmetric and positive definite (see the Exercises).
Therefore a direct method using an LDLT or Cholesky factorization can be an efficient
technique, especially if the matrix is sparse.

In the next subsection we discuss convergence of the primal-dual interior-point method.

16.7.2 Convergence of the Primal-Dual Interior-Point Method

In primal-dual interior-point methods, the primal and dual variables play equally impor-
tant roles in convergence. This symmetry enables interior-point methods to have a better
convergence rate than either barrier or penalty methods. In this section, we present an
interior-point method that has a quadratic convergence rate in the neighborhood of the so-
lution. The interior-point method is applied to an equivalent problem that includes slack
variables. This leads to a somewhat more complicated presentation, but the resulting algo-
rithm has better theoretical and practical properties.

The original problem can be reformulated using slack variables si, i = 1, . . . , m:

minimize f (x)

subject to gi(x)− si = 0, si ≥ 0, i = 1, . . . , m.

Although this problem has more variables and constraints, the inequality constraints now
have a simple form: si ≥ 0, i = 1, . . . , m.

Starting from an initial guess z0 = (x0, s0, λ0), a primal-dual interior-point method for
this problem generates a sequence of primal-dual iterates zk = (xk, sk, λk), k = 1, 2, 3, . . . .
If the iterate zk = (xk, sk, λk) of the algorithm is close to the solution z∗ = (x∗, s∗, λ∗), i.e.,
zk is in the neighborhood

Uε(x∗, s∗, λ∗) = {(x, s, λ) :
‖x − x∗‖ ≤ ε,

‖s − s∗‖ ≤ ε,

‖λ− λ∗‖ ≤ ε,

x ∈ �n, s ∈ �m+, λ ∈ �m+},
for some ε > 0, then the primal-dual interior-point method converges to the solution with
a quadratic rate, under the conditions of the theorem below.

This version of the interior-point method does not guarantee that the equality con-
straints gi(x)− si = 0, i = 1, . . . , m, are satisfied until the problem is solved, and therefore
does not require all the functions gi(x), i = 1, . . . , m, to be positive at an initial guess. In
fact, the algorithm we describe can choose an arbitrary initial guess x0. What matters is that
the slacks (s0)i and the dual variables (λ0)i are positive and remain so until the algorithm
finds a solution. The following ratio tests are used to keep sk and λk positive:

αP = min
1≤i≤m

{
1;−κ (sk)i

(	sk)i
: (	sk)i < 0

}
αD = min

1≤i≤m

{
1;−κ (λk)i

(	λk)i
: (	λk)i < 0

}
,

where 0 < κ < 1.



book
2008/10/23
page 646

�

�

�

�

�

�

�

�

646 Chapter 16. Penalty and Barrier Methods

The first-order optimality conditions for the problem with slacks have the following
form:

∇f (x∗)− ∇g(x∗)T λ∗ = 0
S∗�∗e = 0

g(x∗)− s∗ = 0
s∗ ≥ 0
λ∗ ≥ 0,

where S is the diagonal matrix with the elements si, i = 1, . . . , m (see the Exercises). Since
the algorithm keeps (sk)i and (λk)i positive, the merit function

ν(x, s, λ) = max {‖∇f (x)− ∇g(x)λ‖, ‖S�e‖, ‖g(x)− s‖}
measures the violation of the optimality conditions.

The rate of convergence of the primal-dual interior-point method depends on the rule
used to update the barrier parameter. If we use

μk = θμk−1

or
μk = θ ν(xk, sk, λk)

for some 0 < θ < 1, the interior-point algorithm converges only at a linear rate. However,
the following rule for changing the barrier parameter,

μk = min
{
θν(xk, sk, λk), ν(xk, sk, λk)

2
}
,

makes it possible to achieve a quadratic rate of convergence in a neighborhoodUε(x∗, s∗, λ∗)
of the solution.

To achieve this fast convergence we must also vary the parameter κ in the ratio tests:

κ = max {κ̄, 1 − ν(xk, sk, λk)} ,
where 0 < κ̄ < 1. The following theorem describes the local convergence properties of this
primal-dual interior-point method.

Theorem 16.17. Assume that the second-order sufficiency, regularity, and strict comple-
mentarity conditions are satisfied for the problem with inequality constraints, and that
the Hessians ∇2f (x) and ∇2gi(x), i = 1, . . . , m, are Lipschitz continuous with constant
L > 0:

‖∇2f (x)− ∇2f (y)‖ ≤ L‖x − y‖
‖∇2gi(x)− ∇2gi(y)‖ ≤ L‖x − y‖, i = 1, . . . , m,

in some neighborhood z∗ = (x∗, s∗, λ∗) of the solution, i.e., (x, s, λ) ∈ Uε0(x
∗, s∗, λ∗) for

some ε0 > 0. Also assume that the primal-dual interior-point method updates the barrier
and step length parameters using the formulas

μk = min
{
θν(xk, sk, λk), ν(xk, sk, λk)

2
}
, 0 < θ < 1
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and
κ = max {κ̄, 1 − ν(xk, sk, λk)} , 0 < κ̄ < 1.

Then there exists 0 < ε ≤ ε0 such that for any zk = (xk, sk, λk) ∈ Uε(z
∗), the new

approximation zk+1 = (xk+1, sk+1, λk+1) satisfies

‖zk+1 − z∗‖ ≤ c‖zk − z∗‖2,

where the constant 0 < c <∞ depends only on the data in the optimization model.

The convergence theorem can be used to estimate the number of steps required to solve
the problem to a given accuracy if a primal-dual iterate zk is in the neighborhood Uε0(z

∗)
of the solution. However, outside this neighborhood, further modifications are needed to
guarantee convergence of the algorithm. (See, for example, Section 14.6.)

Exercises
7.1. Consider the problem19

minimize f (x) = x2 + 1

subject to g(x) = x − 2 ≥ 0.

(i) Find the primal-dual solution (x∗, λ∗) to this problem.

(ii) Write the perturbed primal-dual system corresponding to the interior-point
method.

(iii) Find the solution (x(μ), λ(μ)).

(iv) Verify that limμ→0 x(μ) = x∗ and limμ→0 λ(μ) = λ∗.
(v) Derive the matrix

M(x, λ) =
[ ∇2

xxL(x, λ) −∇g(x)
�∇g(x)T G(x)

]
.

(vi) Prove that the inverse of the matrix M(x, λ) exists for any x and λ in the
interior of the primal and dual feasible sets.

(vii) Starting with x0 = 2, λ0 = 1
2 , and μ0 = 0.1, perform two iterations of the

primal-dual interior-point method with the ruleμk+1 = 0.1μk for updating the
barrier parameter. Show that (x1, λ1) is closer to (x∗, λ∗) than (x0, λ0) is, and
that (x2, λ2), in turn, is closer to (x∗, λ∗) than (x1, λ1) is. Use κ = 0.9 for the
ratio test.

7.2. Consider the problem
minimize f (x) = 1

3x
3

subject to x ≥ 1
x ≤ 3.

19The earlier exercises are based on the ideas of subsection 16.7.1. Starting with Exercise 7.8, the exercises are
based on the ideas of subsection 16.7.2.
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648 Chapter 16. Penalty and Barrier Methods

(i) What is the solution (x∗, λ∗) to this problem?

(ii) Starting with x0 = 1, λ0 = (1, 1)T , and μ0 = 0.1, perform two iterations of
the primal-dual interior-point method with the ruleμk+1 = 0.1μk for updating
the barrier parameter. Use κ = 0.9 for the ratio test. Show that (x1, λ1) is
closer to (x∗, λ∗) than (x0, λ0) is, and that (x2, λ2), in turn, is closer to (x∗, λ∗)
than (x1, λ1) is.

7.3. Consider the problem
minimize f (x) = x1 + x2

subject to x2
1 + x2

2 ≤ 2.

(i) What is the solution (x∗, λ∗) to this problem?

(ii) Starting with x0 = (1, 0)T , λ0 = 1, and μ0 = 0.1, perform two iterations of
the primal-dual interior-point method with the ruleμk+1 = 0.1μk for updating
the barrier parameter. Use κ = 0.9 for the ratio test. Show that (x1, λ1) is
closer to (x∗, λ∗) than (x0, λ0) is, and that (x2, λ2), in turn, is closer to (x∗, λ∗)
than (x1, λ1) is.

7.4. Prove that if the second-order sufficiency, regularity, and strict complementarity
conditions are satisfied at the solution, then the matrix M(x∗, λ∗) is nonsingular.

7.5. Consider a problem with inequality constraints. Assuming that the feasible set is
bounded, prove that for any μ > 0 there exists a solution to the barrier subproblem
(x(μ), λ(μ)).

7.6. Prove that for any primal and dual vectors x and λ in the interior of the primal and
dual feasible sets, if the regularized Hessian

Rt(x, y) = ∇2
xxL(x, y)+ tI, t ≥ 0,

where I is the identity matrix, is used instead of ∇2
xxL(x, λ), then the matrix

Mt(x, λ) =
[
Rt(x, λ) −∇g(x)
�∇g(x)T G(x)

]
is nonsingular for sufficiently large t ≥ 0.

7.7. In the primal-dual interior-point methods, the matrix of the system for the search
directions is not symmetric. Derive an equivalent symmetric system of equations
of the same size. Derive an equivalent symmetric positive semidefinite system of
equations of reduced size n, where n is a number of variables.

7.8. Derive the first-order optimality conditions for the problem formulation with slacks.

7.9. Derive the perturbed system for the problem formulation with slacks.

7.10. For the interior-point method that uses slacks, derive the linear system for finding
the Newton directions. What is the coefficient matrix M(x, s, λ)?

7.11. Consider the problem
minimize f (x) = 1

2x
2 + 1

subject to x ≥ 1.

(i) Reformulate the problem using a slack variable s.
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(ii) Verify that the solution is x∗ = 1, s∗ = 0, λ∗ = 1.

(iii) Write the primal-dual system corresponding to the interior-point method.

(iv) Find the solution (x(μ), s(μ), λ(μ)).

(v) Verify that limμ→0 x(μ) = x∗, limμ→0 s(μ) = s∗, and limμ→0 λ(μ) = λ∗.
(vi) Derive the matrix M(x, s, λ).

(vii) Prove that the solution of the primal-dual system for finding the search direc-
tions exists if and only if s + λ > 0.

7.12. Derive the second-order sufficiency conditions for the formulation with slack vari-
ables.

7.13. Prove that the second-order sufficiency conditions for the formulation with slack
variables are equivalent to the second-order sufficiency conditions for the original
formulation.

7.14. Prove that the regularity conditions for the formulation with slack variables are
equivalent to the regularity conditions for the original formulation.

7.15. Prove that if the second-order sufficiency, regularity, and strict complementarity
conditions are satisfied at the solution, then the matrix M(x∗, s∗, λ∗) is nonsingular.

7.16. Prove that for any primal-dual vector z = (x, s, λ) such that s > 0, λ > 0 and for
large enough t ≥ 0, the regularized matrix

Mt(z) =
⎡
⎣ Rt(x, λ) 0 −∇g(x)

0 � S

∇g(x)T −I 0

⎤
⎦

is nonsingular. (Rt(x, λ) is the regularized Hessian. See Exercise 7.6.)

16.8 Semidefinite Programming
In this section we consider another area of optimization: semidefinite programming (SDP),
or the optimization of a linear function on a cone of symmetric positive semidefinite matrices.

This problem is a special case of convex cone programming, for which important
complexity results are established. Convex cone programming is the area of optimization
that studies problems of finding a minimum of a convex, real-valued function defined on
a convex cone. Convex cone problems include linear programming problems as a special
case and can be solved in polynomial time using interior-point or ellipsoid methods. A
general cone can be defined on a linear space of vectors or matrices. The formal definitions
of a linear space and a general convex cone can be found in elementary books on linear
algebra. We do not define a linear space here since the main goal of this section is to present
a particular case of convex cone programming, that is, SDP, which is important for a number
of reasons.

First, many known classes of problems, such as linear programs and convex quadratic
problems with quadratic constraints, can be formulated as SDP problems, and hence con-
sequently as convex cone problems. Therefore all these classes of problems can be solved
in polynomial time.
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650 Chapter 16. Penalty and Barrier Methods

Second, SDP problems can address a wide range of applications including circuit
design, sensor network localization, structural design, antennae design, quantum chemistry,
control theory, and matrix completion problems, in addition to the applications of linear and
convex quadratic programming.

Third, solutions to many problems of integer optimization and nonconvex quadratic
programming with many local minima can be approximated by solving semidefinite prob-
lems. Therefore many applications of integer and nonconvex quadratic programming can
be addressed using SDP. These applications include, e.g., design of very large integrated
circuits, where one needs to minimize cross-layer connections in a circuit design subject to
layout constraints; as well as selecting traveling routes subject to logistics constraints.

Fourth, since for the matrix X to be semidefinite it is necessary and sufficient that
all the eigenvalues of X be nonnegative, SDP is closely related to eigenvalue optimization
problems. The latter can address some hard problems in graph partitioning and stability
theory.

Fifth, some algorithms for linear programming, e.g., interior-point methods, can be
naturally extended to SDP. SDP problems, in principle, can be formulated as nonlinear
optimization problems and solved directly using nonlinear solvers. However, the specific
structure of SDP problems allows putting them in a separate class closely related to linear
programming. Some results form the duality theory developed for linear programming can
be extended in a similar way to SDP.

Finally, SDP problems can be solved efficiently in practice. There are many efficient
software packages based on various methods. We mention some reports on SDP software
in the Notes.

We consider a general SDP problem in the primal standard form together with its
dual companion. The SDP problem is an optimization problem, where the “variable” is a
positive semidefinite matrix X of size n× n:

minimize C •X
subject to Ai •X = bi, i = 1, . . . , m

X " 0.

Here C and Ai are symmetric matrices of size n × n, bi are numbers, and X • Y denotes
the trace of the matrix Z = XY . The trace of an n × n matrix Z = (Zij ) is the sum of
its diagonal elements: tr(Z) = ∑n

k=1 zkk . The notation X " 0 means that X is positive
semidefinite (see Appendix A.7.1). This constraint is analogous to the nonnegativity of a
vector x ≥ 0 in linear programming.

The dual problem is derived using principles similar to those for linear programming:

maximize bT y

subject to
m∑
i=1
yiAi + S = C

S " 0.

This dual SDP problem sometimes is written in a slightly different equivalent form:

maximize bT y

subject to C −
m∑
i=1
yiAi " 0.
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The constraint

C −
m∑
i=1

yiAi " 0

is often called a linear matrix inequality.
For simplicity, we assume that the matrices Ai , i = 1, . . . , m, are linearly indepen-

dent. If they are not, we can always express dependent matrices using linearly independent
matrices, and therefore can eliminate dependent matrices altogether.

SDP has a wide range of applications. Most of them require an introduction of many
additional concepts, which are beyond the scope of this book. Here, we mention just a
few of them. The first example is minimizing the maximum eigenvalue of a matrix. This
problem is useful, e.g., for stabilizing a system of differential equations. Suppose that we
have a symmetric matrix A(z) that depends linearly on a vector z:

A(z) = A0 + z1A1 + · · · + zmAm.
We would like to minimize the maximum eigenvalue of A(z),

minimize
z

λmax(A(z)),

which is equivalent to
minimize t

subject to λmax(A(z)) ≤ t.

It can be shown that λmax(A(z)) ≤ t is equivalent to λmax(A(z)− tI ) ≤ 0, which, in turn, is
equivalent to λmin(tI −A(z)) ≥ 0. Therefore, we have the following semidefinite problem:

maximize −t
subject to tI − A0 − z1A1 − · · · − zmAm " 0.

This problem is in the form of the dual semidefinite problem described above.
A related problem that can be solved using SDP is the minimization of the k largest

eigenvalues of a matrix A(z). This problem can be formulated as an SDP problem:

minimize kt + I •X
subject to tI +X − A0 − z1A1 − · · · − zmAm " 0

X " 0.

This SDP problem can be reformulated in the form of the dual SDP (see the Exercises).
Our next example shows that a so-called semidefinite relaxation can be used to solve

integer programming problems.
One way to approach an integer programming problem is to first solve an easier

relaxation of the problem, and then to systematically add new constraints that refine the
solution so it satisfies the constraints of the original problem. The new constraints, called
cutting planes, cut off fractional solutions and “strengthen” the relaxation.

For example, consider the following integer programming problem:

maximize bT x

subject to Ax ≤ c

xi ∈ { 0, 1 } , i = 1, . . . , n.
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652 Chapter 16. Penalty and Barrier Methods

One way to define a relaxation to this problem is to replace the integrality constraints
xi ∈ { 0, 1 }, i = 1, . . . , n, with the relaxations 0 ≤ xi ≤ 1, i = 1, . . . , n. The resulting
linear programming problem can be solved efficiently, but the solution to the relaxed problem
can have many noninteger components that are strictly between 0 and 1. Therefore, we may
need many additional cutting planes to find an integer solution. In cases where the solution
to the relaxation is not close to the solution of the original problem, we say that the relaxation
is not strong enough. While using a linear programming relaxation can be successful for
some combinatorial problems, in general such relaxations are poor approximations to integer
problems.

Therefore we need other approaches that produce stronger relaxations. At the same
time we still need to be able to solve the relaxed problems efficiently. Applying SDP for
constructing new types of relaxations has turned out to be successful.

For example, the problem of finding a maximum cut on a graph is a difficult integer
problem. The solution to this problem is used for designing electric circuits. The relaxation
of the max-cut problem provides an upper bound for the solution to the max-cut problem. The
difference between the solution to the relaxation and that of the original max-cut problem
measures the strength of the relaxation. It is possible to construct an SDP relaxation that
has an optimal value at most 14% greater than that of the max-cut problem, while for
some graphs the linear programming relaxation can produce an upper bound almost 100%
greater, i.e., almost twice as large as the optimal value of the max-cut problem. Therefore,
using SDP relaxations, it is possible to construct new approximation algorithms with good
performance for difficult integer problems.

The details of these algorithms go beyond the scope of this book; however, we consider
one method of how semidefinite relaxation can be introduced based on our example.

Let us first define the following matrix:

Y =
(
x

1

)
(xT 1) =

(
xxT x

xT 1

)
.

This matrix is semidefinite (see the Exercises). We will add the additional constraints
Yii = Yi,n+1 = Yn+1,i , which are equivalent to x2

i = xi . It is easy to see that x2
i = xi if and

only if xi ∈ { 0, 1 }, i = 1, . . . , n.
The relaxation of the integral constraints xi ∈ {0, 1}, i = 1, . . . , n, is obtained by

replacing the matrix Y with

Z =
(
X x

xT 1

)
,

where the matrix X is symmetric and x = diag (X), i.e., xi = Xii . The latter condition is
equivalent to Zii = Zi,n+1 = Zn+1,i , i = 1, . . . , n.

The class of matrices Z is wider than that of Y . We need to impose an additional
constraint

Z =
(
X x

xT 1

)
" 0

since, unlike Y , the matrix Z is not guaranteed to be semidefinite.
The linear constraints Ax ≤ c can be reformulated as

diag (c − Ax) " 0.
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Therefore, we have the following problem:

maximize bT x

subject to

⎛
⎝ diag (c − Ax) 0 0

0 X x

0 xT 1

⎞
⎠ " 0, x = diag (X),

where the variables are the vector x and the matrix X. This problem can be reformulated
in the form of the dual semidefinite problem described above (see the Exercises).

Next, we show how SDP can be used in linear control systems. Suppose that a
trajectory x(t) satisfies the following system of differential equations:

ẋ(t) = Ax(t), x(0) = x0,

where A is an n× n matrix. We want to know whether x(t) remains bounded.
Results from control theory state that x(t) remains bounded if and only if there exists

some positive-definite matrix P $ 0 such that a Lyapunov function V (t) = x(t)T Px(t)

remains uniformly bounded; i.e., the inequality V (t) ≤ M holds for all t ≥ 0 and some
M > 0.

To guarantee the uniform boundedness of V (t) it is enough to prove that V (t) is
nonincreasing for t ≥ 0, which holds if and only if

d
dt
V (t) = ẋT P x + xT P ẋ = xT AT Px + xT PAx = xT (AT P + PA)x ≤ 0

for all t ≥ 0. Therefore if the matrix

−AT P − PA
is positive semidefinite for some P $ 0, then x(t) is bounded.

How can we find such a positive-definite matrix P and not just positive semidefinite?
For any positive-definite matrix P and any α > 0, the matrix αP is also positive definite.
Therefore, we can use the condition

P " I ⇐⇒ P − I " 0

to determine P ; here I is the identity matrix. If we seek a matrix with a minimum condition
number cond(P ), then we obtain the following SDP problem to find matrix P :

minimize c

subject to −AT P − PA " 0
I % P % cI,

which can be reformulated in the form of the dual SDP problem.
There are many other applications of SDP. For further information, see the Notes.
Semidefinite and linear programming problems have many common features. Here,

we briefly formulate some duality theorems for SDP similar to those proven for linear
programming.
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Theorem 16.18 (Weak Duality). If X is primal feasible and (y, S) is dual feasible, then
there is a nonnegative duality gap:

C •X − bT y = X • S ≥ 0.

Proof. See the Exercises.

Theorem 16.19 (Complementarity). If X and S are positive semidefinite matrices, then
X • S = 0 implies XS = 0.

Proof. See the Exercises.

To guarantee the existence of optimal solutions of primal and dual problems with zero
duality gap, it is enough to assume the existence of positive-definite matrices X̄ $ 0 and
S̄ $ 0, which satisfy the linear constraints.

Theorem 16.20 (Strong Duality). If X̄ $ 0 and S̄ $ 0 are primal and dual feasible positive-
definite matrices, then there exist optimal primal and dual solutions X∗ and (y∗, S∗), and
there is no duality gap:

C •X∗ − bT y∗ = X∗ • S∗ = 0.

Proof. See the Notes.

The conditions of the strong duality theorem for SDP are stricter than similar condi-
tions for linear programming. In linear programming we need only assume that feasible
primal and dual points exist to guarantee that primal and dual optimal solutions exist.

A detailed discussion of the theory and algorithms of SDP is beyond the scope of this
book. We mention only that interior-point methods can be generalized to solve SDP prob-
lems. It is possible to obtain polynomial complexity results using interior-point algorithms
and the theory of self-concordance. See the Notes for details.

Exercises
8.1. Reformulate the following problem

maximize bT x

subject to

⎛
⎝ diag (c − Ax) 0 0

0 X x

0 xT 1

⎞
⎠ " 0, x = diag (X),

where the vector x and the symmetric matrix X are variables, in the form of a dual
SDP problem:

maximize bT y

subject to C −
m∑
i=1
yiAi " 0.
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8.2. Prove that the 2 × 2 matrix

A =
(
a b

b c

)
is positive semidefinite if and only if the following three inequalities are satisfied:

a ≥ 0, c ≥ 0, b2 ≤ ac.

8.3. Using the fact that any symmetric matrixA can be represented asA = V�V T , where
� is a diagonal matrix with the eigenvalues on the diagonal and V is an orthogonal
matrix (see Appendix A.2), prove that a matrix A is positive semidefinite if and only
if there exists a matrix B such that A = BT B.

8.4. Prove that a convex quadratic optimization problem with quadratic constraints

minimize f (x) = xTQ0x + pT0 x + r0
subject to xTQ1x + pT1 x + r1 ≤ 0

...

xTQmx + pTmx + rm ≤ 0

with positive semidefinite matrices Qi , i = 0, 1, . . . m, can be formulated as an
SDP problem. (Hint: Use the fact that any positive semidefinite matrix A can be
represented as A = BT B.)

8.5. Consider the following problem:

minimize
x

z = cT x

subject to Ax = b

‖Dix + ei‖2 ≤ f Ti x + gi, i = 1, . . . , m.

Here x, c, and fi are vectors of length n; b is a vector of length r; ei are vectors of
length ni ; A is an r × n matrix; Di are ni × n matrices; and gi are numbers. This
problem is called a second-order cone programming problem, because the feasible
set is a rotated second-order Lorenz cone (see Figure 16.4).

(i) Prove that the second-order cone programming problem is convex.

(ii) Prove that the second-order cone programming problem can be reformulated
as an SDP problem.

8.6. Prove that A • B = B • A.

8.7. Using the fact that any symmetric matrixA can be represented asA = V�V T , where
� is a diagonal matrix with the eigenvalues on the diagonal and V is an orthogonal
matrix (see Appendix A.2), prove that any positive semidefinite matrix A can be
represented as A = RR with a positive semidefinite matrix R.

8.8. Show that the problem

minimize kt + I •X
subject to tI +X − A0 − z1A1 − · · · − zmAm " 0

X " 0
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1x

2x

3x

Figure 16.4. Second-order cone.

can be represented as the standard semidefinite problem in the dual form

maximize bT y

subject to C −
m∑
i=1
yiAi " 0.

8.9. Prove that minimization of the k largest eigenvalues of a matrix A0 + z1A1 + · · · +
zmAm can be formulated as

minimize kt + I •X
subject to tI +X − A0 − z1A1 − · · · − zmAm " 0

X " 0.

8.10. Prove that ifX is primal feasible and (y, S) is dual feasible, then there is a nonnegative
duality gap

C •X − bT y = X • S ≥ 0.

8.11. Prove that if X " 0, S " 0, and X • S = 0, then XS = 0. Is the converse true?

16.9 Notes
Penalty and Barrier Methods—The most important reference on penalty and barrier methods
is the book by Fiacco and McCormick (1968, reprinted 1990). It includes an extensive survey
on the methods. A more recent discussion can be found in the paper by Wright (1992). The
quadratic penalty function was first described by Courant (1943). Frisch (1955) is often
cited as the originator of the logarithmic barrier method; even though the formulas he uses
in solving linear programming problems are related to the gradient of the barrier function,
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Frisch does not mention the barrier function, nor does he use a barrier method. The history
of these methods is more complex, and it is discussed in the paper by Fiacco (1967).

Ill-Conditioning—A detailed discussion of the ill-conditioning of penalty and barrier
methods can be found in the paper by Murray (1971).

Stabilized Methods—The results in Section 16.4 are adapted from the paper by Nash
and Sofer (1993). A related result can be found in the paper by Murray (1971). A different
approach to controlling ill-conditioning is described in the paper by Wright (1994).

In the large-scale case it is often advantageous to use a truncated-Newton method.
In this case, a linear conjugate gradient (or some other iterative method) is used to solve
the systems of equations associated with (ZTHZ)−1. Consequently, these formulas require
two runs of the conjugate-gradient method. A related set of formulas can be derived that
requires only one use of the conjugate-gradient method and that is more suitable in this case;
see the paper by Nash and Sofer (1993).

Exact Penalty Methods—A nondifferentiable exact penalty function was first sug-
gested by Ablow and Brigham (1955). A more general discussion can be found in the paper
by Pietrzykowski (1969). Special algorithms designed to cope with the nondifferentiability
are described in the papers by Zangwill (1967), Conn (1973), Lemaréchal (1975), Coleman
(1979), and Mayne and Maratos (1979), for example.

Augmented Lagrangian Methods—Augmented Lagrangian methods were suggested
independently by Hestenes (1969) and Powell (1969). A general discussion can be found in
the book by Bertsekas (1982, reprinted 1996); many ideas in the section are adapted from
this book. Computational issues associated with these methods are discussed in the book
by Conn, Gould, and Toint (1992). Modified-barrier methods were developed by Polyak
(1992).

Interior-Point Methods—The book by Fiacco and McCormick (1968, reprinted 1990)
is a “classical” reference to interior-point methods for nonlinear programming. The book
by den Hertog (1994) provides a comprehensive introduction to modern interior-point
methods.

A discussion of computational issues for interior-point methods can be found in the
papers by Lustig, Marsten, and Shanno (1992) and (1994a). The proof of a quadratic rate
of convergence in the neighborhood of the solution can be found in the papers of Yamashita
and Yabe (1996, 2005). Practical interior-point algorithms for nonlinear programming are
described in the papers of Vanderbei and Shanno (1999); Byrd, Hribar, and Nocedal (1999);
and Wächter and Biegler (2006).

Semidefinite Programming (SDP)—Although SDP is a relatively new topic, the idea
of constraining a matrix to be positive semidefinite is an old one. In the 1880s Lyapunov
used a matrix inequality constraint to characterize stability of the solution of a system of dif-
ferential equations. In the 1960s Bellman and Fan introduced primal and dual SDP problems
and developed duality theorems. In the 1970s it was recognized that some difficult graph
partitioning problems can be addressed using SDP. Since then the number of applications
of SDP has grown substantially. Another wave of interest in SDP was stimulated by the
application of SDP to approximate the solutions to some difficult integer and nonconvex
quadratic programming problems. Also, SDP is a special case of convex cone program-
ming (see below). Surveys of SDP can be found in Todd (2001) and Wolkowicz et al.
(2000).
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SDP is a special case of convex cone programming. Nesterov and Nemirovski (1994)
applied self-concordance theory in this unifying framework to show that convex cone prob-
lems can be solved in polynomial time. For results based on the primal-dual interior-point
method for cone programming, see Nesterov and Todd (1998).

There are many software packages developed for SDP. Information about them can
be found in the sources mentioned in Appendix C.
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Appendix A

Topics from Linear Algebra

A.1 Introduction
We give a brief overview of various topics in numerical linear algebra. For further infor-
mation, consult the books by Golub and Van Loan (1996) and Horn and Johnson (1991,
reprinted 1994).

An n-dimensional vector x is an array of n scalars x1, x2, . . . , xn. The notation x
represents the array when its elements are arranged in a column, while the notation xT rep-
resents the array when its elements are arranged in a row. The collection of all real vectors
of dimension n is denoted by �n. Vectors are usually denoted by lowercase Roman letters.

A matrix is a rectangular array of scalars. If the matrix hasm rows and n columns it is
referred to as an m× n matrix; if m = n, it is called a square matrix. Matrices are usually
denoted by uppercase Roman letters, while their elements are denoted by lowercase letters.
For example, the element in row i and column j of the matrix A is denoted by ai,j . The
transpose of an m× n matrix A is the n×m matrix AT obtained by interchanging the rows
of A with its columns. A square matrix is said to be symmetric if A = AT.

A.2 Eigenvalues
Let A be an n× n matrix. If a scalar λ and a nonzero vector v satisfy

Av = λv,

then λ is an eigenvalue and v is an eigenvector of the matrix A. The eigenvalues are the
solutions to the equation

det(A− λI) = 0,

where “det” denotes the determinant. The left-hand side of this equation is a polynomial
of degree n called the characteristic equation, and the eigenvalues are the roots of this
polynomial.
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662 Appendix A. Topics from Linear Algebra

Example A.1 (Eigenvalues and Eigenvectors). Let

A =
(

2 1
1 2

)
.

The equation det(A−λI) = (2−λ)2−1 = 0 yields the eigenvalues λ1 = 1 and λ2 = 3. To
compute the eigenvectors we solve the system of equations (A−λI)v = 0 for the computed
values of λ. We obtain that v1 = ( 1 −1 )T is an eigenvector corresponding to λ1 = 1, and
v2 = ( 1 1 )T is an eigenvector corresponding to λ2 = 3. The eigenvectors v1 and v2 are
not unique. Any nonzero multiple of an eigenvector is also an eigenvector.

IfA is symmetric, then its n eigenvalues are all real, and it has n linearly independent
eigenvectors corresponding to these eigenvalues. Labeling these eigenvectors v1, . . . , vn, it
is possible to choose them to be orthogonal to each other (that is, vTi vj = 0) for i = j and to
normalize them so that vTi vi = 1. Denoting the corresponding eigenvalues by λ1, . . . , λn,
we can define the matrices

V = ( v1 · · · vn ) and � = diag { λ1, . . . , λn } .
The matrix V is orthogonal because of the way the eigenvectors were selected. It is easy to
verify that AV = V�, or that

A = V�V T.

This representation of A is called the spectral decomposition of A.

A.3 Vector and Matrix Norms
Norms give a rough measure of the magnitude of the entries in vectors and matrices. They
generalize the notion of absolute value for real numbers.

In general, a norm ‖·‖ is defined as a real-valued function with the properties that

• ‖x‖ ≥ 0 for all x
• ‖x‖ = 0 if and only if x = 0
• ‖αx‖ = |α| ‖x‖ for all real numbers α
• ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x and y.

This definition applies to both vector and matrix norms (in fact, to norms of all types). It is
useful but not essential to ask that matrix norms have the additional property

• ‖xy‖ ≤ ‖x‖ · ‖y‖ for all x and y whose product xy exists.

This last property is satisfied by most commonly used matrix norms.
Let us first consider vector norms for vectors of the form

x = ( x1 · · · xn )
T .

The most commonly used is the Euclidean, or 2-norm,

‖x‖2 ≡
√
x2

1 + · · · + x2
n.
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Also widely used are the 1-norm

‖x‖1 ≡
n∑
i=1

|xi |

and the infinity norm
‖x‖∞ ≡ max

1≤i≤n
|xi |.

These are special cases of the norms

‖x‖p ≡
(

n∑
i=1

|xi |p
) 1
p

defined for p ≥ 1.

Example A.2 (Vector Norms). Let x = (1, 2, 3)T then

‖x‖1 = 1 + 2 + 3 = 6

‖x‖2 = √
1 + 4 + 9 = √

14 ≈ 3.74

‖x‖∞ = max { 1, 2, 3 } = 3.

In many cases it does not make much difference which norm is used, and so it is some-
times convenient to use the notation ‖x‖ without specifying a specific norm. In software
for large problems, it may be preferable to use ‖x‖∞. If x = (1, . . . , 1)T, then

‖x‖1 = n, ‖x‖2 = √
n, and ‖x‖∞ = 1.

If n is large, then both ‖x‖1 and ‖x‖2 will be large even though the entries in x are all equal
to one. The infinity norm does not share this property.

The most widely used matrix norms are defined in terms of vector norms. If A is a
matrix and ‖x‖ is a vector norm, then the induced matrix norm ‖A‖ is defined by

‖A‖ = max‖x‖=1
‖Ax‖ .

Every induced matrix norm satisfies

‖Ax‖ ≤ ‖A‖ · ‖x‖
for all vectors x. It is also true that ‖AB‖ ≤ ‖A‖ · ‖B‖ for matrices A and B.

The matrix norms corresponding to the vector norms above are

‖A‖1 = max
1≤j≤n

n∑
i=1

|Ai,j |

‖A‖2 =
√
λmax(ATA)

‖A‖∞ = max
1≤i≤n

n∑
j=1

|Ai,j |,
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664 Appendix A. Topics from Linear Algebra

where λmax(ATA) is the largest eigenvalue of ATA. In the special case where A is a square
symmetric matrix, we have

‖A‖2 = |λmax(A)|,
where λmax(A) is the eigenvalue of largest magnitude of A. In general, ‖A‖2 is generally
much more expensive to compute than either ‖A‖1 or ‖A‖∞.

Example A.3 (Matrix Norms). Let

A =
( 1 3 −2 4
−5 7 9 −3

2 −1 6 8

)
.

Then

‖A‖1 = max { 1 + 5 + 2, 3 + 7 + 1, 2 + 9 + 6, 4 + 3 + 8 } = max { 8, 11, 17, 15 } = 17

and

‖A‖∞ = max { 1 + 3 + 2 + 4, 5 + 7 + 9 + 3, 2 + 1 + 6 + 8 } = max { 10, 24, 17 } = 24.

The eigenvalues of ATA are { 0, 23.4771, 108.0513, 167.4716 }, so

‖A‖2 = √
167.4716 = 12.9411.

The condition number of a nonsingular matrix is defined as

cond(A) = ‖A‖ · ‖A−1‖.
Any matrix norm can be used here. From the definition that cond(I ) = 1, and since∥∥AA−1

∥∥ ≤ ‖A‖ ∥∥A−1
∥∥, it follows that

cond(A) ≥ 1

for all matrices A. If A is symmetric, and the 2-norm is used, then

cond(A) = λmax

λmin
,

where λmax is the largest eigenvalue of A in absolute value, and λmin is the smallest. The
condition number of a matrix A is an indication of the sensitivity to perturbation of a linear
system involving A. See Appendix A.8.

A.4 Systems of Linear Equations
To illustrate the techniques for solving systems of linear equations, we use the example

x1 + 2x2 + 4x3 = 1
x1 + 3x2 + 9x3 = 6
x1 + 5x2 + 25x3 = 4.
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In matrix form the system looks like( 1 2 4
1 3 9
1 5 25

)(
x1

x2

x3

)
=
( 1

6
4

)
.

Denote this system as Ax = b.
This system is square, having the same number of equations as variables. The tech-

niques discussed here applies only to square systems.
If a system of equations has a unique solution, then the system as well as the matrixA

are said to be nonsingular. For the matrix, this is the same as saying that A has an inverse,
or that A−1 exists. If A−1 does not exist, then the matrix and the system are singular.

The matrix A will be singular if its rows (or equivalently, its columns) are linearly
dependent; that is, if one of the rows is a linear combination of the others. The matrix

A =
( 1 2 3

4 5 6
7 8 9

)

is singular because the last row is equal to twice the second row minus the first row. A
system of equations with a singular matrix A has either no solution or an infinite family of
solutions, depending on the components of the right-hand-side vector b. For this particular
matrix A, there is no solution if b = (10, 10, 20)T. To see this, subtract twice the second
equation minus the first equation from the last equation to obtain 0 = 10, an equation with
no solution. On the other hand, if b = (10, 10, 10)T, then the last equation is redundant and
can be deleted from the system. This leaves a system of two equations in three unknowns:

1x1 + 2x2 + 3x3 = 10
4x1 + 5x2 + 6x3 = 10.

We can solve for any two of the variables in terms of the third. For example, if we solve for
x1 and x2 in terms of x3, we obtain the infinite family of solutions

x1 = x3 − 10 and x2 = 10 − 2x3,

where x3 can be chosen arbitrarily.
If the matrix A is nonsingular and the inverse matrix A−1 is known, then the solution

of the linear system Ax = b can be written as x = A−1b. However, the techniques that we
will describe for solving linear equations will not form A−1. There are a number of reasons
for not forming A−1. The most notable is that it is both more expensive and unnecessary to
compute A−1 than to use the elimination techniques described below. On small problems
where most of the coefficients in the matrix are nonzero (a dense matrix), forming the inverse
is three times as expensive as applying elimination. On large problems, the savings can be
even more dramatic.

If the matrix A is large (if the number of variables is large), it is common in practical
applications for most of the entries in the matrix to be zero (the matrix will be sparse).
The entry in the matrix at row i and column j might represent the connection between two
components in a machine (components i and j ), and if the two components are not connected,
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then this coefficient will be zero. Since a large machine will have many components, most
of which are only connected to a few nearby components, most of the entries in the matrix
will be zero. For a sparse matrix it is not unusual for the number of nonzero entries in the
matrix to be approximately αn, where n is the number of rows in the matrix. This says that
there are about α nonzero entries in each row of the matrix. A dense matrix would have n2

nonzero entries. For a problem with n = 10,000 and α = 5 (5 nonzero entries per row),
the sparse matrix would have 50,000 nonzero entries, while the corresponding dense matrix
would have 100,000,000 entries, or 2,000 times as many.

When the elimination methods described below are applied to sparse matrices, the
costs of solving a linear system are usually proportional to the number of nonzero entries,
αn. (Here the term “costs” refers to the number of arithmetic operations required.) Spe-
cial techniques are used that avoid the calculations associated with zero entries, such as
adding zero to a number. If on the other hand the inverse A−1 is computed, the costs
will normally be proportional to n3, a dramatically higher cost. (See also the discussion
in Appendix A.6.) If n = 10,000 and α = 5, then the sparse matrix could be factored
using about 50,000 arithmetic operations, while the corresponding dense matrix would
require about 1,000,000,000,000 operations, or 20,000,000 times as many. If algorithms
did not take advantage of sparsity, it would not be practical to solve large optimization
problems.

A.5 Solving Systems of Linear Equations by Elimination
The most commonly used method for solving systems of linear equations is Gaussian elim-
ination. Carl Friedrich Gauss described this technique in the early 1800s. The name of the
method is derived from this reference, but the method is much older than this.

We describe the technique using an example. Consider the system

2.0x1 − 4.0x2 − 1.0x3 = 2.0
0.4x1 + 2.2x2 + 1.8x3 = 2.4
0.8x1 − 0.1x2 − 1.4x3 = 5.8.

This system will be transformed into an equivalent but simpler system. The new system
will be equivalent in the sense that the two systems of equations will have the same solution.
The new system will be simpler in the sense that its solution will be easy to compute.

To perform the transformation, we subtract multiples of one equation from another in
order to eliminate variables. We use the first equation to eliminate x1 from the other two
equations. If we subtract 0.2 times the first equation from the second equation, and subtract
0.4 times the first equation from the third equation, we obtain the reduced system

3.0x2 + 2.0x3 = 2.0

1.5x2 − 1.0x3 = 5.0.

We now apply elimination to this smaller system, subtracting 0.5 times the first equation
from the second to obtain

−2.0x3 = 4.0.
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Elimination transforms the original system into the simpler system

2.0x1 − 4.0x2 − 1.0x3 = 2.0
3.0x2 + 2.0x3 = 2.0

−2.0x3 = 4.0.

It is called upper triangular because of the pattern of nonzero coefficients.
The third equation gives x3 = −2.0. Then we can substitute this value into the second

equation to obtain x2 = 2.0. Finally, we substitute the values of x2 and x3 into the first
equation and solve for x1 = 4.0.

The technique for solving the triangular system is called backsubstitution (solving for
x3 in the third equation, and then substituting its value into the second equation, etc.).

The formulas for both elimination and backsubstitution are not difficult to derive.
Suppose that the ith equation of the final triangular system is written as

n∑
j=i

âij xj = b̂i ,

where âij and b̂i represent the coefficients and right-hand side of the transformed equation
respectively. Then the formulas for backsubstitution are

xi = 1

âii

(
b̂i −

n∑
j=i+1

âij xj

)
for i = n, n− 1, . . . , 1.

From this formula it is clear that the backsubstitution step can be carried out if âii = 0 for
all i, that is, if the triangular system is nonsingular. Hence the algorithm can be applied
to any nonsingular triangular system. The cost of backsubstitution can also be determined.
There are n steps (one for each xi), each of which requires 2(n− i)+1 arithmetic operations
((n − i) multiplications, (n − i − 1) additions, 1 subtraction, and 1 division), so the total
number of arithmetic operations is

n∑
i=1

[2(n− i)+ 1] = n+ 2
n∑
i=1

(n− i) = n+ 2
n−1∑
i=0

i

= n+ 2 × (n− 1)(n− 1 + 1)/2 = n2.

Since the number of coefficients in the simpler system is approximately n2/2, and since each
of these coefficients must be examined in order to determine the solution, any algorithm for
solving a triangular system must have costs proportional to n2—hence backsubstitution is
an efficient algorithm for determining the solution.

The formulas for elimination are slightly more complicated. Let us assume that the
triangular system is overwritten on the original system of equations. Denote the original
linear system by Ax = b with the ith equation having the form

n∑
j=1

aij xj = bi.
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The central step in elimination is the subtraction of a multiple of the ith equation from the
kth equation:

akj ← akj − aki

aii
aij for j = i, . . . , n and k = i + 1, . . . , n.

This is carried out for i = 1, . . . , n − 1. Counting operations shows that the cost of
elimination is approximately 2

3n
3 operations if n is large. Notice that elimination is about

n times more expensive than backsubstitution.
In this and many other algorithms the number of additions and subtractions is almost

the same as the number of multiplications and divisions. It is common to count only the
latter, and also to treat divisions in the same way as multiplications. We will follow this
practice. Hence we will say that backsubstitution requires n2/2 multiplications, and that
elimination requires n3/3 multiplications.

The formulas for elimination will break down if aii = 0. This can happen even if
the system of equations is nonsingular. However, with one simple modification, the above
technique can be transformed into a general algorithm. As illustrated above, the technique
will break down if it is applied to the linear system

0.0x1 − 4.0x2 − 1.0x3 = 2.0
0.4x1 + 2.2x2 + 1.8x3 = 2.4
0.8x1 − 0.1x2 − 1.4x3 = 5.8.

If we try to apply elimination, we are attempting to subtract 0.4/0.0 times the first equation
from the second. This ratio is infinite, and so the step cannot be carried out. It is easy to
see how to fix the method—just interchange the first equation with one of the others. It is
common to choose the equation with the largest coefficient (in absolute value) of x1. If we
do this at every stage of elimination, we obtain the upper triangular system

0.8x1 − 0.1x2 − 1.4x3 = 5.8
−4.0x2 − 1.0x3 = 2.0

1.9375x3 = 0.625.

Backsubstitution can now be used to obtain the solution (x1 ≈ 7.741936, x2 ≈ −0.580645,
x3 ≈ 0.322581).

Although it is only necessary to interchange equations when a division by zero will
result, it is advisable to perform interchanges at every iteration to select the equation with the
largest leading coefficient in absolute value. This is done to control the rounding errors that
arise when Gaussian elimination is implemented on a computer. (See Appendix A.8.) This
interchange technique is called partial pivoting. There is also a technique called complete
pivoting that not only switches rows but also reorders the variables. It is more expensive
than partial pivoting, and on most problems does not produce better answers, so it is rarely
used.

If partial pivoting is used, then Gaussian elimination will not break down (i.e., en-
counter a zero pivot element) if the system of equations has a unique solution. In this case
it is also possible to derive bounds on the error in the solution. (See the Notes.)
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A.6 Gaussian Elimination as a Matrix Factorization
There is an alternative point of view of Gaussian elimination that will be useful to us.
Consider a linear system written in matrix form Ax = b. Our new point of view will
attempt to isolate the influence of the matrix A (often representing a general model of our
situation) from the right-hand side b (often representing the data in our specific case). The
basis for this point of view will be a representation of the matrix A as a factorization of A
into “simpler” matrices.

For Gaussian elimination, A is represented in terms of its LU factors

A = PLU.

The matrixU is upper triangular and corresponds to the upper triangular system of equations
that is obtained as a result of Gaussian elimination. The matrix L is lower triangular and
is a record of the elimination calculations that were used to produce U . The matrix P (not
always present) is a permutation matrix that records the interchanges of equations used
during the elimination; the columns of P are a permutation of the columns of the identity
matrix. Although the interchanges are done one at a time during the elimination algorithm,
they can be collected together as if they were all done at once.

Before illustrating the entire factorization, we first would like to look at the matrices
P and L. The permutation matrix P serves to reorder the equations. For a four-variable
problem, for example, ⎛

⎜⎝
0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞
⎟⎠
⎛
⎜⎝

row1

row2

row3

row4

⎞
⎟⎠ =

⎛
⎜⎝

row3

row1

row4

row2

⎞
⎟⎠ .

A permutation matrix satisfies PTP = I , so that P−1 = PT.
The matrix L records the steps in the elimination process. It is built up from simpler

pieces, each of which corresponds to the addition of a multiple of one equation to another.
For example, ⎛

⎜⎝
1 0 0 0
0 1 0 0
0 5 1 0
0 −3 0 1

⎞
⎟⎠
⎛
⎜⎝

row1

row2

row3

row4

⎞
⎟⎠ =

⎛
⎜⎝

row1

row2

row3 + 5 row2

row4 − 3 row2

⎞
⎟⎠ .

Each entry below the main diagonal in L corresponds to an elimination step.
We will illustrate this factorization using the 3 × 3 example

A =
( 1.6 −4.2 −0.8

4.0 1.5 3.0
8.0 −1.0 1.0

)

=
( 0 1 0

0 0 1
1 0 0

)( 1 0 0
0.2 1 0
0.5 −0.5 1

)( 8 −1 1
0 −4 −1
0 0 2

)
= PLU.

The coefficients in U are the coefficients from the final upper triangular system obtained
after elimination. The coefficients in L are the multipliers from the elimination.
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Before discussing the usage of the factorization, let us look in more detail at how it is
obtained. If partial pivoting is used, then the first and third rows are interchanged via

P1A =
( 8.0 −1.0 1.0

4.0 1.5 3.0
1.6 −4.2 −0.8

)
, where P1 =

( 0 0 1
0 1 0
1 0 0

)
.

At the first stage of elimination we add −4.0/8.0 = −0.5 times the first equation to the
second equation, and add −1.6/8.0 = −0.2 times the first equation to the third equation.
These operations can be represented in matrix form as

L1(P1A) =
( 1 0 0
−0.5 1 0
−0.2 0 1

)( 8.0 −1.0 1.0
4.0 1.5 3.0
1.6 −4.2 −0.8

)

=
( 8.0 −1.0 1.0

0 2.0 2.5
0 −4.0 −1.0

)
.

At the second and final step, the second and third rows are interchanged:

P2(L1P1A) =
( 8.0 −1.0 1.0

0 −4.0 −1.0
0 2.0 2.5

)
, where P2 =

( 1 0 0
0 0 1
0 1 0

)
.

Then elimination is performed using

L2(P2L1P1A) =
( 1 0 0

0 1 0
0 0.5 1

)( 8.0 −1.0 1.0
0 −4.0 −1.0
0 2.0 2.5

)
=
( 8 −1 1

0 −4 −1
0 0 2

)
.

Combining all of these steps together gives

L2P2L1P1A = U

or, since the matrices {Pi } are symmetric,

A = (P T1L
−1
1 PT2L

−1
2 )U = (P1L

−1
1 P2L

−1
2 )U

with

L−1
1 =

( 1 0 0
0.5 1 0
0.2 0 1

)
and L−1

2 =
( 1 0 0

0 1 0
0 −0.5 1

)
.

If desired, these transformations can be combined into the more compressed form A =
PLU , but this is not necessary for purposes of calculation. For this example, it is straight-
forward to check that P1L

−1
1 P2L

−1
2 = PL, for the matrices P and L defined earlier.

We now return to our discussion of the factorization and its usage. It is possible
to solve the system of equations Ax = b directly from this factorization by computing
temporary vectors y and z as follows:

Ax = P L Ux︸︷︷︸
y︸ ︷︷ ︸
z

= b.
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First we solve for z in

Pz = b.

This just corresponds to interchanging the elements in b (the vector z is just a temporary
result). Then we solve for y in

Ly = z.

This system is lower triangular and so it can be solved via “forward” substitution, analogous
to backsubstitution (again, y is just a temporary result). Finally, we solve for x in

Ux = y

via backsubstitution to obtain the solution. Combining the steps gives

x = U−1y = U−1L−1z = U−1L−1P−1b

= (PLU)−1b = A−1b,

as expected. If the factorization has already been computed, the cost of these three steps is
O(n2).

It might seem that the storage costs for the factorization would be expensive, since
now three matrices must be stored, but this is not necessary. The diagonal entries inL are all
equal to 1, and so need not be stored. The remaining entries in L can be stored in the lower
triangle of U , which has only zero entries. The matrix P records only the interchanges
of rows, and so can be represented by an integer work array that stores the permutation
required. Hence the factorization can be overwritten on the original matrix, if an auxiliary
integer work array is provided.

There are a number of advantages to this approach. First, if several systems of
equations must be solved, all having the same matrix A (the same general model) but
different right-hand sides b(j) (different data), then the matrixA need only be factored once,
and then this three-step procedure can be applied to each of the right-hand sides in turn.
Since the factorization of A is much more expensive (O(n3)) than the three-step procedure
(O(n2)) this can result in significant savings. Second, the factorization can be used to
obtain error bounds on the solution (see the discussion of sensitivity below). Third, the
factorization can sometimes be used to check if the matrix A has desired properties such as
positive-definiteness (see the discussion of other matrix factorizations below).

Since it is not too difficult to compute the inverse of a triangular matrix, it would
be possible to use the factorization to compute A−1 via A−1 = U−1L−1P−1. This is not
normally recommended, for the reasons discussed in Appendix A.4. We repeat this here
because it is now possible to give an example that makes clear the disadvantage of forming
the inverse. Consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

4 1 0 0 0 0
1 4 1 0 0 0
0 1 4 1 0 0
0 0 1 4 1 0
0 0 0 1 4 1
0 0 0 0 1 4

⎞
⎟⎟⎟⎟⎟⎠ .
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If Gaussian elimination is applied to A, then we obtain the factors P = I ,

L =

⎛
⎜⎜⎜⎜⎜⎝

1.0000 0 0 0 0 0
0.2500 1.0000 0 0 0 0

0 0.2667 1.0000 0 0 0
0 0 0.2679 1.0000 0 0
0 0 0 0.2679 1.0000 0
0 0 0 0 0.2679 1.0000

⎞
⎟⎟⎟⎟⎟⎠

and

U =

⎛
⎜⎜⎜⎜⎜⎝

4.0000 1.0000 0 0 0 0
0 3.7500 1.0000 0 0 0
0 0 3.7333 1.0000 0 0
0 0 0 3.7321 1.0000 0
0 0 0 0 3.7321 1.0000
0 0 0 0 0 3.7321

⎞
⎟⎟⎟⎟⎟⎠ .

Notice that L and U have the same pattern of nonzero entries as A. However, the inverse
of A has the form

A−1 =

⎛
⎜⎜⎜⎜⎜⎝

0.2679 −0.0718 0.0192 −0.0052 0.0014 −0.0003
−0.0718 0.2872 −0.0769 0.0206 −0.0055 0.0014

0.0192 −0.0769 0.2886 −0.0773 0.0206 −0.0052
−0.0052 0.0206 −0.0773 0.2886 −0.0769 0.0192

0.0014 −0.0055 0.0206 −0.0769 0.2872 −0.0718
−0.0003 0.0014 −0.0052 0.0192 −0.0718 0.2679

⎞
⎟⎟⎟⎟⎟⎠ ,

and the pattern of nonzero entries is destroyed. Hence, in terms of both storage and com-
putation, A−1 is more expensive to work with than the factors L and U .

Care must be taken when factoring sparse matrices. For

A =

⎛
⎜⎜⎜⎝

4 1 1 1 1
1 4 0 0 0
1 0 4 0 0
1 0 0 4 0
1 0 0 0 4

⎞
⎟⎟⎟⎠

the LU factors are

L =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0.25 1 0 0 0
0.25 −0.0667 1 0 0
0.25 −0.0667 −0.0714 1 0
0.25 −0.0667 −0.0714 −0.0769 1

⎞
⎟⎟⎟⎠

and

U =

⎛
⎜⎜⎜⎝

4 1 1 1 1
0 3.7500 −0.2500 −0.2500 −0.2500
0 0 3.7333 −0.2667 −0.2667
0 0 0 3.7143 −0.2857
0 0 0 0 3.6923

⎞
⎟⎟⎟⎠ .
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(No row interchanges are required in this example.) Notice that the triangular factors L and
U are dense even though the original matrix is sparse. If A is reordered by interchanging
the first and last rows and columns, then we obtain the matrix

Â =

⎛
⎜⎜⎜⎝

4 0 0 0 1
0 4 0 0 1
0 0 4 0 1
0 0 0 4 1
1 1 1 1 4

⎞
⎟⎟⎟⎠

whose factors are

L̂ =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0.25 0.25 0.25 0.25 1

⎞
⎟⎟⎟⎠ , Û =

⎛
⎜⎜⎜⎝

4 0 0 0 1
0 4 0 0 1
0 0 4 0 1
0 0 0 4 1
0 0 0 0 3

⎞
⎟⎟⎟⎠ .

The permuted matrix has sparse factors.
Sparse matrix software attempts to reorder the rows and columns of a matrix so that

the factors are as sparse as possible. The techniques used to do this are heuristic, but they
are successful on a wide range of practical problems. These reordering schemes often
must make a trade-off between the sparsity of the factors and the accuracy of the computed
solution to the corresponding linear system, accepting smaller pivot entries than would be
tolerated for dense matrices. Some examples of reordering schemes for sparse matrices are
described in the papers by Markowitz (1957) and Suhl and Suhl (1990). We will describe
here briefly the technique due to Markowitz.

For the sparse matrix A above, the factors L and U had nonzero entries in positions
that were zero in the matrix A. The number of such entries is referred to as the amount
of fill-in that occurs during elimination. The Markowitz technique attempts to reduce the
amount of fill-in during the entire elimination process by reducing the amount of fill-in at
every step of the process. This is only a heuristic technique since decisions are only made
one step at a time without regard to what might happen several steps later.

At the first step of elimination every entry in the matrix is considered as a candidate
for the pivot entry. We calculate ri , the number of nonzero entries in row i, and cj , the
number of nonzero entries in column j . The pivot entry is chosen as the entry ai,j = 0 in
A for which

(ri − 1)(cj − 1)

is minimal. Then row i is interchanged with row 1, and column j is interchanged with
column 1, to bring ai,j into the (1, 1) position of A. Elimination is performed, and the
process repeated and applied to the remaining n− 1 columns and rows of the transformed
matrix A.

The quantity (ri−1)(cj −1) is an upper bound on the amount of fill-in that will occur
if ai,j is chosen as a pivot entry. If ai,j is ignored, there are ri−1 remaining nonzero entries
in row i, and cj − 1 nonzero entries in column j . Each of these cj − 1 entries would have
to be eliminated, and each of these eliminations could introduce up to ri − 1 new nonzero
entries into the corresponding row.
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There is one other detail that is commonly incorporated into the choice of the pivot
entry. There is a danger that the pivot entry ai,j will be close to zero, leading to numerical
difficulties. It is useful to insist that

|ai,j | ≥ ε,

where ε is some tolerance for zero that may depend on the other entries in A. If this test
is violated, then ai,j is rejected as a pivot entry, and the “next best” candidate pivot entry
is considered. (“Next best” is measured in terms of (ri − 1)(cj − 1).) If the tolerance ε is
small, then it is less likely that candidate pivot entries will be rejected.

If no pivot entries are rejected, then the choice of pivot entries depends only on the
sparsity pattern of the matrix (the pattern of zero and nonzero entries). This means that the
elimination scheme can be analyzed prior to performing elimination, and a storage scheme
set up to handle all the interchanges and fill-in that will occur. This is referred to as a
symbolic factorization. The sparsity pattern of a matrix can be represented in a condensed
form and can be manipulated more efficiently than the data for the matrix itself. With the
symbolic factorization available, the actual numerical factorization can be performed to
solve the linear system. Because of the possibility of small pivots, the pivot choices made
during the symbolic factorization might have to be modified, with the potential for increases
in the amount of computation and storage required.

Example A.4 (Sparse Matrix Factorization). Consider the sparse matrix

A =

⎛
⎜⎜⎜⎝

3 1 0 0 0
0 0 1 2 1
4 0 0 0 2
0 2 0 0 0
0 0 5 1 3

⎞
⎟⎟⎟⎠ .

The number of nonzero entries in each row is given by the array

r = ( 2 3 2 1 3 )

and the number of nonzero entries in each column is given by

c = ( 2 2 2 2 3 ) .

We can calculate (ri − 1)(cj − 1) for each nonzero entry in A:⎛
⎜⎜⎜⎝

1 1 − − −
− − 2 2 4
1 − − − 2
− 0 − − −
− − 2 2 4

⎞
⎟⎟⎟⎠ .

The smallest of these values is 0 and occurs at position (4, 2), so the pivot entry is a4,2. This
result predicts that no fill-in will occur if this pivot entry is used. If we interchange row 4
with row 1, and column 2 with column 1, then A is transformed into

A =

⎛
⎜⎜⎜⎝

2 0 0 0 0
0 0 1 2 1
0 4 0 0 2
1 3 0 0 0
0 0 5 1 3

⎞
⎟⎟⎟⎠ .
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After elimination we obtain

A =

⎛
⎜⎜⎜⎝

2 0 0 0 0
0 0 1 2 1
0 4 0 0 2
0 3 0 0 0
0 0 5 1 3

⎞
⎟⎟⎟⎠ .

Now the process repeats. The number of nonzero entries in the remaining rows and columns
are given by the arrays

r = (− 3 2 1 3 ) and c = (− 2 2 2 3 ) .

Again, we calculate (ri − 1)(cj − 1) for each nonzero entry in A:

⎛
⎜⎜⎜⎝
− − − − −
− − 2 2 4
− 1 − − 2
− 0 − − −
− − 2 2 4

⎞
⎟⎟⎟⎠ .

The smallest value is 0 and occurs at position (4, 2), so the pivot entry is a4,2. And so on.
Note that, if |a4,2| had been small, this entry would have been rejected as a pivot entry, and
a3,2 considered instead.

A.6.1 Sparse Matrix Storage

The costs of storing and factoring a sparse matrix are somewhat higher than was suggested
above, because there is overhead associated with sparse matrices. This overhead is a con-
sequence of the special storage techniques used to represent sparse matrices on a computer.

Before discussing sparse matrix storage, let us look at a dense matrix( 1 2 4
1 3 9
1 5 25

)
.

A dense matrix is stored on the computer one entry after another. In FORTRAN this is done
one column at a time:

1, 1, 1, 2, 3, 5, 4, 9, 25.

Nine storage locations are needed to store the nine entries in the matrix.
Now consider the sparse matrix

A =

⎛
⎜⎜⎜⎝

1 3 0 0 0
2 0 5 0 0
0 4 0 0 8
0 0 6 0 0
0 0 0 7 9

⎞
⎟⎟⎟⎠ .
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If this matrix were written out as a dense matrix, 25 storage locations would be needed. If
we just stored the nonzero entries in the array AVAL,

AVAL = { 1, 2, 3, 4, 5, 6, 7, 8, 9 } ,
only nine locations would be needed, but it would not be possible to reconstruct the matrix,
since the locations of these entries have not been specified. Clearly a more elaborate storage
scheme must be used.

We will describe one technique for storing a sparse matrix. As with the dense matrix,
we will store it one column at a time. For each column we will indicate the number of
nonzero entries in that column. For each entry we will record the row of the entry and its
value. This example would be represented as

Column 1 : 2, (1 : 1), (2 : 2)
Column 2 : 2, (1 : 3), (3 : 4)
Column 3 : 2, (2 : 5), (4 : 6)
Column 4 : 1, (5 : 7)
Column 5 : 2, (3 : 8), (5 : 9).

In the computer, this information could be represented using three arrays: the array AVAL
above, an array NCOL that records the number of nonzero entries in each column, and an
array IROW that records the rows where these entries occur:

AVAL = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }
NCOL = { 2, 2, 2, 1, 2 }
IROW = { 1, 2, 1, 3, 2, 4, 5, 3, 5 } .

Some effort is required to identify an entry in the matrix. To identify the entries in column
3 of the matrix, we first look at array NCOL to determine that these entries are in positions
5 and 6 or AVAL (NCOL indicates that there are two entries each in columns 1 and 2 of A,
and hence the entries for column 3 start in positions 5; since there are two such entries, they
are in positions 5 and 6). Then from positions 5 and 6 of IROW we know that these entries
are in rows 2 and 4. Hence A2,3 = 5 and A4,3 = 6.

The sparse representation of this matrix requires 23 storage locations, 14 integer
locations for the indexing information, and 9 real locations for the numbers themselves.
(Integer storage can require less space than real storage on some computers.) Since the
dense representation requires only 25 entries, this is not much of a savings. However, if this
matrix were 100 × 100 with at most 2 nonzero entries per column, then the savings would
be more dramatic. The dense representation of such a matrix would require 1002 = 10,000
locations, whereas the sparse representation would require at most 500, of which 300 would
be integer locations.

A.7 Other Matrix Factorizations
We have previously discussed the LU factorization of a square matrix and the spectral
decomposition of a symmetric matrix. There are three other matrix factorizations that are of
use to us as we examine various optimization problems. Two are minor modifications to the
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LU factorization discussed in the previous section and are used to factor positive definite
matrices. (A brief discussion of positive-definite matrices is given below.) The third is
an orthogonal factorization of a (possibly rectangular) matrix that is based on different
techniques.

A.7.1 Positive-Definite Matrices

A symmetric matrix A is positive definite if and only if

xTAx > 0

for all nonzero vectors x. This can be a difficult condition to verify, but there are equivalent
definitions that are sometimes more practical. For example, A will be positive definite if
all of its eigenvalues are positive. Also, if Gaussian elimination is applied to A without
pivoting to transform A into upper triangular form

A→ U =

⎛
⎜⎜⎝
u1,1 u1,2 · · · u1,n

u2,2 · · · u2,n

. . .
...

0 un,n

⎞
⎟⎟⎠

and if ui,i > 0 for all i, then A is positive definite.
Similarly a symmetric matrix A is

• positive semidefinite if xTAx ≥ 0 for all x (or equivalently, all the eigenvalues of A
are nonnegative),

• negative definite if xTAx < 0 for all x = 0 (all the eigenvalues of A are negative),
• negative semidefinite if xTAx ≤ 0 for all x (all the eigenvalues of A are nonpositive),
• indefinite if xTAx can take on both positive and negative values (A has both positive

and negative eigenvalues).

A positive-definite matrix is automatically positive semidefinite, and likewise a negative-
definite matrix is automatically negative semidefinite. Examples of these definitions are
given below.

Example A.5 (Positive-Definite Matrices). Consider the matrix

A =
( 4 1 0

1 5 2
0 2 6

)
.

Then

xTAx = 4x2
1 + 2x1x2 + 5x2

2 + 4x2x3 + 6x2
3

= 3x2
1 + 3x2

2 + 2x2
3 + (x1 + x2)

2 + (x2 + 2x3)
2 > 0

if x = 0. So A is positive definite. If Gaussian elimination is applied to A, then

A→ U =
( 4 1 0

0 4.75 2
0 0 5.1579

)
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and all the diagonal elements of U are positive. The eigenvalues of A,

{ 2.8549, 4.4760, 7.6691 } ,
are also all positive.

The matrix

B =
( 4 2 0

2 6 2
0 2 4

5

)

is positive semidefinite but not positive definite. To see this, form

xTBx = 4x2
1 + 4x1x2 + 6x2

2 + 4x2x3 + 4
5x

2
3

= (2x1 + x2)
2 + 5(x2 + 2

5x3)
2 ≥ 0.

If x = ( 1
5 ,− 2

5 , 1)T, then xTBx = 0. When Gaussian elimination is applied to B,

B → U =
( 4 2 0

0 5 2
0 0 0

)

and the diagonal entries in U are nonnegative, with u3,3 = 0. The eigenvalues of B are
{ 0, 3.1284, 7.6716 }.

The matrix

C =
( 3 5 0

5 4 7
0 7 2

)

is indefinite. For x = (1, 0, 0)T, we have xTCx = 3 > 0, but for x = (1,−1, 0)T, we have
xTCx = −3 < 0. Gaussian elimination applied to C produces

C → U =
( 3 5 0

0 −4.3333 7
0 0 13.3077

)

and the matrix U has both positive and negative diagonal entries. The eigenvalues of C are
also both positive and negative: {−5.4885, 2.6662, 11.8223 }.

The matrix −A is negative definite, and −B is negative semidefinite.

A.7.2 The LDLT and Cholesky Factorizations

These two matrix factorizations are primarily of interest when factoring a positive-definite
matrix A, although variants of the LDLT factorization can be applied to more general
symmetric matrices. They are used in nonlinear optimization problems to represent the
Hessian matrix of the objective function. If A is symmetric and positive definite, it can be
shown that Gaussian elimination can always be applied without partial pivoting, with no
danger of the method trying to divide by zero, and with no danger of near-zero pivots that
can lead to numerical difficulties.
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If no row interchanges are used, the LU factorization takes the form

A = LU.

The first two factorizations are obtained by manipulating this formula.
Let D be the diagonal matrix whose entries are the diagonal entries of U : di,i = ui,i .

Then define Û = D−1U so thatDÛ = U . HenceA = LDÛ . IfA is positive definite, then
it is also symmetric, so that

AT = Û TDTLT = Û TDLT = A = LDÛ.

It is then easy to verify that Û = LT, so that

A = LDLT.

This is the first of the new factorizations, a factorization of A into the product of a lower
triangular matrix, a diagonal matrix, and the transpose of the lower triangular matrix.

Slightly more can be deduced. If A is positive definite, then xTAx > 0 for all x = 0.
Using the factorization,

0 < xTAx = xTLDLTx = (LTx)TD(LTx) ≡ yTDy,

where y = LTx. Since L is nonsingular (it is triangular and all of its diagonal entries are
equal to 1), y = 0 if and only if x = 0. Hence

0 < yTDy =
∑
i

di,iy
2
i

for all y = 0. This can happen only if di,i > 0 for all i. Hence D is a diagonal matrix
with positive diagonal entries. It should be noted that the reverse is also true; i.e., if A
can be represented as A = LDLT, where D has positive diagonal entries, then A must
be symmetric and positive definite. If we discover that di,i ≤ 0 at some stage during the
computation of the factorization, then A is not positive definite. This property will be
useful when we apply Newton’s method to multidimensional optimization problems (see
Section 11.4).

Example A.6 (A = LDLT). To illustrate this factorization, consider the positive-definite
matrix

A =
( 4 −2 2
−2 2 −3

2 −3 14

)
.

Then A can be represented as LDLT, where

L =
( 1 0 0
−0.5 1 0

0.5 −2 1

)
and D =

( 4 0 0
0 1 0
0 0 9

)
.
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The second factorization is obtained easily from the first. Since D has positive diag-
onal entries we can write

D = D̂D̂,

where D̂ is a diagonal matrix with d̂i,i =
√
di,i . If we then define

L̂ = LD̂,

then L̂ is also a lower triangular matrix, and

A = L̂L̂T.

The ˆ is often omitted, and we simply write A = LLT. This is the second of the factoriza-
tions, also referred to as a Cholesky factorization.

Example A.7 (LDLT to Cholesky). We can modify the above factorization to obtain

D̂ =
( 2 0 0

0 1 0
0 0 3

)

and

L̂ = LD̂ =
( 2 0 0
−1 1 0

1 −2 3

)
,

so that

A = L̂L̂T =
( 2 0 0
−1 1 0

1 −2 3

)( 2 −1 1
0 1 −2
0 0 3

)
.

It is also possible to compute the coefficients of the Cholesky factorization directly,
by comparing coefficients of A and LLT.

Example A.8 (Cholesky Factorization). We compare the coefficients of A with those
of LLT:

a11 = l211 → l11 = √
a1,1 = √

4 = 2
a2,1 = l2,1l11 → l2,1 = a2,1/l1,1 = −2/2 = −1

a2,2 = l22,1 + l22,2 → l2,2 =
√
a2,2 − l22,1 = √

2 − 1 = 1

a3,1 = l3,1l11 → l3,1 = a3,1/l3,1 = 2/1 = 1
a3,2 = l3,1l1,1 + l3,2l2,2 → l3,2 = (a3,2 − l3,1l1,1)/ l2,2 = −2

a3,3 = l23,1 + l23,2 + l23,3 → l3,3 =
√
a3,3 − l23,1 − l23,2 = √

14 − 1 − 4 = 3.

Because of the symmetry in the matrix A, the computational costs of the LDLT and
Cholesky factorizations are about half those of the PLU factorization of a general matrix.
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=

A Q R

=

A Q R= =

Figure A.1. Forms of orthogonal factorizations.

A.7.3 An Orthogonal Matrix Factorization

The third matrix factorization is based on entirely different principles and applies in a quite
different setting. It uses orthogonal transformations and can be applied to any matrix.
The matrix A need not have an inverse; in fact, the matrix need not even be square. It is
typically used whenA is rectangular, in particular, whenA has more rows than columns. Its
most common usage is in the context of least-squares problems, but it is frequently used to
represent the linear constraints in an optimization problem. It is called a QR factorization
because it represents A as

A = QR,

where Q is an orthogonal matrix (i.e., QTQ = I ) and R is an upper triangular (or “right”
triangular) matrix. There is a slight ambiguity in the definition of the QR factorization. If
A is an m × n matrix and m > n, then there are two forms of this factorization. The first
chooses Q to be the same size as A, and then R is n × n; the second chooses R to be the
same size as A, and then Q is m×m. See Figure A.1. The first form is all that is normally
required to solve least-squares problems; the second form is often more useful when solving
constrained optimization problems.

There are three techniques that are commonly used to compute the QR factorization
of a matrix A. In the absence of rounding errors, they all can be considered equivalent,
but on a computer there are important differences in their properties. The oldest, and
the one most familiar to mathematicians, is called the Gram–Schmidt orthogonalization
process. Its emphasis is on the orthogonal matrix Q, and it is often described without
the triangular matrix R being mentioned. It should be noted that the traditional formulas
for Gram–Schmidt orthogonalization have undesirable computational properties, but that a
slight modification of the formulas is safe to use. The other two techniques are closer in spirit
to Gaussian elimination in that they introduce zeroes into the matrix A so as to transform it
into an upper triangular matrix. The version based on Givens rotations introduces one zero
at a time, while the version based on Householder reflections introduces a whole column of
zeroes at a time. We will only describe in detail the Householder approach.

Orthogonal matrix factorizations are most often used when solving least-squares prob-
lems. To see why, consider a least-squares problem written in the form

minimize f (x) = ‖Ax − b‖2
2 ,

where A is an m × n matrix with m ≥ n. Least-squares problems cannot be solved by
applying elimination to the matrix A. When linear systems of equations are solved, the
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techniques of elimination result in a sequence of equivalent linear systems. Elimination is
not applied to least-squares problems because the techniques of elimination do not leave the
least-squares problem unchanged. However, if P is an orthogonal matrix so that PTP = I ,
then

‖Py‖2
2 = (Py)T(Py) = yTP TPy = yTy = ‖y‖2

2 ;
that is, an orthogonal transformation does not affect the 2-norm of a vector. Hence

‖Ax − b‖2
2 = ‖P(Ax − b)‖2

2

and so orthogonal transformations can be used to generate a sequence of equivalent least-
squares problems.

Just as with linear equations, it is easy to solve least-squares problems when A is
upper triangular. This is illustrated in the following example.

Example A.9 (Triangular Least-Squares Problems). Consider the least-squares problem

minimize f (x) = ‖Ax − b‖2
2

with

A =
⎛
⎜⎝

5 2 1
0 3 4
0 0 2
0 0 0

⎞
⎟⎠ , b =

⎛
⎜⎝

13
17

4
12

⎞
⎟⎠ .

This is equivalent to solving

minimize
x

(5x1 + 2x2 + 1x3 − 13)2 + (3x2 + 4x3 − 17)2 + (2x3 − 4)2 + (12)2.

The solution can be obtained via backsubstitution. This is a sum of squared terms, and the
smallest value each term can achieve is zero. The term (12)2 remains unchanged no matter
what the values of the xi are. The other three terms can be made equal to zero by solving
the triangular system of equations

5x1 + 2x2 + 1x3 = 13
3x2 + 4x3 = 17

2x3 = 4.

The solution is x = (x1, x2, x3)
T = (1, 3, 2)T.

If the matrix A has been factored as A = QR, where QTQ = I and R is upper
triangular, then

‖Ax − b‖2
2 = ‖QRx − b‖2

2 = ∥∥Rx − (QTb)
∥∥2

2 .

Hence the QR factorization allows us to transform a general least-squares problem into a
triangular least-squares problem that can be solved via backsubstitution. Techniques for
forming theQR factorization are discussed in the book by Golub and Van Loan (1996). An
example of a QR factorization is given below.
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Figure A.2. Fitting three quadratic functions.

Example A.10 (The QR Factorization). Let

A =
⎛
⎜⎝

3 4 2
2 7 1
5 3 6
2 9 1

⎞
⎟⎠ .

Then A = QR, where

Q = P(1)P(2)P(3) =
⎛
⎜⎝
−0.4629 0.0252 0.8526 0.2412
−0.3086 −0.4934 0.0761 −0.8096
−0.7715 0.4738 −0.4232 −0.0345
−0.3086 −0.7290 −0.2970 0.5340

⎞
⎟⎠

and

R = A(3) = P(3)A(2) =
⎛
⎜⎝
−6.4807 −9.1039 −6.1721

0 −8.4923 1.6710
0 0 −1.0548
0 0 0

⎞
⎟⎠ .

It can be verified that QTQ = I (except for rounding errors).

A.8 Sensitivity (Conditioning)
If we had the ability to compute exactly, with no rounding errors, then systems of linear
equations could be divided cleanly into those that were singular and those that were non-
singular. When data and calculations are inaccurate, however, there is not such a clear
distinction between singular and nonsingular systems.

Before giving a precise discussion of conditioning let us look at a set of examples.
They are variants of the data-fitting problem in Chapter 1. Consider fitting a quadratic
function to the three data sets illustrated in Figure A.2. The only difference between the
three data sets is the position of the middle data point.
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The coefficient matrix for this problem is

A =
( 1 0.01 0.0001

1 0.02 0.0004
1 0.03 0.0009

)

and the three sets of right-hand sides are

b(1) =
( 1

0.99
1

)
, b(2) =

( 1
1
1

)
, b(3) =

( 1
1.01

1

)
.

The three sets of coefficients are

x(1) =
( 1.03

−4.00
100.00

)
, x(2) =

( 1
0
0

)
, x(3) =

( 0.97
4.00

−100.00

)
;

the fits are illustrated in Figure A.2.
These examples represent ill-conditioned problems; that is, a small change in the data

leads to a large change in the solution. In this case, the change in the data is 0.01 but the
change in the third component of the solution is 100. The change in the data has been
magnified by 10,000. Hence the solution is “sensitive” to changes in the data.

In this case the change in the data was deliberate, and it represented the solution of a
different problem. The reason that ill-conditioning is worrisome is that often the data in a
problem will be inaccurate. The numbers may be subject to measurement error, or they may
be the results of earlier calculations and be subject to computer errors. This means that the
“true” data will be unknown and that the numbers used in the calculations will be inaccurate.
If the problem is ill conditioned, then the errors in the solution (to the “true” problem) can
be large, even if no errors are made when solving the linear system of equations.

Going back to the example, let us now suppose that b(2) represents the exact data, and
that b(1) and b(3) are in error. The exact data are on the line y = 1. The other two fits are
dramatically different, both in their coefficients and in their graphs. However, all three fits
go close to the data point (1, 1), with “errors” of at most 0.01. The size of these “residuals”
is proportional to the errors in the data, even though this problem is ill conditioned. This is
typical for data-fitting problems.

We can quantify the sensitivity of a linear system with respect to changes in the data
using the condition number of its matrix:

cond(A) = ‖A‖ · ‖A−1‖.
Consider, for example, a diagonal matrix A where Ai,i = 1 except for An,n = 10−n. If
we use the 2-norm, then cond(A) = 10n, and the condition number tends to infinity as A
tends towards a singular matrix. This is true in general—the larger the condition number,
the closer A is to being singular. Here “closeness to singularity” is measured relative to the
norm of A. For the example at the beginning of this section, cond(A) = 2.1234 × 104.

We would now like to show how the condition number is related to the errors in the
solution of linear systems. Consider the case where all the errors are in the matrix A:

Ax = b and (A+ E)x̂ = b,
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with ‖E‖ = ε ‖A‖. (Here the first system represents the “true” data, and the second is
corrupted by errors E.) The lemma below shows that we can bound the change in the
solution by ∥∥x̂ − x∥∥∥∥x̂∥∥ ≤ cond(A)ε.

Thus perturbations in the data matrix are magnified by cond(A) when the solution of the
linear system is computed. A similar result holds for perturbations in the right-hand side.

Lemma A.11. Let A be a square nonsingular matrix. Let x and x̂ be the solutions to the
linear systems

Ax = b and (A+ E)x̂ = b,

with ‖E‖ = ε ‖A‖. Then ∥∥x̂ − x∥∥∥∥x̂∥∥ ≤ cond(A)ε.

Proof. From
Ex̂ = b − Ax̂ = Ax − Ax̂

we obtain
x − x̂ = A−1Ex̂.

Taking norms gives∥∥x − x̂∥∥ = ∥∥A−1Ex̂
∥∥ ≤ ∥∥A−1

∥∥ ‖E‖ ∥∥x̂∥∥ = ∥∥A−1
∥∥ (ε ‖A‖) ∥∥x̂∥∥ .

Since cond(A) = ‖A‖ · ∥∥A−1
∥∥, the result follows.

The above result has even greater significance. If Gaussian elimination with partial
pivoting is used to solve the linear system Ax = b, then it can be shown that the computed
solution x̂ is the exact solution to a perturbed linear system of the form (A + E)x = b,
where ‖E‖ = Cεmach ‖A‖. (The constant C is usually near 1; the constant depends on the
number of equations in the system, and the size of the intermediate calculations relative to
the size of the original matrix A.)

This is a most impressive result. Note that errors of size εmach are made when we store
the matrix A in the computer, so that just entering the problem can cause the coefficient
matrix A to be perturbed. Hence even if we could compute the exact solution to the stored
system we could not guarantee a better error bound than that given by Gaussian elimination.
Other methods, in particular computing the solution via the computation of A−1, do not
satisfy a result of this type.

This result also shows that Gaussian elimination will always produce a solution with
small residuals. Since (A + E)x̂ = b with ‖E‖ = Cεmach ‖A‖ (and C is the constant
mentioned above) we can easily deduce that∥∥Ax̂ − b∥∥

‖A‖ · ∥∥x̂∥∥ ≤ Cεmach.
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Hence the scaled residuals will always be proportional to εmach, even if the matrix is nearly
singular.

Let us examine these bounds for the data-fitting example above. We will con-
sider the true solution to be x(2) = (1, 0, 0)T, and the computed solution to be x(1) =
(1.03,−4.00, 100.00)T. The errors are proportional to ε = 0.01, which is much larger than
εmach ≈ 10−7. For the errors in the parameters x we obtain

100.0800 =
∥∥x̂ − x∥∥
‖x‖ ≤ cond(A)ε = 212.3442,

and for the residuals we obtain

5.7674 × 10−5 =
∥∥Ax̂ − b∥∥
‖A‖ · ∥∥x̂∥∥ ≤ ε = 0.01.

The bounds on the errors are worst-case bounds, and hence give only upper bounds on the
errors.

There is a subtle point underlying the above comments. All of these error bounds are
general error bounds made without regard to any special properties of the matrix A or the
right-hand side b. They are worst-case bounds made before the system is solved. As a result,
they can be pessimistic for particular linear systems. They are useful in understanding the
general properties of linear systems and algorithms to solve them, but they are not always
accurate error bounds. If accurate error bounds are desired, then they can be computed
based on the particular linear system that is being solved.

Although we have already indicated that the condition number is a useful theoretical
tool for analyzing linear systems, it is not so clear that it is a practical tool. Its value
depends on knowing A−1, and computing A−1 is three times as expensive as solving the
linear system—a lot to pay for an error bound. However, it is possible to estimate the
condition number at low cost as a by-product of solving a system of linear equations, and
software packages such as Lapack provide this capability.

In summary, if a system of linear equations is solved using Gaussian elimination
with partial pivoting, then a computed solution with near-optimal accuracy can be obtained.
This does not mean that the computed solution will be near the true solution, but rather that
the errors in the computed solution will be proportional to the condition number of the
coefficient matrix. (This result also applies to cases where the data in the coefficient matrix
or the right-hand side are either inaccurate or subject to perturbations.) If the matrix is
ill conditioned (i.e., the condition number is large), then the errors will be large, and if the
matrix is well conditioned, the errors will be small. Regardless of the conditioning of the
matrix, however, the residuals will be small. Software for Gaussian elimination can provide
an estimate of the condition number so that the accuracy of the solution can be estimated.

A.9 The Sherman–Morrison Formula
If the inverse of a matrix is known, but then the matrix is perturbed, it is useful to be able
to compute the inverse of the perturbed matrix efficiently. The Sherman–Morrison formula
can be used to do this, for perturbations of a particular form.
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Suppose that the original matrix is A and the perturbed matrix is

Â = A− uvT,
where u and v are vectors. Then

Â
−1 = A−1 + α(A−1u)(vTA−1),

where

α = 1

1 − vTA−1u
.

This is the Sherman–Morrison formula.
It is easy to verify that this formula is correct by checking that

(A−1 + α(A−1u)(vTA−1))× (A− uvT) = I.

It is also easy to verify that A−1 exists if and only if vTA−1u = 1, that is, if and only if the
scalar α is finite.

Example A.12 (Sherman–Morrison Formula). If

A =
( 1 0 0

0 2 0
0 0 3

)
, u =

( 1
1
1

)
, and v =

(−1
4

−1

)
,

then it is easy to calculate A−1 but not as easy to compute the inverse of

Â = A− uvT =
( 2 −4 1

1 −2 1
1 −4 4

)
.

In this case

A−1 =
⎛
⎝ 1 0 0

0 1
2 0

0 0 1
3

⎞
⎠ , A−1u =

⎛
⎝ 1

1
2
1
3

⎞
⎠ , vTA−1 = (−1 2 − 1

3 ) ,

and α = 1/(1 − vTA−1u) = 3, so the Sherman–Morrison formula gives

Â
−1 = A−1 + α(A−1u)(vTA−1) =

⎛
⎝−2 6 −1

− 3
2

7
2 − 1

2

−1 2 0

⎞
⎠ .

A perturbation of the form
Â = A− uvT

is called a “rank-one” perturbation because uvT is a matrix whose rank is equal to one. The
change to the basis matrix at an iteration of the simplex method corresponds to a change of
this type. For example, suppose that the current basis matrix is

A =
⎛
⎜⎝
−1 −4 −5 4

1 8 5 −1
−1 7 4 4

9 8 7 1

⎞
⎟⎠ .
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If at the current iteration the third column is replaced by

( 6 −3 4 −9 )T ,

then

Â =
⎛
⎜⎝
−1 −4 6 4

1 8 −3 −1
−1 7 4 4

9 8 −9 1

⎞
⎟⎠ = A− uvT

with
u = (−11 8 0 16 )T and v = ( 0 0 1 0 ) .

The Sherman–Morrison formula is of great value when implementing algorithms, such as
the simplex method, that are based on updating of matrices.

There is a generalization of the formula to the case where

Â = A− UV T,
where U and V are matrices with k > 1 columns. (This will be a rank-k perturbation to the
matrix if the columns of U and V are linearly independent.) In this case,

Â
−1 = A−1 + (A−1U)α(V TA−1),

where α = (I−V TA−1U)−1. Here, α is a k×kmatrix. This generalization is often referred
to as the Sherman–Morrison–Woodbury formula.

A.10 Notes
Gaussian Elimination—We mentioned that it is possible to derive bounds on the error in
the computed solution. In fact it can be shown that Gaussian elimination is as good an
algorithm as you could hope for solving this problem. If Gaussian elimination with partial
pivoting is applied to the system Ax = b, then the computed solution x̂ can be shown to be
the exact solution to a “nearby” linear system

(A+ E)x̂ = b,

where E is some (unknown) perturbation to the matrix A. The size of the perturbation ‖E‖
is not predictable in advance, but for most problems ‖E‖ is comparable to the rounding
errors made when storing the matrix A in the computer. Hence the simple act of storing
the problem on the computer can introduce errors comparable to the errors incurred by
using Gaussian elimination. It would be hard to think of a more favorable result. Return to
Appendix A.8 for a detailed discussion of these ideas.

The most obvious reasons for using elimination techniques instead of computing the
matrix inverse are based on the costs of the computations. However, there are other reasons.
If elimination is used, then the computed solution is the exact solution to a nearby problem,
but this is not guaranteed if the solution is obtained using a computed inverse. Elimination
is also more flexible: As a side effect of elimination it is possible to compute Av, ATv,
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A−1v, and A−T v for any vector v. If the inverse is computed, then both A and A−1 must
be stored to do this, doubling the storage costs for the algorithm.

The method given here for solving linear equations is the most traditional as well as
the most widely used, but it is not the most efficient. There are methods for solving linear
equations that have lower asymptotic costs than elimination (costs of O(nω) with ω < 3),
although they are only more efficient in practice for larger values of n (n ≥ 100 or more,
depending on the method). They are discussed in the paper by Higham (1990).

Sparse Matrices—Several other schemes for storing sparse matrices have been pro-
posed. The scheme given above has deficiencies; for example, to modify an entry in column
72 of the matrix, the algorithm would have to step through the storage locations of the first
71 columns of the matrix. More elaborate schemes allow more direct access to entries in
the matrix. For example, it might be useful to have an auxiliary integer array JCOL that
indicated the location of the first entry in each column within the arrays AVAL and IROW.
For the above example JCOL = { 1, 3, 5, 7, 8 }. The storage scheme is often related to the
operations that must be performed on the matrix. For more information on sparse matrices,
see the books by Davis (2006); George and Liu (1981); and Saad (2003).

Sherman–Morrison Formula—A detailed discussion of the Sherman–Morrison for-
mula and related formulas can be found in the survey paper by Hager (1989). Although it is
routine to refer to the Sherman–Morrison formula and the Sherman–Morrison–Woodbury
formula, these formulas were first discovered by others. The survey paper gives detailed
citations of this earlier work.
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Appendix B

Other Fundamentals

B.1 Introduction
This appendix gives a brief introduction to some background ideas that are used in various
places throughout the book. In many cases, this material may be familiar, but a limited dis-
cussion is provided here in an attempt to make the book self-contained. Further information
on these topics can be found in a wide variety of sources. Some sample references are the
following:

• ComputerArithmetic—T. Sauer, NumericalAnalysis,Addison-Wesley (Boston), 2006.
• Big-O Notation—J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear

Equations in Several Variables, Academic Press (New York), 1970. Reprinted by
SIAM (Philadelphia), 2000.

• The Gradient, Hessian, and Jacobian—R. Courant and D. Hilbert, Methods of Math-
ematical Physics, Volume I, Interscience Press (New York), 1953. Reprinted by
Wiley-Interscience (New York), 1989.

• Continuous Functions and the Implicit Function Theorem—R. Creighton Buck, Ad-
vanced Calculus (Third Edition), McGraw–Hill (New York), 1978. Reprinted by
Waveland Press (Long Grove, IL), 2003.

B.2 Computer Arithmetic
The arithmetic used by computers is not the same as the “pencil and paper” arithmetic that
most of us learned as children. The differences are not great but their effects can sometimes
be dramatic, particularly if the problem being solved is sensitive to small changes in its data.

On most computers, arithmetic is performed according to the IEEE standard, and
our discussion here will reflect that standard. It will not be necessary for us to have a
detailed understanding of computer arithmetic, and the description here will be brief. A
more complete discussion can be found in the reference given above.

There are two types of numbers used in computer calculations, integer and real.
(“Real” arithmetic is often called floating-point arithmetic for historical reasons.) Integer

691
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numbers behave much as we are used to, that is, if two integers are added together, then the
result is another integer, and no error is made in the calculation. The only unusual property
of computer integers is that there are only finitely many of them. On many computers an
integer is stored using 32 bits (32 binary digits). This means that at most

232 = 4, 294, 967, 296

distinct integers can be represented. As a result there is a biggest integer,

2, 147, 483, 647

and a smallest integer, −2, 147, 483, 648. (The particular values given here are based on
the IEEE standard for computer arithmetic.) If an attempt is made to compute an integer
outside of this range, an overflow occurs.

The situation for “real” arithmetic is more complicated. Real numbers are represented
in a form of scientific notation, for example,

0.5167 × 10−6.

Each number consists of a mantissa (0.5167) and an exponent (−6). We will represent
numbers here using decimal digits, but the computer will normally use binary digits. Just as
with integers, the computer can represent only finitely many real numbers. It is common to
use 64 bits to store each real number (with some of the bits being used to store the mantissa,
and the rest used to store the exponent); then the largest real number is approximately 10308.
Numbers larger than this (or smaller than about −10308) result in an overflow. Overflows
are considered to be serious errors and will often cause a program to stop executing.

There is also a smallest positive real number, the number closest to zero that can be
represented on the computer. Numbers smaller than this are often reset to zero, and an
underflow occurs. This is often considered harmless, and no warning message is generated
when it occurs on most computer systems. The smallest positive number is approximately
10−324.

When discussing the results of computer calculations we will often refer to the machine
precision or the machine epsilon, denoted by εmach. It represents the accuracy of the computer
calculations. It is defined to be the smallest positive number ε such that

1 + ε > 1

when calculated on the computer. For example, if four decimal digits are available and
rounding is used, then

1.000 + 0.0004 = 1.0004 → 1.000,

whereas
1.000 + 0.0005 = 1.0005 → 1.001 > 1.000.

In this simple case εmach = 0.0005. When real numbers are stored using 64 bits, εmach ≈
10−16.

The machine epsilon represents how accurately calculations on the computer can be
carried out. If a number is stored in the computer, then a relative error of up to εmach can
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occur. For example, if we try to store 12.256 using only four decimal digits, then it would
be represented as 12.26 with a relative error of

|12.256 − 12.26|
|12.256| ≈ 0.0003,

which is less than the machine epsilon of 0.0005. Similarly, if two numbers are added, the
result can have a relative error of as much as εmach. These errors are called rounding errors.
In general it is unreasonable to expect computed results to have a relative accuracy better
than εmach.

In the discussion here, real numbers are stored using 64 bits. We will refer to these
as double precision real numbers. This is the precision typically used for computations
involving real numbers. Most computers are also capable of working with real numbers
based on 32 bits, often referred to as single precision. If single precision is used, then
the thresholds for overflow and underflow change, as does the value of εmach. On some
computers it is also possible to compute in extended precisions that use additional bits to
store real numbers.

B.3 Big-O Notation, O(·)
“Big-O” notation is used to provide an order-of-magnitude estimate of a function. We will
say that g(n) = O(f (n)) if for sufficiently large n,

g(n) ≤ Cf (n),

where C is some positive constant. For example,

3n3 + 2n2 + 5 = O(n3)

because
3n3 + 2n2 + 5 ≤ 4n3

for n ≥ 3.
This notation is often used when measuring the cost of an algorithm (see Chapter 9).

If the cost of an algorithm is O(n3), then, for large n, doubling n increases the cost of
the algorithm by about 8. In many cases, this information is sufficient to determine if an
algorithm is practical or competitive for a given problem.

This notation is also used when analyzing the accuracy of approximation formulas,
such as the Taylor series. In this case it is more common to write that g(h) = O(f (h)) if

g(h) ≤ Cf (h)

as h→ 0. (This is equivalent to the other definition for n ≡ 1/h.) For example, if |h| < 1,
then

1

1 − h = 1 + h+ h2 + h3 + · · · .
From this we can conclude that

1

1 − h = 1 + h+O(h2)
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since for |h| < 1
2 ,

h2 + h3 + h4 + · · · = h2(1 + h+ h2 + · · ·)

= h2

(
1

1 − h
)
< h2

(
1

1 − 1
2

)
= 2h2.

The big-O notation gives an order-of-magnitude indication of the accuracy of the approxi-
mation.

B.4 The Gradient, Hessian, and Jacobian
We will first discuss the gradient and Hessian. Let f be a real-valued function of n variables

f (x) = f (x1, x2, . . . , xn).

The vector of first derivatives of f is called the gradient of the function and is notated as

∇f (x) ≡
(
∂f (x)

∂x1
,
∂f (x)

∂x2
, . . . ,

∂f (x)

∂xn

)T
.

The matrix of second derivatives of f is called the Hessian matrix or simply the Hessian
and is notated as ∇2f . It is the matrix with entries

[∇2f (x)]ij ≡ ∂2f (x)

∂xi∂xj
.

For functions with continuous second derivatives, it will always be a symmetric matrix:

∂2f (x)

∂xi∂xj
= ∂2f (x)

∂xj ∂xi
.

These concepts are illustrated in the example below.

Example B.1 (The Gradient and Hessian). Consider the function

f (x1, x2) = 2x4
1 + 3x2

1x2 + 2x1x
3
2 + 4x2

2 .

The gradient of this function is

∇f (x) =
(

8x3
1 + 6x1x2 + 2x3

2
3x2

1 + 6x1x
2
2 + 8x2

)
and the Hessian matrix is

∇2f (x) =
(

24x2
1 + 6x2 6x1 + 6x2

2
6x1 + 6x2

2 12x1x2 + 8

)
.

At the point x0 = (−2, 3) these become

∇f (x0) =
(−46
−72

)
, ∇2f (x0) =

(
114 42
42 −64

)
.
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To define the Jacobian we will use a vector-valued function:

f (x) = f (x1, x2, . . . , xn) =

⎛
⎜⎜⎝
f1(x1, x2, . . . , xn)

f2(x1, x2, . . . , xn)
...

fm(x1, x2, . . . , xn)

⎞
⎟⎟⎠ ,

where each of the functions fi is a real-valued function. Then ∇f is the matrix with entries

(∇f (x))i,j ≡ ∂fj (x)

∂xi
.

The Jacobian of f at the point x is defined as ∇f (x)T. Note that the j th column of ∇f is
the gradient of fj .

Example B.2 (The Jacobian). Consider the vector-valued function

f (x) = f (x1, x2) =
⎛
⎝ sin x1 + cos x2

e3x1+x2
2

4x3
1 + 7x1x

2
2

⎞
⎠ .

Then

∇f (x) =
(

cos x1 3e3x1+x2
2 12x2

1 + 7x2
2

− sin x2 2x2e
3x1+x2

2 14x1x2

)
.

The Jacobian is equal to

∇f (x)T =
⎛
⎝ cos x1 − sin x2

3e3x1+x2
2 2x2e

3x1+x2
2

12x2
1 + 7x2

2 14x1x2

⎞
⎠ .

At the point x = (1, 2)T these matrices are equal to

(
cos 1 3e7 40

− sin 2 4e7 28

)
and

( cos 1 − sin 2
3e7 4e7

40 28

)
,

respectively.

If an optimization problem includes a set of linear constraints

Ax = b,

or equivalently
f (x) ≡ Ax − b = 0,

then the Jacobian has a simple form. In this case

∇f (x) = AT

and the Jacobian is equal to A.
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B.5 Gradient and Hessian of a Quadratic Function
For a quadratic function, the formulas for the gradient and Hessian are especially simple.
Consider the quadratic function

f (x) = 1
2x

TQx − bTx,
where x = (x1, . . . , xn)

T, b is a vector of length n, and Q is an n × n symmetric matrix.
The function can also be written as

f (x1, . . . , xn) = 1

2

n∑
j=1

n∑
k=1

Qj,kxjxk −
n∑
j=1

bjxj .

The only terms involving the variable xi are

1

2
Qi,ix

2
i +

1

2

∑
j =i

Qj,ixj xi + 1

2

∑
k =i

Qi,kxixk − bixi .

Taking the partial derivative of these terms with respect to xi gives

∂f

∂xi
= Qi,ixi + 1

2

∑
j =i

Qj,ixj + 1

2

∑
k =i

Qi,kxk − bi

=
n∑
j=1

Qi,j xj − bi = (Qx − b)i .

(We have used the fact that Q is symmetric.) Hence

∇f (x) = Qx − b.
The formula for ∂f /∂xi can be used to show that

∂2f

∂xi∂xj
= Qi,j

so that
∇2f (x) = Q.

Example B.3 (Derivatives of a Quadratic Function). Consider the quadratic function

f (x1, x2, x3) = 1
2x

TQx − bTx
with

Q =
( 4 2 1

2 5 3
1 3 7

)
and b = (−2 8 −9 )T .

The matrix-vector formulas for the gradient and Hessian give

∇f (x) = Qx − b =
( 4x1 + 2x2 + x3 + 2

2x1 + 5x2 + 3x3 − 8
x1 + 3x2 + 7x3 + 9

)
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and

∇2f (x) = Q =
( 4 2 1

2 5 3
1 3 7

)
.

The function f can also be written as

f (x1, x2, x3) = 1
2 (4x

2
1 + 2x1x2 + x1x3 + 2x1x2 + 5x2

2 + 3x2x3

+ x1x3 + 3x2x3 + 7x2
3)− (−2x1 + 8x2 − 9x3).

Taking the partial derivatives of this formula gives the same result as the matrix-vector
formulas.

B.6 Derivatives of a Product
Suppose that

f (x) = g(x)h(x),

where f and g are both continuously differentiable functions of the n-dimensional vector
x. Then

∇f (x) = ∇g(x)h(x)+ ∇h(x)g(x).
To obtain the Hessian, we first differentiate the term

∇g(x)h(x)
with respect to x. It can be verified that this gives the matrix

∇2g(x)h(x)+ ∇g(x)∇h(x)T.
Similarly, differentiating

∇h(x)g(x)
with respect to x gives the matrix

∇2h(x)g(x)+ ∇h(x)∇g(x)T.
Combining the two expressions, we obtain that

∇2f (x) = ∇2g(x)h(x)+ ∇2h(x)g(x)+ ∇g(x)∇h(x)T + ∇h(x)∇g(x)T.
Example B.4 (Derivative of a Product). Consider the function

f (x) = (aTx)(bTx),

where a, b, and x are n-dimensional vectors. Then

∇f (x) = a(bTx)+ b(aTx)
and

∇2f (x) = abT + baT.
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B.7 The Chain Rule
The rule for obtaining the derivative of a function of a function is called the chain rule.
Consider a function g(x) = g(x1, . . . , xn), and suppose that each xi is in turn a function
of the variables t1, . . . , tm; that is, xi = xi(t1, . . . , tm) for i = 1, . . . , n. We examine the
composite function

h(t) = g(x(t)).

The chain rule states that if g is continuously differentiable in �n, and x1, . . . , xm are
continuously differentiable in �m, then h is continuously differentiable in �m and

∇h(t) = ∇x(t)∇g(x(t)),
where

∇x(t) = (∇x1(t) · · · ∇xn(t) ) .
The chain rule can be generalized to the case where g is a k-dimensional vector of

functions gi . In this case h will also be a k-dimensional vector of functions. If ∇h denotes
the n × k matrix whose j th column is ∇hi , and ∇g denotes the n × k matrix whose j th
column is ∇gi , then the above formula remains valid.

Example B.5 (Chain Rule). Suppose that

g1(x) = x2
1 − x1x2

g2(x) = −x4
1 + 2x2

2 ,

where

x1 = x1(t1, t2, t3) = t1 + 2t2 − 3t3
x2 = x2(t1, t2, t3) = t21 + t2

and let h(t) = g(x(t)). Then

∇x(t) =
( 1 2t1

2 1
−3 0

)

and

∇g(x(t)) =
(

2x1(t)− x2(t) −4x3
1(t)−x1(t) 4x2(t)

)

=
(

2(t1 + 2t2 − 3t3)− (t21 + t2) −4(t1 + 2t2 − 3t3)3

−(t1 + 2t2 − 3t3) 4(t21 + t2)
)
;

hence

∇h(t) =
( 1 2t1

2 1
−3 0

)(
2(t1 + 2t2 − 3t3)− (t21 + t2) −4(t1 + 2t2 − 3t3)3

−(t1 + 2t2 − 3t3) 4(t21 + t2)
)
.

A particular application of the chain rule is if

x =
(
y(t)

t

)
.
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If h(t) = g(x(t)), then

∇h(t) = ∇x(t)∇g(x(t)) = (∇y(t) I )

(∇yg(x(t))
∇t g(x(t))

)
= ∇y(t)∇yg(y(t), t)+ ∇t g(y(t), t).

Note that ∇t refers to the gradient of a function with respect to the vector of variables t .
The chain rule can also be used to obtain second derivatives. We will assume here

that g is a scalar function. If g and xi are twice continuously differentiable, then h is twice
continuously differentiable in �m and

∇2h(t) = ∇2x(t)∇g(x(t))+ ∇x(t)∇2g(x(t))∇x(t)T,
where a product of the form (∇2x)v is interpreted as

(∇2x)v =
n∑
i=1

(∇2xi(t))vi .

B.8 Continuous Functions; Closed and Bounded Sets
A set S is said to be bounded if every point x ∈ S satisfies ‖x‖ < M for some number M .
S is closed if for any sequence of points x1, x2, . . . with xi ∈ S for all i and

lim
i→∞ xi = x,

we have x ∈ S also. A point x ∈ S is interior to the set S if

{ y : ‖y − x‖ < ε } ⊂ S

for some ε > 0. A set S is open if every point x ∈ S is interior to S.
For example, consider the sets

S1 = { x : 0 < x } , S3 = { x : 0 ≤ x < 2 } ,
S2 = { x : 0 ≤ x } , S4 = { x : 0 ≤ x ≤ 2 } .

Then S1 is open but not bounded, S2 is closed but not bounded, S3 is bounded but neither
closed nor open, and S4 is both closed and bounded.

If f is a continuous function defined on a closed and bounded set S, then f takes
on its minimum and maximum values somewhere on the set S. That is, there exist points
xmin ∈ S and xmax ∈ S such that

f (xmin) = min
x∈S f (x)

f (xmax) = max
x∈S f (x).

This is not guaranteed unless S is both closed and bounded. To see this, consider the function
f (x) = x2 on the sets Si defined above.
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This theorem is due to Weierstrass. For a proof of this result see the book by Buck
(1978, reprinted 2003).

Let F(x) be an m-vector of functions of x = (x1, . . . , xn)
T. Then F is Lipschitz

continuous on an open set S if for some constant L,

‖F(x)− F(y)‖ ≤ L ‖x − y‖
for all x, y ∈ S.

The following technical result is used in Chapter 11.

Theorem B.6. Let F(x) be anm-vector of functions of x = (x1, . . . , xn)
T. Assume that the

Jacobian of F is Lipschitz continuous on an open convex set S with constant L. Then for
any x, y ∈ S, ∥∥F(y)− F(x)− ∇F(x)T(y − x)∥∥ ≤ L

2
‖y − x‖2 .

Proof. See the book by Dennis and Schnabel (1983, reprinted 1996).

B.9 The Implicit Function Theorem
The concept of an “implicit” function arises in connection with constraints. For example,
the constraint x1 +x2 −1 = 0 could be rewritten as x1 = 1−x2, so the constraint implicitly
determines x1 as a function of x2. Once x2 is known, x1 is determined and can be eliminated
from the problem.

For simple constraints this is a straightforward procedure, but for systems of nonlinear
constraints, such as

x5
1x2x

4
3 − 5x3

2x
3
3 − 7x3

1 + 5 = 0

x7
1x

3
2x3 + 8x6

1x
2
2 + 8x2

3 − 2 = 0,

it is less obvious how to express, say, x1 and x2 in terms of x3, or even if the constraints
implicitly define such functions. It is possible that one of the constraints is redundant, or
reduces to a formula such as

x1 = ±√
x3

which would not correspond to a single-valued function.
The implicit function theorem states conditions under which such an implicit function

is defined. The theorem does not give formulas for the implicit function, but just determines
when such a function exists. The main requirement for the existence of such a function is
that the Jacobian of the constraints be nonsingular. A version of the theorem is stated below;
for a proof see the book by Ortega and Rheinboldt (1970, reprinted 2000).

Theorem B.7. Consider the system of m equations in n variables

gi(x1, . . . , xn) = 0 for i = 1, . . . , m,
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and let x̂ be a point that satisfies these equations. Assume that the gradients of the functions
{ gi(x) } are continuous, and that the Jacobian matrix of the equations with respect to the
variables x1, . . . , xm, ⎛

⎜⎜⎜⎝
∂g1(x̂)

∂x1
· · · ∂g1(x̂)

∂xm
...

. . .
...

∂gm(x̂)

∂x1
· · · ∂gm(x̂)

∂xm

⎞
⎟⎟⎟⎠

is nonsingular. Define ŷ = (x̂m+1, . . . , x̂n)
T and y = (xm+1, . . . , xn)

T. Then for some ε > 0,
if ‖ŷ−y‖ < ε there exist functionsh1(y), . . . , hm(y) such that (i) the functions {hi(y) } have
continuous gradients, (ii) x̂i = hi(ŷ) for i = 1, . . . , m, and (iii) gi(h1(y), . . . , hm(y), y) =
0, for i = 1, . . . , m.

To illustrate the theorem, we consider the equations

g1(x) = x5
1x2x

4
3 − 5x3

2x
3
3 − 7x3

1 + 5 = 0

g2(x) = x7
1x

3
2x3 + 8x6

1x
2
2 + 8x2

3 − 2 = 0.

These equations are satisfied at the point x̂ = (0, 2, 1
2 )
T. At this point the Jacobian matrix

with respect to the first two variables is(
5x4

1x2x
4
3 − 21x2

1 x5
1x

4
3 − 15x2

2x
3
3

7x6
1x

3
2x3 + 48x3

1x
2
2 3x7

1x
2
2x3 + 16x6

1x2

)
x=x̂

=
(

0 0
−15/2 0

)
.

This matrix is singular, the conditions of the implicit function theorem are not satisfied, and
so at this point the constraints cannot be rewritten to express the first two variables in terms
of the third variable.

For the equation
g1(x1, x2) = x1 + x2 − 1 = 0

the Jacobian matrix with respect to the first variable is (1). This matrix is nonsingular for
all values of x1 and x2, so in this case an implicit function exists at all points where the
constraint is satisfied.

The theorem attempts to define the first m variables in terms of the remaining n−m
variables. There is nothing special about the first m variables, since the variables could be
relabeled so they could be put in any order.

A slightly more general version of the implicit function theorem is used in Chapter 16;
it can be found in the book by Bertsekas (1982, reprinted 1996).
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Appendix C

Software

C.1 Software
In the last two decades, optimization software has improved dramatically, and this has
made it possible to solve important problems in many areas of science and engineering.
Advances in modern optimization algorithms and in computing technology enable us to
solve problems with hundreds of thousands and even millions of variables and constraints.
Even on a laptop computer using general-purpose optimization software, we can solve
problems with thousands of variables and constraints.

It is not feasible here to give a detailed discussion of optimization software. Instead
we will discuss five categories of optimization software defined by their functionality.

The first category is general-purpose software environments for scientific computing
and data analysis. Examples include Excel, Mathematica, MATLAB®, and SAS. These
software systems include optimization modules along with many other computational and
graphical tools. They offer a broad range of capabilities, but may not offer the advanced
capabilities necessary for solving large or especially challenging optimization problems.
Also, because these systems are not specialized for optimization, they may lack modeling
tools that make it easier to develop and implement an optimization model.

The second software category is modeling software specifically oriented for optimiza-
tion. This software makes it easy for a user to formulate an optimization problem and apply
the whole arsenal of available optimization tools. The modeling software is usually based
on some modeling language for describing optimization problems. A modeling language is
a convenient way to convey an optimization problem to a solver. It makes it simple for a
user to define objective functions and constraints of an optimization problem. The modeling
language can then transform the model (represented in a form convenient to the user) into the
mathematical form required by the optimization software. In the case of nonlinear models,
the software can also derive formulas for derivative calculations. Also, by conveniently
parameterizing a model, modeling languages provide a simple way to create optimization
models based on data sets. This is particularly convenient in applications where the general
model is fixed, but in which the data change regularly. Finally, once the model has been
developed, it is straightforward to apply a variety of optimization algorithms in which cases

703
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where a small change in the model may require a different solver. This can occur, for ex-
ample, when a nonlinear term is added to what had been a linear model. All these useful
features allow a simple and fast way to model and solve optimization problems.

The third software category is linear programming solvers. In this category we also
include software for solving integer programming problems. There are several reasons
why we separate linear programming software from more general optimization algorithms.
One reason is that it is simpler to describe the models, since it is only necessary to specify
vectors and matrices and not general nonlinear functions. Another is that software for
linear programming includes many features beyond that typically provided by nonlinear
optimization algorithms; for example, it will be common to have modules for sensitivity
analysis. In addition, software for linear programming often includes capabilities for solving
problems with integer variables, while nonlinear optimization software typically does not
(with the exception of some software for quadratic programming).

The fourth software category is quadratic programming solvers. Quadratic models are
nonlinear, but they (like linear programs) can be described by specifying vectors and matrices
rather than general nonlinear functions. Convex quadratic problems with linear constraints
can be solved efficiently using an interior-point method or a modification of the simplex
method. Therefore solvers for quadratic programming and linear programming are often
combined in one software package that contains useful features such as the ability to handle
integer variables or to perform sensitivity analysis. If these features are not required, then a
convex quadratic program could be solved using software for nonlinear optimization. Since
nonlinear optimization methods are often based on quadratic models, and often treat linear
constraints separately from nonlinear constraints, nonlinear optimization software should
often work well for convex quadratic programs as well. However, if it is necessary to solve
a nonconvex quadratic problem or a problem with quadratic constraints—problems that
may have local solutions—then it may be necessary to use general nonlinear optimization
solvers.

The last software category is general nonlinear optimization solvers. There are many
varieties of nonlinear optimization models, and a corresponding array of nonlinear opti-
mization algorithms. If the optimization problem is especially challenging to solve, the
user may have to provide additional guidance in choosing an appropriate solver, or even in
reformulating the model. Another issue to keep in mind is that it can be difficult to express
a nonlinear optimization model in software. In some cases it may be easy to write the for-
mulas for the model, for example, if the model includes a quadratic function. In other cases
the model may be defined only in terms of other software. This can happen, for example,
if the constraints include a differential equation that is solved using auxiliary algorithms.
A guide to optimization algorithms and modeling languages is available through NEOS, a
software system at the Argonne National Laboratory.

In conclusion, we highlight several points.
First, optimization software continues to be developed and improved at a rapid pace.

Any recommendations that we might make in a book such as this would quickly go out
of date. For this reason, it may be helpful to consult with online sources of information.
For example, the Web site for the magazine OR/MS Today includes surveys of various
types of software. Another source of guidance is the NEOS Server for Optimization Soft-
ware. Links to these and other resources can be found on the Web site for this book (see
http://www.siam.org/books/ot108).
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Second, modern linear programming software is able to solve problems with millions
of variables and constraints. Moreover, the solver always finds the global solution to a
linear programming problem. However, if the model includes integer-valued variables, it
will typically be harder to solve, and this will limit the size of the problem that can be
solved. In this case the default version of the solver may not compute the optimal solution,
but instead may return an estimate that is only guaranteed to be within some tolerance of
the optimal solution. The software is designed in this way because verifying optimality can
be a time-consuming calculation when integer variables are included in the optimization
model. In contrast, it is often relatively easy to compute a bound on the accuracy of the
objective value.

Third, nonlinear optimization problems may have multiple local solutions, and most
optimization software will only guarantee that a local solution will be found. If the model
includes nonlinear constraints, the software may not be able even to find a feasible point.
Therefore a good initial guess in the neighborhood of the global solution can be helpful. In
some cases it may be necessary to try several different initial guesses of the solution.

Fourth, using a flexible optimization modeling environment with several different
solvers is, in general, rewarding. Some problems can be easily solved by certain optimization
algorithms but not others. As software improves, more and more optimization problems
can be solved by general-purpose algorithms using the default settings of the algorithm
parameters. But as this happens, users may become more ambitious and attempt to solve
larger and more challenging optimization problems.

Finally, besides choosing an appropriate solver or a modeling language, it may also
be important to select an appropriate form of the optimization model. For example, subsec-
tion 1.7.6 described the catenary problem, which had several formulations. The formulations
all had the same solution, but they had different computational properties. One of these
formulations was easier to solve than the others. For challenging optimization problems, it
may be necessary to investigate whether another formulation may be worthwhile.
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2-norm, 662–664
Euclidean, 662–664
infinity, 663–664
matrix, 664e, 662–664

induced, 663
vector, 663e, 662–664

null space, 80, 83f, 82–93
null-space equation, 550
null-space matrix, 83

basis matrix, 83
generation of, 86–93

numerical factorization, 328, 674

O’Leary, Dianne P., 479
Olivera, Gustavo C., 41
open set, 699
optimal basic feasible solution, 107,

117, 121–122, 125
optimality conditions, 44–48

constrained, 483–547
first-order necessary, 486e,

485–491, 495–497, 504,
506–508, 519

linear constraints, 484–491,
499e, 494–502



book
2008/10/23
page 737

�

�

�

�

�

�

�

�

Index 737

nonlinear constraints, 505e,
506e, 502–510, 515–522

second-order necessary, 486e,
485–491, 496–497, 504,
506–508, 519–520
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